
Clemson University
TigerPrints

All Dissertations Dissertations

8-2008

CUES FOR CELLULAR ASSEMBLY OF
VASCULAR ELASTIN NETWORKS
Chandrasekhar Kothapalli
Clemson University, sekhar512@yahoo.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Biomedical Engineering and Bioengineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Kothapalli, Chandrasekhar, "CUES FOR CELLULAR ASSEMBLY OF VASCULAR ELASTIN NETWORKS" (2008). All
Dissertations. 238.
https://tigerprints.clemson.edu/all_dissertations/238

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/238?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 

 

 

CUES FOR CELLULAR ASSEMBLY OF VASCULAR ELASTIN NETWORKS 

 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment  
of the Requirements for the Degree 

Doctor of Philosophy 
Bioengineering 

 
 

by  
Chandrasekhar R. Kothapalli 

August 2008 
 
 

Approved by: 
Dr. Anand Ramamurthi (Committee Chair) 

Dr. Naren Vyavahare 
Dr. Martine Laberge 

Dr. Bryan Toole 



 ii

ABSTRACT 

Elastin, a structural protein distributed in the extracellular matrix of vascular tissues is 

critical to the maintenance of vascular mechanics, besides regulation of cell-signaling 

pathways involved in injury response and morphogenesis.  Thus, congenital absence or 

disease-mediated degradation of vascular elastin and its malformation within native 

vessels due to innately poor elastin synthesis by adult vascular cells compromise vascular 

homeostasis.  Current elastin regenerative strategies using tissue engineering principles 

are limited by the progressive destabilization of tropoelastin mRNA expression in adult 

vascular cells and the unavailability of scaffolds that can provide cellular cues necessary 

to up-regulate elastin synthesis and regenerate faithful mimics of native elastin.  Since 

our earlier studies demonstrated the elastogenic utility of hyaluronan (HA)-based cues, 

we have currently sought to identify a unique set of culture conditions based on HA 

fragments (0.756-2000 kDa), growth factors (TGF-β1, IGF-1) and other biomolecules 

(Cu2+ ions, LOX), which will together enhance synthesis, crosslinking, maturation and 

fibrous elastin matrix formation by adult SMCs, under both healthy and inflammatory 

conditions.  It was observed that TGF-β1 (1 ng/mL) together with HA oligomers (0.2 

μg/mL) synergistically suppressed SMC proliferation, enhanced tropoelastin (8-fold) and 

matrix elastin synthesis (5.5-fold), besides improving matrix yield (4.5-fold), possibly by 

increasing production and activity of lysyl oxidase (LOX).  Though addition of IGF-1 

alone did not offer any advantage, HA fragments (20-200 kDa) in the presence of IGF-1 

stimulated tropoelastin and soluble elastin synthesis more than 2.2-fold, with HMW HA 

contributing for ~5-fold increase in crosslinked matrix elastin synthesis.  Similarly, 0.1 M 
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of Cu2+ ions, alone or together with HA fragments stimulated synthesis of tropoelastin (4-

fold) and crosslinked matrix elastin (4.5-fold), via increases in LOX protein synthesis 

(2.5–fold); these cues also enhanced deposition of mature elastic fibers (~ 1 μm diameter) 

within these cultures.  Interestingly, instead of copper salt addition, even release of Cu2+ 

ions (~ 0.1 M) from copper nanoparticles (400 ng/mL), concurrent with HA oligomers, 

promoted crosslinking of elastin into mature matrix, with multiple bundles of highly-

crosslinked elastin fiber formation observed (diameter ~ 200-500 nm).  These results 

strongly attest to the potential individual and combined benefits of these cues to faithful 

elastin matrix regeneration by healthy, patient-derived cells within tissue-engineered 

vascular constructs. 

 When these cues (TGF-β1 and HA oligomers) were added to TNF-α-stimulated 

SMC cultures, model cell culture systems mimicking phenotypically-altered cells within 

aneurysms, they upregulated elastin matrix production, organized elastin protein into 

fibers, and simultaneously stabilized this matrix by attenuating production of elastolytic 

enzymes.  Similarly these cues also attenuated inflammatory cytokines release within 

cells isolated from induced-aortic aneurysms in rats, and significantly upregulated elastin 

synthesis and matrix formation by upregulating LOX and desmosine protein amounts.  

The cues were also highly effective in organizing the elastin into fibrous matrix structures 

mimicking the native elastin deposition process.  The outcomes of this study might be of 

tremendous use in optimizing design of HA constructs to modulate vascular healing and 

matrix synthesis following revascularization, and in enabling repair of elastin networks 

within diseased or inflammatory (aneurysmal) adult vascular tissues. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

Abdominal aortic aneurysms (AAAs) are pathological conditions wherein 

segments of elastic arteries dilate and structurally weaken resulting in fatal vessel 

rupture1.  AAAs are also frequent outcomes of inherited conditions such as Marfans 

syndrome – characterized by defects in assembly and stabilization of arterial elastin2, 

chronic matrix proteolytic effects by inflammatory cells (e.g., macrophages) that infiltrate 

in response to calcified lipid deposits within the abdominal aortic wall3.  In the United 

States alone, more than 70,000 surgeries are performed annually to treat AAAs3, and 

despite this, nearly 16,000 people die every year due to this condition4.  Specifically, AAs 

are characterized by arterial dilatation, degeneration of the arterial structure, decrease in 

medial elastin content, disruption or fragmentation of elastic lamellae, presence of 

matrix-degrading enzymes such as matrix metalloproteinases (MMPs), inflammatory 

infiltration, and calcification5-9.  The rupture of AAs is associated with mortality rates of 

~ 80%10.  Since elastin is a major component of the extracellular matrix (ECM) in 

vascular connective tissues, these pathological events degrade insoluble crosslinked 

elastin to soluble peptides11, which further promotes macrophage-mediated matrix 

destruction via secretion of cytokines, chemokines, interleukins, and proteinases12, 13.  

The pathogenesis of AAs could also arise from enzymatic degradation of healthy elastic 

fibers and excessive accumulation of proteoglycans14, leading to loss of elasticity and 
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strength of the aortic wall, and progressive dilation to form a rupture-prone sac of 

weakened tissue1.  Thus, absence or destruction of elastin critically regulates aneurysm 

formation, progression and fatal rupture, while restoration of elastin in these segments 

will likely stabilize and restore homeostasis in these tissues. 

Current surgical methods for AA treatment have been: open aneurysm repair - 

wherein the weakened aortic segment is replaced with a sutured synthetic mesh graft, 

and endovascular abdominal aortic aneurysm repair - wherein a woven polyester graft 

mounted on a self-expanding stent is deployed within the aneurysm site15.  Currently, the 

elective repair of AAs, which is performed to prevent aortic rupture in nearly 40,000 

patients each year, results in about 1500 operative deaths16.  Standard open surgical 

repair (aneurysectomy) and endovascular aortic aneurysm repair (EVAR) are the two 

widely used surgical treatment methods that are currently available16.  Though these 

procedures are associated with low mortality rates (< 5%), high operational success rates 

(> 85%) and short recuperation times, long-term cardiac and pulmonary complications 

and other surgical and graft-associated complications can cause patient survival rates to 

drop to ~ 50% at 10 years post-operation17.  Current pharmacological treatment options 

are limited for patients with small aneurysms, even though this group makes up the 

largest percentage of all AAA patients18.  Several pharmacological approaches have been 

tested thus far, including anti-inflammatory agents, genetic and pharmacological 

inhibition of MMPs and proteinase inhibitors, though none of these are completely 

effective, nor have been tested clinically19, 20.  Chemical stabilization of existing elastin 

matrices is yet another promising approach, but is not expected to restore elastin that has 
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already been degraded21.  We believe that active cellular-mediated regeneration of lost 

elastin within the aneurysmal sites could potentially revolutionize AAA treatment via 

standalone application or by integration with other surgical and non-surgical approaches.  

However, this is challenging since adult vascular cells do not generate much elastin on 

their own and mature elastic fibers rarely undergo active remodeling.  Thus, regeneration 

of elastin networks in aneurysmal vessel segments is the focus of next generational 

therapies targeted at aneurysm treatment. 

 

1.2. Regenerative Strategies 

Current efforts at in vivo or in vitro regeneration of matrix structural networks 

comprise a recently explored sub-field of regenerative medicine, termed matrix tissue 

engineering. 

Matrix tissue engineering can be defined as the therapeutic approach combining 

cells, scaffolding materials and biochemical cues, focused on regenerating and restoring 

the ultrastructure and biochemical roles of extracellular matrix networks, to thereby 

restore homeostasis in target connective tissues. 

Tissue engineering offers a promising approach for the fabrication of a 

functionally-responsive, living-tissue like constructs with biological and biomechanical 

properties that mimic native vascular tissue.  In recent years, researchers have explored 

the possibility of effecting elastic tissue repair through regeneration of elastin in situ 

within elastin-compromised vessels and synthetic or tissue engineered grafts in vitro 

culture systems deployed at the site of vascular disease or injury.  Although considerable 
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progress has been made towards understanding the principles of elastin biosynthesis, and 

matrix assembly, ultrastructural organization and stabilization in vivo, many of the 

conditions and mechanisms required to replicate the same, with provided cues are still 

elusive.  This is especially challenging in light of the extremely poor elastin regenerative 

capacity of adult human and other cells, vascular and non-vascular in origin.  Thus, 

identifying elastogenic cues as represented by elastogenic biomaterials scaffolds or 

growth factors; and further modulating the assembly of the elastin precursors into 

ultrastructural and functional mimics of native elastin are immense challenges. 

 

1.2.1 Cellular Scaffolds for Elastin Tissue Regeneration 

Previous attempts to repair and regenerate elastin in situ at disease/ injury sites 

using synthetic tissue-engineered22, 23 grafts have not succeeded due to the progressive 

destabilization of tropoelastin mRNA expression in post-neonatal vascular cells24.  

Though synthetic scaffolds allow precise control over properties such as molecular 

weight, porosity, microstructure, degradation time and mechanical properties25, they 

result in poor cellular interaction, abridged ECM remodeling and inefficient elastin 

crosslinking23.  Implants made of synthetic elastomers26, 27 do not elicit cell signaling 

pathways, despite restoring mechanical properties; while functionalization of elastic 

allografts28 or xenografts29, 30 are curtailed by the inefficiency of current chemical 

processes31 in completely removing native cells and proteins essential to prevent immune 

rejection30 and calcification32 in the host without compromising native elastin 

architecture33, 34.  Besides, elastomer-assemblies from natural or synthesized polypeptide 



 5

precursors35-37 and synthetic cell scaffolds that provide elastogenic biomechanical cues 

in vitro or in vivo38-40 only marginally replicated the functional architecture and 

mechanics of native elastin, especially since they do not incorporate other elastin-

associated proteins (e.g., fibrillin, oxytalan) crucial to elastic fiber formation and 

properties41, 42.  Recent successes in synthesizing native elastin-like fibers within fibrin-

collagen constructs cultured with neonatal RASMCs strongly demonstrate the 

superiority of ECM-based cell scaffolds over synthetic scaffolds for simulating the 

physical and chemical environment of tissues22, 43.  As components of native tissues, 

ECM-based scaffolds are more likely to evoke native integrin-ECM interactions and 

preserve the native cell phenotype and matrix synthesis capabilities22.  Thus, a challenge 

for faithful elastin matrix regeneration by adult cells lies in identifying appropriate cues 

based on specific ECM molecules, that have been shown to influence and regulate 

elastin synthesis, maturation, and organization in vivo22, 44. 

 

1.2.2 Hyaluronan Cues for Elastin Regeneration 

 ECM molecules (e.g. GAGs) have been shown to influence elastin synthesis and 

organization during development, through their association with proteoglycans45-47.  

Specifically, HA has been suggested to participate in elastogenesis through its strong 

binding with versican48, which in turn interacts with elastin-associated microfibrils to 

form higher-order structures important to elastin fiber synthesis49-51.  Moreover, it has 

been suggested that anionic HA chains coacervate soluble tropoelastin and facilitate local 

crosslinking into a stable elastin matrix52, 53.  These studies encourage our exploration of 
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the elastogenicity of HA biomaterials.  However, prior studies indicate that the 

physicochemical and biological properties of HA depend on its size54.  Studies by our 

group and others have shown that HA fragments (MW<1 MDa) and oligomers (MW<1 

kDa) are more cell-interactive55 than the relatively bio-inert HMW HA (>1 MDa)56.  

Evanko et al., showed that though HA 6-mers do not affect proliferation of healthy 

vascular SMCs57, they inhibit SMC proliferation in diseased tissues57.  Studies by Joddar 

et al.58 clearly showed enhanced elastogenic responses of RASMCs to HA 4-mers (MW 

~ 756 Da), although HMW HA appeared to facilitate elastin crosslinking and matrix 

deposition via purely physical interactions59.  These studies also mirrored the results of 

Evanko et al.,57 in that HA oligomers did not influence proliferation of healthy adult 

vascular SMCs58, 60.  These prior outcomes therefore suggested that HA fragments may 

usefully cues for elastin synthesis and stability, and inhibit SMC hyperplasia, common in 

elastin-compromised, diseased vessels.  Thus, optimizing the HA fragment-sizes based 

on their benefits to elastin synthesis and stabilization by adult vascular SMCs, without 

stimulating inflammatory cell responses, is vital towards developing cellular-based 

therapies for regenerating elastin matrices. 

 

1.2.3 Elastogenic Growth Factors and Biomolecules 

Biochemical regulators present in ECM have been shown to influence both the 

cellular phenotype and the amount/ quality of the elastin deposition61, 62.  Elastin 

synthesis was reportedly enhanced by stimulating SMCs with growth factors such as 

TGF-β and IGF-1, which up-regulate cellular tropoelastin mRNA expression63-65 and 
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encourage LOX-mediated crosslinking of soluble tropoelastin into a mature, insoluble 

matrix66.  Insulin like growth factor (IGF-1)  with 500 ng/mL concentration was shown to 

induce 86 ± 14 and 35 ± 5% increases in tropoelastin and total elastin protein synthesis, 

respectively, by rat neonatal pulmonary fibroblasts, relative to controls67.  This was 

confirmed by a corresponding 95 ± 20% increase in the tropoelastin mRNA/beta-actin 

mRNA ratio67.  In addition, a dose dependence of tropoelastin synthesis on IGF-1 

concentration was noted.  Kahari et al. examined the effects of short-time exposure of 

TGF-β1 on elastin mRNA abundance, promoter activity, and mRNA stability in cultured 

human skin fibroblasts and found a TGF-β1 dose-dependent increase in elastin mRNA 

steady-state levels, with a maximum enhancement of ~30-fold attained at a dose of 1 

ng/mL68.  These results demonstrate that TGF-β1 is a potent enhancer of elastin gene 

expression and that this effect is mediated, at least in part, post-transcriptionally.  In 

addition, TGF-β has been suggested to augment LOX-mediated crosslinking of soluble 

tropoelastin into a mature, insoluble matrix layer69, 70.  Metal ions (e.g., copper or Cu2+) 

in extracellular environment also regulate biologic processes such as minimizing vascular 

defects71, promoting angiogenesis72, 73 and enhancing LOX activity74.  Thus, from a tissue 

engineering perspective, exposing healthy cells to suitable combination of biomolecular 

cues has immense potential to modulate the amount, quality and ultrastructure of the 

elastin matrix they lay down to engineer constructs that mimic the biologic and functional 

characteristics of native tissues.  However, from the standpoint of in situ regeneration of 

degraded elastin matrices in vitro, it is yet unknown, if and how these biochemical cues 

will benefit the elastin matrix amount and quality, when therapeutically applied to 
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chronically-stimulated or injured cells.  The purpose of this study is to identity and 

optimize unique combinations of therapeutic cues that will allow in vivo and in vitro 

regeneration of elastin structures that are ultrastructurally-faithful to native elastin tissue 

structure.  Establishment of such guidelines will greatly facilitate development of 

technologies that can enable tissue engineering of elastin-rich constructs, and/or open up 

new non-surgical novel therapies that will enable regenerative repair of degraded elastin 

matrices by cells in situ at disease/injury sites. 

 

1.3. Study Objectives and Aims 

Based on the previous background, the objective of this project is to determine: 

a) The potential benefits of growth factors (TGF-β, IGF-1) and biomolecules (e.g., 

Cu2+) together with exogenous HA fragments (0.76-2000 kDa) on elastin matrix 

synthesis and organization by adult SMCs; 

b) The impact of optimized cues (HA fragments and biomolecules) on the quality 

(amount, ultrastructure, alignment, efficiency, stability) of the synthesized elastin 

matrix; 

c) The benefits of providing optimized cues to chronically-stimulated (aneurysmal) 

SMCs towards restoring their elastin synthesis and crosslinking abilities. 

 

The scientific impact of this work is the ability to tissue-engineer elastin matrices 

by both healthy and chronically-stimulated adult cells, which inherently do not produce 
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much elastin, towards restoring homeostasis in de-elasticized vessels.  Accordingly, three 

specific aims are proposed: 

 

Specific Aim 1: Investigate the standalone/ combined benefits of exogenous delivery of 

growth factors (TGF-β or IGF-1) and HA fragments to elastin synthesis, maturation and 

organization by adult RASMCs. 

Rationale: (a) An optimal HA fragment-size exists that maximizes cellular elastin output 

and yet preserves the non-proliferative cellular phenotype; (b) Concurrent delivery of HA 

fragments and growth factors will upregulate elastin synthesis, maturation, and 

stabilization to a greater extent than possible by providing either of these cues separately; 

and (c) A unique set of cues exists that is conducive to the fabrication of a mimic of 

native vascular elastin. 

 

Specific Aim 2: 

A. Determine the standalone and combined benefits of culturing adult RASMCs with 

soluble copper sulfate (CuSO4.5H2O) and HA fragments (0.76-2000 kDa), to elastin 

matrix synthesis and organization (crosslinking density, composition and 

ultrastructure). 

B. Compare the impact of copper delivery mode, i.e., soluble CuSO4 vs. copper nano-

particles (CuNP; 80-100 nm) on elastin matrix synthesis and quality. 
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Rationale: (a) Concurrent delivery of HA fragments and Cu2+ ions will upregulate elastin 

synthesis, maturation and stabilization to a greater extent than possible by providing HA 

cues alone; (b) HA-Cu2+ complex will facilitate coacervation of tropoelastin to enable 

enhanced lysyl oxidase (LOX)-mediated crosslinking to form elastin networks; and (c) 

An efficient delivery mode and dose of Cu2+ exists that promotes elastin organization and 

stabilization with no cellular toxicity. 

 

Specific Aim 3: 

A. Evaluate the efficacy of cues (HA oligomers, growth factors, Cu2+) optimized in aims 

1 and 2 to suppress elastin-degrading enzymes (e.g., MMPs) and promote synthesis of 

native elastin mimics by chronically-stimulated adult RASMCs. 

B. Compare the elastogenic benefits of cues on elastin matrix synthesis by aneurysmal 

adult RASMCs. 

Rationale: (a) Cells subjected to chronic-stimulation respond to the elastin regenerative 

cues identified in aims 1 and 2 of this project; (b) These cues will suppress MMPs and 

other elastolytic activity of cells, and restore stimulated RASMCs to a healthier 

phenotype. 

 

1.4. Organization of Dissertation 

In chapter 2, we present a comprehensive overview of elastin, it’s location, 

structure, physiological relevance in blood vessels, biomechanics, pathological 
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significance in healthy and diseased conditions, and current strategies for restoration of 

vascular elastin homeostasis. 

Chapters 3 and 4 details the effect of growth factors, that of TGF-β1 or IGF-1, 

alone or together with HA fragments/ oligomers, on elastogenesis by adult RASMCs.  

The benefits of exogenous delivery of these cues to elastin production, stabilization, 

crosslinking and maturation by healthy RASMCs were elaborated. 

Chapter 5 details the benefits of exogenous copper ion delivery, from copper 

sulfate or copper nanoparticles (CuNP), concurrent with HA fragments/ oligomers, to 

elastin crosslinking and fiber formation by RASMCs.  The mode of copper ion delivery 

and the concentration of copper ions which will maximize native elastin mimics 

formation were optimized.  Besides, the benefits of exogenously delivered bovine LOX 

protein to RASMC-mediated elastin synthesis and crosslinking were evaluated. 

Chapter 6 details the utility of optimized cues (from chapter 3) towards restoring 

elastin output and matrix organization by RASMCs under chronically-stimulated 

conditions in vitro.  Chapter 7 details the innate elastin matrix synthesis by SMCs 

isolated from aneurysmal rat aortic segments, and their release of inflammatory 

biomolecules.  Further, the chapter details our efforts to determine the the utility of 

elastogenic cues, identified and optimized in chapter 3, for minimizing inflammation and 

restoring healthy elastin synthesis by these cells. 

 Finally, chapter 8 will list the overall conclusions we derived from this multi-

faceted project, identify future directions for the short and long-term progress of the 

current work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Vascular Anatomy 

2.1.1 Structure and Functions 

Blood vessels are conduits that distribute blood to bodily tissues and can be 

broadly classified into two distinct circulating pathways namely: pulmonary vessels – 

which transports blood from the right ventricle to the lungs and back to the left atrium 

and, systemic vessels – which carry blood from the left ventricle to the tissues in all parts 

of the body and then return the blood to the right atrium.  Based on their structure and 

function, blood vessels are classified as arteries, veins or capillaries (Figure 2.1).  

Arteries carry the blood away from the heart, while veins return blood from tissues back 

to the heart.  Another difference between arteries and veins is that the layers in vein wall 

are not as distinct as in arteries. 

Both arteries and veins have a defined three-layered structure with the tunica 

intima (inner wall of the vessel) adjoining the vessel lumen, the tunica media (middle 

layer) and the tunica adventitia (outer layer).  The tunica intima, the innermost layer of 

arteries is made up of simple squamous epithelium surrounded by a connective tissue 

basement membrane.  Endothelial cells present in this layer rest on a basement 

membrane made up of extracellular matrix (ECM) consisting collagen type IV, laminin 

and heparin sulfate proteoglycans75.  The tunica intima is separated form tunica media 

by a layer of elastin sheets and fibers, called as internal elastic lamina (IEL).  The tunica 
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media layer is usually the thickest layer in arteries, especially those of large size (> 1 cm; 

elastic and muscular arteries), which not only provides mechanical support for the vessel 

but also regulates vessel diameter to accommodate pulsatile blood flow and regulate 

blood pressure.  It contains concentric layers of circumferentially-organized smooth 

muscle cells (SMCs) alternating with elastin sheets (lamellae) arranged into concentric 

bundles.  SMCs are responsible for the synthesis of elastin, collagen and other ECM 

components, and also serve to regulate blood flow by constricting and dilating the blood 

vessel.  The tunica media extends from the IEL to the external elastic lamina (EEL).  

The tunica adventitia layer provides the outer covering of arteries, forming between 10-

50% of the arterial wall thickness, and consists predominantly of fibroblasts and 

longitudinally-aligned collagen-rich ECM75.  This is the primary load-bearing layer that 

allows the arteries to stretch and prevent over-expansion due to pressure exerted on the 

walls by blood flow.  The relative thickness and composition of the vascular layers in 

media vary progressively, with vessel size and location.  In large vessels such as the 

aorta, where high blood pressures must be accommodated, the media is thick with 

concentric fenestrated elastic sheets separated by fibroblast-produced collagen and 

SMCs; these vessels are thus very elastic.  Farther away from the heart, within the 

distributing muscular arteries, the proportion of smooth muscle to elastin increases 

dramatically; the media contains 3-40 SMC layers.  These cells serve to adjust flow in 

response to sympathetic nerve stimulation.  Further away from the heart, arteries branch 

into arterioles (< 0.5 mm), wherein the media may be as few as 2-3 concentric smooth 
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muscle cells.  The adventitia is very thin and these arterioles provide major resistance to 

blood flow. 

 

Figure 2.1. Anatomy of blood vessels76. 

 

2.1.2 Cellular Components of Vascular Tissues 

The major cell types found in cardiovascular tissues include cardiac fibroblasts, 

cardiomyocytes, endothelial cells (ECs), and smooth muscle cells (SMCs) – all of these 

cells interact dynamically with the ECM in response to mechanical strains during 

development and disease77.  Under healthy non-activated conditions these cell regulate 

numerous processes to maintain homeostasis, but if damaged or diseased, they initiate 

restorative signaling pathways that can lead to further tissue impairment if prolonged.  In 

this section, we detail in brief, the characteristics and functions of two important cell 

types in blood vessels, ECs and SMCs, under healthy and diseased conditions. 

Tunica intima 
Endothelial cells 

Connective tissue    
Elastic tissue 

Tunica 
media 

Tunica 
adventitia 
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ECs line the lumen of all blood and lymph vessels and act as a wall between the 

blood and vascular tissue and therefore, are capable of communicating with both blood 

and tissue species.  ECs act as a semi-permeable layer controlling the transfer of cellular 

and fluid blood elements into the vessel wall.  These cells have a highly specialized 

surface: the apical surface interacting directly with the blood, the basal surface contains 

adhesion junctions that attach the EC to the basal lamina, and the lateral surface 

comprised of junctions responsible for joining ECs together and allowing communication 

between ECs.  Adjacent ECs connect and communicate with each other via three types of 

cell junctions: tight junctions, anchoring junctions and gap junctions. 

ECs secrete a number of types of collagen into their sub-endothelium (basal 

matrix), the most abundant being collagen IV and V78.  Type IV collagen is involved in 

EC adhesion and proliferation, while type V collagen inhibits EC growth79.  Laminin, a 

glycoprotein secreted by ECs into the basal lamina, supports growth and adhesion of 

ECs80, although ECs do not migrate on laminin coated surfaces81.  The luminal surface of 

ECs is covered with a thin layer of heparin sulfate (glycocalyx) synthesized by the cells 

themselves, while the basal lamina contains numerous other glycosaminoglycans (GAG) 

components, including dermatan sulfate, heparin sulfate and chondroitin sulfate82, 83. 

SMCs are responsible for vessel contractility and remodeling during growth and 

pathogenesis.  Under homeostasis conditions, vascular SMCs express differentiation 

markers, remain in contractile phenotype, with low proliferation.  They participate in 

healthy turnover of ECM in the blood vessels and maintain normal signaling mechanisms 

with the environment they inhabit.  In vivo, SMCs mainly experience cyclic tensile 
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strains due to pressure forces of the blood and compression due to thinning of the vessel 

wall during inflation84.  These cyclic strains increase cellular collagen and elastin 

synthesis although synthetic responses are sensitive to strain magnitude, frequency, and 

duration85, 86.  However, in response to several physiological and pathological stimuli, 

mature SMCs can undergo phenotypic modulation (from contractile to synthetic) and 

reenter the cell cycle.  Many growth factors and cytokines have been shown to stimulate 

vascular SMC proliferation and/or matrix production in vitro and in vivo 87, 88, which 

includes but not confined to, platelet-derived growth factor (PDGF), basic fibroblast 

growth factor (bFGF), tumor necrosis factor-α (TNF-α), insulin-like growth factor-1 

(IGF-1), interleukin-1 (IL-1) and transforming growth factor-β (TGF−β).  Besides these 

factors, hypertension and mechanical injury were also found to profoundly influence the 

SMC phenotype89.  Abnormal SMC proliferation is thought to contribute to the 

pathogenesis of vascular occlusive lesions, including atherosclerosis, vessel renarrowing 

(restenosis) after angioplasty, and graft atherosclerosis after coronary transplantation.  

Therefore, elucidating the molecular mechanisms governing vascular SMC proliferation, 

and its implication in cardiovascular disease is of great interest. 

From this discussion we can infer that, changes in the intravascular environment, 

mechanical stimulation of cells within the vascular wall, and complex cellular-signals 

coordinating the SMC phenotype/ matrix synthesis mechanisms, can lead to activation of 

SMCs to elicit abnormal biological responses that manifest themselves as the pathology 

of vascular disease. 
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2.1.3 Components of Vascular ECM 

The extracellular matrix (ECM) is a complex structural entity surrounding and 

supporting cells that are found within connective mammalian tissues90.  ECM 

components are synthesized, organized and remodeled by the cells around and within the 

matrix.  The vascular ECM is primarily composed of three classes of biomolecules 

namely, (a) structural proteins such as elastin and collagen, (b) fibrous proteins such as 

fibrillin, fibronectin and laminin, which have both structural and adhesive functions, and 

(c) proteoglycans, composed of a protein core to which long chains of repeating 

disaccharide units of GAGs are attached.  All these components complex with one 

another to form high molecular weight macromolecular structural units91. 

Collagen is the most abundant protein found in the ECM, which is primarily 

responsible for providing support and tensile strength to the tissue structure92.  There are 

at least 12 types of collagen, out of which types I-III are the most abundant and 

predominantly seen in bone, skin, muscle, cartilage and tendon93.  Type IV collagen is a 

major component of the basal lamina94.  Collagens are predominantly synthesized by 

fibroblasts but epithelial cells also synthesize these proteins95.  In addition to its structural 

role, collagen is also believed to be involved in promoting cell attachment and 

differentiation although the mechanisms are not yet clearly elucidated.  Their defining 

structural feature is a triple-stranded helical structure of three polypeptide chains, which 

are composed of a series of three amino acid (Gly-X-Y) sequences where typically, X is 

proline and Y is a post-translationally modified form of proline called 4-

hydroxyproline92.  Once the pro-collagen is secreted, proteolytic enzymes splice the pro-
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polypeptides from pro-collagen, allowing it to form much longer collagen fibers in the 

extracellular space.  Aggregations of these fibrils (10–30 nm diameter) form collagen 

fibers (500–3000 nm in diameter), which are then organized to reinforce the tensile 

strength of the respective tissue in which they are present. 

GAGs are unbranched polysaccharide chains composed of repeating disaccharide 

units, with one of the two sugars in the repeating disaccharide being a modified amino 

sugar (N-acetylglucosamine or N-acetylgalactosamine)96.  The second sugar is usually 

uronic acid (glucuronic or iduronic).  Because of carboxyl-groups on most of their sugars, 

GAGs are highly negatively charged.  GAGs may be classified as those that are sulfated 

(e.g., chondroitin sulfate, dermatan sulfate, heparin sulfate) and those that are non-

sulfated (hyaluronic acid: HA) (Figure 2.2).  In aortic tissues, GAGs closely associate 

with collagen and elastic fibers, which in turn suggests orderly interactions between them 

and the cellular components91. 

Unique among the GAGs is the sole unsulfated GAG, a very long-chain 

biopolymer, hyaluronan (HA).  HA, composed of repeating GlcNAc β1-3, GlcA β1-4 

linkages, is the simplest known GAG and is abundant in skin, synovial fluid and skeletal 

tissues97.  In cardiovascular tissues, HA has been implicated in early tissue development 

(vasculogenesis).  In adult tissues, HA is also produced in large quantities during wound 

healing, including within inflamed blood vessels, where it is thought to precede and 

modulate synthetic activities of cells leading to matrix deposition.  A more detailed 

explanation of HA synthesis, forms and its implicated mechanisms in vasculogenesis is 

described in later sections. 
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Proteoglycans, on the other hand, are complex macromolecules that contain a 

core protein to which huge clusters of GAG chains are covalently bound.  Proteoglycans 

have extended structures in solution and occupy very large hydrodynamic volumes 

relative to their molecular weights.  This property is critical in the functioning of 

cartilaginous structures that must act as cushions for variable, compressive loads.  

Proteoglycans bind various secreted signaling molecules such as fibroblast growth factor 

(FGF) and transforming growth factor (TGF-β), and can enhance or inhibit their 

signaling activity, thereby regulating cell behavior and their interactions with one 

another.  They also sterically block the activity of these proteins, and serve as a storage 

reservoir of the proteins, enabling delayed release. 

ECM is composed of other proteins with multiple protein-binding domains, which 

adhere to the scaffolding molecules and to cell surface receptors, thereby contributing not 

only to the organization of the ECM but to the cells within it.  Fibulins are a family of 

calcium binding proteins that are found in the ECM, and they play an important role in 

development.  In vivo fibulin-1 is found in association with elastic fibers that contain 

elastin and fibrillin.  Fibronectin is a large, secreted glycoprotein dimer (each chain 270 

kD) with the chains joined by disulfide bonds at one end98.  It exists in multiple isoforms, 

one of which is a soluble form found in blood and other body fluids where it is thought to 

be involved with blood clotting and wound healing99. 
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2.2 Elastin – An Overview 

A network of elastic fibers in the ECM of connective tissues such as skin, blood 

vessels and lungs, provides them strong resilience and the ability to recoil, after transient 

stretch.  A detailed discussion of the distribution, composition, synthesis, ultrastructure 

and roles of elastin in the context of maintaining vascular homeostasis, of their 

mechanisms of turnover, abnormal degradation and current state of science for their 

restoration follows in this section. 

 

Figure 2.2. Repeating disaccharide units of various glycosaminoglycans100. 

 

2.2.1 Elastin Distribution 

Elastin is distributed in the arterial walls, pulmonary tissues, intestines, and skin, 

as well as in other tissues where stretching and elasticity are required for normal function 

of these tissues101, as given in Table 2.1.  Elastin is the predominant ECM protein in 
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arteries, comprising around 30-50% of the dry mass of the aorta.  However, the relative 

amount of elastin varies across a range of tissues and species depending on its function.  

For example, loose connective tissues such as skin contain sparse distribution of elastic 

fibers, around 2-5% by weight102.  Typically, elastic fibers are associated with collagen to 

prevent excessive tissue stretch and tearing, and are surrounded by an amorphous matrix 

environment composed of GAGs and proteoglycans103.  For example, elastic ligaments 

consist of thick elastin fibers (100 μm) interspersed with collagen fibers in structures 

such as ligamenta flava of the vertebral column and the ligamentum nuchae of the 

neck103.  In cardiovascular tissues, long inelastic collagen fibrils are generally inter-

woven with the elastic fibers to limit the extent of their stretching and to prevent the 

tissue from tearing at abnormally high loads.  Elastic fibers are thinner and straighter than 

collagen fibers and are arranged in a branching pattern to form a three-dimensional 

network of fibers, inter-woven fibers, sheets and fenestrated sheets.  Recent studies have 

reported that the form and nature of elastin deposited in connective tissues vary 

significantly with their aging, with the greatest differences being observed between 

developing and geriatric tissues, as shown in Figure 2.3 below. 

Percentage of composition Tissue Collagen Elastin GAGs Water
Tendon/ligament 30 1.5 0.03-0.3 65 

Skin 30 0.2 0.03-0.35 60-72 
Fibrocartilage 20 0.1-0.2 0.6 75 

Elastic cartilage 16 5-7 3-4 70 
Hyaline cartilage 5-18 < 0.1 5-11 75 

Bone 5-20 - 0.4 30-50 
Cornea 12-15 - 0.2-1.0 80 
Aorta 5-15 7-15 0.2-2.5 70-75 

Elastic ligament 9 35 - 55 
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Table 2.1. Elastin distribution in mammalian tissues104. 

 
 

 
 

Figure 2.3. Ultrastructural appearance of human dermal elastic fibers during aging105. 

(A) elastic fiber composed of bundles of microfibrils with very little amount of 

amorphous elastin in five-day-old baby. (B) Elastic fiber is wider and consists of 

amorphous elastin surrounded by a variable number of microfibrils in a ten-year-old boy. 

(C) mature elastic fiber mostly consisting of amorphous elastin, containing electron-

opaque longitudinal strips, and surrounded by a few microfibrils in a sixteen year-old 

boy; (D) electron-dense irregular precipitates often seen within the amorphous elastin in a 

forty-eight-year-old woman. Scale bar: 1 µm. 
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2.2.2 Composition of Elastin 

Elastin, the main component of elastic fibers, is a highly hydrophobic protein 

consisting of a highly conserved peptide sequence ‘VGVAPG’, which contributes to the 

protein being highly rich in proline and glycine amino acids (Table 2.2).  The typical 

amino acid composition of elastin is largely conserved across species and is composed of 

non-polar amino acids with a few polar side chain residues.  Elastic fibers formed within 

tissues by the cellular-mediated deposition process vary in thickness, length and tri-

dimensional architecture depending on the direction and magnitude of the forces exerted 

upon the tissue.  Unlike collagen, elastin is not glycosylated and contains some 

hydroxyproline, but very minimal hydroxylysine.  Elastin protein is mainly composed of 

two types of short segments that alternate along the polypeptide chain: hydrophobic 

segments, which adopt a β-sheet confirmation that is responsible for the elastic properties 

of the molecule, and alanine- and lysine-rich α-helical segments, which form cross-links 

between adjacent molecules (Figure 2.4). 

 

Amino acid (AA) Residues per 1000 AAs 
Aspartic Acid (Asp) 3.6 
Glutamic acid (Glu) 13.9 

Serine (Ser) 15.9 
Glycine (Gly) 382.1 
Histidine (His) 0 
Arginine (Arg) 6.6 
Threonine (Thr) 10.3 
Alanine (Ala) 214.6 
Proline (Pro) 104.8 

Tyrosine (Tyr) 35.9 
Valine (Val) 81.4 

Methionine (Met) 0 
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Cysteine (Cys) 0 
Isoleucine (Ile) 24.1 
Leucine (Leu) 64.8 

Phenylalanine (Phe) 13.9 
Lysine (Lys) 1.7 

Isodesmosine (Ides) 2.2 
Desmosine (Des) 3.4 

 
Table 2.2. Amino acid composition of elastin derived from rat aorta.  Values are 

expressed as residues/1000 total amino acid residues106. 

 

 

Figure 2.4. Domains of elastin polypeptides (adapted from Vyavahare and Simionescu). 

 

Purified elastin is highly hydrophobic because, ~70% of it’s component aspartic 

and glutamic residues are amidated107.  The polypeptide chains in elastin, specifically the 
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α-helical segments, are cross-linked by both disulfide bridges and polyfunctional 

heterocyclic acids (desmosine and isodesmosine).  These internal linkages of desmosine 

and isodesmosine make elastin a highly stable protein107.  Due to this reason, elastin is 

insoluble in conventional solvents commonly used for the extraction and purification of 

globular and fibrous proteins, typical of biological elastomers such as resilin and 

abductin103.  To overcome these limitations, researchers have used combined treatments 

of harsh solvents and thermal cycles, involving oxalic acid and boiling sodium hydroxide, 

to isolate elastin from the extracellular components103.  Also because of its high stability, 

physiologic elastin turnover is rather slow, extending over a lifetime. 

 

2.2.3 Elastin Ultrastructure 

Elastin fibers are made up of two major structural components, a central core of 

amorphous elastin, and surrounded by microfibrils.  During the early stages of 

elastogenesis, microfibrils first deposit in an organized-fashion in the extracellular space 

to form a pre-scaffold or template at the periphery of the cell.  Amorphous elastin is then 

deposited on this microfibrillar-scaffold, and then crosslinked108.  During the elastin 

deposition process, the microfibrils become displaced to the periphery of the growing 

fiber.  The core of elastic fibers is thus covered with a sheath of microfibrils, each of 

which has a diameter of about 10 nm and length of < 100 nm109.  Microfibrils are 

composed of a number of different glycoproteins, predominantly, the large glycoprotein 

fibrillin, which is essential both for the integrity of elastic fibers and to cell interaction 

with these fibers. 
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Besides elastin, microfibrils can also self-associate to form minor fiber bundles; 

groups of bundles of microfibrils are termed as oxytalan fibers.  A fiber that is composed 

of both elastin and microfibrils is termed an elaunin fiber.  Only those fibers that are 

composed mostly of elastin, with only a microfibrillar boundary are called elastic fibers.  

Microfibrils are found in elastin containing tissues as well as in tissues that lack elastin.  

Structurally, they are made up of repeating globular domains connected by thin fibrillar 

domains and consist primarily of two proteinaceous components - fibrillin 1 and 2108.  

Tropoelastin, the soluble elastin precursor, has been shown to specifically interact with 

microfibrillar components, specifically, fibrillin and microfibril-associated glycoproteins 

(MAGPs), in a step that has been shown to be vitally important to elastin matrix 

assembly.  Another family of proteins shown to associate with elastic fibers is fibulins.  

Fibulins 1-5 bind to tropoelastin and have been localized to elastic fibers in developing 

tissues. 

Transmission electron micrographs show elastin to appear as amorphous clumped 

masses exhibiting low electron density.  Elastic fibers are either seen in cross-section as 

having rounded clumps of amorphous elastin at their cores (100-800 nm), or as 

longitudinally-aligned, laterally-associating bundles of elastin fibrils.  The microfibrils 

that surround the amorphous elastin are far more electron-dense and are readily apparent 

even within TEM images of mature elastin fiber matrices (Figure 2.5).  As explained 

above, microfibrils within the elastic fiber are associated with the growth process and 

hence become entrapped within the newly deposited elastin108 as the fibers grow.  

Besides, guiding elastin deposition and fiber formation, microfibrils have also been 

A 
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shown to mediate SMC interaction with elastin fibers, which critically regulates cell 

phenotype and behavior, and ensures lack of hyper-proliferation109. 

 

Figure 2.5. High resolution TEM image of elastin and fibrillin fibers in RASMC cultures 

in vitro110. 

2.2.4 Mechanical Properties of Elastin 

Elastin is a rubber-like protein that exhibits reversible deformation with very high 

resilience. The proteins are stretchy, reaching maximal extensions in excess of 100%, 

with a very low modulus of elasticity111.  This suite of properties implies that a key 

function of elastin is to impart tissues low stiffness, high strain and capacity for efficient 

storage of elastic energy.  Elastin functions in association with collagen in vertebrate 

connective tissues where reversible elasticity is required (e.g., in skin and elastic 
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cartilage).  In addition, elastin is a major component of arteries, where its stretchiness and 

ability to store elastic-strain energy allow arteries to smoothen the pulsatile flow of blood 

from the heart, lowering peak blood pressure and the mechanical work of the heart, 

thereby maintaining a relatively steady flow of blood through tissues. 

Despite these general observations, elastin does not behave similarly under all 

conditions112.  Stretchy materials like elastin achieve their mechanical properties because 

they contain flexible molecules that can easily change their shape, or conformation, when 

stretched.  The desirable properties of low stiffness, high extensibility and high resilience 

that are vital for elastin’s normal function rely entirely on the ability of the molecules to 

change their shape faster than the macroscopic shape change imposed by an external 

force.  As mentioned previously, the mechanical properties of blood vessels stem from 

their microstructural wall components, such as collagen and elastin fibers, and the 

SMCs113.  Since these individual components take up loads at different stress levels, their 

source-, and location-specific differences, content and distribution within blood vessels, 

and their alteration in diseased states can render the mechanical properties of blood 

vessels complex and difficult to predict. 

Collagen and elastin affect the mechanical behavior of vessels in different ways.  

Specifically, collagen contributes mainly to the linear regime of the non-linear stress-

strain curve (role in limiting vessel distension), whereas elastin mainly contributes to the 

toe part of the stress-strain curve.  While collagen provides rigidity, elastin allows the 

connective tissues in blood vessels, cardiac and other elastic tissues, to stretch and then 

recoil to their original positions107.  Large arteries have a high degree of elasticity 
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because they have elastin as the major wall component114, and for this reason are able to 

accommodate high systolic blood pressures.  It has been shown115 that axial elastin fibers 

in the intimal and adventitial layers, and circumferential medial fibers, help distribute 

tensile stresses during vessel inflation and relaxation, conclusively providing evidence 

that emphasizes the mechanical importance and indispensability of elastin fibers in the 

aortal anatomy.  The absence or degradation of vascular elastin thus exposes other medial 

components, i.e., collagen and SMCs to very high tensile stresses to stimulating hyper-

proliferation of SMCs, and their transformation into a synthetic phenotype, resulting in 

exuberant, uncontrolled synthesis and accumulation of collagen and ground substance, 

leading to pathology of hypertension. 

 

2.2.5 Mechanisms of Elastin Synthesis and Fiber Assembly 

As described in earlier sections, elastic fibers comprise a core of amorphous 

elastin surrounded by peripheral microfibrils.  However, the biochemical characteristics 

of elastic fibers are complex, because they contain numerous other components as well, 

and exhibit a highly-regulated pattern of deposition, and a multi-step hierarchical 

assembly process.  Briefly, elastin is synthesized as a soluble precursor, 72 kDa 

tropoelastin, which is post-translationally crosslinked by isodesmosine and desmosine to 

form an alkali-insoluble elastin matrix (Figures 2.6).  Biochemical analyses and 

molecular biology approaches have shown that the tropoelastin molecule is highly 

hydrophobic and contains alternating hydrophobic and hydrophilic peptide domains 

which confer on the polymer its peculiar elastic properties and stability116.  In fact, the 
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conformation of the hydrophobic sequences is responsible for the elastic recoil in 

water117, 118, whereas the hydrophilic alanine-rich portions, exhibiting a-helical 

conformation, are involved in the intermolecular crosslinking, mediated by lysine 

residues119. 

 
 

Figure 2.6. Mechanism of elastin synthesis and release from the cells120. 

2.2.5.1 Tropoelastin Synthesis 

In humans, the elastin gene is present with a single copy on chromosome-7121; the 

primary transcript undergoes various alternate splicing during development and in 

different organs122.  It has been proposed123 that the tropoelastin protein is secreted post-
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transcriptionally by the endoplasmic reticulum and packaged by Golgi apparatus within 

the cytoplasm, and delivered extracellularly by transcytosis.  The tropoelastin protein is 

secreted by the cell after being hydroxylated on a number of proline residues124, mainly 

located on the protein segment corresponding to exon-18.  It has been suggested that the 

carboxy-terminal peptide of tropoelastin encodes the domain directing the cytoskeleton-

mediated intracellular transport to the cell membrane125, and forms a positively charged 

pocket which could define a binding site for the acidic microfibrillar proteins mediating 

elastic fiber assembly126.  The tropoelastin molecule that leaves the Golgi apparatus 

attaches to the extracellular domain of a membrane protein called the elastin-binding 

protein (EBP).  The EBP intracellularly attaches to tropoelastin and accompanies the 

precursor to the plasma membrane.  The primary function of EBP besides tropoelastin 

transportation is to protect the molecule from enzymatic degradation127, as will be 

discussed later. 

2.2.5.2 Elastin Matrix Synthesis 

Once the tropoelastin molecule finds its way to the extracellular space, it interacts 

with glycoprotein microfibrils and becomes oriented in the proper alignment for 

crosslinking into a growing elastin fiber.  The observations that elastic fibers are often in 

contact with the cell plasma membrane, and that this latter exhibits receptor sites for 

elastin127, suggest that elastic fiber assembly may occur at localized regions on the cell 

surface128.  This assembly process is mediated at the cell surface by an elastin-binding 

complex, which has been isolated from elastin-producing cells and consists primarily of 

three proteins127.  Two among these proteins are integral membrane proteins (55 and 61 



 32

kDa) that form a transmembrane link between the extracellular compartment and the 

cytoskeleton.  The third protein is the detachable 67-kDa EBP, described earlier, which 

also has galactolectin domain.  EBP binds the hydrophobic VGVAPG sequence in 

elastin, the cell membrane, and galactosugars via three separate sites129.  Binding of 

galactosugars to the lectin site of the 67-kDa EBP lowers its affinity for both tropoelastin 

and for the cell-binding site, resulting in the release of bound elastin and the dissociation 

of the 67-kDa subunit from the cell membrane130.  Thus, galactosugar-containing 

microfibrillar proteins may be involved in the coordinated release of tropoelastin from the 

67-kDa binding protein on the cell membrane to the growing elastin fiber131.  However, 

an excess of galactose-containing components such as glycoproteins, 

glycosaminoglycans, or galactolipids in the ECM may adversely affect elastin assembly 

by inducing premature release of tropoelastin and elastin-binding protein from the cell 

surface. 

2.2.5.3 Elastin Crosslinking 

The cross-linking reaction between tropoelastin molecules is initiated by the 

formation of an δ-aldehyde, allysine, through oxidation of lysyl ε-amino groups present 

on the α-chain domains of adjacent elastin molecules, by a member of the lysyl oxidase 

(LOX) enzyme family132.  Approximately 40 lysine residues in 16 crosslinking domains 

of tropoelastin have been estimated to eventually participate in forming the bi-, tri-, and 

tetrafunctional crosslinks of polymer with reversible deformation and high resilience.  

Crosslinking of elastin is initiated by the action of LOX, one of six variants of a family of 

a copper-dependant enzymes that catalyze the oxidative deamination of lysine residues 
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into allysine69.  In addition to LOX, there are four LOX–like (LOXL1–4) proteins that 

resemble LOX in containing a conserved amino oxidase domain133.  Because LOX is 

critical for elastin and collagen cross-linking, it associates with these proteins early in the 

assembly phase.  For example, LOXL1 has been localized to the elastin globules that 

form on the cell surface and antibodies to LOX have been localized to microfibrils134.  

LOXL1 has also been shown to interact with fibulin-5, fibrillin, and with tropoelastin in 

ligand-binding assays.  However, inhibition of LOX activity through copper deficiency or 

through the administration of enzymatic inhibitors results in weakened connective tissue 

throughout the body135.  Subsequent formation of the elastin crosslinks by isodesmosine 

and desmosine occurs as a series of spontaneous condensation reactions74. 

2.2.5.4 Elastic Fiber Assembly 

In the extracellular space, newly secreted tropoelastin molecules aggregate on 

pre-existing elastic fibers or on bundles of electron-dense long microfibrils, which appear 

to function as scaffolds for elastic fiber assembly (Figure 2.7)136.  Microfibrils appear as 

long 12-nm-diameter tubules, forming loose bundles in the ECM, and may exist either in 

association with strands of amorphous elastin or spread among collagen fibrils; in the 

latter case, they are mostly found in tissues where elastin can not be recognized even by 

immuno-cytochemistry.  During elastin fiber formation, fibrillin microfibrils are found 

grouped in small bundles near the plasma membrane and within each microfibrillar 

bundle, amorphous elastin secreted by cells gets deposited in discrete locations, where 

they gradually coalesce and generate the central core of elastin.  The majority of 
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microfibrils are progressively displaced towards the periphery of the elastic fiber in this 

process, leading to their maturation in tissue. 

 

 
Figure 2.7. Schematic for the formation of elastic fibers109. 

Conventionally, an elastic fiber is described according to its appearance in 

electron microscope images after fixation and sectioning.  Using this technique, it was 

realized that elastic fibers consist of an electron-lucent amorphous component and 

electron-opaque longitudinal strips of unidentified materials, surrounded by a 

discontinuous coat of 10-12 nm wide microfibrils oriented in the direction of the fiber.  

However, recent studies showed that elastin molecules are organized as 5-nm-thick 

filaments forming a three-dimensional network along the fiber137.  Studies have shown 

that, besides elastin, a number of matrix constituents such as vitronectin, LOX, decorin, 
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osteopontin and biglycan epitopes are present within normal elastic fibers138, 139.  

Therefore, elastin matrix synthesis can be regarded as a complex sequential process 

involving aggregation of interconnected fibers, in which the major component is elastin, 

but whose formation is achieved with the contribution of several other matrix 

constituents, which are very likely important for their physiology and protection against 

pathological outcomes.  In vivo and in vitro studies have shown that elastin gene 

expression and synthesis may be influenced by several factors, among which the dietary 

regimen140, cell density in culture141, hypoxia142, and cytokines such as IGF-1143 and 

TGF-β1144.  TGF-β has been shown to up-regulate the elastin promoter145.  These factors 

are generally released in significant levels during tissue inflammation and repair, to 

reactivate elastin gene expression during physiologic wound healing146.  The utility of 

such growth factor cues to elastin regeneration will be further elucidated in later sections. 

 

2.2.6 Biochemical Roles of Elastin 

2.2.6.1 Elastin Modulates Cell Phenotype 

In healthy vascular tissues, SMCs in the tunica media are quiescent (non-

proliferative) and are embedded in a network of elastin-rich ECM that acts as a barrier to 

their migration108.  Destruction of the aortic media and supporting lamina through 

degradation of elastin is an important mechanism in the formation and expansion of aortic 

aneurysms, floppy sacs of de-elasticized, vascular segments susceptible to rupture.  

SMCs in the arterial wall are believed to be involved in this vascular remodeling through 

the production of various proteases.  Naturally occurring inhibitors of MMP activity in 
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the vessel wall, known as tissue inhibitors of metalloproteinases (TIMPs), are produced 

by SMCs, and upon their interaction with intact elastin regulate the activity of these 

enzymes and help to prevent elastin degradation under non-injury conditions147. 

SMCs within healthy, mature arteries exist in a quiescent contractile state, but can 

switch to a synthetic, non-contractile state under circumstances of injury, repair, or 

regeneration148, 149.  This phenotype is characterized by an increased rate of proliferation, 

migration, and exuberant secretion of disorganized fibrous ECM (Figure 2.8).  Numerous 

in vitro studies have implicated elastin in regulating SMC proliferation, migration, and 

differentiation.  For example, it was reported that in cells cultured in collagen gels, 

exogenous soluble elastin significantly inhibits the proliferation and migration of vascular 

SMCs in a dose-dependent manner150.  When SMCs were cultured on substrates of 

insoluble elastin, they similarly maintained organized contractile myofilaments and did 

not undergo phenotypic transition to a synthetic proliferative phenotype151.  It should 

however be noted that these inhibitory effects are specific to intact elastin, since elastin 

peptides (fragments) and other matrix components do not impede SMC proliferation, 

migration or matrix synthesis.  Further, adding intact elastin exogenously to the culture 

medium has been shown to inhibit the proliferation of SMCs152 isolated from aortae of 

patients with congenital, inherited vascular disorders such as Supravalvular Aortic 

Stenosis (SVAS) and Williams-Beuren Syndrome (WBS).  Viewed together, these 

observations suggest that intact elastin closely regulates SMC behavior in healthy tissues.  

Thus, homeostatic disturbances in vascular elastin/ elastin matrices can adversely 

influence SMC phenotype. 
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2.2.6.2 Elastin Regulates Vascular Calcification 

Vascular calcification has been positively correlated with an increased risk of 

myocardial infarction, due to reduced blood flow resulting from decreased vessel 

elasticity, a partial outcome of structural or degenerative disorders of elastic fibers32, 153, 

154.  Arterial calcification, a common event in the pathogenesis of arteriosclerosis, 

generally occurs at two distinct regions within the vessel wall, i.e., the t. intima and the t. 

media.  Intimal calcification occurs mostly in association with atherosclerosis, subsequent 

to lipid deposition, macrophage infiltration, and vascular SMC proliferation, whereas 

medial calcification can exist independently of atherosclerosis and is typically associated 

with calcium deposits along the elastic lamellae155.  Genetic or induced aberration of 

elastic lamellar structure, or the associated microfibrils that mediate SMC interaction 

with elastin, can interrupt SMC-elastin signaling, to induce SMCs to assume an activated/ 

inflamed synthetic phenotype, characterized by increased Ca2+ influx and subsequent 

calcium deposition and matrix hardening102.  The next section details the various 

disorders of elastin, the mechanisms by which tissue calcium levels are affected, and 

vascular homeostasis adversely impacted. 

 

2.3 Abnormalities of Vascular Elastin 

2.3.1 Elastin Breakdown and Vascular Inflammation 

Under normal physiological conditions, turnover of insoluble elastin is very slow, 

a life-long process, and hence very little remodeling of elastin fibers occurs in adults108.  

This implies that active elastin matrix synthesis is almost a one-time phenomenon and 
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elastin repair and regeneration are highly limited in adult tissues.  It has been shown that 

some elastin synthesizing cells, such as human skin fibroblasts and adult rat aortic SMCs 

(RASMCs) possess detectable levels of elastin-degrading enzymes (elastases).  Though 

this basal enzyme activity is very low compared to that generated by inflammatory cells, 

it is significant because it permits cell migration through the developing ECM and in 

developing tissues, modulates morphogenesis of newly synthesized elastic fibers156.  

Although tropoelastin has been shown to be very susceptible to proteolytic degradation 

before it undergoes cross-linking into insoluble elastin, there is no evidence to suggest 

that significant intra-cellular degradation occurs prior to secretion. 

 Enhanced elastin destruction however, does occur under certain pathological 

conditions, either as a result of the release of powerful elastases released by inflammatory 

cells and bacteria, or due to a genetic deficiency in the naturally occurring elastase 

inhibitor α1-antitrypsin.  Although inflammatory cell-derived elastases are unlikely to 

play a significant role in normal regulation of the elastic matrix, it is clear that they 

contribute substantially to the pathogenesis of some human diseases, including 

atherosclerosis, pulmonary emphysema, pollutional lung disease, and rheumatoid 

arthritis156.  Neutrophil- and macrophage-derived elastases are of particular importance in 

this regard and have been the subject of many studies.  Recent studies on the 

development of aortic aneurysms156 reveal upregulated synthesis of MMPs in inflamed 

vascular tissues, which rapidly degrade the collagen and elastin matrix to result in loss of 

wall tensile strength  and elasticity, and leads to progressive increases in vessel 

diameter157.  Thus, enhanced secretion and activity of proteolytic enzymes in inflamed 
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vessels causes accelerated matrix destruction in turn leading to loss of vascular 

homeostasis.  However, recent studies indicate that matrix degradation products, 

particularly the elastin peptides further exacerbate the cycle of inflammation and matrix 

destruction, as discussed subsequently. 

 

 

Figure 2.8. Model of elastin–SMC interactions. In healthy, mature elastic tissues, intact 

elastin fibers interact with SMCs around the elastic lamellae to remain in a quiescent and 

contractile state. The disruption and destruction of elastic fibers by mechanical injury, 

genetic mutations, or inflammation interrupts this signaling mechanism and induces 

SMCs to migrate, hyper-proliferate, and generate a disorganized matrix102. 
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Elastin peptides are released by degradation of elastin matrices and are present in 

human serum and other biological fluids.  Through their interaction with elastin-laminin 

receptors (ELR) present on the surface of fibroblasts, phagocytes, lymphocytes, SMCs 

and ECs, elastin peptides elicit a variety of biologic effects such as MMPs over-

expression, greater Ca2+ influx, enhanced vaso-relaxation and chemotactic activity158 

(Figure 2.9).  These effects are not elicited when these cells interact with intact elastin.  

The transduction pathway of the ELR receptor involves the activation of phospholipase C 

(PLC) by a pertussis toxin sensitive G-protein.  PLC indirectly induces an increase in 

intracellular free calcium, and phosphorylates MAP kinase, which triggers off a series of 

events like increased chemotactic activity, increased ionic fluxes, and overexpression of 

MMPs158.  A progressive age-dependent uncoupling of the elastin-laminin receptor also 

occurs impairing its transduction pathway, which results in alteration of the calcium 

signaling and loss in ability of cells to maintain calcium homeostasis.  With increased 

aging, these alterations in signal transduction of ELR result in modified activities of 

parenchymal and phagocytic cells such as enhanced production of free radicals and 

elastases.  Thus, it can be hypothesized that age-related changes in elastin-laminin 

receptor signal transduction may be involved in initiation of atherogenesis158.  Non-age 

related increase in activity of the ELR can result in increased release of degradative 

enzymes, the MMPs, vascular calcification, and ECM elastin remodeling157.  Thus, 

preserving the normal signal transduction pathway adopted by the ELR receptor is of 

prime relevance in the context of elastin preservation and regeneration. 
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Figure 2.9. Schematic representation of the Elastin Laminin Receptor (ELR). Soluble 

elastin peptides generated by breakdown of intact matrix elastin bind to the ELR and 

trigger a series of pathological outcomes (redrawn)158. 

 

2.3.2. Elastin Disorders 

Elastic fibers are complex ECM polymers, composed of at least 19 different 

proteins that comprise both the microfibrillar and the amorphous components of elastic 

fibers.  Mutations in three of the genes encoding the most abundant of these elastic fiber 

proteins result in a broad spectrum of elastic tissue phenotypes, ranging from skeletal and 

skin abnormalities to vascular and ocular defects2.  Congenital defects in the ELN gene 

causes impaired deposition of insoluble elastin and accumulation of smaller elastin 
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peptides, which transduce intracellular signals causing increased cell proliferation.  

Impaired elastogenesis and increased cell growth could lead to the development of 

connective-tissue abnormalities, including occlusive arterial lesions159.  Genetic disorders 

of the elastic fiber system are typically grouped according to the molecular constituent 

affected by the underlying mutations.  One group of genetic disorders due to mutations in 

the ELN leads to conditions such as supravalvular aortic stenosis (SVAS) and cutis laxa 

(CL)2.  A second group of genetic disorders affecting the microfibril component of the 

elastic fiber, fibrillin-1 and fibrillin-2 (FBN1 and FBN2) results in Marfan syndrome 

(MFS) and congenital contractural arachnodactyly (CCA)2. 

 

2.3.2.1 Supravalvular Aortic Stenosis (SVAS) 

SVAS is an inherited obstructive arterial disease caused by point mutations, 

translocations and deletions in the elastin (ELN) gene160.  The condition is characterized 

by congenital narrowing of large elastic arteries with an estimated incidence of 1 in 

13,000 live births and extreme clinical variability161.  Approximately 20% of SVAS 

patients have diffuse narrowing of the ascending aorta, characterized primarily by medial 

thickening162.  While narrowing of the coronary arteries may lead to heart infarcts and 

sudden death, cerebral artery stenoses are implicated in susceptibility to cerebral infarcts 

and stroke in childhood163.  Vascular lesions in SVAS patients show disorganized, 

irregular and thickened elastic fibers, excessive, clumped and hyper-trophic SMCs, 

extensive deposition of collagen in the inner media, and intimal fibrosis. 
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2.3.2.2 Cutis Laxa 

Cutis Laxa (CL) is a clinical condition found in a heterogeneous group of 

acquired and genetic disorders, characterized by redundant, loose, sagging and inelastic 

skin164.  Autosomal recessive CL is a severe disorder often accompanied by pulmonary 

emphysema and cardiovascular complications such as dysfunctional arteries165, which 

can lead to death in childhood.  Abnormal ultrastructure of dermal elastic fibers, and in 

some cases reduced elastin synthesis by skin fibroblasts and vascular cells, had been 

demonstrated previously in cutis laxa patients166.  The abnormal protein synthesized by 

the mutant allele may be secreted and interfere with the deposition of normal elastin in a 

dominant negative fashion167. 

 

2.3.2.3 Williams-Beuren Syndrome (WBS) 

Williams-Beuren syndrome is a complex genetic developmental disorder that is 

caused by deletion of one allele of the elastin gene168.  The syndrome manifests itself as 

cardiovascular, neurobehavioral, facial, connective tissue, metabolic and growth 

abnormalities, including peripheral arterial stenosis and hypertension.  Affected patient 

populations have unusually thick arterial walls, which are extremely distensible169.  The 

abnormal distensibility and extreme thickness of the arterial wall is likely due to 

abnormal elastic fiber assembly within the media170.  SMC de-differentiation to a 

synthetic phenotype, leading to arterial wall hypertrophy, may be a major outcome, as 

well as a cause of such increases in vascular distensibility. 
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2.3.2.4 Marfan Syndrome (MFS) 

MFS is an autosomal dominant disorder of connective tissues that chiefly affects 

the ocular, skeletal and cardiovascular systems171.  It has been firmly established that 

mutations in fibrillin-1 gene gives rise to MFS2.  In the majority of cases, FBN1 

mutations are unique to an individual or family and these mutations occur throughout the 

gene.  Mutations causing premature translation termination and truncated fibrillin-1 

molecules have also been identified, including a mutation that produces a severely 

shortened fibrillin molecule comprised of only the first 55 amino acids.  Thus, disruption 

of fibrillin structure, or their absence can interrupt elastin-SMC signaling and alter SMC 

phenotype to a synthetic one172.  Vascular tissues of MFS patients thus display 

disorganized and fragmented elastic fibers with excessive accumulation of amorphous 

matrix.  The resulting cardiovascular complications include ascending aortic aneurysms 

and dissections, and mitral valve prolapse.  These complications can lead to a shortened 

life expectancy if left untreated.  The dilated segments can progress to dissection and 

spontaneous rupture of the vessel wall, which is the leading cause of morbidity and 

mortality in MFS patients. 

 

2.3.3 Acquired Disorders of Elastin 

Vascular proliferative diseases such as atherosclerosis and coronary restenosis 

lead to arterial narrowing and re-occlusion.  Though it is still unclear how atherosclerosis 

initiates, owing to differences in developmental animal models and advanced human 

atherosclerotic tissues, the most popular theory involves the development of a fatty streak 
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and its conversion into a fibrous plaque.  Although their etiologies are diverse, these 

disorders all share common pathologic features such as initial accumulation of SMCs 

within the intima between the endothelium and medial layer of the vessel wall, their 

subsequent activation, de-differentiation into proliferative synthetic phenotype, their 

aggressive migration into the sub-endothelial space, neointima formation.  Both in vitro 

and in vivo studies have implicated the intact elastin matrix as a negative regulator of 

SMC proliferative activity within the arterial wall102.  Thus, proteolytic degradation of 

vascular elastin matrices by activated/ inflamed SMCs exacerbates the progressiveness 

and severity of atherosclerotic disease. 

As explained previously, elastin biochemically regulates vascular homeostasis by 

signaling SMCs via defined pathways to remain in a quiescent, contractile state.  The 

disruption of elastin by inflammation, or direct mechanical injury can interrupt cell–

matrix signaling and directly activate the SMCs173.  Elastin degradation by macrophages, 

T cells, and their proteases during inflammatory disease of vessels, act in concert with the 

numerous cytokines and growth factors activated during vascular injury to incite SMCs to 

dedifferentiate, migrate, proliferate, and occlude arteries.  Degradation of the elastin 

component is believed to be the result of a proteolytic cascade that involves the 

cooperation of several degradative enzyme types such as serine proteases, MMPs, and 

cysteine proteases157.  MMPs (e.g., MMPs-2, 9) present in latent forms under normal 

physiologic conditions, are generally activated following vessel wall injury174.  Thus, the 

disruption of elastin is not simply an end product of inflammation and vascular occlusion, 

but an important contributor to the pathogenesis of occlusive vascular disease.  Therefore, 
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preventing elastin matrix degradation following vascular injury or restoring the lost/ 

degraded vascular elastin matrix is imperative for restoration of vascular homeostasis102. 

 

2.4. Aortic Aneurysms (AAs) 

Aneurysms are pathological conditions wherein segments of elastic arteries dilate 

abnormally and weaken structurally, resulting in dissections, which enlarge ultimately 

leading to vessel rupture.  In addition, morphological changes in aortic diameter can also 

occur as a consequence of prolonged and untreated vascular hypertension, inherent 

abnormalities in the protein architecture of the aortic wall, trauma, infection, and also due 

to progressive destruction of aortic proteins by enzymes during chronic vascular 

inflammation1.  Aneurysms typically exhibit location-specific differences in their 

pathologic mechanisms, and can develop anywhere along the vessel, though they 

predominantly occur in the abdominal section (abdominal aortic aneurysms or AAAs).  

AAAs develop gradually at the rate of ~ 1 cm/year, exhibiting very few symptoms during 

their developmental stages, thereby making early detection impossible1.  Unfortunately, 

by the time AAs are detected, they are at advanced stages (Figure 2.10), wherein they 

dissect and catastrophically rupture to cause life-threatening internal bleeding, effects of 

hemorrhagic shock, embolism, and stroke with fatality rates of ~80%17.  Abdominal AAs 

are also frequently manifested in inherited conditions such as MFS, characterized by 

defects in assembly and stabilization of arterial elastin2. 
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Figure 2.10. Abdominal aortic aneurysm - involves a widening, stretching, or ballooning 

of the aorta. As the aorta gets progressively larger over time there is increased chance of 

rupture. 

 

There are several causes for the occurance of AAs, and the most prominent 

among them being atherosclerotic disease, defects in arterial components, genetic 

disorders and high blood pressure.  AAAs initiate primarily as an infrequent outcome of 

chronic matrix proteolytic effects of inflammatory cells that infiltrate in response to 

calcified lipid deposits or atherosclerotic plaques within the abdominal aortic wall3.  The 

pathogenesis of AAs might be due to the absence of SMCs, fragmented and diminished 

density of elastic fibers, and excessive accumulation of proteoglycans in a mostly non-

inflammatory environment14, ultimately resulting in destruction of the aortic wall 

architecture.  AAs also result from gradual enzymatic degradation of structural proteins 
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such as elastin and collagen, leading to loss of elasticity and strength of the aortic wall 

and its progressive dilation to form a rupture-prone, balloon-like sac of weakened tissue.  

Genetic disorders, such as in MFS, that impacts vascular matrix architecture and 

homeostasis, can also manifest in vascular aneurysms.  Since absence or destruciton of 

elastin critically regulates aneurysm formation, progression and fatal rupture, restoration 

of elastin in these segments is likely to stabilize and restore homeostasis in these tissues. 

 

2.5 Therapeutic Strategies for Restoring Vascular Elastin 

Thus, so far we have detailed the mechanisms of elastin synthesis, matrix 

assembly and stabilization, the importance of elastin in maintaining vascular homeostasis 

(cell signaling and biomechanics), and the pathological conditions that compromise 

cardiovascular elastin.  It may be inferred from this discussion that conditions that 

compromise vascular elastin can severely impair vascular homeostasis and thus must be 

replaced or preserved as a priority.  As will be discussed subsequently, traditionally, the 

elastin matrix degenerative diseases have been surgically addressed, although next 

generational in situ elastin restorative strategies are in development, which aim to bypass 

long-term surgical complications.  These strategies may be broadly classified into three 

categories: (a) preservation (e.g., MMP inhibition), (b) replacement (e.g., using synthetic 

elastomers assembled from peptides in vitro, allogeneic and xenogeneic grafts, etc), and 

(c) regeneration (e.g., using tissue engineered scaffolds, genetic engineering).  This 

section also details the approaches being used so far and their relative merits and 

disadvantages. 
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2.5.1 Treatments of Vascular Aneurysms 

2.5.1.1 Non-Surgical Strategies 

Based on knowledge of AA etiology and pathology, current treatment procedures 

can be classified broadly into two catergories, i.e, surgical and non-surgical strategies.  

Three potential non-surgical AA treatment strategies have been identified which aim to 

(a) inhibit pathological matrix degradation by proteolytic enzymes (e.g., cathepsins, 

MMPs), (b) stabilize existing matrix structures using pharmacological agents, and more 

recently, (c) promote active healing to regress already developed aneurysms through 

endovascular seeding of healthy cells.  However, none of these strategies present an 

integrated approach to modulating aneurysmal cell phenotype, reinstating healthy matrix 

architecture, and providing conditions for stabilizing the local vascular environment. 

 

2.5.1.2 Surgical Strategies 

The most standard surgical procedure for AA treatment has been open aneurysm 

repair (aneurysmectomy; Figure 2.11A), wherein the weakened aortic segment (>5 cm 

diameter) is flow-excluded and then replaced with a carefully sutured synthetic mesh 

graft.  However, in case the aneurysm is easily accessible and less life-threatening, a 

minimally-invasive endovascular abdominal aortic aneurysm repair (EVAR) technique 

(Figure 2.11B) is employed, wherein a woven polyester graft or Dacron, mounted on a 

self-expanding stent is deployed within the vessel, at the site of the aneurysm.  Though 

elective open repair carries low mortality rates (5%) and has long-term durability, a large 

number of the mainly elderly patients are unfit for surgery175.  In such cases, EVAR is an 
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attractive alternative that has 1-month success rates of 85%, and short recuperation 

times176.  However, it was observed that, long-term cardiac and pulmonary complications 

(22% vs. 11%), and other surgical (33 vs 45%; neurological wounding, bleeding and 

stroke) and graft-associated (4% vs. 13%; thrombosis, leaks, tears) complications can 

cause survival rates to drop to ~50% at 10 years post-op17, in both the cases.  Thus, there 

is a crucial need to develop nonsurgical approaches to inhibit, preserve matrices against, 

or regress the complex mechanisms of pathological elastin degradation in vascular 

aneurysms, about which knowledge is limited. 

 

Figure 2.11. Conventional repair (A) and minimally invasive endovascular repair (B) of 

abdominal AAs. 
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2.5.2 Elastin Preservative Strategies 

These strategies mainly focus on preserving the elastin matrices in the vascular 

tissues that survive pathological degradation.  These strategies seek to arrest or decelerate 

the enzymatic degradation of the matrices, so as to possibly prolong the time to surgical 

intervention.  At present, most of these preventive strategies involve a pharmacokinetic 

approach. 

MMPs are released by inflammatory cells and then act on the ECM slowly 

degrading the key components like elastin147.  The availability and activities of these 

proteolytic enzymes is tightly regulated in healthy tissues by naturally-occurring factors, -

TIMPs177, to prevent uncontrolled matrix degradation.  The MMPs-2 (gelatinase A) and -

9 (gelatinase B) have been reported to specifically cause elastin degradation leading to 

aneurysm formation178 and subsequent vessel wall weakening179.  MMP-9 is the most 

important MMP in the spectrum of aneurysmal pathogenesis, and can cleave several 

substrates including elastin, collagen and fibrinogen180.  In light of this information, early 

pharmacological strategies targeted at elastin preservation focused on inhibiting MMPs157.  

MMP-9 inhibitors such as doxycycline, dexamethasone, green tea catechins and 

indomethacin are being investigated as therapeutic strategies to inhibit MMP-9 activity, 

and hence elastin degradation157.  Doxycycline and trapidil181 have also been studied in 

the context of inhibiting MMP-2 activity. 

Besides TIMPs, human tissues and peripheral blood contain protease inhibitors 

(e.g., serine proteinase inhibitors) that bind to elastase enzymes and prevent their action 

on elastin matrices.  Under healthy conditions, these proteins control unchecked 
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inflammatory responses, coagulation, and regulate tissue repair mechanisms.  When the 

availability of these elastase inhibitors is suppressed or when they are genetically 

abnormal or absent (e.g., anti-trypsin deficiency), accelerated elastin breakdown and 

degradation may occur.  In such conditions, exogenous delivery of alternative elastase 

inhibitors, or transfection of vascular SMCs with genes such as α-1 anti-trypsin gene, 

which codes for one such inhibitor, can help regulate in vivo production of these elastase 

inhibitors and arrest elastin loss182.  However to date, most of these attempts have 

succeeded only in vitro, because numerous other unknown factors influence their 

functional activity, and also contribute to alternate mechanisms of elastin degradation 

process in vivo.  Thus, alternate non-pharmacological approaches based on replacing 

degraded elastin matrices with synthetic or biological elastomers have been tested, as 

detailed below. 

 

2.5.3 Replacement Strategies 

2.5.3.1 Allogeneic Grafts 

Most early replacement strategies focused on using matrices isolated 

allogeneically from cadeveric vessels.  Allogeneic tissue grafts have attracted much 

attention as a substitute for replacing damaged, injured or lost vessel segments.  This is 

due to identical structural makeup, mechanical properties and size-matches, between 

donor and recipient vessels.  It has been demonstrated that allogeneic elastin may be 

sourced from vessels from deceased fetuses, cadavers, and umbilical cords183.  There is a 

huge supply-demand gap in terms of these tissues which makes their use very limited, 
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especially in cases where immediate surgical vessel replacement is required.  Another 

main reason why the success of these implants is limited is their high failure rate owing 

to donor-specific immune-response, besides graft destruction184, 185.  To overcome these 

limitations, researchers have tried to de-cellularize donor vessel segments, and merely 

graft the matrix that remains.  Several methods have been developed to generate 

completely acellular tissue matrices using multi-step extraction with a combination of 

detergents and enzymatic agents such as, triton detergent, trypsin/ ethylene-diamine-

tetraacetic acid (EDTA), or sodium dodecyl sulfate (SDS) in the presence of protease 

inhibitors186-188.  Histological analysis of such tissues indicates that the major structural 

protein components survive, though their quality and long-term stability may be 

compromised.  Certainly, studies have shown many of these de-cellularized protocols to 

damage the ECM.  Moreover, the transplanted tissue represents a continuous source of 

(a) antigens capable of activating the immune system, and (b) overproduced cytokines, to 

cause early rejection and inflammation., post-transplantation189.  Therefore, lifelong 

immuno-suppression is required to ensure long-term allograft survival190. 

 

2.5.3.2 Xenogeneic Grafts 

Since allograft transplantation is limited by shortage of available organs, the use 

of animals in lieu of human subjects as donors (xenograft transplantation) offers a 

potentially viable alternative.  Though there is no scarcity for organs and tissues available 

for implantation from animals, previous attempts at using xenogeneic grafts failed 

miserably because of end-stage organ failure191, different lifespan of humans from other 
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xenogeneic sources such pigs, disease transmission192, lack of antigenic similarity193, and 

most importantly permanent alteration to the genetic code of animals used as sources194.  

When transplanted into untreated humans or nonhuman primates, pig organs are rejected 

hyperacutely within minutes by antibody-mediated complement activation195, 196.  A 

number of molecular incompatibilities, physiological and biochemical variations have 

been identified between pigs and humans, including blood viscosity, liver metabolism, 

and differences in presence and activities of various enzymes and hormones.  Of 

particular concern has been the incompatibility of coagulation factors that might lead to 

the development of a pro-coagulant state in the graft with subsequent thrombosis196.  

Moreover, compliance mismatch and mechanical stiffening post-transplantation also 

contribute for the failure of xenografts in the long-term194.  Attempts to remove 

immunoreactive molecules and cells from the xenografts such as porcine arterial 

segments resulted in poor structural integrity of the resulting matrix. 

 

2.5.3.3 Synthetic Elastomers 

To overcome the immune-compatibility limitations of allogeneic and xenogeneic 

grafts, researchers have fabricated biodegradable/ biocompatible elastomeric scaffolds 

from polyesters, for vascular replacements.  Elastomers are predominantly used in 

applications that require compliance with soft or cardiovascular tissue197, 198.  The 

required properties of polymeric biomaterials are similar to other biomaterials, that is, 

biocompatibility, sterilizability, adequate mechanical and physical properties, and good 

processability for ease of manufacturing.  Biodegradable elastomers have been shown to 
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match mechanical properties of cardiovascular tissues, rendering them useful substitutes 

in their applications25.  Such matching of biomaterial-tissue properties is vital to ensure 

that cells perceive bio-mechanical stimuli that mimics the dynamic in vivo vascular tissue 

environment and thus respond likewise85.  Most of these polymeric scaffolds were 

designed to mimic the native tissue in terms of porosity and three-dimensional structure, 

suitable for cell infiltration and matrix synthesis199.  Current synthetic vessel 

replacements are limited to large diameter vessels, while there is no satisfactory synthetic 

small diameter (<6 mm inner diameter) vascular prosthesis200.  Dacron was the leading 

material used for vascular reconstruction of all the major large arteries, while nonfabric 

Teflon grafts, such as expanded poly(tetrafluoroethylene) (e-PTFE) grafts were first used 

as small arterial substitutes (Gor-Tex). 

Two key factors were believed to have caused graft failure201: (a) intimal tissue 

overgrowth (hyperplasia) that develops in the artery just proximal and distal to the 

artificially created connection between the rigid graft and the compliant artery, (b) the 

loss of self-cleaning quality as the graft becomes stiff and nonpulsatile, thus no longer 

preventing deposits of fibril and platelets forming on the walls.  Thus, it could be 

expected that mismatch not only in mechanical, but also in interfacial properties between 

the graft and host vessel will affect the patency of vascular grafts202.  To overcome these 

limitations, the development of biocompatible surface modifications and controlled 

release modalities for vascular implant materials became essential, for achieving 

controllable modulation of cellular interactions at the tissue-biomaterial interface.  Anti-

thrombogenic coatings such as heparin and benzalkonium chloride were developed, as 
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well as velour-lined vascular patches reinforced with polyester203.  It was found that 

compliance mismatch between the graft and host artery also results in differential 

mechanical strains and haemodynamic wall shear stress, due to pulsatile blood flow and 

the viscoelastic nature of the blood vessel wall itself204, 205.  In general, a synthetic graft 

that is larger than its host vessel creates a state of low velocity blood flow and shear 

stress, thus promoting failure; while, in smaller grafts, a fibrin layer develops over the 

artificial surface in the body during healing, obstructing the graft lumen. 

 

2.5.3.4 Elastomers from Elastin Peptides 

Elastin has the remarkable property of being able to self-assemble in vitro from 

monomeric units of amino acids into a robust biopolymer, a process which naturally 

occurs in the elastin polymerization process in vivo and termed as coacervation36, 206.  

Coacervation is a reversible phase separation in which a protein in solution forms 

molecular aggregates upon an increase in temperature, and separates from the solvent as a 

second phase207.  The temperature at which coacervation takes place is a measure of the 

propensity for self-aggregation, and is inversely related to ionic strength of the solution 

and the concentration of the polypeptide206.  There is substantial evidence that the 

hydrophobic domains are necessary for self-aggregation208, and the interactions of 

hydrophobic domains align lysine residues for formation of the covalent crosslinks that 

stabilize the insoluble polymeric matrix209, 210.  It has been reported that the polymers 

developed using self-assembling elastin peptides display considerable promise as 

biomaterials for applications in drug delivery and soft tissue engineering.  Attempts by 
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researchers to genetically alter these polymeric sequences by inclusion of sequences such 

as GRGDSP for favorable cell attachment yielded positive results with normal 

complement of collagen and elastic fibers35, as shown in Figure 2.12. 

However, it should be noted that, in vitro assembled elastin matrices does not 

include the natural mechanism of elastin deposition and assembly over a pre-existing 

fibrillin scaffold, which also plays a key role in maintaining SMCs in quiescent state.  

Besides, repetitive cyclic loading of these materials fabricated using this approach might 

promote failure of this elastin at very early stages compared to insoluble elastin matrices.  

Most importantly, since native elastin fibers contain numerous other non-elastin 

components, such as microfibrils (fibrillin, etc), which are critical to effect the unique 

interactions of cells with the elastin matrix and thus respond accordingly, their absence 

within synthetic/ unnaturally assembled elastomers prevents them from vitally regulating 

vascular cell behavior when implanted in vivo.  Thus, despite being able to replicate the 

mechanics of native elastin, elastin matrices assembled in vitro using soluble peptides 

proffer serious drawbacks that limit their clinical utility. 

 

2.5.4 Elastin Regenerative Strategies 

Tissue engineering offers a promising approach for the fabrication of a 

functionally-responsive, living-tissue like constructs with biological and biomechanical 

properties that mimic native vascular tissue.  In recent years, researchers have explored 

the possibility of effecting elastic tissue repair through regeneration of elastin in situ 

within elastin-compromised vessels and synthetic or tissue engineered grafts in vitro 
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culture systems deployed at the site of vascular disease or injury.  Although considerable 

progress has been made towards understanding the principles of elastin biosynthesis, and 

matrix assembly, ultrastructural organization and stabilization in vivo, many of the 

conditions and mechanisms required to replicate the same, with provided cues are still 

elusive.  This is especially challenging in light of the extremely poor elastin regenerative 

capacity of adult human and other cells, vascular and non-vascular in origin.  Thus, 

identifying elastogenic cues as represented by elastogenic biomaterials scaffolds or 

growth factors; and further modulating the assembly of the elastin precursors into 

ultrastructural and functional mimics of native elastin are immense challenges.  In the 

following sections, we will highlight recent developments on this front. 
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Figure 2.12. Comparison of structures formed from elastin peptides EP20-24, EP20-24-

24, and tropoelastin at three stages of coacervation. Prior to and immediately following 

coacervation, the structures formed by these polypeptides are similar to those formed by 

the natural elastin precursor, tropoelastin. However, after overnight incubation above the 

coacervation temperature, the structures formed from EP20-24-24 closely resemble that 

of tropoelastin, whereas structures formed from EP20-24 are less compact and well-

organized. All scale bars represent 100 nm36. 

 

Tissue-engineered elastin constructs are expected to proffer distinct advantages 

over synthetic elastomers because elastin is innately non-thrombogenic, and when 

faithfully regenerated, would contain non-elastin proteinaceous components crucial to 

signaling cells and regulating their behavior.  The potential to heal and remodel their 

biological matrix depending on the local dynamic environment, elicits relatively 

attenuated foreign body reaction, since they are only made up of components generated 

by the patient’s own cells.  This ensures seamless integration with recipient (patient) 

tissues.  However, the challenges to tissue engineering such constructs are also 

substantial.  These include mimicking native elastin structure, achieving elastin matrix 

regeneration in a short time frame, matching compliance with native elastin, and to be 

immediately functional post-implantation, if regenerated in vitro; and to ensure that the 

elastogenic cues/ biomaterials do not incite undesired cell responses such as 

inflammation and proteolytic activity38, 211.  Two classes of scaffolds have been most 
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commonly investigated in the context of upregulating elastin matrix biosynthesis, as 

described below. 

 

2.5.4.1 Synthetic Scaffolds 

Synthetic scaffolds are three-dimensional templates that support cell adhesion, 

their migration, differentiation, proliferation, and matrix synthesis and deposition to 

effect guided tissue regeneration.  Synthetic scaffolds employed for tissue engineering 

applications are selected so as to be biocompatible, reproducible with high porosity and 

inter-connected microstructure to allow cell infiltration and sustenance, and to be so 

modulated in their chemistry to permit them to be tailored to obtain desired degradation 

profiles and mechanical properties212.  Most importantly, scaffolding materials must be 

selected such that they elicit the desired biological response (e.g., elastin matrix 

synthesis) from seeded cells.  In the context of elastin matrix regeneration, the most 

widely investigated synthetic scaffolds are poly(lactic acid) (PLA), poly(glycolic acid) 

(PGA), poly(caprolactone) (PCL) and their copolymers (PLGA)213.  Though these 

scaffolds did not exhibit significant SMC attachment, it was reported that they favored 

elastin deposition on them214.  In many cases, release of degradation products due to 

hydrolysis of these polymers result in local changes in pH and other toxic characteristics 

that might negatively impact cell attachment and proliferation rates, and ultimately their 

elastin synthesis capabilities215.  Similar attempts made by seeding SMCs onto 

polyhydroxyalkanoate scaffolds subjected to blood flow resulted in uniformly aligned 

elastin and collagen fibers in the direction of flow216.  However, it was observed that the 
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elastin synthesized was either insufficiently- or un-crosslinked, leading to permanent 

elastin breakdown and loss in construct, 6-months post-implantation in lamb carotid 

arteries23. 

In other studies, synthetic scaffolds were coated with laminin or other ECM-based 

matrix molecules.  However, in these cases, elastin mRNA expression continues to be 

severely compromised217.  Opitz et al., employed poly 4-hydroxybutyrate scaffolds 

seeded with SMCs and subjected to a pulsatile flow bioreactor218.  Tissue analyses after 

one month revealed that though elastin was synthesized in these scaffolds compared to 

controls which received no stimulus, the elastin fibers were poorly organized with a 

marked decrease in desmosine content compared with the native aorta.  These studies 

showed that quantitatively less elastin was synthesized, and the level of elastin 

crosslinking was low, which prompted use of other cellular cues such as growth factors 

and enzymes which might promote better organization and crosslinking of resulting 

elastin.  Thus, it can be postulated that scaffolds made up of naturally available materials 

might elicit native cell responses more closely than the synthetic scaffolds. 

 

2.5.4.2 Biological Scaffolds 

In recent years, biomolecules specifically, ECM components such as collagen, 

chitosan, fibrin and GAGs have been increasingly studied in the context of fabricating 

scaffolds for guided tissue regeneration.  The use of ECM-based biomaterials proffers 

distinct potential advantages, such as providing cells biochemical and biomechanical 

signals they would experience in a healthy tissue in vivo environment and thus potentially 
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and more faithfully evoke a natural, non-exaggerated matrix regenerative cell response.  

In addition, ECM molecules, due to their origin would be more readily accepted into the 

body without extreme inflammatory responses.  Since ECM molecules are susceptible to 

proteolytic degradation, scaffolds based on these materials are chemically derivatized or 

crosslinked to provide long-term stability.  However, this concurrently introduces 

changes in the innate mechanical and biochemical properties of these ECM molecules, 

and compromises their ability to elicit native cell responses.  Thus, a key challenge un the 

use of ECM scaffolds for effecting tissue regeneration is to develop methods of matrix 

stabilization that largely do not alter the biochemical and other characteristics of ECM 

molecucules.  Alternately, ECM components that are amenable to such derivitizations 

without undergoing significant change must be selected.  However, overall, the utility of 

such materials is contingent on their demonstrated ability to upregulate or facilitate the 

targeted regenerative phenomenon (in our case, elastin matrix regeneration). 

Early attempts to use SMC-seeded collagen scaffolds for blood vessel substitutes 

resulted in no detectable elastin generation219, 220.  A more recent study reported higher 

levels of elastin synthesis by neonatal VSMCs seeded onto fibrin scaffolds and within 

fibrin-collagen constructs than in collagen constructs43.  In these cases, although complex 

elastin geometries similar to that in native elastin were observed, the elastin was 

produced by neonatal RASMCs, and not adult RASMCs156.  Neonatal cells have higher 

elastin regenerative capabilities than those of adult SMCs. 

In another interesting study, Lee et al. demonstrated that the phenotype of SMCs 

in engineered tissues is strongly regulated by the chemistry of scaffold in vitro38.  This 
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means that SMCs exhibit a differential cell growth and ECM production depending upon 

the scaffold on which they are seeded.  Their studies also showed that 2-D culture models 

also provide useful insights into the elastin production mechanism compared to 3-D 

models, since trends in scaffold-chemistry-dependent variations of cell phenotype and 

matrix synthesis are maintained, though not necessarily to the same levels in a 3-D 

culture system.  Studies by Ramamurthi et al., using hyaluronic acid based gels with 

RASMCs cultured on top of them, demonstrated an increased amount of elastin (both 

soluble and insoluble) production on the hyaluronan gel, compared to polystyrene culture 

plates110.  Furthermore, microscopic analysis of the elastin structure isolated by alkali 

digestion revealed smooth, highly fenestrated sheets composed of fibers, visible at the 

sheet edges.  It can be concluded that the cellular gene expression could be regulated by 

various scaffold-derived cues including cell adhesion molecules, growth factors, and 

mechanical stimuli.  In this respect, 3-D scaffolds provide more of these cues than the 2-

D cultures.  Also, ECM-based scaffolds are more likely to evoke native integrin-ECM 

interactions and preserve the native cell phenotype, thereby influencing their matrix 

synthesis capabilities. 

These studies validate the overall superiority of 3-D, ECM-based cell scaffolds 

over 3-D synthetic scaffolds or 2-D monolayer cell cultures to efforts to simulate the 

chemical and physical environment of tissues.  This is because, cells within 3-D scaffolds 

exist in a more natural environment in which they contact other cells and ECM in three 

dimensions and are therefore expected to more closely evoke native cell responses than 

2-D substrates.  In addition, successful up-regulation of elastin synthesis and organization 
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into mature elastic tissue is crucially contingent on the selection of an appropriate 

scaffold material from among a sub-set of ECM molecules shown to actively facilitate 

elastogenesis in vivo.  One class of biological molecules that was proved to have great 

potential as elastogenic cell scaffolds is glycosaminoglycans (GAGs).  A detailed review 

on GAGs, HA in particular, for the elastin regeneration potential forms the core theme of 

the following sections. 

 

2.6 Glycosaminoglycans (GAGs) 

As explained in section 2.2, GAGs are linear polysaccharides present on all cell 

surfaces and in the ECM.  They are usually found attached covalently to core proteins 

forming the proteoglycan family.  GAGs assume extended structures in aqueous solutions 

because of their strong hydrophilic nature based on their extensive sulfation patterns, 

which is further enhanced when they are covalently linked to core proteins.  They hold a 

large number of water molecules in their molecular domain and occupy enormous 

hydrodynamic space in solution.  The high viscosity of GAGs is associated with low 

compressibility, which renders these molecules ideal as lubricating fluids in bone joints.  

Simultaneously, their rigidity provides structural integrity to cells and provides 

passageways between cells, permitting cell migration221.  These interactions are often 

crucial to the biological functions of these proteins. 

As shown in Figure 2.13, GAGs can be classified into four groups: the hyaluronic 

acid type, the chondroitin/ dermatan sulfate type, the heparan sulfate/ heparin type, and 

the keratan type103.  They have molecular masses ranging from few kDa to few million 
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daltons.  GAGs play an important role in the regulation of many processes, such as 

hemostasis, growth factor control, anticoagulation, cell adhesion, inflammation, and 

pathogens attachment222.  Table 2.3 summarizes the distribution and functions of 

different GAG types103. 

 

 

Figure 2.13. Schematic representation of the different GAGs221. 

 

Though HA does not covalently attach to proteins to form proteoglycans, it forms 

non-covalent complexes with proteoglycans in the ECM, such as versican.  Several recent 

studies have suggested that GAGs such as HA by themselves, or through their interaction 

with versican facilitate the synthesis, maturation, and ultrastructural organization of 
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elastin, and are therefore currently a subject of focused study in the context of developing 

next-generational natural scaffold materials for elastin regeneration. 

 

Type of 
GAG Localization Comments 

Hyaluronan Synovial fluid, vitreous humor, ECM of 
loose connective tissue 

Large polymers, 
shock absorbers 

Chondroitin 
sulfate Cartilage, bone, heart valves Most abundant GAG 

Heparan 
sulfate 

Basement membranes, components of 
cell surfaces 

Contains higher 
acetylated 

glucosamine than 
heparin 

Heparin 
Component of intracellular granules of 

mast cells lining the arteries of the lungs, 
liver and skin 

More sulfated than 
Heparan sulfates 

Dermatan 
sulfate Skin, Blood vessels, heart valves - 

Keratan 
sulfate 

Cornea, bone, cartilage aggregated with 
Chondroitin sulfates - 

 

Table 2.3. Characteristics of glycosaminoglycans. 

 

2.6.1 Hyaluronic Acid: Synthesis and Fragment-Size Effects 

HA is a high molecular weight biopolysaccharide223, which consists of N-acetyl-

D-glucosamine (GlcNAc) and D-glucuronic acid (GlcA) linked by a β 1-4 glycosidic 

bond (Figure 2.14).  The disaccharides are linked by β 1-3 bonds to form the HA chain224.  

Bacterial production of HA by Streptococcus equi and Streptococcus zooepidemicus 

enabled it to be produced in larger quantities than could be achieved with the extraction 

from umbilical cords and rooster combs. 
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Figure 2.14. Structure of hyaluronic acid (HA). 

 

Trans-membrane glycotransferase enzymes (HA synthases: HAS1, HAS2, HAS3) 

regulate the biosynthesis of HA.  The amino acid sequences of these enzymes are similar 

but they are produced from genes located at three distinct locations of the chromosome.  

Each enzyme contains two components (or gylcosyltransferases), one adds GlcNAc and 

the other is responsible for GlcUA with each addition occurring at the reducing end of the 

growing chain.  The HAS enzymes are transmembrane proteins with an active site on the 

inner surface of the plasma membrane where HA is pieced together.  As the HA chain is 

being synthesized, it is extruded through the plasma membrane via the HAS complex 

onto the cell surface or into the ECM.  This unrestrained synthesis mechanism allows HA 

to amass such large chain lengths.  HA is synthesized on the inner surface of the plasma 

membrane, while other GAGs are produced by enzymes within the golgi apparatus of 

cells225. 
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The physiologic cell signaling functions of HA, such as its role in regulating cell 

aggregation, migration, and differentiation, are achieved through interactions with matrix 

proteins and cell surface HA receptor proteins, i.e., hyaladherins226.  Hyaladherin is a 

term given to a diverse group of proteins capable of binding to HA, via a 100-amino acid 

sequence called a link module, which contains an immunoglobulin domain and two 

adjacent link modules.  It is thought that the link modules mediate protein-HA binding 

and the immunoglobulin controls protein-proteoglycan interactions.  Although there are 

likely to be several distinct cell surface HA binding proteins, only the cell adhesion 

molecule CD44 and the receptor for HA-mediated mobility (RHAMM), have been 

characterized at the molecular level227.  CD44 is a cell surface glycoprotein with a 

molecular weight around 85 kDa and plays an important role in HA binding to the cell 

surface228, 229.  On the other hand, RHAMM (Receptor for HA-Mediated Motility), has a 

high molecular weight of 1-2 million Da, that includes a HA binding site and a protein 

kinase230.  Upon binding to RHAMM protein, HA induces metabolic changes in the cells, 

such as stimulation of the protein kinase activity231.  In contrast to CD44, RHAMM does 

not display significant homology to the link protein HA binding domain. 

Despite its structural simplicity, HA specifically is involved in a wide array of 

phenomena like morphogenesis, embryonic development, tissue stability, cell 

proliferation, remodelling, migration, differentiation, angiogenesis, or wound healing.  

Inflammatory conditions increase HA levels in tissues and body fluids, as with lung 

fibrosis, rheumatoid arthritis, myocardial infarction and transplant rejection, as well as 

invasive processes232. 
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Recent research throws light on the fragment-size specific effects of HA on the 

above processes.  Native long-chain, high-molecular weight HA (HMW HA) is a stable 

polymer with MW > 1 million Da, which hydrates the ECM and binds growth factors and 

smaller GAGs.  However, it also causes poor cell interaction because it prevents cell-cell 

contact.  During embryonic development, HMW HA surrounds migrating and 

proliferating cells, allowing the proliferating cells to develop without being disturbed 

from the ECM environment, and provides hydrated pathways for migratory cells233.  

HMW HA is inherently anti-inflammatory and immunosuppressive by preventing free 

radical and infectious organism migration into the tissue.  Thus, HMW HA allows tissues 

to heal without the presence of damaging molecules and organisms resulting in reduced 

scar formation within the tissues234.  However, HMW HA must be fragmented in order 

stimulate a receptor mediated cellular responses. 

On the other hand smaller fragments of HA (~100 kDa; LMW HA) and HA 

oligosaccharides (~ 2-10 kDa) can be pro-cellular, pro-angiogenic and pro-

inflammatory235.  LMW HA is capable of binding to cell surface receptors in a 

monovalent manner resulting in the stimulation of specific cell signaling cascades, thus 

influencing their metabolic functions.  LMW HA is formed by enzymatic digestion of 

larger HMW HA and is thought to play a role in wound healing due to their ability to 

promote angiogenesis in vivo236.  The reason for this occurrence may involve specific 

receptors such as CD44 and signaling pathways of these cells237.  In addition, it has been 

shown that LMW HA stimulates cells to produce angiogenic proteins and enhance the 

synthesis of collagen types I and VIII.  LMW HA has been discovered within 
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proliferating ECs and SMCs possibly interacting with intracellular receptors238, 239.  

Studies have shown that HA fragments induce the expression of cytokine gene expression 

in macrophages, which is crucial for initiating and maintaining the inflammatory 

response240.  In contrast, studies have also shown that HA oligosaccharides are able to 

inhibit in vivo tumor growth, induce apoptosis, reverse drug resistance in cancer cells and 

stimulate dendritic cells maturation activating the immune response against tumors241, 242 

(Figure 2.15).  In various tissue types, HA oligosaccharides have been shown to be more 

biologically active than long-chain HA, and are likely responsible for eliciting 

elastogenic responses from cells110, 243.  Recent studies have reported that HA 4-mer is the 

minimum size for HA-SMC interaction, which in turn suggests the presence of a receptor 

for HA 4-mers that does not recognize other sizes of HA235. 

Numerous studies have established that only short oligosaccharides 

(decasaccharides and hexasaccharides) are necessary for recognition and binding to 

hyaldherins and CD44 receptor238.  Cell anchored long-chain HA molecules can prevent 

cells, particles and large molecules from approaching close to the cell membrane.  It can 

be speculated that larger HA fragments can create a more efficient shield than low 

molecular weight smaller HA fragments at similar concentrations235, likely because long-

chain HA meshworks overlap and aggregate with HA molecules attached to neighboring 

cell surface binding sites, while smaller HA fragments contain HA molecules that are not 

long enough to overlap and reinforce neighboring hyaluronan aggregates, leaving spaces 

and channels through which particles can approach closely to the cell membrane. 
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Figure 2.15. Fragment-size specific functions of HA235. 

 

2.6.2 Applications of HA in Tissue Engineering 

The above discussion provides a general idea of how HA can be used as a 

biomaterial.  The intrinsic physicochemical and biological properties of HA made 

possible its applications in clinical therapies, diagnostics, tissue engineering scaffolds, 

and drug delivery devices.  Initially, HA was used as space filler, lubricating material, 

and as viscoelastic-ophthalmic filler material to support the implantation of intraocular 

lenses in cataract patients244.  However, its current applications span from orthopedic to 

cardiovascular engineering, wound healing and regeneration of skin, as antiadhesive 

material in dental applications, and in general tissue engineering and surgical 

interventions54, 245.  A list of FDA approved HA products in market are listed in Table 

2.4 below.  In recent years, HA has found applicability abroad as a joint lubricant in 
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arthritic joints, owing to its favorable rheological properties246.  Recently, Anika, 

Biomatrix, and Fidia obtained FDA approval for the use of HA as an injectable in the 

USA103.  In addition, HA has been used as an implant fluid /film to improve lubricity, and 

reduce fouling and tissue abrasion and tissue adhesions following surgery, the latter 

application due to the poor interaction of HA films with cells103, 247.  In these applications, 

the long-term success of the product is significantly facilitated by the inherently non-

antigenic and non-immunogenic properties of HA, a result of their strong homology of 

structure across species248. 

Under pathological conditions, as in cancer and atherosclerosis, HA exhibits 

undesirable properties that can be tailored to provide benefits to tissue engineering249.  

For example, since HA promotes angiogenesis and facilitates tumor growth in-vivo, it can 

be used in neo-vascularization of grafts and vascular scaffolds.  HA is also an important 

component of the cellular microenvironment because it directly affects tissue 

organization via interactions with cell surface receptors such as CD44250.  Through a 

well- studied interaction with CD44, HA promotes the migration of cells, facilitates ECM 

remodeling, promotes the inflammatory response and can inhibit cell adhesion.  Thus, a 

tissue engineered construct that incorporates HA and/or HA receptors could have 

enhanced cell-material interactions and improved cell migration.  HA plays a vital role in 

the development of cartilage, the maintenance of the synovial fluid, and the regeneration 

of tendons226. 
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Table 2.4. FDA-approved HA products in market251. 

 

In previous studies, HA-liposomes have been investigated for their ability to act 

as site-adherent and sustained-release carriers of epidermal growth factor for the topical 

therapy of wounds and burns, which in itself involves regeneration of elastic tissues252.  

Composite sponges of hyaluronan and chondroitin sulfate have been used as wound 

dressings or scaffolds for tissue engineering253-255.  HA has also been proven to be 

effective for increasing the blood compatibilities of cardiovascular implants such as 

vascular grafts and stents.  For example, biomaterial surfaces treated with cross-linked 

HA have been associated with reduced platelet adhesion and thrombus formation256-258.  

Cross-linked HA is also a promising biomaterial for cardiac tissue engineering.  

However, very few studies have investigated the matrix regenerative capabilities of 

HA, in the context of elastin synthesis by adult SMCs, and that is the focus of our 

current efforts. 
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2.7. Role of HA in Elastin Synthesis 

Previous studies reported that in pulmonary, vascular and dermal tissues, a close 

association exists between GAGs such as HA and heparin sulfate, and proteoglycans such 

as versican and elastin50, 51, 259, 260.  Though not all GAGs (e.g., dermatan and chondroitin 

sulfates) support elastic fiber formation261, HA plays a prominent role in the synthesis and 

organization of microfibrils (fibrillin), a precursor for elastic fiber deposition50, 51, 260.  HA 

has been implicated to play key roles in the synthesis262, organization, and stabilization263 

of elastin by VSMCs.  HA has been suggested to play an indirect role in elastogenesis 

through its intimate binding of versican, which in turn interacts with microfibrillar 

proteins (fibulin-1, 2) and elastin-associated proteins to form higher-order 

macromolecular structures important for elastic fiber assembly50, 51, 260.  Recent studies 

provide evidence that some GAGs (e.g., HA) coacervate soluble tropoelastin molecules 

on their highly anionic surfaces, to facilitate LOX- mediated crosslinking into an 

insoluble matrix264, and stabilize elastin fibers against degradation by elastases.  These 

findings encourage further study into the utility of HA biomaterials as scaffolds for elastic 

tissue regeneration. 

Previously, Ramamurthi et al. evaluated the matrix (elastin and collagen) 

synthesis potential of UV-irradiated, DVS-crosslinked HA gel substrates (hylans; MW > 

1.5 MDa), and found that at all assay times, the amounts of elastin was derived from the 

HA-based cell cultures was 25% or more than that derived from cells cultured on plastic, 

though no significant differences were found in the two substrates beyond the first two 

weeks of culture when elastin content was normalized to the cell DNA content (Figure 
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2.16).  At early culture times (< 2 weeks), cells cultured atop the irradiated hylans showed 

a 2.4-fold increase in the ratio of insoluble to soluble matrix elastin relative to those 

cultured on plastic and a 25% increase in total (i.e., soluble + insoluble) output of matrix 

elastin.  At longer culture times (< 6 weeks), the same trend was maintained. When the 

DNA-normalized amounts of elastin matrix were compared, significant elastin up-

regulation was noted among cells cultured on HA versus those on plastic at 2 weeks but 

not at later time points.  Cells grown on HA deposited an unusual matrix layer, rich in 

elastin at the HA-cell interface.  This elastin was found to be organized into fenestrated 

sheets and loose elastin fibers, structures that were also isolated from the elastin matrix of 

the ventricularis layer of porcine cardiovascular tissues (Figure 2.17).  Cell-synthesized 

tropoelastin was incorporated and stabilized into an unusually exuberant elastin matrix 

layer not seen in control cells cultured on plastic or atop gels containing only long-chain 

HA.  The preferential deposition of matrix elastin at this interface may be due to the 

attraction and coacervation of soluble tropoelastin molecules by the highly anionic HA 

gel. 

This hypothesis is supported by previous studies by Wu et al.,265 and Forneieri et 

al.,266 which demonstrated that positively charged lysine residues on the tropoelastin 

molecules bind to negatively charged GAG molecules.  The GAGs then induce the 

tropoelastin molecules to coacervate along their surface.  The electrostatic interactions 

between the GAGs and the tropoelastin molecules are freed only when the lysine residues 

are modified by cell-derived LOX during crosslinking of the elastin265.  A comparative 

study of the biochemical and imaging data suggests that (a) intimate cell contact with the 
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HA substrate may influence it’s direct up-regulatory effects on elastin gene expression (or 

elastin output), and (b) HA influence elastin matrix deposition through a secondary, post 

translational mechanism that may involve the preferred coacervation of synthesized 

tropoelastin on the anionic HA surface, resulting in more efficient crosslinking into an 

insoluble matrix form.  Although UV light introduces some new crosslinks into the gel, 

the predominant and a highly repeatable effect is the cleaving of a small proportion of 

HMW HA molecules on the gel surface into shorter, intermediate MW (~100-500 KDa) 

fragments and shorter oligomer (MW ~5-10 KDa).  These results generated the 

hypothesis that smaller HA fragments induce enhanced cell responses. 

 

 

Figure 2.16. Substrate-dependent synthesis of ECM matrix elastin.  Shown is the mean ± 

SD of the amounts of elastin derived from cell layers cultured within plastic dishes and 

atop irradiated hylan gels for up to 6 weeks (n = 3)110. 
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Figure 2.17. Light micrograph of elastin matrix at the cell-hylan interface. The sample 

was stained with Toluidine Blue dye to provide contrast (A; 100×). Representative TEM 

images show the presence of this layer in cell layers cultured atop hylans (B) but not on 

plastic (C). Images were obtained shown at 4 weeks of culture110. 

 

However, it should be noted that the cultured elastin constructs contained fewer, 

non-aligned elastic fibers, likely the result of culture on a 2-D surface, and not an ECM-

like 3-D scaffold, and the failure to provide additional biologic cues important to elastic 

fiber formation and organization.  Besides highlighting the need for such additional 

stimuli, these previous studies showed that (a) HA fragments induce greater biologic 

activity when incorporated within crosslinked gels composed of HMW HA and likely 

enhance elastin matrix deposition, and (b) elastin laid down atop hylans contain essential 

structural elements of native elastin matrices.  Since the irradiation process is difficult to 

control, and can potentially cause material degradation by random ionizations, one 
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approach to creating cell-responsive HA scaffolds is to formulate gels based on mixtures 

of different HA fragment sizes, in quantity ratios optimized based on their individual and 

combined effects on desired (i.e., elastogenic) cell responses.  However, the success of 

this approach is contingent on restricting the total content (wt.%) of HA fragments within 

the mixed gel to 10% or less (the balance composed of HMW HA), since this 

composition preserves gel handling properties and mechanics besides eliciting enhanced 

cell responses, and does not interfere with the inherent immunocompatibility of hylans. 

Thus, encouraged by these previous studies which showed that HA gels are 

proactive in eliciting elastogenic responses by RASMCs110, 267, recent in vitro studies by 

Joddar et al., focused on elucidating the elastogenic effects of HA fragments (different 

molecular weights) and their dosages on adult RASMCs243, 268.  In these studies, adult 

RASMCs were cultured with exogenous HA supplements (MW: 1500, 200, 20 and 0.75 

kDa) at varying concentrations of 0-200 μg/mL over 3 weeks.  At the end of 21 days, the 

effects of exogenous non-oligomeric HA on soluble tropoelastin and desmosine-

crosslinked elastin matrix synthesis were nearly identical to each other (Table 2.5).  

Elastin synthesis was slightly stimulated by HMW HA and inhibited by exogenous non-

oligo HA fragments in inverse correlation to fragment size, although in general, no dose-

relationships were noted (Table 2.5).  LMW and VLMW HA both inhibited tropo- and 

matrix elastin synthesis relative to controls, and to extents that correlated inversely to 

fragment size.  Large exogenous HA fragments do not appear to increase elastin matrix 

deposition; on the contrary, a reverse trend is observed.  However, the lack of any HA-

mediated enhancement in per cell elastin output as previously determined for cells 
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cultured on HA gels suggests vital differences in cell response to HA, when delivered 

exogenously and or as a substrate.  It is likely that the observed differences in elastin 

output are due to the combined influence of two possible factors namely, HA-mediated 

stabilization of elastin, and HA-induced differences in cellular elastin output. 

TEM images of the cell layers concur with observed elastin deposition trends, and 

confirm normal fibrillin-mediated mechanisms of elastin matrix deposition.  Most elastin 

in test and control (no HA) cell layers was deposited in the form of amorphous clumps.  

Within this group, many clumps appeared circular and measured roughly 100 nm across, 

supporting our assumption that these are transverse-sections of elastin fibers, several of 

which were seen in axial orientation.  The presence of fibrillin microtubule networks 

surrounding elastin clumps, essential precursors to elastin fiber organization, suggests that 

elastic fiber organization in presence of HA proceeds via normal fibrillin-mediated 

mechanisms.  The greater density of elastin fibers in cell layers cultured with HMW HA 

than smaller HA fragments, implicates HMW HA in the post-translational maturation of 

matrix elastin. 
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Table 2.5. Effects of exogenous HA/ HA fragments on elastin synthesis by adult 

RASMCs (select results only). Biochemical trends were confirmed semi-quantitatively by 

Western blot (tropoelastin only) and by quantifying desmosine crosslinks within the 

elastin matrix. Results represent mean ± SD of n ≥ 4 repeat cultures for each case. 

 

In-house synthesized HA oligomers (4-mers; 0.756 kDa; 0.2 μg/mL) however 

elicited different outcomes; oligomer presence did not influence cell proliferation after 3-

weeks compared to non-additive controls, but increased DNA-normalized output of 

soluble tropoelastin by 1.6 fold and that of matrix elastin by 2.7 fold.  The fraction of total 

synthesized elastin in the crosslinked matrix form as well as the desmosine crosslinks 

were also higher, relatively58.  HA 4-mers also enhanced elastin resistance to enzymatic 

degradation (35% loss vs. 99% loss for non-HA control, 8 h study, 37 oC, 20 U/mL 

elastase) and halved elastin laminin receptor (ELR) activity, suggesting reduced elastin 

degradability.  TEM images showed elastin deposits within oligomer-supplemented 

cultures to be distinct, longitudinally oriented, aggregating fibrils, and clumps, and to be 

less abundant and mostly amorphous in controls.  HA oligomers preserved normal 

fibrillin-mediated elastin matrix deposition.  Increase in fibrous elastin formation over an 

amorphous elastin deposition was also observed (Figure 2.18).  Identical results were 

observed with rough enzymatic digests of HMW HA, containing 4-mer (75 ± 15% w/w) 

as the primary product58.  SDS-PAGE/Western Blot and a desmosine assay semi-

quantitatively confirmed the observed biochemical trends for tropoelastin and matrix 

elastin, respectively.  In comparison to HMW HA supplementation studies, data suggest 
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that pure HA 4-mers or mixtures containing predominantly 4-mers enhance elastin matrix 

synthesis, stability and fiber formation, while HMW HA may only influence elastin 

crosslinking.  Overall, results suggest that HA oligos are highly pro-elastogenic, promote 

elastin fibril formation, and stabilize elastin matrix and may thus be usefully incorporated 

into scaffolds containing HMW HA for guided elastin regeneration. 

 

 

Figure 2.18. TEM images of elastin matrix produced by RASMCs cultured with or 

without HA oligomers268. Elastin fibrils formed when cultured with HA oligomers, unlike 

elastin deposited in the presence of HA-free controls and non-oligomer HA. 

 

Studies conducted on valvular interstitial cells reported by Masters et al.269, 

showed an up-regulation in elastin synthesis upon exposure to scaffold-derived HA 

fragments.  Although the biological effects of HA are somewhat specific to cell type, 

these observations are in general agreement with previous reports that HA fragments, 

particularly the oligomers, interact more with cells.  Since HA fragments can also 

potentially elicit inflammatory cell responses, they must be sparingly incorporated into 
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HA biomaterials after thorough investigation into their size-specific effects on desired 

(e.g., elastogenic)270, and undesired (e.g., inflammatory) cell responses. 

 

2.8. Role of Growth Factors on Elastin Sythesis 

 Crucial challenges to tissue engineering a mimic of native elastic tissue include 

the ability to regulate the amount, quality, ultrastructure and higher scale organization of 

the elastin matrix.  Most of these challenges, however, can be overcome, by providing 

cells appropriate biomechanical and biochemical cues.  Biomechanical regulators have 

been shown to both influence the cell phenotype, and dictate the pattern of matrix 

deposition.  A primary source of biomechanical transductive signals is the cell scaffold 

itself.  Thus, to faithfully regenerate elastin, the scaffold design must replicate micro-

architectural facets of the ECM, such as circumferentially aligned, nano-sized fibers, and 

micron-sized pores to help mimic the attachment, migration, and circumferential 

orientation of SMCs within native vessels271, 272. 

Previous studies have shown that insulin-like growth factor-I (IGF-1) stimulates 

mitogenesis in SMCs, and upregulates elastin synthesis in embryonic aortic tissue65.  

Incubation of confluent cultures with various concentrations of IGF-I resulted in a dose-

dependent stimulation of elastin synthesis, with a 2.4-fold increase over control levels at 

1000 ng/mL of IGF-165.  Besides, this increase in elastin synthesis was reflected by a 

stimulation of the steady-state levels of tropoelastin mRNA.  In a later study by Foster et 

al., it was observed that the effects of IGF-1 are age-dependent and tissue-specific273.  

For example, rats treated with IGF-1 (1.2 mg/kg/day) showed that administration of IGF-
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1 elevated aortic tropoelastin mRNA steady-state levels, whereas lung tropoelastin 

mRNA levels were unaffected.  The steady-state levels of tropoelastin mRNA decreased 

dramatically in both aorta and lung with increased rat-age, with the decrease greater in 

lung than aorta.  Moreover, aortic tissue synthesized decreased amounts of insoluble 

elastin with increased age.  In conclusion, these results establish a direct relationship 

between aortic tropoelastin mRNA levels and the synthesis of insoluble elastin in aging; 

and that administration of IGF-1 increased aortic elastin synthesis throughout the life 

span of the rat, although the proportionate increase diminished with age273.  In a separate 

study, Noguchi et al. observed that when 500 ng/mL of IGF-1 was added, there was 86 ± 

14 and 35 ± 5% increase in tropoelastin and total elastin protein synthesis, respectively, 

by rat neonatal pulmonary fibroblasts, relative to controls67.  This was confirmed by a 

corresponding 95 ± 20% increase in the tropoelastin mRNA/beta-actin mRNA ratio67 and 

a dosage dependence of tropoelastin synthesis on IGF-1 concentration.  Wolfe et al. 

found in neonatal RASMC cultures, that addition of 50 ng/mL of IGF-1 to quiescent cells 

resulted in a 5-fold increase in the steady-state levels of tropoelastin mRNA beginning 

between 2 and 4 h and reaching maximal levels at 8 h274.  Besides. transcription analyses 

of nuclei isolated from IGF-1 -treated cells showed increased synthesis of new 

tropoelastin transcripts indicating that transcriptional activation is a major component of 

IGF-1 up-regulation274. 

Other studies suggest that TGF-β family is involved in regulation of elastin 

deposition during fetal development and tissue repair, as well as in pathological 

conditions.  McGowan et al. examined the influence of TGF-β on the production of 
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elastin by postconfluent cultures of neonatal rat lung fibroblasts275.  They found that the 

tropoelastin was approximately 2-fold greater in the presence of 40 or 100 pM TGF-β 

than in its absence and that this increase in tropoelastin was accompanied by a smaller 

but significant increase in the steady-state level of elastin mRNA275.  Kahari et al. 

examined the effects of TGF-β1 and TGF-β2 on human elastin mRNA abundance, 

promoter activity, and mRNA stability in cultured human skin fibroblasts and found that 

with varying concentrations of TGF-β1 or TGF-β2 for 24 h resulted in a dose-dependent 

increase in the elastin mRNA steady-state levels, with a maximum enhancement of 

approximately 30-fold being noted with 1 ng/mL68.  These results demonstrate that TGF-

β1 and TGF-β2 are potent enhancers of elastin gene expression and that this effect is 

mediated, at least in part, post-transcriptionally.  In addition, TGF-β augments LOX-

mediated crosslinking of soluble tropoelastin into a mature, insoluble matrix layer69, 70. 

The effects of human recombinant interleukin (IL-1β) on elastin gene expression 

were studied in human skin fibroblast cultures by Mauviel et al., who found that 

incubation with IL-1β elevated the elastin mRNA steady-state levels by approximately 3-

4 fold, with a similar increase at the protein level276.  Their data conclusively indicates 

that IL-1β upregulates elastin gene expression in fibroblast cultures as well as in the skin 

in vivo, and that the activation occurs at the transcriptional level276.  On the other hand, 

epidermal growth factor was found to inhibit elastin synthesis in chick aortic SMCs277.  

The inhibitory effect was dose-dependent with a 90% reduction at 100 ng/mL dosage, 

and the degree of inhibition in elastin synthesis was parallel to the decrease in the steady-

state levels of elastin mRNA expression277. 
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In conclusion, elastogenesis can be mediated by different receptors and by various 

growth factors and specific culture conditions as reviewed above62, 278.  Besides growth 

factors, various biomolecules such as LOX helps to crosslink the tropoelastin to give 

elastic fibers.  In the absence of LOX, tropoelastin tends to associate with GAGs due to 

the presence of amino groups in the elastin lysine residues, which offer positive charges 

for binding with negative charges of GAGs.  Besides, in the absence of LOX, such 

electrostatic interaction could be important and prevent newly synthesized tropoelastin 

molecules from spontaneous random aggregation far from the cell surface264, 279.  Other 

investigators showed calcitriol and retinoic acid as factors that promote elastogenesis280-

282. 

 In an effort to improve and control elastin generation and orientation in synthetic 

or natural scaffolds for an ideal tissue-engineered blood vessel substitute, many 

investigators have utilized mechanical stimulation to the constructs, contained within 

bioreactors.  The primary purpose of a bioreactor is to provide, maintain and encourage 

tissue regeneration under permanently controlled culture parameters such as temperature, 

pH, biochemical gradients and mechanical stresses that mimic physiological conditions283.  

Different culture condition can be modified to study their influence on the growth of 

different tissues.  The application of cyclic mechanical stretch simulating distension 

experienced by medial SMCs in vivo, may also significantly influence the phenotype248, 

284, alignment285, 286, matrix deposition287, 288, and growth factor release289, 290 by both 

native and cultured SMCs.  Pertinent to this discussion, pulsatile stretch has also been 

shown to up-regulate elastin synthesis and enhance circumferential alignment85, 291.  
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Typical cyclic mechanical strains employed in bioreactors in vitro for the synthesis of 

elastin by SMCs seeded onto scaffolds range within a frequency of 0.05-1 Hz, an 

amplitude of 0-20%, pulsatile radial stress of 165 beats per minute, and 5% radial 

distention85, 291, 292.   

Bioreactors are particularly crucial for the regeneration of complex three-

dimensional tissues in tissue engineering applications248, 293, since culturing cells alone in 

a dish or in contact with materials in culture medium is not enough to obtain a functional 

tissue.  In one of the most preliminary studies involving PGA scaffolds and collagen 

scaffolds seeded with RASMCs, Kim et al.85, 213, 294 studied the effect of mechanical 

signals on elastin biosynthesis under dynamic stimulation and observed elastin 

biosynthesis on bonded PGA scaffold to be upregulated by dynamic stimulation, relative 

to static culture conditions.  Elastin biosynthesis on collagen sponge scaffold, however, 

did not respond to the stimulation, which indicates that biomechanical stimulation alone 

was not sufficient for elastin biosynthesis but the nature of the scaffold also plays an 

important role.  This finding is in agreement with the observation by Seliktar et al. who 

reported elastin mRNA expression to be independent of the dynamic stimulation on 

collagen gel scaffold295.  In a recent study, Isenberg et al., applied sustained dynamic 

stimulation to vascular cell-seeded collagen gel scaffold in an attempt to promote 

elastogenesis, and the data suggested significant elastin biosynthesis on collagen 

scaffolds291.  In another study, Opitz et al., evaluated the effect of dynamic stimulation on 

elastin biosynthesis, wherein they seeded VSMCs on poly-4-hydroxybutyrate scaffold 

and dynamically pulsated the construct218.  They found out that the elastin content in this 
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setup was significantly lower relative to the native aorta, though no elastin was detected 

in statically matured blood vessels.  Though most of the studies employing mechanical 

stimuli succeeded in improving the general mechanical properties, such as burst strength, 

as a result of collagen biosynthesis, most of them failed to induce elastin biosynthesis292, 

296-298.  Nevertheless, the studies reviewed here are very promising, and future studies 

should be geared towards optimizing these conditions discussed above for specific tissues. 
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CHAPTER 3 

SYNERGY BETWEEN ELASTOGENIC CUES: IMPACT OF TGF-β1 AND HA 

FRAGMENTS 

 

3.1 Introduction 

In chapter 2, we discussed in detail the role of elastin in facilitating elastic recoil 

and resilience necessary for cyclic distension and contraction in blood vessels299.  Since 

compromised elasticity can contribute significantly to ageing of connective tissues and in 

the development of aortic aneurysms and emphysema, vascular elastin must be restored 

or regenerated as a priority.  However, efforts to regenerate lost elastin structures in vivo 

and within tissue-engineered constructs are limited by the progressive destabilization of 

tropoelastin mRNA expression in adult vascular cells24, 300, the current unavailability of 

appropriate cellular cues for upregulating elastin precursor production and its assembly 

into structural matrices, that are faithful mimics of native elastin networks301.  Due to the 

frequently exaggerated and unnatural cell responses to cues such as those provided by 

synthetic biomaterial scaffolds, we seek to employ an alternate regenerative strategy 

based on ECM-derived biomolecular cues, which we expect would be more useful to 

faithfully regenerate matrices that replicate the functional architecture and mechanics of 

native elastin.  A logical elastin regeneration approach is thus to select elastogenic cues 

from amongst a subset of ECM molecules that participate in or regulate elastic fiber 

deposition during development302. 
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Among the ECM molecules involved with elastin synthesis and organization, HA 

apparently plays a key role in elastogenesis through its intimate binding of versican, 

which in turn interacts with other elastin protein-associated microfibrillar proteins 

(fibulin-1, 2) to form macromolecular structures responsible for elastic fiber assembly48, 

51.  Recently, our lab confirmed that elastin protein production by vascular SMCs is also 

influenced by HA fragment size58, 60; particularly, HA oligomers in the 4-6 mer range 

increased production of soluble elastin protein precursors (tropoelastin) and crosslinked 

elastin matrix, and enhanced formation of fibrillin-rich elastic fibers and of elastin matrix 

stability by increasing desmosine crosslink densities.  Other studies have shown that 

elastin matrix synthesis can be modestly enhanced by stimulating vascular SMCs with 

growth factors such as TGF-β163, 66 at physiologically-relevant concentrations, typically 

in the order of 1 ng/mL [10-11 M]303.  Also at low doses [~1 picograms/cell; 1 pg = 10-12 

g], TGF-β1 does not stimulate SMC proliferation304 in a manner it does at higher doses. 

Despite their standalone benefits, it is unknown if TGF-β1 and HA fragments 

cues together will synergistically improve elastin matrix synthesis and assembly, while 

retaining the benefits [e.g., suppressed cell proliferation, elastin-laminin receptor activity] 

of their standalone delivery.  To assess these aspects, we presently investigate the pro-

elastogenic effects of HA fragments supplemented exogenously to the cultured adult rat 

aortic SMCs (RASMCs) concurrent with an elastogenically-effective dose of TGF-β1. 

 

 

 



 90

3.2 Materials and Methods 

3.2.1 HA Procurement and Oligomers Preparation 

HA with molecular weights of 2000 kDa (Genzyme Biosurgery, Cambridge, MA), 

200 kDa (Genzyme Biosurgery), 20 kDa (Lifecore Technologies, Minneapolis, MN), and 

0.756 kDa, designated as HMW, LMW, VLMW and oligomers, respectively, were 

dissolved in sterile serum-free culture medium. 

HA oligomer (4-mers) mixtures were prepared by testicular hyaluronidase digestion 

(Sigma Aldrich, MO; 37oC, 16 h, 160 U/mg) of HMW HA as we previously optimized 

and reported58.  HA 4-mers were prepared from long-chain HMW HA by digestion with 

hyaluronidase.  The protocol used in our current study generates a mixture of oligomers 

containing primarily HA 4-mers (tetrasaccharides), and smaller fractions of HA 6-mers 

and 8-mers (hexa- and octa-saccharides respectively).  Briefly, 20 mg of HMW HA 

(2000 kDa; Genzyme Biosurgery) was digested with bovine testicular hyaluronidase (3.6 

mg; 451 U/ mg), in 4 mL of digest buffer (150 mM NaCl, 100 mM CH3COONa, 1 mM 

Na2EDTA, pH 5.0) at 37ºC for 18 h.  Boiling the mixture in a water bath for 5 min 

following digestion terminated the enzyme activity.  The mixture was centrifuged (500g, 

7 min) to remove the phase-separated coagulated enzyme, dialyzed against water 

overnight, and stored at -20ºC.  HA oligomers in the digestate were subsequently 

analyzed using a Polyacrylamide Gel Electrophoresis.  The molecular weight of the 

generated series of oligosaccharide bands was calculated based upon their mobility in the 

electrophoresis gel, relative to a known ladder of standards. 
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3.2.2 Cell Isolation and Culture 

RASMCs were isolated from adult male Sprague-Dawley rats (weighing 250-300 

g) as per protocols approved by the Animal Research Committee at the Medical 

University of South Carolina and the Clemson University.  Aortal segments were 

removed from euthanized rats from arch to the celiac axis under sterile conditions, and 

spliced lengthwise in petri dishes containing cold phosphate-buffered saline (PBS) 

containing 2 mM Ca2+.  These spliced sections were then transferred to a dish containing 

1-2 mL of collagenase (2 mg/mL; Worthington, Lakewood, NJ) and incubated for 10 min 

at 37°C.  DMEM: F12 media was then added to these collagenase treated samples and 

mixed well with gentle pipetting.  Isolated aortal segments were further chopped 

crosswise into 0.5-mm long pieces and transferred using fine needles onto sterile petri 

dishes, pre-scratched to facilitate cell anchorage/ attachment.  The explants were 

incubated in limited volumes of the above medium at 37°C for a week, to establish 

primary culture.  At the end of one week, the explants were removed carefully and 

sufficient DMEM: F12 added to the dish to promote cell proliferation. 

RASMCs from passages 1-5 were seeded onto 6-well tissue culture plates (Becton 

Dickinson, NJ; A = 10 cm2) at 2×104 cells/ well.  The total volume of medium added per 

well was 5 mL.  A 1-mL bolus of HA/fragments/oligomers prepared in serum-rich 

DMEM (Invitrogen; 10% v/v FBS) was added to cell cultures at an ultimate dose of 0.2 

μg/mL.  In addition, TGF-β1 (Peprotech Inc., Rocky Hill, NJ) was supplemented at a 

final dose of 1 ng/mL.  Thus, cells theoretically received an equivalent of 0.25 fg of TGF-

β1/cell, which closely agrees with the dose supplied in prior published studies305.  Other 
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cultures received either HA/ fragments/ oligomers or TGF-β1 alone, or no supplements 

(controls).  Spent medium from each well was replaced twice weekly during the duration 

of culture, pooled, and frozen.  At 21 days, these aliquots and their corresponding cell 

layers were biochemically analyzed.  The cell layers cultured in the presence of HA 

fragments and TGF-β1 were imaged on an Axiovert 200 (Carl Zeiss, Thornwood, NY) at 

regular intervals. 

 

3.2.3 DNA Assay for Cell Proliferation 

The DNA content of cell layers was quantified at 1 and 21 days of culture using a 

fluorometric assay described earlier by Labarca and Paigen306.  Briefly, cell layers at 1 

and 21 days of culture were detached with 0.25% v/v trypsin-EDTA, pelleted by 

centrifugation, re-suspended in 1 mL of NaCl/Pi buffer (4 M NaCl, 50 mM Na2HPO4, 2 

mM EDTA, 0.02% Na-Azide, pH 7.4), sonicated for 3 min over ice, and a 100 μL aliquot 

assayed.  Actual cell counts were then calculated on the basis of 6 pg DNA/cell, 

assuming this amount remained unchanged through the period of culture306. 

 

3.2.4 Hydroxy-Proline Assay for Collagen 

A Hydroxy-proline (OH-Pro) assay was used to estimate the collagen content 

within test and control cell layers, and in the supernatant medium fraction.  Briefly, the 

cell layers were homogenized in distilled water after 21-days of culture, pelleted by 

centrifugation (10000 g, 10 min) and digested with 1 mL of 0.1 N NaOH (1 h, 98ºC).  

The digestate was then centrifuged to isolate a mass of insoluble, crosslinked elastin.  The 
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supernatant containing solubilized collagen and uncrosslinked matrix elastin was 

neutralized with an equal volume of 12 N HCl, and divided into two equal volumetric 

halves.  One half-volume was hydrolyzed at 110°C for 16 h, dried overnight, and 20 μL 

aliquots of the reconstituted residue assayed for hydroxy-proline content.  The measured 

amounts of OH-Pro were corrected to account for the 4% w/w of OH-Pro contained in 

solubilized elastin.  Total and matrix collagen amounts were then calculated on the basis 

of the 13.2% OH-Pro content of collagen, and normalized to DNA content of 

corresponding cell layers. 

 

3.2.5 Fastin Assay for Elastin Protein 

A Fastin assay (Accurate Scientific and Chemical Corporation, Westbury, NY) 

was used to quantify the total amount of matrix-elastin protein (present as alkali-soluble 

and insoluble fractions), and soluble tropoelastin in lyophilized pooled medium fractions 

from each well.  Since the Fastin assay quantifies only soluble α-elastin, the insoluble 

elastin was first reduced to a soluble form by digesting with 0.25 N oxalic acid (1 h, 

95°C), and filtering the pooled digestate in microcentrifuge tubes fitted with low 

molecular weight cut-off membranes (10 kDa).  The insufficiently crosslinked, soluble 

elastin fraction retained in the oxalic acid-free fraction and in the water-reconstituted 

hydrolysate (from the collagen assay above) were also quantified using the Fastin assay.  

Spent fractions of media pooled at bi-weekly intervals over the 3-week culture period 

were lyophilized and processed for tropoelastin using the Fastin assay.  The measured 
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elastin protein amounts were normalized to corresponding DNA amounts to provide a 

reliable basis of comparison between samples. 

 

3.2.6 Desmosine Assay for Elastin Crosslinks 

In select cases, desmosine crosslink densities within elastin matrices were 

quantified to determine if any of the provided cues enhanced efficiency of crosslinking of 

elastin molecules.  The 21-day-old cell layers cultured with no additives (control), TGF-

β1 alone, or TGF-β1 together with HMW HA or HA oligomers, were pooled and stored 

at -20oC.  Desmosine content was assayed using an ELISA method. 

The cell layers were re-suspended in 1 mL of 5% v/v trichloroacetic acid and 

centrifuged (3000 g, 10 min, 4ºC).  The pellet formed was digested with collagenase type 

VII (Sigma-Aldrich; 12 h, 37ºC) and re-centrifuged (3000g, 10 min, 4ºC) to obtain a 

supernatant (SI) and a pellet.  The pellet was digested with pancreatic porcine elastase 

type III (Sigma-Aldrich; 12 h, 37ºC) to obtain soluble peptide fractions (SII).  Fractions 

SI and SII were pooled together, hydrolyzed with 6 N HCl at 110ºC and dried to powder 

under inert nitrogen over 18 h.  The dried samples were reconstituted in deionized water 

and diluted for assay.  The wells in micro-titer plates to be used for assay were pre-

blocked using desmosine-albumin conjugate (Elastin Products Company, Owensville, 

MO) in 0.05 M sodium carbonate buffer (pH 9.6, 4ºC), then washed with 0.05% v/v 

Tween-20 and phosphate-buffered saline (PBS) solution (1 h, 25ºC).  Desmosine 

standards/ samples were incubated (12 h, 25ºC) with rabbit antiserum to desmosine-

hemocyanin conjugate (Elastin Products Company).  After removal of primary antibody 
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solution, the wells were successively incubated with peroxidase-conjugated anti-rabbit 

IgG 0.05% v/v Tween 20-PBS solution (2 h, 25ºC).  Finally, the colorimetric compound 

2,2′-Azino-bis (Sigma Aldrich; 3-ethylbenzothiazoline-6-sulfonic acid; 0.08 mg in 0.1 M 

citrate phosphate buffer containing 0.003% v/v H2O2; pH 4) was added to the wells and 

incubated (1 h, 25ºC).  Absorbance were read in a UV-spectrophotometer at λ = 405 nm. 

 

3.2.7 LOX Enzyme Activity 

Spent culture medium pooled over 21 days of culture was assayed for LOX 

activity using a fluorometric assay based on measurement of H2O2 released when LOX 

oxidatively deaminates alkyl monoamines and diamines307.  H2O2 was detected using an 

Amplex Red® kit (Molecular Probes)308.  The fluorescence intensities were recorded 

with excitation and emission wavelengths at 560 and 590 nm, respectively. 

 

3.2.8 Western Blot Analysis for Tropoelastin and LOX 

Western blot analysis was performed to semi-quantitatively confirm observed 

biochemical trends in tropoelastin synthesis and to assess LOX protein synthesis.  The 

spent medium from cultures, pooled at bi-weekly over 21-days of culture were 

lyophilized, and assayed for protein content using a DC protein assay kit (Biorad 

Corporation, Hercules, CA).  Optimized sample amounts were mixed with a gel 

electrophoresis loading buffer (2% w/v SDS, 62 mM Tris, 10% v/v Glycerol, 600 mM 

dithiothreitol, 30 µg/mL of Bromophenol blue at pH 7.0, the mixture boiled (100ºC, 3 

min), then cooled (5 min, 4ºC) and flash-centrifuged (500g, 2 min) to reduce 
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condensation prior to loading onto an electrophoresis gel.  Samples were loaded onto 

10% w/v polyacrylamide gels (Novex Tris-Glycine gels, Invitrogen), with prestained 

protein standards ranging from 10-190 kDa (Benchmark Pre-stained Protein Ladder, 

Invitrogen).  Electrophoresis was carried out for 2 h at a constant voltage of 125 V, until 

the dye front touched the bottom of the gel.  Proteins entrapped within the gel were 

transferred to a pre-wetted PVDF hydrophobic membrane (Immobilon-P membrane; 

Millipore Corporation, MA; 2 h, 25 V) immersed overnight in blocking buffer (5% w/v 

non-fat dry milk (Bio-Rad) solubilized in 0.05% v/v Tween 20-PBS) and developed 

using Western Breeze (Chromogenic western blot immunodetection kit, Invitrogen). 

Protein bands detected with primary rabbit anti-rat polyclonal antibodies to elastin 

and fibrillin proteins (Elastin Products Company) and the 31 kDa active LOX protein 

(Santa Cruz Biotechnology, Santa Cruz, CA), and visualized in a Chemi-Imager IS 4400 

system (Alpha Innotech, San Leandro, CA).  The integrated density value of individual 

bands corresponds to the amount of tropoelastin in the loaded samples.  The total amount 

of tropoelastin in the loaded samples was quantified on the basis of a total pixel intensity 

of 255 that was assigned to totally white and a pixel intensity of zero assigned to 

completely dark bands. 

 

3.2.9 RT-PCR for Elastin mRNA Expression 

RNA was extracted from RASMC cultures using an RNeasy kit (Qiagen, 

Valencia, CA) and samples were loaded onto RNeasy mini columns (Qiagen).  After 

DNase treatment, total RNA was eluted with 30 μL of RNase-free water and its 
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concentration determined by absorbance measurement at 260 nm, and stored at −80°C.  

cDNA was transcribed with Omniscript Reverse Transcriptase (Qiagen) using 1 μg of 

DNase-treated total RNA and random hexamer primers (Roche).  Samples (20 μL) were 

incubated (42°C, 50 min), then the RT inactivated (70°C, 15 min).  Reverse transcriptase 

semi-quantitative PCR (RT-PCR) was performed in the ABI Prism 7700 sequence 

detection system (PE Applied Biosystems) using GoTaq DNA polymerase and PCR 

nucleotide mix (Promega).  Reaction mixtures (20 μL) contained 1 μL cDNA, 18 μL of 

master mix (Promega) and 1 μL of appropriate primers.  Optimal primer sets were 

designed for each target gene using Primer Express (PE Applied Biosystems) and 

concentration optimized.  DNA sequences were obtained from GenBank 

(www.ncbi.nlm.nih.gov) and products <150bp with melting temperatures of 55-65°C 

were selected.  For gene expression, we used the primer sequences for elastin rattus: 5′-

CCTGGTGGTGTTACTGGTATTGG-3′ (forward) and 5′-

CCGCCTTAGCAGCAGATTTGG-3′ (reverse).  For each sample, gene expression was 

normalized to control samples (cells in medium alone) and the reaction success was 

compared to expression of the GAPDH housekeeping gene. 

 

3.2.10 Amino Acid Analysis 

OH-proline and amino acid content were evaluated in protein hydrolysates (18 h, 

6 M HCl, 110ºC) of respective cell layers using liquid chromatography/mass 

spectrometry performed via methods described previously309, but modified to detect 

desmosine in tandem MS mode. 
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3.2.11 Immunofluorescence Detection of Elastin, Fibrillin and LOX 

Immunofluorescence techniques were used to confirm the presence of elastin 

protein within cell layers, and LOX expression for those treatments that appeared to 

upregulate elastin protein synthesis.  Fibrillin presence within the cell layers was also 

verified to confirm whether the process of elastin matrix formation was mediated by pre-

deposition of a fibrillin scaffold on which amorphous elastin protein was deposited to 

form a composite fiber.  At 21 days, the cell layers were fixed with 4% w/v 

paraformaldehyde for 10 min, and labeled with Alexa 488 Phalloidin (Molecular Probes; 

1:20 dilution; 20 min, 25°C), a marker for smooth muscle cell actin and then incubated 

with blocking serum (5% donkey serum, 0.3% Triton-100 in PBS; 20 min; 25°C).  

Elastin and fibrillin proteins detected with respective polyclonal antibodies (Elastin 

Products Company), as well as LOX (Santa Cruz Biotechnology) was visualized with a 

Rhodamine-conjugated donkey anti-rabbit IgG secondary antibody (Chemicon).  Cell 

nuclei were visualized with the nuclear stain 4′, 6-diamino-2--phenylindole 

dihydrochloride (DAPI) contained in the mounting medium (Vectashield; Vector Labs, 

CA). 

 

3.2.12 Matrix Ultrastructure 

Transmission electron microscopy (TEM) was used to characterize the 

ultrastructure of the elastin matrix.  Control and test cell layers were fixed with 2.5% v/v 

glutaraldehyde, post-fixed in 1% v/v osmium tetroxide (1 h), dehydrated in graded 

ethanol, embedded in Epon 812 resin, sectioned, placed on copper grids, stained with 
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uranyl acetate and lead citrate, and visualized on a Hitachi H7600T TEM.  For 

immunogold labeling procedure to visualize fibrillin, the ultra-thin sections of cell layers 

(80-100 nm) were first blocked for 1 h in PBS containing 3% skim milk and 0.01% 

Tween-20, followed by washing (PBS, five changes, 5 min each).  The sections were then 

incubated overnight at 4oC with rabbit anti-VHb antibody (1:500 in PBS containing 0.3% 

skim milk and 0.001% Tween-20), followed by washing.  The bound antibodies were 

visualized by incubating the sections for 1 h with goat anti-rabbit gold conjugate (10 nm; 

Sigma), diluted 1:20 in PBS (containing 0.3% skim milk and 0.001% Tween-20) at room 

temperature.  The grids were finally washed on drops of water (five changes, 5 min each) 

before being stained with 2% aqueous uranyl acetate at room temperature. 

 

3.2.13 Statistical Analysis 

All biochemical data were obtained from nine independent repeat data per case, 

and were analyzed using Student’s t-test and one-way ANOVA, assuming unequal 

variance and differences deemed significant for p < 0.05.  The data was observed to 

follow a near Gaussian distribution in all the cases and the mean and standard deviation 

were calculated accordingly.  For immunolabeling and TEM, test and control samples 

were analyzed at least in triplicate. 
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3.3 Results 

3.3.1 Cell Proliferation 

Figure 3.1 shows proliferation of RASMCs in the presence of TGF-β1 or 

HA/fragments, alone or together.  Over 21 days of culture, non-additive control cells 

proliferated 3.4 ± 0.5 times the original seeded cell number, while addition of TGF-β1 

suppressed this ratio to 0.5 ± 0.1 times (p = 0.005 vs. controls).  When HA oligomers 

alone were present, the proliferation ratio was modestly lower than controls (p = 0.02 vs. 

control).  Except in the presence of HMW HA, concurrent delivery of TGF-β1 and HA 

fragments inhibited cell proliferation to extents that inversely correlated to HA size. 
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Figure 3.1. Effect of HA fragments and TGF-β1 on RASMCs. Proliferation ratios 

represent DNA content at 21-days to relative to day-1 of culture. Values shown represent 

mean ± SD of 3 repeat samples/ case.  Differences vs. controls significant (*) for p < 0.05. 

 

3.3.2 Matrix Synthesis 

Relative to collagen matrix synthesis in control cultures (647 ± 21 ng/ng of DNA), 

TGF-β1 alone inhibited the same by 0.5 ± 0.2 –fold (p = 0.009 vs. control; Figure 3.2A), 

while HA oligomers alone induced a marginal 1.2 ± 0.2 -fold increase (p = 0.12 vs. 

controls).  However, when TGF-β1 was provided together with HA oligomers, collagen 

matrix synthesis was upregulated drastically (14 ± 3 –fold).  Concurrent delivery of TGF-

β1 and non-oligomeric HA inhibited collagen synthesis in inverse correlation to HA 

fragment size (Figure 3.2A).  The treatment-specific trends in synthesis of collagen 

matrix were identical to their differences in total collagen output (pooled medium and 

matrix fractions).  Figure 3.2B shows fold-changes in total collagen production relative 

to non-additive control cultures (22059 ± 668 ng/ng of DNA). 

TGF-β1 or HA oligomers alone stimulated tropoelastin production in controls (3.9 

± 0.9 μg/ng of DNA) by 1.2 ± 0.3 and 1.5 ± 0.2 –fold, respectively (p = 0.12 and 0.01 vs. 

controls; Figure 3.3A).  When provided together with TGF-β1, HA oligomers stimulated 

an 8.0 ± 0.1 –fold increase in tropoelastin synthesis relative to controls (p < 0.001) while 

HMW HA inhibited the same to a 0.4 ± 0.05 -fraction of control values (p = 0.001 vs. 

controls); non-oligomeric HA had no significant effect on tropoelastin output.  Western 
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blot analysis of tropoelastin in pooled spent medium confirmed these trends observed 

from biochemical assay (Figure 3.3B). 

Elastin protein incorporated into the deposited matrix was measured as a sum of a 

highly cross-linked alkali-insoluble fraction, and an alkali-soluble fraction.  The total 

DNA-normalized output of soluble matrix elastin protein (Figure 3.3C) broadly mirrored 

HA fragment size-specific trends reported for tropoelastin.  While TGF-β1 alone or with 

HA/ fragments had no significant effect relative to controls (3403 ± 121 ng/ng of DNA), 

HA oligomers induced 8 ± 0.2 -fold increase in soluble matrix elastin protein synthesis (p 

< 0.001 vs. controls).  Relative to controls, synthesis of alkali-insoluble, crosslinked 

elastin protein in the matrix was enhanced 4.4 ± 0.1 -fold by TGF-β1 alone (Figure 

3.3D), and was further increased to 5.5 ± 0.4 and 4.5 ± 0.4 -fold on addition of HA 

oligomers and VLMW HA respectively (p < 0.001 vs. controls for all these cases); HMW 

HA however significantly inhibited deposition of crosslinked elastin protein relative to 

controls (p < 0.01). 

As shown in Figure 3.3E, relative to non-additive control cell layers (28 ± 4 pg 

desmosine/ ng DNA), cells cultured with TGF-β1 alone showed modest, but significant 

increases in desmosine synthesis (1.07 ± 0.03 -fold; p < 0.02 vs. controls), while TGF-β1 

together with HA oligomers (or HMW HA) significantly inhibited desmosine synthesis 

(0.71 ± 0.02 -fold; p < 0.01 vs. controls). 
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3.3.3 LOX Functional Activity and Protein Expression 

Relative to control cultures, addition of TGF-β1 significantly inhibited cellular 

LOX activity (p < 0.001; Figure 3.4A), while HA oligomers with or without TGF-β1 had 

no significant effect (p = 0.7 and 0.42 vs. controls).  Again, HMW HA had no effect on 

LOX activity (p = 0.12 vs. controls), though marginal inhibition was noted when TGF-β1 

was also provided (p = 0.025 vs. controls).  Western blot analysis of LOX protein 

exhibited trends similar to that for synthesis of matrix elastin protein (Figure 3.4B).  

TGF-β1 alone or together with HA oligomers stimulated 1.7 ± 0.1 and 2.2 ± 0.1 -fold 

increases respectively in LOX protein amounts compared to controls (p < 0.001 vs. 

controls in both the cases); larger HA fragments had no effect.  HMW HA and TGF-β1 

together inhibited control levels of LOX synthesis by 40 ± 7% (p < 0.001 vs. controls). 
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Figure 3.2. Impact of HA fragments and TGF-β1 on protein synthesis. (A) collagen 

matrix protein synthesis and (B) total collagen output (pooled medium and matrix 

fractions).  Cells were cultured for 21 days.  Data shown represent mean ± SD of 9 

repeats/ case and are shown normalized to controls.  Differences vs. controls were 

significant (*) for p < 0.05. 
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Figure 3.3. Effect of HA fragments and TGF-β1 alone and together on protein synthesis.   

Tropoelastin synthesis (A: Fastin assay; B: SDS-PAGE), alkali-soluble (C), and insoluble 

elastin matrix proteins (D). Case-wise trends for DNA-normalized amounts of desmosine 

mirrored that in insoluble matrix elastin protein (E).  DNA normalized data represent 

mean ± SD of 3 repeats/ case, and are shown as fold change compared to controls.  

Differences vs. controls were significant (*) for p < 0.05. 
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3.3.4 Elastin mRNA Expression 

RT-PCR studies showed TGF-β1 and HA oligomer cues to synergistically 

upregulate elastin mRNA expression by 1.52 ± 0.1 –fold versus control cultures (p = 

0.001), more than that induced by TGF-β1 alone (1.14 ± 0.07 -fold; p = 0.03 vs. controls) 

or HA oligomers alone (1.05 ± 0.06 -fold; p = 0.07 vs. controls). 

 

3.3.5 Amino Acid (AA) Analysis of Elastin 

AA analysis was performed on insoluble crosslinked elastin protein isolated from 

control cell layers and those which received cues deemed to be most elastogenic (TGF-β1 

and HA oligomers).  The AA profile in cultured elastin protein closely matched that 

previously reported for aortic elastin protein isolated from rats of different strains.  The 

AA content of elastin protein cultured in presence of elastogenic cues, and in their 

absence was dominated by the non-polar amino acids, glycine, alanine, proline and valine 

(65 % vs. 63.5 % respectively), similar to that described in literature (~ 71%)310, 311.  

Desmosine (Des) and isodesmosine (Ide), vital but minor constituents of crosslinked 

elastin protein312, were barely resolved in the present analysis, while hydroxyproline 

(Hyp), which is present in elastin protein as a minor constituent (< 3 %), was sparingly 

detected (0.5 %) as expected. 

 



 107

 

Figure 3.4. (A) LOX enzyme activities in test cultures at 21 day culture periods. (B) 

SDS-PAGE/ Western blots showed that TGF-β1 alone or together with HA oligomers/ 

fragments enhanced LOX protein synthesis.  All the data are shown normalized to LOX 

activities in controls.  Data shown represent mean ± SD of 9 repeats/case and are shown 

normalized to controls.  Differences vs. controls were significant (*) for p < 0.05. 
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3.3.6 Immunofluorescence Studies 

All cultures (Controls, TGF-β only, TGF-β + Oligomers) achieved confluence by 

day 21 of culture at which time they were immunolabeled. However cell densities in non-

control cultures were visibly lower than in the control cultures (phase contrast images in 

Figure 3.5A).  Immunofluorescence micrographs of 21-day old cell layers (Figure 3.5B) 

consistently showed significantly higher amounts of elastin protein and fibrillin (red 

fluorescence) in cultures that received either TGF-β1 alone or TGF-β1 and HA oligomers, 

than those that received HMW HA fragments and TGF-β1 (not shown), or no additives 

(control).  Although elastin distribution within test and control cell layers was mostly 

uniform, occasional clumps of higher cell density were seen, which corresponded to 

much greater elastin localization at such sites (Figure 3.5D, E). However, LOX 

distribution within all test and control cell layers was fairly sparse.  Cell layers untreated 

with primary antibodies (negative controls) exhibited no red fluorescence, confirming 

lack of non-specific binding of the fluorophore-conjugated secondary antibody (Figure 

3.5C). 

 

3.3.7 Ultrastructure of Matrix Elastin 

Figure 3.6 shows representative transmission electron micrographs of elastin 

matrices from 21-day cultures.  As did HA oligomers alone, TGF-β1 stimulated 

deposition of multiple layers of elongated, aggregating elastin fibrils uniformly 

sandwiched between alternating cell layers, different from the discrete clumps of 

amorphous elastin protein that were distributed within control cell layers.  When both 
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TGF-β1 and HA oligomers were provided together, elastin fiber formation was likewise 

favored, though the matrix contained much greater number of fully-formed fibers (300-

400 nm diameter) than in cultures provided with HA oligomers alone.  Fibrillin 

(immunogold particle-stained), which appeared in transverse sections as darkly stained 

nodules, were located at the periphery of aggregating elastin fiber bundles, signifying 

normal elastic fiber assembly. 
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Figure 3.5. (A) Phase contrast images of 21-day cultures that did not receive additives 

(controls), or received TGF-β, or TGF-β and HA oligomers show that confluence was 

attained at the time of immunolabeleing, although cell density in the last-said culture was 

much lower. (B) TGF-β1 alone or together with HA oligomers, enhanced elastin, fibrillin, 

and LOX (red) production relative to non-additive control cultures; (C) Negative 

immunolabeling controls did not exhibit any red fluorescence confirming lack of non-

specific binding of the fluorophore-conjugated secondary probe(s). Although distribution 

of the labeled proteins was mostly homogenous (E), occasional clumps of high cell 

density were seen (D), which co-localized with a higher density of elastin matrix. DAPI-

stained cell nuclei fluoresce blue. Immunufluorescence images are typical of ≥3 

cultures/case.  All cultures were imaged under identical conditions. Magnification: 20× 

(panels A, D, E) and 40× (B, C). 

 

3.4 Discussion 

In a series of prior publications58, 60, 313, we showed that HA upregulates elastin 

precursor (tropoelastin) and matrix synthesis by adult RASMCs.  Specifically, HA 

oligomers enhanced elastin matrix assembly, maturation, and stability.  Although larger 

HA fragments and long-chain (HMW) HA did not enhance tropoelastin synthesis, they 

enhanced elastin matrix deposition, possibly by coacervating soluble tropoelastin via 

opposite charge interactions53, which supports our prior hypotheses that HA indirectly 

facilitates elastogenesis.  Other studies have shown TGF-β1 to modestly enhance 

tropoelastin mRNA, suppresses production of elastin-degrading MMPs and elastases, 
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enhance mRNA expression for the tissue inhibitor of metalloproteinase (TIMP-1), and 

augments LOX mRNA expression and activity critical to elastin/collagen crosslinking 

and fiber assembly314. 

 

Figure 3.6. TGF-β1 and HA oligomers alone, or together, promote elastin fiber 

formation, as seen in transmission electron micrographs.  Control cultures contained only 

amorphous clumps.  Elastin was assembled as fibrils within a peripheral fibrillin scaffold 

(see black dots) and aggregated to form mature fibers ~ 400 nm in diameter, typical of 

fully-formed fibers. 

 

Thus, we presently sought to investigate if concurrent delivery of HA fragments 

and TGF-β1 can synergistically enhance tropoelastin synthesis and matrix assembly, 

fiber formation, and stability beyond that possible with either of the cues alone, while 
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maintaining SMCs quiescent (non-proliferative) as in healthy vessels.  Previously, we 

showed large HA fragments (20 and 200 kDa) to modestly increase cell proliferation in 

dose-independent manner60, possibly as a downstream effect of phosphorylating the 

primary CD44 cell surface HA receptor315, while HA oligomers (2 μg/mL) did not have 

any effect.  Here we show 0.2 μg/mL-doses of HA oligomers to significantly inhibit 

SMC proliferation, indicating dose-specificity of cell responses to these oligomer cues.  

We have also determined that 0.2 μg/mL is the minimum dose of HA oligomers that 

induces a perceptible increase in tropo- and matrix elastin synthesis, though these effects 

are highly attenuated relative to a 2 μg/mL dose. 

The stimulatory effect of TGF-β1 on elastin protein synthesis, both at the mRNA 

and protein levels, has been demonstrated in various in vitro models316.  The predominant 

effect of TGF-β1 appears to be the stabilization of elastin mRNA166, although a TGF-β1-

responsive element has been identified in the human elastin promoter317, 318.  Though our 

current findings that TGF-β1 (1 ng/mL, 0.25 fg/cell) inhibits cell proliferation confirm 

these prior observations, it is interesting that HA fragments/ oligomers when concurrently 

provided, maintain these trends.  It is likely that the respective cellular-response initiating 

mechanisms of these cues operate differently, with HA fragments/ oligomers and TGF-β1 

binding to different cell-surface receptors.  In contrast, TGF-β1 has no effect on cell 

proliferation in the presence of long-chain HMW HA.  We believe this might be due to 

long-chain HA forming a pericellular coat to isolate cells from each other and from 

signaling biomolecules319.  Regardless, the utility of HA fragments/oligomers and TGF-

β1 together to attenuation of SMC hyper-proliferation is clear. 
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TGF-β1 addition Biochemical 
outcomes/ ng DNA No 

HA 
HA 

Oligomers 
VLMW 

HA 
LMW 
HA 

HMW 
HA 

Proliferation ratio = ↓↓ = = ↑ 
Total collagen ↑ ↑↑ ↑ ↑ ↓ 
Tropoelastin = ↑↑ = = ↓ 

Matrix Elastin ↑ ↑↑ ↑ ↑ ↓ 
Total elastin ↑ ↑↑ ↑ ↑ ↓ 

 

Table 3.1. Summary of treatment-specific trends in proliferation of adult RASMCs and 

in matrix protein synthesis.  ↑ and ↑↑ indicates moderate but significant and dramatic (> 

5-fold) increases respectively, = indicates no significant changes, while ↓ and ↓↓ 

indicates likewise decreases in the biochemical outcomes, all measured on a per ng of 

DNA basis. 

 

Treatment-specific trends in cellular matrix protein synthesis are indicated in 

Table 3.1.  Biochemical analyses showed that total cellular elastin protein output, as 

represented by the sum of tropoelastin and matrix elastin, was modestly enhanced by 

TGF-β1 and was indicated to be at least partly due to upregulation of elastin mRNA.  HA 

oligomers (0.2 μg/mL) modestly enhanced tropoelastin synthesis (48 ± 23%) though 

these effects are likely elicited via post-translational mechanisms (no increase in elastin 

mRNA).  HA oligomers (0.2 μg/mL) had no impact on synthesis of matrix elastin protein 

on a per cell basis, although we earlier showed doses of 2 μg/mL to double elastin matrix 

production58.  Thus, elastin matrix synthesis by RASMCs positively correlates to HA 

oligomer dose, unlike HMW HA or larger HA fragments, as previously demonstrated60.  

We also showed that HA oligomers enhance LOX production but not activity, and 

enhance desmosine crosslinking relative to controls.  Collectively, our data indicates that 
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at the tested dose, HA oligomers do not particularly increase recruitment of tropoelastin 

(i.e., yield of matrix from elastin precursors), as evidenced by lack of effect on elastin 

matrix amounts, but facilitate more robust crosslinking of generated matrices.  In contrast, 

TGF-β1 appears to specifically facilitate tropoelastin recruitment for crosslinking and 

matrix assembly, as borne out by increases in the ratios of matrix to total (i.e., matrix + 

tropo) elastin over controls (Figure 3.3).  Possibly, improved tropoelastin recruitment 

and crosslinking may be achieved by the observed TGF-β1-induced increases in LOX 

protein synthesis and activity.  TGF-β1 does not appear to enhance the extent of 

crosslinking itself, since desmosine amounts on a per cell basis remained unchanged 

relative to controls.  Possibly due to the exclusive nature of long-chain HA, concurrently 

provided TGF-β1 did not have any impact on desmosine crosslinking. 

TGF-β1 and HA oligomers synergistically enhanced tropoelastin synthesis almost 

9-fold.  Since these cues only upregulated elastin mRNA expression by ~ 1.6 fold, not 

commensurate with total tropoelastin synthesis, it is possible that these cues also impact 

cells post-translationally, besides upregulating elastin mRNA expression.  These cues 

together also greatly improved elastin precursor recruitment and crosslinking efficiency, 

as evidenced by multi-fold increases in both soluble and insoluble matrix elastin relative 

to controls, and of matrix to total elastin ratios (0.45 vs. 0.1 for controls).  Further studies 

suggested that the improved crosslinking efficiency is possible, since a ~ 2.2-fold 

induction in LOX production was induced, though LOX activity itself remained 

unchanged.  These upregulatory effects were not observed when TGF-β1 and long-chain 

HA or non-oligomeric HA fragments were concurrently delivered.  While the lack of 
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effects observed with long-chain HA may be sourced to its ability to isolate cells from 

TGF-β1, differences in results obtained with large HA fragments and oligomers are likely 

due to differences in their interactive mechanisms with cells.  HMW HA and non-

oligomeric HA fragments primarily interact with CD44, to intracellularly regulate cell 

proliferation, motility320, and other cell activities.  Differently, HA oligomers likely 

interact via toll-like receptors 4 (TLR-4) and by CD44 clustering, to elicit responses quite 

different from those by larger HA fragments.  Since our oligomer mixtures here contain 

mostly 4-mers (75% w/w) and 6-mers, likely, both CD44 and TLR-4 together elicit 

unique cell responses.  Surprisingly, the ~ 6-fold increase in desmosine crosslinks per 

nanogram of DNA induced by HA oligomers (2-fold increase/ng of elastin matrix)58 was 

restored to baseline control levels upon concurrent delivery of TGF-β1.  Thus, TGF-β1 

may competitively inhibit HA oligomer-induced effects by preferentially interacting with 

cell surface proteins that modulate intracellular mechanisms that lead to desmosine 

crosslink formation.  A future challenge is to dramatically enhance LOX activity and 

production to enhance desmosine crosslinking efficiency and thus matrix formation. 

Sustained over-expression of TGF-β1 can potentially induce matrix 

calcification321.  However, Von-Kossa staining of 21 day-old cell layers (not shown), 

cultured with the elastogenic bolus of TGF-β1 and HA oligomers indicated no calcium 

accumulation.  Thus, the 1 ng/mL dose (i.e., 10-11 M) of TGF-β1 delivered in this study is 

elastogenically useful and yet safe so as to not induce matrix calcification. 

Imaging and ultrastructural analyses of synthesized elastin matrices qualitatively 

validated biochemical observations.  Bundles of elastin fibrils distributed between cell 
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layers were seen in HA oligomer-supplemented cultures.  In contrast, we previously 

showed cells cultured with large HA fragments and HMW HA to deposit amorphous 

elastin clumps, as did control cultures in the present study.  The fibrillar elastin generated 

was continuous and associated laterally with surrounding fibrils to form larger, thickened, 

elastin fibers.  The abundant presence of fibrillin microfibrils at the periphery of the 

amorphous clumps confirmed that elastin matrix assembly, involving pre-deposition of a 

fibrillin scaffold for deposition of amorphous elastin, was maintained.  Similar to HA 

oligomers, TGF-β1 stimulated deposition of multiple layers of elongated, aggregating 

elastin fibrils and vastly different from the amorphous elastin clumps seen in controls.  

When both TGF-β1 and HA oligomers were provided concurrently, elastin fiber 

formation was likewise favored, though the matrix contained a visibly much greater 

number of fully-formed fibers than present in cell layers that received oligomers alone.  

As in oligomers- or TGF-β1-only cultures, here too, fibrillin microfibrils were localized 

at the periphery of aggregating elastin fiber bundles, signifying normal elastic fiber 

assembly. 

 

3.5 Conclusions of the Study 

1. The outcomes of this study demonstrate that TGF-β1 and HA oligomers (hereto 

referred as cues) synergistically and dramatically improve elastin matrix 

regeneration by adult vascular SMCs, a cell type otherwise capable of only 

minimal elastin turnover.  These synergistic effects are particularly striking since 
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the HA oligomers cues themselves were of such low doses to impact elastin 

synthesis very modestly. 

2. HA oligomers and TGF-β1 cues together inhibit cell proliferation and upregulate 

synthesis of tropo- and matrix elastin, improve tropoelastin recruitment for matrix 

assembly, and crosslinking efficiency, likely via increased LOX production. 

3. In addition, these cues hasten maturation of elastin fibers relative to cultures 

receiving either of these cues alone.  Importantly, sustained delivery of 

elastogenic doses of TGF-β1 (1 ng/mL) does not appear to induce matrix 

calcification. 

4. These cues might be of tremendous utility to restore elastin matrix 

homeostasis in de-elasticized vessels and tissue engineering constructs, and 

possibly even serve as an in vitro model to investigate elastogenesis during 

early morphogenesis and wound healing in adult tissues. 
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CHAPTER 4 

SYNERGY BETWEEN ELASTOGENIC CUES: IMPACT OF IGF-1 AND HA 

FRAGMENTS 

 

4.1 Introduction 

This study was conducted as part of our ongoing efforts to identify and optimize 

biomolecular cues which will upregulate elastin synthesis and organization by RASMCs.  

As explained in chapter 2, studies conducted by our group58, 60 have shown HA fragments 

(MW < 1 MDa), especially HA oligomers (<10 kDa) provided to cells in a serum-rich 

environment, to be more cell-interactive and far more elastogenic than the relatively 

bioinert long-chain HA (MW > 2 MDa).  Other studies with different cell types have 

shown that elastin synthesis and mRNA expression levels may be similarly enhanced by 

stimulating cells with growth factors such as IGF-164, 65, 67.  Noguchi et al. observed that a 

500 ng/mL dosage of IGF-1 resulted in 1.8 ± 0.14 and 1.35 ± 0.05–fold increases in 

soluble tropoelastin precursors and total (i.e., tropoelastin + matrix) elastin synthesis, 

respectively, by neonatal rat pulmonary cells, relative to controls67.  In addition, IGF-1 

has been shown to augment lysyl oxidase (LOX), a matrix crosslinking enzyme which 

mediates crosslinking of soluble tropoelastin into a mature, insoluble matrix layer322. 

Therefore, it is highly possible that HA/ fragments provided together with IGF-1 

could provide greater benefits to tropoelastin synthesis, elastin matrix assembly/ stability, 

and simultaneously inhibit SMC over-proliferation, a common outcome in elastin-

compromised vessels and other diseased vascular sites, where tissue engineered 



 119

constructs may be grafted.  Since cell responses to HA/ fragment/ oligomers-based cues 

(in a physiologic serum-rich environment) could potentially be modulated by the 

presence of IGF-1, it is necessary to comprehensively evaluate the impact of different-

sized HA fragments together with IGF-1, to identify that combination, which could be 

most usefully employed to faithfully regenerate elastin structural networks.  Once 

identified, these cues could be presented to cells exogenously or incorporated within HA 

or non-HA based biomaterial scaffolds to elicit the desired elastogenic cell responses in 

vivo or in vitro. 

Thus, in the current study, we first investigated the impact of 500 ng/mL of IGF-1 

on elastogenesis by adult rat aortic smooth muscle cells (RASMCs) in a serum-rich 

culture environment.  We then evaluated the benefits, if any, of concurrent delivery of 

HA/ fragments/ oligomers and IGF-1 on elastin synthesis, organization and maturation by 

adult RASMCs.  We hypothesize that these results will not only help in designing 

biomaterial-based or other strategies to enable faithful elastin matrix regeneration, but 

also in understanding the role of HA and IGF-1 on regulation and maintenance of 

vascular matrix homeostasis. 

 

4.2 Materials and Methods 

4.2.1 Cell Culture 

HA with different molecular weights were commercially obtained, and oligomers 

were prepared in the lab as per the protocols explained in section 3.2.1.  Adult RASMCs 

from low passages (P3-5) were propagated in expansion medium (DMEM, Invitrogen, 
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USA) containing 10% v/v FBS and 1% v/v penstrep, and seeded onto 6-well tissue 

culture plates at a density of 3×104 cells/ well.  A 1-mL bolus of HA/fragments/oligomers 

prepared in serum-rich medium was added to cell cultures at an ultimate dose of 0.2 

μg/mL, except for control cultures which received serum-rich medium without HA.  In a 

prior study, we deemed this to be the minimal dose of HA fragments (specifically, of HA 

4mers) that induces a perceptible increase in both tropo- and matrix elastin synthesis.  For 

the purpose of easy comparison with published literature in the field, we selected to study 

an IGF-1 dose (500 ng/mL) that was previously shown to cause maximal elastogenic 

upregulation of adult rat cells67.  IGF-1 (Peprotech Inc., USA) was diluted in PBS to the 

above dose and supplemented exogenously to the culture wells, except in control cultures 

which received no supplements.  The medium was changed twice weekly and all 

experimental conditions and controls were performed in triplicate.  The spent medium 

over the 21-day culture period was pooled, frozen and biochemically analyzed along with 

their corresponding harvested cell layers. 

 

4.2.2 Biochemical Assays 

The DNA content in cell layers was measured at 1 and 21 days of culture to 

determine the proliferation of SMCs and to normalize the measured amounts of 

synthesized matrix, according to protocol explained in section 3.2.3. 

The collagen content within the cell layers and in the pooled supernatant medium 

fractions was estimated using a hydroxy-proline assay, described in section 3.2.4.  The 

amounts of matrix elastin (alkali-soluble and insoluble fractions) and soluble tropoelastin 
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(in pooled spent medium) were quantified using a Fastin assay (Accurate Scientific Corp), 

as detailed in section 3.2.5.  The measured amounts of synthesized matrix were 

normalized to their respective DNA amounts to provide a reliable basis of comparison 

between samples, and to broadly assess if the observed changes in the amount of matrix 

synthesized could possibly be due to increases in elastin production on a per cell basis. 

The desmosine crosslink densities within elastin matrices were quantified for 

selected cases using ELISA, as described in section 3.2.6.  The desmosine amounts/ ng of 

DNA were compared to the DNA-normalized amounts of insoluble matrix elastin from 

corresponding cell layers.  The LOX enzyme activity within the cell culture layers was 

determined using a flurometric assay based on generation of H2O2 when LOX acts on a 

synthetic substrate, described in detail in section 3.2.7.  Western blot analysis of proteins 

within the pooled medium fractions at day 21 was performed using methods described in 

section 3.2.8, to semi-quantitatively confirm observed biochemical trends in tropoelastin 

synthesis and to assess LOX protein synthesis. 

 

4.2.3 Immunofluorescence Studies and Matrix Structure 

As explained in detail in section 3.2.11, immunofluorescence techniques were 

used to confirm the presence of elastin, fibrillin within selected cell layers, and LOX 

expression for those conditions that appeared to upregulate elastin synthesis.  The 

ultrastructure of insoluble matrix elastin within control cell layers and those cultured in 

the presence of IGF-1 alone or together with HA fragments deemed most beneficial to 
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synthesis of structural matrix elastin (i.e., HMW HA) was characterized using high-

resolution transmission electron microscopy (detailed procedure in section 3.2.12). 

All experiments were performed in triplicate unless otherwise specified and the 

quantitative results are reported as mean ± SD.  Statistical significance between and 

within groups was determined using one-way ANOVA, assuming unequal variance.  

Results were considered statistically significant compared to controls if p < 0.05. 

 

4.3 Results 

4.3.1 Cell Proliferation 

All cultures were still sub-confluent (~80% confluent) at 3 weeks of culture. The 

proliferation ratios of RASMCs cultured in the presence of either IGF-1 alone or together 

with HA cues are shown in Figure 4.1; while that in the presence of HA/ fragments alone 

was determined in our earlier studies58, 60.  Addition of IGF-1 alone suppressed the 

proliferation of cultures by 55 ± 5 % (p = 0.005 vs. control) at 21 days relative to control 

cell layers cultured without supplements in serum-rich medium.  Concurrent delivery of 

IGF-1 and HA oligomers stimulated cell proliferation by 37 ± 15 % (p = 0.03 vs. control), 

while addition of other HA fragments in the presence of IGF-1 inhibited cell proliferation 

to extents that negatively correlated to HA fragment size (Figure 4.1). 
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Figure 4.1. Proliferation ratios of RASMC cultures supplemented with IGF-1 (500 

ng/mL) alone or together with HA cues (0.2 μg/mL).  Data shown represent mean ± SD 

of DNA content of cell layers after 21 days of culture, normalized to initial seeding 

density and further normalized to control cultures that received no additives (n = 3/case).  

P < 0.05 represents significant differences from controls (*). 

 

4.3.2 Matrix Synthesis 

When IGF-1 alone was provided, synthesis of matrix collagen (i.e., within the cell 

layer; on a per ng DNA basis) increased by 1.85 ± 0.1 -fold over non-additive controls 

(2140 ± 104 ng/ng DNA) as shown in Figure 4.2A.  While addition of IGF-1 to cultures 

also supplemented with HA oligomers did not significantly enhance collagen synthesis 

compared to controls (p = 0.26 vs. controls), concurrent delivery of IGF-1 and large HA 
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fragments (VLMW and LMW) enhanced collagen synthesis by 2.16 ± 0.12 and 1.54 ± 

0.08-fold, respectively (p < 0.001 vs. controls in both the cases).  In comparison, IGF-1 

and HMW HA did not alter collagen production relative to controls.  The treatment-

specific trends in the synthesis of collagen matrix were identical to their differences in 

total collagen output (pooled medium and matrix fractions).  Figure 4.2B shows fold-

changes in total collagen production relative to non-additive control cultures (11628 ± 

1011 ng/ng of DNA). 

As shown in Figure 4.3, the trends in tropoelastin production by RASMCs 

closely mirrored those observed for collagen synthesis under identical conditions.  In the 

absence of any HA, IGF-1 stimulated control levels (9630 ± 1963 ng/ng DNA) of 

tropoelastin production by 1.93 ± 0.35 fold (p = 0.03 vs. control).  When provided 

together with IGF-1, HA oligomers suppressed tropoelastin production by 0.79 ± 0.02 

fold relative to controls while HMW HA offered no additional benefit; HA fragments 

such as VLMW and LMW increased tropoelastin output by 2.27 ± 0.14 and 1.97 ± 0.49 

fold, respectively (p < 0.001 vs. controls in both the cases), which however, induced no 

significant increase over IGF-1 alone (p = 0.35 and 0.77 vs. IGF-1 alone).  Western blot 

analysis (Figure 4.3A) of tropoelastin in pooled spent medium collected over 21 days of 

culture period confirmed the observed biochemical trends in tropoelastin (Figure 4.3B). 

As explained earlier, the elastin incorporated into the extracellular matrix was 

measured as a sum of two individual fractions, i.e., a highly cross-linked, alkali-insoluble 

elastin pellet (which represents structural elastin), and an alkali-soluble fraction.  In the 

absence of HA cues, addition of 500 ng/mL of IGF-1 to cell cultures increased synthesis 
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of alkali-soluble matrix elastin by 1.75 ± 0.21-fold, relative to non-additive controls 

(5228 ± 487 ng/ng DNA; p < 0.001 vs. controls).  The total DNA-normalized output of 

alkali-soluble matrix elastin (Figure 4.3C) broadly mirrored the HA fragment size-

specific trends observed for collagen and tropoelastin.  Though addition of IGF-1 along 

with HA oligomers or HMW HA exhibited no significant effect relative to controls, 

VLMW and LMW HA induced 2.22 ± 0.16 fold and 1.63 ± 0.17 fold increase in 

synthesis of alkali-soluble matrix elastin, respectively (p < 0.001 vs. controls in both the 

cases; p < 0.001  and p = 0.07 vs. IGF-1 only).  The synthesis of alkali-insoluble, 

structural matrix elastin was not significantly affected by addition of IGF-1 alone, as 

shown in Figure 4.3D. 

When both IGF-1 and oligomers were supplemented concurrently, significant 

inhibition was noted in synthesis of the alkali-insoluble structural matrix elastin relative 

to controls (397 ± 49 ng/ng DNA; p < 0.03 vs. controls).  Relative to controls VLMW HA 

and IGF-1 together enhanced deposition of this form of matrix elastin by 2.14 ± 0.14 fold, 

while addition of LMW and HMW HA instead, increased the same by 3.6 ± 0.4 fold and 

4.96 ± 0.77 fold, respectively (p < 0.001 vs. IGF-1 alone, in both the cases).  Collectively, 

IGF-1 alone or together with HA oligomers, VLMW, LMW and HMW elicited synthesis 

of total matrix elastin (i.e., alkali-soluble plus alkali-insoluble matrix elastin) amounts 

that were 1.69 ± 0.22, 0.8 ± 0.17, 2.21 ± 0.16, 1.77 ± 0.19, 1.18 ± 0.12 fold respectively, 

relative to controls. 
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Figure 4.2. Effects of IGF-1 (500 ng/mL) with or without HA cues (0.2 μg/mL) on 

matrix collagen (A) and total collagen (B) synthesis by adult RASMCs.  Values (mean ± 
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SD) are shown normalized to the DNA content of the respective cell layers at 21 days of 

culture (n = 3/case) relative to control cultures. (*) represents significant differences 

relative to control cultures, deemed for p < 0.05. 

 

4.3.3 Desmosine Content in Crosslinked Elastin 

Desmosine amounts measured in test cell layers were normalized to 

corresponding DNA amounts (ng/ng), and further normalized to a similar ratio obtained 

for the non-additive controls.  Cells cultured with IGF-1 alone exhibited enhanced 

synthesis of desmosine (1.34 ± 0.06-fold vs. controls; Figure 4.4) while IGF-1 together 

with HA oligomers inhibited desmosine crosslinks by 0.74 ± 0.05 fold (p = 0.026 vs. 

control) mirroring their inhibition of the synthesis of crosslinked (insoluble) matrix 

elastin; HMW HA, which was earlier found to greatly enhance deposition of crosslinked 

matrix elastin also dramatically promoted desmosine synthesis by 3.12 ± 0.04 fold in the 

presence of IGF-1 (p < 0.001 vs. controls).  As shown in Figure 4.4, trends in desmosine 

amounts/ng elastin correspond with that in amounts of crosslinked (insoluble) elastin 

synthesized in the respective cultures.  Interestingly, IGF-1 alone or together with HA 

oligomers elicited desmosine crosslink densities (i.e., desmosine amounts/ng of insoluble 

elastin ratios) that were ≤ 1, while HMW HA together with IGF-1 increased these ratios 

to values ~ 2, suggesting increased density of desmosine crosslinking per unit amounts of 

insoluble elastin. 
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Figure 4.3. Elastin production by RASMCs cultured with IGF-1 alone (500 ng/mL) and 

together with HA fragments (0.2 μg/mL) for (B) tropoelastin (C) alkali-soluble matrix 

elastin, and (D) alkali-insoluble highly crosslinked matrix elastin.  Data shown (mean ± 

SD) are normalized to cellular DNA content at 21 days of culture and represented as fold 

change in elastin production relative to controls (n = 3/case).  Representative SDS-

PAGE/ western blots containing bands corresponding to tropoelastin produced in the 

respective cases confirm biochemical trends in tropoelastin production as shown in panel 

3A.  P < 0.05 represents significant differences from controls (*). 

 

4.3.4 LOX Functional Activity and Protein Expression 

The change induced by addition of IGF-1 and HA fragments to LOX enzyme 

activity measured in spent culture medium on day 16 of culture was analyzed.  LOX 

activities measured in IGF-1 supplemented cultures at 16 days were marginally but 

significantly higher to those measured in control cultures, except for HMW HA, where 

no significant decrease was noted after prolonged exposure.  Western blot analysis 

showed that LOX protein amounts were enhanced by IGF-1 alone, or together with 

oligomers, VLMW, LMW and HMW HA by 26 ± 7, 40 ± 6, 38 ± 5, 39 ± 6 and 41 ± 6 % 

respectively, relative to controls (p < 0.05 vs. controls, in all cases). 

 

4.3.5 Immunodetection of Elastin, Fibrillin and LOX 

Immunofluorescence micrographs of 21-day old cell layers (Figure 4.5) 

confirmed the presence of elastin, fibrillin and LOX in cultures that received IGF-1 alone 
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or together with HA fragments.  The intensities of fluorescence due to elastin were 

visibly greater in IGF-1 supplemented cultures, particularly those which also received 

HMW HA.  Fluorescence intensity due to fibrillin was again greater in cultures 

supplemented with both IGF-1 and HA fragments, compared to controls, with the 

intensity most pronounced in cultures that received IGF-1 and HA oligomers.  However, 

LOX, though present within all test and control cell layers, was rather sparse. 

 

Figure 4.4. Desmosine amounts measured in selected test cell layers were normalized to 

corresponding DNA amounts (ng/ng), and further a similar ratio obtained for the non-HA 

controls.  Comparable trends were observed for the desmosine/DNA density and 

respective insoluble matrix elastin/DNA for selected cases. 
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4.3.6 Ultrastructure of Matrix Elastin 

Figure 4.6 shows transmission electron micrographs representative of elastin 

matrices within 21-day old cell layers cultured with no-additives (Figure 4.6A), IGF-1 

alone (Figure 4.6B) and IGF-1 together with HMW HA (Figure 4.6C-D), the 

combination deemed most useful to enhance elastin matrix production, matrix yields and 

desmosine crosslinking.  While only discrete amorphous elastin clumps and almost no 

fibers were distributed between stacks of cells within control cultures (Figure 4.6A), IGF-

1 primarily induced deposition of multiple layers of elongated, aggregating elastin fibrils, 

often closely adjoining the cells (Figure 4.6B), significantly different from those 

observed in control cultures.  Few elastin clumps were seen in these cultures (Figure 

4.6B).  When IGF-1 and HMW HA were provided together, elastin fiber formation and 

aggregation was likewise favored, though the matrix also contained a significantly greater 

density of amorphous elastin clumps similar to those present in control cell layers (Figure 

4.6C-D).  Indeed, the aggregating elastin fibers and amorphous elastin clumps (150-200 

nm diameter, typical of young elastic fibers) in Figure 4.6D exhibited deep staining with 

microfibrils at their periphery, and thus signified normal mechanisms of elastin fiber 

formation observed at higher magnifications (100000 X) in additive-free control cultures, 

as shown in Figure 4.6E. 
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Figure 4.5. Immunodetection of elastin, fibrillin and LOX (red) within RASMC layers 

following 21 days of culture in the presence of IGF-1 alone (500 ng/mL) or together with 

HA fragments (0.2 μg/mL), respectively; control cultures received none.  Coloration due 
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to respective proteins absent in cell layers not treated with the primary antibody (negative 

controls). Scale bar: 150 μm. 

 

4.4 Discussion 

The primary focus of our research is to develop tissue-engineering materials and 

methods to enable regeneration of ultrastructural and functional mimics of vascular 

elastin networks.  Though several researchers have been able to tissue-engineer 

responsive, living conduits exhibiting properties similar to that of the native vessels219, 323-

325, key challenges such as progressive destabilization of tropoelastin mRNA expression24, 

300 leading to poor regeneration of elastin structures within, and unavailability of 

appropriate scaffolding materials and other biomolecular cues for upregulated elastin 

synthesis by cells, still remain.  Recent studies by our group validated reports that HA-

based biomaterials might be useful as elastogenic scaffolds, and demonstrated that HA 

plays vital313 but possibly indirect roles in elastin synthesis by vascular SMCs, their 

structural organization to form higher-order macromolecules pertinent to elastic fiber 

assembly50, and further subsequent stabilization of the assembled elastin matrix58, 60. 

Despite these favorable outcomes, from the standpoint of in vivo elastin matrix 

regeneration within elastin-compromised vessels and within tissue engineered vascular 

constructs applied therein, there is a critical need to simultaneously attenuate SMC hyper-

proliferation, on which elastogenic HA oligomers do not appear to have any effect.  

There is also a need to further enhance elastin precursor synthesis and improve upon 

matrix yields, which we showed were limited to be 25% in the presence of HA oligomers 
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alone58.  In other words, 75% of synthesized tropoelastin precursors remained unused 

towards building structurally useful matrix elastin.  Moreover, a prior study by Evanko et 

al., suggested that cell responses to HA may be modulated by other concomitantly 

present biomolecules57.  Thus, in this study, we comprehensively evaluated cellular 

matrix synthesis response in the presence of IGF-1, not only to HA oligomers but also to 

larger sized HA fragments and long-chain HA. 

 

 

 

Total matrix elastin 
synthesized/ DNA, 

ng/ng 
(alkali soluble + 
insoluble elastin) 

Matrix elastin/ 
Total elastin, % 

Insoluble 
elastin/ Total 

matrix 
elastin, % 

Controls 5624 ± 536 36.8 7.1 ± 0.8 
IGF-1 alone 9533 ± 1282 33.9 3.8 ± 1.4 

HA oligomers + 
IGF1 5432 ± 1190 46.6 24 ± 5.2 

VLMW HA + 
IGF1 12477 ± 896 36.3 6.8 ± 0.4 

LMW HA + IGF1 9953 ± 1089 34.3 14.2 ± 1.5 
HMW HA + 

IGF1 6663 ± 677 38.3 29.5 ± 4.6 

 

Table 4.1. The total matrix elastin, ratios of matrix elastin to the total elastin and ratios of 

insoluble elastin to total matrix elastin, synthesized by RASMCs supplemented with HA 

fragments and IGF-1. 
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Figure 4.6. Representative TEM images of 21-day old RASMC cell layers cultured 

additive-free (panel A), with IGF-1 alone (500 ng/mL; panel B) or together with HMW 

HA (0.2 μg/mL; panel C-D).  Aggregating amorphous elastin clumps leading to the 

formation of elastin fibers can be clearly seen in this image (Figure 6D), which confirm 

the identity of elastin observed at higher magnifications (100000 X) in images obtained 

from additive-free control cultures (Figure 6E), also immunogold-labeled for fibrillin. 

 

Studies conducted on both uncrosslinked58, 60, 313  and crosslinked forms326 of HA 

have shown that HA fragments (<1 MDa) and oligomers (<10 kDa) are more cell-

interactive55 than the relatively bio-inert HMW HA (>1 MDa).  In our earlier studies, we 

showed large HA fragments (VLMW and LMW; 0.2 μg/mL) to marginally increase cell 

proliferation in dose-independent manner, likely by phosphorylating the primary cell 

surface HA receptor, CD44, to further activate a cytoplasmic cascade of events ultimately 

inducing mitosis315.  HA oligomers (0.2 μg/mL) on the other hand, modestly inhibited 

cell proliferation58.  In contrast to previous studies which have shown IGF-1 to stimulate 

cell proliferation327, the current dose of IGF-1 (500 ng/mL) provided under serum-rich 

conditions, drastically inhibited SMC proliferation relative to non-additive control 

cultures.  Moreover, when IGF-1 was added in conjunction with HA fragments, cell 

proliferation continued to be dramatically inhibited relative to controls, except when HA 

oligomers were present (p < 0.04 vs. control).  These effects are in contrast to our prior 

findings on the effects of HA / fragments alone, as detailed above58, 60.  Thus, we believe 

that the IGF-1-receptor mediated signaling pathway through which IGF-1 initiates and 
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promotes mitogenesis in RASMCs328 may be negated by other upstream effects such as 

interaction of HA fragments with the primary HA receptor CD44, which can cause cells 

to become quiescent, although further study is needed to confirm this hypothesis.  In 

indirect support of this hypothesis, we note in this study that in the presence of IGF-1, 

HA oligomers elicit responses different from larger-sized HA fragments, possibly due to 

their interaction with different HA receptors such as Toll-like 4 (TLR-4), unique to HA 

4-mers.  These experiments also showed that IGF-1 suppressed cell proliferation to an 

extent that inversely correlated to size of non-oligomeric HA fragments.  We hypothesize 

that this might be due to the cell-shielding effect of larger HA fragments, due to which 

IGF-1 may be increasingly unable to interact with cell surface receptors and thus induce 

proliferative cell responses.  This may possibly explain why cell proliferation remained 

unchanged relative to controls when HMW HA was provided.  Nevertheless, our results 

suggest utility of combined HA/ fragments and IGF-1 cues to attenuation of SMC hyper-

proliferation, a common outcome at sites of vascular aneurysms where in situ elastin 

regeneration may be desired. 

Biochemical analysis showed that at the tested dose, IGF-1 almost doubled 

cellular output of tropoelastin precursors on a per cell basis (Figure 4.3).  Contrary to our 

prior findings that HA oligomer supplements (0.2 μg/mL) upregulated tropoelastin 

synthesis, their delivery concurrent with IGF-1 suppressed tropoelastin synthesis.  Such 

suppression perhaps occurs due to adverse cross-interactions of downstream elastin 

synthesis impacting pathways, initiated by interactions of IGF-1 and HA oligomers with 

their respective cell-surface receptors.  Larger HA fragments likely interact with cells in a 
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different way from HA oligomers (through CD44 and not TLR-4 receptors), and thus 

possibly elicit enhanced elastin synthesis via convergent or independent downstream 

elastogenic cellular mechanisms.  The lack of significant IGF-1 induced upregulation of 

tropoelastin synthesis (beyond controls) in the presence of HMW HA, might be as stated 

before, due to the formation of pericellular coats that isolate cells from IGF-1 cues. 

 Our results also showed that IGF-1 by itself increased total production of elastin 

matrix, i.e., alkali-soluble and insoluble fractions, by nearly 1.7-fold relative to controls.  

Again, contrary to previous outcomes observed with HA cues alone, in the presence of 

IGF-1, HA oligomers marginally inhibited elastin matrix synthesis, while the greatest 

benefit was obtained with large HA fragments (VLMW, LMW); HMW HA however did 

not induce any increase in control levels of elastin matrix production.  A comparison of 

the fold-increases in elastin matrix amounts in each case, and the corresponding fold-

increases in tropoelastin production show remarkable similarities suggesting that elastin 

matrix deposition outcomes are a mere reflection of alterations to basal tropoelastin 

production.  In other words, the results suggest that IGF-1 in the presence or absence of 

HA cues do not specifically benefit precursor recruitment for matrix assembly; this 

observation was supported by further results tabulated in Table 4.1, that indicated matrix 

yields (i.e., matrix to total elastin ratios; total elastin = matrix elastin + tropoelastin) to 

remain unchanged at between 34-46%. 

A more detailed analysis however indicated significant differences between these 

cases in the yields of highly crosslinked, alkali-insoluble structural elastin.  Specifically, 

as shown in Table 4.1, our results showed that while IGF-1 together with oligomers or 
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HMW HA significantly enhanced the fractional yields of insoluble matrix elastin (i.e., 

insoluble to total matrix elastin ratios) in controls, IGF-1 alone or together with other HA 

fragments marginally altered the same.  These results suggest that while IGF-1 and HA 

fragments together do not upregulate tropoelastin recruitment beyond what can be 

achieved by providing IGF-1 alone, they influence the elastin crosslinking mechanism in 

manner whereby crosslinking efficiency and hence yields of insoluble matrix elastin 

correlate positively to HA fragment size.  Likely, as our prior studies have suggested58, 60, 

larger HA fragments and HMW HA coacervate tropoelastin precursors by an opposite-

charge interaction mechanism, thereby facilitating more robust crosslinking, beyond that 

possible in the absence of HA.  Since IGF-1 alone enhanced neither yield of insoluble 

matrix elastin, nor desmosine to insoluble elastin ratios, we believe that the nearly 26% 

increase in production of the elastin crosslinking enzyme, LOX, elicited by IGF-1, is not 

singularly capable of influencing desmosine crosslink formation.  Similarly, crosslinking 

is improved only when increases in LOX production and localization of elastin precursors 

at cell layer due to coacervation by HA/ fragments simultaneously occur329.  Thus, 

combinations of IGF-1 and HMW HA/ large HA fragment cues, most usefully promote 

elastin matrix synthesis and crosslinking. 

Our ultrastructural characterization results showed that IGF-1 alone or together 

with HMW HA significantly promoted formation of mature elastic fibers via physiologic-

like mechanisms that involve deposition of pre-scaffold of fibrillin microtubules.  

Fibrillin deposition appeared more pronounced in cultures that received IGF-1, which 

may explain the enhanced elastic fiber formation in those cultures.  HMW HA along with 
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IGF-1 promoted deposition of significantly greater amounts of elastin, albeit less-

structured.  Thus, a possible future strategy to improve elastic fiber formation is to 

enhance doses of IGF-1 to render its effect more pronounced.  Regardless, the utility of 

the mixtures of large HA fragments (> 20 kDa) as a scaffolding material to greatly 

enhance the yields of elastin matrix has been elucidated in this study. 

 

4.5 Conclusions of this study 

1. IGF-1 is not only effective in suppressing SMC proliferation in all the cases 

expect in the presence of HA oligomers, but also stimulated collagen, tropoelastin 

and soluble elastin production nearly 2-fold relative to non-additive controls. 

2. IGF-1 and large HA fragments (> 200 kDa) together induce multi-fold increases 

in elastin precursor synthesis, elastin matrix yields and crosslink densities within 

adult vascular cell layers, relative to supplement-free cultures.  In addition, these 

cues encourage elastic fiber formation.  These outcomes are not all obtained when 

either of the cues is provided separately. 

3. HA fragments upregulated crosslinked elastin matrix formation in inverse 

correlation to their fragment size, with HMW HA contributing for an almost 5-

fold upregulation, though IGF-1 alone did not offer any additional advantage 

compared to control cultures.  These results were confirmed by 

immunofluorescence and electron microscopy images of matrix elastin and by the 

quantification of LOX and desmosine activities in the cell cultures. 
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4. The results are of tremendous utility to our ongoing efforts to provide exogenous 

or scaffold-based elastogenic cues (IGF-1 + HMW HA/ large HA fragments) to 

enable robust and faithful regeneration of elastin matrix structures in vivo or in 

vitro.  The present outcomes may be used to restore elastin matrix homeostasis in 

de-elasticized vessels and tissue engineered constructs that may be grafted as a 

substitute. 
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CHAPTER 5 

BIOMIMETIC CUES FOR FIBROUS ELASTIN MATRIX ASSEMBLY AND 

MATURATION 

 

5.1 Effect of Copper Sulfate and HA Fragments 

5.1.1 Introduction 

As already mentioned in chapters 1 and 2, elastic fibers are amongst the most 

difficult matrix structures to repair or regenerate because they contain other non-elastin 

protein components (e.g., fibrillin, elaunin), a highly regulated recruitment and deposition 

pattern, and a multi-step hierarchical assembly process329.  Besides, the elastic fiber 

formation at the molecular level involves recruitment and patterned coacervation of cell-

derived soluble tropoelastin precursors onto pre-formed templates of fibrillin-rich 

microfibrils330, and their stabilization by lysyl oxidase (LOX)-catalyzed desmosine 

crosslinking331.  Hence, cues for elastin regeneration must be able to mimic the spatio-

temporal sequence of these events leading to elastin matrix assembly. 

A key impediment to creating highly matured elastin matrices is the absence of 

cues to improve production and crosslinking efficiency of elastin precursors 

(tropoelastin) by vascular SMCs.  Though our studies show that HA significantly 

increases tropoelastin and total elastin (matrix elastin + tropoelastin) amounts on a per 

cell basis, the net yield of crosslinked matrix elastin relative to the total elastin produced, 

remained quite low58, 60.  This stresses the need to provide other exogenous cues that will 

facilitate and improve efficiency of tropoelastin recruitment and crosslinking into elastin 
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matrix structures.  One possible strategy to achieve this is to enhance cellular production 

or activity of LOX enzyme that catalyzes elastin crosslinking332-334.  Since extracellular 

LOX availability and activity are dependent on the presence of Cu2+ ions, we hypothesize 

that the simultaneous delivery of HA and Cu2+ cues may possibly enhance tropoelastin 

synthesis, recruitment and crosslinking into mature elastin matrix.  Thus, the objective of 

the current study is to evaluate the benefits of Cu2+ ions delivery concurrent with 

elastogenic cues as represented by HA fragments/ oligomers, on elastin crosslinking in a 

culture model of adult rat aortic smooth muscle cells (RASMCs). 

 

5.1.2 Materials and Methods 

5.1.2.1 Cell Culture 

Hyaluronic acid with molecular weights of 2000 kDa, 20 kDa (Lifecore 

Technologies, Minneapolis, MN), and 0.76 kDa, designated as high molecular weight 

(HMW), very low molecular weight (VLMW) and oligomers, respectively, were 

dissolved in sterile culture medium prior to addition to cell cultures.  HA oligomer 

mixtures containing predominantly 4-mers were prepared in the lab using protocols 

reported in section 3.2.1. 

Low passage (3-5) adult rat aortic SMCs (RASMCs) were selected for the current 

study due to their relatively lower levels of tropoelastin production compared to neonatal 

cells, and thus of greater relevance to regeneration of elastin in adult blood vessels.  

RASMCs were seeded onto 6-well tissue culture plates (Becton Dickinson Labware) at a 

density of 3 × 104 cells/ well and treated with DMEM (Invitrogen) containing 10% v/v 
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FBS and 1% v/v penstrep (VWR International).  HA fragments prepared in serum-rich 

medium were added to cell cultures at an ultimate dose of 0.2 μg/mL.  Copper sulfate 

(CuSO4; Sigma Aldrich) was dissolved in distilled water and supplemented exogenously 

to the culture wells at final doses of either 0.1 M or 0.01 M, except in control cultures 

which received no supplements.  The culture medium was replaced twice weekly, the 

spent medium from each well pooled over the 21 day culture period and frozen for 

further biochemical analysis.  To isolate the observed effects on RASMCs as due to Cu2+ 

ions and not SO4
2- ions, sodium sulfate (Na2SO4; Sigma Aldrich; 0.01 and 0.1 M) was 

supplemented instead of CuSO4 to control cultures. 

 

5.1.2.2 Biochemical Assays 

The DNA content in cell layers was measured at 1 and 21 days of culture to 

determine the proliferation of SMCs and to normalize the measured amounts of 

synthesized matrix, according to protocol explained in section 3.2.3. 

The collagen content within the cell layers and in the pooled supernatant medium 

fractions was estimated using a hydroxy-proline assay, described in section 3.2.4.  The 

amounts of matrix elastin (alkali-soluble and insoluble fractions) and soluble tropoelastin 

(in pooled spent medium) were quantified using a Fastin assay (Accurate Scientific Corp), 

as detailed in section 3.2.5.  The measured amounts of synthesized matrix were 

normalized to their respective DNA amounts to provide a reliable basis of comparison 

between samples, and to broadly assess if the observed changes in the amount of matrix 

synthesized could possibly be due to increases in elastin production on a per cell basis. 
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The desmosine crosslink densities within elastin matrices were quantified for 

selected cases using ELISA, as described in section 3.2.6.  The desmosine amounts/ ng of 

DNA were compared to the DNA-normalized amounts of insoluble matrix elastin from 

corresponding cell layers.  The LOX enzyme activity within the cell culture layers was 

determined using a flurometric assay based on generation of H2O2 when LOX acts on a 

synthetic substrate, described in detail in section 3.2.7.  Western blot analysis of proteins 

within the pooled medium fractions at day 21 was performed using methods described in 

section 3.2.8, to semi-quantitatively confirm observed biochemical trends in tropoelastin 

synthesis and to assess LOX protein synthesis. 

All experiments were performed in triplicate and quantitative results reported as 

mean ± SD.  Statistical significance between and within groups was determined using 2-

way ANOVA.  Results are deemed significantly different from controls for p < 0.05. 

 

5.1.2.3 Immunofluorescence Studies 

As explained in detail in section 3.2.11, immunofluorescence techniques were 

used to confirm the presence of elastin, fibrillin within selected cell layers, and LOX 

expression for those conditions that appeared to upregulate elastin synthesis. 

 

5.1.2.4 Matrix Ultrastructure 

Scanning electron microscopy was used to discern the structural organization of 

matrix elastin within cell layers cultured with or without exogenous HA cues and various 

provided doses of copper ions.  For sample preparation, medium-aspirated cell layers 
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were incubated in 1 N NaOH for 2 h at 60oC to digest the cells and the non-elastogenous 

matrix, fixed with 2% w/v glutaraldehyde (4oC, 1 h) and treated with increasing ethanol 

gradient series (60-100% v/v, each for 15 min).  The dried matrix layers were sputter 

gold-coated at 30 mA for 1 min, and visualized in a Hitachi S4800 field emission 

scanning electron microscope. 

 

5.1.3 Results 

5.1.3.1 Cell Proliferation 

Proliferation ratios of RASMCs cultured in the presence of either CuSO4 alone or 

together with HA fragments/ oligomers are shown in Figure 5.1.  The effects of Na2SO4 

addition are also shown for comparison.  Addition of Na2SO4 alone had no effect on 

RASMC morphology or proliferation (p = 0.4 vs. controls), irrespective of the added 

dose.  CuSO4 (0.1 M) induced significant rounding of RASMCs in the first 3 days that 

followed its addition, though the cells recovered sufficiently to exhibit normal 

morphology throughout the rest of the culture period.  Differently, when 0.01 M CuSO4 

was added, the temporal change in cell morphology induced by the 0.1 M CuSO4 was not 

observed.  At 3-weeks of culture, cell proliferation ratios (ratio of cell number at day 21 

to day 1) for 0.1 M CuSO4 cultures was 5.6 ± 2.3 –fold, while those in cultures that 

received 0.01 M of CuSO4 and in non-additive controls were 44.5 ± 6.7, and 22.9 ± 4.2 -

fold respectively.  Thus, in effect, the cell number in 0.1 M and 0.01 M CuSO4 – 

supplemented cultures at 21 days were 0.24 ± 0.1 and 1.9 ± 0.3 -fold relative to non-

additive controls (p = 0.005 and 0.001 vs. control).  Cell proliferation ratios in the 
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presence of both HA fragments (all sizes) and CuSO4 (0.1 M or 0.01M) were not 

different from those in cultures that received the respective doses of CuSO4 alone. 

 

Figure 5.1. Proliferation ratios of RASMCs supplemented with Na2SO4 alone, CuSO4 

alone or together with HA fragments (0.2 μg/mL).  Data shown represent mean ± SD of 

cell count after 21 days of culture, normalized to initial seeding density and further 

normalized to control cultures that received no additives (n = 3/case).  P < 0.05 represents 

significant differences from controls (*). 

 

5.1.3.2 Matrix Synthesis 

The data shown in Figure 5.2 represents mean ± SD of protein synthesized (n = 3/ 

case) in test groups, normalized initially to their respective cellular DNA contents at 21 
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days, and further normalized to the corresponding protein content in non-additive control 

cultures.  The absolute (not normalized to DNA) amounts of total collagen, tropoelastin 

and matrix elastin produced in each case were shown in Table 5.1.  As evident from 

Figure 5.2A, on a per cell basis, 0.1 and 0.01 M doses of Na2SO4 did not significantly 

impact total (matrix + soluble) collagen output by RASMCs (0.94 ± 0.15 and 1.1 ± 0.13 -

fold vs. controls; p = 0.2 and 0.1, respectively).  When 0.1 M CuSO4 alone was provided, 

synthesis of collagen (on a per ng DNA basis) increased 4.1 ± 0.4 -fold over non-additive 

controls (1332 ± 140 ng/ ng DNA), while addition of 0.01 M CuSO4 suppressed collagen 

production 0.5 ± 0.04 fold (p < 0.001 vs. controls).  In the presence of oligomers, VLMW 

and HMW HA, 0.1 M CuSO4 enhanced control-levels of collagen synthesis by 4.6 ± 0.4, 

4.5 ± 0.8 and 4.5 ± 0.6 –fold respectively, while 0.01 M CuSO4 consistently suppressed 

collagen synthesis in all the cases (p < 0.001 vs. controls).  However, the absolute (not 

normalized to DNA content) collagen production levels in all the cases were not different 

from non-additive control cultures (see Table 5.1). 

The trends in tropoelastin production by RASMCs (Figure 5.2B) closely mirrored 

those observed for collagen synthesis under identical conditions.  Na2SO4 had no effect 

on control levels of tropoelastin production by RASMCs (20074 ± 1240 ng/ng DNA), 

irrespective of added dose (p = 0.5 vs. controls).  In the absence of HA, 0.1 M CuSO4 

enhanced control levels of tropoelastin production on per ng of DNA basis by 4.1 ± 0.05 

fold (p < 0.001 vs. control), while 0.01 M CuSO4 inhibited the same by 0.5 ± 0.04 –fold 

(p < 0.001 vs. controls).  When provided together with HA fragments, 0.1 M CuSO4 

likewise enhanced tropoelastin production, while 0.01 M CuSO4 marginally decreased 
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the same (p < 0.03 in all the cases vs. controls).  No HA fragment size dependent-effects 

were noted in either case, although in the presence of 0.1 M CuSO4, HA oligomers 

stimulated a significantly greater increase in tropoelastin production (1.3 ± 0.01 -fold) 

over cultures that received CuSO4 alone (p < 0.001).  As apparent in Table 5.1, the 

absolute amounts of tropoelastin produced (not normalized to DNA amounts) in all cases, 

irrespective of CuSO4 dose and HA fragment size, were almost identical to controls. 

Elastin incorporated into the matrix was measured as a sum of two individual 

fractions, i.e., a highly cross-linked, alkali-insoluble elastin pellet, and an alkali-soluble 

fraction.  As shown in Figure 5.2C, irrespective of provided dose, Na2SO4 had no effect 

on control production levels of alkali-soluble and insoluble matrix elastin on a per ng of 

DNA basis (p > 0.4 vs. controls).  Addition of 0.1 M CuSO4 alone increased soluble 

elastin synthesis dramatically by 4.1 ± 0.1 -fold, while 0.01 M CuSO4 inhibited the same 

by 0.5 ± 0.4 fold, relative to non-additive controls (5388 ± 363 ng/ ng DNA; p = 0.001 

and 0.27 vs. controls, respectively).  In the presence of HA fragments, 0.01 M CuSO4 

consistently suppressed production of alkali-soluble matrix elastin (p < 0.01 vs. controls; 

per ng of DNA basis), while addition of 0.1 M CuSO4 dramatically increased the same by 

4.47 ± 0.7, 5.02 ± 0.25 and 3.38 ± 0.6 -fold upon concurrent addition of HA oligomers, 

VLMW, and HMW HA, respectively (p < 0.05 vs. controls).  Differences in outcomes 

between these cases were deemed to be statistically insignificant. 
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Figure 5.2. Effects of exogenous CuSO4 with or without HA/ fragments (0.2 μg/mL) on 

collagen (A), tropoelastin (B), alkali-soluble matrix elastin (C) and crosslinked alkali-

insoluble matrix elastin (D), synthesized by adult RASMCs.  Values (mean ± SD) are 

shown normalized to the DNA content of the respective cell layers at 21 days of culture 

(n = 3/case) relative to control cultures.  * represents significant differences relative to 

control cultures, deemed for p < 0.05. 

 

On per ng of DNA basis, control production levels of alkali-insoluble, crosslinked 

matrix elastin (i.e., structural elastin) were not influenced by addition of Na2SO4 (Figure 
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5.2D).  When 0.1 M of CuSO4 was delivered alone, crosslinked matrix elastin synthesis 

(122 ± 19 ng/ ng of DNA) was enhanced by 4.2 ± 0.7 –fold over control levels, while 

concurrent addition of oligomers, VLMW and HMW HA increased the same by 5.8 ± 0.7, 

7.2 ± 1.4 and 6.5 ± 0.9 -fold, respectively (p < 0.001 vs. controls in all the cases).  

However, when 0.01 M CuSO4 was supplemented alone or together with HA fragments, 

there was no benefit to crosslinked matrix elastin synthesis (on a per ng of DNA basis), 

over controls (0.6 ± 0.1, 1.2 ± 0.2, 0.8 ± 0.1 and 1.02 ± 0.4 –fold in the presence of 0.01 

M CuSO4 alone or together with oligomers, VLMW and HMW HA, respectively; p > 

0.05 vs. controls in all the cases).  However, irrespective of added HA fragment size and 

CuSO4 dose, the absolute production levels (not normalized to DNA amounts) of alkali-

soluble and –insoluble matrix elastin were not different from control cultures (see Table 

5.1). 

 

5.1.3.3 Western Blots for LOX Protein Synthesis 

Spent medium fractions pooled over 21 days from test and control cultures were 

analyzed by western blot, and the DNA-normalized intensities of the LOX-protein bands 

within test cultures were further normalized to those in controls (Figure 5.3).  Exogenous 

CuSO4 (0.01 M) both alone and together with HA fragments did not enhance LOX 

protein synthesis relative to controls; there were no differences in LOX synthesis between 

cultures that received different-sized HA fragments either.  LOX protein synthesis was 

however enhanced by 2.7 ± 0.3 –fold in the presence of 0.1 M CuSO4 alone, and up to 
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3.5 –fold when HA fragments were additionally provided (p < 0.01 vs. controls, in all 

cases). 

 

Figure 5.3. LOX protein amounts in pooled medium aliquots collected over 21 days of 

culture.  Shown are mean ± SD of DNA-normalized intensities, measured from 

representative SDS-PAGE/ western blots containing bands corresponding to LOX 

produced in the respective cases. 

 

5.1.3.4 LOX Functional Activity 

Figure 5.4 describes the effect of addition of CuSO4 alone or together with HA 

fragments on LOX enzyme activity.  LOX activity was measured in the spent culture 

medium following 21 days of culture.  Addition of 0.1 M CuSO4 alone and concurrent 
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with HA fragments had no significant effect on basal LOX functional activity.  LOX 

activities measured in cultures that received a 0.01 M dose of CuSO4 were significantly 

higher than that in controls in most cases (1.4 ± 0.2, 1.12 ± 0.1, 1.4 ± 0.02 and 1.3 ± 0.17 

for 0.01 M CuSO4 alone and with oligomers, VLMW and HMW HA, respectively; p < 

0.05 vs. control). 

 

Figure 5.4. LOX enzyme activities in cultures treated with CuSO4 and HA fragments.  

Values (mean ± SD) are shown normalized to the LOX activity measured in control cell 

layers at 21 days of culture (n = 3/case).  * represents significance in differences relative 

to controls, for p < 0.05. 
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5.1.3.5 Immunodetection of Elastin, Fibrillin and LOX 

Immunofluorescence micrographs of 21-day old cell layers (Figure 5.5) 

confirmed presence of elastin, fibrillin and LOX (red fluorescence) both in cultures that 

received 0.1 M CuSO4 alone or together with HA fragments.  Relative to control cultures, 

the fluorescence intensity due to elastin were visibly greater in cultures supplemented 

with CuSO4, particularly those which also received HA fragments.  Fluorescence 

intensity due to fibrillin was also greater in CuSO4 -supplemented cultures than in 

controls, though it was most pronounced in cultures that also received VLMW and HMW 

HA.  However, fluorescence due to LOX was relatively weak in all cultures. 

 

5.1.3.6 Structural Analysis of Matrix Elastin 

Figure 5.6 shows representative scanning electron micrographs of elastin 

matrices isolated from 21-day cultures.  Compared to the non-additive control cultures 

where elastin was sparingly deposited as amorphous clumps (panel A), addition of 

CuSO4 with or without other HA fragments appeared to greatly enhance matrix elastin 

amounts.  However, addition of 0.01 M CuSO4 alone or together with HMW HA resulted 

in featureless clump-like deposits, likely of amorphous elastin (panels B-C).  CuSO4 (0.1 

M) and HA oligomers together promoted deposition of elongated, aggregating elastin 

fibrils (panel E), different from the discrete clumps of amorphous elastin that were 

uniformly distributed within cell layers when 0.1 M CuSO4 was provided alone (panel D).  

When both 0.1 M of CuSO4 and HMW HA were provided together, elastin fiber 

formation was likewise favored, with the matrix containing greater number of apparently 
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fully-formed fibers (~ 1 μm diameter; panel F) than in cultures provided with HA 

oligomers. 
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Figure 5.5. Immunodetection of elastin, fibrillin and LOX (red) within RASMC layers 

following 21 days of culture in the presence of CuSO4 alone (0.1 M) or together with HA 

fragments (0.2 μg/mL); control cultures received no-additives.  Immunolabeling controls 

received no primary antibodies and exhibited no background fluorescence when treated 

with the fluorophore-labeled secondary probe. 

 

5.1.4 Discussion 

Our long-term research goal is to develop exogenous or biomaterial-based cues to 

stimulate regeneration of structural and functional mimics of vascular elastin matrices on 

demand.  Despite a variety of prior strategies to tissue engineer elastin-rich constructs219, 

323-325, positive outcomes have been severely limited by poor tropoelastin mRNA 

expression by adult cells24, 300.  As we mentioned in our Introduction, our ongoing study 

of HA cues for elastin regeneration is driven by prior work that suggested several GAG 

types (HA, heparin sulfate) to have roles in elastin synthesis, maturation and organization 

in vivo48.  For example, HA has been suggested to strongly bind versican48, to likely 

facilitate its further interaction with elastin-associated microfibrils to form higher-order 

structures important for elastin fiber assembly50, 51.  Also, it has been suggested that 

anionic HA chains coacervate soluble tropoelastin to locally facilitate its crosslinking into 

a stable matrix52, 53.  Since the physico-chemical and biological properties of HA are 

often dependent on its size54, we have sought to investigate these differences in the 

context of stimulating elastin matrix synthesis. 
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Figure 5.6. Representative SEM images of 21-day old RASMC cell layers for non-

additive controls (panel A); cultured with CuSO4 alone (0.01 M : panel B; 0.1 M : panel 

D), CuSO4 (0.1 M) with oligomers (panel E) or together with HMW HA (0.01 M : panel 

C; 0.1 M : panel F).  When compared to 0.1 M CuSO4 supplemented cultures, additional 
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presence of oligomers or HMW HA enhanced formation of matrix elastin fibers with 

diameters ranging between 0.5-1 μm, indicated by arrows. 

 

 Total collagen 
produced, mg 

Tropoelastin 
produced, mg 

Soluble matrix 
elastin, mg 

Crosslinked matrix 
elastin, mg 

 0.1 M 0.01 
M 0.1 M 0.01 

M 0.1 M 0.01 M 0.1 M 0.01 M 

Controls 5.4±0.5 82.6±1.4 22.2±1.5 0.51±0.08 

Na2SO4 
5.7± 
0.9 

5.8± 
0.8 

81.7± 
1.2 

81.3± 
0.7 22.2±0.8 23±0.5 0.77±0.1 0.6±0.05

CuSO4 
5.5± 
0.5 

5.4± 
0.5 

83.7± 
1.4 

82.5± 
2.3 22.1±0.7 21.6±2.5 0.52±0.1 0.58±0.1

CuSO4+ 
Oligos 

5.1± 
0.4 

5.0± 
0.3 

89.3± 
2.6 

84.8± 
0.3 19.7±3.2 23.6±0.8 0.58±0.1 0.87±0.2

CuSO4+ 
VLMW 

5.3± 
0.9 

4.9± 
0.3 

81.7± 
0.9 

83.4± 
0.7 24.3±1.2 5.2±0.2 0.79±0.2 0.68±0.1

CuSO4+ 
HMW 

5.5± 
0.7 

5.0± 
0.7 

82.4± 
0.7 

82.6± 
0.9 16.6±3 21.2±0.3 0.73±0.1 0.98±0.4

 

Table 5.1. The absolute amounts of total collagen, tropoelastin, soluble matrix elastin and 

crosslinked matrix elastin produced by RASMCs supplemented with either Na2SO4 alone, 

or CuSO4 with and without HA fragments (oligomers, VLMW and HMW) over the 21 

day culture period.  The data shown here was not normalized to DNA content (i.e., cell 

number). 

 

In other studies, copper ions (Cu2+) have been shown to minimize vascular 

defects71, promote angiogenesis73 and enhance LOX enzyme activity74.  Deficiency of 

nutritional copper has been linked to increased occurrence of vascular lesions and 

development of aneurysms335-337.  One study showed that in the presence of HA, low 

doses (0.01 M) of CuSO4 enhance tissue vascularization338.  Dahl et al., investigated the 
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singular effects of increasing medium Cu2+ ion concentration on matrix crosslinking 

efficiency in an engineered vascular-like tissue, and showed increasing levels of 

crosslinks to form339.  However, as yet, the synergistic benefits of HA and Cu2+ to elastin 

matrix regeneration by improving tropoelastin and matrix elastin synthesis and 

crosslinking, has not been elucidated.  Thus, besides investigating this in an in vitro 

culture model, we have sought to identify the Cu2+ doses that provide greater benefits to 

elastin matrix synthesis. 

In investigating the effects of exogenous Cu2+ ions on cell behavior and matrix 

synthesis, it is to be noted that all experiments were conducted in serum-rich medium.  

Although culture studies in a serum-free medium would be preferable to isolate the 

effects of Cu2+ ions on cell behavior, the need to stimulate matrix synthesis by cells 

necessitates that serum-rich conditions be provided.  FBS has been shown to contain trace 

amounts of Cu2+ ions (~ 10-20 nM)339, almost all of which is bound to ceruloplasmin and 

albumin.  Estimations of free Cu2+ ions indicate that it is unlikely to exceed picomolar 

concentrations340.  Thus, the background levels of Cu2+ ions are far lower than the lowest 

exogenous dose (0.01 M) used in this study, and may be deemed almost identical to Cu2+-

free control medium. 

Our experiments indicated that Na2SO4 addition had no effect on cell proliferation 

ratios or matrix synthesis, signifying the absence of any counter ion (SO4
2-)-induced 

effects on cellular behavior, at least at the doses tested in this study.  Previously, we 

showed large HA fragments (20-200 kDa) to modestly increase cell proliferation in a 

dose-independent manner, while HA oligomers (2 μg/mL) were ineffective58, 60.  
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However, differently, in this study we found that in the presence of 0.01 M of CuSO4, 

cell proliferation was not affected by HA fragment-size or dose, although Cu2+ itself 

enhanced cell proliferation relative to non-additive controls.  On the other hand, 0.1 M 

CuSO4 significantly inhibited cell proliferation, both in the presence and absence of HA 

fragments.  These results suggest that (a) SMCs respond in a dose-dependent manner to 

Cu2+ ions in the context of cell proliferation, and (b) interaction of Cu2+ ions with SMCs 

appears to interrupt HA-induced intracellular signaling pathways influencing cell 

proliferation.  Prior studies also showed much lower doses (0.5 mM) of Cu2+ ions do not 

influence SMC proliferation, though endothelial cells proliferated rapidly341.  Here, we 

show that CuSO4 in the range of 0.01 M induces SMC proliferation, results that suggest 

that Cu2+ ions impact on cells is specific to both cell type and dose.  Interestingly, at the 

higher doses of CuSO4 (0.1 M), though no cell death was observed, cells appeared 

rounded in the first 3 days after CuSO4 addition, but gradually assumed a more spread 

morphology.  Based on prior reports342, 343, we hypothesize that at this higher tested dose, 

some degree of free-hydroxyl radical release occurs into the medium, which may 

suppress cell proliferation and influence cell spreading due to hitherto unknown 

intracellular signaling pathways.  However, the lack of any consistent long-term hyper-

trophic or hypo-trophic phenomena suggests that cellular metabolic pathways are not 

adversely affected at this tested Cu2+ dose, which can be safely applied in alternate tissue 

engineering approaches to improve matrix yields. 

Though there were no significant differences between the absolute amounts of 

total elastin and matrix elastin produced in test groups and control cultures (as shown in 
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Table 5.1), 0.1 M CuSO4 (with or without HA) improved elastin yield on a per cell basis 

by ~ 4-fold relative to control cultures.  Qualitatively, cultures that received 0.1 M CuSO4 

(but not 0.01 M) and HA fragments also contained a far greater number of elastin fibers 

than in controls (amorphous clumps only); LOX protein production was also 2.5-fold 

greater and even more so (3.5-fold) in the presence of HA fragments.  Literature suggests 

strong interplay between TGF-β availability and LOX66, 344, which in turn may imply that 

the observed increases in LOX production may be mediated by Cu2+ ion-induced 

increases in endogenous TGF-β release.  The increases in tropoelastin production in 0.1 

M CuSO4 –supplemented cultures could also possibly be due to the TGF-β-mediated 

effect of Cu2+ ions, though this hypothesis is subject to future validation.  Regardless, 

these results strongly indicate that 0.1 M CuSO4, provided with or without HA fragments, 

beneficially renders SMCs far more efficient in generating tropoelastin and matrix elastin, 

and enhances elastin fiber formation as well.  However, cell proliferation though quite 

robust, is somewhat slower in such cultures, due to which absolute amounts of matrix 

generated over a defined culture period are similar to that generated by identically-seeded 

control cultures. 

Typically, tissue engineering constructs for clinical and pre-clinical testing and 

use demands that they be of sufficient size.  This necessitates seeding of scaffolds at 

higher cell densities and culturing these scaffolds over longer time periods to facilitate 

substantial elastin matrix accumulation345, especially since the elastin yield by adult 

vascular cells is extremely limited.  During these extended periods of culture, cells 

frequently proliferate rapidly (e.g., as in our control cultures here) to first super-saturate 
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the scaffold pores/ surface and may eventually die competing for essential gases and 

nutrients.  In addition, studies have shown that post-confluence, density-arrested SMCs 

generate much less collagen matrix on a per cell basis346, which negates the purpose of 

initial high cell seeding density and long-term culture; this logic likely also holds true for 

cellular elastin matrix production.  Thus, robust production of elastin matrix by cells 

which remain viable and synthetic in long-term culture demands gradual proliferation, 

and high yields of elastin synthesis on per cell basis.  In this context, supplying Cu2+ ions 

equivalent to the 0.1 M dose might enable these criteria to be met, while providing 

additional benefits of enhanced elastin fiber formation and crosslinking within these 

tissue engineered constructs. 

Fluorescence imaging and ultrastructural analyses of synthesized elastin matrices 

qualitatively supported the biochemical observations.  RASMCs cultured with 0.01 M of 

CuSO4 alone or together with HA fragments were found to deposit amorphous elastin 

clumps, as in additive-free control cultures.  When compared to 0.1 M CuSO4-

supplemented cultures, additional presence of HA fragments dramatically increased 

elastic fiber formation, with numerous elastic fibers measuring around 0.5-1 μm in 

diameter seen in abundance.  Literature suggests that tropoelastin precursors are poorly 

capable of spontaneous self-assembly, and thus require helper proteins (e.g., microfibrils) 

to guide their alignment for further crosslinking and fiber assembly347.  Once this initial 

alignment has been achieved, the structure is stabilized against proteolytic degradation by 

Cu2+ ion-dependent LOX, which oxidizes the lysine residues of the aligned elastin 

molecules and enables crosslinking.  Thus, these stabilized and aligned elastin structures 
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act as nucleation sites for further coacervation and crosslinking of more tropoelastin 

resulting in organized elastic fiber growth.  Moreover, highly anionic GAGs (HA in this 

case) also promote elastic fiber formation by electrostatically binding to the unoxidized 

lysine residues of newly synthesized tropoelastin during their association with 

microfibrils, thus preventing their random self-aggregation far away from the site of fiber 

formation52.  The retention of the tropoelastin molecules by GAGs would thus indirectly 

facilitate their LOX-mediated crosslinking and encourage elastin fiber growth, as stated 

above.  In direct support of this hypothesis, we believe that the simultaneous availability 

of HA fragments and increases in LOX synthesis (2.7 ± 0.3 –fold) on addition of 0.1 M 

of CuSO4, along with significant presence of fibrillin in the cell layers (as shown in 

Figure 5.5), might have contributed to the observed increases in the structural quality of 

elastin fiber formation. 

 

5.1.5 Conclusions of this study 

1. The current study demonstrates the combined utility of a 0.1 M of CuSO4 and HA, 

particularly HA oligomers (~ 756 Da) and HMW HA (~ 2000 kDa), to 

significantly increase tropoelastin release and improve elastin matrix synthesis, 

crosslinking and fiber formation by adult rat vascular SMCs. 

2. On a per cell basis, 0.1 M of Cu2+ ions slowed cell proliferation (5.6 ± 2.3 –fold 

increase over 21 days vs. 22.9 ± 4.2 –fold for non-additive controls), stimulated 

synthesis of collagen (4.1 ± 0.4 -fold), tropoelastin (4.1 ± 0.05 -fold) and 

crosslinked matrix elastin (4.2 ± 0.7 -fold). 
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3. LOX protein synthesis increased 2.5–fold in the presence of 0.1 M of Cu2+ ions, 

and these trends were maintained even in the presence of HA fragments, although 

LOX functional activity remained unchanged in all cases. 

4. The abundance of elastin and LOX in cell layers cultured with 0.1 M of Cu2+ ions 

and HA fragments was qualitatively confirmed by immunoflourescence.  SEM 

images showed SMC cultures supplemented with 0.1 M of Cu2+ ions and HA 

oligomers/ large fragments to exhibit enhanced deposition of mature elastic fibers 

(~ 1 μm diameter). 

5. The results obtained might be of tremendous utility to restore elastin matrix 

homeostasis in de-elasticized vessels and tissue engineering constructs both in 

vivo and in vitro, and possibly even serve as an accelerated in vitro model to 

investigate elastogenesis during wound healing in adult tissues. 
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5.2 Benefits of Copper Nanoparticles and HA Fragments 

5.2.1 Introduction 

Though our previous studies (chapters 3 and 4) demonstrated the utility of HA 

oligomers to increase tropoelastin and total elastin (matrix elastin + tropoelastin) amounts 

on a per cell basis, the net yield of crosslinked matrix elastin relative to the total elastin 

produced, remained low58, 60, 348.  This stresses the need to provide other exogenous cues 

to enhance cellular production or LOX enzyme activity, that catalyzes enhanced elastin 

crosslinking332, 334.  Since extracellular LOX availability and activity are dependent on the 

presence of copper ions74, we hypothesize that the simultaneous delivery of HA 

oligomers and copper cues may possibly enhance tropoelastin recruitment and 

crosslinking into mature elastin matrix.  Thus, the objective of the current study is to 

evaluate the benefits of copper ions delivery concurrent with elastogenic cues as 

represented by HA oligomers, on elastin crosslinking in a culture model of adult rat aortic 

smooth muscle cells (RASMCs).  Since sudden exposure of vascular cells to copper ions 

provided at high doses, via exogenous supplementation, appears to induce some degree of 

cell injury and death343, 349, 350, we now seek to determine if gradual release of copper ions 

from copper nanoparticles (CuNP) can improve crosslinking of soluble tropoelastin 

precursors, whose production is greatly enhanced by HA oligomeric cues. 
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5.2.2 Materials and Methods 

5.2.2.1 Copper Ion Release from CuNP 

To quantify concentration of copper ions in the culture medium, we measured 

release of copper ions (Cu2+) from copper nanoparticles (CuNP; 80-100 nm size; Sigma 

Aldrich, St. Louis, MO) using atomic absorption spectrophotometry (PerkinElmer Model 

3030, PerkinElmer, Norwalk, CT), fitted with copper lamp.  Briefly, the nanoparticles 

were dispersed in distilled water at concentrations of 1 ng/mL, 10 ng/mL and 100 ng/mL, 

and Cu2+ ion content in 1-mL aliquots of these solutions were measured at regular 

intervals over a 30 day period.  The spent aliquots were replaced with fresh distilled 

water (1-mL), and the concentration of Cu2+ ions in the removed aliquots was accounted 

for in calculating the cumulative release of Cu2+ ions.  All measurements were done in 

triplicate and the Cu2+ ion concentrations expressed in moles.  To estimate the CuNP 

amounts necessary to generate the equivalent of 0.1 M of Cu2+ ions, which in an earlier 

study351, showed to be effective in promoting elastin crosslinking, but to be mildly 

cytotoxic, we fitted the Cu2+ ion release profiles to a mathematical model.  The 

dependence of Cu2+ ion release on CuNP concentration and time was fit using a 

hierarchial regression analysis, wherein a new predictor is added to or dropped from 

those used in the previous analysis based on the statistical significance of a particular 

model.  The quadratic regression model which can accommodate linear, curvature and 

interdependence of the time (x) and CuNP concentration (y) used in this study was 

R = a + b*x + c*y + d*x*y + e*x2 + f*y2      (1) 
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where R represents the amount of copper ions released, and a-f are the estimated 

regression coefficients.  After initialization with the full quadratic regression model given 

in eq.1, a backward elimination procedure was used to reduce the number of terms in the 

model until all the remaining terms were statistically significant (p < 0.05).  Based on this 

modeling, it was estimated that 400 ng/mL of CuNP would generate around a cumulative 

release of 0.1 M of Cu2+ ions over the 21 day culture period. 

 

5.2.2.2 Cell Culture 

Hyaluronan oligomer mixtures containing predominantly 4-mers were prepared in 

the lab using protocols reported in section 3.2.1.  Low passage (3-5) adult rat aortic 

SMCs (RASMCs; Cell Applications, San Diego, CA) were selected for the current study 

due to their relatively lower levels of tropoelastin production compared to neonatal cells, 

and thus of greater relevance to regeneration of elastin-rich constructs from adult cells.  

RASMCs were seeded onto 6-well tissue culture plates at a density of 3 × 104 cells/ well 

and cultured with DMEM-F12 (Invitrogen) containing 10% v/v fetal bovine serum and 

1% v/v penstrep (VWR International).  HA oligomers prepared in serum-rich medium 

were added to cell cultures at an ultimate dose of 0.2 μg/mL.  CuNP dispersed in distilled 

water were supplemented exogenously to the culture wells at final doses of either 1, 10 or 

400 ng/mL, except in control cultures which received no supplements.  These 

concentrations were chosen based on the data obtained from section 2.1 procedure.  The 

culture medium was replaced twice weekly, the spent medium from each well pooled 

over the 21 day culture period and frozen for further biochemical analysis. 
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5.2.2.3 Biochemical Assays 

The DNA content in cell layers was measured at 1 and 21 days of culture to 

determine the proliferation of SMCs and to normalize the measured amounts of 

synthesized matrix, according to protocol explained in section 3.2.3.  The collagen 

content within the cell layers and in the pooled supernatant medium fractions was 

estimated using a hydroxy-proline assay, described in section 3.2.4.  The amounts of 

matrix elastin (alkali-soluble and insoluble fractions) and soluble tropoelastin (in pooled 

spent medium) were quantified using a Fastin assay (Accurate Scientific Corp), as 

detailed in section 3.2.5.  The measured amounts of synthesized matrix were normalized 

to their respective DNA amounts to provide a reliable basis of comparison between 

samples, and to broadly assess if the observed changes in the amount of matrix 

synthesized could possibly be due to increases in elastin production on a per cell basis. 

The desmosine crosslink densities within elastin matrices were quantified for 

selected cases using ELISA, as described in section 3.2.6.  The desmosine amounts/ ng of 

DNA were compared to the DNA-normalized amounts of insoluble matrix elastin from 

corresponding cell layers.  The LOX enzyme activity within the cell culture layers was 

determined using a flurometric assay based on generation of H2O2 when LOX acts on a 

synthetic substrate, described in detail in section 3.2.7.  Western blot analysis of proteins 

within the pooled medium fractions at day 21 was performed using methods described in 

section 3.2.8, to semi-quantitatively confirm observed biochemical trends in tropoelastin 

synthesis and to assess LOX protein synthesis.  All experiments were performed in 

triplicate and quantitative results reported as mean ± SD.  Statistical significance between 
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and within groups was determined using 2-way ANOVA.  Results are deemed 

significantly different from controls for p < 0.05. 

 

5.2.2.4 Immunofluorescence and Matrix Ultrastructure Studies 

As explained in detail in section 3.2.11, immunofluorescence techniques were 

used to confirm the presence of elastin, fibrillin within selected cell layers, and LOX 

expression for those conditions that appeared to upregulate elastin synthesis. 

Scanning electron microscopy was used to discern the structural organization of 

matrix elastin within cell layers cultured with or without exogenous HA cues and various 

provided doses of copper ions, as explained in section 5.1.2.4.  Transmission electron 

microscopy (TEM) was used to characterize the ultrastructure of the elastin matrix within 

test and control cultures using protocols described in section 3.2.12. 

 

5.2.3 Results 

5.2.3.1 Copper Ion Release from CuNP 

Figure 5.7 shows the release profiles of Cu2+ ions for three different CuNP 

concentrations.  While there were no significant differences in the release of Cu2+ ions 

between 1 and 10 ng/mL of CuNP, 100 ng/mL of CuNP generated significantly higher 

Cu2+ ions.  It was observed that over the 30-day period, 1 and 10 ng/mL of CuNP resulted 

in cumulative release of ~ 0.03 M of Cu2+ ions, while 100 ng/mL CuNP resulted in 

cumulative release of ~ 0.05 M of Cu2+ ions.  As seen from the modeling curves shown in 

Figure 5.7, the predictions quite closely fit the experimentally measured values (p = 0.001 
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for all the parameters and the overall fit; number of degrees of freedom for each fit = 29).  

Based on this mathematical analysis, we predict that a CuNP dose of 400 ng/mL will be 

required to generate Cu2+ ion release equivalent to 0.1 M over a 21 day period.  The 

predicted Cu2+ ion release profile from 400 ng/mL of CuNP is also shown in Figure 5.7. 

 

5.2.3.2 Cell Proliferation 

Proliferation ratios (ratio of cell number at day 21 to day 1) of RASMCs cultured 

in the presence of either CuNP alone or together with HA oligomers are shown in Figure 

5.8A.  At 3-weeks, proliferation ratios within cell layers cultured with 1, 10 and 400 

ng/mL of CuNP were 1.54 ± 0.15, 1.84 ± 0.23 and 1.32 ± 0.16–fold of that in controls, 

respectively (p = 0.002, 0.001 and 0.031 vs. controls).  In cultures that received HA 

oligomers as well, the ratios were 1.35 ± 0.3, 1.28 ± 0.3, and 0.92 ± 0.2 –fold, 

respectively versus controls (p > 0.2, in all the cases).  Moreover, cell proliferation ratios 

in the presence of CuNP alone were not significantly different from those that received 

HA oligomers also. 

 

5.2.3.3 Elastin Protein Synthesis 

Figure 5.8 shows mean ± SD of elastin protein synthesized (n = 3/ case) in the 

different test cultures, normalized initially to their respective cellular DNA contents at 21 

days, and further normalized to the corresponding protein content in non-additive control 

cultures.  CuNP alone and together with HA oligomers did not enhance tropoelastin 

synthesis (data not shown), relative to non-additive controls (28284 ± 5088 ng/ng DNA; 
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p > 0.2 in all the cases).  Likewise, addition of CuNP alone or together with HA 

oligomers had no stimulatory effect on the collagen synthesis (soluble and matrix forms), 

compared to control cultures (826 ± 125 ng/ng DNA; p > 0.4 in all the cases). 

 

Figure 5.7. Copper ion release profiles from CuNP (1-100 ng/mL) in distilled water.  The 

profiles were fitted with hierarchical regression analysis model described by equation 1.  

Based on this model, CuNP dosage equivalent to a cumulative release of 0.1 M of copper 

ions over a 21 day period was determined to be 400 ng/mL. 
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Elastin incorporated into the matrix was measured as the sum of two individual 

fractions, i.e., a highly cross-linked, alkali-insoluble elastin pellet, and an alkali-soluble 

fraction.  As shown in Figure 5.8B, of all the tested CuNP doses, only addition of 400 

ng/mL of CuNP increased synthesis of alkali-soluble elastin by 1.54 ± 0.08-fold; 

concurrent supplementation of HA oligomers to these cultures furthered this increase to 

2.16 ± 0.26-fold, relative to amounts in non-additive controls (6931 ± 1200 ng/ ng DNA; 

p < 0.001 vs. controls, in both the cases).  Lower concentrations of CuNP (1 and 10 

ng/mL) alone or together with HA oligomers, on the other hand, suppressed alkali-

soluble matrix elastin production (p < 0.01 in all the cases vs. controls). 

While culture with 1 ng/mL supplements of CuNP alone caused a 38 ± 4% 

decrease in production of alkali-insoluble, crosslinked matrix elastin relative to control 

cultures (183 ± 29 ng/ng DNA), concurrent delivery of HA oligomers enhanced the same 

by 2.7 ± 0.18 –fold over control levels (p < 0.001 vs. controls; Figure 5.8C).  When 10 

ng/mL and 400 ng/mL of CuNP were supplemented, alone or concurrent with HA 

oligomers, crosslinked elastin production increased by 1.26 ± 0.6 and 1.24 ± 0.09 -fold 

respectively (p = 0.8 and 0.001 vs. controls) and by 1.99 ± 0.18 and 3.14 ± 0.03 –fold (p 

< 0.001 vs. controls), respectively.  The trends in total matrix elastin synthesis by 

RASMCs reflected those observed in soluble elastin synthesis (Figure 5.8D).  When 400 

ng/mL of CuNP were added, alone or together with HA oligomers, total matrix elastin 

synthesis increased by 1.6 ± 0.1-fold and 2.28 ± 0.23-fold (p < 0.001 vs. controls in both 

cases), respectively.  Lower concentrations of CuNP (1 and 10 ng/mL) alone or together 

with HA oligomers, suppressed alkali-soluble matrix elastin production (p < 0.01 in all 
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the cases vs. controls).  No significant increase in desmosine crosslink density was 

measured within test cultures compared to non-additive control cultures (0.92±0.05, 

0.65±0.21 and 0.64±0.1-fold within 1, 10 and 400 ng/mL of CuNP alone cultures, 

respectively; 0.91±0.23, 0.9±0.05 and 0.94±0.2-fold within CuNP and HA oligomers 

supplemented cultures, respectively). 

Figure 5.9A shows the elastin matrix yields [yield = matrix elastin/ (tropoelastin 

+ matrix elastin)] calculated from the elastin amounts, presented in Figure 5.8.  While 

only 20.1 ± 3.5 % of total elastin produced in non-additive control cultures was 

incorporated into the matrix, the elastin matrix yield was 61.3 ± 3.6% in those cultured 

with 400 ng/mL of CuNP alone and 58.8 ± 6.1% in those that received HA oligomers as 

well.  Cultured that received 1 ng/mL of CuNP and HA oligomers exhibited elastin 

matrix yields of 35.5 ± 3.4% (Figure 3A).  The matrix yield within the remaining test 

cultures was not significantly greater than that in control cultures. 

 

5.2.3.4 LOX Protein Synthesis and Activity 

Spent medium fractions pooled over 21 days from test and control cultures were 

analyzed by western blot, and the DNA-normalized intensities of the LOX-protein bands 

within test cultures were further normalized to those in controls (Figure 5.9B).  

Exogenous CuNP (1, 10, 400 ng/mL) either alone or together with HA oligomers (1 and 

10 ng/mL only) did not enhance LOX protein synthesis relative to controls.  LOX protein 

synthesis was however enhanced by 1.67 ± 0.13 –fold in the presence of both 400 ng/mL 

CuNP and HA oligomers (p < 0.01 vs. controls). 
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Figure 5.8. (A) Proliferation ratios of RASMCs supplemented with CuNP (1-400 ng/mL) 

alone or together with HA oligomers (0.2 μg/mL).  Data shown represent mean ± SD of 

cell count after 21 days of culture, normalized to initial seeding density and further 

normalized to control cultures that received no additives (n = 3/case).  Effects of 

exogenous CuNP with or without HA oligomers on alkali-soluble matrix elastin (B), 

crosslinked alkali-insoluble matrix elastin (C) and total matrix elastin (D), synthesized by 

adult RASMCs.  Values (mean ± SD) are shown normalized to the DNA content of the 

respective cell layers at 21 days of culture (n = 3/case) relative to control cultures.  * 

represents significant differences relative to control cultures, deemed for p < 0.05. 
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Figure 5.9. (A) Matrix elastin yield within RASMC cultures supplemented with CuNP 

and HA oligomers.  The ratio of matrix elastin deposited to total elastin synthesized was 

calculated in each test case and further normalized to similar ratio in control cultures.  (B) 

LOX protein amounts in pooled medium aliquots collected over 21 days of culture.  

Shown are mean ± SD of DNA-normalized intensities, measured from representative 

SDS-PAGE/ western blots containing bands corresponding to LOX produced in the 

respective cases.  (C) LOX enzyme activities in cultures treated with CuNP and HA 

oligomers.  Values (mean ± SD) are shown normalized to the LOX activity measured in 

control cell layers at 21 days of culture (n = 3/case).  * represents significance in 

differences relative to controls, for p < 0.05. 
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Figure 5.10. Immunodetection of elastin, fibrillin and LOX (red) within RASMC layers 

following 21 days of culture in the presence of 400 ng/mL of CuNP alone or together 

with HA oligomers (0.2 μg/mL); control cultures received no-additives.  Immunolabeling 

controls received no primary antibodies and exhibited no background fluorescence when 

treated with the fluorophore-labeled secondary probe. 

 

Figure 5.9C describes the effect of addition of CuNP alone or together with HA 

oligomers on LOX enzyme activity.  Relative to controls, 1 ng/mL of CuNP alone or 

together with HA oligomers increased LOX activity by 1.09 ± 0.02 and 1.15 ± 0.02 –fold, 

respectively (p < 0.01 in both the cases); while 10 ng/mL of CuNP alone or together with 

HA oligomers increased the same by 1.1 ± 0.02 and 1.16 ± 0.01–fold, respectively (p < 

0.01 in both the cases).  However, surprisingly, no significant increases in LOX activity 

were detected on addition of 400 ng/mL of CuNP alone or together with HA oligomers (p 

> 0.8 in both the cases vs. controls). 

 

5.2.3.5 Immunodetection of Elastin, Fibrillin and LOX 

Immunofluorescence micrographs of selected 21-day old cell layers (Figure 5.10) 

confirmed the presence of elastin, fibrillin and LOX (red fluorescence) both in cultures 

that received 400 ng/mL of CuNP alone or together with HA oligomers.  Relative to 

control cultures, the fluorescence intensity due to elastin were visibly greater in cultures 

supplemented with CuNP than in control cultures, and even more so within cultures 

which also received HA oligomers.  In the latter cultures, fiber networks were visible, 
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while in control cultures, the elastin appeared as homogenous and amorphous masses.  

Fluorescence intensity due to fibrillin was much greater in CuNP-supplemented cultures 

than in non-additive controls, and is as pronounced in cultures that also received HA 

oligomers, thus confirming the fibrillin-mediated matrix elastin deposition process within 

these cultures.  Interestingly, while fluorescence due to LOX was sparse in control 

cultures, abundant LOX staining was observed in CuNP added cultures, and more so in 

the presence of oligomers.  Negative controls unstained for the primary antibody in each 

case are shown for comparison. 

 

5.2.3.6 Structural Analysis of Matrix Elastin 

Figure 5.11 shows representative scanning electron micrographs of isolated 

elastin matrices from 21-day cultures.  Compared to the non-additive control cultures 

where elastin was sparingly deposited as amorphous clumps (panel A), addition of CuNP 

alone or together with HA oligomers resulted in enhanced fiber formation.  Relative to 

the presence of nanoparticles alone (1 ng/mL in panel B; 10 ng/mL in panel C) where 

elongated elastin fibers with diameter ranging from 100-300 nm are clearly visible, 

concurrent presence of HA oligomers promoted deposition of bundles of aggregating 

elastin fibrils (1 ng/mL in panel E; 10 ng/mL in panel F).  When 400 ng/mL of CuNP was 

added alone, elastin fiber formation was likewise favored, with a significantly higher 

density of elastin bundles observed (panel D).  Concurrent presence of HA oligomers 

promoted dense elastin matrix (panel G) containing greater number of apparently fully-

formed fibers (~ 300-500 nm diameter; panel H). 
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Figure 5.12 shows representative transmission electron micrographs of elastin 

matrices within 21-day cultures.  Discrete amorphous clumps with relatively few fibers of 

elastin protein were observed in control cultures which received no-additives (panel A).  

The presence of Cu-400 ng stimulated deposition of aggregating elastin fibrils between 

the cells (panel B), higher in density compared to controls.  However, when both Cu-400 

ng and HA oligomers were provided to control cultures (panels C-D), mature elastin fiber 

formation was observed, with the matrix containing numerous fully-formed bundles of 

fibers (100-300 nm diameter), more than that observed in control and Cu-400 ng alone 

cultures.  Fibrillin (immunogold particle-stained), which appeared in transverse sections 

as darkly stained nodules, were located at the periphery of aggregating elastin fiber 

bundles, signifying normal elastic fiber assembly under these conditions. 

 

5.2.4 Discussion 

An outstanding problem in the field of vascular tissue engineering is the insufficiency of 

conventional tissue engineering methods and materials to manufacture structurally- and 

functionally-faithful vascular elastic matrices on demand.  This is because cardiovascular 

tissues are far more complex in their architecture and structural organization, and 

capacity of adult vascular cells for self-repair is less effective than what tissue-

engineering principles demand.  Though fully-developed mature elastic fibers are 

insoluble and inert to local changes in pH and chemical environment, various proteolytic 

enzymes secreted by SMCs, such as matrix metalloproteinases (MMPs-2, 9, 12) and 

elastases can degrade elastin fibers and its components352-354.  Literature suggests that 
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these degradation products can modulate vascular remodeling via their interaction with 

SMCs355, leading to structural and mechanical abnormalities in large arteries356.  Thus, 

proper assembly and functioning of elastic fibers is critical for maintaining homeostasis 

in organs and tissues. 

As mentioned above, elastic fibers are complex macromolecular structures which 

contain amorphous elastin and other non-elastin protein components (e.g., fibrillin, 

elaunin).  They are difficult to repair because their deposition pattern requires the 

coordinated expression of all of the microfibrillar molecules as well as the cross-linking 

enzymes critical for elastin, so that the correct temporal sequence is followed329.  The 

cell-secreted soluble elastin protein precursors, i.e., tropoelastin monomers357, are 

recruited by coacervation onto pre-formed templates of fibrillin-rich microfibrils330, and 

stabilized by LOX-catalyzed desmosine crosslinking331.  Microfibrils, which appear first 

in the elastic fiber development and associates itself close to the cell surface, facilitates 

tropoelastin cross-linking to form the functional polymer358.  Hence, approaches for 

elastin regeneration must be able to mimic the spatio-temporal sequence of these events 

leading to elastin matrix assembly.  However, elastin-producing cells in adult tissues 

often synthesize elastin that does not polymerize or organize into a functional three-

dimensional fiber, leading to organ or tissue failure in the long-term. 

 Current tissue engineering approaches to regenerate elastin-rich vascular 

constructs are limited by progressive destabilization of tropoelastin mRNA expression in 

adult vascular cells24, 300 and the unavailability of cellular cues necessary to up-regulate 

elastin synthesis, maturation and organization359.  Our recent studies strongly attest to the 
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utility of HA-based biomaterials and biomolecular cues for cellular-mediated elastin 

matrix regeneration58, 60, 313, 348.  A key deduction from these studies is that though HA 

oligomers (< 1 kDa) are more biologically active than long-chain HA (> 1 MDa), and 

dramatically increase elastin synthesis and deposition, the elastin matrix crosslinking 

efficiency was not significantly upregulated58, 60.  This suggests that an important aspect 

of tissue-engineering elastin rich vascular constructs is the ability to regulate the amount, 

quality, ultrastructure and hierarchical organization of the synthesized elastin precursors, 

so as to maximize their crosslinking efficiency and matrix formation. 

Dahl et al. demonstrated the benefits of increasing medium copper ion 

concentration to elastin matrix crosslinking efficiency in an engineered vascular-like 

tissue339.  Likewise, in our own prior studies351, we investigated the effects of soluble 

copper salts, delivering steady state doses of 0.01 and 0.1 M of Cu2+ ions to elastin matrix 

deposition, assembly (i.e., fiber formation) and maturation (i.e., crosslinking) in RASMC 

cultures.  Our results suggested that 0.1 M of CuSO4 (but not 0.01 M) and HA oligomers 

(or HMW HA) significantly improved elastin matrix synthesis, crosslinking and fiber 

formation by adult rat vascular SMCs.  However, cytotoxicity associated with long-term 

exposure of vascular cells to these effective doses of Cu2+ ions350, delivered at steady-

state levels from soluble copper salts, showed that more controlled modes of Cu2+ ion 

delivery, such as from copper nanoparticles (CuNP), may be important to deter the same.  

Thus, in this study, we have sought to deliver the equivalent of a 0.1 M dose of Cu2+ via 

controlled release from CuNP and investigate the impact of such delivery with or without 

HA oligomers on elastin matrix synthesis, assembly, and maturation. 
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Figure 5.11. Representative SEM images of 21-day old RASMC cell layers for non-

additive controls (panel A); cultured with CuNP alone (1 ng/mL : panel B; 10 ng/mL : 

panel C; 400 ng/mL : panel D);  cultured with CuNP and HA oligomers (1 ng/mL : panel 

E; 10 ng/mL : panel F; 400 ng/mL : panel G, H).  Compared to CuNP supplemented 

cultures, additional presence of oligomers enhanced formation of dense crosslinked 

matrix elastin fibers with diameters ranging between 0.2-0.5 μm. 

 

Detectable amount of Cu2+ ions (~ 0.0012 M) were released even from 1 ng/mL 

of CuNP within the first 5 h, which shows that exogenous nanoparticles are effective 

vehicles for even short-term Cu2+ ion delivery.  From the release profiles, it can be 

observed that irrespective of CuNP dose, Cu2+ ion release peaked within the first 30 h, 

after which sustained release of ions was maintained.  Thus, in effect, Cu2+ release over 

the 21 day culture period can be deemed steady state.  The concentration of released Cu2+ 

ions depended strongly on dose of CuNP, dissolution time, and also their interdependence, 

which is aptly described by eq.1, our model fit to experimental release profiles.  Using 

this model, we predicted that addition of 400 ng/mL of CuNP to cell cultures would result 

in a cumulative release of ~ 0.1 M of Cu2+ ions over 21 days. 

A significant observation was that 400 ng/mL of CuNP had no cytotoxic effects 

of SMCs, and thus no apparent change in morphology over the 21 day culture period.  In 

contrast, our prior studies351 showed that an equivalent dose of Cu2+, released from 

soluble copper sulfate salt, induced mild cytotoxicity that was apparent within a day of 

addition, and caused visible initial cell rounding and some cell death.  Previously, we 
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showed that in the presence and absence of HA oligomers, supplementation of 0.01 M of 

Cu2+ ions increased cell proliferation (1.5-2-fold relative to controls), while 0.1 M of 

Cu2+ ions suppressed the same (80% of controls)351.  In this study, in the cases where 

CuNP delivered was less than 0.1 M of Cu2+ ions (i.e., 1 and 10 ng/mL of CuNP doses), a 

likewise 1.5-2-fold increase in cell proliferation over control cultures was observed.  

However, when ~ 0.1 M of Cu2+ ions was released by 400 ng/mL of CuNP, active 

promotion rather than suppression of cell proliferation was noted.  Thus, our experiments 

show controlled release of Cu2+ ions from CuNP deters rapid increase in Cu2+ 

concentration in the initial period after cell seeding, and thus may not have long-term 

toxic effects.  In accordance with our earlier observation that 0.2 μg/mL of HA oligomers 

inhibit SMC proliferation360, in this study also, supplementation of HA oligomers to 

cultures together with CuNP, suppressed cell proliferation down to levels measured in 

control cultures.  Thus, from a tissue engineering perspective, CuNP and HA oligomers 

do not promote cell proliferation, but simultaneously do not induce cell death to in turn 

adversely impact matrix synthesis and accumulation within the constructs. 

In this study, exogenous CuNP had no effect on total elastin production, both in 

the presence and absence of HA oligomers.  In general, lower doses of CuNP (1-10 

ng/mL), delivering less than 0.1 M of Cu2+, alone or together with HA oligomers, 

expectably offered no benefit to matrix elastin synthesis, except for a 2.7-fold increase in 

crosslinked elastin synthesis in the presence of 1 ng/mL of CuNP and HA oligomers.  

The lack of any benefits to elastin synthesis mimicked our prior observations when 0.01 

M of CuSO4 was supplemented to RASMC cultures351.  However, production of matrix 
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elastin (both soluble and crosslinked forms) increased multi-fold with the addition of 400 

ng/mL of CuNP, both alone and together with HA oligomers, suggesting the 

effectiveness of these cues in the recruitment and crosslinking of tropoelastin precursors 

into matrix structures.  Since total cellular elastin production was unaffected by these 

cues, the net result of doubling in matrix deposition is a much higher matrix yield (400 

ng/mL CuNP alone: 61.3 ± 3.6%; 400 ng/mL CuNP and HA oligomers: 58.8 ± 6.1%; 

control cultures: 20.1 ± 3.5%). 

LOX protein synthesis was unchanged in cultures supplemented with CuNP only 

and those that received both CuNP (1 and 10 ng/mL) and HA oligomers.  On the other 

hand, when 400 ng/mL of CuNP was added to cultures together with HA oligomers, a 

significant increase in LOX protein synthesis was observed.  Collectively, these results 

suggest that (a) CuNP doses (1 and 10 ng/mL) that generate less than 0.1 M of Cu2+ ions 

do not induce LOX protein synthesis, (b) 0.1 M dose of Cu2+ ions generated by 400 

ng/mL of CuNP may likely be able to stimulate LOX protein synthesis by cells, provided 

Cu2+ release occurs in close proximity to the cell layers where the ions can interact with 

cells and influence their behavior, and (c) HA oligomers which likely interact and bind to 

cell surface receptors (e.g., CD44, TLR-4) also likely immobilize Cu2+ ions via opposite 

charge interactions.  Thus, when both CuNP and HA oligomers are present, it may 

certainly be possible that Cu2+ ions localize close to the cell layer where they may 

intimately influence cell behavior, including their induction of LOX production.  Our 

results also show that LOX enzyme activity was enhanced at all provided doses of CuNP, 

though LOX activity did not increase as a function of CuNP dose.  In all cases, addition 
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of HA oligomers induced a small but significant increase in LOX activity.  Since we 

showed in an earlier publication that HA oligomers have no impact on LOX activity, the 

observed increases here may be solely due to opposite charge interactions of CuNP with 

HA oligomers and their resultant localization at the cell layer to more potently enhance 

activity of endogenous LOX enzyme. 

Structural analysis (electron microscopy) of matrix elastin qualitatively supported 

the biochemical measurements within CuNP-stimulated cultures.  While the control 

cultures contained only amorphous elastin deposits, aggregating elastin fibers were seen 

within cultures treated with CuNP (all doses) alone and together with HA oligomers, with 

multiple bundles of fully-formed elastin fibers with diameter ranging between 200-500 

nm.  Immunofluorescence images confirmed the amorphous and fibrillar nature of elastin 

matrix within control and test cell layers.  Fluorescence (red) due to LOX expression was 

also much more intense in cell layers that received CuNP (400 ng/mL) alone or together 

with HA oligomers than in control cell layers.  This confirms the outcomes of our 

biochemical measurements of LOX protein synthesis.  The matrices also showed 

presence of fibrillin-1 microfibrils, which confirmed normal mechanisms of elastin fiber 

assembly.  Literature indicates that the fibrillin microfibrils guide the alignment of 

tropoelastin molecules for crosslinking and fiber fomation347.  This initial alignment is 

stabilized by copper ion-dependent LOX, which oxidizes the lysine residues of the 

aligned elastin molecules and enables crosslinking.  Thus, these stabilized and aligned 

elastin structures act as nucleation sites for further coacervation and crosslinking of more 

tropoelastin resulting in organized elastic fiber growth.  The presence of highly anionic 
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HA oligomers might also promote elastic fiber formation by electrostatically binding to 

the unoxidized lysine residues of newly synthesized tropoelastin during their association 

with microfibrils, thus preventing their random self-aggregation far away from the site of 

fiber formation52.  However, these are only possibilities which remain to be investigated 

in future studies. 
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Figure 5.12. Representative TEM images of 21-day old RASMC cell layers cultured 

additive-free (panel A), with CuNP alone (400 ng/mL; panel B) or together with HA 

oligomers (panels C-D).  Aggregating amorphous elastin clumps leading to the formation 

of elastin fibers can be clearly seen in these images (panel C), which confirm the identity 

of elastin observed at higher magnifications (100000 X; panel D). 

 

5.2.5 Conclusions of this study 

1. The utility of copper nanoparticles as an effective medium for copper ion delivery 

to in vitro cultures has been demonstrated. 

2. Though the exogenous supplementation of CuNP did not upregulate tropoelastin 

production by RASMCs, they were highly effective in promoting crosslinked 

elastin matrix formation.  Additional presence of HA oligomers within these 

CuNP-stimulated cultures furthered the crosslinked matrix elastin deposition 

process. 

3. Structural analysis of the isolated matrix elastin revealed that within RASMC 

cultures treated with CuNP (1-10 ng/mL) alone or together with HA oligomers, an 

increase in the density of aggregating elastin fibers was evident, relative to 

amorphous elastin clumps observed within non-additive cultures. 

4. The addition of 400 ng/mL of CuNP concurrent with HA oligomers resulted in 

the formation of multiple bundles of highly-crosslinked elastin fibers, with 

diameters ranging between 200-500 nm. 
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5. Immunofluorescence imaging and ultrastructural analysis of the elastin matrices 

within Cu-400 ng cultures suggested the fibrillin-mediated normal elastin 

deposition process with significant presence of LOX within these cultures. 

6. Overall, the results attest to the elastogenic utility of copper nanoparticles and HA 

oligomers to highly crosslinked fibrillar elastin matrix generation within smooth 

muscle cell cultures, with potential applications in vascular tissue engineering. 
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5.3 Benefits of Bovine LOX to Elastin Synthesis 

5.3.1 Introduction 

In the previous sections 5.1 and 5.2, we have described the utility of exogenous 

delivery of copper ions (with or without HA fragments) via copper salts or copper 

nanoparticles, to elastogenesis by RASMCs in an in vitro culture model.  The hypothesis 

for these studies was that the copper ions released from the copper sulfate/ CuNP will 

promote LOX protein synthesis and activity within these cultures, thereby influencing the 

crosslinking efficiency and matrix formation of elastin.  Indeed, the results observed in 

both these cases (detailed and explained in sections 5.1 and 5.2) support our hypothesis, 

and attest to the utility of these cues to enhance matrix crosslinking efficiency and elastin 

fiber formation.  This makes one wonder whether the observed elastogenic benefits of 

copper ion delivery via indirect increases in endogenous LOX production and activity, 

could also be achieved by direct delivery of purified LOX protein to the RASMC cultures.  

Thus, in this study, we explored the elastogenic benefits of delivering purified bovine 

LOX protein exogenously to RASMC cultures. 

 

5.3.2 Materials and Methods 

5.3.2.1 Purification of lysyl oxidase (LOX) 

 LOX was purified from bovine aorta according to the published methods by 

Kagan et al308, 361.  Briefly, bovine aortae from 2-6 week old calves were cleaned, 

coarsely ground and extracted twice with buffer (0.4 M NaCl, 16 mM potassium 

phosphate, pH 7.8, 4oC).  The extracted pellets in 4 M urea (with 16 mM potassium 
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phosphate, pH 7.8) were mixed with hydroxyapatite, stirred for 10 min at 4oC, allowed to 

settle for 30 min, and decanted.  The supernatant is centrifuged at 10,000g for 10 min, 

concentrated, and dialyzed against buffer containing 16 mM potassium phosphate, pH 7.8.  

The crude enzyme precipitated by adding equal volume of 1 M potassium phosphate, pH 

7.8, is resolved by chromatography through a column eluting with 16 mM potassium 

phosphate, 6 M urea, pH 7.8.  The enzymatically active fractions from the 

chromatography column were pooled and the urea concentration was adjusted from 6 to 2 

M by dilution with 16 mM potassium phosphate, pH 7.8.  The column was washed with 

buffer until optical density of the effluent < 0.002, and further washed with 16 mM 

potassium phosphate, pH 7.8, followed by 0.4 M NaCl, 16 mM potassium phosphate, pH 

7.8.  LOX was then eluted using a gradient of urea concentration (from 0 urea, 0.4 M 

NaCl, 16mM potassium phosphate, pH 7.8, to 6 M urea 0.4 M NaCl, 16 mM potassium 

phosphate, pH 7.8) at a flow rate of 1 ml/min.  The enzymatically active fractions were 

pooled, concentrated, dialyzed against 16 mM potassium phosphate, pH 7.8, buffer and 

stored in aliquots at 280°C.  SDS–PAGE revealed the presence of a 32-kDa (90%) and a 

low-molecular-weight (24-kDa) band (10%) in the purified sample.  The yield of enzyme 

was 0.4 mg from 350 g of bovine aorta.  These purified lysyl oxidase preparations have a 

specific activity of 0.5 nmol of H2O2 produced per mg LOX per minute at 37°C. 

 

5.3.2.2 Cell Culture 

Purified bovine aorta LOX was received from Dr. Herbert Kagan at Boston 

University.  The enzyme which was sent in a 4 M urea, 16 mM potassium phosphate, pH 



 192

7.8, buffer was dialyzed with water overnight, lyophilized and reconstituted in 1 mL of 

distilled water.  Two test doses were evaluated: 50 μL per well (LOX-1), or 100 μL per 

well (LOX-2). 

Low passage (3-5) adult RASMCs were seeded onto 6-well tissue culture plates at 

a density of 4 × 104 cells/ well and treated with DMEM (Invitrogen) containing 10% v/v 

FBS and 1% v/v penstrep (VWR International).  Each well contained 5 mL of medium.  

Bovine LOX reconstituted in distilled water was supplemented exogenously to the 

culture wells at final doses of either 50 μL/well (LOX-1) or 100 μL/well (LOX-2), except 

in control cultures which received no LOX.  These concentrations were randomly chosen 

based on previous studies by Kagan et al.  A 1-mL of culture medium was added weekly 

to the existing medium so as to not disturb the one-time delivery of LOX protein, and the 

final spent medium from each well pooled after the 21 day culture period and frozen for 

further biochemical analysis. 

 

5.3.2.3 Biochemical Assays 

The DNA content in cell layers was measured at 1 and 21 days of culture to 

determine the proliferation of SMCs and to normalize the measured amounts of 

synthesized matrix, according to protocol explained in section 3.2.3. 

The collagen content within the cell layers and in the pooled supernatant medium 

fractions was estimated using a hydroxy-proline assay, described in section 3.2.4.  The 

amounts of matrix elastin (alkali-soluble and insoluble fractions) and soluble tropoelastin 

(in pooled spent medium) were quantified using a Fastin assay (Accurate Scientific Corp), 
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as detailed in section 3.2.5.  The measured amounts of synthesized matrix were 

normalized to their respective DNA amounts to provide a reliable basis of comparison 

between samples, and to broadly assess if the observed changes in the amount of matrix 

synthesized could possibly be due to increases in elastin production on a per cell basis. 

The desmosine crosslink densities within elastin matrices were quantified for 

selected cases using ELISA, as described in section 3.2.6.  The desmosine amounts/ ng of 

DNA were compared to the DNA-normalized amounts of insoluble matrix elastin from 

corresponding cell layers.  The LOX enzyme activity within the cell culture layers was 

determined using a fluorometric assay based on generation of H2O2 when LOX acts on a 

synthetic substrate, described in detail in section 3.2.7.  Western blot analysis of proteins 

within the pooled medium fractions at day 21 was performed using methods described in 

section 3.2.8, to semi-quantitatively confirm observed biochemical trends in tropoelastin 

synthesis and to assess LOX protein synthesis. 

To evaluate whether the LOX supplementation might be activating RASMCs to 

release any inflammatory markers such as MMPs, we performed gel zymography to 

quantify MMPs-2 and 9 in these cultures, as per protocols described in section 6.2.5. 

All experiments were performed in triplicate and quantitative results reported as 

mean ± SD.  Statistical significance between and within groups was determined using 2-

way ANOVA.  Results are deemed significantly different from controls for p < 0.05. 
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5.3.3 Results and Discussion 

5.3.3.1 Cell Proliferation 

Figure 5.13A shows the cell proliferation ratios of RASMCs cultured with bovine 

LOX; cell proliferation in non-additive control cultures are also shown for comparison.  It 

was observed that RASMCs in control cultures proliferated 11.7 ± 2.35 –fold over the 21 

day period compared to their initial seeding density of 40,000 cells/well.  However, LOX 

exogenous supplementation promoted cell proliferation at both the doses studied by 1.45 

± 0.34 and 1.23 ± 0.23 –fold, respectively, relative to controls (p = 0.031 and 0.8, 

respectively). 

 

5.3.3.2 Matrix Protein Synthesis 

 Addition of bovine LOX suppressed collagen protein synthesis in RASMC 

cultures, relative to controls (2226 ± 144 ng/ng of DNA).  The collagen synthesis was 

suppressed by 62 ± 9% in both the cases, relative to controls (p < 0.001 vs. controls). 

 Similarly, the tropoelastin synthesis was also suppressed in the LOX-

supplemented cases, relative to controls (Figure 5.13C).  While 14990 ± 1618 ng/ng of 

DNA of tropoelastin protein was synthesized in control cultures, the addition of LOX-1 

suppressed the same to 6441 ± 1834 ng/ng DNA (p < 0.001) and the addition of LOX-2 

suppressed the same to 13235 ± 225 ng/ng DNA (p = 0.11 vs. controls).  These results 

suggest that exogenous LOX protein do not interfere with the endogenous tropoelastin or 

collagen protein synthesis process. 
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Elastin incorporated into the matrix was measured as the sum of two individual 

fractions, i.e., a highly cross-linked, alkali-insoluble elastin pellet, and an alkali-soluble 

fraction.  As shown in Figure 5.13D, addition of LOX-1 increased soluble elastin 

synthesis by 1.37 ± 0.2 -fold, while LOX-2 addition furthered this increase by 1.7 ± 0.02 

–fold, relative to non-additive controls (5268 ± 719 ng/ ng DNA; p < 0.01, in both the 

cases).  Similarly, as shown in Figure 5.14A, the addition of LOX-1 promoted 

crosslinked alkali-insoluble matrix elastin production by 1.71 ± 0.04-fold (p < 0.001 vs. 

controls), while LOX-2 promoted the same by 2.46 ± 0.08 –fold, compared to that within 

control cultures (758 ± 106 ng/ng DNA). 
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Figure 5.13. (A) Proliferation ratios of RASMCs supplemented with LOX (50-100 

μL/mL).  Data shown represent mean ± SD of DNA count after 21 days of culture (n = 

3/case).  Effects of exogenous LOX on collagen (B), tropoelastin (C) and alkali-soluble 

matrix elastin (D), synthesized by adult RASMCs.  Values (mean ± SD) are shown 

normalized to the DNA content of the respective cell layers at 21 days of culture (n = 

3/case).  * represents significant differences relative to control cultures, deemed for p < 

0.05. 

 

 As shown in Figure 5.14B, the trends in total matrix elastin synthesis were 

similar to that observed for insoluble matrix elastin synthesis within these cultures.  

Addition of LOX-1 and LOX-2 increased the total matrix elastin synthesis by 1.4 ± 0.17 

–fold and 1.8 ± 0.03 –fold, respectively, relative to controls (6027 ± 826 ng/ng DNA).  

The elastin matrix yields [matrix yield = matrix elastin/ (tropoelastin + matrix elastin)] 

calculated from the elastin synthesis data is presented in Figure 5.14C.  The matrix yield 

within test cases was normalized to that observed in non-additive controls.  While only 

28.6 ± 3.9% of total elastin produced in non-additive control cultures was deposited as a 

matrix, the elastin matrix yield increased to 57 ± 7.1% by addition of LOX-1, and to 45.1 

± 1 % with addition of LOX-2.  Thus, the matrix yield within the test cases was 

significantly higher compared to that in non-additive controls.  However, the desmosine 

amounts (ng/ng of insoluble matrix elastin) in LOX-additive cultures were not 

significantly higher than those in control cultures (Figure 5.14D).  These results suggest 
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that though LOX addition may not increase basal levels of RASMC tropoelastin synthesis, 

it definitely enhances matrix elastin formation and crosslinking. 

 

5.3.3.3 LOX Protein Synthesis and Activity 

Figure 5.15A describes the effect of addition of exogenous bovine LOX protein 

on LOX enzyme activity within the RASMC cultures.  LOX activity was measured in the 

spent culture medium following 21 days of culture.  Interestingly, addition of LOX-1 and 

LOX-2 had significant effect on basal LOX functional activity.  Relative to controls, they 

increased LOX activity by 1.14 ± 0.06 and 1.132 ± 0.017 –fold, respectively (p < 0.01 in 

both the cases). 
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Figure 5.14. (A) Crosslinked insoluble matrix elastin synthesized by RASMCs over the 

21 day period.  Values are shown as mean ± SD of n=3/case normalized to the DNA 

content in the cultures.  (B) Total matrix elastin (sum of alkali-soluble and insoluble 

matrix elastin fractions) within the LOX supplemented cultures.  (C) Matrix elastin yield 

within RASMC cultures supplemented with LOX.  The ratio of matrix elastin deposited 

to total elastin synthesized was calculated in each test case and further normalized to 

similar ratio in control cultures.  (D) Desmosine amounts were assayed and normalized to 

the insoluble matrix elastin protein observed within the respective cultures (n=3/case). 

 

 

Figure 5.15. (A) LOX enzyme activities in cultures treated with bovine LOX.  Values 

(mean ± SD) are shown normalized to the LOX activity measured in control cell layers at 



 199

21 days of culture (n = 3/case).  (B)  LOX protein amounts in pooled medium aliquots 

collected over 21 days of culture.  Shown are mean ± SD of DNA-normalized intensities, 

measured from representative SDS-PAGE/ western blots containing bands corresponding 

to LOX produced in the respective cases.  (C) The release of MMPs-2 and 9 within the 

RASMC cultures receiving LOX were quantified using gel zymography procedures.  The 

values are shown as mean ± SD of n =3/case for each test case, and further normalized to 

the respective amounts in control cultures.  * represents significance in differences 

relative to controls, for p < 0.05. 

 

Spent medium fractions pooled over 21 days from test and control cultures were 

analyzed by western blot, and the DNA-normalized intensities of the LOX-protein bands 

within test cultures were further normalized to those in controls (Figure 5.15B).  

Exogenous LOX-1 and LOX-2 enhanced LOX protein synthesis relative to controls by 

1.16 ± 0.03 and 1.42 ± 0.24 –fold, respectively (p = 0.008 and 0.01, vs. controls).  Gel 

zymography analysis showed that the production of the MMPs-2, 9 were not enhanced by 

LOX addition versus those that received no additives (Figure 5.15C; p = 0.71). 

 Overall, the data suggests that the observed increases in elastin matrix synthesis 

and deposition were an indirect outcome of exogenous bovine LOX-induced increases in 

endogenous LOX activity and protein synthesis.  Though no differences in desmosine 

crosslink density were noted, significant increases in crosslinked elastin matrix 

production and yield – despite the absence of similar increases in tropoelastin synthesis 

within these cultures – suggests that exogenously provided LOX protein to cell cultures is 
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a viable and safe method and can be applied in other tissue engineering applications as 

well. 

 

5.3.4 Conclusions of this study 

1. Exogenously provided bovine LOX (50-100 μL/well) promotes RASMC 

proliferation relative to control cultures, without significantly increasing MMPs-2, 

9 activity. 

2. Bovine LOX enhanced total elastin production, elastin matrix deposition, and 

elastin crosslinking efficiency (yield) in a dose-dependent manner.  This was 

achieved via significant increases in endogenous LOX protein production and 

activity within these cultures. 

3. The concept of exogenous LOX addition to enhance matrix elastin synthesis and 

deposition is a viable and safe approach and has great potential in vascular tissue 

engineering applications. 
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CHAPTER 6 

EFFICACY OF ELASTOGENIC CUES IN CHRONICALLY-STIMULATED 

VASCULAR SMOOTH MUSCLE CELL CULTURES 

 

6.1 Introduction 

In chapter 2, we explained in detail the role of various cytokines and chemokines, 

in regulating SMC-activation and healthy elastin destruction, thereby contributing to the 

aggravation of diseased state.  The pathogenesis of aortic aneurysms (AAs) is 

characterized by injury, infiltration of extracellular inflammatory cells (e.g., monocytes, 

lymphocytes, plasma cells), and their secretion of matrix metalloproteinases (MMPs) and 

inflammatory cytokines (e.g., TNF-α, IL-1β), which in turn can induce a change in SMC 

phenotype and their mediation of vascular wall matrix remodeling362, 363.  Since elastin is 

a major component of the extracellular matrix in vascular connective tissues, the released 

MMPs degrade crosslinked fiber structures of elastin (and collagen) to generate soluble 

peptides11.  Prior studies have shown that macrophages migrate into the developing 

AA364, likely attracted by these elastin peptides365, and further exacerbate matrix 

breakdown by secreting cytokines, chemokines, interleukins, elastase, and collagenases12.  

These peptide fragments can activate the elastin-laminin receptors present on the surface 

of vascular cells366 to trigger diverse responses including further production of elastases, 

increased Ca2+ influx into cells, switch of SMCs from healthy contractile to synthetic 

phenotype, and their further proliferation and disorganized matrix deposition367.  Thus, in 

summary, this cascade of events is typically associated with elastin breakdown368, and 
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concomitant loss of vessel elasticity369, and ultimately leads to vascular calcification and 

aneurysm progression. 

Among the various cytokines secreted by macrophages within aneurysmal lesions, 

tumor necrosis factor (TNF-α) has been found to be particularly dominant within the 

calcified aortic wall370.  TNF-α is a vital mediator of inflammation and has been 

implicated to play a major role in inciting SMC proliferation371 and MMP release372.  

Under inflammatory conditions, elastin gene expression by SMCs has been shown to be 

down-regulated by TNF-α373, and existing elastin degraded by MMPs and macrophage-

derived elastases374, to subsequently interrupt intact elastin-SMC signaling pathways.  

Despite this clinical relevance and significance, the chronic-stimulatory effects of TNF-α 

on SMCs and their resultant effects on the quality and quantity of basal elastin matrix 

repair and regeneration by SMCs are not clearly understood and worth investigating. 

As explained in chapter 3, we observed that HA oligomers (4-6 mer; MW ~ 756-

1221 Da; 0.2 μg/mL) and TGF-β1 (1 ng/mL), henceforth referred to as elastogenic cues, 

attenuated proliferation of healthy vascular SMCs and dramatically increased cellular 

elastin production, matrix yield, maturation, and stability360.  We hypothesize that 

delivery of TGF-β and HA oligomeric cues may likewise be useful to coax elastin matrix 

regeneration and minimize inflammation within aneurysm sites. 

Despite their benefits to elastin production by healthy cells, it is yet unknown if 

the elastogenic cues will suppress pro-calcific and elastolytic activities of chronically-

stimulated cells within vascular aneurysms, such as those incited by TNF-α, and 

simultaneously upregulate their ability to synthesize and assemble matrix elastin.  To 
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investigate these aspects, we assessed the elastogenic effects of these cues, in TNF-α 

stimulated rat aortic SMC cultures.  Since the numerous influencing parameters in vivo 

(e.g., source and nature of injury stimulus and heterogeneity in matrix composition as a 

function of proximity to site of aneurysmal rupture) can make initial assessment of the 

efficacy of these cues very difficult, the above culture model of TNF-α stimulated cells 

will enable assessment under tightly regulated conditions as other such studies have also 

found useful375, 376. 

 

6.2 Materials and Methods 

6.2.1 SMCS Isolation and Culture 

HA oligomer mixtures used in this study contained 75 ± 15% w/w of HA 4-mers 

(henceforth referred to oligomers), with 6-mers and 8-mers forming the balance, and 

were prepared in the lab as per the protocols explained in section 3.2.1. 

The RASMCs were isolated from rat aorta as explained in section 3.2.2, and 

SMCs from passages 3-5 were seeded onto 6-well tissue culture plates (A = 10 cm2) at a 

seeding density of 4.0 × 104 cells/ cm2 and cultured in DMEM-F12 media with 10% FBS 

and 1% Penstrep.  A total volume of medium was added per well was 5 mL.  The cultures 

were divided into the following experimental groups: no-additives treatment (controls), 

TNF-α alone, TGF-β and HA oligomeric cues with or without TNF-α.  TNF-α (Sigma 

Aldrich) was supplemented at a concentration of 10 ng/mL, HA oligomers were added at 

a dose of 0.2 μg/mL, and TGF-β1 (Peprotech Inc.) at a dose of 1 ng/mL.  Fresh medium 

was added to cultures twice weekly, and the spent medium aliquots collected from each 
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well at different time points, pooled and stored at -20 oC.  These pooled aliquots and the 

corresponding harvested cell layers were biochemically analyzed at 21 days of culture. 

 

6.2.2 Biochemical Assays 

The DNA content in cell layers was measured at 1 and 21 days of culture to 

determine the proliferation of SMCs and to normalize the measured amounts of 

synthesized matrix, according to protocol explained in section 3.2.3. 

The collagen content within the cell layers and in the pooled supernatant medium 

fractions was estimated using a hydroxy-proline assay, described in section 3.2.4.  The 

amounts of matrix elastin (alkali-soluble and insoluble fractions) and soluble tropoelastin 

(in pooled spent medium) were quantified using a Fastin assay (Accurate Scientific Corp), 

as detailed in section 3.2.5.  The measured amounts of synthesized matrix were 

normalized to their respective DNA amounts to provide a reliable basis of comparison 

between samples, and to broadly assess if the observed changes in the amount of matrix 

synthesized could possibly be due to increases in elastin production on a per cell basis. 

The desmosine crosslink densities within elastin matrices were quantified for 

selected cases using ELISA, as described in section 3.2.6.  The desmosine amounts/ ng of 

DNA were compared to the DNA-normalized amounts of insoluble matrix elastin from 

corresponding cell layers.  The LOX enzyme activity within the cell culture layers was 

determined using a flurometric assay based on generation of H2O2 when LOX acts on a 

synthetic substrate, described in detail in section 3.2.7.  Western blot analysis of proteins 

within the pooled medium fractions at day 21 was performed using methods described in 
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section 3.2.8, to semi-quantitatively confirm observed biochemical trends in tropoelastin 

synthesis and to assess LOX protein synthesis. 

 

6.2.3 Immunofluorescence Studies and Matrix Structure 

As explained in detail in section 3.2.11, immunofluorescence techniques were 

used to confirm the presence of elastin, fibrillin within selected cell layers, and LOX 

expression for those conditions that appeared to upregulate elastin synthesis.  The 

ultrastructure of insoluble matrix elastin within control cell layers and test layers was 

characterized using high-resolution transmission electron microscopy (detailed procedure 

in section 3.2.12). 

 

6.2.4 Cytokine Array 

The type and amount of cytokines produced by RASMCs in response to 

exogenous TNF-α, or together with elastogenic cues was compared using an ELISA-

based cytokine array to deduce the cell-activation potential of TNF-α.  RASMCs were 

cultured to semi-confluence and then subjected to exogenous TNF-α (10 ng/mL) for 48 h, 

in the presence or absence of HA oligomers (0.2 µg/mL) and TGF-β (1 ng/mL).  The 

release of different cytokines and chemokines from cultured SMCs into the media were 

detected by a ChemiArray™ rat cytokine array I (Millipore), consisting of the 

corresponding antibodies spotted in duplicate onto a membrane.  The membranes were 

processed in accordance with the manufacturer’s protocol and imaged under 

chemiluminescence in a FluorChem 8900 gel imaging station (Alpha Innotech) to 
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quantify relative spot intensities.  Intensities due to each cytokine were normalized 

according to the positive signal of each membrane, and the results were averaged from 

the outcomes of three replicate runs. 

 

6.2.5 Gel Zymography 

MMPs-2, 9 were detected in the culture medium by gelatin zymography methods 

described elsewhere321.  Briefly, aliquots of culture medium were assayed for protein 

content using the BCA assay, and all lanes were loaded in triplicate with 15 μg of protein 

from each extract alongside with pre-stained molecular weight standards (Bio Rad).  

After development and staining, densities of MMP-2 and 9 bands on a dark background 

of stained gelatin were measured using Gel Pro Analysis software (Media Cybernetics), 

and reported as relative density units (RDU). 

 

6.2.6 Elastase Assay 

Elastase activity in the cell cultures was assayed using an EnzChek® Elastase 

Assay kit for elastin hydrolytic activity (Molecular Probes).  Briefly, 50-μL of spent 

culture medium at 21 days of culture was mixed with 50 μL of diluted bovine neck 

ligament elastin, incubated for 30 min incubation at 37 ºC, and the fluorescence intensity 

measured at 485 nm excitation and 510 nm emission wavelengths.  One unit of elastase 

was defined as the amount of porcine pancreatic elastase required to solubilize 1 mg of 

elastin at pH 8.8 and 37 ºC. 
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6.2.7 Von Kossa Staining for Calcific Deposits 

After 21 days of culture, the respective cell cultures were incubated with 1% 

silver nitrate solution and placed under UV light for 20 min.  After several changes of 

distilled water, the unreacted silver was removed with 5% sodium thiosulfate for 5 min, 

and the cells were rinsed and kept in distilled water.  The slides were counterstained with 

hematoxylin.  The presence of black stain confirmed the presence of calcium phosphate 

deposits. 

Data were measured in triplicate from experiments that were also performed in 

triplicate (n = 3 samples/case).  Since the data followed nearly Gaussian distribution, we 

statistically analyzed the data using Student’s t-test, assuming unequal variance.  

Asterisks in figures denote statistically significant differences between test cultures and 

non-additive control cultures, deemed for p < 0.05. 

 

6.3 Results 

6.3.1 TNF-α Stimulation of SMCs 

Figure 6.1A shows release of inflammatory cytokines, interleukins and 

chemokines by RASMCs when stimulated with TNF-α, relative to non-stimulated control 

RASMCs.  TNF-α prompted ~30-70% increases in production of interleukins (IL-1, 4, 6, 

10), ~20% increase in that of chemokines (FNK, LIX, MCP-1, MIP-3a), and increases 

between 30-50% in production of cytokines (TNF-α) and tissue inhibitor of matrix 

mealloproteinases (TIMP-1), compared to non-additive controls (p < 0.05 in all the cases).  

Von kossa staining also indicated a significantly greater number of calcific deposits 
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(stained black) within TNF-α –treated cell layers (Figure 6.1B) compared to controls.  

Gel zymography showed that production of the elastolytic MMPs-2, 9 were enhanced by 

43 ± 14% and 51 ± 17% respectively in cultures that received TNF-α versus those that 

received no additives (Figure 6.1C; p < 0.001).  These results suggest that the provided 

dose of TNF-α (10 ng/mL) is capable of stimulating cells to release more MMPs and 

cytokines, and that this in vitro system might serve as a suitable model of chronically-

activated SMCs to ascertain their elastogenic upregulation by provided cues.  Also, as 

shown in Figure 6.1D, TNF-α supplements enhanced elastase production within non-

additive control cultures by 39 ± 4 % (p < 0.01). 

 

6.3.2 Effect of TNF-α and Cues on SMC Proliferation and Matrix Synthesis 

Control cultures proliferated 14.9 ± 2.1 –fold over 21 days.  TNF-α 

supplementation to RASMC cultures had no effect on their basal proliferation rate (0.94 

± 0.22 –fold increase relative to controls; p = 0.58).  As shown in Figure 6.2A, in the 

presence of the cues, TNF-α significantly suppressed cell proliferation relative to controls 

(0.74 ± 0.23 –fold; p = 0.03), although this decrease was less relative to cultures that 

received the cues alone (0.54 ± 0.1 –fold increase compared to controls, p < 0.001). 
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Figure 6.1. (A) Cytokine array analysis revealed the type and amount of inflammatory 

markers released within non-additive RASMC cultures, and cultures treated with TNF-α 

in the absence or presence of cues.  (B) Von kossa staining of RASMC cultures 

stimulated with TNF-α shows significant calcific deposits formation, while control 

cultures showed none.  (C) Gel zymography analysis revealed significant increases in 
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MMPs-2 and 9 release from RASMC cultures over the 21 day period, upon exposure to 

10 ng/mL of TNF-α.  (D) Elastase enzyme activity was also significantly higher within 

TNF-α stimulated cultures relative to control RASMC cultures. 

 

Over 21 days of culture, non-additive RASMC cultures generated 35774 ± 4662 

ng and 18931 ± 1966 ng of collagen and tropoelastin precursors per ng of DNA.  TNF-α 

addition had no effect on collagen synthesis (0.97 ± 0.07 -fold) and tropoelastin synthesis 

(1.06 ± 0.08 -fold), relative to control cultures.  Collagen synthesis was however 

increased by 1.16 ± 0.1 –fold and 1.84 ± 0.1 -fold relative to controls, when cues were 

supplemented in the presence and absence of TNF-α, respectively (p = 0.04 and p = 

0.005 respectively vs. controls; Figure 6.2B).  As shown in Figure 6.2C, addition of cues 

also enhanced tropoelastin synthesis by 2.01 ± 0.19 –fold (p < 0.001 vs. controls) when 

no TNF-α was added, and by 2.06 ± 0.12 –fold, when TNF-α was also supplemented (p 

< 0.001 vs. controls in both cases). 

Elastin laid down as matrix within cell layers was measured as the sum of a 

highly crosslinked alkali-insoluble fraction, and an alkali-soluble fraction.  Figure 6.2D 

shows the relative proportions of these elastin fractions in each of the tested cases.  

Synthesis of soluble and insoluble matrix elastin increased by 20 ± 3.5 -fold and 3.23 ± 

0.2 -fold in TNF-α –treated cultures, relative to their production levels in controls (1026 

± 269 ng/ng and 1186 ± 546 ng/ng respectively, p < 0.001 in both cases).  HA oligomer 

and TGF-β cues together stimulated production of soluble and insoluble matrix elastin by 

12.3 ± 4.6 and 5.9 ± 1.9 –fold, respectively, relative to controls (p < 0.001 in both cases).  
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The addition of cues to the TNF-α stimulated cultures furthered these increases to 27.3 ± 

1.7 and 4.9 ± 1.1 –fold versus controls, respectively (Figure 6.2D; p < 0.001 in both 

cases).  Overall, relative to controls, the total matrix elastin (sum of alkali-soluble and 

insoluble elastin fractions) synthesis increased by 11 ± 1.8, 8.8 ± 3.1 and 15.3 ± 1.4 –fold, 

respectively, on addition of TNF-α alone, cues alone or the cues together with TNF-α, 

respectively. 

 Figure 6.2E shows the elastin matrix yields [matrix yield = matrix elastin/ 

(tropoelastin + matrix elastin)] calculated from the elastin synthesis data presented in 

Figures 6.2C-D.  While only 10.5 ± 3.9 % of total elastin produced in non-additive 

control cultures was deposited as a matrix, this yield was increased to 54 ± 9% by 

addition of TNF-α alone, 34 ± 12 % with the addition of cues alone, and 46.5 ± 4.3% 

upon supplementation of both the cues and TNF-α. 

 

6.3.3 Effects of TNF-α and Cues on Elastin Matrix Crosslinking 

As shown in Figure 6.3A, relative to control cell layers (12.8 ± 1.7 pg desmosine/ 

ng DNA), cells cultured with TNF-α alone did not show any significant increase in 

desmosine synthesis (1.06 ± 0.17 -fold; p = 0.31 vs. controls), while cues significantly 

enhanced desmosine synthesis by 1.91 ± 0.42 –fold and 1.42 ± 0.3 –fold respectively in 

the absence and presence of TNF-α (p < 0.01 and p < 0.02 vs. controls). 

Western blot analysis of tropoelastin protein expression (Figure 6.3B) showed 

trends similar to that observed from biochemical analysis.  TNF-α alone had no 

significant effect on the tropoelastin protein amounts (1.16 ± 0.16 –fold relative to 
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controls), while cues alone and in the presence of TNF-α promoted tropoelastin protein 

expression by 1.51 ± 0.16 and 1.48 ± 0.17 –fold, respectively.  Western blot analysis 

showed LOX protein expression to be enhanced in cultures supplemented with TNF-α or 

cues alone by 1.27 ± 0.05 and 1.31 ± 0.03 –fold, relative to controls (p < 0.005; Figure 

6.3B) but less so in cultures that received both the cues and TNF-α (1.17 ± 0.09 –fold 

increase vs. controls; p = 0.03).  However, there were no significant differences in 

cellular LOX activities between control cultures and those supplemented with TNF-α, 

either alone or together with cues. 

 

6.3.4 Cues Repress TNF-α –Induced Activation of RASMCs 

Gel zymography analysis revealed that MMP-2 production was increased by 

addition of cues, alone and together with TNF-α (1.78 ± 0.05 and 1.73 ± 0.05 –fold vs. 

controls, respectively; p < 0.05 vs. controls).  However, these increases were not very 

different from that measured in cultures supplemented with TNF-α alone (Figure 6.3C).  

Again, though MMP-9 production levels, both in the presence of cues alone and together 

with TNF-α were similar, they were only marginally higher than in control or TNF-α 

treated cultures (Figure 6.3C; p < 0.05 vs. controls).  However, as shown in Figure 6.3D, 

assays for elastase activity in the presence of cues alone was comparable to that in control 

cultures (0.24 ± 0.01 U/mL), while addition of cues to TNF-α stimulated cultures 

decreased elastase activity from 0.32 ± 0.01 U/mL down to activity levels slightly higher 

than in control cultures (0.28 ± 0.009 U/mL; p < 0.01 for TNF-α + cues vs. TNF-α alone). 
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Figure 6.2. (A) Proliferation ratios of RASMC cultures supplemented with cues alone or 

together with TNF-α (10 ng/mL).  Data shown represent mean ± SD of DNA content of 

cell layers after 21 days of culture, normalized to initial seeding density and further 

normalized to control cultures that received no additives (n = 3/case).  Effects of cues 
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alone or together with TNF-α on total collagen (B) and tropoelastin (C) synthesis by 

adult RASMCs.  Data shown (mean ± SD) are normalized to cellular DNA content at 21 

days of culture and represented as fold change in protein production relative to controls 

(n = 3/case).  (D) Relative amounts of alkali-soluble and crosslinked matrix elastin 

produced by RASMCs in all the cases.  (E) Matrix elastin yields (i.e., ratio of matrix 

elastin to total elastin) were significantly higher in cultures that received TNF-α alone, 

cues alone or together with TNF-α.  P < 0.05 represents significant differences from 

controls (*). 
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Figure 6.3. (A) Desmosine amounts measured in test cell layers were normalized to 

corresponding DNA amounts (ng/ng), and further a similar ratio obtained for the non-

additive controls.  Comparable trends were observed for the desmosine/DNA density and 

respective insoluble matrix elastin/DNA for selected cases.  (B) SDS-PAGE/ Western 

blot analysis of tropoelastin and LOX proteins within the pooled medium cultures at the 

end of 21 days.  Data shown represent mean ± SD of 3 repeats/ case and are shown 

normalized to controls.  (C) Gel zymography analysis revealed the presence of MMPs-2 

and 9 within TNF-α cultures even upon addition of cues.  However the relative amounts 

were not significantly higher compared to TNF-α alone stimulated cultures.  (D) Elastase 

enzyme activity within RASMC cultures treated with cues alone or together with TNF-α 

was not significantly different from that observed with non-additive cultures. 

 

 

Figure 6.4. Von kossa staining images of cell layers treated with TGF-β alone, cues 

alone and cues together with TNF-α.  Significant calcific deposits were evident in 

cultures treated with TGF-β alone, while cultures which received cues alone or together 

with TNF-α showed none. 
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As seen in Figure 6.1A, the release of inflammatory cytokines and interleukins by 

TNF-α stimulated RASMCs decreased significantly when cues were added to these 

cultures.  It was observed that on average, addition of the cues contributed to ~ 28-46% 

decrease in the production of interleukins (IL-1, 4, 6, 10), ~ 12-40% decrease in 

production of chemokines (FNK, LIX, MCP-1, MIP-3a), and ~ 19-53% decrease in 

release of cytokines (TNF-α) and TIMP-1 by TNF-α treated cell cultures, compared to 

those conditioned with TNF-α alone (p < 0.05 vs. TNF-α alone, in all the cases). 

Von kossa staining of cultures treated with TGF-β alone (panel A), TGF-β and 

HA oligomeric cues alone or together with TNF-α (panels B-C) are shown in Figure 6.4.  

It was observed that cultures treated with TGF-β (1 ng/mL) alone contained large black 

calcific deposits, while further addition of HA oligomers in the presence and absence of 

TNF-α completely inhibited calcific deposits. 

 

6.3.5 Structural Analysis of Matrix Elastin 

Immunofluorescence imaging showed that compared to non-additive controls 

(Figure 6.5A) or cultures that received only TNF-α (Figure 6.5B), elastin (red) was more 

abundant in cultures that received TGF-β and HA oligomeric cues alone (Figure 6.5C) or 

together with TNF-α (Figure 6.5D).  However, elastin-containing cultures that were not 

treated with the anti-elastin primary antibody did not exhibit any florescence confirming 

lack of non-specific binding of the fluorophore. 

Figure 6.6 shows representative transmission electron micrographs of elastin 

matrices from 21-day cultures.  Similar to those observed in control cultures which 
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received no-additives (Figure 6.6A), TNF-α alone stimulated deposition of discrete 

clumps of amorphous elastin protein distributed, with sparse amounts of aggregating 

elastin fibrils (Figure 6.6B).  When both TGF-β1 and HA oligomers were provided to 

control cultures (Figure 6.6C), mature elastin fiber formation was favored, with the 

matrix containing numerous fully-formed bundles of fibers (100-200 nm diameter), than 

in control and TNF-α alone cultures.  Fibrillin (immunogold particle-stained), which 

appeared in transverse sections as darkly stained nodules, were located at the periphery of 

aggregating elastin fiber bundles, signifying normal elastic fiber assembly.  The 

elastogenic cues also promoted fiber formation within TNF-α stimulated cultures (Figure 

6.6D), with less amorphous elastin and more fibrilliar elastin observed when compared to 

TNF-α alone cultures. 

 

6.4 Discussion 

Literature attests to the significant contribution of inflammatory mechanisms in 

the pathogenesis of cardiovascular disease.  Pro-inflammatory cytokines such as TNF-α, 

IL-1, IL-β1, and IL-6, produced by a variety of cell types, act as essential mediators of 

many biological signaling mechanisms377, and play an important role in primary host 

responses and tissue repair378.  Elastolytic activity and generation of elastin peptides are 

also enhanced within these tissues and have been implicated to induce SMC migration 

and neointima formation379.  The importance of TNF-α to initiation of aneurysm 

development thus justifies the adoption of in vitro culture models of TNF-α -stimulated 

vascular cells to study activated cell responses and to assess the efficacy of drugs aimed 
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at suppressing these responses.  Although pharmacological approaches to attenuate MMP 

production and activity, and chemical approaches to stabilize elastin against breakdown 

appear to proffer some promise in halting aneurysm progression, regression of aneurysms 

via active regeneration of elastin matrices within has not been possible to date.  This is 

primarily due to poor elastin regenerative capacity of adult vascular cells.  In this context, 

in a series of earlier studies, we showed for the first time, that TGF-β and HA oligomeric 

cues together synergistically enhance elastin matrix synthesis and fiber formation by 

healthy adult vascular SMCs58, 360.  To gauge their similar utility for regeneration of 

elastin matrices by chronically-activated vascular cells in an aneurysmal environment, in 

this study we have sought to evaluate the benefits of these elastogenic cues to 

upregulating elastin matrix regeneration by TNF-α -activated RASMCs in culture, and 

possibly simultaneously suppressing adverse responses to their activation. 

In contrast to some prior studies where significant apoptotic cell death was 

observed upon their exposure to TNF-α380, we observed active cell proliferation over the 

21 days of culture.  One explanation might be proffered on the basis of studies by Wang 

et al.381, who showed that the response of vascular smooth muscle cells to TNF-α is not 

generic, but instead only sub-populations apoptose in response to TNF-α.   It is certainly 

possible that the cell layers in this study might represent the sub-population of RASMCs 

which do not apoptose.  Regardless, TNF-α -induced activation of these cell layers was 

confirmed by (a) increased cellular release of MMPs-2, 9 and other elastases relative to 

non-additive controls, (b) enhanced endogenous production of interleukins and other 

cytokines – including TNF-α itself, and (c) enhanced in vitro calcification of cell layers 
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relative to controls, quite likely due to TNF-α -mediated increases in intracellular cAMP 

and osteoblastic differentiation155. 

 

Figure 6.5. Immunodetection of elastin protein within control and test cell layers after 21 

days of culture.  An increase in matrix elastin protein is evident in cultures which 

received cues alone or together with TNF-α (panels C-D), while cultures which received 

no-additives (panel A) or TNF-α alone (panel B) showed relatively less coloration.  Scale 

bar: 150 μm. 
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Further, we noted that collagen and tropoelastin production in TNF-α 

supplemented cultures was not significantly different from control cultures.  Some prior 

studies have also shown TNF-α to suppress collagen gene expression and protein 

synthesis by fibroblasts382, 383, fat-storing cells384, vascular SMCs and endothelial cells375.  

Specifically, a prior study375 showed that 10 ng/mL TNF-α, dosage identical to that used 

in this study, suppressed collagen production by ~ 20% relative to control cultures, only 

when the treated cultures were confluent.  However, 10 ng/mL TNF-α did not have any 

impact on collagen production within sub-confluent SMC cultures375, which agrees well 

with our present findings since the SMCs reached only ~60% confluence within the 3 

weeks.  Besides, our culture system closely mimics chronic, long-term TNF-α –induced 

signaling in aneurysms than a 24-h study.  We also note in our study that TNF-α induces 

multi-fold increases in total matrix elastin synthesis relative to controls, which we 

hypothesize to be an indirect outcome of TNF-α –induced increase in LOX production 

(Figure 6.3B), an enzyme critical for normal biosynthesis and assembly/maturation of 

elastin matrix.  Moreover, our analysis shows that tropoelastin was not more efficiently 

crosslinked by desmosine, as the crosslink density (i.e., desmosine content/ insoluble 

elastin matrix ratio) remained unaffected relative to controls.  Taken together, these 

results suggest that TNF-α induces release of many cytokines and other factors (e.g., 

LOX) by SMCs that may in turn modulate cellular matrix synthesis. 

When TGF-β (1 ng/mL) and HA oligomers (0.2 μg/mL) were provided to healthy 

SMCs in the absence of TNF-α, the cellular responses were in agreement with those 

observed earlier360.  The increases in collagen and tropoelastin may as well be due to the 



 221

interaction of TGF-β and HA oligomers with their respective cell-surface receptors318, 

which may have downstream intracellular-signaling effects that are anti-mitotic, as others 

have also demonstrated to occur upon cellular interaction with HA fragments385.  The 

enhanced elastin matrix yield in the presence of cues may also be due to the observed 

increase in production of elastin crosslinking enzyme LOX (Figure 6.3B).  In addition, 

the cues also improved the quality of matrix elastin relative to controls.  As others have 

previously suggested47, this may occur via physical coacervation of tropoelastin 

precursors by HA oligomers to result in more efficient crosslinking by LOX into matrix 

structures.  However the observation that cues did not enhance basal elastase activity of 

the SMCs or their release of MMPs, and that they suppress calcification of the cell layers 

as induced by TGF-β alone, reinforce our prior-observed benefits of TGF-β and HA 

oligomeric cues to tropoelastin synthesis and elastin matrix assembly and maturation. 

Relative to cultures which received TNF-α alone, production of cytokines/ 

chemokines/ interleukins was significantly attenuated and TIMP-1 production elevated 

within cultures that received both TNF-α and elastogenic cues.  We hypothesize that such 

attenuation may be due to the contradictory downstream effects of simultaneous cellular 

interactions with TNF-α and TGF-β88.  Regardless, this outcome is of immense 

significance to treatment of vascular aneurysms in vivo.  A very important determinant of 

vascular patency following injury/ disease initiation in vivo is the interaction between 

recruited leukocytes and endothelial cells.  Enhanced production and release of 

chemokines (e.g., IL-8) and acute inflammatory cytokines (e.g., TNF-α, IL-1) by ECs/ 

SMCs can attract polymorphonuclear neutrophils (PMNs) and T-cells to the injury site 
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(i.e., aneurysms) to incite acute inflammation386, while chemokines such as MCP-1, MIP-

3a also summon monocytes/ macrophages/ eosinophils/ basophils that cause chronic 

inflammation, matrix degradation and remodeling387.  Thus, under these enhanced 

inflammatory conditions, an attenuated release of leukocyte-recruiting cytokines/ 

chemokines, as affected by TGF-β/ HA oligomers cues in the presence of TNF-α  − is 

likely to provide a micro-environment that is more conducive to maintaining matrix 

stability. 

Vascular calcification is a complex process that frequently involves 

differentiation of SMCs to an osteoblastic phenotype, which can be induced by both 

TNF-α and TGF-β155, 321.  In agreement with this, we observed calcific deposits in SMC 

layers exposed to either of these factors alone (Figures 6.1B and 6.4A).  While TNF-α 

induces matrix calcification via increases in intracellular cAMP155, TGF-β appears to 

influence calcification by enhancing bone protein production via increased expression of 

the elastin-laminin receptor (ELR)321; other studies have shown that TGF-α promotes 

matrix calcification by upregulating cGMP388.  An interesting finding in this study was 

that HA oligomers and TGF-β, when provided together to healthy SMC cultures, 

inhibited calcific deposits formation.  In a previous study58, we showed that HA 

oligomers suppress ELR activity, which might explain the absence of calcific deposits 

even when TGF-β is supplemented.  Another finding was that these elastogenic cues 

together also inhibit TNF-α -induced calcification.  The mechanisms underlying the anti-

calcific effects of HA and TGF-β on TNF-α –activated SMCs, is beyond the scope of this 

study.  However, we believe that our results strongly point to the involvement of these 
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factors via two different mechanisms of calcification that exhibit some downstream 

opposition, resulting in a net decrease in matrix calcification. 

 

 

Figure 6.6. Representative TEM images of 21-day old RASMC cell layers cultured 

additive-free (panel A), with TNF-α alone (10 ng/mL; panel B), cues alone (panel C) or 
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together with TNF-α (panel D).  Aggregating amorphous elastin clumps leading to the 

formation of elastin fibers can be clearly seen in TNF-α –activated cultures treated with 

cues (panel D), while cultures which received no-additives (panel A) or TNF-α alone 

(panel B) showed amorphous elastin deposits with sparse fiber formation.  However, in 

the presence of cues alone, fibrillin-mediated elastin fiber formation is clearly evident 

(panel C). 

 

Upregulated collagen matrix production by elastogenic cues was attenuated down 

to control levels on addition of TNF-α.  This might be due to our observed decrease in 

LOX production in the latter cultures, relative to TNF-α alone or cues alone 

supplemented cultures (Figure 6.3B).  On the other hand, tropoelastin and matrix elastin 

production continued to be enhanced by elastogenic cues, more so in the presence of 

TNF-α than its absence, indicating some synergy in elastin synthesis signaling pathways.  

Though matrix elastin production was enhanced by TNF-α alone or together with cues, 

dramatic differences in the quality of elastin matrix was observed between these cases.  

While elastin was deposited as amorphous, non-fibrillar clumps in TNF-α alone cultures, 

the cues provided in the presence of TNF-α promoted mature elastin fiber formation with 

fibrillar microfibrils bordering their periphery, as explained in our earlier study360.  We 

believe that the observed increase in elastic fiber quality in the latter case (Figure 6.6D) 

might be due to the presence of HA oligomers, which can physically coacervate 

amorphous elastin protein onto their surface, facilitating mature fiber formation47. 
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6.5 Conclusions of this study 

1. TNF-α activates cultured vascular SMCs to release cytokines/ chemokines/ 

interleukins, elastolytic MMPs-2, 9 and other elastases, to promote calcific 

deposition in a manner that simulates events within inflammation-ridden vascular 

aneurysms in vivo. 

2. Though TNF-α did not influence collagen and tropoelastin synthesis, further 

addition of cues (1 ng/mL TGF-β and 0.2 μg/mL HA oligomers) to these 

activated cultures not only doubled basal levels of tropoelastin and collagen 

production, but also significantly upregulated matrix elastin and total elastin 

production, in a manner mimicking their effects on healthy unactivated SMCs. 

3. The elastogenic cues promoted deposition of a fibrillar elastin matrix and 

improved desmosine crosslinking and elastin matrix yield, while suppressing 

elastase activity, MMPs/ cytokines/ chemokines release, as well as inhibited TNF-

α -induced matrix calcification. 

4. The data provides preliminary evidence as to the efficacy of elastogenic cues in 

upregulating elastin matrix production by activated vascular SMCs, organizing 

elastin protein into fibers, and simultaneously stabilizing this matrix by 

attenuating production of elastolytic enzymes. 

5. These results could form a basis for future elastin regenerative therapies for 

regression/ repair of vascular aneurysms. 
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CHAPTER 7 

THERAPEUTIC CUES FOR ELASTIN MATRIX REPAIR BY AORTIC 

ANEURYSMAL SMOOTH MUSCLE CELLS 

 

7.1 Introduction 

In previous chapters 1 and 2, we have detailed the underlying mechanims of of 

AAs formation, and the role of elastin in initiating and participating in this process.  

Since the pathogenesis of AAAs could also arise from enzymatic degradation of healthy 

elastic fibers and excessive accumulation of proteoglycans14, leading to loss of elasticity 

and strength of the aortic wall, and progressive dilation to form a rupture-prone sac of 

weakened tissue1, we hypothesize restoration of elastin in these segments will likely 

stabilize and restore homeostasis in these tissues.  We believe that active cellular-

mediated regeneration of lost elastin within the aneurysmal sites could potentially 

revolutionize AAA treatment via standalone application or by integration with other 

surgical and non-surgical approaches.  However, this is challenging since adult vascular 

cells do not generate much elastin on their own and mature elastic fibers rarely undergo 

active remodeling. 

In chapters 3-5, we evaluated and optimized the effects of various biomolecules to 

elastin synthesis and crosslinking by RASMCs.  In chapter 4, we explored the utility of 

these optimized elastogenic cues, namely HA oligomers and TGF-β, to elastin repair and 

regeneration within chronically-stimulated RASMCs.  Despite their benefits to elastin 

synthesis by healthy adult SMCs, it is yet unknown if these cues will suppress pro-
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calcific and elastolytic activities of diseased vascular cells, such as those within 

aneurysmal segments, and improve elastin matrix synthesis and assembly potential. 

To ascertain this, in this study, we adopted an established abdominal aorta injury 

protocol involving application of calcium chloride to induce an aneurysm within, in rats, 

over 4-weeks154.  We then investigated the standalone and combined elastogenic benefits 

of TGF-β and HA oligomer cues on SMCs isolated and cultured from these aneurysmal 

aortae, in an in vitro culture model.  Based on the outcomes, we believe that this 

approach may be employed stand-alone or in consort with existing surgical or 

pharmacological approaches to regenerate elastin matrices within aneurysmal aortic 

vessels. 

 

7.2 Materials and Methods 

7.2.1 Calcium Chloride–Induced Aortic Aneurysm 

Adult Sprague-Dawley rats (300-350 g in weight) were procured and acclimatized 

for one-week before surgery.  The rats were placed under general anesthesia (2% to 3% 

isoflurane) and the infrarenal abdominal aorta was exposed surgically.  The aorta were 

treated using a protocol adopted by various groups154, 389, 390 (Figure 7.1), wherein sterile 

cotton gauze presoaked with 0.15 mol/L CaCl2 was rubbed on the aorta for 15 min.  

Sufficient care was taken not to expose other organs to this caustic treatment.  Following 

treatment, the abdominal cavity was thoroughly washed with sterile silane to remove the 

residual CaCl2.  The cavity was then closed, subcutaneously sutured and stapled, and the 

rats were allowed to recover.  After 28 days in rehabilitation, the animals were humanely 
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euthanized by CO2 asphyxiation, the abdominal aorta was excised from the arch to the 

celial axis and processed for SMCs isolation.  The abdominal aortae were photographed 

before surgery and after 28 days to compare the changes in aortic diameter.  All protocols 

regarding animal surgery were approved by Clemson University animal facility center. 

 

7.2.2 SMC Isolation and Culture 

The isolated aortae (n = 3) were opened lengthwise and the intima was scraped 

gently with a scalpel blade.  The medial layer dissected from the underlying adventitia 

was chopped into ~ 0.5 mm-long sections, and washed twice with warm silane.  The 

resulting tissue slices were pooled, enzymatically degraded in DMEM-F12 (125 U/mg 

collagenase and 3 U/mg elastase) for 30 min at 37 °C, centrifuged at 400 g for 5 min; 

washed and seeded in T-75 flasks containing DMEM-F12 (10% fetal bovine serum) for 

15 days.  Rat aortic SMCs (RASMCs) derived by outgrowth from these tissue explants 

were monitored over this 2-week period, and the cells were finally pooled and stored.  

SMCs from passage 2 were seeded onto 6-well tissue culture plates (A = 10 cm2) at a 

seeding density of 2×105 cells/well and cultured in DMEM-F12 media with 10% FBS 

and 1% Penstrep.  The total volume of medium added per well was 5 mL. 

HA oligomer mixtures used in this study contained around 75 ± 15% w/w of HA 

4-mers (henceforth referred to oligomers), and were prepared in the lab using protocols 

reported in section 3.2.1.  The experimental groups were: aneurysmal cells with no-

additives (controls), aneurysmal cells treated with HA oligomers alone, TGF-β alone, or 

TGF-β and HA oligomers together.  TGF-β (Peprotech Inc.) was added at a final 
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concentration of 1 ng/mL, while oligomers were added at a final dose of 0.2 μg/mL.  

Media was replaced twice weekly and the spent media was collected and stored at -20oC.  

At 21 days, these pooled aliquots and their corresponding cell layers were biochemically 

analyzed. 

 

Figure 7.1. Schematic of aneurysm induction in rat aorta using CaCl2-treatment protocol. 

 

7.2.3 Biochemical Assays 

The DNA content in cell layers was measured at 1 and 21 days of culture to 

determine the proliferation of SMCs and to normalize the measured amounts of 

synthesized matrix, according to protocol explained in section 3.2.3. 
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The collagen content within the cell layers and in the pooled supernatant medium 

fractions was estimated using a hydroxy-proline assay, described in section 3.2.4.  The 

amounts of matrix elastin (alkali-soluble and insoluble fractions) and soluble tropoelastin 

(in pooled spent medium) were quantified using a Fastin assay (Accurate Scientific Corp), 

as detailed in section 3.2.5.  The measured amounts of synthesized matrix were 

normalized to their respective DNA amounts to provide a reliable basis of comparison 

between samples, and to broadly assess if the observed changes in the amount of matrix 

synthesized could possibly be due to increases in elastin production on a per cell basis. 

The desmosine crosslink densities within elastin matrices were quantified for 

selected cases using ELISA, as described in section 3.2.6.  The desmosine amounts/ ng of 

DNA were compared to the DNA-normalized amounts of insoluble matrix elastin from 

corresponding cell layers.  The LOX enzyme activity within the cell culture layers was 

determined using a flurometric assay based on generation of H2O2 when LOX acts on a 

synthetic substrate, described in detail in section 3.2.7.  Western blot analysis of proteins 

within the pooled medium fractions at day 21 was performed using methods described in 

section 3.2.8, to semi-quantitatively confirm observed biochemical trends in tropoelastin 

synthesis and to assess LOX protein synthesis. 

Von Kossa staining was performed on cell layers at the end of 21 days, as per 

protocols detailed in section 6.2.7.  Elastase assay was performed to evaluate the activity 

of elastases in the cell cultures, as per the protocol detailed in section 6.2.6.  Gel 

zymography analysis of MMPs-2, 9 release was performed as per protocol detailed in 

section 6.2.5. 
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All experiments were performed in triplicate and quantitative results reported as 

mean ± SD.  Statistical significance between and within groups was determined using 2-

way ANOVA.  Results are deemed significantly different from controls for p < 0.05. 

 

7.2.4 Immunofluorescence Detection and Matrix Structure 

As explained in detail in section 3.2.11, immunofluorescence techniques were 

used to confirm the presence of elastin within the cultured cell layers.  The ultrastructure 

of insoluble matrix elastin within control cell layers and test layers was characterized 

using high-resolution transmission electron microscopy (detailed procedure in section 

3.2.12). 

 

7.3 Results 

7.3.1 Aneurysm Progression and SMC Phenotype 

Figures 7.2A and B show a representative rat abdominal aortae before and 28-

days post-injury with CaCl2.  It was observed that ~ 45% local increase in aortic diameter 

was attained over this period, agreeing with prior observations390.  As shown in Figures 

1C and D, SMCs outgrowing from aneurysmal aortal explants initially appeared rounded, 

then more spindle-shaped, and thereafter somewhat more spread attaining 50% 

confluence by 15 days.  In contrast, SMCs isolated from healthy rat aortae exhibited more 

spread morphology on day 7 after seeding (panel E).  The SMC phenotype was 

confirmed by staining for SMC α-actin (panel F). 
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Figure 7.2. Representative images of abdominal rat aorta before calcium-chloride 

treatment (A), and after 28 days of aneurysm progression (B).  Significant rounding of 

the SMCs isolated from the aneurysmal segment was observed on day 1 (C) and more 

spindle-shaped by day-7 (D).  SMCs isolated from healthy aortae showed more spread 

morphology on day 7 of seeding (E).  The cells were stained with SMC-α actin to 

confirm the smooth muscle cell phenotype (F). 
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7.3.2 Aneurysmal SMC Proliferation and Matrix Synthesis 

Figure 7.3A shows the proliferation ratios of passage-2 aneurysmal SMCs 

cultured in the presence of TGF-β alone, oligomers alone, or both.  Non-additive control 

aneurysmal SMCs proliferated 2.5 ± 0.32–fold over the 21 days.  Addition of TGF-β to 

SMC cultures had no effect on proliferation ratios exhibited by non-additive controls 

(0.97 ± 0.08 –fold at 21 days vs. controls; p = 0.56).  However, HA oligomers 

supplemented alone or together with TGF-β, suppressed cell proliferation ratios 

significantly relative to non-additive controls (0.81 ± 0.1 and 0.66 ± 0.15 –fold 

respectively; p = 0.002 and 0.0001). 

When HA oligomers or TGF-β alone were provided to SMCs, significant increase 

in collagen synthesis (1.4 ± 0.07 and 1.33 ± 0.05–fold, respectively; Figure 7.3B) was 

observed, relative to untreated-cultures (p = 0.008 and 0.005, respectively).  Addition of 

both the cues furthered collagen synthesis by 1.78 ± 0.18–fold, relative to controls (p = 

0.008). 

As shown in Figure 7.4A, addition of HA oligomers alone or together with TGF-

β promoted tropoelastin synthesis by 1.17 ± 0.02–fold and 1.47 ± 0.05–fold, respectively, 

relative to non-additive cultures (p = 0.007 and 0.0001 vs. controls, respectively).  

However, addition of TGF-β alone had no effect on tropoelastin synthesis (0.94 ± 0.02-

fold; p = 0.13).  Interestingly, collagen and tropoelastin synthesis (779 ± 62 ng/ng DNA 

and 3516 ± 149 ng/ng DNA, respectively) observed within additive-free aneurysmal 

SMC cultures were much lower than we measured within healthy SMC cultures (22509 ± 

668 ng/ng of DNA and 39070 ± 8707 ng/ng DNA)360. 
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As explained earlier, elastin protein incorporated into the extracellular matrix was 

measured as a sum of two individual fractions, i.e., a highly cross-linked, alkali-insoluble 

elastin (which represents structural elastin), and an alkali-soluble fraction.  As shown in 

Figure 7.4B and C, the trends in matrix elastin protein production mirrored those 

observed for tropoelastin synthesis under identical conditions.  Addition of 0.2 μg/mL of 

HA oligomers to aneurysmal cell cultures increased soluble and insoluble matrix elastin 

synthesis by 1.5 ± 0.11 and 1.23 ± 0.09–fold respectively, relative to non-additive 

controls (157 ± 26 ng/ng DNA and 216 ± 54 ng/ng DNA; p = 0.017 and 0.031, 

respectively).  However, addition of TGF-β (1 ng/mL) alone had no effect on basal 

matrix elastin synthesis levels (soluble elastin: p = 0.56, insoluble elastin: p = 0.54).  On 

the other hand, HA oligomers and TGF-β cues together stimulated the soluble and 

insoluble elastin fractions by 1.78 ± 0.29 and 1.56 ± 0.34–fold, respectively, relative to 

controls (p = 0.014 and 0.026, respectively).  Overall, relative to controls, the total elastin 

output (sum of tropoelastin and matrix elastin fractions) increased by 1.19 ± 0.03, 0.96 ± 

0.03 and 1.49 ± 0.06–fold, respectively, upon addition of oligomers alone, TGF-β alone, 

or both the cues together, respectively (Figure 7.4D). 

 

7.3.3 LOX Protein Expression and Functional Activity 

Figure 7.5A compared outcomes of western blot analysis of LOX protein 

expression with trends in biochemical quantification of matrix elastin.  LOX protein 

expression increased significantly in cultures supplemented with TGF-β alone or together 

with HA oligomers (1.59 ± 0.05 and 1.72 ± 0.04–fold, relative to controls; p < 0.001 in 
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both the cases).  However, addition of HA oligomers alone promoted only 1.03 ± 0.14–

fold increase in LOX protein expression relative to controls (p = 0.73).  In all the cases, 

no significant differences in the cellular LOX activities were observed though, relative to 

non-additive controls (data not shown).  As shown in Figure 7.5B, relative to healthy 

control cell layers (11.85 ± 0.37 pg desmosine/ ng DNA), aneurysmal cells alone or in the 

presence of oligomers did not show any significant increase in desmosine synthesis (0.78 

± 0.01 and 0.92 ± 0.08-fold), while TGF-β alone or together with HA oligomers 

enhanced the desmosine synthesis by 1.07 ± 0.07–fold and 1.21 ± 0.03–fold, respectively 

(p = 0.06 and p < 0.001 vs. healthy controls). 

 

7.3.4 Detection of Proteolytic Enzymes 

As shown in Figure 7.6A-B, gel zymography analysis revealed that the MMPs-2 

and 9 release was significantly higher within non-additive aneurysmal cell cultures 

relative to healthy control cultures (1.67 ± 0.16 and 2.07 ± 0.35–fold, respectively; p = 

0.03 and 0.01), confirming their activated/ diseased phenotype.  Addition of either 

oligomers or TGF-β alone to aneurysmal SMCs did not alter their basal MMP production 

levels.  However, in the presence of both HA oligomers and TGF-β, production of 

MMPs-2 and 9 was marginally lower than those in aneurysmal control cultures (p = 0.08 

and 0.03), and not different than those in healthy SMC cultures (p = 0.67 and 0.71).  

Similarly, as shown in Figure 7.6C, elastase activity within additive-free aneurysmal cell 

cultures was 1.19 ± 0.09–fold higher than those in healthy SMC cultures (0.23 ± 0.02 

U/mL; p = 0.04).  Addition of HA oligomer- or TGF-β-supplements to aneurysmal cell 
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cultures further increased elastase activity by 1.29 ± 0.08 and 1.39 ± 0.18–fold, 

respectively, (p = 0.015 and 0.03), relative to healthy SMC cultures, though these values 

are not significantly different from those in aneurysmal control cultures.  In the presence 

of both the cues, elastase activity however remained unchanged relative to that in control 

aneurysmal cell cultures (1.01 ± 0.06–fold vs. 1.19 ± 0.09-fold higher than in healthy 

SMC cultures; p = 0.85). 
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Figure 7.3. (A) Proliferation ratios of aneurysmal SMC cultures supplemented with 

oligomers alone, TGF-β alone, or cues together.  Data shown represent mean ± SD of 

DNA content of cell layers after 21 days of culture, normalized to initial seeding density 

and further normalized to aneurysmal control cultures that received no additives (n = 

3/case).  (B) Effects of oligomers alone, TGF-β alone, and cues together, on total 

collagen synthesis by aneurysmal SMCs.  Data shown (mean ± SD) are normalized to 

cellular DNA content at 21 days of culture and represented as fold change in protein 

production relative to aneurysmal controls (n = 3/case).  P < 0.05 represents significant 

differences from controls (*). 
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Figure 7.4. Effects of oligomers alone, TGF-β alone, and cues together, on tropoelastin 

(A), alkali-soluble (B), crosslinked matrix elastin (C), and total elastin (D) produced by 

aneurysmal SMCs.  Data shown (mean ± SD) are normalized to cellular DNA content at 

21 days of culture and represented as fold change in protein production relative to 

aneurysmal controls (n = 3/case).  P < 0.05 represents significant differences from 

controls (*). 
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Figure 7.5. (A) SDS-PAGE/ Western blot analysis of tropoelastin and LOX proteins 

within the pooled medium of aneurysmal cultures at the end of 21 days.  Data shown 

represent mean ± SD of 3 repeats/ case and are shown normalized to controls.  (B) 

Desmosine amounts measured in test cell layers were normalized to corresponding DNA 

amounts (ng/ng), and further a similar ratio obtained for the healthy non-additive controls.  

Comparable trends were observed for the desmosine/DNA density and respective 

insoluble matrix elastin/DNA for selected cases. 

 

Figure 7.6C shows the images of von kossa stained aneurysmal cell cultures 

treated with no-additives (panel D), oligomers alone (panel E), TGF-β alone (panel F), 

TGF-β and HA oligomers together (panel G).  Untreated aneurysmal SMC cultures 

exhibited multiple calcific deposits (black); supplementing cultures with TGF-β alone did 

not alter patterns of matrix calcification, while addition of HA oligomers appeared to 

decrease the density of these deposits.  However, the presence of both the cues 

significantly suppressed calcified deposits formation, though complete inhibition was not 

observed. 

 

7.3.5 Immunodetection of Elastin, Fibrillin and LOX 

Figure 7.7 shows immunofluorescence micrographs of 21-day old cell layers 

stained for elastin, fibrillin and LOX (red fluorescence) in cultures treated with oligomers 

alone, TGF-β alone or cues together.  Non-additive aneurysmal cultures and negative 

controls (not-stained for primary antibodies) are also shown for comparison.  While 
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featureless amorphous elastin deposits are seen in non-additive control cultures and TGF-

β alone -treated cultures, more organized fibrous elastin was visible in cultures 

supplemented with HA oligomers alone or together with TGF-β.  Fluorescence intensity 

of elastin matrices within cultures supplemented with both TGF-β and oligomers was 

much greater than in the absence of the cues, or either of the cues alone.  Fluorescence 

intensity due to microfibrillin was similarly greater in cultures supplemented with HA 

oligomers alone or together with TGF-β, compared to non-additive controls or TGF-β 

alone treated cultures.  The fibrillin appeared organized into honey-comb-like structures 

in cultures treated with cues alone or together, than in non-additive control cultures.  

However, in all cases, LOX was rather faintly expressed and was sparsely distributed. 

 

7.3.6 Ultrastructure of Matrix Elastin 

Figure 7.8 shows representative transmission electron micrographs of elastin 

matrices from 21-day aneurysmal cell cultures.  Non-additive aneurysmal SMCs 

deposited discrete clumps of amorphous elastin protein between the cell layers (panel A – 

50000x; panel B – 100000x).  When TGF-β1 and HA oligomers were provided to 

aneurysmal SMC cultures (panel C – 50000x; panel D – 100000x), mature elastin fiber 

formation was favored, with the matrix containing numerous fully-formed bundles of 

fibers (100-200 nm diameter).  Fibrillin (immunogold particle-stained) appeared in 

transverse sections as darkly stained nodules, and was located at the periphery of 

aggregating elastin fiber bundles, signifying normal elastic fiber assembly. 
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Figure 7.6. Gel zymography analysis revealed the presence of MMP-2 (A) and MMP-9 

(B) within aneurysmal cultures treated with or without cues.  Data were shown 

normalized to the respective values observed in healthy non-additive controls (n = 3/case).  
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(C) Elastase enzyme activity within aneurysmal SMC cultures treated with oligomers 

alone, TGF-β alone or together with HA oligomers.  Data was shown normalized to the 

corresponding values in healthy non-additive cultures (n = 3/case).  Von kossa staining 

images of aneurysmal cell layers treated with TGF-β alone, oligomers alone, or cues 

together.  Significant calcific deposits were evident in control cultures and those treated 

with TGF-β alone or oligomers alone, while cultures which received cues together 

showed a decrease in the calcification. 

 

7.4 Discussion 

Our long-term goal is to enable elastin matrix regeneration on demand within 

elastin-degraded vessels such as within AAs, so as to stabilize and possibly even regress 

growing aneurysms and thus eliminate need for surgical intervention.  Under normal 

physiological conditions, elastin turnover is very slow, and very little remodeling of 

elastin fibers occurs in adults108.  This implies that active elastin matrix synthesis is 

almost a one-time phenomenon occurring pre- and post-natally, and that elastin repair/ 

regeneration is highly limited in adult tissues.  Thus, regenerating elastin matrices 

following their enzymatic breakdown in certain inflammatory pathologies (e.g., 

atherosclerosis, aneurysms), or due to inherited (genetic) abnormalities in matrix 

assembly is not currently possible.  Recent studies on aneurysm development and 

progression156 reveal upregulated synthesis of elastolytic MMPs in inflamed vascular 

tissues, which rapidly degrade the elastin matrix to result in loss of tensile strength and 

elasticity of the vessel wall, and in progressive increases in vessel diameter157.  Currently, 
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surgical excision of aneurysmal vessel segments at near-rupture stages of development, 

and their replacement with vascular grafts is the major mode of AA treatment.  Recently, 

therapeutic approaches aimed at pharmacologically inhibiting MMP activity157 or at 

chemically stabilizing existing aortic elastin against enzymatic degradation have been 

attempted.  While these approaches are useful to stabilize aneurysms, their active 

regression is not possible, since healthy elastin architecture can not be regenerated.  Thus, 

alternate tools to stimulate elastin regeneration and repair are required. 

 

Figure 7.7. Immunodetection of elastin, fibrillin and LOX within control and test cell 

layers after 21 days of culture.  An increase in matrix elastin, fibrillin and LOX is evident 

in aneurysmal cultures which received cues together, while cultures which received TGF-

β alone or oligomers alone showed relatively less coloration.  Scale bar: 150 μm. 
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Figure 7.8. Representative TEM images of 21-day old aneurysmal SMC layers cultured 

additive-free (panel A - 50000x; panel B – 100000x) and aneurysmal cell layers cultured 

with elastogenic cues (panel C – 50000x; panel D – 100000x).  Aggregating amorphous 

elastin clumps leading to the formation of elastin fibers can be clearly seen in aneurysmal 

cell cultures treated with cues (panels C, D), while aneurysmal SMC cultures which 

received no-additives (panels A, B) showed amorphous elastin deposits with sparse fiber 

formation. 
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Rodents have in recent years been popular as animal models to study AAs391, 392.  

These AAs have been induced either by genetic manipulation (deficiencies in LOX, 

TIMP-1, LDL-receptor, etc) or by chemical induction (intraluminal elastase infusion, 

peri-adventitial aortic injury with CaCl2).  These rodent models have exhibited several 

key facets of human aneurysms, such as medial layer disruption, inflammation, thrombus 

formation and rupture3.  Of these, elastase infusion into infrarenal segment of aorta393 and 

peri-aortic application of CaCl2
390, 394, were shown to induce significant and progressive 

aortic dilation, and localized inflammation at the site of application within 4 weeks389.  In 

a prior publication, Vyavahare et al. showed elevated MMP production at CaCl2 aortic 

injury sites in rats, and extensive destruction of the elastic lamellae within154, 395.  In the 

current study, CaCl2-treated rat abdominal aortae developed aneurysms within 4 weeks 

post-injury, with an ~ 45% increase in aortic diameter, which is within the range reported 

by others as well389, 390.  However, isolation of individual factors influencing cell 

behavior, e.g., changes in matrix composition and architecture, activation of 

inflammatory cells, is difficult in animal models.  In this context, in vitro cell culture 

models of aneurysms may help to circumvent these problems, though such models have 

never been studied to date in the context of matrix regenerative therapies.  Since cells can 

be propagated in culture, limitations to tissue procurement do not restrict rigorous 

evaluation of parameters that influence cell phenotype and matrix regenerative potential.  

Though a 2D cell culture model may not replicate the physiologic 3D matrix 

microenvironment, it is nevertheless invaluable to study biochemical regulation of cell 

phenotype by supplemented biomolecules. 



 246

 Though the cells isolated from the rat aneurysmal aorta explants expressed 

smooth muscle α-actin confirming a SMC-phenotype, a significant number amongst 

them exhibited decreased volume/spreading especially in the first 10-days after seeding, 

in contrast to the spread morphology typically observed in healthy aortic SMC cultures.  

Such differences in phenotype between healthy and aneurysmal vascular SMCs have also 

been reported by others396.  In general, these aneurysmal SMCs generated greater 

amounts of MMPs and elastases than did healthy control SMCs, and promoted deposition 

of a greater number of calcific deposits than in healthy SMC cultures, suggesting an 

activated phenotype.  Interestingly, the aneurysmal SMCs proliferated more slowly than 

healthy SMCs360 over the 21 day period (33 ± 4 % of healthy SMCs; p < 0.001), 

produced far less tropoelastin (9 ± 0.3 % of healthy SMCs; p < 0.001), collagen (3.4 ± 

0.5 % of healthy SMCs; p < 0.001) and matrix elastin (11 ± 2 % of healthy SMCs; p < 

0.001) than did by healthy control SMCs360.  These results were supported by a 

significant decrease in the production of elastin crosslinking proteins (LOX and 

desmosine), as gauged from our biochemical analysis, and a visible decrease in elastin 

matrix density within these cultures relative to healthy cell controls360.  Overall, these 

results point to the activated state of these isolated ‘aneurysmal’ SMCs when cultured in 

vitro. 

 To date, very few studies have investigated the effects of HA oligomers on 

RASMCs58, 348, and none in the context of elastin matrix synthesis by aneurysmal cells.  

In our recent studies exploring the elastogenic benefits of HA oligomers (0.2 μg/mL) to 

elastin synthesis by healthy RASMCs360, we found tropoelastin synthesis to be modestly 
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enhanced (48 ± 23%), though matrix elastin synthesis on a per cell basis remained 

unchanged.  In this study, addition of HA oligomers alone (0.2 μg/mL) to aneurysmal 

RASMCs suppressed aneurysmal cell proliferation, promoted tropoelastin and insoluble 

matrix elastin synthesis (~ 1.2–fold), and increased collagen and soluble matrix elastin 

synthesis (~ 1.5-fold).  However, the elastin matrix yield remained similar to that in non-

additive aneurysmal cell cultures (10.8 ± 0.8 vs. 9.6 ± 2.1 %), which might be due to the 

lack of any significant, parallel increase in desmosine and LOX protein content within 

these cultures.  Interestingly, the production of the MMPs-2 and 9 and the levels of 

elastase activity and matrix calcification in these cultures remained almost similar to that 

within additive-free (control) aneurysmal cell cultures, and significantly higher than that 

within additive-free healthy cell cultures.  In contrast to their benefits to deposition of a 

fibrillar rather than amorphous elastin matrix deposition by healthy SMCs58, HA 

oligomers alone provided no particular advantage to the quality of elastin matrix 

deposited by aneurysmal SMCs, since the elastin matrix was still largely non-fibrillar.  

These results lead us to speculate that much higher doses of HA oligomers may be 

necessary to stimulate aneurysmal RASMCs to enhance elastogenesis and elastin fiber 

deposition, in a manner that healthy RASMCs respond to when these oligomers are 

provided at low doses (0.2 μg/mL). 

 Though in a previous study360, we found TGF-β1 (1 ng/mL) to significantly 

suppress healthy SMC proliferation and increase synthesis of matrix elastin (~2.5-fold) 

and collagen (~1.3-fold), the same dose of TGF-β had no effect on aneurysmal cell 

cultures, except for collagen synthesis (~ 1.3-fold).  Also, TGF-β had no impact on 
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elastin yield within aneurysmal SMC cultures (11.2 ± 1.8% vs. 9.6 ± 2.1% in additive-

free aneurysmal cultures; p = 0.72), although the same dose of TGF-β enhanced elastin 

matrix yield in healthy SMC cultures.  The lack of elastogenic impact of TGF-β on rat 

aneurysmal SMCs when provided at doses optimized for healthy rat SMCs, similar to that 

with HA oligomers, suggests attenuated sensitivity of aneurysmal SMCs to these cues 

and thus the necessity to likely increase and re-optimize doses of these cues to upregulate 

elastogenesis by these diseased cell types.  Nevertheless, attenuated TGF-β-induced 

effects on aneurysmal cell cultures also appear to directly correlate with increases in 

production of MMPs-2 and 9 and elastase activity, and greater distribution of non-

fibrillar elastin, suggesting higher elastolytic activity within these cultures.  Thus, the 

presence of either oligomers or TGF-β alone could be inciting increased elastolytic 

activity within aneurysmal cell cultures to rapidly generate soluble elastin peptides, and 

thereby discouraging accumulation of crosslinked elastin matrix. 

When aneurysmal SMCs were exposed to both TGF-β1 and HA oligomeric cues, 

their impact on aneurysmal SMCs differed from that on healthy SMCs.  The cues 

suppressed proliferation of aneurysmal SMCs, though not as severely as they did healthy 

SMCs360.  The suppression in proliferation of aneurysmal SMCs has vital implications in 

deterring hyper-proliferation of these activated cell types when cues are delivered to an 

intact aneurysm site.  Again, in both aneurysmal and healthy cell cultures, the cues 

enhanced tropo- and matrix elastin synthesis and that of collagen matrix, although the 

level of increase in aneurysmal cell cultures was far less compared to the healthy cell 

cultures.  Besides, the cues improved elastin matrix yields in healthy SMC cultures, quite 
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possibly by increasing LOX protein synthesis and desmosine content360.  Based on these 

outcomes, we logically expected similar improvements in elastin matrix yields within 

aneurysmal SMC cultures that received these cues, which however was not the case (10.7 

± 2.1% yield with cues vs. 9.6 ± 2.1% for additive-free aneurysmal cultures), despite 

measured increases in production of the elastin crosslinking enzyme, LOX.  Perhaps due 

to increased LOX production, desmosine content per nanogram of insoluble elastin 

within these cultures was higher.  Relative to healthy SMC cultures, the lack of net 

increase in matrix yield however may not be due to cues-derived benefits to recruitment 

and crosslinking of tropoelastin precursors, rather due to innately enhanced elastolytic 

activity within aneurysmal SMC cultures.  Regardless, on a positive note, these 

elastogenic cues reduced matrix calcification and MMP production by aneurysmal SMCs, 

results that were not observed when either of these cues was provided to the same 

cultures. 

 

7.5 Conclusions of this study 

1. Calcium chloride-treatment was successfully used to induce aneurysm in a rat 

aorta within 4 weeks.  Though the cells isolated from the medial portion of 

aneurysmal segments of aorta had SMC phenotype, they exhibited significant 

rounding within the first few days of culture. 

2. Compared to healthy control RASMC cultures, aneurysmal SMCs proliferated 

less and produced less amounts of collagen, tropoelastin and matrix elastin.  The 
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protein synthesis within these aneurysmal cell cultures could not be upregulated 

by adding either HA oligomers or TGF-β alone. 

3. Relative to control aneurysmal cultures, addition of both the cues together 

resulted in significant increases of matrix elastin production by aneurysmal cells, 

which was not achieved by the presence of either of them. 

4. The cues also significantly promoted crosslinking and deposition of matrix elastin, 

as evident from immunofluorescence and structural analysis images. 

5. The cues might be of tremendous utility to enhance elastin matrix synthesis and 

organization into a mature form within aneurysmal or diseased vessels in vivo. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE OUTLOOK 

 

8.1 Conclusions 

The broad goal of this project was to develop biomolecular tools for enabling 

robust and faithful regeneration of elastin matrix networks within tissue engineered 

constructs, a severe problem at present.  Extending upon this theme, an additional goal is 

to develop alternate therapies based on matrix engineering, for elastin repair and 

regeneration within aortic aneurysmal vessels.  Drawing cues from pre-elastogenic 

microenvironments in developing embryos and within developing vascular plaques, we 

identified and evaluated a set of cues based on hyaluronic acid, growth factors, and other 

biomolecules, which we hypothesized would stimulate adult vascular SMCs to regenerate 

biologically and ultrastructurally faithful mimics of native vascular elastin networks in 

injured and diseased vessels.  To achieve this goal, the project was divided into two 

modules.  In the first module, the elastogenic effects of HA fragments (0.756-2000 kDa), 

growth factors (TGF-β1, IGF-1) and biomolecules (Cu2+ ions, LOX peptide), either alone 

or in combination, on healthy adult vascular SMCs was evaluated.  Based on 

optimization of these cues in the first module, their utility for elastin synthesis, 

crosslinking and maturation by chronically-stimulated (TNF-α, aneurysmal) vascular 

SMCs was evaluated in the second module.  These latter studies are expected to lay 

guidelines for further investigation into elastogenic stimulation of these diseased cell 
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types, and further delivery of these cues for effecting in situ elastin matrix regeneration 

within induced aneurysms. 

Studies from module 1 demonstrated that the elastogenic responses of healthy 

adult SMCs can be influenced by the presence of growth factors and HA fragments.  In 

general, HA oligomers (< 2 kDa) enhanced elastin synthesis and fibrillar organization by 

healthy adult SMCs, relative to other HA fragment-sizes (20-200 kDa), while HMW HA 

(> 2 MDa) appeared to influence elastin matrix deposition via purely physical means.  

Together, HA oligomers and TGF-β1, termed elastogenic cues, synergistically enhanced 

elastin synthesis, crosslinking and organization into mature elastin fibers within healthy 

adult SMC cultures.  Interestingly, these cues also suppressed RASMC proliferation, 

which is advantageous from the standpoint of not inciting SMC hyperplasia if and when 

such cues are incorporated into HA biomaterials deployed within diseased vessels.  These 

dramatic increases were achieved by significantly upregulating LOX production and 

activity, desmosine crosslink density and fibrillin deposition, thus signifying the normal 

elastin deposition process.  The amino acid content of matrix elastin generated by the 

SMCs in the presence of these cues resembled that in native rat aortic elastin.  This 

suggests a strong interplay between the TGF-β1 and HA oligomer signaling pathways for 

elastin synthesis, assembly and maturation by SMCs. 

Further studies in module 1 investigated the standalone and combined benefits of 

Cu2+ ions and HA fragments on elastin synthesis, assembly and maturation.  Higher 

tested doses (0.1 M) of copper ions delivered directly from soluble copper sulfate salt, 

increased matrix elastin yield and promoted deposition of fully-formed, highly-
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crosslinked matrix elastin fibers (200-500 μm diameter).  Interestingly, additional 

presence of HA oligomers or HMW HA furthered these increases.  Despite these benefits 

of 0.1 M copper sulfate to elastin synthesis and maturation, an initial step increase in 

Cu2+ ion concentration (0.1 M) was mildly cytotoxic, causing temporary cell rounding 

and partial cell death in the initial days after cell seeding.  Accordingly, an alternate 

strategy based on continuous release of Cu2+ ions from copper nanoparticles (CuNP) over 

the culture period was tested.  Supplementation of cell cultures with CuNP (400 ng/mL) 

resulted in a cumulative release of Cu2+ ions equivalent to 0.1 M, with no cytotoxic 

effects on SMCs.  The yields of matrix elastin tripled to ~ 60% in the presence of CuNP 

and HA oligomers, while the prevalence of mature elastin fibers in the ECM increased 

dramatically.  These results are highly encouraging, because it validates our central 

hypothesis that (a) upregulation of LOX protein and activity within healthy adult SMC 

cultures by Cu2+ ions enhance crosslinking of elastin, and (b) highly-anionic HA 

fragments coacervate tropoelastin molecules on their surface to facilitate localized-

crosslinking into elastin fibers.  Similarly, in separate studies, we found that direct 

supplementation of exogenous LOX peptides (18.6 - 37.3 fg per cell) to RASMC cultures 

promoted yields of matrix elastin by 1.6-2-fold, via increases in endogenous LOX 

activity and production. 

Taken together, the results from module 1 suggest that, a combination of cues 

comprising HA oligomers (0.2 μg/mL), TGF-β1 (1 ng/mL) and Cu2+ ions (0.1 M), might 

be highly effective in upregulating elastin synthesis, crosslinking, matrix deposition, and 

mature fiber formation, within healthy adult SMC cultures.  These elastogenic cues might 
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be of tremendous utility to restore elastin matrix homeostasis in de-elasticized vessels and 

tissue engineering constructs, and possibly even serve as an in vitro model to investigate 

elastogenesis during early morphogenesis and wound healing in adult tissues. 

Results from module 2 attest to the utility of elastogenic cues, HA oligomers and 

TGF-β1, identified and optimized in module 1, to elastin repair and regeneration by 

chronically-stimulated SMCs.  As expected, TNF-α-activated vascular SMCs and 

aneurysmal SMCs released cytokines/ chemokines/ interleukins, elastolytic MMPs-2, 9 

and other elastases, to promote calcific deposition and matrix destruction in a manner that 

simulates events within inflammation-ridden vascular aneurysms in vivo.  Encouragingly, 

addition of cues suppressed release of inflammatory markers within these cultures, 

encouraged elastin synthesis, crosslinking, and matrix formation.  These increases were 

facilitated by simultaneously promoting LOX protein synthesis and activity within these 

cultures.  Finally, these cues were also instrumental in suppressing elastolytic activity 

within these cultures.  Overall, these results attest to the elastogenic utility of the cues in 

(a) upregulating elastin matrix production by activated vascular SMCs, (b) organizing 

elastin protein into fibers, and (c) simultaneously stabilizing this matrix by attenuating 

production of elastolytic enzymes.  Unfortunately, despite elastogenic upregulation by 

provided cues, tropoelastin/ matrix elastin production by aneurysmal SMCs remains one 

order of magnitude lower than that produced by healthy SMCs seeded at identical density 

and passage.  Thus, though indications are that our elastogenic cues could potentially be 

useful, either by themselves or together with other treatment options to repair and 

regenerate elastin matrices within diseased and aneurysmal blood vessels, delivery doses 



 255

need to be re-optimized separately for these diseases cell types in vitro.  Further, the 

concentration of these cues refined based on pharmaco-kinetics in vivo, i.e., systemic 

transport, diffusion and consumption by cells. 

 

8.2 Future Outlook 

Despite the numerous positive outcomes listed above, the long-term realization of 

the project objectives is contingent on elucidating several unknowns, which have not yet 

been explored in this project and will be addressed by others in our group.  For example, 

the cellular-signaling pathways mediating the observed increases in elastin synthesis and 

maturation, on addition of cues is not yet clear.  Similarly, the mechanisms by which 

Cu2+ ions promote endogenous LOX production and activity in SMC cultures, thereby 

enhancing elastin crosslinking mechanism is still elusive.  Thus, future studies can 

investigate: 

1. Benefits of culturing SMCs in 3-D scaffolds or gels (made of HA fragments) over 

the current 2-D cultures to elastin synthesis and matrix quality 

2. Effects of dynamic-conditioning, i.e., mechanical stimuli (such as shear force, 

pulsatile-stretch) of cell-seeded HA scaffolds to elastin synthesis, matrix 

formation and organization into fibrillar networks 

3. Design and fabrication of a customized bioreactor for long-term (6-8 week), high-

density SMC cultures, with or without cues, and/or mechanical stimuli 

4. Benefits of LOX gene-transfected cells to recruitment and crosslinking of 

tropoelastin into a structural matrix elastin 
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5. Identification and quantification of specific genes and cell surface-receptors 

involved in elastogenesis, modulated by the addition of HA oligomers and/or 

TGF-β1 

6. Re-optimizing the concentrations of cues which will upregulate elastin synthesis 

and matrix deposition in chronically-stimulated cell cultures to levels observed in 

healthy SMC cultures 

7. Controlled localized-delivery of these re-optimized elastogenic cues to aneurysm 

sites in a rat aorta in vivo, using an osmotic pump fitted with a catheter 

8. Impact of diverse pre-existing matrix microenvironments (such as within 

aneurysms) on cell phenotype and response to elastogenic cues, in the presence or 

absence of leukocyte-mediated matrix debridements. 

9. Utility of these cues in other relevant areas of tissue engineering, such as in 

wound healing, and cosmetic/ dermal tissue regeneration. 
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APPENDIX 

 

1. Study Limitations 

Despite the perceived potential advantages of HA fragments, growth factors and 

biomolecules to elastin biosynthesis by adult RASMCs, limitations pertaining to this 

study must be addressed prior to their application to tissue engineering systems.  These 

limitations are outlined below. 

1. The elastogenic utility of these optimized cues was demonstrated only in healthy 

and not diseased/activated rat aortic smooth muscle cell cultures. 

2. While protein synthesis by lower passage (1-8) cells was upregulated by the 

provided elastogenic cues, it is possible that higher passage cells will be capable 

of diminished basal elastin synthesis and less responsive to the cues. 

3. The HA oligomers used in this study were obtained by enzymatic digestion of 

HMW HA, using optimized protocols developed in our lab.  These oligomeric 

mixtures contained predominantly 4-mers, with 6-mers and 8-mers forming the 

balance.  However, any changes in digestion conditions (time, concentrations, 

temperature, source of HMW HA, etc) can alter the composition of the HA 

oligomer mixtures, which might significantly alter the cellular response to these 

mixtures. Thus, high level of quality control in the preparation of these oligomer 

mixtures is warranted. 

4. In general, the source and gender of  rats from which healthy cells were sourced 

for our study, are not expected to significantly affect elastin protein synthesis.  
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However, since elastin gene transcription, mRNA stability, secretion and 

deposition is development stage-specific, the utility of these cues need to be 

optimized separately for stimulating elastin expression in neonatal, post-natal and 

adult stages.  Similarly, irrespective of the cell seeding density, the concentrations 

of TGF-β1, HA oligomers and Cu2+ ions must be similar on a per cell basis, to 

achieve identical results. 

5. While our experiments indicate that adult RASMCs respond well to exogenous 

cues, similar outcomes may not be guaranteed with other elastin-producing cell 

types such as fibroblasts (dermal, valvular, pulmonary), smooth muscle cells 

(lung, intestines, bladder), endothelial cells, etc.  Characterization of the 

elastogenic potential of these cells under basal and induced conditions is therefore 

necessary. 

6. Since we observed that elastin synthesis, matrix yield and deposition within 

aneurysmal and TNF-α stimulated cultures was much lower than that observed 

within healthy SMC cultures, when exposed to similar concentrations of 

elastogenic cues, we believe that the doses of these cues must be increased 

incrementally and re-optimized to obtain the level of elastin/elastin matrix 

synthesis exhibited by healthy, neonatal SMCs. 

7. The in vitro cultures of aneurysmal cells in this study were performed under 

tightly-regulated conditions, i.e., absence of localized inflammatory-, and 

degraded matrix-microenvironment in which these cells typically exist in vivo.  

Thus, for these cues to be successfully delivered in vivo within diseased/ injured 
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rat aorta for elastin regeneration by SMCs, the doses of these cues have to be 

appropriately re-optimized.  Re-optimized doses of these cues in the context of 

aneurysmal cell cultures and elastin/matrix-compromised vessels maintained in 

organ culture, might serve as a starting point for their in vivo delivery to sites of 

induced rat aneurysms. 

8. SMC density in vivo within blood vessels will be much higher than that within 

cultures in vitro.  Thus, it would seem logical to deliver scaled-up concentrations 

so that cells in vivo receive similar dose of cues on a per cell basis.  In addition, 

detailed pharmacokinetic analysis of the fate of delivered biomolecular cues in 

rats will be necessary to account for unavailability of cues at the targeted site of 

delivery (i.e., induced aortic aneurysm) via reaction, excretion, systemic 

distribution etc. 

 

2. Analysis of Elastin Protein Synthesis within RASMC Cultures 

In chapters 3-5, we have detailed the benefits of growth factors (TGF-β1, IGF-1) 

or copper ions (CuSO4, CuNP), in the presence or absence of HA fragments, to RASMC 

proliferation and protein (collagen, elastin) synthesis.  The elastin protein synthesis data 

was shown normalized to DNA amounts in respective cultures, and then normalized to 

similar ratios observed in non-additive control cultures.  From the data, it might appear 

that the observed increase/decrease in elastin synthesis (e.g., in the presence of HA 

oligomers and TGF-β1) may be due to the corresponding decrease/increase in cell 

proliferation over the three weeks, in the respective cases.  In other words, one might 
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wonder whether the cues really affected elastin synthesis on a per cell basis, and if so, 

what reliable comparison models can be applied to verify the same.  To check these 

ambiguities, here we will detail two alternative ways to represent the elastin synthesis 

data shown in chapters 3-5.  In Table A-1, we present absolute amounts of total elastin 

protein synthesized and the total elastin protein amounts normalized to total collagen 

synthesized in the respective cases.  Since collagen is also a predominant protein 

synthesized by SMCs, we choose to normalize the elastin protein synthesis to collagen 

protein amounts within respective cell cultures.  We believe that similar arguments can be 

extended for individual protein components such as tropoelastin, collagen and matrix 

elastin synthesized in the respective cases.  A few salient points which merit detailed 

discussion are presented here. 

As shown in Figure 3.1, even though RASMC proliferation was inhibited in the 

presence of TGF-β relative to controls, the cell density still increased 1.7 ± 0.1-fold 

within the 21 days of culture.  Over 21 days of culture, while cells proliferated from an 

initial seeding density of 20,000 cells/well to 68000 ± 10000 cells/well in non-additive 

control cultures, these 20,000 cells/well proliferated to 34000 ± 6800 cells/well within 

TGF-β additive cultures.  Similarly, in the presence of both TGF-β and HA oligomers, 

the initial cell seeding density increased by 1.9 ± 0.06–fold over the 21 day culture period.  

Thus, RASMCs did not undergo apoptosis or necrosis in the presence of external cues, 

but rather proliferated slowly compared to those in non-additive cultures.  Similar logic 

can be evoked even with the RASMC proliferation in cultures treated with IGF-1 or Cu2+ 

ions. 



 261

As shown in Table A-1, the absolute total elastin protein amounts synthesized by 

SMCs significantly depend on the culture conditions, i.e., varying HA fragment sizes and 

growth factors.  These amounts were not normalized to the respective DNA content in 

these cultures at the end of 21 days.  When TGF-β alone or together with HA oligomers 

(or VLMW HA) were provided to SMCs, the total elastin protein synthesis increased 

relative to that in non-additive controls.  These trends also broadly represent the DNA 

normalized values of tropoelastin and matrix elastin within these cultures.  Similarly, 

when the absolute elastin protein amounts were normalized to the respective collagen 

amounts in those cultures, significant differences were observed between experimental 

groups and controls.  These observations were supported by similar differences in elastin 

mRNA expression, western blots of tropoelastin and LOX proteins and LOX activity in 

these cultures, and mature elastin fiber formation as clearly evident from electron 

microscopy images.  Thus, in conclusion, we believe that the significant fold-changes in 

elastin protein expression (normalized to DNA content) achieved by provision of 

elastogenic cues, is not a mere reflection of corresponding fold-changes in cell density, 

but due to altered changes at transcription and translation levels. 
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 Experimental 
condition 

Total elastin protein 
synthesized (avg), mg

Total elastin/total 
collagen, mg/mg 

Controls 189.3 1.88±0.02 
TGF-β alone 203.1 1.97±0.04 

Oligomers+TGF-β 329.6 0.55±0.05 
VLMW HA+TGF-β 219.3 2.16±0.04 
LMW HA+TGF-β 183.5 1.8±0.002 

TGF-β 
study 

HMW HA+TGF-β 190.5 1.84±0.04 
Controls 64.9 1.31±0.21 

IGF-1 alone 66.1 1.17±0.2 
Oligomers+ IGF-1 59.3 1.49±0.18 
VLMW HA+IGF-1 70.8 1.26±0.08 
LMW HA+IGF-1 78.9 1.42±0.28 

IGF-1 
study 

HMW HA+IGF-1 82.8 1.4±0.27 
 

Table A-1. Representative data of total elastin protein synthesized and elastin protein 

synthesized relative to collagen in respective cultures, for selected cases in this study. 
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