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ABSTRACT 
 
 

 The Root Invigoration™ process involves soil decompaction with an air tool, 

amendment with organic matter and prescription fertilizer, and mulching.  In the current 

study, we measured soil chemical and physical properties, tree characteristics, and root 

system responses to this process and its individual components.  Treatments included 

Root Invigoration™ (AFM), mulch only (M), fertilization only (F), Airspade® tillage 

only (A), and an untreated control (C).  The experiment was conducted from 2005-2007 

at four urban sites:  Anderson, SC; Boston, MA; Myrtle Beach, SC and Pittsburgh, PA.  

Soil strength was initially reduced by Airspade®, mulch and AFM; however only AFM-

treated soils sustained this reduction over two seasons.  Across all locations, soil organic 

matter content was increased with AFM and mulching.   

 The levels of six soil nutrients were increased by Root Invigoration™, while one 

nutrient was increased by an individual treatment.  Tree condition ratings were 

significantly higher in AFM trees than control trees by the end of 2007.  In two locations, 

increases in dbh were also greater for AFM trees.  At the end of 2006, estimated 

chlorophyll concentrations were higher in AFM trees than in the A or M treatments.  

Foliage of AFM trees had higher levels of phosphorus and potassium than foliage of 

fertilized trees.  Mulched soils (both AFM and M) frequently had higher soil moisture 

content.  During a drought period in 2007, pre-dawn leaf water potential was higher for 

M trees on two dates and for AFM trees on one.  Although there were differences in root 

length density (cm root/cm3 soil) among treatments in 2006, there were none in 2007.  

Mean root diameter was increased with fertilization.  Root lifespan was reduced with M 
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and AFM treatments.  Time until root browning was also reduced with A, M and AFM, 

however AFM merely reflected the influence of the individual treatments.  M and AFM 

shifted a greater proportion of fine roots to the upper 33.3 cm of the soil profile.   
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CHAPTER I 
 

LITERATURE REVIEW 
 
 

Challenges of Urban Soils 
 
 Many tree species have the potential to live over 100 years, but the average life 

span of an urban street tree is estimated at only ten years (Foster and Blaine, 1978).  

Clearly, the urban environment is stressful to trees, and research suggests that much of 

this stress is caused by soil factors (Watson et al., 1996).  Homeowners, municipalities 

and tree care companies would all benefit from successful strategies for improving root 

growth conditions in urban soils.  Unfortunately, few effective treatment options exist.   

 Urban soils are a challenging medium for tree growth.  They have frequently been 

disturbed through the processes of mixing, filling and contamination (Craul, 1985), and 

they tend to be highly compacted, with bulk densities higher than those of nearby forest 

soils (Close et al., 1996a).  This compaction is often the result of human activity and the 

infrastructure that is developed to support these activities (Craul, 1985).  Compacted soils 

hinder tree development by physically restricting root growth, reducing gas exchange and 

limiting soil water availability (Craul, 1992).   

 While forest soils have a well-developed humus layer, urban soils typically lack 

an upper organic horizon (Fraedrich and Ham, 1982).  Organic matter in soils helps to 

maintain proper structure, air and water movement and retain nutrients.  However, in 

urban settings, plant debris is often removed and these soils have very low levels of 

organic matter.  The removal of this debris also disrupts the cycling of mineral nutrients 

back into the soil.  As a result, urban soils are often deficient in many minerals and may 
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require fertilization to ensure the health and growth of trees planted in these conditions 

(Struve, 2002).  

 Urban sites also tend to have lower levels of soil moisture than nearby forested 

areas.  Soil compaction, higher temperatures, lower relative humidity, limited soil 

volumes, impervious surfaces, low organic matter content and turf competition all 

contribute to reduced water availability at urban sites (Close et al., 1996a; Rhoades and 

Stipes, 1999).  Furthermore, pavement, buildings, and automobiles reradiate large 

amounts of heat, which increases evapotranspiration and quickly dries the soil.   

 Trees growing under water-limited conditions close their stomates in an effort to 

restrict water loss (Close et al., 1996b).  Because this strategy also limits photosynthesis, 

both tree growth and the accumulation of carbon reserves are reduced.  When drought 

stress becomes chronic, the tree’s ability to defend itself against diseases and pests is 

reduced and its lifespan is shortened (Harris et al., 2004).  

 Soil water deficiency is sensed first by the tree’s fine root system.  These small, 

absorbing roots (< 1 mm in diameter) are distributed shallowly in the soil profile.  It is 

estimated that 80% of fine roots are found in the upper 30 cm of the soil (Craul, 1992), 

and fine root distribution may be even shallower when a protective layer of mulch or 

organic matter is present (Harris et al., 1999).  Tree roots spread widely from the trunk 

base, extending from 2 to 4 times the diameter of the canopy dripline when growth is 

unrestricted (Gilman et al., 1987; Harris et al., 1999; Perry, 1982).  Therefore, it is this 

wide, shallow soil zone on which soil remediation efforts should be concentrated in urban 

settings.   
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 The upper soil levels are subjected to many processes that increase the soil’s 

resistance to root penetration.  Because this limits root system development in urban 

soils, arboricultural techniques that reduce soil impedance merit further exploration (Day 

and Bassuk, 1994).  Unfortunately, urban trees can be subjected to additional root system 

damage from traditional soil decompaction methods such as mechanical tillage (Watson 

et al., 1996).  It is challenging to improve the physical properties of the soil within the 

root zone without causing significant root damage in the process. 

 
Root Invigoration™ 

 
 A new process has recently been developed to promote the performance of urban 

trees while reducing additional stress to the root system.  The Root Invigoration™ (AFM) 

process, developed by the F. A. Bartlett Tree Expert Co., is designed to promote fine root 

function by incorporating organic matter and fertilizer in the rooting zone while 

simultaneously reducing soil compaction and aerating the soil.   

 In the basic AFM program, the soil is treated in a circular area with a radius of 3-5 

times the tree’s dbh (diameter at 4.5 feet above soil level), with a minimum radius of 1.5 

m.  Turf is removed or killed in this area prior to treatment.  Soil is then loosened to a 

depth of 15-20 cm (6-8 in.) using an Air Spade® (Concept Engineering Group, Verona, 

PA), a tool that channels compressed air through a specialized tip.  

 Next, the treated area is amended with composted organic matter and fertilizer 

products based on prior soil analyses.  These amendments are homogenized into the 

existing soil with the Air Spade® to create a soil environment that may be more 

conducive to root growth.  Finally, the treated area is mulched to a depth of 5-7.5 cm (2-3 
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in.) to help retain soil moisture.  Irrigation is applied following treatment to settle the soil 

and counteract the drying effects of the Air Spade® tillage.   

 Preliminary observations have shown changes in fine root growth of AFM-treated 

trees.  This is often followed by a denser, greener canopy the following season, although 

no experimental evidence exists to support such anecdotal observations.  The current 

research project aims to quantify the response of red maples in four locations to the Root 

Invigoration process.  Additional treatments include control, Air Spade® tillage only, 

mulching only and fertilization only.  Data will be analyzed to determine if any of these 

processes significantly improve tree growth and performance. 

 The following pages review key topics in tree biology that form the foundation of 

this research project.  Findings from previous research are summarized and used to lay 

the groundwork for our experimental design.   

 
Tree Mineral Nutrition 

 
 Plants require 13 specific mineral elements in order to grow normally (Table 1.1).  

When supplied with essential elements, water, CO2, O2, and sunlight, plants can 

manufacture all the compounds they need for growth (Taiz and Zeiger, 2002).  Roots 

obtain these mineral nutrients from the soil in ionic form; they are then transported 

throughout the plant in the xylem and used in biological processes (Taiz and Zeiger, 

2002).  Without proper nutrient levels, critical metabolic processes will be disrupted.   

 Urban shade trees are fertilized to replace nutrients that have been depleted or are 

unavailable for uptake.  Soil testing, foliar nutrient analysis and management goals are 

the basis of prescription fertilization programs in the tree care industry (Struve, 2002).  



 5 

Nitrogen, in particular, is frequently applied, as it affects growth rate of established shade 

trees more than P or K and is often the only nutrient that increases growth under field 

conditions (Neely and Himelick, 1966; Philipson and Coutts, 1977; van de Werken, 

1984; Watson, 1994).   

 Nitrogen is applied to the soil to stimulate growth (Gilman et al., 2000), although 

it generally stimulates shoot growth to a greater extent than root growth (Philipson and 

Coutts, 1977).  Established landscape trees have shown mixed responses to nitrogen 

applications.  Warren (1993) reported that leaf area and top dry weight of flowering 

dogwood (Cornus florida) increased quadratically with increasing nitrogen.  However,  

 
Table 1.1.  Major nutrients, roles within the plant and deficiency symptoms1.  
 

Nutrient Role Key deficiency symptoms 
Nitrogen Structural component of 

proteins, enzymes, DNA 
and RNA, chlorophyll, 
NADH, NADPH, choline 
and indoleacetic acid. 

Small leaves; chlorosis and 
abscission of older leaves.  
Premature defoliation 
beginning in older foliage.  
Root growth reduced and 
branching restricted, but 
increased root/shoot ratio.  

   
Phosphorous Buffers cell pH and 

maintains homeostasis.  
Regulates enzyme activity.  
Energy release through P-P 
bond breakage and NADP+ 
reduction to NADPH.  
Constituent of nucleic acids 
(DNA, tRNA, mRNA and 
rRNA).  Present in 
membrane phophoslipids 
and as a lipid anchor 
constituent of some lipo-
proteins and lipo-
polysaccharides.   

Darkish green-purple color 
of older leaves.  Sparse 
slightly small, distorted 
foliage.  Shoots normal 
length, but small diameter.  
Early leaf drop.   
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Table 1.1.  Major nutrients, roles within the plant and deficiency symptoms1 (continued). 
 

Nutrient Role Key deficiency symptoms 
Potassium Maintains plant water status 

and cell turgor pressure.  
Controls opening and 
closing of stomata.  
Translocation of newly 
synthesized carbohydrates.  
Involved in cellulose 
synthesis.   

Marginal and interveinal 
chlorosis, followed by 
scorching in older leaves 
first.  Shoot tips die back 
late in season.  Few flowers. 
Growth slows because 
sugars and starches 
accumulate where formed.  
Cell walls and stems weak 
and plants lodge, stems 
break.   

   
Calcium Cell elongation in the shoot 

and growing tip of the roots.  
Binds cell walls together by 
binding free carboxyl 
groups of pectin in the 
middle lamella between 
adjacent cell walls.   

Reduction in meristimatic 
tissue growth in growing 
tips and young leaves.  
Leaves deformed and 
chlorotic, then necrotic 
margins.   

   
Sulfur Di-sulfide bonds are formed 

and are involved in protein 
structure.  Involved in 
conformation and activity 
of many enzymes.  
Constituent in many 
enzymes, vitamins and 
hormones.   

Leaves pale yellow-green 
both young and old.  
Stunted growth.  Short thin 
and woody stems.   
 

   
Iron Related to changes in 

oxidation-reduction states 
and electron transfer 
reactions.  Part of protein 
ferredoxin.  Required for 
nitrate reduction, suphate 
reduction, N2 assimilation 
and energy production 
(NADP).   

Young leaves display 
interveinal chlorosis.  
Exposed leaves bleach and 
scorch.  Small leaves.  
Shoot normal length, but 
small diameter.  Twig 
dieback and defoliation if 
severe.   
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Table 1.1.  Major nutrients, roles within the plant and deficiency symptoms1 (continued). 
 

Nutrient Role Key deficiency symptoms 
Manganese Involved in oxidation-

reduction process.  Cofactor 
for numerous enzymes.  
Element of the enzyme 
superoxide dismutase, 
neutralizes the free radicles 
formed by the splitting of 
water during the Hill 
reaction of photosynthesis.  
Involved in pollen 
germination and pollen tube 
growth.   

Chlorosis between veins of 
older leaves developing into 
necrotic interveinal spots.  
Leaf may be limp.  Shoot 
growth reduced.   
 

1(Harris et al., 1999; Mills and J. Benton Jones, 1996) 
 
 
applications of nitrogen greater than 14 to 24 g N/m2 (3 to 5 lb N/1000 ft2) per year have 

rarely shown any benefit (Gilman et al., 2000).  Applications rates higher than 29g N/m2 

(6 lb N/1000ft2) annually are generally not recommended (Smiley et al., 2002).   

 The type of fertilizer and the application method can also influence tree response.  

In some cases, slow-release fertilizers have been shown to provide a greater growth 

benefit than ammonium nitrate and urea fertilizers, but other studies have found that all 

fertilizer types provide similar benefits (Gilman et al., 2000).   

 Application methods may be more important than the type of nitrogen supplied, 

although again the differences appear to be small (Struve, 2002).  Subsurface applications 

do not appear to provide a greater growth benefit than broadcast surface applications 

(Gilman et al., 2000; Neely, 1980).  In fact, Van de Werken (1984) reported that 

broadcast applications promote more growth than applications of identical products in 46 
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cm (18 in) deep holes, although the depth of these holes may have placed the fertilizer 

below the region of optimum root uptake.   

 Fertilizer applications may alter root system growth and behavior because roots 

tend to proliferate in areas of soil that have favorable chemical and physical properties 

(Eissenstat and Caldwell, 1988).  Lateral root growth increases in nutrient-rich areas of 

soil (Watson, 1994).  Root density can be 10-15 times greater in nutrient-rich patches 

than in unfertilized areas, and the relative growth rate of roots may be increased 3-6 times 

in fertilized zones (Eissenstat and Caldwell, 1988).   

 While nitrogen fertilization may increase root density in the fertilized zone, it can 

also reduce overall fine root growth if excessive (May et al., 1965; Watson, 1994).  When 

fertilizers are applied to the soil, root proliferation is primarily located near the 

application site, while root growth elsewhere in the system remains relatively unchanged 

or may decrease (Eissenstat and Caldwell, 1988; Philipson and Coutts, 1977).   

 When the root system of Lodegepole pine (Pinus contorta) was split into high and 

low nutrient regimes, roots in the low nutrient regime had only half the dry weight of 

those in the high nutrient regime (Coutts and Philipson, 1977).  When only one side of 

the root system of Sitka spruce (Picea sitchensis) received favorable treatment, that side 

often grew more than either side of the tree that received uniform favorable treatment.  

(Philipson and Coutts, 1977) 

 The regenerative ability of the root system is demonstrated by its ability to 

recover from low nutrient conditions when adequate nutrients become available again 

(Coutts and Philipson, 1977).  Sitka spruce roots in low nutrient regimes grew slowly or 
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not at all and turned brown.  When these roots were moved into high nutrient regimes, 

they responded with increased growth and vigor (Coutts and Philipson, 1977).   

 The previous findings suggest that proper fertilization of low-nutrient urban soils 

may result in significant increases in fine root growth and tree performance.  In the 

current project, we will evaluate the effects of fertilization alone and as a component of 

the Root Invigoration process.  We expect both fertilized and Root Invigoration-treated 

trees to have increased fine root density in the treated soil and increased above-ground 

growth.   

 
Soil Compaction 

 
 The primary function of the fine root system is to acquire water and nutrients 

from the soil.  In the forest environment, soil physical and chemical properties are 

conducive to root growth.  But soils in the urban environment are much different than 

their forest counterparts and can limit root growth (Alberty et al., 1984; Patterson, 1977).  

One of the most common and detrimental problems in urban soils is compaction (Craul, 

1992).  

 Urban soils become compacted by vehicles, construction disturbance, foot traffic 

and lack of cover (Craul, 1985; Pan and Bassuk, 1985).  Compaction decreases total pore 

space, reduces the proportion of large pores, and increases bulk density and mechanical 

resistance (Conlin and Driessche, 1996; Craul, 1985).  Bulk density is a measure of soil 

compaction and is calculated by dividing a soil sample’s dry mass by its volume 

(expressed in g/cc) (Black, 1964).  Soil strength, a related property, refers to the ability of 
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a soil to resist an applied force (Taylor, 1971).  High levels of strength decrease the 

ability of plant roots to grow through the soil.   

 Soil compaction in urban settings is usually the result of human activity and not 

natural processes (Craul, 1985). Urban areas have infrastructure and hardscape features 

that require extensive traffic and equipment usage during development.  Moreover, many 

buildings and features must be built upon soil that has undergone a specified amount of 

compaction.  Furthermore, measures that are taken to protect soil from being compacted 

during construction activities are rarely effective (Randrup and Dralle, 1997).  This soil 

then becomes the medium for tree root growth and the extraction of water and nutrients. 

 Typical soil bulk densities in urban environments are often inhospitable to root 

growth.  Bulk densities of 1.25 to 1.6 g/cc are generally considered restrictive to root 

growth, depending on soil type and moisture content, while building brick bulk densities 

range from 1.4 to 2.3 g/cc (Gilman et al., 1987).  Soils beneath shade trees in 

Washington, D. C. had bulk densities of 1.7 to 2.2 g/cc (Patterson, 1977), and these 

readings are not atypical for urban areas.  Soils within construction zones in the 

Minneapolis/St. Paul metropolitan area were shown to have a mean bulk density of 1.56 

g/cc, which was significantly higher than nearby undisturbed soil (Alberty et al., 1984).  

The mean bulk density of 50 roadside tree planting pits in urban Hong Kong was 1.66 

g/cc, while soils of highway median plantings in Charlotte, NC, had a mean bulk density 

of 1.75 g/cc (Jim, 1998; Smiley et al., 1990). 

 Numerous examples of poor tree performance on compacted soil have been 

documented.  Growth of Forsythia ovata and Cornus sericea was significantly reduced in 
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response to increasing soil bulk density (Alberty et al., 1984).  Helms and Hipkin showed 

dramatic decreases in growth of ponderosa pine (Pinus ponderosa) with increasing bulk 

density (1986).  Increased levels of soil compaction were associated with shorter needles, 

lower root dry weights, lower net photosynthesis, higher respiration and lower 

concentrations of mineral nutrients in Pinus contorta (Conlin and Driessche, 1996).  

Ailanthus altissima root distribution was shifted from having few surface lateral roots in 

uncompacted soil, to more numerous shallow roots that elongated longer distances in 

compacted soil (Pan and Bassuk, 1985).  Total root dry weight was also reduced due to 

compaction.   

 Reduced root growth and impaired physiological function underlie the poor 

performance of trees on compacted soils.  In addition to the direct effect of compaction 

on root growth, there are many indirect effects of soil compaction on soil gas exchange, 

soil water availability, and soil chemistry (Craul, 1992). 

 High soil strength and small pore size limit root growth in compacted soils 

(Alberty et al., 1984).  With increasing soil resistance, roots become less able to 

proliferate and branch (Glinski and Lipiec, 1990).  This inhibition creates roots that are 

larger in diameter and often shortened (Glinski and Lipiec, 1990).  Day and Bassuk 

(1994) reported that root systems of trees on compacted soils tend to be more branched 

and thickened.  This occurs because cell extension is reduced, yet cell numbers are 

unchanged (Glinski and Lipiec, 1990).  Root branching may also be reduced in soils with 

high mechanical resistance.  These affects can result in a decrease in the uptake of 

nutrients, particularly phosphorus (Glinski and Lipiec, 1990). 
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 Compacted soils not only present physical challenges to root systems, but also 

impact root physiological processes.  Compaction reduces oxygen exchange between the 

roots and the atmosphere because gas diffusion occurs mainly through large macropores 

that are destroyed when the soil is compacted (Gilman et al., 1987; Horn et al., 1995; 

Kozlowski, 1999; Patterson, 1977).  The soil environment then enters an oxygen-depleted 

or anaerobic state (Kozlowski, 1999; Percival and Keary, 2008).  Water movement 

through compacted soils will also be slower, and this tightly-bound soil water will create 

an obstruction for gas diffusion through the soil (Craul, 1985).  Under the resulting low-

oxygen conditions, tree roots must rely on inefficient anaerobic fermentation for energy, 

a process which does not supply sufficient energy to preserve root health over the long 

term (Kozlowski, 1999).  Lack of cellular energy can lead to the breakdown of 

transmembrane electrochemical gradients and result in leakage of ions back into the soil 

(Kozlowski, 1999). 

 Populations of beneficial aerobic microbes decline in low-oxygen soils, while 

those of potentially-harmful anaerobic bacteria increase (Taiz and Zeiger, 2002).  

Anaerobic microbes reduce ions such as Fe3+ and SO4
2- into more toxic forms and can 

produce additional bacterial metabolites that are damaging at high concentrations (Taiz 

and Zeiger, 2002).   

 Root physiological process can also be impacted by changes in the water 

availability in compacted soils.  Compacted soils have an increased proportion of 

micropores to macropores.  As these soils dry, water recedes into the micropores, where 

it assumes a very small radius of curvature and large negative water potential (Taiz and 
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Zeiger, 2002).  This drastically lowers the water potential of the soil and makes root 

water uptake more difficult (Taiz and Zeiger, 2002).    

 When water is introduced to water-deficient compacted soils, they are susceptible 

to crusting or reduced water permeability (Craul, 1985; Horn et al., 1995), again leading 

to water stress in the tree.  Because root growth is often restricted in compacted soil, the 

soil volume from which the tree can extract water may also be reduced (Day and Bassuk, 

1994).   

 
Improving Soil Physical Properties 

 
 Because soil compaction is profoundly detrimental to root growth and function, 

many techniques have been proposed for alleviating it.  Most have met with only limited 

success.  Pittenger and Stamen (1990) found that several traditional compaction 

mediation techniques provided no benefit to landscape trees.  Methods evaluated included 

power auger holes to a depth of 45 cm, power auger holes backfilled with sand and bark, 

high-pressure water jet-prepared holes, and holes lined with perforated plastic pipe and 

backfilled with gravel.  These and similar aeration methods have been used for years with 

limited results.  The authors suggest that in sandy loam soils, soil moisture may influence 

tree performance more than soil aeration (Pittenger and Stamen, 1990). 

 Vertical mulching, which is usually conducted by drilling vertical channels 

throughout the root zone and backfilling with porous amendments, has been used for 

some time as a treatment option for compacted soils under established landscape trees.  

However, when perlite was used as a backfill, vertical mulching had no effect on tree 

health (Kalisz et al., 1994).  
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 Radial trenches originating near the trunk and extending outward towards the drip 

line were shown to be beneficial when filled with friable soil (Day and Bassuk, 1994).  

Proper mulching increased the vigor of landscape trees, but Fraedrich and Ham (1982) 

noted that natural incorporation of organic matter into the soil profile from mulch is a 

slow process.   

 A variety of pneumatic decompaction devices have been developed to physically 

break up compacted soils beneath landscape trees.  Such equipment is designed to 

fracture compacted soil layers by introducing pressurized air or nitrogen (Smiley et al., 

1990).  The resulting fractures are often filled by fertilizer, amendments and/or water. 

 In a test of several decompaction machines, none reduced bulk density near the 

soil surface, and increased aeration was only seen along the soil fracture plane (Smiley et 

al., 1990).  In a separate test, the Terralift soil aerator improved bulk density, porosity, 

saturated hydraulic conductivity and air permeability in a sandy loam but not a loam soil 

(Rolf, 1992).  When testing was conducted using an advanced version of a pneumatic 

decompaction machine, the TerraventTM, Smiley found no reduction in bulk density and 

concluded that any soil fracturing effect was likely temporary (2001).  A recent study 

concluded that this same device had no effect on fine root length, mass or diameter in 

moderately compacted clay loam soil (Hascher and Wells, 2007).  

 Root Invigoration™ uses the Air Spade® to treat a larger portion of root zone than 

previously-mentioned methods.  The Air Spade® is used to channel high-pressure air into 

the soil, loosening and tilling it in a manner akin to traditional mechanical tillage, but 

without causing significant damage to the root system.  The use of this process may 
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provide a larger area for root proliferation, leading to increased water and nutrient uptake 

from the soil.  Improved fine root density, soil bulk density, and above-ground growth are 

expected in trees receiving Air Spade® decompaction alone and as a component of the 

Root Invigoration™ process.   

 
Organic Matter 

 
 Native forest soils not only have relatively uncompacted soil, but also years of 

organic matter buildup incorporated into the upper soil horizons.  Root Invigoration™ is 

an attempt to recreate this type of soil in the urban environment, and organic matter 

addition is therefore a fundamental component of the Root Invigoration process. 

 Organic matter is the soil fraction composed of once-living material, including 

plant and animal remains and the cells and tissues of soil organisms (USDA, 1996).  

Although organic matter only accounts for 2-5% of the volume of most soils, it is 

extremely important because it stores and supplies nutrients through high cation and 

anion exchange capacities.  Organic matter also increases the ability of the soil to store 

air and water, makes the soil more stable and friable, and helps to maintain a lower bulk 

density (USDA, 1996).   

 In the urban landscape where aesthetics are a major concern, nutrient-rich organic 

matter such as leaf litter is often removed from the soil surface (Craul, 1985; Harris et al., 

2004).  This organic matter, if left to decompose, would have returned valuable resources 

to the soil.  Soil-inhabiting organisms use organic matter as an energy source and 

populations of these organisms can be reduced by low levels of organic matter (Craul, 

1985).   
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 Organic matter incorporation into backfill during transplanting has often been a 

recommendation within the green industry.  However, some organic amendments such as 

aged pine bark, Mr. Natural™ Concentrated Landscape Media (Mr. Natural, Dahlonega, 

GA), and Nature’s Helper (Smith Trucking Company, Cumming, GA), did not increase 

root growth at transplant in red maple (Smalley and Wood, 1995).  Although transplanted 

trees did not respond to organic matter amendment of the backfill, it is possible that 

established landscape trees might.  The organic additions should benefit these established 

trees more because the roots of these trees often exist in compacted, nutrient-poor soils 

instead of the more favorable environment of the loosened backfill.   

 A study was conducted to measure the impact of soil replacement in the root zone 

of established white oaks (Quercus alba).  One year after treatment, root density was 

increased 2.3 times in replacement soils that contained 50% hardwood leaf compost and 

50% native soil (Watson et al., 1996).  After four years, root density in 100% compost 

replacement soil was 3.2 times higher than that in control soil.  After fourteen years, 

increases in root density remained limited to the trenches and had not changed in adjacent 

soils (Watson, 2002).  

 Rooting depth of Tilia spp. and Platanus x acerifolia was increased by replacing 

native soils with a custom mix of sand, composted organic matter and fertilizer using a 

process known as RADOSAN to hydraulically remove soil from root in holes or pits 

(Watson et al., 1996).  Trees that were previously experiencing decline showed an 

increase in root and top growth after treatment.  The principle of this process is very 

similar to that of Root Invigoration™. 
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 One of the most common forms of organic matter in the landscape is mulch.  

Mulch suppresses weeds, conserves soil moisture, moderates soil temperatures, increases 

water infiltration, reduces compaction, and improves soil structure and nutrient status 

over time by increasing organic matter content (Greenly and Rakow, 1995; Watson et al., 

1996).  Even mineral mulches, such as lava rock and pea gravel, increased soil moisture 

and decreased soil temperature when compared to bare soil (Iles and Dosmann, 1999).  

Spring soil temperatures are highest on non-mulched trees, causing earlier bud break and 

leaf expansion than on organic mulched trees (Litzow and Pellett, 1983).   

 Many studies have shown improvements in tree health due to mulching.  Proper 

mulch application significantly improved above ground growth of pin oak (Quercus 

palustris) and white pine (Pinus strobus) (Greenly and Rakow, 1995).  In coarse and fine 

textured soils, red, sugar (Acer saccharum) and silver maples (A. saccharinum) had 

greater shoot growth when mulched (Fraedrich and Ham, 1982).  In sandy soils, 

mulching also improved height and diameter of silver maples.  This is likely due to the 

conservation of soil moisture, since sandy soils retain less moisture than clay soils 

(Fraedrich and Ham, 1982).  The conservation of soil moisture by mulching also can 

reduce physical resistance of the soils (Fraedrich and Ham, 1982). 

 In the same study, root weights from samples near the outer mulched areas were 

significantly higher than outside the mulch (Fraedrich and Ham, 1982).  Root densities 

for red maple were significantly higher in the mulch itself and upper mulched soil depths 

than in unmulched soil (Watson, 1988).  Fine root density of white oak was also 

increased after turf removal and mulching (Himelick and Watson, 1990).   
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 Organic matter amendment and mulching are components of Root Invigoration™.  

In the current project, we will quantify the benefits of mulching alone and as a 

component of the Root Invigoration™ process.  We expect increases in fine root density 

and decreases in soil resistance with the addition of organic matter and mulch. 

 
Assessing Root Response 

 
 We expect treatments to have a profound effect on soil and root properties, but 

accurately measuring root system responses can be challenging.  Spatial heterogeneity in 

soil parameters is high, and site impacts from frequent sampling can be significant.  We 

will, therefore, use minirhizotrons (root observation tubes) to more accurately evaluate 

root activity with minimal disturbance.   

 Minirhizotrons are plastic tubes installed in the ground which allow specially-

designed camera systems to capture images of fine roots that have grown against their 

outer surface (Johnson et al., 2001).  They allow researchers to view root activity with 

minimal disturbance and to accurately quantify root numbers, length and production 

(Johnson et al., 2001).   

 Minirhizotrons are particularly useful for observing root production, lifespan, and 

mortality, which cannot be determined from traditional sampling methods (Hendrick and 

Pregitzer, 1992).  Fine root production, growth, and turnover can be determined if 

sampling frequency is short enough to provide accurate data (Hendrick and Pregitzer, 

1992; Johnson et al., 2001).  Root lifespan can also be estimated from minirhizotron 

images, although physical separation of live and dead roots based on staining or 

brittleness is not possible.   
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 In the current study, we will install minirhizotrons at one site to provide more 

thorough insight into treatment effects on fine root production, growth and lifespan.  

Frequent minirhizotron imaging will allow for reliable assessment of root system 

dynamics.  If the soil environment is favorable, the root system is expected to produce 

young, efficient roots to harvest water and mineral nutrients from the soil (Eissenstat and 

Yanai, 1997).  As depletion zones develop around these active roots, they will turn over 

rapidly and be replaced by new roots in less depleted zones.  Biweekly documentation of 

root dynamics will confirm or refute these hypotheses.   

 
Experimental Overview 

 
 Our experiment will take place at four research sites:  Anderson, SC; Myrtle 

Beach, SC; Boston, MA and Pittsburgh, PA.  Five treatments (Root Invigoration™, Air 

Spade® tillage, Mulch, Fertilizer and control) will be applied to ten replicate trees at each 

site, for a total of 200 experimental units.  Site pre-treatment data are presented in Tables 

1.2, 1.3 and 1.4.   

 Minirhizotron images will be collected bi-weekly at the Anderson, SC, site 

throughout the growing season to assess root system dynamics in response to treatments.  

Pre-dawn water potential and chlorophyll fluorescence will also be measured bi-weekly 

basis the Anderson, SC, site.  Phenology, soil temperature and soil water content will be 

continuously monitored.  The full measurement schedule for all sites is given in Table 

1.5.     
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Table 1.2.  Chemical properties of pre-treatment soil collected from each research site.  
Within a row, means (+/- 1 standard error) depicted with different letters are significantly 
different using Fisher’s LSD procedure (α = 0.05).  
 

Parameter Anderson1 Boston2 Myrtle Beach Pittsburgh 
ENR3 (kg/ha) 85.5 ± 14.6 114 54.7 ± 9.5 74.4 ± 2.4 
Soil P (ppm) 12.3 ± 2.6c 288a 38.3 ± 3.0c 115.3 ± 20.2b 
Soil K (ppm) 138.7 ± 14.4b 87c 43.5 ± 7.4d 276.7 ± 5.2a 
Soil Mg (ppm) 112.7 ± 23b 99b 64.3 ± 8.7b 452.7 ± 27.9a 
Soil Ca (ppm) 942.3 ± 274.3b 977b 3648.5 ± 967.8ab 5133.3 ± 768.4a 
Soil Na (ppm) 13.6 ± 0.3c 39b 30.3 ± 7.0ab 85.3 ± 3.3a 
Sol. Salt (ppm) 0.3 ± 0 0.3 0.3 ± 0 0.2 ± 0.03 
Soil Fe (ppm) 51.7 ± 3.7c 295b 134.5 ± 24c 478.7 ± 31.9a 
Soil Mn (ppm) 104.3 ± 39.8b 24b 7.8 ± 1.4b 312 ± 21.2a 
Soil Cu (ppm) 1.6 ± 0.3c 9.6a 0.6 ± 0.1c 4.0 ± 0.5b 
Soil Zn (ppm) 2.7 ± 1.2b 14.4a 2.5 ± 0.5b 5.2 ± 0.5b 
Soil OM (%) 2.8 ± 0.9 4.6 1.6 ± 0.4 2.0 ± 0.1 
Soil CEC (meq/100g) 7.7 ± 1.1 9.6 19.0 ± 5.0 17.2 ± 1.8 
Soil pH 5.7 ± 0.4 5.5 7.9 ± 0.1 6.8 ± 0.07 
1Chemical properties based on:  Anderson n=3; Boston n=1; Myrtle Beach n=4; 
Pittsburgh n=3. Bulk density based on: n=50 at all sites. 
2Post hoc analysis cannot be performed because n=1  
3Estimated Nitrogen Release based on soil organic matter 
 
 
 
Table 1.3.  Pre-treatment properties of red maple at four locations.  Within a row, means 
(+/- 1 standard error) depicted with different letters are significantly different using 
Fisher’s LSD procedure (α = 0.05). 
 

 
Parameter 

 
N 

 
Anderson 

 
Boston 

Myrtle 
Beach 

 
Pittsburgh1 

overall 
p-value 

Foliar N (%) 50 1.55 ± 0.03b 1.84 ± 0.03a 1.49 ± .04b  .000 
Foliar P (%) 50 0.09 ± 0.00c 0.31 ± 0.01a 0.23 ± 0.01b  .000 
Foliar K (%) 50 0.63 ± 0.03c 0.92 ± 0.03a 0.74 ± .03b  .000 
Foliar Ca (%) 50 0.75 ± 0.02b 0.72 ± 0.02b 1.61 ± .07a  .000 
Foliar Mg (%) 50 0.18 ± 0.01b 0.24 ± 0.01a 0.26 ± .01a  .000 
Foliar Zn (ppm) 50 24.34 ± 0.93b 28.74 ± 0.75b 42.5 ± 2.68a  .000 
Foliar Cu (ppm) 50 8.98 ± 0.95 9.52 ± 0.30 9.36 ± 0.69  .856 
Foliar Mn (ppm) 50 329.3 ± 30.27a 143.76 ± 8.59b 97.6 ± 16.04b  .000 
Foliar Fe (ppm) 50 106.12 ± 3.97c 131.74 ± 4.33b 159.2 ± 7.83a  .000 
Foliar S (%) 50 0.12 ± 0.00c 0.13 ± 0.00b 0.14 ± 0.00a  .000 
Foliar Na (ppm) 50 20.32 ± 0.57b 29.22 ± 1.59b 217.1 ± 28.7a  .000 
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Table 1.3.  Pre-treatment properties of red maple at four locations.  Within a row, means 
(+/- 1 standard error) depicted with different letters are significantly different using 
Fisher’s LSD procedure (α = 0.05) (continued). 
 

 
Parameter 

 
N 

 
Anderson 

 
Boston 

Myrtle 
Beach 

 
Pittsburgh1 

overall 
p-value 

SPAD2 50 37.1 ± 0.38a 37.9 ± 0.37a 29.4 ± 0.92b  000 
DBH (cm)3 50 11.8 ± 0.36b 12.7 ± 0.20b 6.17 ± 0.25c 15.9 ± 0.99a .000 
Condition4 50 7.04 ± 0.21a 4.08 ± 0.07c 4.94 ± 0.27b  .000 
1Foliage was not present at time of treatment application 
2 Mean foliar chlorophyll content measured with Minolta SPAD-502 (Minolta Inc, Japan) 
3Stem diameter in inches measured with a diameter tape at approximately 4.5 feet from 
ground height 
4Visual analysis based on a 1-10 scale assessing foliage color, crown density, dieback and 
vigor 
 
 
 
Table 1.4.  Physical properties of pre-treatment soil collected from each research site.  
Within a row, means (+/- 1 standard error) depicted with different letters are significantly 
different using Fisher’s LSD procedure (α = 0.05). 
 

 
Parameter 

 
N 

 
Anderson 

 
Boston 

Myrtle 
Beach 

 
Pittsburgh1 

overall 
p-value 

RLD1 50 6.94 ± 0.57b 10.87 ± 0.63a 3.14 ± 0.29c 6.64 ± 0.60b .000 
RMD2 50 0.005 ± 0.0005a 0.002 ± 0.0001c 0.0033 ± 

0.0005bc 
.0036 ± .0004ab .003 

Root diameter 50 0.66 ± 0.17a 0.64 ± 0.01a 0.63 ± 0.13a 0.49 ± 0.02b .000 
Bulk Density 50 1.41 ± 0.02b 1.14 ± 0.04d 1.74 ± 0.04a 1.25 ± 0.03c .000 
1Root length density (cm/cc) 
2Root mass density (g/cc) 
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Table 1.5.  Site measurement schedule. 
 

Measurement # per tree Boston Pittsburgh Myrtle Beach Anderson 
DBH 1 F1 F F F 
Internode Elongation 3 F F F F 
Foliar nutrients 1 S,F S,F S,F S,F 
SPAD      
Soil nutrients 2 S S S S 
RLD and mycorrhizae 2 S,F S,F S,F S,F 
Visual rating 1 S,F S,F S,F S,F 
Bulk Density/Soil Strength 1 S S S S 
Minirhizotron sampling 1    bi-weekly 
Pre-dawn water potential 3    bi-weekly 
Chlorophyll fluorescence 3    bi-weekly 
Soil temperature     continuous 
Soil water content     continuous 
Phenology notes     bi-weekly 
1 F=Fall, S=Spring 
 
 
 This study will provide insight into the response of red maple to the Root 

Invigoration™ process and its individual components.  The results may encourage the 

arboriculture industry to promote complex soil remediation programs, or, alternately, it 

may suggest that less invasive and more affordable treatments provide adequate results.   
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CHAPTER II 
 

MATERIALS AND METHODS 
 
 

Boston, MA 
 

Site characterization and background data 
 
 The experiment was performed in a common area surrounding the library of 

Stonehill College in Easton, Massachusetts.  The site had been a parking lot and was 

subsequently developed as green space after the construction of the library.  As a result, 

the soils at the site were disturbed and shallow with a significant gravel component.  The 

site was planted with red maple (Acer rubrum) approximately six years ago, and the trees 

had not received fertilizer or pesticide applications since that time.   

 In August 2005, fifty red maples surrounding the library and were visually rated 

by trained arborists on a scale of 0-10, with 0 indicating that the tree was dead and 10 

indicating that it possessed a dense, dark green and vigorous canopy.  Location data for 

each tree were collected using a Trimble ProXR GPS receiver with the TSC1 data 

collector (Trimble Navigation Limited, Sunnyvale, CA).   

 In August 2005, stem diameters at 1.4 meters (4.5 ft.) above ground level (dbh) 

were measured.  Mean foliar chlorophyll content was estimated by averaging SPAD 

meter readings from three randomly-selected leaves per tree (Minolta SPAD-502, 

Minolta Inc, Japan).  Foliar nutrient content was assessed by collecting approximately 

100 g (3.5 oz.) of mature leaves from each tree and submitting these samples to the 

Clemson University Agricultural Services Laboratory for analysis 

(http://www.clemson.edu/agsrvlb/).   
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 Soil bulk density and root length density were assessed by collecting two soil 

cores from beneath each tree approximately 0.75 m (2.5 ft.) from the trunk.  The cores 

collected for bulk density were trimmed to 7.6 cm (3 in.); those for root density were 

trimmed to 15.2 cm (6 in.).  Turf, leaf litter and organic matter layers were removed from 

the top the cores.  Both were stored in wax-lined paper bags to prevent moisture loss.  

Soil samples were stored at 5°C (41°F) for less than one week before processing.    

 Bulk density samples were transferred to aluminum trays and dried for seven days 

at 65°C (149°F) to remove all moisture.  Samples were then weighed to calculate the bulk 

density (g/cc) of the soil.   

 Root length density samples were washed through a 1 mm sieve to remove soil 

and retain fine roots.  Root samples were further screened by hand to remove additional 

soil and organic matter and were stored in 50% ethanol at 5°C prior to length 

measurement.  The total root length of each root sample was measured with the 

WinRhizo system (Regent Systems, Quebec, Canada) and used to calculate root length 

density (cm root/cm3 soil), root mass density (g/cm3) and average root diameter (mm). 

 
Treatment Application 
 
 Each of 50 trees was randomly assigned to one of five experimental treatments 

prior to treatment application on August 19, 2005.  Treatments included Air Spade® 

tillage (AS), Mulch (M), Fertilization (F), Root Invigoration™ (AFM) and Control (C).  

The soil surrounding all trees was treated with Roundup Pro herbicide (15.5 ml per 1 L) 

(Monsanto Company, St. Louis, MO) in a 1.5 m (5 ft.) diameter ring from the trunk 14 
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days prior to treatment application to eliminate dense turf.  Vegetation control was 

maintained with Roundup Pro throughout the experiment.   

 Trees receiving the AS treatment underwent turf removal of the upper 2.5-5.0 cm 

(1-2 in.) of thatch and turf using a Ryan Jr. sod cutter (Jacobson, A Textron Company, 

Charlotte, NC) followed by soil tillage in a 1.5 m (5 ft.) radius around the trunk.  Soil was 

tilled to a depth of 15-20 cm (6-8 in.) using the Air Spade® series 2000 (Concept 

Engineering Group, Verona, PA).   

 Trees receiving the M treatment were mulched to a depth of 5-7.5 cm (2-3 in.) in 

a 1.5 m radius around the trunk using 0.45 m3 (16 ft.3) of bagged shredded hardwood 

mulch.  Trees receiving the F treatment received a surface application of 1.3 kg (2.8 lbs.) 

of pelletized dolomitic limestone, 680 g (1.5 lbs.) Bartlett Boost Granular 24-7-7 (also 

includes micronutrients S, Ca, Fe, Cu and Zn) fertilizer and 2.67 oz (0.33 cup) 

manganese chelate per tree in a 1.5 m radius around the trunk.  These applications were 

based on the analysis of a composite soil sample taken in August 2005. 

 Trees receiving the AFM treatment received turf removal and Air Spade® tillage 

as described previously.  The tilled area was then amended with 0.28 m3 (10 ft.3) of 

composted cow manure, 1.3 kg (2.8 lbs.) of pelletized dolomitic limestone, 680 g (1.5 

lbs.) Bartlett Boost® Granular and 2.67 oz (.33 cup) manganese chelate per tree in a 1.5 m 

radius around the trunk.  All of these amendments were homogenized into the loosened 

native soil with the Air Spade®, and the treated area was mulched to a depth of 5-7.5 cm 

using 0.45 m3 of shredded bark.   
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 Control trees received no soil treatments other than herbicide.  All trees received 

approximately 30 L (8 gal.) of water immediately following treatment application and 

again on 8/27/05 and 9/14/05.    

 
Anderson, SC 

 
Site characterization and background data 
 
 The second experimental site was located at the Anderson Sports and 

Entertainment Center (ASEC) in Anderson, SC.  The ASEC is a public park, sports field 

and civic center complex that is highly trafficked by area residents; the local government 

has attempted to establish red maples in these areas.  Due to the proximity to Clemson 

University, this site was subjected to a more intense data collection regime than other 

sites.  Several groups of trees in the ASEC were selected for use in this study.  The first 

group included 30 red maples located along the sidewalks leading to the civic center with 

an average dbh of 12.7 cm (5 in.).  At the time of treatment application, these trees 

exhibited poor growth and thin, chlorotic canopies.  The second group included five 

recently-planted red maples with thin, chlorotic canopies, a moderate amount of limb 

dieback and an average dbh of 7.6 cm (3 in.).  The third group of trees included 15 red 

maples planted along a parking lot and sidewalk near the sports fields with an average 

dbh of 10.2 cm (4 in.).  The trees within this group had much healthier canopies than 

those in the other two groups, with very little chlorosis or canopy dieback.  All three 

groups were growing in heavily compacted clay.   

 In September 2005, baseline data for mean foliar chlorophyll content, foliar 

nutrient content, dbh, soil nutrient content and visual health rating were collected as 
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described for the Boston site.  Soil bulk density and root length density were measured at 

the time of treatment application in November 2005 and analyzed as previously 

described.   

 
Treatment Application 
 
 Treatments were assigned in a randomized complete block design consisting of 10 

replicate blocks with each treatment randomly assigned to one tree per block.  Blocks 

were established based on tree group and visual ratings within groups.  Turf surrounding 

experimental trees was killed with herbicide approximately two months prior to treatment 

application as previously described.  This, coupled with sparse turf coverage near the 

trees, obviated the need for removal with a sod cutter.   

 Because of long-term seasonal drought, application of water was required to 

prepare the soil for air-spade treatments.  All trees received 106 L (28 gals.) of water.  

Trees receiving AS and AFM treatments received half of the water injected 15 cm 

beneath the soil surface prior to treatment application and half as a drench following 

treatment application.  All other treatments received the entire volume injected below the 

soil surface.   

 Treatments were applied as described for the Boston site, with the exception that 

fertilizer rates and materials reflected the results of soil analyses performed at this site.  

Trees receiving AFM and F treatments in-group one were amended with 375 g (0.75 lb.) 

Bartlett Boost® Granular, 565 g (1.18 lbs.) granular Sulfur and 265 g (0.55 lb.) 

Magnesium Sulfate per tree.  Trees receiving AFM and F treatments in groups two and 

three were amended with 470 g (1 lb.) Bartlett Boost® Granular and 1.4 Kg (2.9 lbs.) 
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pelletized dolomitic lime per tree.  Additional supplemental irrigation was not necessary, 

as trees were dormant and frequent rainfall ensued.   

 In November 2005, one clear butyrate observation tube (minirhizotron) was 

installed beneath each tree at an angle of 30° from the vertical.   The tubes were placed 

approximately 0.75 m from the trunk.  They were 77 cm (30 in.) in length and 5.5 cm 

(2.2 in.) in outer diameter.   Bottoms of the tubes were sealed with acrylic plugs.   Light 

penetration and radiant heating were prevented by wrapping the tops of the tubes in black 

electrical tape, sealing them with rubber stoppers and covering them with tan aluminum 

cans.  

 
Root Imaging and Processing 
 
 Roots that grew against the surface of the minirhizotron tubes were videotaped at 

approximately two-week intervals during the 2006 and 2007 growing seasons using a 

miniaturized camera system and portable laptop computer (BTC 2 and BTC I-CAP, Bartz 

Technology, Santa Barbara, CA).   Image capture was reduced to monthly intervals 

during the winter, as prior observations indicated that there was little root activity during 

that time.   Imaged frames were archived using ICAP software (Bartz Technology, Santa 

Barbara, CA).   Images of individual roots as they appeared on successive dates were 

reviewed and information on root lifespan and life history was collected.   Images were 

analyzed using software developed by Clemson University to quantify root attributes 

such as root length, diameter, color, and birth and death rates 

(http://www.ces.clemson.edu/~stb/rootfly).   
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Additional Parameters 
 
 The effects of these treatments on plant water status was quantified bi-weekly 

during the 2006 and 2007 growing seasons by measuring predawn leaf water potential 

with a 3005-series portable plant water status console (Soilmoisture Equipment Corp., 

Santa Barbara, CA).  Soil moisture levels were measured weekly using the TRASE Time 

Domain Reflectometry system I (Soilmoisture Equipment Corp., Santa Barbara, CA).  

Chlorophyll fluorescence measurements were performed during both growing seasons 

using the Handy PEA Portable Fluorescence Measurement System (Hansatech 

Instruments, Norfolk, England).   

 
Myrtle Beach, SC 

 
Site Characterization and Background Data 
 
 The third site was located in Myrtle Beach, SC, where a planting of red maples 

lines the Robert M. Grissom Parkway.  These trees have an average dbh of 6.1 cm (2.4 

in.) and were planted by the city of Myrtle Beach at different times as funding allowed.  

They received no fertilizer or pesticide applications after planting.  Soils at the site are 

sandy, and trees receive periodic irrigation from an automated overhead system.  Prior to 

our experiment, most trees had a light infestation of gloomy scale (Melanaspis 

tenebricosa), and 2% horticultural oil (Lesco Horticultural Oil, Lesco, Inc., Cleveland, 

OH) was applied in November 2005 to suppress this population.   

 In October 2005, baseline data for mean foliar chlorophyll content, foliar nutrient 

content, dbh, soil nutrient content and visual health rating were collected as described 
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previously.  Soil bulk density and root length density samples were collected at the time 

of treatment application in November 2005 and analyzed as previously described. 

 
Treatment Application 
 
 Treatments were assigned in a randomized complete block design consisting of 10 

replicate blocks with each treatment randomly assigned to one tree per block.  Blocks 

were established based on tree group and visual ratings within groups.  The treated radius 

of these trees was generally free of turf and vegetation, so herbicide and/or turf removal 

was necessary on only one tree.  For this tree, turf was removed with hand tools.   

 The fertilizer rates and materials were based on soil samples collected and 

analyzed in October 2005.  Those trees receiving AFM and F treatments were supplied 

with 565 g (1.2 lbs.) Bartlett Boost® Granular, 1.3 Kg (2.8 lbs.) granular sulfur, 455 g (1 

lb.) magnesium sulfate and 300 ml (1.25 cups) manganese chelate.  All other aspects of 

treatment application were identical to previous sites.   

 
Pittsburgh, PA 

 
Site characterization and background data 
 
 The final site was located in suburban Pittsburgh, PA at The Club at Nevillewood 

golf course.  Here, red maples with an average dbh of 15.7 cm (6.2 in.) were planted 

along fairways and in areas of rough at various stages of course development.  Many 

trees had been subjected to mechanical wounding during planting or by maintenance 

equipment.  Most trees had vegetation-free rings (40-50 cm in diameter) surrounding the 

trunk but were otherwise surrounded by turf.  Trees received supplemental irrigation 
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through the golf course overhead irrigation system.  No fertilizer or pesticide products 

had been directly applied to the trees, although they had received products applied to the 

turf as a byproduct of their location.   

 In January 2006, baseline data on soil nutrient content, dbh, soil bulk density and 

root length density were collected as previously described.  Foliar chlorophyll content, 

foliar nutrient content, and visual health ratings were not collected because the trees were 

dormant.   

 
Treatment Application 
 
 Treatments were assigned in a randomized complete block design consisting of 10 

replicated blocks with each treatment randomly assigned to one tree per block.  Blocks 

were established based on tree location and size.  Treatments were applied in February 

2006.  The treatment radius for trees receiving F, M and C treatments was treated with 

Roundup Pro herbicide (59 ml per 3.8 L) to eliminate turf competition.  Manual removal 

of competing turf within the treated radius was required and performed with hand tools 

for trees receiving AS and AFM treatments because there was not sufficient time for turf 

mortality following a herbicide treatment.  No irrigation was necessary prior to treatment, 

as the soil was near field-capacity.  Two inches of snow fell on the day following 

treatment application, obviating the need for post-treatment irrigation. 

 The fertilizer rates and materials were applied based on soil samples collected and 

analyzed in January 2006.  Trees receiving AFM and F treatments were supplied with 

262 g (0.5 lb.) Bartlett Boost® Granular, 3.5 Kg (7.8 lbs.) pelletized gypsum, 1.1 Kg (2.4 

lbs.) granular sulfur and manganese, and 169 g (0.35 lb.) magnesium\sulfate.  Trees 
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receiving M and AFM treatments were mulched with 18 cu. ft. of mulch.  All other 

aspects of treatment application were identical to previous sites.   

 Subsequent data collection visits were made to each site according to the schedule 

in Table 1.5.  Samples were collected and processed according to the procedures outlined 

previously.  Bulk density measurements were replaced by soil strength measurements due 

to difficulty of collecting accurate post-treatment soil volumes in the decompacted soils.  

Soil strength values were obtained using a Clegg Impact Hammer (Dr Baden Clegg Pty 

Ltd., Western Australia); three readings per tree were averaged to obtain the Clegg 

Impact Values for each tree.   
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CHAPTER III 
 

SOIL RESPONSE 
 
 

Abstract 
 
 The Root Invigoration™ (AFM) process involves soil decompaction with an air 

tool, amendment with organic matter and prescription fertilizer, and mulching.  The 

treatment is intended to provide a soil environment more conducive to fine root function.  

In the current study, we measured changes in soil chemistry and physical properties in 

response to RI and its individual components.  The treatments were:  1) Root 

Invigoration™, 2) mulch only, 3) fertilization only, 4) Airspade® tillage only, and 5) an 

untreated control.  The experiment was conducted from 2005-2007 at urban sites in 

Anderson, SC; Boston, MA; Myrtle Beach, SC and Pittsburgh, PA.  Soil strength was 

initially reduced by Airspade®, mulch and AFM; however only AFM-treated soils 

sustained this reduction over two seasons.  Across all locations, soil organic matter 

content was increased with AFM and mulching.  The levels of six soil nutrients were 

increased by Root Invigoration™, while one nutrient was increased by an individual 

treatment.   

 
Introduction 

 
 The urban environment is often stressful to trees, and research suggests that much 

of this stress is caused by soil factors.  Soil characteristics such as low porosity, poor 

aeration, and increased moisture fluctuations can lead to poor tree development (Watson 

et al., 1996).  Urban soils have frequently been disturbed through the processes of 
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mixing, filling and contamination (Craul, 1985).  They tend to be highly compacted, with 

bulk densities higher than those of similar soils in nearby forested areas (Close et al., 

1996a).  While forest soils have a well-developed humus layer, urban soils typically lack 

an upper organic horizon (Fraedrich and Ham, 1982).  Compaction increases soil 

resistance to root penetration and limits root system development in urban soils (Alberty 

et al., 1984).   

 It is challenging to improve soil physical properties within the root zone of 

established trees because traditional soil decompaction methods such as mechanical 

tillage can cause additional root system damage (Watson et al., 1996).  Homeowners, 

municipalities and tree care companies would all benefit from successful strategies for 

improving conditions for root growth in urban soils.  Unfortunately, few effective 

treatment options exist.  Upon reviewing traditionally accepted practices in the tree care 

industry, Day and Bassuk (1994) concluded that arboricultural techniques that reduce 

compaction merit further exploration.   

 A variety of pneumatic decompaction devices have been developed to physically 

break up compacted soils beneath landscape trees.  Such equipment is designed to 

fracture compacted soil layers by introducing pressurized air or nitrogen (Smiley et al., 

1990).  The resulting fractures are often filled by fertilizer, amendments and/or water.  

Soil physical properties have not been consistently improved by the use of pneumatic 

injection devices (Hascher and Wells, 2007; Rolf, 1992; Smiley, 2001; Smiley et al., 

1990).   
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 The Root Invigoration™ process, developed and patented by the F.A. Bartlett 

Tree Expert Co., is designed to decompact and aerate the soil with minimal root 

disturbance while simultaneously incorporating organic matter and fertilizer into the root 

zone.  Here we report changes in soil chemical and physical properties associated with 

the Root Invigoration™ process and its individual components beneath red maples (Acer 

rubrum) at four urban locations.   

 
Materials and Methods 

 
Site Characterization 
 
 The study was conducted on 200 red maple trees at four urban locations: 

Anderson, SC (city park and recreation facility); Myrtle Beach, SC (street tree plantings); 

Boston, MA (college campus) and Pittsburgh, PA (golf course).  Soil textures ranged 

from sandy clay in Anderson to sand in Myrtle Beach (Table 3.1).  Bulk densities ranged 

from 1.14 ± 0.04 g/cc in Boston to 1.74 ± 0.04 g/cc in Myrtle Beach.  None of the sites 

were compacted beyond the growth-limiting bulk density for their respective texture 

(Daddow and Warrington, 1983).  However, these growth-limiting bulk densities must be 

observed with caution as soil moisture and species responses may differ and limit the 

application of these thresholds (Daddow and Warrington, 1983).   

 
Pretreatment Soil Data 
 
 Prior to treatment application, composite soil samples were collected from the 

upper 15 cm (6 in.) of soil beneath 6-8 trees at each site and analyzed by A&L Analytical 

Laboratory (Memphis, TN) to determine soil pH, CEC, organic matter content, and  
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Table 3.1.  Pre-treatment soil classifications.  Multiple samples within sites revealed 
identical textures and were averaged for the table.  Anderson was the exception and those 
values are displayed separately.  n=3 for Anderson, n=2 for Pittsburgh, n=3 for Myrtle 
Beach and n=3 for Boston.  Dominant NRCS classifications are displayed. 
 

 
Sample 

% 
sand 

% 
silt 

% 
clay 

 
Texture 

 
NRCS soil name 

Anderson (group 1) 60 22 18 Sandy Loam Hiwassee sandy loam 
Anderson (group 2) 46 18 36 Sandy Clay Hiwassee sandy loam 
Anderson (group 3) 58 18 24 Sandy Clay Loam Hiwassee sandy loam 
Myrtle Beach 93 3 4 Sand Brookman loam & 

Meggett loam 
Pittsburgh 32.9 44.7 22.4 Loam Dormont silt loam 
Boston 70.8 22.6 6.7 Sandy Loam Walpole fine sandy 

loam & Hinckley 
sandy loam 

 
 
mineral nutrient concentrations (Table 3.2).  Nutrient data from these samples were 

further analyzed with the Bartlett Tree Research Laboratories soil recommendations 

program to create a prescription fertilizer program to comply with ANSI A300 standards 

and adjust pH within the 5.0-6.0 range (Table 3.3).  In general, the Pittsburgh soil had 

higher nutrient levels compared to the other sites. 

 
Experimental Design and Treatment Application 
 
 Five treatments, mulch (M), fertilizer (F), Airspade® tillage (A), Root 

Invigoration™ (AFM) and control (C), were applied to ten replicate trees at each site, for 

a total of 50 experimental units per site.  In Boston, a completely randomized design was 

used.  A randomized complete block design was used at the Anderson, Myrtle Beach and 

Pittsburgh sites to account for site variability.  The treatments were applied in August 

2005 in Boston, November 2005 in Anderson, November 2005 in Myrtle Beach and 

February 2006 in Pittsburgh.   
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Table 3.2.  Chemical and physical properties of pre-treatment soil collected from each 
research site.  Within-site means are followed by ± 1 standard error.   
 

Parameter Anderson1 Boston2 Myrtle Beach Pittsburgh 
ENR3 (kg/ha) 85.5 ± 14.6 114 54.7 ± 9.5 74.4 ± 2.4 
Soil P (ppm) 12.3 ± 2.6c 288a 38.3 ± 3.0c 115.3 ± 20.2b 
Soil K (ppm) 138.7 ± 14.4b 87c 43.5 ± 7.4d 276.7 ± 5.2a 
Soil Mg (ppm)  112.7 ± 23b 99b 64.3 ± 8.7b 452.7 ± 27.9a 
Soil Ca (ppm) 942.3 ± 274.3b 977b 3648.5 ± 967.8ab 5133.3 ± 768.4a 
Soil Na (ppm) 13.6 ± 0.3c 39b 30.3 ± 7.0ab 85.3 ± 3.3a 
Sol. Salt (ppm) 0.3 ± 0 0.3 0.3 ± 0  0.2 ± 0.03 
Soil Fe (ppm) 51.7 ± 3.7c 295b 134.5 ± 24c 478.7 ± 31.9a 
Soil Mn (ppm) 104.3 ± 39.8b 24b 7.8 ± 1.4b 312 ± 21.2a 
Soil Cu (ppm) 1.6 ± 0.3c 9.6a 0.6 ± 0.1c 4.0 ± 0.5b 
Soil Zn (ppm) 2.7 ± 1.2b 14.4a 2.5 ± 0.5b 5.2 ± 0.5b 
Soil OM (%) 2.8 ± 0.9 4.6 1.6 ± 0.4 2.0 ± 0.1 
Soil CEC (meq/100g) 7.7 ± 1.1 9.6 19.0 ± 5.0 17.2 ± 1.8 
Soil pH 5.7 ± 0.4 5.5 7.9 ± 0.1 6.8 ± 0.07 
Bulk Density (g/cc) 1.41 ± 0.02b 1.14 ± 0.04d 1.74 ± 0.04a 1.25 ± 0.03c 
1Chemical properties based on: Anderson n=3; Boston n=1; Myrtle Beach n=4; 
Pittsburgh n=3. Bulk density based on: n=50 at all sites. 
2Post hoc analysis cannot be performed because n=1  
3Estimated Nitrogen Release based on soil organic matter 
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 The area surrounding all trees was treated with Roundup Pro herbicide (Monsanto 

Company, St. Louis, MO) in a 1.5 m (5 ft.) diameter ring from the trunk at least 14 days 

prior to treatment application to eliminate competing vegetation, and weed control was 

maintained throughout the experiment with Roundup applications.   

 In Boston, it was necessary to remove the turf using a Ryan Jr. sod cutter 

(Jacobson, A Textron Company, Charlotte, NC) for trees receiving the A and AFM 

treatments due to the extensive root system of the turf that remained after herbicide 

application.  Some tree fine roots were likely damaged during this process.   

 Soils receiving the M treatment were mulched to a depth of 5-7.5 cm (2-3 in.) in a 

1.5 m (5 ft.) radius around the trunk using 0.45 m3 (16 ft.3) of bagged, shredded 

hardwood mulch.  Soils receiving the F treatment were fertilized with the prescribed 

materials (Table 3.3) applied to the soil surface as a granular product or drench within the 

1.5 m (5 ft.) radius.  Soils receiving the A treatment were air-tilled to a depth of 15-20 cm 

(6-8 in.) using the Air Spade® series 2000 (Concept Engineering Group, Verona, PA) in a 

1.5 m (5 ft.) radius around the trunk.  Controls received no amendment or tillage 

treatment, but were maintained with a 1.5 m (5 ft.) radius vegetation-free zone. 

 The AFM treatment began with Airspade® tillage as described above.  Soils were 

then amended with 0.28 m3 (10 ft.3) of bagged, composted cow manure and prescription 

fertilizer as in F treatment.  Amendments were applied to the 1.5 m (5 ft.) radius and 

incorporated into the loosened soil profile with the Airspade®.  Finally, amended soil 

received a mulch layer as described for the M treatment.   
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 Immediately after treatment application, 30L (8 gal.) of irrigation was applied to 

the 1.5 m (5 ft.) treatment radius of all trees at the Boston and Myrtle Beach sites.  The 

Boston site received identical irrigation applications at one and three weeks post-

treatment due to dry conditions.  Because of long-term seasonal drought in Anderson, 

water applications were required to prepare the soil for air-spade treatments.  At this site, 

all soils received 106 L (28 gals.) of water injected approximately 15 cm (6 in.) beneath 

the soil surface.  Trees receiving AS and RI treatments were given split applications with 

half of the water injected beneath the soil surface prior to treatment application and half 

as a drench following treatment application.  In Pittsburgh, two inches of snow fell on the 

day following treatment application, obviating the need for post-treatment irrigation. 

 
Sample Collection and Processing 
 
 Soil bulk density was measured by collecting a soil core 5.77 cm (2.3 in.) in 

diameter from beneath each tree approximately 0.75 m (2.5 ft.) from the trunk.  These 

cores were trimmed to 7.6 cm (3 in.) in length, and turf, leaf litter and organic matter 

layers were removed from the tops.  They were stored at 5°C (41°F) in wax-lined paper 

bags for less than one week before processing.  Cores were transferred to aluminum trays 

and dried for seven days at 65°C (149°F) and weighed to calculate bulk density (g/cc).   

 A Clegg impact hammer was used to measure post-treatment soil strength at three 

locations beneath each tree in the spring of 2006 and 2007.  The Clegg Hammer drops a 

weighted accelerometer from a standard height and measures its deceleration upon 

impact with the soil surface.  This measurement is reported as a Clegg Impact Value 
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(CIV). Soils with high CIV have greater soil strength and may be more resistant to root 

penetration (Waltz et al., 2000).  

 CIV measurement was preferable to bulk density measurement for assessment of 

post-treatment soil compaction due to the inaccuracy of bulk density coring on 

decompacted and high organic matter soils.  Soils become extremely friable after 

Airspade® treatment, causing bulk density cores to crumble and collapse during 

extraction.  Furthermore, loosened, mulched, and/or amended soils tend to recompact 

during the process of core sampling.   

 One composite soil sample from 3 locations within the treated radius of each tree 

was collected in spring 2006 and 2007 for analysis of soil nutrient content.  These 

samples were analyzed by the Clemson University Agricultural Services Laboratory for 

soil pH, CEC, organic matter content (loss on ignition method), and mineral nutrient 

concentrations.   

 
Soil Moisture 
 
 In June 2006 in Anderson, five Time Domain Reflectometry waveguides 

(Soilmoisture Equipment Corp., Santa Barbara, CA) were buried 15 cm (6 in.) below the 

soil surface.  Two were placed under mulched soils and thee were placed under bare 

soils.  Soil moisture content was collected weekly using the Trace System I (Soilmoisture 

Equipment Corp., Santa Barbara, CA).  
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Statistical Analyses 
 
 The effects of treatment, time, location and their interactions on soil parameters 

were analyzed using a generalized linear model (SAS PROC GLIMMIX, SAS version 

9.1; SAS Institute, Cary, NC).  Data met normality and equal variance assumptions.  All 

mean separations were performed with Fischer’s least significant difference, and all 

analyses were evaluated at the α = 0.05 significance level.   

 
Results 

 
Overall Soil Results 
 
 Across all sites, AFM treatment reduced soil strength by an average of 82% in 

2006 (p < 0.0001) and 24% in 2007 (p = 0.0043).  Airspade® and mulch treatments also 

significantly reduced soil strength in 2006 (23% and 19%, respectively), but in 2007 the 

strength of these soils had returned to control levels.  At no time did fertilizer reduce soil 

strength relative to control (Fig. 3.1).   

 Across all sites and dates, soils that received the AFM and mulch treatments had 

significantly higher organic matter than control soils (p < 0.01), while Airspade® treated 

soils had significantly lower organic matter than controls (p = 0.016; Fig. 3.2).  

 Across all sites and dates, phosphorus, potassium, magnesium, manganese, boron, 

and zinc concentrations were significantly higher in AFM treated soils than control soils 

(p < 0.01; Fig. 3.3).  Extractable phosphorus levels were 73% and 48% higher for AFM 

than control and fertilizer soils, respectively.  Soils that received only fertilizer were 

lower than AFM soils in all aforementioned nutrients except manganese and never  
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Figure 3.1.  Soil strength measured in spring 2006 and 2007.  Data from all sites have 
been combined (n=40 for each group).  Within each season, treatment means depicted 
with different letters are significantly different using Fisher’s multiple comparisons 
procedure (α=0.05).   
 
 

 
 

 
Figure 3.2.  Percent organic matter of soils in spring 2007 treated with 4 different 
amelioration techniques (n=40 for each treatment group).  Data from all sites have been 
pooled.  Error bars represent one standard error of the mean.  Treatment means depicted 
with different letters are significantly different using Fisher’s multiple comparisons 
procedure (α = 0.05). 
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Figure 3.3.  Phosphorus, potassium, magnesium, manganese, boron and zinc content of 
treated soils.  Data from all sites and sampling dates have been combined (n=80 for each 
treatment group).  Error bars represent one standard error of the mean.  Treatment means 
depicted with different letters are significantly different using Fisher’s multiple 
comparisons procedure (α = 0.05).  
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differed from control soils.  In spring 2007, copper levels in fertilized soils were higher 

than AFM, control and mulched soils (Fig. 3.4).   

 Soil moisture was measured at the Anderson, SC site only.  Averaged across all 

measurement dates, mulched soils (i.e., the AFM and M treatments) had significantly 

higher volumetric soil moisture content than unmulched soils (Fig. 3.5).  During the 2006 

growing season, soil moisture levels in the mulched treatments were significantly higher 

than in the unmulched treatments on three dates.  In 2007, there were seventeen such 

occurrences.  During August 2007, upstate South Carolina was experiencing a 30 cm 

(11.8 in.) annual precipitation deficit and was considered to be under extreme drought by 

the National Weather Service Palmer Drought Severity Index (NWS, 2007).   

 

 
 
Figure 3.4.  Copper content of treated soils within sampling dates.  Data from all sites 
have been combined (n=40 for each treatment group).  Error bars represent pooled 
standard error of the mean.  Treatment means depicted with different letters are 
significantly different using Fisher’s multiple comparisons procedure (α = 0.05). 
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Figure 3.5.  Percent soil moisture throughout 2006 and 2007 seasons in Anderson (n=2 
for mulch and n=3 for no mulch).  Inset panel shows overall means for two seasons.  
*Denotes a significant difference in treatment means at α=0.05 using Fisher’s multiple 
comparisons procedure. 
 
 

Discussion 
 
Soil Strength 
 
 AFM treatment of compacted soil resulted in lower soil strength for two years; 

Airspade® and mulch treatments only provided significant decompaction for one season 

after treatment.  This result clearly demonstrates the benefits of organic matter 

amendment and surface mulching in preventing recompaction of soils loosened with the 

Airspade®.  Although AFM and mulch-treated soils had similar organic matter content, 

mulch alone did not provide significant reductions in soil strength after two growing 

seasons.   
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 Reductions in soil strength can improve conditions for root development (Alberty 

et al., 1984; Jones, 1983).  Root dry weights and root penetration of seedlings can be 

reduced in compacted soils (Conlin and Driessche, 1996; Heilman, 1981), and roots may 

also be thicker and more branched due to the physical resistance they encounter (Day and 

Bassuk, 1994; Pittenger and Stamen, 1990).  This can lead to drought and/or nutrient 

stress due to the reduced ability of roots to exploit larger soil volumes (Marschner, 2002).   

 In addition to increasing soil strength, soil compaction also reduces the volume of 

air-filled soil macropores (Corns, 1988).  When soil is compacted, large macropore space 

accounts for most of the soil volume lost, with some of these voids being shifted into 

micropore space (Craul, 1992).  This can result in anaerobic conditions and root tissues 

must rely on inefficient fermentative metabolism for energy (Pan and Bassuk, 1985; Taiz 

and Zeiger, 2002).   

 Compaction not only affects soil aeration, but also influences soil water dynamics 

since these two are coupled.  Compacted soils are subject to waterlogging, which can also 

lead to impaired root functioning (Percival and Keary, 2008).  With a shift to a greater 

proportion of micropores, soil water will also be held under greater tension as a soil dries 

and be more difficult or impossible for plant roots to access it (Taiz and Zeiger, 2002).   

 
Soil Organic Matter 
 
 AFM and mulched trees had higher levels of soil organic matter than controls and 

other treatments.  However, it must be noted that we did not determine the extent to 

which the organic matter moved into the soil profile.  It is possible that the organic 

additions are only occurring on the soil surface of the M soils.  These data confirm 
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Watson’s findings that surface mulch layers can lead to increases in soil organic matter 

(Watson, 1988).  This occurs over time as the organic mulch decomposes and improves 

soil structure (Harris et al., 2004).  Craul (1985) states that these increased levels of 

organic matter are a major source of energy for soil organisms and lead to a healthy soil 

environment for root growth.  As organic tissues are decomposed by soil microbes, 

energy is used and complex compounds are transformed into simple compounds and 

mineral nutrients for root uptake (Craul, 1992; Harris et al., 2004).  Organic matter 

provides the food source and environment for these microorganisms to flourish.   

 Airspade® tillage alone resulted in a decrease in soil organic matter.  Tillage 

practices have long been associated with decreases in soil organic carbon (Gal et al., 

2007).  Organic matter is allowed to accumulate with minimal soil disturbance due to the 

reduction in decomposition by soil microbes (Gal et al., 2007; Motta et al., 2007).  

However, when soil is mixed, microbes have greater contact with the organic compounds 

and breakdown is enhanced (Cookson et al., 2008).  AFM may have accelerated 

decomposition as well, but was compensated for with the addition of the composted 

material as part of the program.   

 If increased levels of soil organic matter are the only goal of a management 

program, simply applying a mulch layer to the soil surface may be the most cost-effective 

method.  However, we have no data showing the distribution of this organic matter 

throughout the root zone. The deposition of the organic matter in the mulched soils is 

likely only occurring in the upper few centimeters of the soil profile, whereas the AFM 

treatment incorporates it in the upper 15-20 cm (6-8 in.). 
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Soil Nutrients 
 
 Levels of phosphorus, potassium, magnesium, manganese, boron and zinc were 

all increased in AFM-treated soils compared to control.  These nutrients, excluding 

manganese, were not significantly increased by surface application of fertilizer alone.   

 Sub-surface incorporation of fertilizer into the upper soil layers has been 

recommended for low solubility minerals or when roots are not near the surface due to 

elevated surface temperatures or cultivation (Harris et al., 2004).  However, Gilman et al. 

(2000) report that subsurface applications provided no greater growth benefit than surface 

applications, a conclusion that is echoed by Struve (2002).   

 The incorporation of fertilizer in the context of a complete soil decompaction 

process has not previously been studied.  Our data corroborate the statement by Harris, et 

al (2004).  The incorporation of fertilizer products as part of the AFM treatment created 

significantly higher levels of select nutrients in the soil than the application of the same 

products to the soil surface.  The nutrient levels were undoubtedly enhanced with the 

incorporation of the additional organic matter.   

 It is important to note that nutrient uptake is a function of soil structure and water 

availability in addition to soil nutrient levels.  All 3 of these factors are improved with 

AFM.  Nutrient uptake is an energetic process that can demand up to 36% of the plant’s 

total ATP utilization, so factors that impact respiration will also affect nutrient uptake 

(Marschner, 2002).  As previously mentioned, aerobic environments support efficient 

respiration pathways in roots, so improvements in soil macroporosity allow for more 

energy efficient nutrient uptake.  
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 Nutrient uptake also depends on soil water for ion availability.  Mineral ions are 

transported to the root surface in the soil solution (Taiz and Zeiger, 2002).  Ions then 

move into the intercellular space of root tissue to be taken up into living cells.  When the 

soil contains a large percentage of micropores, tightly held soil water and nutrients are 

unavailable for uptake.  The reduced soil strength and increased nutrient levels of AFM 

soils should result in enhanced water and nutrient availability.   

 
Soil Moisture 
 
 Soil moisture was significantly higher beneath mulched than unmulched trees on 

numerous dates throughout an extremely arid 2007 growing season in Anderson, SC (the 

only site where soil and tree water relations were measured).  The mean soil moisture 

percentage across both growing seasons was 26% higher for mulched versus unmulched 

soils.  These data corroborate other studies on the benefits of maintaining a proper mulch 

layer (Fraedrich and Ham, 1982; Himelick and Watson, 1990; Iles and Dosmann, 1999; 

Litzow and Pellett, 1983; Watson, 1988).  Watson (1988) observed a 9% increase in soil 

moisture at the 0-7.5 cm depths in mulched soil compared to bare soil, while Hemelick 

and Watson (1990) saw a 63% increase beneath mulch compared to turf cover.   

 
Site Differences 
 
 When considered alone, soil strength in Boston was not significantly improved by 

any treatment (data not shown).  The mean pre-treatment bulk density at this site (1.14 ± 

0.04 g/cc) was lower than other sites, indicating that decompaction treatments may be 

more effective on more heavily compacted sites.   
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Conclusions 

 Soil strength, organic matter content, the levels of 6 mineral nutrients and soil 

moisture were improved in AFM-treated soils.  Although soil strength was temporarily 

improved by other treatments, only AFM soils were able to maintain this reduction for 

two seasons following treatment.  With regard to organic matter, similar results may be 

achieved by mulching the soil surface; however, the other reported parameters benefited 

more from the AFM treatment than any individual component of the program.  Over 

time, the addition of organic matter through mulching alone may improve other soil 

parameters, but AFM provided those benefits quickly.  Applying fertilizer to the soil 

surface was ineffective compared to incorporation of fertilizer as part of AFM.  

Maintaining a proper mulch layer alone or as part of the AFM treatment increased soil 

moisture.   
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CHAPTER IV 
 

TREE RESPONSE 
 
 

Abstract 
 

 The Root Invigoration™ process involves soil decompaction with an air tool, 

amendment with organic matter and prescription fertilizer, and mulching.  In the current 

study, we measured changes in tree response to this process and its individual 

components.  Treatments included Root Invigoration™ (AFM), mulch only (M), 

fertilization only (F), Airspade® tillage only (A), and an untreated control (C).  The 

experiment was conducted from 2005-2007 at four urban sites:  Anderson, SC; Boston, 

MA; Myrtle Beach, SC and Pittsburgh, PA.  Condition ratings were significantly higher 

in AFM trees than control trees by the end of 2007.  In two locations, increases in dbh 

were also greater for AFM trees.  At the end of 2006, estimated chlorophyll 

concentrations were higher in AFM trees than in the A or M treatments.  Foliage of AFM 

trees had higher levels of phosphorus and potassium than foliage of fertilized trees.  

Mulched soils (both AFM and M) frequently had higher soil moisture content.  During a 

drought period in 2007, pre-dawn leaf water potential was higher for M trees on two 

dates and for AFM trees on one.  Although there were differences in root length density 

(cm root/cm3 soil) among treatments in 2006, there were none in 2007.  Mean root 

diameter was increased with fertilization.   
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Introduction 
 
 Urban trees experience significant environmental stress, frequently related to soil 

factors.  Most urban soils have been disturbed by mixing, filling and contamination, and 

they contain low levels of nutrient-rich organic matter (Craul, 1985).  Such soils also tend 

to be highly compacted, with bulk densities higher than those of similar soils in nearby 

forested areas (Close et al., 1996a).  Compaction increases soil resistance to root 

penetration and limits root system development (Alberty et al., 1984), while low porosity, 

poor aeration, and increased soil moisture fluctuations impair root function and tree 

growth (Watson and Kelsey, 2006; Watson et al., 1996).  Arboricultural techniques that 

reduce compaction and improve soil quality merit further exploration (Day and Bassuk, 

1994).  Unfortunately, few effective treatment options exist.   

 It is challenging to improve soil physical properties within the root zone without 

causing significant root damage in the process.  Traditional soil decompaction methods 

such as mechanical tillage can cause additional root system damage in established trees 

(Watson et al., 1996).  Pneumatic injection devices have been developed to physically 

fracture compacted soils while avoiding root damage, but neither soil physical properties 

nor tree performance have been consistently improved by their use (Hascher and Wells, 

2007; Rolf, 1992; Smiley, 2001; Smiley et al., 1990).   

 Other treatment options such as vertical mulching and radial trenching appear to 

provide limited benefit, although they are commonly used (Day and Bassuk, 1994; Day et 

al., 1995; Kalisz et al., 1994; Watson et al., 1996).  Extensive soil replacement programs 

have shown promise for increasing root density within the amended replacement zones, 
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but don’t appear to alter root growth outside of those areas (Watson, 2002; Watson et al., 

1996).  Such programs have not been shown to provide significant above-ground growth 

benefits.   

 The benefits of organic mulch layers are well documented and include soil 

moisture retention, weed suppression, soil temperature moderation and increased water 

infiltration (Fraedrich and Ham, 1982; Greenly and Rakow, 1995; Litzow and Pellett, 

1983).  However, mulch-related changes in soil compaction and organic matter content 

may take years to develop (Fraedrich and Ham, 1982; Watson et al., 1996).   

 Trees are frequently fertilized to compensate for low nutrient levels in urban soils. 

In some cases, slow-release fertilizers have been shown to provide greater benefit than 

ammonium nitrate and urea fertilizers, but other studies have shown that all fertilizer 

types provide similar benefits (Gilman et al., 2000).  Application methods may be more 

important than fertilizer type, although differences appear to be small (Struve, 2002).   

 The Root Invigoration™ program was developed to ameliorate multiple 

unfavorable characteristics of urban soils through a combination of air tillage, 

fertilization and mulching.  This process, developed and patented by the F. A. Bartlett 

Tree Expert Co., is designed to decompact and aerate the soil with minimal root 

disturbance using an air tool while simultaneously incorporating organic matter and 

fertilizer into the root zone.  Here we report responses of red maples (Acer rubrum) to the 

Root Invigoration™ process and its individual components at four urban locations.   
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Materials and Methods 
 
Site Characterization 
 
 The study was conducted on 200 red maple trees at four locations:  Anderson, SC 

(city park and recreation facility); Myrtle Beach, SC (street tree plantings); Boston, MA 

(college campus) and Pittsburgh, PA (golf course).  Soil textures ranged from sandy clay 

in Anderson to sand in Myrtle Beach (Table 4.1).  Bulk densities ranged from 1.14 ± 0.04 

g/cc in Boston to 1.74 ± 0.04 g/cc in Myrtle Beach.  None of the sites were compacted 

beyond the growth-limiting bulk density for their respective texture (Daddow and 

Warrington, 1983).  However, these growth-limiting bulk densities must be observed 

with caution as soil moisture and species responses may differ and limit the application of 

these thresholds (Daddow and Warrington, 1983).   

 
Table 4.1.  Pre-treatment soil classifications.  Multiple samples within sites revealed 
identical textures and were averaged for the table.  Anderson was the exception and those 
values are displayed separately.  n=3 for Anderson, n=2 for Pittsburgh, n=3 for Myrtle 
Beach and n=1 for Boston.  Dominant NRCS classifications are displayed. 
 

 
Sample 

% 
sand 

% 
silt 

% 
clay 

 
Texture 

 
NRCS soil name 

Anderson (group 1) 60 22 18 Sandy Loam Hiwassee sandy loam 
Anderson (group 2) 46 18 36 Sandy Clay Hiwassee sandy loam 
Anderson (group 3) 58 18 24 Sandy Clay Loam Hiwassee sandy loam 
Myrtle Beach 93 3 4 Sand Brookman loam & 

Meggett loam 
Pittsburgh 32.9 44.7 22.4 Loam Dormont silt loam 
Boston  70.8 22.6 6.7 Sandy Loam Walpole fine sandy 

loam & Hinckley 
sandy loam 
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Sample Collection and Processing 
 
 Stem diameters at 1.4 m (4.5 ft.) above ground level (DBH) were measured at the 

time of treatment application and again at the end of the 2007 growing season.  Mean 

foliar chlorophyll content was estimated by averaging SPAD meter (Minolta SPAD-502, 

Minolta Inc, Japan) readings from three randomly-selected leaves per tree.  Foliar 

nutrient content was assessed by collecting approximately 100 g (3.5 oz.) of mature 

leaves from multiple locations of each tree and submitting these samples to the Clemson 

University Agricultural Services Laboratory for analysis. 

 Root density measurements were made by collecting two 5.77 cm (2.3 in.) 

diameter by 15.2 cm (6 in.) long soil cores from beneath each tree approximately 0.75 m 

(2.5 ft.) from the trunk.  The samples were collected in early and late summer in opposing 

cardinal directions (i.e., North/South orientation in early summer; East/West in late 

summer).  These cores were placed in wax-lined paper bags to prevent moisture loss and 

stored at 5°C (41°F) before processing.   

 Root density samples were washed through a 1 mm sieve to remove soil and 

retain fine roots.  Root samples were further screened by hand to remove additional soil 

and organic matter and were stored in 50% ethanol at 5°C prior to measurement.  Each 

root sample was scanned with WinRhizo 2003b software (Regent Systems, Quebec, 

Canada), and the resulting data were used to determine average root diameter (mm) and 

root length density (cm root/cm3 soil).  Once scanned, each sample was dried at 65°C for 

3 days and weighed to determine root mass density (g dry root/cm3 soil).   
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 Approximately two grams of fine roots were retained from each core sample for 

vesicular-arbuscular mycorrhizal fungi (VAM) quantification.  Roots were stored in 50% 

ethanol at 5°C prior analysis.  Root samples were rinsed with distilled water, cleared with 

10% KOH for 6-12 hours at 75°C, stained with trypan blue for 30 minutes at 75°C, and 

de-stained in 50% glycerol (Koske and Gemma, 1989).  Root colonization was assessed 

using the magnified intersections method (McGonigle et al., 1990).  For each sample, 3-4 

30-40 cm root segments were mounted on a glass slide and examined under 100X 

magnification using a compound microscope equipped with a cross-hair eyepiece.  The 

presence or absence of VAM hyphae was noted at 50 intersections between the eyepiece 

cross-hair and root segments.  Colonization was then calculated as the percentage of 

hyphae present at these 50 intersections.   

 
Pretreatment Tree Health 
 
 Tree size, condition and foliar nutrient content were assessed prior to treatment 

application (Table 4.2).  Data from Pittsburgh, PA are incomplete, as foliage was not 

present at the time of pre-treatment evaluation.   

 Pittsburgh trees had larger mean trunk diameters than all other sites (15.9 ± 0.99 

cm; 6.3 ± 0.38 in.), while trees in Anderson (11.8 ± 0.36 cm; 4.6 ± 0.14 in.) and Boston 

(12.7 ± 0.20 cm; 5.0 ± 0.08 in.) were larger in diameter than those in Myrtle Beach (6.17 

± 0.25 cm; 2.5 ± 0.10 in.).  Visual condition ratings were highest in Anderson (7.04 ± 

0.21), followed by Myrtle Beach (4.94 ± 0.27) and Boston (4.08 ± 0.07).  Mean estimated 

chlorophyll densities were higher for trees in Anderson (37.1 ± 0.38) and Boston (37.9 ± 

0.37) than those in Myrtle Beach (29.4 ± 0.92).    
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Table 4.2.  Pre-treatment properties of red maple at four locations.  Within-site means are 
followed by ±1 standard error.  Means depicted with different letters are significantly 
different using Fisher’s multiple comparisons procedure (α = 0.05). 
 

 
Parameter 

 
N 

 
Anderson 

 
Boston 

Myrtle 
Beach 

 
Pittsburgh1 

 
p-value 

Foliar N (%) 50 1.55 ± 0.03b 1.84 ± 0.03a 1.49 ± .04b  .000 
Foliar P (%) 50 0.09 ± 0.00c 0.31 ± 0.01a 0.23 ± 0.01b  .000 
Foliar K (%) 50 0.63 ± 0.03c 0.92 ± 0.03a 0.74 ± .03b  .000 
Foliar Ca (%) 50 0.75 ± 0.02b 0.72 ± 0.02b 1.61 ± .07a  .000 
Foliar Mg (%) 50 0.18 ± 0.01b 0.24 ± 0.01a 0.26 ± .01a  .000 
Foliar Zn (ppm) 50 24.34 ± 0.93b 28.74 ± 0.75b 42.5 ± 2.68a  .000 
Foliar Cu (ppm) 50 8.98 ± 0.95 9.52 ± 0.30 9.36 ± 0.69  .856 
Foliar Mn (ppm) 50 329.3 ± 30.27a 143.76 ± 8.59b 97.6 ± 16.04b  .000 
Foliar Fe (ppm) 50 106.12 ± 3.97c 131.74 ± 4.33b 159.2 ± 7.83a  .000 
Foliar S (%) 50 0.12 ± 0.00c 0.13 ± 0.00b 0.14 ± 0.00a  .000 
Foliar Na (ppm) 50 20.32 ± 0.57b 29.22 ± 1.59b 217.1 ± 28.7a  .000 
SPAD2  50 37.1 ± 0.38a 37.9 ± 0.37a 29.4 ± 0.92b  .000 
DBH (cm)3 50 11.8 ± 0.36b 12.7 ± 0.20b 6.17 ± 0.25c 15.9 ± 0.99a .000 
Condition4 50 7.04 ± 0.21a 4.08 ± 0.07c 4.94 ± 0.27b  .000 
1Data absent because foliage was not present at time of evaluation 
2 Mean foliar chlorophyll content measured with Minolta SPAD-502 (Minolta Inc, Japan) 
3Stem diameter in inches measured with a diameter tape at approximately 4.5 feet from 
ground height 
4Visual analysis based on a 1-10 scale assessing foliage color, crown density, dieback and 
vigor  
 
 
 Boston foliar tissue had higher initial levels of the macronutrients nitrogen, 

phosphorus and potassium.  Myrtle Beach trees had the highest foliar levels of several 

nutrient cations: calcium, zinc, iron and sodium.  Anderson foliage had lower levels of 

most nutrients, except for manganese.   

 
Pretreatment Soil Data 
 
 Prior to treatment application, composite soil samples were collected from the 

upper 15 cm (6 in.) of soil beneath 6-8 trees at each site and analyzed by A&L Analytical 

Laboratory (Memphis, TN) to determine soil pH, CEC, organic matter content, and 



 66 

mineral nutrient concentrations (Table 4.3).  Nutrient data from these samples were 

further analyzed with the Bartlett Tree Research Laboratories soil recommendations 

program to create a prescription fertilizer program to comply with ANSI A300 standards 

and adjust pH within the 5.0-6.0 range (Table 4.4).  In general, Pittsburgh had higher soil 

nutrient levels than the other sites. 

 
Experimental Design and Treatment Application 
 
 Five treatments, Airspade® tillage (A), fertilizer (F), mulch (M), Root 

Invigoration™ (AFM) and control (C), were applied to ten replicate trees at each site, for 

a total of 50 experimental units per site.  In Boston, a completely randomized design was 

used.  A randomized complete block design was used at the Anderson, Myrtle Beach and 

Pittsburgh sites to account for site variability.  The treatments were applied in August 

2005 in Boston, November 2005 in Anderson, November 2005 in Myrtle Beach and 

February 2006 in Pittsburgh.   

 All trees were treated with Roundup Pro herbicide (Monsanto Company, St. 

Louis, MO) in a 1.5 m (5 ft.) diameter circle around the trunk at least 14 days prior to 

treatment application to eliminate competing vegetation.  Weed control was maintained 

throughout the experiment with additional Roundup applications as needed.   

 In Boston, an extensive turf root system remained after herbicide application, and 

it was necessary to remove the turf around trees receiving air tillage treatments (A and 

AFM) using a Ryan Jr. sod cutter (Jacobson, A Textron Company, Charlotte, NC).  It is 

likely that some tree fine roots were damaged during this process.   
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Table 4.3.  Chemical and physical properties of pre-treatment soil collected from each 
research site.  Within-site means are followed by ± 1 standard error.   
 

Parameter Anderson1 Boston2 Myrtle Beach Pittsburgh 
ENR3 (kg/ha) 85.5 ± 14.6 114 54.7 ± 9.5 74.4 ± 2.4 
Soil P (ppm) 12.3 ± 2.6c 288a 38.3 ± 3.0c 115.3 ± 20.2b 
Soil K (ppm) 138.7 ± 14.4b 87c 43.5 ± 7.4d 276.7 ± 5.2a 
Soil Mg (ppm)  112.7 ± 23b 99b 64.3 ± 8.7b 452.7 ± 27.9a 
Soil Ca (ppm) 942.3 ± 274.3b 977b 3648.5 ± 967.8ab 5133.3 ± 768.4a 
Soil Na (ppm) 13.6 ± 0.3c 39b 30.3 ± 7.0ab 85.3 ± 3.3a 
Sol. Salt (ppm) 0.3 ± 0 0.3 0.3 ± 0  0.2 ± 0.03 
Soil Fe (ppm) 51.7 ± 3.7c 295b 134.5 ± 24c 478.7 ± 31.9a 
Soil Mn (ppm) 104.3 ± 39.8b 24b 7.8 ± 1.4b 312 ± 21.2a 
Soil Cu (ppm) 1.6 ± 0.3c 9.6a 0.6 ± 0.1c 4.0 ± 0.5b 
Soil Zn (ppm) 2.7 ± 1.2b 14.4a 2.5 ± 0.5b 5.2 ± 0.5b 
Soil OM (%) 2.8 ± 0.9 4.6 1.6 ± 0.4 2.0 ± 0.1 
Soil CEC (meq/100g) 7.7 ± 1.1 9.6 19.0 ± 5.0 17.2 ± 1.8 
Soil pH 5.7 ± 0.4 5.5 7.9 ± 0.1 6.8 ± 0.07 
Bulk Density (g/cc) 1.41 ± 0.02b 1.14 ± 0.04d 1.74 ± 0.04a 1.25 ± 0.03c 
1Chemical properties based on: Anderson n=3; Boston n=1; Myrtle Beach n=4; 
Pittsburgh n=3. Bulk density based on: n=50 at all sites. 
2Post hoc analysis cannot be performed because n=1  
3Estimated Nitrogen Release based on soil organic matter 
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 Trees receiving the M treatment were mulched to a depth of 5-7.5 cm (2-3 in.) in 

a 1.5 m (5 ft.) radius around the trunk using 0.45 m3 (16 ft.3) of bagged, shredded 

hardwood mulch.  Trees receiving the F treatment were fertilized with the materials listed 

in Table 4.4; these were applied to the soil surface as a granular product or drench within 

the 1.5 m (5 ft.) radius.  Trees receiving the A treatment were air-tilled to a depth of 15-

20 cm (6-8 in.) using the Air Spade® series 2000 (Concept Engineering Group, Verona, 

PA) in a 1.5 m (5 ft.) radius around the trunk.  Controls received no amendment or tillage 

treatment, but were maintained with a 1.5 m (5 ft.) radius vegetation-free zone. 

 The AFM treatment began with Airspade® tillage as described above.  Soils were 

then amended with 0.28 m3 (10 ft.3) of bagged, composted cow manure and the 

prescription fertilizer used in the F treatment.  Amendments were applied to the 1.5 m (5 

ft.) radius and incorporated into the loosened soil profile with the Airspade®.  Finally, 

amended soil received a mulch layer as described for the M treatment.   

 Immediately after treatment application, 30L (8 gal.) of irrigation was applied to 

the 1.5 m (5 ft.) radius of each tree at the Boston and Myrtle Beach sites.  The Boston site 

received identical irrigation applications at one and three weeks post-treatment due to dry 

conditions. 

 Because of long-term seasonal drought in Anderson, water applications were 

required to prepare the soil for Airspade® treatments.  At this site, all soils received 106 L 

(28 gals.) of water injected approximately 15 cm (6 in.) beneath the soil surface.  Trees 

receiving the A and AFM treatments were given split applications: half of the water 

injected prior to treatment and half as a drench following treatment.  Other treatments 
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received the total water volume following treatment.  In Pittsburgh, two inches of snow 

fell on the day after treatment application, obviating the need for post-treatment 

irrigation. 

 
Water Relations 
 
 In June 2006 in Anderson, five Time Domain Reflectometry waveguides 

(Soilmoisture Equipment Corp., Santa Barbara, CA) were buried 15 cm (6 in.) below the 

soil surface.  Two were placed under mulched soils and thee were placed under bare 

soils.  Soil moisture content was collected weekly using the Trace System I (Soilmoisture 

Equipment Corp., Santa Barbara, CA). Pre-dawn leaf water potential was measured bi-

weekly during the growing season using a 3005-series portable plant water status console 

(Soilmoisture Equipment Corp., Santa Barbara, CA).   

 
Statistical Analyses 
 
 The effects of treatment, time, location and their interactions on response 

parameters were analyzed using a generalized linear model (SAS PROC GLIMMIX, SAS 

version 9.1; SAS Institute, Cary, NC).  Root parameters did not meet normality and 

equality of variance assumptions, and ranks were therefore used in the model.  All mean 

separations were performed with Fisher’s least significant difference.  Root parameters 

were evaluated at the α = 0.10 significance level, due to the marked spatial variability of 

belowground data. All other parameters were tested at α = 0.05.   
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Results 
 
Tree Condition 
 
 Visual ratings on a 0-10 scale were assigned by trained arborists and were based 

on crown density, leaf color and vigor (Fig. 4.1).  Across all sites, average visual 

condition ratings for AFM-treated trees were significantly higher than those of control 

trees at the end of the second growing season (p = 0.0268; Fig. 4.2).  At Myrtle Beach, 

fertilized trees also had higher condition ratings than controls (p = 0.0176; data not 

shown).   

 
Tree Growth 
 
 DBH showed a greater increase in AFM-treated trees than in control trees at two 

out of four sites: Myrtle Beach and Pittsburgh (p < 0.05; Fig. 4.3).  Compared to controls, 

AFM trees in Myrtle Beach and Pittsburgh showed a 126% and 64% greater increase in 

DBH, respectively.  In Pittsburgh, Airspade®-treated trees also showed a greater increase 

in DBH than controls.  In Myrtle Beach, AFM and fertilized trees exhibited greater twig 

elongation than Airspade®-treated trees (p<0.01; Fig. 4.4). 

 
Chlorophyll and Foliar Nutrients 
 
 Across all sites, AFM-treated trees had higher leaf chlorophyll content than 

Airspade®- and mulch-treated trees in fall 2006 (p < 0.05; Fig. 4.5).  A similar result was 

not seen in the second growing season.   

 Across all sites and years, no treatment - individual or combined - differed in 

foliar nutrient concentration from control.  Across all sampling dates and locations, AFM  
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Figure 4.1.  Examples of tree condition ratings.  Based on trained arborist inspections, the 
tree on the left received a condition rating of 4, while the tree on the right was rated a 10.  
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Figure 4.2.  Visual condition ratings in fall 2007.  Data are pooled from all sites.  Error 
bars represent one standard error of the mean.  Treatment means depicted with different 
letters are significantly different using Fisher’s multiple comparisons procedure (α = 
0.05). 
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Figure 4.3.  Mean change in dbh during 2007 growing season (n=10 per treatment group).  
Error bars represent one standard error of the mean.  Treatment means within a site 
depicted with different letters are significantly different using Fisher’s multiple 
comparisons procedure (α = 0.05). 
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Figure 4.4.  Mean twig elongation during the 2007 growing season in Myrtle Beach 
(n=10 per treatment group).  Error bars represent one standard error of the mean.  
Treatment means within a site depicted with different letters are significantly different 
using Fisher’s multiple comparisons procedure (α = 0.05). 
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Figure 4.5.  Foliar chlorophyll density in fall 2006 estimated with SPAD meter.  Data 
from all sites been pooled (n=40 per treatment group).  Error bars represent one standard 
error of the mean.  Treatment means depicted with different letters are significantly 
different using Fisher’s multiple comparisons procedure (α = 0.05). 
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trees had higher levels of foliar potassium than fertilized trees, although they did not 

significantly differ from controls (p = 0.035; Fig. 4.6).  At no time were levels of foliar 

nutrients considered deficient based on sufficiency levels for Acer rubrum (Mills and 

Jones, 1996; Tables 4.5, 4.6, 4.7 and 4.8).   

 There were some differences in individual nutrients on specific dates and sites.  

Across all sites in fall 2006, AFM, A and M trees had higher levels of foliar phosphorus 

than trees receiving the F treatment (p < 0.05; Fig. 4.7).  In Pittsburgh, AFM-treated trees 

had higher levels of foliar potassium than all other treatments, and fertilizer-treated trees 

had the lowest potassium levels (Table 4.8).  Also in Pittsburgh, the mulch treatment 

reduced foliar magnesium and zinc, while Airspade® tillage reduced foliar calcium and 

zinc.   

 In Myrtle Beach, foliar phosphorus, magnesium and zinc were increased with 

AFM relative to control (Table 4.7).  Fertilizer increased foliar zinc and magnesium, 

while mulch increased foliar zinc and phosphorus relative to control.  

 
Water Relations 
 
 Water relations were measured at the Anderson, SC site only.  Although there 

were no differences in pre-dawn leaf water potential between mulched and unmulched 

trees in 2006, differences did emerge during the extreme drought of 2007.  M-treated 

trees had higher pre-dawn water potentials than control trees in July 2007 (Fig. 4.8), and 

both AFM and M trees exhibited higher pre-dawn water potentials than controls in 

August 2007.  Airspade® and fertilizer-treated trees never differed from control in leaf 

water potential.   
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Figure 4.6.  Foliar potassium levels pooled from all sites and sampling dates (n=160 per 
treatment group).  Error bars represent one standard error of the mean.  Treatment means 
depicted with different letters are significantly different using Fisher’s multiple 
comparisons procedure (α = 0.05). 
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Table 4.5.  Treatment means across all post-treatment sampling dates in Anderson. 
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.05).   
 

Parameter Airspade® Control Fertilizer Mulch AFM SE1 
Foliar N (%) 1.81 1.76 1.76 1.76 1.77 0.07 
Foliar P (%) 0.12 0.12 0.12 0.12 0.13 0.02 
Foliar K (%) 0.71ab 0.72ab 0.69b 0.74ab 0.79a 0.04 
Foliar Ca (%) 0.57 0.55 0.59 0.59 0.60 0.07 
Foliar Mg (%) 0.18 0.18 0.19 0.19 0.20 0.02 
Foliar Zn (ppm) 21.0 18.8 19.0 20.8 20.4 2.9 
Foliar Cu (ppm) 9.0 8.8 8.5 7.8 8.5 1.2 
Foliar Mn (ppm) 251.2 244.0 235.4 269.5 280.5 78.5 
Foliar Fe (ppm) 84.7 88.7 78.2 84.7 82.7 10.0 
Foliar S (%) 0.12 0.12 0.12 0.12 0.12 0.01 
Foliar Na (ppm) 12.7 13.1 12.5 13.8 13.6 34.9 
SPAD 38.0 38.1 38.0 38.6 37.9 1.1 
Condition 7.68 7.95 7.85 7.85 8.12 0.4 
RLD (cm/cc) 7.5ab 5.4c 6.4bc 6.7ab 7.6a 0.8 
RMD (g/cc) 4.0a 3.1b 4.1a 4.1a 3.8ab 0.7 
Root dia.(mm) 0.45bc 0.69a 0.70a 0.68ab 0.64c 0.02 
SRL (m/g) 20.3ab 18.6bc 16.4c 17.6c 20.7a 2.2 
1Standard error pooled across all sampling dates (SAS PROC GLIMMIX) 
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Table 4.6.  Treatment means across all post-treatment sampling dates in Boston. 
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.05).  
 

Parameter Airspade® Control Fertilizer Mulch AFM SE1 
Foliar N (%) 1.84 1.73 1.86 1.81 1.84 0.2 
Foliar P (%) 0.25 0.22 0.22 0.25 0.22 0.04 
Foliar K (%) 0.78 0.74 0.77 0.76 0.76 0.1 
Foliar Ca (%) 0.46 0.47 0.48 0.51 0.48 0.2 
Foliar Mg (%) 0.18 0.18 0.17 0.18 0.18 0.05 
Foliar Zn (ppm) 26.9 26.7 27.4 27.8 26.9 9.0 
Foliar Cu (ppm) 6.5 6.3 6.4 6.3 5.9 3.6 
Foliar Mn (ppm) 113.6 140.4 111.3 125.4 111.4 245.0 
Foliar Fe (ppm) 71.1 71.5 64.3 69.6 64.8 29.0 
Foliar S (%) 0.12 0.11 0.12 0.12 0.12 0.02 
Foliar Na (ppm) 26.1 30.8 25.3 22.4 22.8 106.6 
SPAD 41.1 40.2 42.2 40.8 41.8 3.3 
Condition 7.85 7.60 7.73 7.88 8.03 1.3 
RLD (cm/cc) 6.8 8.0 6.5 7.0 5.6 2.0 
RMD (g/cc) 3.4 3.5 3.6 3.3 3.0 1.9 
Root dia. (mm) 0.69b 0.70ab 0.72a 0.66c 0.70b 0.02 
SRL (m/g) 20.6 19.6 17.7 21.9 18.9 5.9 
1Standard error pooled across all sampling dates (SAS PROC GLIMMIX) 
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Table 4.7.  Treatment means across all post-treatment sampling dates in Myrtle Beach. 
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.05). 
 

Parameter Airspade® Control Fertilizer Mulch AFM SE1 
Foliar N (%) 1.70 1.69 1.82 1.71 1.75 0.07 
Foliar P (%) 0.21ab 0.18b 0.18b 0.23a 0.23a 0.02 
Foliar K (%) 0.73 0.74 0.73 0.78 0.81 0.04 
Foliar Ca (%) 1.05 0.95 1.03 1.00 0.93 0.07 
Foliar Mg (%) 0.21ab 0.18b 0.21a 0.21ab 0.22a 0.02 
Foliar Zn (ppm) 33.1ab 27.2b 34.0a 34.4a 36.9a 3.0 
Foliar Cu (ppm) 10.0 9.2 8.5 8.8 10.0 1.2 
Foliar Mn (ppm) 66.4 64.1 90.1 55.9 225.3 78.6 
Foliar Fe (ppm) 122.1ab 122.6ab 138.1a 113.3b 119.4ab 10.0 
Foliar S (%) 0.14 0.13 0.15 0.13 0.14 0.01 
Foliar Na (ppm) 219.2ab 241.5a 229.8a 154.9b 190.9ab 34.9 
SPAD 32.2 32.2 34.1 32.1 34.5 1.1 
Condition 6.15b 6.13b 7.03a 6.93ab 7.10a 0.4 
RLD (cm/cc) 3.6b 4.2ab 5.5a 5.0a 5.4a 0.8 
RMD (g/cc) 1.8b 2.2ab 2.6a 2.6a 2.3ab 0.7 
root dia. (mm) 0.62 0.59 0.62 0.62 0.58 0.02 
SRL (m/g) 25.5ab 28.9b 23.6ab 23.6b 27.1a 2.2 
1Standard error pooled across all sampling dates (SAS PROC GLIMMIX) 
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Table 4.8.  Treatment means across all post-treatment sampling dates in Pittsburgh.  
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.05). 
 

Parameter Airspade® Control Fertilizer Mulch AFM SE1 
Foliar N (%) 1.80b 1.89ab 1.92ab 1.96a 1.96a 0.07 
Foliar P (%) 0.33a 0.32ab 0.28b 0.31ab 0.29ab 0.02 
Foliar K (%) 0.81abc 0.78bc 0.75c 0.87ab 0.90a 0.04 
Foliar Ca (%) 0.87b 1.03a 0.98ab 0.88ab 0.90ab 0.07 
Foliar Mg (%) 0.24ab 0.27a 0.25ab 0.22b 0.25ab 0.02 
Foliar Zn (ppm) 32.5b 40.5a 36.8ab 33.3b 33.6ab 3.0 
Foliar Cu (ppm) 9.7 11.3 9.6 9.8 10.9 1.2 
Foliar Mn (ppm) 370.7 541.1 351.6 381.4 484.9 78.6 
Foliar Fe (ppm) 88.6 96.7 92.9 85.2 96.2 10.0 
Foliar S (%) 0.14b 0.15ab 0.16a 0.13b 0.14ab 0.01 
Foliar Na (ppm) 30.6 33.2 40.2 21.9 41.1 34.9 
SPAD 38.1 38.7 38.3 39.1 40.0 1.1 
Condition 8.35ab 8.05ab 7.70b 8.20ab 8.85a 0.4 
RLD (cm/cc) 6.1c 9.7a 8.5ab 7.4bc 6.0bc 0.8 
RMD (g/cc) 4.0ab 5.5a 4.7a 5.5b 3.9b 0.7 
root dia. (mm) 0.74a 0.69c 0.75a 0.74ab 0.72b 0.02 
SRL (m/g) 16.4b 20.8a 19.3ab 18.2ab 18.0ab 2.3 
1Standard error pooled across all sampling dates (SAS PROC GLIMMIX) 
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Figure 4.7.  Foliar phosphorus levels in fall 2006 (n=40 per treatment group).  Data from 
all sites have been combined Error bars represent one standard error of the mean.  
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.05). 
 
 
 



 84 

 
 
 

Figure 4.8.  Pre-dawn water potential and percent soil moisture throughout 2006 and 
2007 seasons in Anderson (soil moisture:  n=2 for mulch and n=3 for no mulch; water 
potential:  n=10 per treatment group).  Inset panel shows overall means for two seasons.  
*Denotes a significant difference in treatment means at α=0.05 using Fisher’s multiple 
comparisons procedure.  Fall coloration of foliage in Anderson began in mid-September 
with leaf drop commencing in mid-October. 
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Root Growth 
 
 In spring 2006, root length density (RLD) and root mass density (RMD) for 

AFM-treated trees were lower than control, fertilizer and mulch trees across all sites (p < 

0.10; Fig. 4.9; Fig. 4.10).  However, by fall 2006, AFM-treated trees had higher mean 

RLDs than controls (p = 0.0821).  Specific root length (i.e. the length of one gram of root 

tissue) was highest in AFM-treated trees in fall 2006 (p < 0.10; Fig. 4.11).  RMD did not 

differ among treatments after spring 2006.  Neither RLD nor SRL differed among 

treatments after fall 2006.   

 
 

 
Figure 4.9.  Root length density over time.  Data from all sites have been combined (n=40 
per treatment group).  Error bars represent one standard error of the mean.  Treatment 
means depicted with different letters are significantly different using Fisher’s multiple 
comparisons procedure (α = 0.10). 



 86 

 
 
 
 
 
 
 
 

Figure 4.10.  Root mass density over time.  Data from all sites have been combined (n=40 
per treatment group).  Error bars represent one standard error of the mean.  Treatment 
means depicted with different letters are significantly different using Fisher’s multiple 
comparisons procedure (α = 0.10). 
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Figure 4.11.  Specific root length over time.  Data from all sites have been combined 
(n=40 per treatment group).  Error bars represent one standard error of the mean. 
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.10). 
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 Across all sites, mean fine root diameter was consistently greater in fertilized 

trees compared to other treatments (Fig. 4.12).  Fertilizer-treated trees also had lower 

SRLs than Airspade®, mulch and AFM trees.  There were no differences among 

treatments in the degree of VAM colonization.  The average percent colonization was 

13.4% across all sites and years.  Averaged across both years, percent colonization was 

9.5%, 10.9%, 15.6% and 18.2% at Anderson, Myrtle Beach, Boston and Pittsburgh, 

respectively, none of which were significantly different from one another.  

 
Discussion 

 
 Responses of red maples to Root Invigoration™ (AFM treatment) and its three 

individual components were evaluated at four urban sites.  The AFM treatment improved 

tree growth and condition to a greater extent than any individual component, although 

water relations were improved as much by mulch as by the full AFM treatment.  Specific 

tree responses are discussed in detail below. 

 
Tree Condition 
 
 Two growing seasons after treatment application, visual condition ratings for 

AFM trees were significantly higher than controls.  No other treatment produced this 

improvement.  Watson et al. (1996) noted improvements in the appearance of white oak 

when using soil replacement techniques in the rooting zone.  Native soil was replaced 

with 100% leaf compost or a 50% compost/50% native soil mix in trenches beneath white 

oaks.  No canopy data were presented, but tree visual appearance was reported to have  
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Figure 4.12.  Mean root diameter over time.  Data from all sites have been combined 
(n=40 per treatment group).  Error bars represent one standard error of the mean. 
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.10). 
 
 
improved following treatment.  Canopy appearance was improved with AFM, while 

individual treatments did not improve appearance relative to control.   

 
Tree Growth 
 
 At several sites, AFM promoted increased diameter growth and twig elongation.  

Previous methods for improving the soil environment of established shade trees have 

yielded mixed results (Hascher and Wells, 2007; Rolf, 1992; Smiley, 2001; Watson et al., 

1996).  In studies designed to test the benefits of soil fracturing equipment, neither root 

growth stimulation nor tree growth enhancement have been observed (Hascher and 
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Wells, 2007; Rolf, 1992; Smiley, 2001).  However, programs that both reduced 

mechanical impedance to root growth and incorporated soil amendments produced 

growth enhancement in callery pear and white oak (Day and Bassuk, 1994; Watson et al., 

1996).   

 In the current study, individual treatments such as mulching or fertilizer generally 

provided no growth benefit relative to control.  AFM in Myrtle Beach and A and AFM 

treatments in Pittsburgh significantly increased DBH relative to control, while F and 

AFM in Myrtle Beach were associated with greater twig elongation.  However, Freadrich 

and Ham (1982) noted greater diameter growth in mulched silver maple and increased 

shoot growth in mulched silver, red and sugar maples.  After two growing seasons, these 

growth benefits from mulch alone were not observed.  AFM repeatedly provided more 

growth during this study.   

 
Chlorophyll and Foliar Nutrients 
 
 There were few differences in foliar chlorophyll concentrations and nutrient levels 

among treatments.  It is worth highlighting that foliar phosphorus levels in fall 2006 were 

lower for fertilized trees than for AFM, Airspade® and mulch-treated trees.  Across all 

sites and sampling dates, foliar potassium levels were also lower for fertilized trees than 

for AFM trees.  These results suggest that simply fertilizing poor soils will not 

significantly improve tree health and may even be counterproductive. On poor sites, 

improvements in soil physical properties may be required to fully realize the benefits of 

fertilizer applications.   
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 The general lack of response to fertilizer may also reflect adequate tree nutrition 

prior to treatment application (Table 4.2).  At no time, pre or post-treatment, were foliar 

nutrient levels deficient.  Furthermore, nutrients taken up by larger AFM trees may have 

been diluted within a denser, more extensive canopy (Marschner, 2002).   

 
Water Relations 
 
 A mulch layer as the M treatment or as part of AFM, increased soil moisture 

beneath mulched trees (Fite et al., 2008).  This increase was associated with reduced tree 

water stress during the 2007 drought. During August 2007, upstate South Carolina was 

experiencing a 30 cm (11.8 in.) annual precipitation deficit and was considered to be 

under extreme drought by the National Weather Service Palmer Drought Severity Index 

(Service, 2007).  On July 17, 2007, mulched trees had 16% higher water potentials than 

controls.  On August 18, 2007, M and AFM trees had 30% and 33% higher water 

potentials than controls, respectively.  Increased soil moisture levels due to a mulch layer 

lead to reduced tree water stress.  

 
Root Responses 
 
 In spring 2006, RLD (cm root/cm3 soil) and RMD (g root/cm3 soil) were reduced 

by the AFM treatment.  Although not significant, RLD and RMD of Airspade® trees also 

trended lower, suggesting that air-tillage could be responsible for a transient decline in 

fine root length.  By fall 2006, mean RLD of AFM trees was higher than controls, while 

that of “A” trees was similar to controls.  This result is in agreement with Watson et al. 

(1996), who suggest that damage to fine roots from brief exposure to air is overcome in a 
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single season.  Longer, thinner roots (high SRL) were also characteristic of AFM trees at 

the end of 2006, an effect that did not persist into the second year. 

 Treatment differences in fine root density and morphology had effectively 

disappeared by the second year of the study, suggesting that these differences were more 

strongly related to the perturbations of treatment application than to the resulting changes 

in soil conditions.  While studies on localized nutrient addition often report greater fine 

root production in the fertilized/amended area (Eissenstat and Caldwell, 1988; Hodge et 

al., 2000; Watson, 2002; Watson et al., 1996), overall increases in soil fertility more 

commonly have no effect on or reduce fine root growth (Eissenstat and Caldwell, 1988; 

May et al., 1965; Philipson and Coutts, 1977; Watson, 1994).  Neither response was 

observed in this study, and continued data collection at the sites will help to determine 

whether changes in fine root production emerge over longer timescales. 

 
Conclusion  
 
 Individual components of the Root Invigoration™ process rarely provided similar 

benefits to the combined program.  Collectively, these treatments are more beneficial.  

Arborists should evaluate the tree, site, and budget to determine how best to achieve 

client goals.  In some cases, goals may be met by an individual treatment (i.e. plant water 

potential benefits of mulch alone).  However, a more holistic approach like RI may 

provide significantly greater benefits. 
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CHAPTER V 
 

ROOT RESPONSE 
 
 

Introduction 
 

 The benefits provided by urban trees are increasingly recognized but rarely 

achieved due, in part, to stresses imposed by urban soils.  While forest soils have a well-

developed humus layer, urban soils typically lack an upper organic horizon (Fraedrich 

and Ham, 1982).  Urban soils also tend to be highly compacted, with bulk densities 

higher than those of similar soils in nearby forested areas (Close et al., 1996a).  Low 

porosity, poor aeration, and increased moisture fluctuations in compacted soil lead to 

poor growth and high mortality rates in urban trees (Watson et al., 1996).  The Root 

Invigoration™ (AFM) process, developed by the F.A. Bartlett Tree Expert Co., is 

designed to improve conditions for fine root growth by incorporating organic matter and 

fertilizer into the rooting zone while simultaneously reducing soil compaction and 

increasing aeration.   

 To relieve soil compaction, soil is loosened to a depth of 15-20 cm (6-8 in.) using 

an Air Spade® (Concept Engineering Group, Verona, PA), a tool that channels 

compressed air through a specialized tip.  The treated soil is amended with composted 

organic matter and fertilizer products based on prior soil analyses.  These amendments 

are blended into the existing soil with the AirSpade®.  Finally, the treated area is mulched 

to a depth of 5-7.5 cm (2-3 in.) to help retain soil moisture.  Irrigation is applied 

following treatment to settle the soil and counteract the drying effects of the AirSpade® 

tillage.   
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 Ongoing research in our lab involves measuring the root responses of red maple 

(Acer rubrum) to Root Invigoration™ at four urban locations:  Anderson, SC; Boston, 

MA; Myrtle Beach, SC and Pittsburgh, PA.  Additional treatments include control, 

AirSpade® tillage only, mulching only and fertilization only.   

 Treatment of soils with the AFM program or mulch alone led to significant 

increases in soil organic matter content (Fite et al., 2008).  Soil concentrations of 

phosphorus, potassium, magnesium, manganese, boron and zinc were increased in AFM-

treated soils (Fite et al., 2008).  Mulched soils (i.e. mulch only or the AFM program) had 

higher levels of soil moisture than bare soils (Fite et al., 2008).   

 AFM treatment reduced soil strength in the two years following treatment 

application (Fite et al., 2008).  Soils treated with Airspade® tillage alone and mulch alone 

reduced soil strength the first season, but by the second season, the soil strength for these 

treatments was no different than control (Fite et al., 2008).  The improvements in the soil 

environment created by AFM have lead to improved crown condition, increased diameter 

growth, elevated foliar levels of phosphorus and potassium (Fite et al., 2009).   

 Although soil cores showed few differences in root length density among 

treatments, (Fite et al., 2009), coring data do not accurately measure root production, and 

mortality (Hendrick and Pregitzer, 1992).  The cores collected from the root zones of the 

trees only reflect a static measure of what roots are present at a single point in time and 

fail to capture root dynamics.  Of the few differences, AFM root length and mass 

densities were reduced initially, but had recovered by the end of the first season (Fite et 
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al., 2009).  This initial reduction could be the result of physical damage or drying of the 

root system, or of an enhanced soil environment.    

 Roots rapidly respond to their environment, and may do so with as much, if not 

more, variability as observed in shoots (Pregitzer, 2003).  The flexibility in carbon 

resource allocation allows root systems to exploit areas of soil volume that are more 

favorable for nutrient and water uptake (Eissenstat, 1992; Hodge, 2004).  These areas of 

opportunity often result from organic inputs and their subsequent decomposition (Hodge, 

2004).  However, many questions remain about root activity due to the inherent 

inaccessibility of root systems, and these questions cannot be accurately answered by 

destructive techniques.   

 Minirhizotrons (root observation tubes) are often employed as a nondestructive 

method of observing root production and disappearance (Johnson et al., 2001).  

Minirhizotrons consist of plastic tubes installed in the ground which allow specially-

adapted camera systems to capture images of fine roots that have grown against the outer 

surface of the tube (Johnson et al., 2001).  They allow for direct observation of individual 

roots and provide estimates of root turnover that cannot be obtained from traditional core 

sampling methods (Hendrick and Pregitzer, 1992).  They provide a means to document 

fine root characteristics including production, growth, mortality, phenology and lifespan 

(Johnson et al., 2001).   

 We used minirhizotron data from approximately 10-yr-old red maple to evaluate 

the response of fine roots to the imposed treatments.  Root length, production, mortality, 

depth and diameter were assessed and treatment effects were compared to controls.  The 
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Cox proportional hazards regression technique was also used to analyze the effects of 

these treatments on root longevity.   

 Here we focus on results obtained at the Anderson site where minirhizotrons have 

been installed beneath all treated trees.   

 
Materials and Methods 

 
Experimental Site 
 
 Three groups of trees at the Anderson Sports and Entertainment Center (ASEC) in 

Anderson, SC, were selected for use in this study.  The first group included 30 red maples 

located along the sidewalks leading to the civic center; these trees had an average trunk 

diameter of 12.7 cm (5 in.) at 1.4 m (4.5 ft) above the soil line (dbh).  At the time of 

treatment application, they displayed little internode elongation and thin, chlorotic 

canopies.  The soil in this group was a sandy loam with 60%, 22% and 18% sand, silt and 

clay, respectively.  The second group was located in an open field within the ASEC and 

included five recently-planted red maples with thin, chlorotic canopies, moderate limb 

dieback, and an average dbh of 7.6 cm (3 in.).  The soil in this group was a sandy clay 

with 46%, 18% and 36% sand, silt and clay, respectively.  The third group of trees 

included 15 red maples planted near a sports field with an average dbh of 10.2 cm (4 in.).  

These trees had relatively healthy canopies, with very little chlorosis or dieback.  The soil 

in this group was a sandy clay loam with 58%, 18% and 24% sand, silt and clay, 

respectively.   
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 Pre-treatment foliage samples were also collected in September 2005 and 

analyzed for nutrient concentrations by the Clemson University Agricultural Services 

Laboratory.  A pre-treatment summary of tree parameters is given in Table 5.1.   

 Pre-treatment soil samples were collected in October 2005 and analyzed by A&L 

Analytical Laboratory (Memphis, TN) to determine soil pH, CEC, organic matter 

content, and mineral nutrient concentrations (Table 5.2).  One approximately 500 ml 

representative core from many locations within each group of trees was collected with a 

soil probe to a depth of 15 cm.  Nutrient data were analyzed with the Bartlett Tree 

Research Laboratory’s soil recommendations software to create a prescription fertilizer 

program that complied with ANSI A300 standards (Table 5.3).   

 Fifty soil cores were also collected from each site to determine pre-treatment bulk 

density.  The average pre-treatment bulk density was 1.41 ± 0.02 SE g/cc, with Group 2 

soils having significantly higher bulk densities than Group 1 soils.     

 
Experimental Design and Treatment Application 
 
 Five treatments (Airspade® tillage (A), fertilizer (F), mulch (M), Root 

Invigoration™ (AFM) and control (C)) were applied to ten replicate trees in November 

2005.  Treatments were assigned in a randomized complete block design consisting of 10 

replicate blocks with each treatment randomly assigned to one tree per block.  Blocks 

were established based on tree location and visual ratings within locations.  Prior to 

treatment application, all trees were assigned visual ratings from 0-10 by two trained 

arborists; ratings were based on crown density, leaf color and vigor.   
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Table 5.1.  Pre-treatment properties of red maples in Anderson (N=50).   
 

Parameter Group 1 Group 2 Group 3 Sufficiency4 
Foliar N (%) 1.4 ± .01 1.5 ± .04 1.8 ± .04 0.9-2.68 
Foliar P (%) 0.09 ± .001 0.08 ± .002 0.09 ± .001 0.07-0.42 
Foliar K (%) 0.60 ± .02 1.1 ± .15 0.56 ± .01 0.35-1.23 
Foliar Ca (%) 0.71 ± .01 0.56 ± .10 0.87 ± .02 0.33-2.24 
Foliar Mg (%) 0.16 ± .003 0.13 ± .03 0.23 ± .006 0.10-0.63 
Foliar Zn (ppm) 22.0 ± .55 16.8 ± 2.4 31.5 ± 1.4 16-50 
Foliar Cu (ppm) 4.9 ± .17 5.4 ± .75 18.3 ± 1.3 3-18 
Foliar Mn (ppm) 210.3 ± 9.8 212.6 ± 21.2 606.3 ± 49.2 20-765 
Foliar Fe (ppm) 86.1 ± 1.7 150.2 ± 13.4 131.4 ± 2.5 52-683 
Foliar S (%) 0.11 ± .0009 0.13 ± .004 0.13 ± .003 0.08-0.21 
Foliar Na (ppm) 18.3 ± .48 21.6 ± 1.7 23.9 ± 1.0 20-318 
SPAD1  37.7 ± .47 35.5 ± 1.8 36.4 ± .56  
DBH (cm)2 5.2 ± .11 3.1 ± .39 4.0 ± .16  
Condition3 6.9 ± .06 3.4 ± .24 8.6 ± .13  
1Mean foliar chlorophyll content measured with Minolta SPAD-502 (Minolta Inc, Japan) 
2Stem diameter measured with a diameter tape at approximately 1.4 m (4.5 feet) from 
ground height 
3Visual analysis based on a 1-10 scale assessing foliage color, crown density, dieback and 
vigor  
4Sufficiency ranges for red maple from research plots (Mills and J. Benton Jones, 1996) 
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Table 5.2.  Chemical and physical properties of pre-treatment soil in Anderson. 
 

Parameter1 Group 1 Group 2 Group 3 
ENR2 (kg/ha) 128 83 76 
Soil P (ppm) 12 171 8 
Soil K (ppm) 110 156 150 
Soil Mg (ppm) 69 122 147 
Soil Ca (ppm) 502 1446 879 
Soil Na (ppm) 14 13 14 
Sol. Salt (ppm) 0.3 0.3 0.3 
Soil Fe (ppm) 49 59 47 
Soil Mn (ppm)  54 76 183 
Soil Cu (ppm) 2 1.7 1.1 
Soil Zn (ppm) 2 5 1.2 
Soil OM (%) 1.7 4.6 1.2 
Soil CEC (meq/100g) 5.8 9.7 7.7 
Bulk Density (g/cc)3 1.38 ± .02 1.53 ± .03 1.43 ± .05 
1Chemical properties based on n=1; Bulk density based on n=30, n=5 and n=15 for 
Groups 1, 2 and 3, respectively  
2Estimated Nitrogen Release based on soil organic matter 
3Mean ± 1 SE 
 
 
 
Table 5.3.  Fertilizer products applied to each AFM and fertilizer-treated soil area (7.1 
m2).   
 

 
 

Product 

 
 

Analysis 

 
 

Manufacturer 

Application 
Rate  

Group 1 

Application 
Rate  

Groups 2 & 3 
Boost Granular 24-7-7 375 g 470 g 
 S 6%   
 Ca 1% 

F.A. Bartlett Tree 
Expert Co. 
Stamford, CT   

 Fe 0.10%    
 Cu 0.05%    
 Zn 0.05%    
     

Tiger 90 0-0-0-90 S 565 g  
    
  

Tiger-Sul Products Co 
Calgary, AB 

  
Epsom salt 100% MgSO4 265 g  
  

Top Co Associates LLC 
Skokie, IL   

     
21% Ca 1.4 kg 1.4 kg 
11% Mg   

Palletized  
dolomitic lime 

 

ASC Mineral  
Processing 
Allerton, IL   
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 All trees were treated with Roundup Pro herbicide (Monsanto Company, St. 

Louis, MO) in a 1.5 m (5 ft.) diameter circle around the trunk 14 days prior to treatment 

application to eliminate competing vegetation.  Weed control was maintained throughout 

the experiment with additional Roundup applications as needed.   

 Trees receiving the M treatment were mulched to a depth of 5-7.5 cm (2-3 in.) in 

a 1.5 m radius around the trunk using 0.45 m3 (16 ft.3) of bagged, shredded hardwood 

mulch.  Trees receiving the F treatment were fertilized with the materials listed in Table 

5.3; these were applied to the soil surface as a granular product or drench within the 1.5 

m radius.  Trees receiving the A treatment were air-tilled to a depth of 15-20 cm (6-8 in.) 

using the Air Spade® series 2000 (Concept Engineering Group, Verona, PA) in a 1.5 m 

radius around the trunk.  Controls received no amendment or tillage treatment, but were 

maintained with a 1.5 m radius vegetation-free zone. 

 The AFM treatment began with Airspade® tillage as described above.  Soils were 

then amended with 0.28 m3 (10 ft.3) of bagged, composted cow manure and the 

prescription fertilizer used in the F treatment.  Amendments were applied to the 1.5 m 

radius and incorporated into the loosened soil profile with the Airspade®.  Finally, 

amended soil received a mulch layer as described for the M treatment.   

 Because of long-term seasonal drought, application of water was required to 

prepare the soil for air-spade treatments.  All trees received 106 L (28 gals.) of water.  

Trees receiving AS and AFM treatments received half of the water injected 15 cm 

beneath the soil surface prior to treatment application and half as a drench following 
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treatment application.  All other treatments received the entire volume injected below the 

soil surface.   

 
Minirhizotron Installation and Sampling 
 
 In November 2005, one clear butyrate observation tube (minirhizotron) was 

installed beneath each of the 50 trees at an angle of 30° from the vertical.   The tubes 

were placed approximately 0.75 m from the trunk.  They were 77 cm (30 in.) in length 

and 5.5 cm (2.2 in.) in outer diameter.   Bottoms of the tubes were sealed with acrylic 

plugs.   Light penetration and radiant heating were prevented by wrapping the tops of the 

tubes in black electrical tape, sealing them with rubber stoppers and covering them with 

tan aluminum covers.  Over the course of two years, some tubes were damaged and had 

to be removed from the study. 

 A miniaturized camera system and laptop computer (BTC-2 Minirhizotron Video 

Microscope and BTC I-CAP Image Capture System, Bartz Technology, Carpinteria, 

California) were used to capture images of roots that had grown against the minirhizotron 

tube surface.  These images were collected bi-weekly from March through October and 

monthly during winter.  Image collection began 2/21/2006, approximately 3 months after 

tube installation, and ended on 10/30/2007 for a measurement period of 617 days.  Date 

of appearance, date of death, diameter, length and color were noted for each root in the 

images using Rootfly software version 1.0.2 (http://www.ces.clemson.edu/~stb/rootfly/, 

Clemson University, Clemson, SC).  Roots were classified as dead when they  
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disappeared or became blackened and shriveled.  Diameter and length were measured on 

each date that a root was observed; color information was also updated on each sampling 

date. 

 
Statistical Analysis 
 
 All statistical analyses were performed using SAS 9.1 (SAS Institute, Cary, NC).  

Tube level variables (standing crop, production and mortality) were analyzed using 

repeated measures analysis of variance performed with PROC MIXED.  Root 

demographic parameters (total lifespan, time to browning and brown lifespan) were 

analyzed using Cox proportional hazards regression performed with SAS PROC PHREG.  

Root survivorship curves were generated using the BASELINE statement of PROC 

PHREG.   

 Demographic data were analyzed using two different PHREG models in order to 

answer two specific questions.  First, using the “discrete” model, the effect of each soil 

treatment on root lifespan was assessed by testing the effects of 4 separate model 

covariates, one for each treatment.   These covariates took on values of 0 or 1, depending 

on whether or not a root had received the treatment.  For example, a root from a mulch-

only tree would have values of 0,0,1,0 for the A, F, M and AFM covariates, respectively.  

A root from an AFM tree would be coded 0,0,0,1.   In this case, a significant P-value for 

AFM indicates that the AFM treatment altered root lifespan.  However, it does not tell us 

whether this effect was due to the individual components alone, or whether there was an 

additional benefit to combining the treatments. 



 106 

 The potential synergy among the AS, F, and M treatments was separated from 

their individual additive effects in a second model (the “aggregate” model) in which 

AFM was coded as 1,1,1,1.  In this case, a significant P-value for AFM indicates that the 

AFM treatment has an effect beyond the additive effects of its individual components.  

Hereafter, the two PHREG models will be referred to as the “discrete” and “aggregate” 

models, respectively.    

 Some tube level variables were subjected to similar analyses using PROC 

MIXED to separate additive from synergistic responses.  Treatments were coded in the 

mixed model with covariates as in the aggregate PHREG model.   

 
Results 

 
Root Diameter and Depth Distribution 
 
 AFM and mulch treatments reduced root diameter when compared to control (Fig. 

5.1; p < 0.05).  Mean fine root diameter for control was 0.56 ± 0.12 mm, while those of 

mulch and AFM were 0.52 ± 0.06 mm and 0.50 ± 0.07 mm, respectively.  An aggregate 

model revealed that reduced root diameter in AFM trees was due to more than the 

influence of mulch alone (aggregate AFM p = 0.0013; data not shown).   

 Treatments also had an effect on fine root depth distribution.  After two seasons, 

AFM and fertilizer trees had shifted the majority of their fine root length to the upper half 

(0-33.3 cm soil depth) of the minirhizotron, whereas control trees had the majority of 

their roots on the lower half of the tube (Fig 5.2; p < 0.05).  AS and M treatments had no 

effect on this distribution (data not shown). 
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Figure 5.1.  Mean root diameter over 2006 and 2007 growing seasons (n=8 for C; n=9 for 
A, F and M; and n=10 for AFM).  Error bars represent one standard error of the mean. 
Treatment means depicted with different letters are significantly different using Fisher’s 
multiple comparisons procedure (α = 0.05). 
 
 
 

 
 
Figure 5.2.  Vertical root distribution of red maple in response to soil treatments (n=8 for 
C, n=9 for F, and n=10 for AFM).  Treatment means depicted with different letters are 
significantly different using Fisher’s LSD procedure (α = 0.05).  A and M treatments not 
shown since no significant differences with control occurred. 
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Root Production and Mortality 
 
 In general, fine root standing crop was lower in AFM, M and A trees compared to 

control (Fig. 5.3).  However, this difference was only statistically significant on a small 

number of sampling dates in 2006 and had disappeared in A trees by 2007.  Averaged 

across all 2007 sampling dates, AFM and M trees had 43% and 32% lower standing root 

crops, respectively.  Fertilized trees had higher standing crops throughout most of the 

experiment, but this trend was never significant. 

 These trends were also apparent in cumulative root production.  AFM, A and M 

trees had lower cumulative root length production than controls, while F trees had greater 

production (Fig. 5.4).  However, neither cumulative production nor cumulative mortality 

differed among treatments on any sampling date.   

 Although there were no overall differences in cumulative production and 

mortality among treatments, there were differences on individual dates (Fig. 5.5).  In 

2006, there were three dates where fine root production was significantly higher for 

controls than AFM, A and M trees.  The previous trends of F trees producing more fine 

roots persists, as controls only produced significantly more fine roots on one date, and F 

trees often produced more fine root length, although not significant.  2007 resulted in 

only one significant difference in fine root production, but F trees tended to produce more 

fine root length on any given date.  There were a few isolated differences in mortality 

data, however no trends were apparent across treatments or years. 
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Figure 5.3.  Standing root crop of red maple during 2006 and 2007 following soil 
treatments (n=8 for C; n=9 for A, F and M; and n=10 for AFM).  Error bars represent 1 
standard error of the mean.  *Denotes a significant difference between treatment and 
control means at α = 0.05 using Fisher’s LSD procedure. 
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Figure 5.4.  Cumulative root production and mortality of red maple during 2006 and 2007 
following soil treatments (n=8 for C; n=9 for A, F and M; and n=10 for AFM).  Error 
bars represent 1 standard error of the mean.  *Denotes a significant difference in 
treatment and control means at α = 0.05 using Fisher’s LSD procedure. 
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Figure 5.5.  Root production and mortality of red maple during 2006 and 2007 following 
soil treatments (n=8 for C; n=9 for A, F and M; and n=10 for AFM).  Error bars represent 
1 standard error of the mean.  *Denotes a significant difference in treatment and control 
means at α = 0.05 using Fisher’s LSD procedure. 
 
 
Root Lifespan 
 
 Median root lifespan ranged from 334 days for control trees to 117 days for AFM 

trees (Table 5.4; Fig. 5.6 and 5.7).  Controlling for the effects of root diameter and depth 

distribution, total root lifespan was reduced by AFM treatments (Table 5.5; p = 0.0007).  

Mulched roots also had a greater risk of mortality (p < 0.0001), while Airspade® and 

fertilizer treatments had no effect on total root lifespan.  Roots that were larger in 

diameter and deeper in the soil had a reduced risk of mortality (p < 0.0001).   
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Table 5.4.  Median lifespan estimates of red maple in response to soil treatments.  Data 
collected from minirhizotron images spanning 2006 and 2007 growing seasons (n=8 for 
C; n=9 for A, F and M; and n=10 for AFM).   
 

 
Treatment 

Median Lifespan1 
(days) 

Median Time To 
Browning (days) 

Median Brown 
Lifespan (days) 

C 334 268 275 
AFM 117 96 102 

A 416 264 128 
F 290 226 191 
M 156 117 85 

1Median lifespans derived from survival probabilities calculated using Cox proportional 
hazards regression.   
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6.  Median fine root lifespan represented in days.  White portions of graph 
signify media time until browning, while brown portions of graph represent brown root 
lifespan.  Median lifespans derived from survival probabilities calculated using Cox 
proportional hazards regression (PHREG).  P-values denote significant differences using 
the PHREG aggregate model for total lifespan. 
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Figure 5.7.  Fine root survivorship in red maple throughout 2006 and 2007 growing 
seasons.  Probabilities were calculated using the aggregate model and Cox proportional 
hazards regression.  P-values represent treatment significance when compared to 
mortality risk of control. 
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Table 5.5.  Effect of treatment, root diameter and depth in soil on total root lifespan of red 
maple during 2006-2007. 
 
Aggregate Model: 
       

 
Variable 

 
DF 

Parameter 
Estimate 

Standard 
Error 

 
Chi-Square 

 
Pr > ChiSq 

Hazard 
Ratio 

A 1 -0.08114 0.06022 1.8158 0.1778 0.922 
F 1 -0.01151 0.04744 0.0589 0.8082 0.989 
M 1 0.54943 0.05152 113.7379 <.0001 1.732 

AFM 1 0.36032 0.10605 11.5445 0.0007 1.434 
Root dia. 1 -0.37769 0.06722 31.5718 <.0001 0.685 

Depth in soil 1 -0.04091 0.00154 707.4371 <.0001 0.960 
       
       

Discrete Model: 
       
 

Variable 
 

DF 
Parameter 
Estimate 

Standard 
Error 

 
Chi-Square 

 
Pr > ChiSq 

Hazard 
Ratio 

A 1 -0.08114 0.06022 1.8158 0.1778 0.922 
F 1 -0.01151 0.04744 0.0589 0.8082 0.989 
M 1 0.54943 0.05152 113.7379 <.0001 1.732 

AFM 1 0.81709 0.04893 278.8398 <.0001 2.264 
Root dia. 1 -0.37769 0.06722 31.5718 <.0001 0.685 

Depth in soil 1 -0.04091 0.00154 707.4371 <.0001 0.960 
 
 
 AFM, Airspade® and mulch treatments increased the risk of root browning (Table 

5.6; p < 0.05).  Root browning occurs as roots age, and this pigmentation is associated 

with reduced water and nutrient uptake as compared to young, white roots (Wells and 

Eissenstat, 2001).  Root median time to browning was reduced from 268 days for control 

to 264, 226, 117 and 96 days for A, F, M and AFM treatments, respectively.  The 

aggregate model revealed that the effect of AFM on root browning was due to the 

individual effects of A and M alone.  The risk of browning increased as diameter 

increased (p < 0.0001), but was unrelated to root depth in the soil profile (p = 0.4825).  
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Table 5.6.  Effect of treatment, root diameter and depth in soil on time until root 
browning of red maple during 2006-2007. 
 
Aggregate Model: 
       

 
Variable 

 
DF 

Parameter 
Estimate 

Standard 
Error 

 
Chi-Square 

 
Pr > ChiSq 

Hazard 
Ratio 

A 1 0.37650 0.12100 9.6814 0.0019 1.457 
F 1 -0.09966 0.11058 0.8123 0.3674 0.905 
M 1 0.69642 0.11327 37.8041 <.0001 2.007 

AFM 1 0.09659 0.22860 0.1785 0.6726 1.101 
Root dia. 1 0.93388 0.06545 203.5880 <.0001 2.544 

Depth in soil 1 -0.00215 0.00306 0.4931 0.4825 0.998 
       
       

Discrete Model: 
       
 

Variable 
 

DF 
Parameter 
Estimate 

Standard 
Error 

 
Chi-Square 

 
Pr > ChiSq 

Hazard 
Ratio 

A 1 0.37650 0.12100 9.6814 0.0019 1.457 
F 1 -0.09966 0.11058 0.8123 0.3674 0.905 
M 1 0.69642 0.11327 37.8041 <.0001 2.007 

AFM 1 1.06985 0.10929 95.8229 <.0001 2.915 
Root dia. 1 0.93388 0.06545 203.5880 <.0001 2.544 

Depth in soil 1 -0.00215 0.00306 0.4931 0.4825 0.998 
 
 
 Once brown, the risk of an individual root dying was increased by AFM and 

mulching (Table 5.7; p < 0.0001).  The median time until root disappearance was reduced 

from 275 days for control to 85 and 102 days for mulch and AFM, respectively.  

However, the aggregate model revealed that AFM only reflects the M effect.  Airspade® 

and fertilizer treatments had no effect of the risk of brown roots dying.   

 
Discussion 

 
 We evaluated the effects the Root Invigoration™ (AFM) process on red maple 

roots and compared these effects to its individual components (A, F and M) and controls.   
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Table 5.7.  Effect of treatment, root diameter and depth in soil on brown root lifespan of 
red maple during 2006-2007. 
 
Aggregate Model: 
       

 
Variable 

 
DF 

Parameter 
Estimate 

Standard 
Error 

 
Chi-Square 

 
Pr > ChiSq 

Hazard 
Ratio 

A 1 0.21527 0.16376 1.7279 0.1887 1.240 
F 1 0.18005 0.15596 1.3328 0.2483 1.197 
M 1 0.69736 0.15463 20.3376 <.0001 2.008 

AFM 1 -0.48181 0.31466 2.3446 0.1257 0.618 
Root dia. 1 -0.66389 0.13097 25.6957 <.0001 0.515 

Depth in soil 1 -0.02533 0.00385 43.3562 <.0001 0.975 
       
       

Discrete Model: 
       
 

Variable 
 

DF 
Parameter 
Estimate 

Standard 
Error 

 
Chi-Square 

 
Pr > ChiSq 

Hazard 
Ratio 

A 1 0.21527 0.16376 1.7279 0.1887 1.240 
F 1 0.18005 0.15596 1.3328 0.2483 1.197 
M 1 0.69736 0.15463 20.3376 <.0001 2.008 

AFM 1 0.61086 0.14598 17.5111 <.0001 1.842 
Root dia. 1 -0.66389 0.13097 25.6957 <.0001 0.515 

Depth in soil 1 -0.02533 0.00385 43.3562 <.0001 0.975 
 
 
Minirhizotrons were used to capture information about fine root production, mortality 

and demographics.  We found AFM had few significant effects on production and 

mortality, particularly in the second season of study.  However, F trees tended to produce 

more fine root length.  AFM had a significantly reduced total fine root lifespan, beyond 

merely the summation of the individual treatment effects.  In the case of time until root 

browning and brown root lifespan however, the AFM influence only reflected the effects 

of the individual treatments.   
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Root Production and Mortality 
 
 Throughout the 2007 growing season, AFM and M trees had lower standing crop 

(less root length) than control trees.  On the other hand, standing crops of F trees were 

almost twice as large as control, although these differences were rarely significant.  These 

results were unexpected, as we expected the AFM process to encourage more fine root 

length production.  While the production of greater roots length may seem advantageous 

due to the increase in surface area for water and nutrient uptake (Eissenstat, 1992), these 

roots also incur construction and maintenance costs (Hodge, 2004).  These costs, coupled 

with the fact that growth may be reduced outside of the fertilized zone (Hodge, 2004), 

may reduce the overall benefit of root production.   

 AFM, M and F treatments had higher levels of root mortality (75.6%, 62.1% and 

51.1%, respectively) than controls (43.0%).  The combination of increased mortality and 

reduced production in AFM and M trees led to lower standing crops than control trees.  

The A treatment also initially had lower standing crops and lower production levels, but 

also had lower mortality levels (45.5%).   

 Similar to the current study, King et al. (2002) observed that fertilization 

increased fine root length production and mortality, while increasing net fine root 

production.  Other studies have observed similar results with increased nitrogen fertility 

(Burton et al., 2000; Pregitzer et al., 1993; Pregitzer et al., 1995), although others have 

seen decreases in fine root production (Gower et al., 1992; Grier et al., 1981; Vogt et al., 

1986).  These inconsistencies are likely due to the differences in methods, genotype, soil 

attributes and site characteristics.   
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 Beyond these inconsistencies, fertilizer placement (i.e. broadcast or in isolated 

patches) will likely effect root response.  Pregitzer et al. (1993) documented additions of 

nitrogen into water in patches greatly increased the production of fine roots in the zone 

surrounding the application.  However, other studies evaluating the influence of 

fertilization on larger soil volumes have shown decreases in fine root biomass with 

increased fertility (Haynes and Gower, 1995).  One must view these production data 

carefully though, as Hodge (2004) points out that architecture alterations aren’t always 

accompanied by shifts in biomass and often nutrient patch exploitation may result in 

reduced growth outside the patch.   

 Soil moisture may also influence fine root dynamics.  Soil moisture can increase 

root length production (Coleman, 2007; Pregitzer et al., 1993), but in other cases has no 

effect (Majdi, 2001).  Our results align more with the latter conclusion in that the AFM 

and M treated soils had higher levels of soil moisture over the two growing seasons of 

study (Fite et al., 2008) yet had less root production.  However, the AFM and M 

treatments also had higher levels of soil organic matter (Fite et al., 2008).  This organic 

fraction represents a significant variable in resource availability due to the microbial 

decomposition and release of inorganic inputs (Hodge, 2004).   

 
Total Root Lifespan 
 
 Plants use a large fraction of daily photosynthate to produce and maintain root 

systems (Eissenstat et al., 2000).  As roots die and decompose, they also represent an 

important component of soil nutrient and carbon cycling (Anderson et al., 2003; 

Eissenstat and Yanai, 1997; King et al., 2002; Pregitzer et al., 1995).  Root lifespan is 
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variable and can even fluctuate largely within a species (Eissenstat et al., 2000).  Root 

lifespan must be thought of in “whole-plant” carbon allocation context, and roots must be 

considered as only one of the plant’s carbon sinks (Pregitzer, 2003).   

 Since roots are a large carbon cost to the plant, the gains associated with their 

construction and maintenance should be examined.  Roots are remarkably plastic and are 

able to respond with selective production or mortality to increase productivity (Eissenstat 

and Yanai, 1997).  This plasticity allows for a balance of construction and maintenance 

costs with resource (i.e. water, nutrients) acquisition.  Pregitzer et al. (1993) observed 

increased lifespan with water and nitrogen treatments.  However, this was resource 

placement in patches.  On the contrary, higher soil moisture was shown to increase the 

risk of root mortality in Concord grape, although not significant at p < 0.05 (Anderson et 

al., 2003).  Clearly, this is a complex balance that represents adaptations that we are only 

beginning to understand.   

 AFM and M treatments resulted in smaller mean root diameters and shorter root 

lifespans.  Thinner roots have been shown to be more efficient than coarse roots in terms 

of nutrient uptake efficiency (Eissenstat and Yanai, 1997).  Both of these treatments also 

had higher levels of soil organic matter in 2007 (Fite et al., 2008).  Craul (1985; 1992) 

states that increased levels of organic matter are a major source of energy for soil 

organisms and lead to a healthy soil environment for root growth.  As organic tissues are 

decomposed by soil microbes, energy is used and complex compounds are transformed 

into simple compounds and mineral nutrients for root uptake (Craul, 1992; Harris et al., 

2004).  Perhaps the combination of smaller diameter roots and the potential for more 
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nutrient cycling led to the decreases in lifespan.  Our results echo others in that roots of 

small diameter have higher mortality rates than those of larger diameter (Baddeley and 

Watson, 2005; Pregitzer, 2003; Wells and Eissenstat, 2001).   

 Not only is root lifespan influenced by diameter, but also by vertical distribution 

in the soil profile.  With increasing root depth, we observed decreasing risks of mortality.  

Anderson et al. (2003) and Baddeley and Watson (2005) observed similar results and 

hypthesized that deeper roots may have reduced exposure to soil moisture and 

temperature fluctuations or experience less herbivory.  AFM and M treatments had higher 

levels of soil moisture frequently throughout the study (Fite et al., 2008).  Moist soils 

have been shown to both reduce and increase root lifespan (Anderson et al., 2003; Bryla 

et al., 1997; Kirkham et al., 1998; Pregitzer et al., 1993).   

 A and F treatments had no effect on root lifespan.  Although the same fertilizer 

was applied to the F-treated soils as the AFM-treated soils, levels of mineral nutrients in 

the F soils didn’t differ from control, but AFM levels were different (Fite et al., 2008).   

The AFM nutrient levels were undoubtedly enhanced with the incorporation of additional 

organic matter.  The lack of increase in nutrient concentration may explain the lack of 

response anticipated from fertilized soils.   

 
Time To Browning 
 
 Root browning is associated with a reduced capacity for water and nutrient 

uptake.  Time until root browning represents the time that a root is in a highly-active, 

white state.  The A and M treatments were the only treatments to significantly reduce 

time until root browning.  The AFM treatment was significant in the discrete model, but 
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the aggregate model illustrated that this was only a reflection of individual treatment 

effects.  With both A and M treatments, roots had a higher risk of turning brown.  

Pigmentation of roots has been associated with the reduced capacity of water and nutrient 

uptake (Anderson et al., 2003; Comas et al., 2000; Head, 1966; Wells and Eissenstat, 

2001).   

 Root diameter affects time until browning differently than it affects total lifespan.  

The risk of a root browning is significantly increased with root diameter, whereas the risk 

of a root dying is decreased with diameter.  Our results agree with those of Wells and 

Eissenstat (2001), as they found apple roots of small diameter were less likely to brown 

and had higher risks of mortality. 

 
Brown Lifespan 
 
 Mulch was the only treatment to significantly affect brown root lifespan.  AFM 

was significant in the discrete model, but the aggregate model exposed that this was due 

only to the effect of mulch.  Mulch significantly increased the risk of death after a root 

has become pigmented.  This could be a function of increased soil organic matter content 

promoting root decomposition.  Although AFM soils had equal levels of organic matter, 

those soils were also higher in nutrient concentrations (Fite et al., 2008).  The roots in the 

AFM soils may have higher tissue nutrient concentrations and take longer to decompose.   

 
Conclusions 

 
 Root systems of F-treated trees developed more root length compared to controls, 

while other treatments did not.  However, F had no effect on total root lifespan, time until 
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root browning and brown lifespan.  AFM increased the risk of root mortality beyond the 

increase attributed to mulch alone.  However, M also decreased the time until root 

browning and was responsible for this decrease for the AFM treatment.  The A treatment 

also decreased time until root browning, suggesting that different portions of the root 

lifecycle may be controlled independently.  Studies involving other species and soils are 

needed to strengthen these findings.   
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CHAPTER VI 
 

SUMMARY 
 
 

Introduction 
 

 We’ve all seen them—victims of urban soil.  Poor trees placed in cut, filled, 

mixed, contaminated and compacted soils, expected to live and thrive, yet struggling 

merely to survive.  What happened to them?  More important, is there anything we can 

do? 

 The urban soil environment is a tough one for roots.  Low levels of organic matter 

and mineral nutrients—coupled with high levels of compaction—result in poor root 

growth.  Physical compaction of the soil not only makes it difficult for roots to grow, but 

also exacerbates drought and flooding because of improper pore space distribution.  

Nutrient deficiencies occur when extensive root systems cannot develop and are made 

worse by low organic matter and nutrient concentrations in the soil.   

 The Root Invigoration™ program was designed to rehabilitate urban soils and 

improve tree performance, while limiting damage to established root systems (Figures 6.1 

& 6.2).  This is accomplished using a compressed air excavation tool to till the soil and 

break up the compaction in the upper soil layer where most fine feeder roots are located.  

Organic matter and prescription fertilizer amendments are then added to the loosened soil 

and worked in with the air tool.  Finally, the treated area is mulched and watered to 

prevent drying and to settle the soil.   

 Since 2005, we have been testing the effects of Root Invigoration™ and its 

individual components (mulch, fertilizer and Airspade® tillage) on declining red maple  
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Figure 6.1.  Soil beneath red maple tilled with Airspade® and amended with fertilizer and 
compost before (incorporation into soil profile). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.  Incorporation of amendments into the soil profile using the Airspade®.   
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trees (Acer rubrum) at four urban sites in the eastern United States (Anderson, SC; 

Myrtle Beach, SC; Boston, MA and Pittsburgh, PA).  Our goal was twofold:  1) to 

document the effects of Root Invigoration™ and 2) to establish if any single component 

of the process gives results similar to the comprehensive program.  Fifty trees at each site 

received either Root Invigoration™, mulch only, granular fertilizer only, air tillage only, 

or no treatment.  The sites represented a range of “real world” urban environments: a golf 

course, a college campus, a civic center parking lot and an urban roadside planting.  

Treatments were applied between August 2005 and February 2006 and the results were 

monitored through November 2007.   

 
Soil Responses 

 
 The changes that occurred below-ground were exciting.  Soil strength, nutrient 

content, organic matter levels and soil moisture were all improved with Root 

Invigoration™.  None of the individual treatments could match this response, although in 

some cases they improved a single parameter.   

 Across all sites, Root Invigoration™ reduced the soil’s resistance to root 

penetration (“soil strength”) for two seasons following treatment, whereas mulch and 

Airspade® only reduced soil strength for one season (Fig. 6.3).  Lower soil strength 

means that roots can more easily penetrate Root-Invigorated soils and experience a soil 

environment that is more conducive to water, nutrient and oxygen uptake.  This result 

stresses the importance of both organic amendments and an appropriate mulch layer 

when rehabilitating poor soils.    
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Figure 6.3.  Soil strength two seasons following treatment.  Treatments with different 
letter are significantly different from one another using Fisher’s LSD test. 
 
 
 The soil organic matter content was increased by both mulching and Root 

Invigoration™ (Fig. 6.4).  Organic matter in urban soils is a major source of energy for 

soil organisms that contribute to an overall healthy soil environment; its breakdown 

releases essential nutrients and improves soil structure. 

 Levels of phosphorus, potassium, magnesium, manganese, boron and zinc were 

all increased in Root Invigorated™ soils.  Surprisingly, only manganese levels were 

increased by a surface application of the same fertilizer, indicating that the 

comprehensive soil rehabilitation program was far more effective in providing nutrition 

to the root zone.   
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Figure 6.4.  Soil organic matter content in spring 2007.  Treatments with different letter 
are significantly different from one another using Fisher’s LSD test. 
 
 
 Soil moisture (measured only at the Anderson site) and was higher in mulched 

soils (Root Invigoration™ and mulch only) than in unmulched (Airspade® only, fertilizer 

only and controls).  Across 2006 and 2007, mulched and Root Invigorated soils had 26% 

higher soil moisture than unmulched soils, which lowered tree water stress (see “Tree 

Response” below).  

 
Tree Response 

 
 The above-ground response was slightly less stirring; however positive benefits 

were observed.  Root Invigoration™ improved tree condition at all sites, increased 

diameter growth at two sites and reduced water stress in Anderson.  As was the case with 

the below-ground parameters, no individual treatment could equal all of these positive 

benefits. 
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 By the end of the second growing season, Root Invigorated trees had higher visual 

condition ratings than all other trees.  This indicates those trees had denser, greener 

canopies with a healthier appearance.  Diameter growth was also increased by Root 

Invigoration™ at two sites, a result not seen with any other treatment  

 Plant water stress was measured at the Anderson site in the summers of 2006 and 

2007.  The end of summer 2007 was classified as extreme drought by the National 

Weather Service Palmer Drought Severity Index.  During this extreme drought, trees of 

the mulched treatments were experiencing approximately 30% less moisture stress than 

controls as a result of the increased soil moisture levels (Fig. 6.5).  

 

 
 
Figure 6.5.  Water stress of trees in 2007 growing season.  Smaller (more negative) 
number represent more water stress.  Airspade® and fertilizer treatment not shown 
because they were never different from controls.  
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Summary 
 

 At last, it appears that there is a program available to arborists that will allow trees 

to be set free from the grasp of the urban soil.  All of the factors presented indicate that 

the use of comprehensive soil amelioration programs like Root Invigoration™ appear to 

be beneficial for red maple.  The next phase of study should focus on the response of 

other age classes and species to these types of processes.   
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