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ABSTRACT 

The main objective of this dissertation is to comprehensively analyze vibration 

characteristics of microcantilever-based sensors with application to ultra small mass 

detection and low dimensional materials characterization. The first part of this work 

focuses on theoretical developments and experimental verification of piezoelectric 

microcantilevers, commercially named Active Probes, which are extensively used in 

most today’s advanced Atomic Force Microscopy (AFM) systems. Due to special 

geometry and configuration of Active Probes, especially multiple jump discontinuities 

in their cross-section, a general and comprehensive framework is introduced for forced 

vibration and modal analysis of discontinuous flexible beams. More specifically, a 

general formulation is obtained for the characteristics matrix using both boundary and 

continuity conditions. The formulation is then reduced to the special case of Active 

Probes with intentional geometrical discontinuities. Results obtained from experiment 

are compared with the commonly used uniform beam model as well as the proposed 

discontinuous beam model. It is demonstrated that a significant enhancement on sensing 

accuracy of Active Probes can be achieved using the proposed discontinuous beam 

model compared to a uniform model when a multiple-mode operation is desired. 

In the second part of this dissertation, a comprehensive dynamic model is 

proposed for vector Piezoforce Microscopy (PFM) system under applied electrical 

loading. In general, PFM is considered as a suspended microcantilever beam with a tip 

mass in contact with a piezoelectric material. The material properties are expressed in 

two forms; Kelvin-Voigt model for viscoelstic representation of the material and 
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piezoelectric force acting on the tip as a result of response of material to applied electric 

field. Since the application of bias voltage to the tip results in the surface displacement in 

both normal and in-plane directions, the microcantilever is considered to vibrate in all 

three directions with coupled transversal/longitudinal and lateral/torsional motions. In 

this respect, it is demonstrated that the PFM system can be governed by a set of partial 

differential equations along with non-homogeneous and coupled boundary conditions. 

Using the method of assumed modes, the governing ordinary differential equations of the 

system and its state-space representation are derived under applied external voltage. The 

formulation is then reduced to vertical PFM, in which low dimensional viscoelestic and 

piezoelectric properties of periodically poled lithium niobate (PPLN) material can be 

detected. For this purpose, the experimental and theoretical frequency responses along 

with a minimization strategy for the percentage of modeling error are utilized to obtain 

optimal spring constant of PPLN. Finally, the step input responses of experiment and 

theory are used to estimate the piezoelectric and damping coefficients of PPLN. 

Overall in this dissertation, a precise dynamic model is developed for 

piezoelectric microcantilever for ultra small mass detection purpose. This model can also 

be utilized in AFM systems to replace laser-based detection mechanism with other 

alternative transductions. Moreover, a comprehensive model is proposed for PFM system 

to simultaneously detect low dimensional viscoelastic and piezoelectric properties of 

materials. This model can also be utilized for data storage purpose in ferroelectric 

materials. 
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CHAPTER ONE 

MOTIVATION AND PROBLEM STATEMENT 

 

1.1. Motivation 

Microcantilever beams with their structural flexibility, sensitivity to atomic and 

molecular forces, and ultra-fast responsiveness have recently attracted widespread 

attention in a variety of applications including, but not limited to, atomic force and 

friction microscopy, piezoresponse force microscopy, biomass sensing, thermal scanning 

microscopy, and MEMS switches. Their extreme sensitivity and ultra-fast responsiveness 

can be largely attributed to their extremely small size, and the recent efforts devoted into 

making much smaller cantilevers.  

Due to small scale displacement and motion of microcantilever in the 

aforementioned applications, a comprehensive vibration analysis and experimental 

characterization of these systems play a key role when accurate measurement is needed. 

In this respect, the shape and geometry of microcantilever as well as tip-sample 

interaction should be accurately considered in the dynamic and vibration analysis of the 

whole system.  

1.2. Problem Statement 

The objective of this work is to study vibration analysis of microcantilever-based 

sensors (MSC) for; (a) ultra small mass detection applications utilizing piezoelectric 

microcantilever (commercially so-called Active Probes), and (b) materials 
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characterization by means of piezoresponse force microscopy (PFM). The common 

feature is the piezoelectric properties of materials which is used as a source of beam’s 

MCS actuation or material stimulation. 

(a) Piezoelectric Microcantilevers (Commercially Called Active Probes) 

In recent years, a new generation of microcantilevers so-called “Active Probes” has 

been introduced and received great attention due to its unique configuration (see Figure 

1.1). The probe is covered by a piezoelectric layer on the top surface. This layer is 

utilized as a potential source of actuation, or as an alternative transduction for the laser 

interferometer in the next-generation laserless AFMs. The Active Probes consist of a 

silicon beam partially covered with a ZnO piezoelectric layer which acts as a source of 

actuation. To increase the sensitivity of the probe, the tip zone of the probe is designed 

narrower than the body (see Figure 1.1). Current modeling practices call for a uniform 

cantilever beam without considering the intentional jump discontinuities associated with 

the piezoelectric layer attachment and the microcantilever cross-sectional step.  

In order to investigate the effect of discontinuities on the dynamic response and 

modal characterization of Active Probes, this problem has been generalized to a flexible 

Euler-Bernoulli beam with multiple jumps in the cross section. For this purpose, the 

entire length of beam is partitioned into uniform segments between any two successive 

discontinuity points. A closed-form formulation is then derived for the beam vibration 

characteristics matrix based on the boundary conditions and the continuity conditions 

applied at the partitioned points. This matrix is particularly used to find beam natural 

frequencies and mode shapes. The governing equations of motion and their state-space 
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representation are then derived for the beam under a distributed dynamic loading. To 

clarify the implementation of the proposed method, a beam with two stepped 

discontinuities in the cross section is studied, and numerical simulations are provided to 

demonstrate the mode shapes and frequency response of beam for different stepped 

values. Results indicate that the added mass and stiffness significantly affects the mode 

shapes and natural frequencies, particularly in the modes that the thicker part covers the 

extremum points of the mode shapes. 

 

Figure 1.1. piezoelectrically-driven microcantilever (Active Probe) beam with cross-sectional 
discontinuity.     

The proposed model is then applied for the special case of Active Probe with only 

three cross-sectional discontinuities. Using the pin-force model for the electromechanical 

coupling of piezoelectric layer, forced motion analysis of the system is carried out. An 

experimental setup consisting of a commercial Active Probe from Veeco and a state-of-

the-art microsystem analyzer, the MSA-400 from Polytec, for non-contact vibration 

measurement is developed to verify the theoretical derivations. Using a parameter 
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estimation technique based on minimizing the percentage of modeling error, optimal 

values of system parameters are identified. Mode shapes and modal frequency response 

of system for the first three modes obtained from the proposed model are compared with 

those obtained from the experiment and commonly used theory for uniform beams. 

Results indicate that the uniform beam model fails to accurately predict the actual system 

response in multiple-mode operation, while the proposed discontinuous beam model 

demonstrates good agreement with the experimental data. Such novel modeling 

framework could pave the pathway to the development of next-generation laserless 

Atomic Force Microscopy (AFM) systems used in variety of imaging and 

nanomanipulation applications. Furthermore, such detailed modeling and exact sensing 

framework can serve as an attractive attention to bulky laser-based or limited 

piezoresistive-based MCS.  

(b) Piezoresponse Force Microscopy (PFM) 

On the other hand, microcantilevers have been employed in PFM system. The PFM 

functions based on applied external bias electrical field between a rear electrode on the 

sample and a conducting AFM tip. The periodic bias voltage induces local piezoelectric 

vibration which can be detected by AFM tip. These vibrations depend on the orientation 

of polarization vector, and arise due to converse piezoelectric effect. In order to utilize 

PFM for quantifying a wide range of piezoelectric materials, a comprehensive, yet 

straightforward analytical theory is required. In this study, we aim at acquiring a new 

dynamic modeling framework for a vector PFM system. For this purpose, PFM is 

modeled as a suspended microcantilever beam with a tip mass. The microcantilever is 
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considered to vibrate in all three directions while subjected to the bias voltage. The 

mechanical properties of sample are divided into viscoelastic and piezoelectric parts. The 

viscpoelastic part is modeled as a spring and damper in the longitudinal, transversal and 

lateral directions, while the piezoelectric part is replaced with resistive forces acting at 

the end of microcantilever. It is shown that there is a geometrical coupling between 

transversal/longitudinal and lateral/torsional vibration of microcantilever. Moreover, 

assuming friction between AFM tip and sample, another coupling effect is also taken into 

account. The PFM system is then modeled as a set of partial differential equations (PDE) 

along with non-homogeneous and coupled boundary conditions. A general formulation is 

derived for the mode shape, frequency response, and state-space representation of system. 

Finally, for the proof of the concept, the obtained model is applied for a special case of 

vertical PFM. The results obtained from theory are used along with experimental data to 

identify the spring constant, damping coefficient, and piezoelectric properties of the 

Periodically Poled Lithium Niobate (PPLN) material. In this regard, a parameter 

estimation technique based on minimizing the percentage of modeling error is utilized to 

obtain the optimal values of materials. 

1.3. Overview of the Dissertation 

 The dissertation is organized as follow: In Section 2, the principle of operation for 

MCS and microcantilever-based integrated systems are presented. In Section 3, modal 

analysis and forced vibration of flexible Euler-Bernoulli beam with multiple cross-

sectional discontinuities are studied. Section 4 expresses modeling and experimental 

vibration analysis of microcantilever Active Probe . In Section 5, vibration analysis of 
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vector PFM with coupled motion is studied, and finally Section 6 presents a procedure 

for measuring low dimensional properties of piezoelectric material utilizing vertical 

PFM.    

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER TWO 

PRINCIPLE OF OPERATION FOR MICROCANTILEVER BASED  

SENSORS 

 

2.1. Introduction 

 In the recent years, MCS have been steadily gaining popularity in many scientific 

applications due to their potential as a platform for the development of large verity of 

sensors. There have been a number of research works in this field for biological [1-9], 

chemical [10-18], physical [19-20], and rheological  [21] applications. It has been shown 

that microcantilever-based sensing technology can be useful in developing “artificial 

noses” which have the potential of detecting a wide variety of biochemical agents for 

many applications  [22]. This sensing platform can prove to be ideal for real-time, in situ 

sensing with very high sensitivity and significant reduction in the cost  [23]. 

 The main feature of MCS is transducing the mechanical deflection of the cantilever 

arising from external field into detectable signals. The MCS are able to detect differences 

in the applied force in the order of a pico-newton and displacement at level of an 

Angstrom with a response time on the order of milliseconds. MCS have been shown to 

display much higher absolute sensitivity compared to other available sensors such as 

quartz crystal microbalances [24], surface acoustic wave devices [25], acoustic plate 

mode devices [26], thickness shear mode resonataor [27] and flexural plate wave 

ossilators [26]. This extreme sensitivity of MCS can be largely attributed to their 
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extremely small size and the recent research efforts devoted into making much smaller 

cantilevers.  

 Typical microcantilever beams have thicknesses of a few micrometers, widths of 

few tens of micrometers and lengths from tens to hundreds of micrometer (see Figure 

2.1). Their sizes and shapes depend on the type of application and sensitivity is 

progressively making way to even smaller nanocantilevers. Microcantilever are 

commonly fabricated from silicon/silicon nitride, although microcantilevers have also 

been fabricated from polymers  [24] and used in sensing applications  [29]. They are 

fabricated using conventional thin film processing techniques which include thin layer 

deposition, photolithographic pattering, etching and surface/bulk micromachining. Such 

fabrication process could result in high precision, low cost and good reproducibility of 

microcantilevers. 

 In summary, the advantages of using microcantilever beam for sensing can be 

itemized as follows: (i) It offers an improvement in precision and reliability as well as 

decrease in the overall dimensions; (ii) It is the simplest MEMS that can be mass 

produced; (iii) It can easily be incorporated on integrated circuits with readout 

techniques, and finally; (iv) It can be heated and cooled within microseconds, which is 

advantageous when utilized in reversal molecular adsorption utilized in rapid detection 

techniques. 
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(a)                                                                        (b) 

                      
(c)                                                                         (d) 

      
                                                                                     (e) 

Figure 2.1. (a and b): Microcantilever beams of different shape, (c and d):  microcantilever arrays, and (e): 

comparison of microcantilever beam size with a human hair  [30].  

 In order to highlight the importance of MCS in MEMS and nanotechnology, a review 

of conceptual design and recent developments in this field is presented in this study in the 

following format. Section 2.2 describes the principle of operation for MCS. Section 2.3 

presents the mathematical modeling for static and dynamic operation modes of MCS. 
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Section 2.4 explains the principle of operation for microcantilever based integrated 

systems and Section 2.5 introduces different types of transducers utilized in MCS.   

2.2. MCS Principle of Operation 

 MCS can be operated in two different modes, static and dynamic modes. In the static 

mode, if an external force is applied to a beam, the extent of deflection is proportional to 

the type of loading, spring constant, modulus of elasticity and dimensions, and any 

change in the system parameters for a given condition can results in the deflection of the 

beam. This forms the basis of the static mode of operation for the MCS. In this respect, 

presence of external force or matter particles on a microcantilever beam affects its 

loading, and therefore changes the deflection by a small but detectable amount. However, 

in the dynamic mode, the shift in the resonance frequency of microcantilever as result of 

aforementioned parameters is used as sensing element. In this approach, four parameters of 

resonance frequency, amplitude, deflection and quality factor (which is a measure of the 

resonance peak bandwidth) can be measured simultaneously [31]. Moreover, by 

measuring the damping in the system more information can be accessed which is impossible 

to detect them in the static mode. 

  In MCS, the matter particle can be a biological or chemical agent. Depending on the 

type of application, microcantilever beam surface can be processed by depositing an 

analyte layer which selectively adsorbs matter particles of specific types of biochemical 

agents. In the static mode, the adsorbed species on the microcantilever surface induces 

variation in the surface stress.  Since the surface stress changes only on one side of the 

sensor, a differential stress between the top and bottom surfaces results in bending of the 
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beam. However, in the dynamic mode, the desired species do not have to be adsorbed to 

only one side of the microcantilever. In this approach, the change in the both surface 

stress and mass can be simultaneously used as a sensing element. The following section 

will focus on the mathematical modeling for static and dynamic modes of MSC. 

2.3. Static and Dynamic Modes Models 

2.3.1. Static Deflection Model:  

 In general, when matter particles are absorbed on the one surface of microcantilever, 

the intermolecular forces arise on that side, and induce differential surface stress 

1 2S S S∆ = −  which generates a bending moment along its length (see Figure 2.2). For the 

case of elastically deflection of microcantilever with rectangular shape, the bending 

moment is given by [ [32]: 

2
bhM S= ∆                                                              (2.1) 

where b is the beam width and h is its thickness.  If the length of the microcantilever is 

assumed to be much larger than its width, the curvature of the beam for the small 

deflection can be expressed as a function of effective modulus Ê  and bending moment M 

and moment of inertia I  as follow: 

 
2

2 ˆ
d w M
dx EI

=                                                             (2.2) 
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Figure 2.2. The schematic of induced bending moment due to surface stress in a cantilever with 

arbitrary geometry [33]. 

 
where 2ˆ / (1 )E E υ= − , E  and υ  are the respective Young’s modulus of elasticity and 

Poisson’s ratio of the beam and 3 /12I bh= . Substituting Eq. (2.1) into Eq. (2.2), the 

Stoney’s equation for the radius of curvature of deflected microcantilever due to 

adsorption can be expressed as: 

2

1 6(1 )
R

S
Eh

υ−
= ∆                                                           (2.3) 

where R  is the radius of curvature, reciprocal of which is equal to 
2

2

d w
dx

 (for small 

amplitude vibrations), and S∆  is the differential surface stress. Using a geometrical 

approach, a relationship between the microcantilever displacement and differential 

surface stress can be expressed as: 

2

2

3 (1 )Lz S
Eh

υ−
= ∆                                                         (2.4) 
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 Applying the first law of thermodynamic, the surface stress and surface free energy 

can be related with the following equation: 

S γγ
ε
∂

= +
∂

                                                           (2.5) 

 Due to very small bending, the contribution made by the surface strain effects 

( AA /δε =∂ ) can be neglected and the change in surface stress variations S  can be 

equated entirely to changes in free surface energyγ . 

 In the derivation of Stoney’s equation (Eq. (2.3)) it is assumed that the plate bends 

with the uniform curvature which is valid for the unrestrained conditions at all edges of 

plate. However, in MCS this condition is not satisfied and the effect of specified 

displacement at its clamped end should be taken into account. Figure 2.3 depicts the 

decomposition of such problem into the free plate problem (Stoney’s problem) plus 

correction problem arising from specified displacement at the clamped end of 

microcantilever [33]. 

 Considering all these points, Sader proposed a more accurate equation for the 

deflection of a given point of a rectangular microcantilever due to the effect of surface 

stress as follow [33]: 

2 2
2 2

1 2 1 2 1 2
2

1 2 2 1
2

1

1 1 1 1 1 1( , ) { 2 [ ]( ) [ 2 ( )
12

1 2( )exp( )]( ) [1 exp( )]}
12i i i i

i i

bw X Y L X X
L

bd XLw Y d XLw
L

υ υ
τ τ τ τ τ τ

υ τ τ
τ

− −

=

= Ω + + − + + + −

+ − + − −∑
                (2.6) 

where   
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1X xL−= , 1Y yL−= , 3

3( )
i

i
i i

d τ
τ τ

−

−

=
−

, ( )
[4 (1 )]

S h
D υ
∆

Ω =
+

, 
3

2[12(1 )]
EtD

υ
=

−
and 

2 3[5(1 ( 1) 10(1 )(2 3 )]i
iτ υ υ υ= − + − − −  

The similar formulation was obtained for V-shaped microcantilever [34].  

 

Figure 2.3. Decomposition of MCS problem into Stoney and correction problems [33]. 

 Up to now, the mathematical models presented in this section for the deflection of 

microcantilever were developed based on the energy transferred between surface free 

energy and bending elastic energy of the beam.  However, the mechanism of bending of 

the microcantilever can be explained in terms of atomic and elastic energy. In this 

approach, the interactive potential of adsorbate and adsorbent (microcantilever surface) 

atoms are related to the beam curvature. It is assumes that bending of the microcantilever 



 
 

   15

is a result of interactions of the first layer of surface atoms with the adsorbate atoms (see 

Figure 2.4). According to Lennard-Jones formula, the potential of interaction in the 

attached film can be given by  [35]: 

126)(
r
B

r
ArP +−=                                                          (2.7) 

where A and B are Lennard-Jones constants chosen to fit the physical properties of the 

beam material and r is the spacing between the atoms. Assuming the uniform curvature 

along the microcantilever and neglecting the role of the second and higher layers of atom 

on the deflection of beam, the potential energy in the near surface layer of atoms based 

on Lennard-Jones potential can be expressed in terms of beam curvature as follow [35]: 

















+−
+

+−

−
+

−
+

−
−=

622322
126

))(
4
1())(

4
1(

2
)()( azb

B

azb

A
zb

B
zb

AU s         (2.8) 

where   ( )bz c a
R

= +  can be obtained from the geometry shown in Figure (2.4(a)). On the 

other hand, the elastic bending potential bU  over atomic length  b  can also be given by 

 [35]: 

b
R

EIUb
2)1(

2
1

=                                                           (2.9) 
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                                            (a)                                                                                        (b) 

Figure 2.4. (a) Curvature of beam over distance b, and (b) schematic of near surface layer of atoms  [35]. 

 In order to obtain an expression for the curvature of the beam due to molecular 

interactions, the relative minimum of the total potential s bU U U= +  with respect to the 

curvature can be expressed as [35]: 

7 13

7 132

7 13

42 2

6 1 12 1
             

1 1 1 1

3 1 1 1 3 1 1
22 2

1 1 1
4

A a B a
EI c b c b c
c R c a c a

R c R c

A c a a B c a
b R c c b R c

c a a
R c b

   + +        = − + 
        − + − +            

      − + + − +             −
     − + +           

72 2

1

1 1 1
4

a
c

c a a
R c b

   +     
     − + +           

                   (2.10) 

 The values of ( )c
R

 which satisfy Eq. (2.10) is the curvature of microcantilever. 

Applying simple trigonometry, the transverse deflection of the end of the microcantilever 

can be obtained as (see Figure 2.5): 
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)cos1( θδ −= R                                                     (2.11) 

   

Figure 2.5. Calculation of beam deflection  [35]. 

2.3.2. Dynamic Models 

 As mentioned earlier, in the dynamic mode, the changes in the resonant frequency of 

the microcantilever is used to detect the effect of surface stress and added mass to the 

system.  In this respect, the dynamic mode of MCS has been developed based on 1D 

oscillator approach and/or a flat thin homogenous beam. The following subsection will 

focus on the detail of each approach. Moreover, the effect of distributed and concentrated 

added mass on the resonant frequency and the mass sensitivity of MCS will be discussed 

in more detail. 

2.3.2.1. String Model Approximation of Microcantilever 

 This model approximates the microcantilever beam by a taut string, as shown in 

Figure 2.6, [36]. In general, if the microcantilever is modeled as a 1D oscillator, the 

natural frequency can be given by  [32]:  
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1      
2 b

Kf
mπ

=                                                  (2.12) 

where K  is the spring constant and b beamm nm=  is the effective beam mass with beamm  

being it’s actual mass and n  being  a  geometric parameter accounting for the non point-

mass distribution.  n has a typical value of 0.24 for a rectangular microcantilever beam.  

 

Figure 2.6. Approximation of microcantilever beam by a taut string [36]. 

 Presence of mass on the microcantilever surface results in the generation of 

differential surface stress. This changes the spring constant, which also changes the 

resonant frequency given by: 

1      
2 b

K Kf
m n mδ

δ
π δ

+
=

+
                                               (2.13) 

where Kδ  is the change in the spring constant attributed to adsorption induced surface 

stress and mδ  being the added mass.   
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If the microcantilever is approximated by a taut string, stretched under tension N , the 

equation of transverse free vibration can be given by  [36]: 

2 2

2 2

( , ) ( , ) 0w x t w x tN A
x t

ρ∂ ∂
+ =

∂ ∂
                                               (2.14) 

where ( , )w x t  is the transversal deflection, x  is the distance along the length, t  is the 

time, ρ  is the volumetric mass density, and A  is the area of cross section. Moreover, the 

axial force generated by surface stress can be expressed as  [32]: 

1 2( )N S S L= +                                                                 (2.15) 

where 1S  and 2S  are the surface stresses on the two sides of the microcantilever, and L is 

the microcantilever length.  The propagation speed of the transverse wave can then be 

given by: 

b

N NLC
A mρ

= =                                                          (2.16) 

Since C f λ= , where λ  is the fundamental mode transverse wavelength equal to 4 L , 

the resonance frequency due to surface stresses can be written as [37]: 

 1 21 1
4beam beam

S SNLf
nm nmλ

+
= =                                                  (2.17) 

From equation (2.17) and taking into account equation (2.14) it could be concluded that 

[37]: 

 
2

1 2( )
4sK S Sπ

= +                                                   (2.18) 

where sK  is the spring constant due to the surface stress.  Hence,  
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2

1 2( )
4

K S Sπδ δ δ= +                                                      (2.19) 

where Kδ  is the change in the spring constant attributed to adsorption induced surface 

stress and 1Sδ  and 2Sδ  are the changes in the surface stresses on each side of the 

microcantilever due to the mass adsorption.  

It has been shown that if adsorption is localized (end loading), the change in resonance 

frequency due to change in spring constant can be neglected. If the spring constant K  is 

given by  [23]: 

3

34
EbhK

L
=                                                                    (2.20)  

with E being the Young’s modulus of elasticity for the microcantilever beam material and 

,  ,  and b h L  being width, thickness and length of the beam, respectively, then, the 

resonance frequency f  of the microcantilever beam can be given by [23]: 

                         22 (0.98)
h Ef

Lπ ρ
=

1      
2 eq

K
mπ

=                                         (2.21) 

where eqm  is the equivalent mass consisting of mass of microcantilever beam and 

adsorbed mass.  If  dm  is the added mass at the end of the microcantilever beam, then 

eq d bm nm m= + . 

 Moreover, the shifted resonance frequency fδ  can be given by [23]:  

3

3

1
2 4 ( )d

Ebhf
nL m bhLδ π ρ

=
+

                                                       (2.22) 
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The adsorbed mass mδ  can then be determined from the change in the resonance 

frequency as: 

2 2

2

f f m
f m

δ δ−
=                                                                (2.23) 

If the mass sensitivity for a sensor is defined as the fractional change in the resonant 

frequency with addition of mass;  

0

1 1 ,     limm
m s

f df mS m
f m f dm A

δ
∆ →

∆
= = ∆ =

∆
                                          (2.24) 

where sA  is the active area of the sensor, the expression for the mass sensitivity of MCS 

can be obtained as [23]:  

1

1 d

1 for distributed load

for end load
2 ( 0.24 )

m

h
S

h h


=  −
 +

ρ
ζ

ρ ζ

                                        (2.25) 

where 1ζ  and dh  are  the fractional area coverage and thickness of the deposited mass at 

the end loaded microcantilever beam.  The smallest detectable change in the resonator 

mass per unit area mas, minm∆ , can be expressed as [38]: 

5

min 5

28   BKK TBm
f Q

π
∆ =                                                    (2.26) 

where K  is the spring constant, BK  is the Boltzmann constant ( J/K) 1038.1 23−× , T  is 

the absolute temperature, B  is the bandwidth of measurement, f  is the resonant 

frequency of the microcantilever beam and Q  is the quality factor. 
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 A few points need to be noted. (i) If a microcantilever beam is end-loaded, then the 

resonant frequency decreases with increase in the load; (ii) If the microcantilever beam is 

uniformly loaded, then the resonance frequency actually increases with increase in the 

load; (iii) Sensitivity increases with decrease in spring constant, however decrease in 

spring constant results in increase in the thermal noise; (iv) Longer microcantilevers with 

smaller spring constants are attractive for bending mode; (v) Sensitivity will increase 

with increase in the resonance frequency and the resonance frequency will increase with 

decrease in size, and finally; (vi) If the same microcantilever is to be used for sensing in 

both static and dynamic modes, then a compromise needs to be made with regards to the 

dimensions and sensitivity of each mode.  

2.3.2.2. Beam Model Approximation 

 If the microcantilever is modeled as a flat thin homogenous cantilever beam, (see 

Figure 2.7), then the governing differential equation for negligible surface stress is can be 

given by: 

4 2

4 2

( , ) ( , ) ( , )ˆ ( ) ( , )w x t w x t w x tEI A C q x t
x t t

ρ χ∂ ∂ ∂
+ + + =

∂ ∂ ∂
                                 (2.27) 

where 2ˆ /(1 )E E υ= −  is the apparent Young’s modulus of the beam with E  being the 

Young’s modulus of the beam and υ  being the Poisson’s ratio.  3 /12I bh=  is the cross-

sectional area moment of inertia, w  is the linear transverse deflection, x  is the distance 

measured along the length of the beam, t  is time, ρ  is the volumetric mass density of the 

material, A  is the area of beam cross section, C  is the damping coefficient per unit 
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length per unit velocity, χ  is the additional mass per unit length and ( , )q x t  represents 

the external load per unit length. 

                   

         Figure 2.7. Microcantilever modeled as prismatic beam.  

Assuming variables are separable, i.e., ( , ) ( ) ( )w x t W x T t= , the equation of motion for the 

case of free vibration can be represented by: 

 

4 2

4 2
2
0

( ) ( ) ( )
ˆ

.
( ) ( ) ( )

d W x dT t d T t
EI Cdx dt dt const
A W x A T t T t

ω
ρ χ ρ χ

= − − = =
+ +

                      (2.28) 

The equation governing the time-function, ( )T t can be written as: 

 
2

2
02

( ) ( ) ( ) 0d T t C dT t T t
dt A dt

ω
ρ χ

+ + =
+

                                          (2.29) 

which is a general second order ordinary differential equation of the form  

 
2

2
0 02

( ) ( )2 ( ) 0d T t dT t T t
dt dt

ζω ω+ + =                                               (2.30) 

 and the solution being given as: 

 0( ) sin( )t
dT t B e tζω ω ϕ−= +                                           (2.31) 
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with B and ϕ  are constants determined using initial conditions and 21d nω ω ζ= −  is the 

damped natural frequency.  The equation governing spatial-function ( )W x  can be also 

written as: 

 
4

2
04

ˆ ( ) ( ) 0EI d W x W x
A dx

ω
ρ χ

− =
+

                                          (2.32) 

with the solution being given by: 

            1 2 3 4( ) cos( ) sin( ) cosh( ) sinh( )W x c x c x c x c x
L L L L
λ λ λ λ

= + + +  (2.33) 

where constants 1c , 2c , 3c  and 4c  are to be determined from the boundary conditions: 

     
2 3

2 3
0 0

( ) ( ) ( )(0) 0,   0,   0,   0
x x x L

dW x d W x dW xW
dx dx dx= = =

= = = =                   (2.34) 

and,  

 
2

4 0( ) ˆ
A

L EI
ρ ωλ

=                                                            (2.35) 

The first two boundary conditions are due to the fact that one end of the beam is clamped. 

The third excludes any bending moment at the free end of the cantilever and the fourth 

excludes any shear force.  The characteristic equation can then be given: 

 cos cosh 1λ λ = −                                                     (2.36) 

with discrete values of λ  for the first four modes given by 0λ =1.875, 1λ = 4.69, 2λ =7.68 

and 3λ =11.00. Substitution of these parameters into Eq. (2.35), the resonance frequency 

of a clamped-free beam with rectangular cross section can be given as  [38]: 
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2 2

,0 ,0 2 22

ˆ
2

(1 )12
a a

a a
h E EIf

L AL
λ λω π

ρ ν χ ρ χ
= = =

− + +
, 0,  1,  2,  ...a =             (2.37) 

where ,0aω  is the resonance frequency in the undamped case ( 0ζ = ).  

 If the magnitude of surface stress is sufficiently great, the axial normal force 

distributed along the microcantilever length arising from the surface stress has to be 

considered in the Eq. (2.27). Assuming non-unifrom distribution of normal axial force, 

the governing equation for undamped of motion of microcantilever case can be given by 

 [36]: 

4 2

4 2

( , ) ( , ) ( , )( ) 0w x t w x t w x tEI N A
x x x t

∂ ∂ ∂ ∂
− + =

∂ ∂ ∂ ∂
ρ                            (2.38) 

where the axial force N varies along the microcantilever and can be given by (see Figure 

2.8): 

2 1
1

2
1 2

    0   
( ),   with  ( )  

       

x x x x
L LN SLf x f x
x x x x x
L L

 − < <= = 
 − < <


                          (2.39) 

and S  is the stress on the microcantilever surface. The microcantilever frequency can 

then be expressed as  [36]: 

1 2
1 4

9 2 1 ( , )
2 13 beam

x x EIf
L L m L

β
π

= + Π                                               (2.40) 

where,                    

 
2

1

4 5 6 7 81 1 1 1 15 ( ) ( ) ( ) ( ) ( )
12 10 18 63 504

x

x

x x x x x
L L L L L

β  = − + − +  
                          (2.41) 
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and 
3

1
SL
EI

Π =  is a dimensionless quantity which gives the ratio of surface stress S  to the 

elastic bending force 3/EI L .  In general, the natural frequency can be represented as 

 [36]: 

1      
2

n

eq

K Kf
mπ
+

=                                                         (2.42) 

where nK  is a function of 1 2( / , / )x L x Lβ  and the dimensionless quantity 1Π . The 

surface sensitivity of this model can be given by  [36]:  

0

1 1
lim
s

f df
f s f ds

α
∆ →

∆
= =

∆
                                                              (2.43) 

which is similar to the expression of mass sensitivity, and can be further expressed as 

 [36]:  

1

1
116( )
8

S
α =

Π +
                                                              (2.44) 

 

Figure 2.8.  Microcantilever modeled as a beam with non-uniform stresses. 
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 Finally, Mcfarland et al. [40] have developed a general model for entirely coated 

microcantilever with a layer of molecules. In their model, the change in the ith frequency 

of microcantilever is expressed as a function of adsorbed mass, increased stiffness due to 

the change in the thickness and surface stress as follow: 

( )2

3

3
( )2 3

i ads ads
i

beam beam

S E Ikf
m m L m m

λ
δ δπ

∆
= +

+ +
                              (2.45) 

where adsE  and adsI  are the stiffness and moment of inertia of adsorbed layer, 

respectively, iλ  are roots of characteristic equation expressed in Eq. (2.36), and  

3

3EIk
L

= .  Moreover, the effect of damping due to viscous environment on the frequency 

is given by [40]: 

1/2

1
4

D
i D

v
i

f b
f h

πρ
ρ

−
 

= + 
 

                                        (2.46) 

where D
if  and v

if  are the ith resonant frequency of the microcantilever in the viscous and 

vacuum environment, respectively, and Dρ  and ρ  are the density of environment and 

beam, respectively. 

2.4. Microcantilever Based Integrated Systems Principle of Operation 

 Use of microcantilever beams as a platform for new sensing technology emerged 

from the research of sensing probes in Scanning Force microscopy (SFM) [41, 42] and in 

particular Atomic Force microscopy (AFM),  [43]. SFM encompasses a family of 
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techniques that provide measurement of surface topography and surface properties at the 

atomic scale. The SFM principle has widespread applicability, typically in new probe-

based techniques (e.g., piezoresponse force microscopy), force measurements (e.g., 

atomic force microscopy) and imaging applications (e.g., scanning tunneling 

microscopy). Due to important contribution of this area, this section is aimed at providing 

an overview of principle of operation and recent developments in SFM techniques. 

2.4.1. Atomic Force Microscopy (AFM) 

 AFM is one of the most power tools for determining the topography of a surface at 

subnanometer resolution. It enables for direct measurement of specific interaction 

between two kinds of molecules which can be employed in biology, biomaterial, 

polymer, electronics and many other applications. A typical AFM consist of an integrated 

microcantilever-tip assembly interacting with the sample surface, a piezoelectric (PZT) 

actuator, a displacement detector and a feedback electronic. As the microcantilever scans 

the sample, the interatomic attractive and repulsive forces between sample and tip leads 

to the deflection of microcantilever. This deflection can be measured by optical detection 

technique which detects any nanoscale motion of microcantilever. Utilizing a feedback 

mechanism based on the output signals of transducer, the tip and sample are maintained 

in the constant separation distance by moving the PZT scanner in the vertical (Z) 

direction. With an instrumental sensitivity on the order of 0.1 AD , the topography of the 

surface and intermolecular force between tip and sample can be detected [44].  The 

schematic of basic AFM are depicted in Figure 2.9. 
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Figure 2.9. Schematic of basic AFM operation (left), real micro-cantilever and components (right) [44]. 

 Typically, AFM system is operated in three open-loop modes: (i) non-contact mode, 

(ii) contact mode, and (iii) tapping mode. In the non-contact mode, the separation 

distance between tip and sample is defined in the attractive region in the Lennard-Jones 

potential curve (see Figure 2.10) and the frequency of oscillating microcantilever due to 

attractive van der Waals forces acting between tip and sample is detected [45]. In the 

contact mode, the tip is moving at closer distance to the sample, and the change in the 

frequency of cantilever due to the repulsive force between tip and sample is measured 

(see Figure 2.10) [46]. And in tapping mode, the microcantilever is vibrated at or near its 

resonance frequency through applying a base motion by PZT actuator. The amplitude of 

vibration is maintained in a constant level and the change in the oscillating amplitude as a 

result of change in the topography of the surface through a feedback mechanism is used 
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to measure the interatomic force or topography of the scanned surface [47]. The 

schematic of operation modes in all three modes are shown in Figure 2.11. 

 

Figure 2.10. Interatomic force variation versus distance between AFM tip and sample [44]. 

 

Figure 2.11. Contact mode (left), non-contact mode (middle) and tapping mode (right) [44]. 

 In order to utilize AFM for imaging with chemical sensitivity and measure the 

interactions between functional groups, the tip and sample must be modified with well-

defined molecular monolayers. Through varying the head group of monolayers, it is 

possible to study different types of interactions between two kinds of molecules. 

Numbers of studies have been reported the successful methods for covalently modifying 
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the Au coated Si3O4 tips with functionalized organic molecules, and measured adhesive 

forces between modified tip and samples [48]. Figure 2.12 illustrates the scheme for 

selectively chemical interaction of tip and sample substrate. 

 

Figure 2.12. Scheme for chemical modification of tip and sample [www.nanocraft.de]. 

2.4.2. Friction Force Microscopy  

 Typically, friction force microscopy (FFM) is a contact mode AFM which is used to 

measure both lateral (friction) force as well as vertical force. While in the AFM system 

microcantilever oscillates in the vertical direction, in FFM it may experience torsional 

vibration in addition to the vertical bending. The torsion of microcantilever originates 

from the friction force between tip and sample which applies a lateral force to the tip 

results in the lateral motion and rotation of the beam as shown in Figure 2.13. Employing 
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a quadrant photo detector (see Figure 2.14) to measure the tilt angle of microcantilever 

from its resting point with considering the rotational stiffness of cantilever, the friction 

force between tip and sample can be measured.  

  

 

(a)                                                                      (b) 

Figure 2.13. (a) Schematic operation of FFM, and (b) twist of the FFM tip, [49]. 

 

 

 

Figure 2.14. Schematic of a quadrant photo detector employed in the FFM. 
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 Recently, an alternative approach has been introduced to measure friction force via 

FFM system [50]. It was shown that considering nonlinearity in the motion of FFM, the 

vertical vibration of cantilever is coupled to its torsional motion. As the lateral force 

applies to the microcantilever, due to coupling effect, the rotation of microcantilever can 

affect the vertical oscillation of cantilever. Therefore, the change in the rotation of 

cantilever and consequently the friction force can be indirectly measured from the change 

in the resonant frequency of vertical vibration of coupled motion. In this approach, the 

differences in the resonant frequency of vertical vibration in coupled motion and single 

vertical motion are related to the friction force between tip and sample.  

2.4.3. Piezoresponse Force Microscopy  

Piezoelectric materials are one of the most promising classes of materials which have 

attracted a lot of attention since their discovery in 1880-1881. Many works have been 

carried out in developing applications for piezoelectric materials with efforts devoted into 

the development of these materials for implementation in the microelectromechanical 

system (MEMS) [51-53]. In order to use piezoelectric materials in microstructure design, 

the investigation of size effect of these materials in low dimensional structures is a crucial 

factor. It was shown that at microscopic level, the materials cannot preserve their 

macroscopic properties and a significant deviation in the properties of materials can be 

observed when compared to bulk materials [54]. In this respect, characterization of 

material in these scales requires different technique than those utilized for bulk materials. 

Recently, rapid development in scanning probe microscopy (SPM)-based techniques and 

in particular piezoresponse force microscopy (PFM) has attracted widespread attention as 
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a primary technique for nondestructive characterization of piezoelectric materials in the 

scale of grain [55-58]. 

PFM functions based on application of a periodic bias external electrical field 

between a rear electrode on the sample and a conducting AFM tip. The periodic bias 

voltage is ( )tip dc acV V V Cos wt= +  in which dcV  is DC component of the bias voltage used to 

measure the static deflection of the microcantilever and  ( )acV Cos wt  is a small AC voltage 

which is applied to the tip in order to induce local piezoelectric vibration. The 

piezoresponse of the surface can be detected as the first harmonic component of bias 

induced tip deflection 0 ( )d d ACos wt ϕ= + + . The amplitude of vibration, A, provides 

information about the piezoelectric coefficients of surface, while the phase of 

electromechanical response of surface,ϕ , yields information about the polarization 

direction of surface [58 and 59]. Figure 2.15 depicts the schematic of surface 

displacement as a result of applied voltage and microcantilever motion with respect to the 

piezoelectric domain of sample. 

 
Figure 2.15. The electromechanical response of piezoelectric sample in lateral (left) and vertical (right) 

displacements [60]. 
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2.5. Methods of Signal Transduction 

 For MCS which are operated in the static or dynamic modes, the following signal 

transduction methods have been used to measure the microcantilever frequencies of 

vibration or static deflections.  

2.5.1 Optical Deflection Method 

In order to measure the nanomechanical response of microcantilever, the optical laser 

readout system which provides sub-angstrom resolution is the most widespread method. 

This technique is based on the laser beam reflected off from the cantilever surface onto a 

position sensitive photo detector. In this way, any nanoscale motion of cantilever results 

in the deflection of reflected laser beam and accordingly displacement in the reflected 

spot on the surface of sensitive photo detector which is calculated using appropriate 

electronics. In order to detect the lateral and transversal deflection of microcantilever 

simultaneously, a simple combination of two orthogonal quadrant photo sensitive 

detectors can be used (Figure 2.16). The difference in light intensities between the upper 

and lower two quadrants enables to measure the vertical deflection of cantilever, while 

the difference in the signal intensities between right and left two quadrants gives the 

lateral deflection [61 and 62]. Other optical deflection methods such as dual fiber optic 

proximity sensor [63], laser Doppler vibrometry [64], and interferometry [65 and 66] 

have also been used for this purpose. 

The advantage of optical readout technique is the precision of detection in sub-

nanometer range. However, the accuracy of this technique due to thermal management 

issues in the liquid environment still is questionable [67]. Add to this, the conventional 
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optical techniques are bulky and are not portable, and in some cases the alignment of the 

system can raise the cost of this technique.  

 

 

Figure 2.16. The schematic of laser read out technique for combined motion of microcantilever [66]. 

2.5.2. Piezoresistive-based Measurement 

 An alternative to the optical readout system is the piezoresistive-based transducer. 

Piezoresistive detection methods rely on the ability of piezoresistive materials such as 

doped silicon to change resistivity upon application of stress. The change in the resistivity 

of piezoresistor can be easily converted into the measurable electrical signals through 

interface circuits such as Wheatstone bridge circuit [68]. Figure 2.17 depicts the 

schematic of a two-dimensional piezoresistive cantilever force sensor structure. The four 

piezoresistors are arranged on the surface of structures such that a pair of them is stress 

sensing transistors and is located on the surface of cantilever, while another pair is 
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positioned on the outside of cantilever and is used for compensation in the Wheatstone 

bridge [69]. The schematic of lateral and vertical circuit of piezeoresitive cantilever 

sensor are shown in Figure 2.18. The change between these two circuits can be performed 

through using an appropriate electronic switch [69].  

 

 

Figure 2.17. Schematic drawing of the two-dimensional piezoresistive force-sensing cantilever [69]. 

 

Figure 2.18. Schematic configuration. (a) Lateral force sensing mode. (b) Vertical force sensing mode [69]. 

 

 When lateral and/or vertical forces are applied to the tip of microcantilever, the 

resistance change for the piezoresistors in lateral and vertical directions can be 

respectively expressed as [69]: 
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π π−∆ −
= − = −∫                                 (2.48) 

where R∆ , 0R , lπ , sL , L , zF , yF , H , 1z , 2z , yI , zI  denote the resistance change of the 

piezoresistor, resistance of the zero-stressed piezoresistor, longitudinal piezoresitor 

coefficient, distance from fixed end of cantilever to the tip of piezoresistor, length of 

cantilever, lateral applied force, vertical applied force, thickness of cantilever, distance 

from the lateral neutral plane to the inner half (see Figure 2.19), distance from the lateral 

neutral plane to the outer half, lateral momentum of inertia, vertical momentum of inertia, 

respectively.  

 

Figure 2.19. SEM image of the two dimensional piezoresistive cantilever sensor [69]. 
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Assuming the resistance value of piezoresistors in Figure 2.19 as 

1 0S lR R R= + ∆   and   2 0S lR R R= −∆ ,                                        (2.49) 

then the output voltage in the lateral and vertical directions can be respectively given by 

[69] 
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                                        (2.51) 

where  ccV  is the bias voltage. 

The above equations indicate that if the magnitude of input bias and output voltages from 

Wheatstone bridge circuit along with geometry and coefficients of piezoresistors and 

cantilever are known, the magnitude of applied stress or strain and therefore the 

deflection of microcantilever can be directly obtained.  

2.5.3. Piezoelectric Film Attachment 

 Piezoelectric detection techniques rely on the ability of piezoelectric materials to 

induce electric charge when set into vibration. One such method consists of depositing 

thin film of piezoelectric material such as ZnO on the microcantilever surface [70] (see 

Figure 2.20). The generated voltage can then be utilized to detect the vertical deflection 

of microcantilever. In this case, the magnitude of output voltage is proportional to the 

slope difference of the deflection at two ends of the attached piezoelectric layer [71]:  
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31 2 1( , ) ( , )( ) p p
S

f

E h d b w x t w x tV t
C x x

∂ ∂ ≡ − ∂ ∂ 
                                         (2.52) 

                              

where SV , pE , ph , 31d , b , fC  are the output voltage, Young’s modulus, thickness, 

piezoelectric coefficient, width and capacitive coefficient of piezoelectric sensor attached 

to the surface of microcantilever. The last term in the right hand side of Eq. (2.52) 

represents the slope change at both ends of piezoelectric patch layer. 

 

 

 
Figure 2.20. The configuration for the piezoelectric cantilever sensor (top), and the piezoelectric cantilever 

Active Probe (bottom). 

 

 Typically, piezoelectric microcantilever can be used as an actuator, sensor and 

actuator-sensor mode, simultaneously. When they are used as an actuator, they offer an 

actuation bandwidth of 10 times larger than that of conventional piezotubes [72]. This 
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advantage of piezoelectric microcantilever actuator over commonly used bulky piezotube 

actuator makes it a promising candidate to be utilized in next-generation of high speed 

imaging AFM. On the other hand, when piezoelectric microcantilever is used as a sensor, 

they offer the sensitivity as much magnitude as of optical sensing techniques [73]. This 

way, they can be used as an alternative sensor for the bulky laser in AFM system which 

show some disadvantages in terms of laser alignment in the liquid environment, laser 

expense and space required for the laser operation. Additionally, it is possible to operate a 

piezoelectric microcantilever in sensing-actuating mode, simultaneously, by an 

appropriate electrical circuit which is impossible by other methods. In this line, recently 

Gurjar and Jalili [74] have used a self sensing strategy to detect ultra small tip mass. A 

piezoelectric patch layer deposited on the surface of microcantilever was used as a source 

of actuation, and the same piezoelectric layer was utilized to detect the change in the 

resonant frequency of the beam as a result of adding mass. They showed that according to 

this technique, the shift in the resonant frequency due to 10-15g added mass is detectable.   

 

 

 

 

 

 

 

 



CHAPTER THREE 

 

A GENERAL FRAMEWORK FOR MODAL ANALYSIS AND FORCED 

VIBRATIONS OF FLEXIBLE EULER BERNOULLI BEAM WITH MUTIPLE 

CROSS-SECTIONAL DISCONTINIUTIES 

 

 

3.1. Introduction 

Modal analysis and vibration characterization of beam-like structures are of a great 

importance with widespread applications to structures such as aircraft wings, spacecraft 

antennas, helicopter blades, robot arms and many other systems. In this respect, 

numerous studies can be found in literature on the transverse vibration analysis of 

uniform beams under different boundary conditions. However, in many real applications, 

the investigation of beams with non-uniform cross-section may provide a realistic 

distribution of mass and stiffness desired for accurate structural analysis. Particularly, for 

structures with abrupt changes in cross section, the added mass, stiffness and geometrical 

discontinuities affect the modal behavior of structure which cannot be neglected.  

The work presented here originates from the need for accurate vibration analysis of 

flexible beams with locally attached piezoelectric layers for precision sensing and control 

purposes [75]. Figure 3.1(a) depicts a typical flexible uniform beam with an attached 

piezoelectric layer for actuation and sensing the vibrations. As seen, the attached layer 

creates jumped non-uniformities in the cross-section which may significantly alter the 

configuration of beam mode shapes. Since sensor output for transversal motion of beam 

is proportional to the slope difference of mode shapes at two ends of attachment [75], 
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applying a uniform beam model may drastically degrade the precision of estimation and 

consequently vibration control strategies. Figure 3.1(b) depicts a typical configuration of 

a piezoelectrically-driven microcantilever probe widely utilized in mass sensing and 

AFM [76]. Due to the presence of piezoelectric actuator/sensor layer, the body of the 

cantilever is made wider, while in order to increase the sensitivity of tip deflection the 

cantilever the ending part is made narrower. Therefore, the cantilever has two steps in the 

cross-section: one small step where the piezoelectric layer ends; and one large step where 

the cantilever cross-sectional area drops suddenly. Dynamic modeling and vibration 

analysis of beams with jumps in their cross-section becomes a crucial issue in sensing 

and imaging enhancement of microcantilever active probes. Moreover, this may be 

beneficial to many other applications, including analysis of machining processes [77], 

and design of road and railway bridges [78].   

         

Figure 3.1. Beam configurations with cross-sectional discontinuities: (a) Flexible beam with locally 

attached piezoelectric actuator/sensor, and (b) piezoelectrically-driven microcantilever beam with cross-

sectional discontinuity.    

a b
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In the last decades, many studies have been reported on the transverse vibration of 

continuous Euler-Bernoulli beams [79, 80]. However, methods applied for continuous 

beams cannot be directly used for beams with sudden changes in the cross-section. 

Partitioning method [76], finite difference approach [81], shear deformation theory [82], 

and transfer matrices approach [83] have been used to study free vibration of such 

structures. While bibliography on the free vibration of beams with one step change in the 

cross-section is extensive [84-89], few studies have been focused on the analysis of 

beams with multiple jumps [90, 91]. Nevertheless, there is a lack of a straightforward 

framework for the forced vibration analysis of beam with any arbitrary number of step 

jumps in the cross section, and under general distributed dynamic loading. Additionally, 

graphical comparison of beam mode shapes with and without geometrical discontinuities 

has not been well presented in the literature. Such a demonstration can provide a valuable 

insight to realize how the dynamic response of beam in the spatial domain varies with 

respect to the variation of the added mass and stiffness. 

The present work is aimed at the forced vibration formulation and analysis of Euler-

Bernoulli beams with an arbitrary number of step changes in their cross-section and 

properties. To obtain beam mode shapes, the entire length of beam is partitioned into the 

segments between any two successive discontinuity points. As a result, the governing 

equation of motion is divided into a set of partial differential equations (PDEs) with 

constant parameters and a set of continuity conditions at stepped points. A general 

formulation is then derived for the characteristics matrix of beam using boundary and 

continuity conditions. The natural frequencies of the beam and the parameters of the 
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modes shapes can be obtained by imposing the non-trivial solution condition on the 

derived characteristics equation. Finally, using the method of assumed modes, the 

governing ordinary differential equations (ODEs) of beam and their state-space 

representation are derived under distributed vertical loading condition.   

The rest of this chapter is organized as follows: Sections 3.2 presents the modal 

analysis and forced vibration formulation of EB beam with multiple cross-sectional 

discontinuities; Sections 3.3 includes the case study of a beam with two step 

discontinuities in the cross-section, to numerically and graphically demonstrate the 

effects of discontinuities; and finally, Section 3.4 presents the concluding remarks.  

3.2. Euler-Bernoulli (EB) Beam with Multiple Stepped Discontinuities 

Consider an initially straight non-uniform EB beam of length L, with variable cross 

section A = A(x), variable stiffness E = E(x), and variable moment of inertia I = I(x). Let 

],0[ Lx∈  and ),0[ ∞∈t  be the spatial and time variables, respectively. The governing 

equation for transverse vibration of beam with variable mass per unit length m(x) and 

damping coefficient of c(x) subjected to a vertical time varying distributed load P(x,t) is a 

fourth-order PDE expressed as: 

2 2 2

2 2 2

( , ) ( , ) ( , )( ) ( ) ( ) ( ) ( , )w x t w x t w x tE x I x c x m x P x t
x x t t
 ∂ ∂ ∂ ∂

+ + = ∂ ∂ ∂ ∂ 
                     (3.1) 

with w(x,t) being the transversal displacement function. In order to obtain natural 

frequencies and eigenfunctions (mode shapes) of system, the eigenvalue problem 
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associated with the transversal vibration of beam is obtained by applying free and un-

damped conditions to Eq. (3.1) as follows: 

2 2 2

2 2 2

( , ) ( , )( ) ( ) ( )w x t w x tE x I x m x
x x t
∂ ∂ ∂ 

= − ∂ ∂ ∂ 
                                     (3.2) 

Let’s assume that the solution of Eq. (3.2) is separable in time and space domains, 

( , ) ( ) ( )w x t x q tφ=                                                        (3.3) 

where ( )xφ  denotes the spatial mode shape function and q(t) represents the generalized 

time-dependent coordinate. Substituting Eq. (3.3) into Eq. (3.2), the eigenvalue equation 

can be written in the following form of separated time and space equations: 

( )
2 2

2
2 2

( )( ) ( ) / ( ) ( ) ( ) / ( )d d xE x I x m x x q t q t
dx dx

φ φ ω
 

= − = 
 

��                          (3.4) 

where ω is a constant parameter. The mode shapes are obtained by solving the spatial 

part of Eq. (3.4) written as:  

 
2 2

2
2 2

( )( ) ( ) ( ) ( )d d xE x I x m x x
dx dx

φ ω φ 
= 

 
                                    (3.5) 

For a beam with parametric discontinuities (e.g., jump in the moment of inertia or 

mass distribution) Eq. (3.5) cannot be solved using conventional approaches. An 

alternative method is to partition the beam into uniform segments between any two 

successive stepped points and apply the continuity conditions at these points. Therefore, 

the non-uniform beam is converted to a set of uniform segments constrained through the 

continuity conditions. The next section discusses this technique in detail and proposes a 
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framework for dynamic analysis of flexible beams with jumped cross-sectional 

configuration.   

3.2.1. Modal Analysis of Stepped EB Beam 

Figure 3.2 illustrates a straight EB beam with arbitrary boundary conditions and N 

jumped discontinuities in its spatial span. The beam considered in this study has a 

uniform cross-section at each segment. Hence, Eq. (3.5) can be divided into n uniform 

equations expressed as:                    

4
2

-1 04
( )( ) ( ) ; 1, 2,3,..., ; 0,    =n

n n n n n
d xEI m x l x l n N l

dx
φ ω φ= < < =                    (3.6)  

where ( )n xφ , (EI)n , and mn  are mode shapes, flexural stiffness, and mass per unit length 

of beam at the nth segment, respectively*. Let, 

n

n
n EI

m
)(

24 ωβ =                                                       (3.7)  

Eq. (3.6) can be rewritten in a more recognizable form  

4
4

4
( ) ( ) 0n

n n
d x x

dx
φ β φ− =                                                (3.8) 

with the following general solution 

xDxCxBxAx nnnnnnnnn ββββφ coshsinhcossin)( +++=                        (3.9) 

                                                 
*  (·)n denotes the mode shape or parameter value for the nth cross-section, while (·)(r) , which will be used 
later in the dissertation, denotes the mode shape or parameter value of the rth mode; though, ωr which 
represents the rth natural frequency is an exception.  
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where An, Bn, Cn and Dn are the constants of integration determined by suitable boundary 

and continuity conditions. It is to be noted that any conventional boundary conditions can 

be applied to the beam; however, without the loss of generality, the clamped-free 

conditions are chosen here for the boundaries. Applying the clamped condition at x = 0  

requires: 

0
)0(

)0( 1
1 ==

dx
dφ

φ †                                                      (3.10) 

Substituting Eq. (3.10) into Eq. (3.9) yields:  

B1+D1=0  and   A1+C1=0                                                  (3.11) 

On the other hand, the continuity conditions for displacement, slope, bending 

moment, and shear force of beam at discontinuity locations are given by: 

)()( 1 nnnn ll += φφ                                                       (3.12) 
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Figure 3.2. EB beam configuration with N jumped discontinuities.  

Indeed, these conditions are applied at the boundaries of adjacent segments to satisfy 

the continuity and equilibrium conditions immediately before and after stepped points. 

Applying conditions (3.12)-(3.15) to Eq. (3.9) results in: 
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Finally, the free boundary condition at x = L=lN   requires: 
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Substituting Eq. (3.20) into Eq. (3.9) yields: 

0)coshsinhcossin(2 =++−− NNNNNNNNNNNNN lDlClBlA βββββ            (3.21) 

0)sinhcoshsincos(3 =+++− NNNNNNNNNNNNN lDlClBlA βββββ            (3.22) 

Note that nβ ’s are functions of beam natural frequency with an explicit expression given 

in Eq. (3.7). Since the natural frequency is independent of segments indices and is 

considered for the entire length of beam, nβ s of different segments can be interrelated in 

terms of a single parameter β  using Eq. (3.7):   

 n nβ βα=                                                          (3.23) 

where 
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  α                                                (3.24) 

Note that 1 1=α  and thus, 1=β β .                                                      

Eqs. (3.11), (3.21) and (3.22) derived from boundary conditions while Eqs. (3.16)-(3.19) 

are obtained from the continuity conditions form the characteristics matrix equation as: 

4 4 4 1N× N N× =J P 0                                                            (3.25) 

where J is the characteristics matrix and P is the vector of mode shape coefficients 

T
1 4N[ ]1 1 1 1 2 2 2 2 N N N NA  B  C D  A  B  C D   A  B  C D ×=P "                              (3.26) 
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Matrix J is constructed based on three sets of equations. The first two rows and last two 

rows represent the boundary conditions at x = 0 and x = L, respectively, and the middle 

part of matrix demonstrates the continuity conditions at the singularity points. Matrix J 

can be divided into three parts as:      

[ ]
[ ]
[ ]

2 4

4( 1) 4

2 4 4 4

N

N N

N N N

×

− ×

× ×

 
 
 =
 
  

1

2

3

J

J J

J

                                              (3.27) 
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represents the clamed boundary condition at x = 0 given by Eq. (3.11), 
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includes the continuity conditions given by Eqs. (3.16)-(3.19) at (N-1) points of 

discontinuity with  
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and 
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(3.31) 

represents the free boundary condition at x = L given by Eqs. (3.21) and (3.22). 

In order to obtain a non-trivial solution for Eq. (3.25) and find the natural 

frequencies and mode shapes, the determinant of matrix J must be set to zero 

[ ]det ( ) 0J β =                                                               (3.32) 

Since this matrix is a function of only parameter ( )0,β ∈ ∞ , its determinant can be 

numerically evaluated for its zero values by continuously varying parameter β  with a 

reasonably small step size within a range of interest starting from, but excluding zero. 

The values of β  which satisfy Eq. (3.32) lead to calculation of natural frequencies using 

a modified version of Eq. (3.7) as follows:   

( ) ( )4 42 ( ) ( )1

1

( )( )r r n
r n

n

EIEI
m m

ω β β= =                                               (3.33) 
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where ( )rβ s are solutions for Eq. (3.32) and rω  is the corresponding rth natural 

frequency. Since the determinant of matrix J has been set to zero for the selected values 

of β , the mode shape coefficients A1 to DN are linearly dependent. In order to obtain 

unique solution for these coefficients, orthonormality between mode shapes can be 

utilized. For the conventional boundary conditions considered here, this condition is 

stated as: 

( )
0 0

2( ) ( ) ( )( ) ( ) ( ) or ( ) ( ) 1
N Nl l

r s r
rs

l l

m x x x dx m x x dxφ φ δ φ= =∫ ∫                             (3.34) 

where rsδ is the Kronecker delta function, and ( ) ( )r xφ  is the rth mode shape of beam 

expressed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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(3.35) 

The obtained mode shapes and natural frequencies are used to derive the ODE of motion 

for a beam under distributed dynamic excitation as will be discussed next. 

3.2.2. Forced Motion Analysis of Stepped EB Beam 

Using expansion theorem for the beam vibration analysis, the expression for the 

transverse displacement becomes:  

( ) ( )

1

( , ) ( ) ( )r r

r

w x t x q tφ
∞

=

=∑                                                (3.36) 
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where ( ) ( )rq t  is the generalized time-dependent coordinate for the rth mode. Substituting 

Eq. (3.36) into PDE of motion Eq. (3.1) yields: 

2 2 ( )
( ) ( ) ( ) ( ) ( )

2 2
1

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )
r

r r r r r

r

d d xE x I x q t c x x q t m x x q t P x t
dx dx

φ φ φ
∞

=

   + + =  
   

∑ � ��       

(3.37) 

To safely take the term E(x)I(x) out of the bracket for the beam with multiple 

discontinuities, Eq. (3.37) is multiplied by sth mode shape, ( ) ( )s xφ , and is integrated over 

the beam length:     
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            (3.38) 

Recall Eq. (3.6) which can be modified to 
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Using Eq. (3.39) and dividing the spatial integral into N uniform segments, one can write: 
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Applying beam orthogonality conditions given by: 

0 0
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N Nl l

r s r s
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l l

m x x x dx E x I x x x dxφ φ φ φ δ= =∫ ∫                          (3.41) 

and using Eq. (3.40), Eq. (3.38) can be recast as:  
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 which can be simplified to 

{ }( ) ( ) 2 ( ) ( )

1
( ) ( ) ( ) ( )r s r r

rs r
s

q t c q t q t f tω
∞

=

+ + =∑�� �                                 (3.43) 

where  

0 0
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r s r r
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l l

c c x x x dx f t P x t x dxφ φ φ= =∫ ∫                      (3.44) 

The truncated k-mode description of the beam Eq. (3.43) can now be presented in the 

following matrix form: 

 + + =Mq Cq Kq F�� �                                               (3.45) 

where  
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                 (3.46) 

The state-space representation of Eq. (3.45) is given by: 
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X = AX + Bu�                                                       (3.47) 

where  

1
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0 I 0 q
A B X u F

-M K -M C M q�
                    (3.48) 

The implementation of the proposed framework will be studied in the next section for 

a particular case of interest, where the EB beam has two stepped points in cross section 

and is subjected to a distributed dynamic excitation.  

3.3. An Example Case Study: EB beam with two jumped discontinuity in cross-

section 

An example case of study is considered in this section to demonstrate the 

implementation of the proposed method for forced vibration analysis of a flexible beam 

with jump discontinuities. Figure 3.3 depicts a cantilever beam with two jump 

discontinuities in the cross-section subjected to a vertical load uniformly applied at the 

middle section. This may resemble a cantilever beam with an actuator/sensor pair 

attached to its middle part. The objective is to derive the equations of motion and depict 

the mode shapes and frequency response of the beam for a finite number of modes.  

To observe the effects of the jump on the beam’s mode shapes and system’s 

frequency response, several length and thickness values are considered for the middle 

cross section as listed in Tables 3.1 and 3.2. It is assumed that Sections 1 and 3 have the 

same dimensions and properties, and only the thickness of the beam jumps in Section 2. 
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We first formulate the problem based on the proposed approach detailed in the preceding 

section.  

 

Figure 3.3. EB beam with two stepped discontinuities in cross section under distributed dynamic load. 

Matrix J for the depicted beam configuration can be formed using Eqs. (3.27)-(3.31) as 

follows: 
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         (2.49) 

Varying parameter β  with small steps over a desired range, and finding for the zeros 

of determinant of J, leads to determination of the natural frequencies of the beam using 

Eq. (3.33). The coefficients of the mode shapes can be obtained through Eqs. (3.32) and 

(3.34). The (r)th mode shape of the beam can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1 1 1
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 + + ≤ ≤ β β

(3.50) 

To derive the equations of motion, the elements of Eq. (3.46) must be calculated first. 

Let’s assume that the damping coefficient of the beam remains constant for the entire 

length of beam (i.e. c(x) = c), and the time-varying vertical load is uniformly distributed 

in the middle segment (P(x, t) = P(t) for l1 < x < l2 , and P(x, t) = 0 for x < l1 or x > l2 ).  

Consequently, this yields:  
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(3.51) 

Thus, the equation of motion and its state-space representation can be formed based on 

Eqs. (3.43)-(3.48).  

Once the system is derived in state-space, frequency response of system can be plotted to 

demonstrate the behavior of system within a desired frequency range. Without loss of 

generality, the displacement of an arbitrary point (x = L0) is taken as the system output:  

( ) ( ) (1) (2) ( )
0 0 0 0 0 1 2

1
( ) ( , ) ( ) ( ) [ ( ), ( ),..., ( ),0,...,0] ( )Y X

k
r r k

k
r

t L t L q t L L L tω φ φ φ φ ×
=

= = =∑      (3.52) 

The standard form of state-space representation of the system can then be written as: 

   X = AX + Bu
Y = CX

�
                                                     (3.53) 

where  

(1) (2) ( )
0 0 0 1 2[ ( ), ( ),..., ( ),0,...,0]C k

kL L Lφ φ φ ×=                                  (3.54) 

The frequency response of the system can now be plotted using beam’s transfer function 

obtained through the Laplace transformation of its state-space model as follows: 

1( )( ) ( )
( )

C A BY sG s sI
U s

−= = −                                                  (3.55) 
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Numerical simulations have been performed in the next subsection to demonstrate the 

mode shapes and frequency response plot of beam configuration discussed in this section.  

3.3.1. Numerical Simulations and Discussions 

Two sets of numerical simulations are presented in this section; the first case is 

designated to study the effects of thickness variation of beam’s middle cross section, 

while in the second case, the effects of length variation of the beam’s middle cross 

section is investigated. The objective of the simulations is to demonstrate how different 

jump configurations may affect the beam’s mode shapes and natural frequencies.  

Table 3.1 indicates the parameter values used for the simulation of the first scenario, 

where beam’s thickness in the middle section varies. Beam’s equation of motion has been 

truncated into only four modes, and five different thickness values have been considered 

for the middle section, one of which being a uniform beam without any jump in cross-

section. Figure 3.4 depicts the mode shapes of beam for different configurations. As seen 

from the results, mode shapes of the beam significantly change as the thickness of the 

jump increases. Particularly, it is observed that such a change has more effect on even 

modes (2 and 4) compared to odd modes (1 and 3). This reason perhaps is due to the fact 

that the middle section resists against bending in modes 2 and 4, while it is located on a 

fairly straight curvature in modes 1 and 3. This not only affects beam’s modes shapes, but 

also its natural frequencies; the frequency response plot given in Figure 3.5 depicts that 

the first and third natural frequencies of beam for different jump configurations are 

localized, in contrast to the frequencies of second and fourth modes, where the frequency 
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peaks are more scattered. The continuity of the mode shapes at jump points can be clearly 

seen from the figures, as expected from the analysis.  

The parameter values used for the simulation of second scenario, where the effect of 

length variation is considered, are given in Table 3.1. This table also includes first four 

natural frequencies. The obtained modes shapes of beam’s tip displacement and the 

frequency response plots are depicted in Figures 3.6 and 3.7, respectively. Similar to the 

first scenario, the length variation of the middle section significantly affects the mode 

shapes; particularly, second and fourth modes demonstrate larger changes in their shapes 

and natural frequencies compared to first and third modes, due to their larger curvature 

within the location of middle section.   

Table 3.1. Beam parameters for numerical simulation of different thickness values in the middle section. 

Config. l1(m) l2(m) L(m) t1(m) t2(m) t3(m) ω1(rad/sec) ω2(rad/sec) ω3(rad/sec) ω4(rad/sec) 

T1 0.1 0.2 0.3 0.001 0.001 0.001 57.1     357.9     1002.1     1963.7 
T2 0.1 0.2 0.3 0.001 0.0015 0.001 58.1     431.9     1059.2     2293.9 
T3 0.1 0.2 0.3 0.001 0.002 0.001 56.4     459.5     1052.1     2642.6 
T4 0.1 0.2 0.3 0.001 0.0025 0.001 54.4     463.8     1030.3     2906.1 
T5 0.1 0.2 0.3 0.001 0.003 0.001 52.5 459.3 1005.5 3070.2 

Beam’s other parameters: 
Density: ρ = 7800(kg/m3), Width: b = 0.01(m), Damping coefficient: c = 0.001(N.sec/m), Young’s modulus of 
elasticity: E = 200(Gpa) 

    
 

Table 3.2. Beam parameters for numerical simulation of different length values in the middle section. 

Config. l1(m) l2(m) L(m) t1(m) t2(m) t3(m) ω1(rad/sec) ω2(rad/sec) ω3(rad/sec) ω4(rad/sec) 

L1 0.15 0.15 0.3 0.001 0.003 0.001 57.1     357.9     1002.1     1963.7 
L2 0.125 0.175 0.3 0.001 0.003 0.001 54.7     365.5     988.5     2253.8 
L3 0.1 0.2 0.3 0.001 0.003 0.001 52.5     459.3     1005.5     3070.2 
L4 0.075 2.25 0.3 0.001 0.003 0.001 51.5     627.4     1232.2     3403.0 

Other beam parameters are the same as those specified in Table 1. 
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Table 3.3. Normalized slope difference of the mode shapes between the starting and the ending step points. 

 Config. T1 Config. T2 Config. T3 Config. T4 Config. T5 

Mode 1 1 0.30 0.12 0.06 0.03 

Mode 2 1 0.55 0.29 0.16 0.10 

Mode 3 1 0.75 0.46 0.29 0.18 

Mode 4 1 0.87 0.66 0.46 0.31 

      

 

          

      
Figure 3.4. (a) First, (b) second, (c) third, and (d) fourth mode shapes of beams with five different middle 

section thicknesses. 

a b

c d
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Figure 3.5. Modal frequency response plot of beams tip displacements for five different middle section 

thicknesses. 

       

       
Figure 3.6. (a) First, (b) second, (c) third, and (d) fourth mode shapes of beams with four different middle 

section lengths. 

a b

c d
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Figure 3.7. Modal frequency response plot of beams tip displacements for four different middle section 

lengths. 

If the presence of the added mass in the middle section is due to the attachment of 

patch sensors (e.g. piezoelectric or piezoresistive sensors), the slope difference of the 

mode shapes between the starting and ending points of attachment is proportional to the 

sensor output voltage [75]: 

( ) ( )
31( ) ( )2 1( ) ( )( ) ( )

r r
p pr r

sens
f

E h d b d l d lv t q t
C dx dx

φ φ 
= − ⋅ 

 
                                    (3.56) 

where ( )r
sensv  is the output voltage of the sensor associated with the rth mode. It would be 

interesting to observe how the presence of sensor and its added mass and stiffness would 

affect the output voltage estimation (the expression inside bracket in Eq. (3.56)). For this, 

the slope difference of the beam with different thickness values of the middle section 

(beam specified in Table 3.1) at the points of discontinuities are calculated and 
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normalized to the beam with the uniform cross-section (configuration T1). The reason for 

this normalization is to compare the stepped beams with the uniform beam to determine 

the percentage of error induced by the assumption of uniform cross-section for beams 

with patch sensors in different thicknesses.  

Table 3.3 reveals the normalized slope difference of the mode shapes between the 

starting and the ending step points. It is seen from the table that as the thickness of the 

cross-section increases, the slope difference drastically drops. According to the table, if 

the real configuration of a beam/sensor pair corresponds to the thinnest jump, that is, 

Configuration T2, the assumption of a uniform beam (Configuration T1) for the system 

leads to 230% estimation error for mode 1, 80% for mode 2, 30% for mode 3, and 15% 

for mode 4. As the thickness of the jump increases, the error percentages further increase. 

The results shall prove the high degree of need to the modeling of cross-sectional 

discontinuities in flexible beams, and may indicate the impact of the proposed framework 

to the area of vibrations and vibration control systems.         

3.4. Conclusions 

This section presented a comperhensive framework for derivation of mode shapes and 

state-space representation of motion of flexible EB beams with multiple jump 

discontinuities in their cross section. To solve the governing equations of motion, the 

beam was divided into uniform segments of constant parameters, and the continuity 

conditions were applied at the partitioned points. The characteristics matrix was then 

formulated using the beam boundary and continuity conditions. Natural frequencies of 

beam were obtained by setting the determinant of characteristics matrix to zero. The 
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governing equations were discretized and its state-space representation was then derived 

for the beam under a distributed dynamic loading condition. To demonstrate the proposed 

method, the formulations and numerical simulations have been presented for a beam with 

two stepped discontinuities in the cross-section. Results indicate that the effects of added 

mass and stiffness at the middle section on the beam mode shapes and natural frequencies 

are significant. Hence, exact solutions are required for practical implementation of such 

discontinuous structures.  

 

 

 

 

 



CHAPTER FOUR 

 

MODELING AND EXPERIMENTAL VIBRATION ANALYSIS OF 

MICROCANTILEVER ACTIVE PROBES 

 

 

4.1. Introduction 

Microcantilever beams with their structural flexibility, sensitivity to atomic and 

molecular forces, and ultra-fast responsiveness have recently attracted widespread 

attention in variety of applications including atomic force and friction microscopy [92-

95], biomass sensing [96-101], thermal scanning microscopy [102-107], and MEMS 

switches [108-109]. In all above applications, the shift in the natural frequency of 

microcantilever in sensing condition away from that of original microcantilever is used as 

a sensing element [110-114].  

In recent years, a new generation of piezoelectric microcantilever beams so-called 

“Active Probes” has been introduced and received great attention due to its unique 

configuration (see Figure 4.1). The probe is covered by a piezoelectric layer on the top 

surface. This layer is utilized as a potential source of actuation, or as an alternative 

transduction for the laser interferometer in the next-generation laserless AFMs. In typical 

configuration of Active Probe, body of the microcantilever is designed wider due to the 

presence of piezoelectric layer, while the tip zone is made narrower in order to improve 

tip deflection measurement. Hence, the Active Probes has two steps in the cross-section: 
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one small step where the piezoelectric layer ends and one larger step where the 

microcantilever cross-sectional area decreases suddenly.  

These discontinuities can significantly affect the modal characteristics of the system, 

and consequently the level of measurement precision in different scenarios. For example, 

when piezoelectric layer is used as a sensor, the generated voltage can be utilized to 

detect the vertical deflection of Active Probes. In this case, the magnitude of output 

voltage is proportional to the slope difference of the deflection at two ends of the attached 

piezoelectric layer as explained in the pervious chapter [115]. Along this line of 

reasoning, developing an accurate dynamic model for microcantilever with jump 

discontinuities in cross-section is important and can have significant impact on sensing 

and imaging enhancement of Active Probes.  

    

Figure 4.1. piezoelectrically-driven microcantilever beam with cross-sectional discontinuity.     
 

As reported here, a general and practical framework was developed in preceding 

chapter for flexible beams with multiple jumped discontinuities in the cross-section 
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[116]. It was shown that the effects of added mass and stiffness on the beam mode shapes 

and natural frequencies are significant. Also, results from forced vibration analysis 

indicate that the system frequency response is affected by geometrical discontinuities of 

the structure. In this regard, this chapter is aimed at acquiring a precise model for modal 

characterization and dynamic analysis of the aforementioned Active Probes with 

geometrical discontinuities. To this end, the entire length of Active Probes is divided 

into three uniform segments consisting of a composite beam with the piezoelectric layer 

and two segments of simple beams with different cross-sectional areas.  

The governing equation of motion is consequently divided into three partial 

differential equations with two sets of continuity conditions applied to the points of 

discontinuity. The eigenvalue problem associated with the cantilever configuration is 

then solved to obtain microcantilever mode shapes and natural frequencies. Using the 

well-known pin-force model, the induced electromechanical stress in the piezoelectric 

layer is replaced with a pair of concentrated moments at both ends of attachment. 

Moreover, applying the method of assumed modes, the governing equations reduce to 

ordinary differential equations to arrive at the state-space representation of the system. 

Results from the proposed model are compared with those obtained from experiment and 

commonly used theory for the uniform beams. It is clearly demonstrated that the 

proposed model provides good agreement with the experimental results. Furthermore, it 

is shown that assuming uniform geometry and configuration for the dynamic analysis of 

the current Active Probe is not a valid strategy and creates significant error in 

measurements.  
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4.2. Experimental Setup and Procedure 

In this section, an Active Probe, the DMASP manufactured by Veeco Instruments 

Inc. [www.veeco.com], is used to study the dynamic response of the probe. For this 

purpose, an experimental set-up is built using a state-of-the-art microsystem analyzer, the 

MSA-400 manufactured by Polytec Inc. [www.polytec.com]. MSA-400 employs the 

laser Doppler vibrometry and stroboscopic video microscopy to measure the 3D dynamic 

response of MEMS and NEMS (see Figure 4.2). It features picometer displacement 

resolution for out-of-plane measurement, as well as measures frequencies as high as 20 

MHz.  

     
Figure 4.2. Experimental setup for microcantilever under Micro System Analyzer (MSA-400). 

 

The Active Probes, shown in Figure 4.3, is covered by a piezoelectric layer 

containing a stack of 0.25 mµ Ti/Au, 3.5 mµ ZnO, and 0.25 mµ Ti/Au. The Ti/Au layers 

on the top and beneath ZnO layer act as electrodes which, along with the silicon 
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cantilever, construct a bimorph actuator. As the input voltage is applied to the pads at the 

fixed end of the beam, the expansion and contraction of the ZnO layer results in the 

transversal vibration of the Active Probes. 

The Active Probes assembled on a chip is mounted on a XYZ stage to be adjusted 

within the laser light focus for measuring of beam motion (Figure 4.4). Using an optical 

microscope, the desired points on the surface of Active Probes are precisely chosen to 

be scanned. When the electrical signals are applied to the system, the laser Doppler 

vibrometer measures the beam velocity at any given points through collecting and 

processing of backscattered laser light. In this study, a 10 Volt AC chirp signal with 500 

kHz bandwidth is applied to the piezoelectric layer as the source of excitation.  

 
Figure 4.3. Comparison of the Veeco DMASP microcantilever beam size with a US penny. 

 

 
Figure 4.5 demonstrates modal frequency response of the Active Probes. As seen, 

the first three resonant frequencies of the probe are located within the applied frequency 

bandwidth with the values of 52.3, 203.0, and 382.5 kHz, respectively. Furthermore, the 
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corresponding mode shapes of Active Probes are obtained by exciting the system in its 

resonant frequencies as depicted in Figure 4.6.  

 

 
Figure 4.4. Experimental set-up for the measurement of the microcantilever tip. 

 

In the following section, a modeling framework is proposed for the Active Probes 

taking into account its discontinuities for precise modal characterization and frequency 

response analysis. To assess the effects of discontinuities on the frequency response and 

mode shapes of the system, results will be compared with those obtained from a uniform 

beam model.   

 

Figure 4.5. Modal frequency response of Active Probe tip transversal vibration. 
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(a)                                                                                (b) 

 

 
(c) 

Figure 4.6.  3D motion of Active Probes at (a) first, (b) second, and (c) third resonant frequency. 

 

4.3. Mathematical Modeling of Active Probes 

Consider a piezoelectrically-driven discontinuous microcantilever beam with its 

geometrical parameter depicted in Figure 4.7. Utilizing Euler-Bernoulli beam 

assumptions, the only non-zero component of strain can be expressed as [115] 

2
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( , )                    for   
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                                           (4.1) 

with ( , )w x t  being the vertical component of displacement along y direction, and yn being 

the neutral surface (measured along y-axis from y=0) in the composite 

(beam/piezoelectric layer) portion of the cantilever given by 
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where bE and pE are the Young’s modulus of the microcantilever and piezoelectric layer, 

respectively. 

 
      Figure 4.7. The schematic representation of microcantilever with an attached piezoelectric layer on its 

top surface. 

 

Assuming one-dimensional deformation, the stress-strain relation for the beam can be 

written as 

    
2

2

( , )b b b
x x

w x tE E y
x

σ ε ∂
= = −

∂
                                                     (4.3) 

and for the piezoelectric portion can be expressed in the form of 
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where 31d  is the coefficient of the converse piezoelectric effect, and ( )v t  is the applied 

voltage to the piezoelectric layer. Inserting Eq. (4.1) into Eq. (4.4), the cross-sectional 
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bending moment acting at x distance from clamped end of the microcantilever cantilever 

can be expressed as 

2

312
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p p
x p b p
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x

σ ∂
= − = + +

∂∫               (4.5)                               
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1 2 2( ) 1 ( ), ( ) 1 ( ), and ( ) ( )Q x H x l R x H x l S x H x l= − − = − − = −  

 

and ( )H x is the unit Heaviside function. 

Eq. (4.5) demonstrates that the bending moment due to piezoelectric layer on the 

surface of the beam can be divided into a passive and active terms. The passive term (the 

first term in the right hand side of Eq. (4.5) is treated in the potential energy, while the 

active term (the second expression) is considered in the virtual work. In this regard and 

based on the pin-force model, the stress in the piezoelectric layer can be replaced by a 

concentrated bending moment acting at the end of the piezoelectric layer (as shown in 

Figure 4.8) which results in a uniform distribution of internal moment at composite 

portion of microcantilever as follows: 

31
1( , ) ( ) ( ) ( )
2

p
p p b pM x t w E d t t v t Q x= − +                                           (4.7) 
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Figure 4.8. (top) Pin-force model for the composite portion of microcantilever, and (bottom) uniform 

distribution of internal moment along the microcantilever length. 

 

Now, for the current configuration of Active Probe, the governing partial differential 

equation (PDE) for the transverse vibration can be expressed as  

22 2 2

2 2 2 2

( , )
( ( ) ( ) ) ( ) ( ) pM x tw w wE x I x c x m x

x x t t x
∂∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂ ∂

                       (4.8) 

 

where c(x), m(x), E(x), and I(x) are variable damping coefficient, mass per unit length, 

stiffness and moment of inertia, respectively.  

For the reader’s convenience, we briefly revisit the derivation of natural frequencies 

and mode shapes given in section 3.2.1. For the purpose of obtaining natural frequencies 

and mode shapes of the microcantilever, the free and un-damped conditions associated 

with the transverse vibration of the beam are given by 
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Assuming that the solution of Eq. (4.9) is separable in time and space domains, 

 

)()(),( tQxtxw Φ=                                                           (4.10) 

 

it can be rewritten in the form of  

)()())()()(( 2
2

2

2

2
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dx
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dx
d

Φ=
Φ ω                                     (4.11) 

 

where ω is the natural frequency of the microcantilever. 

In order to obtain an analytical solution for Eq. (4.11), the entire length of beam is 

divided into three uniform segments (see Figure 4.7) with two sets of continuity 

conditions at stepped points given by 

4
2
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The general solution for the above equation can be written as 
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by following boundary and continuity conditions: 
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Applying Eqs. (4.14-4.19) into Eq. (4.13), the characteristics matrix equation of 

system can be formed which is utilized to calculate system natural frequencies and mode 

shape coefficients by solving the corresponding eigenvalue problem [116]. Accordingly, 

the (r)th mode shape of the beam can be obtained as: 
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On the other hand, the equation of motion for the system can be expressed as [116]  
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(4.22) 

where ( ) ( )r xφ  and ( ) ( )s xφ  are rth and sth mode shapes of the microcantilever. Substituting 

Eq. (4.7) into Eq. (4.22) yields 
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For the second distributional derivative of the Heaviside function we have    
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where ( )⋅δ  represents the Dirac delta function. Substituting Eq. (4.24) into Eq. (4.23) 
yields 
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The truncated k-mode description of the microcantilever Eq. (4.21) can now be 

presented in the following matrix form: 
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The state-space representation of Eq. (4.24) is given by: 
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4.4. Theoretical and Experimental Vibration Analysis Comparisons 

To compare the experimental mode shapes and natural frequencies with those 

obtained from the proposed model, exact values of system parameters are required. 

Although some of the parameters are given in the product catalogue, and some others can 

be measured through precision measurement devices such as our MSA-400, the presence 

of uncertainties associated with the parameters may drastically degrade model accuracy. 

Therefore, a system identification procedure is carried out here to fine-tune the parameter 

values for precise comparison with the experimentally obtained data.  

The objective of system identification here is to minimize a constructed error function 

between the model and the actual system mode shapes and natural frequencies, 

simultaneously. The optimization variables comprise of microcantilever parameters and a 

set of scaling factors. In this regard, a number of points are selected along the Active 

Probes for comparison of the mode shapes. The error function utilized for the system 

identification calculates the percentage of the average weighted error between the 

measured and evaluated natural frequencies and mode shapes at each selected point for a 

finite number of modes as follows:    
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 where K is the number of modes, P represents the number of selected points on the 

microcantilever length, 0 1W< <  is a the weighing factor space, ( ) ( )r T
jxφ  stands for the 

rth theoretical mode shape evaluated at point jx , ( )
max ( )r E

jw x  indicates the experimental 
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amplitude of point jx  at rth resonant frequency, and rα  is an scaling optimization 

variable used to match rth experimental resonant amplitude with the corresponding 

theoretical mode shape. Other optimization variables including parameters associated 

with microcantilever property and geometry (as listed in Table 4.1) are constrained 

within a limited range around the approximate values. The upper and lower bounds for 

the variables are selected in accordance with best guesses on the maximum possible 

amount of uncertainties in the approximate values.  

To demonstrate the expected improvements through the proposed modeling 

framework, both uniform and discontinuous beam models are considered for the system 

identification. Optimization is carried out by selecting the first three modes of the system 

( 3K = ), choosing 16 points on the cantilever length ( 16P = ), and setting the weighing 

factor 0.5W =  to equate the importance between the mode shapes and the resonant 

frequencies. A random optimization algorithm is then implemented for the parameters 

estimation. Random optimization is a class of heuristic algorithms which usually 

converges to the global solution within the search domain [117]. It is expected that the 

optimization does not converge to a desirable tolerance for the uniform beam model due 

to large discontinuities of the actual system.Table 4.1 demonstrates the initial 

(approximate) values of optimization variables, their imposed upper and lower bounds, 

and optimal values for the uniform and discontinuous microcantilever models, 

respectively. Figures 4.9 and 4.10 depict the first three mode shapes of the actual 

microcantilever beam along with those of the theoretical models. As seen from Figure 

4.10, the mode shapes of the proposed discontinuous model match with the experimental 
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data vary closely when compared to those of the uniform model. Furthermore, the modal 

frequency responses show more accurate estimation of the system natural frequencies 

using the discontinuous beam theory (see Figure 4.10). Since the uniform beam 

assumption fails to accurately model the actual response of the Active Probesfor a 

multiple-mode operation, the discontinuous beam assumptions must be taken into 

account for the sake of modeling precision. 
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Figure 4.9. Active Probes modal response experimental and theoretical comparisons for uniform and 
discontinuous beam models: (a) First mode shape, (b) second mode shape, and (c) third mode shape. 
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Figure 4.10.  Active Probesprobe modal frequency response comparisons. 

Table 4.1. Physical and numerical parameters used in system identification process: approximate parameter 
values, their upper and lower bounds, and the optimal solution for uniform and discontinuous beam model. 

 Uniform beam model Discontinuous beam model 

Parameters Lower 
bound 

Upper 
bound 

Initial 
value 

Optimal 
solution 

Upper 
bound 

Lower 
bound 

Initial 
value 

Optimal 
solution 

( )L mµ  485 487 486 486.7 485 487 486 485.9 

1( )L mµ  - - - - 315 330 325 315.0 

2 ( )L mµ  - - - - 350 370 360 350.0 

( )bE Gpa  50 200 105 154.1 50 200 105 140.2 

( )pE Gpa  50 200 104 75.1 50 200 104 102.2 

3( / )b kg mρ  2000 3500 2330 2528.9 2000 3500 2330 3177.0 

3( / )p kg mρ  5000 7000 6390 6974.1 5000 7000 6390 6782.9 

1 ( )bw mµ  240 260 250 247.4 240 260 250 244.4 

2 ( )bw mµ  - - - - 50 60 55 54.3 

( )pw mµ  120 150 130 135.2 120 150 130 140.8 

( )bt mµ  2 5 4 4.3 2 5 4 3.4 

( )pt mµ  2 5 4 2.9 2 5 4 2.1 

1α  200 800 500 278.9 200 800 500 454.9 

2α  5000 20000 10000 12967.0 5000 20000 10000 6595.1 

3α  5000 20000 10000 8536.4 5000 20000 10000 10028.9 
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4.5. Conclusions 

Active Probes are typically fabricated with intentional geometrical discontinuities 

due to the piezoelectric layer and sensing enhancement requirement. To remedy this 

complexity, a comperhensive framework was proposed for precise modeling, modal 

characterization and dynamic response analysis of Active Probes with discontinuities in 

cross-section. This was achieved by considering Euler-Bernoulli beam assumptions and 

dividing the entire length of the Active Probes into three uniform segments followed by 

applying appropriate continuity conditions. The electromechanical coupling of the 

piezoelectric layer was replaced with the equivalent force and moment using the well-

established pin-force model. The governing equations of motion and their state-space 

representation were then formulated for dynamic response analysis. Results from 

experimental tests indicate significant enhancement on sensing accuracy using the 

proposed discontinuous beam model compared to a uniform model when a multiple-

mode operation is desired.       

 

 

 

 

 

 



CHAPTER FIVE 

 

VIBRATION ANALYSIS OF VECTOR PIEZORESPONSE FORCE 
MICROSCOPY WITH COUPLED MOTIONS   

 

 

5.1. Introduction 

Progress in micro- and nanoscale electromechanical sensors and actuators has 

necessitated understanding of local piezoelectric properties at the scale of nanometer 

[118,119]. In this regard, rapid development in scanning probe microscopy (SPM)-based 

techniques made it possible to study these properties in the scale of grains, and produce 

controlled and localized modifications on the piezoelectric surface [120]. Among the 

SPM techniques, piezoresponse force microscopy (PFM) has evolved into a useful tool 

for this purpose due to ease of implementation, high resolution and its relatively 

insensitivity to topography [121-124].   

PFM functions based on applying an external electrical field between a rear electrode 

on the piezoelectric sample and a conducting AFM tip. In the static mode, application of 

uniform electric field results in elongation or contraction of sample depending on the 

polar direction and applied field. From induced strain through electric field, the 

piezoelectric coefficient of sample can be determined. However, the domain imaging 

based on the detection of static deformation is difficult. The reason is that the separation 

of static piezoresponse deflection and deflection signal due to surface roughness is not an 

easy task [125]. To improve the sensitivity of the static mode, a dynamic piezoresponse 

image method based on the voltage modulation approach has been introduced [126-128]. 
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In this method, a periodic bias external electrical field is applied to a rear electrode on the 

sample and a conducting AFM tip. The periodic bias voltage induces local piezoelectric 

vibration which can be detected by AFM tip. These vibrations depend on the orientation 

of polarization vector, and arise due to converse piezoelectric effect [129]. The phase of 

electromechanical response of surface provides information about the direction of 

polarization of surface, while the amplitude of vibration yields to information about the 

piezoelectric coefficients [130,131].  

In general case, when a bias voltage is applied to a sample with arbitrary 

crystallographic orientation, the response of the piezoelectric material results in both in-

plane and normal components of displacement [132]. Hence, the microcantilever can 

vibrate in all three directions which results in a coupled bending-longitudinal-torsional 

motion of microcantilever. The coupled motions in vector PFM occur due to: i) presence 

of friction force in the tip-sample junction and ii) geometrical coupling originated from 

the rotation of tip at the free end of microcantilever due to transversal/lateral bending of 

microcantilever.  

Because of practical importance of coupled motions, many studies have been reported 

on the effect of coupling terms on the natural frequencies, mode shapes and response of 

the beam [133-137]. Neglecting the effect of wraping, Dokumaci [138] obtained the 

coupled natural frequencies of the cantilever beam which is then extended for the 

wrapping problem by Bishop et al [139]. A dynamic stiffness matrix analysis approach 

was then introduced by Banerjee et al [140] to determine the natural frequencies and 

mode shapes of the coupled Euler-Bernoulli beam. The coupled vibrations of beams 
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including warping, shear deformation and rotary inertia effects were studied by Bercin 

and Tanaka [141]. The coupled free and forced vibrations of a beam with tip and in span 

attachments were investigated by Gokdag and Kopmaz [142]. And recently, Mahmoodi 

and Jalili has investigated the nonlinear vertical-torsion coupled vibration of 

microcantilever sensors [50]. The results obtained from these studies have addressed the 

presence of bending, longitudinal or torsional mode natural frequency in the vibration 

spectra of the other modes. 

Motivated by these considerations, the objective of this study is to acquire a 

comprehensive model for dynamic behavior of vector PFM system under applied 

combined electrical and mechanical loadings. For this purpose, PFM is considered as a 

suspended microcantilever beam with a tip mass in contact with a piezoelectric material. 

Furthermore, the material properties are expressed in two forms; Kelvin-Voigt model for 

viscoelstic representation of material and piezoelectric force acting on the tip as a result 

of response of material to applied electric field. Since the application of bias voltage to 

the tip results in the surface displacement in both normal and in-plane directions [143], 

the microcantilever is considered to vibrate in all three directions with coupled 

transversal/longitudinal and lateral/torsional motions.  

In this model, the effect of friction between sample and tip is also taken into account. 

Through an energy method, it is seen that the PFM system can be governed by a set of 

partial differential equations (PDE) along with non-homogeneous and coupled boundary 

conditions. A general formulation is then derived for the mode shape and frequency 

response of the system. Finally, using the method of assumed modes, the governing 
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ordinary differential equations (ODEs) of the system and its state-space representation 

are derived under applied external voltage. Results demonstrate that mode shape, natural 

frequency and time response of microcantilever are heavily dependent upon the coupling 

terms arising from viscoelastic and piezoelectric properties of samples. It is shown that 

different materials show various constraints at the end of microcantilever. Materials with 

higher stiffness can convert clamped-free condition of microcantilever to clamped-hinged 

condition. Moreover, it is shown that the coupled damping terms of material in the tip-

sample junction significantly affects the time response of the system. 

5.2. PFM Operational Modes and Function 

PFM functions based on application of a periodic bias external electrical field 

between a rear electrode on the sample and a conducting AFM tip (Figure 5.1). The 

periodic bias voltage is ( )tip dc acV V V Cos wt= +  in which dcV  is the DC component of the 

bias voltage used to measure the static deflection of the microcantilever. ( )acV Cos wt  is a 

small AC voltage which is applied to the tip in order to induce local piezoelectric 

vibration. The piezoresponse of the surface can be detected as the first harmonic 

component of bias induced tip deflection 0 ( )d d ACos wt ϕ= + + . The amplitude of 

vibration, A, provides information about the piezoelectric coefficients of surface, while 

the phase of electromechanical response of surface, ϕ , yields information about the 

polarization direction of surface [124 and 130].  
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Utilizing Hertzian contact mechanics at the tip-surface junction, the relation between 

the indentation load P, indenter voltage V, and indentation depth h can be expressed as 

[143] 

2 2
3

a
h V

R
β
α

= +     and     
3a

P aV
R

α β= −                                           (5.1) 

where α  and β  are elastic and piezoelectric properties of material, respectively, R is the 

tip radius and a is the contact radius. In this study, based on Eq. (5.1), the behavior of 

sample is divided into two parts; viscoelastic and piezoelectric. The viscoelastic response 

of material against indentation force is modeled as a spring and damper at all three 

directions, while the piezoresponse of sample is considered as a resistance force, Ftip, at 

the free end of cantilever. 

   

Figure 5.1. A schematic of tip-sample junction in the PFM system. 
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 Figure 5.2 depicts the schematic of mechanical equivalent circuit of PFM. One end of 

the beam is clamped to the base position, while the tip is attached to the free end of the 

beam. The sample and tip are in the contact mode and any change in the topography of 

surface will affect the indentation depth of indenter. To avoid this, the boundary control 

input force, ( )f t ,  is used at the base unit. In general case, when a bias is voltage applied 

to a sample with arbitrary crystallographic orientation, the response of the piezoelectric 

material results in both in-plane and normal components of displacement [132]. For this 

reason, the beam is considered to vibrate in all three directions. The free end of beam 

with the equivalent tip mass is connected to springs and dampers in the vertical, 

longitudinal and lateral directions which represent the viscoelastic resistance of material 

to tip movement. It is obvious that lateral and vertical components of viscoelastic 

response acting on the cantilever result in bending in these directions, while in the 

longitudinal direction the response of material is an axial force acting at the tip mass. 

Moreover, the piezoresponse of material are considered as Ftip in all three directions (i.e., 

Ftip-x , Ftip-y and  Ftip-z). In our proposed model, the height of the tip is also taken into 

account. As a result, piezoresponse of material acting at the end of tip causes an external 

moment and torsion in the longitudinal and lateral directions, respectively. Figure 5.3 

depicts the longitudinal and lateral piezoelectric force acting at the tip of microcantilever.  

In this study, the effect of friction force present inthe tip and sample interface as well as 

in the longitudinal and lateral directions are considered as base excitations given by 

x tip z
fric x

x

F
u x

k

µ −
− = ∆ =      and       y tip z

fric y
y

F
u y

k

µ −
− = ∆ =    0x yk k= ≠                      (5.2) 
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where xµ  and yµ  are the coefficients of friction in x and y directions, respectively. This 

indicates that the friction force in the PFM is a function of applied voltage and time. 

   
Figure 5.2. A proposed schematic representation of PFM systeme. 

 

 
Figure 5.3. A schematic of microcantilever subjected to longitudinal and lateral piezoelectric forces. 
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5.3. Distributed-Parameters Modeling of PFM  

In this section, a general distributed-parameters base modeling approach is utilized 

for the analysis of dynamic behavior of PFM.  For this purpose, the Euler-Bernoulli 

model is used for microcantilever beam configuration as shown in Figure 5.2. One end of 

the beam is clamped to the base position assembly with the displacement of d(t) and the 

total mass of m. The tip with the mass of me is attached to the free end of the beam. The 

microcantilever beam has rigidity EI, mass moment of inertia J, linear density ρ  and the 

length L. The equivalent spring constants of sample are kx ,  ky  and kz , and damping 

coefficients are Cx , Cy and Cz in x, y, z directions, respectively. The friction coefficients 

between sample and tip are xµ  and yµ  for in-plane motions. In this work, the effect of 

viscous air damping and structural damping in the microcantilever beam are also taken 

into account.   

The total kinetic energy of the system can now be expressed as  

dxtxJtLutLvtLwtdm

dxtxutxvtxwtdtdmKE
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                     (5.3) 

where subscripts t)(⋅  and x)(⋅  indicate partial derivatives with respect to the time variable 

t and position variable x, respectively. ),( txw , ( , )  u x t and v( , )x t  are the vertical, 

longitudinal and lateral displacements of beam, respectively. ( , )x tθ  presents the torsion 

along x-axis due to applied voltage and friction. In the above equation, the first term is 

the kinetic energy of the base, the second and third terms are that of beam and tip, 
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respectively. The last term presents the kinetic energy due to torsion of beam along x-

axis.  

The total potential energy of the system can be written as 

 

2 2 2 2

0 0 0 0

2 2 2

1 1 1 1( , ) ( , ) ( , ) ( , )
2 2 2 2

1 1 1[( ( , ) ) ( , ) ] [( ( , ) ) ] ( , )
2 2 2

L L L L

yy xx zz xx x T x

x fric x x y fric y z

PE EI w x t dx EI v x t dx EAu x t dx C x t dx

k u L t u w L t H k v L t u H k w L t

θ

θ− −

 
= + + + 
 

 + + + + + − + 
 

∫ ∫ ∫ ∫

            

(5.4) 

where H is the height of tip at the free part of beam, and  CT  is the torsional stiffness of 

beam. The above equation indicates that potential energy consists of four parts: the 

potential energy of the beam due to bending in vertical and lateral direction (first term), 

the potential energy of the beam due to longitudinal movement (second term), torsion 

along x-axis (third term), and the elastic potential energy of sample in the longitudinal, 

lateral and vertical directions, respectively (last term). In addition to tip displacement at 

the free end of microcantilever, the elastic potential of sample in the longitudinal and 

lateral directions include base excitation terms due to presence of friction and geometrical 

coupling due to rotation of tip as a result of transversal and lateral bending. In the above 

equation, ( , )xw L t H  presents the geometrical coupling term between transversal and 

longitudinal direction and Hθ  indicates coupling between lateral bending and torsional 

displacement. In this model, the friction effect is implemented as a base excitation in the 
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elastic potential energy of sample. The base displacement of sample is directly related to 

piezoelectric properties of material obtained in Eq. (5.2).  

The boundary control input force )(tf  at the base unit, the piezoelectric force, 

capacitive forces between tip cantilever assembly and surface Q(x,t), viscous air damping 

B, and structural damping C are all considered in the virtual work. For simplicity and 

without loss of generality, it is assumed that viscous air damping and structural damping 

coefficients in the transversal and lateral directions are similar. Moreover, the 

piezoelectric and damping forces acting at the tip-sample junction are considered as an 

equivalent impulse (∆ ) forces acting at very small distance (ε ) from end of 

microcantilever. This approach can ease the subsequent mathematical procedures used to 

homogenize the boundary conditions (BCs). More especially, utilizing this approach the 

damping terms in the BCs can be removed and transferred into the equations of motion. 

However, the conventional method is to consider damping terms in the BCs which make 

the nature of BCs time-dependent. In this case, the eigenvalues and subsequent mode 

shapes of the system become complex, which are more complicated to deal with 

compared to the former alternative proposed here. Moreover, the representation of the 

entire system in the state-space for a control purposes is more involved and not trivial.  

Considering all these points, the virtual work of the system can be expressed as 
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            (5.5) 

whre ( )δ ⋅  denotes variation of arguments. The above equation expresses the virtual work 

of the system due to; boundary control input force (first term), capacitive forces between 

tip-cantilever assembly and surface (second term), microcantilever damping terms in 

transversal and lateral directions (third term), piezoelectric forces of sample in all three 

directions (fourth term), moment and torsion due to piezoelectric force in the longitudinal 

and lateral directions (fifth term), material damping forces (sixth term), and moment and 

torsion due to material damping terms in the longitudinal and lateral directions (last 

term). 
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The Hamilton’s principle can be expressed as 

2

1

( ) 0
t

nc

t

KE PE W dtδ − + =∫                                                             (5.6) 

Substituting eqs. (5.3-5.5) into Eq. (5.6) yields the following PDEs for the motion of the 

PFM:  

-for vertical vibration of microcantilever: 

..

,

[ ( ) ( , )] ( , ) ( , ) ( , )

( )[ ( , ) ( , )] ( ) ( , )
( , ) ( ) ( ) ( ) ( ) ( )

tt yy xxxx t xt

x x t xt z t

x tip x x x t fric x tip z

d t w x t EI w x t Bw x t Cw x t

C H x L u L t w L t C x L w L t
Q x t x L HF t C H x L u x L F t

ρ

∆ ε ∆ ε
∆ ε ∆ ε ∆ ε− − −

+ + + + −

− + + + − + =
− − + + − + + − +     

(5.7) 

           -for base motion: 

       tftLwtdmdxtxwtdtdm tte

L

tt )()],()([)],()([)(
..

0

....
=++++ ∫ ρ                   (5.8) 

           -for lateral vibration of microcantilever: 

,

                    ( , ) ( , ) ( , ) ( , )
( )[ ( , ) ( , )] ( ) ( ) ( )  

tt zz xxxx t xt

y t t tip y y t fric y

v x t EI v x t Bv x t Cv x t
C x L v L t H L t x L F t C x L u

ρ
∆ ε θ ∆ ε ∆ ε− −

+ + + +
− + − = − + − − +

        (5.9) 

           -for torsion of microcantilever: 

,

( , ) ( , ) ( )[ ( , ) ( , )]

            ( ) ( ) ( )
tt T xx y t t

tip y y t fric y

J x t C x t C H x L v L t H L t

x L HF t C H x L u

θ θ ∆ ε θ

∆ ε ∆ ε− −

− + − + − =

− + − − +
                (5.10) 

           -for longitudinal vibration of microcantilever: 

,

( , ) ( , ) ( )[ ( , ) ( , )]
                  ( ) ( ) ( )  

tt xx x t xt

tip x x t fric x

u x t EAu x t C x L u L t Hw L t
x L F t C x L u

ρ ∆ ε
∆ ε ∆ ε− −

− + − + + =

− + − − +
                     (5.11) 

with following boundary conditions (BCs) 
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..
[ ( ) ( , )] ( , ) ( , ) 0e tt yy xxx zm d t w L t EI w L t k w L t+ − + =                                  (5.12) 

( , ) ( , ) ( ( , ) ( , ) )e tt zz xxx y y fric ym v L t EI v L t k v L t L t H k uθ −− + − = −                        (5.13) 

( , ) ( , ) ( ( , ) ( , ) )e tt x x x x fric xm u L t EAu L t k u L t w L t H k u −+ + + = −                         (5.14) 

( , ) ( ( , ) ( , ) )yy xx x x x fric xEI w L t k H u L t w L t H k Hu −− + =                                (5.15) 

( , ) ( ( , ) ( , ))T x y y fric yC L t k H v L t H L t k Huθ θ −− − = −                                  (5.16) 

and 

0),0(),0(),0(),0(),(),0(),0( ======= ttutvtvtLvtwtw xxxx θ               (5.17) 

The above equations indicate that the transversal bending is coupled to longitudinal 

displacement and lateral bending is coupled to torsional motion of microcantilever 

through friction and piezoelectric forces acting at the end of beam (the terms in the right 

hand side of Eqs. (5.7-5.11)). Moreover, the BCs for those coupled motions are also 

coupled.   

5.4. Assumed Mode Model Expansion 

In order to numerically investigate the obtain equations of motion, we utilize 

assuming mode model (AMM) to discretize the original PDEs into the ordinary 

differential equations (ODEs). Since boundary conditions in Eqs. (5.13-5.16) are non-

homogeneous, a new set of variables are defined in order to obtain homogenized 

boundary conditions. Then, assuming that variables are separable, a set of ordinary 

equations is obtained for different directions.  

 



 
 

   99

5.4.1. Coupled Transversal Bending-Longitudinal Displacement: 

Equations (5.14 and 5.15) indicate that the transversal displacement of 

microcantilever is coupled to longitudinal motion through the BCs which are not 

homogeneous. To remedy this complexity, the BCs should be first homogenized. For this 

purpose, two new variables z and G are introduced with the following expressions. 

   1( , ) ( , ) ( )fric xw x t z x t u F x−= −                                                     (5.18)                    

 2( , ) ( , ) ( )fric xu x t G x t u F x−= −                                                        (5.19) 

where Fi(x) (i=1,2) are geometrical functions. To determine these functions, Eqs. (5.18) 

and (5.19) are substituted into Eqs. (5.12, 5.14 and 5.15). Then, all BCs are forced to be 

homogenized simultaneously in the new coordinates. These result in the following 

conditions on geometrical functions F1 and F2 as 

1 1 1 1 1  (0) ' (0) ( ) ( ) ( ) 0F F F L F L F L′ ′′′= = = = =   and 1 ( ) x

y y

k HF L
EI −

′′ = −               (5.20-a) 

2 2 2(0)  (0)= ( ) 0F F F L′= =  and  2 ( ) xkF L
EA

′ =                            (5.20-b) 

These geometrical functions can now be obtained as 

5 4 2 3 3 2
1 3

7 3( ) 4
2 2

x

y y

k HF x x Lx L x L x
EI L−

 = − + − 
 

                       (5.21-a) 

2
2 ( ) ( )xkF x x Lx

EAL
= −                                        (5.21-b) 

Now, applying Eqs. (5.18) and (5.19) into the original equations of motion in the vertical 

and longitudinal directions (5.7, 5.8 and 5.11), the new PDEs can be written as 
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..

1

[ ( ) ( , )] ( , ) ( , ) ( , )

( )[ ( , ) ( , )] ( ) ( , ) ( , )
tt yy xxxx t xt

x x t xt z t

d t z x t EI z x t Bz x t Cz x t

C H x L G L t z L t C x L z L t x t

ρ

∆ ε ∆ ε Π

+ + + + −

− + + + − + =
   (5.22-a)

 

   where 

1 ,

, 1 1  , 1

, 1 , 2 1 ,

( , ) ( , ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) [ ( )  ( )]+ ( )

x tip x x x t fric x

tip z tt fric x yy fric x t fric x

t fric x x x t fric x z t fr

x t Q x t x L HF t C H x L u

x L F t u F x EI u F x Bu F x

Cu F x C H x L u F L F L C x L u

Π ∆ ε ∆ ε

∆ ε ρ

∆ ε ∆ ε

− −

− − − −

− −

= − − + + − + +

′′′′− + + + + +

′ ′− − + + − + 1( ) ic x F L−     

(5.22-b)

 

.. .. ..

2
0

( ) [ ( ) ( , )] [ ( ) ( , )] ( , )
L

tt e ttm d t d t z x t dx m d t z L t x tρ Π+ + + + =∫                        (5.23-a)
 

where 

2 , 1 , 1
0

( , ) ( ) ( ) ( )
L

tt fric x e tt fric xx t f t u F x dx m u F LΠ ρ − −= + +∫                          (5.23-b) 

3( , ) ( , ) ( )[ ( , ) ( , )] ( , )tt xx x t xtG x t EAG x t C x L G L t Hz L t x tρ ∆ ε Π− + − + + =        (5.24-a)
 

where 

3 , , 2

2 , 2 1

( , ) ( ) ( ) ( ) ( )

( ) ( ) [ ( )  ( )]
tip x x t fric x tt fric x

fric x x t fric x

x t x L F t C x L u u F x

EAu F x C x L u F L HF L

Π ∆ ε ∆ ε ρ

∆ ε
− − −

− −

= − + − − + + −

′′ ′+ − + +           (5.24-b)
 

with the following BCs: 

..
[ ( ) ( , )] ( , ) ( , ) 0e tt yy xxx zm d t w L t EI w L t k w L t+ − + =                                    (5.25) 

( , ) ( , ) ( ( , ) ( , ) ) 0e tt x x xm u L t EAu L t k u L t w L t H+ + + =                                  (5.26) 

( , ) ( ( , ) ( , ) ) 0yy xx x xEI w L t k H u L t w L t H− + =                                       (5.27) 

(0, ) (0, ) (0, ) 0xw t w t u t= = =  (5.28) 
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Now utilizing above equations, the natural frequencies and mode shapes of 

microcantilever for coupled motion can be obtained. 

5.4.1.1. Frequency Equation, Orthogonality Conditions and Mode Shapes 

 In order to obtain the natural frequencies and modal shapes of the system, the 

eigenvalue problem associated with the transversal/longitudinal vibration of beam is 

obtained through applying free and undamped conditions in Eqs. (5.22-1) and (5.24-1), 

which results in 

( , ) ( , )tt yy xxxxz x t EI z x t 0ρ + =                                            (5.29) 

and  

   ( , ) ( , )tt xxG x t EAG x t 0ρ − =                                             (5.30)                              

The separation of variables can be assumed in the form of 

       ( , ) ( ) i tz x t x e ωΦ=       and      ( , ) ( ) i tG x t x e ωΛ=                                 (5.31) 

where ( )xΦ  and ( )xΛ  are the modal shapes of the microcantilever beam with a tip mass 

and ω  is the natural frequency of the system. Applying Eq. (5.31) into Eqs. (5.29) and 

(5.30) results in the following differential equations: 

''''( ) ( )4x x 0Φ λ Φ− =                                                         (5.32) 

''( ) ( )2x x 0Λ ξ Λ+ =                                                         (5.33) 

where 

2
4

yyEI
ρωλ =    and   2I Aξ λ=                                              (5.34) 
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The solutions for Eqs. (5.32 and 5.33) can be written, respectively, as 

 ( ) [sin( ) sinh( )] [cos( ) cosh( )]1 2x K x x K x xΦ λ λ λ λ= − + −                      (5.35) 

( ) sin( )2
3x K I A xΛ λ=                                                (5.36) 

where K1 , K2 and K3  are  coefficients of mode shapes to be determined.  

Inserting Eqs. (5.35) and (5.36) into BCs. (5.25-5.27), the results can be written in the 

matrix form as 

 
11 12 13 1

21 22 23 2

31 32 33 3

A A A K
A A A K 0
A A A K

   
    =   
      

                                        (5.37) 

where 

( ) ( ) ( )3 2
11 yy 1 e z 1A EI L m k Lλ Φ ω Φ′′′= − − −  

( ) ( ) ( )3 2
12 yy 2 e z 2A EI L m k Lλ Φ ω Φ′′′= − − −  

13A 0=  

( )yy 2
21 1

EI
A L

H
λ Φ ′′= −  

( )yy 2
22 2

EI
A L

H
λ Φ ′′= −  

sin cos2
23 eA m L EA Lω ξ ξ ξ= − +  

( ) ( )yy 2
31 1 x 1

EI
A L k H L

H
λ Φ λΦ′′ ′= +  

( ) ( )yy 2
32 2 x 2

EI
A L k H L

H
λ Φ λΦ′′ ′= +  
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sin33 xA k Lξ=  

and  

( ) ( ) sin sinh1 2 L L L LΦ Φ λ λ′′′= = −  

( ) ( ) cos cosh1 2L L L LΦ Φ λ λ′ = = −  

( ) ( ) sin sinh1 2L L L LΦ Φ λ λ′′ ′= = − −  

 

 

 The frequency equation can now be obtained by equating the determinant of Eq. (5.37) 

to zero which yields: 

( ){ ( )sin( ) sin( ) ( )
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yy2 2 2 2
e z 2 1 x e e x

EI EI
        EI L k L L m L L

H H
AI

  m k H L L E L L EAk H L L
H

EI
m k L L L k m m k

H

λ Φ λ Φ ξ ω λ ξ Φ

ω λ ξ Φ ξ ξ λ Φ λξ ξ Φ

ω λ ξ Φ Φ ω ω λ

′′′ ′′ ′′− − + +

′ ′′ ′− − +

′′− − − sin( ) ( ) ( )

cos( ) ( ) ( ) cos( ) ( ) ( )}

( ){ ( ) sin( ) sin( ) ( )

sin( ) ( ) c
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(5.38) 

( ) ( ) cos cosh1 2L L L LΦ Φ λ λ′′′ ′′= = − −
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In order to determine the coefficients of mode shapes, K1 and K3 can be derived from Eq. 

(5.37) in terms of K2 as 

12
1 2

11

AK K
A

= −                                                        (5.39) 

( )12
3 21 22 2

23 11

A1K A A K
A A

= −                                           (5.40) 

To obtain unique solution for these coefficients, orthonormality between mode shapes 

can be utilized. For the boundary conditions considered here, this condition is stated as: 

( )[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( )
L

i j i j e i j e i j ij
0

m x x x x x dx m L L m L LΦ Φ Λ Λ Φ Φ Λ Λ δ+ + + =∫          (5.41) 

where ijδ  is the Kronecker delta.  

5.4.1.2. Forced Motion Analysis of Coupled Transversal/Longitudinal Motion 

Using expansion theorem for the beam vibration analysis, the expressions for the 

transverse and longitudinal displacements become:  

∑
∞

=

Φ=
1

)()(),(
i

ii tqxtxz                                                      (5.42) 

1
( , ) ( ) ( )i i

i
G x t x q t

∞

=

= Λ∑                                                     (5.43) 

where )(tqi  are the generalized time-dependent coordinates. Now, inserting Eqs. (5.42) 

and (5.43) into Eqs. (5.22-5.24) and after some manipulations, the discretized model for 
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the transversal vibration and base motion of microcantilever can be written, respectively, 

as 

1 1 1
       A ( ) ( ) ( ) ( ) ( )   , 1, 2, ,  

                                                                       

i ij j ij j ij j i
j j j

d t B q t C q t D q t f t i
∞ ∞ ∞

= = =

+ + + = = … ∞∑ ∑ ∑�� �� �
             (5.44) 

where 

0

( )
L

i iA x dxρ= Φ∫        
0

( ) ( )
L

ij i jB x x dxρ= Φ Φ∫  

0

( )[ ( ) ( )] ( )[ ( ) ( )] ( ) ( )
L

ij i j j x i j j z i jC x B x C x dx C H L L L C L Lε ε′ ′ ′= Φ Φ + Φ + Φ − Φ +Λ + Φ − Φ∫     

  
0

( ) ( )
L

ij yy i jD EI x x dx′′′′= Φ Φ∫     

  1
0

( ) ( ) ( , )
L

i if t x x t dx= Φ Π∫
 

and base motion can be expressed as 

2
1

( ) ( ) ( , )i i
i

d t L q t x t
∞

=
Ψ + = Π∑�� ��                                            (5.45) 

where 

( )em m LρΨ = + +         
0

( ) ( )
L

i i e iL x dx m Lρ= Φ + Φ∫  

The truncated n-mode description for Eqs. (5.44) and (5.45) can now be presented in the 

following matrix form: 

+ + =Mq Cq Kq Fu�� �                                               (5.46) 
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where 
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The Eq. (5.46) can now be written in the form of state-space as 

Ξ ΓX = X + u�                                                         (5.47) 

where 

 

2( 1) 2( 1) 2( 1) 1 2( 1) 1

, ,
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The longitudinal vibrating of system can also be expressed as 

1 1 1
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j j j
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       0
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and the truncated n-mode description for Eqs. (5.48) is as follow; 
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Finally, the Eq. (5.46) can be written in the form of state-space as 

Ξ ΓL L L L LX  = X  + u�                                                        (5.50) 
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5.4.2. Coupled lateral bending-torsion displacement: 

Similar to pervious problem, torsion and lateral bending vibrations are also coupled 

though friction and piezoelectric forces. The coupling terms appear in the right hand side 

of Eqs. (5.9) and (5.10) as well as coupled terms in the BCs (5.13) and (5.16). Comparing 

the eigenvalue problems for lateral bending/torsion and transversal bending/longitudinal 

motions (Eqs. (5.50-5.53)) reveals that the nature of equations for lateral and transversal 

bending and that of longitudinal and torsion are similar. The differences are related to 

constant coefficients of corresponding PDEs. Applying the similar procedure explained 

in the preceding section, the mode shapes, frequency equation, orthogonality condition 

and state-space representation for the coupled lateral bending/torsion motion can be also 

obtained. For the sake of briefness and undue complication, we do not provide the details 

here. 

  txCvtxBvtxvEItxv xttxxxxzztt 0),(),(),(),( =+++ −ρ                           (5.50) 

 txCwtxBwtxQtxwEItxwtd xttxxxxyytt 0),(),(),(),()],()([
..

=++−++ −ρ                 (5.51) 

0),(),( =− txCtxJ xxTtt θθ                                               (5.52) 

0),(),( =− txEAutxu xxttρ                                               (5.53) 

5.5. Numerical Results and Discussions 

Based on the modeling procedure described above, a numerical simulation procedure 

is adopted to study the variation of natural frequency, mode shape and time response of 

system with respect to viscoelastic and piezoelectric properties of materials. Table 5.1 

indicates the parameter values used for the simulations.  
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Table 5.1. Physical parameters of the system. 

Properties                                                      Symbol                     Value                            Unit 
Beam length L 460 µm 
Beam thickness t 2 µm 
Beam width b 50 µm 
Beam density ρ 2330 kg/m3 

Beam elastic modulus  E 120 GPa 
Beam moment of inertia I 3.33×10-23 m4 

Tip height h 20×10-6 m 
Tip mass me 3×10-10 kg 
Base mass m 0.001 kg 
Beam viscous damping B 1×10-8 kg/ms 
Beam structural damping C 1×10-8 kg/s 
Contact radius a 50×10-6 m 
Piezoelectric coefficient of material β 40 N/mV 

 
 

For the simulation purpose, the equation of motion has been truncated into only three 

modes. The eigenvalue problem associated with the transversal/longitudinal motion of 

beam is utilized to determine natural frequencies of microcantilever. Tables 5.2-5.4 list 

the natural frequency of the beam for; PFM system with only vertical spring (V-PFM), 

with only longitudinal spring (L-PFM), and with combined vertical/longitudinal springs 

(VL-PFM), respectively. Results indicate that in V-PFM, with the increase in sample 

spring constant, the natural frequency of microcantilever increases for all three mode 

shapes (see Table 5.2). Similar trend is seen for the natural frequency of L-PFM (see 

Table 5.3). Results demonstrate that the variation of natural frequency with respect to the 

stiffness of spring show more smooth trend in V-PFM compared to L-PFM. In L-PFM, 

the increase in the natural frequency is very small for the smaller spring constants; 

however, for the spring constant higher than 100 (N/m) the natural frequency for all three 

modes shows significant increase. At this range, L-PFM displays higher natural 
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frequency when compared to V-PFM. Table 4.4 lists the natural frequency of the 

microcantilever for VL-PFM. 

 Figure 5.4a depicts the first transversal mode shape of microcantilever in the V-PFM 

system for different equivalent sample spring constants. It is seen that the mode shape of 

microcantilever is heavily dependent upon the elastic properties of sample. Due to 

presence of tip mass, the mode shape shows concave curvature for kz=0 at the end of 

beam. As the spring constant increases in the vertical direction, the radius of curvature 

decreases accordingly. This implies that higher spring constant makes more restriction at 

the end of microcantilever. Therefore, the clamped-free condition of the beam is 

converted into clamped-pinned condition for stiffer samples. Figure 5.4b presents the 

mode shape of microcantilever beam in VL-PFM system. The presence of longitudinal 

spring significantly affects the shape of curvature at the entire length of beam compared 

to V-PFM. It is seen that at higher spring constants, the amplitude of vibration decreases 

significantly.  

 Figures 5.4c-d depict the mode shape of microcantilever for second natural frequency 

in V-PFM and VL-PFM, respectively. Results demonstrate that the amplitude of mode 

shape at the end of microcantilever increases for the smaller values of spring constants. 

However, for higher spring constants, as expected, the amplitude of vibration decreases 

significantly. The reason is that as the constraint force is applied at the free end of the 

beam, the first extremum point of mode shapes moves left side with the increase in the 

spring constants. This results in the upward shift in the mode shapes of the beam with 

change in the slope of curvature at the end of microcantilever. As the spring force 
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increases, the slope decreases accordingly. Finally, at some points spring force can 

overcome this shift which leads to decrease in the amplitude of vibration. Similar trend 

can be observed for the third mode shape of microcantilever (see Figure 5.4e-f). 

 Figures 5.5a-b depict the first longitudinal mode shape of microcantilever for L-PFM 

and VL-PFM, respectively. Results indicate that at higher spring constants the effect of 

coupling could have a significant impact on the longitudinal mode shape of 

microcantilever. However, with the increase in the natural frequency of the system, the 

importance of coupling effect on the longitudinal vibration of microcantilever decreases 

accordingly (see Figure 5.5c-d for the mode shape of microcantilever at third natural 

frequency of system). 

Figure 5.6a shows modal frequency response plot of microcanilever tip displacements 

at kx=kz= 10 (N/m) at four different damping ratios in the transversal direction where the 

damping term in the longitudinal direction is not taken into account. As expected, with 

the increase of damping coefficient, the amplitude of vibration decreases such that for 

65 10zC −= × (N.S/m) the effect of third resonant frequency is vanished. Along this line, 

the effect of longitudinal damping term on the vibration of microcantilever is shown in 

Figure 5.6b. It is seen that the modal frequency of microcantilever in the presence of 

longitudinal damping term shows similar trend as observed in the previous case. More 

especially, Figure 5.6b demonstrates that at kx=kz= 10 (N/m), the resonance frequency of 

discrete system (tip-sample junction) reaches the second resonance frequency of the 

microcantilever. For this reason, the damping term does not influence the vibration 

amplitude at this frequency. Finally, Figure 5.7 illustrates the effect of longitudinal 
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damping term on the modal frequency of microcantilever at two different spring 

constants. The amplitude of vibration at kx=kz= 20 (N/m) decrease for all three resonance 

frequencies, however at kx=kz= 35 (N/m) the resonance frequency of sample reaches the 

third resonance frequency of microcantilever.  

 In summary, it is shown that in vector-PFM, the effect of coupling terms such as 

spring and damping terms significantly affect the natural frequencies and mode shapes of 

microcantilever. It is also observed that depending on the viscoelastic properties of 

sample; the resonance frequency of sample can reach one of resonance frequency of 

microcantilever. This results in un-damped vibrating condition in the corresponding 

frequency.  

5.6. Conclusions 

For materials with arbitrary crystallographic orientations, the vibration of 

microcantilever used in the PFM system may experience combined motions in the 

vertical-longitudinal or/and lateral-torsinal directions. In this study, a comprehensive 

dynamic model was proposed for a vector PFM with combined motions. It was shown 

that PFM system can be represented as a set of PDEs which can be transferred into ODE 

forms using assumed mode method. The PFM system was also written in the state-state 

representation form. It was shown that neglecting the coupling terms can affect the 

dynamic response of the system, significantly. Moreover, effects of spring constant and 

damping coefficient of material in the vibration of microcantilever were studied in more 

details. Results demonstrated that materials with different mechanical properties can 

induce different constraints at the free end of microcantilever, and materials with higher 
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stiffness can change the clamped-free condition of cantilever into clamped-pinned 

condition. 

 

 
 

Table 5.2. Natural frequencies of microcantilever for V-PFM system. 
  

kz=0               kz=1             kz=3            kz=5              kz=10       kz=100       kz=1000         kz=2000 
  ω1(106)   0.0687         0.1838         0.2459         0.2665           0.2838       0.3001         0.3017           0.3018 
  ω2(106)   0.4310         0.4777         0.5720         0.6483           0.7887       0.9575         0.9763           0.9773 
  ω3(106)   1.2069         1.2227         1.2574         1.2951           1.3958       1.9425         2.0323           2.0368 

 
 
 
 

Table 5.3. Natural frequencies of microcantilever for L-PFM system. 
  

kx=0              kx=1           kx=3             kx=5             kx=10         kx=100         kx=1000       kx=2000 
  ω1(106)  0.0687          0.0697        0.0714         0.0730          0.0765         0.5183          0.5790          0.5848 
  ω2(106)  0.4310          0.4329        0.4364         0.4399          0.4478         1.3150          1.4311          1.4446 
  ω3(106)  1.2069          1.2087        1.2122         1.2156          1.2238         2.4878          2.6629          2.6867 

 
 
 

 
 Table 5.4. Natural frequencies of microcantilever for VL-PFM system where k=kx=kz. 

  
k=0               k=1             k=3               k=5              k=10          k=100          k=1000         k=2000 

  ω1(106)  0.0687         0.1838         0.2466          0.2685          0.2898        0.3539          0.4200          0.4218 

  ω2(106)  0.4310         0.4791         0.5741          0.6497          0.7686        1.0107          1.1569          1.1791 

  ω3(106)  1.2069         1.2227         1.2574          1.2951          1.3958        1.9425          2.0323          2.0368 
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Figure 5.4. bending mode shapes of microcantilever for; (a) first mode of V-PFM, (b) first mode of VL-

PFM, (c) second mode of V-PFM, (d) second mode of VL-PFM, (e) third mode of V-PFM, and (f) third 
mode of VL-PFM. The units of kx and kz are (N/m). 
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Figure 5.5. Longitudinal mode shapes of microcantilever for; (a) first mode of L-PFM, (b) first mode of 

VL-PFM, (c) third mode of L-PFM, and (d) third mode of VL-PFM. The units of kx and kz are (N/m). 
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Figure 5.6. Modal frequency response plot of microcanilever tip displacements at kx= kz = 10 (N/m) and for 
four different damping ratios in, (a) transversal (without longitudinal term), and (b) longitudinal (without 

transversal term)directions. The units of damping coefficients are (N.S/m). 
 
 
 

a 
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Figure 5.7. Modal frequency response plot of Microcanilever tip displacements for four damping ratios in 
longitudinal direction (without transversal term) and two spring constants, (a) kx=kz = 20, and (b) kx=kz=35. 

The units of damping coefficients are (N.S/m). 
 

 

a 
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CHAPTER SIX 

 

PIEZORESPONSE FORCE MICROSCOPY FOR LOW DIMENSIONAL 

MATERIAL CHARACTERIZATION; THEORY AND EXPERIMENT 

 
 
 

6.1. Introduction 
 

Piezoelectric materials are one of the most promising materials which have attracted a 

lot of attention since their discovery in 1880-1881. The applications of piezoelectric 

materials can be classified into four categories; generators, sensors, actuators, and 

transducers. The first commercial applications for piezoelectric materials as a sensor was 

introduced in World War I in the ultrasonic submarine structure [144]. Later, barium 

titanate oxide (BaTiO3) ceramic was produced as a piezoelectric transducer material in 

the early 1950s [145]. In 1954, lead zirconate titanate (PbZrTiO3–PbTiO3) or PZT 

ceramics possessing excellent properties were developed as a promising candidate in all 

fields of piezoelectric applications [146]. Since, many works have been carried out in 

developing applications for PZT materials for implementation in microelectromechanical 

systems (MEMS) [51-53]. Such utilization results in high sensitivity and low electrical 

noise in sensing applications and high output force in the actuation of MEMS compared 

to other conventional designs.  

Along this line and in order to implement piezoelectric materials in the nano- and 

microstructure design, the investigation of size effect of these materials in low 

dimensional structures is a crucial importance. It has been shown that as the dimension of 

piezoelectric materials are getting smaller, the materials cannot preserve their 
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macroscopic properties and a significant deviation in the material properties can be 

observed when compared to bulk materials [54]. In this respect, characterization of 

material in these scales requires different technique than those utilized for bulk materials.  

Recently, rapid development in scanning probe microscopy (SPM)-based techniques 

and in particular piezoresponse force microscopy (PFM) has attracted widespread 

attention as a primary technique for nondestructive characterization of piezoelectric 

materials in the scale of grain [125-129]. The operational modes of PFM have been 

studied in the previous chapter and a comprehensive model for dynamic behavior of 

vector PFM system was introduced. In this chapter, we aim to introduce a practical 

procedure in order to simultaneously estimate the local viscoelastic and piezoelectric 

properties of materials. For this purpose, an energy based approach is used to derive the 

governing equations of motion for vertical PFM at a given point on the sample. A general 

formulation is obtained for the mode shape and frequency response of the system. 

Finally, using the method of assumed modes, the governing ordinary differential 

equations (ODEs) of the system and its state-space representation are derived under 

applied external voltage. For the proof of the concept, the results obtained from theory 

are used along with experimental data to identify the spring constant and piezoelectric 

coefficient of Periodically Poled Lithium Niobate (PPLN) material. In this regard, a 

parameter estimation technique based on minimizing the percentage of modeling error is 

utilized to obtain the optimal values of materials. 

 



 
 

   121

6.2. Distributed-Parameters Modeling of PFM  

Based on the materials presented in the preceding chapter, a PFM system can be 

modeled as a microcantilever beam where one end of the beam is clamped to the base 

position assembly with the displacement of d(t) and the total mass of m, and the free end 

of beam is attached to the tip mass of me (see Figure 6.1). As the external electric field is 

applied between the conducting tip and sample, the response of material can be divided 

into viscoelastic and piezoelectric parts. The viscoelstic part can be modeled based on 

Kelvin-Voigt model (parallel spring and damper), while the piezoresponse of material is 

considered as a force, Ftip, acting at the free end of microcantilever. Utilizing Hertzian 

contact mechanics at the tip-surface junction the indentation force can be expressed as 

[143] 

3aP aV
R

α β= −                                                     (6.1) 

where the first and second terms in the right hand side of Eq. (6.1) represent the elastic 

and piezoelectric components of applied force, respectively. In the above equation, α  

and β  demonstrate the elastic and piezoelectric properties of material, respectively, R is 

the tip radius and a  is the contact radius.   
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Figure 6.1. A schematic model of vertical PFM and sample. 

Using the extended Hamilton’s Principle and following the same procedure as 

outlined in preceding chapte, the partial differential equation (PDE) for the transversal 

vibration of microcantilever in the absence of base motion which is the case for a point 

scanning problem can be expressed as:  

( , ) ( , ) ( , ) ( , ) ( , ) 0 tt xxxx t xtw x t EIw x t Q x t Bw x t Cw x tρ + − + + =                 (6.2)                             

with following boundary conditions 

( , ) ( , ) ( , ) ( , )e tt xxx z z t tipm w L t EIw L t k w L t C w L t F− + + =                    (6.3) 

and 

   (0, ) (0, ) ( , ) 0x xxw t w t w L t= = =                                  (6.4) 

In the above equations, subscripts ( )t⋅  and ( )x⋅  indicate the partial derivatives with 

respect to the time variable t and position variable x, respectively. EI, ρ  and L denote the 

d(t) f(t) 

z(x,t) x 

z0(t) 

Q(x,t) 

Ftip-z 

kz 

m 

cz w 
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rigidity, linear density and length of microcantilever, respectively. Q(x,t) is the capacitive 

forces between tip-cantilever assembly and surface, B is the viscous air damping, C is the 

structural damping term, kz is the spring constant, and Cz is the damping coefficient of 

material. 

6.3. Modal Analysis of System 

In order to obtain natural frequencies and mode shapes of the system, the eigenvalue 

problem associated with the transversal vibration of microcantilever is obtained by 

applying free and un-damped conditions to Eq. (6.2) which results in 

( , ) ( , )tt yy xxxxw x t EI w x t 0ρ + =                                         (6.5) 

The solution to ( , )w x t   can be assumed in the following separable form of 
 

       ( , ) ( ) i tw x t x e ωΦ=                                                (6.6) 
 
where ( )xΦ  is the mode shape of the microcantilever beam with a tip mass and ω  is the 

natural frequency of the system. The solution for the mode shape of system can be 

expressed as  

 
 ( ) [sin( ) sinh( )] [cos( ) cosh( )]1 2x K x x K x xΦ λ λ λ λ= − + −                         (6.7) 

 
 

where K1 and K2  are  coefficients of eigenfunctions. Inserting Eqs. (6.7) into free and un-

damped condition in the BC. (6.3) results in following relationship: 

 

 11 12 1

21 22 2

A A K
0

A A K
   

=   
   

                                            (6.8) 

where 
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( ) ( ) ( )3 2
11 yy 1 e z 1A EI L m k Lλ Φ ω Φ′′′= − − −  

( ) ( ) ( )3 2
12 yy 2 e z 2A EI L m k Lλ Φ ω Φ′′′= − − −  

( )2
21 1A Lλ Φ ′′=  

( )2
22 2A Lλ Φ ′′=  

 
and  
 

( ) ( ) sin sinh1 2 L L L LΦ Φ λ λ′′′= = −  
( ) ( ) cos cosh1 2L L L LΦ Φ λ λ′ = = −  
( ) ( ) sin sinh1 2L L L LΦ Φ λ λ′′ ′= = − −  

 ( ) ( ) cos cosh1 2L L L LΦ Φ λ λ′′′ ′′= = − −  
 

The frequency equation can now be obtained by equating the determinant of Eq. (6.8) 

to zero. In order to determine the unique solution for the coefficients of mode shapes, K1 

and K2, orthogonality between mode shapes for the boundary conditions considered here 

can be expressed as: 

( ) ( ) ( ) ( )
L

i j e i j ij
0

x x dx m L LρΦ Φ Φ Φ δ+ =∫                                 (6.9)                               

where ijδ  is the Kronecker delta. The obtained mode shapes are utilized in the forced 

vibration analysis of the system which is the focus of the study in the following section. 

6.4. Forced Motion Analysis of Microcantilever 

Using expansion theorem for the beam vibration analysis, the expression for the 

transverseal displacement can be written as:  

1

( , ) ( ) ( )i i
i

w x t x q t
∞

=

= Φ∑                                                  (6.10) 
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where ( )i xΦ  and )(tqi  are the mode shapes and generalized time-dependent coordinates, 

respectively. Inserting Eq. (6.10) into Eq. (6.2), the PDE for the forced vibration of the 

microcantilever can be written as 

2

1

   ( ) ( ) ( ) ( )        1, 2, ,   i ij j i i i
j

q t C q t q t f V t iω
∞

=

+ + = = … ∞∑�� �                     (6.11) 

 
where 

         
0

( )[ ( ) ( )] ( ) ( )
L

ij i i j z i jC x B x C x dx C L L′= Φ Φ + Φ + Φ Φ∫  

and 
            ( )i if a Lβ= Φ  
 

In the derivation of Eq. (6.11), the following orthogonality conditions for the mode 

shapes were utilized 

( ) ( ) ( ) ( )
L

i j e i j ij
0

x x dx m L LρΦ Φ Φ Φ δ+ =∫                                  (6.12-1)
 

( ) ( ) ( ) ( )
L

2
i j z i j i ij

0

EI x x dx k L LΦ Φ Φ Φ ω δ′′ ′′ + =∫                              (6.12-2)
 

 
The truncated n-mode description of the beam Eq. (6.11) can now be presented in the 

following matrix form: 

u+ + =Mq Cq Kq F�� �                                                 (6.13) 

where 
2 (1) (2) ( )

1[ ] [ ] [ ( ), ( ), , ( )]n T
n n ij n n i ij n n nI c q t q t q tω δ× × × ×= = = =M , C , K , q ,…  

 
(1) (2) ( )

1[ , , , ] , ( )n T
nf f f u V t×= =F …  
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The state-space representation of Eq. (6.13) is given by: 

 

uX = AX + B�                                                          (6.14) 

 

where            

 

2 2 2 1 2 1

, ,
n n n n× × ×

     
= = =     
     

-1 -1 -1

0 I 0 q
A B X

-M K -M C M F q�
                       (6.15) 

 
 
6.5. Experimental Procedure and Setup 
 

In this study, a commercial AFM (Asylum Research MFP-3D 

[www.asylumresearch.com], Figure 6.2) with an Au/Cr-coated SiN pyramidal tip on a 

triangular microcantilever (TR400PB, Olympus, length L≈ 200 µm, resonant frequency ~ 

10 kHz, nominal spring constant k ~ 0.02 N m-1) were used for indentation of substrate. 

A more accurate spring constant 27.52 pN nm-1 was determined via a force-distance 

curve on the surface location where measurements were made. The force-distance curve 

were also resulted in determination of the deflection inverse optical lever sensitivity 

InvOLS = 63.47 nm V-1, which allows for conversion of the deflection signal into 

displacement. Figure 6.3 demonstrates the geometry and 3D motion of the 

microcantilever at second, forth and sixth mode of vibration.  

The sample was periodically poled lithium niobate (PPLN), made by Crystal 

Technologies, Inc. using the electric-field poling technique [147]. The 1 cm2 PPLN chip 

(thickness ~ 1 mm) was mounted onto a 15 mm stainless steel specimen disc (Ted Pella) 

using a 9 mm, double-sided carbon conductive tab (PELCO Tabs, Ted Pella) (see Figure 
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6.4). The metal specimen disc had been attached to a standard glass microscope slide 

using a fast cure epoxy. The glass slide was held in place on the MFP-3D stage using 

magnets at each end of the slide. The PPLN was grounded to the MFP-3D stage via 30-

gauge insulated wrapping wire (Radio Shack), which was attached to the top PPLN 

surface using PELCO conductive silver 187 (Ted Pella). 

 

 

Figure 6.2.  The Asylum Research MFP-3D. 
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(a) 

 
(b) 

 
(c) 

Figure 6.3. 3D motion of triangular microcantilever at (a) second mode, (b) forth mode, and (c) sixth mode. 
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Figure 6.5 depicts (a) the height, (b) PFM amplitude and (c) PFM phase images 

acquired simultaneously of PPLN. Some topographic cross-talk may be seen between the 

height and PFM amplitude images. This is caused by changes in the peak resonant 

frequencies as the features’ properties change. The PFM phase image demonstrates c + 

(lighter) and c – (darker) poled domains. Moderate contributions from electrostatics are 

evidenced by the weak phase change between domains. The scan size is 40 µm x 40 µm, 

and the scan rate is 0.50 Hz. The images have been flattened on the first order. Z-scales 

are (a) 5.38 nm, (b) 318.89 pm, and (c) 109.52°. PFM images were obtained with 10 V 

applied to the tip at 1.209 MHz. 

PFM imaging of a 40 µm x 40 µm area of the PPLN sample revealed a poling spacing 

of 15.8±0.2 µm (see phase image in Figure 6.6). The tip was positioned on a c – domain 

that was also at a spot with clean, flat topography using the force panel in contact mode 

(see Figure 6.5, marker #1). At this location, the force-distance curve was performed to 

determine the InvOLS and spring constant, and once contact was re-established with the 

Z-piezo approximately unstrained, surface contact tunes were made in piezo force mode. 

The frequency of the voltage applied to the tip was swept from 0 Hz to 1 MHz. 

Maintaining the same tip position, 10 ms step voltage with magnitude of 3 volt were 

applied to the PPLN while the deflection response over time was recorded.  

 

 

 



 
 

   130

 

 

Figure 6.4.  The PPLN chip on the MFP-3D stage. 
 
 

 

 

Figure 6.5.  Height (a), PFM amplitude (b) and PFM phase (c) images of PPLN. 
 
 

 

Figure 6.6.  PFM phase image of PPLN showing the location of the tip at marker #1. 
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6.6. Material Characterization 

In order to detect the properties of PPLN based on the results obtain from theory and 

experiment, a system identification procedure is required to characterize the whole 

system parameters. The similar procedure explained in Section 3.4 was carried out here 

for this purpose. To separate the vertical modes from other modes such as torsion, the 

random optimization algorithm is designated based on minimum modeling error for all 

possible combinations of resonant frequencies (see Figure 6.7). This algorithm has been 

applied for a series of optimization runs in order to arrive at a global extremum.  

     

Figure 6.7. Optimization algorithm in order to separate bending modes from non-vertical modes. 
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Figure 6.8 depicts the first 7 actual resonant frequencies with first 5 vertical 

frequencies obtained from theoretical model. Based on the proposed algorithm, it is 

shown that two actual modes of the system do not match the vertical modes. Extensive 

numerical simulations have been performed which show the validity of this optimization 

process in eliminating these two modes. In this respect, the optimal values for the beam 

and spring constant have been obtained as listed in Table 6.1. 

 

 

  Figure 6.8. Comparison of actual and theoretical resonant frequencies for PPLN.  
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Table 6.1. Optimal physical parameters of the system. 

 

 

In order to obtain the piezoelectric coefficient of PPLN, a unit step input voltage with 

duration of 3 milliseconds was applied to the sample. The response of PPLN is 

demonstrated in Fig. 6.9. Since the equivalent spring constant in the tip-sample junction 

can be considered as a parallel combination of cantilever and material springs, the 

piezoelectric coefficient ( β ) for the applied piezoelectric force (βaV ) at tip-sample 

junction can be expressed as: 

( )= +β b m
hK K

aV
 

where  33=bK EI L , mK is the local spring constant of material obtained from frequency 

response, h is the steady state response of material to input voltage, a is the contact 

radius, and V is applied input voltage. Using the optimal parameters of beam and local 

spring constant of PPLN from Table 6.1, and assuming the contact radius of tip and 

sample equal with 50 nm, the piezoelectric coefficient of the PPLN can be obtained 

as 55 (N/m.V)=β . The results obtained for piezoelectric coefficient and piezoelectric 

response of PPLN based on the proposed framework are comparable with those obtained 

for BaTio3, PZT4 and PZT5a reported in reference [143].   
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Figure 6.9. Response of PPLN to the  unit step input voltage at marker #1dipected in Figure 6.6. 

6.7. Conclusion 

In this chapter, a new procedure was introduced to simultaneously detect the elastic 

and piezoelectric properties of materials. For this purpose, the whole PFM setup 

including microcantilever, sample and applied electrical field were modeled using an 

energy based approach. Using the method of assumed modes, the governing ordinary 

differential equations (ODEs) of the system and its state-space representation were 

derived under applied external voltage. Utilizing frequency response from experiment 

and theory, the spring constant of the PPLN was obtained through minimizing the 

percentage of modeling errors. Moreover, the step input response from experiment and 

theory are used to estimate the piezoelectric and damping coefficients of PPLN. 



CHAPTER SEVEN 

CONCLUSIONS AND FUTURE WORKS 

A general and comprehensive framework was introduced for the forced vibration of 

flexible Euller Bernoulli beams with multiple jump discontinuities in their cross-section. 

A general formulation was derived for the characteristics matrix of beam using both 

boundary and continuity conditions. The governing ordinary differential equations 

(ODEs) of beam and their state-space representation were derived under distributed 

vertical loading condition. It was both analytically and experimentally shown that the 

presence of abrupt change in the cross-section of the beam can be significantly affected 

the natural frequencies and mode shapes of the beam.  This approach was extended to 

vibration analysis of microcantilever Active Probes fabricated with intentional 

geometrical discontinuities. Results obtained from experiment were compared with the 

commonly used uniform beam model as well as the proposed discontinuous beam model. 

It was shown that a significant enhancement on sensing accuracy of microcantilever 

Active Probes can be achieved using the proposed discontinuous beam model compared 

to a uniform model when a multiple-mode operation is desired. 

In the second part of this dissertation, a comprehensive model was proposed for 

vector PFM system under applied electrical loading.  It was demonstrated that the PFM 

system can be governed by a set of partial differential equations (PDE) along with non-

homogeneous and coupled boundary conditions. Using the method of assumed modes, 

the governing ordinary differential equations (ODEs) of the system and its state-space 

representation were derived under applied external voltage. The formulation was then 
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reduced to vertical PFM in order to detect the viscoelestic and piezoelectric properties of 

PPLN.  For this purpose, the experimental and theoretical frequency responses along with 

minimizing the percentage of modeling error were utilized to obtain the optimal spring 

constant of PPLN. Finally, the step input response from experiment and theory were used 

to estimate the piezoelectric and damping coefficients of PPLN.   

As future work, our developed model for PFM system can be utilized for data storage 

purpose in ferroelectric materials. In this regard, the information can be transferred to 

materials through external voltage which induces local dislocation in the materials. 

Utilizing the propsed modeling framework based on mechanical properties of materials 

before and after coding can be a new and novel strategy in order to decode data. 

Moreover, due to high sensitivity of microcantilever Active Probes, our proposed 

dynamic modeling framework can be used to detect and characterize the growth rate of 

many biological species especially cancer cells. This model can also allow employment 

of this theory in AFM systems to replace laser-based detection mechanism with other 

alternative transductions. 

 

 

 

 

 



APPENDIX 
 
 

Sample Maple and Matlab Codes for Numerical Simulations  
 
 
 
 

For numerical simulation and analysis of MCS, Maple and Matlab codes are utilized. A 

sample Maple code which is used in numerical analysis of vector PFM (presented in 

chapter 5) as well as a sample Matlab code which is utilized in dynamic response analysis 

of discontinuous EB beam (presented in chapter 3) have been attached in the next pages 

of this dissertation. 
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Maple Code for Coupled Longitudinal-Vertical Vibration of Microcantilever 
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Matlab Code for Discontinuous EB Beam 
 
 
 
clc 
clear all 
close all 
  
kk = 1; 
  
for tp = 0:0.0005:0.002; 
  
L1 = 0.1;  
L2 = 0.2; 
L = 0.3; 
  
Eb = 200*10^9;  % beam madule of elasticity 
Ep = 50*10^9; % pzt .... 
  
ro_b = 7800; % beam density 
ro_p = 7800; % pzt density 
  
w = 0.01;   % width of structure 
tb = 0.001; %thickness of beam 
tp = 0.001; %thickness of pzt 
  
  
% ------------************ 
% *********** ------------ 
  
I1 = 1/12*w*tb^3; 
I2 = 1/12*w*(tb+tp)^3; 
I3 = I1; 
  
E1 = Eb; 
E2 = Eb; 
E3 = Eb; 
  
m1 = ro_b*tb*w; 
m2 = ro_b*tb*w + ro_p*tp*w; 
m3 = m1; 
% ------------************ 
% *********** ------------ 
  
alpha = (E1*I1)/(E2*I2); 
G = (E2*I2)/(E3*I3); 
  
i = 1; 
for F = 0.0001:0.001:40 
    F1 = F; 
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    F2 = F*((m2*E1*I1)/(m1*E2*I2))^0.25; 
    F3 = F*((m3*E1*I1)/(m1*E3*I3))^0.25; 
 
  
M=[sin(F1*L1)-sinh(F1*L1)  cos(F1*L1)-cosh(F1*L1)  -sin(F2*L1)   
-cos(F2*L1)  -sinh(F2*L1)  -cosh(F2*L1)  0  0  0  0; 
F1*cos(F1*L1)-F1*cosh(F1*L1)  -F1*sin(F1*L1)-F1*sinh(F1*L1)   
-F2*cos(F2*L1)  F2*sin(F2*L1)  -F2*cosh(F2*L1)  -F2*sinh(F2*L1)  0  0  
0  0; 
-alpha*F1^2*(sin(F1*L1)+sinh(F1*L1))  
 -alpha*F1^2*(cos(F1*L1)+cosh(F1*L1))  F2^2*sin(F2*L1)  F2^2*cos(F2*L1)    
-F2^2*sinh(F2*L1)   -F2^2*cosh(F2*L1)  0  0  0  0; 
-alpha*F1^3*(cos(F1*L1)+cosh(F1*L1) )   alpha*F1^3*(sin(F1*L1)-
sinh(F1*L1) )  F2^3*cos(F2*L1)  -F2^3*sin(F2*L1)  -F2^3*cosh(F2*L1)    
-F2^3*sinh(F2*L1)  0  0  0  0; 
0  0   sin(F2*L2)  cos(F2*L2)  sinh(F2*L2)  cosh(F2*L2)   -sin(F3*L2)  
-cos(F3*L2)  -sinh(F3*L2)  -cosh(F3*L2); 
0  0   F2*cos(F2*L2)  -F2*sin(F2*L2)  F2*cosh(F2*L2)   F2*sinh(F2*L2)  
-F3*cos(F3*L2)  F3*sin(F3*L2)  -F3*cosh(F3*L2)  -F3*sinh(F3*L2); 
0  0   -G*F2^2*sin(F2*L2)  -G*F2^2*cos(F2*L2)  G*F2^2*sinh(F2*L2)  
G*F2^2*cosh(F2*L2)  F3^2*sin(F3*L2)  F3^2*cos(F3*L2)  -F3^2*sinh(F3*L2) 
-F3^2*cosh(F3*L2); 
0  0   -G*F2^3*cos(F2*L2)   G*F2^3*sin(F2*L2)  G*F2^3*cosh(F2*L2)  
G*F2^3*sinh(F2*L2)  F3^3*cos(F3*L2)  -F3^3*sin(F3*L2)  -
F3^3*cosh(F3*L2)  -F3^3*sinh(F3*L2); 
0  0    0   0   0   0   -F3^2*sin(F3*L)   -F3^2*cos(F3*L)    
F3^2*sinh(F3*L)   F3^2*cosh(F3*L); 
0  0    0   0   0   0   -F3^3*cos(F3*L)   F3^3*sin(F3*L)    
F3^3*cosh(F3*L)   F3^3*sinh(F3*L)]; 
 
deter(i) = det(M); 
    beta(i) = F; 
    i = i+1; 
end 
  
% ------------------------- find beta and w --------------------------- 
 
j = 1; 
for i = 1:length(deter)-1 
     if sign(deter(i))~= sign(deter(i+1)) 
         a = beta(i); 
         b = deter(i); 
         c = beta(i+1); 
         d = deter(i+1); 
          
         beta1(j) = a + (abs(b/d)*(c-a))/(1+abs(b/d)); 
         w(j) = sqrt(beta1(j)^4*E1*I1/m1); 
         j = j+1; 
     end 
end 
  
% ---------------------------- find A B C D ------------------------- 
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for i = 1 : length(beta1) 
     
    F1 = beta1(i); 
    F2 = F1*((m2*E1*I1)/(m1*E2*I2))^0.25; 
    F3 = F1*((m3*E1*I1)/(m1*E3*I3))^0.25; 
    
M=[sin(F1*L1)-sinh(F1*L1)  cos(F1*L1)-cosh(F1*L1)    -sin(F2*L1)       
-cos(F2*L1)  -sinh(F2*L1)   -cosh(F2*L1)           0       0    0   0; 
F1*cos(F1*L1)-F1*cosh(F1*L1)   -F1*sin(F1*L1)-F1*sinh(F1*L1)  
-F2*cos(F2*L1)   F2*sin(F2*L1)    -F2*cosh(F2*L1)    -F2*sinh(F2*L1)        
0    0    0   0; 
-alpha*F1^2*(sin(F1*L1)+sinh(F1*L1) )    
-alpha*F1^2*(cos(F1*L1)+cosh(F1*L1))  F2^2*sin(F2*L1)  F2^2*cos(F2*L1)      
-F2^2*sinh(F2*L1)   -F2^2*cosh(F2*L1)   0   0    0   0; 
-alpha*F1^3*(cos(F1*L1)+cosh(F1*L1) )    alpha*F1^3*(sin(F1*L1)-
sinh(F1*L1) )   F2^3*cos(F2*L1)   -F2^3*sin(F2*L1)     -
F2^3*cosh(F2*L1)   -F2^3*sinh(F2*L1)     0       0    0   0; 
0     0     sin(F2*L2)    cos(F2*L2)     sinh(F2*L2)       cosh(F2*L2)      
-sin(F3*L2)     -cos(F3*L2)      -sinh(F3*L2)      -cosh(F3*L2); 
0     0     F2*cos(F2*L2)       -F2*sin(F2*L2)          F2*cosh(F2*L2)          
F2*sinh(F2*L2)   -F3*cos(F3*L2)   F3*sin(F3*L2)   -F3*cosh(F3*L2)    
-F3*sinh(F3*L2); 
0     0   -G*F2^2*sin(F2*L2)  -G*F2^2*cos(F2*L2)   G*F2^2*sinh(F2*L2)   
G*F2^2*cosh(F2*L2)   F3^2*sin(F3*L2)   F3^2*cos(F3*L2)  
-F3^2*sinh(F3*L2)  -F3^2*cosh(F3*L2); 
0     0   -G*F2^3*cos(F2*L2)  G*F2^3*sin(F2*L2)    G*F2^3*cosh(F2*L2)   
G*F2^3*sinh(F2*L2)    F3^3*cos(F3*L2)  -F3^3*sin(F3*L2)    
-F3^3*cosh(F3*L2)  -F3^3*sinh(F3*L2); 
0    0    0   0   0   0   -F3^2*sin(F3*L)   -F3^2*cos(F3*L)    
F3^2*sinh(F3*L)   F3^2*cosh(F3*L); 
0    0    0   0   0   0   -F3^3*cos(F3*L)   F3^3*sin(F3*L)    
F3^3*cosh(F3*L)   F3^3*sinh(F3*L)]; 
     
    M1 = M(1:9,1:9); 
    det(M); 
    b = -M(1:9,10); 
    P(10,i) = 1; 
    P(1:9,i) = inv(M1)*b; 
end 
  
% -------------------- find and plot mode shapes -------------------- 
dx = 0.0001; 
x = [0:dx:L]; 
  
for i = 1 : length(beta1) 
    F1 = beta1(i); 
    F2 = F1*((m2*E1*I1)/(m1*E2*I2))^0.25; 
    F3 = F1*((m3*E1*I1)/(m1*E3*I3))^0.25; 
   for j = 1 : length(x) 
       if x(j) <= L1 
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           phi(i,j) = P(1,i)*sin(F1*x(j)) + P(2,i)*cos(F1*x(j)) - 
P(1,i)*sinh(F1*x(j)) - P(2,i)*cosh(F1*x(j)); 
       end 
       if (x(j) > L1) & (x(j) < L2) 
           phi(i,j) = P(3,i)*sin(F2*x(j)) + P(4,i)*cos(F2*x(j)) + 
P(5,i)*sinh(F2*x(j)) + P(6,i)*cosh(F2*x(j)); 
       end 
       if x(j) >= L2 
           phi(i,j) = P(7,i)*sin(F3*x(j)) + P(8,i)*cos(F3*x(j)) + 
P(9,i)*sinh(F3*x(j)) + P(10,i)*cosh(F3*x(j)); 
       end 
   end 
end 
  
% ---------------------- normalization of mode shapes 
  
for i = 1 : length(beta1) 
    F1 = beta1(i); 
    F2 = F1*((m2*E1*I1)/(m1*E2*I2))^0.25; 
    F3 = F1*((m3*E1*I1)/(m1*E3*I3))^0.25; 
    integ = 0; 
     
    for j = 1 : length(x) 
       if x(j) <= L1 
           integ = integ + m1*phi(i,j)^2; 
       end 
       if (x(j) > L1) & (x(j) < L2) 
           integ = integ + m2*phi(i,j)^2; 
       end 
       if x(j) >= L2 
           integ = integ + m3*phi(i,j)^2; 
       end 
    end 
    cn(i) = sqrt(inv(dx*integ)); 
    phi_n(i,:) = cn(i)*phi(i,:); 
end 
  
phi_n_track1(kk,:) = phi_n(1,:); 
phi_n_track2(kk,:) = phi_n(2,:); 
phi_n_track3(kk,:) = phi_n(3,:); 
phi_n_track4(kk,:) = phi_n(4,:); 
%phi_track(kk,:) = phi; 
kk = kk +1; 
figure(1) 
plot(x,phi(3,:),'g') 
plot(x,phi(1,:),'b',x,phi(2,:),'r',x,phi(3,:),'g') 
hold 
  
figure(2) 
plot(x,phi_n(1,:),'b',x,phi_n(2,:),'r',x,phi_n(3,:),'g') 
  
end  
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