View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Clemson University: TigerPrints

Clemson University

TigerPrints

All Dissertations Dissertations

5-2007
An Infrastructure to Support Interoperability in
Reverse Engineering

Nicholas Kraft

Clemson University, nkraft@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all _dissertations

b Part of the Computer Sciences Commons

Recommended Citation

Kraft, Nicholas, "An Infrastructure to Support Interoperability in Reverse Engineering" (2007). All Dissertations. S1.
https://tigerprints.clemson.edu/all_dissertations/51

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

https://core.ac.uk/display/268635599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/51?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

AN INFRASTRUCTURE TO SUPPORT INTEROPERABILITY
IN REVERSE ENGINEERING

A Dissertation
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Computer Science

by
Nicholas A. Kraft
May 2007

Accepted by:
Dr. Brian A. Malloy, Committee Chair
Dr. Harold C. Grossman
Dr. James F. Power
Dr. Roy P. Pargas

ABSTRACT

An infrastructure that supports interoperability among reverse engineering tools
and other software tools is described. The three major components of the infrastruc-
ture are: (1) a hierarchy of schemas for low- and middle-level program representation
graphs, (2) g*re, a tool chain for reverse engineering C++ programs, and (3) a repos-
itory of reverse engineering artifacts, including the previous two components, a test
suite, and tools, GXL instances, and XSLT transformations for graphs at each level
of the hierarchy. The results of two case studies that investigated the space and
time costs incurred by the infrastructure are provided. The results of two empirical
evaluations that were performed using the api module of g*re, and were focused on
computation of object-oriented metrics and three-dimensional visualization of class

template diagrams, respectively, are also provided.

DEDICATION

For C.R.K and J.H.K.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Brian Malloy, for his advice, support, and,
most of all, friendship. I would also like to thank the members of my committee,
especially Dr. James Power. Thanks to Dr. Jason Hallstrom for his help and
friendship, and to Dr. Errol Lloyd for his advice and collaboration. Special thanks
to Dr. Baker, Dr. Finkbine, Dr. Hollingsworth, Dr. Lang, and Mr. Manwani for
preparing and encouraging me, and to Dr. Murali Sitaraman for bringing me to
Clemson. I would also like to thank the faculty and staff of the Computer Science
department, especially Dr. Grossman and Dr. Westall. A very special thanks
to Jay Harris for his support, trust, friendship, and respect. Also, thanks to Ben
Hoipkemier for his multiple contributions to this project, to Daniel Lowhorn for
being a great teammate, to Andy Dalton and George Dowding for many late night
conversations, to Tony Bowles and John Hunt for helping me survive 822, and to
Jennifer and Brian for always taking care of me. Finally, I am grateful to all of my
family and friends for their love and support, particularly my parents Jane and Bill,
my brother Charlie, my wife Christine, my grandparents Carl and Jean, my oldest
friends Chris, Jack, and Sue Robinson, my buddy Ringo, and my in-laws the Stemm
family.

I would also like to thank the many anonymous reviewers who read drafts of this
work for providing both insightful comments, and encouraging words. I would also
like to thank the College of Engineering and Science, and the Graduate School at
Clemson University for the awards in recognition of my research. I am truly honored
and humbled to have been the first student from the Department of Computer

Science to win these awards.

TABLE OF CONTENTS

TITLE PAGE e
ABSTRACT
DEDICATION s e
ACKNOWLEDGMENTS e
LIST OF FIGURES e
LIST OF SOURCE LISTINGS
LIST OF TABLES e
1 Introduction.
1.1 Research Problems
1.2 Dissertation Outline

2 Background Lo
2.1 Graph eXchange Language
2.2 Program Representation Graphs
2.2.1 Abstract Syntax Graph

222 Call Graph

2.2.3 Class Graphs o

2.2.4 Control Flow Graphs

3 Related Work
3.1 Exchange Formats and Schemas.
3.2 Infrastructures for Reverse Engineering
3.3 Evaluating Results from Reverse Engineering
3.4 Linking in Reverse Engineering Tools
3.5 Tools for Reverse Engineering C++ Programs
3.5.1 Tools that Provide a C++ Parser

3.5.2 Tools that Utilize the GCC C++ Parser

3.6 Discussion

4 Schemas for Low- and Middle-Level Graphs
4.1 Hierarchy of Schemas
4.2 Low-Level Schemas: LevelsOand I
4.3 Middle-Level Schemas: Levels II, III, and IV

4.4 Comparing Schema Instances

Page

iii

vii
xi
xiii

XV

[\)

Table of Contents (Continued)

Page

5 g're — Tool Chain for Reverse Engineering C++ Programs. . . . 45

5.1 Architecture 45
51.1 The ASGmodule, 47

5.1.2 The Schema and Serialization Modules 48

5.1.3 The Transformation Module 48

5.1.4 The Linking Module 49

5.1.50 The API Module 50

5.2 Sample Usage 51
521 Input o1

5.22 Usage o e 54

6 Case Studies: Realizing the Infrastructure with g're 57
6.1 Test Suite 57
6.2 Case Study: Exchanging Low-Level Graphs 59
6.2.1 Exchanging Graphs at Level 0 60

6.2.2 Exchanging Graphsat Level 1. 65

6.2.3 Discussion 70

6.3 Case Study: Exchanging Middle-Level Graphs 71
6.3.1 Exchanging Graphs at Levels II, III, and IV 71

6.3.2 Transforming GXL Graphs with XSLT 73

6.3.3 Discussion L L 78

7 Applications: Empirical Evaluation with gre 79
7.1 Application: Computing Object-Oriented Metrics 79
711 Overview o 79

7.1.2 Related Work 81

7.1.3 Methodology 83

714 CaseStudy 85

7.2 Application: Visualizing Class Template Diagrams 91
721 Overview e e e 91

7.2.2 Related Work 93

7.2.3 Methodology 94

724 CaseStudy 96

8 Conclusion e 101
APPENDICES e 107
A Acronyms and Abbreviations L. 109

B Repository of Reverse Engineering Artifacts 111
BIBLIOGRAPHY e 113

LIST OF FIGURES

Figure

21

2.2

2.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Overview of GXL Validation. The process of wvalidating GXL
instance and/or schema graphs Solid edges represent input

and output. Dashed edges represent motes.

Sample AST for struct Node. An AST for struct Node, which is
defined in Source Listing 2.1. Uses of the types int and Node

have not yet been resolved to their definitions.

Sample ASG for struct Node. An ASG for struct Node, which is
defined in Source Listing 2.1. Uses of the types int and Node

have been resolved to their definitions.

Hierarchy of Schemas. Schemas for program representation graphs
organized by levels. Solid edges with open arrows represent
input and output. Dashed edges with filled arrows represent
realization. Solid edges represent the progression of informa-
tion from a graphical representation at one level to a graph-
ical representation at a subsequent level. Filled arrows indi-
cate a single instance is needed, empty arrows indicate that

a set of instances are needed.

Level I: Cpplnfo API — Templates. Excerpt from the Cpplnfo
API schema that illustrates the key classes, aggregations, and

associations related to templates.

Level I: CppInfo API — Function Types. Fxcerpt from the Cp-
pInfo API schema that illustrates the key classes, aggrega-

tions, and associations related to function types.

Level II: Class Diagram. Fzxcerpt from the UML 2.0 schema
that illustrates the key class-related components in a class

diagram. e e e e

Level II: Class Diagram (continued). Ezcerpt from the UML 2.0
schema that illustrates the key template-related components

in a class diagram. e

Level II: Call Graph. Schema for a call graph, a graph whose
nodes represent functions and function call sites, and whose

edges represent function calls.

Level II: Control Flow Graph (CFG). Schema for a CFG, a
graph whose nodes represent blocks of straight-line code, and

whose edges represent flow of control between the blocks.

Page

List of Figures (Continued)

4.8

4.9

Level III: Object Relation Diagram (ORD). Schema for an ORD,
a graph whose nodes represent classes, and whose edges rep-
resent relationships, including polymorphic relationships, be-

tween the classes. e

Level III: Interprocedural Control Flow Graph (ICFG). Schema
for an ICFG, a graph whose nodes represent blocks of straight-
line code, and whose edges represent flow of control between

the blocks and caller-callee relationships.

4.10 Level IV: Class Firewall. Schema for a class firewall, a graph

5.1

5.2

5.3

5.4

5.5

7.1

7.2

7.3

7.4

whose nodes represent classes, and whose edges represent

testing dependencies between the classes.

Overview of gire. Dashed lines represent “use” dependencies.
Bold text indicates an implementation artifact. Italic text

indicates a third party library.o

Overview of API usage. Solid, directed lines show input, unless

otherwise noted. Dashed lines show notes.

UML Activity Diagram for Transformer Input. The process of

creating a set of files to transform.

UML Activity Diagram for Linker Input. The process of creating

a set of files to link.

UML Activity Diagram for API Input. The process of creating

a file for use with the APL.

System overview. Solid, directed lines show input. Dashed lines

show notes.

Schema for Class Template Diagram (CTD). A UML class dia-

gram representation of the CTD schema.

Visualization of CTD for Pizie. The interface to the visualiza-
tion system, and and a three-dimensional CTD diagram for
Pixie. The two sliders control the azimuth and the elevation.
The keyboard controls horizontal and vertical movement, and

ZOOMANG. + v v v e e e e e e e e e e e e e e

Visualization of CTD for FluzBox. A three-dimensional CTD

diagram for FlurBox.

xii

Page

LIST OF SOURCE LISTINGS

Source Listing

21

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Source code for struct Node. Definition of the C++ struct Node.
Node consists of an integer, value, and a pointer to another

Node, next. e

Sample C++ program. Two disjoint inheritance hierarchies that

consist of ten classes.

Sample user program. A simple program analysis that counts

the number of root, interior, and leaf classes.

Source code for class Parser. Definition of the C++ class Parser.

Parser inherits from the class Base.

Instance of a tu file. Definition of class Parser as represented in
a tu file. A node definition in a tu file consists of: a unique
integer prepended with “@”, a string representing the node
type, edges of the form “edge: dest”, fields of the form “field:

value”, and a set of single word attributes.

GXL instance of the GENERIC schema. Definition of class Parser
as represented in a GXL encoded instance of the GENERIC
schema. The GENERIC GXL schema is a direct encoding of
the tu file format, but with internal gcc information, such
as addresses and string lengths, omitted. The “@” symbol is

translated to “n” to conform to XML standards.

GXL instance of the Cpplnfo schema. Definition of class Parser
as represented in the GXL encoded, linked instance of the

Cpplinfo schema.

GXL encoded ORD instance. A GXL encoded instance of the
ORD schema containing two classes, ::A and ::B, and one

Inheritance edge. The edge indicates that B inherits from ::A. . . .

GXL encoded Class Firewall instance. A GXL encoded instance
of the Class Firewall schema containing two classes, : :A and
::B, and one edge that indicates that if : : A has changed and

must be tested, then ::B must be retested as well.

XSLT for summarizing ORD instances. The XSLT style sheet
we used to generate the results listed in Table 6.10. We used
stmilar style sheets to generate the results listed in Tables 6.9

and 6.11.

Page

71

LIST OF TABLES

Table

6.1 Test suite. The 12 test cases that we use in our study. For
each test case, we list the version, the number of C++ trans-
lation units, and the approximate number of thousands of
non-commented, non-preprocessed lines of code (NCLOC).
The test suite contains 1,200 C++ translation units and ap-

proximately one million lines of code.

6.2 Level 0: Numbers of nodes and edges. The numbers of nodes

and edges for ASGs that represent the test cases.

6.3 Level 0: Size on disk (MB). The size on disk, in megabytes, for

ASGs that represent the test cases.

6.4 Level 0: Time (s). The running time, in seconds, to parse and
build in-memory representations of ASGs that represent the

test cases. e e e e e e e e e e

6.5 Level I: Numbers of nodes and edges. The numbers of nodes and

edges for APIs that represent the test cases.

6.6 Level I: Size on disk (MB). The size on disk, in megabytes, for

APIs that represent the test cases.

6.7 Level I. Time (s). The running time, in seconds, to parse and
build in-memory representations of APIs that represent the

test cases. e e e e e

6.8 Levels II, III, and IV: Size on disk (kB). The size on disk, in
kilobytes, for class diagrams, ORDs, and class firewalls that

represent the test cases.

6.9 Class Diagram sizes for the test suite. The number of classes
and edges, by type, in the 12 instances of the Class Diagram
schema constructed for the applications and libraries in our

test sutte. e

6.10 ORD sizes for the test suite. The number of classes and edges,
by type, in the 12 instances of the ORD schema constructed

for the applications and libraries in our test suite..

6.11 Class Firewall sizes for the test suite. The numbers of classes
and edges in the 12 instances of the Class Firewall schema.
In addition, the minimum, mazimum, and average class fire-
wall sizes for each of the instances. Class firewall sizes are

expressed as number of classes.

Page

List of Tables (Continued)

Page

7.1 Test suite. The eight test cases that we use in our study: four

SDL games and four language processing tools. For each

test case, we list the version, the number of source files,

the number of translation units, the number of C++ trans-

lation units, and the approximate number of thousands of

non-commented, non-preprocessed lines of code (NCLOC). 85
7.2 Modularity and delegation. The number of classes and functions

in each test case; the classes and function are broken down

into categories that relate to modularity and delegation. 87
7.3 Depth Of Inheritance Tree (DIT). Statistics about the DIT met-

ric for each test case. 88
7.4 Number of Ancestors (NOA). Statistics about the NOA metric

for each test case. 88
7.5 Number of Children (NOC). Statistics about the NOC metric for

each test case. e 89
7.6 Weighted Methods per Class (WMC). Statistics about the WMC

metric for each test case. oo 90

7.7 Size on disk (kB). The size on disk, in kilobytes, for uncom-
pressed GXL encodings of instances of the Class Template
Diagram schema, and the uncompressed dot encodings of the

inheritance hierarchies. L Lo 96
7.8 Time (s). The running time, in seconds, for each phase of our
visualization system, and for the entire visualization system. 97

xXvi

Chapter 1

Introduction

In their roadmap for reverse engineering, Miiller et al. [2000] explain why reverse
engineering tools are critical for controlling the high cost and risk of legacy system
evolution. They identify wider adoption as a significant challenge to increased ef-
fectiveness of reverse engineering tools, and state that failure to adopt is caused in
part by the lack of interoperability among reverse engineering tools and common
academic and industrial software tools. Standard exchange formats (SEF) such as
the Graph eXchange Language (GXL) have been created to increase interoperabil-
ity, but previous research has not adequately exploited the semantic specification
capabilities of these SEF’s. These semantic specification capabilities allow meaning,
in addition to structure, to be encoded and exchanged, thus allowing type validation
in addition to structural validation.

Accessibility, comparability, reproducibility, and reusability of results are issues
tightly coupled to interoperability. To evaluate a new technique, a comparison of
the new technique to an existing technique must be performed; to perform the
comparison, the reproduction or reuse of the existing results is required. However,
researchers have reported considerable difficulty in interpreting and reproducing ex-
perimental results. In language design and implementation, for example, Das [2000]
and Murphy et al. [1998] reported difficulty in reproducing results in points-to analy-
sis and call graph construction, respectively. In addition, benchmarks are commonly
used to evaluate and compare results, but require manual effort if infrastructure sup-
port is not provided.

To address the problems of accessibility, comparability, reproducibility, and
reusability, we describe an infrastructure that supports interoperability among re-

verse engineering tools and other software tools [Kraft et al. 2005b; 2007a]. The

three major components of our infrastructure are: (1) a hierarchy of schemas for
low- and middle-level program representation graphs, (2) gre, a tool chain for re-
verse engineering C++ programs [Kraft et al. 2005a; 2007b], and (3) a repository of
reverse engineering artifacts, including the previous two components, a test suite,
and tools, GXL instances, and XSLT transformations for graphs at all levels of the
hierarchy [Kraft 2006].

1.1 Research Problems

The problems we investigated are in the area of reverse engineering; in particular, we
investigated infrastructure support for interoperability. Statements of the problems

follow.

Problem 1: Schemas for Low- and Middle-Level

Program Representation Graphs

At the Dagstuhl Seminar on Interoperability of Reengineering Tools [Lethbridge
2001], GXL [Holt et al. 2006] was ratified as the standard format for exchange
of graphs among reverse engineering and reengineering tools. In addition, the
participants agreed upon three levels at which interoperability should be applied:
(1) low-level graph structures, including abstract syntax trees (AST) and graphs
(ASG); (2) middle-level graph structures, including call graphs and control flow
graphs (CFG); and (3) high-level graph structures, including architecture descrip-
tions. Two GXL schemas for low-level graphs, but no GXL schemas for middle-level
graphs, have been described in the literature.

Only two schemas for low-level graphs have been encoded in GXL and suggested
as standard schemas: the Columbus C++ ASG schema [Ferenc et al. 2001], and
the Dagstuhl Middle Metamodel (DMM) [Lethbridge et al. 2004]. However, neither
of these schemas has been ratified, or widely adopted by tool developers. In addi-
tion, neither schema accurately and adequately represents C++ templates, including

instantiations, specializations, and partial specializations. Finally, the DMM repre-

sents neither information about function pointers, nor the information necessary to
create instances of several schemas for middle-level graphs, including control flow

graphs.

Goal

Create GXL schemas for low- and middle-level graphs, and use known transforma-

tions between graphs to guide the organization of the schemas into a hierarchy.

Evaluation Criteria
1. The hierarchy is arranged in levels, such that an instance of a schema at one
level can be created using only information contained in instances of schemas

at previous levels.

2. Instances of low-level schemas contain the information needed to create in-
stances of middle-level schemas, including call graphs, class-centric graphs,

control flow graphs, and dependency graphs.

3. Low-level schemas are language-specific, and middle-level schemas are

language-independent.

4. Low-level schemas for C++ accurately and adequately represent templates,

including instantiations, specializations, and partial specializations.

5. Low-level schemas for C++ represent function pointers, including member

function pointers.

Problem 2: Tool Support for Reverse Engineering C++ Programs

Source code based reverse engineering tools require a parser and front end to recog-
nize the application under analysis, and to create a representation of the recognized
program, such as an ASG. The difficulties that arise during the construction of a
parser and front end for C++ are well documented, and are largely due to the size
of the language, and the complexity of the template sublanguage [Bodin et al. 1994;
Knapen et al. 1999; Lilley 1997; Power and Malloy 2000; Reiss and Davis 1995;

Roskind 1989; Veldhuizen 2003]. Many research endeavors have focused on the cre-
ation of a C++ parser and front end to enable analysis of C++ programs [Ferenc
et al. 2002; Malloy et al. 2003a; McPeak 2005]; however, none of these tools can
provide a correct parse tree for C++ programs that use templates, including “hello
world”, which uses the iostream library, and thus templates.

The GNU Compiler Collection [2002] includes gee, a public domain, industrial
strength compiler for C++ that fully handles templates. Several researchers have
used the gce parser and front end to create tools for reverse engineering C++ [An-
toniol et al. 2004; Dean et al. 2001; Gschwind et al. 2004; Hennessy et al. 2003].
Until version 3.0 of gec was released, such tools were, of necessity, tightly coupled
to the compiler internals. Since then, gcc has provided, via a command line flag, a
facility for writing the ASG for the given translation unit to a text file. The ASG
representation stored in these text files is called GENERIC; instances of GENERIC
allow for the construction of a reverse engineering tool for C++ that uses the gcc
parser and front end without binding to the compiler internals. Despite this facility
in gcc, there remains no public domain, general purpose tool for reverse engineering

C++ programs that can fully handle templates.

Goal

Create a public domain, general purpose tool for reverse engineering C++ programs.

Evaluation Criteria

1. The tool is open-source and available on the Web.

2. The tool correctly parses, instantiates, and specializes templates.
3. The tool consists of loosely coupled, reusable modules.

4. The tool provides a module for linking C++ translation units.

5. The tool provides an API module for accessing information about declarations,

statements, and some expressions.

6. The tool exchanges information via conforming instances of GXL schemas.

7. The tool is robust and efficient enough to use on medium-sized C++ programs,
which contain up to 500000 lines of non-commented, non-preprocessed lines

of code.

8. The tool is general purpose.

Problem 3: A Repository of Reverse Engineering Artifacts

Empirical results are relevant to both researchers and practitioners; they reveal cor-
relations among software technologies and practices. Accessibility of results and
other artifacts has been identified as a key hurdle to the adoption of existing in-
frastructures [Miiller et al. 2000]. Distribution of empirical evaluation artifacts is
needed to enhance reproducibility and reusability of results, as well as to allow stud-
ies to be expanded [Do et al. 2005]. Researchers in software testing have led the
way in providing access to empirical results [Andrews 2004; Graves et al. 2001; Har-
rold et al. 2001; Jones and Harrold 2005; Orso et al. 2004; Rothermel and Harrold
1998]. However, researchers in reverse engineering and program analysis have not

responded to this need [Kraft et al. 2005b; 2007a).

Goal

Create a public repository of reverse engineering artifacts, and populate it with
empirical results, including all tools, scripts, and documents needed to reproduce

the results.

Evaluation Criteria
1. The repository contains a test suite, including important details about each
test case:
e Version

e Size metrics

e Configuration and build information

2. For at least one graph at each level of our hierarchy (see Problem 1), the

repository contains:

A GXL schema

e Tools that exchange information via conforming GXL instances of the

schema
e GXL instances of the schema for each test case in the test suite

e A graph transformation that summarizes the information in a GXL in-
stance

e Empirical results that show the space and time costs incurred by the

documents and tools, respectively

3. The repository contains all artifacts needed to reproduce the results described

in the previous items, including platform information for each experiment.

4. The repository is available to the public, particularly the reverse engineering

community.

1.2 Dissertation Outline

In Chapter 2, we provide background information on the Graph eXchange Lan-
guage (GXL), and various program representation graphs: the abstract syntax graph
(ASG), the call graph, three class-centric graphs, and three control flow graphs. We
summarize related research, in Chapter 3. In addition, we conclude that chapter
with a discussion of the relationship between the summarized research and our own.

In Chapters 4, 5, and 6, we describe the three major components of our in-
frastructure to support interoperability in reverse engineering. We describe the
first component, our hierarchy of schemas for program representation graphs [Kraft
et al. 2005b; 2007a], in Chapter 4, and the second component, gre, our tool chain
for reverse engineering C++ programs [Kraft et al. 2005a; 2007b], in Chapter 5.
In Chapter 6, we present two case studies in which we use g*re to determine the
space and time costs incurred by our infrastructure [Kraft et al. 2007a]. In that
same chapter, we also present the final major component of our infrastructure: our
repository of artifacts, which includes a test suite, and tools, GXL instance graphs,

and XSLT transformations for graphs at all levels of the hierarchy [Kraft 2006].

We present two empirical evaluations performed using g*re, in Chapter 7. The
two application areas are software measurement and program comprehension, in
particular, computation of object-oriented metrics [Jamieson et al. 2005] and three-
dimensional software visualization [Hoipkemier et al. 2006], respectively. Finally, in
Chapter 8, we summarize our contributions to the area of reverse engineering.

There are two appendices. In Appendix A, we list the acronyms and abbrevi-
ations that we use throughout the dissertation. In Appendix B, we provide links
to our online repository, where we make our schemas, our tools, and other artifacts

from our infrastructure available to the reverse engineering community.

Chapter 2

Background

In this chapter we describe concepts, technologies, and terms that relate to our
work in the area of reverse engineering. In particular, we describe Graph eXchange
Language (GXL) in Section 2.1, and various program representation graphs in Sec-

tion 2.2.

2.1 Graph eXchange Language

Graph eXchange Language (GXL) [Holt et al. 2006] was ratified as the standard ex-
change format (SEF) for reverse engineering and reengineering tools at the Dagstuhl
Seminar on Interoperability of Reengineering Tools [Lethbridge 2001]. GXL is an
XML language [Bray et al. 2006] that is defined by a document type definition
(DTD), and conceptualized as a typed, attributed, directed graph. GXL describes
both instance graphs and schema graphs, which are represented by UML class
diagrams [Object Management Group 2005], using the same structural elements
(node and edge types).

A UML class diagram is a static representation of a program consisting of rect-
angles to represent classes in the system, and lines connecting the rectangles to
represent relationships among the classes. A rectangle for a class is divided into
three horizontal sections. The top section displays the name of the class, which is in
italics if the class is abstract. The middle section displays the data members, or at-
tributes, of the class, including their types and visibilities (public, protected, private,
or package). The bottom section displays the member functions, or operations, of
the class, including their return types, parameters, and optionally, exception spec-

ifiers. A line between two classes can indicate an aggregation, an association, a

composition, or a generalization; a role name and a multiplicity can be assigned to
each end of a line that is not a generalization.

A GXL schema is a UML class diagram encoded in XML. GXL provides a
common base from which any schema for representing software can be derived; the
common base is the GXL metaschema, a schema for E-R graphs that is classified
as an explicit-external schema by Jin et al. [2002]. The GXL metaschema gives the
structure for all GXL graphs, and like all GXL schemas, is an instance of the GXL
metaschema. Thus, the GXL metaschema is its own schema.

All GXL graphs, both instance and schema, are constrained in ways that cannot
be expressed by either the GXL DTD, or, for schemas, a UML class diagram. These
constraints include: (1) ordered incidences must define a proper ordering, (2) a
schema graph must contain at least one GraphClass node, (3) a schema graph must
not contain a cycle of isA (generalization) edges, and (4) in a schema graph, an
isA must not connect nodes of different types (i.e., a NodeClass must not inherit
an EdgeClass, and so on) [Holt et al. 2006]. The GXL Validator was designed to
validate GXL graphs against these constraints, as well constraints specified by the
GXL DTD, the GXL metaschema, and the specified GXL schema [Kaczmarek 2003].

The GXL Validator is used to validate both instance and schema graphs. GXL
schemas are validated against the GXL metaschema, which is validated against itself.
Validating GXL is important; validation can reveal errors in both the modeling, and
the generation of GXL instances. In addition, valid GXL files are more likely to be
accepted by available XML tools than non-valid files.

In Figure 2.1, we illustrate an overview of GXL validation. Input files, shown at
the top of the figure, are the GXL metaschema, an optional GXL schema graph, and
an optional GXL instance graph. The executable gzlvalidator, shown as an ellipse in
the middle of the figure, performs several tests that check the constraints described
in the previous paragraph, and outputs the results of the validation. We list the

tests that gzlvalidator performs in the note at the bottom right of the figure.

10

GXL Metaschema graph
GXL Schema graph
GxL Instance graph

Created at the
University of Koblenz-Landau

gxlvalidator

[
Results:

Metaschema instance validity
Metaschema vs. Metaschema compliance
Metaschema schema validity

Schema instance validity

Schema vs. Metaschema compliance
Schema schema validity

Instance instance wvalidity

Instance vs. Schema compliance

(il

Figure 2.1: Overview of GXL Validation. The process of validating GXL instance
and/or schema graphs Solid edges represent input and output. Dashed edges repre-
sent notes.

11

Uk W N~

2.2 Program Representation Graphs

In this section, we describe several program representation graphs that are com-
monly used in compilation, program analysis, and program comprehension. We
first describe the abstract syntax graph (ASG), which is sometimes called an ab-
stract semantic graph, in Subsection 2.2.1. We then describe the call graph in
Subsection 2.2.2, class graphs in Subsection 2.2.3, and control flow graphs in Sub-

section 2.2.4.

2.2.1 Abstract Syntax Graph

Given an input string, a parser derives a parse tree for the string (i.e., it parses
the string). An abstract syntax tree (AST) is an abridged parse tree; an AST is
constructed by a parser in lieu of the unabridged parse tree with non-terminals,
keywords, and punctuation explicitly represented. Using the semantic rules for the
input language, a semantic analyzer transforms an AST to an abstract syntax graph
(ASG). An ASG is often the output of a compiler front end, and includes semantic
information such as edges from variable uses to their declarations, edges from type

uses to their definitions, and for C++, template instantiations and specializations.

struct Node

{

int value ;
Node* next;

}s

Source Listing 2.1: Source code for struct Node. Definition of the C++ struct
Node. Node consists of an integer, value, and a pointer to another Node, next.

In Source Listing 2.1, we list C++ code for the definition of struct Node. Node
consists of an integer, value, on line 3, and a pointer to another Node, next, on line
4. In Figure 2.2, we illustrate a possible AST for struct Node, and in Figure 2.3,

we illustrate a possible ASG for struct Node. Note that in Figure 2.2 the uses of

12

Namespace

name: .

contents
\
Class
name: Node
Variable Variable
name: value name: next
type type
Y Y
Builtin Pointer
name: int
base type
Y
NameReference
name: Node

Figure 2.2: Sample AST for struct Node. An AST for struct Node, which is defined
in Source Listing 2.1. Uses of the types int and Node have not yet been resolved to

their definitions.

Namespace

name. ..

Builtin
name: int name: Node

field field
type

Variable Variable

name: value name: next

base typ

type
\
Pointer

Figure 2.3: Sample ASG for struct Node. An ASG for struct Node, which is defined
in Source Listing 2.1. Uses of the types int and Node have been resolved to their

definitions.

13

the types int and Node have not yet been resolved to their definitions, but that in

Figure 2.3 they have.

2.2.2 Call Graph

A call graph is a directed graph, G = (V, E). The set of nodes, V, contains the
functions in a program. For any two functions fy, fi € G, an edge (fo, f1) appears
in the set of edges, F, if there is a potential call to f; by fy. The call graph for a
program is a directed acyclic graph (DAG) if the program does not use recursion. To
reverse engineer a call graph from the source code of a program, information about
at least the following constructs is required: function declarations and function
calls (sometimes called call sites). Call graphs are commonly used for program
profiling [Graham et al. 1982].

In strictly first-order procedural languages, constructing a program call graph is
straightforward because, at every call site, the target of the call is directly evident
from an inspection of the source code. However, in object-oriented languages such as
C++, the target of a call cannot always be precisely determined; rather, the target
is partially determined by the data values that reach the call site. For example, in
C++, the method invoked by a call to a virtual method through a base class pointer
is dependent on the class of the object receiving the call. In general, determining
the flow of values needed to build a precise call graph requires an interprocedural

data and control flow analysis of the program.

2.2.3 Class Graphs

In this subsection we describe graphs that are centered around the class. We first
describe the class diagram, and next describe the object relation diagram (ORD).
Finally, we describe the class firewall.

Class Diagram

A class diagram is a directed graph, G = (V, E). The set of nodes, V, contains the

classes in a program, and the set of edges, F, contains the relationships among the

14

classes. To reverse engineer a class diagram of low precision from the source code
of a program, information about only class declarations is required. However, to
reverse engineer class diagrams of high precision, access to information about the
following constructs is required: declarations, scopes, types, and control structures.

The classes in a class diagram include generic, or template, classes, and may also
include instantiated template classes. The edges in a class diagram represent the
relationships among the classes in the program, and are specified by the syntax and
semantics of data members, and the parameters and local variables of member func-
tions. The edges types in a class diagram are: aggregation, association, composition,
dependency, inheritance, and ownedElement, as defined by the UML specification,

version 2.0 [Object Management Group 2005].

Object Relation Diagram

An object relation diagram (ORD), sometimes called a class dependency diagram, is
a directed graph, G = (V, E). The set of nodes, V', contains the classes in a program,
and the set of edges, F, contains the relationships among the classes. An ORD can
be constructed given only the information in a class diagram, and is commonly used
to determine an integration order for class-based testing [Kraft et al. 2006].

The classes in an ORD include those that are not template classes, as well as in-
stantiated template classes. The edges in a class diagram represent the relationships
among the classes in the program, and are identical to those in a class diagram, but
for the addition of polymorphic edges [Labiche et al. 2000; Malloy et al. 2003]. A
polymorphic edge is generated by each association or dependency edge, e, where the
type of the variable or parameter is an indirect type referring to a base class, b. Each
edge e generates a set of polymorphic edges with source, src(e), and destination, a

derived class of b.

Class Firewall

A class firewall is a directed graph, G = (V, E). The set of nodes, V, contains the

classes in a program, and the set of edges, E, contains the dependencies between the

15

classes. A class firewall can be constructed given only the information in an ORD,
and is used to define the scope of regression testing required in the presence of a
change to a particular class in a system [Kung et al. 1995; Skoglund and Runeson
2005]. For example, assume that a developer finds a fault in class X, and then
modifies it in an effort to fix the fault. The firewall for class X defines those classes
that must be retested to ensure that no new fault has been introduced into the

system.

2.2.4 Control Flow Graphs

In this subsection we describe graphs that express the flow of control for a program.
We first describe the control flow graph (CFG), followed by the interprocedural

control flow graph (ICFG), and finally, the class control flow graph (CCFG).

Control Flow Graph

A control flow graph (CFG) is a directed graph, G = (V, E). The set of nodes, V,
contains the basic blocks in a function plus two special nodes, and the set of edges,
E, contains the flow of control between the blocks in the function. A basic block is a
sequence of statements that has one entry and one exit. The two special nodes, begin
and end, represent the entry and exit points for the function. To reverse engineer
a CFG from the source code of a program, information about at least the following
constructs is required: function declarations, control structures, and logical expres-
sions. CFGs are commonly used for code generation and optimization [Aho et al.

2006.

Interprocedural Control Flow Graph

To encode control flow for a group of interacting functions that have a single entry
point, such as a group of functions that constitute an entire program, an interpro-
cedural control flow graph (ICFG) is required. An ICFG for a program, P, contains
a CFG for each function in P. Each function is represented as a pair of nodes: the

call node and the return node. Each call node is connected to the entry node of the

16

called function by a call edge, and each exit node is connected to the return node of
the calling function by a return edge. An ICFG can be created from the information
contained in a call graph combined with the information contained in several CFGs.

ICFGs are commonly used for whole program optimizations [Aho et al. 2006].

Class Control Flow Graph

A class control flow graph (CCFQG) consists of the set of CFGs, one CFG for each
function in the class. One additional node is the entry node for the class, which is
the predecessor node for the begin node of each CFG representing a constructor.
Another additional node indicates that functions in the class can be invoked in an
arbitrary order by clients of the class. This node is the the predecessor node for the
begin node of the CFG for every function, and the successor node of the end node
of the CFG for every function. The CCFG allows standard data-flow analyses to be
applied to object-oriented programs [Buy et al. 2000]. A CCFG can be created from
the information contained in an ICFG combined with the information contained in

a class diagram.

17

Chapter 3

Related Work

In this chapter we summarize research that relates to our work in the area of
reverse engineering. In particular, we summarize research on tools and techniques for
promoting interoperability in reverse engineering, including: (1) exchange formats
and schemas in Section 3.1, (2) infrastructures in Section 3.2, (3) evaluating results
in Section 3.3, and (4) linking translation units in Section 3.4. We also summarize
research on tools for reverse engineering C++ programs in Section 3.5. Finally, we
provide a discussion of the relationship between the summarized research and our

work in Section 3.6.

3.1 Exchange Formats and Schemas

Several exchange formats and languages have been proposed by the research commu-
nity, and discussed at length at the Workshop on Standard Exchange Formats [El-
liott Sim and Koschke 2001] and the Dagstuhl Seminar on Interoperability of Reengi-
neering Tools [Lethbridge 2001]. GXL (see Section 2.1 for details), the standard for-
mat for the exchange of graphs among reverse engineering and reengineering tools,
originated from the synthesis of several exchange formats and languages [Holt et al.
2003, including: GRAph eXchange format (GraX) [Ebert et al. 1999], Tuple At-
tribute language (TA) [Holt 1997], Relation Partition Algebra (RPA) [Feijs and van
Ommering 1999], Rigi Standard Format (RSF) [Wong 1998], and the graph format
of the PROGRES graph rewriting system [Miinch 1999]. More recently, Eichberg
et al. [2004] proposed the use of the generic standards XML and XQuery, and Ma-
mas and Kontogiannis [2000] described cppML, an XML DTD that represents the
C++ grammar. In addition, the Electronics Industry Association (EIA), the Object

Management Group (OMG), and W3C have provided the CASE Data Interchange

Format (CDIF) [Ernst 1997], the XML Metadata Interchange (XMI) [Group 2005],
and the Resource Description Framework (RDF), respectively.

Schemas complement exchange formats by giving meaning to the data being ex-
changed. Many noteworthy schemas exist; some are automatically derived, while
others are manually derived. Manually derived schemas are created by software
engineers, and are more abstract than their automatically derived (tool generated)
counterparts. In addition, some schemas are language-specific, while others are
language-independent. Here, the term language-independent indicates that a schema
is applicable to more than one, but not necessarily all, languages. We focus on man-
ually derived schemas for AST’s and ASG’s; first we review language-independent
schemas, next we review schemas specific to C++.

Czeranski et al. [2000] present the Bauhaus schema for modeling C and a subset
of Ada. Aigner et al. [2006] present the Stanford University Intermediate Format
(SUIF), which includes a schema that represents different languages, including C,
C++, and Fortran. GENERIC is a schema that is used by GCC [2002] to represent
several languages, including C, C++, Objective-C, Fortran, and Java. GENERIC was
designed to facilitate semantic analysis and optimizations [Merrill 2003].

The Datrix team at Bell Canada Inc. [2000] presents the Datrix schema for
modeling C, C++, Java, and other Algol-based languages. The Datrix schema is
not source complete, but does provide mangled names for linking purposes. Datrix
attempts to represent several languages with a single representation. Both Bell
Canada and Dean et al. [2001] report using the Datrix schema to represent C+-+.
Neither implementation handles C++ templates. Templates are not properly or
fully represented by the Datrix schema; this failure is an artifact of attempting to
be language-independent.

Ferenc et al. [2001] present the Columbus schema for modeling C++. The Colum-
bus schema is not source complete, but does provide mangled names for linking
purposes. The authors indicate that the ISO/IEC C++ standard [ISO/IEC JTC
1 1998] served as the basis for all design decisions. They also claim that a por-

tion of the schema, the language-independent portion, could be used as common

20

root for modeling other programming languages, but these claims have not been
investigated. The Columbus implementation [Ferenc et al. 2002], which exchanges
data via the Columbus schema, does not handle C++ templates [Gschwind et al.
2004]. In addition, the schema does not properly or fully represent templates; there
are several violations of basic object-oriented modeling principles in the template
portion of the schema.

Lethbridge et al. [2004] present the Dagstuhl Middle Metamodel (DMM) for
representing software in reverse engineering applications. The DMM schema is called
a middle model because it represents information at a higher level of abstraction than
the AST/ASG, but a lower level of abstraction than an architecture description
diagram. The schema was specifically designed to be represented as a GXL schema.
No reference implementation is provided, and only a handful of tools have leveraged

the schema thus far [McQuillan and Power 2006].

3.2 Infrastructures for Reverse Engineering

One of the earliest approaches to providing a general framework for interoperability
is the ECMA Reference Model, the “Toaster Model”, which outlines the functionality
required to support a tool integration process [National Institute of Standards and
Technology 1993]. The dimensions of functionality addressed by the model include:
data integration, provided by the repository manager; control integration, provided
by the subsystem interaction manager; presentation integration, provided by the
user interaction manager; and process integration, provided by the development
manager.

One of the earliest approaches to a reverse engineering infrastructure is the LSME
system [Murphy and Notkin 1996]. This system is based on lexical analysis, and
specifically identifies the ability to add additional source languages and extractors as
central to the approach. Murphy and Notkin demonstrate this flexibility by applying
the approach to extracting source models for ANSI C, CLOS, Eiffel, Modula 3, and
TCL.

21

Kullbach et al. [1998] present the EER/GRAL approach to graph-based con-
ceptual modeling of multi-lingual systems. In this approach, models to represent
information from a single language are built and then integrated into a unified model.
A graph query language is available to perform queries on the unified model.

Dali is a collection of various tools in the form of a workbench for collecting
and manipulating architectural information [Kazman and Carriere 1999]. The Dali
workbench was designed to be open, so that new tools could be easily integrated,
and lightweight, so that such integration would not unnecessarily impact unrelated
parts of the workbench. Kazman et al. identify an extraction phase, encompassing
both parsing and profiling, accumulating information in a repository, which then
feeds analysis and visualization phases. They use an SQL database for primary
model storage, but then use application specific file formats to facilitate interchange
between tools.

Salah and Mancoridis [2003] echo the Dali architecture in their software com-
prehension environment, which has a three-layer architecture. The three layers are
composed of: (1) a data gathering subsystem, (2) a repository subsystem, and (3) an
analysis and visualization subsystem. The environment supports both static and dy-
namic analysis of C++ and Java programs. Information can be accessed using either
SQL, or a specialized query language.

Finnigan et al. [1997] describe a Software Bookshelf that was originally designed
to support converting PL/I source code to C++. Their information repository,
which describes the content of the bookshelf, is accessed through a web server using
object-oriented database technology. The Portable Bookshelf (PBS) implementation
of these ideas is based around a toolkit that includes a fact extractor, a manipulator,
and graph layout tools. This “pipeline philosophy” has since evolved into the SWAG
Kit and the LDX/BFX pipeline, each of which emphasizes collections of stand-alone
tools communicating only via well-defined inputs and outputs [Holt et al. 2005].

Jin and Cordy [2005] advocate non-prescriptive integration that focuses on shar-
ing services, rather than simply data, with the OASIS service-sharing methodology.

In this approach, each tool in the integration is known as a participant. Each par-

22

ticipant offers a set of shared services to the other participants, but not all services
offered by a participant must be shared. Two sets of components must be created
in the OASIS methodology: a domain ontology and conceptual service adapters.

Moose is a language-independent reverse- and re-engineering environment that
was first developed in the context of FAMOOS [Nierstrasz et al. 2005]. Language
independence is achieved by the use of a common metamodel as the core of Moose.
Services provided around this core include a meta-metamodel tailoring of the Moose
metamodel; a GUI for browsing, querying, and grouping; and metric evaluation and
visualization. Moose uses both the CDIF and XMI exchange formats to interact
with external tools.

Al-Ekram and Kontogiannis [2005] present an XML-based framework that at-
tempts to represent higher level artifacts in a language-neutral way. The framework
includes an XML DTD for each of several artifacts, including a control flow graph, a
program dependence graph, and a call graph. The basic elements that are common
between the artifacts are represented as Fucts, and are encoded by another XML
DTD, FactML. The framework is multi-layered and follows a “pipe-filter” architec-

tural style.

3.3 Evaluating Results from Reverse Engineering

Two important attributes of a reverse engineering infrastructure are: providing for
repeatability of results, and allowing comparison of results from different approaches.
One way this can be achieved is by agreement on standard exchange formats and
schemas for exchanging information (see Section 3.1); this allows output from differ-
ent tools or tool sets to be directly compared. There can be considerable difficulties
involved in comparing results when a standard exchange format is not paired with
a schema (standard or otherwise).

Murphy et al. [1998] describe a comparison of nine tools for extracting call graphs
from C programs. They compare outputs from three software systems, and find

a considerable variance. Das [2000] describes a points-to analysis algorithm, and

23

compares his results to those from tools implementing competing approaches. He
notes that it took his team several months to synchronize the output of the tools
so that the results could be compared. In each case, the problem was with different
definitions and interpretations of required information, rather than with different
output formats.

Sim et al. [2002] note the importance of benchmarks in software engineering
in general, and in evaluating fact extractors in particular. They describe the con-
struction of a benchmark suite designed to test the accuracy and robustness of fact
extractors, and comparatively evaluate four tools by applying the benchmark suite.
Lin et al. [2003] describe a four-level hierarchy of completeness, and use it to vali-
date the CPPX fact extractor [Dean et al. 2001]. They use a test suite consisting of
programs used to demonstrate the Datrix model, as well as test cases from the gcc
test suite. Vinciguerra et al. [2003] describe an experimentation framework for eval-
uating C++ and Java disassembly and decompilation tools. The framework includes

a layered test suite of programs, and a focused set of reverse engineering tasks.

3.4 Linking in Reverse Engineering Tools

Relatively little work exists on combining information extracted from different trans-
lation units. This process is analogous to compile-time linking, where external
references in one translation unit are resolved to definitions in another. Wu and
Holt [2004] describe a study of linking information extracted from a PostgresSQL
implementation, and note that a naive approach to linking can give rise to linkage
anomalies. They describe an approach to alleviating these anomalies with heuris-
tics and build simulation. Guo et al. [2003] describe a method for assigning globally
unique identifiers (UIDs) to the declarations and references in a Java program. Each
UID is based on scope and file information, and is attached via XML markup to
entity references in the source code. While the goal of this work is not linking, the
technique for assigning UlDs is directly applicable to linking translation units at the

ASG level.

24

3.5 Tools for Reverse Engineering C++ Programs

A reverse engineering tool that accepts C++ source code must have a parser, and
likely, a corresponding front end. The difficulties that arise during the construction
of a parser for C++ are well documented, and are largely due to the complexity
of the template sublanguage [Bodin et al. 1994; Knapen et al. 1999; Lilley 1997;
Power and Malloy 2000; Reiss and Davis 1995; Roskind 1989; Veldhuizen 2003].
Consequently, the selection of robust reverse engineering tools that accept C++
programs is inadequate.

Available reverse engineering tools for C++ can be divided into two categories:
(1) those that provide their own parser (and possibly front end), and (2) those that
utilize the C++ parser and front end from either the GNU Compiler Collection [Free
Software Foundation 2002], or the Edison Design Group [2000]. We provide an
overview of the first category in Subsection 3.5.1, and an overview of the second

category in Subsection 3.5.2.

3.5.1 Tools that Provide a C+-+ Parser

The C++ parsers provided by reverse engineering tools extract varying levels of in-
formation, ranging from limited information, such as class hierarchies, to detailed
information, such as statements and expressions. Parsers that extract limited in-
formation, known as fuzzy parsers [Koppler 1997], are well suited to tasks such as
graphical browsing and graph visualization, but are not sufficient for program anal-
ysis tasks. Parsers that extract detailed information are ideal for program analysis
tasks, but none of the parsers described in this subsection are able to fully accept
templates.

Lapierre et al. [2001] present Datriz, an analyzer that extracts information from
C, C++, or Java programs. Datrix extracts information for each translation unit
in accordance with the Datrix ASG Model [Bell Canada Inc. 2000], and output is

expressed in either TA (Tuple-Attribute Language) or VCG format. The Datrix

25

project at Bell Canada ended in the year 2000, and the Datriz analyzer is no longer
available.

Source-Navigator'Mfrom Red Hat is an analysis and graphical browsing frame-
work for C, C++, Java, Tcl, FORTRAN, and COBOL [Source-Navigator Team
2005]. The provided fuzzy parser extracts enough high level information to provide
class hierarchies, imprecise call graphs, and include graphs. Source—Navigator does
not provide statement level information, and the plain text output does not conform
to a schema.

Ferenc et al. [2002] present Columbus, a fully integrated reverse engineering
framework supporting fact extraction, linking, and analysis for C and C++ programs.
Columbus provides output in a variety of formats, including CPPML, GXL, RSF,
and XMI. Nevertheless, Columbus is unable to fully accept templates, as noted

by [Gschwind et al. 2004].

3.5.2 Tools that Utilize the GCC C++4 Parser

Industrial strength C++ parser front ends are provided by the GNU Compiler Col-
lection [Free Software Foundation 2002] and the Edison Design Group [2000]. They
both accept virtually all of the constructs defined by the ISO C++ standard, includ-
ing templates [ISO/TEC JTC 1 1998; Malloy et al. 2003b]. However, gcc is in the
public domain, which allows the reverse engineering tools that use it to be freely
distributable; we summarize only tools that use gcc in this subsection.

There are take two common approaches to using gecc. The first approach is to
modify the source code of the parser, which creates a custom version of gcc. The
second approach is to use the tu files described in Subsection 6.2.1.

Dean et al. [2001] present CPPX, a tool that uses gcc for parsing and semantic
analysis. CPPX predates the incorporation of tu files into gee, and is built directly
into the source code. CPPX constructs an ASG that is compliant to the Datrix
ASG Schema [Bell Canada Inc. 2000], and can be serialized to GXL, TA, or VCG
format. The Datrix ASG Schema is meant to accommodate several languages; this

generality makes it difficult to accurately represent many C++ language constructs,

26

such as template specializations. The last release of CPPX, based on version 3.0 of
gce, does not properly handle the C++ Standard Library.

Hennessy et al. [2003] present gccXfront, a tool that harnesses the gcc parser to
tag C and C++ source code. The tool annotates source code with syntactic tags
in XML by modifying the bison parser generator tool, as described by Malloy et
al. [2002]. This approach is no longer viable, because the C++ parser in gcc has
migrated to recursive descent technology.

GCC. XML uses tu files to generate an XML representation for class, function,
and namespace declarations, but does not propagate information such as function
and method bodies [Kitware, Inc. 2005]. As a result, many common program
representations, such as the call graph or the ORD, cannot be constructed using the
output of GCC.XML.

Antoniol et al. [2004] present XOGASTAN, a collection of tools that convert a
tu file to a GXL instance graph, and construct an in-memory representation of the
GXL instance graph. XOGASTAN fails to create GXL output for certain GENERIC
node types, including try_catch_expr and using_directive. Additionally, XO-
GASTAN has limited analysis capabilities for C++.

Gschwind et al. [2004] present TUAnalyzer, a system that uses tu files to perform
analysis of template instantiations of classes and functions. TUAnalyzer performs
virtual method resolution by using the 'base’ and 'binf’ attributes, along with the
output provided by the compiler switch -fdump-class-hierarchy, which recon-
structs the virtual method table. The scope of TUAnalyzer is limited to analysis of
templates; Also, TUAnalyzer does not produce an output representation of the tu

file for exchange with other reverse engineering tools.

3.6 Discussion

Existing schemas do not properly or fully represent C++ templates. A correct
representation of templates is critical in reverse engineering, because all non-trivial

C++ programs use templates (due to the C++ Standard Library). For example,

27

“hello world”, the famous five line program, uses the iostream header, which uses
templates extensively. In addition, generic programming is becoming increasingly
popular, and the revised version of the ISO C++ standard (due in 2009) will increase
the power and flexibility of templates. To address the shortcomings of existing
schemas, we present our Cpplnfo schema for C++ in Section 4.2. The Cpplnfo schema
properly and fully represents C++ templates.

Previous research on infrastructures has leveraged standard exchange formats
(SEF) such as GXL, but has not adequately exploited the semantic specification
capabilities of these SEFs. In addition, previous research has not addressed the
problem of delineating interactions among schemas at the semantic level. Our in-
frastructure utilizes the semantic specification capabilities of GXL.

The benchmark approach to evaluating reverse engineering tools has been used
in previous research for evaluation and comparison, but requires manual comparison
of the results. The approach that we support with our schema hierarchy imposes an
additional requirement that the tool output must conform to a common schema, or
be translated to conform to a common schema. This additional requirement permits
comparison of results to be fully automated.

Linking translation units from a program into a unified representation has been
addressed in previous research for several languages, including PostgresSQL, Java,
and C++. We have adopted certain elements of these approaches, such as a vari-
ation of UlDs. In addition, to address the current lack of a publicly accessible
repository containing representations of linked translation units for C++ programs,
we provide, in our SourceForge.net repository [Kraft 2006], GXL instances of unified
representations that conform to our Cpplnfo API schema.

Most currently available tools for reverse engineering C++ do not properly handle
templates. However, some tools based on versions of gcc greater than 3.0 do handle
templates. XOGASTAN is similar to our gre tool chain, but has limited analysis
capabilities, and does not provide a schema for understanding its GXL output.
TUAnalyzer is complementary to gre; it uses information acquired from gcc using

the flag ~-fdump-class-hierarchy. However, the scope of TUAnalyzer is limited to

28

inspecting template instantiations and reconstructing the virtual function call table.

Our gre tool chain is intended to be both industrial-strength and general-purpose.

29

Chapter 4

Schemas for Low- and Middle-Level Graphs

In this chapter we present the hierarchy of schemas for low- and middle-level pro-
gram representation graphs that is central to our infrastructure approach and facili-
tates interoperability and reuse for reverse engineering tools and applications [Kraft
et al. 2005b; 2007a]. In Section 4.1, we present an overview of the hierarchy of
schemas. In Section 4.2, we illustrate the low-level graphs in Levels 0 and I of our
hierarchy, and in Section 4.3, we illustrate middle-level graphs in Levels II, II, and
IV of our hierarchy. Finally, in Section 4.4, we describe an approach to comparing

instances of the schemas in our hierarchy.

4.1 Hierarchy of Schemas

In Figure 4.1, we illustrate the hierarchy of schemas that is central to our infras-
tructure, and facilitates interoperability and reuse for reverse engineering tools and
applications. There are two major partitions in our hierarchy: low-level and middle-
level; there are five minor partitions in our hierarchy: Levels 0 through 4. The dashed
ellipses in the figure represent schemas for graphical representations of code that dif-
fer for disparate languages, such as abstract syntax graphs (ASG), and application
programming interfaces (API). The solid ellipses in the low-level partition of the
figure represent the schemas used in our implementation; we discuss them further
in Section 4.2. The solid ellipses in the middle-level partition of the figure represent
schemas for graphical representations of code that are language independent, such
as call graphs, and control flow graphs; we discuss them further in Section 4.3. The
solid edges in Figure 4.1 represent the progression of information from a graphical
representation at one level to a graphical representation at a subsequent level [Buy

et al. 2000; Harrold et al. 1993; Sinha et al. 1999; Skoglund and Runeson 2005].

Low-level Middle-level

Level O I Level | Level Il | Level IlI [Level IV
—— | - _ I [
Efg;f;:d | { asG N [(API A Class Firewall
| Front End s s
A ~ ~

LI B

H ' | H
[
|
I
|

Figure 4.1: Hierarchy of Schemas. Schemas for program representation graphs or-
ganized by levels. Solid edges with open arrows represent input and output. Dashed
edges with filled arrows represent realization. Solid edges represent the progression
of information from a graphical representation at one level to a graphical representa-
tion at a subsequent level. Filled arrows indicate a single instance is needed, empty
arrows indicate that a set of instances are needed.

32

The filled arrows indicate that a single instance is needed, while empty arrows
indicate that a set of instances are needed.

The edge from Level 0 to Level I indicates that the information needed to build
an instance of the API schema is present in an instance of the ASG schema, which
contains information about a parsed and analyzed translation unit. We use the
GENERIC ASG schema, the internal ASG schema used by gce, in our implementa-
tion of the infrastructure. In addition, we use an API schema in place of another
middle model schema, such as the Dagstuhl Middle Metamodel (DMM) [Lethbridge
et al. 2004], which does not retain information about control statements or func-
tion calls. Information about control statements and function calls are needed to
create instances of schemas at subsequent levels of our hierarchy, in particular, con-
trol flow graphs (CFGs) and call graphs. We use the Cpplnfo API schema in our
implementation of the infrastructure.

The edge from Cpplnfo to Class Diagram indicates that the information needed
to build a class diagram [Fowler 2003] is found in the information about classes in
an instance of the Cpplnfo API schema. Similarly, an instance of the Cpplnfo API
schema provides: the statement level information needed to build a control flow
graph (CFG) [Aho et al. 2006], the function declaration and call site information
needed to build a call graph [Grove et al. 1997], and the statement and transfer
of control information needed to build a control dependence graph (CDG) [Cytron
et al. 1991]. The information needed to create instances of all schemas in Level II
of Figure 4.1 is present in an instance of the Cpplnfo schema.

The information needed to create instances of the schemas shown in Level III of
Figure 4.1 is present in instances of the schemas shown in Level II. The edge from
Class Diagram in Level IT to ORD in Level IIT indicates that the information needed
to build an object relation diagram (ORD)! is present in an instance of the Class
Diagram schema [Kraft et al. 2006; Malloy et al. 2003]. The only ORD edges not

readily available in a Class Diagram instance are polymorphic edges. The information

!The use of the term ORD is a misnomer, because the nodes are classes, not objects; however,
the term is used in previous research, and we continue to use it in this paper.

33

needed to generate polymorphic edges is extracted from the association, dependency,
and inheritance information present in a Class Diagram instance; therefore, building
an ORD instance using only information present in a Class Diagram instance is
possible.

Two additional schemas are shown in Level III of Figure 4.1: Also shown in Level
III of Figure 4.1 are schemas for an interprocedural control flow graph (ICFG) [Aho
et al. 2006], and a program dependence graph (PDG) [Ferrante et al. 1987]. The
edges from Call Graph and CFG in Level II to ICFG in Level III indicate that the
information present in a Call Graph instance and a set of CFG instances can be used
to build an ICFG instance [Aho et al. 2006]. Note that our Call Graph schema contains
information about each individual call site. A Call Graph instance must contain this
information to be used to build an ICFG instance; all solid edges in Figure 4.1 require
that instances of the source and sink schemas conform to their respective schemas.
Finally, the edges from CDG and CFG in Level II to PDG in Level III indicate that
the information present in a CDG instance and a set of CFG instances can be used
to build a PDG instance [Harrold et al. 1993].

In Level IV of Figure 4.1, we illustrate ellipses representing schemas for a class
firewall, a class control flow graph (CCFG), and a system dependence graph (SDG).
Instances of these three schemas can be built from information present in instances
of schemas in Levels II and IIT of the hierarchy. The edge from ORD in Level
IIT to Class Firewall in Level IV indicates that the information present in an ORD
instance can be used to build a Class Firewall instance [Skoglund and Runeson 2005].
The edges from Class Diagram in Level II and ICFG in Level IIT to CCFG in Level
IV indicate that the information present in a Class Diagram instance and an ICFG
instance can be used to build a class control flow graph (CCFG) instance [Buy et al.
2000]. Finally, the edge from PDG in Level III to SDG in Level IV indicates that
the information present in a set of PDG instances can be used to build an SDG

instance [Sinha et al. 1999].

34

4.2 Low-Level Schemas: Levels 0 and 1

Levels 0 and I in Figure 4.1 comprise the low-level partition of our hierarchy of
schemas. We first describe Level 0, which contains the schema for an abstract syntax
graph (ASG).We then describe Level I, which contains a schema for an application

programming interface (API).

Level 0

In Level 0 of our infrastructure is the schema for an ASG, which contains infor-
mation about a parsed and analyzed translation unit. We used the GENERIC ASG
schema in our implementation of the infrastructure. GENERIC, the internal ASG
schema used by gce, is documented almost exclusively by source code and com-
ments. GENERIC consists of 200 concrete node classes and 75 concrete edge classes,
and was designed to facilitate semantic analysis and front end optimizations. The
key advantage of GENERIC is the accurate and adequate representations of tem-
plates, including instantiations, specializations, and partial specializations. The key
disadvantage of GENERIC is the complex and low-level representation it uses. For
example, GENERIC uses 139 concrete node classes to represent expressions, and in-
cludes representations of artificial, or compiler generated, statements to manage the
stack and heap. We were not the first to create a GXL schema for GENERIC, but
unlike previous approaches, which used manually derived domain information to
generate GXL schemas for GENERIC [Antoniol et al. 2004; Kitware, Inc. 2005], we
used an instrumented parser to automatically reverse engineer domain information.
In addition, we were the first to publically distribute a GXL schema for GENERIC.
We wrote a collection of Perl modules named GxISW to automate the construc-
tion of a GXL schema, and used it to construct a GXL schema for GENERIC. Input to
GxISW is a plain-text, simplified UML class diagram, and domain type information;
our instrumented parser writes the reverse engineered domain information in this
format. To generate domain information for GENERIC, we used our instrumented

parser, and two test suites: the C and C++ test suite from gce, and a C++ test

35

suite [Malloy et al. 2003b] extracted from the ISO C++ standard [ISO/IEC JTC 1
1998]. We wrote two small (approximately 10 line) files that provide domain type
information for GXL. We list a link to the generated GXL schema for GENERIC in

Appendix B.

Level 1

In Level I of our infrastructure is the schema for an API, which contains informa-
tion about declarations, such as classes (including class templates, class template
instantiations, and class template specializations); namespaces; functions (includ-
ing function templates and function template instantiations); and variables, state-
ments (including control statements and exception statements), and some expres-
sions (function calls). We designed the Cpplnfo API schema to use in our imple-
mentation of the infrastructure. There are 137 classes in Cpplnfo: 70 nodes (28
abstract), 20 aggregation edges (1 abstract), 26 association edges (1 abstract), and
19 attributes. In addition, there are 2 enumerations, and 6 enumerators. Note that
while Cpplnfo does not currently include representations for most expressions, our
preliminary work suggests that the addition of expressions will introduce no more
than 20 total node classes (in stark contrast to the 139 concrete node classes used
by GENERIC), and 10 concrete edge classes. The key advantages of Cpplnfo over
other schemas proposed by the reverse engineering community are the accurate and
adequate representations of templates, including instantiations, specializations, and
partial specializations, and function pointers?.

In Figure 4.2, we illustrate the key classes, aggregations, and associations from
Cpplnfo that relate to templates. We illustrate the primary class, Template, to the
right of center in the middle of the figure. A Template is a Scope that is composed
of zero or more Instantiations of type Templatelnstantiation, zero or more Specializa-
tions of type TemplateSpecialization, and zero or more PartialSpecializations of type

TemplatePartialSpecialization. In addition, a Template is associated with a Tem-

2Lethbridge [2003] has identified the absence of representations for these language elements to
be a key weakness of the Dagstuhl middle metamodel with regards to C++. He also states that
practitioners have identified function pointers as being particularly important.

36

=<GraphClass==

Cppinfo
Templates

ANNN

| NamedDeclaration | | Templatespecialization | | Templateinstantiation | | Scope | Relationship
0,.* 0,.* £\
A instantiations @, .1 . isSrch
TemplateParameter -« Specializations g..1 Template| ., ;

0,.*

| -
. P .+ 4Partialspecializati
I'rempfatePaﬁnalSPeclahzatfon |IG - S FPartiaSpecialzations

TernplateP et . - i . :
A TemplateParameters 0 10' TemplateParameterList Flmes—tbnll HasTempIateParameterLlst|

Figure 4.2: Level I: Cpplnfo API — Templates. FEzcerpt from the CppInfo API
schema that illustrates the key classes, aggregations, and associations related to tem-
plates.

plateParameterList via a HasTemplateParameterList relationship. Note that a Tem-
plateParameterList is composed of zero or more TemplateParameters.

Not shown in Figure 4.2 are concrete classes for class and function templates,
template instantiations, template specializations, and template partial specializa-
tions. These concrete classes derive from the abstract classes shown in the figure,
along with the abstract class for either a class or function. For example, ClassTem-
plate inherits from both Class and Template. Also not shown in the figure are con-
crete classes for template parameters. There are three template parameter classes in
Cpplnfo: ParameterTemplateParameter, TemplateTemplateParameter, and TypeTem-
plateParameter.

In Figure 4.3, we illustrate the key classes, aggregations, and associations from
Cpplnfo that relate to function types. We illustrate the primary class, FunctionType,
in the center of the figure. A FunctionType is associated with a type via the Has-
ReturnType relationship, and is composed of zero or more ParameterTypes of type
Type. There are two concrete subclasses of FunctionType: FreeFunctionType and
MemberFunctionType, which is associated with a Class via the HasClass relationship.

To the left of center in Figure 4.3, we illustrate the class Indirect Type, from which

PointerType is derived. IndirectType is associated with a Type via the HasBaseType

37

<<GraphClass==

Cppinfo

FunctionTypes

|HasBase1ype - Sdsbein) Type 14115%5“' A HasReturanel

isConst: bool
5 <« ParameterTypes
0..* isVolatile: bool Pt LS 0.1

A
A

i I I -+ isDest
Lﬂ' IndirectType | FunctionType >l

? il isSrche
I I ..+
- . . isSrch 0.,
| PointerType | IFreeFunctlonType I | MemberFunctionType H&Iass‘

Figure 4.3: Level I: Cpplnfo API — Function Types. FEzcerpt from the Cpplnfo
API schema that illustrates the key classes, aggregations, and associations related to
function types.

relationship. Note that, in addition to C-style function pointers, C++ member
function pointers (more commonly known as pointers-to-members) can be accurately

represented using Cpplnfo.

4.3 Middle-Level Schemas: Levels II, III, and IV

Levels 11, III, and IV in Figure 4.1 comprise the middle-level partition of our hierar-
chy of schemas. We first illustrate schemas in Level II, including the class diagram,
the call graph, and the CFG. We then illustrate schemas in Level 111, including the
ORD, and the ICFG. Finally, we illustrate a schema in Level IV, the class firewall.
We designed all schemas in this subsection, except for the class diagram schema,
which we excerpted from the UML 2.0 specification [Object Management Group

2005]; we wrote GXL schemas for all schemas in this subsection.

38

public nane
private shared

<<GraphClass=> @ =<enumerations= =<enume rations=
ClassDiagram A VisibilityKind AggregationKind

protected composite
NamedElement package
name: String [0..1]
visibility: Visibilitykind [0..1] IReIationshipl |C]assiﬁer|
/ qualifiedlame: String [0..1]
0.1
| TypedElement

PackageableElement RedefinableElement Associatioﬁ il
1

T visibility: VisibilityKind isLeaf: Boolean = false isDerived: Boolean = false ==
ownedEl emen - 1 I
ﬁ Classifier Generalization
isAbstract: Boolean = false isSubstitutable: Boolean
0.1 0..1 ownedAttribut b+
Class ‘—a Property
-l IsDerived: Boolean — false -t
isReadOrily: Boolean = false
isDerivedinion: Boolean = false

/ default: String
aggregation: AggregationKind = none
/ isComposite: Boolean

Parameter
attributes not shown

Figure 4.4: Level II: Class Diagram. Ezxcerpt from the UML 2.0 schema that illus-
trates the key class-related components in a class diagram.

Level 11

In Figure 4.4, we illustrate an excerpt from the UML 2.0 schema that illustrates
the key class-related components in a class diagram [Object Management Group
2005]. We illustrate the primary component, Class, in the center of the figure, near
the bottom. A Class is composed of zero or more ownedElements of type Classifier,
zero or more ownedOperations of type Operation, and zero or more ownedAttributes
of type Property. In addition, a Class can be involved in a Generalization or an
Association relationship. Note that an Operation has zero or more typed Parameters,
and a Property has attributes to indicate an aggregate or a composite.

In Figure 4.5, we illustrate an excerpt from the UML 2.0 schema that illustrates
the key template-related components in a class diagram [Object Management Group
2005]. We illustrate Classifier, to the right of center of the figure, at the bottom.
Recall from Figure 4.4 that Class is derived from Classifier, which, as we illustrate in
Figure 4.5, can have a TemplateSignature, be used as a formal TemplateParameter,
or be used as a boundElement (an actual template parameter).

In Figure 4.6, we illustrate the schema for a call graph. The schema consists of

three classes: Function, which represents a function and has a name, FunctionCall,

39

<<GraphClass== Element

ClassDiagram A"A
continued

eteredElement

Ll TemplateParameter

TenplateSignature 1

| T

1
n . . - F 0 g{ -

| definabl gnature [~ -—Ir CIasslfler’TemplaleParameter|

| Attowsubstitutable: Boolean = true |

Figure 4.5: Level II: Class Diagram (continued). Ezcerpt from the UML 2.0 schema
that illustrates the key template-related components in a class diagram.

<<GraphClass>>
CallGraph
isCallee » 0. -
|I FunctionCall |
1 0.*
Function
: 1 isCaller P
name: string
s
~
.
isCaller
line: int

Figure 4.6: Level II: Call Graph. Schema for a call graph, a graph whose nodes
represent functions and function call sites, and whose edges represent function calls.

40

which represents a function invocation, and isCaller, which is an association class

that specifies the line number for the isCaller association.

0.1 hasEdge =
Procedure 4
1.#*
1 1 .
isPredecessore 0.F
Q IEdge
0.1
0.*
1 isSuccessorme
containsp 0.* ==GraphClass==
CFG

Figure 4.7: Level II: Control Flow Graph (CFG). Schema for a CFG, a graph whose
nodes represent blocks of straight-line code, and whose edges represent flow of control
between the blocks.

In Figure 4.7, we illustrate the schema for a control flow graph (CFG) [Aho et al.
2006]. The schema consists of a Procedure, which is composed of two or more Nodes
and one or more Edges. The base class Node has three derived classes: Begin, Block,
and End. Minimally, a Procedure contains a Begin, which is a special node whose
successor is the Block whose leader is the first statement in the Procedure, and an
End, which is a special node whose predecessor is the final Block in the Procedure. A
Block represents a sequence of statements that has one entry and one exit. The class

Edge represents the isPredecessor and isSuccessor relationships between two Nodes.

Level III

In Figure 4.8, we illustrate the schema for an object relation diagram (ORD). The
schema consists of the class Class, along with the edge Edge and its six subclasses:
Association, Composition, Dependency, Inheritance, OwnedElement and Polymorphic
These six subclasses represent the kinds of relationships between classes [Kraft et al.
2006].

In Figure 4.9, we illustrate the schema for an interprocedural control flow graph

(ICFG). The schema for an ICFG is identical to that of a CFG, but for the addition

41

==GraphClass==

ORD
issrcie
1 | 0.*
1 i 0.*
Class isfesth Edge
name: string A
Composition Inheritance Polymorphic
Association Dependency OwnedElement

Figure 4.8: Level I1I: Object Relation Diagram (ORD). Schema for an ORD, a graph
whose nodes represent classes, and whose edges represent relationships, including
polymorphic relationships, between the classes.

isCallerm
{ordered}
0.* 0.*
0.1 hiasEdge =
Procedure =
Q 1|1 L5
isPredecessorie 0. *
Edge
0.1 | E9g
0.*
1 isSuccessor
containse 0.* =<GraphClass>>
ICFG

Figure 4.9: Level III: Interprocedural Control Flow Graph (ICFG). Schema for an
ICFG, a graph whose nodes represent blocks of straight-line code, and whose edges
represent flow of control between the blocks and caller-callee relationships.

42

of the ordered isCaller association. The isCaller association represents the caller-callee

relationship between one Procedure and another.

Level IV

<<GraphClass==
ClassFirewall

isCuTme 0.*
IEdge|

0.*

1

]_ .
| isRetestedm
Class

Figure 4.10: Level 1V: Class Firewall. Schema for a class firewall, a graph whose
nodes represent classes, and whose edges represent testing dependencies between the
classes.

In Figure 4.10, we illustrate the schema for a class firewall. The schema consists
of two classes: Class and Edge. The Class node corresponds to the Class node in
the ORD schema. An Edge indicates a dependency between one Class and another;
the Class involved in the isRetested association must be retested whenever the Class

involved in the isCUT association is changed and must be tested.

4.4 Comparing Schema Instances

The schemas in Figure 4.1 were designed to be minimal yet complete; only the infor-
mation required to construct a given graph structure is represented. To perform a
comparison, the tools under study need not produce instances of the same schema;
however, comparison of the instances generated by each tool can only be undertaken
for those parts of the schema that are common to both tools. Alternatively, com-
parison of instances can be undertaken if intermediate transformations are used to
create instances of the appropriate schema provided by our infrastructure.

One technique for comparison of GXL instance graphs is to use XSLT style
sheets that are specified at the schema level. These style sheets can be applied

to conforming instances of a given schema, and can be automatically generated

43

given domain information about the schema. This technique is not feasible for GXL
encoded instances of low-level graphs. XSLT processors use a DOM representation
of the input file; instances of low-level graphs are too large to be stored in a DOM
tree. However, we successfully applied XSLT style sheets to GXL encodings of
middle-level graph instances (see Chapter 6), and preliminary experimental results
suggest that we can partially automate the generation of a system to report the

differences between instances of the schema.

44

Chapter 5
gire — Tool Chain for Reverse Engineering

C++ Programs

In this chapter we present the design and implementation of the g*re tool chain
[Kraft et al. 2005a; 2007b]. gre is a tool chain, because it is constituted by applica-
tions and libraries that are used either individually, or in concert. We designed g*re
with a GXL-based pipe-filter architecture; each constituent application or library
in the chain takes, as input, the output of the preceding application or library in
the chain. An important benefit of this architecture is that g*re consists of a set of
loosely coupled, reusable modules: the ASG module, the schema and serialization
modules, the transformation module, the linking module, and the API module. We
wrote all modules in ISO C++.

In Section 5.1 we present the architecture of gire. In this section, we also include

an overview of the Cpplnfo schema. In Section 5.2 we present a sample usage of gre.

5.1 Architecture

In Figure 5.1, we provide an overview of the packages in the tool chain.We illustrate
implementation artifacts, which we indicate with bold text, and third party libraries,
which we indicate with italic text, at the left of the figure. We illustrate the ASG
module, generic, as a package in the large gdre package at the right of the figure,
and describe it in Section 5.1.1. We illustrate the schema and serialization modules,
schema and serialization, as packages in the large cppinfo package at the center of the
figure, and describe them in Section 5.1.2. We illustrate the transformation module,
glxformer, as a package in the large gdre package at the right of the figure, and

describe it in Section 5.1.3. Finally, we illustrate the linking module and the API

cppinfol gdre |
| | | I |
zlib << -, -)
I _l |_> schema |& - —serialization {—I generic gdxformer
I | I
© pulse |== -1 V‘-',\‘ ,”7 | <= - ¢" Al'
| 1 _l g _I 1 -—=—=r=-=-=
I 1 o~] 1
expat |- [api linker | =1 gdre

Figure 5.1: Overview of gre. Dashed lines represent “use” dependencies. Bold text
indicates an implementation artifact. Italic text indicates a third party library.

46

module, linker and api, as packages in the large cppinfo package at the center of the

figure, and describe them in Sections 5.1.4 and 5.1.5, respectively.

5.1.1 The ASG module

In the generic package, we provide parsing, storage, traversal, and serialization fa-
cilities for working with the GENERIC ASG representation of gcc. The input to this
package is a tu file, or a GXL encoding of a tu file. The output of this package is
a gzipped GXL encoding of the input file, or an in-memory representation of the
GENERIC ASG.

We implemented two parsers: a tu file parser that uses a scanner generated by
flex, and a GXL file parser that uses the expat XML parsing library and the zlib com-
pression library via the pattern and utility library with standard extensions (pulse).
We also implemented a simple node list representation for storage of the parsed
ASG, and several parameterized methods for traversing the leftmost child right sib-
ling (LCRS) tree that underlies the ASG. Finally, we implemented an extensible
serialization facility that we use to create GXL encodings of tu files.

The first parser we wrote provides functionality to parse a tu file and to store the
corresponding ASG. After parsing a tu file, we perform a series of transformations
on the stored ASG to remove extraneous information and to make it more suitable

for reverse engineering tasks. In particular, we:
e remove fields that store internal information used by the gcc back end,
e mark methods as static if their parameter lists do not contain a this pointer,
e mark methods as const if their parameter lists contain a const this pointer,

e remove the this pointer from all method parameter lists.

We use this parser in conjunction with our serialization facility to create GXL in-
stances of tu files.

The second parser we wrote provides functionality to parse a GXL file or gzipped
GXL file and to store the corresponding ASG. Three advantages of this parser over

the tu parser are:

47

1. reentrance,
2. the lack of post-parse transformation overhead,

3. the compression rate is higher for GXL files than for tu files.

We use the tu parser (in conjunction with our serialization facility) to create the
GXL file(s) accepted by this parser; thus, there is a one-time cost associated with

its use.

5.1.2 The Schema and Serialization Modules

In the schema package, we provide a class library that implements the Cpplnfo
schema! for the ISO C++ programming language. In the current implementation,
we provide 72 classes, 42 of which are concrete, that provide information about
C++ language elements. Language elements include declarations, such as classes
(including class templates and class template instantiations); namespaces; functions
(including function templates and function template instantiations); and variables,
statements (including control statements and exception statements), and some ex-
pressions.

In the serialization package, we provide serialization facilities for working with
instances of the schema representation of C++. We implemented a parser to read
GXL encodings; gzipped files are also accepted. We implemented visitor [Gamma
et al. 1995] classes to write gzipped GXL encodings. We used C++ templates to
allow the package to read and write both individual and linked instances of the

schema representation.

5.1.3 The Transformation Module

In the g4xformer package, we provide an implementation of the transformation from
the ASG representation that we provide in the generic package to the representation
that we provide in the schema package. The input to this package is a tu file, or

a GXL encoding of a tu file; gzipped files of either type are also accepted. The

"We describe the Cpplnfo schema in more detail in Section 4.2.

48

output of this package is a gzipped GXL encoding of the instance of the schema
representation that corresponds to the GENERIC ASG in the input file.

We implemented the transformation in three passes. In the first pass, we traverse
the generic ASG in program order, and create the core of the instance of the schema
representation. The core consists of all declaration, declarator, and statement nodes,
as well as structural edges. In the second pass, we adorn the core with edges that
indicate the use of a type; these edges include inheritance edges. In addition, in the
second pass, we build all cv-qualified types. We also resolve uses of bound template
template parameters to their template declarations.?. Finally, in the third pass, we
adorn the graph that results from the second pass with edges that indicate uses of

expressions, including function calls®

5.1.4 The Linking Module

In the linker package, we provide an implementation of our linking algorithm. The
input to this package is a set of GXL encodings of instances of the schema represen-
tation for all C++ translation units in a program; gzipped files are also accepted.
The input files need not be created by the gdxformer package. The output of this
package is a gzipped GXL encoding of the linked, or unified, instance of the schema
representation for all C++ translation units in the program.

Programs written in C++ consist of multiple files, both header and source. A
C++ translation unit consists of a source file and all files that it includes, either
directly or transitively. A C++ compiler, such as gce, operates on a single translation
unit at a time; the generated object code for all translation units in a program is
linked by the system linker, e.g., Id on Unix systems. A C++ reverse engineering
tool, such as gire, also operates on a single translation unit at a time; however, the
generated output is not object code, but rather a program representation such as
an ASG.

We perform linking n — 1 times, where n is the number of translation units, when

2This task is not needed for compilation, and is not performed by gcc
3 Calls to virtual functions are designated as such in tu files, but sets of possible targets are not
identified. These sets are available via the gcc compiler flag ~fdump-class-hierarchy.

49

n is greater than one. Otherwise, we perform linking one time. We achieve linking
by performing a traversal of the most recently constructed instance of the schema
representation. We add or append a schema class instance to the unified instance
of the schema representation if the class instance does not exist, or is incomplete,
in the unified instance. A schema class instance is incomplete if it is missing a
required element (as defined by the Cpplnfo schema) or contains another incomplete
instance. Using our definition of incomplete, we resolve function declarations to
their corresponding definitions.

There is a special case for linking function parameters. A function parameter
from a function declaration (prototype), is not always identical to the corresponding
function parameter from the function definition. A function parameter may only
have an initial value in a function declaration. In addition, the name of the function
parameter may differ, e.g., anonymous function parameters are commonly used in

header files.

5.1.5 The API Module

In the api package, we provide an abstract class that defines the interface for an API
that provides access to information about language elements in a C++ program.
In addition, we provide a concrete implementation of the API. The input to this
package is a GXL encoding of a linked instance of the schema representation; gzipped
files are also accepted. The input files need not be created by the linker package.
The output of this package is an API, an in-memory representation of the linked
instance that may be queried by a user program.

We designed the api package to provide a clear and flexible interface. We provide
two points of access. The first point of access is a pointer to the global namespace,
from which a user can traverse the ASG that underlies the API. We provide iterator
classes, as well as an abstract visitor class, to use when accessing the API in this
fashion [Gamma et al. 1995]. The second point of access is a collection of lists that
each contain instances of a particular schema class. We provide, in two forms, the

lists for Namespace, Class, Enumeration, Enumerator, Function, Variable, and Type-

50

def. The first form provides all instances of the particular schema class; the second
form provides filtered instances of the particular schema class. Filtered instances are
determined by user-provided filter lists that contain the names of source files from
which schema class instances should be ignored. We provide a script that generates

filter lists.

5.2 Sample Usage

In Figure 5.2 we provide an overview of API usage. We illustrate a GXL file con-
taining a linked instance of the schema representation at the top of the figure. Next,
we illustrate a sample user program, metrics, that instantiates then queries the API
to compute metrics. We illustrate the API, the abstract class cppinfo::api::Interface,
in the middle of the figure. Finally, we illustrate filter lists at the bottom of the
figure.

The user program instantiates the API with the name of the GXL file; when the
API is instantiated, it reads the filter lists. The user program queries the instan-
tiated API to perform a reverse engineering task, such as a program analysis. In
Section 5.2.1 we describe the process of acquiring the GXL files needed to instantiate
the API. In Section 5.2.2 we present a sample user program that instantiates and

queries an API to perform a simple program analysis.

5.2.1 Input

In Figure 5.3 we illustrate the process of using gcc, and optionally g*re and/or gzip,
to create a set of files that contain instances of the GENERIC schema. We show the
input, a C++ source file, at the left of the figure. We show the output, a set of files
to transform, at the right of the figure (see Subsection 5.1.3 for details). This set
may contain any combination of the four possible encodings of the input.

We show the use of the gcc command line flag ~-fdump-translation-unit-all
to obtain a plain text representation of the GENERIC instance for each translation

unit in a program. We show the creation of these representations, known as tu

o1

l

Conforms to the schema
for the CppInfo API
[.cpp.tu.cil.gxl[.gz] file).

metrics

User prngramFE]

cppinfo

Instantiate, then queryF:]

api

Iinterface b + 4 — — = -

Provides access to a
linked representation
of & G+ program.

Filter 1ists
(generated by a
provided script).

Figure 5.2: Overview of API usage. Solid, directed lines show input, unless otherwise
noted. Dashed lines show notes.

52

“geo -fdump-trans\atlon-umt-all) “g4re fencode’ Add to Files

N

Files to Transform

A 4

cpp File

cpp.tu File .Ccpp.tu.gxl File

.cpp.tu.gxl.gz File

Figure 5.3: UML Activity Diagram for Transformer Input. The process of creating
a set of files to transform.

.cpp.tu.gzFile

“gé4re ftransform” Add to Files

Y A

Files to Link —)@

Figure 5.4: UML Activity Diagram for Linker Input. The process of creating a set
of files to link.

.—> .cpp.tul.gx][.gz] File

.cpp.tu.ci.gxl File

files, in the upper left of Figure 5.3. We use tu files rather than hard-coding our
solution into the gcc source code. This provides flexibility, and fits our theme of
exchange among reverse engineering tools. In the upper right of the figure, we show
the optional use of the g*re command line flag -fencode to obtain, for each tu file,
a GXL encoding of an instance of the GENERIC schema. At the bottom of the figure,
we show the optional use of gzip to compress either a tu file, or a GXL instance,

In Figure 5.4 we illustrate the process of using gre to create a set of GXL files
that contain instances of the Cpplnfo schema. We show the input, the set of files
to transform (obtained as shown in Figure 5.3), at the left of the figure. We show
the output, a set of files to link, at the right of the figure (see Subsection 5.1.4 for
details).

We show the use of the g*re command line flag ~ftransform to obtain, for each
GENERIC instance, a GXL encoding of a temporary instance of the Cpplnfo schema.

We show the creation of these temporary instances, which use string encodings of

93

OO U WN -

“gdre flink”

A4

.cpp.tu.cil.gxl File ﬁ@

Figure 5.5: UML Activity Diagram for API Input. The process of creating a file for
use with the APIL

.—) .cpp.tu.ci.gxl Files

the unique names for the contained instances of Cpplnfo classes, in the center of
Figure 5.4. We omit showing the optional use of gzip in this figure.

In Figure 5.5 we illustrate the process of using g*re to create a GXL file that
contains a linked instance of the Cpplnfo schema. We show the input, the set of files
to link (obtained as shown in Figure 5.4), at the left of the figure. We show the
output, a GXL encoding of the linked instance of the Cpplnfo schema, at the right
of the figure (see Subsection 5.1.5 for details).

We show the use of the g*re command line flag ~flink to obtain, for a set of
temporary instances of the Cpplnfo schema, a GXL encoding of the linked instance
of the Cpplnfo schema. We show the creation of the linked instance, which uses
unique integers to identify the contained instances of Cpplnfo classes, at the right of

Figure 5.5. We omit showing the optional use of gzip in this figure.

5.2.2 Usage

class Shape { };
class Circle : public Shape { };
class Rectangle : public Shape { };

class Square : public Rectangle { };
class Visitor { };

class ComputationVisitor : public Visitor { }
class SerializationVisitor : public Visitor { }

)
)

class AreaComputationVisitor : public ComputationVisitor { };
class PerimeterComputationVisitor : public ComputationVisitor { };

class XmlSerializationVisitor : public SerializationVisitor { };

Source Listing 5.1: Sample C++ program. Two disjoint inheritance hierarchies
that consist of ten classes.

54

© OO0 Utk W =

In Source Listing 5.1, we list a small C++ program that consists of ten classes. We
list two root classes, Shape and Visitor, on lines 1 and 7, respectively. Root classes do
not have base classes. We list three interior classes, Rectangle, ComputationVisitor,
and SerializationVisitor, on lines 3, 8, and 9, respectively. Interior classes have one or
more base classes, and one or more derived classes. Finally, we list five leaf classes,
Circle, Square, AreaComputationVisitor, PerimeterComputationVisitor, and XmlSerial-
izationVisitor, on lines 2, 5, 11, 12, and 14, respectively. Leaf classes have one or

more base classes, but no derived classes.

void countClasses (const cppinfo::api::Filename_t& filename) {
using cppinfo::api:: Interface;
using cppinfo::api:: LinkedInterface;
using cppinfo:: ConstClassPtrListIterator_t;

Interfacex interface = new LinkedInterface(filename);
unsigned root = 0, interior = 0, leaf = 0;
ConstClassPtrListIterator_t i = interface—>getClasses ().createlterator ();
while (true = i—>isValid()) {
const cppinfo:: ConstClassPtr_t ¢ = i—>getCurrent ();
unsigned baseCount = c—>getBaseClasses ().size ();
unsigned derivedCount = c—>getDerivedClasses (). size ();
if (0 = baseCount) {
++root;
else {
if (0 < derivedCount)
++interior;
else
++leaf;
}

i—>moveNext ();

delete 1i;

}

Source Listing 5.2: Sample user program. A simple program analysis that counts
the number of root, interior, and leaf classes.

In Source Listing 5.2, we list a C++ function that instantiates and queries an
API instance to compute the number of root, interior, and leaf classes in a C++
program. We list the function declaration on line 1, where the parameter filename
denotes the input program (see Subsection 5.2.1 for details). We list the API in-
stantiation on line 5, where the filename is passed to the constructor of class cp-

pinfo::api::LinkedInterface. On line 7, we use the list point of access provided by

95

the API to obtain an iterator that accesses each class in the input program®. Finally,
we list a while loop on lines 8-21 that computes the number of root, interior, and

leaf classes.

4The list contains all ClassNonTemplate, ClassTemplate, and ClassTemplateInstantiation
instances. A trivial addition to the loop is required to exclude instances of one or two of these
classes.

56

Chapter 6
Case Studies: Realizing the Infrastructure

with g're

In this chapter we present two case studies in which we use the g*re tool chain
to realize our infrastructure. We designed our case studies to determine the space
and time costs incurred by the use of our infrastructure. We measure space in two
dimensions: size on disk, and size of graph(s), i.e., the number of nodes and edges.
We measure times for parsing and building in-memory representations, as well as
for the linking process, and the application of XSLT style sheets.

First, in Section 6.1, we describe the twelve applications and libraries that serve
as the test suite in our case studies. In Section 6.2, we exchange low-level graphs,
and measure the space and time costs incurred. In Section 6.3, we exchange middle-
level graphs, and again measure the space and time costs incurred. In this section
we also apply XSLT style sheets to each middle-level graph. We use style sheets that
summarize the contents of each middle-level graph instance; the process of writing

the style sheets, which requires knowledge of only the schema, is automatable.

6.1 Test Suite

In Table 6.1, we list the twelve open source applications and libraries, or test cases,
that form the test suite for our studies.In the first column, we list the names that
we use to refer to the test cases. In the next three columns of the table, we list
relevant data about the test cases. We list the version numbers in the second column,
the number of C++ translation units in the third, and the approximate number of

thousands of lines of non-commented, non-preprocessed lines of code in the fourth.

Test Case Version C++ Translation Units NCLOC (= K)
AvP CVS 07/22/05 95 295
CppUnit 1.10.2 51 4
Doxygen 144 69 170
FluxBox 0.9.14 107 32
FOX 1.4.17 245 110
HippoDraw 1.15.8 249 55
Jikes 1.22 38 70
Keystone 0.2.3 52 16
Licq 1.3.0 28 36
Pixie 1.5.2 78 80
Scintilla 1.66 78 35
Scribus 1.2.3 110 80

Table 6.1: Test suite. The 12 test cases that we use in our study. For each test
case, we list the version, the number of C++ translation units, and the approrimate
number of thousands of non-commented, non-preprocessed lines of code (NCLOC).
The test suite contains 1,200 C++ translation units and approximately one million
lines of code.

o8

The twelve applications and libraries that form our test suite are widely used, are
freely available on the Web, and consist of approximately one million lines of non-
commented, non-preprocessed code. AvP is a Linux port of the Fox Interactive/Re-
bellion Developments game Aliens vs Predator (Gold Edition) [Rebellion 2005]. Cp-
pUnit is a C++ port of the JUnit framework for unit testing [CppUnit Project
2006]. Doxygen is a documentation system for C, C++, and Java [van Heesch
2006]. FluzBox is a light-weight X11 window manager built for speed and flexibil-
ity [FluxBox Project 2006]. FOX is a toolkit to facilitate development of graphical
user interfaces [van der Zijp 2006]. HippoDraw provides a highly interactive data
analysis environment [Kunz 2006]. Jikes is a Java compiler system from IBM [IBM
Jikes Project 2006]. Keystone is a parser and front end for ISO C++ [Keystone
Project 2005; Malloy et al. 2003a]. Licq is a multi-threaded ICQ clone [Licq Project
2006]. Pizie is a RenderMan ®) like photorealistic renderer [Arikan 2006]. Scin-
tilla is a source code editing component that includes support for syntax styling,
error indicators, code completion, and call tips [Hodgson 2006]. The final test case,
Scribus, is a professional, cross-platform desktop publishing system [Scribus Project
2006].

We executed all experiments on a custom workstation with a Dual Core AMD
Opteron ™ 165 processor, 2048 MB of PC3200 DDR RAM, and a 250 GB, 7200
RPM SATA II hard disc on which we installed the Slackware 10.2 operating system
after formatting with version 3.6 of the ReiserFS filesystem. We performed the
experiments with version 1.5.0 of g*re, which we compiled with version 4.1.1 of gce.

We created all tu files with gec version 3.3.6.

6.2 Case Study: Exchanging Low-Level Graphs

In this section we describe the results of our first case study, in which we examine low-
level graphs from our infrastructure. gire exchanges multiple formats, as discussed
in Subsection 5.2.1. In Subsections 6.2.1 and 6.2.2, we describe the formats that g*re

exchanges, and present results for exchanging GXL encoded instances of schemas at

99

—_

Level 0 and I of our infrastructure, respectively. We discuss the results of the case

study in Subsection 6.2.3.

6.2.1 Exchanging Graphs at Level 0

In this subsection we investigate the costs associated with exchanging instances of
low-level graphs; in particular, we investigate the costs of exchanging instances of
the GENERIC ASG schema, in both tu and GXL formats. First, we illustrate the
two exchange formats. Second, we measure the space and time costs incurred by

exchanging ASGs, which are found in Level 0 of our infrastructure.

class Base { };
class Parser : public Base { };

Source Listing 6.1: Source code for class Parser. Definition of the C++ class
Parser. Parser inherits from the class Base.

In Source Listing 6.1, we list C++ code for the definition of class Parser. We
list a base class, Base, on line 1, and the class Parser on line 2. The inheritance

relationship between Parser and Base is public and non-virtual.

Q@3 type_decl name: @4 type: @5 srcp: Parser.cpp:2
artificial chan: Q6 addr: bT7e0a460

Q4 identifier_node strg: Parser Ingt: 6 addr: b66b3ac0

(@15} record_type name: @3 size: Q7 algn: 8
base: @8 public struct
flds: @9 fncs: @10 binf: @11

addr: b7e0a310

Source Listing 6.2: Instance of a tu file. Definition of class Parser as represented
i a tu file. A node definition in a tu file consists of: a unique integer prepended
with “@7, a string representing the node type, edges of the form “edge: dest”, fields
of the form “field: value”, and a set of single word attributes.

We list the definition of a C++ class, Parser, in the GENERIC tu file format in
Source Listing 6.2, and the corresponding definition as a GXL encoded instance of
the GENERIC schema in Source Listing 6.3. GXL is clearly more verbose than the
gce tu file format; the respective character counts for the text in the figures are 447
and 1178.

Note that the text in Source Listing 6.2 contains information not present in

Source Listing 6.3. Extraneous information, such as an address or string length,

60

<node id="n37">

<type xlink:href="GENERIC. gxl#type_decl”/>

<attr name="attr”><set><string>artificial </string></set></attr>

<attr name="srcp”’><string>Parser.cpp:2</string></attr>
</node>
<edge from="n3” to="n4"><type xlink:href="GENERIC. gxl#name”/></edge>
<edge from="n3”" to="n5"><type xlink:href="GENERIC. gxl#type”/></edge>
<edge from="n3” to="n6"><type xlink:href="GENERIC. gxl#chan”/></edge>
<node id="n47>

<type xlink:href="GENERIC. gxl#identifier_node”/>

<attr name="attr”’><set></set></attr>

<attr name="strg”’><string>Parser</string></attr>
</node>
<node id="n57">

<type xlink:href="GENERIC. gxl#record_type” />

<attr name="attr”><set><string>struct</string ></set></attr>

<attr name="qual”’><string></string ></attr>
</node>
<edge from="n5" to="n8”>

<type xlink:href="GENERIC. gxl#base” />

<attr name="base”>

<tup><bool>false </bool><string >public</string ></tup>

</attr>
</edge>
<edge from="n5" to="n3"><type xlink:href="GENERIC. gxl#name”/></edge>
<edge from="n5" to="n7"><type xlink:href="GENERIC. gxl#size”/></edge>
<edge from="n5" to="nl0"><type xlink:href="GENERIC. gxl#fncs”/></edge>
<edge from="n5" to="nll"><type xlink:href="GENERIC. gxl#binf”/></edge>

Source Listing 6.3: GXL instance of the GENERIC schema. Definition of class
Parser as represented in o GXL encoded instance of the GENERIC schema.
GENERIC GXL schema is a direct encoding of the tu file format, but with internal
gce information, such as addresses and string lengths, omitted. The “@” symbol is

translated to “n” to conform to XML standards.

61

.cpp.tul.gxl][.gz] .cpp.tul.gz] .cpp.tu.gxl|.gz]

Test Case Nodes Edges Edges
AvP 3286 604 8607 856 8509901
CppUnit 4574861 10983481 10911237
Doxygen 7558527 17894321 17724872
FluxBox 12016093 30111171 29 852859
FOX 12139219 32260488 31953355
HippoDraw 18835420 44662239 44 338 296
Jikes 7543803 17437798 17321098
Keystone 6159791 15152153 15047146
Licq 2663307 6813822 6751433
Pixie 3278791 7665603 7620166
Scintilla 1414 562 3456 874 3427785
Scribus 17418294 44859563 44426 635

Table 6.2: Level 0: Numbers of nodes and edges. The numbers of nodes and edges
for ASGs that represent the test cases.

is omitted from the GXL encoding. Empty lists are detected and removed during
encoding; the f1ds edge is omitted in this example. The fncs edge is not omitted,
because gcc provides a constructor, copy constructor, and assignment operator for
each class.

It is well known that XML imposes significant storage costs; however, this fact
has not hindered its wide spread adoption. Due to the prevalence of XML, there
are several tools, available in popular languages such as C, C++, and Java, that
were designed with these costs in mind. We designed and implemented a wrapper
for the XML parser expat [eXpat Project 2005] that uses zlib [zlib Project 2005] to
read compressed files. We also implemented a subclass of the C++ standard library
class ostream to write compressed files. To provide a complete comparison, we
instrumented our flex scanner to read compressed tu files.

In Table 6.2, we list the numbers of nodes and edges for ASGs that represent
the test cases. In column 1, we list the test cases. In column 2, we list the number
of nodes in the possibly GXL-encoded instance of the GENERIC schema. In columns
3 and 4, we list the numbers of edges in the tu files and GXL encoded tu files,

respectively.

62

Test Case .cpp.tul.gz] | .cpp.tu.gxl].gz]

AvP 809 84 1376 122
CppUnit 567 98 1784 116
Doxygen 863 152 2794 172
FluxBox 1540 250 4842 312
FOX 1643 230 5162 303
HippoDraw 2283 376 7222 469
Jikes 872 145 2795 181
Keystone 773 126 2439 157
Licq 341 56 1081 69
Pixie 414 56 1202 71
Scintilla 177 27 554 34
Scribus 2184 352 6967 440

Table 6.3: Level 0: Size on disk (MB). The size on disk, in megabytes, for ASGs
that represent the test cases.

We apply the pruning algorithm discussed in Subsection 5.1.1 during the parse
of a tu file. We show the effects of our pruning algorithm in Table 6.2. Our pruning
algorithm does not remove any nodes, but it does remove edges. In the table, we
show the difference between the numbers of edges in the tu files and the GXL
encodings of the tu files. Next, we investigate the storage costs introduced by the
use of GXL, and the saving that can be achieved by compressing files of each format.

In Table 6.3, we list the sizes on disk, in megabytes, for ASGs that represent the
test cases. In column 1, we list the test cases. In columns 2 and 3, we list the total
size of the uncompressed and compressed tu files, respectively. In columns 4 and 5,
we list the total sizes of the uncompressed and compressed GXL encoded tu files,
respectively.

A comparison of columns 2 and 4 of the table shows the significant storage cost
introduced by the use of uncompressed GXL. For all but one of the test cases, the
uncompressed GXL encodings of the tu files more than double the storage costs.
For example, the total storage cost of the tu files for Jikes is 872 megabytes, but
the total storage cost of the GXL encodings is 2 795 megabytes; the tu files are 3.2
times smaller than the GXL encodings. The outlier is AvP, for which the tu files,
at 809 megabytes, are only 1.7 times smaller than the GXL encodings. On average,

uncompressed tu files are 3.02 times smaller than the GXL encodings of the tu files,

63

Test Case .cpp.tu[.gz] | .cpp.tu.gxl[.gz|
AvP 97.39 112.62 136.58 155.71
CppUnit 123.47 142.85 174.66 199.56
Doxygen 206.07 238.65 279.39 322.82
FluxBox 341.50 388.24 472.39 552.80

FOX 347.15 411.66 503.60 577.47
HippoDraw 514.72 584.73 715.28 829.80
Jikes 208.93 233.54 253.77 291.35
Keystone 171.89 194.75 239.23 275.83
Licq 76.06 87.47 90.77 105.75
Pixie 86.74 104.06 125.20 144.57
Scintilla 38.63 46.65 56.30 64.99
Scribus 508.73 572.60 600.87 703.67

Table 6.4: Level 0: Time (s). The running time, in seconds, to parse and build
in-memory representations of ASGs that represent the test cases.

with a standard deviation of 0.42. Columns 3 and 5 show the significant savings
in storage cost that compression introduces when compared to columns 2 and 4,
respectively. In addition, the gap between the storage costs of the two file formats
is significantly reduced when compression is used. On average, compressed tu files
are 1.25 times smaller than the GXL encodings of the tu files, with a standard
deviation of 0.08. GXL, and XML in general, compresses at a higher ratio than
other text formats. Next, we investigate the run-time costs introduced by the use
of compression and GXL.

In Table 6.4, we list the running times, in seconds, to parse and build in-memory
representations of ASGs that represent the test cases. In column 1, we list the
test cases. In columns 2 and 3, we list the total times for the uncompressed and
compressed tu files, respectively. In columns 4 and 5, we list the total times for the
uncompressed and compressed GXL encoded tu files, respectively.

As stated in Subsection 5.1.1, we parse tu files using a fler generated scanner,
GXL files using ezpat, and compressed files using zlib. We use the same node list
graph data structure to store each graph instance in memory. A comparison of
columns 2 and 4 of the table shows the run-time cost introduced by the use of GXL.
The running times for GXL inputs are consistently higher than those for tu inputs,

but the run-time costs introduced by GXL are much lower than the corresponding

64

storage costs. On average, parsing the uncompressed tu files is 1.36 times faster
than parsing the uncompressed GXL encodings of the tu files, with a standard
deviation of 0.10. The average time for uncompressed tu files is 226.77 seconds,
with a standard deviation of 164.86. On average, parsing the compressed tu files is
1.36 times faster than parsing the compressed GXL encodings of the tu files, with
a standard deviation of 0.08. The average time for compressed tu files is 259.82

seconds, with a standard deviation of 186.81.

6.2.2 Exchanging Graphs at Level 1

In this subsection we continue to investigate the costs associated with exchanging
instances of low-level graphs; in particular, we investigate the costs of exchanging
instances of the Cpplnfo schema. First, we illustrate a GXL encoded instance of
the Cpplnfo schema. Second, we measure the space and time costs incurred by
exchanging APIs, which are found in Level I of our infrastructure.

We list the definition of C++ class Parser (see Source Listing 6.1 for details)
as a GXL encoded, linked instance of the Cpplnfo schema in Source Listing 6.4.
The character count for the text in the figure is 1307, which is larger than even the
GXL encoding of the original tu file. However, we implemented maximal sharing
of strings, such as file and identifier names, and integers, such as line and column
numbers, to improve the scalability of this format.

We show the effects of our linking process in Table 6.5. In the table, we show the
differences between the numbers of nodes and edges in the intermediate (unlinked)
instances and the linked instances of the Cpplnfo schema. In columns 2 and 3, we
list the sums of nodes and edges, respectively, for all intermediate instances for each
test case. The numbers of nodes and edges for intermediate instances vary widely.
The minimum number of nodes is 780024 for Scintilla, and the maximum number
of nodes is 10164005 for HippoDraw. The minimum number of edges is 2391 321
for Scintilla, and the maximum number of edges is 34941134 for HippoDraw. The
average numbers of nodes and edges are 4262119 and 14445413, with standard

deviations of 3402982 and 11469 128, respectively.

65

<node id="n81">
<type xlink:href="Cpplnfo.gxl#ClassNonTemplate”/>
<attr name="visibility "><enum></enum></attr>
<attr name="isConst”><bool>false </bool></attr>
<attr name="isVolatile”><bool>false </bool></attr>
<attr name="key”><enum>class </enum></attr>
</node>
<edge from="n81” to="n82”>
<type xlink:href="Cpplnfo.gxl#HasSourceLocation”/>
</edge>
<edge from="n81” to="nl1"><type xlink:href="Cpplnfo.gxl#HasScope”/></edge>
<edge from="n81" to="n84"><type xlink:href="Cpplnfo.gxl#HasName”/></edge>
<edge from="n81” to="n58” toorder="24">
<type xlink:href="Cpplnfo.gxl#Bases”/>
<attr name="inheritanceSpecifier”>
<tup><enum>public </enum><bool>false </bool></tup>
</attr>
</edge>
<edge from="n81” to="n85” toorder="28">
<type xlink:href="Cpplnfo.gxl#Functions”/>
</edge>
<edge from="n81” to="n90” toorder="29">
<type xlink:href="Cpplnfo.gxl#Functions”/>
</edge>
<edge from="n81” to="n95” toorder="30">
<type xlink:href="Cpplnfo.gxl#Functions”/>
</edge>
<node i1d="n82”">
<type xlink:href="Cpplnfo.gxl#SourceLocation”/>
</node>
<edge from="n82” to="n60"><type xlink:href="Cpplnfo.gxl#HasFilename”/></edge>
<edge from="n82” to="n83"><type xlink:href="Cpplnfo.gxl#HasLine”/></edge>
<edge from="n82” to="n4"><type xlink:href="Cpplnfo.gxl#HasColumn”/></edge>
<node id="n83”">
<type xlink:href="Cpplnfo.gxl#SourcePosition”/>
<attr name="number”’><int>2</int></attr>
</node>
<node id="n847">
<type xlink:href="Cpplnfo.gxl#Identifier”/>
<attr name="string”><string>Parser</string ></attr>
</node>

Source Listing 6.4: GXL instance of the Cpplnfo schema. Definition of class
Parser as represented in the GXL encoded, linked instance of the Cpplnfo schema.

66

.cpp.tu.ci.gxl[.gz] | .cil.gxl[.gz]

Test Case Nodes Edges Nodes Edges
AvP 2059850 6321574 148972 631882
CppUnit 2657601 9208857 85355 330845
Doxygen 2234210 7956801 208463 805926
FluxBox 6562227 23026116 215846 1264464
FOX 9631093 29647216 221383 1016806
HippoDraw 10164005 34941134 254270 1470270
Jikes 2932380 10204160 154132 554202
Keystone 3314379 11731213 139570 625173
Licq 1142403 3996935 128045 541960
Pixie 1538147 4832153 109408 491839
Scintilla 780024 2391321 129658 437110
Scribus 8129110 29087482 330537 1510133

Table 6.5: Level I: Numbers of nodes and edges. The numbers of nodes and edges
for APIs that represent the test cases.

In columns 4 and 5 of Table 6.5, we list the numbers of nodes and edges, respec-
tively, for the linked instance for each test case. These numbers are substantially
smaller than those for the intermediate instances. The minimum number of nodes is
177355 for CppUnit, and the maximum number of nodes is 254 270 for HippoDraw.
The minimum number of edges is 330845 for CppUnit, and the maximum number
of edges is 1470270 for HippoDraw. The average numbers of nodes and edges are
177136 and 806 717, with standard deviations of 70277 and 409918, respectively.
The substantial reductions indicate a high ratio of duplication among translation
units for all test cases. Recall that duplication is the result of compiler-specific in-
formation, as well as header files, being present in multiple translation units. Next,
we investigate the savings in storage costs introduced by the linking process.

In Table 6.6, we list the sizes on disk, in megabytes, for APIs that represent the
test cases. In column 1, we list the test cases. In columns 2 and 3, we list the total
size of the uncompressed and compressed GXL encoded, intermediate instances of
the Cpplnfo schema, respectively. In columns 4 and 5, we list the total sizes of
the uncompressed and compressed GXL encoded, linked instances of the Cpplnfo

schema, respectively.

67

Test Case .cpp.tu.ci.gxl].gz] | .cil.gx][.gz]

AvP 1586 62 99)
CppUnit 3443 103 54 3
Doxygen 2102 80 126 7
FluxBox 8609 258 188 10
FOX 7270 279 149 8
HippoDraw 12826 389 219 11
Jikes 3425 111 89 5
Keystone 4404 132 98 5
Licq 1380 44 85 5
Pixie 1212 47 73 4
Scintilla 625 24 71 4
Scribus 7932 289 231 12

Table 6.6: Level I: Size on disk (MB). The size on disk, in megabytes, for APIs that
represent the test cases.

68

Test Case .cpp.tu.ci.gxl|.gz] | .cil.gxl[.gz]

AvP 110.81 116.17 843 947
CppUnit 202.19 217.50 4.70 5.19
Doxygen 143.85 150.62 10.89 11.53
FluxBox 521.57 548.98 16.01 16.52

FOX 516.11 542.16 12.46 13.56
HippoDraw 774.65 815.89 18.23 20.29
Jikes 211.79 223.77 7.68 8.12
Keystone 264.85 270.78 884 9.05
Licq 85.50 88.86 7.51 7.75
Pixie 83.88 87.96 6.10 6.52
Scintilla 42.72 44.70 6.08 6.58
Scribus 534.36 445.43 19.46 21.58

Table 6.7: Level I: Time (s). The running time, in seconds, to parse and build
in-memory representations of APIs that represent the test cases.

A comparison of columns 2 and 3 of the table to columns 4 and 5 of the table,
respectively, shows the significant savings introduced by the linking process. For
all test cases, the uncompressed GXL encoding of the linked instance is at least 8.8
times smaller than the uncompressed GXL encodings of the intermediate instances.
For example, the total storage cost of the linked instance for Jikes is 89 megabytes,
but the total storage cost of the intermediate instances is 3 425 megabytes; the linked
instance is 38.5 times smaller than the intermediate instances. CppUnit shows the
biggest difference in storage costs, with the linked instance 63.8 times smaller than
the intermediate instances. Scintilla shows the smallest difference in storage costs.
The savings for the compressed GXL encodings are similar, although the ratios drop
slightly due to the high rate of compression. A large reduction in size indicates a
high level of duplication among translation units (intermediate instances), likely
caused by poor compiler firewalling. Next, we investigate the savings in run-time
costs introduced by the linking process.

In Table 6.7, we list the running times, in seconds, to parse and build in-memory
representations of APIs that represent the test cases. In column 1, we list the test
cases. In columns 2 and 3, we list the total times for the uncompressed and com-

pressed GXL encoded, intermediate instances of the Cpplnfo schema, respectively.

69

In columns 4 and 5, we list the total times for the uncompressed and compressed
GXL encoded, linked instances of the Cpplnfo schema, respectively.

A comparison of columns 2 and 4 shows a significant savings in run-time costs
when dealing with a linked representation of a program. This result follows directly
from the significant savings in storage costs shown in Tables 6.5 and 6.6. The time
to parse a linked instance is well under 30 seconds for all test cases, whether or not
the GXL encoding is compressed. The time to parse the intermediate instances is
under 60 seconds for only one test case, and over half of the test cases take over
three minutes to parse. The maximum time to parse compressed GXL encodings of

intermediate instances is nearly 15 minutes, for HippoDraw.

6.2.3 Discussion

The results for exchanging low-level graphs show that the storage costs can be pro-
hibitive. The largest files recorded in this case study, uncompressed GXL encodings
of intermediate instances of the Cpplnfo schema, total over 53 gigabytes of disc space
for the 12 test cases. However, compressed GXL encodings of linked instances of
the CpplInfo schema, the smallest files recorded in this case study, total only 79
megabytes of disc space for the 12 test cases.

The results also show that the run-time costs for low-level graphs can also be
prohibitive. The slowest parsing times in this case study were for compressed GXL
encodings of tu files. For the 12 test cases, these files took over 70 minutes to parse.
The fastest parsing times in this case study were for uncompressed GXL encodings
of linked instances of the Cpplnfo schema. For the 12 test cases, these files took just
over 2 minutes to parse.

We presented results that show the importance of a linker for C++ reverse engi-
neering tools, and presented the first experimental evidence which shows the signif-
icant savings that can be achieved by linking C++ translation units. Unfortunately,
the smallest files recorded in this case study are still too large to be exchanged via
email or newsgroups. This is important, as accessibility of results has been identified

as a key hurdle to the adoption of existing infrastructures [Miiller et al. 2000].

70

6.3 Case Study: Exchanging Middle-Level Graphs

In this section we describe the results of our second case study, in which we examine
middle-level graphs from our infrastructure. In Subsection 6.3.1, we present results
for exchanging GXL encoded instances of schemas at Levels II, III, and IV of our
infrastructure. In Subsection 6.3.2, we extract results from GXL encoded instances
of the Class Diagram, ORD, and Class Firewall schemas by applying XSLT style

sheets. We discuss the results of the case study in Subsection 6.3.3.

6.3.1 Exchanging Graphs at Levels 11, III, and IV

In this subsection we investigate the costs associated with exchanging instances of
middle-level graphs. In particular, we investigate the storage costs of exchanging
GXL encoded instances of the Class Diagram, ORD, and Class Firewall schemas.
First, we illustrate GXL encoded instances of the ORD and Class Firewall schemas.
We omit an instance of the Class Diagram, because it would be nearly identical
to the ORD instance. Second, we measure the space costs incurred by exchanging

graphs at Levels 11, III, and TV.

<?xml version="1.077>
</DOCTYPE gx! SYSTEM ”gxl —1.0.dtd”>
<gxl xmlns:xlink="http://www.w3.0rg/1999/xlink ">
<graph id=”OrdInstance” edgemode="directed”>
<type xlink:href="0ORD. gxl#ORD”/>
<node id="¢c0”7>
<type xlink:href="0ORD. gxl#Class”/>
<attr name="name”’><string >::A</string></attr>
</node>
<node id="c¢l1”>
<type xlink:href="ORD. gx1#Class”/>
<attr name="name”><string >::B</string></attr>
</node>
<node id="e0”><type xlink:href="ORD. gxl#Inheritance”/></node>
<edge from="¢0” to="e0”><type xlink:href="ORD. gxl#isDest”/></edge>
<edge from="c¢1” to="e0”><type xlink:href="ORD. gxl#isSrc”/></edge>
</graph>
</gxl>

Source Listing 6.5: GXL encoded ORD instance. A GXL encoded instance of the
ORD schema containing two classes, : :A and : :B, and one Inheritance edge. The
edge indicates that B inherits from ::A.

In Source Listing 6.5, we list a prototypical GXL encoded instance of the ORD

schema. We list two classes, ::A and ::B. In addition, we list an Inheritance edge,

71

which indicates that : :B inherits from : :A. In this case, the Class Diagram instance
would be identical, but for the references to the schema (shown as xlink:href

attributes in type tags).

<?xml version="1.077>
</DOCTYPE gx! SYSTEM ”gxl —1.0.dtd”>
<gxl] xmlns:xlink="http://www.w3.0rg/1999/xlink ">
<graph id=”ClassFirewalllnstance” edgemode="directed”>
<type xlink:href="ClassFirewall.gxl#ClassFirewall”/>
<node id="c0”>
<type xlink:href="ClassFirewall.gxl#Class”/>
<attr name="name”’><string >::A</string></attr>
</node>
<node id="c¢cl1”>
<type xlink:href="ClassFirewall.gxl#Class”/>
<attr name="name”><string >::B</string></attr>
</node>
<node id="e0”’><type xlink:href="ClassFirewall.gxl#Edge”/></node>
<edge from="c0” to="e0”>
<type xlink:href="ClassFirewall.gxl#sCUT”/>
</edge>
<edge from="cl” to="e0”>
<type xlink:href="ClassFirewall.gxl#isRetested”/>
</edge>
</graph>
</gxl>

Source Listing 6.6: GXL encoded Class Firewall instance. A GXL encoded in-
stance of the Class Firewall schema containing two classes, ::A and ::B, and one
edge that indicates that if ::A has changed and must be tested, then ::B must be
retested as well.

In Source Listing 6.6, we list a prototypical GXL encoded instance of the Class
Firewall schema. We again list two classes, ::A and ::B. We also list one Edge
edge, which indicates that if : : A has changed and must be tested, then : :B must be
retested as well. This edge results from the Inheritance edge in the ORD instance.

In Table 6.8, we list the sizes on disk, in megabytes, for class diagrams, ORDs,
and class firewalls that represent the test cases. In column 1, we list the test cases.
In columns 2 and 3, we list the total size of the uncompressed and compressed GXL
encoded, instances of the Class Diagram schema, respectively. In columns 4 and 5,
we list the total sizes of the uncompressed and compressed GXL encoded, instances
of the ORD schema, respectively. In columns 6 and 7, we list the total sizes of
the uncompressed and compressed GXL encoded, instances of the Class Firewall

schema, respectively.

72

Test Case .cd.gxl|.gz] | .ord.gxl[.gz] | cfw.gxl[.gz]
AvP 4207 227 5845 301 2735 140
CppUnit 183 10 186 10 76 8
Doxygen 4530 245 4309 217 2038 100
FluxBox 1297 71 899 49 400 24

FOX 2922 158 582 28 953 52
HippoDraw 1706 93 4016 200 1065 52
Jikes 1345 73 4561 221 1041 52
Keystone 1066 58 3246 156 813 40
Licq 908 49 1366 68 264 16
Pixie 1301 71 1988 101 693 36
Scintilla 399 22 218 12 68 4
Scribus 1329 72 1371 69 320 20

Table 6.8: Levels II, III, and IV: Size on disk (kB). The size on disk, in kilobytes,
for class diagrams, ORDs, and class firewalls that represent the test cases.

In columns 2, 4, and 6, we list the size in kilobytes' for compressed GXL encoded
instances of the Class Diagram, ORD, and Class Firewall schemas, respectively. The
average number of kilobytes for the compressed GXL encodings of instances of the
Class Diagram, ORD, and Class Firewall schemas, are 95.75, 119.33, and 45.33, with
standard deviances of 75.13, 96.76, and 39.61, respectively. Neither the contents,
nor the sizes of these instances are directly comparable. However, the results show
that none of the compressed GXL encodings for the 12 test cases is larger than 301
kilobytes, and that 25 of the 36 compressed files are no more than 100 kilobytes in

size.

6.3.2 Transforming GXL Graphs with XSLT

In this subsection we apply XSLT style sheets to the GXL instances of the middle-
level graphs. In particular, we investigate the run-time costs of the transformations,
and present the results for instances of the Class Diagram, ORD, and Class Firewall
schemas. First, we illustrate a representative XSLT style sheet for summarizing
GXL instances, in this case, instances of the ORD schema. Second, we apply XSLT
style sheets to the instances of each of the three schemas, and summarize the results.

We used wzsltproc [xsltproc Project 2005] to apply the style sheets to the GXL graphs.

!This table uses kilobytes. The similar tables in Section 6.2 use megabytes.

73

<xsl:transform version="1.0" xmlns: xsl="http://www.w3.o0rg/1999/XSL/ Transform”
xmlns: xlink="http://www.w3.0rg/1999/xlink 7>
<xsl:output method="text” indent="no” encoding="1SO—-8859—1"/>
<xsl:strip—space elements="%"/>
<xsl:template match="/gxl/graph”>
<xsl:variable name="nodes”
select="node[type/@xlink: href="ORD. gxl#Class ’| 7 />
<xsl:variable name="edges”
select="node[type/@xlink: href!="ORD. gxl#Class ’] 7 />
<xsl:variable name="association”
select="node[type/@xlink: href="ORD. gxl#Association ’]”/>
<xsl:variable name="composition”
select="node[type/@xlink: href="ORD. gxl#Composition] ”/>
<xsl:variable name="dependency”
select="node[type/@xlink: href="ORD. gxl#Dependency ’]”/>
<xsl:variable name="inheritance”
select="node[type/@xlink: href="ORD. gxl#Inheritance ’]”/>
<xsl:variable name="ownedElement”
select="node[type/@xlink: href="ORD. gxl#OwnedElement ’]” />
<xsl:variable name="polymorphic”
select="node [type/@xlink: href="ORD. gxl#Polymorphic '] ”/>
<xsl:text>Nodes: </xsl:text>
<xsl:value—of select="count($nodes)”/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Edges: </xsl:text>
<xsl:value—of select="count($edges)”/>
<xsl:text>&nl;</xsl:text>
<xsl:text>&nl;</xsl:text>
<xsl:text>Association: </xsl:text>
<xsl:value—of select="count($association)”/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Composition: </xsl:text>
<xsl:value—of select="count($composition)”/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Dependency: </xsl:text>
<xsl:value—of select="count(3$dependency)”/>
<xsl:text>&nl;</xsl:text>
<xsl:text>Inheritance: </xsl:text>
<xsl:value—of select="count($inheritance)”/>
<xsl:text>&nl;</xsl:text>
<xsl:text>OwnedElement: </xsl:text>
<xsl:value—of select="count($ownedElement)” />
<xsl:text>&nl;</xsl:text>
<xsl:text>Polymorphic: </xsl:text>
<xsl:value—of select="count($polymorphic)”/>
<xsl:text>&nl;</xsl:text>
</xsl:template>
</xsl:transform>

Source Listing 6.7: XSLT for summarizing ORD instances. The XSLT style sheet
we used to generate the results listed in Table 6.10. We used similar style sheets to
generate the results listed in Tables 6.9 and 6.11.

74

=

o) g 5‘ (o) qé

S = g = =

£ 0z £ F B

8 A& £ 2 8

g g = g &

0 Q ¥ 'é B
Test Case Time (s) Classes < © a = O Total Edges
AvP 0.66 2099 1353 388 6128 371 523 8763
CppUnit 0.02 59 27 3 349 28 6 413
Doxygen 0.57 752 406 577 6372 492 33 7 880
FluxBox 0.15 318 163 349 1603 233 43 2391
FOX 0.53 500 387 352 6311 224 203 7477
HippoDraw 0.24 272 379 27 3289 195 1 3891
Jikes 0.38 433 749 150 4645 180 55 5779
Keystone 0.15 163 173 22 2120 111 4 2430
Licq 0.09 224 32 17 1249 161 1 1460
Pixie 0.19 309 405 30 2296 146 50 2927
Scintilla 0.04 89 52 79 2198 14 1 2813
Scribus 0.17 243 1154 33 1568 17 25 2797

Table 6.9: Class Diagram sizes for the test suite. The number of classes and edges,
by type, in the 12 instances of the Class Diagram schema constructed for the appli-
cations and libraries in our test suite.

In Source Listing 6.7, we list an XSLT style sheet for summarizing the informa-
tion in a GXL encoded instance of the ORD schema. As we noted in the introduction
to this chapter, writing such a style sheet requires knowledge of only the schema,
and not any particular instance. We list nine variables that contain the sets of in-
stances of classes, edges, association edges, composition edges, dependency edges,
inheritance edges, owned element edges, and polymorphic edges, respectively. We
also list nine statements that print the sizes of the sets.

In Table 6.9, we present results from applying the XSLT style sheet PrintCdSum-
mary.xslt to GXL encoded instances of the Class Diagram schema that represent each
of the 12 test cases. In particular, we list the run-time costs of applying the style
sheet, and summaries of the contents. In column 2, we show that zsltproc took less
than one second to apply the style sheet to each of the test cases. In column 3,
we list the total number of classes found in each instance; this class count includes
all instances of the Cpplnfo schema classes ClassNonTemplate, ClassTemplate, and

ClassTemplatelnstantiation. In columns 4 through 8, we list the number of each in-

75

=
=] By s =

g2 F ¢ E 2 0§

= s = & < = H 5 =

o ? © & g = < g =

s i ¢ £ 2§ & £ Z

=i — n Q @ = o o

Test Case E O < O Q — O Q—i H
AvP 3.33 2082 1346 381 6075 367 381 15872 24422
CppUnit 0.06 o6 27 3 349 26 6 409 820

Doxygen 2.36 724 390 575 6267 475 31 11144 18882
FluxBox 0.37 307 161 346 1600 226 40 1470 3843

FOX 9.76 499 387 352 6311 223 203 27716 35192
HippoDraw 2.10 271 379 27 3289 195 1 14043 17934
Jikes 2.50 427 748 147 4640 179 53 14533 20300
Keystone 1.78 162 173 22 2120 111 4 12185 14615
Licq 0.60 224 32 17 1249 161 1 4613 6073
Pixie 0.91 299 398 30 2271 142 45 5938 8824
Scintilla 0.24 89 52 79 2198 14 1 469 2813
Scribus 057 243 1154 33 1568 17 25 3293 6090

Table 6.10: ORD sizes for the test suite. The number of classes and edges, by type,
in the 12 instances of the ORD schema constructed for the applications and libraries
i our test suite.

dividual edge type from the schema. Finally, in column 9, we list the total number
of edges for each test case. On average, Class Diagram instances for our test cases
contain hundreds of classes, and thousands of edges. Dependency edges are most
common.

In Table 6.10, we present results from applying the XSLT style sheet PrintOrd-
Summary.xslt to GXL encoded instances of the ORD schema that represent each of
the 12 test cases. In particular, we list the run-time costs of applying the style sheet,
and summaries of the contents. In column 2, we show that, for half of the test cases,
zsltproc took less than one second to apply the style sheet; the maximum running
time was 9.76 seconds for FOX. In column 3, we list the total number of classes
found in each instance. This class count includes all instances of the Cpplnfo schema
classes ClassNonTemplate and ClassTemplatelnstantiation. In columns 4 through 9,
we list the number of each individual edge type from the schema. Finally, in column

10, we list the total number of edges for each instance. On average, ORD

76

Test Case Time (s) Classes Edges Min Max Avg

AvP 2.25 2082 9695 1 724 182.67
CppUnit 0.25 56 275 1 40 21.66
Doxygen 3.12 724 7888 1 623 369.34
FluxBox 0.66 307 1436 1 216 154.76
FOX 6.00 499 3636 1 231 41.79
HippoDraw 0.83 271 4200 1 210 116.07
Jikes 1.52 427 3994 1 330 297.95
Keystone 3.33 162 3242 1 140 87.89
Licq 0.50 224 959 1 172 26.90
Pixie 0.76 299 2665 1 162 83.43
Scintilla 0.50 89 219 1 38 21.53
Scribus 0.62 243 1175 1 107 64.40

Table 6.11: Class Firewall sizes for the test suite. The numbers of classes and
edges in the 12 instances of the Class Firewall schema. In addition, the minimum,
mazimum, and average class firewall sizes for each of the instances. Class firewall
sizes are expressed as number of classes.

instances for our test cases contain hundreds of classes, and tens of thousands of
edges. Polymorphic edges are, by far, the most common.

In Table 6.11, we present results from applying the XSLT style sheet PrintCfw-
Summary.xslt to GXL encoded instances of the Class Firewall schema that represent
each of the 12 test cases. In particular, we list the run-time costs of applying the
style sheet, and summaries of the contents. In column 2, we show that, for half
of the test cases, zsltproc took less than one second to apply the style sheet; the
maximum running time was 6.00 seconds for FOX. In column 3, we list the total
number of classes found in each instance. These classes are the same set of classes
found in the corresponding ORD instance. In column 4, we list the total number
of edges for each instance. On average, Class Firewall instances for our test cases
contain hundreds of classes, and thousands of edges.

In columns 5 and 6, we list the minimum and maximum number of classes,
respectively, found in the class firewall for any class from the particular test case.
For each of the 12 test cases the minimum class firewall size is one (1). The maximum
class firewall size is as small as 38 classes in Scintilla, and as large as 724 classes
in AvP. The average class firewall size for all 12 test cases is 122 classes, with a

standard deviation of 112.

77

6.3.3 Discussion

The results for exchanging middle-level graphs show, for both storage and run-time
costs, savings of at least one order of magnitude when compared to the results
for exchanging low-level graphs. Thus, the results indicate significant savings in
the costs of exchange for applications that do not require full low-level information
about a program. For example, no compressed GXL encoding of a middle-level
graph is greater than 301 kilobytes for any of the 12 test cases. In addition, it took
no more than 9.76 seconds to apply, using asltproc, a style sheet that summarizes
the contents of the given graph.

An application that builds a class firewall can take advantage of the savings
that we highlight in this case study by taking ORD instances, rather than ASG or
APT instances, as input. This is the technique that we used to create GXL encoded
instances of the Class Firewall schema for this case study. Other applications of
these savings are described in Chapter 4.

We demonstrate the use of XSLT to extract information from GXL encoded
instances of three different schemas. We show that this process is efficient, and
present experimental results for the 12 test cases in our test suite. All GXL files
that we created for this case study are available in our SourceForge.net repository,

and are available for use by practitioners and other researchers.

78

Chapter 7

Applications: Empirical Evaluation with g're

In this chapter we present empirical evaluations with g*re in two areas: (1) soft-
ware measurement and (2) program comprehension. In Section 7.1, we present a
system for computation of object-oriented metrics, and a case study that examines
the use of object technology in games and language processing tools. In Section 7.2,
we present a system for three-dimensional visualization of class template diagrams,
and a case study in which we visualize ten open source C++ applications. In each
section, we note the platform and g*re version that we used to conduct the respective

case study.

7.1 Application: Computing Object-Oriented Metrics

In this section we present our system for computing object-oriented metrics, and a
case study using the system [Jamieson et al. 2005]. In Subsection 7.1.1, we provide an
overview that includes motivation and background information on game application
programming interfaces (APIs) and object-oriented metrics. In Subsection 7.1.2; we
summarize research that relates to our system and case study. In Subsection 7.1.3,
we define the metrics that we apply to the test suite in our case study. Finally, in

Subsection 7.1.4, we describe our case study, and present the results.

7.1.1 Overview

Game developers have migrated from traditional approaches to the use of object
technology to take advantage of its extensibility, and ease of modification and reuse.
The object-oriented paradigm has a natural application to the domains of graphics,
graphical user interfaces, and games. Early games such as Quake and Doom were

implemented in C, because of its small learning curve and its fast compilation and

execution speeds. However, current game development teams are large, and consist
of not only programmers, but also analysts, artists, and musicians. In addition,
there have been considerable recent gains in compilation and execution speeds for
C++; most modern games are developed using C++.

In this section, we evaluate the exploitation of object technology as it is used
in a test suite of games and language processing tools. We developed a metric
computation system using g're, and used it to apply several well-known object-
oriented metrics to the test suite. The results formed a basis of comparison for the
use of object technology in the two groups of programs. We used the results to draw
conclusions about the modularity, the use of inheritance, and method complexity in
the two groups of programs in the test suite. First, we provide some background

information about game APIs and object-oriented metrics.

Game APIs

In early game development, DOS-based games were generally implemented with
commands issued directly to the computer’s hardware. These early DOS games
used calls to device drivers for input devices, such as a mouse or a joystick, and calls
to specific sound cards, such as Creative Labs’ Sound Blaster. Video programming
was the most difficult aspect of game development; the generation of fast and smooth
graphics required significant programming skill. Graphics code frequently exploited
the speed of assembly language programming, and depended on certain hardware-
level features of the VGA graphics adapter.

Currently, few game developers write register-level video code, instead relying
on prewritten application programming interfaces (APIs) that form a layer of soft-
ware between the game and the hardware. The most popular API in current use
is DirectX, which is implemented in C++ [Parberry 2000; Parberry et al. 2005].
The DirectX API provides low-level access to multimedia hardware in a device-
independent manner. New versions of DirectX are released to permit game devel-
opers to take advantage of hardware advances as they occur, even after games have

shipped. Unfortunately, the DirectX API is specific to Windows.

80

With the popularity of the Linux operating system, game developers became in-
terested in platform-independent game programming. Several APIs have been intro-
duced, including ClanLib [2005], and the Simple DirectMedia Layer (SDL) [2005].
SDL is a multimedia library that has been used to port a number of Windows-
based games to Linux, and is the most popular of the platform-independent game
APIs [Pazera 2003],

SDL supports virtually all of the major operating systems including FreeBSD,
Linux, MacOS, Solaris, Windows, and Solaris. In addition to graphics support,
SDL provides interfaces for playing sound, accessing CD-ROM drives, and achieving
portable multi-threaded applications. SDL is released under the GNU LGPL and
has accumulated a collection of user-contributed libraries that provide additional

functionality.

Object-Oriented Metrics

Software metrics are quantitative measures that enable software developers, testers,
and maintainers to evaluate the static properties of a software system [Fenton and
Pfleeger 1998]. Software metrics are computed and the resultant data are collected,
analyzed, and compared throughout the lifetime of a software system to evaluate
improvement or deterioration of the software system. Software metrics are also
useful for identifying problem modules of a software system.

Object-oriented metrics were introduced to measure software properties specific
to object-oriented software systems, including properties pertaining to classes and
their object instances [Chidamber and Kemerer 1994; Fenton and Pfleeger 1998].
The primary focus of object-oriented metrics is measuring properties of classes and
their instances. Properties of interest include scope of properties, object complexity,

coupling, and cohesion.

7.1.2 Related Work

The literature on object-oriented software metrics is extensive; Chidamber and Ke-

merer [1994] and Fenton and Pfleeger [1998] present detailed surveys. By contrast,

81

there has been relatively little work focused on applying metrics to assess the rela-
tive design characteristics of systems in different application domains. Further, our
work is unique in its consideration of gaming applications. Other researchers have,
however, considered comparisons that are similar in spirit to our own.

Paulson et al. [2004] perform an empirical evaluation of the differences between
open-source and proprietary software. Their goal is to evaluate the validity of com-
mon perceptions regarding open-source projects. Their study considers five dimen-
sions of comparison: (1) system growth, (2) design creativity, (3) complexity, (4)
reliability, and (5) modularity. For each dimension of comparison, they apply a series
of metrics to a test suite consisting of three open-source projects and three propri-
etary projects. Based on the resulting figures, the authors conclude that relative
to their proprietary counterparts, open-source projects: (1) do not grow faster, (2)
foster more creativity, (3) are more complex, (4) are more reliable, and (5) are less
modular. We note that we share the authors’ interest in complexity and modularity,
and use a similar metric for evaluating complexity.

MacCormack et al. [2004] focus on the modularity of open-source software. Their
approach is novel in its use of metrics defined over design structure matrizes [Steward
1981]. Each matrix captures the dependencies between the source files in a given
implementation. A value of one at position (i,7) denotes the existence of a call
from a function defined in file ¢ to a function defined in file j. Similarly, a zero
value denotes the absence of such a call. The authors consider two metrics. The
first metric estimates the number of files affected, on average, by an arbitrary system
change. The second metric is based on a clustering algorithm that groups collections
of interdependent files. The metric estimates the cost of coordination between the
individuals responsible for implementing the various elements by allocating a higher
cost to inter-cluster dependencies, and a lower cost to intra-cluster dependencies.
When applied to their test suite, which consists of one open-source system and one
proprietary system, the resulting figures contradict the results of Paulson et al.: the
open-source system appears more modular. Later, however, the authors evaluate a

major redesign of the proprietary system which fares better: it is more modular than

82

the open-source system. We note that the size of the test suite makes it difficult to
draw definitive conclusions.

Ferrett and Offutt [2002] report an empirical evaluation that considers different
implementation paradigms, rather than different application domains. The authors
analyze programs written in Fortran, C, C++, and Java to compare the modularity
of programs written in a procedural style with those written in an object-oriented
style. Ferrett and Offutt define a module as a function (or subroutine) in Fortran
or C, and as a method in C++ or Java. They measure modularity by counting
implementation modules, lines of code per module, and number of parameters per
module. The assumption is that modularity increases with each of these measures.
Their test suite includes 38 programs, with eight programs written in Java, and
ten programs each written in Fortran, C, and C++. Based on the test suite, the
authors conclude that object-oriented programs typically have more modules that
are smaller and have fewer parameters. It is interesting to note that despite the
aggregate conclusion, C++ programs appear to be no more modular than their C
counterparts. The authors provide a possible explanation by observing that C++
programs are often developed by programmers trained in C; the programs need not
be object-oriented. One final point is that the test suite contains programs that
are only partially developed, and target different domains. The authors note that
without experimental controls to account for these factors, the conclusions may be

biased.

7.1.3 Methodology

In this subsection, we define the object-oriented metrics that we computed for the
case study in Section 7.1.4. We define one metric measuring complexity, Weighted
Methods per Class. We define three metrics measuring the use of inheritance: Depth

of Inheritance Tree, Number of Ancestors, and Number of Children.

Metric 1: Weighted Methods per Class (WMC). This metric measures the

complexity of an object, and is an indicator of the time and effort required to develop

83

and maintain a class. Given a class C' with methods My, M, ..., M,,, weighted with

cyclomatic complexity ci,co, ..., c,, respectively, the metric is computed as

WMC(C) = zn:ci

i=1

Given a method M with control flow graph G = (V,E), let D equal the set of
decision nodes in V', where a decision node represents one of { if, switch, for, while,
do while, catch }. The cyclomatic complexity, ¢, of M is the number of linearly

independent paths in G and is computed as

(M) = |D| +1

Metric 2: Depth of Inheritance Tree (DIT). This metric is the length of
the maximum path from a class to the root of its inheritance hierarchy, relates to
scope of properties, and is an indicator of the number of ancestor classes that can
potentially affect a class. Given a class C' with a set of base classes BC, the metric
is computed as

if | BC|=0

DIT(C) =
max({DIT(B;): B; € BC})+1 if |BC|>0

Metric 3: Number of Ancestors (NOA). This metric is the total number of
ancestor classes of a class. In the absence of multiple inheritance, NOA is equivalent
to DIT. In the presence of multiple inheritance, care must be taken to avoid count-
ing an ancestor class more than once, due to the possibility of a diamond-shaped

inheritance hierarchy.

84

Translation Units

Test Case Version Source Files Total C++ NCLOC (= K)
ASC 1.16.1.0 436 199 194 130
AvP CVS 07/22/05 509 222 95 295
Freespace2 CVS 07/22/05 652 220 220 365
Scorched3D 38.1 1069 513 492 110
Doxygen 1.3.9.1 260 122 90 170
glre 1.0.4 128 60 60 10
Jikes 1.22 75 38 38 70
Keystone 0.2.3 123 52 52 16

Table 7.1: Test suite. The eight test cases that we use in our study: four SDL games
and four language processing tools. For each test case, we list the version, the number
of source files, the number of translation units, the number of C++ translation units,
and the approximate number of thousands of non-commented, non-preprocessed lines

of code (NCLOC).

Metric 4: Number of Children (NOC). This metric is the number of immediate
successors of a class, and measures the breadth of inheritance. Given a class C' with

a set of derived classes DC', the metric is computed as

NOC(C) = |DC|

7.1.4 Case Study

In this subsection we describe the results that we obtained using our metrics tool
to evaluate game application software. We evaluated game software by comparing
metrics computed for four games and four language processing tools. The results
that we report in this section capture information about the sizes of the programs,
and the exploitation of object technology as measured by the metrics described in
Subsection 7.1.3.

We first provide information about the eight (8) test cases that form our test
suite: four games implemented using the SDL API, and four language processing
tools. We then provide results describing: (1) modularity and delegation, (2) the

use of inheritance, and (3) complexity of methods.

85

Test Suite

In Table 7.1, we list the eight test cases that form our test suite, and size statistics
for each test case. In column 1 of the table, we list the names that we use to refer
to each of the test cases. We list the SDL games in the first four rows. The four
games are: Allied Strategic Command (ASC), Aliens vs Predator (AvP), Freespace
2 (Freespace?), and Scorched 3d (Scorched3D3D). We list the language processing
tools in the last four rows. The four language processing tools are: Doxygen, g're,
Jikes, and Keystone. Doxygen is a documentation system for C, C++, and Java [van
Heesch 2006]. Jikes is a Java compiler system from IBM [IBM Jikes Project 2006].
Keystone is a parser and front end for ISO C++ [Keystone Project 2005; Malloy
et al. 2003a].

In column 2 of Table 7.1, we list the version number for each test case. In column
3 through 5, we list the number of source files, the number of total translation units,
and the number of C++ translation units for each test case, respectively. Three
of the games and one of the language processing tools (Dozygen) use C and/or
assembly language in addition to C++. Finally, in column 6 of the table, we list
the approximate number of thousands of non-commented, non-preprocessed lines of
code (NCLOC) for each test case.

The games are larger than the language processing tools. For example, the
average NCLOC for the games is 231 000, but the average NCLOC for the language
processing tools is 78 000; therefore, the average game in our test suite is three times
as large as the average language processing application.

We executed all experiments on a custom workstation with an AMD Athlon64 ™
3000+ processor, 1024 MB of PC3200 DDR RAM, and an 80 GB, 7200 RPM SATA
hard disc on which we installed the Slackware 10.1 operating system after formatting
with version 3.6 of the ReiserFS filesystem. We performed the experiments with
version 1.0.4 of g*re, which we compiled with version 4.0.2 of gcc. We created all tu

files with gcc version 3.3.4.

86

Classes Functions

Test Case Total Abstract Root Leaf Total Member Virtual Pure

ASC 1389 58 901 390 8693 7775 2170 208
AvP 1732 28 1369 327 11548 9350 1216 90
Freespace2 332 0 320 12 9468 1687 48 0
Scorched3D 799 50 405 364 8432 7210 1907 112
Doxygen 315 9 153 157 5422 4570 2159 249
ghre 78 17 27 37 849 798 303 106
Jikes 378 5 210 158 5717 5685 602 16
Keystone 160 14 49 87 2354 2306 1178 189

Table 7.2: Modularity and delegation. The number of classes and functions in each
test case; the classes and function are broken down into categories that relate to
modularity and delegation.

Modularity and Delegation

In Table 7.2, we present results that capture information about modularity of and
delegation in the eight test cases. In column 1 we list the test cases, again, we
list the SDL games in the first four rows, and the language processing tools in the
last four rows. In columns 2 through 5, we list the number of total, abstract, root,
and leaf classes, respectively. In columns 6 through 9, we list the number of total,
member, virtual, and pure virtual functions, respectively.

The games AvP and ASC contain the most and second most classes, respectively,
of the eight test cases. AvP contains 1732 classes; ASC contains 1389 classes. It is
somewhat surprising that the AvP game contains a large number of classes in view
of the large number of C files in the program. In Table 7.1, we indicated that AvP
contains 222 translation units, but only 95 of these are C++ translation units; over
half of the translation units consist of C or assembly code. However, g*re uses an
ASG representation of the input program; all template classes are instantiated in
an ASG for C++. So, the count of classes that we listed in column 2 of Table 7.2
includes class template instantiations in addition to classes that are not templates.
We use this set of classes when computing the metrics in the following subsections.

The results in Table 7.2 suggest that, for our test suite of four games and four
language processing tools, the games may be more modular than the language pro-

cessing tools. For example, the four games contain a total of 4 252 classes in 923 000

87

Test Case Min Max Mean Std Dev Median Mode

ASC 0 4 0.645 0.991 0 0
AvP 0 5 0.304 0.707 0 0
Freespace?2 0 1 0.036 0.187 0 0
Scorched3D 0 9 0.931 1.496 0 0
Doxygen 0 4 0.927 1.122 1 0
gire 0 5 1.897 1.592 2 0
Jikes 0 3 0.714 0.960 0 0
Keystone 0 5 1.794 1.450 2 0

Table 7.3: Depth Of Inheritance Tree (DIT). Statistics about the DIT metric for
each test case.

Test Case Min Max Mean Std Dev Median Mode

ASC 0 6 0.687 1.097 0 0
AvP 0 5 0.307 0.712 0 0
Freespace2 0 1 0.036 0.187 0 0
Scorched3D 0 9 1.036 1.632 0 0
Doxygen 0 7 1.041 1.214 1 0
glre 0 5 1.910 1.605 2 0
Jikes 0 4 0.728 0.979 0 0
Keystone 0 5 1.794 1.450 2 0

Table 7.4: Number of Ancestors (NOA). Statistics about the NOA metric for each
test case.

NCLOCG; the class to one thousand NCLOC ratio is 4.6. However, the four language
processing tools contain a total of 931 classes in 310000 NCLOC; the class to one
thousand NCLOC ratio is 3.0

Inheritance

In Tables 7.3, 7.4, and 7.5, we list statistics about the Depth of Inheritance Tree
(DIT), Number of Ancestors (NOA), and Number of Children (NOC) metrics, re-
spectively. Column 1 of each table lists the test cases. Columns 2 and 3 list the
minimum, maximum values, respectively. Columns 4 and 5 list the mean and stan-
dard deviation of the values, respectively. Columns 6 and 7 list the median and
mode values, respectively. The median is the value for which an equal number of
values lie above and below; the mode is the most common value.

The DIT metric equals the length of the longest path from a class to the root of

its inheritance tree. The NOA metric equals the total number of ancestor classes of a

88

Test Case Min Max Mean Std Dev Median Mode

ASC 0 27 0.314 1.550 0 0
AvP 0 30 0.121 0.850 0 0
Freespace2 0 12 0.036 0.659 0 0
Scorched3D 0 11 0.200 0.912 0 0
Doxygen 0 48 0.359 2.767 0 0
gire 0 6 0.487 1.171 0 0
Jikes 0 26 0.455 2.474 0 0
Keystone 0 10 0.606 1.656 0 0

Table 7.5: Number of Children (NOC). Statistics about the NOC metric for each
test case.

class. The NOC metric measures the number of immediate successors of a class in its
inheritance tree. Intuitively, the DIT metric measures the depth of the inheritance
tree, and the NOC metric measures the breadth of the inheritance tree. The NOA
metric indicates whether or not multiple inheritance is used, when compared to the
DIT metric.

In Table 7.3, we list statistics about DIT that we computed for the eight test
cases. Scorched3D had a maximum value of 9, which gave it the deepest inheritance
tree in the test suite. In addition, Scorched3D had the largest mean value, 0.931,
but also the largest standard deviation, 1.496, which means that Scorched3D had
the largest amount of variation among the depths of inheritance trees for its classes.
Freespace2 is the only test case that did not have an inheritance tree with a depth
greater than one (1).

In Table 7.4, we list statistics about NOA that we computed for the eight test
cases. A comparison of the mean NOA values to the mean DIT values listed in
Table 7.4 indicates that multiple inheritance is used by three of the four games,
and two of the four language processing tools. However, the differences between the
mean values for NOA and the mean values for DIT indicate that the two language
processing tools made heavier use of multiple inheritance than the three games.

In Table 7.5, we list statistics about NOC that we computed for the eight test
cases. AvP had a maximum value of 30, which gave it the second broadest inheri-
tance tree in the test suite. However, AvP also had the second lowest mean, and the

second lowest variation among the numbers of children for its classes. The median

89

Test Case Min Max Mean Std Dev Median Mode

ASC 0 561 12.977 30.365 4 0
AvP 0 107 7.290 10.594 3 3
Freespace2 0 123 6.660 15.707 3 3
Scorched3D 0 240 17.372 19.058 12 3
Doxygen 0 430 27.676 57.497 7 7
ghre 0 206 17.756 30.270 13 0
Jikes 0 2016 32.397 119.124 13 10
Keystone 0 557 24.388 52.474 15 14

Table 7.6: Weighted Methods per Class (WMC). Statistics about the WMC metric
for each test case.

and mode values for AvP are zero (0), as are the median and mode values for all
test cases.

When taken together with the statistics listed in Tables 7.3 and 7.4, the statistics
listed in Table 7.5 show that: (1) Freespace2 makes very little use of inheritance,
(2) on average, the four language processing tools make more use of inheritance than
the four games, (3) on average, maximum depth to number of classes and maximum
breadth to number of classes ratios are much lower for the four language processing

tools than for the four games.

Complexity

In Table 7.6, we list statistics about the Weighted Methods per Class (WMC) metric,
which equals the sum of the cyclomatic complexities for the methods in a class.
Column 1 lists the test cases. Columns 2 and 3 list the minimum, maximum values,
respectively. Columns 4 and 5 list the mean and standard deviation of the values,
respectively. Columns 6 and 7 list the median and mode values, respectively.

The classes (and hence methods) in the four language processing tools are more
complex than the classes in the four games. For example, the average maximum
value for the language processing tools is 802.250, but the average maximum value
for the games is only 257.750. Similarly, the average mean value for the language

processing tools is 25.554, but the average mean value for the games is only 11.074.

90

Concluding Remarks

We have shown that, for our test suite, the games are more modular than the
language processing tools, but that the language processing tools make more use
of inheritance. In addition, we have shown that the methods in the games are less
complex than the methods in the language processing tools. However, our metrics
computation system does not include library code in its analysis, and it is likely that

much of the method complexity in games is found in the SDL API.

7.2 Application: Visualizing Class Template Diagrams

In this section we present our system for visualizing class template diagrams, and
a case study using the system [Hoipkemier et al. 2006]. In Subsection 7.2.1, we
provide an overview that includes motivation and background information on generic
programming. In Subsection 7.2.2, we summarize research that relates to our system
and case study. In Subsection 7.2.3, we provide an overview of our methodology for
the case study. Finally, in Subsection 7.2.4, we describe our case study, and present

the results.

7.2.1 Overview

Generic programming deals with finding abstract representations of efficient algo-
rithms and data structures, and expressing them in an adaptable interoperable man-
ner [Jazayeri et al. 2000]. The generic programming paradigm is a popular ancillary
tool to object technology; conferences, seminars, and other literature have recently
appeared to address problems and concerns related to this paradigm [Eichelberger
and v. Gudenberg 2000; Gliick and Lowry 2005; Jazayeri et al. 2000; Lengauer et al.
2004; Veldhuizen 2000].

The canonical example of generic programming is the C++ Standard Library
(STL). In addition, other libraries, such as Boost, Loki and Blitz++, rely heavily
on both generic and generative programming to produce code that is more general,

more efficient, and more easily incorporated into existing applications than their

91

non-generic counterpart [Alexandrescu 2001; Siek and Lumsdaine 2005; Veldhuizen
and Gannon 1998|. In recognition of the importance of generics, they have been
recently introduced into both the C# 2.0 [Microsoft Corporation 2006], and the
Java 5 [Sun Microsystems Inc 2006] programming languages.

One problem with generic programming is the dearth of technology to facilitate
comprehension, documentation, and debugging of programs that utilize generic pro-
gramming [Jazayeri et al. 2000]. This may be true, in part, because C++, the most
mature language vehicle for generic programming thus far, is notoriously difficult to
parse [Bodin et al. 1994; Klint et al. 2005; Knapen et al. 1999; Lilley 1997; Malloy
et al. 2003a]. We were unable to find any tool description in the literature that
provides a facility for the comprehension and debugging of generic C++ code.

Various graphical program representations have been used to reverse engineer
class diagrams; most of these have used either the source code or Java bytecode
as input, although some representations have used object code as input [Duffy and
Malloy 2005; Eng 2002; Gutwenger et al. 2003; van Heesch 2006]. Unlike these
systems, we used an abstract syntax graph (ASG). An ASG for a C++ program
contains additional information about templates not included in the source code;
in particular, information about class template instantiations and specializations
is available. This is import, because C++ programmers often specialize types to
provide space and/or time savings [Vandevoorde and Josuttis 2002].

In this section, we evaluate the utilization of generic programming in a test
suite of ten deployed open source programs. We developed a visualization system
using g're, and applied it to the test suite. We designed the system to visualize
classes (non-templates), class templates, class template instantiations, and class
template specializations in three dimensions. We placed classes (non-templates and
templates) in the X-Y plane, and class template instantiations and specializations
along the 7 axis. We used the results to draw conclusions about the frequency and

efficiency of generic programming in these applications.

92

7.2.2 Related Work

The literature on software visualization can be partitioned into three categories:
(1) data visualization [Jones et al. 2004; Marcus et al. 2003], (2) class diagram
layout [Eiglsperger et al. 2004; Gutwenger et al. 2003], and (3) code visualization.
There has been no reported work that provides either visualization of templates,
or three-dimensional visualization of class diagrams. Next, we describe relevant
research on code visualization.

Malloy and Power [2005] exploit a molecular metaphor for three-dimensional
visualization of visualize, in three dimensions, the dynamic object relationships in
Java applications. They instrument Java bytecode to collect trace data, and then
analyze it and visualize it in three dimensions using VRML. Their quantitative and
graphical results include analyses of the SPEC JVM98 and JOlden benchmark suites;
they reveal interesting relationships among the data structures in these applications.
Unfortunately, their approach does not accommodate Java generics.

Lewerentz and Simon [2002] present a metrics based approach to software visu-
alization that supports quality assessment of large object-oriented software systems
written in C++ and Java. They use a combination of software metrics data and
program structure information to form a virtual information space. They then visu-
alize the information space using three-dimensional graph structures that represent,
in a uniform manner, many aspects and views of the application under study. They
layout the graphs by using a generic similarity measure to calculate geometric dis-
tances between graph nodes, and a force-directed mapping into three-dimensional
space. Their approach does not include the visualization of C++ class templates or
Java generics.

Eng [2002] presents a framework to visualize intermediate representations of
Java programs that are constructed by an optimizing compiler. He visualizes both
the software, and the characteristics of the execution platform. His visualization

interface illustrates classes, including data and methods, and profile information in

93

GXL encoded instance of the L _ o o o — o — —
Class Template Diagram schema.

™ / \
Instantiates and queries
the CppInfo API [see = == == hbuilder visualizer
Section X.X for details).
="

/N

v

[
Generates the two dimensional =
(X-Y axis) layout given the | o o o o o o - - = =
ClassNonTemplate and

ClassTemplate instances.

Figure 7.1: System overview. Solid, directed lines show input. Dashed lines show
notes.
a single framework. His approach does not include visualization in three dimensions,

or the visualization of Java generics.

7.2.3 Methodology

In this subsection, we describe the system that we used to conduct the case study in
Section 7.2.4. We describe both of the components in the system: builder and visu-
alizer. In addition, we illustrate the schema for a Class Template Diagram (CTD),
which is the subject of our visualization.

In Figure 7.1, we provide a overview of the system. We illustrate the builder
component to the left of center at the middle of the figure. The builder compo-
nent, part of the ctd package, uses the API provided by gre to build and write a
GXL encoded instance of a class diagram subset, which we termed a Class Tem-
plate Diagram (CTD). The nodes in a CTD represent classes (non-templates), class
templates, and class template instantiations and specializations. The nodes contain
information about classes, including names, attributes, and operations. The edges
in a CTD represent either inheritance, including information about access and the
virtual specifier, or one of the aggregations: haslnstantiation and hasSpecialization.

We illustrate the CTD schema in Figure 7.2, and list a link to it in Appendix B.

94

==GraphClass==
ClassTemplateDiagram

isSrche

L] 0.+
1 isDestie 0.*
Class Edge
name: string
attributes: set<string=
operations: set<string=
A Inheritance
access: string
| 01 isVirtual: bool
o~ 0
| ClassNonTemplate | | ClassTemplate | 01
| ClassTemplatelnstantiation | | ClassTemplateSpecialization
0.* D"*l 4 hasSpecialization
- hasInstantiation

Figure 7.2: Schema for Class Template Diagram (CTD). A UML class diagram
representation of the C'T'D schema.

We illustrate the visualizer component to the right of center at the middle of
Figure 7.1. The visualizer component, part of the ctd package, takes the GXL en-
coded instance of the CTD schema (generated by the builder component) as input.
The visualizer first sends an inheritance hierarchy, which includes only instances of
ClassNonTemplate and ClassTemplate, to dot, which computes the two-dimensional
layout for the inheritance hierarchy. The visualizer then reads the layout that dot
has computed, and places instances of ClassTemplatelnstantiation and ClassTemplate-
Specialization on the Z axis, behind the corresponding instances of ClassTemplate.
Finally, the visualizer then connects inheritance edges involving instantiations and
specializations, and uses OpenGL to draw the three-dimensional diagram to the
screen.

The three-dimensional diagram generated by our visualizer component is inter-
active, and can be manipulated in real time. All classes are represented by boxes,
on which attribute and operation information is drawn as it would appear in a
UML Class Diagram. Instances of ClassNonTemplate are colored yellow, instances of
ClassTemplate are colored light blue, and instances of ClassTemplatelnstantiation and

ClassTemplateSpecialization are colored red. The inheritance edges are colored green

95

Test Case .ctd.gxl .dot

Doxygen 2904 1048
FluxBox 824 336
FOX 1336 848
HippoDraw 808 488
Jikes 1248 536
Keystone 264 176
Licq 624 384
Pixie 616 304
Scintilla 216 136
Scribus 720 432

Table 7.7: Size on disk (kB). The size on disk, in kilobytes, for uncompressed GXL
encodings of instances of the Class Template Diagram schema, and the uncompressed
dot encodings of the inheritance hierarchies.

at the isDest end, and brown at the isSrc end. The aggregation edges haslnstantiation

and hasSpecialization are colored blue.

7.2.4 Case Study

In this subsection we describe the results that we obtained using our system to
visualize the use of generic programming in open source, C++ software. The results
that we report in this section capture the space and time costs of our system, and
information about the use of generic programming in our test suite of 10 open source
programs !

We executed all experiments on a Sun ™ workstation with an AMD Opteron
T™ 148 processor, 1024 MB of PC3200 DDR RAM, and an 80 GB, 7200 RPM SATA
hard disc on which we installed the Fedora Core 4 operating system after formatting

the ext3 filesystem. We performed the experiments with version 1.0.8 of g*re, which

we compiled with version 4.0.0 of gec. We created all tu files with gec version 3.3.6.

96

.ctd.gxl | .dot
Test Case Generate Parse Generate Parse Render Total

Doxygen 6.43 1.03 0.34 231.55 0.21 239.56
FluxBox 2.08 0.32 0.06 59.20 0.06 61.71
FOX 3.07 0.40 0.11 91.87 0.06 95.51
HippoDraw 1.77 0.28 0.09 49.51 0.04 51.69
Jikes 298 0.44 0.10 80.14 0.08 83.74
Keystone 0.50 0.09 0.03 17.80 0.01 18.43
Licq 1.18 0.20 0.04 38.75 0.03 40.20
Pixie 1.26 0.23 0.06 36.51 0.04 38.10
Scintilla 0.49 0.06 0.03 12.89 0.02 1349
Scribus 1.84 0.24 0.06 44.11 0.03 46.28

Table 7.8: Time (s). The running time, in seconds, for each phase of our visualiza-
tion system, and for the entire visualization system.

Space and Time Costs

In Table 7.7, we list the sizes on disk, in kilobytes, for graphs that are generated,
parsed, and used by our visualization system to represent the test cases. In column
1, we list the test cases. In column 2, we list the total sizes of the uncompressed
GXL encoded instances of the Class Template Diagram (CTD) schema. In column
3, we list the total sizes of the dot encoded inheritance hierarchies.

The CTD instances are comparable 2 in size to the middle-level graphs described
in Section 6.3. The dot files are, on average, half the size of the corresponding CTD
instance. Next, we examine the time costs for generating and parsing these files.

In Table 7.8, we list the running times, in seconds, for our visualization sys-
tem. In column 1, we list the test cases. In columns 2 and 3, we list the times
to generate and to parse GXL encoded instances of the Class Template Diagram
schema, respectively. Recall that the builder component generates the file, and the
visualizer component parses the file. In columns 4 and 5, we list the times to gen-
erate and to parse dot encodings of inheritance hierarchies, and the dot generated

two-dimensional layout, respectively. In column 6, we list the times to render the

!The test suite for this study is a subset of the test suite for the case studies in Chapter 6,
from which AvP and CppUnit have been omitted. See Subsection 6.1 or our online repository for
information about the test suite. Furthermore, see Subsection 6.2.1 and 6.2.2 for information about
the space and time costs of the input to the system.

2Unlike the rest of g’re, the visualization system does not use the pulse library to write GXL
files. Differences in formatting can cause sizes on disk to vary widely for GXL files.

97

3D Class Diagram

] s
1 i |

Display Non-Templates
Display Text

[[] Display Backround

Figure 7.3: Visualization of CTD for Pixie. The interface to the visualization system,
and and a three-dimensional CTD diagram for Pizie. The two sliders control the
azimuth and the elevation. The keyboard controls horizontal and vertical movement,
and zooming.

OpenGL three-dimensional representation of the diagram. Finally, in column 7, we
list the total time for the visualization system.

The running time for each test case is dominated by the time spent parsing the
dot generated two-dimensional layout. Even with this cost, which could be greatly
reduced by eliminating the dependency on dot, the running time is under one minute
for over half of the test cases. Clearly, our use of three dimensions adds minimal

costs to the system as a whole.

Visualization Results

Three of the test cases did not contain any template classes: Licgq, Scintilla, and
Scribus. Also, only three of the test cases contained ten or more template classes:

Dozxygen, FlurBox, and Pizie. However, the number of class template instantiations

98

Figure 7.4: Visualization of CTD for FluxBox. A three-dimensional CTD diagram
for FluxBoz.

99

can be large; for example, in Doxygen, each class template averages 10 instantiations.
In addition, in Jikes the average number of instantiations per class template is 20.
Our visualization system allowed us to obtain information about the test cases
that was not readily available from inspection of the source code. In Figure 7.3, we
show the interface to the system. The two sliders that control the azimuth and the
elevation. The keyboard controls horizontal and vertical movement, and zooming.
The default view shows all classes in the system, together with inheritance and
template instantiation and specialization relationships. We provide options that
allow the user to view only the templates in the system, including instantiations
and specializations; the check boxes allow the user to hide the background and text.
To the right of the controls in Figure 7.3, we illustrate a three-dimensional CTD
diagram for Pizie. The cubes aligned at the left of the diagram lie on the Z-axis; these
cubes represent instantiations of the C Array < T > class template. The majority of
instantiations in Pizie are instantiations of the CArray < T > class template; this
indicates that modifications to CArray < T > have far reaching effects on Pizie.
This information is not readily available from inspection of the source code. We

illustrate an additional three-dimensional CTD diagram, for FlurBoz, in Figure 7.4.

Concluding Remarks

We have described our approach to three-dimensional visualization of class template
diagrams for 10 open source, C++ programs. Unlike systems that use the source
code to construct UML class diagrams, our system uses an ASG; therefore, our
system has access to information about templates that is not readily available from
inspection of the source code. We have also shown that our approach is feasible for

medium-sized programs.

100

Chapter 8

Conclusion

In Section 1.1, we identified the problems we investigated in the area of reverse
engineering; the problems focus on infrastructure support for interoperability. In
this chapter, for each problem, we first restate the original goal, and highlight our
publications that addressed the goal. We then restate the original evaluation criteria,

and state how we satisfied the criteria.

Problem 1: Schemas for Low- and Middle-Level

Program Representation Graphs
Goal

Our goal for this problem was to create GXL schemas for low- and middle-level
graphs, and to use known transformations between graphs to guide the organization
of the schemas into a hierarchy. We published work that addressed this goal in the
Proceedings of the 12th Working Conference on Reverse Engineering [Kraft et al.
2005b], and in the journal Information and Software Technology [Kraft et al. 2007a).

We presented this work in Chapter 4.

Evaluation Criteria
1. The hierarchy is arranged in levels, such that an instance of a schema at one
level can be created using only information contained in instances of schemas

at previous levels.

2. Instances of low-level schemas contain the information needed to create in-
stances of middle-level schemas, including call graphs, class-centric graphs,

control flow graphs, and dependency graphs.

3. Low-level schemas are language-specific, and middle-level schemas are

language-independent.

4. Low-level schemas for C++ accurately and adequately represent templates,

including instantiations, specializations, and partial specializations.

5. Low-level schemas for C++ represent function pointers, including member

function pointers.

In Section 4.1, to address evaluation criteria 1 and 2, we illustrated the hierarchy
of schemas, which consists of two major partitions, low-level and middle-level, and
five minor partitions, Levels 0 through 4. We also described the structure of the
hierarchy, which represents the progression of information from schemas at one level
to schemas at a subsequent level.

In Sections 4.2 and 4.3, to address evaluation criterion 3, we presented our low-
level schemas. The abstract syntax graph (ASG) and the application programming
interface (API), are language-specific; we focused on the C++ language. We also
presented several language-independent middle-level schemas, including those for
the call graph and the class firewall.

In Section 4.2, to address evaluation criteria 4 and 5, we described the gcc ASG
schema for C++, GENERIC, and our API schema for C++, Cpplnfo. Both schemas
provide an accurate and adequate representation of templates, including instantia-
tions, specializations, and partial specializations. In addition, both schemas provide
a representation of function pointers, including member function pointers (some-

times called pointers to members).

Problem 2: Tool Support for Reverse Engineering C++ Programs
Goal

Our goal for this problem was to create a public domain, general purpose tool for
reverse engineering C++ programs. We published work that addressed this goal in

the Proceedings of the Dagstuhl Seminar on Transformation Techniques in Software

102

Engineering [Kraft et al. 2005a], in the Proceedings of Future Play 2005 [Jamieson
et al. 2005], in the Proceedings of the 18th International Conference on Software
Engineering and Knowledge Engineering [Hoipkemier et al. 2006], and in the Special
Issue on Fxperimental Software and Toolkits of the journal Science of Computer

Programming [Kraft et al. 2007b]. We presented this work in Chapters 5, 6, and 7.

Evaluation Criteria

1. The tool is open-source and available on the Web.

2. The tool correctly parses, instantiates, and specializes templates.
3. The tool consists of loosely coupled, reusable modules.

4. The tool provides a module for linking C++ translation units.

5. The tool provides an API module for accessing information about declarations,

statements, and some expressions.
6. The tool exchanges information via conforming instances of GXL schemas.

7. The tool is robust and efficient enough to use on medium-sized C++ programs,
which contain up to 500000 lines of non-commented, non-preprocessed lines

of code.

8. The tool is general purpose.

To address evaluation criterion 1, we placed our tool chain for reverse engineering
C++ programs, gre, in our SourceForge.net repository [Kraft 2006]. In Section 5.1,
we described the architecture of g*re, which uses gcc to correctly parse, instantiate,
and specialize templates, and to address evaluation criterion 2. We also described
the six constituent modules: the ASG module, the schema and serialization mod-
ules, the transformation modules, the linking module, and the API module. The
modular GXL-based pipe-filter architecture of g*re addresses evaluation criterion 3
and 6; notable modules are the linking module and the API module, which address
evaluation criteria 4 and 5, respectively. We plan to reuse the linking and API

modules for another project in the immediate future.

103

In Chapters 6 and 7, we described many experiments that we have performed
with g*re. In Section 6.1, we described our most recent test suite, which contains
12 popular, open-source applications and libraries. The test suite consists of 1,200
C++ translation units and approximately 1000000 lines of non-commented, non-
preprocessed code. The largest test case that we used with g*re contained approx-
imately 365000 lines of code; we described this test case in Subsection 7.1.4. In
Sections 6.2 and 6.3, we described case studies that measure the costs of common
reverse engineering and program analysis tasks, and address criterion 7. Finally,
to address evaluation criterion 8, we presented empirical evaluations that we per-
formed with g*re in two areas: (1) software measurement, specifically, computation
of object-oriented metrics, in Section 7.1, and (2) program comprehension, specifi-

cally, three-dimensional visualization of class template diagrams, in Section 7.2.

Problem 3: A Repository of Reverse Engineering Artifacts
Goal

Our goal for this problem was to create a public repository of reverse engineering ar-
tifacts, and to populate it with empirical results, including all tools, scripts, and doc-
uments needed to reproduce the results. We published work that addressed this goal
in the Proceedings of the 12th Working Conference on Reverse Engineering [Kraft
et al. 2005b], and in the journal Information and Software Technology [Kraft et al.
2007a]. We presented the repository artifacts in the case studies of Chapter 6. We

present links to the repository in Appendix B.

Evaluation Criteria
1. The repository contains a test suite, including important details about each

test case:

e Version
e Size metrics

e Configuration and build information

104

2. For at least one graph at each level of our hierarchy (see Problem 1), the
repository contains:
e A GXL schema

e Tools that exchange information via conforming GXL instances of the

schema
e GXL instances of the schema for each test case in the test suite

e A graph transformation that summarizes the information in a GXL in-
stance

e Empirical results that show the space and time costs incurred by the

documents and tools, respectively

3. The repository contains all artifacts needed to reproduce the results described

in the previous items, including platform information for each experiment.

4. The repository is available to the public, particularly the reverse engineering

community.

We created a repository at SourceForge.net to hold our reverse engineering arti-
facts [Kraft 2006]. We populated our repository with the test suite information and
artifacts specified in evaluation criteria 1 through 3. The specific graphs for which
we created GXL schemas are: the ASG, the API, the class diagram, the call graph,
the CFG, the ORD, the ICFG, and the class firewall. The specific graphs for which
we created tools are: the ASG, the API, the class diagram, the ORD, and the class
firewall'. All of the tools are part of the GXL-based pipe-filter architecture of gire.
Finally, to address evaluation criterion 4, we described our repository in the two
publications mentioned above, cited it in several other publications, and discussed

it in our November 2005 presentation at WCRE.

1Special thanks to the CpSc 829 students in Fall 2005, particularly Ben Hoipkemier, for providing
the class firewall tool.

105

APPENDICES

A Acronyms and Abbreviations

API — Application Programming Interface
ASG — Abstract Syntax Graph

CCFG — Class Control Flow Graph

CDG — Control Dependence Graph

CFG — Control Flow Graph

CTD — Class Template Diagram

DIT — Depth of Inheritance Tree

DTD — Document Type Definition

GCC — GNU Compiler Collection

GXL — Graph eXchange Language

ICFG - Interprocedural Control Flow Graph
NOA — Number of Ancestors

NOC — Number of Children

00 — Object-Oriented

ORD — Object Relation Diagram

PDG — Program Dependence Graph

SDG — System Dependence Graph

SEF — Standard Exchange Format

TU — Translation Unit

UML — Unified Modeling Language
WCRE — Working Conference on Reverse Engineering
WMC - Weighted Methods per Class

XML — Extensible Markup Language

XSL — Extensible Stylesheet Language
XSLT - XSL Transformations

109

B Repository of Reverse Engineering Artifacts

GXL Schemas
Level 0
Level 1
Level 11

Level III

Level IV

GXL Instances
Level 0

Level 1

Level 11

Level III
Level IV

Other Artifacts

GENERIC.gx1
CppInfo.gxl
ClassDiagram.gxl
CallGraph.gxl
CFG.gx1l

ORD.gx1

ICFG.gx1

ClassFirewall.gxl

ASG/
API/
ClassDiagram/
ORD/

ClassFirewall/

tools/

transformations/

results/

111

http://g4re.sourceforge.net/GXL/schema/GENERIC.gxl
http://g4re.sourceforge.net/GXL/schema/CppInfo.gxl
http://g4re.sourceforge.net/GXL/schema/ClassDiagram.gxl
http://g4re.sourceforge.net/GXL/schema/CallGraph.gxl
http://g4re.sourceforge.net/GXL/schema/CFG.gxl
http://g4re.sourceforge.net/GXL/schema/ORD.gxl
http://g4re.sourceforge.net/GXL/schema/ICFG.gxl
http://g4re.sourceforge.net/GXL/schema/ClassFirewall.gxl
http://g4re.sourceforge.net/GXL/instance/ASG/
http://g4re.sourceforge.net/GXL/instance/API/
http://g4re.sourceforge.net/GXL/instance/ClassDiagram/
http://g4re.sourceforge.net/GXL/instance/ORD/
http://g4re.sourceforge.net/GXL/instance/ClassFirewall/
http://g4re.sourceforge.net/tools/
http://g4re.sourceforge.net/transformations/
http://g4re.sourceforge.net/results/

BIBLIOGRAPHY

Auo, A. V., Lam, M. S., SETHI, R., AND ULLMAN, J. D. 2006. Compilers: Prin-
ciples, Techniques, and Tools, Second ed. Addison-Wesley.

AIGNER, G., DiwaAN, A., HEINE, D. L., LaMm, M. S., MOORE, D. L., MURPHY,
B. R., AND SAPUNTZAKIS, C. 2006. An overview of the SUIF2 compiler infras-
tructure. http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/overview.ps.

ArL-ExraM, R. AND KoONTOGIANNIS, K. 2005. An XML-based framework for lan-
guage neutral program representation and generic analysis. In Proceedings of the
Ninth European Conference on Software Maintenance and Reengineering. IEEE
Computer Society, Manchester, UK.

ALEXANDRESCU, A. 2001. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

ANDREWS, J. H. 2004. Relevant empirical testing research: Challenges and re-
sponses. ACM SIGSOFT Software Engineering Notes 29, 5 (September), 1-4.

ANTONIOL, G., PENTA, M. D., MASONE, G., AND VILLANO, U. 2004. Compiler
hacking for source code analysis. Software Quality Journal 12, 4 (December), 383—
406.

ARIKAN, O. 2006. Pixie version 1.5.2. http://pixie.sourceforge.net.

BELL CANADA INC. 2000. DATRIX - Abstract Semantic Graph Reference Manual,
1.4 ed. Bell Canada Inc., Montreal, Canada.

BobiN, F., BECKMAN, P., GANNON, D., GOTWALS, J., NARAYANA, S., SRINIVAS,
S., AND WINNICKA, B. 1994. Sage-++: An object-oriented toolkit and class library
for building Fortran and C++ restructuring tools. In Proceedings of the Second
Annual Object-Oriented Numerics Conference. Sunriver, OR, USA, 122-136.

Bray, T., PaoLl, J., SPERBERG-MCQUEEN, C. M., MALER, E., AND YERGEAU,
F. 2006. Extensible markup language (XML) 1.0. W3C recommendation, W3C.

Buy, U., Orso, A., AND PEzzE, M. 2000. Automated testing of classes. In Proceed-

ings of the International Symposium on Software Testing and Analysis. Portland,
OR, USA.

CHIDAMBER, S. R. AND KEMERER, C. F. 1994. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering 20, 6, 476-493.

CLANLIB ProJECT. 2005. ClanLib Game SDK. http://www.clanlib.org.

CpPUNIT PROJECT. 2006. CppUnit version 1.10.2. http://cppunit.sourceforge.net.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K.
1991. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems 13, 4
(October), 451-490.

CzERANSKI, J., EISENBARTH, T., KiENLE, H., KOSCHKE, R., PLODEREDER, E.,
SIMON, D., GIRARD, J. F., AND WURTHNER, M. 2000. Data exchange in bauhaus.
In Proceedings of the Seventh Working Conference on Reverse Engineering. IEEE
Computer Society, Brisbane, Australia, 293-295.

DaAs, M. 2000. Unification-based pointer analysis with directional assignments. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation. Vancouver, BC, Canada, 35-46.

DeaN, T. R., MALTON, A. J., AND HoLT, R. C. 2001. Union schemas as a basis
for a C++ extractor. In Proceedings of the Eighth Working Conference on Reverse
Engineering. IEEE Computer Society, Stuttgart, Germany. www.cppx.com.

Do, H., ELBAUM, S., AND ROTHERMEL, G. 2005. Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering 10, 4 (October), 405-435.

Durry, E. B. AND MALLOY, B. A. 2005. A language and platform-independent
approach for reverse engineering. In Proceedings of the Third ACIS International
Conference on Software Engineering Research, Management & Applications. 415—
422.

EBERT, J., KULLBACH, B., AND WINTER, A. 1999. GraX — an interchange format

for reengineering tools. In Proceedings of the Sixth Working Conference on Reverse
Engineering. IEEE Computer Society, Atlanta, GA, USA, 89-98.

EDp1soN DEsIGN GRrouP. 2000. C++ Front End. http://www.edg.com/cpp.html.

EICHBERG, M., MEZINI, M., OSTERMANN, K. AND SCHAFER, T. 2004. XIRC: A
kernel for cross-artifact information engineering in software development environ-

ments. In Proceedings of the Eleventh Working Conference on Reverse Engineering.
IEEE Computer Society, Delft, The Netherlands, 182—191.

EICHELBERCER, H. AND V. GUDENBERG, J. W. 2000. UML description of the STL.
In Proceedings of the First Workshop on C++ Template Programming. Erfurt,
Germany. http://oonumerics.org/tmpw00/.

EIGLSPERGER, M., GUTWENGER, C., KAUFMANN, M., KUPKE, J., JüNGER,
M., LEIPERT, S., KLEIN, K., MUTZEL, P., AND SIEBENHALLER, M. 2004. Au-

tomatic layout of uml class diagrams in orthogonal style. Information Visualiza-
tion 3, 3, 189-208.

ErvLiorT SiM, S., EASTERBROOK, S., AND HorT, R. C. 2002. On using a benchmark
to evaluate C++ extractors. In Proceedings of the Tenth International Workshop
on Program Comprehension. Paris, France, 114-123.

ErLiorT SiM, S. AND KOSCHKE, R. 2001. WoSEF: Workshop on standard exchange
format. ACM SIGSOFT Software Engineering Notes 26, 1 (January), 44-49.

114

Enag, D. 2002. Combining static and dynamic data in code visualization. In Pro-
ceedings of the 2002 ACM SIGPLAN-SIGSOFT workshop on Program Analysis for
Software Tools and Engineering. Charleston, SC, USA, 43-50.

ERNST, J. 1997. Introduction to cdif. http://www.eigroup.org/-cdif/intro.html.

EXPAT PROJECT. 2005. The Expat XML Parser version 1.95.8.
http://expat.sourceforge.net.

FeEws, L. M. G. AND VAN OMMERING, R. C. 1999. Relation partition algebra —
mathematical aspects of uses and part-of relations. Science of Computer Program-
ming 33, 2 (February), 163-212.

FeENTON, N. E. AND PFLEEGER, S. L. 1998. Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., Boston, MA, USA.

FERENC, R., BESZEDES, A., TARKIAINEN, M., AND GYIMOTHY, T. 2002. Colum-
bus - reverse engineering tool and schema for C++. In Proceedings of the 18th
International Conference on Software Maintenance. Montreal, Canada, 172-181.

Ferenc, R., ErviorT SiMm, S., Horr, R. C., KOSCHKE, R., AND GYIMOTHY,
T. 2001. Towards a standard schema for C/C++. In Proceedings of the Fighth
Working Conference on Reverse Engineering. Stuttgart, Germany, 49-58.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987. The program

dependence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems 9, 3 (July), 319-349.

FeErrReTT, L. K. AND OFFUT, J. 2002. An empirical comparison of modularity
of procedural and object-oriented software. In Proceedings of the Fighth Interna-
tional Conference on Engineering of Complex Computer Systems. IEEE Computer
Society, Greenbelt, MD, USA, 173-182.

FinNiGAN, P., HoLr, R., KaLAs, 1., KERR, S., KONTOGIANNIS, K., MULLER, H.,
MyLopPOULOS, J., PERELGUT, S., STANLEY, M., AND WoONG, K. 1997. The
software bookshelf. IBM Systems Journal 36, 4 (November), 564-593.

FruxBox ProJECT. 2006. FluxBox version 0.9.14. http://www.fluxbox.org.

FowLER, M. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third ed. Addison-Wesley.

FREE SOFTWARE FOUNDATION. 2002. GNU Compiler Collection.
http://www.gnu.org/software/gcc/.

GAaMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patters.
Addison-Wesley.

GLUCK, R. AND LOWRY, M. R., Eds. 2005. Generative Programming and Component
Engineering. Lecture Notes in Computer Science, vol. 3676. Tallinn, Estonia.

GRAHAM, S. L., KESSLER, P. B., AND MckKUSICK, M. K. 1982. Gprof: A call graph
execution profiler. ACM SIGPLAN Notices 17, 6 (June), 120-126.

115

GRrAVES, T. L., HARROLD, M. J., KiMm, J.-M., PORTER, A., AND ROTHERMEL, G.

2001. An empirical study of regression test selection techniques. ACM Transactions
on Software Engineering and Methodology 10, 2 (April), 184-208.

Group, O. M. 2005. MOF 2.0/XMI mapping specification, v2.1. Tech. rep. Septem-
ber.

GRrROVE, D., DEFouw, G., DEAN, J., AND CHAMBERS, C. 1997. Call graph con-
struction in object-oriented languages. ACM SIGPLAN Notices 32, 10 (October),
108-124.

GSCHWIND, T., PINZGER, M., AND GALL, H. 2004. TUAnalyzer - analyzing tem-
plates in C++ code. In Proceedings of the Eleventh Working Conference on Reverse
Engineering. IEEE Computer Society, Delft, The Netherlands, 48-57.

Guo, X., CorDy, J. R., AND DEAN, T. R. 2003. Unique renaming of java using
source transformation. In Proceedings of the Third IEEE International Workshop
on Source Code Analysis and Manipulation. IEEE Computer Society, Amsterdam,
The Netherlands, 151-160.

GUTWENGER, C., JUNGER, M., KLEIN, K., KUPKE, J., LEIPERT, S., AND MUTZEL,

P. 2003. A new approach for visualizing uml class diagrams. In Proceedings of the
2003 ACM Symposium on Software Visualization. San Diego, CA, USA, 179-188.

HARROLD, M. J., MALLOY, B. A., AND ROTHERMEL, G. 1993. Efficient construc-

tion of program dependence graphs. In Proceedings of the International Symposium
on Software Testing and Analysis. Boston, MA, USA, 139-148.

HArRrROLD, M. J., ROSENBLUM, D., ROTHERMEL, G., AND WEYUKER, E. 2001.
Empirical studies of a prediction model for regression test selection. IEEFE Trans-
actions on Software Engineering 27, 3 (March), 248-263.

HENNESSY, M., MALLOY, B. A., AND POWER, J. F. 2003. gccXfront: Exploiting gcc
as a front end for program comprehension tools via XML/XSLT. In Proceedings of
the Eleventh International Workshop on Program Comprehension. IEEE Computer
Society, Portland, OR, USA, 298-299.

HoDGSON, N. 2006. Scintilla version 1.66. http://www.scintilla.org.

HorpkEMIER, B. N., KRAFT, N. A., AND MALLOY, B. A. 2006. 3d visualization of
class template diagrams for deployed open source applications. In Proceedings of
the Eighteenth International Conference on Software Engineering and Knowledge
Engineering. San Francisco, CA, USA.

Hovrr, R., GODFREY, M., AND MALTON, A. 2005. Swag: Software architecture
group. http://swag.uwaterloo.ca/tools.html.

Hovrr, R., SCHURR, A., ELLIOTT SIM, S., AND WINTER, A. 2003. GXL - Graph
eXchange Language. http://www.gupro.de/GXL.

Hovrr, R., SCHURR, A., ELLIOTT SiM, S., AND WINTER, A. 2006. GXL: A Graph-
Based Standard Exchange Format for Reengineering. Science of Computer Pro-
gramming 60, 4, 149-170.

116

Horr, R. C. 1997. An introduction to TA: The tuple-attribute language.
http://www.swag.uwaterloo.ca/pbs/papers/ta.html.

IBM JIKES PROJECT. 2006. Jikes version 1.22. http://jikes.sourceforge.net.

ISO/IEC JTC 1. 1998. International Standard: Programming Languages — C++,
First ed. Number 14882:1998(E) in ASC X3. ANSIL

JaMmieson, A. C., KrRarT, N. A., HALLSTROM, J. O., AND MALLOY, B. A. 2005.
A metric evaluation of game application software. In Proceedings of Future Play
2005. East Lansing, MI, USA.

JAZAYERI, M., Loos, R., AND MUSSER, D., Eds. 2000. Generic Programming. Lec-
ture Notes in Computer Science, vol. 1766. Springer-Verlag, Heidelberg, Germany.

JIN, D. AND CORDY, J. 2005. Ontology-based software analysis and reengineering
tool integration: The oasis service-sharing methodology. In Proceedings of the 21st
International Conference on Software Maintenance. Budapest, Hungary, 613-616.

JIN, D., CorDY, J. R., AND DEAN, T. R. 2002. Where’s the schema? a taxonomy of
patterns for software exchange. In Proceedings of the 10th International Workshop
on Program Comprehension. IEEE Computer Society, Washington, DC, USA, 65—
75.

JoONES, J. A. AND HARROLD, M. J. 2005. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. Long Beach, CA,
USA, 273-282.

JoNEs, J. A., Orso, A., AND HARROLD, M. J. 2004. Gammatella: Visualizing

program-execution data for deployed software. Information Visualization 3, 3,
173-188.

KaczMAREK, A. 2003. Gxl validator, validierung von gxl-dokumenten auf instanz-,
schema, und metaschema-ebene. Studienarbeit, Universitit Koblenz, Fachbereich
Informatik, Koblenz, Germany.

KAzMAN, R. AND CARRIERE, S. J. 1999. Playing detective: Reconstructing soft-
ware architecture from available evidence. Journal of Automated Software Engi-
neering 6, 2 (April), 107-138.

KEYSTONE PROJECT. 2005. Keystone version 0.2.3. http://keystone.sourceforge.net.
KITwARE, INC. 2005. GCC-XML. http://www.gccxml.org.

KrinT, P., LAMMEL, R., AND VERHOEF, C. 2005. Towards an engineering discipline
for grammarware. Draft, Submitted for publication; Online since July 2003, 47

pages.

KNAPEN, G., LAGUE, B., DAGENAIS, M., AND MERLO, E. 1999. Parsing C++
despite missing declarations. In Proceedings of the Seventh International Workshop
on Program Comprehension. Pittsburgh, PA, USA.

117

KopPLER, R. 1997. A systematic approach to fuzzy parsing. Software — Practice
and Experience 27, 6 (June), 637-649.

KrarT, N. A. 2006. Repository of reverse engineering artifacts.
http://gdre.sourceforge.net.

KrarT, N. A., LLoyD, E. L., MaLLoy, B. A., AND CLARKE, P. J. 2006. The
implementation of an extensible system for comparison and visualization of class
ordering methodologies. Journal of Systems and Software 79, 8, 1092-1109.

KRAFT, N. A., MALLOY, B. A., AND POWER, J. F. 2005a. gre: Harnessing gcc
to reverse engineer C++ applications. In Transformation Techniques in Software
Engineering. Number 05161 in Dagstuhl Seminar Proceedings. Dagstuhl, Germany.

KRAFT, N. A., MALLOY, B. A., AND POWER, J. F. 2005b. Toward an infrastructure
to support interoperability in reverse engineering. In Proceedings of the Twelfth
Working Conference on Reverse Engineering. IEEE Computer Society, Pittsburgh,
PA, USA.

KRrAFT, N. A., MALLOY, B. A., AND POWER, J. F. 2007a. An infrastructure to
support interoperability in reverse engineering. Informating and Software Technol-
ogy 49, 3, 292-307.

KRrAFT, N. A., MALLOY, B. A., AND POWER, J. F. 2007b. A tool chain for reverse
engineering C++ applications. Science of Computer Programming, Special Issue
on Ezperimental Software and Toolkits. (accepted for publication).

KuLLBACH, B., WINTER, A., DAHM, P., AND EBERT, J. 1998. Program compre-

hension in multi-language systems. In Proceedings of the Fifth Working Conference
on Reverse Engineering. IEEE Computer Society, Honolulu, HI, USA, 135-143.

Kung, D., Gao, J., AND Hsia, P. 1995. Class firewall, test order, and regression
testing of object-oriented programs. Journal of Object-Oriented Programming 8, 2
(May), 51-65.

Kunz, P. F. 2006. HippoDraw 1.15.8. http://www.slac.stanford.edu/grp/ek /hippodraw/.

LABICHE, Y., THEVENOD-FOSSE, P., WAESELYNCK, H., AND DURAND, M.-H. 2000.
Testing levels for object-oriented software. In Proceedings of the 22nd International
Conference on Software Engineering. ACM Press, Limerick, Ireland, 136-145.

LAPIERRE, S., LAGUE, B., AND LEDUC, C. 2001. Datrix source code model and
its interchange format: Lessons learned and considerations for future work. ACM
SIGSOFT Software Engineering Notes 26, 1 (January), 53-56.

LENGAUER, C., BATORY, D., ConsgL, C., AND ODERSKY, M., Eds. 2004. Domain-
Specific Program Generation. Number 3016 in Lecture Notes in Computer Science.
Springer-Verlag.

LETHBRIDGE, T. C. 2001. Report from the dagstuhl seminar on interoperability
of reengineering tools. In Proceedings of the Ninth International Workshop on
Program Comprehension. Toronto, ON, Canada, 119.

118

LETHBRIDGE, T. C. 2003. The dagstuhl middle model: An overview. Presented at the
First International Workshop on Metamodels and Schemas for Reverse Engineering.

LETHBRIDGE, T. C., TICHELAAR, S., AND PLODEREDER, E. 2004. The dagstuhl
middle metamodel: A schema for reverse engineering. FElectronic Notes in Theo-
retical Computer Science 94, T-18.

LEWERENTZ, C. AND SIMON, F. 2002. Metrics-based 3d visualization of large object-
oriented programs. In Proceedings of the First International Workshop on Visual-
izing Software for Understanding and Analysis. Paris, France, 70-77.

LicqQ PROJECT. 2006. Licq version 0.2.3. http://www.licq.orq.

LiLLEY, J. 1997. PCCTS-based LL(1) C++ parser: Design and theory of operation.
Version 1.5.

LiN, Y., HoLt, R. C., AND MALTON, A. 2003. Completeness of a fact extractor.
In Proceedings of the Tenth Working Conference on Reverse Engineering. IEEE
Computer Society, Victoria, BC, Canada, 196-205.

MACCORMACK, A., RUSNAK, J., AND BALDWIN, C. 2004. Exploring the structure

of complex software designs: An empirical study of open source and proprietary
code. Working Paper 05-016, Harvard Business School, Boston, MA, USA.

MarLoy, B. A., CLARKE, P. J., AND LLoyD, E. L. 2003. A parameterized cost
model to order classes for integration testing of c++ applications. In Proceedings

of the 14th International Symposium on Software Reliability Engineering. Denver,
CO, USA, 353-364.

MaLroy, B. A., GiBBs, T. H., AND POWER, J. F. 2003a. Decorating tokens
to facilitate recognition of ambiguous language constructs. Software, Practice €
FExperience 33, 1, 19-39.

MaLLoy, B. A., GiBBs, T. H., AND POWER, J. F. 2003b. Progression toward
conformance for C++ language compilers. Dr. Dobbs Journal, 54—60.

MaLLoy, B. A. AND POWER, J. F. 2002. Program annotation in XML: A parser-
based approach. In Proceedings of the Ninth Working Conference on Reverse En-
gineering. IEEE Computer Society, Richmond, VA, USA, 190-198.

MALLOY, B. A. AND POWER, J. F. 2005. Using a molecular metaphor to facilitate
comprehension of 3d object diagrams. In Proceedings of the 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing. Dallas, TX, USA, 233-240.

Mamas, E. AND KoNTOGIANNIS, K. 2000. Towards portable source code represen-
tations using XML. In Proceedings of the Seventh Working Conference on Reverse
Engineering. IEEE Computer Society, Washington, DC, USA, 172.

MaRrcus, A., FENG, L., AND MALETIC, J. I. 2003. 3d representations for software

visualization. In Proceedings of the 2008 ACM Symposium on Software Visualiza-
tion. San Diego, CA, USA, 27-36, 207-208.

119

McPEAK, S. 2005. Elkhound: A fast, practical GLR parser generator. Tech. Rep.
UCB/CSD-2-1214, University of California, Berkeley. April.

McQUILLAN, J. A. AND POWER, J. F. 2006. Experiences of using the dagstuhl mid-
dle metamodel for defining software metrics. In Proceedings of the Fourth Interna-

tional Conference on Principles and Practices of Programming in Java. Mannheim,
Germany, 194-198.

MERRILL, J. 2003. GENERIC and GIMPLE: A new tree representation for entire
functions. In Proceedings of the 20038 GCC Developers Summit. Ottawa, Canada,
171-180.

MICROSOFT CORPORATION. 2006. C# language specification.
http://msdn.microsoft.com/netframework /ecma,/ .

MULLER, H. A., JAHNKE, J. H., SmiTH, D. B., STOREY, M.-A., TILLEY, S. R.,
AND WoONG, K. 2000. Reverse engineering: A roadmap. In Proceedings of the
Conference on The Future of Software Engineering. Limerick, Ireland.

MUNCH, M. 1999. Programmed graph rewriting system progres. Proceedings of the
International Workshop on Applications of Graph Transformations with Industrial
Relevance 1779, 441-448.

MurPHY, G. C. AND NOTKIN, D. 1996. Lightweight lexical source model extraction.
ACM Transactions on Software Engineering and Methodology 5, 3 (July), 262-292.

MurpHY, G. C., NOTKIN, D., GrRiswoLD, W. G., AND LAN, E. S. 1998. An
empirical study of static call graph extractors. ACM Transactions on Software
Engineering and Methodology 7, 2 (April), 158-191.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. 1993. ECMA: Reference
model for frameworks of software engineering environments. Technical Report.

NIERSTRASZ, O., DUCASSE, S., AND GIRBA, T. 2005. The story of moose: an agile

reengineering environment. In Proceedings of the European Software Engineering
Conference (ESEC/FSE 2005). ACM Press, New York, NY, USA, 1-10.

OBJECT MANAGEMENT GROUP. 2005. UML Superstructure Specification, v2.0.

ORsO, A., APIWATTANAPONG, T., Law, J. B., ROTHERMEL, G., AND HARROLD,
M. 2004. An empirical comparison of dynamic impact analysis algorithms. In Pro-
ceedings of the 26th International Conference on Software Engineering. Edinburgh,
Scotland, 491-500.

PARBERRY, [. 2000. Learn Computer Game Programming with DirectX 7.0. Wood-
ward Publishing Co., Plano, TX, USA.

PARBERRY, I., RODEN, T., AND KAZEMZADEH, M. B. 2005. Experience with an
industry-driven capstone course on game programming: Extended abstract. In
Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Edu-
cation. St. Louis, MO, USA, 91-95.

120

PauLsoN, J. W., Succi, G., AND EBERLEIN, A. 2004. An empirical study of
open-source and closed-source software products. IEEE Transactions on Software
Engineering 30, 4, 246-256.

PAzERA, E. 2003. Focus on SDL. Premier Press, Cincinnati, OH, USA.

Power, J. F. AND MALLOY, B. A. 2000. Symbol table construction and name
lookup in ISO C++. In Proceedings of the 37th International Conference on Tech-
nology of Object-Oriented Languages and Systems. Sydney, Australia, 57-68.

REBELLION. 2005. Aliens vs Predator version CVS 07/22/05.
http://www.icculus.org/avp.

REISs, S. AND Davis, T. 1995. Experiences writing object-oriented compiler front
ends. Tech. rep., Brown University. January.

RoOSKIND, J. 1989. A YACC-able C++ 2.1 grammar, and the resulting ambiguities.
Independent Consultant, Indialantic FL.

ROTHERMEL, G. AND HARROLD, M. J. 1998. Empirical studies of a safe test selection
technique. IEEE Transactions on Software Engineering 24, 6 (June), 401-419.

SALAH, M. AND MANCORIDIS, S. 2003. Toward an environment for comprehending
distributed systems. In Proceedings of the Tenth Working Conference on Reverse
Engineering. IEEE Computer Society, Victoria, BC, Canada, 238-247.

SCRIBUS PROJECT. 2006. Scribus version 1.2.3. http://www.scribus.net.

SIEK, J. G. AND LUMSDAINE, A. 2005. Essential language support for generic pro-
gramming. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation. Chicago, IL, USA, 73-84.

SIMPLE DIRECTMEDIA LAYER PROJECT. 2005. Simple DirectMedia Layer.
http://www.libsdl.org.

SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. 1999. System-dependence-graph-
based slicing of programs with arbitrary interprocedural control flow. In Proceedings

of the 21st International Conference on Software Engineering. Los Angeles, CA,
USA.

SKOGLUND, M. AND RUNESON, P. 2005. A case study of the class firewall regression
test selection technique on a large scale distributed software system. In Proceedings
of the International Symposium on Emperical Software Engineering. Australia.

SOURCE-NAVIGATOR TEAM. 2005. The Source-Navigator IDE.
http://sourcenav.sourceforge.net.

STEWARD, D. V. 1981. The design structure system: A method for managing the
design of complex systems. IEFE Transactions on Engineering Management 28, 3,
71-84.

SUN MICROSYSTEMS INC. 2006. Java language specification. Version 5.

121

VAN DER Z1JP, J. 2006. The FOX Toolkit Library version 1.4.17. http://www.fox-
toolkit.org.

VAN HEESCH, D. 2006. Doxygen version 1.4.4. http://stack.nl/ dimitri/doxygen/.

VANDEVOORDE, D. AND JosutTTis, N. M. 2002. C++ Templates: The Complete
Guide. Addison Wesley.

VELDHUIZEN, T. L. 2000. Five compilation models for C++ templates. In Pro-
ceedings of the First Workshop on C++ Template Programming. Erfurt, Germany.
http://oonumerics.org/tmpw00/.

VELDHUIZEN, T. L. 2003. C++ templates are turing complete. Tech. rep., Indiana
University.

VELDHUIZEN, T. L. AND GANNON, D. 1998. Active libraries: Rethinking the
roles of compilers and libraries. In Proceedings of the SIAM Workshop on Object
Oriented Methods for Interoperable Scientific and Engineering Computing. SIAM
Press, Yorktown Heights, NY, USA.

VINCIGUERRA, L., WILLS, L., KEJRIWAL, N., MARTINO, P., AND VINCIGUERRA, R.
2003. An experimentation framework for evaluating disassembly and decompilation
tools for C++ and Java. In Proceedings of the Tenth Working Conference on
Reverse Engineering. IEEE Computer Society, Victoria, BC, Canada, 14-23.

WonNgG, K. 1998. Rigi user’s manual — version 5.4.4.
http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html.

Wu, J. anD Horr, R. C. 2004. Resolving linkage anomalies in extracted software
system models. In Proceedings of the Twelfth IEEE International Workshop on
Program Comprehension. Bari, Italy, 241-245.

XSLTPROC PrOJECT. 2005. xsltproc version 1.1.
http://xmlsoft.org/XSLT /xsltproc2.html.

zLIB PROJECT. 2005. zlib version 1.2.3. http://www.zlib.net.

122

	Clemson University
	TigerPrints
	5-2007

	An Infrastructure to Support Interoperability in Reverse Engineering
	Nicholas Kraft
	Recommended Citation

	An Infrastructure to Support Interoperability in Reverse Engineering

