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ABSTRACT 

 
Anharmonic effects in two different quasi-1D systems were probed via 

micro-Raman spectroscopy. In the first system, we observed upshifts of peaks in 

the Raman spectra for β-Ga2O3
 nanowires grown along the [110] growth direction 

compared those present in bulk β-Ga2O3. Contrary to our Raman studies on β-

Ga2O3
 nanowires, downshifts in the Raman spectrum for β-Ga2O3

 nanowires 

grown along [401 ] direction has also been reported by other research groups. We 

attribute these Raman shifts to the growth direction-induced lattice strains 

(compressive and tensile) present in the nanowires, and present a model based on 

the quasi-harmonic density functional theory to support our hypothesis. 

 In the second study, the anharmonic phonon lifetime in suspended single-

walled carbon nanotubes was measured using high-resolution micro-Raman 

spectroscopy.  Previous studies on suspended nanotubes performed with scanning 

tunneling microscopy (STM) reported phonon lifetimes of the order of 

nanoseconds for the radial breathing mode (RBM). However, the longest phonon 

lifetimes measured from Raman spectroscopy is of the order of picoseconds. Our 

study also showed the RBM lifetime to be in the picosecond regime, and we 

sought to explain this discrepancy with the STM study by invoking an 

anharmonic model for phonon decay in carbon nanotubes. 
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CHAPTER ONE 
ANHARMONICITY IN MATERIALS 

 
 

Introduction 
 

The simplest vibrational model in a crystal considers lattice vibrations as 

arising from the harmonic motion of atoms at each lattice site [1]. Vibrational 

interactions between the atoms give rise to waves within the solids, which have 

allowed wavelengths and amplitudes governed by the lattice structure in the solid. 

For small vibrations in one dimension about equilibrium, the potential energy 

U(x) of the α’th atom within the solid can be expanded as a Taylor series as 

follows: 

 

                                                                                                                         ,  (1.1) 

 

where the first, second, and the third term represent the zeroeth, first, and second 

order term respectively. Typically, to a good approximation this potential can be 

taken to be equal to the harmonic oscillator potential. This is the so called 

harmonic approximation in which the series for the potential energy is truncated 

at the second term. Now since each lattice site is occupied by atoms that are 

vibrating, these lattice sites are equivalent. Also, by symmetry, there is equal 

probability for motion along opposite directions. Hence the linear term in the 

potential expansion vanishes. The zeroeth (zero-point) term in the expansion only 

affects the scaling and can be duly ignored for most calculations. Thus, in the 

2 3
0

1( ) ' ' ( ) ...
2

U x U U x U x O xα α α α
α α

= + + + +∑ ∑
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classical picture, the potential energy of a simple harmonic oscillator contains 

only a term that is quadratic in displacement and can be stated as 

 

                              
2 2 21 1

2 2
U U x m xα α ω= =     ,                               (1.2) 

 

where m is the mass of the oscillator, ω is the frequency, and x is the displacement 

in one direction of the oscillator. In the classical picture, the simple harmonic 

oscillator can be described physically with a ball and spring model, where m is the 

mass of the ball, x is the displacement of the ball in one direction, and k is the 

spring constant of the oscillator. Figure 1 shows potential energy of a harmonic 

oscillator plotted against position. Since the energy is proportional to the square 

of the displacement, it is parabolic in nature. The potential energy is symmetric 

about the origin at x = 0. 

 

 

 

 

 

 

 

 
Figure 1.1: Potential energy versus displacement diagram for a simple harmonic 

oscillator. 
 
 

+xmax-xmax

U

Energy 
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While the classical “ball and spring” model can adequately explain 

harmonic motion between atoms, in order to get a complete description of atomic 

vibrational motion in a crystal lattice, one has to consider a quantum mechanical 

model. The energies of the quantum mechanical harmonic oscillator can be 

determined by the solution of Schrödinger’s equation, which is stated as 

 

                              ψψ EH =                                                      (1.3) 

 

where H is the Hamiltonian of the system, |ψ> is the wavefunction of the atom 

associated with the oscillator, and E is the energy of the quantum mechanical 

oscillator. The solution of the Schrödinger equation reveals that the energy levels 

of the oscillator are quantized and the energy of the n’th level is given by 

 

                                        ω⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1nEn                                                 (1.4) 

 

The energy levels of the quantum harmonic oscillator are discrete. The harmonic 

potential energy can be used to approximately describe many processes in solids. 

In the case of vibrational motion of atoms within a solid, the harmonic potential 

can be used to calculate normal mode frequencies for phonons, where a phonon is 

a quantum of lattice vibration having energy equal to ħω. Thus with the harmonic 

potential, one can get a complete description of the normal vibrational modes of a 

crystal. However, there are drawbacks with the harmonic approximation. Certain 
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experimental observations cannot be adequately explained solely on the basis of 

harmonic potentials as listed below [2]- 

1. Within the harmonic approximation, phonons do not interact with each 

other. This implies that vibrational waves, once created within the solid, 

would propagate infinitely and never decay. 

2. A solid would not show thermal expansion.  

3    Vibrational frequencies are independent of strain. 

 

The above features can be explained in part by an anharmonic theory which takes 

account of the terms in the potential energy which are higher than the quadratic 

terms. In that case, the Hamiltonian of the oscillator can be split into the harmonic 

(quadratic) and anharmonic (cubic and higher terms) parts, and a quasi-harmonic 

treatment could then be applied to the oscillator. Within this framework, phonons 

within a solid are considered as traveling waves that can interact with each other. 

The anharmonic component of the oscillator potential causes an interchange of 

energy between these traveling waves, thus resulting in the decay of phonons, and 

hence finite phonon lifetimes. The inclusion of a third order term causes the 

energy of the anharmonic oscillator to deviate from the parabolic shape of the 

harmonic oscillator and looks like the oscillator energy shown in Fig. 1.2 below. 
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Figure 1.2: Potential energy versus position diagram for a harmonic and 
anharmonic oscillator. 

 

 

Experimental observations of anharmonicity 

 Anharmonic effects in materials been observed by a variety of methods. 

Shiren [3] described an experiment in which a beam of longitudinal phonons of 

frequency 9.2 GHz interact in a magnesium oxide crystal with a parallel beam of 

longitudinal phonons at 9.18 GHz. The interaction of these two beams produced a 

third beam of longitudinal phonons at 9.2 + 9.18 = 18.38 GHz[3]. Also, 

anharmonic interactions between phonons lead to phonon decay, and hence finite 

lifetimes. Phonon lifetimes have been observed in several materials through 

various spectroscopic methods such as inelastic x-ray scattering [4], Raman 

scattering [5] and neutron scattering [6].  

 The linewidth of a Raman mode is inversely proportional to its lifetime, 

and anharmonic linewidths (lifetimes) increase (decrease) with increase in 

x

Energy 
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temperatures. For example, Šćepanović et al. [7] observed changes in the 

linewidth of the 143 cm-1 mode in nanocrystalline TiO2 powder. Such changes are 

normally attributed to phonon confinement effects, but they show that the 

anharmonic contribution to the change in linewidth (phonon lifetime) with 

temperature is greater than that of confinement. Fig. 1.3 shows their calculated 

contributions due to anharmonicity and confinement, and while the confinement 

contribution does not change significantly with temperature, the anharmonic 

broadening of the 143 cm-1 mode with increasing temperature is quite large. More 

details about phonon lifetimes and anharmonic broadening of Raman linewidths 

due to increasing temperature in carbon nanotubes are addressed in chapter 4.  

 

 

 

 
Figure 1.3: The calculated contribution of confinement (open circles) and 

anharmonic (solid circles) effects to the linewidth of the Eg mode (143 cm-1) in 
TiO2 nanoparticles at different temperatures [7]. 
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As mentioned above, the harmonic approximation does not explain 

thermal lattice expansion or contraction. Similarly, changes in a lattice due to 

inherent strains induced during growth cannot be explained within the harmonic 

potential picture, and an anharmonic potential must be taken into account to fully 

explain the experimentally observed data. In such cases, Raman spectroscopy is a 

powerful tool since strains cause Raman peaks to move and broaden. The Raman 

spectra of samples under strain can be then modeled using anharmonic potentials. 

Peercy et al. [8] studied the uniaxial stress dependence in the Raman-active 

phonons in TiO2 using experiment as well as anharmonic theory. Fig. 1.4 shows 

the room temperature frequency shifts of 3 different Raman modes in TiO2 as a 

function of uniaxial pressure. A uniaxial stress along the a axis of TiO2 causes the 

A1g and Eg mode to upshift due to compressive strain, while the B1g mode 

downshifts due to tensile strain.  

 

 
Figure 1.4: Experimental (dots) and calculated (lines) data showing the behavior 
of the Raman modes of TiO2 with increasing uniaxial stress along the a axis [8]. 



 

 8

In this dissertation, we analyze the effect of compressive strains in gallium 

oxide nanowires via micro-Raman scattering. Gao et al. [9] synthesized β-Ga2O3 

nanowires having a [401 ] growth direction and the Raman mode frequencies of 

the [401 ] nanowires are red-shifted (shifted lower in energy) relative to 

corresponding frequencies in bulk β-Ga2O3 by 4-23 cm-1 (Fig. 1.5). On the other 

hand, Choi et al. [10] grew β-Ga2O3 nanowires having a [001] direction and they 

saw no changes between the Raman spectra of their nanowires compared to that 

of bulk β-Ga2O3 (Fig. 1.6). 

 

 

Figure 1.5: Raman spectra of β-Ga2O3 nanorods (top trace) synthesized in a RF-
induction furnace and β-Ga2O3 powder (bottom trace) [9]. 
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Figure 1.6: Raman spectra of β-Ga2O3 nanowires produced by arc-
discharge and β-Ga2O3 powder [10]. 

 

 

Chapter 2 outlines the quantum mechanical description of the Raman 

effect and the experimental setup used in our lab to probe the vibrational 

properties nanomaterials described in this dissertation. Chapter 3 introduces the 

experimentally observed blueshift in the Raman mode frequencies of our strained 

gallium oxide nanowires. Both theory and experiment are used to evaluate the 

Raman peak upshifts and the theoretical framework is described which provides 

insight into the origin for this blueshift.  
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Figure 1.7: (a) Schematic diagram showing the set-up for performing 
spectroscopy on suspended SWNTs. A voltage is applied to the substrate with 

respect to the tip, and the current flowing from the substrate through the SWNT to 
the tip is measured. (b), STM image of a nanotube crossing a trench. Scale bar, 25 
nm. The apparent width of the 2-nm-diameter tube is enlarged by tip convolution. 
(c), High-resolution image of the suspended portion of the SWNT showing atomic 

resolution. Scale bar, 2 nm [11]. 
 

 
 

In chapter 4, the analysis of anharmonic phonon lifetimes in suspended 

single-walled carbon nanotubes is presented. Recent scanning tunneling 

microscopy (STM) experiments show that electrons tunneling into a metallic 

single-walled carbon nanotube (SWNT) lead to a non-equilibrium phonon 

population for the radial breathing mode (RBM). LeRoy et al. [11] injected 

electrons into a suspended single-walled carbon nanotube through an STM tip (at 

5K) that was brought into close contact with the nanotube (Fig. 1.7). They found 

that the injection of a large number of electrons into the nanotube causes a build-

up of non-equilibrium phonons. By measuring the differential conductance of the 

injected electrons with varying sample voltage, they found that small peaks 
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appear at ~25 meV, which are caused due to phonon-assisted tunneling. 

Interestingly, the energy of 25 meV is similar to the energy of the radial breathing 

mode phonon. Thus they were able to excite the RBM by injecting electrons into 

a SWNT. Furthermore, they analyzed various semiconducting and metallic 

nanotubes, and found an inverse relationship between the energy of the phonon-

assisted tunneling peak and the nanotube diameter. By measuring the rate of 

electrons tunneling into the nanotube, they were able to estimate the anharmonic 

lifetime of the RBM to be τ ≈ 10 ns.  This corresponds to a Raman linewidth of 

5×10-4 cm-1. To the best of our knowledge, the smallest Raman linewidth that has 

been experimentally measured (at a low temperature ~20 K) for the RBM of the 

inner tube in a double-walled carbon nanotube is 0.4 cm-1 [12]. In this 

dissertation, a study on the linewidth measurements in suspended SWNTs is 

presented in chapter 4. In our study the Raman linewidths are lower than 

previously measured in isolated SWNTs, and a model is discussed to explain the 

discrepancy in the linewidth values measured through optical and tunneling 

experiments. Finally, at the end of this dissertation, a glossary of abbreviated 

terms used throughout the manuscript has been compiled in the appendix. 

 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER TWO 
RAMAN SPECTROSCOPY 

 
 

Introduction 

Raman spectroscopy is based upon the Raman effect, which may be 

described as the inelastic scattering of light from a gas, liquid or solid. Typically, 

the sample is excited with a monochromatic light source (for, e.g., a laser) and the 

Raman spectrum is detected as the scattered light intensity found at energies 

below and above the excitation energy. Discovered by the Indian physicist C. V. 

Raman in 1928 [13], it has also been called the Smekal-Raman effect [14], the 

former investigator having made some earlier theoretical predictions about it.  

Raman spectroscopy is based on the interaction of light with molecules in 

some medium. When light hits a molecule it scatters off the molecule as Rayleigh 

scattering or as Raman scattering (Fig. 2.1). The radiation excites the molecule, 

distorting the shape of the molecule's electron cloud. When the electron cloud 

returns to its original shape, the energy in the molecule may have increased or 

decreased slightly, changing the energy of the scattered Raman radiation. Viewed 

in terms of energy levels, the electrons reside in the ground vibrational and 

electronic states before excitation. The monochromatic laser source excites the 

electrons to a virtual state, equal to the energy of the laser. When the electrons 

relax back to the ground electronic state, most go back to the ground vibrational 

state, giving back the same energy. This is Rayleigh (elastic) scattering. The small 

portion that relaxes back to an upper or lower vibrational state is the 
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Raman scattered light and is about 5 - 7 orders of magnitude less intense than 

Rayleigh scattered light [15]. 

 

 

Figure 2.1 – Rayleigh and Raman scattered light off a sample excited with the 
incident monochromatic light. 

 

 

The Raman scattered light that is adjusted up in wavelength is called the 

Stokes Raman scattering and that light which is adjusted down in wavelength is 

called the anti-Stokes Raman scattering (Fig. 2.2). Stokes Raman scattering 

occurs when some energy is absorbed from the photon of incident light into the 

molecule’s rotational and vibrational energy and consequently a new photon of 

light with less energy is released. Anti-Stokes scattering occurs when the new 

photon formed gains energy compared to the incident photon via the absorption of 

energy from a previously excited molecule. Since the probability for an electron 

to be in an excited state before the scattering process is not high, the cross-section 



 

 15

for anti-Stokes scattering is much less than that of Stokes scattering and, 

consequently, the intensity of anti-Stokes scattered light is also much lower. 

 

 

 
 

Figure 2.2 - Energy diagram comparing Rayleigh, Stokes and anti-Stokes Raman 
scattering light. ∆E and ∆E’ denote the incident and scattered photon energies 

respectively. 
 

 

A theoretical treatment of Raman scattering is essential for the 

understanding, interpretation and appreciation of the experimental Raman spectra 

from nanotube samples which will be presented later. In this section a general 

theory of Raman scattering is presented without any reference to the specific 

properties of the sample. By considering the general theory we gain insight into 

what information the Raman spectrum carries about the sample. The relevant 

properties of gallium oxide and carbon nanotubes are presented in chapters 3 and 

4 respectively. 
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Raman scattering can be described theoretically using classical as well as 

quantum mechanical physics. In the classical description, when light strikes a 

molecule, it causes an induced electric dipole in the molecule. The electric dipole 

moment is related to the electric field of the incoming radiation through the 

polarizability of the molecule. The polarizability is a tensor which in general is a 

function of the interatomic distances, and will therefore change if the molecule is 

vibrating. If we expand the polarizability as a Taylor series, we can see that the 

light scattering causes the vibrating molecule to emit light having frequencies 

above and below the frequency of the incoming light. The polarizability, αij can 

be expressed as 

 

  

2

0
,0 0

1( ) ...
2

ij ij
ij ij k k l

k k lk k l

q q q
q q q
α α

α α
⎛ ⎞∂ ∂⎛ ⎞

= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∑ ,   (2.1) 

 

where the position-dependent polarizability αij has been expanded as a function of 

the generalized coordinates qk and ql. The first two terms in the above equation 

can be grouped together and written as  

 

                                              
'

0k k kqα α α= +                                            (2.2) 

 

Assuming that the molecules are undergoing simple harmonic motion, the 

generalized position coordinate of the k’th molecule can be written as  

'
0k k kqα α α= +
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                                      0 cos( )k k k kq q tω δ= +                                             (2.3) 

 

Combining eqs. (2.3) and (2.2), we get 

 

                        
'

0 0 cos( )k k k k kq tα α α ω δ= + +                                (2.4) 

 

The polarizability is related to the molecules electric dipole moment and the 

electric field intensity of the incident radiation as  

 

                         
(1)

kP Eα= ⋅ , with 0 0cosE E tω= ,                               (2.5) 

 

where the ω0 is the frequency of the incident radiation. Thus the dipole moment 

can be written as  

                                      
(1)

0 0coskP E tα ω= ⋅                                              (2.6) 

 

From eqs. (2.6) and (2.4), we get  

 

           
(1) '

0 0 0 0 0 0cos cos cos( )k k k kP E t E q t tα ω α ω ω δ= ⋅ + ⋅ +         (2.7) 

 

Eq. (2.7) can be simplified by making use of the trigonometric identity 
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                  { }1cos cos cos( ) cos( )
2

A B A B A B= + + −                                  (2.8) 

 

This results in the following expression for the polarizability: 

 

                          
(1) (1) (1) (1)

0 0 0( ) ( ) ( )k kP P P Pω ω ω ω ω= + − + + ,     (2.9) 

where 

{ }

{ }

(1)
0 0 0 0

(1) '
0 0 0 0

(1) '
0 0 0 0

( ) cos
1( ) cos( )
2
1( ) cos( )
2

k k k k k

k k k k k

P E t

P q E t

P q E t

ω α ω

ω ω α ω ω δ

ω ω α ω ω δ

= ⋅

− = ⋅ − −

+ = ⋅ + +

 

 

The first term in the above expression corresponds to the electric dipole of the 

moment after elastic light scattering of the incident radiation from the k’th 

molecule of the sample, i.e., the first term corresponds to the Rayleigh scattered 

light. The second and third terms in eq. (2.9) correspond to Stokes and anti-Stokes 

scattered light respectively, as shown in Fig. 2.2. The classical description of 

Raman scattering, while giving insights into the nature of light scattering by a 

molecule, does not provide information about the coupling mechanisms between 

the light and the vibrations. To gain further insight, we need to consider a 

quantum mechanical treatment of Raman scattering, which is described in the 

next section. 
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Quantum Theory of Raman Scattering 

As mentioned above, the scattering of radiation causes a change in the 

polarizability of the molecule. According to quantum theory, radiation is emitted 

or absorbed as a result of a system making a downward or upward transition 

between two discrete energy levels. This concept can be extended towards both 

Rayleigh and Raman scattering from molecules by considering the radiation 

classically and regarding it as a source of perturbation of a molecular system 

which is treated quantum mechanically. Hence transitions between energy levels 

of the molecule take place with the emission or absorption of radiation, provided 

the transition moment associated with the initial and final states is non-zero. 

Consider that a system interacts with radiation of frequency ω0 causing a 

transition from an initial state i to a final state f. The Hamiltonian for such a 

perturbation can be approximated by an electric dipole term. A much more 

detailed analysis, which is not presented here, can be performed by including the 

magnetic dipole and electric quadrupole terms with the perturbation Hamiltonian 

[15]. 

For the unperturbed system in the state i the time-dependent wavefunction 

ψ0
i is given by 

                          )exp()0( ti iii ωψψ −= ,                                      (2.10) 

 

where ψi is the corresponding time-independent wavefunction and ħωι is the 

energy of the state i. When the system is perturbed, the time-dependent 

wavefunction ψ’i is expressed as  
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                          ...' )2()1()0( +++= iiii ψψψψ ,                          (2.11) 

where the second and third term in the above expression represent the first-order 

and second-order perturbation term. The electric dipole transition moment for the 

transition from state i to f can be written down using the Dirac notation as  

 

                                 [ ] iffi PP '||' ψψ=                                    (2.12) 

P is the electric dipole moment operator for the system defined by  

 

                                                     ∑=
j

jj reP .                                        (2.13) 

Just like the expansion for the wavefunction above, the dipole transition moments 

can be expanded as  

 

                            [ ] [ ] [ ] [ ] ...)2()1()0( +++= fifififi PPPP                  (2.14) 

where 

 

[ ]
[ ]
[ ] ifififfi

ififfi
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PPPP

PPP

PP

)2()0()0()2()1()1()2(

)1()0()0()1()1(

)0()0()0(

||||||

||||

||
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ψψψψ

ψψ

++=

+=

=

(2.15) 

 

The transition moment [P(0)]fi relates to a direct transition between the 

unperturbed states f and i. The first-order term includes terms that are related to 
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normal Rayleigh and Raman scattering, while the second-order term contains 

terms that are relating to hyper Rayleigh and Raman scattering, and so on.  

According to time-dependent perturbation theory  

 

                      ∑=
r

riri a )0()1( ψψ   and   ∑=
r

rfrf a )0()1( ψψ ,                     (2.16) 

 

where the summation is over all states r of the system except for i or f. If the 

system is initially in the state ψ(0)
i then the coefficients air are obtained by 

integrating  

 

                         iririr Hiaa
dt
d )0()0( |'| ψψ−== ,                          (2.17) 

 

where H’ is the perturbation Hamiltonian. The time dependence of the electric 

field intensity in a non-polarized general form can be written as  

 

                             )exp(~)exp(~
00

*
00 tiEtiEE ωω +−= .                       (2.18) 

 

Assuming that the electric field of the incoming radiation does not vary across the 

surface of the molecule, the perturbation Hamiltonian H’ can be considered to 

contain only an electric dipole term and can be written as 

 



 

 22

                                                 EPH ⋅−=' .                                              (2.19) 

 

Thus the coefficients from eq. (2.8) can be written as  
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and 
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where 

                                  .|][
.
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etc
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                                       (2.22) 

 

The first-order transition moment can now be evaluated  by introducing eq. (11), 

(15), and (16) into eq. (10). It is given by 
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The two time-dependent transition moments in the equation above are complex. 

However, the radiation associated with a complex transition moment of the form 

Pmlexp(-iωlmt) corresponds to that from the real transition moment  

 

                     }exp{}exp{ * tiPtiP lmmllmml ωω +− ,                            (2.24) 

 

provided this condition, ωlm > 0 is satisfied. Thus the first term in eq. (18) will 

have a corresponding real transition moment if  

 

                                                      00 >− fiωω                                            (2.25) 

 

If ωfi is negative, i.e., the final state is lower in energy than the initial state, this 

condition is always satisfied, and this transition is associated with Stokes 

scattering. Similarly, the condition is also satisfied if ωfi is zero, which means that 

the initial and final states have the same energy, and this corresponds to elastically 

scattered, or Rayleigh scattered radiation. If ωfi is positive, i.e., the final state is 

higher in energy than the initial state, then it is necessary for the energy of the 

incident quantum to be enough so that it reaches the final state. In the case of 

visible and ultraviolet electromagnetic radiation, this condition is always satisfied 

and this case corresponds to anti-Stokes scattering. The second term in eq. (18) 

will have a corresponding transition moment if  
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                                             00 >−− fiωω                                                  (2.26) 

i.e. if 

                                               0ωωω >− fi                                                  (2.27) 

 

This condition implies that the energy of the initial state must exceed the energy 

of the final state by an amount that is greater than ω0. Thus, if ω0 lies in the 

visible region of the spectrum, the initial state must be in an excited electronic 

state. The discussion of this term will not be presented here. 

 The transition moment amplitude presented in eq. 18 can be simplified by 

considering its real part and after some rearrangement and mathematical 

expansions, the x components of the transition moment amplitudes can be related 

to the complex electric field amplitudes as follows 

      ∑=
y

yfixyfix EP 0
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Similar equations could be written for Rayleigh scattered light. The above 

expressions display the tensor relationship between the electric field and the 

transition moment. Evaluation of the transition polarizability tensor is of great 

importance in Raman scattering.  

 

Selection Rules 

 In the classical picture, the incoming radiation interacts with a molecule 

and induces a dipole moment. This induced dipole moment associated with a 

particular molecular frequency ωk will be zero unless at least one of the 

components of the derived polarizability tensor, (α’ij)k is non-zero. The derived 

polarizability tensor can be written as  

                                             
ok

ij
ij Q ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
'

)'(
α

α                                            (2.31) 

 

where the derivative is taken with respect to a generalized coordinate of vibration 

Qk at the equilibrium position. Thus the condition for Raman scattering is that, for 

at least one component of the polarizability tensor, a plot of that component must 

have a non-zero gradient at the equilibrium position. In principle, this is enough to 

determine the selection rule for simple molecules. However, as molecular 

complexity increases, the classical picture becomes quite cumbersome to apply.  

 A much easier way to determine selection rules is to apply quantum 

mechanics to the system. In that case one needs to consider the properties of the 

vibrational transition polarizability components, rather than the derivative of the 
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polarizability tensor. For a particular transition to be Raman active, at least one of 

the six tensor components of the type [αxy]fi (f and i are the final and initial 

quantum numbers, respectively) must be non-zero.  

 

 
Raman Instrumentation 

 Ever since the advent of the laser in the earlier part of the 20th century, 

analytical spectroscopy methods have become widespread tool for materials 

characterization tools. In particular, Raman spectroscopy has become one of the 

more popular characterization methods due to its relative ease of use and lack of 

complicated instrumentation. In addition, Raman spectroscopy is not affected by 

the biggest challenge that faces (Fourier transform infrared) FTIR spectroscopy – 

the need to eliminate water vapor. Raman spectra can be collected from liquid 

samples with ease. With the advent of nanotechnology over the past two decades, 

Raman spectroscopy has emerged as the “characterization tool” of choice to probe 

the confinement properties of nanostructured materials. The traditional Raman 

spectrometer is now being replaced by micro-Raman spectroscopy (Raman 

spectroscopy with an attached microscope) for finer spatial resolution of samples 

under study. The next section describes the micro-Raman spectroscopy setup used 

in our lab. Two different spectrometers were used for gathering the Raman data 

presented in this dissertation. The instrument used for the Raman analysis 

described in Chapter 3 was a Renishaw 1000 Raman microscope, while the 

Raman analysis of suspended single-walled carbon nanotubes described in 
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Chapter 4 was performed using a Triax 550 Spectrometer equipped with a Leica 

DM/LM light microscope.  

 

Renishaw 1000 Raman microscope 

 

 

Figure 2.3: Schematic layout of the Renishaw 1000 Raman microscope. 

 

 

Figure 2.3 shows a schematic of the Renishaw 1000 Raman microscope. 

To describe the whole setup briefly, monochromatic radiation from a 26 mW 

solid state laser (not shown in figure 2.3) with excitation wavelength 785 nm is 

made to pass through a series of optical elements ( labeled B, W, C, D, E, F in 

Fig. 2.3) to the a holographic notch filter/beam splitter (G) which is used to 

redirect the beam into the microscope and on the sample, and which also collects 
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the scattered radiation and passes it on through a slit (I) to the diffraction grating 

(J, K) and finally on to the CCD (M, N). The light path is indicated by the dashed 

line in figure 3 above.  A more detailed explanation is given below. 

 A 785 nm diode laser with a maximum power output of 26 mW is used as 

the excitation source. Between the laser and the spectrometer, a combination of 

lenses and a beam expander (W, C, D) are placed to refine the monochromatic 

laser light. This light hits a 45º (E) mirror which redirects the beam to the 

holographic notch filter (G). Polarizers can be placed along the light path to 

polarize the laser light in a specific direction. The Raman microscope has a 

polarizer that can be placed in the beam path  

 One of the most important parts of the excitation optics is a holographic 

notch filter. Since the Rayleigh scattered light comprises the maximum part of the 

scattered light off the sample, this has to be eliminated in order to efficiently 

detect the Raman scattered light. One or more holographic notch filters made of 

special polymer films are placed between the sample and the spectrometer to 

block out the Rayleigh scattered light. The efficiency of a notch filter determines 

the ability of the spectrometer to resolve peaks close to 0 cm-1, or in other words, 

the ability to measure vibrational modes that are close in energy to the laser 

excitation energy. The notch filter assembly in the Raman microscope also 

includes a polarizer/waveplate. This allows for the collected scattered radiation to 

be polarized. Thus in the case of fibers, the laser light can be polarized either 

perpendicular or parallel to the fiber axis during excitation and collection, giving 

3 possible polarization configurations. If the perpendicular and parallel directions 
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to the fiber axis are chosen arbitrarily as X and Z, then the three configurations 

are XX, XZ (=ZX) and ZZ.  

 Scattered light from the sample is collected through the notch filter and 

passed through a slit to a prismatic diffraction grating (J).  The grating basically 

takes the light coming through the slit and breaks it up into its respective 

wavelength components. This light is then passed on to a CCD (charge couple 

device) detector, which is basically a two dimensional panel array, like a video 

detector. The CCD converts the spectral information into pixel form for viewing 

on a computer or a TV screen. CCDs used with Raman systems typically have 

256 x 1024 pixels, and are generally more preferred over the older photo-

multiplier tubes due to their balance of quick collection time and good resolution. 

 In addition to the above mentioned components, accompanying the 

spectrometer is a fully functional Leica DM/LM metallurgical reflected light 

microscope with 5x, 20x, 50x, and 100x magnification capabilities.  

 

Triax 550 spectrometer system 

 The layout of the Raman system used for the second set of Raman 

experiments described in Chapter 4 is shown in Fig. 2.4. The excitation sources 

consist of two lasers – a krypton ion laser with a output wavelength of 647.1 nm, 

and a argon ion laser with an output that can be tuned to either 514.5 nm or 488 

nm. Both lasers are water-cooled continuous wave lasers that operate in TEM00 

mode. Typically, the output of a laser is a Gaussian distribution of wavelengths 

with a peak at one particular value. For efficient data collection, in addition to the 
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notch filter described above, the incoming laser beam can also be tuned as 

described below. Similar to the Renishaw Raman spectrometer, the laser beam 

passes through beam steering optics to the sample, where the backscattered 

Raman light is collected and sent to the spectrometer. The first component of the 

beam steering optics is a plasma filter, as shown in the upper left corner of Fig. 

2.4. The plasma filter disperses the laser light vertically, and only wavelengths 

close to the center wavelength can be chosen by eliminating higher and lower 

wavelengths. This can be achieved through irises and band-pass filters. The laser 

beam that exits the plasma filter is diverted into a microscope using mirrors and a 

beamsplitter. The microscope used in this setup is the same as the one described 

above, with 5x, 20x and 50x magnification objective lenses.  The backscattered 

light from the microscope is collected by the Raman spectrometer and after 

passing through a holographic notch filter, it can be focused at the entrance slit of 

the spectrometer. Between the focusing lens and the notch filter, one could make 

use of irises for stray-light rejection. 

 In addition to the Raman microscope, our Raman system also has a macro-

sample measuring capability, as indicated by the dashed and dotted beam path in 

Fig. 2.4. For macro-Raman, the beam is incident on the sample at an angle of 45° 

and focused into a stripe (~ 2mm tall and 0.1 mm in width). The stripe focus 

allows us to maximize the Raman scattered signal from the large samples since 

the stripe fills the vertical entrance slit of the TRIAX uniformly. All spectra 

measured in the present study were, however, collected using the microscope.  
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 The TRIAX 550 spectrometer is a single grating spectrometer that 

contains 3 gratings on a rotating turret. Each grating has a holographically ruled 

surface and groove density of 600, 1200, 2400 grooves/mm. Higher groove 

density gratings provide higher resolution due to more efficient light dispersion. 

However, the higher resolution comes at a cost of reduced intensity. For the 

Raman study on suspended carbon nanotubes, the 2400 groove/mm grating was 

used, and the samples were excited with the 647.1 nm wavelength krypton ion 

laser.  

 Inside the spectrometer, the Raman scattered light is directed to the grating 

by a mirror. The grating rotates through the chosen wavelength range and 

disperses the light, which is collected by a large focusing mirror and sent to the 

detector. The detector is a liquid nitrogen-cooled CCD, which offers increased 

sensitivity compared to the air-cooled CCD described in the previous section.  
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Figure 2.4: Layout of Raman spectroscopy system used for analyzing anharmonic phonon lifetimes in suspended single-walled carbon 
nanotubes as described in Chapter 4. 
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CHAPTER THREE 

BLUESHIFTED RAMAN SCATTERING IN GALLIUM OXIDE NANOWIRES 
 

 
Introduction 

Bulk gallium oxide is a wide band-gap (Eg ~ 4.8 eV) material that is of 

interest for its gas sensing [16, 17], catalytic [18] and optoelectronic device [19] 

applications. One-dimensional nanostructured forms of gallium oxide such as 

nanotubes, nanobelts and nanowires, have attracted recent interest due to 

enhanced optical properties [20, 21]. Gallium oxide nanowires have been 

synthesized by several methods such as physical evaporation [22, 23], arc 

discharge [10], RF induction [9], and catalyst assisted methods [24]. Recently, 

Sharma et al. [25] developed a novel technique for the synthesis of β-gallium 

oxide (β-Ga2O3) nanowires, nanotubes, and nanopaintbrushes based on the low 

miscibility of gallium oxide in molten gallium. In their method, gallium droplets 

and thin films serve as the solvent for nucleation and growth of the β-Ga2O3 

nanostructures. Their nanowires grow along the [110] direction. In comparison 

with the literature on β-Ga2O3 nanowires, one finds that other growth methods 

yield β-Ga2O3 nanowires with different growth directions. Using the gallium-

droplet method, β-Ga2O3 nanowires having a [321] growth direction have been 

synthesized using a thermal chemical vapor deposition (CVD) method [26]. Choi 

et al. [10] synthesized β-Ga2O3 nanowires (diameter range of ~15-45 nm) with a 

[001] growth direction using the arc-discharge method.  Gao et al. synthesized 
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[401 ] β-Ga2O3 nanowires with diameters ranging from ~10-100 nm in a vertical 

radio-frequency furnace [9]. Interestingly, the Raman mode frequencies of the 

[001] β-Ga2O3 nanowires coincide with the corresponding frequencies in bulk β-

Ga2O3 as can be seen in Fig. 1.5 (chapter 1). On the other hand, the Raman mode 

frequencies of the [401 ] β-Ga2O3 nanowires are redshifted (shifted lower in 

energy) relative to corresponding frequencies in bulk β-Ga2O3 by 4-23 cm-1 (see 

Chapter 1, Fig. 1.5). Using plasma enhanced chemical vapor deposition, we have 

synthesized β-Ga2O3 nanowires whose growth is along [110] direction and whose 

vibrational spectra are blueshifted (shifted to higher energies) as will be described 

below. This study focuses on the micro-Raman and FTIR characterization of 

[110] β-Ga2O3 nanowires grown by plasma-CVD, and first principle calculations 

of the Raman mode frequencies under growth induced internal strains. Our 

calculated Raman frequency shifts suggest that the observed shifts in the 

nanowires with the [401 ] and [110] growth directions can be explained in terms 

of different internal strains, in contrast to the previously suggested quantum 

confinement effects and defect induced effects [27]. The chapter outline is as 

follows: First the synthesis and growth mechanism of the [110] β-Ga2O3 

nanowires is described, followed by the electron microscopy characterization. 

Then the Raman modes of bulk β-Ga2O3 and the nanowires are compared 

followed with a similar comparison for infrared modes. Discrepancies between 

the Raman spectra from nanomaterials and the corresponding bulk material could 

be related to quantum confinement effects. Phonon confinement in nanomaterials 

is reviewed in the next section, followed by a theoretical model which seeks to 
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explain the nature of the difference in the experimentally observed Raman spectra 

between bulk β-Ga2O3 and the nanowires. 

 

Nanowire synthesis 

 

 

Figure 3.1: Schematic of the microwave plasma CVD reactor used to synthesize 
gallium oxide nanowires [25]. 

 
 

 

Synthesis of the β-Ga2O3 nanowires was carried out in a microwave 

plasma reactor (ASTEX 5010) with H2/CH4/O2 gas mixtures as shown in Fig. 3.1 

above. Quartz substrates were covered with a thin film of molten gallium and 

were exposed to a microwave plasma containing a range of gas phase species. 

During the plasma exposure, molten gallium flowed on all the substrates, forming 

a thin film, which was followed by growth of nanowires. The substrate 

temperature was measured by an infrared pyrometer to be approximately 550 °C 

for 700 W microwave pogswer, 40 Torr total pressure, and 8.0 sccm of O2 in 100 

sccm of hydrogen in the inlet stream. The experiments were performed at the 

following range of growth conditions: microwave power of 600-1200 W, pressure 
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of 30-60 Torr, growth duration of 1-12 h, 0.6-10 sccm of O2 and 0-2 sccm of CH4 

in 100 sccm of hydrogen in the feed gas [25]. 

 

Growth Mechanism 

 The nanowires synthesized by plasma-CVD grow according to a method 

reported by Sharma et al [25]. This technique is based on the unique wetting 

characteristics of liquid gallium. The requirement for this growth mechanism is 

that the material of interest should have low solubility and low wetting 

characteristics with respect to liquid gallium. A schematic of the growth model is 

presented in Fig. 3.4.  

 

 

Figure 3.2: Schematic for the growth process of gallium oxide nanowires [25]. 
 

 

 The steps in this gallium-based growth process are as follows [25]: 

Substrates coated with gallium metal are loaded into the reaction chamber, which 

is then ramped up to the reaction temperature. The melting point of gallium is 30 

°C and by the time the reactor reaches its desired working temperature, a thin film 
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of molten gallium is produced on the surface of the substrate. At this point, a 

microwave plasma containing oxygen and hydrogen is introduced into the 

chamber (Fig. 3.2, A). Oxygen readily reacts with gallium to form nanometer-

sized nuclei within the gallium pool (Fig. 3.2, B). Gallium oxide has poor 

solubility within gallium and thus as more of the oxide is formed and the gallium 

is exhausted, the oxide pushes off the substrates and forms nanowires (Fig. 3.2, 

C). At the end of the reaction, the molten gallium pool gets converted to gallium 

oxide nanowires [25] . In contrast to the more common vapor-liquid-solid growth 

process [26, 28], this method does not make use of any metal catalyst to seed the 

growth of the nanowire and is similar to the vapor-solid process in that respect. In 

similar experiments, gallium metal has been used as the growth medium for the 

synthesis of both carbon and silicon nanowires [29].  

The conversion of gallium to gallium oxide during the plasma CVD 

reaction can be confirmed via Raman spectroscopy. Metallic gallium in solid form 

exhibits a Raman peak at 246 cm-1 [30] due to Ga-Ga stretching vibrations, and a 

Raman peak for gallium was observed in non-optimized experiments in which the 

reactor was shut down a few minutes after the plasma was introduced, thus 

suggesting that all the gallium on the substrate did not convert to gallium oxide. 

Some of the gallium did react with the limited amount of oxygen and formed the 

oxide in certain regions of the substrate (Fig. 3.3). In all the gallium oxide 

nanowire samples discussed in this chapter we ensured that the 246 cm-1 peak for 

gallium was absent. 
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Figure 3.3: Raman spectrum of a gallium–coated substrate in which the 
entire gallium pool did not react with oxygen in a non-optimized experiment. 

 

 

Electron microscopy of β-Ga2O3 nanowires 

The morphology of the as-prepared nanomaterials was analyzed via 

scanning electron microscopy (SEM model Hitachi S-4700), high-resolution 

transmission electron microscopy (HRTEM model – JEOL 3010) and electron 

diffraction. The analysis of the selected area diffraction patterns (SAD) was 

performed with the help of simulations using a software package (Desktop 

Microscopist from the NCEM-LBL). The nanowires were dispersed in acetone 

using ultrasonication for ~30 s or until a uniform dispersion was obtained. A few 

drops of the dispersion were then used on a 200 mesh holey carbon TEM Cu grid 

(EMS - Electron Microscopy Sciences). 
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Figure 3.4 shows a scanning electron micrograph of β-Ga2O3 nanowires 

grown from a large molten gallium droplet. Nanowires were seen to be dispersed 

uniformly over the substrates. Figure 3.5 shows a high resolution transmission 

electron micrograph (TEM) of an individual 13 nm thick single-crystalline Ga2O3 

nanowire (nanowire 1). Electron diffraction from the nanowire confirmed its 

growth direction to be along [110] crystallographic direction. A second nanowire 

(nanowire 2) is also visible in the vicinity of nanowire 1 on the TEM grid, lying in 

a different plane tilted with respect to that of nanowire 1. Also, analysis of the x-

ray diffraction patterns (not shown here) yielded a0 = 12.23 Å, b0 = 3.04 Å, c0 = 

5.8 Å, β = 103.7o, confirming the presence of a monoclinic β- Ga2O3 phase in 

these nanowires. 

 

 

 
 
 
 

 

 

 

 

 

 

Figure 3.4: SEM micrograph of β-Ga2O3 nanowires grown from a large molten 
gallium droplet using a microwave plasma mediated technique [25]. 
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Figure 3.5: A high resolution TEM image of an individual 13 nm thick β-Ga2O3 
nanowire [25]. 

 

 

Raman modes of β-Ga2O3 

 

 
Figure 3.6: Representation of the tetrahedra and octahedra which form the 

structure of β-Ga2O3 [31]. 
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Figure 3.7: Unit cell of monoclinic β-Ga2O3 [32]. 

 

β-Ga2O3
  has a monoclinic structure and belongs to the C2h

3 space group 

[33].  Its unit cell contains two formula units- GaO6 (edge sharing) octahedra 

containing GaI ions and GaO4 (corner sharing) tetrahedra containing GaII ions as 

shown in Figs. 3.6 and 3.7. A tetrahedron shares only corners with other 

tetrahedra in the b axis direction and with octahedral in the other direction.  In 

other words, the b-direction of the gallium oxide unit cell contains chains of GaO6 

octahedra that are arranged parallel to the axis. These chains are connected by 

GaO4 tetrahedra to one another (Fig. 3.6) [32]. 

Under the C2h
3 group, group theory predicts 15 Raman and 12 infrared 

active vibrational modes [31]. The Raman-active modes of β−Ga2O3 can be 

classified into three groups: high frequency stretching and bending of GaO4 

tetrahedra (~ 770 – 500 cm-1), mid-frequency deformation of Ga2O6 octahedra (~ 

a 

b 
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480–310 cm-1), and low-frequency libration (frustrated rotation) and translation 

(below 200 cm-1) of tetrahedra-octahedra chains. Figure 3.8 below shows a micro-

Raman spectrum obtained from bulk β-Ga2O3. The micro-Raman spectrum was 

collected from bulk gallium oxide films grown via thermal CVD on quartz 

substrates and correspond with the reported Raman peak frequencies for bulk β-

Ga2O3 reported by Dohy et al. [31].  

 

Figure 3.8: Micro-Raman spectrum of bulk β-Ga2O3  

 

In their experimental and theoretical study, Dohy et al. assigned 

symmetries to all the observed experimental modes. It turns out that due to the 

complexity of the gallium oxide crystal structure, the various types of bond 

vibrations, viz., bending and stretching of octahedra and tetrahedra, GaI-O2 and 

GaII-O2 bonds are heavily coupled.  For example, the eigenmodes of the 111 cm-1 
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Ag mode are composed of various GaO2 bending modes as can be seen below in 

Fig. 3.9. The vibrations of other modes, such as the 657 cm-1 (Fig. 3.8) are more 

complex, including tetrahedra and octahedra stretching, as well as bending of 

GaO2 bonds. Moreover, due to larger force constants, the shorter bonds in the 

tetrahedra contribute largely to the high frequency vibrational modes in β-Ga2O3; 

in particular, oxygen atom displacements are high in the high frequency 

tetrahedral bending and stretching modes. On the other hand, gallium atom 

displacements contribute largely to the low frequency librational and translational 

modes (Fig. 3.9). 

 

 

 

 

Figure 3.9: Cartesian displacements involved in the in-plane Ag vibrational mode 
at 111 cm-1 in β-Ga2O3 The gallium and oxygen atoms are shown by the black and 

red dots respectively [31]. 
 

 

 

The Raman mode frequencies for bulk β-Ga2O3 measured in this study 

(Fig. 3.8) correspond well to those reported in the literature. A noteworthy point is 

that no experimental analysis on the mode symmetry of β-Ga2O3 Raman peaks 

has been reported. Our current mode symmetry assignment is purely based on the 
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comparison between the observed and calculated Raman frequencies. We find an 

unambiguous matching pattern for mode symmetry assignment for all the 

observed Raman modes, except for the two Raman peaks around 472 cm-1 and 

628 cm-1. The former peak can be assigned with either the calculated Ag mode of 

469 cm-1 or the Bg mode of 474 cm-1, while the latter one can be assigned with 

either the Ag mode of 601 cm-1 or the Bg mode of 624 cm-1. The spectra of the 

nanowires were obtained by dispersing nanowires on quartz substrates. All 

spectra were collected from individual nanowires and nanowire-rich regions 

present on the quartz substrates with a Renishaw 1000 Raman microscope using a 

50x objective. The samples were excited with the 785 nm, 514 nm, or 442 nm 

excitations from a solid state laser and the backscattered Raman spectra were 

collected with an air-cooled CCD (Fig. 3.10) 
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Figure 3.10: Micro-Raman spectra of β-Ga2O3 nanowires (top three traces) dispersed on quartz and silicon substrates collected 
at three different excitations showing peaks upshifted compared to bulk β-Ga2O3 [31] (bottom trace).

(Si) 

(Si) 

45 



 

 46

In contrast to the Raman spectrum from bulk β-Ga2O3, the Raman 

spectrum of the [110] nanowires, is relatively richer and is significantly 

blueshifted in frequency (Fig. 3.10). Correlating the Raman peaks present in the 

spectrum for [110] nanowires and those in the bulk is simple for the modes 

located at either end of the Raman spectra. For the low frequency 

libration/translation modes, we can identify the strongest Raman peak of 200 cm-1 

in the bulk being shifted to 213 cm-1 in the spectrum for the nanowires. 

Accordingly, we attribute the nearby 180 cm-1 mode as shifted from the 169 cm-1 

mode in the bulk.  The relatively weaker 144 cm-1 bulk Raman peak is invisible in 

the spectra of the nanowires, likely due to reduction of peak intensity. Meanwhile, 

a minor peak appears in the low frequency region of the nanowires spectra, which 

cannot be related to any calculated bulk Raman active modes. Overall, the 

librational/translational modes are blueshifted by ~10 cm-1. On the other end of 

the Raman spectra, two highest frequency stretching/bending modes of tetrahedra 

are found to be blueshifted by nearly ~40 cm-1, i.e. 766cm-1  810 cm-1 and 655 

cm-1  697 cm-1. The third highest frequency Raman peak observed in the 

nanowires at 645 cm-1 is assigned as the blueshifted 628 cm-1 mode in the bulk. 

There is a fourth peak in the high frequency region (around 600 cm-1). The only 

possible match for this peak is with the unobserved bulk Raman mode (either the 

Ag mode of 601 cm-1 or the Bg mode of 624  cm-1) predicted by our calculation 

described below. While the overall shifting pattern of the Raman peaks in the 

intermediate frequency ranges is clearly blueshifted, the exact peak-to-peak 

correspondences are less clear, partially because several additional weak peaks 
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are also observed (for example at 225 cm-1, 302 cm-1) of which neither correspond 

to the infrared peaks expected in β-Ga2O3
 [31]. Tentatively, we assume that the 

bulk modes at 416 cm-1 and 472 cm-1 are shifted to 428 cm-1 and 492 cm-1 

respectively. As discussed in the following section of theoretical results, this 

assumption is consistent with our calculations.  

The nanowires were excited at three different laser frequencies in order to 

determine if the Raman peaks of nanocrystalline β-Ga2O3 are dependent on the 

excitation wavelengths. Raman spectra of various 1D materials such as carbon 

nanotubes [34], silicon nanowires [35], and quantum dots [36] have exhibited 

excitation wavelength dependence with respect to nanomaterial dimension. The β-

Ga2O3 nanowires examined in this study did not show any dependence on the 

excitation wavelength as seen in Fig. 3.10 above and the Raman peaks of the 

nanowires are consistently up-shifted compared to the corresponding peaks in 

bulk β-Ga2O3. 

Shifts in Raman peak frequencies could be caused due to stoichiometric 

changes within the material, as well as the presence of different phases. Gallium 

oxide is known to grow in four different phases – α-, β-, γ-, and δ-Ga2O3. Of 

these four phases, the alpha and beta phase of gallium oxide are stable. A 

comparison of the Raman spectrum obtained from the [110] β-Ga2O3 nanowires 

with the Raman spectrum of α-Ga2O3 (Fig. 3.11), however, proves that our 

nanowires do not correspond to the alpha phase. As discussed earlier in this 

chapter, based on the Raman spectrum of unreacted gallium, we rule out the 
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features observed in Fig. 3.10 to residual metallic gallium. Finally, the gallium 

oxide nanowires were checked for oxygen deficiencies by annealing the wires at 

high temperatures in an oxygen environment. The Raman spectra of the β-Ga2O3 

nanowires was found to be unchanged after annealing and still showed the same 

upshift in peak frequencies with respect to bulk β-Ga2O3. McGuire et al. [37] 

performed a systematic study of SnO2 and ZnO nanobelts and found changes in 

the Raman spectra due to the formation of off-stoichiometric phases (SnxOy) of tin 

oxide that changed with annealing of the nanobelts in an oxygen-rich 

environment. However, no such effect was observed in the present study thus 

confirming the presence of β-Ga2O3 nanowires. Furthermore, as explained below, 

these nanowires were also characterized with FTIR spectroscopy and exhibited 

similar peak upshifts with respect to bulk β-Ga2O3 in the FTIR transmittance 

spectra.  

 

  

 

 

 

 

Figure 3.11: Raman spectrum of α-Ga2O3 [38]. 
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Interestingly, the red-shift in the phonon frequencies (c.f. Fig. 1.5) has also 

been attributed by Gao et al. [9] to the presence of impurities and defects, such as 

point defects, twins, and stacking faults [39]. These defects are also likely to be 

responsible for additional vibrational modes observed in the Raman spectra (and 

to a small extent in the FTIR spectrum) of nanowires. From a detailed high 

resolution transmission electron microscopy study, Gao et al. confirmed the 

presence of twins and edge dislocations in their nanowires as shown below in Fig. 

3.12 [9] . Dai et al. [40] also proposed that the O vacancies and the stacking faults 

caused an abnormality in the Ga-O bond vibration and led to red-shift in the 

Raman frequencies.  

 

 

 

 

 

 

 

Figure 3.12: SEM image of the [401 ] nanowires grown by RF-induction. The 
inset is a high resolution TEM image from one of the wires showing twinned 

planes [9]. 
 

 
 

Although this simple hypothesis is plausible, there is one obvious 

weakness, i.e. lack of close correlation between defect types and the growth 

directions.  Presumably, similar defects might exist in the nanowires with 
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different growth directions. It is also not clear which types of defects will lead to a 

blueshift in vibrational frequencies.   Moreover, different regions in the nanowires 

contain different defects which would imply that different shifts in the Raman 

and/or IR spectra should be observed when different regions of the same nanowire 

are probed. However, this doesn’t seem to be the case and instead overall distinct 

blueshifts or redshifts have been observed for a given nanowire. Furthermore, 

extensive electron microscopy study of our [110] nanowires revealed that the 

wires are largely defect-free, which fails to account for the consistent upshift seen 

in the Raman spectra from various [110] nanowire samples. Therefore, alternative 

models that are capable of describing these diverse Raman peak-shift patterns in a 

consistent fashion are needed. 

 

FTIR Spectroscopy 

Fourier-transform infrared spectroscopy (FTIR) is a vibrational 

spectroscopy technique that is complementary to Raman spectroscopy. The 

technique deals with the absorption (or transmission) of infrared light by a 

sample. Analogous to Raman spectroscopy, the incoming infrared radiation when 

absorbed by a material induces a dipole moment within it. At certain molecular 

vibrational frequencies, the interaction of the molecule with the incoming 

radiation causes a change in the dipole moment of the molecule. Thus the 

molecule absorbs (or transmits) infrared radiation at that particular vibrational 

frequency. Since polar bonds have strong dipole moments, such molecules (for 

example, H2O) are highly infrared active [41]. 
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Figure 3.13 shows the corresponding FTIR transmittance spectra for the 

same samples whose micro-Raman spectra appear in Fig. 3.10. FTIR 

transmittance spectra in the mid-infrared region were obtained using a Bruker IFS 

66 v/s spectrometer from pressed potassium bromide pellets containing 3 wt. % 

dispersions of either powder or nanowire forms of β-Ga2O3. Polycrystalline 

gallium oxide powder was obtained by scraping off the deposit from substrate that 

was collected from the reactor during a non-optimized experiment. A KBr 

beamsplitter was used in the interferometer and the transmitted light was collected 

with a deuterated triglycine sulfate (DTGS) detector. The sample chamber was 

kept evacuated in order to eliminate the interfering infrared absorption by the 

water vapor present in the ambient atmosphere. As mentioned earlier in the 

chapter, group theory predicts that β-Ga2O3 has 12 infrared modes. The bottom 

trace in Fig. 3.13 corresponds to bulk β-Ga2O3. Among the 12 IR modes, 6 modes 

lie below 400 cm-1; however due to the limited range of the instrument, only 

modes above 400 cm-1 were measured.  The spectrum from the β-Ga2O3 powder 

corresponds well with the infrared spectrum for bulk β-Ga2O3 [31]. On the other 

hand, consistent with the Raman spectrum (Fig. 3.10), the IR modes in the 

nanowire spectrum are also blueshifted in frequency relative to corresponding 

bulk frequencies. The upshift of the IR modes of the nanowires also follows a 

similar trend like the Raman peaks. Lower frequency peaks shift by around 16 

cm-1 while the frequencies above 600 cm-1 in β-Ga2O3 nanowires are upshifted in 

frequency by as much as 50 cm-1.  
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Fig. 3.13: FTIR transmittance spectra of bulk (bottom trace) and [110] β-Ga2O3 
nanowires (top trace). 

 

 

Raman peak shifts due to quantum confinement 

 In recent years, much attention has been drawn to quantum confinement 

effects in nanomaterials. Decrease in dimensionality of a material leads to 

confinement of electrons and phonons, thus leading to changes in properties that 

are not observed in the corresponding bulk counterpart. In the case of Raman 

spectroscopy, phonon confinement is known to cause peak broadening and shifts. 

For example, Fig. 3.14 below shows Raman spectra collected from silicon 

nanowires of various average diameters [35]. The 520 cm-1 mode of bulk silicon, 
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which is shown in the bottom trace, can be seen to downshift and broaden with a 

decrease in average wire diameter down to 4.5 nm. 

 

 

Figure 3.14: Raman spectra showing the evolution of the first-order 520 cm-1 peak 
of four silicon nanowire samples [35].  

 

 With respect to phonon dispersion in the Brillouin zone, the conservation 

of crystal momentum demands that only zone-center (q = 0) Raman-active optical 

phonons get excited in a given Raman experiment. However, in samples with 

reduced dimensionality, the conservation of crystal momentum is relaxed and off 

zone-center phonons become Raman-active. Depending on the phonon density of 
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states (DOS) of the material, these phonons are manifested as upshifted or 

downshifted or broadened Raman peaks in the spectrum. Richter et al. [42] 

developed a heuristic model to explain phonon confinement in silicon 

microcrystals. Later, Campbell and Fauchet [43] refined Richter’s model to 

include 1D and 2D morphologies. These models have been successfully applied to 

many nanoscale materials and explain the change in the Raman spectrum of low-

dimensional materials. The key aspect of the confinement model is the use of a 

localization function for the phonons in the crystal. In an infinite crystal, the 

wavefunction of a phonon with wavevector q0 can be written as  

                     )exp(),(),( 000 rqirqUrq ⋅−=φ                                    (3.1) 

where U(q0, r) has the periodicity of the lattice. In a crystallite assumed to be 

spherical with a diameter L the phonon is restricted to the volume of the 

crystallite. A simple method to localize the phonon is to introduce a Gaussian 

function such that the phonon wavefunction now becomes 
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Thus according to the above expression, the phonon wavefunction ψ is localized 

to |r| ≤ L in the form of a Gaussian distribution. ψ’ can be expanded in a Fourier 

series: 

                       )exp(),(),(' 0
3
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where the Fourier coefficients C(q0, q) are given by 
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Inserting ψ’ from eq. (3.3) into eq. the above expression yields 
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This shows that the  ψ’ and therefore the  ψ are no longer eigenfunctions of the 

phonon wavevector q0 but rather a superposition of eigenfunctions with 

wavevectors in an interval Lqq 2/1|| 0 ≤−  centered at q0. Also, the phonon 

transition matrix elements have non-vanishing values for q ≠ qo. This implies that 

the activations of off-zone center phonons, which leads to contributions from 

phonon energies away from q = 0. Figure 3.15 shows the phonon dispersion 

curves for silicon. From the figure, it can be seen that for the q = 0 phonon the 
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dispersion is negative. In other words, for the F2g 520 cm-1 peak (indicated by the 

dashed circle at ~15 THz) the off-zone center phonons have frequencies less than 

520 cm-1. Hence as crystal dimension decreases, more phonons away from the 

zone center contribute and lead to downshifts (redshifts) and broadening of the 

520 cm-1 peak. 

 

 

Figure 3.15: Phonon dispersion curves for silicon. Both neutron diffraction 
(points) and calculated (solid lines) data are shown [44].  

 

 On the other hand, in other materials like graphite the E2g vibrational 

mode at ~1580 cm-1
 upshifts with decreasing dimension as can be seen by the 

positive slope of the E2g mode at the Γ point in Fig. 3.16 [45]. Since graphite is a 

layered structure, such a confinement effect is seen by decreasing the number of 
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layers. A single layer of graphite is called graphene, and Raman spectra collected 

on single and multiple layer graphene samples exhibit upshifts of the 1580 cm-1 

mode compared to bulk graphite as shown by an upshift of ~5 cm-1 in Fig. 3.17 

for single-layered graphene compared to bulk graphite [46]. In other words, as the 

crystal dimension is decreased along the c-direction in a graphite crystal, quantum 

confinement causes the E2g mode to upshift in frequency. 

 

 

Figure 3.16: Calculated and experimental (inelastic x-ray scattering) phonon 
dispersion curves for graphite [45]. 
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Figure 3.17: G peak frequency versus number of stacked layers (average value 
and standard deviation). Inset: G peak for highly oriented pyrolitic graphite 
(HOPG) (upper peak), double- (middle peak) and single-layer (lower peak) 

graphene. The vertical dashed line indicates the reference value for bulk graphite 
[47]. 

 

Returning to Fig. 3.10 for our gallium oxide nanowires, the average 

diameter of our β-Ga2O3 nanowires (as well as that for the [001] and the [401 ] 

nanowires) is around 30 nm. It is unlikely that the quantum size confinement at 

this length scale is significant enough to cause the phonon shifts as large as 50 

cm-1 seen in Fig. 3.10. Furthermore, three distinctly different shift patterns have 

been experimentally observed for the β-Ga2O3 nanowires depending on their 

growth directions. In contrast to the blueshift in the Raman and FTIR spectra 

observed in Figs. 3.10 and 3.13, Choi et al. reported their Fourier transform 

Raman spectrum of [001] β-Ga2O3 nanowires to be identical to that of bulk β-

Ga2O3 (c.f., Fig. 1.6), while Gao et al. exhibited a red-shift of 4-23 cm-1 in 
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frequency of their [401 ] β-Ga2O3 nanowires relative to the corresponding Raman 

frequencies in bulk β-Ga2O3 (c.f. Fig. 1.5).  The size confinement effect is clearly 

insufficient to explain observed the Raman shifts by Gao et al., Choi et al., and us 

and therefore other mechanisms have to be examined in detail as described in the 

next section. 

LDA model of the peak frequencies of β-Ga2O3 

A plausible reason for the observed Raman shifts could be due to inherent 

strain in the nanowires. Typically, compressive strains cause Raman peaks to 

upshift and tensile strains cause peaks to downshift. In our model, we hypothesize 

that the strains in the nanowires occur during their growth, and their magnitude is 

dependent on the nanowire growth direction. We have confirmed the hypothesis 

through a theoretical model using density functional theory (DFT) and are able to 

explain all Raman shifts for the gallium oxide nanowires reported in the literature.  

The basic assumption of our model is the presence of non-negligible 

internal strains in the nanowires due to their large surface/volume ratio. Different 

growth directions will cause different surface reconstruction, and consequently 

lead to internal strains of different magnitudes and directions. As will be shown 

below, the calculated Raman frequency shifts suggests that the observed shifts in 

the nanowires with the [401 ] and [110] growth directions can be explained in 

term of different internal strains, in contrast to the previously suggested quantum 

confinement effects and defect induced effects. 



 

 60

The implementation of DFT adopted in this study is VASP (Vienna ab-

initio simulation package). DFT techniques have been used for years to model 

various properties of materials such as the binding energy of molecules and the 

band structure of solids [48]. Modeling the electronic properties of a material (the 

so-called many body problem) is a very complicated computational process due to 

the fact that one needs to consider an infinitely large set of wavefunctions and the 

associated Schrödinger equations for a complete system. Density functional 

theory replaces this by the much easier to handle electron density. While DFT in 

principle gives a good description of ground state properties, practical 

applications of DFT are based on approximations for the so-called exchange-

correlation potential. This potential accounts for the exchange interaction between 

electrons (due to the Pauli exclusion principle) and the electrostatic screening of 

each electron by the correlated motion of all the other electrons. One of the most 

common approximation methods is the local density approximation (LDA) which 

locally substitutes the exchange-correlation energy density of an inhomogeneous 

system by that of an electron gas evaluated at the local density. LDA is the 

method of choice for many computations such as the evaluation of lattice 

constants and bulk moduli. However, since the method is an approximation, other 

methods such as GGA (generalized gradient approximation) can be used. The 

LDA method fails in cases where the local electron density undergoes rapid 

changes. In such cases, the gradient of the electron density (GGA) can be applied.  

 However, for this study, local density approximation (LDA) was chosen 

for the many-electron exchange-correlation interaction and proved to be 
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sufficient, as shown by the calculated phonon frequencies in Table 1. Such 

calculations have been used extensively for describing the structural and 

vibrational properties of ceramic oxides, nitrides, and carbides [49].The valence 

electrons (i.e. 3d104s24p1 electrons in Ga and 2s22p4 electrons in O) are treated 

explicitly in the electron eigenfunction calculations, while the core electrons are 

approximated with the Vanderbilt-type ultrasoft pseudopotentials (USPP) [50]. In 

DFT calculations, pseudopotentials replace the complicated effects of the motion 

of the core electrons of an atom or ion and its nucleus with an effective potential, 

or pseudopotential, so that the Schrödinger equation contains a modified potential 

term instead of the Coulombic potential term normally found in the Schrödinger 

equation. By construction of this pseudopotential, the valence wavefunction 

generated is also guaranteed to be orthogonal to all the core states.  

The first step is to optimize the structures in order to achieve minimal 

energy (zero force) configuration. Then the zone-center phonon modes are 

derived from a direct force constant matrix calculation, which displaces atoms, 

one at each time, and determines the resultant force on each atom in the unit cell. 

All Raman frequency calculations of β-Ga2O3 were carried out with a 10-atom 

base-centered monoclinic unit-cell model without the correction for the 

macroscopic interaction. Hence, both frequencies and eigenmodes are calculated 

with first-principle methods. The first principles calculation involves the 

integration of the electron wavefunction over the Brillouin zone of β-Ga2O3. In 

our model, the Brillouin zone was defined using a Monkhorst-Pack k-point grid. 

This method was developed by Monkhorst and Pack as a means of optimizing the 
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integration of periodic functions of a Bloch wavevector over a Brillouin zone 

[51]. Their derivation is based on the use of special points in k-space which 

generates an expansion of the periodic wavefunction with the proper symmetries. 

Hence one can effectively interpolate the wavefunction over the entire (or specific 

parts of) a Brillouin zone by integration over the wavefunctions at the special 

points. For our computation, we chose a 6 x 6 x 6 Monkhorst-Pack k-point grid. A 

plane wave energy cutoff of 397.5 eV was used in order to reduce the basis set to 

a finite size and make computations involving the Hamiltonian easier. Using the 

parameters mentioned above, our calculations predict equilibrium lattice 

parameters for bulk β-Ga2O3 as a0 = 12.11 Å, b0 = 3.005 Å, c0 = 5.731 Å, β = 

103.72o, which are in close agreement with experimental data of a0 = 12.23 Å, b0 

= 3.04 Å, c0 = 5.8 Å, β = 103.7o  [33]. 

The experimental Raman mode frequencies for bulk β-Ga2O3 films whose 

Raman spectra are shown in Fig. 3.8 correspond well to those reported in the 

literature, as well as our LDA calculation. Also listed in the table are experimental 

and calculated Raman frequencies from Dohy et al. [31], who used a valence 

force field calculation to compute the vibrational modes of  β-Ga2O3. In their 

calculation, the force constant matrix was set up using Cartesian coordinates, 

which were deduced from the X-ray data reported by Geller [33]. 50 atoms were 

taken into account in the calculation- those of the unit cell and their closest 

neighbors. In all, they used 29 distinct force constants (to account for various 

stretching, bending, and torsional modes) and calculated Cartesian displacements 

and potential energy distributions for every mode corresponding to the 
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experimental data. Our current mode symmetry assignment is purely based on the 

comparison between the observed and calculated Raman frequencies. As shown 

in Table 1 below, the theoretical data for bulk β-Ga2O3 from our calculation 

matches well with 13 out of the 15 Raman active (10Ag + 5Bg) modes observed in 

present study, as well as those of the previous study of Dohy et al. [31] In both 

cases of the unobserved Raman modes, there is another Raman-active mode in the 

close proximity. For example, our LDA calculations predicted two Raman modes 

at 469 and 474 cm-1, and two additional Raman modes at 601 and 624 cm-1. This 

suggests that it is possible that the two “missing” Raman modes in our LDA 

calculation are masked by the stronger adjacent Raman modes. 

Direct first-principles calculations of phonon frequencies of strained 25 

nm-diameter nanowires is a computationally challenging task as large super cell 

models (of at least tens of thousands of atoms) are needed. Instead, our study 

focused on providing a quantitative estimation of the internal strains which can 

account for the observed blue- and red-shifts in the Raman frequencies for [110] 

and [401 ] β-Ga2O3 nanowires, respectively. The internal strains of the nanowires 

were estimated based on the least squares fitting of the experimentally observed 

Raman frequency shifts with theoretically predicted linear strain coefficients 

dω/dεij, where ω and εij are Raman frequencies and components of strain tensors, 

respectively. Furthermore, a quasi-harmonic approximation for the potential was 

used.  

As mentioned in chapter 1, the harmonic approximation for the potential 

does not account for lattice expansion, and hence strains in a material. An 



 

 64

anharmonic potential including the cubic and/or higher terms in the potential 

series expansion must be included. However, computations involving anharmonic 

potentials are time consuming. Instead, the approach adopted in the present study 

was to perform calculations for different volumes which, in turn, correspond to 

different pressures. For each volume, a harmonic potential was used to calculate 

the phonon frequencies; however different volume gave us different phonon 

frequencies thus implying that phonon frequencies are dependent on volume.  

The strain tensor of this monoclinic crystal has six independent elements, 

ε11, ε22, ε33, ε23, ε13, and ε12.  For simplicity, the computation was restricted to 

linear effects, i.e. ω(ε) ≈ ω0 + Σ (dω/dεij × εij). This approximation is valid for 

small strains.  Furthermore, the strain of ε23 or ε12 was neglected because their 

dω/dεij coefficients are zeroe due to the monoclinic lattice symmetry. For each of 

four remaining types of strains (ε11, ε22, ε33, and ε13), the Raman frequencies were 

calculated for five finite strain values between -0.02 to +0.02. The calculated 

frequencies were then fitted with a polynomial function to obtain the linear strain 

coefficients. The results of the [401 ] and [110] nanowires are listed in Table 2, 

and the LDA model predicts the strain tensor for the [001] nanowires contain non-

negligible ε11, ε22, ε33, and ε13 components. As shown in Table 3, excellent fits 

were obtained overall for both the redshifted and blueshifted Raman spectra, with 

exceptions of the 348 cm-1 Ag mode in the [110] nanowire (our study) and the 150 

cm-1 Bg mode in the [401 ] nanowire (Gao et al.). Our calculation shows that the 

[110] nanowire is compressed along its a- and c-axis, and stretched along its b-

axis.  The strain in the [401 ] nanowire exhibits a contrasting pattern and its strain 
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magnitude is only about 1/3 of that evaluated for the [110] nanowire.  In both 

cases, the a-axis has the smallest change (Table 2). The strain induced volume 

changes are predicted to be -2% and 0.7% for the [110] and [401 ] nanowires 

respectively. Seo et al.[52] studied the internal strains of GaN nanowires using x-

ray diffraction measurements and they reported the strains of εxx= 2.3%, εyy= -

0.734%, and εzz= -0.4% based on their experimental measurements. The 

magnitudes of predicted strains of β-Ga2O3 in the present study are comparable to 

those of GaN nanowires.   
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Table 1: Comparison of calculated Raman mode frequencies with those measured 
in bulk β-Ga2O3. 

 
 

Dohy et al.[31] This work 

Mode 
Symmetry Force field 

Calculation 
(cm-1) 

Expt. Data 
(cm-1) 

LDA 
Calculated 
Frequency: 

(cm-1) 

Expt. Data 
(cm-1) 

Ag 113 111 104 - 

Bg 114 114 113 - 

Bg 152 147 150 144 

Ag 166 169 166 169 

Ag 195 199 207 200 

Ag 308 318 317 317 

Ag 353 346 348 344 

Bg 360 353 356 - 

Ag 406 415 414 416 

Ag 468 475 469 472 

Bg 474  474 - 

Ag 628 628 601 628 

Bg 644 651 624 - 

Ag 654 657 635 654 

Ag 760 763 732 767 
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Table 2: Estimated internal strains. 

Strain [110] 

nanowire 
[401] 

nanowire 

ε11 -0.0077 0.0029 

ε22 0.0180 -0.0064 

ε33 -0.0311 0.0106 

ε13 0.0233 -0.0256 

∆V/V -0.0208 0.0071 

 

 
Conclusions 

 In summary, based on a comparison of the experimental Raman mode 

frequencies with our calculations, we find compelling evidence for growth 

direction- induced internal strains in β-Ga2O3 nanowires which significantly 

influence the vibrational mode frequencies.   Within the linear model 

approximation, the observed blue and red-shifts of peak frequencies in the micro-

Raman spectra of the β-Ga2O3 nanowires with different growth directions can be 

attributed to two small anisotropic internal strains: one compressive strain of 2% 

volume change, and the other tensile strain of 0.7% volume change.  The overall 

high quality of the fitted models to available experimental data suggests a strong 

correlation between the shifts in Raman mode frequencies and the growth 

direction-induced internal strains in the β-Ga2O3 nanowires.  
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Table 3: Raman mode frequencies and frequency shifts in β-Ga2O3 nanowires 
with the [401 ] and [110] growth directions. Overall, excellent agreement between 
the observed and calculated shifts is seen for all mode frequencies except the two 
marked with an *. 
 

Gao et al. [9] 
[401 ] growth direction 

This work 
[110] growth direction 

Bulk 
(cm-1) 

Nano-wire  
 (cm-1) 

Shifts 
∆ω 

(cm-1) 

Calc. 
Shifts* 
(cm-1) 

Bulk 
 (cm-1) 

Nanowire 
 (cm-1) 

Shifts  
∆ω 

 (cm-1) 

Calculat
ed 

Shifts* 
(cm-1) 

   -4.8    12.0 

   1.7    -3.1 

142 134 -8* -1.0 144   3.8 

167 160 -7 -7.2 169 180 +11 10.6 

198 194 -4 -6.5 200 213 +13 13.5 

320   -3.9 317   9.5 

344 332 -12 -6.7 344   16.8 

   -1.7    0.7 

415 409 -6 -5.3 416 428 +12 12.3 

473   -4.4 472 492 +20 21.1 

   -6.2    18.5 

627   -5.7 628 645 +16 17.8 

   -0.3    3.6 

651 641 -10 -14.8 654 697 +43 36.4 

765 742 -23 -20.6 767 810 +43 47.0 

 

 

*These shifts were calculated using our LDA model [27]



 

CHAPTER FOUR 
ANHARMONIC PHONON LIFETIMES IN CARBON NANOTUBES 

 

Introduction 

The study of elementary excitations in reduced-dimensionality systems 

has been one of the hallmarks of condensed matter physics for the past thirty 

years. Confinement to two, one, or zero dimensions induces profound changes in 

the electronic and vibrational structure of materials. Research on low-dimensional 

systems has also addressed the effect of dimensionality on the interactions 

between elementary excitations. Until now, these studies have focused on the 

electron-electron and electron-phonon interactions, but the anharmonic interaction 

between vibrational quanta (phonons) has received much less attention. The 

relative lack of work on anharmonic phonon-phonon interactions is 

understandable if one considers that the first accurate calculation of the 

anharmonic Raman scattering linewidth in simple bulk materials was published 

only a decade ago [53]. Moreover, anharmonic interactions often involve acoustic 

phonons (explained below), which are not as easy to confine as electrons and 

optical phonons. This state of affairs has changed dramatically with the 

development of spectroscopic techniques that probe individual semiconductor 

nanowires or carbon nanotubes. 
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Carbon nanotubes have proven to be a unique system for the study of 

Raman spectra in one-dimensional systems, and at the same time Raman 

spectroscopy has provided an exceedingly powerful tool for the characterization 

of single-walled carbon nanotubes (SWNTs). The unique optical and 

spectroscopic properties observed in single-wall carbon nanotubes are largely due 

to the one-dimensional (1D) confinement of electronic and phonon states, 

resulting in the so-called van Hove singularities in the nanotubes density of states 

(Fig. 4.1) [34, 54]. These singularities in the density of states, which are a result 

of the one-dimensional nature of the material, are of great relevance for a variety 

of optical phenomena. Whenever the energy of incident photons matches a van 

Hove singularity in the DOS of the valence and conduction bands (subject to 

selection rules for optical transitions), one expects to find resonant enhancement 

of the corresponding optical process. Owing to the diverging character of van 

Hove singularities in these 1D systems, such an enhancement can be extremely 

confined in energy (meV), appearing almost like transitions in a molecular 

system. In combination with the unique 1D electronic structure, the resonantly 

enhanced Raman scattering intensity allows one to obtain detailed information 

about the vibrational properties of nanotubes, even at the isolated individual 

SWNT level [55].  
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Figure 4.1: Calculated electron density of states for three different nanotubes. The 
van Hove singularity transitions are shown for both semiconducting (labeled S) 

and metallic nanotubes (labeled M) [56]. 
 

 

The outline for this chapter is as follows: The Raman modes of SWNTs 

will first be described along with the unique resonant Raman conditions satisfied 

by SWNTs. This is followed by a discussion on the Raman peak linewidths, and 

how it applies to carbon nanotubes, leading up to the motivation for the study 

described in this chapter. The rest of the chapter deals with nanotube synthesis 

and characterization, as well as room temperature, high-resolution micro-Raman 

measurements of suspended SWNTs which exhibit extremely low peak linewidths 

compared to what has been described in the literature. Finally, a model is 
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proposed to explain the unique anharmonic decay phenomenon that occurs in 

SWNTs. 

 

Raman scattering in carbon nanotubes 

Individual single-walled carbon nanotubes are good candidates for Raman 

spectroscopy analysis because they follow a resonant scattering process, which 

occurs when the optical absorption (or emission) is to (or from) a real electronic 

state in the electron density of states (DOS). This is a general resonance 

phenomenon that occurs in the presence of an oscillating external field. In 

general, there are two resonance conditions for optical transition in the presence 

of an oscillating external field: (1) resonance with the incident laser photon 

(incidence resonance) and (2) resonance with the scattered photon (scattered 

resonance). When the resonance occurs with the incident photon, the incident 

laser light has the same energy (EL) as the energy separation between the two 

electronic states in resonance (∆E), while the scattered photon has an additional 

energy of the phonon ħω. Therefore, EL = ∆E (incident resonance in the former 

case) , EL = ∆E + ħω (scattered resonance in the latter case). The resonance 

Raman process increases the signal by a factor of approximately 103 in 

comparison to the intensity for a non-resonance Raman process. In the case of 

SWNTs, not only resonant enhancement but also a singularity in the DOS 

contributes to the Raman intensity (Fig. 4.1). When the laser energy of either the 

incident or the scattered light has the same energy as a vHS energy in the DOS 

(for example, see E11, E22, and E33 in Fig. 4.1), the Raman intensity becomes 
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extremely strong for any SWNT that satisfies the resonance condition. This is the 

reason why we can get a measurable signal from a single isolated SWNT in the 

presence of many non-resonant  SWNTs [57]. 

The Raman spectrum of a single-walled nanotube contains two main 

features: the radial breathing mode, and the G-band. The radial breathing mode 

(RBM) corresponds to the coherent vibration of the carbon atoms in the radial 

direction, as if the tube were “breathing” (Fig. 4.2). The symmetry label for the 

breahing mode is A1g. These modes are unique to carbon nanotubes and occur 

with frequencies ωRBM between 120 and 350 cm−1 for SWNTs for diameters in the 

range 0.7nm<dt <2 nm. The RBM is also unique in the sense that it follows an 

inverse relationship with the nanotube diameter. For isolated SWNTs, the relation 

between the RBM peak frequency and the tube diameter is given by [55] 

                                   
t

RBM d
248

≅ω                                                      (4.1) 

 

The above formula is empirical, and can be applied to determine the approximate 

diameter of a single-walled nanotube. In their STM study, LeRoy et al. [11] 

analyzed various semiconducting and metallic nanotubes, and found an inverse 

relationship between the energy of the phonon-assisted tunneling peak and the 

nanotube diameter. In terms of energy, eq. 4.1 can be written as ERBM = 27.8/dt 

meV, [58] where ERBM is the energy of the RBM phonon. The experimental value 

of 28.1/dt from their study agrees very well with theoretical predictions, and 
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provides further proof for the excitation of RBM phonons via electrons in the 

tunneling study. 

 

Figure 4.2: Simulation of the radial breathing mode vibrations of a 0.8 nm 
diameter single-walled nanotube. The vertical lines over each carbon atom 

indicate the radial motion of the atoms [59]. 
 
 
 

Bulk graphite has a single Raman active mode at 1582 cm-1. The 

scattering phonon is of E2g symmetry with an in-plane optical eigenvector, i.e., the 

two carbon atoms in the hexagonal unit cell move out of phase within the graphite 

planes. Similar vibrations also give rise to the high-energy spectra in nanotubes, 

but additionally the confinement around the circumference and the curvature of 

the graphene (single layer of graphite) sheet must be taken into account. Due to 

curvature effects, the SWNT G-band is composed of several peaks arising from 

phonon wavevector confinement along the SWNT circumferential direction and 

due to symmetry-breaking effects associated with SWNT curvature. Fig. 4.3 

shows some of the eigenvectors for vibrational modes along the tangential 

direction for a SWNT. The G-band frequency can be used for (1) to distinguish 
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between metallic and semiconducting SWNTs, through strong differences in their 

Raman lineshapes [60]; (2) to probe the charge transfer arising from doping a 

SWNT; and (3) to study the selection rules in the various Raman scattering 

processes and scattering geometries.  

The G-band feature for SWNTs consists of two main components, one 

peaked at ~1590 cm−1 (G+) and the other peaked at ~1570 cm−1 (G−). The G+ 

feature is associated with carbon atom vibrations along the nanotube axis (LO 

phonon mode) and its frequency is sensitive to charge transfer from dopant 

additions to SWNTs [61]. The G− feature, in contrast, is associated with 

vibrations of carbon atoms along the circumferential direction of the SWNT (TO 

phonon), and its lineshape is highly sensitive to whether the SWNT is metallic 

(Breit–Wigner–Fano lineshape) or semiconducting (Lorentzian lineshape) [62]. 

Charge transfer to SWNTs can lead to an intensity increase or decrease of the 

BWF feature [63]. The G band is also dependent on the nanotube diameter, 

although being a more complicated high frequency vibration, this dependence is 

not as strong as the RBM. 
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Figure 4.3: Raman-active normal eigevectors and frequencies for the tangential G 
band of a single-walled carbon nanotubes. The arrows indicate the direction of the 
carbon atom displacements in  a unit cell for a (10,10) SWNT. A typical G band 

showing the G+ and G- peaks is shown on the right. 
 
 
 
 

Phonon decay and lifetime 

 Chapter 1 outlined some of the reasons for the failure of the harmonic 

approximation for describing the crystal potential. In a real crystal, phonons do 

not propagate infinitely but interact with each other and decay into other phonons 

with lower energies. In a Raman scattering process, optical phonons are created as 

a result of scattering of light by the sample. Due to anharmonicity of lattice 

forces, these phonons have finite lifetimes and decay into other phonons thereby 

attaining thermal equilibrium. The reason to study phonon lifetimes in materials is 

because finite phonon lifetimes play an important role in the thermal conductance 

of a material. Hence the knowledge of phonon lifetimes within a material could be 

useful in tailoring the thermal properties of materials, and this is especially 

applicable in the field of nanotechnology, and carbon nanotubes in particular [64]. 

One of the first models applied to phonon decay in a Raman process was 

put forward by Klemens [5]. According to his model, the principal anharmonic 
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interaction is due to the cubic term in the phonon potential (see eq. 1.1), resulting 

in a splitting of an optical phonon into two acoustic phonons having equal energy 

but opposite momentum. Klemens’ method has been used to explain thermal 

conductivity in a variety of materials [65]. Based on perturbation theory, Klemens 

formulated a simple mechanism which involves the linewidth of a Raman peak. 

The Raman peak width, or the linewidth, is directly related to the phonon lifetime. 

Since the Raman peak is plotted as intensity versus wavenumber (or energy) the 

width of a peak is related to the lifetime through the energy-time uncertainty 

principle: 

                                                 
2

≥∆∆ tE                                                          (4.2) 

 

In the above expression, ∆E, the uncertainty in energy corresponds to the 

linewidth of the Raman peak, and the uncertainty in time, ∆t is taken as the 

lifetime τ of the phonon. In other words, the formula can be re-written as 

 

                                                     
2

≥Γτ                                                         (4.3) 

 
 
Thus according to the above formula, 1 cm-1 = 5.3 ps. Using time-

dependent perturbation theory, Klemens derived an expression for the 

termperature dependent anharmonic linewidth of a Raman peak. His theory 

predicts the linewidth of a Raman mode at frequency ω0 to be  
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where Γ(T) is the temperature-dependent linewidth of the Raman mode, Γ0 is 

related to the square of the anharmonic interaction matrix elements, n1 and n2 are 

the Bose-Einstein phonon occupation numbers, and ω = ω0/2. Another aspect of 

the Klemens decay mechanism is that the final decay products, namely the 

acoustic phonons belong to the same branch in the phonon dispersion of the 

material, i.e., an optical phonon decays into either two transverse acoustic (TA) or 

two longitudinal acoustic (LA) phonons. Of course, the Klemens model is the 

most basic model that can be applied to phonon decay and not all phonon modes 

follow this mechanism. Other researchers have modeled phonon decay according 

to multiple phonon processes, who found out that the Klemens decay mechanism 

is not applicable for materials such as GaP, GaAs, Ge and Si [53, 66]. In these 

systems, an optical phonon decays into acoustic phonons belonging to different 

branches.  

Very few studies have focused on the linewidth of Raman features in 

carbon nanotubes. The earliest Raman study was on SWNT bundles by Iliev et al. 

[67], in which they found the lowest room temperature linewidth in the RBM to 

be above 6 cm-1. They did perform a study on the temperature dependence of the 

RBM linewidth and found that the width is indeed a function of temperature as 

can be seen in Fig. 4.4 below. In the figure, the RBM band centered at 167 cm-1 

was fitted with 4 Lorentzian functions and plotted separately as a function of 
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temperature. Jorio et al. [68] analyzed the RBM of several isolated SWNTs on 

silicon substrates and found lower linewidths than what had been reported for 

bundled SWNTs. The lowest linewidth found in their study was ~3 cm-1 (Fig. 

4.5), which is still higher than the linewidth expected for individual single-walled 

carbon nanotubes. 

 

 

 

Figure 4.4: Experimental points and calculated curves showing the temperature 
dependence of the linewidth of the 167 cm-1 band for a SWNT bundle. The band 
is simulated as consisting of four close-lying Lorentzian components with Γ0 = 

0.5, 1.0, and 1.5 cm-1 [67]. 
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Figure 4.5: Linewidth of the RBM (ΓRBM) vs nanotube diameter (dt) for 81 
metallic (solid symbols) and 89 semiconducting (open symbols) isolated SWNTs 

[68]. 
 

 
 

Over the last few years, researchers have been focusing on the growth and 

characterization of isolated, or individual SWNTs [69]. Nanotubes have a strong 

tendency to form bundles because of strong attractive Van der Waals forces 

between them. The bundles are not very useful for practical applications, and one 

has to find various methods to de-bundle the SWNTs. O’Connell described one 

such method which involved the centrifugation of nanotube bundles with a 

surfactant [70]. The surfactant aids in breaking up the bundle but at the same time 

forms a micelle-like coating the nanotubes. Hence, these surfactant-coated 

nanotubes might not be very useful for practical device-oriented applications. 

Another approach is to grow individual SWNTs directly on substrates, which 

could be then be directly used for devices such as field effect transistors, gas 

sensors, [71, 72]. However, due to the tube-substrate interaction, the intrinsic 

properties of the SWNTs could be modified in an undesirable fashion. For 

example, optical characterization of the intrinsic properties of these individual 
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nanotubes is not possible due to the tube-substrate interactions. More recently, 

researchers have begun focusing their attention to nanotubes suspended over 

trenches or pillars so that the intrinsic properties of the nanotubes can be probed 

and understood. Huang et al. [69] first reported the synthesis of long individual 

SWNTs over trenches in silicon substrates using their “rapid heating” chemical 

vapor deposition method. Other researchers have used lithographic methods to 

etch away pillars in silicon trenches. They then deposit catalyst particles on top of 

the pillars and have managed to grow single-walled nanotubes between the pillars 

as shown in Fig. 4.6 below [73, 74]. In addition to optical characterization, gas 

and fluid adsorption studies [75] as well as use in electronic and 

nanoelectromechanical (NEMS) experiments [76, 77] can be performed on the 

suspended nanotubes without worrying about nanotube-substrate interactions.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: Individual single-walled nanotubes grown between pre-fabricated 
pillars on silicon substrates [73].  
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Raman spectra of the suspended SWNTs show enhanced intensities. 

Kobayashi et al. [78] grew individual SWNTs between pillars as well as over the 

flat regions of silicon substrates and noticed a large increase in intensity of the 

Raman spectrum of the suspended SWNTs compared to the nanotubes on the 

substrates. The suspended SWNTs showed an increase in the RBM, G band, and 

D band intensities. In addition to the increased intensities, linewidth narrowing 

has also been observed in the suspended SWNTs. Son et al. reported radial 

breathing mode linewidths of 3.5 cm-1 (Fig. 4.7) for suspended nanotubes as 

opposed to > 5 cm-1 for nanotubes on substrates. Nanotubes are bound to 

substrates via Van der Waals forces, which causes greater broadening of the 

Raman peaks compared to suspended SWNTs. The linewidth value reported by 

Son  et al. for a suspended SWNT, though less than the value reported for isolated 

SWNTs on a substrate, is still not as low as the linewidth values reported by  et al. 

[11] in their STM study.  

 

 

Figure 4.7: Stokes and anti-Stokes Raman spectra from an individual 
suspended SWNT on a silicon substrate with ωRBM at 237 cm-1 [79]. 
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The above discussion points to the inherent instrumental broadening being 

a big factor in the observed linewidths for both nanotubes on substrates and 

suspended nanotubes. Jorio et al. [68] used a Raman instrument with a highest 

resolution of 2 cm-1, which is common in most Raman spectrometers. Moreover, 

the Raman spectra are typically fitted to Lorentzian functions, without 

deconvoluting the Gaussian instrumental function (described below). Hence this 

instrumental line broadening in standard Raman instrumentation makes it 

impossible to measure intrinsic linewidths of 10-4 cm-1
 as was reported by LeRoy 

et al. in their STM study and described in chapter 1 [11].  It must be noted that the 

long lifetimes corresponding to narrow linewidths are easy to measure in the time 

domain, and recent experiments detecting the coherent vibrations of RBM modes 

in micelle-encapsulated SWNTs are consistent with a Raman FWHM of 3 cm-1 

[80]. Therefore, the discrepancy of more than three-orders of magnitude between 

the tunneling and optical experiments is real, and suggests that the standard 

theoretical framework for analyzing anharmonic processes needs revision in the 

case of one dimensional carbon nanotubes. 

 

Nanotube Synthesis 

Suspended SWNTs were prepared via a chemical vapor deposition (CVD) 

method (shown schematically in Fig. 4.8) on etched silicon substrates.  Trenches 

measuring 5 µm wide, 10 µm in length and 3-5 µm in depth were etched in silicon 

substrates using focused ion beam microscopy. Individual suspended SWNTs 

were then grown across these trenches using the “rapid-heating” method [81]. 
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Briefly, the silicon substrates with etched trenches were dipped into a solution 

containing ~1mg of iron nitrate dissolved in 10-50 ml of ethanol, followed by 

baking in an oven at 200 ºC.  The substrates were placed outside the hot zone of 

the CVD stabilized at 900 ºC under a constant flow of argon (~400 sccm) and 

hydrogen (~100 sccm).  Then CO gas (50-150 sccm) was introduced and the 

substrates were quickly moved into the central hot zone of the reactor.  Typical 

run times were 15 minutes. After the reaction, the silicon substrates were removed 

carefully and characterized via electron microscopy (SEM) and Raman 

spectroscopy. 

 

 

Figure  4.8: Schematic of the chemical vapor deposition method used to 
synthesize suspended SWNTs. 
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Electron Microscopy of Suspended SWNTs 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: SEM image showing several suspended SWNTs across the corners of 
a trench etched into the silicon substrate. The clusters appearing at the bottom of 
the trench are catalyst particles and do not interfere with the Raman spectra since 

they do not lie in the focal plane of the focus beam of the exciting laser. 
 
 
 

Several suspended SWNTs crossing over the corner of a trench in the Si 

substrate is shown in Fig. 4.9. The clusters appearing at the bottom of the trench 

in Fig. 4.9 did not affect the Raman spectra due to the 3-5 µm depth of the trench. 

For the Raman study, electron microscopy study was essential for two reasons: 

(1) to confirm successful synthesis of suspended SWNTs, and, (2) to identify 

regions in the substrates that contained either single or multiple SWNTs. 

Subsequent Raman analysis (described below) also proved the existence of many 

nanotubes within the trench. Maps of trenches were made and regions containing 

200 nm 
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individual nanotubes within the area of the Raman-microscope spot (~2 µm 

diameter) were identified for Raman analysis. 

 

Raman Analysis of the Suspended SWNTs 

Room temperature micro-Raman spectra were obtained from individual 

SWNTs using the 647.1 nm line of a Kr ion laser.  Suspended SWNTs were 

focused with a 50× objective and back-scattered spectra were collected using the 

TRIAX 550 spectrometer equipped with a liquid nitrogen CCD described in 

chapter 2. The 647.1 nm excitation was chosen because it offers a higher 

resolution compared to lower wavelengths. A spectral resolution of below 1 cm-1 

was achieved with a slit size of 50 µm and a 2400 grooves/mm diffraction grating. 

After data collection, all spectra were fitted to Lorentzian and Voigt functions to 

get the exact values of peak position and linewidth. Spectral lines can be 

characterized by a mathematical function called the Lorentzian function. This 

function is widely used for fitting peaks that arise due to electromagnetic 

scattering in processes such as x-ray, Raman and infrared scattering. The 

Lorentzian function is defined as follows: 

 

                                    22
0 )(

)(
Γ+−

=
ωω

ω AI                                          (4.5) 

 

where A is the amplitude, Γ is the half width at half maximum of the peak, and ω0 

is the peak position. The linewidth, or full width at half maximum (FWHM), is 
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therefore, 2Γ. High resolution linewidth measurements are typically tough to 

measure experimentally. The instrumental resolution determines the limit to 

which one can measure the Lorentzian linewidth of a Raman peak. The laser 

excitation source emits light that has a Gaussian distribution of energies. The 

experimentally measured Raman peak is a convolution of the intrinsic Lorentzian 

lineshape and the Gaussian and hence the true Lorentzian linewidth can be 

determined by deconvoluting the experimental peak. This can be done by using a 

Voigt lineshape, which is a superposition of a Lorentzian and a Gaussian function 

[82, 83]. The Gaussian spectral resolution can be reduced by controlling the 

spectrometer slit width but at the cost of reduced intensity of scattered radiation. 

In this study, slit widths of 5-10 µm yielded the highest resolution (better than 1 

cm-1). All spectra were also plotted and fitted with Lorentzian and Voigt functions 

using the plotting software IGOR Pro. Following each set of experiments, the 

laser line was fitted to a Gaussian function first in order to get the Gaussian 

linewidth. This value was used for the Voigt fit to obtain the Lorentzian linewidth 

of the RBM modes. 

Figure 4.10 shows representative Raman spectra collected from individual 

semiconducting (left) and metallic (right) SWNTs. Both spectra have been fitted 

with Voigt lineshapes (solid lines) and have been plotted over the raw data (open 

circles). The Lorentzian linewidths are listed in brackets next to the labels for 

peak positions. In general, among the various suspended SWNTs measured in out 

study, the linewidths were found to be about 3 times smaller than any of the 

previously reported values. In addition, the narrow lineshape of the peaks 
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indicates that these nanotubes are individual SWNTs rather than bundles, 

consistent with our electron microscopy study. Raman spectra were also collected 

from regions on the trenches that contained multiple individual SWNTs within the 

Raman spot. As can be seen in Fig. 4.11, there are three distinct peaks centered at 

196 cm-1, 250 cm-1, and 303 cm-1. The peak 250 cm-1 appears to be a lot sharper 

and narrower than the other two peaks indicating that the SWNT whose RBM 

corresponds to 250 cm-1 is strongly in resonance with the excitation energy. The 

250 cm-1 peak also appears to have a broad tail on the low frequency side, which 

is indicative of the presence of other SWNTs adjacent to the one which exhibits 

the 150 cm-1 peak.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.10: Micro-Raman spectra from an individual suspended semiconducting 
SWNT (left) and a metallic SWNT (right). The peak position (linewidth) are 

indicated in the graphs. 
 



 

 89

 

Figure 4.11: Micro-Raman spectra in the RBM range from a region on a trench 
containing multiple suspended SWNTs. 

 
 
 

The reason why the two nanotubes shown in Fig. 4.10 can be identified as 

semiconducting or metallic is due to the unique lineshape of their tangential G 

bands. As can be seen in Fig. 4.12, the G band from a semiconducting SWNT (top 

trace) whose  RBM appears at 216 cm-1 is centered at 1591 cm-1 (G+ peak) and 

the G- peak can be seen as a shoulder at ~1570 cm-1. The lineshape of the G band 

for a metallic nanotube whose RBM appears at 283 cm-1, on the other hand does 

not follow a Lorentzian lineshape. Due to electron-phonon coupling, the G- peak 

in metallic nanotubes increases in intensity, and changes from a Lorentzian to a 

Breit-Wigner-Fano (BWF) lineshape [62, 84]. The mode at ~1590 cm-1 (G+ band) 

still remains Lorentzian. The fact that both semiconducting and metallic 

nanotubes could be analyzed in this study can be seen from the “Kataura plot” 

shown in Fig. 4.13. Such a graph was first described by Kataura et al., [85] who 
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measured Raman spectra from various nanotubes at various laser excitation 

wavelengths and plotted the nanotube diameter against the laser energy. The data 

follows bands which are due to optical transitions between the van Hove 

singularities in metallic and semiconducting nanotubes (c.f. Fig. 4.1). As an 

example, RBM modes ranging from 120 cm-1 (dt =2.06 nm) to 296 cm-1 (dt = 

0.83 nm) were observed and are plotted as vertical lines in Fig. 4.13. Also, the E11 

and E22 transition bands for semiconducting (labeled S) and metallic nanotubes 

(labeled M) are indicated in the figure in addition to a horizontal line 

corresponding to the 647.1 nm laser excitation. As can be seen from the figure, 

the horizontal laser excitation line intersects the E22 and E33 semiconducting 

transition band and the E11 metallic transition band implying that both 

semiconducting and metallic nanotubes can resonantly couple to the 647.1 nm 

Raman excitation energy. 
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Figure 4.12: The tangential bands for a semiconducting (top) and a 
metallic (bottom) suspended SWNT. 
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Figure 4.13: Kataura plot between nanotube diameter and incident laser excitation 
energy (EL) The vertical lines indicate the diameter distribution of the suspended 

SWNTs analyzed in the present study. 
 

 

Fig. 4.14 shows a plot of the Lorentzian linewidth of the radial breathing 

mode against RBM peak frequency for several semiconducting and metallic 

SWNTs. As can be seen from the figure, most of the SWNT linewidths lie below 

2 cm1, which is less than the values reported in the literature. No clear relationship 

between linewidth and diameter can be seen from the plot, whereas Jorio et al. 

reported an increase in linewidth with tube diameter (see Fig. 4.5). The reason 

could be the fewer number of suspended SWNTs analyzed in the present study. 

647.1 nm 

E11
M

E22
S

E11
S
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Furthermore, no difference was found between the RBM linewidth values of 

metallic and semiconducting nanotubes and the SWNT diameter. 

 

 

Figure 4.14: Deconvoluted 2Γ (Lorentzian FWHM) values for several suspended 
SWNTs plotted versus ωRBM. The circled data points represent metallic SWNTs 
while the rest are semiconducting SWNTs. Error bars from the linewidth fit are 

also plotted. 
 

 

The smallest linewidth measured in the present study is 0.7 cm-1 (c.f. eq. 

4.3), which still corresponds to a picosecond phonon lifetime. Hence, due to the 

remaining large discrepancy in the phonon lifetimes determined from tunneling 

[11] and Raman studies, it is important to ascertain to what extent the 

experimental linewidths are intrinsic. As discussed in the Klemens model, the  

main contribution to the intrinsic anharmonic broadening of optical phonons is 

usually a down-conversion decay process of the form [86] 
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Γ T( )= Γkσ ′σ 1+ n ω kσ( )+ n ω -k ′σ( )⎡⎣ ⎤⎦

kσ ′σ
∑ δ ωRBM − ω kσ − ω -k ′σ( )   (4.6) 

 

This mechanism involves the decay of the RBM mode of frequency ωRBM into 

pairs of phonons 
  
ω kσ ,ω ′k ′σ( ) from branches σ  and σ' that satisfy the energy and 

crystal momentum conservation rules. The functions n(ω) are the standard Bose-

Einstein thermal occupation factors (c.f., eq. 4.4), and the coefficients Γkσσ' are 

proportional to the square of the anharmonic interaction matrix elements.  The 

presence of a delta function in eq. (4.6) implies that the linewidth is extremely 

sensitive to the details of the phonon DOS whenever this density is highly 

structured, as in the case of SWNTs (Fig. 4.15). Thus there may now be a smooth 

dependence of the linewidths on diameter (or equivalently, on the RBM 

frequency), and Fig 4.14 is consistent with this analysis.  

 

 

Figure 4.15: The calculated phonon dispersion relations of a carbon nanotube 
(bottom), and the corresponding phonon density of states (top). 

cm-1
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Figure 4.16: Raman spectra around the radial breathing mode frequency for two 
representative suspended SWNTs collected for different incident laser powers. 
From the lineshape of the tangential band present at ~1590 cm-1 the spectra in 
panels (a) and (b) are assigned to a metallic and semiconducting nanotubes, 

respectively. 
 

 

 

1.3 mW 

2.1 mW 

1. 7 mW 

2.6 mW 2.6 mW 

0.9 mW 

0.4 mW 

(a) (b) 



 

 96

A second crucial implication from eq. (4.6) is that the observed linewidth 

should depend on temperature. Conversely, if the true anharmonic linewidth was 

closer to 10-4 cm-1, the temperature dependence would not be detectable. To 

decide this critical issue we decided to analyze the temperature dependence of the 

linewidth of the suspended SWNTs. The most basic way to measure temperature 

dependence is by varying the laser power. The ωRBM values for several SWNTs as 

a function of the incident laser power for a metallic and semiconducting SWNT 

are shown in Fig. 4.16. An increase in the laser power resulted in both broadening 

of the peak and an increase in the peak intensity. This proves that the linewidth is 

indeed an increasing function of power, as expected for intrinsic anharmonic 

linewidths. Since the nanotubes are suspended over trenches it is very difficult to 

measure the exact temperature of a nanotube. However, a qualitative estimate of 

temperatures is possible by computing the ratio of the Stokes and anti-Stokes 

peaks in the Raman spectrum of the silicon substrate.  

The Stokes and anti-Stokes lines correspond, respectively, to the 

absorption and emission of an optical phonon, the ratio of their intensities IA and 

IS are given by 
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where n is the equilibrium occupation number of the q = 0 (zone-center) phonon 

of frequency ω.. Eq. 4.7 is a direct consequence of Rayleigh’s law, which states 

that the intensity of scattered light is proportional to k4 (or ω4) [87]. Since 
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the ratio of the Stokes and anti-Stokes intensity simplifies to  
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Thus knowing the intensities of the Stokes and anti-Stokes peaks along with the 

peak frequency, one can estimate the temperature of the silicon substrate. 

However, this approach does not work with the Stokes and anti-Stokes spectra for 

suspended SWNTs since the resonance conditions are different in the case of 

Stokes and anti-Stokes Raman scattering [88].  

 Since it is difficult to determine the temperature of the nanotube, we chose 

to monitor the linewidth of the suspended nanotubes as a function of the incident 

laser power. We want to compute the linewidth as a function of the power. 

Assuming that 
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                                                                                              (4.10) 
 

The derivative of the linewidth with respect to T is approximately Γ over T in the 

high temperature down-conversion limit (regardless of whether there is Klemens 

decay or not). The power absorbed per unit length (x) on the nanotube of diameter 

dt for TEM00 illumination by the laser is given by [64] 
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where β0 = 0.38 (explained below), r0 is the nanotube radius and P0 is the total 

incident power. In our experiments, the incident power was kept at ~ 1 mW. This 

results in the temperature as a function of power: 

                                                                                                                       

                                                                                       ,                                  (4.12) 

 

where k is a constant given by [89] 

 

 

                                                                                                                          (4.13) 
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where L is the length of the suspended portion of the nanotube and b = 0.34 nm is 

the tube wall thickness. The above relation was obtained by solving the second 

order differential joule heat conduction equation [89]. The coefficient β  is the 

fraction of light energy incident on the nanotube that is converted to thermal 

energy. The above equation can be combined with the heat transport model of Pop 

et al. [64], adapted to the case of illumination with a laser beam of total power P. 

Assuming that the maximum of the laser (TEM00) power profile with FWHM 2r0 

lies at the center of the suspended tube, and setting the nantotube thermal 

conductivity κ as 3600 W m-1 K-1, we get 

 

 

                                                                                                                          (4.14) 

or 

                                                                                        (4.15) 

 

Integrating the above equation leads to 

 

                                         (4.16) 

 

 

Here T0 is the boundary value temperature at the points (-L/2, L/2), where the tube 

contacts the substrate, P0 is the total incident power on the nanotube power Thus 
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if we normalize to Γ(P0), all linewidths versus power should fall on the same 

curve for the same nanotube length. In this study, all linewidths were normalized 

to a laser power of 1 mW, and T0 was taken as the temperature of the substrate 

which was calculated using eq. (4.9). 

The value of β0 was taken as 0.38, which results from assuming that the 

reflectivity of the nanotubes is roughly the same as that of graphite, and that the 

absorbance is as measured by Islam et al. [90], but corrected by a factor (300/16) 

to account for the fact that the results of Ref. [70] correspond to an ensemble of 

nanotubes.  The observed optical transition width for SWNT bundles is ~300 

meV, whereas the corresponding width for an individual SWNT (as measured by 

resonance Raman scattering) is closer to 16 meV [91]. Recent near-field scanning 

optical microscopy results suggest β0 = 0.58, close to our selected value [92]. The 

above calculation assumes that all the absorbed light is converted to heat, which 

should be a good approximation for metals and less so for semiconducting tubes 

with short radiation lifetimes. However, given the large uncertainties in the 

computation of β0 no distinction is made between semiconducting and metallic 

SWNTs. Figure 4.18 shows the measured linewidths versus laser power as a 

function of nanotube length. The dotted lines correspond to eq. 4.16 for SWNT 

suspended lengths of L = 2-5 µm. As can be seen in the figure, most of the 

FWHM values agree well with the fitted curves corresponding to SWNT lengths 

ranging between 2-5 µm over the trenches. The good agreement between the 

observed and calculated power dependences shown in Fig. 4.17 strongly suggests 

that the measured Raman linewidths represent the intrinsic anharmonic 
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broadening for the RBM. In addition, the length dependence of the RBM 

linewidth also matches the boundary condition that the temperature at the ends of 

a nanotube is equal to the temperature of the silicon substrate. Hence the heat 

from the laser spot that is focused at the center of the suspended portion of a 

SWNT takes longer to dissipate to the ends for a longer nanotube, thereby causing 

greater broadening of the RBM peak. 

 

 

 
Figure 4.17: Normalized linewidth versus incident total laser power P (The 

normalized linewidth is defined as the Lorentzian FWHM at P divided by the 
FWHM at P0 = 1mW). The lines correspond to fits with eq. (4.16), in which the 

only adjustable parameter is the suspended length L. 
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The fact that smallest measurable room temperature Raman linewidths are 

on the order of 1 cm-1 (5.3 ps) calls for an explanation of the puzzling observation 

of mode lifetimes of ~10 ns in the tunneling experiments performed by  et al. 

[11]. The key to understanding this discrepancy lies in the one-dimensional nature 

of the phonon dispersion curves in carbon nanotubes (see Fig. 4.15). The standard 

perturbative approach for the analysis of Raman linewidths assumes that the 

secondary phonons, i.e, the products of the Raman phonon decay, are in thermal 

equilibrium.  This is justified in three dimensional crystals because these phonons 

occupy a significant reciprocal space volume, [53] so that deviations from 

equilibrium for each individual mode are negligible. This condition is not met in 

suspended SWNTs, where the phase space for decay products is reduced to a few 

discrete points.   

In order to explain the discrepancy between the Raman and tunneling 

results, we have run numerical simulations of phonon decay that take into account 

the presence of non-equilibrium secondary phonons. In the simulation, the Raman 

process creates an excess population δn0 of primary phonons of frequency ω0 (in 

this case ω0 =ωRBM) which decays into pairs of phonons of frequency ω1 = ω0/2. 

(The assumption of equal frequency for the two secondary phonons is not critical 

but simplifies the math). This decay process creates an out-of-equilibrium 

population δn1 of secondary phonons, which further decays into pairs of tertiary 

phonons of frequency ω2 = ω1/2. The tertiary phonons are assumed to be in 

thermal equilibrium. The transition rates for the decay of primary phonons to 
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secondary and tertiary phonons can be derived using Fermi's golden rule, which 

can be stated as [93] 

 

                                      
22 ( )i n ni n iw V E Eπ δ→ = − ,                              (4.17) 

 

where w is the transition rate between a state i to state n, and Vni is the potential  

Applying eq. 4.17 to the third-order lattice anharmonic Hamiltonian, we obtain 

the set of coupled equations 
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where terms that are non-linear in δn0, δn1 have been neglected [94]. Here τ01 is 

the decay rate for primary into secondary phonons and τ12 is the decay rate for 

secondary into tertiary phonons. Such a model was applied by Jursenas et al. [94] 

to study phonon decay processes in highly photoexcited CdS. The parameter p 

counts the number of pairs of secondary phonons that satisfy the energy and 

crystal momentum conservation rules. If we consider a k = 0 phonon in a three-

dimensional crystal decaying into two equal-frequency acoustic phonons with 
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linear dispersion, the possible wave vectors of the decay phonons form a spherical 

shell in k-space. By contrast, for the same conditions in a one-dimensional crystal 

the wavevectors of the decay products are reduced to a single (k, -k) pair. Thus in 

three dimensional solids we usually have p >> 1, whereas for one-dimensional 

systems p ~1. If we set δn1 = 0, eq. (4.18) is equivalent to eq. (4.6), with 2Γ = 

1/τ01. Figure 4.19 (a) shows calculations of δn0 for τ12 = 500 τ01, a reasonable 

choice if the secondary phonons are acoustic phonons with lifetimes much longer 

than the optical phonon lifetime [95]. For the solid line, the initial condition is δn0 

= 0.1, δn1 = 0 and p = 2. We notice that there is a fast initial decay, determined by 

τ01, followed by a much slower decay that is dominated by τ12. This is caused by 

the long-lived secondary phonons recombining and generating new primary 

phonons. The reason why the lifetime of the secondary decay products comes to 

determine the lifetime of the primary phonons is the decay bottleneck induced by 

the low value chosen for the parameter p. If we increase this value, as done for the 

dotted line in Fig. 4.19(a), the effect of the secondary phonons vanishes and the 

decay is completely determined by the shorter lifetime τ01 of the primary 

phonons.  

The scenario just depicted offers a natural interpretation for the 

discrepancy between the Raman and tunneling measurements. In Fig. 4.18(b) we 

show the calculated Raman lineshape corresponding to the solid-line decay 

pattern in Fig. 4.18(a). It has a very sharp central maximum, corresponding to the 

long lifetime τ12, and much broader tails corresponding to the short lifetime τ01. 

However, the observed Raman spectrum is a convolution of the intrinsic lineshape 
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with the instrument’s resolution function, and this is depicted in Fig 4.18(c). Here 

the central spike has essentially vanished, and if we fit the convoluted lineshape 

with a standard Voigt profile, we obtain for the Lorentzian FWHM 2Γ = 0.98/τ01. 

In other words a Raman spectrum under these conditions would measure the short 

lifetime τ01, whereas a time-domain study, such as the tunneling experiments 

performed by  et al. [11], would see the much longer lifetime τ12. The apparent 

discrepancy between the two types of measurements is further enhanced if we 

consider the fact that in a tunneling experiment—as opposed to a Raman 

process—there is no strong selection rule restricting the phonons that can be 

activated. Therefore, if the tunneling event generates primary and secondary 

phonons, the presence of these secondary phonons may contribute to a further 

reduction of the decay of the primary phonon. This effect in simulated by the 

dash-dotted line in Fig. 4.19(a), which was computed with initial conditions δn0 = 

0.1, δn1 = 0.5.  

In summary, we have presented strong evidence for the measurement of 

intrinsic Raman linewidths in suspended carbon nanotubes, and we have 

identified a phonon decay bottleneck as an important decay characteristic of one-

dimensional solids that explains the large apparent discrepancy between lifetimes 

measured in the frequency and time domains.  
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Figure 4.18:(a) Solid line: Raman phonon population decay under conditions 

that create a decay bottleneck (p ~2); Dotted line: Raman phonon population 
decay under conditions in which the decay bottleneck is negligible (p >>1). 
Dashed-dotted line: Raman phonon population decay when the secondary 

phonons are also created by the external perturbation like tunneling (b) Predicted 
Raman spectrum corresponding to the solid line in panel (a).;(c) Solid line: 

Modeled observed Raman spectrum obtained from convoluting the spectrum in 
panel (b) with a Gaussian function, Dotted line: Fit of the solid line using a Voigt 

profile. 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER FIVE 
SUMMARY 

 

Conclusions 

The work described in this dissertation focused on two quasi-1D systems 

which provide evidence for the effects of anharmonicity through Raman 

scattering measurements. In the first system, we observed upshifts of peaks in the 

Raman spectra for β-Ga2O3
 nanowires grown along the [110] growth direction 

compared to the Raman spectrum for bulk β-Ga2O3. A comparison with other 

studies in the literature showed that downshifts in the Raman spectra for β-Ga2O3
 

nanowires (having different growth directions) compared to bulk β-Ga2O3
 have 

also been observed. Such frequency shifts between the Raman spectra of a 

nanomaterial compared to the corresponding bulk Raman spectrum have been 

attributed to phonon confinement. However, due to the relatively large diameters 

of the β-Ga2O3
 nanowires (~ 30 nm) probed in this study we dismissed phonon 

confinement as the likely source of the Raman shifts. Instead, we attributed these 

Raman shifts to growth direction-induced lattice strains in the nanowires and 

discussed a LDA model to support our hypothesis. Due to the complexity of the 

Ga2O3 system we did not model the vibrational frequencies in the strained 

nanowires using an anharmonic potential; instead a quasi-harmonic LDA model 

was sufficient to confirm the experimentally observed Raman shifts in our 

nanowires. However, such a model may not be sufficient to understand other 
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aspects such as the temperature dependence of the Raman peaks of β-Ga2O3
 

nanowires, and a complete first-principles anharmonic description would be 

required. The second system studied was the single-walled carbon nanotube. Our 

study was motivated by a tunneling study reported by  et al. [11] in which they 

electrically excited radial breathing mode phonons in a suspended SWNT. 

According to their study the lifetime of the radial breathing mode phonon is in the 

nanosecond regime. In contrast, optical techniques such as Raman spectroscopy 

have shown the RBM lifetime to be in the picosecond regime. We investigated 

this interesting puzzle via high-resolution micro-Raman experiments on 

suspended SWNTs and observed RBM linewidths lower than previously reported 

in the literature. However, our study also showed the RBM lifetime to be in the 

picosecond regime, and we sought to explain this discrepancy with LeRoy’s 

measurements [11] by invoking an anharmonic model for phonon decay in carbon 

nanotubes. Compared to the β-Ga2O3
 system, a SWNT is an all-carbon system 

and hence it is relatively simpler to model. We were able to apply anharmonicity 

theory to phonon decay in carbon nanotubes and discovered a phonon bottleneck 

mechanism which explains the discrepancy in RBM lifetimes seen between the 

Raman spectroscopy and tunneling studies. Understanding the nature of phonon 

decay and lifetimes in 1D systems such as carbon nanotubes could have a big 

impact on their thermal conductance properties. 
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Future Work 

 Strains in nanowires can be determined by a variety of methods. In this 

dissertation we reported differences between the Raman spectra of β-Ga2O3 

nanowires and bulk β-Ga2O3, and presented a theoretical model as evidence for 

inherent growth direction-induced strains in β-Ga2O3 nanowires. Another method 

to study strains could be to induce strains in un-strained β-Ga2O3 nanowires 

(whose Raman spectra are similar to that of bulk β-Ga2O3) externally by using a 

diamond anvil cell and then study the high-pressure Raman spectra of the 

nanowires. Such studies have been performed on other materials such as carbon 

nanotubes [96] and provide useful information on their deformation behavior. In 

addition to the spectroscopy techniques discussed in this dissertation, fluorescence 

spectroscopy can also be used to probe strains in nanomaterials. The electronic 

structure, and hence the bandgap of a material is affected by strain, and shifts in 

the emission peak caused by the change in the bandgap in the strained nanowires 

can be directly correlated to the amount of strain induced in the material. In 

addition, electron diffraction analysis can also be performed on strained and 

unstrained nanowires to confirm the changes in the lattice parameters due to 

strains along certain axes of the unit cell.  

Suspended SWNTs provide us with an excellent platform for a variety of 

Raman studies that probe the intrinsic vibrational properties of individual 

nanotubes. As was discussed in chapter 4, the linewidth of the RBM is 

significantly different for a suspended SWNT and an isolated nanotube on a 

substrate. We can perform such an experiment in our lab by focusing on a long 
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SWNT where a part of the nanotube is on the substrate and a part of it is 

suspended. By accurately measuring the change in the RBM linewidth between 

the trench and the suspended part of the nanotube we could estimate the 

magnitude of the Van der Waals force between the SWNT and the substrate. In 

addition, it would be interesting to study the linewidths of suspended and isolated 

SWNTs that are heated via other techniques such as an electrically heated cell. 

Such a temperature cell provides a controlled environment so in which trace 

amounts of adsorbed gases on the SWNT walls can be detected via changes in the 

RBM linewidth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

APPENDIX 
 
 

Glossary of acronyms used in this dissertation 
 

BWF – Breit-Wigner-Fano 

CCD – Charge-coupled device 

CVD- Chemical vapor deposition 

DFT – Density functional theory 

DOS – Density of states 

DTGS – Deuterated triglycine sulfate 

FTIR – Fourier transform infrared  

FWHM – Full-width half maximum 

GGA – Generalized gradient approximation 

HRTEM – High resolution transmission electron microscope 

LA – Longitudinal acoustic 

LDA – Linear density approximation 

NEMS – Nanoelectromechanical 

RBM – Radial breathing mode 

SAD – Selected area diffraction 

SEM – Scanning electron microscope 

STM – Scanning tunneling microscope 

SWNT – Single-walled carbon nanotube 

USPP – Ultra-soft pseudopotentials 

TA – Transverse acoustic
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VASP – Vienna ab-initio simulation package 

vHS – Van Hove singularities 
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