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ABSTRACT

An infrastructure that supports interoperability among reverse engineering tools

and other software tools is described. The three major components of the infrastruc-

ture are: (1) a hierarchy of schemas for low- and middle-level program representation

graphs, (2) g4re, a tool chain for reverse engineering C++ programs, and (3) a repos-

itory of reverse engineering artifacts, including the previous two components, a test

suite, and tools, GXL instances, and XSLT transformations for graphs at each level

of the hierarchy. The results of two case studies that investigated the space and

time costs incurred by the infrastructure are provided. The results of two empirical

evaluations that were performed using the api module of g4re, and were focused on

computation of object-oriented metrics and three-dimensional visualization of class

template diagrams, respectively, are also provided.
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Chapter 1

Introduction

In their roadmap for reverse engineering, Müller et al. [2000] explain why reverse

engineering tools are critical for controlling the high cost and risk of legacy system

evolution. They identify wider adoption as a significant challenge to increased ef-

fectiveness of reverse engineering tools, and state that failure to adopt is caused in

part by the lack of interoperability among reverse engineering tools and common

academic and industrial software tools. Standard exchange formats (SEF) such as

the Graph eXchange Language (GXL) have been created to increase interoperabil-

ity, but previous research has not adequately exploited the semantic specification

capabilities of these SEF’s. These semantic specification capabilities allow meaning,

in addition to structure, to be encoded and exchanged, thus allowing type validation

in addition to structural validation.

Accessibility, comparability, reproducibility, and reusability of results are issues

tightly coupled to interoperability. To evaluate a new technique, a comparison of

the new technique to an existing technique must be performed; to perform the

comparison, the reproduction or reuse of the existing results is required. However,

researchers have reported considerable difficulty in interpreting and reproducing ex-

perimental results. In language design and implementation, for example, Das [2000]

and Murphy et al. [1998] reported difficulty in reproducing results in points-to analy-

sis and call graph construction, respectively. In addition, benchmarks are commonly

used to evaluate and compare results, but require manual effort if infrastructure sup-

port is not provided.

To address the problems of accessibility, comparability, reproducibility, and

reusability, we describe an infrastructure that supports interoperability among re-

verse engineering tools and other software tools [Kraft et al. 2005b; 2007a]. The



three major components of our infrastructure are: (1) a hierarchy of schemas for

low- and middle-level program representation graphs, (2) g4re, a tool chain for re-

verse engineering C++ programs [Kraft et al. 2005a; 2007b], and (3) a repository of

reverse engineering artifacts, including the previous two components, a test suite,

and tools, GXL instances, and XSLT transformations for graphs at all levels of the

hierarchy [Kraft 2006].

1.1 Research Problems

The problems we investigated are in the area of reverse engineering; in particular, we

investigated infrastructure support for interoperability. Statements of the problems

follow.

Problem 1: Schemas for Low- and Middle-Level

Program Representation Graphs

At the Dagstuhl Seminar on Interoperability of Reengineering Tools [Lethbridge

2001], GXL [Holt et al. 2006] was ratified as the standard format for exchange

of graphs among reverse engineering and reengineering tools. In addition, the

participants agreed upon three levels at which interoperability should be applied:

(1) low-level graph structures, including abstract syntax trees (AST) and graphs

(ASG); (2) middle-level graph structures, including call graphs and control flow

graphs (CFG); and (3) high-level graph structures, including architecture descrip-

tions. Two GXL schemas for low-level graphs, but no GXL schemas for middle-level

graphs, have been described in the literature.

Only two schemas for low-level graphs have been encoded in GXL and suggested

as standard schemas: the Columbus C++ ASG schema [Ferenc et al. 2001], and

the Dagstuhl Middle Metamodel (DMM) [Lethbridge et al. 2004]. However, neither

of these schemas has been ratified, or widely adopted by tool developers. In addi-

tion, neither schema accurately and adequately represents C++ templates, including

instantiations, specializations, and partial specializations. Finally, the DMM repre-

2



sents neither information about function pointers, nor the information necessary to

create instances of several schemas for middle-level graphs, including control flow

graphs.

Goal

Create GXL schemas for low- and middle-level graphs, and use known transforma-

tions between graphs to guide the organization of the schemas into a hierarchy.

Evaluation Criteria

1. The hierarchy is arranged in levels, such that an instance of a schema at one

level can be created using only information contained in instances of schemas

at previous levels.

2. Instances of low-level schemas contain the information needed to create in-

stances of middle-level schemas, including call graphs, class-centric graphs,

control flow graphs, and dependency graphs.

3. Low-level schemas are language-specific, and middle-level schemas are

language-independent.

4. Low-level schemas for C++ accurately and adequately represent templates,

including instantiations, specializations, and partial specializations.

5. Low-level schemas for C++ represent function pointers, including member

function pointers.

Problem 2: Tool Support for Reverse Engineering C++ Programs

Source code based reverse engineering tools require a parser and front end to recog-

nize the application under analysis, and to create a representation of the recognized

program, such as an ASG. The difficulties that arise during the construction of a

parser and front end for C++ are well documented, and are largely due to the size

of the language, and the complexity of the template sublanguage [Bodin et al. 1994;

Knapen et al. 1999; Lilley 1997; Power and Malloy 2000; Reiss and Davis 1995;
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Roskind 1989; Veldhuizen 2003]. Many research endeavors have focused on the cre-

ation of a C++ parser and front end to enable analysis of C++ programs [Ferenc

et al. 2002; Malloy et al. 2003a; McPeak 2005]; however, none of these tools can

provide a correct parse tree for C++ programs that use templates, including “hello

world”, which uses the iostream library, and thus templates.

The GNU Compiler Collection [2002] includes gcc, a public domain, industrial

strength compiler for C++ that fully handles templates. Several researchers have

used the gcc parser and front end to create tools for reverse engineering C++ [An-

toniol et al. 2004; Dean et al. 2001; Gschwind et al. 2004; Hennessy et al. 2003].

Until version 3.0 of gcc was released, such tools were, of necessity, tightly coupled

to the compiler internals. Since then, gcc has provided, via a command line flag, a

facility for writing the ASG for the given translation unit to a text file. The ASG

representation stored in these text files is called generic; instances of generic

allow for the construction of a reverse engineering tool for C++ that uses the gcc

parser and front end without binding to the compiler internals. Despite this facility

in gcc, there remains no public domain, general purpose tool for reverse engineering

C++ programs that can fully handle templates.

Goal

Create a public domain, general purpose tool for reverse engineering C++ programs.

Evaluation Criteria

1. The tool is open-source and available on the Web.

2. The tool correctly parses, instantiates, and specializes templates.

3. The tool consists of loosely coupled, reusable modules.

4. The tool provides a module for linking C++ translation units.

5. The tool provides an API module for accessing information about declarations,

statements, and some expressions.

6. The tool exchanges information via conforming instances of GXL schemas.
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7. The tool is robust and efficient enough to use on medium-sized C++ programs,

which contain up to 500 000 lines of non-commented, non-preprocessed lines

of code.

8. The tool is general purpose.

Problem 3: A Repository of Reverse Engineering Artifacts

Empirical results are relevant to both researchers and practitioners; they reveal cor-

relations among software technologies and practices. Accessibility of results and

other artifacts has been identified as a key hurdle to the adoption of existing in-

frastructures [Müller et al. 2000]. Distribution of empirical evaluation artifacts is

needed to enhance reproducibility and reusability of results, as well as to allow stud-

ies to be expanded [Do et al. 2005]. Researchers in software testing have led the

way in providing access to empirical results [Andrews 2004; Graves et al. 2001; Har-

rold et al. 2001; Jones and Harrold 2005; Orso et al. 2004; Rothermel and Harrold

1998]. However, researchers in reverse engineering and program analysis have not

responded to this need [Kraft et al. 2005b; 2007a].

Goal

Create a public repository of reverse engineering artifacts, and populate it with

empirical results, including all tools, scripts, and documents needed to reproduce

the results.

Evaluation Criteria

1. The repository contains a test suite, including important details about each

test case:

• Version

• Size metrics

• Configuration and build information

2. For at least one graph at each level of our hierarchy (see Problem 1), the

repository contains:
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• A GXL schema

• Tools that exchange information via conforming GXL instances of the

schema

• GXL instances of the schema for each test case in the test suite

• A graph transformation that summarizes the information in a GXL in-

stance

• Empirical results that show the space and time costs incurred by the

documents and tools, respectively

3. The repository contains all artifacts needed to reproduce the results described

in the previous items, including platform information for each experiment.

4. The repository is available to the public, particularly the reverse engineering

community.

1.2 Dissertation Outline

In Chapter 2, we provide background information on the Graph eXchange Lan-

guage (GXL), and various program representation graphs: the abstract syntax graph

(ASG), the call graph, three class-centric graphs, and three control flow graphs. We

summarize related research, in Chapter 3. In addition, we conclude that chapter

with a discussion of the relationship between the summarized research and our own.

In Chapters 4, 5, and 6, we describe the three major components of our in-

frastructure to support interoperability in reverse engineering. We describe the

first component, our hierarchy of schemas for program representation graphs [Kraft

et al. 2005b; 2007a], in Chapter 4, and the second component, g4re, our tool chain

for reverse engineering C++ programs [Kraft et al. 2005a; 2007b], in Chapter 5.

In Chapter 6, we present two case studies in which we use g4re to determine the

space and time costs incurred by our infrastructure [Kraft et al. 2007a]. In that

same chapter, we also present the final major component of our infrastructure: our

repository of artifacts, which includes a test suite, and tools, GXL instance graphs,

and XSLT transformations for graphs at all levels of the hierarchy [Kraft 2006].
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We present two empirical evaluations performed using g4re, in Chapter 7. The

two application areas are software measurement and program comprehension, in

particular, computation of object-oriented metrics [Jamieson et al. 2005] and three-

dimensional software visualization [Hoipkemier et al. 2006], respectively. Finally, in

Chapter 8, we summarize our contributions to the area of reverse engineering.

There are two appendices. In Appendix A, we list the acronyms and abbrevi-

ations that we use throughout the dissertation. In Appendix B, we provide links

to our online repository, where we make our schemas, our tools, and other artifacts

from our infrastructure available to the reverse engineering community.
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Chapter 2

Background

In this chapter we describe concepts, technologies, and terms that relate to our

work in the area of reverse engineering. In particular, we describe Graph eXchange

Language (GXL) in Section 2.1, and various program representation graphs in Sec-

tion 2.2.

2.1 Graph eXchange Language

Graph eXchange Language (GXL) [Holt et al. 2006] was ratified as the standard ex-

change format (SEF) for reverse engineering and reengineering tools at the Dagstuhl

Seminar on Interoperability of Reengineering Tools [Lethbridge 2001]. GXL is an

XML language [Bray et al. 2006] that is defined by a document type definition

(DTD), and conceptualized as a typed, attributed, directed graph. GXL describes

both instance graphs and schema graphs, which are represented by UML class

diagrams [Object Management Group 2005], using the same structural elements

(node and edge types).

A UML class diagram is a static representation of a program consisting of rect-

angles to represent classes in the system, and lines connecting the rectangles to

represent relationships among the classes. A rectangle for a class is divided into

three horizontal sections. The top section displays the name of the class, which is in

italics if the class is abstract. The middle section displays the data members, or at-

tributes, of the class, including their types and visibilities (public, protected, private,

or package). The bottom section displays the member functions, or operations, of

the class, including their return types, parameters, and optionally, exception spec-

ifiers. A line between two classes can indicate an aggregation, an association, a



composition, or a generalization; a role name and a multiplicity can be assigned to

each end of a line that is not a generalization.

A GXL schema is a UML class diagram encoded in XML. GXL provides a

common base from which any schema for representing software can be derived; the

common base is the GXL metaschema, a schema for E-R graphs that is classified

as an explicit-external schema by Jin et al. [2002]. The GXL metaschema gives the

structure for all GXL graphs, and like all GXL schemas, is an instance of the GXL

metaschema. Thus, the GXL metaschema is its own schema.

All GXL graphs, both instance and schema, are constrained in ways that cannot

be expressed by either the GXL DTD, or, for schemas, a UML class diagram. These

constraints include: (1) ordered incidences must define a proper ordering, (2) a

schema graph must contain at least one GraphClass node, (3) a schema graph must

not contain a cycle of isA (generalization) edges, and (4) in a schema graph, an

isA must not connect nodes of different types (i.e., a NodeClass must not inherit

an EdgeClass, and so on) [Holt et al. 2006]. The GXL Validator was designed to

validate GXL graphs against these constraints, as well constraints specified by the

GXL DTD, the GXL metaschema, and the specified GXL schema [Kaczmarek 2003].

The GXL Validator is used to validate both instance and schema graphs. GXL

schemas are validated against the GXL metaschema, which is validated against itself.

Validating GXL is important; validation can reveal errors in both the modeling, and

the generation of GXL instances. In addition, valid GXL files are more likely to be

accepted by available XML tools than non-valid files.

In Figure 2.1, we illustrate an overview of GXL validation. Input files, shown at

the top of the figure, are the GXL metaschema, an optional GXL schema graph, and

an optional GXL instance graph. The executable gxlvalidator, shown as an ellipse in

the middle of the figure, performs several tests that check the constraints described

in the previous paragraph, and outputs the results of the validation. We list the

tests that gxlvalidator performs in the note at the bottom right of the figure.
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Figure 2.1: Overview of GXL Validation. The process of validating GXL instance
and/or schema graphs Solid edges represent input and output. Dashed edges repre-
sent notes.
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2.2 Program Representation Graphs

In this section, we describe several program representation graphs that are com-

monly used in compilation, program analysis, and program comprehension. We

first describe the abstract syntax graph (ASG), which is sometimes called an ab-

stract semantic graph, in Subsection 2.2.1. We then describe the call graph in

Subsection 2.2.2, class graphs in Subsection 2.2.3, and control flow graphs in Sub-

section 2.2.4.

2.2.1 Abstract Syntax Graph

Given an input string, a parser derives a parse tree for the string (i.e., it parses

the string). An abstract syntax tree (AST) is an abridged parse tree; an AST is

constructed by a parser in lieu of the unabridged parse tree with non-terminals,

keywords, and punctuation explicitly represented. Using the semantic rules for the

input language, a semantic analyzer transforms an AST to an abstract syntax graph

(ASG). An ASG is often the output of a compiler front end, and includes semantic

information such as edges from variable uses to their declarations, edges from type

uses to their definitions, and for C++, template instantiations and specializations.

1 struct Node
2 {
3 int value ;
4 Node∗ next ;
5 } ;

Source Listing 2.1: Source code for struct Node. Definition of the C++ struct
Node. Node consists of an integer, value, and a pointer to another Node, next.

In Source Listing 2.1, we list C++ code for the definition of struct Node. Node

consists of an integer, value, on line 3, and a pointer to another Node, next, on line

4. In Figure 2.2, we illustrate a possible AST for struct Node, and in Figure 2.3,

we illustrate a possible ASG for struct Node. Note that in Figure 2.2 the uses of
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Figure 2.2: Sample AST for struct Node. An AST for struct Node, which is defined
in Source Listing 2.1. Uses of the types int and Node have not yet been resolved to
their definitions.

Figure 2.3: Sample ASG for struct Node. An ASG for struct Node, which is defined
in Source Listing 2.1. Uses of the types int and Node have been resolved to their
definitions.
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the types int and Node have not yet been resolved to their definitions, but that in

Figure 2.3 they have.

2.2.2 Call Graph

A call graph is a directed graph, G = (V,E). The set of nodes, V , contains the

functions in a program. For any two functions f0, f1 ∈ G, an edge (f0, f1) appears

in the set of edges, E, if there is a potential call to f1 by f0. The call graph for a

program is a directed acyclic graph (DAG) if the program does not use recursion. To

reverse engineer a call graph from the source code of a program, information about

at least the following constructs is required: function declarations and function

calls (sometimes called call sites). Call graphs are commonly used for program

profiling [Graham et al. 1982].

In strictly first-order procedural languages, constructing a program call graph is

straightforward because, at every call site, the target of the call is directly evident

from an inspection of the source code. However, in object-oriented languages such as

C++, the target of a call cannot always be precisely determined; rather, the target

is partially determined by the data values that reach the call site. For example, in

C++, the method invoked by a call to a virtual method through a base class pointer

is dependent on the class of the object receiving the call. In general, determining

the flow of values needed to build a precise call graph requires an interprocedural

data and control flow analysis of the program.

2.2.3 Class Graphs

In this subsection we describe graphs that are centered around the class. We first

describe the class diagram, and next describe the object relation diagram (ORD).

Finally, we describe the class firewall.

Class Diagram

A class diagram is a directed graph, G = (V,E). The set of nodes, V , contains the

classes in a program, and the set of edges, E, contains the relationships among the
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classes. To reverse engineer a class diagram of low precision from the source code

of a program, information about only class declarations is required. However, to

reverse engineer class diagrams of high precision, access to information about the

following constructs is required: declarations, scopes, types, and control structures.

The classes in a class diagram include generic, or template, classes, and may also

include instantiated template classes. The edges in a class diagram represent the

relationships among the classes in the program, and are specified by the syntax and

semantics of data members, and the parameters and local variables of member func-

tions. The edges types in a class diagram are: aggregation, association, composition,

dependency, inheritance, and ownedElement, as defined by the UML specification,

version 2.0 [Object Management Group 2005].

Object Relation Diagram

An object relation diagram (ORD), sometimes called a class dependency diagram, is

a directed graph, G = (V,E). The set of nodes, V , contains the classes in a program,

and the set of edges, E, contains the relationships among the classes. An ORD can

be constructed given only the information in a class diagram, and is commonly used

to determine an integration order for class-based testing [Kraft et al. 2006].

The classes in an ORD include those that are not template classes, as well as in-

stantiated template classes. The edges in a class diagram represent the relationships

among the classes in the program, and are identical to those in a class diagram, but

for the addition of polymorphic edges [Labiche et al. 2000; Malloy et al. 2003]. A

polymorphic edge is generated by each association or dependency edge, e, where the

type of the variable or parameter is an indirect type referring to a base class, b. Each

edge e generates a set of polymorphic edges with source, src(e), and destination, a

derived class of b.

Class Firewall

A class firewall is a directed graph, G = (V,E). The set of nodes, V , contains the

classes in a program, and the set of edges, E, contains the dependencies between the
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classes. A class firewall can be constructed given only the information in an ORD,

and is used to define the scope of regression testing required in the presence of a

change to a particular class in a system [Kung et al. 1995; Skoglund and Runeson

2005]. For example, assume that a developer finds a fault in class X, and then

modifies it in an effort to fix the fault. The firewall for class X defines those classes

that must be retested to ensure that no new fault has been introduced into the

system.

2.2.4 Control Flow Graphs

In this subsection we describe graphs that express the flow of control for a program.

We first describe the control flow graph (CFG), followed by the interprocedural

control flow graph (ICFG), and finally, the class control flow graph (CCFG).

Control Flow Graph

A control flow graph (CFG) is a directed graph, G = (V,E). The set of nodes, V ,

contains the basic blocks in a function plus two special nodes, and the set of edges,

E, contains the flow of control between the blocks in the function. A basic block is a

sequence of statements that has one entry and one exit. The two special nodes, begin

and end, represent the entry and exit points for the function. To reverse engineer

a CFG from the source code of a program, information about at least the following

constructs is required: function declarations, control structures, and logical expres-

sions. CFGs are commonly used for code generation and optimization [Aho et al.

2006].

Interprocedural Control Flow Graph

To encode control flow for a group of interacting functions that have a single entry

point, such as a group of functions that constitute an entire program, an interpro-

cedural control flow graph (ICFG) is required. An ICFG for a program, P , contains

a CFG for each function in P . Each function is represented as a pair of nodes: the

call node and the return node. Each call node is connected to the entry node of the
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called function by a call edge, and each exit node is connected to the return node of

the calling function by a return edge. An ICFG can be created from the information

contained in a call graph combined with the information contained in several CFGs.

ICFGs are commonly used for whole program optimizations [Aho et al. 2006].

Class Control Flow Graph

A class control flow graph (CCFG) consists of the set of CFGs, one CFG for each

function in the class. One additional node is the entry node for the class, which is

the predecessor node for the begin node of each CFG representing a constructor.

Another additional node indicates that functions in the class can be invoked in an

arbitrary order by clients of the class. This node is the the predecessor node for the

begin node of the CFG for every function, and the successor node of the end node

of the CFG for every function. The CCFG allows standard data-flow analyses to be

applied to object-oriented programs [Buy et al. 2000]. A CCFG can be created from

the information contained in an ICFG combined with the information contained in

a class diagram.
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Chapter 3

Related Work

In this chapter we summarize research that relates to our work in the area of

reverse engineering. In particular, we summarize research on tools and techniques for

promoting interoperability in reverse engineering, including: (1) exchange formats

and schemas in Section 3.1, (2) infrastructures in Section 3.2, (3) evaluating results

in Section 3.3, and (4) linking translation units in Section 3.4. We also summarize

research on tools for reverse engineering C++ programs in Section 3.5. Finally, we

provide a discussion of the relationship between the summarized research and our

work in Section 3.6.

3.1 Exchange Formats and Schemas

Several exchange formats and languages have been proposed by the research commu-

nity, and discussed at length at the Workshop on Standard Exchange Formats [El-

liott Sim and Koschke 2001] and the Dagstuhl Seminar on Interoperability of Reengi-

neering Tools [Lethbridge 2001]. GXL (see Section 2.1 for details), the standard for-

mat for the exchange of graphs among reverse engineering and reengineering tools,

originated from the synthesis of several exchange formats and languages [Holt et al.

2003], including: GRAph eXchange format (GraX) [Ebert et al. 1999], Tuple At-

tribute language (TA) [Holt 1997], Relation Partition Algebra (RPA) [Feijs and van

Ommering 1999], Rigi Standard Format (RSF) [Wong 1998], and the graph format

of the PROGRES graph rewriting system [Münch 1999]. More recently, Eichberg

et al. [2004] proposed the use of the generic standards XML and XQuery, and Ma-

mas and Kontogiannis [2000] described cppML, an XML DTD that represents the

C++ grammar. In addition, the Electronics Industry Association (EIA), the Object

Management Group (OMG), and W3C have provided the CASE Data Interchange



Format (CDIF) [Ernst 1997], the XML Metadata Interchange (XMI) [Group 2005],

and the Resource Description Framework (RDF), respectively.

Schemas complement exchange formats by giving meaning to the data being ex-

changed. Many noteworthy schemas exist; some are automatically derived, while

others are manually derived. Manually derived schemas are created by software

engineers, and are more abstract than their automatically derived (tool generated)

counterparts. In addition, some schemas are language-specific, while others are

language-independent. Here, the term language-independent indicates that a schema

is applicable to more than one, but not necessarily all, languages. We focus on man-

ually derived schemas for AST’s and ASG’s; first we review language-independent

schemas, next we review schemas specific to C++.

Czeranski et al. [2000] present the Bauhaus schema for modeling C and a subset

of Ada. Aigner et al. [2006] present the Stanford University Intermediate Format

(SUIF), which includes a schema that represents different languages, including C,

C++, and Fortran. generic is a schema that is used by GCC [2002] to represent

several languages, including C, C++, Objective-C, Fortran, and Java. generic was

designed to facilitate semantic analysis and optimizations [Merrill 2003].

The Datrix team at Bell Canada Inc. [2000] presents the Datrix schema for

modeling C, C++, Java, and other Algol-based languages. The Datrix schema is

not source complete, but does provide mangled names for linking purposes. Datrix

attempts to represent several languages with a single representation. Both Bell

Canada and Dean et al. [2001] report using the Datrix schema to represent C++.

Neither implementation handles C++ templates. Templates are not properly or

fully represented by the Datrix schema; this failure is an artifact of attempting to

be language-independent.

Ferenc et al. [2001] present the Columbus schema for modeling C++. The Colum-

bus schema is not source complete, but does provide mangled names for linking

purposes. The authors indicate that the ISO/IEC C++ standard [ISO/IEC JTC

1 1998] served as the basis for all design decisions. They also claim that a por-

tion of the schema, the language-independent portion, could be used as common
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root for modeling other programming languages, but these claims have not been

investigated. The Columbus implementation [Ferenc et al. 2002], which exchanges

data via the Columbus schema, does not handle C++ templates [Gschwind et al.

2004]. In addition, the schema does not properly or fully represent templates; there

are several violations of basic object-oriented modeling principles in the template

portion of the schema.

Lethbridge et al. [2004] present the Dagstuhl Middle Metamodel (DMM) for

representing software in reverse engineering applications. The DMM schema is called

a middle model because it represents information at a higher level of abstraction than

the AST/ASG, but a lower level of abstraction than an architecture description

diagram. The schema was specifically designed to be represented as a GXL schema.

No reference implementation is provided, and only a handful of tools have leveraged

the schema thus far [McQuillan and Power 2006].

3.2 Infrastructures for Reverse Engineering

One of the earliest approaches to providing a general framework for interoperability

is the ECMA Reference Model, the“Toaster Model”, which outlines the functionality

required to support a tool integration process [National Institute of Standards and

Technology 1993]. The dimensions of functionality addressed by the model include:

data integration, provided by the repository manager; control integration, provided

by the subsystem interaction manager; presentation integration, provided by the

user interaction manager; and process integration, provided by the development

manager.

One of the earliest approaches to a reverse engineering infrastructure is the LSME

system [Murphy and Notkin 1996]. This system is based on lexical analysis, and

specifically identifies the ability to add additional source languages and extractors as

central to the approach. Murphy and Notkin demonstrate this flexibility by applying

the approach to extracting source models for ANSI C, CLOS, Eiffel, Modula 3, and

TCL.
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Kullbach et al. [1998] present the EER/GRAL approach to graph-based con-

ceptual modeling of multi-lingual systems. In this approach, models to represent

information from a single language are built and then integrated into a unified model.

A graph query language is available to perform queries on the unified model.

Dali is a collection of various tools in the form of a workbench for collecting

and manipulating architectural information [Kazman and Carrière 1999]. The Dali

workbench was designed to be open, so that new tools could be easily integrated,

and lightweight, so that such integration would not unnecessarily impact unrelated

parts of the workbench. Kazman et al. identify an extraction phase, encompassing

both parsing and profiling, accumulating information in a repository, which then

feeds analysis and visualization phases. They use an SQL database for primary

model storage, but then use application specific file formats to facilitate interchange

between tools.

Salah and Mancoridis [2003] echo the Dali architecture in their software com-

prehension environment, which has a three-layer architecture. The three layers are

composed of: (1) a data gathering subsystem, (2) a repository subsystem, and (3) an

analysis and visualization subsystem. The environment supports both static and dy-

namic analysis of C++ and Java programs. Information can be accessed using either

SQL, or a specialized query language.

Finnigan et al. [1997] describe a Software Bookshelf that was originally designed

to support converting PL/I source code to C++. Their information repository,

which describes the content of the bookshelf, is accessed through a web server using

object-oriented database technology. The Portable Bookshelf (PBS) implementation

of these ideas is based around a toolkit that includes a fact extractor, a manipulator,

and graph layout tools. This “pipeline philosophy”has since evolved into the SWAG

Kit and the LDX/BFX pipeline, each of which emphasizes collections of stand-alone

tools communicating only via well-defined inputs and outputs [Holt et al. 2005].

Jin and Cordy [2005] advocate non-prescriptive integration that focuses on shar-

ing services, rather than simply data, with the OASIS service-sharing methodology.

In this approach, each tool in the integration is known as a participant. Each par-
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ticipant offers a set of shared services to the other participants, but not all services

offered by a participant must be shared. Two sets of components must be created

in the OASIS methodology: a domain ontology and conceptual service adapters.

Moose is a language-independent reverse- and re-engineering environment that

was first developed in the context of FAMOOS [Nierstrasz et al. 2005]. Language

independence is achieved by the use of a common metamodel as the core of Moose.

Services provided around this core include a meta-metamodel tailoring of the Moose

metamodel; a GUI for browsing, querying, and grouping; and metric evaluation and

visualization. Moose uses both the CDIF and XMI exchange formats to interact

with external tools.

Al-Ekram and Kontogiannis [2005] present an XML-based framework that at-

tempts to represent higher level artifacts in a language-neutral way. The framework

includes an XML DTD for each of several artifacts, including a control flow graph, a

program dependence graph, and a call graph. The basic elements that are common

between the artifacts are represented as Facts, and are encoded by another XML

DTD, FactML. The framework is multi-layered and follows a “pipe-filter” architec-

tural style.

3.3 Evaluating Results from Reverse Engineering

Two important attributes of a reverse engineering infrastructure are: providing for

repeatability of results, and allowing comparison of results from different approaches.

One way this can be achieved is by agreement on standard exchange formats and

schemas for exchanging information (see Section 3.1); this allows output from differ-

ent tools or tool sets to be directly compared. There can be considerable difficulties

involved in comparing results when a standard exchange format is not paired with

a schema (standard or otherwise).

Murphy et al. [1998] describe a comparison of nine tools for extracting call graphs

from C programs. They compare outputs from three software systems, and find

a considerable variance. Das [2000] describes a points-to analysis algorithm, and
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compares his results to those from tools implementing competing approaches. He

notes that it took his team several months to synchronize the output of the tools

so that the results could be compared. In each case, the problem was with different

definitions and interpretations of required information, rather than with different

output formats.

Sim et al. [2002] note the importance of benchmarks in software engineering

in general, and in evaluating fact extractors in particular. They describe the con-

struction of a benchmark suite designed to test the accuracy and robustness of fact

extractors, and comparatively evaluate four tools by applying the benchmark suite.

Lin et al. [2003] describe a four-level hierarchy of completeness, and use it to vali-

date the CPPX fact extractor [Dean et al. 2001]. They use a test suite consisting of

programs used to demonstrate the Datrix model, as well as test cases from the gcc

test suite. Vinciguerra et al. [2003] describe an experimentation framework for eval-

uating C++ and Java disassembly and decompilation tools. The framework includes

a layered test suite of programs, and a focused set of reverse engineering tasks.

3.4 Linking in Reverse Engineering Tools

Relatively little work exists on combining information extracted from different trans-

lation units. This process is analogous to compile-time linking, where external

references in one translation unit are resolved to definitions in another. Wu and

Holt [2004] describe a study of linking information extracted from a PostgresSQL

implementation, and note that a naive approach to linking can give rise to linkage

anomalies. They describe an approach to alleviating these anomalies with heuris-

tics and build simulation. Guo et al. [2003] describe a method for assigning globally

unique identifiers (UIDs) to the declarations and references in a Java program. Each

UID is based on scope and file information, and is attached via XML markup to

entity references in the source code. While the goal of this work is not linking, the

technique for assigning UIDs is directly applicable to linking translation units at the

ASG level.
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3.5 Tools for Reverse Engineering C++ Programs

A reverse engineering tool that accepts C++ source code must have a parser, and

likely, a corresponding front end. The difficulties that arise during the construction

of a parser for C++ are well documented, and are largely due to the complexity

of the template sublanguage [Bodin et al. 1994; Knapen et al. 1999; Lilley 1997;

Power and Malloy 2000; Reiss and Davis 1995; Roskind 1989; Veldhuizen 2003].

Consequently, the selection of robust reverse engineering tools that accept C++

programs is inadequate.

Available reverse engineering tools for C++ can be divided into two categories:

(1) those that provide their own parser (and possibly front end), and (2) those that

utilize the C++ parser and front end from either the GNU Compiler Collection [Free

Software Foundation 2002], or the Edison Design Group [2000]. We provide an

overview of the first category in Subsection 3.5.1, and an overview of the second

category in Subsection 3.5.2.

3.5.1 Tools that Provide a C++ Parser

The C++ parsers provided by reverse engineering tools extract varying levels of in-

formation, ranging from limited information, such as class hierarchies, to detailed

information, such as statements and expressions. Parsers that extract limited in-

formation, known as fuzzy parsers [Koppler 1997], are well suited to tasks such as

graphical browsing and graph visualization, but are not sufficient for program anal-

ysis tasks. Parsers that extract detailed information are ideal for program analysis

tasks, but none of the parsers described in this subsection are able to fully accept

templates.

Lapierre et al. [2001] present Datrix, an analyzer that extracts information from

C, C++, or Java programs. Datrix extracts information for each translation unit

in accordance with the Datrix ASG Model [Bell Canada Inc. 2000], and output is

expressed in either TA (Tuple-Attribute Language) or VCG format. The Datrix

25



project at Bell Canada ended in the year 2000, and the Datrix analyzer is no longer

available.

Source–NavigatorTMfrom Red Hat is an analysis and graphical browsing frame-

work for C, C++, Java, Tcl, FORTRAN, and COBOL [Source–Navigator Team

2005]. The provided fuzzy parser extracts enough high level information to provide

class hierarchies, imprecise call graphs, and include graphs. Source–Navigator does

not provide statement level information, and the plain text output does not conform

to a schema.

Ferenc et al. [2002] present Columbus, a fully integrated reverse engineering

framework supporting fact extraction, linking, and analysis for C and C++ programs.

Columbus provides output in a variety of formats, including CPPML, GXL, RSF,

and XMI. Nevertheless, Columbus is unable to fully accept templates, as noted

by [Gschwind et al. 2004].

3.5.2 Tools that Utilize the GCC C++ Parser

Industrial strength C++ parser front ends are provided by the GNU Compiler Col-

lection [Free Software Foundation 2002] and the Edison Design Group [2000]. They

both accept virtually all of the constructs defined by the ISO C++ standard, includ-

ing templates [ISO/IEC JTC 1 1998; Malloy et al. 2003b]. However, gcc is in the

public domain, which allows the reverse engineering tools that use it to be freely

distributable; we summarize only tools that use gcc in this subsection.

There are take two common approaches to using gcc. The first approach is to

modify the source code of the parser, which creates a custom version of gcc. The

second approach is to use the tu files described in Subsection 6.2.1.

Dean et al. [2001] present CPPX, a tool that uses gcc for parsing and semantic

analysis. CPPX predates the incorporation of tu files into gcc, and is built directly

into the source code. CPPX constructs an ASG that is compliant to the Datrix

ASG Schema [Bell Canada Inc. 2000], and can be serialized to GXL, TA, or VCG

format. The Datrix ASG Schema is meant to accommodate several languages; this

generality makes it difficult to accurately represent many C++ language constructs,
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such as template specializations. The last release of CPPX, based on version 3.0 of

gcc, does not properly handle the C++ Standard Library.

Hennessy et al. [2003] present gccXfront, a tool that harnesses the gcc parser to

tag C and C++ source code. The tool annotates source code with syntactic tags

in XML by modifying the bison parser generator tool, as described by Malloy et

al. [2002]. This approach is no longer viable, because the C++ parser in gcc has

migrated to recursive descent technology.

GCC.XML uses tu files to generate an XML representation for class, function,

and namespace declarations, but does not propagate information such as function

and method bodies [Kitware, Inc. 2005]. As a result, many common program

representations, such as the call graph or the ORD, cannot be constructed using the

output of GCC.XML.

Antoniol et al. [2004] present XOGASTAN, a collection of tools that convert a

tu file to a GXL instance graph, and construct an in-memory representation of the

GXL instance graph. XOGASTAN fails to create GXL output for certain generic

node types, including try_catch_expr and using_directive. Additionally, XO-

GASTAN has limited analysis capabilities for C++.

Gschwind et al. [2004] present TUAnalyzer, a system that uses tu files to perform

analysis of template instantiations of classes and functions. TUAnalyzer performs

virtual method resolution by using the ’base’ and ’binf’ attributes, along with the

output provided by the compiler switch -fdump-class-hierarchy, which recon-

structs the virtual method table. The scope of TUAnalyzer is limited to analysis of

templates; Also, TUAnalyzer does not produce an output representation of the tu

file for exchange with other reverse engineering tools.

3.6 Discussion

Existing schemas do not properly or fully represent C++ templates. A correct

representation of templates is critical in reverse engineering, because all non-trivial

C++ programs use templates (due to the C++ Standard Library). For example,
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“hello world”, the famous five line program, uses the iostream header, which uses

templates extensively. In addition, generic programming is becoming increasingly

popular, and the revised version of the ISO C++ standard (due in 2009) will increase

the power and flexibility of templates. To address the shortcomings of existing

schemas, we present our CppInfo schema for C++ in Section 4.2. The CppInfo schema

properly and fully represents C++ templates.

Previous research on infrastructures has leveraged standard exchange formats

(SEF) such as GXL, but has not adequately exploited the semantic specification

capabilities of these SEFs. In addition, previous research has not addressed the

problem of delineating interactions among schemas at the semantic level. Our in-

frastructure utilizes the semantic specification capabilities of GXL.

The benchmark approach to evaluating reverse engineering tools has been used

in previous research for evaluation and comparison, but requires manual comparison

of the results. The approach that we support with our schema hierarchy imposes an

additional requirement that the tool output must conform to a common schema, or

be translated to conform to a common schema. This additional requirement permits

comparison of results to be fully automated.

Linking translation units from a program into a unified representation has been

addressed in previous research for several languages, including PostgresSQL, Java,

and C++. We have adopted certain elements of these approaches, such as a vari-

ation of UIDs. In addition, to address the current lack of a publicly accessible

repository containing representations of linked translation units for C++ programs,

we provide, in our SourceForge.net repository [Kraft 2006], GXL instances of unified

representations that conform to our CppInfo API schema.

Most currently available tools for reverse engineering C++ do not properly handle

templates. However, some tools based on versions of gcc greater than 3.0 do handle

templates. XOGASTAN is similar to our g4re tool chain, but has limited analysis

capabilities, and does not provide a schema for understanding its GXL output.

TUAnalyzer is complementary to g4re; it uses information acquired from gcc using

the flag -fdump-class-hierarchy. However, the scope of TUAnalyzer is limited to
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inspecting template instantiations and reconstructing the virtual function call table.

Our g4re tool chain is intended to be both industrial-strength and general-purpose.
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Chapter 4

Schemas for Low- and Middle-Level Graphs

In this chapter we present the hierarchy of schemas for low- and middle-level pro-

gram representation graphs that is central to our infrastructure approach and facili-

tates interoperability and reuse for reverse engineering tools and applications [Kraft

et al. 2005b; 2007a]. In Section 4.1, we present an overview of the hierarchy of

schemas. In Section 4.2, we illustrate the low-level graphs in Levels 0 and I of our

hierarchy, and in Section 4.3, we illustrate middle-level graphs in Levels II, II, and

IV of our hierarchy. Finally, in Section 4.4, we describe an approach to comparing

instances of the schemas in our hierarchy.

4.1 Hierarchy of Schemas

In Figure 4.1, we illustrate the hierarchy of schemas that is central to our infras-

tructure, and facilitates interoperability and reuse for reverse engineering tools and

applications. There are two major partitions in our hierarchy: low-level and middle-

level; there are five minor partitions in our hierarchy: Levels 0 through 4. The dashed

ellipses in the figure represent schemas for graphical representations of code that dif-

fer for disparate languages, such as abstract syntax graphs (ASG), and application

programming interfaces (API). The solid ellipses in the low-level partition of the

figure represent the schemas used in our implementation; we discuss them further

in Section 4.2. The solid ellipses in the middle-level partition of the figure represent

schemas for graphical representations of code that are language independent, such

as call graphs, and control flow graphs; we discuss them further in Section 4.3. The

solid edges in Figure 4.1 represent the progression of information from a graphical

representation at one level to a graphical representation at a subsequent level [Buy

et al. 2000; Harrold et al. 1993; Sinha et al. 1999; Skoglund and Runeson 2005].



Figure 4.1: Hierarchy of Schemas. Schemas for program representation graphs or-
ganized by levels. Solid edges with open arrows represent input and output. Dashed
edges with filled arrows represent realization. Solid edges represent the progression
of information from a graphical representation at one level to a graphical representa-
tion at a subsequent level. Filled arrows indicate a single instance is needed, empty
arrows indicate that a set of instances are needed.

32



The filled arrows indicate that a single instance is needed, while empty arrows

indicate that a set of instances are needed.

The edge from Level 0 to Level I indicates that the information needed to build

an instance of the API schema is present in an instance of the ASG schema, which

contains information about a parsed and analyzed translation unit. We use the

generic ASG schema, the internal ASG schema used by gcc, in our implementa-

tion of the infrastructure. In addition, we use an API schema in place of another

middle model schema, such as the Dagstuhl Middle Metamodel (DMM) [Lethbridge

et al. 2004], which does not retain information about control statements or func-

tion calls. Information about control statements and function calls are needed to

create instances of schemas at subsequent levels of our hierarchy, in particular, con-

trol flow graphs (CFGs) and call graphs. We use the CppInfo API schema in our

implementation of the infrastructure.

The edge from CppInfo to Class Diagram indicates that the information needed

to build a class diagram [Fowler 2003] is found in the information about classes in

an instance of the CppInfo API schema. Similarly, an instance of the CppInfo API

schema provides: the statement level information needed to build a control flow

graph (CFG) [Aho et al. 2006], the function declaration and call site information

needed to build a call graph [Grove et al. 1997], and the statement and transfer

of control information needed to build a control dependence graph (CDG) [Cytron

et al. 1991]. The information needed to create instances of all schemas in Level II

of Figure 4.1 is present in an instance of the CppInfo schema.

The information needed to create instances of the schemas shown in Level III of

Figure 4.1 is present in instances of the schemas shown in Level II. The edge from

Class Diagram in Level II to ORD in Level III indicates that the information needed

to build an object relation diagram (ORD)1 is present in an instance of the Class

Diagram schema [Kraft et al. 2006; Malloy et al. 2003]. The only ORD edges not

readily available in a Class Diagram instance are polymorphic edges. The information
1The use of the term ORD is a misnomer, because the nodes are classes, not objects; however,

the term is used in previous research, and we continue to use it in this paper.
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needed to generate polymorphic edges is extracted from the association, dependency,

and inheritance information present in a Class Diagram instance; therefore, building

an ORD instance using only information present in a Class Diagram instance is

possible.

Two additional schemas are shown in Level III of Figure 4.1: Also shown in Level

III of Figure 4.1 are schemas for an interprocedural control flow graph (ICFG) [Aho

et al. 2006], and a program dependence graph (PDG) [Ferrante et al. 1987]. The

edges from Call Graph and CFG in Level II to ICFG in Level III indicate that the

information present in a Call Graph instance and a set of CFG instances can be used

to build an ICFG instance [Aho et al. 2006]. Note that our Call Graph schema contains

information about each individual call site. A Call Graph instance must contain this

information to be used to build an ICFG instance; all solid edges in Figure 4.1 require

that instances of the source and sink schemas conform to their respective schemas.

Finally, the edges from CDG and CFG in Level II to PDG in Level III indicate that

the information present in a CDG instance and a set of CFG instances can be used

to build a PDG instance [Harrold et al. 1993].

In Level IV of Figure 4.1, we illustrate ellipses representing schemas for a class

firewall, a class control flow graph (CCFG), and a system dependence graph (SDG).

Instances of these three schemas can be built from information present in instances

of schemas in Levels II and III of the hierarchy. The edge from ORD in Level

III to Class Firewall in Level IV indicates that the information present in an ORD

instance can be used to build a Class Firewall instance [Skoglund and Runeson 2005].

The edges from Class Diagram in Level II and ICFG in Level III to CCFG in Level

IV indicate that the information present in a Class Diagram instance and an ICFG

instance can be used to build a class control flow graph (CCFG) instance [Buy et al.

2000]. Finally, the edge from PDG in Level III to SDG in Level IV indicates that

the information present in a set of PDG instances can be used to build an SDG

instance [Sinha et al. 1999].
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4.2 Low-Level Schemas: Levels 0 and I

Levels 0 and I in Figure 4.1 comprise the low-level partition of our hierarchy of

schemas. We first describe Level 0, which contains the schema for an abstract syntax

graph (ASG).We then describe Level I, which contains a schema for an application

programming interface (API).

Level 0

In Level 0 of our infrastructure is the schema for an ASG, which contains infor-

mation about a parsed and analyzed translation unit. We used the generic ASG

schema in our implementation of the infrastructure. generic, the internal ASG

schema used by gcc, is documented almost exclusively by source code and com-

ments. generic consists of 200 concrete node classes and 75 concrete edge classes,

and was designed to facilitate semantic analysis and front end optimizations. The

key advantage of generic is the accurate and adequate representations of tem-

plates, including instantiations, specializations, and partial specializations. The key

disadvantage of generic is the complex and low-level representation it uses. For

example, generic uses 139 concrete node classes to represent expressions, and in-

cludes representations of artificial, or compiler generated, statements to manage the

stack and heap. We were not the first to create a GXL schema for generic, but

unlike previous approaches, which used manually derived domain information to

generate GXL schemas for generic [Antoniol et al. 2004; Kitware, Inc. 2005], we

used an instrumented parser to automatically reverse engineer domain information.

In addition, we were the first to publically distribute a GXL schema for generic.

We wrote a collection of Perl modules named GxlSW to automate the construc-

tion of a GXL schema, and used it to construct a GXL schema for generic. Input to

GxlSW is a plain-text, simplified UML class diagram, and domain type information;

our instrumented parser writes the reverse engineered domain information in this

format. To generate domain information for generic, we used our instrumented

parser, and two test suites: the C and C++ test suite from gcc, and a C++ test
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suite [Malloy et al. 2003b] extracted from the ISO C++ standard [ISO/IEC JTC 1

1998]. We wrote two small (approximately 10 line) files that provide domain type

information for GXL. We list a link to the generated GXL schema for generic in

Appendix B.

Level I

In Level I of our infrastructure is the schema for an API, which contains informa-

tion about declarations, such as classes (including class templates, class template

instantiations, and class template specializations); namespaces; functions (includ-

ing function templates and function template instantiations); and variables, state-

ments (including control statements and exception statements), and some expres-

sions (function calls). We designed the CppInfo API schema to use in our imple-

mentation of the infrastructure. There are 137 classes in CppInfo: 70 nodes (28

abstract), 20 aggregation edges (1 abstract), 26 association edges (1 abstract), and

19 attributes. In addition, there are 2 enumerations, and 6 enumerators. Note that

while CppInfo does not currently include representations for most expressions, our

preliminary work suggests that the addition of expressions will introduce no more

than 20 total node classes (in stark contrast to the 139 concrete node classes used

by generic), and 10 concrete edge classes. The key advantages of CppInfo over

other schemas proposed by the reverse engineering community are the accurate and

adequate representations of templates, including instantiations, specializations, and

partial specializations, and function pointers2.

In Figure 4.2, we illustrate the key classes, aggregations, and associations from

CppInfo that relate to templates. We illustrate the primary class, Template, to the

right of center in the middle of the figure. A Template is a Scope that is composed

of zero or more Instantiations of type TemplateInstantiation, zero or more Specializa-

tions of type TemplateSpecialization, and zero or more PartialSpecializations of type

TemplatePartialSpecialization. In addition, a Template is associated with a Tem-

2Lethbridge [2003] has identified the absence of representations for these language elements to
be a key weakness of the Dagstuhl middle metamodel with regards to C++. He also states that
practitioners have identified function pointers as being particularly important.
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Figure 4.2: Level I: CppInfo API – Templates. Excerpt from the CppInfo API
schema that illustrates the key classes, aggregations, and associations related to tem-
plates.

plateParameterList via a HasTemplateParameterList relationship. Note that a Tem-

plateParameterList is composed of zero or more TemplateParameters.

Not shown in Figure 4.2 are concrete classes for class and function templates,

template instantiations, template specializations, and template partial specializa-

tions. These concrete classes derive from the abstract classes shown in the figure,

along with the abstract class for either a class or function. For example, ClassTem-

plate inherits from both Class and Template. Also not shown in the figure are con-

crete classes for template parameters. There are three template parameter classes in

CppInfo: ParameterTemplateParameter, TemplateTemplateParameter, and TypeTem-

plateParameter.

In Figure 4.3, we illustrate the key classes, aggregations, and associations from

CppInfo that relate to function types. We illustrate the primary class, FunctionType,

in the center of the figure. A FunctionType is associated with a type via the Has-

ReturnType relationship, and is composed of zero or more ParameterTypes of type

Type. There are two concrete subclasses of FunctionType: FreeFunctionType and

MemberFunctionType, which is associated with a Class via the HasClass relationship.

To the left of center in Figure 4.3, we illustrate the class IndirectType, from which

PointerType is derived. IndirectType is associated with a Type via the HasBaseType
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Figure 4.3: Level I: CppInfo API – Function Types. Excerpt from the CppInfo
API schema that illustrates the key classes, aggregations, and associations related to
function types.

relationship. Note that, in addition to C-style function pointers, C++ member

function pointers (more commonly known as pointers-to-members) can be accurately

represented using CppInfo.

4.3 Middle-Level Schemas: Levels II, III, and IV

Levels II, III, and IV in Figure 4.1 comprise the middle-level partition of our hierar-

chy of schemas. We first illustrate schemas in Level II, including the class diagram,

the call graph, and the CFG. We then illustrate schemas in Level III, including the

ORD, and the ICFG. Finally, we illustrate a schema in Level IV, the class firewall.

We designed all schemas in this subsection, except for the class diagram schema,

which we excerpted from the UML 2.0 specification [Object Management Group

2005]; we wrote GXL schemas for all schemas in this subsection.
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Figure 4.4: Level II: Class Diagram. Excerpt from the UML 2.0 schema that illus-
trates the key class-related components in a class diagram.

Level II

In Figure 4.4, we illustrate an excerpt from the UML 2.0 schema that illustrates

the key class-related components in a class diagram [Object Management Group

2005]. We illustrate the primary component, Class, in the center of the figure, near

the bottom. A Class is composed of zero or more ownedElements of type Classifier,

zero or more ownedOperations of type Operation, and zero or more ownedAttributes

of type Property. In addition, a Class can be involved in a Generalization or an

Association relationship. Note that an Operation has zero or more typed Parameters,

and a Property has attributes to indicate an aggregate or a composite.

In Figure 4.5, we illustrate an excerpt from the UML 2.0 schema that illustrates

the key template-related components in a class diagram [Object Management Group

2005]. We illustrate Classifier, to the right of center of the figure, at the bottom.

Recall from Figure 4.4 that Class is derived from Classifier, which, as we illustrate in

Figure 4.5, can have a TemplateSignature, be used as a formal TemplateParameter,

or be used as a boundElement (an actual template parameter).

In Figure 4.6, we illustrate the schema for a call graph. The schema consists of

three classes: Function, which represents a function and has a name, FunctionCall,
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Figure 4.5: Level II: Class Diagram (continued). Excerpt from the UML 2.0 schema
that illustrates the key template-related components in a class diagram.

Figure 4.6: Level II: Call Graph. Schema for a call graph, a graph whose nodes
represent functions and function call sites, and whose edges represent function calls.
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which represents a function invocation, and isCaller, which is an association class

that specifies the line number for the isCaller association.

Figure 4.7: Level II: Control Flow Graph (CFG). Schema for a CFG, a graph whose
nodes represent blocks of straight-line code, and whose edges represent flow of control
between the blocks.

In Figure 4.7, we illustrate the schema for a control flow graph (CFG) [Aho et al.

2006]. The schema consists of a Procedure, which is composed of two or more Nodes

and one or more Edges. The base class Node has three derived classes: Begin, Block,

and End. Minimally, a Procedure contains a Begin, which is a special node whose

successor is the Block whose leader is the first statement in the Procedure, and an

End, which is a special node whose predecessor is the final Block in the Procedure. A

Block represents a sequence of statements that has one entry and one exit. The class

Edge represents the isPredecessor and isSuccessor relationships between two Nodes.

Level III

In Figure 4.8, we illustrate the schema for an object relation diagram (ORD). The

schema consists of the class Class, along with the edge Edge and its six subclasses:

Association, Composition, Dependency, Inheritance, OwnedElement and Polymorphic

These six subclasses represent the kinds of relationships between classes [Kraft et al.

2006].

In Figure 4.9, we illustrate the schema for an interprocedural control flow graph

(ICFG). The schema for an ICFG is identical to that of a CFG, but for the addition
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Figure 4.8: Level III: Object Relation Diagram (ORD). Schema for an ORD, a graph
whose nodes represent classes, and whose edges represent relationships, including
polymorphic relationships, between the classes.

Figure 4.9: Level III: Interprocedural Control Flow Graph (ICFG). Schema for an
ICFG, a graph whose nodes represent blocks of straight-line code, and whose edges
represent flow of control between the blocks and caller-callee relationships.
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of the ordered isCaller association. The isCaller association represents the caller-callee

relationship between one Procedure and another.

Level IV

Figure 4.10: Level IV: Class Firewall. Schema for a class firewall, a graph whose
nodes represent classes, and whose edges represent testing dependencies between the
classes.

In Figure 4.10, we illustrate the schema for a class firewall. The schema consists

of two classes: Class and Edge. The Class node corresponds to the Class node in

the ORD schema. An Edge indicates a dependency between one Class and another;

the Class involved in the isRetested association must be retested whenever the Class

involved in the isCUT association is changed and must be tested.

4.4 Comparing Schema Instances

The schemas in Figure 4.1 were designed to be minimal yet complete; only the infor-

mation required to construct a given graph structure is represented. To perform a

comparison, the tools under study need not produce instances of the same schema;

however, comparison of the instances generated by each tool can only be undertaken

for those parts of the schema that are common to both tools. Alternatively, com-

parison of instances can be undertaken if intermediate transformations are used to

create instances of the appropriate schema provided by our infrastructure.

One technique for comparison of GXL instance graphs is to use XSLT style

sheets that are specified at the schema level. These style sheets can be applied

to conforming instances of a given schema, and can be automatically generated
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given domain information about the schema. This technique is not feasible for GXL

encoded instances of low-level graphs. XSLT processors use a DOM representation

of the input file; instances of low-level graphs are too large to be stored in a DOM

tree. However, we successfully applied XSLT style sheets to GXL encodings of

middle-level graph instances (see Chapter 6), and preliminary experimental results

suggest that we can partially automate the generation of a system to report the

differences between instances of the schema.
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Chapter 5

g4re – Tool Chain for Reverse Engineering

C++ Programs

In this chapter we present the design and implementation of the g4re tool chain

[Kraft et al. 2005a; 2007b]. g4re is a tool chain, because it is constituted by applica-

tions and libraries that are used either individually, or in concert. We designed g4re

with a GXL-based pipe-filter architecture; each constituent application or library

in the chain takes, as input, the output of the preceding application or library in

the chain. An important benefit of this architecture is that g4re consists of a set of

loosely coupled, reusable modules: the ASG module, the schema and serialization

modules, the transformation module, the linking module, and the API module. We

wrote all modules in ISO C++.

In Section 5.1 we present the architecture of g4re. In this section, we also include

an overview of the CppInfo schema. In Section 5.2 we present a sample usage of g4re.

5.1 Architecture

In Figure 5.1, we provide an overview of the packages in the tool chain.We illustrate

implementation artifacts, which we indicate with bold text, and third party libraries,

which we indicate with italic text, at the left of the figure. We illustrate the ASG

module, generic, as a package in the large g4re package at the right of the figure,

and describe it in Section 5.1.1. We illustrate the schema and serialization modules,

schema and serialization, as packages in the large cppinfo package at the center of the

figure, and describe them in Section 5.1.2. We illustrate the transformation module,

g4xformer, as a package in the large g4re package at the right of the figure, and

describe it in Section 5.1.3. Finally, we illustrate the linking module and the API



Figure 5.1: Overview of g4re. Dashed lines represent “use” dependencies. Bold text
indicates an implementation artifact. Italic text indicates a third party library.
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module, linker and api, as packages in the large cppinfo package at the center of the

figure, and describe them in Sections 5.1.4 and 5.1.5, respectively.

5.1.1 The ASG module

In the generic package, we provide parsing, storage, traversal, and serialization fa-

cilities for working with the generic ASG representation of gcc. The input to this

package is a tu file, or a GXL encoding of a tu file. The output of this package is

a gzipped GXL encoding of the input file, or an in-memory representation of the

generic ASG.

We implemented two parsers: a tu file parser that uses a scanner generated by

flex, and a GXL file parser that uses the expat XML parsing library and the zlib com-

pression library via the pattern and utility library with standard extensions (pulse).

We also implemented a simple node list representation for storage of the parsed

ASG, and several parameterized methods for traversing the leftmost child right sib-

ling (LCRS) tree that underlies the ASG. Finally, we implemented an extensible

serialization facility that we use to create GXL encodings of tu files.

The first parser we wrote provides functionality to parse a tu file and to store the

corresponding ASG. After parsing a tu file, we perform a series of transformations

on the stored ASG to remove extraneous information and to make it more suitable

for reverse engineering tasks. In particular, we:

• remove fields that store internal information used by the gcc back end,

• mark methods as static if their parameter lists do not contain a this pointer,

• mark methods as const if their parameter lists contain a const this pointer,

• remove the this pointer from all method parameter lists.

We use this parser in conjunction with our serialization facility to create GXL in-

stances of tu files.

The second parser we wrote provides functionality to parse a GXL file or gzipped

GXL file and to store the corresponding ASG. Three advantages of this parser over

the tu parser are:
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1. reentrance,

2. the lack of post-parse transformation overhead,

3. the compression rate is higher for GXL files than for tu files.

We use the tu parser (in conjunction with our serialization facility) to create the

GXL file(s) accepted by this parser; thus, there is a one-time cost associated with

its use.

5.1.2 The Schema and Serialization Modules

In the schema package, we provide a class library that implements the CppInfo

schema1 for the ISO C++ programming language. In the current implementation,

we provide 72 classes, 42 of which are concrete, that provide information about

C++ language elements. Language elements include declarations, such as classes

(including class templates and class template instantiations); namespaces; functions

(including function templates and function template instantiations); and variables,

statements (including control statements and exception statements), and some ex-

pressions.

In the serialization package, we provide serialization facilities for working with

instances of the schema representation of C++. We implemented a parser to read

GXL encodings; gzipped files are also accepted. We implemented visitor [Gamma

et al. 1995] classes to write gzipped GXL encodings. We used C++ templates to

allow the package to read and write both individual and linked instances of the

schema representation.

5.1.3 The Transformation Module

In the g4xformer package, we provide an implementation of the transformation from

the ASG representation that we provide in the generic package to the representation

that we provide in the schema package. The input to this package is a tu file, or

a GXL encoding of a tu file; gzipped files of either type are also accepted. The
1We describe the CppInfo schema in more detail in Section 4.2.
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output of this package is a gzipped GXL encoding of the instance of the schema

representation that corresponds to the generic ASG in the input file.

We implemented the transformation in three passes. In the first pass, we traverse

the generic ASG in program order, and create the core of the instance of the schema

representation. The core consists of all declaration, declarator, and statement nodes,

as well as structural edges. In the second pass, we adorn the core with edges that

indicate the use of a type; these edges include inheritance edges. In addition, in the

second pass, we build all cv-qualified types. We also resolve uses of bound template

template parameters to their template declarations.2. Finally, in the third pass, we

adorn the graph that results from the second pass with edges that indicate uses of

expressions, including function calls3

5.1.4 The Linking Module

In the linker package, we provide an implementation of our linking algorithm. The

input to this package is a set of GXL encodings of instances of the schema represen-

tation for all C++ translation units in a program; gzipped files are also accepted.

The input files need not be created by the g4xformer package. The output of this

package is a gzipped GXL encoding of the linked, or unified, instance of the schema

representation for all C++ translation units in the program.

Programs written in C++ consist of multiple files, both header and source. A

C++ translation unit consists of a source file and all files that it includes, either

directly or transitively. A C++ compiler, such as gcc, operates on a single translation

unit at a time; the generated object code for all translation units in a program is

linked by the system linker, e.g., ld on Unix systems. A C++ reverse engineering

tool, such as g4re, also operates on a single translation unit at a time; however, the

generated output is not object code, but rather a program representation such as

an ASG.

We perform linking n−1 times, where n is the number of translation units, when
2This task is not needed for compilation, and is not performed by gcc
3 Calls to virtual functions are designated as such in tu files, but sets of possible targets are not

identified. These sets are available via the gcc compiler flag -fdump-class-hierarchy.
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n is greater than one. Otherwise, we perform linking one time. We achieve linking

by performing a traversal of the most recently constructed instance of the schema

representation. We add or append a schema class instance to the unified instance

of the schema representation if the class instance does not exist, or is incomplete,

in the unified instance. A schema class instance is incomplete if it is missing a

required element (as defined by the CppInfo schema) or contains another incomplete

instance. Using our definition of incomplete, we resolve function declarations to

their corresponding definitions.

There is a special case for linking function parameters. A function parameter

from a function declaration (prototype), is not always identical to the corresponding

function parameter from the function definition. A function parameter may only

have an initial value in a function declaration. In addition, the name of the function

parameter may differ, e.g., anonymous function parameters are commonly used in

header files.

5.1.5 The API Module

In the api package, we provide an abstract class that defines the interface for an API

that provides access to information about language elements in a C++ program.

In addition, we provide a concrete implementation of the API. The input to this

package is a GXL encoding of a linked instance of the schema representation; gzipped

files are also accepted. The input files need not be created by the linker package.

The output of this package is an API, an in-memory representation of the linked

instance that may be queried by a user program.

We designed the api package to provide a clear and flexible interface. We provide

two points of access. The first point of access is a pointer to the global namespace,

from which a user can traverse the ASG that underlies the API. We provide iterator

classes, as well as an abstract visitor class, to use when accessing the API in this

fashion [Gamma et al. 1995]. The second point of access is a collection of lists that

each contain instances of a particular schema class. We provide, in two forms, the

lists for Namespace, Class, Enumeration, Enumerator, Function, Variable, and Type-
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def. The first form provides all instances of the particular schema class; the second

form provides filtered instances of the particular schema class. Filtered instances are

determined by user-provided filter lists that contain the names of source files from

which schema class instances should be ignored. We provide a script that generates

filter lists.

5.2 Sample Usage

In Figure 5.2 we provide an overview of API usage. We illustrate a GXL file con-

taining a linked instance of the schema representation at the top of the figure. Next,

we illustrate a sample user program, metrics, that instantiates then queries the API

to compute metrics. We illustrate the API, the abstract class cppinfo::api::Interface,

in the middle of the figure. Finally, we illustrate filter lists at the bottom of the

figure.

The user program instantiates the API with the name of the GXL file; when the

API is instantiated, it reads the filter lists. The user program queries the instan-

tiated API to perform a reverse engineering task, such as a program analysis. In

Section 5.2.1 we describe the process of acquiring the GXL files needed to instantiate

the API. In Section 5.2.2 we present a sample user program that instantiates and

queries an API to perform a simple program analysis.

5.2.1 Input

In Figure 5.3 we illustrate the process of using gcc, and optionally g4re and/or gzip,

to create a set of files that contain instances of the generic schema. We show the

input, a C++ source file, at the left of the figure. We show the output, a set of files

to transform, at the right of the figure (see Subsection 5.1.3 for details). This set

may contain any combination of the four possible encodings of the input.

We show the use of the gcc command line flag -fdump-translation-unit-all

to obtain a plain text representation of the generic instance for each translation

unit in a program. We show the creation of these representations, known as tu
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Figure 5.2: Overview of API usage. Solid, directed lines show input, unless otherwise
noted. Dashed lines show notes.
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Figure 5.3: UML Activity Diagram for Transformer Input. The process of creating
a set of files to transform.

Figure 5.4: UML Activity Diagram for Linker Input. The process of creating a set
of files to link.

files, in the upper left of Figure 5.3. We use tu files rather than hard-coding our

solution into the gcc source code. This provides flexibility, and fits our theme of

exchange among reverse engineering tools. In the upper right of the figure, we show

the optional use of the g4re command line flag -fencode to obtain, for each tu file,

a GXL encoding of an instance of the generic schema. At the bottom of the figure,

we show the optional use of gzip to compress either a tu file, or a GXL instance,

In Figure 5.4 we illustrate the process of using g4re to create a set of GXL files

that contain instances of the CppInfo schema. We show the input, the set of files

to transform (obtained as shown in Figure 5.3), at the left of the figure. We show

the output, a set of files to link, at the right of the figure (see Subsection 5.1.4 for

details).

We show the use of the g4re command line flag -ftransform to obtain, for each

generic instance, a GXL encoding of a temporary instance of the CppInfo schema.

We show the creation of these temporary instances, which use string encodings of
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Figure 5.5: UML Activity Diagram for API Input. The process of creating a file for
use with the API.

the unique names for the contained instances of CppInfo classes, in the center of

Figure 5.4. We omit showing the optional use of gzip in this figure.

In Figure 5.5 we illustrate the process of using g4re to create a GXL file that

contains a linked instance of the CppInfo schema. We show the input, the set of files

to link (obtained as shown in Figure 5.4), at the left of the figure. We show the

output, a GXL encoding of the linked instance of the CppInfo schema, at the right

of the figure (see Subsection 5.1.5 for details).

We show the use of the g4re command line flag -flink to obtain, for a set of

temporary instances of the CppInfo schema, a GXL encoding of the linked instance

of the CppInfo schema. We show the creation of the linked instance, which uses

unique integers to identify the contained instances of CppInfo classes, at the right of

Figure 5.5. We omit showing the optional use of gzip in this figure.

5.2.2 Usage

1 class Shape { } ;
2 class Ci r c l e : public Shape { } ;
3 class Rectangle : public Shape { } ;
4
5 class Square : public Rectangle { } ;
6
7 class Vi s i t o r { } ;
8 class ComputationVis itor : public Vi s i t o r { } ;
9 class S e r i a l i z a t i o n V i s i t o r : public Vi s i t o r { } ;

10
11 class AreaComputationVisitor : public ComputationVis itor { } ;
12 class PerimeterComputat ionVis i tor : public ComputationVis itor { } ;
13
14 class XmlS e r i a l i z a t i o nV i s i t o r : public S e r i a l i z a t i o n V i s i t o r { } ;

Source Listing 5.1: Sample C++ program. Two disjoint inheritance hierarchies
that consist of ten classes.
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In Source Listing 5.1, we list a small C++ program that consists of ten classes. We

list two root classes, Shape and Visitor, on lines 1 and 7, respectively. Root classes do

not have base classes. We list three interior classes, Rectangle, ComputationVisitor,

and SerializationVisitor, on lines 3, 8, and 9, respectively. Interior classes have one or

more base classes, and one or more derived classes. Finally, we list five leaf classes,

Circle, Square, AreaComputationVisitor, PerimeterComputationVisitor, and XmlSerial-

izationVisitor, on lines 2, 5, 11, 12, and 14, respectively. Leaf classes have one or

more base classes, but no derived classes.

1 void countClas se s ( const cpp in fo : : ap i : : Fi lename t& f i l ename ) {
2 using cpp in fo : : ap i : : I n t e r f a c e ;
3 using cpp in fo : : ap i : : L inked In t e r f a c e ;
4 using cpp in fo : : Con s tC l a s sP t rL i s t I t e r a t o r t ;
5 I n t e r f a c e ∗ i n t e r f a c e = new L inked In t e r f a c e ( f i l ename ) ;
6 unsigned root = 0 , i n t e r i o r = 0 , l e a f = 0 ;
7 Cons tC l a s sP t rL i s t I t e r a t o r t i = i n t e r f a c e−>ge tC l a s s e s ( ) . c r e a t e I t e r a t o r ( ) ;
8 while ( true == i−>i sVa l i d ( ) ) {
9 const cpp in fo : : ConstClassPtr t c = i−>getCurrent ( ) ;

10 unsigned baseCount = c−>getBaseClas se s ( ) . s i z e ( ) ;
11 unsigned derivedCount = c−>ge tDer ivedClas s e s ( ) . s i z e ( ) ;
12 i f ( 0 == baseCount ) {
13 ++root ;
14 }
15 else {
16 i f ( 0 < derivedCount )
17 ++i n t e r i o r ;
18 else
19 ++l e a f ;
20 }
21 i−>moveNext ( ) ;
22 }
23 delete i ;
24 }

Source Listing 5.2: Sample user program. A simple program analysis that counts
the number of root, interior, and leaf classes.

In Source Listing 5.2, we list a C++ function that instantiates and queries an

API instance to compute the number of root, interior, and leaf classes in a C++

program. We list the function declaration on line 1, where the parameter filename

denotes the input program (see Subsection 5.2.1 for details). We list the API in-

stantiation on line 5, where the filename is passed to the constructor of class cp-

pinfo::api::LinkedInterface. On line 7, we use the list point of access provided by
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the API to obtain an iterator that accesses each class in the input program4. Finally,

we list a while loop on lines 8–21 that computes the number of root, interior, and

leaf classes.

4The list contains all ClassNonTemplate, ClassTemplate, and ClassTemplateInstantiation

instances. A trivial addition to the loop is required to exclude instances of one or two of these
classes.
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Chapter 6

Case Studies: Realizing the Infrastructure

with g4re

In this chapter we present two case studies in which we use the g4re tool chain

to realize our infrastructure. We designed our case studies to determine the space

and time costs incurred by the use of our infrastructure. We measure space in two

dimensions: size on disk, and size of graph(s), i.e., the number of nodes and edges.

We measure times for parsing and building in-memory representations, as well as

for the linking process, and the application of XSLT style sheets.

First, in Section 6.1, we describe the twelve applications and libraries that serve

as the test suite in our case studies. In Section 6.2, we exchange low-level graphs,

and measure the space and time costs incurred. In Section 6.3, we exchange middle-

level graphs, and again measure the space and time costs incurred. In this section

we also apply XSLT style sheets to each middle-level graph. We use style sheets that

summarize the contents of each middle-level graph instance; the process of writing

the style sheets, which requires knowledge of only the schema, is automatable.

6.1 Test Suite

In Table 6.1, we list the twelve open source applications and libraries, or test cases,

that form the test suite for our studies.In the first column, we list the names that

we use to refer to the test cases. In the next three columns of the table, we list

relevant data about the test cases. We list the version numbers in the second column,

the number of C++ translation units in the third, and the approximate number of

thousands of lines of non-commented, non-preprocessed lines of code in the fourth.



Test Case Version C++ Translation Units NCLOC (≈ K)
AvP CVS 07/22/05 95 295
CppUnit 1.10.2 51 4
Doxygen 1.4.4 69 170
FluxBox 0.9.14 107 32
FOX 1.4.17 245 110
HippoDraw 1.15.8 249 55
Jikes 1.22 38 70
Keystone 0.2.3 52 16
Licq 1.3.0 28 36
Pixie 1.5.2 78 80
Scintilla 1.66 78 35
Scribus 1.2.3 110 80

Table 6.1: Test suite. The 12 test cases that we use in our study. For each test
case, we list the version, the number of C++ translation units, and the approximate
number of thousands of non-commented, non-preprocessed lines of code (NCLOC).
The test suite contains 1,200 C++ translation units and approximately one million
lines of code.
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The twelve applications and libraries that form our test suite are widely used, are

freely available on the Web, and consist of approximately one million lines of non-

commented, non-preprocessed code. AvP is a Linux port of the Fox Interactive/Re-

bellion Developments game Aliens vs Predator (Gold Edition) [Rebellion 2005]. Cp-

pUnit is a C++ port of the JUnit framework for unit testing [CppUnit Project

2006]. Doxygen is a documentation system for C, C++, and Java [van Heesch

2006]. FluxBox is a light-weight X11 window manager built for speed and flexibil-

ity [FluxBox Project 2006]. FOX is a toolkit to facilitate development of graphical

user interfaces [van der Zijp 2006]. HippoDraw provides a highly interactive data

analysis environment [Kunz 2006]. Jikes is a Java compiler system from IBM [IBM

Jikes Project 2006]. Keystone is a parser and front end for ISO C++ [Keystone

Project 2005; Malloy et al. 2003a]. Licq is a multi-threaded ICQ clone [Licq Project

2006]. Pixie is a RenderMan R© like photorealistic renderer [Arikan 2006]. Scin-

tilla is a source code editing component that includes support for syntax styling,

error indicators, code completion, and call tips [Hodgson 2006]. The final test case,

Scribus, is a professional, cross-platform desktop publishing system [Scribus Project

2006].

We executed all experiments on a custom workstation with a Dual Core AMD

Opteron TM 165 processor, 2048 MB of PC3200 DDR RAM, and a 250 GB, 7200

RPM SATA II hard disc on which we installed the Slackware 10.2 operating system

after formatting with version 3.6 of the ReiserFS filesystem. We performed the

experiments with version 1.5.0 of g4re, which we compiled with version 4.1.1 of gcc.

We created all tu files with gcc version 3.3.6.

6.2 Case Study: Exchanging Low-Level Graphs

In this section we describe the results of our first case study, in which we examine low-

level graphs from our infrastructure. g4re exchanges multiple formats, as discussed

in Subsection 5.2.1. In Subsections 6.2.1 and 6.2.2, we describe the formats that g4re

exchanges, and present results for exchanging GXL encoded instances of schemas at
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Level 0 and I of our infrastructure, respectively. We discuss the results of the case

study in Subsection 6.2.3.

6.2.1 Exchanging Graphs at Level 0

In this subsection we investigate the costs associated with exchanging instances of

low-level graphs; in particular, we investigate the costs of exchanging instances of

the generic ASG schema, in both tu and GXL formats. First, we illustrate the

two exchange formats. Second, we measure the space and time costs incurred by

exchanging ASGs, which are found in Level 0 of our infrastructure.

1 class Base { } ;
2 class Parser : public Base { } ;

Source Listing 6.1: Source code for class Parser. Definition of the C++ class
Parser. Parser inherits from the class Base.

In Source Listing 6.1, we list C++ code for the definition of class Parser. We

list a base class, Base, on line 1, and the class Parser on line 2. The inheritance

relationship between Parser and Base is public and non-virtual.

@3 type dec l name : @4 type : @5 srcp : Parser . cpp : 2
a r t i f i c i a l chan : @6 addr : b7e0a460

@4 i d e n t i f i e r n o d e s t r g : Parser l ng t : 6 addr : b66b3ac0
@5 reco rd type name : @3 s i z e : @7 algn : 8

base : @8 public struct
f l d s : @9 fn c s : @10 b in f : @11
addr : b7e0a310

Source Listing 6.2: Instance of a tu file. Definition of class Parser as represented
in a tu file. A node definition in a tu file consists of: a unique integer prepended
with “@”, a string representing the node type, edges of the form “edge: dest”, fields
of the form “field: value”, and a set of single word attributes.

We list the definition of a C++ class, Parser, in the generic tu file format in

Source Listing 6.2, and the corresponding definition as a GXL encoded instance of

the generic schema in Source Listing 6.3. GXL is clearly more verbose than the

gcc tu file format; the respective character counts for the text in the figures are 447

and 1178.

Note that the text in Source Listing 6.2 contains information not present in

Source Listing 6.3. Extraneous information, such as an address or string length,
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<node id=”n3 ”>
<type x l i nk : h r e f=”GENERIC. gx l#type dec l ”/>
<a t t r name=”a t t r ”><set><s t r i ng >a r t i f i c i a l </s t r i ng ></set ></att r>
<a t t r name=”srcp ”><s t r i ng >Parser . cpp:2</ s t r i ng ></att r>

</node>
<edge from=”n3 ” to=”n4 ”><type x l i nk : h r e f=”GENERIC. gx l#name”/></edge>
<edge from=”n3 ” to=”n5 ”><type x l i nk : h r e f=”GENERIC. gx l#type ”/></edge>
<edge from=”n3 ” to=”n6 ”><type x l i nk : h r e f=”GENERIC. gx l#chan ”/></edge>
<node id=”n4 ”>

<type x l i nk : h r e f=”GENERIC. gx l#i d e n t i f i e r n o d e ”/>
<a t t r name=”a t t r ”><set ></set ></att r>
<a t t r name=”s t r g ”><s t r i ng >Parser </s t r i ng ></att r>

</node>
<node id=”n5 ”>

<type x l i nk : h r e f=”GENERIC. gx l#reco rd type ”/>
<a t t r name=”a t t r ”><set><s t r i ng >struct</s t r i ng ></set ></att r>
<a t t r name=”qual ”><s t r i ng ></s t r i ng ></att r>

</node>
<edge from=”n5 ” to=”n8 ”>

<type x l i nk : h r e f=”GENERIC. gx l#base ”/>
<a t t r name=”base ”>

<tup><bool>false </bool><s t r i ng >public</s t r i ng ></tup>
</att r>

</edge>
<edge from=”n5 ” to=”n3 ”><type x l i nk : h r e f=”GENERIC. gx l#name”/></edge>
<edge from=”n5 ” to=”n7 ”><type x l i nk : h r e f=”GENERIC. gx l#s i z e ”/></edge>
<edge from=”n5 ” to=”n10 ”><type x l i nk : h r e f=”GENERIC. gx l#fnc s ”/></edge>
<edge from=”n5 ” to=”n11 ”><type x l i nk : h r e f=”GENERIC. gx l#b in f ”/></edge>

Source Listing 6.3: GXL instance of the generic schema. Definition of class
Parser as represented in a GXL encoded instance of the generic schema. The
generic GXL schema is a direct encoding of the tu file format, but with internal
gcc information, such as addresses and string lengths, omitted. The “@” symbol is
translated to “n” to conform to XML standards.
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.cpp.tu[.gxl][.gz] .cpp.tu[.gz] .cpp.tu.gxl[.gz]
Test Case Nodes Edges Edges
AvP 3 286 604 8 607 856 8 509 901
CppUnit 4 574 861 10 983 481 10 911 237
Doxygen 7 558 527 17 894 321 17 724 872
FluxBox 12 016 093 30 111 171 29 852 859
FOX 12 139 219 32 260 488 31 953 355
HippoDraw 18 835 420 44 662 239 44 338 296
Jikes 7 543 803 17 437 798 17 321 098
Keystone 6 159 791 15 152 153 15 047 146
Licq 2 663 307 6 813 822 6 751 433
Pixie 3 278 791 7 665 603 7 620 166
Scintilla 1 414 562 3 456 874 3 427 785
Scribus 17 418 294 44 859 563 44 426 635

Table 6.2: Level 0: Numbers of nodes and edges. The numbers of nodes and edges
for ASGs that represent the test cases.

is omitted from the GXL encoding. Empty lists are detected and removed during

encoding; the flds edge is omitted in this example. The fncs edge is not omitted,

because gcc provides a constructor, copy constructor, and assignment operator for

each class.

It is well known that XML imposes significant storage costs; however, this fact

has not hindered its wide spread adoption. Due to the prevalence of XML, there

are several tools, available in popular languages such as C, C++, and Java, that

were designed with these costs in mind. We designed and implemented a wrapper

for the XML parser expat [eXpat Project 2005] that uses zlib [zlib Project 2005] to

read compressed files. We also implemented a subclass of the C++ standard library

class ostream to write compressed files. To provide a complete comparison, we

instrumented our flex scanner to read compressed tu files.

In Table 6.2, we list the numbers of nodes and edges for ASGs that represent

the test cases. In column 1, we list the test cases. In column 2, we list the number

of nodes in the possibly GXL-encoded instance of the generic schema. In columns

3 and 4, we list the numbers of edges in the tu files and GXL encoded tu files,

respectively.
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Test Case .cpp.tu[.gz] .cpp.tu.gxl[.gz]
AvP 809 84 1 376 122
CppUnit 567 98 1 784 116
Doxygen 863 152 2 794 172
FluxBox 1 540 250 4 842 312
FOX 1 643 230 5 162 303
HippoDraw 2 283 376 7 222 469
Jikes 872 145 2 795 181
Keystone 773 126 2 439 157
Licq 341 56 1 081 69
Pixie 414 56 1 202 71
Scintilla 177 27 554 34
Scribus 2 184 352 6 967 440

Table 6.3: Level 0: Size on disk (MB). The size on disk, in megabytes, for ASGs
that represent the test cases.

We apply the pruning algorithm discussed in Subsection 5.1.1 during the parse

of a tu file. We show the effects of our pruning algorithm in Table 6.2. Our pruning

algorithm does not remove any nodes, but it does remove edges. In the table, we

show the difference between the numbers of edges in the tu files and the GXL

encodings of the tu files. Next, we investigate the storage costs introduced by the

use of GXL, and the saving that can be achieved by compressing files of each format.

In Table 6.3, we list the sizes on disk, in megabytes, for ASGs that represent the

test cases. In column 1, we list the test cases. In columns 2 and 3, we list the total

size of the uncompressed and compressed tu files, respectively. In columns 4 and 5,

we list the total sizes of the uncompressed and compressed GXL encoded tu files,

respectively.

A comparison of columns 2 and 4 of the table shows the significant storage cost

introduced by the use of uncompressed GXL. For all but one of the test cases, the

uncompressed GXL encodings of the tu files more than double the storage costs.

For example, the total storage cost of the tu files for Jikes is 872 megabytes, but

the total storage cost of the GXL encodings is 2 795 megabytes; the tu files are 3.2

times smaller than the GXL encodings. The outlier is AvP, for which the tu files,

at 809 megabytes, are only 1.7 times smaller than the GXL encodings. On average,

uncompressed tu files are 3.02 times smaller than the GXL encodings of the tu files,
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Test Case .cpp.tu[.gz] .cpp.tu.gxl[.gz]
AvP 97.39 112.62 136.58 155.71
CppUnit 123.47 142.85 174.66 199.56
Doxygen 206.07 238.65 279.39 322.82
FluxBox 341.50 388.24 472.39 552.80
FOX 347.15 411.66 503.60 577.47
HippoDraw 514.72 584.73 715.28 829.80
Jikes 208.93 233.54 253.77 291.35
Keystone 171.89 194.75 239.23 275.83
Licq 76.06 87.47 90.77 105.75
Pixie 86.74 104.06 125.20 144.57
Scintilla 38.63 46.65 56.30 64.99
Scribus 508.73 572.60 600.87 703.67

Table 6.4: Level 0: Time (s). The running time, in seconds, to parse and build
in-memory representations of ASGs that represent the test cases.

with a standard deviation of 0.42. Columns 3 and 5 show the significant savings

in storage cost that compression introduces when compared to columns 2 and 4,

respectively. In addition, the gap between the storage costs of the two file formats

is significantly reduced when compression is used. On average, compressed tu files

are 1.25 times smaller than the GXL encodings of the tu files, with a standard

deviation of 0.08. GXL, and XML in general, compresses at a higher ratio than

other text formats. Next, we investigate the run-time costs introduced by the use

of compression and GXL.

In Table 6.4, we list the running times, in seconds, to parse and build in-memory

representations of ASGs that represent the test cases. In column 1, we list the

test cases. In columns 2 and 3, we list the total times for the uncompressed and

compressed tu files, respectively. In columns 4 and 5, we list the total times for the

uncompressed and compressed GXL encoded tu files, respectively.

As stated in Subsection 5.1.1, we parse tu files using a flex generated scanner,

GXL files using expat, and compressed files using zlib. We use the same node list

graph data structure to store each graph instance in memory. A comparison of

columns 2 and 4 of the table shows the run-time cost introduced by the use of GXL.

The running times for GXL inputs are consistently higher than those for tu inputs,

but the run-time costs introduced by GXL are much lower than the corresponding
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storage costs. On average, parsing the uncompressed tu files is 1.36 times faster

than parsing the uncompressed GXL encodings of the tu files, with a standard

deviation of 0.10. The average time for uncompressed tu files is 226.77 seconds,

with a standard deviation of 164.86. On average, parsing the compressed tu files is

1.36 times faster than parsing the compressed GXL encodings of the tu files, with

a standard deviation of 0.08. The average time for compressed tu files is 259.82

seconds, with a standard deviation of 186.81.

6.2.2 Exchanging Graphs at Level I

In this subsection we continue to investigate the costs associated with exchanging

instances of low-level graphs; in particular, we investigate the costs of exchanging

instances of the CppInfo schema. First, we illustrate a GXL encoded instance of

the CppInfo schema. Second, we measure the space and time costs incurred by

exchanging APIs, which are found in Level I of our infrastructure.

We list the definition of C++ class Parser (see Source Listing 6.1 for details)

as a GXL encoded, linked instance of the CppInfo schema in Source Listing 6.4.

The character count for the text in the figure is 1307, which is larger than even the

GXL encoding of the original tu file. However, we implemented maximal sharing

of strings, such as file and identifier names, and integers, such as line and column

numbers, to improve the scalability of this format.

We show the effects of our linking process in Table 6.5. In the table, we show the

differences between the numbers of nodes and edges in the intermediate (unlinked)

instances and the linked instances of the CppInfo schema. In columns 2 and 3, we

list the sums of nodes and edges, respectively, for all intermediate instances for each

test case. The numbers of nodes and edges for intermediate instances vary widely.

The minimum number of nodes is 780 024 for Scintilla, and the maximum number

of nodes is 10 164 005 for HippoDraw. The minimum number of edges is 2 391 321

for Scintilla, and the maximum number of edges is 34 941 134 for HippoDraw. The

average numbers of nodes and edges are 4 262 119 and 14 445 413, with standard

deviations of 3 402 982 and 11 469 128, respectively.
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<node id=”n81 ”>
<type x l i nk : h r e f=”CppInfo . gx l#ClassNonTemplate ”/>
<a t t r name=” v i s i b i l i t y ”><enum></enum></att r>
<a t t r name=”isConst ”><bool>false </bool></att r>
<a t t r name=” i s V o l a t i l e ”><bool>false </bool></att r>
<a t t r name=”key ”><enum>class</enum></att r>

</node>
<edge from=”n81 ” to=”n82 ”>

<type x l i nk : h r e f=”CppInfo . gx l#HasSourceLocation ”/>
</edge>
<edge from=”n81 ” to=”n1 ”><type x l i nk : h r e f=”CppInfo . gx l#HasScope ”/></edge>
<edge from=”n81 ” to=”n84 ”><type x l i nk : h r e f=”CppInfo . gx l#HasName”/></edge>
<edge from=”n81 ” to=”n58 ” toorder=”24 ”>

<type x l i nk : h r e f=”CppInfo . gx l#Bases ”/>
<a t t r name=” i n h e r i t a n c e S p e c i f i e r ”>

<tup><enum>public</enum><bool>false </bool></tup>
</att r>

</edge>
<edge from=”n81 ” to=”n85 ” toorder=”28 ”>

<type x l i nk : h r e f=”CppInfo . gx l#Functions ”/>
</edge>
<edge from=”n81 ” to=”n90 ” toorder=”29 ”>

<type x l i nk : h r e f=”CppInfo . gx l#Functions ”/>
</edge>
<edge from=”n81 ” to=”n95 ” toorder=”30 ”>

<type x l i nk : h r e f=”CppInfo . gx l#Functions ”/>
</edge>
<node id=”n82 ”>

<type x l i nk : h r e f=”CppInfo . gx l#SourceLocat ion ”/>
</node>
<edge from=”n82 ” to=”n60 ”><type x l i nk : h r e f=”CppInfo . gx l#HasFilename ”/></edge>
<edge from=”n82 ” to=”n83 ”><type x l i nk : h r e f=”CppInfo . gx l#HasLine ”/></edge>
<edge from=”n82 ” to=”n4 ”><type x l i nk : h r e f=”CppInfo . gx l#HasColumn”/></edge>
<node id=”n83 ”>

<type x l i nk : h r e f=”CppInfo . gx l#SourcePos i t i on ”/>
<a t t r name=”number ”><int>2</int></att r>

</node>
<node id=”n84 ”>

<type x l i nk : h r e f=”CppInfo . gx l#I d e n t i f i e r ”/>
<a t t r name=” s t r i n g ”><s t r i ng >Parser </s t r i ng ></att r>

</node>

Source Listing 6.4: GXL instance of the CppInfo schema. Definition of class
Parser as represented in the GXL encoded, linked instance of the CppInfo schema.
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.cpp.tu.ci.gxl[.gz] .cil.gxl[.gz]
Test Case Nodes Edges Nodes Edges
AvP 2 059 850 6 321 574 148 972 631 882
CppUnit 2 657 601 9 208 857 85 355 330 845
Doxygen 2 234 210 7 956 801 208 463 805 926
FluxBox 6 562 227 23 026 116 215 846 1 264 464
FOX 9 631 093 29 647 216 221 383 1 016 806
HippoDraw 10 164 005 34 941 134 254 270 1 470 270
Jikes 2 932 380 10 204 160 154 132 554 202
Keystone 3 314 379 11 731 213 139 570 625 173
Licq 1 142 403 3 996 935 128 045 541 960
Pixie 1 538 147 4 832 153 109 408 491 839
Scintilla 780 024 2 391 321 129 658 437 110
Scribus 8 129 110 29 087 482 330 537 1 510 133

Table 6.5: Level I: Numbers of nodes and edges. The numbers of nodes and edges
for APIs that represent the test cases.

In columns 4 and 5 of Table 6.5, we list the numbers of nodes and edges, respec-

tively, for the linked instance for each test case. These numbers are substantially

smaller than those for the intermediate instances. The minimum number of nodes is

177 355 for CppUnit, and the maximum number of nodes is 254 270 for HippoDraw.

The minimum number of edges is 330 845 for CppUnit, and the maximum number

of edges is 1 470 270 for HippoDraw. The average numbers of nodes and edges are

177 136 and 806 717, with standard deviations of 70 277 and 409 918, respectively.

The substantial reductions indicate a high ratio of duplication among translation

units for all test cases. Recall that duplication is the result of compiler-specific in-

formation, as well as header files, being present in multiple translation units. Next,

we investigate the savings in storage costs introduced by the linking process.

In Table 6.6, we list the sizes on disk, in megabytes, for APIs that represent the

test cases. In column 1, we list the test cases. In columns 2 and 3, we list the total

size of the uncompressed and compressed GXL encoded, intermediate instances of

the CppInfo schema, respectively. In columns 4 and 5, we list the total sizes of

the uncompressed and compressed GXL encoded, linked instances of the CppInfo

schema, respectively.
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Test Case .cpp.tu.ci.gxl[.gz] .cil.gxl[.gz]
AvP 1 586 62 99 5
CppUnit 3 443 103 54 3
Doxygen 2 102 80 126 7
FluxBox 8 609 258 188 10
FOX 7 270 279 149 8
HippoDraw 12 826 389 219 11
Jikes 3 425 111 89 5
Keystone 4 404 132 98 5
Licq 1 380 44 85 5
Pixie 1 212 47 73 4
Scintilla 625 24 71 4
Scribus 7 932 289 231 12

Table 6.6: Level I: Size on disk (MB). The size on disk, in megabytes, for APIs that
represent the test cases.
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Test Case .cpp.tu.ci.gxl[.gz] .cil.gxl[.gz]
AvP 110.81 116.17 8.43 9.47
CppUnit 202.19 217.50 4.70 5.19
Doxygen 143.85 150.62 10.89 11.53
FluxBox 521.57 548.98 16.01 16.52
FOX 516.11 542.16 12.46 13.56
HippoDraw 774.65 815.89 18.23 20.29
Jikes 211.79 223.77 7.68 8.12
Keystone 264.85 270.78 8.84 9.05
Licq 85.50 88.86 7.51 7.75
Pixie 83.88 87.96 6.10 6.52
Scintilla 42.72 44.70 6.08 6.58
Scribus 534.36 445.43 19.46 21.58

Table 6.7: Level I: Time (s). The running time, in seconds, to parse and build
in-memory representations of APIs that represent the test cases.

A comparison of columns 2 and 3 of the table to columns 4 and 5 of the table,

respectively, shows the significant savings introduced by the linking process. For

all test cases, the uncompressed GXL encoding of the linked instance is at least 8.8

times smaller than the uncompressed GXL encodings of the intermediate instances.

For example, the total storage cost of the linked instance for Jikes is 89 megabytes,

but the total storage cost of the intermediate instances is 3 425 megabytes; the linked

instance is 38.5 times smaller than the intermediate instances. CppUnit shows the

biggest difference in storage costs, with the linked instance 63.8 times smaller than

the intermediate instances. Scintilla shows the smallest difference in storage costs.

The savings for the compressed GXL encodings are similar, although the ratios drop

slightly due to the high rate of compression. A large reduction in size indicates a

high level of duplication among translation units (intermediate instances), likely

caused by poor compiler firewalling. Next, we investigate the savings in run-time

costs introduced by the linking process.

In Table 6.7, we list the running times, in seconds, to parse and build in-memory

representations of APIs that represent the test cases. In column 1, we list the test

cases. In columns 2 and 3, we list the total times for the uncompressed and com-

pressed GXL encoded, intermediate instances of the CppInfo schema, respectively.
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In columns 4 and 5, we list the total times for the uncompressed and compressed

GXL encoded, linked instances of the CppInfo schema, respectively.

A comparison of columns 2 and 4 shows a significant savings in run-time costs

when dealing with a linked representation of a program. This result follows directly

from the significant savings in storage costs shown in Tables 6.5 and 6.6. The time

to parse a linked instance is well under 30 seconds for all test cases, whether or not

the GXL encoding is compressed. The time to parse the intermediate instances is

under 60 seconds for only one test case, and over half of the test cases take over

three minutes to parse. The maximum time to parse compressed GXL encodings of

intermediate instances is nearly 15 minutes, for HippoDraw.

6.2.3 Discussion

The results for exchanging low-level graphs show that the storage costs can be pro-

hibitive. The largest files recorded in this case study, uncompressed GXL encodings

of intermediate instances of the CppInfo schema, total over 53 gigabytes of disc space

for the 12 test cases. However, compressed GXL encodings of linked instances of

the CppInfo schema, the smallest files recorded in this case study, total only 79

megabytes of disc space for the 12 test cases.

The results also show that the run-time costs for low-level graphs can also be

prohibitive. The slowest parsing times in this case study were for compressed GXL

encodings of tu files. For the 12 test cases, these files took over 70 minutes to parse.

The fastest parsing times in this case study were for uncompressed GXL encodings

of linked instances of the CppInfo schema. For the 12 test cases, these files took just

over 2 minutes to parse.

We presented results that show the importance of a linker for C++ reverse engi-

neering tools, and presented the first experimental evidence which shows the signif-

icant savings that can be achieved by linking C++ translation units. Unfortunately,

the smallest files recorded in this case study are still too large to be exchanged via

email or newsgroups. This is important, as accessibility of results has been identified

as a key hurdle to the adoption of existing infrastructures [Müller et al. 2000].
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6.3 Case Study: Exchanging Middle-Level Graphs

In this section we describe the results of our second case study, in which we examine

middle-level graphs from our infrastructure. In Subsection 6.3.1, we present results

for exchanging GXL encoded instances of schemas at Levels II, III, and IV of our

infrastructure. In Subsection 6.3.2, we extract results from GXL encoded instances

of the Class Diagram, ORD, and Class Firewall schemas by applying XSLT style

sheets. We discuss the results of the case study in Subsection 6.3.3.

6.3.1 Exchanging Graphs at Levels II, III, and IV

In this subsection we investigate the costs associated with exchanging instances of

middle-level graphs. In particular, we investigate the storage costs of exchanging

GXL encoded instances of the Class Diagram, ORD, and Class Firewall schemas.

First, we illustrate GXL encoded instances of the ORD and Class Firewall schemas.

We omit an instance of the Class Diagram, because it would be nearly identical

to the ORD instance. Second, we measure the space costs incurred by exchanging

graphs at Levels II, III, and IV.

<?xml ve r s i on=”1 .0 ”?>
<!DOCTYPE gxl SYSTEM ”gxl −1.0 . dtd ”>
<gx l xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”>

<graph id=”OrdInstance ” edgemode=”d i r e c t ed ”>
<type x l i nk : h r e f=”ORD. gx l#ORD”/>
<node id=”c0 ”>

<type x l i nk : h r e f=”ORD. gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :A</s t r i ng ></att r>

</node>
<node id=”c1 ”>

<type x l i nk : h r e f=”ORD. gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :B</s t r i ng ></att r>

</node>
<node id=”e0 ”><type x l i nk : h r e f=”ORD. gx l#Inhe r i t an c e ”/></node>
<edge from=”c0 ” to=”e0 ”><type x l i nk : h r e f=”ORD. gx l#i sDes t ”/></edge>
<edge from=”c1 ” to=”e0 ”><type x l i nk : h r e f=”ORD. gx l#i s S r c ”/></edge>

</graph>
</gxl>

Source Listing 6.5: GXL encoded ORD instance. A GXL encoded instance of the
ORD schema containing two classes, ::A and ::B, and one Inheritance edge. The
edge indicates that B inherits from ::A.

In Source Listing 6.5, we list a prototypical GXL encoded instance of the ORD

schema. We list two classes, ::A and ::B. In addition, we list an Inheritance edge,
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which indicates that ::B inherits from ::A. In this case, the Class Diagram instance

would be identical, but for the references to the schema (shown as xlink:href

attributes in type tags).

<?xml ve r s i on=”1 .0 ”?>
<!DOCTYPE gxl SYSTEM ”gxl −1.0 . dtd ”>
<gx l xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”>

<graph id=”C la s sF i r ewa l l I n s t anc e ” edgemode=”d i r e c t ed ”>
<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Cla s sF i r ewa l l ”/>
<node id=”c0 ”>

<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :A</s t r i ng ></att r>

</node>
<node id=”c1 ”>

<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Class ”/>
<a t t r name=”name”><s t r i ng > : :B</s t r i ng ></att r>

</node>
<node id=”e0 ”><type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#Edge ”/></node>
<edge from=”c0 ” to=”e0 ”>

<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#isCUT”/>
</edge>
<edge from=”c1 ” to=”e0 ”>

<type x l i nk : h r e f=”C la s sF i r ewa l l . gx l#i sRe t e s t ed ”/>
</edge>

</graph>
</gxl>

Source Listing 6.6: GXL encoded Class Firewall instance. A GXL encoded in-
stance of the Class Firewall schema containing two classes, ::A and ::B, and one
edge that indicates that if ::A has changed and must be tested, then ::B must be
retested as well.

In Source Listing 6.6, we list a prototypical GXL encoded instance of the Class

Firewall schema. We again list two classes, ::A and ::B. We also list one Edge

edge, which indicates that if ::A has changed and must be tested, then ::B must be

retested as well. This edge results from the Inheritance edge in the ORD instance.

In Table 6.8, we list the sizes on disk, in megabytes, for class diagrams, ORDs,

and class firewalls that represent the test cases. In column 1, we list the test cases.

In columns 2 and 3, we list the total size of the uncompressed and compressed GXL

encoded, instances of the Class Diagram schema, respectively. In columns 4 and 5,

we list the total sizes of the uncompressed and compressed GXL encoded, instances

of the ORD schema, respectively. In columns 6 and 7, we list the total sizes of

the uncompressed and compressed GXL encoded, instances of the Class Firewall

schema, respectively.
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Test Case .cd.gxl[.gz] .ord.gxl[.gz] .cfw.gxl[.gz]
AvP 4 207 227 5 845 301 2 735 140
CppUnit 183 10 186 10 76 8
Doxygen 4 530 245 4 309 217 2 038 100
FluxBox 1 297 71 899 49 400 24
FOX 2 922 158 582 28 953 52
HippoDraw 1 706 93 4 016 200 1 065 52
Jikes 1 345 73 4 561 221 1 041 52
Keystone 1 066 58 3 246 156 813 40
Licq 908 49 1 366 68 264 16
Pixie 1 301 71 1 988 101 693 36
Scintilla 399 22 218 12 68 4
Scribus 1 329 72 1 371 69 320 20

Table 6.8: Levels II, III, and IV: Size on disk (kB). The size on disk, in kilobytes,
for class diagrams, ORDs, and class firewalls that represent the test cases.

In columns 2, 4, and 6, we list the size in kilobytes1 for compressed GXL encoded

instances of the Class Diagram, ORD, and Class Firewall schemas, respectively. The

average number of kilobytes for the compressed GXL encodings of instances of the

Class Diagram, ORD, and Class Firewall schemas, are 95.75, 119.33, and 45.33, with

standard deviances of 75.13, 96.76, and 39.61, respectively. Neither the contents,

nor the sizes of these instances are directly comparable. However, the results show

that none of the compressed GXL encodings for the 12 test cases is larger than 301

kilobytes, and that 25 of the 36 compressed files are no more than 100 kilobytes in

size.

6.3.2 Transforming GXL Graphs with XSLT

In this subsection we apply XSLT style sheets to the GXL instances of the middle-

level graphs. In particular, we investigate the run-time costs of the transformations,

and present the results for instances of the Class Diagram, ORD, and Class Firewall

schemas. First, we illustrate a representative XSLT style sheet for summarizing

GXL instances, in this case, instances of the ORD schema. Second, we apply XSLT

style sheets to the instances of each of the three schemas, and summarize the results.

We used xsltproc [xsltproc Project 2005] to apply the style sheets to the GXL graphs.
1This table uses kilobytes. The similar tables in Section 6.2 use megabytes.
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<x s l : t rans form ve r s i on=”1 .0 ” xmlns : x s l=”http ://www.w3 . org /1999/XSL/Transform ”
xmlns : x l i nk=”http ://www.w3 . org /1999/ x l i nk ”>

<x s l : output method=”text ” indent=”no ” encoding=”ISO−8859−1”/>
<x s l : s t r i p−space e lements=”∗ ”/>
<x s l : template match=”/ gx l /graph ”>

<x s l : v a r i ab l e name=”nodes ”
s e l e c t=”node [ type /@xlink : h r e f =’ORD. gx l#Class ’ ] ”/>

<x s l : v a r i ab l e name=”edges ”
s e l e c t=”node [ type /@xlink : h r e f != ’ORD. gx l#Class ’ ] ”/>

<x s l : v a r i ab l e name=”a s s o c i a t i o n ”
s e l e c t=”node [ type /@xlink : h r e f =’ORD. gx l#Assoc i a t i on ’ ] ”/>

<x s l : v a r i ab l e name=”compos i t ion ”
s e l e c t=”node [ type /@xlink : h r e f =’ORD. gx l#Composition ’ ] ”/>

<x s l : v a r i ab l e name=”dependency ”
s e l e c t=”node [ type /@xlink : h r e f =’ORD. gx l#Dependency ’ ] ”/>

<x s l : v a r i ab l e name=” inh e r i t an c e ”
s e l e c t=”node [ type /@xlink : h r e f =’ORD. gx l#Inhe r i t anc e ’ ] ”/>

<x s l : v a r i ab l e name=”ownedElement ”
s e l e c t=”node [ type /@xlink : h r e f =’ORD. gx l#OwnedElement ’ ] ”/>

<x s l : v a r i ab l e name=”polymorphic ”
s e l e c t=”node [ type /@xlink : h r e f =’ORD. gx l#Polymorphic ’ ] ”/>

<x s l : text>Nodes : </x s l : text>
<x s l : value−o f s e l e c t=”count ( $nodes ) ”/>

<x s l : text>&nl ;</ x s l : text>
<x s l : text>Edges : </x s l : text>

<x s l : value−o f s e l e c t=”count ( $edges ) ”/>
<x s l : text>&nl ;</ x s l : text>
<x s l : text>&nl ;</ x s l : text>
<x s l : text>Assoc i a t i on : </x s l : text>

<x s l : value−o f s e l e c t=”count ( $ a s s o c i a t i o n ) ”/>
<x s l : text>&nl ;</ x s l : text>
<x s l : text>Composition : </x s l : text>

<x s l : value−o f s e l e c t=”count ( $compos it ion ) ”/>
<x s l : text>&nl ;</ x s l : text>
<x s l : text>Dependency : </x s l : text>

<x s l : value−o f s e l e c t=”count ( $dependency ) ”/>
<x s l : text>&nl ;</ x s l : text>
<x s l : text>I nhe r i t anc e : </x s l : text>

<x s l : value−o f s e l e c t=”count ( $ i nh e r i t an c e ) ”/>
<x s l : text>&nl ;</ x s l : text>
<x s l : text>OwnedElement : </x s l : text>

<x s l : value−o f s e l e c t=”count ( $ownedElement ) ”/>
<x s l : text>&nl ;</ x s l : text>
<x s l : text>Polymorphic : </x s l : text>

<x s l : value−o f s e l e c t=”count ( $polymorphic ) ”/>
<x s l : text>&nl ;</ x s l : text>

</x s l : template>
</x s l : transform>

Source Listing 6.7: XSLT for summarizing ORD instances. The XSLT style sheet
we used to generate the results listed in Table 6.10. We used similar style sheets to
generate the results listed in Tables 6.9 and 6.11.
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AvP 0.66 2 099 1 353 388 6 128 371 523 8 763
CppUnit 0.02 59 27 3 349 28 6 413
Doxygen 0.57 752 406 577 6 372 492 33 7 880
FluxBox 0.15 318 163 349 1 603 233 43 2 391
FOX 0.53 500 387 352 6 311 224 203 7 477
HippoDraw 0.24 272 379 27 3 289 195 1 3 891
Jikes 0.38 433 749 150 4 645 180 55 5 779
Keystone 0.15 163 173 22 2 120 111 4 2 430
Licq 0.09 224 32 17 1 249 161 1 1 460
Pixie 0.19 309 405 30 2 296 146 50 2 927
Scintilla 0.04 89 52 79 2 198 14 1 2 813
Scribus 0.17 243 1 154 33 1 568 17 25 2 797

Table 6.9: Class Diagram sizes for the test suite. The number of classes and edges,
by type, in the 12 instances of the Class Diagram schema constructed for the appli-
cations and libraries in our test suite.

In Source Listing 6.7, we list an XSLT style sheet for summarizing the informa-

tion in a GXL encoded instance of the ORD schema. As we noted in the introduction

to this chapter, writing such a style sheet requires knowledge of only the schema,

and not any particular instance. We list nine variables that contain the sets of in-

stances of classes, edges, association edges, composition edges, dependency edges,

inheritance edges, owned element edges, and polymorphic edges, respectively. We

also list nine statements that print the sizes of the sets.

In Table 6.9, we present results from applying the XSLT style sheet PrintCdSum-

mary.xslt to GXL encoded instances of the Class Diagram schema that represent each

of the 12 test cases. In particular, we list the run-time costs of applying the style

sheet, and summaries of the contents. In column 2, we show that xsltproc took less

than one second to apply the style sheet to each of the test cases. In column 3,

we list the total number of classes found in each instance; this class count includes

all instances of the CppInfo schema classes ClassNonTemplate, ClassTemplate, and

ClassTemplateInstantiation. In columns 4 through 8, we list the number of each in-
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AvP 3.33 2 082 1 346 381 6 075 367 381 15 872 24 422
CppUnit 0.06 56 27 3 349 26 6 409 820
Doxygen 2.36 724 390 575 6 267 475 31 11 144 18 882
FluxBox 0.37 307 161 346 1 600 226 40 1 470 3 843
FOX 9.76 499 387 352 6 311 223 203 27 716 35 192
HippoDraw 2.10 271 379 27 3 289 195 1 14 043 17 934
Jikes 2.50 427 748 147 4 640 179 53 14 533 20 300
Keystone 1.78 162 173 22 2120 111 4 12 185 14 615
Licq 0.60 224 32 17 1 249 161 1 4 613 6 073
Pixie 0.91 299 398 30 2 271 142 45 5 938 8 824
Scintilla 0.24 89 52 79 2 198 14 1 469 2 813
Scribus 0.57 243 1 154 33 1 568 17 25 3 293 6 090

Table 6.10: ORD sizes for the test suite. The number of classes and edges, by type,
in the 12 instances of the ORD schema constructed for the applications and libraries
in our test suite.

dividual edge type from the schema. Finally, in column 9, we list the total number

of edges for each test case. On average, Class Diagram instances for our test cases

contain hundreds of classes, and thousands of edges. Dependency edges are most

common.

In Table 6.10, we present results from applying the XSLT style sheet PrintOrd-

Summary.xslt to GXL encoded instances of the ORD schema that represent each of

the 12 test cases. In particular, we list the run-time costs of applying the style sheet,

and summaries of the contents. In column 2, we show that, for half of the test cases,

xsltproc took less than one second to apply the style sheet; the maximum running

time was 9.76 seconds for FOX. In column 3, we list the total number of classes

found in each instance. This class count includes all instances of the CppInfo schema

classes ClassNonTemplate and ClassTemplateInstantiation. In columns 4 through 9,

we list the number of each individual edge type from the schema. Finally, in column

10, we list the total number of edges for each instance. On average, ORD
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Test Case Time (s) Classes Edges Min Max Avg
AvP 2.25 2 082 9 695 1 724 182.67
CppUnit 0.25 56 275 1 40 21.66
Doxygen 3.12 724 7 888 1 623 369.34
FluxBox 0.66 307 1 436 1 216 154.76
FOX 6.00 499 3 636 1 231 41.79
HippoDraw 0.83 271 4 200 1 210 116.07
Jikes 1.52 427 3 994 1 330 297.95
Keystone 3.33 162 3 242 1 140 87.89
Licq 0.50 224 959 1 172 26.90
Pixie 0.76 299 2 665 1 162 83.43
Scintilla 0.50 89 219 1 38 21.53
Scribus 0.62 243 1 175 1 107 64.40

Table 6.11: Class Firewall sizes for the test suite. The numbers of classes and
edges in the 12 instances of the Class Firewall schema. In addition, the minimum,
maximum, and average class firewall sizes for each of the instances. Class firewall
sizes are expressed as number of classes.

instances for our test cases contain hundreds of classes, and tens of thousands of

edges. Polymorphic edges are, by far, the most common.

In Table 6.11, we present results from applying the XSLT style sheet PrintCfw-

Summary.xslt to GXL encoded instances of the Class Firewall schema that represent

each of the 12 test cases. In particular, we list the run-time costs of applying the

style sheet, and summaries of the contents. In column 2, we show that, for half

of the test cases, xsltproc took less than one second to apply the style sheet; the

maximum running time was 6.00 seconds for FOX. In column 3, we list the total

number of classes found in each instance. These classes are the same set of classes

found in the corresponding ORD instance. In column 4, we list the total number

of edges for each instance. On average, Class Firewall instances for our test cases

contain hundreds of classes, and thousands of edges.

In columns 5 and 6, we list the minimum and maximum number of classes,

respectively, found in the class firewall for any class from the particular test case.

For each of the 12 test cases the minimum class firewall size is one (1). The maximum

class firewall size is as small as 38 classes in Scintilla, and as large as 724 classes

in AvP. The average class firewall size for all 12 test cases is 122 classes, with a

standard deviation of 112.
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6.3.3 Discussion

The results for exchanging middle-level graphs show, for both storage and run-time

costs, savings of at least one order of magnitude when compared to the results

for exchanging low-level graphs. Thus, the results indicate significant savings in

the costs of exchange for applications that do not require full low-level information

about a program. For example, no compressed GXL encoding of a middle-level

graph is greater than 301 kilobytes for any of the 12 test cases. In addition, it took

no more than 9.76 seconds to apply, using xsltproc, a style sheet that summarizes

the contents of the given graph.

An application that builds a class firewall can take advantage of the savings

that we highlight in this case study by taking ORD instances, rather than ASG or

API instances, as input. This is the technique that we used to create GXL encoded

instances of the Class Firewall schema for this case study. Other applications of

these savings are described in Chapter 4.

We demonstrate the use of XSLT to extract information from GXL encoded

instances of three different schemas. We show that this process is efficient, and

present experimental results for the 12 test cases in our test suite. All GXL files

that we created for this case study are available in our SourceForge.net repository,

and are available for use by practitioners and other researchers.
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Chapter 7

Applications: Empirical Evaluation with g4re

In this chapter we present empirical evaluations with g4re in two areas: (1) soft-

ware measurement and (2) program comprehension. In Section 7.1, we present a

system for computation of object-oriented metrics, and a case study that examines

the use of object technology in games and language processing tools. In Section 7.2,

we present a system for three-dimensional visualization of class template diagrams,

and a case study in which we visualize ten open source C++ applications. In each

section, we note the platform and g4re version that we used to conduct the respective

case study.

7.1 Application: Computing Object-Oriented Metrics

In this section we present our system for computing object-oriented metrics, and a

case study using the system [Jamieson et al. 2005]. In Subsection 7.1.1, we provide an

overview that includes motivation and background information on game application

programming interfaces (APIs) and object-oriented metrics. In Subsection 7.1.2, we

summarize research that relates to our system and case study. In Subsection 7.1.3,

we define the metrics that we apply to the test suite in our case study. Finally, in

Subsection 7.1.4, we describe our case study, and present the results.

7.1.1 Overview

Game developers have migrated from traditional approaches to the use of object

technology to take advantage of its extensibility, and ease of modification and reuse.

The object-oriented paradigm has a natural application to the domains of graphics,

graphical user interfaces, and games. Early games such as Quake and Doom were

implemented in C, because of its small learning curve and its fast compilation and



execution speeds. However, current game development teams are large, and consist

of not only programmers, but also analysts, artists, and musicians. In addition,

there have been considerable recent gains in compilation and execution speeds for

C++; most modern games are developed using C++.

In this section, we evaluate the exploitation of object technology as it is used

in a test suite of games and language processing tools. We developed a metric

computation system using g4re, and used it to apply several well-known object-

oriented metrics to the test suite. The results formed a basis of comparison for the

use of object technology in the two groups of programs. We used the results to draw

conclusions about the modularity, the use of inheritance, and method complexity in

the two groups of programs in the test suite. First, we provide some background

information about game APIs and object-oriented metrics.

Game APIs

In early game development, DOS-based games were generally implemented with

commands issued directly to the computer’s hardware. These early DOS games

used calls to device drivers for input devices, such as a mouse or a joystick, and calls

to specific sound cards, such as Creative Labs’ Sound Blaster. Video programming

was the most difficult aspect of game development; the generation of fast and smooth

graphics required significant programming skill. Graphics code frequently exploited

the speed of assembly language programming, and depended on certain hardware-

level features of the VGA graphics adapter.

Currently, few game developers write register-level video code, instead relying

on prewritten application programming interfaces (APIs) that form a layer of soft-

ware between the game and the hardware. The most popular API in current use

is DirectX, which is implemented in C++ [Parberry 2000; Parberry et al. 2005].

The DirectX API provides low-level access to multimedia hardware in a device-

independent manner. New versions of DirectX are released to permit game devel-

opers to take advantage of hardware advances as they occur, even after games have

shipped. Unfortunately, the DirectX API is specific to Windows.
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With the popularity of the Linux operating system, game developers became in-

terested in platform-independent game programming. Several APIs have been intro-

duced, including ClanLib [2005], and the Simple DirectMedia Layer (SDL) [2005].

SDL is a multimedia library that has been used to port a number of Windows-

based games to Linux, and is the most popular of the platform-independent game

APIs [Pazera 2003],

SDL supports virtually all of the major operating systems including FreeBSD,

Linux, MacOS, Solaris, Windows, and Solaris. In addition to graphics support,

SDL provides interfaces for playing sound, accessing CD-ROM drives, and achieving

portable multi-threaded applications. SDL is released under the GNU LGPL and

has accumulated a collection of user-contributed libraries that provide additional

functionality.

Object-Oriented Metrics

Software metrics are quantitative measures that enable software developers, testers,

and maintainers to evaluate the static properties of a software system [Fenton and

Pfleeger 1998]. Software metrics are computed and the resultant data are collected,

analyzed, and compared throughout the lifetime of a software system to evaluate

improvement or deterioration of the software system. Software metrics are also

useful for identifying problem modules of a software system.

Object-oriented metrics were introduced to measure software properties specific

to object-oriented software systems, including properties pertaining to classes and

their object instances [Chidamber and Kemerer 1994; Fenton and Pfleeger 1998].

The primary focus of object-oriented metrics is measuring properties of classes and

their instances. Properties of interest include scope of properties, object complexity,

coupling, and cohesion.

7.1.2 Related Work

The literature on object-oriented software metrics is extensive; Chidamber and Ke-

merer [1994] and Fenton and Pfleeger [1998] present detailed surveys. By contrast,

81



there has been relatively little work focused on applying metrics to assess the rela-

tive design characteristics of systems in different application domains. Further, our

work is unique in its consideration of gaming applications. Other researchers have,

however, considered comparisons that are similar in spirit to our own.

Paulson et al. [2004] perform an empirical evaluation of the differences between

open-source and proprietary software. Their goal is to evaluate the validity of com-

mon perceptions regarding open-source projects. Their study considers five dimen-

sions of comparison: (1) system growth, (2) design creativity, (3) complexity, (4)

reliability, and (5) modularity. For each dimension of comparison, they apply a series

of metrics to a test suite consisting of three open-source projects and three propri-

etary projects. Based on the resulting figures, the authors conclude that relative

to their proprietary counterparts, open-source projects: (1) do not grow faster, (2)

foster more creativity, (3) are more complex, (4) are more reliable, and (5) are less

modular. We note that we share the authors’ interest in complexity and modularity,

and use a similar metric for evaluating complexity.

MacCormack et al. [2004] focus on the modularity of open-source software. Their

approach is novel in its use of metrics defined over design structure matrixes [Steward

1981]. Each matrix captures the dependencies between the source files in a given

implementation. A value of one at position (i, j) denotes the existence of a call

from a function defined in file i to a function defined in file j. Similarly, a zero

value denotes the absence of such a call. The authors consider two metrics. The

first metric estimates the number of files affected, on average, by an arbitrary system

change. The second metric is based on a clustering algorithm that groups collections

of interdependent files. The metric estimates the cost of coordination between the

individuals responsible for implementing the various elements by allocating a higher

cost to inter-cluster dependencies, and a lower cost to intra-cluster dependencies.

When applied to their test suite, which consists of one open-source system and one

proprietary system, the resulting figures contradict the results of Paulson et al.: the

open-source system appears more modular. Later, however, the authors evaluate a

major redesign of the proprietary system which fares better: it is more modular than
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the open-source system. We note that the size of the test suite makes it difficult to

draw definitive conclusions.

Ferrett and Offutt [2002] report an empirical evaluation that considers different

implementation paradigms, rather than different application domains. The authors

analyze programs written in Fortran, C, C++, and Java to compare the modularity

of programs written in a procedural style with those written in an object-oriented

style. Ferrett and Offutt define a module as a function (or subroutine) in Fortran

or C, and as a method in C++ or Java. They measure modularity by counting

implementation modules, lines of code per module, and number of parameters per

module. The assumption is that modularity increases with each of these measures.

Their test suite includes 38 programs, with eight programs written in Java, and

ten programs each written in Fortran, C, and C++. Based on the test suite, the

authors conclude that object-oriented programs typically have more modules that

are smaller and have fewer parameters. It is interesting to note that despite the

aggregate conclusion, C++ programs appear to be no more modular than their C

counterparts. The authors provide a possible explanation by observing that C++

programs are often developed by programmers trained in C; the programs need not

be object-oriented. One final point is that the test suite contains programs that

are only partially developed, and target different domains. The authors note that

without experimental controls to account for these factors, the conclusions may be

biased.

7.1.3 Methodology

In this subsection, we define the object-oriented metrics that we computed for the

case study in Section 7.1.4. We define one metric measuring complexity, Weighted

Methods per Class. We define three metrics measuring the use of inheritance: Depth

of Inheritance Tree, Number of Ancestors, and Number of Children.

Metric 1: Weighted Methods per Class (WMC). This metric measures the

complexity of an object, and is an indicator of the time and effort required to develop
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and maintain a class. Given a class C with methods M1,M2, . . . ,Mn, weighted with

cyclomatic complexity c1, c2, . . . , cn, respectively, the metric is computed as

WMC(C) =
n∑

i=1

ci

Given a method M with control flow graph G = (V,E), let D equal the set of

decision nodes in V , where a decision node represents one of { if, switch, for, while,

do while, catch }. The cyclomatic complexity, c, of M is the number of linearly

independent paths in G and is computed as

c(M) = |D|+ 1

Metric 2: Depth of Inheritance Tree (DIT). This metric is the length of

the maximum path from a class to the root of its inheritance hierarchy, relates to

scope of properties, and is an indicator of the number of ancestor classes that can

potentially affect a class. Given a class C with a set of base classes BC, the metric

is computed as

DIT (C) =

 0 if |BC| = 0

max({DIT (Bi) : Bi ∈ BC}) + 1 if |BC| > 0

Metric 3: Number of Ancestors (NOA). This metric is the total number of

ancestor classes of a class. In the absence of multiple inheritance, NOA is equivalent

to DIT. In the presence of multiple inheritance, care must be taken to avoid count-

ing an ancestor class more than once, due to the possibility of a diamond-shaped

inheritance hierarchy.
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Translation Units
Test Case Version Source Files Total C++ NCLOC (≈ K)
ASC 1.16.1.0 436 199 194 130
AvP CVS 07/22/05 509 222 95 295
Freespace2 CVS 07/22/05 652 220 220 365
Scorched3D 38.1 1 069 513 492 110
Doxygen 1.3.9.1 260 122 90 170
g4re 1.0.4 128 60 60 10
Jikes 1.22 75 38 38 70
Keystone 0.2.3 123 52 52 16

Table 7.1: Test suite. The eight test cases that we use in our study: four SDL games
and four language processing tools. For each test case, we list the version, the number
of source files, the number of translation units, the number of C++ translation units,
and the approximate number of thousands of non-commented, non-preprocessed lines
of code (NCLOC).

Metric 4: Number of Children (NOC). This metric is the number of immediate

successors of a class, and measures the breadth of inheritance. Given a class C with

a set of derived classes DC, the metric is computed as

NOC(C) = |DC|

7.1.4 Case Study

In this subsection we describe the results that we obtained using our metrics tool

to evaluate game application software. We evaluated game software by comparing

metrics computed for four games and four language processing tools. The results

that we report in this section capture information about the sizes of the programs,

and the exploitation of object technology as measured by the metrics described in

Subsection 7.1.3.

We first provide information about the eight (8) test cases that form our test

suite: four games implemented using the SDL API, and four language processing

tools. We then provide results describing: (1) modularity and delegation, (2) the

use of inheritance, and (3) complexity of methods.
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Test Suite

In Table 7.1, we list the eight test cases that form our test suite, and size statistics

for each test case. In column 1 of the table, we list the names that we use to refer

to each of the test cases. We list the SDL games in the first four rows. The four

games are: Allied Strategic Command (ASC), Aliens vs Predator (AvP), Freespace

2 (Freespace2), and Scorched 3d (Scorched3D3D). We list the language processing

tools in the last four rows. The four language processing tools are: Doxygen, g4re,

Jikes, and Keystone. Doxygen is a documentation system for C, C++, and Java [van

Heesch 2006]. Jikes is a Java compiler system from IBM [IBM Jikes Project 2006].

Keystone is a parser and front end for ISO C++ [Keystone Project 2005; Malloy

et al. 2003a].

In column 2 of Table 7.1, we list the version number for each test case. In column

3 through 5, we list the number of source files, the number of total translation units,

and the number of C++ translation units for each test case, respectively. Three

of the games and one of the language processing tools (Doxygen) use C and/or

assembly language in addition to C++. Finally, in column 6 of the table, we list

the approximate number of thousands of non-commented, non-preprocessed lines of

code (NCLOC) for each test case.

The games are larger than the language processing tools. For example, the

average NCLOC for the games is 231 000, but the average NCLOC for the language

processing tools is 78 000; therefore, the average game in our test suite is three times

as large as the average language processing application.

We executed all experiments on a custom workstation with an AMD Athlon64 TM

3000+ processor, 1024 MB of PC3200 DDR RAM, and an 80 GB, 7200 RPM SATA

hard disc on which we installed the Slackware 10.1 operating system after formatting

with version 3.6 of the ReiserFS filesystem. We performed the experiments with

version 1.0.4 of g4re, which we compiled with version 4.0.2 of gcc. We created all tu

files with gcc version 3.3.4.
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Classes Functions
Test Case Total Abstract Root Leaf Total Member Virtual Pure
ASC 1 389 58 901 390 8 693 7 775 2 170 208
AvP 1 732 28 1 369 327 11 548 9 350 1 216 90
Freespace2 332 0 320 12 9 468 1 687 48 0
Scorched3D 799 50 405 364 8 432 7 210 1 907 112
Doxygen 315 9 153 157 5 422 4 570 2 159 249
g4re 78 17 27 37 849 798 303 106
Jikes 378 5 210 158 5 717 5 685 602 16
Keystone 160 14 49 87 2 354 2 306 1 178 189

Table 7.2: Modularity and delegation. The number of classes and functions in each
test case; the classes and function are broken down into categories that relate to
modularity and delegation.

Modularity and Delegation

In Table 7.2, we present results that capture information about modularity of and

delegation in the eight test cases. In column 1 we list the test cases, again, we

list the SDL games in the first four rows, and the language processing tools in the

last four rows. In columns 2 through 5, we list the number of total, abstract, root,

and leaf classes, respectively. In columns 6 through 9, we list the number of total,

member, virtual, and pure virtual functions, respectively.

The games AvP and ASC contain the most and second most classes, respectively,

of the eight test cases. AvP contains 1 732 classes; ASC contains 1 389 classes. It is

somewhat surprising that the AvP game contains a large number of classes in view

of the large number of C files in the program. In Table 7.1, we indicated that AvP

contains 222 translation units, but only 95 of these are C++ translation units; over

half of the translation units consist of C or assembly code. However, g4re uses an

ASG representation of the input program; all template classes are instantiated in

an ASG for C++. So, the count of classes that we listed in column 2 of Table 7.2

includes class template instantiations in addition to classes that are not templates.

We use this set of classes when computing the metrics in the following subsections.

The results in Table 7.2 suggest that, for our test suite of four games and four

language processing tools, the games may be more modular than the language pro-

cessing tools. For example, the four games contain a total of 4 252 classes in 923 000
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Test Case Min Max Mean Std Dev Median Mode
ASC 0 4 0.645 0.991 0 0
AvP 0 5 0.304 0.707 0 0
Freespace2 0 1 0.036 0.187 0 0
Scorched3D 0 9 0.931 1.496 0 0
Doxygen 0 4 0.927 1.122 1 0
g4re 0 5 1.897 1.592 2 0
Jikes 0 3 0.714 0.960 0 0
Keystone 0 5 1.794 1.450 2 0

Table 7.3: Depth Of Inheritance Tree (DIT). Statistics about the DIT metric for
each test case.

Test Case Min Max Mean Std Dev Median Mode
ASC 0 6 0.687 1.097 0 0
AvP 0 5 0.307 0.712 0 0
Freespace2 0 1 0.036 0.187 0 0
Scorched3D 0 9 1.036 1.632 0 0
Doxygen 0 7 1.041 1.214 1 0
g4re 0 5 1.910 1.605 2 0
Jikes 0 4 0.728 0.979 0 0
Keystone 0 5 1.794 1.450 2 0

Table 7.4: Number of Ancestors (NOA). Statistics about the NOA metric for each
test case.

NCLOC; the class to one thousand NCLOC ratio is 4.6. However, the four language

processing tools contain a total of 931 classes in 310 000 NCLOC; the class to one

thousand NCLOC ratio is 3.0

Inheritance

In Tables 7.3, 7.4, and 7.5, we list statistics about the Depth of Inheritance Tree

(DIT), Number of Ancestors (NOA), and Number of Children (NOC) metrics, re-

spectively. Column 1 of each table lists the test cases. Columns 2 and 3 list the

minimum, maximum values, respectively. Columns 4 and 5 list the mean and stan-

dard deviation of the values, respectively. Columns 6 and 7 list the median and

mode values, respectively. The median is the value for which an equal number of

values lie above and below; the mode is the most common value.

The DIT metric equals the length of the longest path from a class to the root of

its inheritance tree. The NOA metric equals the total number of ancestor classes of a
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Test Case Min Max Mean Std Dev Median Mode
ASC 0 27 0.314 1.550 0 0
AvP 0 30 0.121 0.850 0 0
Freespace2 0 12 0.036 0.659 0 0
Scorched3D 0 11 0.200 0.912 0 0
Doxygen 0 48 0.359 2.767 0 0
g4re 0 6 0.487 1.171 0 0
Jikes 0 26 0.455 2.474 0 0
Keystone 0 10 0.606 1.656 0 0

Table 7.5: Number of Children (NOC). Statistics about the NOC metric for each
test case.

class. The NOC metric measures the number of immediate successors of a class in its

inheritance tree. Intuitively, the DIT metric measures the depth of the inheritance

tree, and the NOC metric measures the breadth of the inheritance tree. The NOA

metric indicates whether or not multiple inheritance is used, when compared to the

DIT metric.

In Table 7.3, we list statistics about DIT that we computed for the eight test

cases. Scorched3D had a maximum value of 9, which gave it the deepest inheritance

tree in the test suite. In addition, Scorched3D had the largest mean value, 0.931,

but also the largest standard deviation, 1.496, which means that Scorched3D had

the largest amount of variation among the depths of inheritance trees for its classes.

Freespace2 is the only test case that did not have an inheritance tree with a depth

greater than one (1).

In Table 7.4, we list statistics about NOA that we computed for the eight test

cases. A comparison of the mean NOA values to the mean DIT values listed in

Table 7.4 indicates that multiple inheritance is used by three of the four games,

and two of the four language processing tools. However, the differences between the

mean values for NOA and the mean values for DIT indicate that the two language

processing tools made heavier use of multiple inheritance than the three games.

In Table 7.5, we list statistics about NOC that we computed for the eight test

cases. AvP had a maximum value of 30, which gave it the second broadest inheri-

tance tree in the test suite. However, AvP also had the second lowest mean, and the

second lowest variation among the numbers of children for its classes. The median
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Test Case Min Max Mean Std Dev Median Mode
ASC 0 561 12.977 30.365 4 0
AvP 0 107 7.290 10.594 3 3
Freespace2 0 123 6.660 15.707 3 3
Scorched3D 0 240 17.372 19.058 12 3
Doxygen 0 430 27.676 57.497 7 7
g4re 0 206 17.756 30.270 13 0
Jikes 0 2 016 32.397 119.124 13 10
Keystone 0 557 24.388 52.474 15 14

Table 7.6: Weighted Methods per Class (WMC). Statistics about the WMC metric
for each test case.

and mode values for AvP are zero (0), as are the median and mode values for all

test cases.

When taken together with the statistics listed in Tables 7.3 and 7.4, the statistics

listed in Table 7.5 show that: (1) Freespace2 makes very little use of inheritance,

(2) on average, the four language processing tools make more use of inheritance than

the four games, (3) on average, maximum depth to number of classes and maximum

breadth to number of classes ratios are much lower for the four language processing

tools than for the four games.

Complexity

In Table 7.6, we list statistics about the Weighted Methods per Class (WMC) metric,

which equals the sum of the cyclomatic complexities for the methods in a class.

Column 1 lists the test cases. Columns 2 and 3 list the minimum, maximum values,

respectively. Columns 4 and 5 list the mean and standard deviation of the values,

respectively. Columns 6 and 7 list the median and mode values, respectively.

The classes (and hence methods) in the four language processing tools are more

complex than the classes in the four games. For example, the average maximum

value for the language processing tools is 802.250, but the average maximum value

for the games is only 257.750. Similarly, the average mean value for the language

processing tools is 25.554, but the average mean value for the games is only 11.074.
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Concluding Remarks

We have shown that, for our test suite, the games are more modular than the

language processing tools, but that the language processing tools make more use

of inheritance. In addition, we have shown that the methods in the games are less

complex than the methods in the language processing tools. However, our metrics

computation system does not include library code in its analysis, and it is likely that

much of the method complexity in games is found in the SDL API.

7.2 Application: Visualizing Class Template Diagrams

In this section we present our system for visualizing class template diagrams, and

a case study using the system [Hoipkemier et al. 2006]. In Subsection 7.2.1, we

provide an overview that includes motivation and background information on generic

programming. In Subsection 7.2.2, we summarize research that relates to our system

and case study. In Subsection 7.2.3, we provide an overview of our methodology for

the case study. Finally, in Subsection 7.2.4, we describe our case study, and present

the results.

7.2.1 Overview

Generic programming deals with finding abstract representations of efficient algo-

rithms and data structures, and expressing them in an adaptable interoperable man-

ner [Jazayeri et al. 2000]. The generic programming paradigm is a popular ancillary

tool to object technology; conferences, seminars, and other literature have recently

appeared to address problems and concerns related to this paradigm [Eichelberger

and v. Gudenberg 2000; Glück and Lowry 2005; Jazayeri et al. 2000; Lengauer et al.

2004; Veldhuizen 2000].

The canonical example of generic programming is the C++ Standard Library

(STL). In addition, other libraries, such as Boost, Loki and Blitz++, rely heavily

on both generic and generative programming to produce code that is more general,

more efficient, and more easily incorporated into existing applications than their
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non-generic counterpart [Alexandrescu 2001; Siek and Lumsdaine 2005; Veldhuizen

and Gannon 1998]. In recognition of the importance of generics, they have been

recently introduced into both the C# 2.0 [Microsoft Corporation 2006], and the

Java 5 [Sun Microsystems Inc 2006] programming languages.

One problem with generic programming is the dearth of technology to facilitate

comprehension, documentation, and debugging of programs that utilize generic pro-

gramming [Jazayeri et al. 2000]. This may be true, in part, because C++, the most

mature language vehicle for generic programming thus far, is notoriously difficult to

parse [Bodin et al. 1994; Klint et al. 2005; Knapen et al. 1999; Lilley 1997; Malloy

et al. 2003a]. We were unable to find any tool description in the literature that

provides a facility for the comprehension and debugging of generic C++ code.

Various graphical program representations have been used to reverse engineer

class diagrams; most of these have used either the source code or Java bytecode

as input, although some representations have used object code as input [Duffy and

Malloy 2005; Eng 2002; Gutwenger et al. 2003; van Heesch 2006]. Unlike these

systems, we used an abstract syntax graph (ASG). An ASG for a C++ program

contains additional information about templates not included in the source code;

in particular, information about class template instantiations and specializations

is available. This is import, because C++ programmers often specialize types to

provide space and/or time savings [Vandevoorde and Josuttis 2002].

In this section, we evaluate the utilization of generic programming in a test

suite of ten deployed open source programs. We developed a visualization system

using g4re, and applied it to the test suite. We designed the system to visualize

classes (non-templates), class templates, class template instantiations, and class

template specializations in three dimensions. We placed classes (non-templates and

templates) in the X-Y plane, and class template instantiations and specializations

along the Z axis. We used the results to draw conclusions about the frequency and

efficiency of generic programming in these applications.
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7.2.2 Related Work

The literature on software visualization can be partitioned into three categories:

(1) data visualization [Jones et al. 2004; Marcus et al. 2003], (2) class diagram

layout [Eiglsperger et al. 2004; Gutwenger et al. 2003], and (3) code visualization.

There has been no reported work that provides either visualization of templates,

or three-dimensional visualization of class diagrams. Next, we describe relevant

research on code visualization.

Malloy and Power [2005] exploit a molecular metaphor for three-dimensional

visualization of visualize, in three dimensions, the dynamic object relationships in

Java applications. They instrument Java bytecode to collect trace data, and then

analyze it and visualize it in three dimensions using VRML. Their quantitative and

graphical results include analyses of the SPEC JVM98 and JOlden benchmark suites;

they reveal interesting relationships among the data structures in these applications.

Unfortunately, their approach does not accommodate Java generics.

Lewerentz and Simon [2002] present a metrics based approach to software visu-

alization that supports quality assessment of large object-oriented software systems

written in C++ and Java. They use a combination of software metrics data and

program structure information to form a virtual information space. They then visu-

alize the information space using three-dimensional graph structures that represent,

in a uniform manner, many aspects and views of the application under study. They

layout the graphs by using a generic similarity measure to calculate geometric dis-

tances between graph nodes, and a force-directed mapping into three-dimensional

space. Their approach does not include the visualization of C++ class templates or

Java generics.

Eng [2002] presents a framework to visualize intermediate representations of

Java programs that are constructed by an optimizing compiler. He visualizes both

the software, and the characteristics of the execution platform. His visualization

interface illustrates classes, including data and methods, and profile information in
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Figure 7.1: System overview. Solid, directed lines show input. Dashed lines show
notes.

a single framework. His approach does not include visualization in three dimensions,

or the visualization of Java generics.

7.2.3 Methodology

In this subsection, we describe the system that we used to conduct the case study in

Section 7.2.4. We describe both of the components in the system: builder and visu-

alizer. In addition, we illustrate the schema for a Class Template Diagram (CTD),

which is the subject of our visualization.

In Figure 7.1, we provide a overview of the system. We illustrate the builder

component to the left of center at the middle of the figure. The builder compo-

nent, part of the ctd package, uses the API provided by g4re to build and write a

GXL encoded instance of a class diagram subset, which we termed a Class Tem-

plate Diagram (CTD). The nodes in a CTD represent classes (non-templates), class

templates, and class template instantiations and specializations. The nodes contain

information about classes, including names, attributes, and operations. The edges

in a CTD represent either inheritance, including information about access and the

virtual specifier, or one of the aggregations: hasInstantiation and hasSpecialization.

We illustrate the CTD schema in Figure 7.2, and list a link to it in Appendix B.
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Figure 7.2: Schema for Class Template Diagram (CTD). A UML class diagram
representation of the CTD schema.

We illustrate the visualizer component to the right of center at the middle of

Figure 7.1. The visualizer component, part of the ctd package, takes the GXL en-

coded instance of the CTD schema (generated by the builder component) as input.

The visualizer first sends an inheritance hierarchy, which includes only instances of

ClassNonTemplate and ClassTemplate, to dot, which computes the two-dimensional

layout for the inheritance hierarchy. The visualizer then reads the layout that dot

has computed, and places instances of ClassTemplateInstantiation and ClassTemplate-

Specialization on the Z axis, behind the corresponding instances of ClassTemplate.

Finally, the visualizer then connects inheritance edges involving instantiations and

specializations, and uses OpenGL to draw the three-dimensional diagram to the

screen.

The three-dimensional diagram generated by our visualizer component is inter-

active, and can be manipulated in real time. All classes are represented by boxes,

on which attribute and operation information is drawn as it would appear in a

UML Class Diagram. Instances of ClassNonTemplate are colored yellow, instances of

ClassTemplate are colored light blue, and instances of ClassTemplateInstantiation and

ClassTemplateSpecialization are colored red. The inheritance edges are colored green
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Test Case .ctd.gxl .dot
Doxygen 2 904 1 048
FluxBox 824 336
FOX 1 336 848
HippoDraw 808 488
Jikes 1 248 536
Keystone 264 176
Licq 624 384
Pixie 616 304
Scintilla 216 136
Scribus 720 432

Table 7.7: Size on disk (kB). The size on disk, in kilobytes, for uncompressed GXL
encodings of instances of the Class Template Diagram schema, and the uncompressed
dot encodings of the inheritance hierarchies.

at the isDest end, and brown at the isSrc end. The aggregation edges hasInstantiation

and hasSpecialization are colored blue.

7.2.4 Case Study

In this subsection we describe the results that we obtained using our system to

visualize the use of generic programming in open source, C++ software. The results

that we report in this section capture the space and time costs of our system, and

information about the use of generic programming in our test suite of 10 open source

programs 1

We executed all experiments on a Sun TM workstation with an AMD Opteron

TM 148 processor, 1024 MB of PC3200 DDR RAM, and an 80 GB, 7200 RPM SATA

hard disc on which we installed the Fedora Core 4 operating system after formatting

the ext3 filesystem. We performed the experiments with version 1.0.8 of g4re, which

we compiled with version 4.0.0 of gcc. We created all tu files with gcc version 3.3.6.
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.ctd.gxl .dot
Test Case Generate Parse Generate Parse Render Total
Doxygen 6.43 1.03 0.34 231.55 0.21 239.56
FluxBox 2.08 0.32 0.06 59.20 0.05 61.71
FOX 3.07 0.40 0.11 91.87 0.06 95.51
HippoDraw 1.77 0.28 0.09 49.51 0.04 51.69
Jikes 2.98 0.44 0.10 80.14 0.08 83.74
Keystone 0.50 0.09 0.03 17.80 0.01 18.43
Licq 1.18 0.20 0.04 38.75 0.03 40.20
Pixie 1.26 0.23 0.06 36.51 0.04 38.10
Scintilla 0.49 0.06 0.03 12.89 0.02 13.49
Scribus 1.84 0.24 0.06 44.11 0.03 46.28

Table 7.8: Time (s). The running time, in seconds, for each phase of our visualiza-
tion system, and for the entire visualization system.

Space and Time Costs

In Table 7.7, we list the sizes on disk, in kilobytes, for graphs that are generated,

parsed, and used by our visualization system to represent the test cases. In column

1, we list the test cases. In column 2, we list the total sizes of the uncompressed

GXL encoded instances of the Class Template Diagram (CTD) schema. In column

3, we list the total sizes of the dot encoded inheritance hierarchies.

The CTD instances are comparable 2 in size to the middle-level graphs described

in Section 6.3. The dot files are, on average, half the size of the corresponding CTD

instance. Next, we examine the time costs for generating and parsing these files.

In Table 7.8, we list the running times, in seconds, for our visualization sys-

tem. In column 1, we list the test cases. In columns 2 and 3, we list the times

to generate and to parse GXL encoded instances of the Class Template Diagram

schema, respectively. Recall that the builder component generates the file, and the

visualizer component parses the file. In columns 4 and 5, we list the times to gen-

erate and to parse dot encodings of inheritance hierarchies, and the dot generated

two-dimensional layout, respectively. In column 6, we list the times to render the
1The test suite for this study is a subset of the test suite for the case studies in Chapter 6,

from which AvP and CppUnit have been omitted. See Subsection 6.1 or our online repository for
information about the test suite. Furthermore, see Subsection 6.2.1 and 6.2.2 for information about
the space and time costs of the input to the system.

2Unlike the rest of g4re, the visualization system does not use the pulse library to write GXL
files. Differences in formatting can cause sizes on disk to vary widely for GXL files.
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Figure 7.3: Visualization of CTD for Pixie. The interface to the visualization system,
and and a three-dimensional CTD diagram for Pixie. The two sliders control the
azimuth and the elevation. The keyboard controls horizontal and vertical movement,
and zooming.

OpenGL three-dimensional representation of the diagram. Finally, in column 7, we

list the total time for the visualization system.

The running time for each test case is dominated by the time spent parsing the

dot generated two-dimensional layout. Even with this cost, which could be greatly

reduced by eliminating the dependency on dot, the running time is under one minute

for over half of the test cases. Clearly, our use of three dimensions adds minimal

costs to the system as a whole.

Visualization Results

Three of the test cases did not contain any template classes: Licq, Scintilla, and

Scribus. Also, only three of the test cases contained ten or more template classes:

Doxygen, FluxBox, and Pixie. However, the number of class template instantiations
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Figure 7.4: Visualization of CTD for FluxBox. A three-dimensional CTD diagram
for FluxBox.
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can be large; for example, in Doxygen, each class template averages 10 instantiations.

In addition, in Jikes the average number of instantiations per class template is 20.

Our visualization system allowed us to obtain information about the test cases

that was not readily available from inspection of the source code. In Figure 7.3, we

show the interface to the system. The two sliders that control the azimuth and the

elevation. The keyboard controls horizontal and vertical movement, and zooming.

The default view shows all classes in the system, together with inheritance and

template instantiation and specialization relationships. We provide options that

allow the user to view only the templates in the system, including instantiations

and specializations; the check boxes allow the user to hide the background and text.

To the right of the controls in Figure 7.3, we illustrate a three-dimensional CTD

diagram for Pixie. The cubes aligned at the left of the diagram lie on the Z-axis; these

cubes represent instantiations of the CArray < T > class template. The majority of

instantiations in Pixie are instantiations of the CArray < T > class template; this

indicates that modifications to CArray < T > have far reaching effects on Pixie.

This information is not readily available from inspection of the source code. We

illustrate an additional three-dimensional CTD diagram, for FluxBox, in Figure 7.4.

Concluding Remarks

We have described our approach to three-dimensional visualization of class template

diagrams for 10 open source, C++ programs. Unlike systems that use the source

code to construct UML class diagrams, our system uses an ASG; therefore, our

system has access to information about templates that is not readily available from

inspection of the source code. We have also shown that our approach is feasible for

medium-sized programs.
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Chapter 8

Conclusion

In Section 1.1, we identified the problems we investigated in the area of reverse

engineering; the problems focus on infrastructure support for interoperability. In

this chapter, for each problem, we first restate the original goal, and highlight our

publications that addressed the goal. We then restate the original evaluation criteria,

and state how we satisfied the criteria.

Problem 1: Schemas for Low- and Middle-Level

Program Representation Graphs

Goal

Our goal for this problem was to create GXL schemas for low- and middle-level

graphs, and to use known transformations between graphs to guide the organization

of the schemas into a hierarchy. We published work that addressed this goal in the

Proceedings of the 12th Working Conference on Reverse Engineering [Kraft et al.

2005b], and in the journal Information and Software Technology [Kraft et al. 2007a].

We presented this work in Chapter 4.

Evaluation Criteria

1. The hierarchy is arranged in levels, such that an instance of a schema at one

level can be created using only information contained in instances of schemas

at previous levels.

2. Instances of low-level schemas contain the information needed to create in-

stances of middle-level schemas, including call graphs, class-centric graphs,

control flow graphs, and dependency graphs.



3. Low-level schemas are language-specific, and middle-level schemas are

language-independent.

4. Low-level schemas for C++ accurately and adequately represent templates,

including instantiations, specializations, and partial specializations.

5. Low-level schemas for C++ represent function pointers, including member

function pointers.

In Section 4.1, to address evaluation criteria 1 and 2, we illustrated the hierarchy

of schemas, which consists of two major partitions, low-level and middle-level, and

five minor partitions, Levels 0 through 4. We also described the structure of the

hierarchy, which represents the progression of information from schemas at one level

to schemas at a subsequent level.

In Sections 4.2 and 4.3, to address evaluation criterion 3, we presented our low-

level schemas. The abstract syntax graph (ASG) and the application programming

interface (API), are language-specific; we focused on the C++ language. We also

presented several language-independent middle-level schemas, including those for

the call graph and the class firewall.

In Section 4.2, to address evaluation criteria 4 and 5, we described the gcc ASG

schema for C++, generic, and our API schema for C++, CppInfo. Both schemas

provide an accurate and adequate representation of templates, including instantia-

tions, specializations, and partial specializations. In addition, both schemas provide

a representation of function pointers, including member function pointers (some-

times called pointers to members).

Problem 2: Tool Support for Reverse Engineering C++ Programs

Goal

Our goal for this problem was to create a public domain, general purpose tool for

reverse engineering C++ programs. We published work that addressed this goal in

the Proceedings of the Dagstuhl Seminar on Transformation Techniques in Software
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Engineering [Kraft et al. 2005a], in the Proceedings of Future Play 2005 [Jamieson

et al. 2005], in the Proceedings of the 18th International Conference on Software

Engineering and Knowledge Engineering [Hoipkemier et al. 2006], and in the Special

Issue on Experimental Software and Toolkits of the journal Science of Computer

Programming [Kraft et al. 2007b]. We presented this work in Chapters 5, 6, and 7.

Evaluation Criteria

1. The tool is open-source and available on the Web.

2. The tool correctly parses, instantiates, and specializes templates.

3. The tool consists of loosely coupled, reusable modules.

4. The tool provides a module for linking C++ translation units.

5. The tool provides an API module for accessing information about declarations,

statements, and some expressions.

6. The tool exchanges information via conforming instances of GXL schemas.

7. The tool is robust and efficient enough to use on medium-sized C++ programs,

which contain up to 500 000 lines of non-commented, non-preprocessed lines

of code.

8. The tool is general purpose.

To address evaluation criterion 1, we placed our tool chain for reverse engineering

C++ programs, g4re, in our SourceForge.net repository [Kraft 2006]. In Section 5.1,

we described the architecture of g4re, which uses gcc to correctly parse, instantiate,

and specialize templates, and to address evaluation criterion 2. We also described

the six constituent modules: the ASG module, the schema and serialization mod-

ules, the transformation modules, the linking module, and the API module. The

modular GXL-based pipe-filter architecture of g4re addresses evaluation criterion 3

and 6; notable modules are the linking module and the API module, which address

evaluation criteria 4 and 5, respectively. We plan to reuse the linking and API

modules for another project in the immediate future.
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In Chapters 6 and 7, we described many experiments that we have performed

with g4re. In Section 6.1, we described our most recent test suite, which contains

12 popular, open-source applications and libraries. The test suite consists of 1,200

C++ translation units and approximately 1 000 000 lines of non-commented, non-

preprocessed code. The largest test case that we used with g4re contained approx-

imately 365 000 lines of code; we described this test case in Subsection 7.1.4. In

Sections 6.2 and 6.3, we described case studies that measure the costs of common

reverse engineering and program analysis tasks, and address criterion 7. Finally,

to address evaluation criterion 8, we presented empirical evaluations that we per-

formed with g4re in two areas: (1) software measurement, specifically, computation

of object-oriented metrics, in Section 7.1, and (2) program comprehension, specifi-

cally, three-dimensional visualization of class template diagrams, in Section 7.2.

Problem 3: A Repository of Reverse Engineering Artifacts

Goal

Our goal for this problem was to create a public repository of reverse engineering ar-

tifacts, and to populate it with empirical results, including all tools, scripts, and doc-

uments needed to reproduce the results. We published work that addressed this goal

in the Proceedings of the 12th Working Conference on Reverse Engineering [Kraft

et al. 2005b], and in the journal Information and Software Technology [Kraft et al.

2007a]. We presented the repository artifacts in the case studies of Chapter 6. We

present links to the repository in Appendix B.

Evaluation Criteria

1. The repository contains a test suite, including important details about each

test case:

• Version

• Size metrics

• Configuration and build information
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2. For at least one graph at each level of our hierarchy (see Problem 1), the

repository contains:

• A GXL schema

• Tools that exchange information via conforming GXL instances of the

schema

• GXL instances of the schema for each test case in the test suite

• A graph transformation that summarizes the information in a GXL in-

stance

• Empirical results that show the space and time costs incurred by the

documents and tools, respectively

3. The repository contains all artifacts needed to reproduce the results described

in the previous items, including platform information for each experiment.

4. The repository is available to the public, particularly the reverse engineering

community.

We created a repository at SourceForge.net to hold our reverse engineering arti-

facts [Kraft 2006]. We populated our repository with the test suite information and

artifacts specified in evaluation criteria 1 through 3. The specific graphs for which

we created GXL schemas are: the ASG, the API, the class diagram, the call graph,

the CFG, the ORD, the ICFG, and the class firewall. The specific graphs for which

we created tools are: the ASG, the API, the class diagram, the ORD, and the class

firewall1. All of the tools are part of the GXL-based pipe-filter architecture of g4re.

Finally, to address evaluation criterion 4, we described our repository in the two

publications mentioned above, cited it in several other publications, and discussed

it in our November 2005 presentation at WCRE.
1Special thanks to the CpSc 829 students in Fall 2005, particularly Ben Hoipkemier, for providing

the class firewall tool.
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APPENDICES





A Acronyms and Abbreviations

API – Application Programming Interface

ASG – Abstract Syntax Graph

CCFG – Class Control Flow Graph

CDG – Control Dependence Graph

CFG – Control Flow Graph

CTD – Class Template Diagram

DIT – Depth of Inheritance Tree

DTD – Document Type Definition

GCC – GNU Compiler Collection

GXL – Graph eXchange Language

ICFG – Interprocedural Control Flow Graph

NOA – Number of Ancestors

NOC – Number of Children

OO – Object-Oriented

ORD – Object Relation Diagram

PDG – Program Dependence Graph

SDG – System Dependence Graph

SEF – Standard Exchange Format

TU – Translation Unit

UML – Unified Modeling Language

WCRE – Working Conference on Reverse Engineering

WMC – Weighted Methods per Class

XML – Extensible Markup Language

XSL – Extensible Stylesheet Language

XSLT – XSL Transformations
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B Repository of Reverse Engineering Artifacts

GXL Schemas

Level 0 GENERIC.gxl

Level I CppInfo.gxl

Level II ClassDiagram.gxl

CallGraph.gxl

CFG.gxl

Level III ORD.gxl

ICFG.gxl

Level IV ClassFirewall.gxl

GXL Instances

Level 0 ASG/

Level I API/

Level II ClassDiagram/

Level III ORD/

Level IV ClassFirewall/

Other Artifacts

tools/

transformations/

results/
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http://g4re.sourceforge.net/GXL/schema/GENERIC.gxl
http://g4re.sourceforge.net/GXL/schema/CppInfo.gxl
http://g4re.sourceforge.net/GXL/schema/ClassDiagram.gxl
http://g4re.sourceforge.net/GXL/schema/CallGraph.gxl
http://g4re.sourceforge.net/GXL/schema/CFG.gxl
http://g4re.sourceforge.net/GXL/schema/ORD.gxl
http://g4re.sourceforge.net/GXL/schema/ICFG.gxl
http://g4re.sourceforge.net/GXL/schema/ClassFirewall.gxl
http://g4re.sourceforge.net/GXL/instance/ASG/
http://g4re.sourceforge.net/GXL/instance/API/
http://g4re.sourceforge.net/GXL/instance/ClassDiagram/
http://g4re.sourceforge.net/GXL/instance/ORD/
http://g4re.sourceforge.net/GXL/instance/ClassFirewall/
http://g4re.sourceforge.net/tools/
http://g4re.sourceforge.net/transformations/
http://g4re.sourceforge.net/results/




BIBLIOGRAPHY

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. 2006. Compilers: Prin-
ciples, Techniques, and Tools, Second ed. Addison-Wesley.

Aigner, G., Diwan, A., Heine, D. L., Lam, M. S., Moore, D. L., Murphy,
B. R., and Sapuntzakis, C. 2006. An overview of the SUIF2 compiler infras-
tructure. http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/overview.ps.

Al-Ekram, R. and Kontogiannis, K. 2005. An XML-based framework for lan-
guage neutral program representation and generic analysis. In Proceedings of the
Ninth European Conference on Software Maintenance and Reengineering. IEEE
Computer Society, Manchester, UK.

Alexandrescu, A. 2001. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Andrews, J. H. 2004. Relevant empirical testing research: Challenges and re-
sponses. ACM SIGSOFT Software Engineering Notes 29, 5 (September), 1–4.

Antoniol, G., Penta, M. D., Masone, G., and Villano, U. 2004. Compiler
hacking for source code analysis. Software Quality Journal 12, 4 (December), 383–
406.

Arikan, O. 2006. Pixie version 1.5.2. http://pixie.sourceforge.net.

Bell Canada Inc. 2000. DATRIX - Abstract Semantic Graph Reference Manual ,
1.4 ed. Bell Canada Inc., Montreal, Canada.

Bodin, F., Beckman, P., Gannon, D., Gotwals, J., Narayana, S., Srinivas,
S., and Winnicka, B. 1994. Sage++: An object-oriented toolkit and class library
for building Fortran and C++ restructuring tools. In Proceedings of the Second
Annual Object-Oriented Numerics Conference. Sunriver, OR, USA, 122–136.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau,
F. 2006. Extensible markup language (XML) 1.0. W3C recommendation, W3C.

Buy, U., Orso, A., and Pezze, M. 2000. Automated testing of classes. In Proceed-
ings of the International Symposium on Software Testing and Analysis. Portland,
OR, USA.

Chidamber, S. R. and Kemerer, C. F. 1994. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering 20, 6, 476–493.

ClanLib Project. 2005. ClanLib Game SDK. http://www.clanlib.org.

CppUnit Project. 2006. CppUnit version 1.10.2. http://cppunit.sourceforge.net.



Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K.
1991. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems 13, 4
(October), 451–490.

Czeranski, J., Eisenbarth, T., Kienle, H., Koschke, R., Plödereder, E.,
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