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ABSTRACT 
 

  

 Deicing and anti-icing chemicals such as alkali-acetate and alkali-formate based 

formulations are increasingly being used on airfield pavements.  Among these new 

deicers, potassium acetate-based formulations are widely used due to their 

environmentally friendly nature and effectiveness in melting and undercutting ice at low 

temperatures.  Recent research on premature deterioration of airfield pavements due to 

alkali-silica reaction (ASR) has indicated that alkali-acetate and alkali-formate deicers 

such as potassium acetate and sodium formate may have been responsible for the 

observed distress.  In an effort to develop a deicing chemical that is benign to concrete 

from an ASR standpoint, a new deicing formulation based on lithium compounds is being 

explored. 

This research study presents the findings from a laboratory-based investigation on 

developing a lithium-acetate based deicing chemical to specifically address ASR concern 

in concrete. In these studies, mortar bars and concrete prism specimens were prepared 

with aggregates of known reactivity and exposed to solutions of pure lithium acetate and 

pure potassium acetate at different concentrations. In addition, parallel tests were 

conducted on mortar bars and concrete prisms in which test specimens were exposed to 

solution blends of lithium acetate and potassium acetate at different Li/K molar ratios 

(Li/K molar ratios=0.2, 0.4, 0.6, 0.8). Also, in order to evaluate the effect of these deicing 

chemicals on scaling resistance of concrete, modified ASTM C 672 tests were conducted. 

In order to understand the extent of externally applied damage in concrete, the K+ ion and 

Li+ ion profiles were established using Inductively Coupled Plasma (ICP) and X-Ray 
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Fluorescence spectrometer (XRF) techniques. Also, tests were conducted to determine 

the effectiveness of lithium nitrate, when applied as a pre-treatment before exposing to 

potassium acetate to find its effect in mitigating ASR. 

Results from this study showed that specimens containing reactive aggregates and 

soaked in blends of lithium acetate and potassium acetate showed little or no expansion 

due to alkali-silica reactivity. It is also observed that potassium acetate deicer at 

concentration levels of 3 and 6.4 plays a significant role in the expansion of mortar bars 

and concrete prisms. No scaling was observed in concrete slabs made with both reactive 

and non-reactive aggregate exposed to 3 and 6.4 molar KAc solutions. From the 

penetration test, the gradient from top to bottom showed the influence of K in concrete 

samples. Mortar bars which were pre-treated with LiNO3 showed significantly lesser 

expansion compared to bars which were not treated, upon exposure to potassium acetate 

deicers. In general, specimens made with high-alkali cement expanded more, compared 

to specimen made with low-alkali cement. It is recommended that lithium blended 

deicers with at least Li/K ratio of 0.2 be used for mitigating ASR. Also, low-alkali 

cements should be preferred when exposure to deicers is anticipated. 

 



iv 
 

DEDICATION 
 
 

This dissertation is dedicated to my parents, brother, sister and their family and to 

my dear wife Ida. The continued support, encouragement and love from them helped me 

in producing this work. I also dedicate this dissertation to God for his love and grace who 

enabled me to achieve this work. 

 



v 
 

ACKNOWLEDGMENTS 
 

 
I like to acknowledge my graduate advisor, Dr. Prasada Rao Rangaraju for his 

continuous guidance and support in research and in the development of this dissertation. I 

would also like to thank Dr. Serji Amirkhanian, Dr. Bradley Putman and Dr. Patrick 

Fortney for their advice and serving as committee members. 

I would also like to thank Mr. Jeff Davis from NIST for his significant 

contribution, Dr. John Kaup and Ms. Joaudimir Castro for their support in conducting 

chemical analysis. I would also like to thank all the undergraduate assistants who helped 

me in this research and colleagues for their support. 



vi 
 

TABLE OF CONTENTS 
 
 

Page 
 

TITLE PAGE .................................................................................................................... i 
 
ABSTRACT ..................................................................................................................... ii 
 
DEDICATION ................................................................................................................ iv 
 
ACKNOWLEDGMENTS ............................................................................................... v 
 
LIST OF TABLES ........................................................................................................... x 
 
LIST OF FIGURES .................................................................................................... xxix 
 
CHAPTER 
 
 I. INTRODUCTION ......................................................................................... 1 
 
   1.1 General ............................................................................................... 1 
   1.2 Problem Statement ............................................................................. 2 
   1.3 Need for the Research ........................................................................ 3 
   1.4 Research Objectives ........................................................................... 3 
   1.5 Scope of the Research ........................................................................ 4 
   1.6 Research Approach ............................................................................ 5 
   1.7 Organization of the Dissertation ........................................................ 6 

 
 II. LITERATURE REVIEW .............................................................................  8 
 
   2.1 General ............................................................................................... 8 
   2.2 Introduction to Alkali Silica Reaction ............................................... 8 
    2.2.1 Factors Affecting Expansion..................................................... 9 
    2.2.2 Mechanism of ASR ................................................................. 11 
    2.2.3 Mitigating ASR ....................................................................... 13 
    2.2.4 Test Methods to Evaluate Reactivity  
             of Aggregates for ASR............................................................ 16 
   2.3 Introduction to Deicing Chemicals .................................................. 17 
    2.3.1 Function of Deicing Chemicals .............................................. 17 
    2.3.2 Classification of Deicers ......................................................... 18 
    2.3.3 Highway Deicing Chemicals .................................................. 19 
    2.3.4 Airfield Deicing Chemicals .................................................... 21 
   2.4 Lithium Compounds ........................................................................ 23 



vii 
 

Table of Contents (Continued) 
 
           Page 

 
    2.4.1 History and Background ......................................................... 23 
    2.4.2 Effects of Lithium Salts on ASR ............................................ 23 
    2.4.3 Summary of Research Findings with  
             Lithium Compounds ............................................................... 25 
    2.4.4 Mechanism of Lithium Salts on ASR ..................................... 26 
    2.4.5 Discussion on Lithium Compounds  
             in Mitigating ASR ................................................................... 32 
   2.5 Summary .......................................................................................... 33 
 
 III. MATERIALS AND TEST PROCEDURES ............................................... 34 
 
   3.1 Materials .......................................................................................... 34 
    3.1.1 Aggregates .............................................................................. 34 
    3.1.2 Cement .................................................................................... 37 
    3.1.3 Deicing Chemicals .................................................................. 38 
   3.2 Sample Notation............................................................................... 39 
   3.3 Test Procedures ................................................................................ 40 
    3.3.1 Standard and Modified ASTM C 1260 Test ........................... 40 
    3.3.2 Modified ASTM C 1293 Test ................................................. 41 
    3.3.3 Modified ASTM C 672 Test ................................................... 42 
    3.3.4 Penetration Depth of Deicer Solution in  
                  Concrete Slab Test .................................................................. 43 

 3.3.5 Modified ASTM C 227 Test Method to Evaluate  
          Effectiveness of LiNO3 Pre-treatment .................................... 44 

    3.3.6 Dynamic Modulus of Elasticity .............................................. 45 
    3.3.7 pH Measurements ................................................................... 46 
    3.3.8 Scanning Electron Microscopy and Energy  
                  Dispersive X-Ray Analysis ..................................................... 46 
    3.3.9 ICP to Determine the Depth of K, Li Penetration ................... 47 

 3.3.10 XRF to Determine the Depth of Penetration ......................... 48 
 3.3.11 Fresh Properties of Concrete ................................................. 49 

    3.3.12 Dry Rodded Unit Weight ...................................................... 49 
  3.4 Experimental Program and Mixture Designs ................................... 49 

    3.4.1 Standard and Modified ASTM C 1260 Tests ......................... 50 
    3.4.2 Modified ASTM C 1293 Tests ............................................... 52 
    3.4.3 Modified ASTM C 672 Tests ................................................. 54 
    3.4.4 Modified ASTM C 227 Tests ................................................. 56 
 
 IV. RESULTS AND DISCUSSIONS ................................................................ 57 
   4.1 General ............................................................................................. 57 



viii 
 

Table of Contents (Continued) 
 
           Page 
   
   4.2 Test results from ASTM C 1260 Tests for  
         New Mexico Aggregate ................................................................... 57 
         4.2.1 Length-Change Behavior ........................................................ 57 
     4.2.2 Dynamic Modulus of Elasticity .............................................. 63 
   4.3 Test results from ASTM C 1260 Tests for  
         Spratt Aggregate .............................................................................. 65 
          4.3.1 Length-Change Behavior ....................................................... 65 
     4.3.2 Dynamic Modulus of Elasticity ............................................. 70 
   4.4 Test results from ASTM C 1260 Tests for  
         North Carolina Aggregate ................................................................ 72 
          4.4.1 Length-Change Behavior ....................................................... 72 
     4.4.2 Dynamic Modulus of Elasticity ............................................. 75 
   4.5 Test results from ASTM C 1260 Tests for  
         South Dakota Aggregate .................................................................. 76 
          4.5.1 Length-Change Behavior ....................................................... 77 
     4.5.2 Dynamic Modulus of Elasticity ............................................. 79 
   4.6 Results and Discussion from ASTM C 1260 and DME Tests ......... 80 

  4.7 Results and Discussion from pH measurement for Modified  
    ASTM C 1260 Test ......................................................................... 83 
  4.8 Results and Discussion from Visual and SEM-EDX  
   Analysis on Mortar Bars .................................................................. 85 
  4.9 Statistical Analyses for Modified ASTM 1260 Test ........................ 97 

   4.10 Test results from ASTM C 1293 Tests for 
         New Mexico Aggregate ................................................................. 102 
          4.10.1 Length-Change Behavior ................................................... 102 
     4.10.2 Dynamic Modulus of Elasticity ......................................... 107 
   4.11 Test results from ASTM C 1293 Tests for  
           Spratt Aggregate .......................................................................... 110 
          4.11.1 Length-Change Behavior ................................................... 110 
     4.11.2 Dynamic Modulus of Elasticity ......................................... 116 
   4.12 Test results from ASTM C 1293 Tests for  
          North Carolina Aggregate ............................................................. 118 
          4.12.1 Length-Change Behavior ................................................... 118 
     4.12.2 Dynamic Modulus of Elasticity ......................................... 121 
   4.13 Test results from ASTM C 1293 Tests for  
           South Dakota Aggregate .............................................................. 122 
          4.13.1 Length-Change Behavior ................................................... 122 
     4.13.2 Dynamic Modulus of Elasticity ......................................... 125 

  4.14 Results and Discussion from ASTM C 1293 and DME Tests ..... 126 
   



ix 
 

Table of Contents (Continued) 
 
           Page 

   
  4.15 Results and Discussion from pH measurement for Modified  
     ASTM C 1293 Test ...................................................................... 129 

        4.16 Results and Discussion from Visual and SEM-EDX  
      Analysis on Concrete Prisms ....................................................... 130 

  4.17 Statistical Analyses for Modified ASTM 1293 Test.................... 143 
  4.18 Results and Discussion from Modified ASTM C 672 Tests........ 147 
  4.19 Results and Discussion from Modified ASTM C 227 Tests........ 149 
  4.20 Results and Discussion from ICP Tests ....................................... 151 
  4.21 Results and Discussion from XRF Tests ..................................... 154 

 
 
 V. SUMMARY AND CONCLUSION .......................................................... 159 
 

  5.1 Summary ........................................................................................ 159 
 5.1.1 Standard and Modified ASTM C 1260 Tests ....................... 159 
 5.1.2 Modified ASTM C 1293 Tests ............................................. 160 
 5.1.3 Modified ASTM C 672 Tests ............................................... 161 
 5.1.4 ICP and XRF Tests ............................................................... 162 
 5.1.5 Modified ASTM C 227 Tests ............................................... 162 

  5.2 Conclusions .................................................................................... 163 
  5.3 Recommendations .......................................................................... 164 
             5.3.1 Recommendations for Practice ............................................. 164  
        5.3.2 Recommendations for Future Research ................................ 164 

 
APPENDIX .................................................................................................................. 166 
 
BIBLIOGRAPHY ........................................................................................................ 235  
 
  
 
 



x 
 

 
LIST OF TABLES 

 
 

Table                                                                                                                               Page 
 
 2.1  Chemical Information for Li+, Na+, and K+ ions ......................................... 31 
 
 3.1  Properties of aggregates ............................................................................... 36 
 
 3.2  Chemical composition of cements ............................................................... 37 
 

3.3   Notation........................................................................................................ 39 
 
3.4   Test program for the standard and modified ASTM C 1260 tests ............... 50 
 
3.5   Mixture design for ASTM C 1260 tests ....................................................... 51 

 
3.6   Test program for the standard and modified ASTM C 1293 tests ............... 52 

 
3.7   Mixture design for ASTM C 1293 tests made with high alkali cement ...... 53 

 
3.8   Mixture designs for ASTM C 1293 tests made with low alkali cements. ... 54 

 
3.9   Test program for the modified ASTM C 672 tests ...................................... 54 

 
 3.10 Mixture design for modified ASTM C 672 tests made with low-  
     alkali cement ................................................................................................ 55 
 
 3.11 Test program for the modified ASTM C 227 tests ...................................... 56 
 
 3.12 Mixture design for modified ASTM C 227 tests ......................................... 56 

 
 4.1 Comparison of effect of soak solution with different Li/K  
   ratio in mitigating expansion for mortar bars within  
   aggregate source at modified ASTM C 1260 tests, at 14 days .................... 98 
 
 4.2  Comparison of effect of soak solution with different Li/K  
     ratio in mitigating expansion for mortar bars between  
     aggregate sources at modified ASTM C 1260 tests, at 14 days .................. 99 
 

4.3   Comparison of expansions in modified ASTM C 1260 tests  
   for mortar bars made with high-alkali and low-alkali cement  
   at 14 days ................................................................................................... 100 



xi 
 

List of Tables (Continued) 
 
Table            Page 

  
4.4      Comparison of effect of soak solution with different Li/K ratio  
  in mitigating expansion for concrete prisms within aggregate  
  source at modified ASTM C 1293 tests, at 12 months .............................. 144 
 
4.5      Comparison of effect of soak solution with different Li/K ratio  
  in mitigating expansion for concrete prisms between aggregate  
  sources at modified ASTM C 1293 tests, at 12 months ............................. 145 
 
4.6      Comparison of expansions in modified ASTM C 1293 tests for  
  concrete prisms made with high-alkali and low-alkali cement  
  at 12 months ............................................................................................... 145 

 
 A1   Expansion readings and percentage expansions of the Standard  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement ............................................................................................. 167 
   
 A2   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and 3 MC of Potassium Acetate deicer .............................. 168 
 
 A3   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and 6.4 MC of Potassium Acetate deicer ........................... 168  
 
 A4   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and Lithium Acetate deicer  ............................................... 169 
 
 A5   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and Li/K 3-0.2 deicer ......................................................... 169 
 
 A6   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and Li/K 3-0.4 deicer ......................................................... 170 
 
  
 
 
 



xii 
 

List of Tables (Continued) 
 
Table            Page 
 
 A7   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and Li/K 3-0.6 deicer ......................................................... 170 
 
 A8   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and Li/K 3-0.8 deicer ......................................................... 171 
 
 A9   Expansion readings and percentage expansions of the Modified  
   ASTM C 1260 test for New Mexico Rhyolite using High  
   Alkali cement and Li/K 6.4-0.2 deicer ...................................................... 171 
 
 A10  Expansion readings and percentage expansions of the Standard  
  ASTM C 1260 test for New Mexico Rhyolite using Low  
  Alkali cement ............................................................................................. 172 
 
 A11  Expansion readings and percentage expansions of the Modified  
  ASTM C 1260 test for New Mexico Rhyolite using Low  
  Alkali cement and 3 MC of Potassium Acetate deicer  ............................. 172 
 
 A12  Expansion readings and percentage expansions of the Modified  
  ASTM C 1260 test for New Mexico Rhyolite using Low  
  Alkali cement and 6.4 MC of Potassium Acetate deicer  .......................... 173 
 
 A13  Expansion readings and percentage expansions of the Modified  
  ASTM C 1260 test for New Mexico Rhyolite using Low  
  Alkali cement and Lithium Acetate deicer  ............................................... 173 
 
 A14  Expansion readings and percentage expansions of the Modified  
  ASTM C 1260 test for New Mexico Rhyolite using Low  
  Alkali cement and Li/K 3-0.2 deicer ......................................................... 174 
 
 A15  Expansion readings and percentage expansions of the Modified  
  ASTM C 1260 test for New Mexico Rhyolite using Low  
  Alkali cement and Li/K 3-0.8 deicer ......................................................... 174 
 
 A16  Expansion readings and percentage expansions of the Modified  
  ASTM C 1260 test for New Mexico Rhyolite using Low  
  Alkali cement and Li/K 6.4-0.2 deicer ...................................................... 174 
 



xiii 
 

List of Tables (Continued) 
 
Table            Page 

 
A17  Changes in DME in standard ASTM C 1260 tests using  
  NM aggregate, high alkali cement ............................................................. 175 

 
 A18  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, high alkali cement and KAc 6.4 ........................................ 175 
 
 A19  Changes in DME in modified ASTM C 1260 tests using  

NM aggregate, high alkali cement and KAc 3.0 ........................................ 175 
 
 A20  Changes in DME in modified ASTM C 1260 tests using 

NM aggregate, high alkali cement and LiAc ............................................. 175 
 
 A21  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, high alkali cement and Li/K 6.4-0.2 ................................. 176 
 
 A22  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, high alkali cement and Li/K 3-0.2  ................................... 176 
 
 A23  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, high alkali cement and Li/K 3-0.4 .................................... 176 
 
 A24  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, high alkali cement and Li/K 3-0.6 .................................... 176 
 
 A25  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, high alkali cement and Li/K 3-0.8 .................................... 177 
 
 A26  Changes in DME in standard ASTM C 1260 tests using  
  NM aggregate, low alkali cement .............................................................. 177 
 
 A27  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, low alkali cement and KAc 6.4 ......................................... 177 
 
 A28  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, low alkali cement and KAc 3.0 ......................................... 177 
 
 A29  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, low alkali cement and LiAc .............................................. 178 
 
  



xiv 
 

List of Tables (Continued) 
 
Table            Page 
 
 A30  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, low alkali cement and Li/K 6.4-0.2 .................................. 178 
 
 A31 Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, low alkali cement and Li/K 3-0.2 ..................................... 178 
 
 A32  Changes in DME in modified ASTM C 1260 tests using  
  NM aggregate, low alkali cement and Li/K 3-0.8  .................................... 178 
 
 A33  Expansion readings and percentage expansions of the Standard  
  ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement .................................................................................... 179 
 
 A34  Expansion readings and percentage expansions of the Modified  
  ASTM C 1260 test for Spratt Limestone using High Alkali  
  cement and 3 MC of Potassium Acetate deicer ......................................... 179 
 
 A35  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement and 6.4 MC of Potassium Acetate deicer .................. 180 
 
 A36  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement and Lithium Acetate deicer ....................................... 180 
 
  A37  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement and Li/K 3-0.2 deicer ................................................. 181 
 
  A38  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement and Li/K 3-0.4 deicer ................................................. 181 
 
 A39  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement and Li/K 3-0.6 deicer ................................................. 182 
 
 A40  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement and Li/K 3-0.8 deicer ................................................. 182 



xv 
 

List of Tables (Continued) 
 
Table            Page 
 
 A41  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  High Alkali cement and Li/K 6.4-0.2 deicer .............................................. 183 
 
 A42 Expansion readings and percentage expansions of the  
  Standard ASTM C 1260 test for Spratt Limestone using  
  Low Alkali cement  .................................................................................... 183 
 
 A43  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  Low Alkali cement and 6.4 MC of Potassium Acetate deicer ................... 184 
 
 A44  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  Low Alkali cement and Lithium Acetate deicer ........................................ 184 
 
 A45  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using 
  Low Alkali cement and Li/K 3-0.2 deicer ................................................. 184 
 
 A46  Expansion readings and percentage expansions of the Modified 
  ASTM C 1260 test for Spratt Limestone using Low  
  Alkali cement and Li/K 3-0.8 deicer.......................................................... 185 
 
 A47  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for Spratt Limestone using  
  Low Alkali cement and Li/K 6.4-0.2 deicer .............................................. 185 
 
 A48  Changes in DME in standard ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement .......................................................... 185 
 
 A49  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement and KAc 6.4..................................... 186 
 
 A50  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement and KAc 3.0..................................... 186 
 
 A51  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement and LiAc .......................................... 186 
 



xvi 
 

List of Tables (Continued) 
 
Table            Page 
  
 A52  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement and Li/K 6.4-0.2 .............................. 186 
 
 A53  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement and Li/K 3-0.2 ................................. 187 
 
 A54  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement and Li/K 3-0.4 ................................. 187 
 
 A55  Changes in DME in modified ASTM C 1260 tests using 
  Spratt aggregate, high alkali cement and Li/K 3-0.6 ................................. 187 
 
 A56  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, high alkali cement and Li/K 3-0.8 ................................. 187 
 
  A57  Changes in DME in standard ASTM C 1260 tests using  
  Spratt aggregate, low alkali cement ........................................................... 188 
 
 A58  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, low alkali cement and KAc 6.4 ...................................... 188 
 
 A59  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, low alkali cement and LiAc ........................................... 188 
 
 A60  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, low alkali cement and Li/K 6.4-0.2 ............................... 188  
 
 A61  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, low alkali cement and Li/K 3-0.2 .................................. 189 
 
 A62  Changes in DME in modified ASTM C 1260 tests using  
  Spratt aggregate, low alkali cement and Li/K 3-0.8 .................................. 189  
 
 A63  Expansion readings and percentage expansions of the  
  Standard ASTM C 1260 test for NC aggregate using  
  High Alkali cement .................................................................................... 189 
 
  
 
 



xvii 
 

List of Tables (Continued) 
 
Table            Page 
 
 A64   Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for NC aggregate using  
  High Alkali cement and 3 MC of Potassium Acetate deicer ..................... 190 
 
  A65   Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for NC aggregate using  
  High Alkali cement and 6.4 MC of Potassium Acetate deicer .................. 190 
 
 A66   Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for NC aggregate using High  
  Alkali cement and Li/K 3-0.2 deicer.......................................................... 191 
 
 A67 Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for NC aggregate using High  
  Alkali cement and Li/K 3-0.4 deicer.......................................................... 191 
 
 A68 Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for NC aggregate using High  
  Alkali cement and Li/K 3-0.6 deicer.......................................................... 192 
 
 A69  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for NC aggregate using High  
  Alkali cement and Li/K 3-0.8 deicer.......................................................... 192 
 
 A70  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for NC aggregate using  
  High Alkali cement and Li/K 6.4-0.2 deicer .............................................. 193 
 
 A71 Changes in DME in standard ASTM C 1260 tests using  
  NC aggregate, high alkali cement .............................................................. 193 
 
 A72  Changes in DME in modified ASTM C 1260 tests using  
  NC aggregate, high alkali cement and KAc 6.4......................................... 194 
 
 A73  Changes in DME in modified ASTM C 1260 tests using  
  NC aggregate, high alkali cement and KAc 3.0......................................... 194 
 
 A74   Changes in DME in modified ASTM C 1260 tests using  
  NC aggregate, high alkali cement and Li/K 6.4-0.2 .................................. 194 
 



xviii 
 

List of Tables (Continued) 
 
Table            Page 
  
 A75  Changes in DME in modified ASTM C 1260 tests using  
  NC aggregate, high alkali cement and Li/K 3-0.2 ..................................... 194  
 
 A76  Changes in DME in modified ASTM C 1260 tests using  
  NC aggregate, high alkali cement and Li/K 3-0.4 ..................................... 195 
 
 A77   Changes in DME in modified ASTM C 1260 tests using  
  NC aggregate, high alkali cement and Li/K 3-0.6 ..................................... 195 
 
 A78  Changes in DME in modified ASTM C 1260 tests using  
  NC aggregate, high alkali cement and Li/K 3-0.8 ..................................... 195 
 
 A79   Expansion readings and percentage expansions of the  
  Standard ASTM C 1260 test for SD aggregate using  
  High Alkali cement .................................................................................... 196 
 
 A80   Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for SD aggregate using  
  High Alkali cement and 3 MC of Potassium Acetate deicer ..................... 196 
 
  A81   Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for SD aggregate using  
  High Alkali cement and 6.4 MC of Potassium Acetate deicer .................. 197 
 
 A82   Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for SD aggregate using  
  High Alkali cement and Li/K 3-0.2 deicer ................................................. 197 
 
 A83 Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for SD aggregate using  
  High Alkali cement and Li/K 3-0.4 deicer ................................................. 198 
 
 A84  pH Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for SD aggregate using  
  High Alkali cement and Li/K 3-0.6 deicer ................................................. 198 
 
 A85  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for SD aggregate using  
  High Alkali cement and Li/K 3-0.8 deicer ................................................. 199 
 



xix 
 

List of Tables (Continued) 
 
Table            Page 
  
 A86  Expansion readings and percentage expansions of the  
  Modified ASTM C 1260 test for SD aggregate using  
  High Alkali cement and Li/K 6.4-0.2 deicer .............................................. 199 
 
 A87  Changes in DME in standard ASTM C 1260 tests using  
  SD aggregate, high alkali cement .............................................................. 200 
 
     A88  Changes in DME in modified ASTM C 1260 tests using  

 SD aggregate, high alkali cement and KAc 6.4 ......................................... 200 
 
 A89  Changes in DME in modified ASTM C 1260 tests using  
  SD aggregate, high alkali cement and KAc 3.0 ......................................... 200 
 
 A90  Changes in DME in modified ASTM C 1260 tests using 
  SD aggregate, high alkali cement and Li/K 6.4-0.2 ................................... 200 
 
 A91  Changes in DME in modified ASTM C 1260 tests using  
  SD aggregate, high alkali cement and Li/K 3-0.2 ...................................... 201 
 
 A92   Changes in DME in modified ASTM C 1260 tests using  
  SD aggregate, high alkali cement and Li/K 3-0.4 ...................................... 201 
 
 A93  Changes in DME in modified ASTM C 1260 tests using  
  SD aggregate, high alkali cement and Li/K 3-0.6 ...................................... 201 
 
 A94  Changes in DME in modified ASTM C 1260 tests using  
  SD aggregate, high alkali cement and Li/K 3-0.8 ...................................... 201 
 
 A95 pH Changes in soak solution in Modified ASTM C  
  1260 tests at 0 day ...................................................................................... 202 
 
 A96  pH Changes in soak solution in Modified ASTM C 1260  
  tests at 28 days ........................................................................................... 202 
 
 A97  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made with  
  NM aggregate, high alkali cement and soaked in  
  1N NaOH solution ..................................................................................... 202 
 
  



xx 
 

List of Tables (Continued) 
 
Table            Page 
 
 A98 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made with  
  NM aggregate, high alkali cement and soaked in   
  3 MC of KAc solution................................................................................ 203 
 
 A99  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution............................................................................. 203 
 
 A100  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution with Li/K ratio of 0.2 ......................................... 204 
 
 A101  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made with  
  NM aggregate, high alkali cement and soaked in 3 MC of  
  KAc solution with Li/K ratio of 0.2 ........................................................... 204 
  
 A102  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, high alkali cement and soaked in   
  3 MC of KAc solution with Li/K ratio of 0.8 ............................................ 205 
 
 A103 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, low alkali cement and soaked in   
  1N NaOH solution ..................................................................................... 205 
 
 A104  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, low alkali cement and soaked in   
  3 MC of KAc solution................................................................................ 206 
 
 A105  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, low alkali cement and soaked in   
  6.4 MC of KAc solution............................................................................. 206 
 



xxi 
 

List of Tables (Continued) 
 
Table            Page 
 
 A106  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, low alkali cement and soaked in   
  6.4 MC of KAc solution with Li/K ratio of 0.2 ......................................... 206 
 
 A107  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NM aggregate, low alkali cement and soaked in   
  3 MC of KAc solution with Li/K ratio of 0.2 ............................................ 207 
 
 A108  Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made 
  with NM aggregate, low alkali cement and soaked in  
  3 MC of KAc solution with Li/K ratio of 0.8 ............................................ 207 
 
 A109 Changes in DME in standard ASTM C 1293 tests using  
  NM aggregate, high alkali cement ............................................................. 207 
 
 A110 Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, high alkali cement and KAc 6.4 ........................................ 208 
 
 A111  Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, high alkali cement and KAc 3.0 ........................................ 208 
 
 A112 Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, high alkali cement and Li/K 6.4-0.2 ................................. 208 
 
 A113 Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, high alkali cement and Li/K 3-0.2 .................................... 209 
 
 A114 Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, high alkali cement and Li/K 3-0.8 .................................... 209 
 
 A115  Changes in DME in standard ASTM C 1293 tests using  
  NM aggregate, low alkali cement .............................................................. 209 
 
 A116 Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, low alkali cement and KAc 6.4 ......................................... 210 
 
 



xxii 
 

List of Tables (Continued) 
 
Table            Page 
  
 A117 Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, low alkali cement and KAc 3.0 ......................................... 210 
  
 A118  Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, low alkali cement and Li/K 6.4-0.2 .................................. 210 
 
 A119  Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, low alkali cement and Li/K 3-0.2 ..................................... 211 
  
 A120 Changes in DME in modified ASTM C 1293 tests using  
  NM aggregate, low alkali cement and Li/K 3-0.8 ..................................... 211 
 
 A121 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, high alkali cement and soaked  
  in 1N NaOH solution ................................................................................. 212 
 
 A122 Expansion readings and percentage expansions of the 
  Modified ASTM C 1293 tests of concrete prisms made with 213 
  Spratt aggregate, high alkali cement and soaked in   
  3 MC of KAc solution................................................................................ 212 
 
 A123 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, high alkali cement and soaked in  
  6.4 MC of KAc solution............................................................................. 213 
 
 A124 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution with Li/K ratio of 0.2 ......................................... 213 
 
 A125 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, high alkali cement and soaked in   
  3 MC of KAc solution with Li/K ratio of 0.2 ............................................ 214 
  
  
 
 



xxiii 
 

List of Tables (Continued) 
 
Table            Page 
 
 A126 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made with  
  Spratt aggregate, low alkali cement and soaked in   
  1N NaOH solution ..................................................................................... 214 
 
 A127 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, low alkali cement and soaked in   
  3 MC of KAc solution................................................................................ 215 
 
 A128 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, high alkali cement and soaked in  
  6.4 MC of KAc solution............................................................................. 215 
 
 A129 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution with Li/K ratio of 0.2 ......................................... 216 
 
 A130 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with Spratt aggregate, high alkali cement and soaked in  
  3 MC of KAc solution with Li/K ratio of 0.2 ............................................ 216 
 
 A131 Changes in DME in standard ASTM C 1293 tests using  
  SP aggregate, high alkali cement ............................................................... 217 
 
 A132 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, high alkali cement and KAc 6.4 .......................................... 217 
 
 A133 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, high alkali cement and KAc 3.0 .......................................... 217 
 
 A134 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, high alkali cement and Li/K 6.4-0.2 ................................... 218 
 
 A135 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, high alkali cement and Li/K 3-0.2 ...................................... 218 
 



xxiv 
 

List of Tables (Continued) 
 
Table            Page 
  
 A136 Changes in DME in standard ASTM C 1293 tests using  
  SP aggregate, low alkali cement ................................................................ 219 
 
 A137 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, low alkali cement and KAc 6.4 ........................................... 219 
 
 A138 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, low alkali cement and KAc 3.0 ........................................... 219 
 
 A139 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, low alkali cement and Li/K 6.4-0.2 .................................... 220 
 
 A140 Changes in DME in modified ASTM C 1293 tests using  
  SP aggregate, low alkali cement and Li/K 3-0.2 ....................................... 220 
 
 A141 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NC aggregate, high alkali cement and soaked in   
  1N NaOH solution ..................................................................................... 221 
 
 A142 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NC aggregate, high alkali cement and soaked in   
  3 MC of KAc solution................................................................................ 221 
 
 A143 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NC aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution............................................................................. 222 
 
 A144 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NC aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution with Li/K ratio of 0.2 ......................................... 222 
   
  
 
 
 
 



xxv 
 

List of Tables (Continued) 
 
Table            Page 
  
 A145 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with NC aggregate, high alkali cement and soaked in   
  3 MC of KAc solution with Li/K ratio of 0.2 ............................................ 223 
 
 A146 Changes in DME in standard ASTM C 1293 tests using  
  NC aggregate, high alkali cement .............................................................. 223 
 
 A147 Changes in DME in modified ASTM C 1293 tests using  
  NC aggregate, high alkali cement and KAc 6.4......................................... 224 
 
 A148 Changes in DME in modified ASTM C 1293 tests using  
  NC aggregate, high alkali cement and KAc 3.0......................................... 224 
 
 A149 Changes in DME in modified ASTM C 1293 tests using  
  NC aggregate, high alkali cement and Li/K 6.4-0.2 .................................. 225 
 
 A150 Changes in DME in modified ASTM C 1293 tests using  
  NC aggregate, high alkali cement and Li/K 3-0.2 ..................................... 225 
 
 A151 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with SD aggregate, high alkali cement and soaked in   
  1N NaOH solution ..................................................................................... 226 
 
 A152 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with SD aggregate, high alkali cement and soaked in   
  3 MC of KAc solution................................................................................ 226 
 
 A153 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with SD aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution............................................................................. 227 
 
 A154 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made  
  with SD aggregate, high alkali cement and soaked in   
  6.4 MC of KAc solution with Li/K ratio of 0.2 ......................................... 227 
 



xxvi 
 

List of Tables (Continued) 
 
Table            Page 
 
 A155 Expansion readings and percentage expansions of the  
  Modified ASTM C 1293 tests of concrete prisms made with  
  SD aggregate, high alkali cement and soaked in 3 MC of  
  KAc solution with Li/K ratio of 0.2 ........................................................... 228 
 
 A156 Changes in DME in standard ASTM C 1293 tests using  
  SD aggregate, high alkali cement .............................................................. 228 
 
 A157 Changes in DME in modified ASTM C 1293 tests using  
  SD aggregate, high alkali cement and KAc 6.4 ......................................... 228 
 
 A158 Changes in DME in modified ASTM C 1293 tests using  
  SD aggregate, high alkali cement and KAc 3.0 ......................................... 229 
 
 A159 Changes in DME in modified ASTM C 1293 tests using  
  SD aggregate, high alkali cement and Li/K 6.4-0.2 ................................... 229 
 
 A160 Changes in DME in modified ASTM C 1293 tests using  
  SD aggregate, high alkali cement and Li/K 3-0.2 ...................................... 230 
 
 A161 pH Changes in soak solution in Modified ASTM C 1293  
  tests for high alkali cement at 0 day ........................................................... 230 
 
 A162 pH Changes in soak solution in Modified ASTM C 1293  
  tests for high alkali cement at 12 months ................................................... 230 
 
 A163 pH Changes in soak solution in Modified ASTM C 1293  
  tests for low alkali cement at 0 day ............................................................ 230 
 
 A164 pH Changes in soak solution in Modified ASTM C 1293  
  tests for low alkali cement at 12 months .................................................... 231 
 
 A165 Expansion readings and percentage expansions of the  
  Modified ASTM C 227 tests of mortar bars made with  
  Ottawa sand and fused silica, low alkali cement and exposed  
  to water with no pre treatment ................................................................... 231 
 
  
 
 



xxvii 
 

List of Tables (Continued) 
 
Table            Page 
 
 A166 Expansion readings and percentage expansions of the  
  Modified ASTM C 227 tests of mortar bars made with  
  Ottawa sand and fused silica, low alkali cement and exposed to  
  KAc with no pre treated ............................................................................. 231 
 
 A167 Expansion readings and percentage expansions of the  
  Modified ASTM C 227 tests of mortar bars made with  
  Ottawa sand and fused silica, low alkali cement and exposed  
  to KAc and pre treated with LiNO3  for 1 coat ........................................... 232 
 
 A168 Expansion readings and percentage expansions of the  
  Modified ASTM C 227 tests of mortar bars made with  
  Ottawa sand and fused silica, low alkali cement and exposed to  
  KAc and pre treated with LiNO3  for 3 coat ............................................... 232 
 
 A169 Expansion readings and percentage expansions of the  
  Modified ASTM C 227 tests of mortar bars made with  
  Ottawa sand and fused silica, low alkali cement and exposed  
  to KAc and pre treated with LiNO3  for 5 coat ........................................... 232 
 
 A170 Changes in DME in modified ASTM C 227 tests of mortar  

bars made with Ottawa sand and fused silica, low alkali cement  
  and exposed to water with no pre treatment .............................................. 233 
 
 A171 Changes in DME in modified ASTM C 227 tests of mortar  
  bars made with Ottawa sand and fused silica, low alkali  
  cement and exposed to KAc with no pre treated ....................................... 233 
 
 A172 Changes in DME in modified ASTM C 227 tests of mortar bars  
  made with Ottawa sand and fused silica, low alkali cement  
  and exposed to KAc and pre treated with LiNO3  for 1 coat ...................... 233 
 
 A173 Changes in DME in modified ASTM C 227 tests of mortar  
  bars made with Ottawa sand and fused silica, low alkali cement  
  and exposed to KAc and pre treated with LiNO3  for 3 coat ...................... 234 
 
 A174 Changes in DME in modified ASTM C 227 tests of mortar bars  

made with Ottawa sand and fused silica, low alkali cement and  
exposed to KAc and pre treated with LiNO3  for 5 coat............................. 234 

 



xxviii 
 

List of Tables (Continued) 
 
Table            Page 
  
 A175 Concentration of K and Li with depth from top in Spratt,  
  NM and IL aggregate ................................................................................. 234 



xxix 
 

LIST OF FIGURES 
 

Figure                                                                                                                             Page 
 
 4.1  Expansion of Mortar Bars in Standard and Modified ASTM  
  C 1260 Test with NM Aggregate and High-Alkali Cement ........................ 58 

 
 4.2  Expansion of Mortar Bars in Standard and Modified ASTM  
  C 1260 Test with NM Aggregate and Low-Alkali Cement ......................... 59 

 
 4.3  Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with  
  NM Aggregate and High-Alkali Cement ..................................................... 60 

 
 4.4  Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with  
  NM Aggregate and Low-Alkali Cement...................................................... 61 

 
 4.5 Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 3 Molar KAc Solution and Blended Deicers with NM  
  Aggregate and High-Alkali Cement ............................................................ 62 

 

 4.6  Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 3 Molar KAc Solution and Blended Deicers with NM  
  Aggregate and Low-Alkali Cement ............................................................. 63 
 
 4.7  Change in Dynamic Modulus of Mortar Bars made with NM  
  Aggregate in Standard and Modified ASTM C 1260 Test .......................... 64 
 
 4.8  Expansion of Mortar Bars in Standard and Modified ASTM C  
  1260 Test with SP Aggregate and High-Alkali Cement .............................. 66 

 

 4.9  Expansion of Mortar Bars in Standard and Modified ASTM C  
  1260 Test with SP Aggregate and Low-Alkali Cement  ............................. 66 

 
 4.10  Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with  
  SP Aggregate and High-Alkali Cement   ..................................................... 67 
 

4.11  Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with  
  SP Aggregate and Low-Alkali Cement  ..................................................... .68 
 



xxx 
 

List of Figures (Continued) 
 
Figure            Page 
 
 4.12 Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 3 Molar KAc Solution and Blended Deicers with SP  
  Aggregate and High-Alkali Cement ............................................................ 69 
 
 4.13 Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 3 Molar KAc Solution and Blended Deicers with SP  
  Aggregate and Low-Alkali Cement ............................................................. 69 
 
 4.14 Change in Dynamic Modulus of Mortar Bars made with  
  SP Aggregate in Standard and Modified ASTM C 1260 Test ..................... 71 

 

 4.15  Expansion of Mortar Bars in Standard and Modified ASTM  
  C 1260 Test with NC Aggregate and High-Alkali Cement ......................... 73 
 
 4.16 Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with NC  
  Aggregate and High-Alkali Cement ............................................................ 74 
 
 4.17  Expansion of Mortar Bars in Modified ASTM C 1260 Test 3  
  Molar KAc Solution and Blended Deicers with NC  
  Aggregate and High-Alkali Cement ............................................................ 75 
 
 4.18 Change in Dynamic Modulus of Mortar Bars made with NC  
  Aggregate in Standard and Modified ASTM C 1260 Test .......................... 76 
 
 4.19 Expansion of Mortar Bars in Standard and Modified ASTM  
  C 1260 Test with SD Aggregate and High-Alkali Cement  ........................ 77 
 
 4.20 Expansion of Mortar Bars in Modified ASTM C 1260 Test  
  6.4 Molar KAc Solution and Blended Deicers with SD  
  Aggregate and High-Alkali Cement   .......................................................... 78 
 

4.21  Expansion of Mortar Bars in Modified ASTM C 1260 Test  
 with 3 Molar KAc Solution and Blended Deicers with SD  
 Aggregate and High-Alkali Cement ............................................................ 79 

  
4.22  Change in Dynamic Modulus of Mortar Bars made with SD  

 Aggregate in Standard and Modified ASTM C 1260 Test   ........................ 80 
 



xxxi 
 

List of Figures (Continued) 
 
Figure            Page 
 

4.23  Percentage DME Relative to Zero Day Reading and  
  Expansions in C 1260 Tests ......................................................................... 83 

 
 4.24  pH Values of Soak Solution from Modified ASTM C 1260  
  Tests for all Aggregate made with High-Alkali Cement ............................. 84 
 

 4.25  Figures shows the visual images of NM-HA exposed to  
  different Li/K ratio in Modified ASTM C 1260 Test .................................. 86 
 
 4.26 Figures shows the visual images of SP-HA exposed to  
  different Li/K ratio in Modified ASTM C 1260 Test .................................. 87 
 
 4.27  Figures showing SEM-EDX images of NM-LA-3.0 mortar bars ................ 89 
 
 4.28 Figures showing SEM-EDX images of NM-LA-3-0.2 mortar bars ............ 90 
 
 4.29 Figures showing SEM-EDX images of NM-LA-6.4-0.2 mortar bars ......... 91 
 
 4.30 Figures showing SEM-EDX images of SP-HA-3.0 mortar bars ................. 92 
 
 4.31 Figures showing SEM-EDX images of SP-HA-3-0.2 mortar bars .............. 93 
 
 4.32 Figures showing SEM-EDX images of SP-HA-3-0.8 mortar bars .............. 94 
 
 4.33 Figures showing SEM-EDX images of SP-HA-6.4 mortar bars ................. 95 
 
 4.34 Figures showing SEM-EDX images of SP-HA-6.4-0.2 mortar bars ........... 96 
 
 4.35 Expansions in Modified C 1260 tests at 14 days made with  
  high-alkali and low-alkali cement for Li/K ratio  
  of 0, 0.2, 0.4, 0.6, 0.8 solutions .................................................................. 101 
 
 4.36  Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with NM Aggregate and High-Alkali Cement ................................... 103 
 
 4.37 Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with NM Aggregate and Low-Alkali Cement.................................... 103 
 
 



xxxii 
 

List of Figures (Continued) 
 
Figure            Page 
  
 4.38 Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with 6.4 Molar KAc Solution and Blended Deicers  
  with NM Aggregate and High-Alkali Cement ........................................... 104 
 

4.39  Expansion of Concrete Prisms in Modified ASTM C 1293  
 Test with 6.4 Molar KAc Solution and Blended Deicers with  
 NM Aggregate and Low-Alkali Cement.................................................... 105 

. 
 4.40 Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with 3 Molar KAc Solution and Blended Deicers  
  with NM Aggregate and High-Alkali Cement ........................................... 106 
 
 4.41 Expansion of Concrete Prisms in Modified ASTM C 1260 Test  
  with 3 Molar KAc Solution and Blended Deicers with NM  
  Aggregate and Low-Alkali Cement ........................................................... 107 
 
 4.42 Change in Dynamic Modulus of Concrete Prism made with  
  NM Aggregate in the Modified ASTM C 1293 Test   ............................... 109 
 

4.43  Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with SP Aggregate and High-Alkali Cement ..................................... 111 
 
 4.44  Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with SP Aggregate and Low-Alkali Cement...................................... 111 
 
 4.45  Expansion of Concrete Prisms in Modified ASTM C 1293 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with SP  
  Aggregate and High-Alkali Cement .......................................................... 113 
 
 4.46  Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with 6.4 Molar KAc Solution and Blended Deicers with  
  SP Aggregate and Low-Alkali Cement  .................................................... 113 
 
 4.47  Expansion of Concrete Prisms in Modified ASTM C 12930  
  Test with 3 Molar KAc Solution and Blended Deicers with  
  SP Aggregate and High-Alkali Cement ..................................................... 115 
 
 4.48 Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with 3 Molar KAc Solution and Blended Deicers with  
  SP Aggregate and Low-Alkali Cement...................................................... 115 



xxxiii 
 

List of Figures (Continued) 
 
Figure            Page 
  
 4.49  Change in Dynamic Modulus of Concrete Prism made with  
  SP Aggregate in Modified ASTM C 1293 Test   ....................................... 117 
 
 4.50 Expansion of Concrete Prisms in Standard and Modified ASTM  
  C 1260 Test with NC Aggregate and High-Alkali Cement ....................... 118 
 
 4.51  Expansion of Concrete Prism in Modified ASTM C 1293 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with NC  
  Aggregate and High-Alkali Cement .......................................................... 119 
 
 4.52  Expansion of Concrete Prisms in Modified ASTM C 1260 Test  
  with 3 Molar KAc Solution and Blended Deicers with NC  
  Aggregate and High-Alkali Cement .......................................................... 120 
 
 4.53 Change in Dynamic Modulus of Concrete Prism made with  
  NC Aggregate in Modified ASTM C 1293 Test   ...................................... 122 
 
 4.54  Expansion of Concrete Prisms in Modified ASTM C 1293  
  Test with SD Aggregate and High-Alkali Cement .................................... 123 
 
 4.55  Expansion of Concrete Prisms in Modified ASTM C 1293 Test  
  with 6.4 Molar KAc Solution and Blended Deicers with SD  
  Aggregate and High-Alkali Cement   ........................................................ 124 
 
 4.56 Expansion of Concrete Prisms in Modified ASTM C 1293 Test  
  with 3 Molar KAc Solution and Blended Deicers with SD  
  Aggregate and High-Alkali Cement .......................................................... 125 
 
 4.57  Change in Dynamic Modulus of Concrete Prism made with  
  SD Aggregate in Modified ASTM C 1293 Test   ...................................... 126 
 
 4.58 Percentage DME Relative to Zero Day Reading and  
  Expansions in C 1293 Tests ....................................................................... 128 
 
 4.59  Values of Soak Solution from Modified ASTM C 1293 Tests  
  for all Aggregates made with high-alkali and low-alkali cement .............. 130 
 
 4.60  Figures shows the visual images of NM-HA exposed to different  
  Li/K ratio in Modified ASTM C 1293 Test ............................................... 132 
 



xxxiv 
 

List of Figures (Continued) 
 
Figure            Page 
  
 4.61  Figures shows the visual images of SP-HA exposed to different  
  Li/K ratio in Modified ASTM C 1293 Test ............................................... 133 
 
 4.62  Figures show SEM-EDX images of NM-HA-6.4-0.2 prisms .................... 136 
 
 4.63  Figures show SEM-EDX images of NM-LA-3-0.2 prisms ....................... 137 
 
 4.64  Figures show SEM-EDX images of NM-LA-3-0.8 prisms ....................... 138 
 
 4.65  Figures show SEM-EDX images of NM-LA-6.4-0.2 prisms .................... 139 
 
 4.66  Figures show SEM-EDX images of SP-LA-3.0 prisms ............................ 140 
 
 4.67  Figures show SEM-EDX images of SP-LA-3-0.2 prisms ......................... 141 
 
 4.68  Figures show SEM-EDX images of SP-LA-6.4-0.2 prisms ...................... 142 

 4.69  Expansions in Modified ASTM C 1293 tests at 12 months  
  made with high-alkali and low-alkali cement for Li/K ratio  
  of 0, 0.2, and 0.8 solutions with 3 molar KAc ........................................... 146 
 
 4.70  Images showing the scaling resistance of concrete surface in  
  Modified ASTM C 672 Test ...................................................................... 148 
 
 4.71 Expansion of Mortar Bars in Modified ASTM C 227 Test with  
  pre-treatment with Lithium Nitrate before exposing to  
  Potassium Acetate Deicer Solution with Fused Silica,  
  Ottawa Sand and low-alkali Cement.......................................................... 149 
 
 4.72  Change in Dynamic Modulus of Mortar Bars made with  
  Ottawa Sand with 5% Fused Silica by Mass in Modified  
  ASTM C 227 Test ...................................................................................... 150 
 
 4.73  Percentage DME Relative to Zero Day Reading and  
  Expansions in C 227 Tests ......................................................................... 151 
 
 4.74  Figures shows the profile of K and Li penetration in the  
  concrete slabs along the depth ................................................................... 153 
 
 



xxxv 
 

List of Figures (Continued) 
 
Figure            Page 
 

4.75  Three color overlay image of SP-KAc made with LA cement.  
 Calcium = Blue, Silicon = Red, Potassium = Green .................................. 154 

 
 4.76 Thermal colorization of SP-KAc made with LA cement ........................... 155 
 
 4.77  XRF Spectra of SP-KAc made with LA cement ....................................... 155 
 
 4.78  Three color overlay image of IL-KAc made with LA cement.  
  Calcium = Blue, Silicon = Red, Potassium = Green .................................. 156 
 
 4.79  Thermal colorization of SP-KAc made with LA cement ........................... 157 

 4.80  XRF Spectra of IL-KAc made with LA cement ........................................ 158 



1 
 

CHAPTER ONE 

INTRODUCTION 

 

1.1 General 

Concrete deterioration due to alkali-silica reaction (ASR) is a serious problem 

throughout the world. ASR is a deleterious chemical reaction between hydroxide ions in 

concrete pore solutions and certain reactive siliceous aggregate components, resulting in 

the formation of gel. When the alkali-silica gel absorbs moisture, it swells and exerts an 

internal pressure on the concrete and if the internal pressure exceeds the tensile strength 

of concrete it eventually produces cracks in the concrete. The most common methods of 

minimizing the expansion due to ASR are using nonreactive aggregates, limiting the 

alkali content of concrete, using supplementary cementing materials and using lithium 

compounds. Lithium compounds have been found to be the most effective agents to 

mitigate expansion due to ASR in both new and old concrete structures, when used at 

adequate dosage levels. 

One of the main components necessary for ASR to occur is the alkali content. The 

main source of alkali in concrete is Portland cement. It is now suggested that alkalis from 

external sources such as deicing salts and salt water spray in marine environments play a 

vital role in triggering ASR. In the airfield industry, new generation deicers like 

potassium acetate, sodium acetate and sodium formate are replacing the traditional 

deicers and are widely used due to their low environmental impact. Potassium acetate is 

being used by major airports and military bases worldwide. Recent premature 
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deterioration of airfield concrete pavements has indicated that these airfield deicers may 

be responsible for triggering ASR in concrete.  

It is well known that several of the lithium compounds like lithium fluoride, 

lithium chloride, lithium hydroxide, lithium carbonate, etc,  when proportioned 

appropriately into the fresh concrete, have shown potential to mitigate expansions 

induced by ASR in concrete. Topical applications of solutions of lithium compounds like 

lithium nitrate have also shown promise in this regard to mitigate ASR in existing 

concrete structures. However, the use of lithium acetate as an ASR-mitigation measure 

has not been explored yet. As a new approach, this research investigates the effects of 

lithium acetate compounds as an alternative deicing chemical and also in combination 

with potassium acetate deicing chemicals in mitigating ASR. 

 

1.2 Problem Statement 

In recent years, potassium acetate-based deicers have gained popularity in airfield 

concrete pavement deicing operations. Potassium acetate-based deicers are not only 

effective in ice and snow removal at much lower temperatures than either sodium 

chloride or calcium chloride based deicers, but are also considered environmentally 

benign. However, investigations at selected airports have suggested that potassium 

acetate-based deicers may have lead to premature distress in certain concrete pavements. 

In support of this, a preliminary finding from the Innovative Pavements Research 

Foundation (IPRF) study indicates that the potassium acetate deicers have the potential to 

induce aggressive alkali-silica reactions in certain concretes. Since these deicers affect 
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the durability of concrete pavements, it became necessary to explore the use of deicing 

chemicals that are based on lithium compounds as alternative deicing chemicals and also 

in combination with potassium acetate as mitigation measure as lithium compounds have 

shown potential to mitigate ASR.  

 

1.3 Need for the Research 

There has been a tremendous increase in the use of potassium acetate deicers in 

winter operations of airfield concrete pavements. Also, there has been premature 

deterioration of several airfield concrete pavements due to the use of this environmentally 

acceptable deicer. As a result of this, there was an urgent need to find alternative deicing 

chemicals and also to find mitigation measures to combat ASR induced by potassium 

acetate. Since there are no deicers based on lithium compounds to combat ASR, it has 

become necessary to determine the effectiveness of lithium acetate as an alternative 

deicer and also as a combination with potassium acetate in mitigating ASR. 

 

1.4 Research Objectives 

The principal objectives of this research study were:  

1. To determine the effectiveness of lithium acetate as a deicer solution in mitigating 

ASR induced by Potassium acetate deicer. 

2. To study the effectiveness of lithium acetate in combination with potassium 

acetate deicer soak solutions with different Li/K ratios and at different 

concentrations in mitigating ASR. 
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1.5 Scope of the Research 

 The scope of this research was to study the effects of: 

1. Lithium acetate as deicer solution 

2. Lithium acetate in combination with potassium acetate deicer. 

In this study, five different reactive aggregates that are different in level of 

reactivity and two non-reactive aggregates were used. 

Reactive Aggregates: 

1. Rhyolite from New Mexico (Las Placitas Gravel Pit, Lafarge Aggregates, NM). 

2. Siliceous limestone from Ontario, Canada (Spratt Quarry, Ontario, Canada). 

3. Quartzite from South Dakota (L.G. Everist Quarry, Sioux Falls, SD). 

4. Argillite from North Carolina (Gold Hill Quarry, NC). 

5. Fused Silica 

Non-Reactive Aggregates: 

1. Ottawa sand from Illinois (ASTM C 778 Standard Sand). 

2. Dolomite from Illinois (Material Service Corporation, Illinois). 

Two types of cements were used to study the influence of the alkali content of 

cement. 

1. High-alkali cement (0.83% Na2Oeq). 

2. Low-alkali cement (0.29% Na2Oeq) 

Modified ASTM test procedures were adopted when standard test methods were 

not available which is explained in the appropriate section of this dissertation.  
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The standard and modified ASTM C 1260 tests were conducted with different 

aggregate type to find the reactivity of aggregate for which 208 samples were tested. 

To determine the length change of concrete due to alkali silica reaction, a modified 

ASTM C 1293 test was conducted for which 120 samples were tested. Modified 

ASTM C 672 test were conducted to determine the resistance to scaling of a 

horizontal concrete surface when exposed to freezing and thawing cycles in the 

presence of deicing chemicals for which 18 samples were tested. Modified ASTM C 

227 test were conducted to determine the effectiveness of lithium nitrate as a pre-

treatment measure before exposing to regular deicers for which 15 samples were 

tested. 

 

1.6 Research Approach 

The research approach of this dissertation was as follows: 

1. Evaluate lithium acetate by itself a deicer and with different combinations with 

potassium acetate by running a modified ASTM C 1260 test procedure. 

2. From ASTM C 1260 test results the effective combination in mitigating ASR was 

selected to conduct modified ASTM C 1293 test. 

3. Determine the physical deterioration caused by deicers on mortar bars and 

concrete prisms by measuring the loss in dynamic modulus of elasticity of the 

specimens. 
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4. Conduct pH measurements, scanning electron microscopy (SEM) and energy 

dissipative x-ray analysis (EDX) for mortar bars and concrete prisms at the end of 

the study. 

5. Evaluate the influence of these deicer formulations on scaling resistance of 

concrete by running ASTM C 672 tests. 

6. Measure the penetration depth of deicers on the concrete slabs by drilling cores of 

sample and using ion chromatography. 

7. Conduct chemical analyses to understand the mechanism of these deicers in 

mitigating ASR.  

 

1.7 Organization of the Dissertation 

The dissertation is comprised of five chapters. Chapter I is the introductory 

chapter and states the problem statement, need for the research, research objectives, 

scope of the research, research approach, and organization of the dissertation. Chapter II 

presents a literature review on ASR and various mitigation measures. It provides the 

general information on ASR and different deicing chemicals based on their properties. 

Chapter II also discusses the deicers which are used on regular highway pavements and 

airfield pavements. As mitigation measures, various lithium compounds being used are 

also discussed in detail. Chapter III describes the materials used in the research and the 

test procedures. It also provides a layout of the experimental program along with the 

mixture designs used in all the tests. Chapter IV presents the results and discussions of 

the various tests. Chapter V presents the summary of the various tests and the principal 
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findings of the research and the conclusions drawn from the findings. Based on the 

findings, recommendations are made for the use of lithium blended deicers and the future 

research work needed. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 General 

This chapter provides an overview of alkali-silica reaction (ASR) and also some 

general information on different types of deicing chemicals used for concrete pavements. 

It also discusses the mechanism involved in ASR and the various mitigation measures 

which are currently used to mitigate expansion due to ASR, and also a wide range of 

research performed using lithium to combat ASR. In addition, a review of literature is 

presented as the case of lithium admixture in mitigating ASR expansions. 

 

2.2 Introduction to Alkali Silica Reaction 

 In the United States during late 1920s to the early 1940s there were reported 

failures of concrete structures due to the result of overall cracking throughout the 

structure manifested at the surface as extensive map cracking or pattern cracking, 

frequently accompanied by gel exuding from the cracks or surface popouts and 

spalling[1]. In the early 1940s, Stanton [2] first identified the cause in which he revealed 

that the deterioration is due to expansions caused by the chemical reaction between the 

alkalis from the cement and certain reactive forms of silica within the aggregate.  

It has been found that various forms of silica have different reactivities, 

depending on the degree of crystallinity, internal porosity, crystallite size, and internal 



9 
 

crystal strain. Due to this, different aggregates react at different rates and the damage due 

to ASR may not be apparent for many years after a structure is put into service. 

Since this initial discovery, there have been reported cases throughout the world. 

ASR has been implicated in the deterioration of various types of concrete structures, 

including dams, pavements, bridges, and other structures. 

 

2.2.1 Factors Affecting Expansion 

 Factors that control the ASR expansion are  

1. Reactive silica 

• Nature of reactive silica. 

• Amount of reactive silica. 

• Particle size of reactive materials. 

2. Amount of available alkali and 

3. Amount of available moisture. 

 

Reactive Silica 

One of the essential components needed for ASR to occur is the reactive 

aggregate. Reactive aggregates are those that tend to breakdown under exposure to the 

highly alkaline pore solution in concrete and subsequently react with the alkali-

hydroxides (sodium and potassium) to form ASR gel. It is important to note that not all 

siliceous aggregates are prone to ASR. The inherent reactivity of aggregates depends on 
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several factors, including aggregate mineralogy, degree of crystallinity, and solubility of 

the silica in pore solution.  

 

Sufficient Alkalis 

The presence of sufficient alkalies is essential to trigger ASR. The source of alkalies 

can be from any of the following: 

1. Portland cement.  

2. Supplementary cementing materials (fly ash, slag, silica fume, etc.).  

3. Aggregates.  

4. Chemical admixtures.  

5. External sources (seawater and deicing salts).  

6. Wash water.  

Of the above materials, Portland cement is the main contributor of alkalies. The 

alkalies present in Portland cement are in the form of potassium oxide (K2O) and sodium 

oxide (Na2O). The quantity of alkalies in Portland cement is typically expressed as 

follows: 

Na2Oe = Na2O + 0.658K2O 

Where: Na2Oe = Total sodium oxide equivalent (or equivalent soda), in percent by mass 

      Na2O = sodium oxide content, in percent 

       K2O = potassium oxide content, in percent 

 
Although laboratory tests shows that keeping the total alkali content below 3.0 

kg/m3 Na2Oe is an effective method of limiting expansion, field structures have exhibited 
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damage with even lower alkali loadings, especially when alkalies have also been 

contributed by the aggregates in the mixture or by external sources, such as deicing salts. 

Thus, when considering imposing a limit on the alkali content for a given concrete 

mixture, consideration should be given to the aggregate type and reactivity, exposure 

conditions, and nature of the structure (i.e., design life or relative importance). 

 

Sufficient Moisture 

Available moisture is important when considering the potential for ASR-induced 

damage in field structures. Concrete mixtures comprised of highly reactive aggregates 

and high-alkali cements have shown little or no expansion in certain very dry 

environments. Likewise, local differences in moisture availability within the same 

structure have resulted in vastly different performance within that structure. Specifically, 

portions of the structure exposed to a constant or steady source of moisture (e.g., due to 

poor drainage or poor detailing) have exhibited significant ASR induced damage, while 

other portions of the structure that remain essentially dry have shown little or no damage. 

Therefore, in general, the exposure conditions, and the availability of moisture 

specifically, play an important role in the ASR induced damage in concrete structures. 

 

2.2.2 Mechanism of ASR 

Based on the synthesis a broad range of research by Helmuth and Stark [1] they 

observed ASR results in the production of two component gels – a nonswelling calcium- 

alkali-silicate-hydrate [C-N(K)-S-H] and a swelling alkali-silica-hydrate [N(K)-S-H]. 
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Whenever ASR occurs in concrete, some nonswelling [C-N(K)-S-H] is always formed. 

The reaction will be safe if this is the only reaction product, but unsafe if both gels form. 

 

The overall mechanism of ASR proceeds in the following way: 

1. In the presence of various pore solution ions, the reactive silica in the aggregate 

undergoes depolymerization, dissolution and swelling. 

2. The alkali and calcium ions diffuse into the swollen aggregate resulting in the 

formation of a nonswelling C-N(K)-S-H gel. 

3. The pore solution diffuses through the porous layer of C-N(K)-S-H gel to the 

silica. If CaO constitutes 53% or more of the C-N(K)-S-H on an anhydrous 

(without water) weight basis of the gel, only a nonswelling gel will form. 

However, for high alkali concentrations, the solubility of CH is depressed 

resulting in the formation of some swelling N(K)-S-H gel that contains little or no 

calcium. Both nonswelling and swelling gel results in the formation of a 

composite gel with greatly increased viscosity and decreased porosity. 

4. The N(K)-S-H gel attracts water due to osmosis, which results in an increase in 

volume, which ultimately leads to tensile stresses and cracking. The cracks fill 

with reaction product, which gradually flows under pressure from the point of its 

initial formation. 
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2.2.3 Mitigating ASR 

Some of the common methods of mitigating or preventing ASR in new and 

existing concrete structures are: 

1. Using nonreactive aggregates  

2. Limiting the alkali content of  the concrete 

3. Using supplementary cementitious materials 

4. Using lithium compounds 

5. Avoiding future use of deicing salts that will increase alkali content within the 

structure. 

 

Nonreactive Aggregates 

Using nonreactive aggregates is the best method of preventing ASR induced 

damage. The aggregate reactivity is established based on their performance in 

standardized tests such as ASTM C 1260 and ASTM C 1293 test. Aggregates that were 

believed to be nonreactive have caused damages due to ASR expansion in field 

structures. In those cases, proper attention should be given to the prior field performance 

of structures built with the aggregates and where possible, additional precautionary 

measures should be taken, such as adding supplementary cementing materials, etc. The 

best solution, whenever it is practical, is to avoid susceptible aggregate based on 

aggregate reactivity tests and service records. 
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Limiting the Alkali Content of Concrete 

Limiting the alkali content of concrete mixtures below some threshold value (3.0 

kg/m3) is generally effective in preventing ASR, but this approach is not always effective 

by itself. Since, aggregates that are durable at relatively low alkali contents may become 

more reactive when exposed to higher alkali contents under field conditions from 

exposure to deicing salts, alkali release from aggregates and other field effects. With 

respect to this, there are reported increases in soluble alkalis from 1.1 to 3.6 kg/m3 Na2Oe 

close to the surface of some highway structures [3].   

It is also now recognized that limiting the alkali content of portland cement is not 

an effective way of preventing ASR induced damage since this does not control the total 

alkali content of the concrete mixture. Therefore, limiting the maximum alkali content of 

concrete is the preferred approach when specifying alkali levels. 

 

Lithium Compounds 

Using lithium compounds is a viable approach in controlling ASR. Since the 

scope of this research performed on using lithium compounds based deicer to mitigate 

ASR, no additional discussion is provided in this section. Detailed review is discussed in 

section 2.4 of this chapter. 
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Supplementary Cementing Materials 

Mineral admixtures like fly ash, ground-granulated blast furnace slag, and silica 

fume have been used to reduce the effects of ASR. The beneficial effects of these 

materials are due to: 

1. Dilution of the cement due to partial replacement with the mineral admixture 

2. Reduced pH of the pore solution 

3. Increasing solubility of calcium, and 

4. Subsequent formation of nonexpanding C-N(K)-S-H gel in place of swelling 

N(K)-S-H gel. 

It has been found that a large quantity of pozzolan or slag is needed to successfully 

control ASR. Adequate protection is attained by replacing 15 to 20 percent of the cement 

by Class F fly ash. For Class C fly ash with high lime content, a replacement level of 35 

to 40 percent is required. This higher level is due to the greater portion of silica in the fly 

ash that is tied up by the lime, lowering the amount of silica available to control the ASR. 

Silica fume is highly effective in controlling the ASR due to its high silica content 

and high surface area, cement replacement values of 10 to 15 percent are typical. Slag is 

typically used at replacement levels of 35 percent or more, to mitigate ASR. 

It is important to use enough pozzolan, since low quantities of added reactive silica 

may increase the severity of ASR rather than decreasing. 
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2.2.4. Test Methods to Evaluate Reactivity of Aggregates for ASR 

Field performance is the best method for evaluating the potential reactivity of an 

aggregate. When long term data are not available, short term laboratory test should be 

used to indicate the potential reactivity of an aggregate, although the results often do not 

predict field behavior accurately.  

There are several ASTM test procedures to find the reactivity of aggregates for 

ASR. ASTM C 289 is a quick chemical test that measures the solubility of silica when 

powdered aggregate is treated with sodium hydroxide. ASTM C 227 involves measuring 

the deleterious expansion in a mortar bar at 38ºC to 3 or 6 months. ASTM C 289 is a 

standard test method for potential ASR of aggregates, in which crushed aggregate is 

immersed in 1N NaOH solution for 24 hours, The NaOH solution is then analyzed for 

amount of dissolved silica and alkalinity (Chemical Method). ASTM C 295 involves 

petrographic examination of aggregates. ASTM C 441 is a mortar bar test, using pyrex 

glass as aggregate to evaluate the effectiveness of mineral admixtures in controlling ASR. 

ASTM C 1260 is a mortar bar test where bars are soaked in 1N NaOH solution for 14 

days to assess aggregate reactivity. ASTM 1293 is a recommended test in which the 

alkali content of the cement is artificially increased to 1.25% by weight of cement and the 

test is conducted at high humidity (close to 100%) at 38°C. The expansion of the concrete 

prism is monitored up to a period of 1 year. This method is used to test the effectiveness 

of SCMs and lithium compounds, but the test typically runs for 2 years. 
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2.3 Introduction to Deicing Chemicals 

One of the important factors for ASR to occur is the alkali in the concrete. 

Alkalies can be ingressed into the concrete by an external source like deicing chemicals, 

which are studied in this research. 

Deicing chemicals or “deicers” are chemicals that are sprayed on pavements to 

melt ice or snow. The chemicals work by dissolving slowly on contact to create brine, 

with the heat of solvation helping to melt the ice or snow. 

  Anti-icing chemicals or “ant-icers” are applied on pavement surfaces or aircraft 

bodies before snowfall to prevent ice or snow from adhering to their surface. This 

prevents the formation of a bond between slippery snow and ice and the roadway, thereby 

facilitating mechanical removal. Anti-icing allows for a very high level of traffic safety at 

low cost and significantly reduces the amount of road salt used.  

In this dissertation, both deicing chemicals and anti-icing chemicals will be 

termed as “deicing chemicals” or ‘deicers” for the sake of simplicity 

 

2.3.1 Function of Deicing Chemicals 

Salts are used as deicers for winter road maintenance because they lower the 

freezing point of water. Deicers are incapable of melting snow and ice in their dry (solid) 

state. When they first come into contact with moisture (ice and snow) they form brine 

chemical/water solution. Since the solution of deicers in water has a lower vapor pressure 

than the ice the ice changes its phase to liquid water. The brine then penetrates down 

through the ice and snow until it reaches the pavement. Once on the pavement surface, it 
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spreads outwards melting and undercutting the ice and snow for mechanical removal, 

plowing or shoveling [4]. Pellets are highly effective at undercutting because they contact 

only a small area of ice and bore vertically downward, quickly reaching the ice/pavement 

interface. 

2.3.2 Classification of Deicers 

Based on the chemical composition deicers are classified as: 

1. Chloride based deicers: These are most widely used deicers. They are easily   

available and at a low price. Sodium chloride and calcium chloride are some 

of the chloride based deicers. 

2. Magnesium based deicers: These deicers are non-chloride based and therefore, 

do not pose any problem like corrosion due to chloride and they are more 

expensive.  Calcium magnesium acetate (CMA) is a magnesium based deicer. 

3. Acetate and formate based deicers: These deicers replaced glycol and urea 

based deicers and are generally selected for their low environmental impact, 

high performance and corrosion inhibitors. Examples of acetate based deicers 

are potassium acetate and sodium acetate and examples of formate based 

deicers are sodium formate and potassium formate. They are high in cost. 

4. Glycol based deicers:  These deicers were used at airports before the acetate 

and formate based deicers. They are non-chloride based. Propylene glycol is 

used as aircraft deicer and is the only aircraft deicer approved for purchase for 

Air Force activities [5].  
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5. Urea: Urea is used as an airfield deicer/anti-icer in the aviation industry to 

avoid aircraft corrosion. However its use is now discouraged by 

Environmental Protection Agency due to environmental concerns. 

 

2.3.3 Highway Deicing Chemicals 

Chloride based deicers like calcium chloride and sodium chloride (rock salt) are 

widely used deicers for winter operations for snow and ice removal on concrete 

pavements. They are the most cost effective and easily available deicers in USA. 

Considerable research has been done to understand the influence of these deicers in 

initiating ASR in concrete pavement [6-14]. One of the adverse effects of sodium 

chloride deicers is on the corrosion of highway structures, especially bridge decks. 

It was estimated that the cost of corrosion damage caused by deicing and sea salt 

on highway bridges exceeded US$150 billion in the United States [15].  Of an estimated 

80,000 bridges in Canada, 50% have an average age of between 30 and 45 years and 

require major rehabilitation or total replacement [16]. 

Chloride attack in concrete is not essentially only on the cement paste but the 

reinforcement present in the concrete. A passivity layer of ferrous oxide forms on the 

steel as soon as the hydration of cement begins. This passivity layer protects the steel 

from any reactions with water and oxygen to from rust. However, chloride present in the 

deicer destroys this passive steel layer and activates the steel to form an anode in these 

reactions. Chloride ions combine with ferrous ions to form ferrous chloride. The ferrous 

chloride, in turn, reacts with water to form ferrous hydroxide and hydrochloric acid. 
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Hydrochloric acid in water exists as H+ and Cl- ions. Therefore chloride ions are 

regenerated, which cause further corrosion of the steel in concrete. 

Chloride based deicers also aggravate ASR in concrete. When concrete is exposed 

to chloride based deicers, they react with the hydration products of the concrete causing 

the liberation of OH- ions, which causes an increase in the pH of the pore solution of the 

concrete. This high alkaline environment, along with the presence of reactive silica from 

aggregate and moisture from the surrounding or the pore solution, triggers ASR in the 

concrete [17]. 

Calcium magnesium acetate (CMA) is used as an alternative deicer for chloride 

based deicers for concrete pavement because of its reduced potential to affect the 

environment and it is not as corrosive as salt. However, the use of these deicers as a 

general replacement for traditional deicers is restricted due to their high cost. From the 

various researches on CMA the results indicated that concrete was attacked by the CMA 

solutions through a de-lamination process of the cement matrix most likely associated 

with leaching of the calcium hydroxide. When the concrete is exposed to freezing and 

thawing in the presence of CMA deicing chemicals this leads to significant degradation 

of the concrete. The attack manifests itself through deterioration of the cement matrix and 

exposure of the aggregates which results in mass loss and decrease in the load capacity 

(as great as 50%) [18-20]. 
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2.3.4 Airfield Deicing Chemicals 

Deicers are used on airport runways for removal (deicing) and prevention (anti-

icing) of frost, ice, or snow accumulation on aircraft, airfields, and other base areas. 

Deicing and anti-icing are vital to flight safety because even small amounts of ice on 

airframes and airfoils can degrade aircraft lifting properties and control. Since chloride 

salts (sodium chloride and calcium chloride) and CMA are the cause of environmental 

impacts like groundwater contamination, damage to vegetation and corrosion they are not 

preferred for winter operations for snow and ice removal on airfield pavements. 

Grade B isopropyl alcohol has been in limited use for deicing and anti-icing due 

to its high volatility and vapors could be carried inside the aircraft creating a fire hazard. 

Ethylene glycol has a high biochemical oxygen demand (BOD), and is toxic to aquatic 

life and mammals.  It is subject to various hazardous substance regulations under the 

Clean Air Act. BOD is defined as the rate at which microorganisms use the oxygen in 

water or wastewater while stabilizing decomposable organic matter under aerobic 

conditions. The effect of increased BOD is to deplete dissolved oxygen levels in the 

water and deprive aquatic life of oxygen. Because of this, propylene glycols and Type I 

glycol are the only glycol based deicing and anti-icing chemical agents approved for 

purchase by airfield activities [21]. Urea has been used in pellet form and has a high 

BOD, and is of limited effect at temperatures below 25ºF. 

Due to the negative effects of the glycol based deicers and urea, the US Air Force 

advocates the use of three environmentally acceptable chemical agents such as potassium 

acetate, sodium acetate, and sodium formate.  
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Sodium acetate is a granulated product applied in the same manner as urea and is 

effective at temperatures as low as 10ºF, has a lower BOD and is less toxic than urea. 

Sodium formate is a granulated product similar to sodium acetate. It is effective at 

temperatures as low as 5ºF, has a low BOD, and has a neutral pH, which reduces 

corrosion problems. Potassium acetate is standardized with a minimum concentration of 

50% potassium acetate in water, by weight. Potassium acetate runway deicers were 

introduced in Europe in 1988 [22]. Today, this deicer is being used by over 200 major 

airports and military bases worldwide. It is effective at temperatures as low as 20ºF. 

Potassium acetate may be used as a pre-wetting solution when applying granulated 

sodium formate. 

At present, there are several airfield pavements experiencing premature 

deterioration due to the use of environmentally acceptable chemical agents like potassium 

acetate, sodium acetate, and sodium formate. Recent investigations on premature 

deterioration of airfield pavement have indicated deicing chemicals, such as potassium 

acetate and others, may be causing ASR distress in concrete.  In studying the mechanism, 

it has been found that there is an apparent jump in pH (and presumably in OH- ion 

activity) that occurs when potassium acetate solutions come in contact with Portland 

cement concrete, in particular calcium hydroxide present in concrete. The innocuous pH 

of the 50% potassium acetate solution itself (pH 11) jumped to a pH level of 15. The 

resulting solutions appear to be highly aggressive with respect to inducing ASR [23-24].  
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2.4 Lithium compounds 

2.4.1 History and Background 

The concept of using lithium salts to inhibit ASR expansion was first reported in 

1951 by McCoy and Caldwell [25]. In this study, mortar bars were produced with Pyrex 

glass as the reactive aggregate, and the alkali content of the cement was raised to 1.15% 

Na2Oeq by adding NaOH to the mixing water. Additional lithium compounds such as 

LiCl, Li 2CO3, LiF, Li2SiO3, LiNO3, and Li2SO4 were found to be the most effective 

agents to mitigate expansion due to ASR in mortars. From these studies, they 

recommended that a minimum lithium to alkali (potassium plus sodium) molar ratio 

(expressed as [Li]/[Na+K]) of 0.74 was needed to efficiently suppress expansion. 

Although initial findings were quite promising. it was not until the 1990s that interest in 

lithium as an admixture for concrete was renewed.  

 

2.4.2 Effects of Lithium Salts on ASR 

In 1989, Sakaguchi et al. [26] used Pyrex glass and known reactive sand as the 

reactive aggregates. LiOH H2O, LiNO3, and Li2CO3 were added to the mortar bars. All of 

the lithium compounds were effective in reducing expansion. The results also indicated 

that the effect of lithium salts varies with lithium to alkali molar ratios. The threshold 

lithium to alkali molar ratio to completely suppress ASR expansion was 0.9. He also 

found from expression of pore solutions from mortar bars made with LiNO2 that the 

concentration of lithium ions decreased with time while that of sodium and potassium 
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remained nearly constant. This was in contrast to tests without lithium where a decrease 

in both the sodium and potassium concentration was observed. 

The suppressive effects of lithium fluoride, lithium carbonate and lithium 

hydroxide was also confirmed [27, 28]. Also, insufficient dosage of lithium actually 

resulted in an increase in expansion compared to the control mortar without lithium; this 

is known as the pessimum effect.  

Pessimum effect may be caused due to an increase in the alkalinity (OH-) of the 

pore solution caused by the addition of lithium, especially LiOH. Most other forms of 

lithium also increase the pH of the pore solution. LiNO3, however, is unique in that it 

does not tend to increase the pH, thereby eliminating the pessimum effect [29]. The 

suppressive effects of lithium compounds on ASR expansion depend strongly on the kind 

of lithium compounds used, the [Li]/[Na+K] molar ratio, and on the nature of the reactive 

aggregate [30].  

It has also been found that there is a linear relationship between the effective 

dosage of LiNO3 in terms of [Li]/[Na+K] molar ratio and the difference between the 

concrete alkali content and the threshold alkali level of the aggregate (alkali reactivity 

level) [32]. LiNO3 was also effective regardless of whether the concrete prisms were 

stored in a moisture room at 38ºC or soaked in alkaline solutions. 

Although both LiOH and LiNO3 are good inhibitors for suppressing ASR induced 

expansion, LiNO3 is a better choice compared to LiOH. LiOH raises the OH- ion 

concentration of the pore solution, increasing the challenge for lithium. Furthermore, the 

caustic nature of LiOH poses some safety concerns. The findings on LiNO3 indicate that 
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it does not introduce more OH- ions in the pore solution, it is fully soluble, and of neutral 

pH, making it convenient and safe to handle. LiNO3 also has a benign effect on the 

concrete properties of strength, electrical resistance, drying shrinkage, and resistance to 

freezing and thawing, whereas LiOH can retard the strength development [32]. Studies 

also show that LiNO3 is compatible with other chemical admixtures [33]. For these 

reasons, LiNO3 has become the most promising lithium salt for suppressing ASR 

expansion [34]. 

 

2.4.3 Summary of Research Findings with Lithium Compounds 

Some general facts regarding the effects of lithium in controlling ASR expansion: 

1. All 11 types of lithium salts studied, including LiF, LiCl, LiBr, LiOH, LiOH 

H2O, LiNO3, LiNO2, Li2CO3, Li2SO4, Li2HPO4, and Li2SiO3, have shown some 

suppressive effects in controlling ASR induced expansion in fresh concrete, provided 

they are present at appropriate dosages. 

2. The efficiency of lithium in suppressing expansion due to ASR strongly 

depends on the nature or reactivity of the aggregate, the form of the lithium, and the 

amount of alkalis present. 

3. About half the amount of the lithium added to suppress ASR induced expansion 

is adsorbed by the hydrating cement, and the uptake of lithium by C–S–H is more than 

that of sodium and potassium. Hence, only half of the lithium added is available for the 

suppressive purpose. 
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4. The minimum lithium to alkali molar ratio to efficiently inhibit deleterious 

ASR expansion is generally in the range of 0.67-1.20 for most of the lithium salts studied 

and 0.72-0.93 for LiNO3. 

5. Both LiOH and LiNO3 are more effective in preventing the expansion of highly 

reactive aggregates than that of slowly reactive aggregate. 

6. The benefit of using LiNO3 to inhibit ASR expansion over other lithium salts is 

that LiNO3 does not increase the OH- ion concentration of the pore solution, therefore, 

there is no pessimum effect. Its benign effect on concrete properties, its neutrality, and 

high solubility all provide it with a unique response in controlling ASR expansion. 

7. Although autoclaving offers a method for accelerating ASR and decreasing the 

duration of testing, the results from autoclave expansion tests involving lithium are not 

directly comparable to those from studies at lower temperatures and pressures.  

2.4.4 Mechanism of lithium salts on ASR 

Even though lithium-bearing admixtures have shown to be an effective method to 

mitigate expansion due to ASR, the mechanisms by which lithium salts inhibit expansion 

has not been unequivocally established.  

The widely recognized mechanisms by which lithium compounds provide 

effectiveness include: 

1. Effects of lithium on the nature of alkali silica reaction products 

2. Effects of lithium on silica dissolution 

3. Repolymerization of ASR gel. 

4. Colloid and surface chemistry effects 



27 
 

Effects of Lithium on Alkali Silica Reaction Products 

The ability of lithium to change the nature of the reaction products was first 

proposed by Lawrence and Vivian [35] and is now the most commonly recognized 

mechanism regarding the suppressive effect of lithium compounds. They studied the 

reactions of different alkali solutions, including NaOH, KOH, LiOH, and a mixture of 

those three alkalis, with finely divided, precipitated silica. A gelatinous product was 

observed in all of the reaction systems, but the gel product in the presence of lithium ion 

was different when only sodium or potassium was present. This suggests that the lithium–

silica complex is less soluble and more stable and, therefore, is capable of protecting 

silica from further attack by other alkalis. A similar ASR reaction product was found by 

Sakaguchi et al. [28] by observing the interface between Pyrex glass and hardened 

cement paste by means of energy dispersive X-ray spectrometry. No visible ASR gel at 

the interface was found; instead, a form of lithium silicate, which hardly swells and 

dissolves, was produced at the surface of aggregates. This lithium–alkali (and possibly 

calcium)-silicate must contain a minimum proportion of lithium to be non-expansive 

because of the pessimum effect of lithium dosages on controlling ASR expansion as 

observed by Stark [27]. 

Chatterji [36] argued that when lithium is present with sodium and potassium, the 

alkalis would compete for adsorption at negatively charged sites on the silicate surface. 

Since adsorption affinity increases with ionic radius, the sodium adsorption will be 

preferential to lithium adsorption. But Iler [37] has already postulated that, of the alkali 

metal cations, lithium is unique because it stabilizes colloids and prevents gelling, so the 
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highly hydrated lithium ions are not adsorbed as near to the silicate surface as a cation 

with smaller hydrated radius, such as sodium or potassium. 

 

Effects of Lithium on Silica Dissolution 

In examining the effect of various alkali-hydroxides on silica dissolution rate, it 

has been found that the dissolution rate increased in this order [35] 

LiOH<NaOH<KOH 

That is, among LiOH, NaOH, and KOH, the rate of silica dissolution is the slowest for 

LiOH and fastest for KOH [35, 38].  The rate of silica dissolution decreased in a similar 

order and this rate decreases with increasing hydrated ion radius of the alkali metal 

cations in solution surrounding a silicate surface [38]. 

Chatterji et al. (1987) [36] proposed that the size of the hydrated ion radius was 

important in determining the extent of chemical reaction during ASR, supporting research 

findings that degree of chemical reaction increased from lithium to sodium to potassium. 

Recently, research was conducted to examine the reaction of silica gel in 

simulated pore solutions with and without lithium salts in which Inductively Coupled 

Plasma Optical Emission Spectroscopy (ICP-OES) was used to quantitively measure the 

ion concentrations of silicon, calcium, lithium, and sodium in the filtrates obtained from 

the slurry samples. In the slurries prepared with LiCl and LiNO3, the dissolved Si 

concentration decreased with increasing lithium dosages, again suggesting that lithium 

could suppress silica dissolution. However, in the same work with LiOH, in contrast to 

the slurries with LiCl and LiNO3, the slurry with LiOH showed an increase in silica 
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dissolution with increasing lithium dosage, implying that LiOH actually accelerates silica 

dissolution [39-41]. 

Different lithium salts yield different influences on silica dissolution, thus it is 

hard to say that decreasing silica dissolution is the only reason for the suppressive effects 

of all lithium salts on ASR expansion. 

 

ASR Gel Repolymerization 

Based upon microscopy, elemental analysis, and surface chemistry principles, it 

has been suggested that in addition to decreasing the rate of silica dissolution, lithium 

may limit repolymerization of dissolved silica species into a gel, effectively reducing the 

potential for expansion [40, 41]. Based on the work on LiNO3, LiCl, and LiOH, it was 

suggested that the suppressive effect of lithium on ASR expansion should not largely 

depend on the quantity of dissolved silica, but should be attributed to the limitation of 

ASR gel repolymerization which is supported from the investigations of ASR gel in 

simulated pore solutions with and without lithium salts, in which transmission soft X-ray 

microscopy was employed to image the changes in gel microstructure. The ASR gel 

obtained from an ASR affected structure was exposed to NaOH alone and NaOH with 

LiCl solutions. In the presence of NaOH solution alone, the ASR gel was partially 

dissolved and repolymerized as a potentially expansive gel. While in the presence of 

LiCl, a significant dissolution of the original gel particles was observed, but the 

repolymerization into an expansive gel was decreased as compared to the reaction of the 
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ASR gel in NaOH solution alone. It was then proposed that lithium might limit the 

repolymerization of ASR gel, which can effectively reduce the potential for expansion. 

It is noticeable that, in this theory, before adding lithium salts, the ASR has 

already occurred, and substantial ASR gel exists. It may be difficult to apply this theory 

to new concrete because according to previous findings [42], no ASR gel is formed when 

the lithium dosage is above a certain level. It should also be noted that these observations 

are based on one particular lithium salt. The situation may be different for other lithium 

salts. However, this theory may offer an explanation regarding the suppressive effect of 

lithium on existing concrete structures damaged by ASR expansion. 

 

Colloid and Surface Chemistry Effects 

Electrical double layer (EDL) theory was used to explain the suppressive effect of 

lithium on ASR [43, 44]. Exchange of electrical charges occurs whenever two dissimilar 

materials are brought in contact. The ASR gel is assumed to be negatively charged and 

surrounded by positively charged electrical double layers. These double layers not only 

determine the type and concentration of the positive ions in them, but also affect the ion 

transport to the ASR gel. The thickness of these double layers can be calculated from the 

ionic strength and hydrated radius of the cations. Theoretically, cations with larger 

valence and smaller hydrated ionic radii will result in a thinner double layer, 

consequently causing a smaller gel expansion. As shown in Table 2.1, at the same 

valence level, the hydrated ionic radius of Li+ ion is larger than those of Na+ and a K+ 

ion, which means that lithium should produce greater expansion as compared to sodium 
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and potassium. This is contradictory to the results generally observed in expansion 

testing. Hence, the EDL theory cannot satisfactorily explain the suppressive effect of 

lithium in ASR expansion. 

Table 2.1 Chemical information for Li+, Na+, and K+ ions 

  

 

 

  

 

 

It was then proposed that the suppressive effectiveness of cations depends on the 

ionic surface charge density (r) [45]. The larger the value of r of a cation, the greater its 

electron affinity and thus the stronger the bonding between the cation and anions in the 

gels, resulting in a more contracted and densified structure, which exhibits less tendency 

to expand. Therefore, from the information in Table 2.1, the effectiveness of cations in 

inhibiting ASR expansion followed the order: Li>K>Na, which coincides with the 

expansion testing results. It is also reasoned that the suppressive effect of lithium on ASR 

expansion is attributed to the reduction in surface charge density of the ASR gel, which 

may occur in the presence of lithium [40, 41]. 

It has been suggested to pay attention to the role of calcium in the suppressive 

effects of lithium on ASR expansion [46]. In a recent study, on mortars containing 

reactive flint sand and lithium ([Li]/[Na+K]=0.74), the reaction product was observed to 

Ions Valence Ionic radius (nm) Hydrated ionic radius (nm) 

Li 1 0.060 0.340 

Na 1 0.095 0.276 

K 1 0.133 0.232 
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contain K, Na, and Si but with little or no calcium. It was hypothesized that lithium might 

form a nonswelling lithium–alkali–silica complex instead of the typical swelling ASR gel 

composed of calcium–alkali–silica complex. Since this is contrary to the EDL theory, 

which predicts that an ASR gel containing larger concentrations of cations with larger 

valences will exhibit less expansion. That is, a gel with higher ratio of calcium to 

monovalent cations (Na+, K+, and Li+) should result in less expansion. Further study is 

necessary to elucidate the role of calcium. 

 

2.4.5 Discussion on Lithium Compounds in Mitigating ASR 

Even though all the mechanisms are reasonable under certain conditions, there are 

some findings from previous work on the influences of lithium on ASR that no 

mechanism completely explains such as: Why are lithium salts more effective with highly 

reactive aggregates than with slowly reactive aggregates and what is the role of calcium 

in affecting expansions? However, there are some general agreements as follows:  

1. Lithium salts do react with silica to form lithium containing gel product in the 

absence of other alkalis, but this gel does not produce any expansion in mortar bar or 

concrete prism tests;  

2. When the lithium is present with other alkalis, the form of reaction product, 

whether crystalline or gelatinous, significantly depends on the lithium dosage and may 

also vary with the location and time. 
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2.5 Summary 

Based on the above review on lithium compounds, it is well understood that 

several lithium compounds, when proportioned appropriately into the fresh concrete, 

have shown potential to mitigate expansions induced by ASR. Topical applications of 

lithium compound solutions like LiNO3 have also shown promising results to mitigate 

ASR in existing structures. However, the use of lithium acetate (LiC2H3O2) as ASR 

mitigation in the existing concrete has not been explored yet.  

In the midst of concrete deterioration caused by new formulated deicers such as 

potassium acetate, sodium acetates and formates, it is important to evaluate the 

effectiveness of deicing chemicals that are based on lithium acetate by itself, or by 

combination with potassium acetate, which is widely used as airfield deicing solution. 

Considering the properties of other alkali-acetates like potassium acetate and sodium 

acetate, lithium acetate may have a significant potential as a deicing chemical. 
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CHAPTER THREE 

MATERIALS AND TEST PROCEDURES 

 

3.1 Materials 

In this study, test specimens comprising of mortar bars, concrete prisms and 

concrete slabs were subjected to deicer solution and evaluated for their potential to 

undergo ASR and scaling resistance of concrete. 

As part of this study, seven aggregates were selected that differ in their 

mineralogy and degree of alkali silica reactivity. Depending on the specific test method, 

different sets of aggregates were employed. Low-alkali and high-alkali Type I Portland 

cements were used in this research. 

In this study, four different soak solutions were employed to condition the 

concrete prisms, mortar bar specimens and the concrete slabs. These were potassium 

acetate deicer, potassium acetate with varying amounts of lithium acetate, lithium acetate 

solution, and sodium hydroxide solution. 

 

3.1.1. Aggregates 

In this research, four natural reactive aggregates and two natural non reactive 

aggregates with established history with respect to ASR, were selected. Fused silica was 

used as a control reactive aggregate in specific tests. The properties of these aggregates 

are listed in Table 3.1. The reactive aggregates used in this study were: 

1. NM Rhyolite – This reactive gravel was obtained from the Las Placitas Gravel Pit from 
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the Bernalillo County in New Mexico. This aggregate primarily consists of rhyolite and 

has shown very high levels of reactivity [48]. 

2. Spratt Limestone – This aggregate was obtained from the Spratt quarry in Ontario, 

Canada. It consists primarily of calcite with minor amounts of dolomite, which are not 

alkali-reactive, plus about 10% acid insoluble residue. The latter contains the reactive 

component, which is reported to consist of 3% to 4% of microscopic chalcedony and 

black chert, which is finely dispersed in the matrix [49]. This aggregate has an 

established history of being alkali-silica reactive in field structures and has been used as a 

reference aggregate in many ASR studies. 

3. NC Argillite – This aggregate is a quarried material from the slate belt of North 

Carolina from the Gold Hill Quarry in North Carolina. This aggregate primarily consists 

of reactive metatuff/argillite. This aggregate has an established history of poor field 

performance in several bridge structures in North Carolina [50]. 

4. SD Quartzite – This aggregate is obtained from crushing quarried rock from the Sioux 

Falls quarry, located in the southeastern South Dakota. This aggregate consists of strained 

quartz grains that are cemented with interstitial secondary quartz cement. The interstitial 

matrix also contains microcrystalline quartz, hematite and kaolinite. This aggregate has 

an established history of being reactive in concrete pavements in Minnesota and South 

Dakota [51]. 

5. Fused Silica – Graded fused silica obtained from C-E Minerala, Greenville, TN was 

used as a control reactive aggregate in specific tests. This aggregate is a commercially 

produced material that is of high purity silica, and has been established in previous lab 
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studies to be a highly reactive aggregate. This aggregate was used as a component of a 

blended aggregate with non-reactive Ottawa sand at 5% by mass. 

The non-reactive aggregates used in this study were: 

1. Graded Ottawa sand: A non-reactive silica sand from Ottawa, Illinois. This graded 

Ottawa sand conforms to the ASTM C 778 specification. The sand is mainly made of 

silicon dioxide (approximately 99.7%) and the main mineral of this aggregate is Quartz. 

The sand was procured by the US Silica Company. 

2. Illinois, Dolomite: A quarried rock containing dolomite, from Material Service 

Corporation, Illinois. 

Table 3.1 Properties of aggregates (X- No data) 
 

Aggregate 
Property 
 

NM, 
Rhyolite 

Spratt, 
Limestone 

NC, 
Argillite 

SD, 
Quartzite 

IL, 
Dolomite 

IL, 
Ottawa 

Water 
absorption, 
% 
 

1.09 0.46 0.34 0.42 2.12 0.0 

Bulk 
specific 
Gravity 
(OD) 
 

2.60 2.69 2.75 2.51 2.66 2.65 

Bulk 
specific 
gravity 
(SSD) 

2.63 2.71 2.76 2.52 2.71 2.65 

Dry rodded 
Unit 
weight, 
Kg/m3 

1585 1568 1566 1557 1563 X 
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3.1.2. Cement 
 

Two different cements having different alkali contents were used in this research 

(Table 3.2): 

1. High-alkali cement: A Type I cement having an alkali content of 0.83% (Na2Oeq) was 

used. This cement was obtained from Lehigh, Evansville, P.A. 

 2. Low-alkali cement: A Type I cement having an alkali content of 0.29% (Na2Oeq) was 

used. This cement was obtained from Lafarge, Holly Hill, SC. 

Table 3.2 Chemical composition of cements 

Oxide, % 
 

Low alkali cement (LA) High alkali cement (HA) 

SiO2 

 
20.23 20.34 

Al 2O3 
 

4.80 5.09 

Fe2O3 
 

3.26 2.67 

CaO 
 

64.45 61.60 

MgO 
 

1.17 2.16 

SO3 
 

2.79 4.25 

Na2O 
 

0.07 0.27 

K2O 
 

0.34 0.85 

Equivalent alkali 
 

0.29 0.83 

Loss on ignition 
 

3.30 2.03 

Insoluble residue 
 

0.20 0.25 

C3A 
 

7.20 8.97 

C3S 
 

63.76 46.06 

C2S 
 

9.90 23.57 

C4AF 
 

9.92 8.12 
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3.1.3. Deicing Chemicals 
 

Concrete and mortar specimens were exposed to the following solutions: 

1. Potassium Acetate:  It is a 50% by weight deicer solution, available commercially. 

This deicer was used in its available form in this study; it had molarity of 6.4 and a 

specific gravity of 1.265. To find the effectiveness of potassium acetate with a lower 

dosage level, a molar concentration of 3.0 was used. 

2. Lithium Acetate: The effectiveness of lithium acetate as a deicer solution was studied 

in this research. It’s a small crystal like substance with a density of 1.3 g/cc at 25ºC with 

the molecular weight of 102.1. A molar concentration of 3.04 was used. 

3. Potassium Acetate–Lithium Acetate: Lithium acetate in different molar ratios with 

potassium acetate (Li/K) was used. 

4. Sodium Hydroxide: Reagent grade sodium hydroxide pellets were used in this study to 

prepare the soak solution for conducting the standard ASTM C 1260 and ASTM C 1293 

tests. 

5. Lithium Nitrate: It is a 30% solution of LiNO3, produced by FMC chemicals and was 

used to understand the pre-treatment effect before exposing to deicers. It is a odorless 

white to yellow colored solution. The pH of 5% solution @ 25ºC is in between 7 and 9.5. 

The specific gravity is 1.2 to 1.3 at 25ºC. The molecular weight of LiNO3 is 68.95. The 

density of LiNO3 is 1.2 g/cm3. 
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3.2 Sample Notation 

In this dissertation, the aggregate sources and the deicer solutions with different 

combination were identified as listed in Table 3.3. 

 
Table 3.3 Notation Table 

 
Aggregates 

NM 
 

Rhyolite from New Mexico 

SP Spratt Limestone from Ontario, Canada 

NC Argillite from North Carolina 

SD Quartzite from South Dakota 

Soak Solutions 

6.4K 6.4 molar KAc 

6.4K-
0.2 

6.4 molar KAc-LiAc blended deicer with Li/K ratio of 0.2 

3K 3 molar KAc 

3K-0.2 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.2 

3K-0.4 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.4 

3K-0.6 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.6 

3K-0.8 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.8 

1N 1N NaOH  

3L 3 molar LiAc 

 
 

 



40 
 

3.3 Test Procedures 

3.3.1 Standard and Modified ASTM C 1260 Test 

The standard ASTM C 1260 test known as the “Accelerated Mortar Bar Test” is a 

method to assess the reactivity of aggregates.  In this test, mortar bars (25 mm x 25 mm x 

285 mm) with gage studs at the ends are prepared at a water-to-cement ratio of 0.47.  The 

aggregate-to-cement ratio, by mass, is maintained at 2.25.  After 24 hours of curing in a 

moist cabinet, the mortar bars are demolded. The mortar bars are then transferred to a 

storage container with sufficient water to immerse all the samples.  The sealed container 

is placed in an oven at 80ºC for 24 hours.  After 24 hours, the mortar bars are removed 

from the oven and a zero reading in the length change comparator is taken.  The mortar 

bars are subsequently transferred to a 1N sodium hydroxide solution, which is preheated 

to 80ºC. Length change readings are taken thereafter at periodic intervals to determine the 

percent expansion.  In this research, the length-change measurements were taken up to 28 

days.  

Generally, an expansion of 0.1% or less at 14 days of immersion in the sodium 

hydroxide solution is considered to indicate the innocuous nature of the aggregate.  

Expansion greater than 0.2% at 14 days is considered to indicate the potentially reactive 

nature of aggregate.  Expansions between 0.1% and 0.2% require additional confirmation 

by either conducting petrographic examination (ASTM C 295), concrete prism tests 

(ASTM C 1293), or by evaluating the field performance to ascertain the reactivity of the 

aggregates.  
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Modifications to the standard ASTM C 1260 test were adopted in this research study 

to evaluate the ASR mitigation potential of lithium acetate and combination of LiAc with 

KAc. The principal modification to the standard procedure was to use potassium acetate 

deicer as a soak solution for mortar bars, instead of a 1N NaOH solution. Also, 

combination of KAc with LiAc at different Li/K molar ratios of 0.2, 0.4, 0.6, and 0.8 

were used as soak solutions. In addition, saturated solutions of lithium acetate solutions 

were employed as soak solutions in some specific tests. 

The procedure to prepare mortar bar specimens and their subsequent storage regime 

was identical to the procedure described in standard ASTM C 1260 test.  In this research, 

the mortar bars were stored for 28 days in the soak solution, instead of typical 14 days as 

required in the standard ASTM C 1260 test procedure.  The extended testing was 

conducted to assess the effectiveness of mitigation measures in suppressing the effects of 

ASR at later ages. During the course of 28 days, length-change measurements were taken 

at 0, 3, 7, 11, 14, 21 and 28 days.  The results of all the standard and the modified ASTM 

C 1260 tests discussed in this research study are based on an average of readings obtained 

from 4 mortar bars. 

 

3.3.2 Modified ASTM C 1293 Test 

The standard ASTM C 1293 test known as the “Concrete Prism Test” is a method to 

determine the length change of concrete due to alkali silica reaction.  This test was used 

to detect the potential for aggregate reactivity by measuring the length change in the 

concrete prism. In this test, a concrete prism of 75 mm x 75 mm x 285 mm with gage 
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studs at the ends are prepared using a concrete having a cement content of 420 ± 10kg/m3 

and  70 ± 2% of the total volume of the concrete comprised of coarse aggregates. The 

water-to-cement ratio was maintained at 0.43 and high-alkali cement was used in this test 

procedure. In this test, including the cement alkalis, the total alkali content of the 

concrete was increased to 1.25% by mass of cement. The fine aggregate used was non-

reactive graded Ottawa sand conforming to ASTM C 778.   

Modification to the standard ASTM C 1293 test was made to evaluate the 

performance of deicing chemicals. The prisms were made in a similar way as described 

in the standard ASTM C 1293 test procedure, but after de-molding, the prisms were 

soaked in potassium acetate solution with different MC of 6.4 and 3.0. To study the 

mitigation effect of lithium acetate, it was added to potassium acetate with different MR 

of Li/K 0.2, 0.4, 0.6, and 0.8. Four prisms were cast in each test in which one prism was 

exclusively used for slicing and studying concrete specimens for SEM-EDX analysis. In 

these modified tests, apart from prisms made with boosted alkali levels using the high-

alkali cement, prisms were also made without boosting the alkalis and made using low-

alkali cement.  

 

3.3.3 Modified ASTM C 672 Tests 

This test was used to determine the resistance to scaling of a horizontal concrete 

surface exposed to freezing and thawing cycles in the presence of deicing chemicals. In 

this test, concrete slabs having a surface area of 0.045m2 with 75mm in depth were 

prepared using a concrete having a cement content of 420 ± 10kg/m3, with air content of 
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6 ± 1%. The water-to-cement ratio was maintained at 0.43 and low-alkali cement was 

used in this test procedure. The fine aggregate used was non-reactive graded Ottawa sand 

conforming to ASTM C 778.  After the concrete stopped bleeding, a mortar dike (25mm 

wide and 20mm high along the perimeter) was placed on the top along the edges. The 

specimens were then immediately covered with a polyethylene sheet. After 24 hours of 

curing, the specimens were de-molded and placed in moist storage as prescribed in 

ASTM C 511. After the air and moist curing, the flat top surface of the concrete slab was 

covered with 6mm of soak solution. 

The specimens were placed in a freezing environment at -18 ± 3ºC for 16 to 18 hours 

and then removed from the freezer and kept in the lab environment for 6 to 8 hours at 23 

± 2ºC, which is one cycle of the experiment. The test was continued for 100 cycles. After 

every 5 cycles, the solutions were flushed thoroughly and filtered for residue to determine 

the weight loss and visual examination was conducted. Visual rating of the surface was 

made after 5, 10, 15, 25 and every 25 cycles with the following scale: 0 for no scaling, 1 

for very slight scaling, 2 slight for moderate scaling, 3 for moderate scaling, 4 moderate 

to severe scaling and 5 for severe scaling. After the visual examination, the solutions 

were replaced and the test was continued. Three slabs were cast in each test and 6.4 molar 

KAc and plain lithium acetate were used as deicers to determine there effects on the 

concrete surface.  

 

3.3.4 Penetration Depth of Deicer Solution in Concrete Slab Tests 

 A new methodology was developed to determine the penetration of deicer 

solution into a concrete specimen. For this, the specimens used in the modified ASTM C 
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672 tests were reused. Samples were kept in a 38ºC room and the top surface of the 

concrete slabs were covered with 6mm of soak solution. Expansion readings were noted 

each month. After exposing the concrete slabs to deicer solution for six months, a core of 

concrete 1.5” in diameter and 3” in deep was taken from each test sample. After the core 

was dried, the concrete core was sliced into six pieces of 0.5” in height each. They were 

then crushed into fine powder and the potassium content was determined using 

Inductively Coupled Plasma (ICP) to establish a profile of potassium along the depth 

from the top. The cross section of core sample was also used for mapping using an X-Ray 

Fluorescence spectrometer (XRF) to establish the depth of penetration of potassium. 

 

3.3.5 Modified ASTM C 227 Test Method to Evaluate Effectiveness 

of LiNO3 Pre-treatment 

 The main objective of this test was to determine the effectiveness of lithium 

nitrate when applied as pre-treatment before exposing to regular deicers like potassium 

acetate. In this test, mortar bars (25 mm x 25 mm x 285 mm) with gage studs at the ends 

were prepared at a water-to-cement ratio of 0.47. The aggregate-to-cement ratio, by mass, 

was maintained at 2.25. Fused silica was used at five percent by mass of the blended 

aggregate with Ottawa sand. A low-alkali cement was used in preparing the mortar 

specimens. 

After 24 hours of curing in a moist cabinet, the mortar bars were de-molded.  The 

mortar bars were then dried at ambient temperature and a zero expansion reading was 

taken. Lithium nitrate was applied on the surface of the mortar bars by brushing 1 coat, 3 

coats and 5 coats using a paint brush. The mass of the sample was recorded before and 
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after application of LiNO3 to ascertain the dosage. Once the lithium nitrate was totally 

absorbed, the mortar bars were brushed with 3 coats potassium acetate coats for each test. 

The samples were stored in the container as mentioned in the ASTM C 227 and 

maintained at 38°C (100°F).  The bars were coated periodically with potassium acetate at 

1, 7, 14, 28, and 56 days after measuring the length change and dynamic modulus of 

elasticity.  

 

3.3.6 Dynamic Modulus of Elasticity 

The dynamic modulus of elasticity (DME) of the mortar bars was measured at 

periodic intervals to quantify the physical distress occurring in the mortar bars and 

concrete prisms subjected to all ASTM C 1260 and ASTM C 1293 tests. The DME 

values were determined using the resonant frequency method based on impulse excitation 

technique based on ASTM E 1876-01.  A GrindoSonicTM instrument was used to 

determine the resonant frequencies of the samples.  

In this test, the mass and the resonant frequency of the bar/prism specimen were 

determined soon after taking the expansion readings. The samples were supported on two 

rubber strips at a distance of 0.224L from the ends of the bar (as per ASTM C 2215, 

where L is the length of the bar). The detecting transducer was then placed at the center 

of the vertical face of the sample and the sample was struck by an exciter on the top 

surface of the bar. The resonant frequencies were recorded. Using this frequency, mass 

and the dimensions of the specimens, the DME values were calculated. 
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E=CMn2 

Where 

M = mass of specimen, kg, 

n = fundamental transverse frequency, Hz, 

C = 0.9464 (L3T/bt3), N·s2 (kg·m2) for a prism, 

L = length of specimen. 

t = dimensions of cross section of prism. 

T = a correction factor which depends on the ratio of the radius of gyration. 

 

3.3.7 pH Measurements 

One of the main components necessary for ASR to occur is a high pH 

environment (high concentration of hydroxyl ions). In the standard ASTM C 1260 test, 

1N NaOH solution provides a highly alkaline environment.  In order to determine the 

changes in the hydroxyl ion concentration due to potential interaction between deicer 

soak solutions and hydration products of cement, the pH of the soak solution were 

measured at the 3 days, 14 days and 28 days for all ASTM C 1260 tests. In modified 

ASTM C 1293 tests, the pH was measured at 3 months, 6 months and 12 months. The 

pH of all the soak solutions was determined using an Oakton pH 110 meter with a low 

sodium error electrode, calibrated to buffer solutions with pH 4, 7, 10 and 12.45. 

 

3.3.8 Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis 

Scanning electron microscopy (SEM), in back-scattered mode, and EDX analyses 

were conducted on polished sections of mortar bars from selected standard and modified 

ASTM C 1260 tests and selected prisms from modified ASTM C 1293 tests, using a 

Hitachi S3500N electron microscope. The instrument was operated at an accelerating 
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voltage of 20KeV, in a variable pressure mode.  The samples for the investigation were 

prepared by slicing the bars in a slow-speed diamond saw. The specimens were then 

impregnated with epoxy, vacuumed and cured until they were set. The specimens were 

then polished on a series of diamond embedded discs (No. 60, No. 140, No. 600 and No. 

1200 grit), with a final polish using 3 micron and 0.5 micron diamond suspension on a 

cloth. 

 

3.3.9 ICP to Determine the Depth of K and Li Penetration 

An Ultima 2 ICP optical emission spectrometer (Horiba Jobin Yvon, 

Longjumeau, France) was used for sample analysis to determine the concentration of K 

and Li of the core samples from the slabs exposed to potassium acetate and lithium 

acetate. The 3” cores were sliced into 6 pieces of 0.5” each. Each piece was then crushed 

into a homogeneous fine powder.  Approximately 0.1 gram of powder was accurately 

weighed on an analytical balance to 4 decimal places and placed into the bottom of 30 

mL Teflon microwave digestion vessel and topped with a solution made of 10% nitric 

acid to dissolve the powder. The vessels were placed in the microwave system with the 

caps not fully torqued down. The samples were heated at 80°C for 10 minutes then 

cooled and vented.  They were filtered and transferred to 50 mL volumetric flasks and 

diluted to 50ml with plasma grade water. Digested samples were transferred to 2 ounce 

(60 mL) amber Nalgene bottles that had been rinsed with plasma grade water and dried. 

 Calibration solutions were routinely prepared from aqueous multielement 

standards.  Standards of 20ppm (High Purity Standards, Charleston, SC) were used to 

make stock solutions of 10ppm, 1ppm, 0.10ppm and 0.01ppm. Calibration standards were 
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run in 3 replicates and plotted as a linear function for each element. After running the 

test, the results were compared with the XRF data for correlation to understand the 

penetration and the reaction mechanism with depth.  

 

3.3.10 XRF to Determine the Depth of Penetration 

To evaluate the penetration depth of deicers into concrete, X-Ray Fluorescence 

(XRF) techniques were adopted for mapping the concrete specimen using an Eagle 3 

XRF with a 30 mm2 EDAX energy dispersive spectrometer (EDS). The test was 

conducted at the National Institute of Standards and Technology (NIST). Mapping 

provides a simple method for visually organizing the chemical data collected with an 

EDS detector.  A confocal X-Ray beam is addressed to every point in a visual field.  The 

chemical data is stored in a multi-dimensional matrix where the Z-axis is the X-Ray 

energy for a specified energy window, which was set to 20keV, and the X and Y axes are 

simply coordinates of pixels whose relative brightness indicate the concentration of a 

particular element. Using a graphics processing tool developed at the NIST known as 

Lispix, the data are then organized to form element maps.  These maps are images whose 

pixels represent the relative concentration of a particular element as defined by 

integrating the counts in the characteristic X-Ray peak for said element.  In addition, 

because the entire X-ray spectrum is recorded at each pixel, unanticipated chemical 

features can be recovered [52]. 

Cores were taken from the concrete slabs that were exposed to deicers and they 

were cut with a diamond saw. The specimens were then impregnated with epoxy, 

vacuumed and cured until they were set. The specimens were then polished on a series of 
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diamond embedded discs (No. 60, No. 140, No. 600 and No. 1200 grit), with a final 

polish using 3 micron and 0.5 micron diamond suspension on a cloth. Specimens were 

then examined using the XRF method. 

 

3.3.11 Fresh Properties of Concrete 

Properties of the fresh concrete were measured for all the batches evaluated in this 

study. The slump of the concrete was determined according to ASTM C 143. The unit 

weight and yield were determined in accordance with ASTM C 138. The amount of 

cement in kilograms was calculated from the actual density of the concrete for 1 m3 

volume of concrete to make sure the cement content was within 420 ± 10 Kg/m3. 

 

3.3.12 Dry Rodded Unit Weight 

 Coarse aggregates were sieved and mixed as per the gradation requirements of the 

standard ASTM C 1293 test procedure. Dry rodded unit weights of the graded aggregates 

were determined according to ASTM C 29. 

 

3.4 Experimental Program and Mixture Designs 

This section presents the experimental programs and mixture designs of the standard 

ASTM C 1260 test and modified ASTM C 1260, ASTM C 1293, ASTM C 672, and 

ASTM C 227 tests. The experimental program for penetration depth of deicer solution is 

also presented. 
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3.4.1 Standard and Modified ASTM C 1260 Tests 

 The test matrix of the standard and modified ASTM C 1260 tests is shown in 

Table 3.4 

Table 3.4 Test program for the standard and modified ASTM C 1260 tests 

Test 
Method 

Molar 
Concentration 

of KAc 

Soak 
Solution 

Cement 
Alkali 
Type 

Aggregates 

NM SP NC SD 

Standard -- 1N NaOH HA 
 

X X X X 

Standard -- 1N NaOH LA X X X X 

Modified 

3.0 

Li/K = 0.0 HA X X X X 

Modified Li/K = 0.2 HA X X X X 

Modified Li/K = 0.4 HA X X X X 

Modified Li/K = 0.6 HA X X X X 

Modified Li/K = 0.8 HA X X X X 

Modified 
6.4 

Li/K = 0.0 HA X X X X 

Modified Li/K = 0.2 HA X X X X 

Modified 

3.0 

Li/K = 0.0 LA X X -- -- 

Modified Li/K = 0.2 LA X X -- -- 

Modified Li/K = 0.8 LA X X -- -- 

Modified 
6.4 

Li/K = 0.0 LA X X -- -- 

Modified Li/K = 0.2 LA X X -- -- 

Modified -- LiA HA X X -- -- 

Modified -- LiA LA X X -- -- 

 

Table 3.5 shows the mixture design used for the standard and modified ASTM C 

1260 tests in this study. The mortar mix was proportioned as per ASTM C 1260 standard. 
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Table 3.5 Mixture design for ASTM C 1260 tests 
 

Material 
 

Quantity for 4 mortar bars 

Cement 
 

500 grams 
 

Graded fine aggregates 
 

1125 grams 

Water 
 

235 grams 

W/C ratio* 
 

0.47 

A/C ratio* 
 

2.25 

Soak solution 
 

3.312 liters 

 
Note *: W/C means water to cement ratio and A/C means aggregate to cement  
              ratio 
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3.4.2 Modified ASTM C 1293 Tests 

The test matrix of the modified ASTM C 1293 tests is shown in Table 3.6 

Table 3.6 Test program for the standard and modified ASTM C 1293 tests 
 

Test 
Method 

Molar 
Concentration 

of KAc 

Soak 
Solution 

Cement 
Alkali 
Type 

Aggregates 

NM SP NC SD 

Modified -- 1N NaOH HA* X X -- -- 

Modified -- 1N NaOH LA X X -- -- 

Modified 

3.0 

Li/K = 0.0 HA* 
 

X X X X 

Modified Li/K = 0.2 HA* X X X X 

Modified Li/K = 0.8 HA* X -- -- -- 

Modified 
6.4 

Li/K = 0.0 HA* X X X X 

Modified Li/K = 0.2 HA* X X X X 

Modified 

3.0 

Li/K = 0.0 LA X X -- -- 

Modified Li/K = 0.2 LA X X -- -- 

Modified Li/K = 0.8 LA X -- -- -- 

Modified 
6.4 

Li/K = 0.0 LA X X -- -- 

Modified Li/K = 0.2 LA X X -- -- 

 
*Note: Alkali content of the HA cement was increased to 1.25% by weight of the 

cement. 

Tables 3.7 and 3.8 show the mix designs used for the modified ASTM C 1293 

tests using different aggregates and high and low-alkali cements, respectively. The 

mixtures were designed as per the requirements of ASTM C 1293 specifications. The 

yield for all the mixes was found and the actual cement content in the concrete mix was 

calculated based on the actual densities of the concrete. 
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Table 3.7 Mixture design for ASTM C 1293 tests made with high-alkali cement per cubic 
meter 

 
Materials 

 
Aggregates 

NM Spratt NC SD 

Cement, kg 
 

420 420 420 420 

Fine agg, kg 
 

630 678 703 608 

Coarse agg, kg 
 

1121 1102 1099 1094 

Water, kg 
 

182.7 182.7 182.7 182.7 

W/C 
 

0.435 0.435 0.435 0.435 

A/C 
 

4.17 4.24 4.29 4.06 

Density, kg/m3 2499 
 

2385 2408 2308 

Actual density, 
kg/m3 

2440 2441 2459 2360 

Actual cement, 
kg/m3 

410 429 428 429 

Slump, mm 
 

114 69 60 69 

 
Note: 2.33 kg/m3 of reagent grade sodium hydroxide was added in the mixes  

 
made using high-alkali cement to raise the total alkali content of the cement to 

1.25%. 
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Table 3.8 Mixture designs for ASTM C 1293 tests made with low-alkali cements per 
cubic meter. 

 
Materials 

 
NM Spratt 

Cement, kg 
 

420 420 

Fine agg, kg 
 

630 678 

Coarse agg, kg 
 

1121 1102 

Water, kg 
 

182.7 182.7 

W/C 
 

0.435 0.435 

A/C 
 

4.17 4.24 

Density, kg/m3 2499 
 

2385 

Actual density, 
kg/m3 

2470 2343 

Actual cement, 
kg/m3 

415 412 

Slump, mm 
 

150 75 

 
 

3.4.3 Modified ASTM C 672 Tests 
 

The test matrix of the modified ASTM C 672 tests is shown in Table 3.9 

Table 3.9 Test program for the modified ASTM C 672 tests 

Test 
Method 

Solution Cement Alkali 
Type 

NM SP IL 

Modified 
 

KAc LA X X X 

Modified LiAc LA X X X 
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Table 3.10 shows the mix designs used for the modified ASTM C 672 tests using 

different aggregates with low-alkali cement. The mixtures were designed as per the 

requirements of ASTM C 672 standards. The yield for all the mixes was found and the 

actual cement content in the concrete mix was calculated based on the actual densities of 

the concrete. 

Table 3.10 Mixture design for modified ASTM C 672 tests made with low alkali cement 
per cubic meter. 

 
 

Materials 
 

NM Spratt IL 

Cement, kg 
 

420 420 420 

Fine agg, kg 
 

630 678 669 

Coarse agg, kg 
 

1121 1102 1117 

Water, kg 
 

182.7 182.7 182.7 

W/C 
 

0.435 0.435 0.435 

A/C 
 

4.17 4.24 4.25 

Density, kg/m3 2499 
 

2385 2389 

Actual density, 
kg/m3 

2440 2441 2429 

Actual cement, 
Kg/m3 

410 429 426 

Slump, mm 
 

114 69 60 
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3.4.4 Modified ASTM C 227 Tests 

The test matrix of the modified ASTM C 227 tests is shown in Table 3.11 

Table 3.11 Test program for the modified ASTM C 227 tests 

Test 
Method 

Solution Cement 
Alkali Type 

Ottawa 
Sand 

Modified 
 

Water LA X 

Modified KAc- 6.4 LA X 

Modified 6.4 (Lithium Nitrate 
– 1 coating) 

LA X 

Modified 6.4 (Lithium Nitrate 
– 3 coating) 

LA X 

Modified 6.4 (Lithium Nitrate 
– 5 coating) 

LA X 

 
Note: Fused Silica was added at 5 percent to study the reactivity. 

 

Table 3.12 shows the mixture design used for the modified ASTM C 227 tests.  

Table 3.12 Mixture design for modified ASTM C 227 tests 
 

Material 
 

Quantity for 4 mortar bars 

Cement 
 

500 grams 
 

Graded fine aggregates 
(Ottawa sand) 

1068 grams 

Fused silica 
 

56 grams 

Water 
 

235 grams 

W/C ratio* 
 

0.47 

A/C ratio* 
 

2.25 

Soak solution 
 

3.31 liters 

Note *: W/C means water to cement ratio and A/C means aggregate to cement ratio. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 General 

 

 This chapter presents the results and discussion of all tests conducted in this 

research. Results from the standard and the modified ASTM C 1260 tests, modified 

ASTM C 1293 tests, modified ASTM C 672 tests, modified ASTM C 227 tests, dynamic 

modulus of elasticity, pH measurements, SEM-EDX studies, ICP and XRF tests to 

evaluate penetration depth of deicers are presented in this chapter. 

 

4.2 Test Results from ASTM C 1260 Tests for New Mexico Aggregate 

 Expansion behavior of mortar bars prepared with NM aggregate in the standard 

and modified ASTM C 1260 tests are presented in this section. In addition, changes in the 

DME of mortar bars subjected to standard and modified ASTM C 1260 tests are 

presented. 

 

4.2.1 Length-Change Behavior 

 Figure 4.1 shows the expansion behavior of mortar bars made with NM aggregate 

and high-alkali cement, exposed to 1N NaOH solution, 6.4 molar and 3 molar KAc 

solution and 3 molar LiAc solution. Figure 4.2 shows the results of mortar bars prepared 

with low-alkali cement, containing the same aggregate and deicers as in Figure 4.1.  
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From these figures, it can be seen that NM aggregate is highly reactive when it is 

exposed to all deicers other than LiAc solution, with expansions of more than 1.4% at 14 

days. For both cement types, mortar bars prepared with NM aggregate, showed more 

expansion when exposed to 3 molar KAc solution than 6.4 molar KAc solution or 1N 

NaOH solution, at 28 days. Bars exposed to LiAc did not show noticeable expansion 

even with the highly reactive NM aggregate. Also, alkali content of the cement showed a 

significant influence in the expansion of the mortar bars as bars made with high-alkali 

cement expanded more compared to bars made with low-alkali cement. 
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Figure 4.1 Expansion of Mortar Bars in Standard and Modified ASTM C 1260 Test with 
NM Aggregate and High-Alkali Cement (See Chapter 3.2 for Notation, *Sompura, 2006) 
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Figure 4.2 Expansion of Mortar Bars in Standard and Modified ASTM C 1260 Test with 
NM Aggregate and Low-Alkali Cement (See Chapter 3.2 for Notation, * Sompura, 2006) 

 
 

Figures 4.3 and 4.4 show the expansion results of modified ASTM C 1260 tests. 

Figure 4.3 shows the expansion behavior of bars made with NM aggregate exposed to 6.4 

molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K ratio of 0.2 (6.4-

0.2) using high-alkali cement. Figure 4.4 shows the results for mortar bars prepared with 

the same aggregate and exposed to the same deicer combinations as in Figure 4.3 using 

low-alkali cement. From these figures, it can be seen that NM aggregate is highly reactive 

when exposed to 6.4 molar KAc solution, with expansions of more than 1.5% at 28 days. 

At 28 days, mortar bars with NM aggregate, showed a significant reduction (0.65%) in 

expansion, when exposed to blended deicer with Li/K of 0.2 (6.4-0.2). The alkali content 

of cement did not have any influence in the expansion of mortar bars when exposed to 

6.4 molar KAc solution. However, there was significant effect of alkali content when the 
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bars exposed to 6.4 molar KAc solution with Li/K ratio of 0.2 as bars with high-alkali 

cement showed higher expansions than bars with low-alkali cement.  
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Figure 4.3 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 6.4 Molar 
KAc Solution and Blended Deicers with NM Aggregate and High-Alkali Cement 

(See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.4 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 6.4 Molar 
KAc Solution and Blended Deicers with NM Aggregate and Low-Alkali Cement 

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 
 
 

Figures 4.5 and 4.6 show the expansion results of the modified ASTM C 1260 

tests. Figure 4.5 shows the expansions of bars made with NM aggregate exposed to 3 

molar KAc solution and 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.2, 0.4, 

0.6, and 0.8 using high-alkali cement. Figure 4.6 shows the results of mortar bars 

prepared with the same aggregate exposed to 3 molar KAc solution and 3 molar KAc-

LiAc blended deicer with Li/K ratio of 0.2 and 0.8 using low-alkali cement. From these 

results, it is evident that the aggregate is highly reactive when exposed to 3 molar KAc 

solution with expansions of more than 2.1% for high-alkali cement and 1.8% for low-

alkali cement at 28 days. When the bars were soaked with different Li/K ratios there was 

a significant reduction in expansion and LiAc mitigates ASR expansion with increase in 

Li/K ratio. A Li/K ratio of 0.8 was found to be very effective in mitigating the expansion 
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due to ASR to less than 0.1% in both high-alkali and low-alkali cement. Statistically, bars 

made with high-alkali cement, soaked in the Li/K ratios of 0.6 and 0.8 showed no 

significant difference. Also, bars made with high-alkali cement showed more expansion 

compared to bars made with low-alkali cement. 
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Figure 4.5 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 3 Molar KAc 
Solution and Blended Deicers with NM Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation) 
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Figure 4.6 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 3 Molar KAc 
Solution and Blended Deicers with NM Aggregate and Low-Alkali Cement  

(See Chapter 3.2 for Notation) 
 

4.2.2 Dynamic Modulus of Elasticity 
 
 Figure 4.7 shows changes in dynamic modulus of elasticity of  NM aggregate 

mortar bar specimens exposed to 1N NaOH, 3 molar and 6.4 molar KAc solution and 3 

molar LiAc solution, and blended deicer solutions. The resonant frequency method was 

used to measure the DME of the mortar bars. From the results, it can be seen that 

whenever there is drop in DME, a corresponding increase in the linear expansion of the 

mortar bars was observed in the ASTM C 1260 test.  It is also evident that the loss in 

DME was dependent on the concentration of KAc. Also, the addition of LiAc to the KAc 

helped in mitigating loss in DME as observed in the ASTM C 1260 tests. The cement 

alkalinity does not have much influence in the loss in DME. Bars which were exposed to 

3 molar KAc-LiAc blended deicer with Li/K ratio of 0.6 and 0.8 showed no significant 

difference in loss of DME. 
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Figure 4.7 Change in Dynamic Modulus of Mortar Bars made with NM Aggregate in 
Standard and Modified ASTM C 1260 Test  

(See Chapter 3.2 for Notation, * Sompura, 2006) 
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4.3 Test Results from ASTM C 1260 Tests for Spratt Aggregate 

 Expansion behavior of mortar bars prepared with SP aggregate in the standard and 

modified ASTM C 1260 tests are presented in this section. In addition, changes in the 

DME of mortar bars subjected to standard and modified ASTM C 1260 tests are 

presented. 

 

4.3.1 Length-Change Behavior 

Figures 4.8 and 4.9 show the expansion results of the standard and modified 

ASTM C 1260 tests. Figure 4.8 shows the expansions of bars made with SP aggregate 

and high-alkali cements and exposed to 1N NaOH, 6.4 molar and 3 molar KAc solution 

and 3 molar LiAc solution. Figure 4.9 shows the results of mortar bars prepared with the 

same aggregate and exposed to same deicers using low-alkali cement.  

From the figures, it can be seen that SP aggregate is highly reactive when exposed 

to the deicers other than LiAc. With both high-alkali and low-alkali cements at 28 days, 

mortar bars with SP aggregate, when exposed to 6.4 molar KAc solution, showed more 

expansion followed by 1N NaOH. Bars made with both high-alkali and low-alkali cement 

and exposed to 3 molar LiAc solution did not show significant expansion as their 

expansion was less than the expansion limit of 0.1% at 28 days. Statistically, the alkali 

content of the cement did have a significant influence on expansions of mortar bars. Bars 

made with high-alkali cement expanded more compared to bars made with low-alkali 

cement. 
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Figure 4.8 Expansion of Mortar Bars in Standard and Modified ASTM C 1260 Test with 
SP Aggregate and High-Alkali Cement  (See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.9 Expansion of Mortar Bars in Standard and Modified ASTM C 1260 Test with 
SP Aggregate and Low-Alkali Cement  (See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figures 4.10 and 4.11 show the expansion results from modified ASTM C 1260 

tests. Figure 4.10 shows the expansions of bars made with SP aggregate exposed to 6.4 

molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K ratio of 0.2 (6.4-

0.2) using high-alkali cement. Figure 4.11 shows the results of mortar bars prepared with 

the same aggregate exposed to the same deicer combinations using low-alkali cement. 

From these figures, it can be seen that SP aggregate is highly reactive when exposed to 

6.4 molar KAc solution with an expansion of more than 0.8% at 14 days. At 28 days, 

mortar bars with SP aggregate exposed to blended deicer of 6.4 molar KAc with Li/K of 

0.2 completely mitigated the expansion due to ASR with an expansion of 0.06% with 

high-alkali cement and about 0.08% with low-alkali cement which is below the 

expansion limit of 0.1%.  
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Figure 4.10 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 6.4 Molar 
KAc Solution and Blended Deicers with SP Aggregate and High-Alkali Cement  (See 

Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.11 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 6.4 Molar 
KAc Solution and Blended Deicers with SP Aggregate and Low-Alkali Cement  (See 
Chapter 3.2 for Notation, * Sompura, 2006) 

 
Figures 4.12 and 4.13 show the expansion results of the modified ASTM C 1260 

tests. Figure 4.12 shows the expansions of bars made with SP aggregate exposed to 3 

molar KAc solution and 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.2, 0.4, 

0.6, and 0.8 using high-alkali cement. Figure 4.13 shows the results of mortar bars 

prepared with same aggregate exposed to 3 molar KAc solution and 3 molar KAc-LiAc 

blended deicer with Li/K ratio of 0.2 and 0.8 using low-alkali cement. SP aggregate is 

reactive when exposed to 3 molar KAc solution with an expansion of more than 0.6% for 

high-alkali cement at 28 days. LiAc was found to be effective in mitigating ASR with all 

Li/K ratios as the expansion for Li/K of 0.2 through 0.8 is less than 0.1% in both high-

alkali and low-alkali cement. Statistically, bars made with HA cement, soaked in the Li/K 
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ratios of 0.4, 0.6 and 0.8 showed no significant difference in its effect in mitigating the 

expansion.  
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Figure 4.12 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 3 Molar 
KAc Solution and Blended Deicers with SP Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation) 
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Figure 4.13 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 3 Molar 
KAc Solution and Blended Deicers with SP Aggregate and Low-Alkali Cement 

(See Chapter 3.2 for Notation) 
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4.3.2 Dynamic Modulus of Elasticity 
 

 Figure 4.14 shows the changes in dynamic modulus of elasticity of mortar bar 

specimens made with SP aggregate and exposed to 1N NaOH, 3 and 6.4 molar KAc 

solution and 3 molar LiAc solution, and blended deicer solutions.  There was not 

noticeable loss in DME when bars were soaked in 3 molar LiAc solution as there was no 

much expansion observed in expansion tests. From the results, it can be seen that 

whenever there was drop in DME, a corresponding increase in the linear expansion of the 

mortar bars was observed in ASTM C 1260 test. Bars made with high-alkali cement, 

soaked in the blended deicer of with 3 molar KAc with Li/K ratios of 0.4, 0.6 and 0.8 

showed no significant drop in DME. Concentration of KAc also influences the drop in 

DME as bars exposed to 6.4 molar KAc solution dropped more in DME compare to bars 

exposed to 3 molar KAc solution.  
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Figure 4.14 Change in Dynamic Modulus of Mortar Bars made with SP Aggregate in 
Standard and Modified ASTM C 1260 Test   

(See Chapter 3.2 for Notation, * Sompura, 2006) 
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4.4 Test Results from ASTM C 1260 Tests for North Carolina Aggregate 

 Expansion behavior of mortar bars prepared with NC aggregate in the standard 

and modified ASTM C 1260 tests are presented in this section. In addition, changes in the 

DME of mortar bars subjected to standard and modified ASTM C 1260 tests are 

presented. 

 
4.4.1 Length-Change Behavior 

  

 Figure 4.15 shows the expansion results of the standard and modified ASTM C 

1260 tests made with NC aggregate and high-alkali cement, exposed to 1N NaOH 

solution, 6.4 molar and 3 molar KAc solution. From the figure, it can be seen that NC 

aggregate is reactive with an expansion of more than 0.24% at 14 days for 1N NaOH 

solution. Mortar bars prepared with NC aggregate, showed more expansion (1.0%), when 

exposed to 3 molar KAc solution compared to mortar bars exposed to 6.4 molar KAc 

solutions (0.6%), at 28 days. As compared to other deicers, bars which were soaked in 3 

molar KAc solution showed low expansion until 14 days, after which there was a sudden 

increase in expansion more than bars soaked in 1N NaOH solution and 6.4 molar KAc 

solutions. 
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Figure 4.15 Expansion of Mortar Bars in Standard and Modified ASTM C 1260 Test with 
NC Aggregate and High-Alkali Cement  (See Chapter 3.2 for Notation, * Sompura, 2006) 

 
 

Figure 4.16 shows the expansion behavior of bars made with NC aggregate 

exposed to 6.4 molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K 

ratio of 0.2 (6.4-0.2) using high-alkali cement. From the figure, it can be seen that the NC 

aggregate is highly reactive when exposed to 6.4 molar KAc with an expansion of more 

than 0.6% at 28 days. At 28 days, bars made with NC aggregate, when exposed to 6.4 

molar KAc-LiAc blended deicer with Li/K ratio of 0.2 (6.4-0.2), showed to be non 

reactive with expansion of less than 0.1% with high-alkali cement showing the 

effectiveness of LiAc in mitigating the expansion due to ASR. 
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Figure 4.16 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 6.4 Molar 
KAc Solution and Blended Deicers with NC Aggregate and High-Alkali Cement   

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 

Figure 4.17 shows the expansion results of the modified ASTM C 1260 tests. 

Figure 4.17 shows the expansions of bars made with NC aggregate exposed to 3 molar 

KAc solution and 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.2, 0.4, 0.6, and 

0.8 using high-alkali cement. NC aggregate is highly reactive when exposed to 3 molar 

KAc solution with an expansion of more than 1.01% for high-alkali cement at 28 days. 

When the bars were soaked with different Li/K ratios of 0.2, 0.4, 0.6, and 0.8 there was a 

total mitigation in expansion of less than 0.1% in both high-alkali and low-alkali cement. 

Statistically, bars made with high-alkali cement, soaked in the Li/K ratios of 0.2, 0.4, 0.6 

and 0.8 showed no significant difference in its effect in mitigating the expansion due to 

ASR. 
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Figure 4.17 Expansion of Mortar Bars in Modified ASTM C 1260 Test 3 Molar KAc 
Solution and Blended Deicers with NC Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation) 
 

 

4.4.2 Dynamic Modulus of Elasticity 

 Figure 4.18 shows the changes in dynamic modulus of elasticity of mortar bar 

specimens made with NC aggregate and exposed to 1N NaOH, 3 molar and 6.4 molar 

KAc solution and 3  molar LiAc solution, and blended deicer solutions. From the results, 

it can be seen that whenever there is drop in DME, a corresponding increase in the linear 

expansion of the mortar bars was observed in the ASTM C 1260 test.  It is also evident 

that the loss in DME was dependent on the concentration of KAc. Bars made with high-

alkali cement, soaked in the blended deicer of with 3 molar KAc with Li/K ratios of 0.2, 

0.4, 0.6 and 0.8 showed no significant drop in DME. 
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Figure 4.18 Change in Dynamic Modulus of Mortar Bars made with NC Aggregate in 
Standard and Modified ASTM C 1260 Test  

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 

 

4.5 Test Results from ASTM C 1260 Tests for South Dakota Aggregate 

 Expansion behavior of mortar bars prepared with SD aggregate in the standard 

and modified ASTM C 1260 tests are presented in this section. In addition, changes in the 

DME of mortar bars subjected to standard and modified ASTM C 1260 tests are 

presented. 
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4.5.1 Length-Change Behavior 

 Figure 4.19 shows the expansion results of the standard and modified ASTM C 

1260 tests made with SD aggregate and high-alkali cement, exposed to 1N NaOH 

solution, 6.4 molar and 3 molar KAc solution. From the figure, it can be seen that SD 

aggregate is reactive when exposed to all deicers. At 28 days, SD aggregate, when 

exposed to 3 molar KAc solution, showed less expansion compared to 1N NaOH and 6.4 

molar KAc solution. 
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Figure 4.19 Expansion of Mortar Bars in Standard and Modified ASTM C 1260 Test with 
SD Aggregate and High-Alkali Cement  (See Chapter 3.2 for Notation, * Sompura, 2006) 

 
 

Figure 4.20 shows the expansion behavior of bars made with SD aggregate 

exposed to 6.4 molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K 

ratio of 0.2 (6.4-0.2) using high-alkali cement. At 28 days, bars made with SD aggregate, 

when exposed to 6.4 molar KAc-LiAc blended deicer with Li/K ratio of 0.2 (6.4-0.2), 
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showed to be non-reactive with expansion of less than 0.1% with high-alkali cement, 

compared to bars exposed to 6.4 molar KAc solution with an expansion of more than 

0.4% showing the effectiveness of LiAc in mitigating the expansion due to ASR. 
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Figure 4.20 Expansion of Mortar Bars in Modified ASTM C 1260 Test 6.4 Molar KAc 
Solution and Blended Deicers with SD Aggregate and High-Alkali Cement   

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 
 

Figure 4.21 shows the expansions of bars made with SD aggregate exposed to 3 

molar KAc solution and 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.2, 0.4, 

0.6, and 0.8 using high-alkali cement. SD aggregate was reactive when exposed to 3 

molar KAc solution with expansion of more than 0.2% for high-alkali cement at 28 days. 

When the bars were soaked with different Li/K ratios of 0.2, 0.4, 0.6, and 0.8, they were 

non-reactive as the expansions were less than 0.1% with high-alkali cement. From 

statistical analysis, bars made with high-alkali cement, soaked in the Li/K ratios of 0.2, 
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0.4, 0.6 and 0.8 showed significant difference in its effect in mitigating the expansion due 

to ASR.  
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Figure 4.21 Expansion of Mortar Bars in Modified ASTM C 1260 Test with 3 Molar 
KAc Solution and Blended Deicers with SD Aggregate and High-Alkali Cement 

(See Chapter 3.2 for Notation) 
 
 
 

4.5.2 Dynamic Modulus of Elasticity 

 Figure 4.22 shows the changes in dynamic modulus of elasticity of mortar bar 

specimens made with SD aggregate and exposed to 1N NaOH, 3 molar and 6.4 molar 

KAc solution, and blended deicer solutions. From the results, it can be seen that 

whenever there was drop in DME, a corresponding increase in the linear expansion of the 

mortar bars was observed in the ASTM C 1260 test. Bars made with high-alkali cement, 
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soaked in the blended deicer with Li/K ratios of 0.2, 0.4, 0.6 and 0.8 with 3 molar KAc 

solution showed no noticeable drop in DME. 
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Figure 4.22 Change in Dynamic Modulus of Mortar Bars made with SD Aggregate in 
Standard and Modified ASTM C 1260 Test   

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 
 

 

4.6 Results and Discussion from ASTM C 1260 and DME Tests 

From the expansion and DME test results from ASTM C 1260 tests on mortar 

bars made with different aggregate, it was found that the level of distress observed in any 
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mortar bars was dependent on the aggregate reactivity and deicer used. Mortar bars made 

with reactive aggregate exposed to plain potassium acetate with both 6.4 molar KAc 

solution and 3 molar KAc solution showed significant potential to cause distress. NM and 

NC bars expanded more when exposed to 3 molar KAc solution compared to bars 

exposed to 6.4 molar KAc solution. Whereas, mortar bars made with SP and SD 

aggregate showed more expansion when exposed to 6.4 molar KAc solution compared to 

bars exposed to 3 molar KAc solution. Mortar bars made with NM and NC aggregate and 

high-alkali cement when exposed to 3 molar KAc solution expanded more compared to 

bars exposed to 1N NaOH solution. Whereas, NM and NC bars exposed to 1N NaOH 

solution expanded more than bars exposed to 6.4 molar KAc solution. Bars made with 

NM aggregate and low-alkali cement when exposed to 1N NaOH solution expanded 

more than when they were exposed to 3 and 6.4 molar KAc solution. Bars made with SP 

and SD aggregate and high-alkali cement expanded more when exposed to 1N NaOH 

solution, compared to 3 molar KAc solution. Bars with SP, NC and SD aggregate and 

low-alkali cement expanded more when exposed to 6.4 molar KAc solution, compared to 

bars exposed to 1N NaOH solution. 

Mortar bars made with SP, NC and SD aggregate exposed to blended deicer  of 3 

molar KAc solution with Li/K ratio of 0.2, 0.4, 0.6 and 0.8, proved to be effective as 

LiAc totally mitigated the expansion due to ASR. Bars made with NM aggregate was 

mitigated when exposed to blended deicer of 3 molar KAc solution with Li/K of 0.6 and 

0.8. Also, mortar bars made with SP, NC and SD aggregate exposed to blended deicer of 

6.4 molar KAc solution with Li/K ratio of 0.2 with proven to be effective in mitigating 
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expansion. Whereas, expansion in mortar bars made with NM aggregate was not 

mitigated with Li/K ratio of 0.2 with 6.4 molar KAc solution. For both cement types, bars 

made with NM aggregate showed the highest expansions compared to other aggregate 

type. In general, the alkali content of the cement did have a significant influence on the 

expansions of mortar bars as bars made with high-alkali cement expanded more 

compared to bars made with low-alkali cement. 

From the DME test results, it can be seen that whenever there was drop in DME, a 

corresponding increase in the linear expansion of the mortar bars was observed in ASTM 

C 1260 tests. It was also evident that loss in DME was dependent on the concentration of 

KAc solution. As bars made with NM and NC aggregate reacted more with 3 molar KAc 

solution compared to bars exposed to 6.4 molar KAc solution. Whereas, bars made with 

SP and SD aggregate reacted more with 6.4 molar KAc solution compared to bars 

exposed to 3 molar KAc solution, this suggest that reactivity of aggregate is very 

important for the distress of the bars. Also, LiAc addition to the KAc helped in mitigating 

loss in DME as observed in ASTM C 1260 tests. For both cement types, bars made with 

NM aggregate showed more loss in DME compared to other aggregate type as observed 

in the expansion results. 

Figure 4.23 shows graphs of % DME relative to zero day reading compared to the 

% expansion in 1260 tests at similar ages of mortar bars made with different aggregates, 

high-alkali cement when exposed to 3 molar KAc solution and different blended deicer of 

3.0 molar KAc with Li/K ratios of 0.2, 0.3, 0.4, 0.6 and 0.8. It can be observed that 
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whenever there is change in DME, a corresponding change in the linear expansion of the 

mortar bars was observed in ASTM C 1260 tests. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.23 Percentage DME Relative to Zero Day Reading and Expansions in C 1260 
Tests 

 

4.7 Results and Discussions from pH Measurements on Soak Solution in the Modified  
ASTM C 1260 Test 

 
 Figure 4.24 shows the pH of soak solutions exposed to mortar bars at 80ºC 

measured at 28 days in the modified ASTM C 1260 tests for NM, SP, NC and SD made 

with HA cement. The pH was also measured before the mortar bars were exposed to soak 
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solution (0 day). From the figure, it can be observed that in all the cases the pH of the 

soak solution value increased from 10 to approximately 13 after being exposed to mortar 

bars. Also, it was noticed that the increase in pH was greater with solutions containing 

higher K concentration.  Although, increase in pH of soak solution was observed even in 

presence of LiAc, significant reduction in mortar bars expansions were observed. This 

suggests that the ASR gel found in presence of LiAc was not expansive. This mechanism 

was observed with all Li/K ratios of 0.2, 0.4. 0.6 and 0.8. The same trend was observed in 

all the aggregate types.  
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Figure 4.24 pH Values of Soak Solution from Modified ASTM C 1260 Tests for all 
Aggregate made with High-Alkali Cement 
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4.8 Results and Discussion from Visual and SEM-EDX Analysis on Mortar Bars 

Visual and SEM-EDX analyses were conducted on mortar bars exposed to deicer 

solutions to study the reaction products formed due to interactions between the soak 

solutions and mortar bars. SEM-EDX analyses were conducted on mortar bars at the end 

of 28 days. SEM and EDX analyses of mortar bars made with NM and SP aggregate are 

discussed in detail as the influence of soak solution with aggregate was well observed. 

 Figure 4.25 shows the visual images of NM-HA soaked in 3 molar KAc solution 

with different Li/K ratios. From the visual image, the influence of LiAc in mitigating 

expansion due to ASR is clearly observed as the higher the Li/K ratio, the higher the 

mitigation.  
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Soaked in 3 Molar KAc Solution and Blended Deicers with Li/K 0.8 
 

 
Figure 4.25 Figures shows the visual images of NM-HA exposed to different Li/K ratio 

in Modified ASTM C 1260 Test. 
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Figure 4.26 shows the visual images of SP-HA soaked in 3 molar KAc solution 

with different Li/K ratios. From the visual images, the influence of LiAc in mitigating 

expansion due to ASR is clearly observed as the Li/K ratio increases the higher 

mitigation.  

   
 
 
 
 
 
 

 
Soaked in 3 Molar KAc Solution 

 

 
 
 
 
 
 

 
 

Soaked in 3 Molar KAc Solution and 
Blended Deicers with Li/K 0.2 

 
 
 
 
 
 
 
 
 

Soaked in 3 Molar KAc Solution and 
Blended Deicers with Li/K 0.4 

 

 
 
 
 
 
 
 
 

Soaked in 3 Molar KAc Solution and 
Blended Deicers with Li/K 0.6 

 
 

 
 
 
 
 
 
 
 

Soaked in 3 Molar KAc Solution and Blended Deicers with Li/K 0.8 
 

 
Figure 4.26 Figures shows the visual images of SP-HA exposed to different Li/K ratio in 

Modified ASTM C 1260 Test. 
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 Figures 4.27 through 4.29 show the SEM-EDX images of NM-LA-3, NM-LA-3-

0.2 and NM-LA-6.4-0.2, respectively.  From the figures it is evident that bars exposed to 

KAc show the deterioration of cement paste with significant cracking and some cracking 

through the aggregate. The EDX spectrum of the gel surrounding the aggregate and 

through the cement paste shows the presence of potassium in the gel and the formation of 

ASR gel. 

 Figures 4.30 through 4.32 show the SEM-EDX images of SP-HA-3, SP-HA-3-0.2 

and SP-HA-3.0-0.8, respectively.  From the SEM images, it is clear that the deterioration 

of the bar is influenced by the potassium concentration. Lithium acetate was proven to be 

effective in mitigating the cracking, and the EDX spectra of the gel shows the presence of 

less potassium level in higher Li/K ratios. Similar results were observed in the expansion 

and DME results as higher the Li/K concentration the higher the mitigation. 

 Figures 4.33 and 4.34 show the SEM-EDX images of SP-HA-6.4 and SP-HA-6.4-

0.2, respectively. In figure 4.33 it can be seen that there is a significant amount of 

cracking throughout the bar. Most of the wide cracks are empty, which may be the reason 

for the loss in DME. The cracks are found largely in the cement paste rather than in the 

aggregate. The EDX spectrum of the gel shows the presence of ASR gel made of 

potassium, silica and calcium. Figure 4.34 shows the effects of LiAc in mitigating ASR 

as there were not many cracks and even the EDX spectrum of the gel shows mitigation of 

expansion due to ASR.  

  

 



89 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.27 Figures showing SEM-EDX images of NM-LA-3.0 mortar bars 
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Figure 4.28 Figures showing SEM-EDX images of NM-LA-3-0.2 mortar bars 
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Figure 4.29 Figures showing SEM-EDX images of NM-LA-6.4-0.2 mortar bars 
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Figure 4.30 Figures showing SEM-EDX images of SP-HA-3.0 mortar bars 
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Figure 4.31 Figures showing SEM-EDX images of SP-HA-3-0.2 mortar bars 
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Figure 4.32 Figures showing SEM-EDX images of SP-HA-3-0.8 mortar bars 
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Figure 4.33 Figures showing SEM-EDX images of SP-HA-6.4 mortar bars  
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Figure 4.34 Figures showing SEM-EDX images of SP-HA-6.4-0.2 mortar bars  
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4.9 Statistical Analyses for Modified ASTM C 1260 Test 

Statistical analyses were conducted on the data obtained from the modified 

ASTM C 1260 tests. The objectives of these analyses were: 

1. To study if there was any significant difference between Li/K ratio and expansion 

of mortar bars in modified ASTM C 1260 tests.  

2. To study if the expansions of mortar bars made with HA cement were higher than 

expansions of the corresponding specimens made with LA cement. 

3. To determine the nature of the relationship between lithium content of the soak 

solution and the expansion in modified ASTM C 1260 tests.  

 

Results from Statistical Analysis 

Hypothesis testing for two or more population means was conducted using SAS 

program, to determine if there was any significant difference between various Li/K ratios 

in mitigating expansion in modified ASTM C 1260 test. Least Significant Difference 

(LSD) was used to find if there was any significant difference between different Li/K 

ratios with respect to expansion. The level of significance used for the entire hypothesis 

test was 0.05. The null hypothesis (Ho) assumed that all expansions of mortar bars in 

different soak solutions with different Li/K ratios were the same. The alternative 

hypothesis (HA) was that not all dosage levels were equal in mitigating expansion. If the 

p-value from the test was less than the level of significance, the null hypothesis statement 

was rejected and if the value was greater, the null hypothesis statement was not rejected. 
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The tests were conducted for mortar bars made with NM, SP, NC and SD 

aggregate with HA cement exposed to different Li/K ratios. The test results of the LSD 

procedure are presented in Table 4.1. For a given aggregate, same letter for different Li/K 

ratios indicate that there is no significant difference in effectiveness of the different 

dosage of lithium. If not, there is a significant difference. From the results, it is seen that 

when mortar bars made with NM aggregate, exposed to blended deicer of 3.0 molar KAc 

with Li/K ratios of 0.6 and 0.8 are similar as there were no significant difference in its 

effect in mitigating expansion. In SP aggregate, Li/K of 0.4, 0.6, and 0.8 are similar. In 

NC aggregate, Li/K of 0.2, 0.4, 0.6, and 0.8 are similar. In SD aggregate, each Li/K ratio 

had a significantly different effect on expansion. 

Table 4.1 Comparison of effect of soak solution with different Li/K ratio in 
mitigating expansion for mortar bars within aggregate source at modified ASTM C 
1260 tests, at 14 days. 

 
Soak Solution 

Li/K ratio 
NM SP NC SD 

0 A A A A 
0.2 B B B B 
0.4 C C C C 
0.6 D C C D 
0.8 D C C E 

 

Statistical analyses were conducted on all aggregate types with different soak 

solution combinations to find relative levels of mitigation offered for different 

aggregates, and if a significant difference exists between the different levels of 

mitigation. From the LSD procedure, the test results are presented in Table 4.2. The 

treatments with same letters means that there is no significant difference between those 
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soak solution ratios and the effect of aggregate type. From Table 4.2 it is found that Li/K 

ratio of 0.8 seems to produce similar results, regardless of aggregate reactivity. 

Table 4.2 Comparison of effect of soak solution with different Li/K ratio in 
mitigating expansion for mortar bars between aggregate sources at modified ASTM C 
1260 tests, at 14 days. 

 
Soak 

Solution 
Li/K ratio 

NM SP NC SD 

0 A E D E 
0.2 B G G G 
0.4 C G G G 
0.6 F G G G 
0.8 G G G H 

 

Expansions of Low and High Alkali Mortar Bars  

Hypothesis testing for two population means was conducted using SAS program, 

to determine whether expansions of mortar bars were influenced by alkali content of 

cement. 

 From the hypothesis testing, it was seen that mortar bars made with HA cement 

showed more expansion than bars made with LA cement. Only one combination showed 

an insignificant difference between expansions made with these cement types. 

The results from the tests are presented in Table 4.3. In the table, for any 

aggregate-soak solution combination, HA>LA means for that particular aggregate-soak 

solution combination expansions of HA bars were higher than LA bars. HA<LA means 

expansions of LA bars were higher than HA bars. HA=LA means expansions were not 

significantly different in expansion between bars made with HA cement and bars made 

with LA cement. 
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Table 4.3 Comparison of expansions in modified ASTM C 1260 tests for mortar 
bars made with high-alkali and low-alkali cement at 14 days (X- No Data) 

 
Soak Solution 

Li/K ratio 
NM SP 

0 HA>LA X 
0.2 HA>LA HA>LA 
0.8 HA>LA HA>LA 

 

Regression Analysis 

  To study the relationship between lithium acetate additions in mitigating 

expansion in modified ASTM C 1260 tests regression analysis were conducted. In this 

research, mortar bars were prepared with different aggregate soaked in different Li/K 

ratios prepared with both high and low-alkali cement. To establish the relationship, 

regression analysis was carried out by plotting expansion of C1260 test on Y-axis and the 

Li/K ratio in X-axis on a graph. 

 Comparing the relationship between increase in Li/K ratio and expansion of 

mortar bars it can be said that there is good exponential relationship in NM aggregate 

with both HA and LA cements, when soaked with different Li/K ratio. Whereas in SP, 

NC and SD aggregate the exponential relationship does not fit as well compared to bars 

with NM aggregate with both cement types. 
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Figure 4.35 Expansions in Modified C 1260 tests at 14 days made with high-alkali and 
low-alkali cement for Li/K ratio of 0, 0.2, 0.4, 0.6, 0.8 solutions. 
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4.10 Results from Modified ASTM C 1293 Tests for New Mexico Aggregate 
 

Expansion behavior of concrete prisms prepared with NM aggregate in the 

modified ASTM C 1293 tests are presented in this section. In addition, changes in the 

DME of concrete prisms subjected to modified ASTM C 1293 tests are presented. 

 

4.10.1 Length-Change Behavior 

 Figure 4.36 shows the expansion behavior of concrete prisms made with NM 

aggregate and high-alkali cement, exposed to 1N NaOH solution, 6.4 molar and 3 molar 

KAc solution. Figure 4.37 shows the results of concrete prisms prepared with low-alkali 

cement, containing same aggregate and containing same deicers as in Figure 4.36.  

From these figures, it can be seen that NM aggregate is highly reactive when it is 

exposed to NaOH and KAc deicer solutions as the prisms expanded more than 0.04% 

after 30 days when exposed to NaOH solution and after 7 days when exposed to 3 and 6.4 

molar KAc solution. In the presence of 6.4 molar KAc solution, the NM concrete prisms 

prepared with both high-alkali and low-alkali cements showed severe distress (cracking) 

in less than 180 days. In presence of 3 molar KAc solution, the distress was more 

gradual. 
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Figure 4.36 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with NM 
Aggregate and High-Alkali Cement  

See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.37 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with NM 

Aggregate and Low-Alkali Cement  
(See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.38 shows the expansion behavior of prisms made with NM aggregate 

exposed to 6.4 molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K 

ratio of 0.2 (6.4-0.2) using high-alkali cement. Figure 4.39 shows the results for concrete 

prisms prepared with same aggregate and exposed to same deicer combinations as in 

Figure 4.38 using low-alkali cement. 

From these figures, it can be seen that NM aggregate is highly reactive when 

exposed to these deicers. Concrete prisms exposed to blended deicer of 6.4 molar KAc 

with Li/K ratio of 0.2 expanded to 0.8% at 1 year with low-alkali cement and 2.5% at 270 

days with high-alkali cement. Statistically, prisms made with high-alkali cement showed 

more expansion compared to prisms made with low-alkali cement. 
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Figure 4.38 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 6.4 
Molar KAc Solution and Blended Deicers with NM Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.39 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 6.4 
Molar KAc Solution and Blended Deicers with NM Aggregate and Low-Alkali Cement  

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 

Figures 4.40 and 4.41 show the expansion results of the modified ASTM C 1293 

tests. Figure 4.40 shows the expansions of high-alkali prisms made with NM aggregate 

and exposed to 3 molar KAc solution and 3 molar KAc-LiAc blended deicer with Li/K 

ratio of 0.2 and 0.8 using high-alkali cement. Figure 4.41 shows the results of mortar bars 

prepared with the same aggregate exposed to the same deicer solution using low-alkali 

cement.  

From these results, it is evident that the NM aggregate is highly reactive when 

exposed to 3 molar KAc solution. When the prisms were soaked in blended deicer of 3 

molar KAc solution with Li/K of 0.8, there was a significant reduction in expansion with 

both high-alkali and low-alkali cements. Statistically, prisms made with low-alkali 

cement, showed no significant difference when soaked in blended deicer of 3 molar KAc 
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solution with Li/K of 0.2 compared to 3 molar KAc solution. However, prisms made with 

high-alkali cement showed a significant expansion when soaked in blended deicer of 3 

molar KAc solution with Li/K of 0.2 when compared with 3 molar KAc solution.  
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Figure 4.40 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 3 Molar 
KAc Solution and Blended Deicers with NM Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation) 
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Figure 4.41 Expansion of Concrete Prisms in Modified ASTM C 1260 Test with 3 Molar 
KAc Solution and Blended Deicers with NM Aggregate and Low-Alkali Cement  

(See Chapter 3.2 for Notation) 
 

 

4.10.2 Dynamic Modulus of Elasticity 

Figure 4.42 shows changes in dynamic modulus of elasticity of NM aggregate 

concrete prisms specimens and exposed to 1N NaOH, 3 molar and 6.4 molar KAc 

solution, and KAc-LiAc blended deicer solutions. From the results, it can be seen that 

whenever there was drop in DME, a corresponding increase in the linear expansion of the 

concrete prisms was observed in the ASTM C 1293 test. It is also evident that the loss in 

DME was dependent on the concentration of KAc. Also, the addition of LiAc to the KAc 

helped in mitigating loss in DME as observed in the ASTM C 1293 tests. In these test 

results, concrete prisms showed an increase in DME for the first two months after which 

there was a drop. This initial increase in the DME is due to the increase in the strength of 

the concrete prisms due to continued hydration. Thereafter, the deterioration weakens the 
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matrix and the DME decreases. At the conclusion of the test at one year, there does not 

appear to be a noticeable effect of alkali content of cement on decrease in DME. Prisms 

made with high-alkali cement showed more rapid deterioration than those made with 

low-alkali cement. 
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Figure 4.42 Change in Dynamic Modulus of Concrete Prism made with NM Aggregate in 
the Modified ASTM C 1293 Test  (See Chapter 3.2 for Notation, * Sompura, 2006) 
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4.11 Results from Modified ASTM C 1293 Tests for Spratt Aggregate  

 
Expansion behavior of concrete prisms prepared with SP aggregate in the 

modified ASTM C 1293 tests are presented in this section. In addition, changes in the 

DME of concrete prisms subjected to modified ASTM C 1293 tests are presented. 

 

4.11.1 Length-Change Behavior 

Figure 4.43 shows the expansion behavior of mortar bars made with SP aggregate 

and high-alkali cement, exposed to 1N NaOH solution, 6.4 molar and 3 molar KAc 

solution. Figure 4.44 shows the results of concrete prisms prepared with low-alkali 

cement, containing the same aggregate and containing same deicers as in Figure 4.43.  

From the figures, it can be seen that SP aggregate was reactive when exposed to 

these deicers. There is a significant effect of alkali content of the cement and on the level 

of concentration of soak solution, as prisms exposed to 6.4 molar KAc solution expanded 

more compared to prisms exposed to 3 molar KAc solution. Prisms made with low-alkali 

cement expanded more than 0.04% after 90 days with all soak solution. Whereas, prisms 

made with high-alkali cement expanded after 30 days. Statistically, prisms made with 

high-alkali cement showed more expansion compared to bars made with low-alkali 

cement when they were exposed to KAc solution. 
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Figure 4.43 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with SP 
Aggregate and High-Alkali Cement (See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.44 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with SP 
Aggregate and Low-Alkali Cement (See Chapter 3.2 for Notation, * Sompura, 2006) 

 
 

 



112 
 

Figures 4.45 and 4.46 show the expansion results of modified ASTM C 1293 

tests.  Figure 4.45 shows the expansions of prisms made with SP aggregate exposed to 

6.4 molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K ratio of 0.2 

(6.4-0.2) using high-alkali cement. Figure 4.46 shows the results of mortar bars prepared 

with the same aggregate exposed to same deicer combinations using low-alkali cement. 

From these figures, it can be seen that SP aggregate is reactive when exposed to 6.4 

molar KAc solution with an expansion of more than 0.7% for high-alkali cement and 

0.5% for low-alkali prisms at 360 days. Statistically, prisms made with high-alkali 

cement showed more expansion compared to bars made with low-alkali cement. Concrete 

prisms with SP aggregate, showed significant reduction in expansion when exposed to 

blended deicer of 6.4 molar KAc with Li/K of 0.2 compared to 6.4 molar KAc solution. 

However, the level of mitigation was not adequate for this blended deicer to be effective 

(i.e., < 0.04% expansion at one year). 
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Figure 4.45 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 6.4 
Molar KAc Solution and Blended Deicers with SP Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation, * Sompura, 2006) 
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Figure 4.46 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 6.4 
Molar KAc Solution and Blended Deicers with SP Aggregate and Low-Alkali Cement  

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 



114 
 

 

Figures 4.47 and 4.48 show the expansion results of the modified ASTM C 1293 

tests. Figure 4.47 shows the expansions of prisms made with SP aggregate exposed to 3 

molar KAc solution and 3 molar KAc-LiAc blended deicer with Li/K ratio of 0.2 using 

high-alkali cement. Figure 4.48 shows the results of mortar bars prepared with the same 

aggregate exposed to the same deicer using low-alkali cement. Statistically, prisms made 

with high-alkali cement, soaked in blended deicer blended deicer of 3 molar KAc with 

Li/K of 0.2 showed no significant difference in its effect in mitigating the expansion, 

when compared to 3 molar KAc solution. However, prisms made with low-alkali cement 

showed a significant reduction in expansion when exposed to blended deicer of 3 molar 

KAc with Li/K of 0.2, when compared to 3 molar KAc solution. Prisms made with low-

alkali cement were within the expansion limit of 0.04% until 90 days when exposed to 

both solutions. After which, there was an gradual increase in expansion. SP aggregate, 

when made with high-alkali cement, was within the expansion limit until 30 days after 

which there was sudden increase in expansion with both solutions. 
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Figure 4.47 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 3 Molar 
KAc Solution and Blended Deicers with SP Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation) 
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Figure 4.48 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 3 Molar 
KAc Solution and Blended Deicers with SP Aggregate and Low-Alkali Cement  

(See Chapter 3.2 for Notation) 
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4.11.2 Dynamic Modulus of Elasticity 

Figure 4.49 shows the changes in dynamic modulus of elasticity of SP aggregate 

concrete prisms specimens exposed to 1N NaOH, 3 molar and 6.4 molar KAc solution, 

and blended deicer solutions. From the results, it is evident that whenever there was drop 

in DME, a corresponding increase in the linear expansion of the concrete prisms was 

observed in the ASTM C 1293 test. During the first 60 days concrete prisms made with 

low-alkali cement showed a much higher increase in DME when compared to prisms 

made with high-alkali cement. However, the drop in DME was similar after 1 year for 

concrete prisms exposed to 6.4 molar KAc solution which indicates that the concentration 

of soak solution influences the changes in DME as it influences the expansion. 
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Figure 4.49 Change in Dynamic Modulus of Concrete Prism made with SP Aggregate in 
Modified ASTM C 1293 Test  (See Chapter 3.2 for Notation, * Sompura, 2006) 

 
 

 
 



118 
 

4.12 Results from Modified ASTM C 1293 Tests for North Carolina Aggregate  
 

Expansion behavior of concrete prisms prepared with NC aggregate in the 

modified ASTM C 1293 tests are presented in this section. Also, changes in the DME of 

concrete prisms subjected to modified ASTM C 1293 tests are presented. 

4.12.1 Length-Change Behavior 

Figure 4.50 shows the expansion behavior of concrete prisms made with NC 

aggregate and high-alkali cement, exposed to 1N NaOH solution, 6.4 molar and 3 molar 

KAc solution. From this figure, it can be seen that NC aggregate is highly reactive when 

it is exposed to the soak solutions, KAc deicer. Prisms started expanding after 60 days 

when exposed to all soak solutions. At 360 days, concrete prisms exposed to 6.4 molar 

KAc solution showed an expansion above 1% and those exposed to 3 molar KAc 

solution, showed an expansion of 0.65%. 
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Figure 4.50 Expansion of Concrete Prisms in Standard and Modified ASTM C 1260 Test 
with NC Aggregate and High-Alkali Cement  
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(See Chapter 3.2 for Notation, * Sompura, 2006) 
 

Figure 4.51 shows the expansion behavior of prisms made with NC aggregate 

exposed to 6.4 molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K 

ratio of 0.2 (6.4-0.2) using high-alkali cement. NC aggregate is highly reactive when 

exposed to these deicers, since the expansion exceeded 0.04% after 60 days. From this 

figure, it can be seen that there was a sudden increase in expansion of prisms exposed to 

6.4 molar KAc solution after 270 days. Statistically, prisms soaked in blended deicer with 

Li/K ratio of 0.2 with 6.4 molar KAc-LiAc showed significant difference in its effect in 

mitigating the expansion compared to prisms soaked in 6.4 molar KAc.  
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Figure 4.51 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 6.4 
Molar KAc Solution and Blended Deicers with NC Aggregate and High-Alkali Cement 

 (See Chapter 3.2 for Notation, * Sompura, 2006) 
 

 

Figure 4.52 shows the expansion behavior of prisms made with NC aggregate 

exposed to 3 molar KAc solution and 3 molar KAc-LiAc blended deicer with Li/K ratio 
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of 0.2 (3-0.2) using high-alkali cement. NC aggregate is highly reactive when exposed to 

these deicers as the expansion of concrete prisms exceeds the expansion limit of 0.04% 

after 60 days. After which, there was a sudden increase in the level of expansion till the 

end of the test period. Prisms exposed to both deicers showed same level of expansion. 

Statistically, prisms soaked in blended deicer with Li/K ratio of 0.2 with 3 molar KAc-

LiAc showed no significant difference in its effect in mitigating the expansion compared 

to prisms soaked in 3 molar KAc.  
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Figure 4.52 Expansion of Concrete Prisms in Modified ASTM C 1260 Test with 3 Molar 
KAc Solution and Blended Deicers with NC Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation) 
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4.12.2 Dynamic Modulus of Elasticity  

Figure 4.53 shows changes in dynamic modulus of elasticity of NC aggregate 

concrete prisms specimens exposed to 1N NaOH, 3 molar and 6.4 molar KAc solution, 

and blended soak solution. From the results, it can be seen that whenever there was drop 

in DME, a corresponding increase in the linear expansion of the concrete prisms was 

observed in the ASTM C 1293 test. It is also evident that the loss in DME was dependent 

on the concentration of KAc. Prisms exposed to 6.4 molar KAc solution showed greater 

loss when compared to prisms exposed to 3 molar KAc solution. Also, the addition of 

LiAc to the KAc did not help in mitigating loss in DME as observed in the ASTM C 

1293 tests, with high-alkali cement.  
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Figure 4.53 Change in Dynamic Modulus of Concrete Prism made with NC Aggregate in 

Modified ASTM C 1293 Test  (See Chapter 3.2 for Notation, * Sompura, 2006) 
 
 

4.13 Results from Modified ASTM C 1293 Tests for South Dakota Aggregate  
 

Expansion behavior of concrete prisms prepared with SD aggregate in the 

modified ASTM C 1293 tests are presented in this section. In addition, changes in the 

DME of concrete prisms subjected to modified ASTM C 1293 tests are presented. 

 

4.13.1 Length-Change Behavior 

Figure 4.54 shows the expansion behavior of concrete prisms made with SD 

aggregate and high-alkali cement, exposed to 1N NaOH solution, 6.4 molar and 3 molar 
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KAc solution. From this figure, it can be seen that SD aggregate is reactive when exposed 

to all soak solutions. Prisms were within the expansion limit of 0.04 till 120 days, after 

which, there was a gradual increase in expansion. However, compared to other aggregate 

evaluated in this study, SD aggregate was less reactive. At 360 days, the expansion of 

concrete prisms exposed to these deicers expanded less than 0.17%.  The concentration of 

KAc solution does not have much effect and the prisms expanded to the same level as 

prisms exposed to 1N NaOH. 
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Figure 4.54 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with SD 
Aggregate and High-Alkali Cement (See Chapter 3.2 for Notation, * Sompura, 2006) 

 
 

Figure 4.55 shows the expansion behavior of prisms made with SD aggregate 

exposed to 6.4 molar KAc solution and 6.4 molar KAc-LiAc blended deicer with Li/K 

ratio of 0.2 (6.4-0.2) using high-alkali cement. From this figure, it can be seen that SD 

aggregate is reactive when exposed to these deicers. Prisms were within the expansion 
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limit of 0.04% till 180 days, after which, there was a gradual increase in expansion. 

However, compared to other aggregate evaluated in this study, SD aggregate was less 

reactive. Statistically, prisms soaked in blended deicer with Li/K ratio of 0.2 with 6.4 

molar KAc-LiAc showed no significant difference in its effect in mitigating the 

expansion compared to prisms soaked in 6.4 molar KAc.  
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Figure 4.55 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 6.4 
Molar KAc Solution and Blended Deicers with SD Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation, * Sompura, 2006) 
 

Figure 4.56 shows the expansion behavior of prisms made with SD aggregate 

exposed to 3 molar KAc solution and 3 molar KAc-LiAc blended deicer with Li/K ratio 

of 0.2 using high-alkali cement. At 120 days, prisms exposed to these soak solution 

expanded within the expansion limit of 0.04%, after which, there was a gradual increase 

in expansion. Statistically, prisms soaked in blended deicer with Li/K ratio of 0.2 with 3 
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molar KAc-LiAc showed no significant difference in its effect in mitigating the 

expansion compared to prisms soaked in 3 molar KAc.  
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Figure 4.56 Expansion of Concrete Prisms in Modified ASTM C 1293 Test with 3 Molar 
KAc Solution and Blended Deicers with SD Aggregate and High-Alkali Cement  

(See Chapter 3.2 for Notation) 
 

 

4.13.2 Dynamic Modulus of Elasticity 

Figure 4.57 shows changes in dynamic modulus of elasticity of SD aggregate 

concrete prisms specimens exposed to 1N NaOH, 3 molar and 6.4 molar KAc solution, 

and blended deicer solutions. From the results, it can be seen that whenever there was 

drop in DME, a corresponding increase in the linear expansion of the concrete prisms 

was observed in the ASTM C 1293 test. While expansions of prisms exposed 3 molar 

KAc solution showed slightly higher loss in DME, compared to 6.4 molar KAc solution.  
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Figure 4.57 Change in Dynamic Modulus of Concrete Prism made with SD Aggregate in 

Modified ASTM C 1293 Test  (See Chapter 3.2 for Notation, * Sompura, 2006) 
 
 

4.14 Discussion and Results from ASTM C 1293 and DME Tests  

From the expansion and DME test results from the ASTM C 1293 tests on 

concrete prisms made with different aggregate, it was found that the level of distress 

observed in any prisms was dependent on the aggregate reactivity and deicer used. Prisms 

made with NM, SP and NC aggregate expanded more when exposed to 6.4 molar KAc 

solution compared to bars exposed to 3 molar KAc solution. Whereas, concrete prisms 

made with SD aggregate showed no significant difference in expansion when exposed to 
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6.4 molar KAc solution and 3 molar KAc solution. Concrete prisms made with NM, SP, 

NC and SD aggregate expanded more when exposed to 3 molar and 6.4 molar KAc 

solution, compared to prisms exposed to 1N NaOH solution. 

Concrete prisms made with NM, SP, NC and SD aggregate when exposed to 

blended deicer of 3 molar KAc with different Li/K ratios of 0.2, 0.4, 0.6, and 0.8 were not 

effective in mitigating the expansion due to ASR. This may be due to specimen size as 

the penetration of LiAc solution is less in concrete prisms when compared to penetration 

of LiAc in mortar bars. This aspect will be further discussed in ICP test. Also, prisms 

made with NM, SP, NC and SD aggregate when exposed to blended deicer with Li/K 

ratio of 0.2 with 6.4 molar KAc solution, were not effective in mitigating the expansion 

due to ASR. However, prisms made with SD aggregate expanded less compared to other 

aggregate type. For both cement types, prisms made with NM aggregate showed the 

highest expansions compared to other aggregate types. This finding indicate that perhaps 

higher Li/K molar ratios should be considered for further investigation. 

From the DME test results, it can be seen that whenever there was drop in DME, a 

corresponding increase in the linear expansion of the concrete prisms was observed in 

ASTM C 1293 tests.  In general, the alkali content of the cement did have a significant 

influence on expansions and loss in DME of concrete prisms, as prisms made with high-

alkali cement showed more loss in DME compared to samples made with low-alkali 

cement. Upon exposure to any given deicer, prisms made with NM aggregate showed 

more loss in DME compared to prisms made with SP, NC and SD aggregate. 
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Figure 4.58 shows graphs of % DME relative to zero day reading compared to the 

expansion in ASTM C1293 tests at similar ages of mortar bars made with different 

aggregates and high-alkali cement when exposed to 3 molar KAc solution and different 

blended deicer of 3.0 molar KAc with Li/K ratios. It can be observed that whenever there 

was change in DME, a corresponding change in the linear expansion of the mortar bars 

was observed in ASTM C 1293 tests. 

  

 

 

 

 

 

   

 

  

 

 

 

 

 

Figure 4.58 Percentage DME Relative to Zero Day Reading and Expansions in ASTM C 
1293 Tests 
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4.15 Results and Discussion from pH measurement on Soak Solution in the 
Modified ASTM C 1293 Test 

 
Figure 4.59 shows the pH of soak solutions exposed to concrete prisms at 38 ºC 

after 12 months in the modified ASTM C 1293 tests for NM, SP, NC and SD aggregates 

made with high-alkali and low-alkali cement. The pH was measured at the end of 12 

months of the test program and compared with the pH of the soak solution before contact 

with prisms at 0 day. From these figures it can be observed that all the soak solutions 

evaluated, showed a significant increase in their pH upon exposure to concrete prisms. 

Further, it can also be observed that with an increase in the lithium acetate dosage in the 

soak solution, the pH slightly decreased at both 0 day and 360 days. Although an increase 

in pH of soak solution was observed even in presence of LiAc, significant reduction in 

concrete prism expansions were observed as ASR gel found in presence of LiAc was not 

expansive. It is likely that the ASR gel product formed in the presence of lithium bearing 

soak solution is not as expansive as that formed in KAc soak solution. The trends in the 

pH changes of soak solutions in ASTM C 1293 tests were very similar to those observed 

in the ASTM C 1260 tests. 
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Figure 4.59 pH Values of Soak Solution from Modified ASTM C 1293 Tests for all 
Aggregates made with high-alkali and low-alkali cement. 

 

4.16 Visual and SEM-EDX Analysis on Concrete Prisms 

Visual and SEM-EDX analyses were conducted on concrete prisms exposed to 

deicer solution to study the reaction products formed due to interactions between the soak 

solutions and concrete prisms. SEM-EDX analyses were conducted on concrete prisms at 

the end of 12 months. SEM and EDX analysis of concrete prisms made with NM and SP 

aggregate are discussed in detail. 
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 Figure 4.60 shows the visual images of NM-HA soaked in KAc with different 

Li/K ratios. From these visual images, the influence on LiAc in mitigating expansion due 

to ASR is clearly observed, with an increase in Li/K ratio of soak solution, the intensity 

of cracking in prisms had reduced for a given base concentration of KAc. However, for a 

given Li/K ratio, as the base concentration of KAc increased, the intensity of cracking 

increased. Also, similar effects were observed in prisms made with low-alkali cement. 

These results suggest that the level of lithium needed in the blended deicer to control the 

deterioration is dependent on both Li/K molar ratio and the base concentration of KAc. 
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Soaked in 3 Molar KAc Solution 

 
 
 
 
 
 
 
 
 

 
Soaked in 3 Molar KAc Solution and Blended Deicers with Li/K 0.2 

 
 
 
 
 
 
 
 
 

Soaked in 3 Molar KAc Solution and Blended Deicers with Li/K 0.8 
 
 
 
 
 
 
 
 
 
 
 
 

Soaked in 6.4 Molar KAc Solution and Blended Deicers with Li/K 0.2 
 

 
Figure 4.60 Figures shows the visual images of NM-HA exposed to different Li/K ratio 

in Modified ASTM C 1293 Test. 
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Figure 4.61 shows the visual images of SP-HA soaked in 3 molar KAc solution, 

blended deicer of 3.0 molar KAc with Li/K of 0.2 and 6.4 molar KAc with Li/K of 0.2. 

Even though, visual images of prisms exposed to 3 molar KAc solution show less 

cracking compared to prisms exposed to 3 molar KAc solution with Li/K ratio of 0.2, it 

was the prisms exposed to 3 molar KAc solution that expanded more. Similar effects 

were seen in mortar bars. 

 

 

 

 

Soaked in 3 Molar KAc Solution 

 
 
 
 
 
 
 

Soaked in 3 Molar KAc Solution and Blended Deicers with Li/K 0.2 
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Figure 4.61 Figures shows the visual images of SP-HA exposed to different Li/K ratio in 

Modified ASTM C 1293 Test. 
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 Figure 4.62 shows SEM and EDX images of concrete prisms NM-HA-6.4-0.2. 

From the figure, it is evident that bars exposed to KAc show the deterioration of cement 

paste with significant cracking and some cracking through the aggregate. The EDX 

spectrum of the gel shows the presence of potassium in the gel and the formation of ASR 

gel. 

 Figure 4.63 and Figure 4.64 show the SEM-EDX images of NM-LA-3-0.2 and 

NM-LA-3-0.8, respectively.  From the SEM images, it is clear that the deterioration of 

the bar is influenced by the lithium concentration. Lithium acetate proved to be effective 

in mitigating the cracking, as the mitigation of cracks is well observed in Figure 4.64. 

Figure 4.65 shows the SEM-EDX images of NM-LA-6.4-0.2.  From the Figure, it can be 

seen that prisms which were exposed to blended deicer of 6.4 molar KAc with Li/K of 

0.2 show the deterioration of cement paste with significant cracking and some cracking 

through the aggregate also in the presence of LiAc. The EDX spectrum of the gel 

surrounding the aggregate and through the cement paste shows the presence of potassium 

in the gel and the formation of ASR gel. 

 Figure 4.66 and Figure 4.67 show the SEM-EDX images of SP-LA-3 and SP-LA-

3-0.2, respectively.  From the SEM images, the Li/K ratio of 0.2 is more effective in 

mitigating the cracking. In both images, the cracks were observed more around the 

aggregate. Similar results were observed in the expansion and DME results as higher 

Li/K concentrations yielded higher mitigation. 
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 Figure 4.68 shows the SEM-EDX images of SP-LA-6.4-0.2. From the SEM 

images it can be seen that there is a gel-like structure present around the aggregate. EDX 

shows the presence of potassium and calcium around the aggregate. 

From these SEM-EDX images, it can be observed that prisms exposed to KAc 

solution showed more deterioration compared to prisms exposed to blended deicers of 3 

molar and 6.4 molar KAc solution with different Li/K ratio. The reaction product around 

the aggregate formed in the presence of LiAc was comprised of calcium, potassium and 

silica, similar to the gel product for the prisms exposed to plain KAc solution. It is the gel 

that is formed in the presence of LiAc which is not expansive in nature which resulted in 

lesser expansion compared to the prisms exposed to 3 and 6.4 molar KAc solution. The 

effect of this non-expansive product in the presence of LiAc was well noticed in 

expansion and DME tests of concrete prisms, as the prisms exposed to blended deicers of 

KAc-LiAc solution showed less expansion and loss in DME compared to prisms exposed 

to soak solution without LiAc. 
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Figure 4.62 Figures show SEM-EDX images of NM-HA-6.4-0.2 prisms 
 
 



137 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.63 Figures show SEM-EDX images of NM-LA-3-0.2 prisms 
 



138 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.64 Figures show SEM-EDX images of NM-LA-3-0.8 prisms 
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Figure 4.65 Figures show SEM-EDX images of NM-LA-6.4-0.2 prisms 
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Figure 4.66 Figures show SEM-EDX images of SP-LA-3.0 prisms 
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Figure 4.67 Figures show SEM-EDX images of SP-LA-3-0.2 prisms 
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Figure 4.68 Figures show SEM-EDX images of SP-LA-6.4-0.2 prisms 
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4.17 Statistical Analyses for Modified ASTM 1293 Test 

Statistical analyses were conducted on the data obtained from the modified ASTM C 

1293 tests. The objectives of these analyses were: 

1. To study if there was any significant influence of Li/K ratio on expansion of 

concrete prisms  in modified ASTM C 1293 tests.  

2. To study if the expansions of concrete prism specimens made with high-alkali 

cement were higher than expansions of the corresponding specimens made with 

low-alkali cement. 

3. To determine the nature of the relationship between lithium content of the soak 

solution and the expansion in modified ASTM C 1293 tests.   

 

Results from Statistical Analysis 

Hypothesis testing for two or more population means was conducted using the 

SAS program to determine if there was any significant difference between various 

Li/K ratios in mitigating expansion in modified ASTM C 1293 test as explained in 

section 4.8.  

The tests were conducted for concrete prisms made with NM, SP, NC and SD 

aggregate with HA cement exposed to different Li/K ratios. From the Least 

Significant Difference (LSD) procedure, the test results are presented in Table 4.4.  

For a given aggregate, the same letter for different Li/K ratios indicates that there is 

no significant difference in the effectiveness of different dosages of lithium.  If the 

letters are different then there was a difference in expansion with respect to Li/K 
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ratio. From these results, it is seen that in NM aggregate, soak solutions with different 

Li/K ratios had a different effect on the level of mitigation. In case of prisms with SP, 

NC and SD aggregates, soak solution with Li/K ratio of 0.2 have similar effect as 

compared to 3 molar KAc soak solution (i.e., Li/K=0). 

Table 4.4 Comparison of effect of soak solution with different Li/K ratio in 
mitigating expansion for concrete prisms within aggregate source at modified ASTM 
C 1293 tests, at 12 months (X- no data). 

 
Soak Solution 

Li/K ratio 
NM SP NC SD 

0 A A A A 
0.2 B A A A 
0.8 C X X X 
 

Statistical analyses were conducted on all aggregate types with different soak 

solution combinations to find relative levels of mitigation offered for different 

aggregates, and if a significant difference exists between the different levels of 

mitigation. From the LSD procedure, the test results are presented in Table 4.5. The 

treatments with same letters means that there is no significant difference between 

those soak solution ratios and the effect of aggregate type. From the Table it is found 

that Li/K ratio does not seem to produce similar results between the aggregate 

reactivities. This may be due to aggregate mineralogy, as highly reactive aggregate 

responds quickly, compared to slow reactive aggregate. 
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Table 4.5 Comparison of effect of soak solution with different Li/K ratio in 
mitigating expansion for concrete prisms between aggregate sources at modified 

ASTM C 1293 tests, at 12 months (X- no data). 
 

Soak Solution 
Li/K ratio 

NM SP NC SD 

0 A E C F 
0.2 B E C F 
0.8 D X X X 

 

Expansions of low and high-alkali concrete prisms  

Hypothesis testing for two population means were conducted using the SAS 

program, to determine whether expansions of concrete prisms were influenced by 

alkali content of cement. From the hypothesis testing, it was seen that concrete prisms 

made with high-alkali cement showed more expansion than bars made with low-alkali 

cement except for the prisms soaked in Li/K ratio of 0.2 with 3 Molar KAc solution. 

The results from the tests are presented in Table 4.6. The notation used in Table 4.6 is 

same as in Table 4.3. 

Table 4.6 Comparison of expansions in modified ASTM C 1293 tests for concrete 
prisms made with high-alkali and low-alkali cement at 12 months. 

 
Soak Solution 

Li/K ratio 
NM 

0 HA>LA 
0.2 HA=LA 
0.8 HA>LA 
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Regression Analysis 

  To study the relationship between lithium acetate additions in mitigating 

expansion in modified ASTM C 1293 tests regression analyses were conducted. In this 

research, concrete prisms were prepared with NM aggregate soaked in different Li/K 

ratios prepared with both high and low-alkali cement. To establish the relationship, 

regression analysis was carried out by plotting expansion of ASTM C 1293 test on Y-axis 

and the Li/K ratio in X-axis on a graph. 

 Comparing the relationship between the increase in Li/K ratio and the expansion 

of concrete prisms, it can be said that there is a good exponential relationship in NM 

aggregate with high-alkali and low-alkali cements, when soaked with different Li/K ratio. 

The results are comparable to mortar bar made with NM aggregate as there is a similar 

pattern in both test methods. 
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Figure 4.69 Expansions in Modified ASTM C 1293 tests at 12 months made with high-

alkali and low-alkali cement for Li/K ratio of 0, 0.2, and 0.8 solutions with 3 molar KAc. 
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4.18 Results and Discussion from Modified ASTM C 672 Tests 

Figure 4.70 shows the visual images of the concrete slabs made with NM, SP and 

IL aggregate which were exposed to 6.4 molar KAc solution and 3 molar LiAc solution.  

From the images, it is seen that no scaling occurred after 50 cycles. Also, there was no 

residue and no expansion in the concrete slabs. The visual ratings of the surfaces were 

rated as 0 since no scaling was observed. It was also noticed that LiAc solution freezes at 

high temperature as the freezing point is high compared to KAc solution. The KAc 

solution did not freeze and no scaling was observed because of the freezing temperature 

of the solution. 
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Figure 4.70 Images showing the scaling resistance of concrete surface in Modified 
ASTM C 672 Test 
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4.19 Results and Discussion from Modified ASTM C 227 Tests 

Figure 4.71 shows the expansion results of the mortar bars from the modified 

ASTM C 227 tests. The mortar bars were made with non-reactive Ottawa sand with 5% 

fused silica and low-alkali cement. The mortar bars which were not pre-treated with 

lithium nitrate showed the highest expansion. Mortar bars with 1(T-1), 3(T-3) and 5(T-5) 

with coating of lithium nitrate showed very low levels of expansion, even after exposing 

the bars to subsequent coatings of KAc at 3 days, 7 days, 14 days, and 28 days. The 

application of lithium nitrate to the mortar bars before exposing to KAc can, therefore, be 

an better alternative to mitigate the distress caused by deicer solutions like KAc.  
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Figure 4.71 Expansion of Mortar Bars in Modified ASTM C 227 Test with pre-treatment 
with Lithium Nitrate before exposing to Potassium Acetate Deicer Solution with Fused 

Silica, Ottawa Sand and Low-Alkali Cement 
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Figure 4.72 shows the results of the changes in dynamic modulus of elasticity of 

mortar bar specimens in the modified ASTM C 227 test. From this figure, it can be seen 

that mortar bars which were pre-treated with lithium nitrate before exposing to coats of 

KAc showed little or no loss in DME at all dosage level. However, mortar bars not pre-

treated with lithium nitrate coats and exposed to KAc showed a major loss in DME 

compared to bars which were pre-treated with lithium nitrate. 
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Figure 4.72 Change in Dynamic Modulus of Mortar Bars made with Ottawa Sand with 

5% Fused Silica by Mass in Modified ASTM C 227 Test 
 

Figure 4.73 shows graphs of % DME relative to zero day reading compared to the 

% expansion in 227 tests at similar ages of mortar bars made with Ottawa sand, low-

alkali cement with no treatment and bars which are pre-treated with lithium nitrate at 1 

coat, 3 coat and 5 coats. It can be observed that whenever there is change in DME, a 
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corresponding change in the linear expansion of the mortar bars was observed in ASTM 

C 227 tests. 
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Figure 4.73 Percentage DME Relative to Zero Day Reading and Expansions in C 227 
Tests 

 

4.20 Results and Discussion from ICP Tests 

 This test was conducted to determine the depth of penetration of deicers into 

concrete. The specimens used in this study were taken from scaling studies. The 

concentration of solution used was 6.4 molar KAc solution and 3 molar LiAc solution. 

Figure 4.74 shows the results from the ICP testing which were done on the crushed 

powder of the cores of the concrete slabs which were exposed to these soak solution. The 

X axis shows the depth from the top of the slab and the Y axis shows the concentration. 

From the figures, both K and Li ion concentration decreases along the depth. From these 
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results, it appears that for six month exposure duration, to deicers solution, both K and Li 

penetrated to a depth of 1.5 inch to 2 inch into concrete. Since the concentration of KAc 

and LiAc is different, no quantitative assessment could be conducted to compare the 

relative penetration of K and Li ions into concrete. 
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Figure 4.74 Figures shows the profile of K and Li penetration in the concrete slabs along 
the depth 
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4.21 Results from XRF Testing 

Figures 4.75 through 4.76 show the penetration of K in a concrete slab made with 

SP aggregate and low-alkali cement, exposed to KAc concentration. Figure 4.75 shows 

the three color overlay image of IL-KAc which shows the penetration of K along the 

depth of the concrete slab. Potassium was found all over the cement matrix and around 

the aggregate forming the ASR gel around the aggregate.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.75 Three color overlay image of SP-KAc made with LA cement. Calcium = 
Blue, Silicon = Red, Potassium = Green. 
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Figure 4.76 Thermal colorization of SP-KAc made with LA cement. 

 Figure 4.77 shows the spectra of the concrete specimens at the top and bottom 

location of the slab. In this graph, it can be seen that K concentration is higher in the top 

portion of the concrete when compared to bottom portion. 

 

 

 

 

 

 

 

 

 

Figure 4.77 XRF Spectra of SP-KAc made with LA cement. 
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Figures 4.78 and 4.79 show the various images used to understand the penetration 

of K in IL-LA exposed to KAc. The penetrations of K were similar to that of concrete 

made with SP aggregate. 

Figure 4.78 gives the three color overlay image of IL-KAc. This shows the 

penetration of K along the depth of the concrete slab. Potassium was found all over the 

cement matrix and around the aggregate forming the ASR gel around the aggregate as 

similar images were also seen in the SEM images. 

 

 

 

 

 

 

 

 

 

 

Figure 4.78 Three color overlay image of IL-KAc made with LA cement. Calcium = 
Blue, Silicon = Red, Potassium = Green. 
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Figure 4.79 Thermal colorization of SP-KAc made with LA cement. 

 Figure 4.80 shows the spectra of the concrete specimens at top, middle and 

bottom locations of the slab. In this graph, it can be seen that K concentration is higher in 

the top portion of the concrete and the concentration drops with depth. 
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Figure 4.80 XRF Spectra of IL-KAc made with LA cement. 
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CHAPTER FIVE 

 SUMMARY AND CONCLUSIONS 

 

5.1 Summary 

 This chapter presents a summary of the principal findings and the conclusions 

from the research study of standard and modified ASTM C 1260 tests, modified ASTM C 

1293 tests, modified ASTM C 672 tests, ICP tests, XRF tests and modified ASTM C 227 

tests, followed by recommendations. 

5.1.1 Standard and Modified ASTM C 1260 Tests 

 The principal findings from the standard and modified ASTM C 1260 tests were: 

1. Mortar bars made with reactive aggregate exposed to plain potassium acetate at 

both 3 and 6.4 molar KAc solution showed significant potential to cause distress. 

2. The level of expansion in mortar bars made with NM and NC aggregate increased 

significantly when exposed to KAc with 3 molar KAc solution, as compared to 

6.4 molar KAc solution. Mortar bars made with SP and SD aggregate showed 

more expansion when exposed to 6.4 molar KAc solution when compared to 3 

molar KAc solution. 

3. Lithium acetate, when blended with 3 molar and 6.3 molar KAc, was found to be 

effective in mitigating ASR expansion associated with SP, NC and SD 

aggregates. NM aggregate could only be mitigated by blended deicers of 3 molar 

KAc with Li/K of 0.6 and 0.8 molar ratios. 
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4. The alkali content of the cement had a significant influence on the expansions of 

the mortar bars. Bars made with high-alkali cement expand more when compared 

with bars made with low-alkali cement. 

5. The changes in DME of mortar bars upon exposure to different deicers 

corresponded well with the linear expansions observed. 

6.  SEM and EDX analysis of mortar bars showed severe deterioration in the 

aggregate particles and the cement paste of the mortar bars when exposed to 3 and 

6.4 molar KAc solution. There was a significant reduction in deterioration when 

LiAc was added to KAc. This trend was more apparent in mortar bars exposed to 

blended deicers with higher Li/K molar ratios (i.e., 0.6 and 0.8). The gel formed 

within a crack, or the residue outside an aggregate crack was mainly comprised of 

silica, potassium and calcium. 

 

5.1.2 Modified ASTM C 1293 Tests 

The principal findings from the modified ASTM C 1293 tests were: 

1. Concrete prisms made with all of the reactive aggregates showed significant 

expansions when exposed to 3 and 6.4 molar KAc solutions. The level of 

expansion of concrete prisms exposed to 6.4 molar KAc solution was greater 

when compared to 3 Molar KAc solution. 

2. The addition of LiAc to KAc deicer was found to not be as effective in controlling 

expansion of concrete prisms in ASTM C 1293 tests, compared to its effect on 

mortar bars in ASTM C 1260 tests. 
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3. The alkali content of the cement had a significant influence on the expansion of 

the concrete prisms in the modified ASTM C 1293 tests. Prisms made with high-

alkali cement expanded more when compared with bars made with low-alkali 

cement. 

4. Concrete prisms made with NM aggregate were the most affected by the deicers 

used in the study, followed by SP, NC and SD aggregate, respectively. 

5. The dynamic modulus of elasticity (DME) of concrete prisms made with all 

aggregates showed a significant drop upon exposure to 6.4 molar KAc solution 

and 3 Molar KAc solution. The reduction in DME was observed with the addition 

of LiAc and more in increase of Li/K ratio.  

6. SEM and EDX analysis of concrete prisms showed severe deterioration within the 

aggregate particles and the cement paste of the concrete prisms when exposed to 3 

and 6.4 molar KAc solution. This effect was similar to that observed in the mortar 

bars. There was a significant reduction in deterioration when LiAc was added to 

KAc solutions. There were fewer cracks observed in concrete prisms when soaked 

in blended deicers with higher Li/K molar ratio.  

5.1.3 Modified ASTM C 672 Tests 

The principal findings from the modified ASTM C 672 tests were: 

1. No scaling was observed in concrete slabs made with both reactive and non-

reactive aggregate exposed to 3 and 6.4 molar KAc solutions. 

2. No mass loss or expansion was observed. 
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5.1.4 ICP and XRF Tests 

The principal findings from ICP and XRF tests were: 

1. The concentration of K was high in the top surface and reduces with depth. 

2. The gradient from top to bottom showed the influence of K in concrete samples. 

3. The reaction products formed around the aggregate were mainly comprised of 

silica, potassium and calcium. 

 

5.1.5 Modified ASTM C 227 Tests 

The principal findings from the modified ASTM C 227 tests were: 

1. Mortar bars that were exposed to KAc and not pre-treated with LiNO3 showed 

higher expansion than those that were pre-treated with LiNO3. 

2. There was a significant drop in dynamic modulus of elasticity (DME) in mortar 

bars exposed to KAc without pre-treatment, and no such loss was observed  bars 

pre-treated with lithium nitrate. The loss in DME correlated well with 

corresponding increase in the expansions of mortar bars. 
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5.2 Conclusions 

 

The following conclusions can me made from this study: 

1. A saturated solution of LiAc or blends of LiAc-KAc at Li/K molar ratio of 0.2 

and higher appear to be effective in mitigating ASR related effects in mortar bars 

prepared with 3 out of 4 reactive aggregates. Only mortar bars with NM 

aggregate, the most reactive of all aggregates, could not be mitigated to below 

0.1% at 14 days. 

2. While blends of LiAc-KAc deicer solutions were found to reduce expansion in 

concrete prisms, the magnitude of reduction was not comparable to that observed 

in mortar bars. Consequently tests on concrete prisms showed that blended deicers 

at Li/K of 0.2 were not effective in controlling expansion induced by ASR.\ 

3. The use of low-alkali cement significantly reduced expansion in mortar bars in the 

presence of lithium bearing deicing solutions. 

4. The type of aggregate and the alkali level in the concrete, both influence the 

minimum levels of lithium compounds needed to successfully mitigate ASR.  

5. None of the deicers evaluated in this study (i.e., KAc and LiAc) caused scaling in 

concrete slabs. 

6. No pessimum effects were observed with lithium acetate, when evaluated in 

ASTM C 1260 and ASTM C 1293 tests. 

7. Pre-treatment of mortar bars with LiNO3 before exposure to KAc deicer solution 

was effective in controlling expansion in mortar bars. No significant expansion or 

drop in DME was observed in mortar bars which were pre-treated. 
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5.3 Recommendations 

Based on the research findings, the following recommendations are suggested into 

two groups: 

 

5.3.1 Recommendations for Practice 

 

1. Using LiAc with KAc is a viable approach to mitigate expansion due to ASR. For 

highly reactive aggregate like NM aggregate Li/K of 0.8 with 3 molar KAc can be 

used to mitigate the expansion. For moderate reactive aggregate Li/K ratio of 0.4 

to 0.6 can be used to mitigate the expansion. 

2. It is suggested to use low-alkali cement compared to high-alkali cement as it is 

observed from this research that alkali content of cement has significant influence 

on the expansion due to ASR. 

3. Since the gel formed in the presence of LiAc is not expansive in nature which 

results in lesser expansion, it is strongly suggested that use of LiAc in addition to 

KAc should be considered as an alternative to regular deicers like KAc. 

 

5.3.2 Recommendations for Future Research 

 

1. In future studies, it is recommended that quantitative chemical analyses on the gel 

composition be carried out to ascertain the level of mitigation obtained as a 

function of lithium dosage. 

2. Even though, the ASTM C 1260 accelerated mortar bar test helps in assessing the 

ability of lithium compounds to reduce expansion due to ASR, lithium 
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compounds should be evaluated by conducting ASTM C 1293 tests, to gain a 

better understanding of the specimen size effect on mitigation. 

3. It is established in this study that lithium acetate is effective in mitigating ASR. In 

future, studies should be carried out to optimize the composition of blended 

deicers to meet the specification of the Environmental Protection Agency and 

Aerospace Materials Specifications for deicers 

4. Pre-treatment of mortar bars with LiNO3 before exposing to KAc was effective in 

all dosage levels. Further research should be done on concrete prisms to find the 

specimen size effect in mitigation and the pre-treatment effectiveness. 
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Table A1 Expansion readings and percentage expansions of the Standard ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement 
 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.01 0.2969 0.2752 0.332 0.3206 0 0 0 0 0 
3 0.0036 0.3477 0.3264 0.3798 0.3820 0.5720 0.5760 0.5420 0.6780 0.5920 
7 0.0036 0.3902 0.3705 0.4213 0.4095 0.9970 1.0170 0.9570 0.9530 0.9810 
10 0.0038 0.4128 0.3947 0.4439 0.4311 1.2210 1.2570 1.1810 1.1670 1.2065 
14 0.0036 0.4340 0.4170 0.4677 0.4521 1.4350 1.4820 1.4210 1.3790 1.4293 
21 0.0033 0.4550 0.4387 0.4909 0.4725 1.6480 1.7020 1.6560 1.5860 1.6480 
28 0.0031 0.4693 0.4532 0.5064 0.4865 1.7930 1.8490 1.8130 1.7280 1.7958 

 
 
 
Note: 
 
1. % Expansion value on nth day = 
 
[(mortar bar reading of nth day- ref. bar reading of nth day) – (mortar bar reading of 0th day- ref. bar reading of 0th day)] X 100 

Original length of the mortar bar 
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Table A2 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and 3 MC of Potassium Acetate deicer  
 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0050 0.3056 0.3174 0.2875 0.3141 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0059 0.4497 0.4511 0.4245 0.4507 1.4320 1.3280 1.3610 1.3570 1.3695 
7 0.0064 0.5098 0.5058 0.4793 0.5020 2.0280 1.8700 1.9040 1.8650 1.9168 
11 0.0058 0.5280 0.5224 0.4979 0.5164 2.2160 2.0420 2.0960 2.0150 2.0923 
14 0.0056 0.5334 0.5280 0.5031 0.5219 2.2720 2.1000 2.1500 2.0720 2.1485 
21 0.0064 0.5384 0.5332 0.5080   2.3140 2.1440 2.1910   2.2163 
28 0.0072 0.5405 0.5352 0.5102   2.3270 2.1560 2.2050   2.2293 

 
 
Table A3 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and 6.4 MC of Potassium Acetate deicer  
 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.01 0.3017 0.3135 0.325 0.3132 0 0 0 0 0 
3 0.0036 0.4212 0.4293 0.4441 0.4299 1.2590 1.2220 1.2550 1.2310 1.2418 
7 0.0036 0.4519 0.4594 0.4747 0.4614 1.5660 1.5230 1.5610 1.5460 1.5490 
10 0.0038 0.4533 0.4605 0.4760 0.4629 1.5780 1.5320 1.5720 1.5590 1.5603 
14 0.0036 0.4539 0.4612 0.4765 0.4635   1.5410 1.5790 1.5670 1.5623 
21 0.0033 0.4541 0.4618 0.4770 0.4639 1.5910 1.5500 1.5870 1.5740 1.5755 
28 0.0031 0.4554 0.4628 0.4781 0.4652 1.6060 1.5620 1.6000 1.5890 1.5893 
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Table A4 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and Lithium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0093 0.3143 0.3141 0.3132 0 0 0 0 
3 0.0097 0.314 0.3145 0.313 -0.007 0 -0.006 -0.0043 
7 0.0094 0.3143 0.314 0.3137 -0.001 -0.002 0.004 0.0003 
11 0.0096 0.315 0.3152 0.315 0.004 0.008 0.015 0.0090 
14 0.0095 0.3158 0.3154 0.3148 0.013 0.011 0.014 0.0127 
21 0.0102 0.3153 0.314 0.3139 0.001 -0.01 -0.002 -0.0037 
28 0.0103 0.3161 0.3158 0.3136 0.008 0.007 -0.006 0.0030 

 
 
 
Table A5 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and Li/K 3-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.005 0.3071 0.2618 0.2809 0.2914 0 0 0 0 0 
3 0.0059 0.3656 0.3202 0.3363 0.3439 0.576 0.575 0.545 0.516 0.5530 
7 0.0064 0.4111 0.3636 0.3791 0.385 1.026 1.004 0.968 0.922 0.9800 
11 0.0058 0.426 0.3783 0.393 0.3966 1.181 1.157 1.113 1.044 1.1238 
14 0.0056 0.4303 0.3823 0.3975 0.4003 1.226 1.199 1.16 1.083 1.1670 
21 0.0064 0.4353 0.3807 0.402   1.268 1.175 1.197   1.2133 
28 0.0066 0.4372 0.388 0.4035   1.285 1.246 1.21   1.2470 
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Table A6 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and Li/K 3-0.4 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.366 0.3992 0.3899 0.4311 0 0 0 0 0 
3 0.0056 0.3862 0.4198 0.4168 0.4564 0.21 0.214 0.277 0.261 0.2405 
7 0.0057 0.3912 0.4249 0.4119 0.4621 0.259 0.264 0.227 0.317 0.2668 
11 0.0057 0.3962 0.4306 0.4268 0.4682 0.309 0.321 0.376 0.378 0.3460 
14 0.0058 0.3971 0.4318 0.4278 0.4702 0.317 0.332 0.385 0.397 0.3578 
21 0.0067 0.399 0.4331 0.4299   0.327 0.336 0.397   0.3533 
28 0.0059 0.3985 0.4329 0.4294   0.33 0.342 0.4   0.3573 

 
 
Table A7 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and Li/K 3-0.6 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.3738 0.4108 0.4939 0.3736 0 0 0 0 0 
3 0.0056 0.3799 0.4177 0.4971 0.3761 0.069 0.077 0.04 0.033 0.0548 
7 0.0057 0.3809 0.4189 0.498 0.3772 0.078 0.088 0.048 0.043 0.0643 
11 0.0057 0.3819 0.42 0.4989 0.3785 0.088 0.099 0.057 0.056 0.0750 
14 0.0058 0.3825 0.4206 0.4993 0.3786 0.093 0.104 0.06 0.056 0.0783 
21 0.0067 0.384 0.4224 0.501   0.099 0.113 0.068   0.0933 
28 0.0059 0.3834 0.4218 0.5003   0.101 0.115 0.069   0.0950 
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Table A8 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and Li/K 3-0.8 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.428 0.3908 0.4994 0.4569 0 0 0 0 0 
3 0.0056 0.4305 0.3935 0.5026 0.4583 0.033 0.035 0.04 0.022 0.0325 
7 0.0057 0.431 0.3942 0.5034 0.4597 0.037 0.041 0.047 0.035 0.0400 
11 0.0057 0.4321 0.3949 0.5043 0.4611 0.048 0.048 0.056 0.049 0.0503 
14 0.0058 0.4329 0.3956 0.5048 0.4615 0.055 0.054 0.06 0.052 0.0553 
21 0.0067 0.4343 0.3969 0.5065   0.06 0.058 0.068   0.0620 
28 0.0059 0.4335 0.3963 0.5057   0.06 0.06 0.068   0.0627 

 
 
 
Table A9 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
High Alkali cement and Li/K 6.4-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0051 0.2909 0.3036 0.2819 0.2912 0 0 0 0 0 
3 0.0051 0.3354 0.3464 0.3268 0.3346 0.445 0.428 0.449 0.434 0.4390 
7 0.0054 0.3765 0.3885 0.3695 0.3746 0.853 0.846 0.873 0.831 0.8508 
11 0.0059 0.389 0.4018 0.3838 0.3874 0.973 0.974 1.011 0.954 0.9780 
14 0.005 0.3907 0.4036 0.3849 0.3889 0.999 1.001 1.031 0.978 1.0023 
21 0.0058 0.3933 0.4026 0.3879   1.017 0.983 1.053   1.0177 
28 0.006 0.3944 0.407 0.3887   1.026 1.025 1.059   1.0367 
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Table A10 Expansion readings and percentage expansions of the Standard ASTM C 1260 test for New Mexico Rhyolite using 
Low Alkali cement 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 
0 0.01 0.2926 0.3225 0.3191 0.318 0 0 0 0 0 
3 0.0036 0.3405 0.37 0.3665 0.3661 0.543 0.539 0.538 0.545 0.5413 
7 0.0036 0.384 0.4126 0.4121 0.4094 0.978 0.965 0.994 0.978 0.9788 

10 0.0038 0.4062 0.4353 0.4364 0.4323 1.198 1.19 1.235 1.205 1.2070 
14 0.0036 0.4269 0.4575 0.4583 0.4535 1.407 1.414 1.456 1.419 1.4240 
21 0.0033 0.4476 0.48 0.4796 0.4734 1.617 1.642 1.672 1.621 1.6380 
28 0.0031 0.4621 0.4948 0.4942 0.4878 1.764 1.792 1.82 1.767 1.7858 

 
Table A11 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
Low Alkali cement and 3 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0093 0.3065 0.3429 0.2989 0 0 0 0 
3 0.0096 0.3715 0.4173 0.3742 0.647 0.741 0.75 0.7127 
7 0.0098 0.3926 0.4417 0.3784 0.856 0.983 0.79 0.8763 

11 0.01 0.451 0.4937   1.438 1.501   1.4695 
14 0.0095 0.4608 0.5027   1.541 1.596   1.5685 
21 0.0102 0.4719 0.5126   1.645 1.688   1.6665 
28 0.0103 0.481 0.52   1.735 1.761   1.7480 
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Table A12 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
Low Alkali cement and 6.4 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 
0 0.01 0.2805 0.2997 0.2892 0.3093 0 0 0 0 0 
3 0.0036 0.3955 0.4146 0.4071 0.4236 1.214 1.213 1.243 1.207 1.2193 
7 0.0036 0.4277 0.4444 0.4411 0.4547 1.536 1.511 1.583 1.518 1.5370 

10 0.0038 0.4294 0.4454 0.4424 0.4562 1.551 1.519 1.594 1.531 1.5488 
14 0.0036 0.4296 0.446 0.4428 0.4565 1.555 1.527 1.6 1.536 1.5545 
21 0.0033 0.4301 0.4466 0.4436 0.457 1.563 1.536 1.611 1.544 1.5635 
28 0.0031 0.4313 0.4476 0.4446 0.4581 1.577 1.548 1.623 1.557 1.5763 

 
 
Table A13 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for New Mexico Rhyolite using 
Low Alkali cement and Lithium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0093 0.3317 0.2232 0.3156 0 0 0 0 
3 0.01 0.332 0.2236 0.316 -0.004 -0.003 -0.003 -0.0033 
7 0.0093 0.332 0.2238 0.3163 0.003 0.006 0.007 0.0053 

11 0.0096 0.333 0.2259 0.3177 0.01 0.024 0.018 0.0173 
14 0.0095 0.3333 0.2259 0.3174 0.014 0.025 0.016 0.0183 
21 0.01 0.3326 0.2245 0.3166 0.002 0.006 0.003 0.0037 
28 0.0103 0.3337 0.2259 0.3171 0.01 0.017 0.005 0.0107 
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Table A14 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for New Mexico Rhyolite using Low Alkali cement and Li/K 3-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0093 0.2845 0.3434 0.2952 0 0 0 0 
3 0.0096 0.3018 0.3564 0.3136 0.17 0.127 0.181 0.1593 
7 0.0098 0.3191 0.3737 0.3341 0.341 0.298 0.384 0.3410 

11 0.01 0.3495 0.4091 0.372 0.643 0.65 0.761 0.6847 
14 0.0095 0.3535 0.416 0.3767 0.688 0.724 0.813 0.7417 
21 0.0102 0.3549 0.4189 0.3794 0.695 0.746 0.833 0.7580 
28 0.0103 0.3563 0.4214 0.3806 0.708 0.77 0.844 0.7740 

 
 
 
Table A15 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for New Mexico Rhyolite using Low Alkali cement and Li/K 3-0.8 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0093 0.2782 0.3268 0.286 0 0 0 0 
3 0.0102 0.2807 0.328 0.2882 0.016 0.003 0.013 0.0107 
7 0.0094 0.2809 0.3292 0.2879 0.026 0.023 0.018 0.0223 

11 0.0098 0.2822 0.3306 0.2893 0.035 0.033 0.028 0.0320 
14 0.0095 0.2824 0.3303 0.2892 0.04 0.033 0.03 0.0343 
21 0.0102 0.2808 0.329 0.288 0.017 0.013 0.011 0.0137 
28 0.0103 0.2826 0.3309 0.29 0.034 0.031 0.03 0.0317 

 
 
 
Table A16 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for New Mexico Rhyolite using Low Alkali cement and Li/K 6.4-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0093 0.3207 0.3158 0.3062 0 0 0 0 
3 0.01 0.3362 0.3609 0.3468 0.148 0.444 0.399 0.3303 
7 0.0094 0.3731 0.3683 0.3624 0.523 0.524 0.561 0.5360 

11 0.0096 0.3864 0.3806 0.3757 0.654 0.645 0.692 0.6637 
14 0.0095 0.387 0.381 0.3763 0.661 0.65 0.699 0.6700 
21 0.0102 0.3875 0.3807 0.3765 0.659 0.64 0.694 0.6643 
28 0.0103 0.3887 0.3824 0.3781 0.67 0.656 0.709 0.6783 
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Table A17 Changes in DME in standard ASTM C 1260 tests using NM aggregate, high 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.82 3.73 4.00 3.86 3.85 100.00 
3 2.35 2.36 2.52 2.40 2.41 62.52 
28 1.51 1.37 1.31 1.35 1.38 35.94 

 
Table A18 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.25 4.17 4.44 4.41 4.32 100.00 
3 0.87 0.87 0.92 0.90 0.89 20.61 
28 1.86 1.68 1.88 1.90 1.83 42.41 

 
Table A19 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.12 4.14 4.11 4.03 4.10 100.00 
3 0.93 1.01 0.98 0.97 0.97 23.69 
14 1.30 1.39 1.54 1.33 1.39 33.92 
28 1.55 1.72 1.63   1.63 39.85 

 
Table A20 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and LiAc 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 2.27 2.47 2.46 2.40 100.00 
3 2.46 2.69 2.54 2.56 106.77 
14 2.38 2.68 2.53 2.53 105.51 
28 2.73 2.84 3.04 2.87 119.57 
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Table A21 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.09 4.12 4.05 4.36 4.16 100.00 
3 2.01 1.84 2.00 2.28 2.03 48.89 
14 1.28 1.35 1.40 1.77 1.45 34.91 
28 1.41 1.28 1.66   1.45 34.95 

 
Table A22 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and Li/K 3-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.10 4.13 4.36 4.25 4.21 100.00 
3 0.86 0.94 1.05 1.12 0.99 23.59 
14 0.66 0.69 0.88 0.78 0.75 17.87 
28 0.60 0.58 0.68   0.62 14.69 

 
Table A23 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and Li/K 3-0.4  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.00 3.98 3.90 3.87 3.94 100.00 
3 2.24 2.06 1.35 1.45 1.77 45.06 
14 2.66 2.73 1.98 1.89 2.31 58.79 
28 2.25 2.89 2.05   2.39 60.82 

 
Table A24 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and Li/K 3-0.6  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.98 4.07 4.02 4.00 4.02 100.00 
3 3.49 3.33 3.83 3.89 3.63 90.36 
14 3.95 3.90 4.19 4.17 4.05 100.80 
28 3.98 3.95 4.27   4.07 101.17 
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Table A25 Changes in DME in modified ASTM C 1260 tests using NM aggregate, high 
alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.08 4.02 3.99 4.07 4.04 100.00 
3 4.10 3.95 3.94 4.01 4.00 99.02 
14 4.27 4.24 4.17 4.31 4.25 105.10 
28 4.28 4.22 4.18   4.23 104.60 

 
 
Table A26 Changes in DME in standard ASTM C 1260 tests using NM aggregate, low 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.79 3.97 3.85 3.75 3.84 100.00 
3 2.43 2.55 2.44 2.34 2.44 63.51 
28 1.42 1.54 1.41 1.51 1.47 38.33 

 
Table A27 Changes in DME in modified ASTM C 1260 tests using NM aggregate, low 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.28 4.14 4.20 4.28 4.23 100.00 
3 0.92 0.98 0.84 0.91 0.91 21.59 
28 1.69 1.68 1.57 1.75 1.68 39.66 

 
Table A28 Changes in DME in modified ASTM C 1260 tests using NM aggregate, low 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.87 4.79 4.50 4.72 100.00 
3 1.39 1.22 1.04 1.22 25.78 
14 1.37 1.24   1.31 27.64 
28 1.28 1.20   1.24 26.29 
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Table A29 Changes in DME in modified ASTM C 1260 tests using NM aggregate, low 
alkali cement and LiAc 
 

  Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.67 4.57 4.40 4.55 100.00 
3 4.91 4.81 4.52 4.75 104.33 
14 4.63 4.49 4.24 4.45 97.85 
28 4.08 4.39 3.73 4.07 89.35 

 
Table A30 Changes in DME in modified ASTM C 1260 tests using NM aggregate, low 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.38 4.33 4.90 4.54 100.00 
3 2.03 1.91 1.96 1.97 43.36 
14 1.54 1.39 1.61 1.52 33.37 
28 1.52 1.49 1.48 1.50 33.00 

 
Table A31 Changes in DME in modified ASTM C 1260 tests using NM aggregate, low 
alkali cement and Li/K 3-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.99 4.57 5.00 4.85 100.00 
3 2.68 3.21 2.71 2.87 59.09 
14 1.34 1.22 0.90 1.15 23.80 
28 1.29 0.75 1.18 1.07 22.12 

 
Table A32 Changes in DME in modified ASTM C 1260 tests using NM aggregate, low 
alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 5.09 4.19 4.13 4.47 100.00 
3 4.99 4.17 4.11 4.42 98.84 
14 5.08 3.60 4.14 4.27 95.52 
28 4.16 4.25 4.15 4.19 93.58 
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Table A33 Expansion readings and percentage expansions of the Standard ASTM C 1260 test for Spratt Limestone using High 
Alkali cement 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.151 0.4668 0.4857 0.4457 0.455 0 0 0 0 0 
2 0.1513 0.4737 0.4922 0.452 0.4612 0.066 0.062 0.06 0.059 0.0618 
4 0.1512 0.4816 0.4995 0.4592 0.4683 0.146 0.136 0.133 0.131 0.1365 
6 0.1503 0.4861 0.5038 0.4634 0.4721 0.2 0.188 0.184 0.178 0.1875 
8 0.1499 0.4892 0.5069 0.4661 0.4751 0.235 0.223 0.215 0.212 0.2213 
10 0.1507 0.4938 0.5114 0.4706 0.4792 0.273 0.26 0.252 0.245 0.2575 
12 0.1501 0.4977 0.5152 0.4742 0.4829 0.318 0.304 0.294 0.288 0.3010 
14 0.151 0.5037 0.5206 0.4793 0.4881 0.369 0.349 0.336 0.331 0.3463 
16 0.1511 0.5088 0.5257 0.4845 0.4934 0.419 0.399 0.387 0.383 0.3970 
20 0.1511 0.5203 0.5302 0.4949 0.5038 0.534 0.444 0.491 0.487 0.4890 
24 0.151 0.5333 tall 0.508 0.5172 0.665   0.623 0.622 0.6367 
28 0.1499 tall tall 0.5203 0.5299     0.757 0.76 0.7585 
32 0.1501 tall tall 0.5321 tall     0.873   0.8730 

 
 
Table A34 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and 3 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.005 0.3357 0.3083 0.3213 0.2784 0 0 0 0 0 
3 0.0059 0.3397 0.3127 0.3254 0.2825 0.031 0.035 0.032 0.032 0.0325 
7 0.0064 0.3438 0.3173 0.3293 0.2866 0.067 0.076 0.066 0.068 0.0693 
11 0.0058 0.3488 0.3221 0.339 0.2917 0.123 0.13 0.169 0.125 0.1368 
14 0.0056 0.3523 0.3257 0.3357 0.2949 0.16 0.168 0.138 0.159 0.1563 
21 0.0064 0.3761 0.3496 0.3607   0.39 0.399 0.38   0.3897 
28 0.0066 0.4033 0.3764 0.3873   0.66 0.665 0.644   0.6563 
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Table A35 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and 6.4 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.1504 0.4791 0.4698 0.4537 0 0 0 0 
1 0.1503 0.4795 0.4701 0.454 0.005 0.004 0.004 0.0043 
3 0.1504 0.4857 0.4766 0.4606 0.066 0.068 0.069 0.0677 
5 0.1503 0.5024 0.4936 0.4777 0.234 0.239 0.241 0.2380 
7 0.1498 0.5147 0.5065 0.4908 0.362 0.373 0.377 0.3707 
9 0.15 0.5261 0.5178 0.502 0.474 0.484 0.487 0.4817 
11 0.149 0.5331 0.5269 0.5114 0.554 0.585 0.591 0.5767 
13 0.149   0.5353 0.5217   0.669 0.694 0.6815 
15 0.1513     0.5351     0.805 0.8050 
19 0.1513               
24 0.1528               
30 0.1527               

 
 
 
Table A36 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and Lithium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0099 0.3072 0.2335 0.321 0 0 0 0 
3 0.0093 0.3067 0.2329 0.3209 0.001 -2.776E-16 0.005 0.0020 
7 0.0097 0.3074 0.2329 0.3221 0.004 -0.004 0.013 0.0043 
11 0.0098 0.3088 0.2345 0.3232 0.017 0.011 0.023 0.0170 
14 0.0095 0.3089 0.2349 0.3234 0.021 0.018 0.028 0.0223 
21 0.0085 0.3086 0.234 0.3215 0.028 0.019 0.019 0.0220 
28 0.0097 0.3093 0.2355 0.3229 0.023 0.022 0.021 0.0220 
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Table A37 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and Li/K 3-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.005 0.3127 0.3187 0.3064 0.2824 0 0 0 0 0 
3 0.0059 0.3156 0.3216 0.3093 0.2853 0.02 0.02 0.02 0.02 0.0200 
7 0.0064 0.3174 0.3234 0.311 0.2869 0.033 0.033 0.032 0.031 0.0323 
11 0.0058 0.3176 0.3237 0.3112 0.2872 0.041 0.042 0.04 0.04 0.0408 
14 0.0056 0.318 0.324 0.3118 0.2875 0.047 0.047 0.048 0.045 0.0468 
21 0.0064 0.3191 0.3252 0.3128   0.05 0.051 0.05   0.0503 
28 0.0066 0.32 0.3265 0.3138   0.057 0.062 0.058   0.0590 

 
 
 
Table A38 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and Li/K 3-0.4 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.3137 0.3768 0.29 0.3221 0 0 0 0 0 
3 0.0056 0.3143 0.3772 0.2906 0.3226 0.014 0.012 0.014 0.013 0.0133 
7 0.0057 0.3152 0.378 0.2915 0.3235 0.022 0.019 0.022 0.021 0.0210 
11 0.0057 0.3156 0.3785 0.292 0.3239 0.026 0.024 0.027 0.025 0.0255 
14 0.006 0.3163 0.3792 0.2925 0.3246 0.03 0.028 0.029 0.029 0.0290 
21 0.0067 0.3172 0.3803 0.2935   0.032 0.032 0.032   0.0320 
28 0.0058 0.3164 0.3795 0.2928   0.033 0.033 0.034   0.0333 

 
 
 
 
 

181 

 



182 
 

Table A39 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and Li/K 3-0.6 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.2783 0.3234 0.2914 0.3114 0 0 0 0 0 
3 0.0056 0.2795 0.325 0.2927 0.3125 0.02 0.024 0.021 0.019 0.0210 
7 0.0057 0.28 0.3256 0.2931 0.3131 0.024 0.029 0.024 0.024 0.0253 
11 0.0057 0.2804 0.326 0.2933 0.3136 0.028 0.033 0.026 0.029 0.0290 
14 0.006 0.2812 0.3266 0.294 0.314 0.033 0.036 0.03 0.03 0.0323 
21 0.0067 0.282 0.3276 0.2951   0.034 0.039 0.034   0.0357 
28 0.0058 0.2815 0.3267 0.2945   0.038 0.039 0.037   0.0380 

 
 
 
 
Table A40 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and Li/K 3-0.8 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.4082 0.3934 0.2939 0.3072 0 0 0 0 0 
3 0.0056 0.4092 0.3944 0.2949 0.3081 0.018 0.018 0.018 0.017 0.0178 
7 0.0057 0.4096 0.3949 0.2953 0.3088 0.021 0.022 0.021 0.023 0.0218 
11 0.0057 0.4098 0.3951 0.2956 0.3092 0.023 0.024 0.024 0.027 0.0245 
14 0.006 0.4109 0.396 0.2964 0.3098 0.031 0.03 0.029 0.03 0.0300 
21 0.0067 0.4119 0.3969 0.2972   0.034 0.032 0.03   0.0320 
28 0.0058 0.4113 0.3962 0.2965   0.037 0.034 0.032   0.0343 
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Table A41 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for Spratt Limestone using High 
Alkali cement and Li/K 6.4-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0051 0.3077 0.2884 0.3194 0.2561 0 0 0 0 0 
3 0.0044 0.3085 0.2893 0.3209 0.2575 0.015 0.016 0.022 0.021 0.0185 
7 0.0054 0.3113 0.2923 0.3232 0.2597 0.033 0.036 0.035 0.033 0.0342 
11 0.0059 0.3138 0.2947 0.3254 0.2618 0.053 0.055 0.052 0.049 0.0522 
14 0.005 0.3131 0.2942 0.3246 0.2612 0.055 0.059 0.053 0.052 0.0547 
21 0.0058 0.3155 0.2967 0.3272   0.071 0.076 0.071   0.0727 
28 0.006 0.3164 0.2973 0.3277   0.078 0.08 0.074   0.0773 

 
 
 
Table A42 Expansion readings and percentage expansions of the Standard ASTM C 1260 test for Spratt Limestone using Low 
Alkali cement 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 
0 0.1506 0.4539 0.4608 0.4529 0.4609 0 0 0 0 0 
3 0.1512 0.4627 0.4704 0.4626 0.4701 0.082 0.09 0.091 0.086 0.0873 
5 0.1503 0.4713 0.4797 0.4716 0.4778 0.177 0.192 0.19 0.172 0.1828 
7 0.1499 0.4769 0.4857 0.4773 0.483 0.237 0.256 0.251 0.228 0.2430 
9 0.1507 0.4818 0.4907 0.4824 0.4875 0.278 0.298 0.294 0.265 0.2838 

11 0.1501 0.4855 0.4944 0.4861 0.4912 0.321 0.341 0.337 0.308 0.3268 
13 0.151 0.4901 0.4989 0.4901 0.4959 0.358 0.377 0.368 0.346 0.3623 
15 0.1511 0.4944 0.5032 0.4953 0.5001 0.4 0.419 0.419 0.387 0.4063 
19 0.1512 0.5036 0.5117 0.5047 0.5089 0.491 0.503 0.512 0.474 0.4950 
23 0.151 0.5143 0.5213 0.5156 0.5189 0.6 0.601 0.623 0.576 0.6000 
27 0.1499 0.5249 0.5311 0.5278 0.5296 0.717 0.71 0.756 0.694 0.7193 
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Table A43 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for Spratt Limestone using Low Alkali cement and 6.4 MC of Potassium 
Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.1504 0.4812 0.4415 0.4481 0 0 0 0 
1 0.1503 0.4815 0.4418 0.4486 0.004 0.004 0.006 0.0047 
3 0.1504 0.4838 0.4443 0.4511 0.026 0.028 0.03 0.0280 
5 0.1503 0.4974 0.4577 0.4638 0.163 0.163 0.158 0.1613 
7 0.1498 0.5101 0.4706 0.4769 0.295 0.297 0.294 0.2953 
9 0.15 0.5193 0.48 0.4854 0.385 0.389 0.377 0.3837 

11 0.149 0.5249 0.4855 0.4907 0.451 0.454 0.44 0.4483 
13 0.149 0.5303 0.491 0.4965 0.505 0.509 0.498 0.5040 
15 0.1513 0.5354 0.4965 0.502 0.533 0.541 0.53 0.5347 
19 0.1513 0.54 0.504 0.5084 0.579 0.616 0.594 0.5963 
24 0.1528   0.5147 0.5186   0.75 0.64 0.6950 
30 0.1527   0.5244 0.5292   0.806 0.788 0.7970 

 
Table A44 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for Spratt Limestone using Low Alkali cement and Lithium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0099 0.3441 0.3542 0.2927 0 0 0 0 
3 0.0093 0.3428 0.352 0.2919 -0.007 -0.016 -0.002 -0.0083 
7 0.0095 0.3442 0.35269 0.2924 0.005 -0.0111 0.001 -0.0017 

11 0.0098 0.3449 0.3536 0.2934 0.009 -0.005 0.008 0.0040 
14 0.0095 0.3451 0.354 0.293 0.014 0.002 0.007 0.0077 
21 0.0089 0.3438 0.3532 0.2918 0.007 0 0.001 0.0027 
28 0.0097 0.3434 0.3543 0.294 -0.005 0.003 0.015 0.0043 

 
 
Table A45 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for Spratt Limestone using Low Alkali cement and Li/K 3-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0099 0.2115 0.323 0.2894 0 0 0 0 
3 0.0099 0.2116 0.3228 0.289 0.001 -0.002 -0.004 -0.0017 
7 0.0093 0.2122 0.324 0.2905 0.013 0.016 0.017 0.0153 

11 0.0098 0.2133 0.325 0.2911 0.019 0.021 0.018 0.0193 
14 0.0095 0.214 0.3254 0.2914 0.029 0.028 0.024 0.0270 
21 0.0087 0.2133 0.3246 0.2914 0.03 0.028 0.032 0.0300 
28 0.0103 0.2147 0.3264 0.293 0.028 0.03 0.032 0.0300 
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Table A46 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for Spratt Limestone using Low Alkali cement and Li/K 3-0.8 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0099 0.3343 0.3309 0.3152 0 0 0 0 
3 0.0099 0.3349 0.3315 0.3156 0.006 0.006 0.004 0.0053 
7 0.0095 0.3354 0.3316 0.3152 0.015 0.011 0.004 0.0100 

11 0.0098 0.336 0.3375 0.3168 0.018 0.067 0.017 0.0340 
14 0.0095 0.336 0.3324 0.3166 0.021 0.019 0.018 0.0193 
21 0.0087 0.335 0.3308 0.3154 0.019 0.011 0.014 0.0147 
28 0.0097 0.3363 0.332 0.3175 0.022 0.013 0.025 0.0200 

 
 
Table A47 Expansion readings and percentage expansions of the Modified ASTM C 
1260 test for Spratt Limestone using Low Alkali cement and Li/K 6.4-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0099 0.3443 0.2584 0.3446 0 0 0 0 
3 0.0099 0.3447 0.2595 0.3461 0.004 0.011 0.015 0.0100 
7 0.0095 0.3456 0.2597 0.3464 0.017 0.017 0.022 0.0187 

11 0.0098 0.3481 0.2615 0.3488 0.039 0.032 0.043 0.0380 
14 0.0095 0.3488 0.2617 0.3498 0.049 0.037 0.056 0.0473 
21 0.0089 0.348 0.2618 0.349 0.047 0.044 0.054 0.0483 
28 0.0103 0.3495 0.264 0.3509 0.048 0.052 0.059 0.0530 

 
 
Table A48 Changes in DME in standard ASTM C 1260 tests using Spratt aggregate, high 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.84 3.91 3.97 3.74 3.87 100.00 
13 3.82 3.90 3.93 3.72 3.84 99.42 
21 3.22 3.35 3.38 3.16 3.28 84.79 
28 2.56 2.73 2.70 2.50 2.62 67.81 
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Table A49 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.19 4.09 4.09 4.03 4.10 100.00 
13 2.71 2.39 2.58 2.42 2.53 61.61 
21 1.58 1.49 1.54 1.47 1.52 37.08 
28 0.92 0.89 0.91 0.89 0.90 22.07 

 
 
Table A50 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.01 4.03 4.20 4.08 4.08 100.00 
3 4.08 4.08 4.27 4.23 4.16 102.09 
14 3.87 3.84 4.10 4.03 3.96 97.02 
28 2.56 2.58 2.79   2.64 64.78 

 
Table A51 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and LiAc 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 3.97 4.28 3.93 4.06 100.00 
3 4.32 4.57 4.22 4.37 107.48 
14 4.16 4.45 4.09 4.24 104.20 
28 4.11 4.06 3.91 4.03 99.09 

 
 
Table A52 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.33 4.46 3.98 4.21 4.24 100.00 
3 4.52 4.54 4.08 4.34 4.37 103.01 
14 4.63 4.56 4.27 4.48 4.49 105.73 
28 4.71 4.61 4.39   4.57 107.65 
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Table A53 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and Li/K 3-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.24 4.27 4.19 3.98 4.17 100.00 
3 4.34 4.35 4.30 4.15 4.28 102.70 
14 4.49 4.50 4.44 4.28 4.43 106.09 
28 4.49 4.41 4.37   4.42 106.08 

 
 
Table A54 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and Li/K 3-0.4  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.65 4.04 3.83 3.82 3.84 100.00 
3 3.79 4.17 3.85 3.95 3.94 102.72 
14 3.95 4.25 3.68 4.09 3.99 104.12 
28 4.00 4.28 4.06 0.00 4.11 107.24 

 
Table A55 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and Li/K 3-0.6  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.92 3.77 3.51 3.89 3.77 100.00 
3 3.99 3.82 3.64 4.10 3.89 102.95 
14 4.12 3.97 3.76 4.16 4.00 106.07 
28 4.12 3.95 3.74   3.94 104.36 

 
 
Table A56 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, 
high alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.72 3.92 3.65 3.76 3.76 100.00 
3 3.84 4.00 3.74 3.83 3.85 102.40 
14 4.05 4.14 3.84 4.04 4.02 106.78 
28 3.98 4.15 3.86   3.99 106.15 
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Table A57 Changes in DME in standard ASTM C 1260 tests using Spratt aggregate, low 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.29 4.31 4.17 4.21 4.24 100.00 
13 4.21 4.22 4.12 4.12 4.17 98.16 
21 3.85 3.80 3.72 3.74 3.78 89.06 
28 3.26 3.21 3.12 2.97 3.14 73.96 

 
 
Table A58 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, low 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.90 4.10 4.04 4.08 4.03 100.00 
13 2.32 2.67 2.60 2.54 2.53 62.81 
21 2.15 2.42 2.19 2.23 2.25 55.72 
28 2.01 2.27 2.19 2.12 2.15 53.35 

 
 
Table A59 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, low 
alkali cement and LiAc 
 

  Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.13 4.23 4.35 4.24 100.00 
3 4.36 4.51 4.52 4.46 105.39 
14 4.31 4.43 4.39 4.38 103.32 
28 4.04 4.28 4.19 4.17 98.39 

 
 
Table A60 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, low 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.56 4.63 4.39 4.53 100.00 
3 4.76 4.80 4.51 4.69 103.67 
14 4.79 4.71 4.53 4.68 103.35 
28 4.61 4.45 4.36 4.47 98.87 
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Table A61 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, low alkali cement and Li/K 3-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.46 3.65 4.03 4.05 100.00 
3 4.63 4.45 4.26 4.44 109.80 
14 4.69 4.46 4.31 4.49 110.84 
28 4.49 4.26 4.24 4.33 106.92 

 
 
Table A62 Changes in DME in modified ASTM C 1260 tests using Spratt aggregate, low alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 4.45 4.25 4.35 4.35 100.00 
3 4.62 4.33 4.44 4.46 102.55 
14 4.64 4.43 4.49 4.52 103.82 
28 4.17 4.13 4.23 4.17 95.92 

 
 
Table A63 Expansion readings and percentage expansions of the Standard ASTM C 1260 test for NC aggregate using High 
Alkali cement 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.14 0.3767 0.4485 0.4548 0.4315 0 0 0 0 0 
3 0.1401 0.3892 0.4614 0.4675 0.4446 0.124 0.128 0.126 0.13 0.1270 
7 0.1403 0.4105 0.4831 0.4899 0.4675 0.335 0.343 0.348 0.357 0.3458 
10 0.1403 0.4189 0.4915 0.4982 0.4757 0.419 0.427 0.431 0.439 0.4290 
14 0.1402 0.4273 0.5002 0.5072 0.4847 0.504 0.515 0.522 0.53 0.5178 
21 0.1406 0.4402 0.5108 TALL 0.4975 0.629 0.617 TALL 0.654 0.6333 
28 0.011 0.3215 0.3942 0.4031 0.3801 0.738 0.747 0.773 0.776 0.7585 
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Table A64 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for NC aggregate using High 
Alkali cement and 3 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.005 0.3091 0.3285 0.2873 0.3186 0 0 0 0 0 
3 0.0059 0.3131 0.3316 0.2902 0.3175 0.031 0.022 0.02 -0.02 0.0132 
7 0.0064 0.3171 0.3362 0.2947 0.3218 0.066 0.063 0.06 0.018 0.0517 
11 0.0058 0.3281 0.3488 0.3069 0.3329 0.182 0.195 0.188 0.135 0.1750 
14 0.0056 0.3377 0.359 0.3168 0.3422 0.28 0.299 0.289 0.23 0.2745 
21 0.0064 0.3894 0.4117 0.3678   0.789 0.818 0.791   0.7993 
28 0.0066 0.4246 0.4476 0.4027   1.139 1.175 1.138   1.1507 

 
 
Table A65 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for NC aggregate using High 
Alkali cement and 6.4 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 

Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 
0 0.14 0.447 0.4478 0.412 0.4209 0 0 0 0 0 
3 0.1401 0.4516 0.4523 0.4162 0.4254 0.045 0.044 0.041 0.044 0.0435 
7 0.1403 0.4847 0.4879 0.45 0.4591 0.374 0.398 0.377 0.379 0.3820 
10 0.1403 0.5032 0.5027 0.4634 0.4727 0.559 0.546 0.511 0.515 0.5328 
14 0.1402 0.5062 0.5061 0.4666 0.4761 0.59 0.581 0.544 0.55 0.5663 
21 0.1406 0.5091 0.5093 0.4692 0.4788 0.615 0.609 0.566 0.573 0.5908 
28 0.011 0.3813 0.3817 0.3416 0.3511 0.633 0.629 0.586 0.592 0.6100 
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Table A66 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for NC aggregate using High 
Alkali cement and Li/K 3-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.005 0.3262 0.3203 0.285 0.2905 0 0 0 0 0 
3 0.0059 0.3291 0.3231 0.2879 0.2934 0.02 0.019 0.02 0.02 0.0198 
7 0.0064 0.3305 0.3247 0.2895 0.295 0.029 0.03 0.031 0.031 0.0303 
11 0.0058 0.3309 0.3249 0.2896 0.295 0.039 0.038 0.038 0.037 0.0380 
14 0.0056 0.3312 0.3253 0.29 0.2953 0.044 0.044 0.044 0.042 0.0435 
21 0.0064 0.332 0.3264 0.2911   0.044 0.047 0.047   0.0460 
28 0.0066 0.333 0.3273 0.2919   0.052 0.054 0.053   0.0530 

 
 
 
Table A67 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for NC aggregate using High 
Alkali cement and Li/K 3-0.4 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.2679 0.3193 0.315 0.2984 0 0 0 0 0 
3 0.0056 0.2673 0.3191 0.3144 0.2977 0.002 0.006 0.002 0.001 0.0028 
7 0.0059 0.269 0.3207 0.3159 0.2997 0.016 0.019 0.014 0.018 0.0168 
11 0.006 0.2696 0.3212 0.3165 0.3 0.021 0.023 0.019 0.02 0.0208 
14 0.006 0.2697 0.3213 0.3165 0.3001 0.022 0.024 0.019 0.021 0.0215 
21 0.0067 0.2706 0.3223 0.3175   0.024 0.027 0.022   0.0243 
28 0.0057 0.2697 0.3215 0.3168   0.025 0.029 0.025   0.0263 
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Table A68 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for NC aggregate using High 
Alkali cement and Li/K 3-0.6 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.2991 0.3039 0.2737 0.3067 0 0 0 0 0 
3 0.0056 0.2991 0.3038 0.2737 0.3065 0.008 0.007 0.008 0.006 0.0073 
7 0.0059 0.3006 0.3054 0.2753 0.3082 0.02 0.02 0.021 0.02 0.0203 
11 0.006 0.301 0.3057 0.2755 0.3083 0.023 0.022 0.022 0.02 0.0218 
14 0.006 0.301 0.3058 0.2757 0.3083 0.023 0.023 0.024 0.02 0.0225 
21 0.0067 0.3018 0.3066 0.2766   0.024 0.024 0.026   0.0247 
28 0.0057 0.3011 0.3058 0.2759   0.027 0.026 0.029   0.0273 

 
 
Table A69 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for NC aggregate using High 
Alkali cement and Li/K 3-0.8 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.3454 0.309 0.2874 0.3184 0 0 0 0 0 
3 0.0056 0.3459 0.3094 0.2878 0.3188 0.013 0.012 0.012 0.012 0.0123 
7 0.0059 0.3474 0.3111 0.2895 0.3199 0.025 0.026 0.026 0.02 0.0243 
11 0.006 0.3478 0.3113 0.2896 0.3208 0.028 0.027 0.026 0.028 0.0273 
14 0.006 0.3479 0.3113 0.2896 0.3208 0.029 0.027 0.026 0.028 0.0275 
21 0.0067 0.3488 0.3122 0.2905   0.031 0.029 0.028   0.0293 
28 0.0057 0.3477 0.3113 0.2896   0.03 0.03 0.029   0.0297 
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Table A70 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for NC aggregate using High 
Alkali cement and Li/K 6.4-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0051 0.3097 0.3211 0.2821 0.2941 0 0 0 0 0 
3 0.0044 0.3119 0.3232 0.2842 0.2962 0.029 0.028 0.028 0.028 0.0282 
7 0.0047 0.3135 0.3252 0.2862 0.298 0.042 0.045 0.045 0.043 0.0438 
11 0.0059 0.3156 0.3267 0.2876 0.2998 0.051 0.048 0.047 0.049 0.0487 
14 0.005 0.315 0.3259 0.2871 0.2991 0.054 0.049 0.051 0.051 0.0513 
21 0.0058 0.3161 0.3275 0.2881   0.057 0.057 0.053   0.0557 
28 0.006 0.3166 0.3279 0.2884   0.06 0.059 0.054   0.0577 

 
 
Table A71 Changes in DME in standard ASTM C 1260 tests using NC aggregate, high alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.39 4.19 4.15 4.16 4.22 100.00 
3 3.76 3.57 3.50 3.53 3.59 84.97 
7 3.33 3.24 3.17 3.17 3.23 76.39 
14 3.07 2.97 2.90 2.89 2.96 70.01 
21 2.81 2.76 2.68 2.66 2.73 64.56 
28 2.63 2.59 2.51 2.50 2.56 60.49 
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Table A72 Changes in DME in modified ASTM C 1260 tests using NC aggregate, high 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 3.80 4.19 4.30 4.23 4.13 100.00 
3 3.77 4.19 4.28 4.18 4.11 99.42 
7 2.15 2.37 2.55 2.37 2.36 57.12 
14 2.13 2.19 2.46 2.35 2.28 55.27 
21 2.12 2.31 2.50 2.25 2.30 55.65 
28 2.14 2.31 2.60 2.34 2.35 56.88 

 
 
Table A73 Changes in DME in modified ASTM C 1260 tests using NC aggregate, high 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.31 4.13 4.26 4.23 4.23 100.00 
3 4.41 4.22 4.32 4.32 4.32 102.05 
14 3.11 2.89 2.96 3.04 3.00 70.90 
28 1.89 1.76 1.89   1.85 43.66 

 
 
Table A74 Changes in DME in modified ASTM C 1260 tests using NC aggregate, high 
alkali cement and Li/K 6.4-0.2  
 

6.4-0.2 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.23 4.23 4.26 4.32 4.26 100.00 
3 4.29 4.25 4.29 4.45 4.32 101.38 
14 4.47 4.33 4.53 4.60 4.48 105.18 
28 4.59 4.51 4.58   4.56 106.95 

 
 
Table A75 Changes in DME in modified ASTM C 1260 tests using NC aggregate, high 
alkali cement and Li/K 3-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.43 4.27 4.31 4.21 4.30 100.00 
3 4.46 4.41 4.47 4.32 4.41 102.54 
14 4.66 4.55 4.62 4.53 4.59 106.60 
28 4.56 4.48 4.53   4.52 105.13 
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Table A76 Changes in DME in modified ASTM C 1260 tests using NC aggregate, high 
alkali cement and Li/K 3-0.4  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.38 4.44 4.44 4.33 4.40 100.00 
3 4.41 4.49 4.43 4.32 4.41 100.38 
14 4.60 4.63 4.67 4.58 4.62 105.07 
28 4.68 4.72 4.68 0.00 4.69 106.67 

 
 
Table A77 Changes in DME in modified ASTM C 1260 tests using NC aggregate, high 
alkali cement and Li/K 3-0.6  

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.53 4.50 4.43 4.59 4.51 100.00 
3 4.53 4.49 4.48 4.61 4.53 100.38 
14 4.82 4.76 4.74 4.84 4.79 106.21 
28 4.85 4.75 4.74   4.78 106.03 

 
 
Table A78 Changes in DME in modified ASTM C 1260 tests using NC aggregate, high 
alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.41 4.55 4.69 4.33 4.49 100.00 
3 4.38 4.59 4.65 4.36 4.49 100.03 
14 4.64 4.82 4.95 4.55 4.74 105.51 
28 4.61 4.82 4.87   4.77 106.07 
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Table A79 Expansion readings and percentage expansions of the Standard ASTM C 1260 test for SD aggregate using High 
Alkali cement 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.1402 0.454 0.4434 0.424 0.4514 0 0 0 0 0 
3 0.14 0.4578 0.4472 0.4279 0.4553 0.04 0.04 0.041 0.041 0.0405 
7 0.1404 0.4659 0.4553 0.4356 0.463 0.117 0.117 0.114 0.114 0.1155 
10 0.1406 0.4717 0.4611 0.4409 0.4684 0.173 0.173 0.165 0.166 0.1693 
14 0.141 0.4773 0.4677 0.4472 0.4748 0.225 0.235 0.224 0.226 0.2275 
21 0.0754 0.4222 0.4128 0.3914 0.4193 0.33 0.342 0.322 0.327 0.3303 
28 0.0118 0.3668 0.3577 0.3361 0.3639 0.412 0.427 0.405 0.409 0.4133 

 
 
Table A80 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for SD aggregate using High 
Alkali cement and 3 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0054 0.2916 0.3108 0.2877 0.3008 0 0 0 0 0 
3 0.0059 0.2943 0.3133 0.2903 0.3032 0.022 0.02 0.021 0.019 0.0205 
7 0.0064 0.2984 0.3175 0.2945 0.3076 0.058 0.057 0.058 0.058 0.0577 
11 0.0058 0.3016 0.3207 0.2982 0.3108 0.096 0.095 0.101 0.096 0.0970 
14 0.0056 0.3038 0.3228 0.3005 0.3129 0.12 0.118 0.126 0.119 0.1208 
21 0.0064 0.3118 0.3311 0.3092   0.192 0.193 0.205   0.1967 
28 0.0067 0.32 0.3399 0.3185   0.271 0.278 0.295   0.2813 
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Table A81 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for SD aggregate using High 
Alkali cement and 6.4 MC of Potassium Acetate deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.1402 0.4261 0.415 0.44 0.4288 0 0 0 0 0 
3 0.14 0.4298 0.4186 0.4438 0.4326 0.039 0.038 0.04 0.04 0.0392 
7 0.1404 0.4444 0.4327 0.4575 0.4469 0.181 0.175 0.173 0.179 0.1770 
10 0.1406 0.4563 0.445 0.4708 0.4593 0.298 0.296 0.304 0.301 0.2998 
14 0.141 0.4645 0.4536 0.4802 0.4687 0.376 0.378 0.394 0.391 0.3848 
21 0.0754 0.4025 0.3919 0.4189 0.4069 0.412 0.417 0.437 0.429 0.4238 
28 0.0118 0.3408 0.3301 0.3573 0.3452 0.431 0.435 0.457 0.448 0.4428 

 
 
Table A82 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for SD aggregate using High 
Alkali cement and Li/K 3-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0054 0.2747 0.3068 0.307 0.2918 0 0 0 0 0 
3 0.0059 0.2784 0.3102 0.3103 0.2954 0.032 0.029 0.028 0.031 0.0300 
7 0.0064 0.2794 0.3113 0.3116 0.2964 0.037 0.035 0.036 0.036 0.0360 
11 0.0058 0.2797 0.3115 0.3118 0.2962 0.046 0.043 0.044 0.04 0.0433 
14 0.0056 0.2804 0.3119 0.3124 0.2968 0.055 0.049 0.052 0.048 0.0510 
21 0.0064 0.281 0.3127 0.3133   0.053 0.049 0.053   0.0517 
28 0.0066 0.2819 0.3138 0.314   0.06 0.058 0.058   0.0587 
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Table A83 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for SD aggregate using High 
Alkali cement and Li/K 3-0.4 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.4726 0.2911 0.3235 0.3121 0 0 0 0 0 
3 0.0056 0.4729 0.2909 0.323 0.3122 0.011 0.006 0.003 0.009 0.0073 
7 0.0059 0.4734 0.2914 0.3235 0.3132 0.013 0.008 0.005 0.016 0.0105 
11 0.006 0.4749 0.2929 0.325 0.3144 0.027 0.022 0.019 0.027 0.0238 
14 0.006 0.475 0.293 0.325 0.3144 0.028 0.023 0.019 0.027 0.0243 
21 0.0067 0.4756 0.2938 0.3259   0.027 0.024 0.021   0.0240 
28 0.0058 0.4746 0.293 0.325   0.026 0.025 0.021   0.0240 

 
 
 
Table A84 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for SD aggregate using High 
Alkali cement and Li/K 3-0.6 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.423 0.3789 0.3243 0.3075 0 0 0 0 0 
3 0.0056 0.4238 0.3796 0.3251 0.3082 0.016 0.015 0.016 0.015 0.0155 
7 0.0059 0.4243 0.3802 0.3257 0.3091 0.018 0.018 0.019 0.021 0.0190 
11 0.006 0.4256 0.3816 0.3273 0.31 0.03 0.031 0.034 0.029 0.0310 
14 0.006 0.4256 0.3812 0.3271 0.3101 0.03 0.027 0.032 0.03 0.0298 
21 0.0067 0.4263 0.3824 0.328   0.03 0.032 0.034   0.0320 
28 0.0058 0.4254 0.3815 0.328   0.03 0.032 0.043   0.0350 
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Table A85 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for SD aggregate using High 
Alkali cement and Li/K 3-0.8 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0064 0.2197 0.307 0.3128 0.3059 0 0 0 0 0 
3 0.0051 0.2188 0.3059 0.3119 0.3042 0.004 0.002 0.004 -0.004 0.0015 
7 0.0059 0.2196 0.307 0.3128 0.3058 0.004 0.005 0.005 0.004 0.0045 
11 0.006 0.2207 0.3077 0.3137 0.3064 0.014 0.011 0.013 0.009 0.0117 
14 0.006 0.2204 0.3076 0.3138 0.3065 0.011 0.01 0.014 0.01 0.0113 
21 0.0067 0.2215 0.3087 0.3146   0.015 0.014 0.015   0.0147 
28 0.0058 0.2208 0.3079 0.3138   0.017 0.015 0.016   0.0160 

 
 
 
Table A86 Expansion readings and percentage expansions of the Modified ASTM C 1260 test for SD aggregate using High 
Alkali cement and Li/K 6.4-0.2 deicer  
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar4 Bar1 Bar2 Bar3 Bar4 Avg 

0 0.0051 0.3092 0.2761 0.2995 0.2875 0 0 0 0 0 
3 0.0044 0.3101 0.277 0.3005 0.2885 0.016 0.016 0.017 0.017 0.0165 
7 0.0054 0.3116 0.2788 0.3023 0.2905 0.021 0.024 0.025 0.027 0.0242 
11 0.0059 0.313 0.2801 0.3039 0.2921 0.03 0.032 0.036 0.038 0.0340 
14 0.005 0.312 0.2794 0.3028 0.2912 0.029 0.034 0.034 0.038 0.0338 
21 0.0058 0.3138 0.2808 0.3042   0.039 0.04 0.04   0.0397 
28 0.006 0.3136 0.2809 0.3045   0.035 0.039 0.041   0.0383 
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Table A87 Changes in DME in standard ASTM C 1260 tests using SD aggregate, high 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.04 4.42 4.28 4.32 4.26 100.00 
3 3.44 3.79 3.68 3.73 3.66 85.80 
14 2.83 3.09 2.99 2.95 2.96 69.46 
21 2.72 2.95 2.90 2.96 2.88 67.58 
28 2.65 2.89 2.87 2.84 2.81 65.91 

 
 
Table A88 Changes in DME in modified ASTM C 1260 tests using SD aggregate, high 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.37 4.38 4.57 4.23 4.39 100.00 
3 4.13 4.19 4.39 4.08 4.20 95.65 
14 2.97 3.09 3.17 3.02 3.06 69.79 
21 3.26 3.30 3.32 3.21 3.27 74.57 
28 3.34 3.46 3.49 3.36 3.41 77.82 

 
 
Table A89 Changes in DME in modified ASTM C 1260 tests using SD aggregate, high 
alkali cement and KAc 3.0 
 

3 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.18 4.57 4.50 4.16 4.35 100.00 
3 4.36 4.64 4.61 4.31 4.48 102.95 
14 4.01 4.25 4.19 3.87 4.08 93.78 
28 3.57 3.84 3.82   3.74 86.04 

 
 
Table A90 Changes in DME in modified ASTM C 1260 tests using SD aggregate, high 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.75 4.49 4.31 4.48 4.50 100.00 
3 4.75 4.45 4.28 4.47 4.49 99.66 
14 5.05 4.77 4.60 4.77 4.80 106.54 
28 5.08 4.84 4.61   4.84 107.53 
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Table A91 Changes in DME in modified ASTM C 1260 tests using SD aggregate, high 
alkali cement and Li/K 3-0.2  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.61 3.98 4.54 4.20 4.33 100.00 
3 4.54 4.04 4.55 4.23 4.34 100.15 
28 4.66 4.13 4.36   4.38 101.19 

 
 
Table A92 Changes in DME in modified ASTM C 1260 tests using SD aggregate, high 
alkali cement and Li/K 3-0.4  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.56 4.51 4.30 4.49 4.46 100.00 
3 4.51 4.29 4.37 4.55 4.43 99.21 
14 4.76 4.60 4.47 4.69 4.63 103.76 
28 4.86 4.72 4.52 0.00 4.70 105.19 

 
 
Table A93 Changes in DME in modified ASTM C 1260 tests using SD aggregate, high 
alkali cement and Li/K 3-0.6  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.67 4.47 4.47 4.48 4.52 100.00 
3 4.51 4.51 4.43 4.42 4.46 98.75 
14 4.74 4.74 4.72 4.64 4.71 104.23 
28 4.75 4.74 4.74   4.74 104.88 

 
 
Table A94 Changes in DME in modified ASTM C 1260 tests using SD aggregate, high 
alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Bar4 Avg 

0 4.50 4.48 4.56 4.48 4.50 100.00 
3 4.50 4.48 4.56 4.48 4.50 100.00 
14 4.83 4.73 4.83 4.71 4.77 106.01 
28 4.80 4.74 4.82   4.79 106.34 
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Table A95 pH Changes in soak solution in Modified ASTM C 1260 tests at 0 day 
 

Soak 
Solution 

NM SP NC SD 
PH Temp,º C PH Temp,º C PH Temp,º C PH Temp,º C 

3- 0 10.19 23.2 10 23.1 10.05 23.1 9.98 23.3 
3-0.2 9.27 23.2 9.32 23.2 8.49 23.1 9.1 23.2 
3-0.4 8.39 23.7 8.45 23.8 8.45 23.8 8.39 23.7 
3-0.6 8.43 23.8 8.44 23.8 8.44 23.8 8.43 23.8 
3-0.8 8.5 23.9 8.51 23.8 8.51 23.8 8.5 23.9 

 
 
Table A96 pH Changes in soak solution in Modified ASTM C 1260 tests at 28 days 
 

Soak 
Solution 

NM SP NC SD 
PH Temp,º C PH Temp,º C PH Temp,º C PH Temp,º C 

3- 0 13.55 21.3 13.64 21.6 13.63 21.4 13.59 21.8 
3-0.2 13.29 21.7 13.37 21.7 13.44 21.5 13.38 21.8 
3-0.4 13.07 21.4 13.1 21.1 13.03 21.3 13.12 21.3 
3-0.6 13.01 21.3 13.01 21 12.98 21.2 13 21.3 
3-0.8 12.87 21.2 12.92 21.1 12.89 21.3 12.93 21.3 

 
 
 
Table A97 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, high alkali cement and soaked in  
1N NaOH solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 
0 0.0019 0.3723 0.3444 0.3478 0 0 0 0 
7 0.0006 0.3724 0.3441 0.3475 0.014 0.01 0.01 0.0113 

28 0.0038 0.3803 0.3518 0.3547 0.061 0.055 0.05 0.0553 
90 0.0015 0.3869 0.36 0.3605 0.15 0.16 0.131 0.1470 
120 0.0151 0.4037 0.3776 0.3767 0.182 0.2 0.157 0.1797 
150 0.0045 0.3943 0.368 0.3672 0.194 0.21 0.168 0.1907 
180 0.0056 0.3978 0.3731 0.3706 0.218 0.25 0.191 0.2197 
270 0.0055 0.402 0.3773 0.3742 0.261 0.293 0.228 0.2607 
360 0.0058 0.4073 0.3838 0.3784 0.311 0.355 0.267 0.3110 
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Table A98 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, high alkali cement and soaked in  
3 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0052 0.2193 0.3584 0.3391 0 0 0 0 
7 0.0052 0.2216 0.3602 0.3412 0.023 0.018 0.021 0.0207 
28 0.0051 0.2346 0.3763 0.3559 0.154 0.18 0.169 0.1677 
56 0.0051 0.2545 0.3948 0.3767 0.353 0.365 0.377 0.3650 
90 0.0055 0.2702 0.412 0.399 0.506 0.533 0.596 0.5450 
120 0.0061 0.2867 0.4283 0.4077 0.665 0.69 0.677 0.6773 
180 0.0094 0.3212 0.4601 0.4394 0.977 0.975 0.961 0.9710 
270 0.0097 0.3676 0.5043 0.477 1.438 1.414 1.334 1.3953 
360 0.0093 0.4105 0.5466 0.515 1.871 1.841 1.718 1.8100 

 
 
 
Table A99 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, high alkali cement and soaked in  
6.4 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0019 0.344 0.3194 0.3677 0 0 0 0 
7 0.0006 0.3444 0.3197 0.3672 0.017 0.016 0.008 0.0137 
28 0.0038 0.361 0.3363 0.3842 0.151 0.15 0.146 0.1490 
90 0.0015 0.4144 0.3966 0.4399 0.708 0.776 0.726 0.7367 
120 0.0151 0.5147 0.4951 0.5156 1.575 1.625 1.347 1.5157 
150 badly cracked, cant take readings         
180                 
270                 
360                 
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Table A100 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, high alkali cement and soaked in  
6.4 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Date Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0052 0.2372 0.3265 0.3069 0 0 0 0 
7 0.0052 0.2388 0.3267 0.308 0.016 0.002 0.011 0.0097 
28 0.0051 0.2507 0.3362 0.3184 0.136 0.098 0.116 0.1167 
56 0.0051 0.2713 0.3564 0.3382 0.342 0.3 0.314 0.3187 
90 0.0057 0.2888 0.3729 0.3569 0.511 0.459 0.495 0.4883 
120 0.0061 0.3099 0.3949 0.3819 0.718 0.675 0.741 0.7113 
180 0.0094 0.3889 0.4737   1.475 1.43   1.4525 
270 0.0097 0.4881 0.5711   2.464 2.401   2.4325 
360 badly cracked, cant take readings         

 
 
Table A101 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, high alkali cement and soaked in  
3 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0052 0.2921 0.3239 0.2263 0 0 0 0 
7 0.0052 0.2939 0.3245 0.2279 0.018 0.006 0.016 0.0133 
28 0.0051 0.3054 0.3279 0.2393 0.134 0.041 0.131 0.1020 
56 0.0051 0.3258 0.3494 0.2578 0.338 0.256 0.316 0.3033 
90 0.0057 0.341 0.3675 0.274 0.484 0.431 0.472 0.4623 
120 0.0061 0.3565 0.3845 0.2883 0.635 0.597 0.611 0.6143 

180 0.0094 0.3874 0.4175 0.325 0.911 0.894 0.945 0.9167 
270 0.0097 0.4224 0.4548 0.3654 1.258 1.264 1.346 1.2893 
360 0.0093 0.4518 0.4855 0.3937 1.556 1.575 1.633 1.5880 
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Table A102 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, high alkali cement and soaked in  
3 MC of KAc solution with Li/K ratio of 0.8 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0052 0.4314 0.2867 0.2998 0 0 0 0 
7 0.0052 0.432 0.2873 0.3009 0.006 0.006 0.011 0.0077 
28 0.0051 0.4384 0.295 0.314 0.071 0.084 0.143 0.0993 
56 0.0051 0.4556 0.3082 0.3276 0.243 0.216 0.279 0.2460 
90 0.0057 0.4656 0.3166 0.3361 0.337 0.294 0.358 0.3297 
120 0.0061 0.47 0.3209 0.3406 0.377 0.333 0.399 0.3697 
180 0.0094 0.4775 0.3282 0.3484 0.419 0.373 0.444 0.4120 
270 0.0097 0.4807 0.3313 0.3518 0.448 0.401 0.475 0.4413 
360 0.0093 0.489 0.3521 0.353 0.535 0.613 0.491 0.5463 

 
Table A103 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, low alkali cement and soaked in  
1N NaOH solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.002 0.2679 0.3378 0.2623 0 0 0 0 
7 0.0016 0.2676 0.3373 0.262 0.001 -0.001 0.001 0.0003 
28 0.003 0.2667 0.3365 0.2613 -0.022 -0.023 -0.02 -0.0217 
56 0.0027 0.2689 0.3388 0.2637 0.003 0.003 0.007 0.0043 
90 0.002 0.2696 0.3397 0.2643 0.017 0.019 0.02 0.0187 
120 0.0207 0.2891 0.3593 0.284 0.025 0.028 0.03 0.0277 
150 0.0061 0.2757 0.3461 0.2708 0.037 0.042 0.044 0.0410 
180 0.0059 0.2774 0.3485 0.2729 0.056 0.068 0.067 0.0637 
270 0.0055 0.2832 0.356 0.2807 0.118 0.147 0.149 0.1380 
360 0.0051 0.2918 0.3631 0.2887 0.208 0.222 0.233 0.2210 
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Table A104 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, low alkali cement and soaked in  
3 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0049 0.2333 0.1743 0.3026 0 0 0 0 
7 0.0051 0.2326 0.1735 0.3023 -0.009 -0.01 -0.005 -0.0080 
28 0.0051 0.2331 0.1737 0.3026 -0.004 -0.008 -0.002 -0.0047 
56 0.0096 0.2418 0.182 0.3106 0.038 0.03 0.033 0.0337 
90 0.0098 0.2486 0.1943 0.3188 0.104 0.151 0.113 0.1227 
180 0.01 0.2834 0.2383 0.3513 0.45 0.589 0.436 0.4917 
270 0.0093 0.3113 0.2724 0.3753 0.736 0.937 0.683 0.7853 
360 0.0091 0.339 0.2961 0.394 1.015 1.176 0.872 1.0210 

 
Table A105 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, low alkali cement and soaked in  
6.4 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.002 0.3411 0.3588 0.3694 0 0 0 0 
7 0.0016 0.3417 0.3591 0.3695 0.01 0.007 0.005 0.0073 
28 0.003 0.3521 0.3635 0.3744 0.1 0.037 0.04 0.0590 
56 0.0027 0.3803 0.3858 0.3981 0.385 0.263 0.28 0.3093 
90 0.002 0.423 0.4219 0.434 0.819 0.631 0.646 0.6987 
150 0.0061 0.502 0.493 0.514 1.568 1.301 1.405 1.4247 
180 0.0059 0.5303     1.853     1.8530 
270                 
360                 

 
Table A106 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, low alkali cement and soaked in  
6.4 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Date Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0049 0.3347 0.3323 0.2215 0 0 0 0 
7 0.0051 0.3362 0.3331 0.2219 0.013 0.006 0.002 0.0070 
28 0.0051 0.3367 0.3336 0.2219 0.018 0.013 0.002 0.0110 
56 0.0096 0.3424 0.3407 0.2275 0.03 0.039 0.013 0.0273 
90 0.0098 0.354 0.3475 0.2379 0.144 0.15 0.115 0.1363 
180 0.01 0.3909 0.3878 0.273 0.511 0.553 0.464 0.5093 
270 0.0093 0.4133 0.4173 0.2941 0.742 0.857 0.682 0.7603 
360 0.0091 0.4201 0.4236 0.3001 0.812 0.915 0.744 0.8237 
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Table A107 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, low alkali cement and soaked in  
3 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0049 0.2426 0.2268 0.3726 0 0 0 0 
7 0.0051 0.2411 0.2283 0.3712 -0.017 0.013 -0.016 -0.0067 
28 0.0051 0.2413 0.228 0.3714 -0.015 0.01 -0.014 -0.0063 
56 0.0096 0.2467 0.2338 0.3786 -0.006 0.023 0.013 0.0100 
90 0.0098 0.255 0.2416 0.3926 0.075 0.099 0.151 0.1083 
180 0.01 0.2977 0.2834 0.4555 0.5 0.515 0.778 0.5977 
270 0.0093 0.3306 0.3297 0.5036 0.836 0.985 1.266 1.0290 
360 0.0091 0.3593 0.3617 0.5352 1.125 1.307 1.584 1.3387 

 
 
Table A108 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NM aggregate, low alkali cement and soaked in 
3 MC of KAc solution with Li/K ratio of 0.8 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0049 0.3434 0.364 0.3327 0 0 0 0 
7 0.0051 0.3444 0.3642 0.3333 0.008 5.551E-16 0.004 0.0040 
28 0.0051 0.3443 0.3638 0.3332 0.007 -0.004 0.003 0.0020 
56 0.0096 0.3495 0.368 0.3381 0.014 -0.007 0.007 0.0047 
90 0.0098 0.3512 0.3683 0.3396 0.029 -0.006 0.02 0.0143 
180 0.01 0.3517 0.3694 0.3412 0.032 0.003 0.034 0.0230 
270 0.0093 0.3602 0.3768 0.3452 0.124 0.084 0.081 0.0963 
360 0.0091 0.3629 0.3798 0.3489 0.153 0.116 0.12 0.1297 

 
 
Table A109 Changes in DME in standard ASTM C 1293 tests using NM aggregate, high 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.75 5.72 5.65 5.71 100.00 
28 7.09 6.68 7.13 6.96 121.99 
120 6.35 6.16 5.53 6.01 105.33 
150 5.13 5.50 5.46 5.36 93.96 
270 4.76 4.44 4.59 4.60 80.50 
360 4.89 4.69 4.84 4.81 84.23 
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Table A110 Changes in DME in modified ASTM C 1293 tests using NM aggregate, high 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.64 5.59 5.65 5.63 100.00 
28 5.03 5.25 5.22 5.17 91.83 
120 0.58 0.58 0.59 0.58 10.35 
150           
270           
360           

 
 
Table A111 Changes in DME in modified ASTM C 1293 tests using NM aggregate, high 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.91 3.90 3.91 3.91 100.00 
7 5.93 5.58 5.77 5.76 147.37 
28 4.84 4.72 4.37 4.64 118.73 
56 3.93 3.73 3.86 3.84 98.29 
90 3.15 3.01 3.17 3.11 79.62 
120 2.51 2.57 2.84 2.64 67.60 
150 2.14 2.24 2.67 2.35 60.11 
180 1.72 1.95 2.18 1.95 49.93 
270 1.20 1.33 1.63 1.39 35.51 
360 0.80 0.87 1.27 0.98 25.09 

 
 
Table A112 Changes in DME in modified ASTM C 1293 tests using NM aggregate, high 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.98 3.95 3.92 3.95 100.00 
7 5.77 5.86 5.77 5.80 146.84 
28 4.86 4.86 4.94 4.89 123.74 
56 3.29 3.20 3.36 3.28 83.08 
90 2.55 2.39 2.60 2.51 63.61 
120 1.96 1.70 1.99 1.88 47.70 
150 1.34 1.01 1.34 1.23 31.16 
180 0.89 0.43 0.76 0.70 17.61 
270 0.18 0.28   0.23 5.89 
360           



209 
 

Table A113 Changes in DME in modified ASTM C 1293 tests using NM aggregate, high 
alkali cement and Li/K 3-0.2 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 4.01 3.93 3.86 3.93 100.00 
7 5.83 5.93 5.65 5.80 147.61 
28 4.69 4.81 4.60 4.70 119.50 
56 3.39 3.51 3.60 3.50 88.98 
90 2.88 2.93 3.04 2.95 75.00 
120 2.39 2.43 2.61 2.48 62.98 
150 1.96 2.07 1.98 2.01 51.05 
180 1.67 1.74 1.70 1.70 43.33 
270 1.12 1.12 0.94 1.06 26.93 
360 0.58 0.80 0.63 0.67 17.04 

 
Table A114 Changes in DME in modified ASTM C 1293 tests using NM aggregate, high 
alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.84 3.97 3.92 3.91 100.00 
7 5.79 5.93 5.80 5.84 149.23 
28 5.30 5.25 4.20 4.91 125.61 
56 3.24 3.75 3.13 3.37 86.21 
90 2.47 2.70 2.70 2.63 67.09 
120 2.16 2.07 2.38 2.20 56.35 
150 2.31 2.98 2.58 2.63 67.09 
180 2.31 2.64 2.53 2.49 63.71 
270 2.67 3.18 2.56 2.81 71.73 
360 2.70 3.15 2.60 2.82 71.98 

 
Table A115 Changes in DME in standard ASTM C 1293 tests using NM aggregate, low 
alkali cement  
 Dynamic Young's Modulus, (E) * 10^6 % Change in 

DME Days bar1 bar2 bar3 avg 
0 5.30 5.13 5.13 5.18 100.00 
28 7.23 6.96 7.00 7.06 136.22 
56 7.54 7.56 7.67 7.59 146.42 
90 7.13 6.64 7.47 7.08 136.57 
120 6.77 6.49 6.63 6.63 127.85 
150 6.54 6.30 6.39 6.41 123.62 
270 4.44 5.39 5.56 5.13 98.92 
360 5.28 4.94 5.04 5.09 98.08 
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Table A116 Changes in DME in modified ASTM C 1293 tests using NM aggregate, low 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days bar1 bar2 bar3 avg 

0 5.15 5.02 5.04 5.07 100.00 
28 5.42 5.97 6.24 5.87 115.84 
56 8.67 8.21 6.27 7.71 152.12 
90 2.88 2.63 2.43 2.65 52.19 
120 0.94 1.60 1.27 1.27 25.02 
150 0.51 0.49 0.58 0.53 10.41 
270           
360           

 
 
Table A117 Changes in DME in modified ASTM C 1293 tests using NM aggregate, low 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 4.02 3.72 4.00 3.91 100.00 
7 6.21 6.21 6.34 6.26 159.94 
28 6.38 6.22 6.35 6.32 161.45 
56 5.83 5.56 6.01 5.80 148.22 
90 4.67 4.73 4.85 4.75 121.35 
180 3.00 2.49 2.85 2.78 71.07 
270 1.88 1.27 2.00 1.72 43.90 
360 1.26 0.98 1.53 1.26 32.21 

 
 
Table A118 Changes in DME in modified ASTM C 1293 tests using NM aggregate, low 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.85 4.22 3.52 3.86 100.00 
7 5.81 6.16 5.81 5.92 153.27 
28 6.12 6.40 6.11 6.21 160.72 
56 6.16 6.42 5.93 6.17 159.73 
90 5.04 5.73 4.51 5.10 131.86 
180 1.70 2.18 1.74 1.87 48.45 
270 0.87 1.06 0.88 0.94 24.20 
360 0.75 1.03 0.89 0.89 23.07 
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Table A119 Changes in DME in modified ASTM C 1293 tests using NM aggregate, low 
alkali cement and Li/K 3-0.2 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.99 3.79 3.73 3.84 100.00 
7 6.04 5.89 5.93 5.96 155.21 
28 6.41 6.17 6.12 6.23 162.42 
56 6.42 6.12 6.15 6.23 162.46 
90 5.70 5.98 4.15 5.27 137.44 
180 2.23 2.37 1.18 1.93 50.19 
270 1.22 1.07 0.68 0.99 25.79 
360 0.86 0.70 0.53 0.70 18.17 

 
 
Table A120 Changes in DME in modified ASTM C 1293 tests using NM aggregate, low 
alkali cement and Li/K 3-0.8  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.95 3.85 3.69 3.83 100.00 
7 6.11 5.97 5.81 5.96 155.71 
28 6.29 6.28 5.88 6.15 160.57 
56 6.43 6.28 6.17 6.30 164.37 
90 6.53 6.40 6.24 6.39 166.80 
180 6.44 6.50 6.00 6.31 164.76 
270 4.16 4.05 4.99 4.40 114.92 
360 4.46 4.26 4.54 4.42 115.39 
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Table A121 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, high alkali cement and soaked 
in 1N NaOH solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0024 0.2986 0.3619 0.3456 0 0 0 0 
7 0.002 0.2983 0.3612 0.3453 0.001 -0.003 0.001 -0.0003 
28 0.0016 0.2988 0.3617 0.3458 0.01 0.006 0.01 0.0087 
56 0.0029 0.3031 0.3668 0.3502 0.04 0.044 0.041 0.0417 
90 0.0024 0.306 0.3699 0.3532 0.074 0.08 0.076 0.0767 
120 0.0216 0.3273 0.3914 0.3748 0.095 0.103 0.1 0.0993 
150 0.0045 0.3118 0.3759 0.3595 0.111 0.119 0.118 0.1160 
180 0.0059 0.3147 0.3787 0.3622 0.126 0.133 0.131 0.1300 
270 0.0054 0.3165 0.381 0.3641 0.149 0.161 0.155 0.1550 
360 0.0038 0.3171 0.3818 0.3648 0.171 0.185 0.178 0.1780 

 
 
Table A122 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, high alkali cement and soaked 
in  3 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0058 0.3407 0.3351 0.2957 0 0 0 0 
7 0.0064 0.3413 0.3353 0.2967 0 -0.004 0.004 0.0000 
28 0.0064 0.3419 0.3354 0.2964 0.006 -0.003 0.001 0.0013 
56 0.0055 0.3465 0.3403 0.3013 0.061 0.055 0.059 0.0583 
90 0.0053 0.353 0.3466 0.3079 0.128 0.12 0.127 0.1250 
120 0.006 0.3602 0.3537 0.3148 0.193 0.184 0.189 0.1887 
150 0.0052 0.3662 0.3584 0.3205 0.261 0.239 0.254 0.2513 
180 0.0057 0.3713 0.3627 0.3257 0.307 0.277 0.301 0.2950 
210 0.0061 0.3753 0.3663 0.3298 0.343 0.309 0.338 0.3300 
240 0.0044 0.3771 0.368 0.3316 0.378 0.343 0.373 0.3647 
270 0.0098 0.3856 0.3755 0.34 0.409 0.364 0.403 0.3920 
360 0.0098 0.3869 0.3766 0.3436 0.422 0.375 0.439 0.4120 
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Table A123 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, high alkali cement and soaked 
in  6.4 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0024 0.3648 0.373 0.3437 0 0 0 0 
7 0.002 0.3644 0.3725 0.3432 0 -0.001 -0.001 -0.0007 
28 0.0016 0.3643 0.3724 0.3435 0.003 0.002 0.006 0.0037 
56 0.0029 0.3676 0.3761 0.3471 0.023 0.026 0.029 0.0260 
90 0.0024 0.3718 0.3809 0.3573 0.07 0.079 0.136 0.0950 
120 0.0216 0.3966 0.406 0.3771 0.126 0.138 0.142 0.1353 
150 0.0045 0.3845 0.3946 0.3661 0.176 0.195 0.203 0.1913 
180 0.0059 0.3908 0.4023 0.3731 0.225 0.258 0.259 0.2473 
270 0.0054 0.4084 0.4236 0.394 0.406 0.476 0.473 0.4517 
360 0.0038 0.4262 0.4474 0.4229 0.6 0.73 0.778 0.7027 

 
 
Table A124 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, high alkali cement and soaked 
in  6.4 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Date Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0058 0.3559 0.3358 0.3329 0 0 0 0 
7 0.006 0.356 0.3361 0.3336 -0.001 0.001 0.005 0.0017 
28 0.0064 0.3563 0.3366 0.3342 -0.002 0.002 0.007 0.0023 
56 0.0055 0.3576 0.3387 0.3364 0.02 0.032 0.038 0.0300 
90 0.0053 0.3608 0.343 0.3401 0.054 0.077 0.077 0.0693 
120 0.006 0.366 0.3475 0.3454 0.099 0.115 0.123 0.1123 
150 0.0052 0.3705 0.3521 0.3498 0.152 0.169 0.175 0.1653 
180 0.0057 0.3762 0.3577 0.3545 0.204 0.22 0.217 0.2137 
210 0.0061 0.3823 0.3636 0.3594 0.261 0.275 0.262 0.2660 
240 0.0044 0.3873 0.3671 0.3624 0.328 0.327 0.309 0.3213 
270 0.0098 0.3961 0.3769 0.3724 0.362 0.371 0.355 0.3627 
360 0.0098 0.4022 0.3832 0.3778 0.423 0.434 0.409 0.4220 
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Table A125 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, high alkali cement and soaked 
in  3 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0058 0.3454 0.2063 0.3377 0 0 0 0 
7 0.0062 0.3463 0.2063 0.3383 0.005 -0.004 0.002 0.0010 
28 0.0064 0.3474 0.2066 0.3384 0.014 -0.003 0.001 0.0040 
56 0.0055 0.3524 0.2116 0.3442 0.073 0.056 0.068 0.0657 
90 0.0053 0.359 0.2199 0.3507 0.141 0.141 0.135 0.1390 
120 0.006 0.3672 0.2271 0.358 0.216 0.206 0.201 0.2077 
150 0.0052 0.3734 0.2342 0.3634 0.286 0.285 0.263 0.2780 
180 0.0057 0.3784 0.2403 0.368 0.331 0.341 0.304 0.3253 
210 0.0061 0.3836 0.2449 0.3721 0.379 0.383 0.341 0.3677 
240 0.0044 0.3865 0.2473 0.3738 0.425 0.424 0.375 0.4080 
270 0.0098 0.3934 0.2551 0.3829 0.44 0.448 0.412 0.4333 
360 0.0098 0.3961 0.258 0.3855 0.467 0.477 0.438 0.4607 

 
 
 
Table A126 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, low alkali cement and soaked 
in  1N NaOH solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0016 0.358 0.4304 0.3659 0 0 0 0 
7 0.0017 0.3581 0.4307 0.3662 0 0.002 0.002 0.0013 
28 0.0012 0.358 0.4307 0.3663 0.004 0.007 0.008 0.0063 
56 0.0027 0.36 0.4324 0.3681 0.009 0.009 0.011 0.0097 
90 0.0021 0.3612 0.433 0.3691 0.027 0.021 0.027 0.0250 
120 0.0215 0.3823 0.4541 0.3895 0.044 0.038 0.037 0.0397 
150 0.0062 0.3681 0.4402 0.3754 0.055 0.052 0.049 0.0520 
180 0.006 0.3706 0.4428 0.3794 0.082 0.08 0.091 0.0843 
270 0.0054 0.3735 0.4469 0.3808 0.117 0.127 0.111 0.1183 
360 0.0043 0.3768 0.4508 0.384 0.161 0.177 0.154 0.1640 
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Table A127 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, low alkali cement and soaked 
in  3 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0049 0.3017 0.3213 0.3717 0 0 0 0 
7 0.0052 0.3034 0.3233 0.3668 0.014 0.017 -0.052 -0.0070 
28 0.0051 0.3036 0.3232 0.3666 0.017 0.017 -0.053 -0.0063 
56 0.0096 0.3092 0.328 0.372 0.028 0.02 -0.044 0.0013 
90 0.0098 0.3095 0.3298 0.373 0.029 0.036 -0.036 0.0097 
180 0.01 0.3252 0.3435 0.3861 0.184 0.171 0.093 0.1493 
270 0.0093 0.3359 0.3525 0.396 0.298 0.268 0.199 0.2550 
360 0.0091 0.3409 0.3575 0.4017 0.35 0.32 0.258 0.3093 

 
 
 
Table A128 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, low alkali cement and soaked 
in  6.4 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0016 0.4179 0.3523 0.3528 0 0 0 0 
7 0.0017 0.4181 0.3525 0.3519 0.001 0.001 -0.01 -0.0027 
28 0.0012 0.418 0.3524 0.3518 0.005 0.005 -0.006 0.0013 
56 0.0027 0.4198 0.3541 0.3533 0.008 0.007 -0.006 0.0030 
90 0.0021 0.4213 0.3556 0.3548 0.029 0.028 0.015 0.0240 
120 0.0215 0.4448 0.3786 0.3791 0.07 0.064 0.064 0.0660 
150 0.0062 0.4354 0.3697 0.3702 0.129 0.128 0.128 0.1283 
180 0.006 0.4434 0.3821 0.3779 0.211 0.254 0.207 0.2240 
270 0.0054 0.4595 0.3972 0.3938 0.378 0.411 0.372 0.3870 
360 0.0043 0.4754 0.4113 0.4078 0.548 0.563 0.523 0.5447 
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Table A129 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, low alkali cement and soaked 
in  6.4 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Date Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0049 0.3319 0.2527 0.2225 0 0 0 0 
7 0.0051 0.3359 0.2545 0.2226 0.038 0.016 -0.001 0.0177 
28 0.0051 0.3356 0.2549 0.2249 0.035 0.02 0.022 0.0257 
56 0.0096 0.3407 0.26 0.228 0.041 0.026 0.008 0.0250 
90 0.0098 0.3414 0.2603 0.2295 0.046 0.027 0.021 0.0313 
180 0.01 0.3454 0.266 0.2326 0.084 0.082 0.05 0.0720 
270 0.0093 0.3487 0.269 0.2357 0.124 0.119 0.088 0.1103 
360 0.0091 0.3515 0.272 0.2391 0.154 0.151 0.124 0.1430 

 
 
 
Table A130 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with Spratt aggregate, high alkali cement and soaked 
in 3 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0049 0.2866 0.2784 0.3185 0 0 0 0 
7 0.0052 0.2891 0.2797 0.3225 0.022 0.01 0.037 0.0230 
28 0.0051 0.2889 0.2794 0.3201 0.021 0.008 0.014 0.0143 
56 0.0096 0.294 0.2847 0.3253 0.027 0.016 0.021 0.0213 
90 0.0098 0.2949 0.2847 0.3259 0.034 0.014 0.025 0.0243 
180 0.01 0.3016 0.2917 0.3337 0.099 0.082 0.101 0.0940 
270 0.0093 0.308 0.2975 0.3393 0.17 0.147 0.164 0.1603 
360 0.0091 0.312 0.3022 0.343 0.212 0.196 0.203 0.2037 
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Table A131 Changes in DME in standard ASTM C 1293 tests using SP aggregate, high 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.54 5.54 5.58 5.55 100.00 
28 6.97 7.09 6.98 7.01 126.29 
56 7.01 7.31 7.35 7.22 130.08 
90 6.43 6.45 6.50 6.46 116.29 
120 6.29 6.38 6.39 6.35 114.43 
150 6.14 6.27 6.24 6.22 111.95 
270 5.01 6.31 6.23 5.85 105.35 
360 6.11 6.25 6.23 6.19 111.54 

 
Table A132 Changes in DME in modified ASTM C 1293 tests using SP aggregate, high 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.51 5.51 5.50 5.50 100.00 
28 6.69 6.76 6.83 6.76 122.81 
90 6.57 6.55 6.62 6.58 119.56 
120 6.22 6.24 6.24 6.23 113.29 
150 5.97 6.03 5.20 5.74 104.23 
270 4.75 4.77 4.24 4.59 83.40 
360 3.92 3.49 3.34 3.58 65.15 

 
Table A133 Changes in DME in modified ASTM C 1293 tests using SP aggregate, high 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 6.02 6.05 5.93 6.00 100.00 
7 6.86 6.92 6.72 6.83 113.80 
28 7.02 7.06 6.89 6.99 116.46 
56 6.64 6.65 6.47 6.58 109.69 
90 6.32 6.21 5.75 6.09 101.53 
120 5.78 5.81 5.63 5.74 95.65 
150 5.46 5.52 5.11 5.36 89.36 
180 5.30 5.40 5.32 5.34 88.96 
210 5.22 5.33 4.97 5.17 86.19 
240 5.18 5.27 4.84 5.09 84.86 
270 5.15 5.25 5.09 5.16 86.04 
300 5.14 5.22 5.09 5.15 85.76 
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360 5.46 5.37 4.86 5.23 87.15 
Table A134 Changes in DME in modified ASTM C 1293 tests using SP aggregate, high 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 6.02 6.09 6.01 6.04 100.00 
7 6.83 6.98 6.78 6.86 113.53 
28 6.96 6.98 6.99 6.98 115.47 
56 6.87 6.99 6.89 6.92 114.49 
90 6.65 6.79 6.63 6.69 110.72 
120 6.36 6.51 6.40 6.43 106.34 
150 6.02 6.26 5.99 6.09 100.76 
180 5.50 5.93 5.63 5.69 94.10 
210 5.10 5.56 5.22 5.29 87.58 
240 4.45 5.32 4.82 4.86 80.48 
270 4.02 5.03 4.37 4.47 73.99 
300 3.79 4.62 3.98 4.13 68.40 
360 3.31 3.91 3.29 3.50 57.98 

 
 
Table A135 Changes in DME in modified ASTM C 1293 tests using SP aggregate, high 
alkali cement and Li/K 3-0.2 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.79 5.92 5.87 5.86 100.00 
7 6.60 6.74 6.73 6.69 114.11 
28 6.78 6.95 6.93 6.89 117.48 
56 6.35 6.54 6.54 6.48 110.44 
90 5.75 5.93 6.05 5.91 100.80 
120 5.36 5.37 5.56 5.43 92.59 
150 5.05 5.03 5.22 5.10 86.95 
180 4.81 4.88 5.09 4.92 84.00 
210 4.71 4.79 4.88 4.79 81.75 
240 4.67 4.74 4.79 4.73 80.73 
270 4.60 4.65 4.64 4.63 78.95 
300 4.59 4.64 4.64 4.62 78.85 
360 4.68 4.71 4.70 4.70 80.13 
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Table A136 Changes in DME in standard ASTM C 1293 tests using SP aggregate, low 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.27 5.49 5.30 5.35 100 
28 7.12 7.31 7.19 7.21 134.66 
56 6.77 7.64 7.60 7.34 137.10 
90 6.95 7.37 7.00 7.11 132.75 
120 6.81 7.13 6.85 6.93 129.44 
150 6.65 6.96 6.96 6.86 128.17 
270 6.28 6.43 6.28 6.33 118.25 
360 6.03 6.20 6.05 6.09 113.85 

 
 
Table A137 Changes in DME in modified ASTM C 1293 tests using SP aggregate, low 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.58 5.34 5.30 5.40 100 
28 7.02 6.84 6.75 6.87 127.06 
56 7.09 7.56 7.98 7.54 139.59 
90 7.43 7.65 6.93 7.34 135.72 
120 6.76 6.66 6.61 6.68 123.56 
150 6.66 6.22 6.58 6.49 120.05 
270 4.23 4.58 4.50 4.44 82.07 
360 3.46 3.80 3.15 3.47 64.23 

 
 
Table A138 Changes in DME in modified ASTM C 1293 tests using SP aggregate, low 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.43 3.32 3.48 3.41 100 
7 6.16 6.17 6.13 6.15 180.66 
28 6.52 6.48 6.57 6.52 191.45 
56 6.53 6.63 6.64 6.60 193.69 
90 6.49 6.51 6.49 6.50 190.69 
180 5.31 5.10 5.36 5.26 154.30 
270 4.95 4.76 5.02 4.91 144.02 
360 5.01 4.89 5.20 5.03 147.76 
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Table A139 Changes in DME in modified ASTM C 1293 tests using SP aggregate, low 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.58 3.53 3.29 3.47 100 
7 5.74 5.73 5.59 5.69 164.08 
28 6.23 6.18 6.04 6.15 177.34 
56 6.38 6.33 6.16 6.29 181.33 
90 6.45 6.35 6.26 6.35 183.23 
180 5.94 5.53 5.32 5.60 161.47 
270 5.44 5.08 4.29 4.94 142.44 
360 5.26 4.75 4.20 4.74 136.65 

 
 
Table A140 Changes in DME in modified ASTM C 1293 tests using SP aggregate, low 
alkali cement and Li/K 3-0.2 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 3.40 3.48 3.61 3.50 100 
7 6.07 6.04 6.30 6.14 175.44 
28 6.42 6.39 6.65 6.49 185.37 
56 6.55 6.51 6.76 6.60 188.77 
90 6.59 6.57 6.82 6.66 190.29 
180 5.81 5.93 5.93 5.89 168.27 
270 5.13 5.28 5.32 5.24 149.80 
360 4.93 4.98 4.57 4.83 137.92 
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Table A141 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NC aggregate, high alkali cement and soaked in  
1N NaOH solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0017 0.3048 0.3422 0.3108 0 0 0 0 
7 0.0019 0.3049 0.3427 0.3108 -0.001 0.003 -0.002 0.0000 
28 0.003 0.3066 0.3445 0.3126 0.005 0.01 0.005 0.0067 
56 0.0023 0.3092 0.3482 0.315 0.038 0.054 0.036 0.0427 
90 0.0021 0.3134 0.3528 0.3191 0.082 0.102 0.079 0.0877 
120 0.0055 0.3202 0.3599 0.3263 0.116 0.139 0.117 0.1240 
150 0.0065 0.3231 0.3628 0.3296 0.135 0.158 0.14 0.1443 
180 0.0063 0.3239 0.3636 0.3308 0.145 0.168 0.154 0.1557 
270 0.0048 0.3248 0.3643 0.3324 0.169 0.19 0.185 0.1813 
360 0.0055 0.3282 0.3673 0.336 0.196 0.213 0.214 0.2077 

 
 
Table A142 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NC aggregate, high alkali cement and soaked in  
3 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0058 0.343 0.3322 0.2689 0 0 0 0 
7 0.0067 0.3433 0.3325 0.2699 -0.006 -0.006 0.001 -0.0037 
28 0.0055 0.3425 0.3317 0.2692 -0.002 -0.002 0.006 0.0007 
56 0.0055 0.3466 0.3341 0.2734 0.039 0.022 0.048 0.0363 
90 0.006 0.3603 0.3429 0.2862 0.171 0.105 0.171 0.1490 
120 0.0052 0.3713 0.3518 0.2977 0.289 0.202 0.294 0.2617 
150 0.0057 0.38 0.3591 0.3063 0.371 0.27 0.375 0.3387 
180 0.0061 0.3875 0.3654 0.3084 0.442 0.329 0.392 0.3877 
210 0.0044 0.3922 0.3693 0.317 0.506 0.385 0.495 0.4620 
240 0.0098 0.4025 0.3785 0.3267 0.555 0.423 0.538 0.5053 
270 0.0098 0.4026 0.3828 0.3285 0.556 0.466 0.556 0.5260 
360 0.009 0.4196 0.3936 0.3428 0.734 0.582 0.707 0.6743 
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Table A143 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NC aggregate, high alkali cement and soaked in  
6.4 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0017 0.3572 0.3287 0.3543 0 0 0 0 
7 0.0019 0.3575 0.3294 0.3541 0.001 0.005 -0.004 0.0007 
28 0.003 0.3588 0.3304 0.3554 0.003 0.004 -0.002 0.0017 
56 0.0023 0.3604 0.3324 0.3571 0.026 0.031 0.022 0.0263 
90 0.0021 0.3671 0.3388 0.3627 0.095 0.097 0.08 0.0907 
120 0.0055 0.3784 0.3494 0.3735 0.174 0.169 0.154 0.1657 
150 0.0065 0.3881 0.359 0.3824 0.261 0.255 0.233 0.2497 
180 0.0063 0.397 0.3685 0.3909 0.352 0.352 0.32 0.3413 
270 0.0048 0.4247 0.3961 0.4178 0.644 0.643 0.604 0.6303 
360 0.0055 0.4649 0.44 0.4555 1.039 1.075 0.974 1.0293 

 
 
Table A144 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NC aggregate, high alkali cement and soaked in  
6.4 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Date Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0058 0.3489 0.3466 0.2323 0 0 0 0 
7 0.0067 0.3496 0.3468 0.2329 -0.002 -0.007 -0.003 -0.0040 
28 0.0055 0.3491 0.346 0.2332 0.005 -0.003 0.012 0.0047 
56 0.0055 0.3506 0.3477 0.2335 0.02 0.014 0.015 0.0163 
90 0.006 0.3589 0.3562 0.2465 0.098 0.094 0.14 0.1107 
120 0.0052 0.3676 0.3658 0.2504 0.193 0.198 0.187 0.1927 
150 0.0057 0.3777 0.3768 0.2606 0.289 0.303 0.284 0.2920 
180 0.0061 0.387 0.3874 0.2694 0.378 0.405 0.368 0.3837 
210 0.0044 0.3921 0.3948 0.2716 0.446 0.496 0.407 0.4497 
240 0.0098 0.4044 0.4071 0.2879 0.515 0.565 0.516 0.5320 
270 0.0098 0.4108 0.4127 0.2957 0.579 0.621 0.594 0.5980 
360 0.009 0.4135 0.4365 0.3228 0.614 0.867 0.873 0.7847 
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Table A145 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with NC aggregate, high alkali cement and soaked in  
3 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0058 0.3458 0.3601 0.2547 0 0 0 0 
7 0.0067 0.3448 0.3602 0.2502 -0.019 -0.008 -0.054 -0.0270 
28 0.0055 0.3437 0.3585 0.2494 -0.018 -0.013 -0.05 -0.0270 
56 0.0055 0.3467 0.3625 0.252 0.012 0.027 -0.024 0.0050 
90 0.006 0.3596 0.3746 0.2643 0.136 0.143 0.094 0.1243 
120 0.0052 0.3714 0.3854 0.276 0.262 0.259 0.219 0.2467 
150 0.0057 0.38 0.3946 0.2852 0.343 0.346 0.306 0.3317 
180 0.0061 0.3868 0.4014 0.2927 0.407 0.41 0.377 0.3980 
210 0.0044 0.391 0.4057 0.2977 0.466 0.47 0.444 0.4600 
240 0.0098 0.4015 0.4163 0.3075 0.517 0.522 0.488 0.5090 
270 0.0098 0.4068 0.4215 0.3142 0.57 0.574 0.555 0.5663 
360 0.009 0.4163 0.4325 0.3243 0.673 0.692 0.664 0.6763 

 
 
 
Table A146 Changes in DME in standard ASTM C 1293 tests using NC aggregate, high 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 6.04 5.87 5.90 5.94 100.00 
28 7.33 7.29 7.25 7.29 122.78 
56 8.19 6.94 8.67 7.93 133.65 
90 6.51 6.48 6.56 6.52 109.79 
120 6.29 6.22 7.44 6.65 111.99 
150 6.14 6.07 6.11 6.10 102.82 
270 5.91 5.85 5.89 5.88 99.09 
360 5.85 5.77 5.77 5.80 97.67 
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Table A147 Changes in DME in modified ASTM C 1293 tests using NC aggregate, high 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.96 5.96 6.09 6.00 100.00 
28 8.23 7.21 7.84 7.76 129.33 
56 8.52 7.72 8.33 8.19 136.41 
90 6.54 6.64 6.45 6.54 109.03 
120 6.68 6.27 6.16 6.37 106.08 
150 5.49 5.66 5.59 5.58 92.95 
270 3.83 3.82 3.76 3.80 63.30 
360 2.25 2.18 2.29 2.24 37.32 

 
 
Table A148 Changes in DME in modified ASTM C 1293 tests using NC aggregate, high 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.93 5.87 5.83 5.88 100.00 
7 7.17 7.08 7.13 7.13 121.25 
28 7.39 7.32 7.36 7.36 125.19 
56 6.99 7.06 6.86 6.97 118.54 
90 5.88 6.17 5.70 5.92 100.63 
120 5.18 5.39 4.95 5.18 88.05 
150 4.58 4.97 4.69 4.75 80.72 
180 4.48 4.90 4.61 4.66 79.31 
210 4.30 4.66 4.56 4.51 76.66 
240 4.28 4.64 4.45 4.46 75.86 
270 4.16 4.54 4.36 4.35 74.08 
360 4.11 4.34 4.36 4.27 72.68 
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Table A149 Changes in DME in modified ASTM C 1293 tests using NC aggregate, high 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 5.90 5.66 6.03 5.86 100.00 
7 7.09 6.93 7.34 7.12 121.45 
28 7.16 7.09 7.55 7.27 123.92 
56 7.06 6.99 7.38 7.14 121.82 
90 6.43 6.34 6.61 6.46 110.23 
120 5.54 5.14 5.43 5.37 91.60 
150 4.72 3.95 4.01 4.23 72.09 
180 4.02 3.56 3.87 3.82 65.08 
210 3.71 3.10 3.31 3.37 57.51 
240 3.41 2.76 3.09 3.09 52.63 
270 3.04 2.44 3.11 2.86 48.80 
360 2.00 1.53 1.55 1.69 28.83 

 
Table A150 Changes in DME in modified ASTM C 1293 tests using NC aggregate, high 
alkali cement and Li/K 3-0.2 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 6.04 6.07 5.85 5.99 100.00 
7 7.33 7.23 7.13 7.23 120.83 
28 7.56 7.45 7.34 7.45 124.47 
56 7.17 7.21 7.04 7.14 119.31 
90 5.78 6.12 5.74 5.88 98.21 
120 4.71 3.58 4.69 4.33 72.33 
150 4.37 4.59 4.47 4.48 74.80 
180 4.22 4.50 4.05 4.26 71.10 
210 4.00 4.23 3.78 4.00 66.89 
240 3.82 4.03 3.67 3.84 64.17 
270 3.71 3.82 3.40 3.64 60.84 
360 3.36 3.37 3.39 3.38 56.39 
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Table A151 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with SD aggregate, high alkali cement and soaked in  
1N NaOH solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0008 0.3469 0.3428 0.3374 0 0 0 0 
7 0.0019 0.3481 0.3436 0.3381 0.001 -0.003 -0.004 -0.0020 
28 0.0027 0.3499 0.3453 0.3405 0.011 0.006 0.012 0.0097 
56 0.0024 0.3503 0.346 0.3411 0.018 0.016 0.021 0.0183 
90 0.0021 0.3516 0.347 0.3423 0.034 0.029 0.036 0.0330 
120 0.0058 0.3563 0.3521 0.3474 0.044 0.043 0.05 0.0457 
150 0.0064 0.358 0.3536 0.3489 0.055 0.052 0.059 0.0553 
180 0.0055 0.3582 0.3539 0.3493 0.066 0.064 0.072 0.0673 
270 0.0048 0.359 0.3548 0.3501 0.081 0.08 0.087 0.0827 
360 0.006 0.3621 0.3577 0.3531 0.1 0.097 0.105 0.1007 

 
 
Table A152 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with SD aggregate, high alkali cement and soaked in  
3 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0056 0.3305 0.2793 0.337 0 0 0 0 
7 0.0064 0.331 0.2797 0.3349 -0.003 -0.004 -0.029 -0.0120 
28 0.0064 0.3311 0.2806 0.3347 -0.002 0.005 -0.031 -0.0093 
56 0.0055 0.3304 0.2794 0.3338 0 0.002 -0.031 -0.0097 
90 0.0053 0.3321 0.279 0.3336 0.019 0 -0.031 -0.0040 
120 0.006 0.3333 0.2805 0.3351 0.024 0.008 -0.023 0.0030 
150 0.0052 0.3343 0.2808 0.3371 0.042 0.019 0.005 0.0220 
180 0.0057 0.3358 0.2825 0.3379 0.052 0.031 0.008 0.0303 
210 0.0061 0.3371 0.2842 0.3394 0.061 0.044 0.019 0.0413 
240 0.0044 0.3376 0.2843 0.3409 0.083 0.062 0.051 0.0653 
270 0.0098 0.3445 0.2915 0.3469 0.098 0.08 0.057 0.0783 
360 0.0098 0.3466 0.2941 0.3495 0.119 0.106 0.083 0.1027 
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Table A153 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with SD aggregate, high alkali cement and soaked in  
6.4 MC of KAc solution 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0008 0.2956 0.3498 0.4532 0 0 0 0 
7 0.0019 0.2963 0.35 0.4541 -0.004 -0.009 -0.002 -0.0050 
28 0.0027 0.2978 0.3516 0.4556 0.003 -0.001 0.005 0.0023 
56 0.0024 0.2979 0.3517 0.4557 0.007 0.003 0.009 0.0063 
90 0.0021 0.2981 0.3518 0.456 0.012 0.007 0.015 0.0113 
120 0.0058 0.3022 0.356 0.4601 0.016 0.012 0.019 0.0157 
150 0.0064 0.3033 0.3572 0.4614 0.021 0.018 0.026 0.0217 
180 0.0055 0.3037 0.3577 0.4616 0.034 0.032 0.037 0.0343 
270 0.0048 0.3064 0.3602 0.465 0.068 0.064 0.078 0.0700 
360 0.006 0.3157 0.3696 0.475 0.149 0.146 0.166 0.1537 

 
 
 
Table A154 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with SD aggregate, high alkali cement and soaked in  
6.4 MC of KAc solution with Li/K ratio of 0.2 
 

  Comparator readings Expansion, % 
Date Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0056 0.3126 0.2525 0.2408 0 0 0 0 
7 0.0064 0.3128 0.254 0.2408 -0.006 0.007 -0.008 -0.0023 
28 0.0064 0.3129 0.254 0.2412 -0.005 0.007 -0.004 -0.0007 
56 0.0055 0.3124 0.2533 0.2406 -0.001 0.009 -0.001 0.0023 
90 0.0053 0.3119 0.2535 0.2402 -0.004 0.013 -0.003 0.0020 
120 0.006 0.3122 0.2542 0.2415 -0.008 0.013 0.003 0.0027 
150 0.0052 0.3131 0.2544 0.2413 0.009 0.023 0.009 0.0137 
180 0.0057 0.3141 0.2559 0.2426 0.014 0.033 0.017 0.0213 
210 0.0061 0.3154 0.257 0.2437 0.023 0.04 0.024 0.0290 
240 0.0044 0.3153 0.2578 0.2434 0.039 0.065 0.038 0.0473 
270 0.0098 0.3221 0.2649 0.2512 0.053 0.082 0.062 0.0657 
360 0.0098 0.324 0.2676 0.253 0.072 0.109 0.08 0.0870 
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Table A155 Expansion readings and percentage expansions of the Modified ASTM C 
1293 tests of concrete prisms made with SD aggregate, high alkali cement and soaked in  
3 MC of KAc solution with Li/K ratio of 0.2 
 

 Comparator readings   Expansion, %   
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0056 0.1685 0.3373 0.3444 0 0 0 0 
7 0.0064 0.1678 0.3373 0.3447 -0.015 -0.008 -0.005 -0.0093 
28 0.0064 0.1679 0.337 0.345 -0.014 -0.011 -0.002 -0.0090 
56 0.0055 0.1664 0.3357 0.3447 -0.02 -0.015 0.004 -0.0103 
90 0.0053 0.167 0.3363 0.344 -0.012 -0.007 -0.001 -0.0067 
120 0.006 0.168 0.3378 0.3452 -0.009 0.001 0.004 -0.0013 
150 0.0052 0.1688 0.3378 0.3459 0.007 0.009 0.019 0.0117 
180 0.0057 0.1703 0.3393 0.3481 0.017 0.019 0.036 0.0240 
210 0.0061 0.1718 0.341 0.3501 0.028 0.032 0.052 0.0373 
240 0.0044 0.172 0.3415 0.3505 0.047 0.054 0.073 0.0580 
270 0.0098 0.1786 0.3487 0.3583 0.059 0.072 0.097 0.0760 
360 0.0098 0.1811 0.3509 0.3602 0.084 0.094 0.116 0.0980 

 
Table A156 Changes in DME in standard ASTM C 1293 tests using SD aggregate, high 
alkali cement  
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME days bar1 bar2 bar3 avg 

0 5.91 6.16 6.02 6.03 100.00 
28 7.33 7.44 7.37 7.38 122.32 
56 7.13 7.12 7.13 7.13 118.16 
120 6.06 5.91 6.10 6.02 99.89 
150 5.96 6.20 5.96 6.04 100.11 
270 5.15 5.07 4.82 5.02 83.16 
360 4.75 4.74 4.73 4.74 78.56 

 
Table A157 Changes in DME in modified ASTM C 1293 tests using SD aggregate, high 
alkali cement and KAc 6.4 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change in 
DME days bar1 bar2 bar3 avg 

0 6.07 6.09 6.06 6.07 100.00 
28 7.28 7.26 7.52 7.36 121.13 
56 7.29 7.34 7.45 7.36 121.17 
120 7.26 7.28 7.29 7.28 119.80 
150 7.26 7.28 7.25 7.26 119.60 
270 6.92 6.98 6.99 6.96 114.66 
360 6.51 6.44 6.51 6.48 106.78 
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Table A158 Changes in DME in modified ASTM C 1293 tests using SD aggregate, high 
alkali cement and KAc 3.0 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 6.06 6.35 6.21 6.20 100.00 
7 7.04 7.33 7.20 7.19 115.92 
28 7.13 7.38 7.27 7.26 116.99 
56 7.12 7.38 7.29 7.26 117.08 
90 7.02 7.32 7.28 7.21 116.16 
120 7.02 7.26 7.22 7.17 115.51 
150 6.81 7.09 6.89 6.93 111.69 
180 6.73 6.97 6.69 6.80 109.52 
210 6.43 6.66 6.35 6.48 104.45 
240 6.20 6.40 6.19 6.26 100.93 
270 5.97 6.13 5.88 5.99 96.57 
300 5.67 5.74 5.57 5.66 91.26 
360 5.18 5.15 4.90 5.08 81.84 

 
 
Table A159 Changes in DME in modified ASTM C 1293 tests using SD aggregate, high 
alkali cement and Li/K 6.4-0.2  
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 6.31 6.22 6.17 6.23 100.00 
7 7.15 7.11 7.03 7.10 113.92 
28 7.22 7.10 7.14 7.16 114.84 
56 7.27 7.24 7.23 7.25 116.31 
90 7.36 7.24 7.36 7.32 117.45 
120 7.37 7.28 7.28 7.31 117.31 
150 7.37 7.29 7.29 7.32 117.39 
180 7.37 7.29 7.29 7.31 117.35 
210 7.24 7.16 7.25 7.21 115.78 
240 7.23 7.06 7.19 7.16 114.91 
270 7.14 6.86 7.02 7.01 112.48 
300 7.06 6.72 6.89 6.89 110.62 
360 6.65 5.97 6.45 6.36 102.04 
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Table A160 Changes in DME in modified ASTM C 1293 tests using SD aggregate, high 
alkali cement and Li/K 3-0.2 
 

 Dynamic Young's Modulus, (E)*10^6 % Change in 
DME Days Bar1 Bar2 Bar3 Avg 

0 6.36 6.25 6.14 6.25 100.00 
7 7.36 7.19 7.05 7.20 115.21 
28 7.44 7.23 7.11 7.26 116.14 
56 7.47 7.28 7.14 7.30 116.69 
90 7.44 7.24 7.12 7.26 116.19 
120 7.28 7.14 7.04 7.15 114.39 
150 7.02 6.98 6.83 6.94 111.08 
180 6.97 6.91 6.65 6.84 109.44 
210 6.66 6.64 6.46 6.59 105.33 
240 6.50 6.51 6.25 6.42 102.68 
270 6.34 6.33 6.08 6.25 99.95 
300 6.09 6.11 5.76 5.99 95.73 
360 5.79 5.76 5.39 5.65 90.31 

 
Table A161 pH Changes in soak solution in Modified ASTM C 1293 tests for high alkali 
cement at 0 day 
 

Soak 
Solution 

NM SP NC SD 
PH Temp,º C PH Temp,º C PH Temp,º C PH Temp,º C 

3-0 9.92 21.6 10 24.1 10 24.1 10.04 24.3 

3-0.2 9.58 22.3 9.68 24.2 9.68 24.2 9.64 24.3 

3-0.8 8.47 22.1 X X X X X X 
 
Table A162 pH Changes in soak solution in Modified ASTM C 1293 tests for high alkali 
cement at 12 months 
 

Soak 
Solution 

NM SP NC SD 
PH Temp,º C PH Temp,º C PH Temp,º C PH Temp,º C 

0 12.6 20.5 12.7 21.9 12.06 30 12.9 24.5 
0.2 12.7 20.5 12.6 23 12.57 25 12.5 25.3 
0.8 12.36 20.8 X X X X X X 

 
Table A163 pH Changes in soak solution in Modified ASTM C 1293 tests for low alkali 
cement at 0 day 
 

Soak 
Solution 

NM SP 
PH Temp,º C PH Temp,º C 

0 9.92 21.6 10 24.1 

0.2 9.58 22.3 9.68 24.2 

0.8 8.47 22.1 X X 



231 
 

Table A164 pH Changes in soak solution in Modified ASTM C 1293 tests for low alkali 
cement at 12 months 
 

Soak 
Solution 

NM SP 
PH Temp,º C PH Temp,º C 

0 12.96 24.3 11.97 23.3 
0.2 12.3 23.6 10.03 24.5 
0.8 11.27 24.5 X X 

 
 
Table A165 Expansion readings and percentage expansions of the Modified ASTM C 
227 tests of mortar bars made with Ottawa sand and fused silica, low alkali cement and 
exposed to water with no pre treatment   

 
  Comparator readings Expansion, % 

Days Ref bar Bar1 Bar2 Bar1 Bar2 Avg 
0 0.0092 0.2634 0.2834 0 0 0 
3 0.0094 0.2635 0.2832 -0.001 -0.004 -0.0025 
11 0.0096 0.2666 0.2865 0.028 0.027 0.0275 
14 0.0099 0.2664 0.2863 0.023 0.022 0.0225 
21 0.01 0.2674 0.2865 0.032 0.023 0.0275 
28 0.0104 0.2696 0.288 0.05 0.034 0.042 
56 0.0088 0.2814 0.3013 0.185 0.187 0.186 

 
 
Table A166 Expansion readings and percentage expansions of the Modified ASTM C 
227 tests of mortar bars made with Ottawa sand and fused silica, low alkali cement and 
exposed to KAc with no pre treated 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar1 Bar2 Avg 

0 0.0092 0.2996 0.2927 0 0 0 
3 0.01 0.3035 0.2964 0.031 0.029 0.03 
7 0.0085 0.3065 0.3004 0.076 0.084 0.08 
21 0.0088 0.3288 0.3213 0.296 0.29 0.293 
28 0.0096 0.3462 0.3384 0.462 0.453 0.4575 
56 0.0092 0.3935 0.3821 0.908 0.865 0.8865 
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Table A167 Expansion readings and percentage expansions of the Modified ASTM C 
227 tests of mortar bars made with Ottawa sand and fused silica, low alkali cement and 
exposed to KAc and pre treated with LiNO3  for 1 coat 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar1 Bar2 Avg 

0 0.0092 0.3156 0.2538 0 0 0 
3 0.01 0.3208 0.2579 0.044 0.033 0.0385 
7 0.0085 0.3175 0.2567 0.026 0.036 0.031 
21 0.0088 0.3188 0.2573 0.036 0.039 0.0375 
28 0.0096 0.32 0.2583 0.04 0.041 0.0405 
56 0.0092 0.3197 0.258 -0.003 0.009 0.003 

 
 
Table A168 Expansion readings and percentage expansions of the Modified ASTM C 
227 tests of mortar bars made with Ottawa sand and fused silica, low alkali cement and 
exposed to KAc and pre treated with LiNO3  for 3 coat 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar3 Bar1 Bar2 Bar3 Avg 

0 0.0092 0.2931 0.3002 0.2743 0 0 0 0 
3 0.01 0.2961 0.303 0.2773 0.022 0.02 0.022 0.0213333 
7 0.0085 0.2954 0.3027 0.2771 0.03 0.032 0.035 0.0323333 
21 0.0088 0.2959 0.3036 0.2776 0.032 0.038 0.037 0.0356667 
28 0.0096 0.297 0.304 0.2784 0.035 0.034 0.037 0.0353333 
56 0.0092 0.2969 0.3042 0.2784 0.016 0.02 0.019 0.0183333 

 
 
 

Table A169 Expansion readings and percentage expansions of the Modified ASTM C 
227 tests of mortar bars made with Ottawa sand and fused silica, low alkali cement and 
exposed to KAc and pre treated with LiNO3  for 5 coat 
 

  Comparator readings Expansion, % 
Days Ref bar Bar1 Bar2 Bar1 Bar2 Avg 

0 0.0092 0.277 0.318 0 0 0 
3 0.01 0.2805 0.3211 0.027 0.023 0.025 
7 0.0085 0.2793 0.3207 0.03 0.034 0.032 
21 0.0088 0.28 0.3213 0.034 0.037 0.0355 
28 0.0096 0.2808 0.3219 0.034 0.035 0.0345 
56 0.0092 0.2807 0.322 0.01 0.017 0.0135 
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Table A170 Changes in DME in modified ASTM C 227 tests of mortar bars made with 
Ottawa sand and fused silica, low alkali cement and exposed to water with no pre 
treatment   
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Avg 

0 2.23 2.19 2.21 100.00 
3 3.63 3.46 3.54 160.51 
14 4.06 3.98 4.02 181.85 
28 3.93 3.79 3.86 174.81 
56 2.88 2.65 2.76 125.18 

 
Table A171 Changes in DME in modified ASTM C 227 tests of mortar bars made with 
Ottawa sand and fused silica, low alkali cement and exposed to KAc with no pre treated 
 

 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Avg 

0 2.65 2.62 2.64 100.00 
3 3.79 4.04 3.92 148.58 
7 4.11 3.97 4.04 153.32 
28 3.03 2.93 2.98 113.09 
56 1.43 1.44 1.44 54.46 

 
  

Table A172 Changes in DME in modified ASTM C 227 tests of mortar bars made with 
Ottawa sand and fused silica, low alkali cement and exposed to KAc and pre treated with 
LiNO3  for 1 coat 
 

T-1 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Avg 

0 2.62 2.75 2.69 100.00 
3 3.10 4.58 3.84 143.02 
7 5.12 5.27 5.20 193.48 
28 5.44 5.13 5.29 196.83 
56 5.45 5.62 5.54 206.15 
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Table A173 Changes in DME in modified ASTM C 227 tests of mortar bars made with 
Ottawa sand and fused silica, low alkali cement and exposed to KAc and pre treated with 
LiNO3  for 3 coat 
 

T-3 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Bar3 Avg 

0 2.89 2.77 2.53 2.73 100.00 
3 4.55 4.52 4.22 4.43 162.27 
7 4.86 4.64 4.42 4.64 169.96 
28 5.36 5.10 4.82 5.09 186.57 
56 5.41 5.08 4.86 5.12 187.42 

 

 
 
Table A174 Changes in DME in modified ASTM C 227 tests of mortar bars made with 
Ottawa sand and fused silica, low alkali cement and exposed to KAc and pre treated with 
LiNO3  for 5 coat 
 

T-5 Dynamic Young's Modulus, (E) * 10^6 % Change 
in DME Days Bar1 Bar2 Avg 

0 2.76 2.54 2.65 100.00 
3 4.77 4.47 4.62 174.34 
14 4.94 4.93 4.94 186.23 
28 5.21 5.23 5.22 196.98 
56 5.28 5.28 5.28 199.25 

 
 
Table A175 Concentration of K and Li with depth from top in Spratt, NM and IL 
aggregate 
 

Aggregate   
Concentration (mg/l) ppm 

0.5” 1” 1.5” 2” 2.5” 

SP 
K 13.54 7.59 2.03 1.12 0.97 
Li 2.27 0.66 0.42 -0.05 -0.05 

NM 
K 22.45 12.43 7.24 2.72 1.45 
Li 3.42 0.8 0.44 -0.05 -0.05 

IL 
K 15.09 12.92 4.59 0.77 0.59 
Li 1.84 0.66 0.4 -0.05 -0.05 
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