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ABSTRACT

The study of random objects is a useful one in many applications and areas

of mathematics. The Probabilistic Method, introduced by Paul Erdős and his many

collaborators, was first used to study the behavior of random graphs and later to

study properties of random objects. It has developed as a powerful tool in combi-

natorics as well as finding applications in linear algebra, number theory, and many

other areas. In this dissertation, we will consider random vectors, in particular,

dependency among random vectors. We will randomly choose vectors according to

a specified probability distribution. We wish to determine how many vectors must

be generated before the vectors are almost surely dependent, that is, there is a high

probability that a subset of the vectors is linearly dependent.

In Chapter 1, we will review previous work done in this area. A typical result

in the study of random objects is a threshold function that describes the behavior

of a given property of the objects. We will discuss previous threshold functions

and methods used to find them. The results found for this problem before now

have been for vectors of bounded or fixed weight. In Chapter 2, we will develop

the methods we will use later on vectors of fixed weight. We will then use these

methods in Chapter 3 to vary the probability model under which the vectors are

generated. Instead of considering vectors of fixed weight, we will consider a general

probability model for choosing the vectors: each position in a vector will be assigned

a probability of containing a nonzero entry. Finally, in Chapter 4 we will specify a

function for this probability. We will then find a threshold result for the specified

probability model. This result will give a lower bound for the number of vectors

needed before they are almost surely dependent.
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CHAPTER 1

Random Vector History

Since its introduction in the late 1940s [3], the Probabilistic Method has

been a powerful tool, widely used in combinatorics and graph theory as well as

finding applications in number theory, algebra, and computer science. Pioneered by

Erdős and his many collaborators to study random graphs, probabilistic methods

can often yield results not easily attainable with other methods. The key to the

Probabilistic Method is its use of random objects, often applied to existence proofs

or in finding threshold results. A random approach to a difficult problem can make

the problem easier to tackle. For instance, determining if a graph is Hamiltonian

is an NP-complete problem. However, it has been shown that a random graph

is almost surely Hamiltonian if it has minimum degree 2. This type of threshold

result is often the goal in studying random objects. In this dissertation, we will

be investigating properties of random vectors. In particular, we will discuss the

probability of dependency among a set of vectors randomly chosen according to a

given probability model.

The majority of the literature in this area has focused on the dependencies

found in random vectors of fixed weight or vectors of bounded weight, that is, vectors

with weight at most h. The weight of a vector is taken here to be the number of

nonzero entries of that vector. Although many variations and extensions have been

studied, many aspects of the problem remain unanswered. Our main question is as

follows.

Question: Choose l vectors randomly from a vector space based on a given prob-

ability distribution. How large must l be to ensure with high probability that a

subset of the l vectors is linearly dependent?

Kolchin, Khokhlov, and Balakin have published a collection of papers that

address this question under the guise of hypergraphs. In the first of these papers

[11], Kolchin and Khokhlov studied the distribution of cycles in a random graph of



degree N . In [2], Balakin, Kolchin, and Khokhlov studied the number of hypercycles

in hypergraphs. The results of these papers apply to vectors over F2. Kolchin found

similar results for F2 by studying systems of random equations in [9] and their

relation to hypergraphs. Kolchin and Khokhlov generalized the work on systems

of equations to prime fields in [12]. Finally, Kolchin studied yet another system of

random equations in [10] to analyze the question over general finite fields. Calkin

took a more direct approach to the question in [5] and [6], giving a result similar to

the main results in the previous papers although the models are slightly different.

Cooper then generalized the question further in [7] to include random vectors over

Abelian groups in addition to vector spaces over finite fields. Finally, in [13] Linial

and Weitz considered the question motivated by coding theory applications.

In the remainder of the dissertation, k will be the length of the vectors

and we will be choosing l vectors independently according to a specified probability

distribution. We will regard the vectors as the rows of a matrix so that we will be

considering an l × k matrix. From linear algebra we know this matrix is dependent

for any l > k. Therefore, the interesting case for dependency is when l ≤ k. As

such, we will always assume that l ≤ k.

We begin by summarizing the work done by Balakin, Kolchin, and Khokhlov

on hypergraphs. A hypergraph H = (V,E) is a generalization of a graph where V is

a set of vertices and each edge in E, called a hyperedge, is a subset of the vertices.

Although hypergraphs and hyperedges are generally considered to be non-empty, for

this application we allow the empty hypergraph and hyperedge as well as multiple

hyperedges. Each hypergraph with k vertices and l hyperedges is associated with

an l×k binary matrix A = (aij) called the incidence matrix. A is defined as follows:

if ei is the ith hyperedge in E and vj is the jth vertex of H, then

aij =











1 if vj ∈ ei

0 otherwise.

A subset of hyperedges C = {e1, e2, . . . , em} is a hypercycle if every vertex appearing

in C appears in an even number of the hyperedges. In other words, the vectors

representing e1, e2, . . . , em sum to the zero vector modulo 2. If C1 and C2 are both

2



hypercycles, the union of C1 and C2, denoted C1 4 C2, is defined to be the set of

hyperedges contained in either C1 or C2 but not both. Finally, let C1, C2, . . . , Cs be a

set of hypercycles and let ε1, ε2, . . . , εs ∈ {0, 1}. Then C1, C2, . . . , Cs are independent

if

ε1C1 4 ε2C2 4· · ·4 εsCs = ∅

if and only if ε1 = ε2 = · · · = εs = 0.

In [2], Balakin, Kolchin, and Khokhlov constructed a hypergraph with inci-

dence matrix A whose rows are generated independently of each other. To construct

a row, h positions are chosen uniformly with replacement in which to insert a 1. In

doing this, it is possible for more than one 1 to be placed in any given position. If

an odd number of 1’s are placed in one position, then the final entry is a 1. Oth-

erwise, a 0 is placed in that position. Notice that using this construction, each row

contains at most h 1’s. Balakin, Kolchin, and Khokhlov considered the total num-

ber of independent hypercycles, s(A), of this hypergraph. Then the total number

of nonempty hypercycles is S(A) = 2s(A) − 1. They proved the following theorem

about the expected number of hypercycles in the constructed hypergraph.

Theorem 1.1 Let h ≥ 3 be fixed, l, k → ∞ in such a way that l/k → α. Then

there exists a constant αh such that E(S(A)) → 0 for α < αh and E(S(A)) → ∞

for α > αh.

A system of equations was given to find the exact value of αh along with the following

solutions:

α3 = 0.8894 . . . , α6 = 0.9969 . . . ,

α4 = 0.9671 . . . , α7 = 0.9986 . . . ,

α5 = 0.9891 . . . , α8 = 0.9995 . . .

An asymptotic expression for αh was also given as

αh ' 1 −
e−h

ln 2
−

e−2h

ln 2

(

h2

2
+

h

ln 2
− h −

1

2

)

. (1.1)

Kolchin proved the same theorem in [9] by first forming the matrix A in

terms of systems of linear equations and then considering the number of hypercycles

found in the hypergraph represented by A. As in [2], the number of nonzero entries

3



of each row of A, equivalently, the number of variables included in the linear equation

corresponding to the row, was at most h.

All the the papers above point out the connection between the dimension of

the null space of the matrix A and the systems of linear equations or the number of

independent hypercycles of the hypergraph represented by A. Recall that a subset

of hyperedges, C, is a hypercycle if all of the vertices appearing in C have even

degree. This is equivalent to saying that the sum of the rows corresponding to these

hyperedges sum to the zero vector over F
k
2. Thus the maximum number of distinct

hypercycles is the number of independent subsets of the rows of A that sum to the

zero vector. Observe that this corresponds exactly to a basis for the left null space

of the matrix A. Thus the size of the null space of A is one more than the number

of nonempty hypercycles in the hypergraph represented by A, since we account for

the empty sum when considering the null space.

Calkin proved a similar threshold theorem using the left null space of a

matrix rather than the concept of hypergraphs [5]. In this paper, the matrix A is

formed by choosing binary vectors uniformly with replacement from the set of all

vectors with weight exactly h. As a side note, the vectors chosen are actually used

as the columns of A and the size of the right null space is calculated. Since we place

the vectors as the rows of A, we will phrase Calkin’s results in terms of the left null

space.

Let r be the rank of A and s = l − r the dimension of the left null space.

Calkin showed the following threshold theorem for each h ≥ 3.

Theorem 1.2

(a) If β < βh and m = m(k) < βk, then E(2s) → 1 as k → ∞.

(b) If β > βh and m = m(k) > βk, then E(2s) → ∞ as k → ∞.

As h → ∞, the constant βh is shown to be

βh ∼ 1 −
e−h

ln 2
.

The first few exact critical values are found to be

4



β3 = 0.8894928 . . . , β7 = 0.9986504 . . . ,

β4 = 0.9671147 . . . , β8 = 0.9995102 . . . ,

β5 = 0.9891624 . . . , β9 = 0.9998209 . . . ,

β6 = 0.9962283 . . . , β10 = 0.9999343 . . .

It appears that the only difference between Theorems 1.1 and 1.2 is in the

finite limit of the expected value. Since S(A) is defined to be the total number of

non-empty hypercycles while the null space allows the zero vector, this difference

is simply a matter of what is being considered. Even the exact solutions for the

threshold values agree to four decimal places with the exception of α6 and β6.

However, it is important to remember that the models are different. We go into

more detail on this after discussing Calkin’s method.

Calkin took a very different approach to proving this theorem than Balakin,

Kolchin, and Khokhlov. He defined a Markov chain as follows: starting with the

zero vector, add a single vector of weight h at each step and calculate the weight

of the current vector sum. The states of the chain are in the set {0, 1, 2, . . . , k}

and correspond to the possible weights of the vector sum. Calkin showed that the

transition matrix of this Markov chain was diagonalizable and obtained explicit

expressions for the eigenvalues and eigenvectors. He then found the probability that

a subset of m vectors sums to the zero vector in F
k
2. Thus the expected size of the

left null space of the matrix whose rows are vectors of fixed weight h is

E(2s) =
k
∑

i=0

1

2k

(

k

i

)

(1 + λi)
l,

where

λi =

h
∑

t=0

(−1)t
(i
t

)(k−i
h−t

)

(k
h

)

is the ith eigenvalue of the transition matrix.

Estimating λi and in turn E(2s) gives the threshold theorem. Now let pk,h(l)

be the probability that the l random vectors are linearly dependent. As a result of

Theorem 1.2, Calkin also gives

5



Theorem 1.3 For each h there is a constant βh so that if β < βh then

lim
k→∞

pk,h(βk) = 0,

where βh is as before.

Since βh → 1 very quickly, this theorem tells us that l must be very close to k in

order to have a chance of choosing a set of linearly dependent vectors.

At this point we return to the observation that although the models of Bal-

akin, Kolchin, and Khokhlov in [2, 9] are different than Calkin’s in [5], the results

look the same. Upon careful inspection, we see that as h grows, the asymptotic

threshold values given for the two theorems are slightly different. Recall the ap-

proximate solution (1.1) given by Balakin, Kolchin, and Khokhlov as the threshold

value:

αh ' 1 −
e−h

ln 2
−

e−2h

ln 2

(

h2

2
+

h

ln 2
− h −

1

2

)

,

as well as the asymptotic threshold value for βh given by Calkin:

βh ∼ 1 −
e−h

ln 2
.

It is clear that these critical values are asymptotic. In fact, Calkin also gives the

following expanded expression:

βh ∼ 1 −
e−h

ln 2
−

e−2h

ln 2

(

h2

2
+

h

ln 2
− h −

1

2

)

+ e−3hO(h4)

in [5], giving more evidence to imply these theorems are equivalent. We must recog-

nize, though, that these are asymptotic solutions. Here lies the difference between

the theorems: the thresholds are not actually identical, but are instead asymptoti-

cally equivalent.

This similarity between solutions comes directly from the similarity between

models. In all of the papers, h positions are chosen uniformly and independently

from k possible locations. However, in the former papers, the locations of the

1’s are chosen with replacement while in the latter paper, they are chosen without

replacement. Thus the vectors chosen in [2, 9] have weight at most h and the vectors

in [5] have weight exactly h. Actually, we can express the first model in terms of

6



the second: to generate the vectors in the bounded weight model, take h random

vectors of weight exactly 1 and add them together. Now, if λi is the ith eigenvalue

of the transition matrix generated for the problem with weight h vectors, let µi

be the eigenvalue of the transition matrix of the problem with vectors of weight

1. Adding h vectors of weight 1 corresponds to raising the transition matrix for

weight 1 vectors to the hth power. We are thus interested in the ith eigenvalue of

this matrix, µh
i . Observe that

µi =

1
∑

t=0

(−1)t
(i
t

)(k−i
1−t

)

(k
1

)

=
1

k
(k − i − i)

= 1 −
2i

k
,

so

µh
i =

(

1 −
2i

k

)h

.

To determine how close these two models are, we must compare µh
i and λi. Initial

computations on Maple indicate that these two values are almost indistinguishable.

Furthermore, in analyzing E(2s), Calkin gave the following lemma which will aid

us.

Lemma 1.1

(a) |λi| < 1 for all 0 ≤ i ≤ k.

(b) If i > k
2 then λi = (−1)hλk−i.

(c) Let 0 < c < 1
2 . If i = ck then

λi =

(

1 −
2i

k

)h

−
4
(h
2

)

k

(

1 −
2i

k

)h−2 i

k

(

1 −
i

k

)

+ O

(

h3

c2k2

)

.

Notice the first term in the expression for λi in part (c) is µh
i . Since this is the

dominant term in the expression, we see that λi approaches µh
i as k → ∞. Thus

the two different models are asymptotically the same, explaining the similarity in

the threshold theorems.

Although the results are similar, the methods used by Balakin et al. and

Calkin are completely different. The disadvantage of using hypergraphs to prove the

7



threshold theorems is in the limitations set on the matrix considered. By using an

incidence matrix, we are forced to consider only vectors chosen from F2. However,

Kolchin’s use of linear equations and Calkin’s Markov chain can be used to inves-

tigate results in other finite fields. Recall that Kolchin related a system of linear

equations over F2 to a hypergraph in [9] to give a threshold theorem. Kolchin and

Khokhlov considered the system of equations over Fp, p prime, given by

xi1(t) + xi2(t) + · · · + xih(t) = bt, t = 1, . . . , l,

where the values for ij(t) are uniformly randomly chosen from {1, 2, . . . , k} with

replacement and the values for bt are chosen from Fq with equal probability [12]. Ah

is then defined to be the matrix corresponding to the system of equations. Observe

by the formulation of the system each row of Ah will have at most h nonzero entries.

A critical set is defined to be a set of rows and weights, B = {t1, . . . , tm; ε1, . . . , εm}

such that

ε1at1 + . . . εmatm = 0

where at is the tth row of Ar. Letting S(Ar) be the total number of critical sets of

Ar, they showed for Fp:

Theorem 1.4 Let p ≥ 3 be prime, h ≥ 3 be fixed, and let l, k → ∞ in such a way

that l/k → α. Then there exists a constant αh such that E(S(Ah)) → 0 if α < αh

and E(S(Ah)) → ∞ if α > αh.

The constant αh is the first component of the vector which is the only solution

of the following system of equations in three unknowns a, λ, and x:

1

p
eλ(1 + (p − 1)e−pλ/(p−1))

(

ah

ah − x

)a

e−x = 1,

(p − 1)(ah − x)

x
=

(

λ

x

)h

,

λ
1 − e−pλ/(p−1)

1 + (p − 1)e−pλ/(p−1)
= x.

Finally, in [10], Kolchin generalized this approach even further and showed

that the threshold exists for systems of equations over Fq, q ≥ 3. He considered the

8



system of linear equations given by

a
(t)
1 xi1(t) + a

(t)
2 xi2(t) + · · · + a

(t)
h xih(t) = bt, t = 1, . . . , l

where the ij(t) and bt are randomly chosen as before and the a
(t)
j are uniformly

randomly chosen from Fq. The threshold theorem resulting from this generalized

system of linear equations is identical to Theorem 1.4 with p replaced by q.

Calkin also generalized his method of computing the expected size of the

null space to other finite fields in [6]. The process is the same: randomly choose

l vectors independently and uniformly with replacement from the set of vectors in

F
k
q that have h nonzero entries, and define a Markov chain based on the Hamming

weight of the partial sums of the vectors. Setting up the transition matrix as before

he found

λi =

h
∑

t=0

(−1)h+t

(i
t

)(k−i
h−t

)

(q − 1)t
(

k
h

)

(q − 1)k

and

E(qs) =

k
∑

i=0

1

qk

(

k

i

)

(1 + (q − 1)λi)
l(q − 1)k−i.

Asymptotics of E(qs) gave the following generalized theorem.

Theorem 1.5 For any q, h ≥ 3 there is a constant βh so that

(a) If β < βh and m = m(k) < βk, then E(qs) → 1 as k → ∞.

(b) If β > βh and m = m(k) > βk, then E(qs) → ∞ as k → ∞.

Furthermore, 1 − βh ∼ (q−1)e−h

ln q as k → ∞.

Again, the expected size of the left null space, E(qs), led to the following corollary

about linear dependencies among the random vectors.

Corollary 1.1 For any fixed h, q, if β < βh and l < βhk, then, as k → ∞, the

probability that the vectors u1,u2, . . . ,ul are linearly dependent tends to 0.

Corollary 1.1 and Theorem 1.5 give a lower bound for the number of vectors needed

to have a set of vectors in F
k
q that are linearly dependent. In addition, Kolchin and

Khokhlov’s calculation of this threshold value in [12, 10] agreed with the asymptotic

expression for βh in Theorem 1.5.
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The original question of linearly dependent random vectors can be modified

to obtain other interesting results. Cooper not only considered the question where

the vector entries come from finite fields, but also generalized the problem to consider

the case when the entries are elements of an Abelian group [7]. Like Calkin, he

studied vectors of constant weight. However, it was necessary to employ different

methods in order to gain more insight into the question regarding Abelian groups.

Cooper gave an expression for the probability that a random sequence of vectors

sums to the zero vector and estimated this probability in order to obtain a system

of equations. For fixed k, the smallest positive solution to the system gave a lower

bound on the threshold value for linear independence. On the other hand, for k

tending to infinity, the lower bounds could be simplified to find the solution of one

equation. For finite fields, Cooper found this threshold value to be αq, the largest

non-negative solution of

αq = 1 − logq

(

1 + (q − 1)e−αqh
)

.

Furthermore,

αq ∼ 1 −
(q − 1)e−h

ln q
,

the same result given by Calkin in [6].

The question of Abelian groups separates into two cases to specify the pos-

sibilities for the vector entries:

Case 1: Each vector has h nonzero entries, all of which are a fixed element,

γ, of the group such that the order of γ is t.

Case 2: Each vector has h nonzero entries chosen uniformly at random from

the nonzero elements of the group where the size of the group is t.

In both cases, as h → ∞, a lower bound on the critical threshold value was found

to be

βh ∼ log2 t

where t is as defined in the cases above.
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Linial and Weitz have also studied rank and linear dependency among ma-

trices where the rows are restricted [13]. The rows in their matrices were chosen

uniformly from the vector space containing vectors with Hamming weight at most

h, that is the vectors have at most h nonzero entries. Their variation is as follows:

how large does the maximum weight need to be in order to ensure that the matri-

ces behave like those where h = n, in other words, matrices whose rows are taken

from F
k
q with no restrictions. Let El be the expected size of the null space of an

l× k matrix whose rows are chosen uniformly over Fq with no restriction on weight.

Linial and Weitz noted that

El = 1 +
ql − 1

qk
.

Now let El
h be the expected size of the null space where the rows have weight at

most h. One of the main theorems in [13] is

Theorem 1.6 Let Ω = Ωh,l,k,q be the probability space of l × k matrices over Fq

with row weights at most h. Consider the rank r as a random variable on Ω. Then

the expected cardinality of the kernel satisfies:

El = 1 +
ql − 1

qk
≤ E(ql−r) = El

h

with equality when h = k. Moreover, if h ≥ ln k + ω(1), then for every l,

El
h ≤ (1 + o(1))

(

1 +
ql − 1

qk

)

as k → ∞.

This implies that when h ≥ ln k + ω(1),

El ≤ El
h ≤ (1 + o(1))El.

In other words, when h is large enough, the null space of matrices in Ωh,l,k,q behaves

roughly as it does when there are no restrictions on the rows of the matrices. To

estimate El
h and prove this theorem, Linial and Weitz used upper and lower bounds

on the probability that a sum of vectors gives the zero vector. As a corollary to this

theorem, they gave
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Corollary 1.2 Let ω(k) → ∞ as k → ∞. If h ≥ ln k + ω(k), then

E(min{k, l} − r) ≤
q−|l−k|

ln q
+ o(1)

where r is the rank of the matrix.

This led to the results they were interested in.

Corollary 1.3 If h > ln k + ω(k) and if |k − l| ≥ ω(k) then almost every matrix in

Ωh,l,k,q has full rank.

Corollary 1.4 If h > ln k + ω(k) and if r′ ≤ min{l, k} − ω(k) then Pr(r ≤ r′) =

o(1).

This last corollary is especially interesting as it says that if h is large enough, the

probability of not achieving full rank is very small.

The papers discussed all addressed some variation of the main question, the

only differences being in the models and fields considered and in the methods used.

There are still variations to this question to be studied. We will explore another of

these variations by modifying the probability model. Instead of requiring the vectors

to have constant or bounded weight, we will assign each element of the vectors a

probability of having a 1 in that location. We will find an exact expression for the

expected size of the null space of the matrix generated under this probability model

following a method we outline using fixed weight vectors. Finally, we will use the

exact expression to explore a specific probability model.
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CHAPTER 2

More on Fixed Weight Vectors

2.1 Introduction

In Chapter 1 we saw lower bounds on a critical threshold value for our main

question over both F2 and Fq. For sets of vectors with size less than this critical

value, previous authors showed that those vectors were almost surely independent,

thus implying we would need to generate more vectors than the critical value before

finding a dependent subset. Balakin, Kolchin, Khokhlov, and Calkin all took an

approach that utilized a matrix and all authors discussed the importance of the

null space of that matrix in their findings. In this chapter we will more thoroughly

discuss the link between our question and the null space of a certain matrix. To

explore this idea further, we will continue to work with vectors of fixed weight, as

Calkin and Cooper did. We first describe the variables and assumptions we will be

using.

Let H be the set of binary vectors of weight h over F
k
2 . Choose l vectors,

v1,v2, . . . ,vl, uniformly from H with replacement and let V = {v1,v2, . . . ,vl}. We

define the matrix A such that the ith row of A is the ith vector chosen, i.e.

A =



















vT
1

vT
2

...

vT
l



















.

Observe that A is an l× k matrix and by construction, each row of A has weight h.

Let r be the rank of A and s = l−r the dimension of the left null space of A. Recall

in [5] that Calkin found the following exact expression for the expected number of

subsequences of V that sum to the zero vector:

E(2s) =
k
∑

i=0

1

2k

(

k

i

)

(1 + λi)
l, (2.1)



with

λi =

h
∑

t=0

(−1)t
(i
t

)(k−i
h−t

)

(k
h

) .

Alternatively, we can view E(2s) as the expected size of the left null space of A. To

make this connection clear, consider x in the left null space of A. Since x is over F2,

multiplying A by xT on the left is equivalent to adding the rows of A corresponding

to the 1’s in x. Since xT A = 0, the sum over F2 of the subset of rows is the zero

vector, therefore the subset of rows is dependent. Thus there is a correspondence

between the dependent subsets of V and the vectors in the left null space of A.

Now that we see there is a well-known concept from linear algebra connected

to our question, we can use it to gain insight into the problem. In particular, we

discuss the implication of having E(2s) = 1. If the size of the null space is 1, then

there is only one vector in the null space. In fact, we know exactly what vector

that is, the zero vector. Therefore if xT = (c1, c2, . . . , cl), then the only solution to

xT A = 0, or

c1v1 + . . . clvl = 0,

is x = 0. In other words, v1,v2, . . . ,vl are independent. So when the expected

size of the left null space is close to 1, the vectors are almost surely independent,

or there is a very small probability that they are dependent. As E(2s) increases,

the probability that there exists a dependent subset of V also increases. Recall the

threshold theorem for E(2s).

Theorem 2.1 (Calkin, [5])

(a) If β < βh and l = l(k) < βk, then E(2s) → 1 as k → ∞.

(b) If β > βh and l = l(k) > βk, then E(2s) → ∞ as k → ∞.

Furthermore, as h → ∞,

βh ∼ 1 −
e−h

ln 2
.

This theorem says that we must choose at least k · (1 − e−h/ ln 2) vectors of fixed

weight h from F
k
2 before obtaining a dependent set. Also, as h → ∞, βh rapidly ap-

proaches 1, so we must generate close to k vectors before we have a high probability

of seeing dependence.
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Calkin used a Markov chain to obtain the expression for E(2s) leading to

Theorem 2.1. In this chapter, we will further exploit the importance of the null

space by considering the right null space of A. This will lead to an interesting

binomial identity as well as ideas that will be important in a later chapter with

different probability models.

2.2 The Right Side of Calkin’s Work

From linear algebra, we know that the left null space of a matrix A is the

set of all vectors x such that xT A = 0. As stated before, when x ∈ F
l
2 as it is here,

x being in the left null space is equivalent to the corresponding rows of A summing

to the zero vector. On the other hand, the right null space of a matrix A is the set

of all vectors x such that Ax = 0. When x ∈ F
k
2, we now need to determine when

the corresponding columns sum to the zero vector. Although we are still adding a

subset of vectors, we no longer know the weight of those vectors so a Markov chain

is no longer convenient. Instead, we will need to be careful of where the nonzero

entries are. To do this, we will fix a vector, x, of weight r and determine how many

of the vectors, or how many of the rows of A, have a certain number of entries in

common with x. This calculation will then be used to determine the probability

that the columns corresponding to the nonzero entries of the vector sum to zero.

Lemma 2.1 Fix x ∈ F
k
2 such that the weight of x is r. Choose v1,v2, . . . ,vl ran-

domly with replacement from F
k
2 so that the weight of each vi is h. Then the proba-

bility that the product of vi and x is 0 for all i is

Pr(vT
1 x = vT

2 x = . . . = vT
l x = 0) = Θl,

where

Θ =
1
(k
h

)

bh/2c
∑

i=0

(

r

2i

)(

k − r

h − 2i

)

.

Proof: Let H = {v ∈ F
k
2 | wt(v) = h}. Clearly,

|H| =

(

k

h

)

.
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Now let W = {v ∈ H | vT x = 0}. To find the desired probability, we will first find

the probability that a random vector is in W, or

Pr(vTx = 0) =
|W|

|H|
.

We begin by determining |W|. Note that in order for vTx = 0, v and x must have

an even number of 1’s in common, say 2i 1’s in common. From the r 1’s in x, there

are
( r
2i

)

ways to choose these common bits, leaving h− 2i 1’s in v. The locations of

these remaining 1’s must be chosen from the locations of the k − r 0’s in x in order

for the vector product to be 0. There are
( k−r
h−2i

)

ways to do this. Thus the number

of vectors in H with 2i 1’s in common with x is

(

r

2i

)(

k − r

h − 2i

)

.

Since v and x have an even number of 1’s in common, and the common number

ranges from 0 to h, we find

|W| =

bh/2c
∑

i=0

(

r

2i

)(

k − r

h − 2i

)

.

Then

Pr(vT x = 0) = Θ =
1
(k
h

)

bh/2c
∑

i=0

(

r

2i

)(

k − r

h − 2i

)

.

Finally, since each vi is chosen independently from F
k
2 , then Pr(vTx = 0) for any v

chosen is independent of the other vectors already chosen. Thus

Pr(vT
1 x = vT

2 x = . . . = vT
l x = 0) = Pr(vT

1 x = 0)Pr(vT
2 x = 0) · · ·Pr(vT

l x = 0)

= [Pr(vT
1 x = 0)]l

= Θl

as claimed. 2

Alternatively, the result of this lemma could be stated as Pr(Ax = 0) = Θl where

A is the previously discussed matrix.

Now that we know the probability that a fixed vector is in the null space of

a random set of l vectors, we can use this to find an expression for the expected size

of the right null space of A. To use Lemma 2.1, we will need to separate the vectors
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in F
k
2 by weight. We let t be the dimension of the right null space of A and denote

the expected size of the null space by E(2t).

Proposition 2.1 Let v1,v2, . . . ,vl ∈ F
k
2 be chosen randomly such that the weight

of each vi, 1 ≤ i ≤ l, is h and let A be the matrix with vT
i as the ith row. Let t be

the dimension of the right null space of A. Then

E(2t) =

k
∑

r=0

(

k

r

)

Θl

where

Θ =
1
(

k
h

)

bh/2c
∑

i=0

(

r

2i

)(

k − r

h − 2i

)

as before.

Proof: Observe that there are 2k vectors in F
k
2 and

(k
r

)

vectors of weight r in F
k
2.

Let {xi}
2k

i=1 be the set of all vectors in F
k
2 and define the random variable Yi to be

Yi =











1 if Axi = 0

0 otherwise.

By defining Yi as an indicator variable in this way, we can use it to determine the

size of the right null space,

|{xi|Axi = 0}| =

2k
∑

i=1

Yi.

By linearity of expectation, the expected size of the null space is given by a sum of

expected values:

E(2t) = E





2k
∑

i=1

Yi





=

2k
∑

i=1

E(Yi).
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Then using the usual definition of the expected value of a random variable and the

definition of the null space,

E(2t) =

2k
∑

i=1

1 · Pr(Axi = 0)

=
2k
∑

i=1

Pr(vT
1 xi = vT

2 xi = . . . = vT
l xi = 0).

Regrouping the vectors above, we can sum over the weight of the xi. We are then

able to use the result of Lemma 2.1. Thus

E(2t) =

2k
∑

i=1

Pr(vT
1 xi = vT

2 xi = . . . = vT
l xi = 0)

=

k
∑

r=0

(

k

r

)

Pr(vector of weight r is in null space of A)

=
k
∑

r=0

(

k

r

)

Θl.

Hence

E(2t) =

k
∑

r=0

(

k

r

)

Θl,

where Θ is the probability that a vector of weight r is in the right null space of the

matrix A. 2

This gives us an exact expression for the expected size of the right null space of A.

We have seen that the left null space of A is important to the problem at

hand. In fact, we have given a direct correlation between the vectors in the left

null space and subsets of dependent vectors. So why are we interested in the right

null space? The following algebraic connection between E(2s) and E(2t) gives the

answer.

Fact 2.1 Suppose A is an l× k binary matrix and let s be the dimension of the left

null space and t the dimension of the right null space. Then

E(2t) = 2k−lE(2s).

Proof: Suppose r is the rank of A. Then s = l−r and let t = k−r. Thus t = k−l+s,

giving

2t = 2k−l2s.
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So E(2t) = E(2k−l) = 2k−lE(2s). 2

This equality, along with equation (2.1) and Proposition 2.1, gives a com-

binatorial proof of the following binomial identity. We also give an algebraic proof

below.

Corollary 2.1

2l
k
∑

i=0

(

k

i

)





1
(k
h

)

bh/2c
∑

j=0

(

i

2j

)(

k − i

h − 2j

)





l

(2.2)

=

k
∑

i=0

(

k

i

)



1 +

h
∑

j=0

(−1)j

(i
j

)(k−i
h−j

)

(

k
h

)





l

(2.3)

Proof: This identity certainly looks complicated, but the proof is actually quite

straightforward. First notice that (2.2) can be rewritten as

k
∑

i=0

(k
i

)

(

k
h

)l



2

bh/2c
∑

j=0

(

i

2j

)(

k − i

h − 2j

)





l

=

k
∑

i=0

(k
i

)

(

k
h

)l





(

k

h

)

+

h
∑

j=0

(−1)j
(

i

j

)(

k − i

h − j

)





l

.

If we can show

2

bh/2c
∑

j=0

(

i

2j

)(

k − i

h − 2j

)

=

(

k

h

)

+
h
∑

j=0

(−1)j
(

i

j

)(

k − i

h − j

)

,

we will obtain the desired result. Recall Vandermonde’s identity:

(

a + b

d

)

=
d
∑

c=0

(

a

c

)(

b

d − c

)

.

Replacing
(k
h

)

with the appropriate expression and adding the two sums gives the

result.

(

k

h

)

+
h
∑

j=0

(−1)j
(

i

j

)(

k − i

h − j

)

=
h
∑

j=0

(

i

j

)(

k − i

h − j

)

+
h
∑

j=0

(−1)j
(

i

j

)(

k − i

h − j

)

= 2

bh/2c
∑

j=0

(

i

2j

)(

k − i

h − 2j

)

.

Hence (2.2) is true. 2

Although we could find asymptotics for E(2t), this corollary tells us it is not

necessary to do so. Theorem 2.1 gives a lower bound on the threshold value for the

size of the left null space. This can be used in conjunction with Fact 2.1 to derive
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a lower bound on a threshold value for the right null space. On one side of the

threshold, E(2s) tends to 1 while E(2t) approaches 2k−l. On the other side of the

threshold, E(2s) as well as E(2t) go to infinity.

The relationship between the expected sizes of the left and right null space is

particularly useful as it gives another expression with which to analyze and derive a

threshold theorem. Although we don’t need to find asymptotics for both expressions,

for some probability models it may be difficult to obtain one for E(2s) or E(2t). If

we are able to find one of these, the second follows by multiplying by the appropriate

factor of 2. In addition, we can always use the simpler expression even if it is not

the desired one for our application.

For our particular application, the size of the left null space is more useful

to us as it is directly related to the question. However, we will be able to use this

connection between the left and right null space as well as the idea behind proving

Lemma 2.1 in the next chapter. There we will extend these results to vectors that

do not have fixed weight and are chosen under a more general probability model.
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CHAPTER 3

Vectors Under a Probability Distribution

3.1 Introduction

We have seen one type of generalization for the problem so far; Cooper

considered vectors over Abelian groups in addition to finite fields. We saw that

similar threshold results were found for this case. In this chapter and the next,

we are interested in a different generalization of the question. We will continue to

work over F2, but we will remove the restriction that the random vectors have fixed

weight. Instead, we allow the weight of each vector to vary by assigning to each

entry of a vector v a probability of having a 1 in that position. In other words,

Pr(v[j] = 1) = αj .

The variables and set up will be the same as before: choose l vectors of length k and

let A be the matrix having the ith vector chosen as its ith row. Let s be the dimension

of the left null space of A and t the dimension of the right null space. Recall that

we want to know how many vectors we need to choose to have a high probability

that the vectors are dependent. In this chapter we will find exact expressions for

the expected size of both the left and right null space.

3.2 The Right Null Space: Method 1

In Chapter 2 we found an expression for E(2t), the expected size of the

right null space of A where the rows of A had fixed weight h. We first calculated

the probability that a fixed vector, x, with weight r was in the right null space by

recognizing the fact that x and each row of A had to have an even number of 1’s in

common. We will follow the same outline in this chapter and begin by finding the

probability that a fixed vector of weight r is in the null space.

With vectors of fixed weight, finding this probability was merely a matter of

finding the number of ways that x and each vector vi could have an even number



of 1’s in common and then dividing by the total number of vectors in the space.

With the new probability model, however, the matter is more complicated. Since

the probability of having a 1 changes according to position, we must know where

the 1’s are in x. The following lemma is similar to Lemma 2.1, but notice that we

now specify the location of the 1’s in x.

Lemma 3.1 Fix x ∈ F
k
2 with wt(x) = r and suppose x[j1] = x[j2] = · · · = x[jr] = 1.

Let v1,v2, . . . ,vl ∈ F
k
2 with Pr(vi[j] = 1) = αj for all i. Then

Pr(vT
1 x = vT

2 x = · · · = vT
l x = 0) = Θl

r

where

Θr =

br/2c
∑

m=0

k
∑

s1=1

k
∑

s2=s1+1

· · ·
k
∑

s2m=s2m−1+1

r
∏

t=1
t6=s1,...,s2m

αjs1
αjs2

· · ·αjs2m
(1 − αjt).

Proof: We will first find this probability for one vector v ∈ F2, i.e.

Pr(vT x = 0).

Assume v is chosen according to the αj probability model, that is,

Pr(v[j] = 1) = αj .

As in Lemma 2.1, x and v must have an even number of ones in common, so

Pr(vT x = 0) = Pr(v has 2m ones in common with x).

If v has no ones in common with x, then this is the probability that v has a 0 in

each position where x has a 1. Thus

Pr(v has 0 ones in common with x) =

r
∏

t=1

(1 − αjt).

If v has 2 ones in common with x, then we need the probability that v[p] =

v[q] = 1 for any pair p, q ∈ {j1, j2, . . . , jr}, p 6= q, and v[w] = 0 for all other

w ∈ {j1, j2, . . . , jr}, w 6= p, q. So
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Pr(v has 2 ones in common with x) =
r
∑

s1=1

r
∑

s2=s1+1

r
∏

t=1
t6=s1,s2

αjs1
αjs2

(1 − αjt).

The two sums run through all ordered pairs of indices in {j1, j2, . . . , jr} and the

product gives the probability that the remaining terms are 0. We continue this

process to find that

Pr(v has 2m ones in common with x)

=

r
∑

s1=1

r
∑

s2=s1+1

· · ·
r
∑

s2m=s2m−1+1

r
∏

t=1
t6=s1,...,s2m

αjs1
αjs2

· · ·αjs2m
(1 − αjt).

The embedded sums indicate we are considering all possible ordered 2m−tuples of

1’s. Now, in order to have vTx = 0, v and x must have 2m common 1’s, where

0 ≤ 2m ≤ r. Thus

Pr(vT x = 0) =

br/2c
∑

m=0

r
∑

s1=1

r
∑

s2=s1+1

· · ·
r
∑

s2m=s2m−1+1

r
∏

t=1
t6=s1,...,s2m

αjs1
αjs2

· · ·αjs2m
(1−αjt).

Set Θr = Pr(vTx = 0). Since the vi are independent of each other and Θr is the

same for each vi, 1 ≤ i ≤ l,

Pr(vT
1 x = vT

2 x = · · · = vT
l x = 0) = Θl

r.

2

With this lemma we can find the probability that a given vector is in the

null space of A, as long as we know exactly what that vector is. When computing

E(2t), we will construct a sum over all 2k vectors in F
k
2, as we did in Chapter 2.

There, it was very convenient to regroup the terms and sum instead over the weight

of the vectors. Lemma 3.1 doesn’t allow us to do this. Therefore, we would like to

generalize the result to all x ∈ F
k
2 with weight r. We do this in the following lemma.

Lemma 3.2 Let x ∈ F
k
2 with weight r > 0. Let v1,v2, . . .vl ∈ F

k
2. Then

Pr(vT
1 x = vT

2 x = · · · = vT
l x = 0) = Ψl

r
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where

Ψr =

br/2c
∑

m=0

k
∑

s1=1

k
∑

s2=s1+1

· · ·
k
∑

s2m=s2m−1+1

k
∑

t1=1

t1 6=si

k
∑

t2=t1+1

t2 6=si

· · ·
k
∑

tr−2m=tr−2m−1+1

tr−2m 6=si

αs1αs2 · · ·αs2m(1 − αt1)(1 − αt2) · · · (1 − αtr−2m).

Proof: For this proof, we want to enumerate the probability for all possible vectors x

of weight r from F
k
2. Again, x and v, a vector generated under the probability model,

must have an even number of 1’s in common. As in Lemma 3.1, the probability of

having 2m common 1’s is

k
∑

s1=1

· · ·
k
∑

s2m=s2m−1+1

αs1 · · ·αs2m ,

counting all possible ordered 2m−tuples in v. The remaining r − 2m 1’s in x must

correspond to 0’s in v, thus we must have r− 2m 0’s in v in addition to the 2m 1’s.

We account for all possible combinations in

k
∑

t1=1

t1 6=si

· · ·
k
∑

tr−2m=tr−2m−1+1

tr−2m 6=si

(1 − αt1) · · · (1 − αt2m).

Combining these two expressions, we find the probability of having 2m common 1’s,

0 ≤ m ≤ br/2c, to be

Pr(vTx = 0) =

br/2c
∑

m=0

k
∑

s1=1

k
∑

s2=s1+1

· · ·
k
∑

s2m=s2m−1+1

k
∑

t1=1

t1 6=si

k
∑

t2=t1+1

t2 6=si

· · ·
k
∑

tr−2m=tr−2m−1+1

tr−2m 6=si

αs1αs2 · · ·αs2m(1 − αt1) · · · (1 − αtr−2m).

Set Ψr = Pr(vT x = 0). Since v1, . . . ,vl are independent,

Pr(vT
1 x = vT

2 x = · · · = vT
l x = 0) = Ψl

r.

2

Before continuing, let’s write out the first few terms of Ψr to get a handle

on what the summands looks like. When m = 0, the summand is not empty, rather
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we find that it reduces to the sums indexed by t, or

k
∑

t1=1

· · ·
k
∑

tr=tr−1+1

(1 − αt1) · · · (1 − αtr). (3.1)

Since v must have a 0 in each position corresponding to a 1 in x, we see that the

summand gives the probability that this happens for any x of weight r, as it should.

For example, if k = 3 and r = 2, there are
(3
2

)

vectors of weight 2 that may be in

the null space. Then (3.1) becomes

(1 − α1)(1 − α2) + (1 − α1)(1 − α3) + (1 − α2)(1 − α3),

giving the probability of having the appropriate vectors v as rows in A. When

m = 1, there are 2 common 1’s between the rows of A and x of weight r while the

remaining r − 2 1’s in x correspond to 0’s in v. Then the summand is

k
∑

s1=1

k
∑

s2=s1+1

k
∑

t1=1

t1 6=s1,s2

· · ·
k
∑

tr−2=tr−3+1

tr−2 6=s1,s2

αs1αs2(1 − αt1) · · · (1 − αtr−2). (3.2)

For example, suppose k = 4 and r = 3. Then (3.2) is

α1α2(1 − α3) + α1α2(1 − α4) + α1α3(1 − α2) + α1α3(1 − α4)

+α2α3(1 − α1) + α2α3(1 − α4) + α2α4(1 − α1) + α2α4(1 − α3).

This gives the probability of having any rows in A that correspond to vectors of

weight 3 and having 2 1’s in common.

We now have the probability that a fixed vector of weight r is in the right

null space of A. The advantage of this lemma over the last is that we can now use

this probability to find E(2t), using the same method as in Chapter 2.

Theorem 3.1

E(2t) = 1 +
k
∑

r=1

Ψl
r

where Ψr is as in Lemma 3.2.

Proof: Assume A is the l × k matrix with vi as its ith row. We wish to count the

expected number of vectors from F
k
2 in the right null space of A. We order the
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vectors xi ∈ F
k
2 and define the random variable Yi to be

Yi =











1 if Axi = 0

0 otherwise.

By linearity of expectation we find

E(2t) = E





2k
∑

i=1

Yi



 =

2k
∑

i=1

E(Yi).

Substituting for E(Yi) and regrouping the terms by weight of xi yields

E(2t) =
2k
∑

i=1

E(Yi)

=

2k
∑

i=1

Pr(Axi = 0)

=

k
∑

r=0

Pr(Axi = 0|xi has weight r)

= 1 +

k
∑

r=1

Pr(Axi = 0|xi has weight r).

Finally, we replace the probability in the last line with the result from Lemma 3.2

to get

E(2t) = 1 +
k
∑

r=1

Ψl
r.

2

We now have an expression for the expected number of vectors in the right

null space of A for a general probability model. Therefore the expected size of the

left null space is

E(2s) = 2l−kE(2t).

Finding asymptotics for E(2s) for a specific probability model would lead to the

lower bound for l and the the threshold theorem we are searching for. However, the

expression we have is clearly not easy to work with. The number and variability of

embedded sums alone is enough to prompt us to find a more elegant expression to

estimate.
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3.3 The Right Null Space: Method 2

To find a different expression, we need a few preliminary lemmas. In Lemma

3.1, we specified the location of the 1’s in the vector x. There we saw that having

a zero vector product depended largely on the behavior of the randomly generated

vectors in those locations. In the next lemma, we will consider a vector of length t

where every entry is a 1. We will then find the vector product of this vector with

another generated by a probability model and give an expression for the probability

that the product is zero.

Lemma 3.3 Let b = (b1, b2, . . . , bt) where Pr(bi = 1) = βi and let y = 1 ∈ F
t
2 be

the vector of all ones. Then

Pr(bTy = 0) =
1

2
+

1

2

t
∏

i=1

(1 − 2βi).

Proof: Observe that

bTy =
t
∑

i=1

biyi =
t
∑

i=1

bi.

Now let Pt = Pr(bTy = 0). We can write Pt recursively as follows.

Pt = Pr

(

t
∑

i=1

biyi = 0

)

= Pr

(

t
∑

i=1

bi = 0

)

= Pr

(

t−1
∑

i=1

bi = 0

)

Pr(bt = 0) +

(

t−1
∑

i=1

bi = 1

)

Pr(bt = 1)

= Pt−1(1 − βt) + (1 − Pt−1)βt

= βt + (1 − 2βt)Pt−1

To find a closed form for Pt, we need to know P0. When t = 0, bTy is an empty

sum and therefore is 0. Thus P0 = Pr(bTy = 0) = 1, giving

P1 = 1 − β1 =
1

2
+

1

2
(1 − 2β1) .

This also verifies the definition P0 = 1 since bTy = 0 if and only if b = 0 when t = 1.

The probability of this happening is 1− β1. We then use the recursive definition of
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Pt to find

P2 = β2 + (1 − 2β2)P1

= β2 + (1 − 2β2)

(

1

2
+

1

2
(1 − 2β1)

)

=
1

2
+

1

2
(1 − 2β1) (1 − 2β2) .

Now assume that

Pm =
1

2
+

1

2
(1 − 2β1) (1 − 2β2) · · · (1 − 2βm) .

This leads to

Pm+1 = βm+1 + (1 − 2βm+1)Pm

= βm+1 + (1 − 2βm+1)

(

1

2
+

1

2
(1 − 2β1) (1 − 2β2) · · · (1 − 2βm)

)

=
1

2
+

1

2
(1 − 2β1) (1 − 2β2) · · · (1 − 2βm) (1 − 2βm+1) .

With this we find

Pt =
1

2
+

1

2

t
∏

i=1

(1 − 2βi)

by induction. 2

To use this result in finding E(2t), we must generalize the lemma so that

y is no longer the vector of all 1’s, rather we want it to have length k with zero

entries as well as 1’s. We will again have to specify where the 1’s are in y since the

probability model of the random vector is so dependent on location. However, we

will be able to use Lemma 3.3 whose result gives a much nicer closed form for the

probability than the previous embedded sums. Since we are now considering vectors

of length k, we return to vectors generated under the αj probability model.

Corollary 3.1 Let v = (v1, v2, . . . , vk) such that Pr(vj = 1) = αj . Let yS =

(y1, y2, . . . , yk) where S = {j1, j2, . . . , jt} ⊆ [k] and yi = 1 if and only if i ∈ S. Then

Pr(vTyS = 0) =
1

2
+

1

2

∏

j∈S

(1 − 2αj).
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Proof: Again observe that

vT yS =
k
∑

i=1

viyi =
∑

j∈S

vjyj =
∑

j∈S

vj.

We see that vT yS is equivalent to summing the terms of v corresponding to the 1’s

in yS . Therefore v and YS are reduced to the type of vectors seen in Lemma 3.3.

The result immediately follows. 2

We are now in a position to find the probability that a fixed vector is in

the right null space of the matrix A. We know the probability that one row of A

times the fixed vector yS is zero. Since the vectors are chosen independently, the

probability this is true for each row of A independent of what happens with the

other rows. Therefore

Pr(AyS = 0) = P l
S

=





1

2
+

1

2

∏

j∈S

(1 − 2αj)





l

= 2−l
l
∑

w=0

(

l

w

)

∏

j∈S

(1 − 2αj)
w

by the binomial theorem. Finally, we have reached the probability we need in order

to find a new expression for E(2t).

Theorem 3.2

E(2t) = 2−l
l
∑

w=0

(

l

w

) k
∏

j=1

(1 + (1 − 2αj)
w)

Proof: In order to find E(2t), we must add P l
S for all possible subsets S of [k], size

0 to k. This gives

E(2t) =
∑

S

P l
S

= 2−l
∑

S

l
∑

w=0

(

l

w

)

∏

j∈S

(1 − 2αj)
w

= 2−l
l
∑

w=0

(

l

w

)

∑

S

∏

j∈S

(1 − 2αj)
w.

Consider
∑

S

∏

j∈S(1−2αj)
w. Since S runs through all possible subsets of {1, 2, . . . , k},

this is the sum of all possible products of (1 − 2αj)
w, where 1 ≤ j ≤ k. By the
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binomial therem, when we sum over all of the subsets we get
∏k

j=1 (1 + (1 − 2αj)
w),

thus

E(2t) = 2−l
l
∑

w=0

(

l

w

)

∑

S

∏

j∈S

(1 − 2αj)
w

= 2−l
l
∑

w=0

(

l

w

) k
∏

j=1

(1 + (1 − 2αj)
w) .

2

This gives a new expression for E(2t) that is more manageable than the first.

We point out here that the terms of the sum have no combinatorial interpretation

when discussing the right null space of A, but are merely the result of rewriting the

expression.

3.4 The Left Null Space

At this point, we can use Theorem 3.2 to find the expected size of the left

null space. By Fact 2.1,

E(2s) = 2−k
l
∑

r=0

(

l

r

) k
∏

j=1

(1 + (1 − 2αj)
r). (3.3)

This is is actually the expression we want to estimate to find a threshold theorem

since it more directly relates to our question. However, it will be instructive to first

construct the expected size of the left null space. The approach will be as before:

fix a vector x and determine the probability x is in the left null space of A. Since

the columns of A are independent of each other, we can write this probability as

Pr(xT A = 0) =
k
∏

j=1

Pr(xTaj = 0),

where aj is the jth column of A. From this equation we see that the desired prob-

ability only relies on how x interacts with the individual columns of A. Since each

entry in the jth column has probability αj of being a 1, we can concentrate on one

column of A and then extend our results to the entire matrix. Thus we wish to

compute

Pr(xTaj = 0).

We will again consider the number of common 1’s to find this probability.
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Fix the vector x and a probability α. Choose a = (a1, a2, . . . , al)
T such that

Pr(ai = 1) = α. Fixing α and choosing a in this way corresponds to fixing a column

of A to determine the probability that we’re interested in. Since x and a must have

an even number of 1’s in common, we need to know the weight of x. For instance,

if the weight of x is 0, x is the zero vector and xTa = 0, independent of α. Thus

Pr(xTa = 0) = 1.

If wt(x) = 1, then a must have a 0 in the location corresponding to the 1 in x while

the other entries of a may be either 0 or 1. Thus

Pr(xTa = 0) = 1 − α.

Now suppose wt(x) = 2. In order to have xTa = 0, then the two ones in x must be

paired with two 1’s from a or with two 0’s, since we are working over F2. Since the

probability that the vectors have two 1’s in common is α2 and the probability that

a has two 0’s where x has 1’s is (1 − α)2, we see that

Pr(

l
∑

i=1

xiai = 0) = (1 − α)2 + α2.

If wt(x) = 3, then x and a can again either have no 1’s in common or two. If there

are two common 1’s, then there are
(3
2

)

ways to choose the location of the 1’s in a.

Thus

Pr(

l
∑

i=1

xiai = 0) = (1 − α)3 +

(

3

2

)

α2(1 − α).

Similarly, when wt(x) = 4, then

Pr(

l
∑

i=1

xiai = 0) = (1 − α)4 +

(

4

2

)

α2(1 − α)2 + α4.

A pattern is now becoming evident. The key to finding these probabilities is exactly

what we have used before. Since addition is over F2, the number of 1’s that x and

a have in common must be even. We use this in the following proof.
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Lemma 3.4 Fix x ∈ F
l
2 with weight r. Fix α and let a = (a1, a2, . . . , al) such that

Pr(ai = 1) = α. Then

Pr(xT a = 0) =
1 + (1 − 2α)r

2
.

Proof: In order to have xTa = 0 over F2, x and a must have an even number of ones

in common, i.e. they can have no 1’s in common, two 1’s in common, four 1’s in

common, and so on. Suppose x and a have 2m common 1’s, where 0 ≤ m ≤ br/2c.

Then a must have 0’s in the locations corresponding to the r − 2m remaining 1’s in

x. Since there are
(

r
2m

)

ways to choose the locations of the common 1’s in a, the

probability that xTa = 0 when x and a have 2m 1’s in common is

(

r

2m

)

α2m(1 − α)r−2m.

Since 0 ≤ m ≤ br/2c, we have

Pr(xTa = 0) = (1−α)r +

(

r

2

)

α2(1−α)r−2 + · · ·+

(

r

2br/2c

)

α2br/2c(1−α)r−2br/2c.

The last term in the sum is αr if r is even and αr−1(1 − α) if r is odd. We use the

binomial theorem to find a closed form for this probability.

Pr

(

l
∑

i=1

xiai = 0

)

= (1 − α)r +

(

r

2

)

α2(1 − α)r−2 + . . .

=
1

2





r
∑

j=0

(

r

j

)

αj(1 − α)r−j +
r
∑

j=0

(−1)j
(

r

j

)

αj(1 − α)r−j





=
1

2
(((1 − α) + α)r + ((1 − α) − α)r)

=
1 + (1 − 2α)r

2

Thus the claim is true. 2

In this lemma, we considered only one column of the matrix A. In order to

find the expected size of the left null space of A, we must know the probability that

the vector x is in the left null space, Pr(xT A = 0). To find the matrix product

xT A, we simply multiply x by each column of A. By definition, the probability that

an entry in the jth column is 1 is αj , so Lemma 3.4 gives
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Pr(xTaj = 0) =
1 + (1 − 2αj)

r

2

where aj is the jth column and x has weight r. Finally, since each column of A

is independent of the others, the probability that x is in the left null space is the

product of the probabilities that x times each column is 0. We have just shown the

following lemma.

Lemma 3.5 Fix x ∈ F
l
2 with weight r. Let A = (aij), where Pr(aij = 1) = αj .

Then

Pr(xT A = 0) =
k
∏

j=1

1 + (1 − 2αj)
r

2
.

This lemma gives the probability that a given vector of weight r is in the

left null space of A. Notice the similarity to the wth term of E(2t) found earlier.

With this probability, we can now use linearity of expectation to find the expected

size of the left null space.

Theorem 3.3

E(2s) =

l
∑

r=0

(

l

r

) k
∏

j=1

1 + (1 − 2αj)
r

2

Proof: Let {xi}
2l

i=1 be the set of all vectors in F
l
2 and define the random variable Yi

to be

Yi =











1 if xT
i A = 0

0 otherwise.

Then we have

|{xi|x
T
i A = 0}| =

2l
∑

i=0

Yi,

and, by linearity of expectation,

E(2s) = E





2l
∑

i=0

Yi





=

2l
∑

i=0

E(Yi)

=

2l
∑

i=0

Pr(xT
i A = 0).
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Regrouping the vectors and summing over the weight of the xi, we use the probability

found in Lemma 3.5 that a fixed vector of weight r is in the left null space:

E(2s) =

2l
∑

i=0

Pr(xT
i A = 0)

=
l
∑

r=0

(

l

r

)

Pr(vector of weight r is in left null space of A)

=
l
∑

r=0

(

l

r

) k
∏

j=1

1 + (1 − 2αj)
r

2
.

Hence

E(2s) =

l
∑

r=0

(

l

r

) k
∏

j=1

1 + (1 − 2αj)
r

2

is the expected size of the left null space of A. 2

Observe that we have verified equation (3.3), that is

E(2s) = 2l−kE(2t).

In fact, unlike the results with fixed weight vectors, we have found the same ex-

pression for both E(2s) and 2l−kE(2t). Additionally, in finding the size of the left

null space, we have also found a combinatorial interpretation for the terms of the

sum. Here, the index r represents the weight of the vectors and the summand is the

probability that a vector of weight r is in the left null space, or the probability that

a subset of r vectors, vi, sum to the zero vector. To find a threshold theorem, we

must find when E(2s) is close to 1 so that we only expect one vector in the left null

space, the zero vector. Since the zero vector is in the null space with probability 1,

the 0th term of E(2s) should be 1. This is easily verified by the expression given.

Therefore, the remaining terms must contribute a negligible amount to the sum,

implying the probability that there are vectors of weight r > 0 in the left null space

is very small. In Chapter 4, we will use this idea to analyze a specific probability

model.
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CHAPTER 4

Exploring a Probability Model

4.1 Introduction

Dependency among vectors is a monotone property: if a set of vectors is de-

pendent, adding one more vector to the set will not change that fact. We also expect

that the more vectors there are in a set, the more likely they are to be dependent.

In fact, as soon as the number of vectors exceeds the length of the vectors, we are

assured a dependency. Thus it is reasonable to expect to find threshold behavior in

any set of random vectors when considering dependence, that is, we expect to be

able to find a threshold function for dependence. We will be searching for a function,

l∗(k), such that

(i) if l(k)/l∗(k) → 0, then l = l(k) vectors are almost surely independent, and

(ii) if l(k)/l∗(k) → ∞, then l = l(k) vectors are almost surely dependent.

This threshold behavior is illustrated by the graph in Figure 4.1. The position on the

plot marked by lm shows where we might begin to see the probability of dependence

approaching 0. The position marked by lM shows a value where the probability of

dependence is approaching 1.

0

1

l
m

l
M

Figure 4.1 General Threshold Graph



The desire with a threshold property is to determine how sharp the threshold

is. If the threshold is sharp, the desired property goes from highly unlikely to almost

surely present with the addition of just a few objects. A graph for a sharp threshold

may look like what we see in Figure 4.2.Often, though, the provable behavior is more

like what we see in Figure 4.1, either because this actually is the truth or because

this is what our methods allow us to prove.

0

1

l
m

l
M

Figure 4.2 Sharp Threshold Graph

We have discussed quite a few threshold theorems related to our main ques-

tion for vectors of fixed or bounded weight over various finite fields. The theorems

we have shown have given the lower bound, lm, on the number of vectors needed

before we expect to see dependency. Although there are some results on upper

bounds, we will concentrate on a lower bound for vectors chosen under a different

probability model. In the the remainder of this chapter, we will choose vectors, v,

so that

Pr(v[j] = 1) =
c

j

where c is a constant between 0 and 2/5. In the last chapter, we discussed how

we could use the size of the left null space of a matrix to determine when a set of

vectors are dependent with high probability. We will use this idea in this chapter;
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we will first analyze E(2s) and find an asymptotic for the size of the rth term and

then use this to determine when E(2s) is close to 1.

4.2 What To Expect

The results found using this probability model will be interesting in applica-

tions involving vectors that are heavier at the beginning than at the the end. Since

the probability of seeing a 1 in the first positions of the vectors is so much greater

than a 1 in the last positions, the majority of the 1’s will be in the beginning entries.

As k → ∞, the probability of having a nonzero entry later in the vector is very small.

Therefore the vectors chosen under this model will be very sparse. If a random vec-

tor has few nonzero entries compared to its length, we can, in essence, regard it as a

vector of smaller dimension. The number of vectors needed to generate a dependent

set of vectors increases as the dimension of those vectors increases. Because of this,

we expect to see dependency occur much earlier, or with fewer vectors, than we saw

in the fixed weight case.

To analyze E(2s), we will first investigate a few plots of its terms. From

Chapter 3 with αj = c/j, we find E(2s) under this probability model to be

E(2s) =

l
∑

r=0

(

l

r

) k
∏

j=1

1 +
(

1 − 2c
j

)r

2
. (4.1)

We let Tr, 0 ≤ r ≤ l, be the rth term of E(2s), giving

Tr =

(

l

r

) k
∏

j=1

1 +
(

1 − 2c
j

)r

2
. (4.2)

With extensive plotting of the terms for various combinations of c, l, and k we can

identify two different behaviors of Tr, the terms of E(2s). The first plots below,

Figures 4.3 and 4.4, are the terms of E(2s) for k = 1000, c = 1/4, and two different

values of l, l = 6 and l = 10.Although we see two different general shapes in

Figures 4.3 and 4.4, observe that they are both unimodal, that is they only have

one maximum. The maximum term in Figure 4.3 is the 0th term while the maximum

term in Figure 4.4 is at r = 1. We see a similar trend in Figures 4.5 and 4.6 when

k = 1000 and c = 1/3 for two different l, l = 10 and l = 100. Again, both plots are
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unimodal, but when l is small, l = 10, T0 is the largest term. In the plot on the

right, when l = 100, the maximum term occurs for larger r. Also notice that the

size of the terms in Figure 4.6 is very large, indicating that the size of the terms

grows quickly as l grows.
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Figure 4.3 k = 1000, l = 6,
c = 1/4
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Figure 4.4 k = 1000, l = 10,
c = 1/4
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Figure 4.5 k = 1000, l = 10,
c = 1/3
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Figure 4.6 k = 1000, l = 100,
c = 1/3
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We should mention here why we restrict the constant c to be between 0 and

2/5. All of the plots we have seen so far have been unimodal. This is an extremely

useful property to have when analyzing E(2s). If we were to know the maximum

term of E(2s), and that all other terms were less than this maximum, we could use

this to aid in estimating the size of the sum. This would, of course, require proving

the unimodal property. This idea motivated us to only look at values of c such that

the terms of E(2s) are unimodal. Observe the plots shown in Figures 4.7 and 4.8.

Figure 4.7 plots Tr for k = 1000, l = 200, and c = 3/4. Notice that although T0 is

the largest term, there is more than one maximum. Figure 4.8 shows the first 10

terms of E(2s) for k = 1000, l = 46, and c = 0.48. Observe again that this plot is

not unimodal. In addition, T1 < 1 while T2 > T1. Much of the work we will do in

this chapter hinges on the fact that T2 < T1 whenever T1 < 1, so it is imperative to

restrict c so that this is true.
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Figure 4.7 k = 1000, l = 200,
c = 3/4
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1098765432
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Figure 4.8 k = 1000, l = 46,
c = 0.48

Therefore we will only take c between 0 and 2/5. In fact, our calculations

show that the results we give are true for 0 < c < 9/20, but our methods only allow

us to prove the theorems for 0 < c < 2/5. Many of the lemmas and theorems in this
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chapter are actually shown for 0 < c < 1/2. This allows us to give neater bounds

and estimates. However, the final theorems and bounds will require 0 < c < 2/5.

Returning now to the earlier discussion, we’re interested in the behavior

shown in Figures 4.3 and 4.5. As outlined in Chapter 3, we can determine when

E(2s) is close to 1 by considering the terms of the sum. Since

T0 =

(

l

0

) k
∏

j=1

1 +
(

1 − 2c
j

)0

2
= 1,

E(2s) approaches 1 only when T0 is the largest term and the remaining terms are

very small. By the figures above, we make two observations:

(i) For fixed c, T0 is the maximum term when l is small. As l increases, it
appears that the maximum occurs for some r > 0.

(ii) As c decreases, the value of l needed to have the appropriate graph seems
to also decrease.

These observations imply that T0 is the maximum term when l is small compared

to k and that the critical value of l also depends on c.

We have also discussed that not only must the 0th term of E(2s) be the

largest term, but the sum of the remaining terms must be negligible in order for

E(2s) to approach 1. Thus we want to determine not only when T0 is the largest

term, but also when Tr is small for r > 0.

The remainder of the chapter will be devoted to finding a threshold function:

Goal: Find a function l∗ = l∗(k) such that

(i) if l(k)/l∗(k) → 0, then E(2s) → 1, and

(ii) if l(k)/l∗(k) → ∞, then E(2s) → ∞.

Since we are analyzing E(2s), the threshold function that we find will describe the

behavior of this sum rather than the probability of dependence.

To begin, since l is a function of k and l < k, we set l = dk, d < 1. We

will estimate the size of both T1 and T2 and determine the critical value of d for

which 1 > T1 > T2. The critical d value will lead to the threshold function l∗(k) and

we will then show that the sum of T0, T1, T2, and the remaining terms is bounded

above by a geometric series that converges to 1 for a given function l = l(k). This

will lead us to the threshold theorem we desire.
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4.3 The First Term, T1

We start by determining when T1 < T0 = 1. This will give us an idea of

where we should expect the remaining terms to be very small. We mentioned that

the plots above are unimodal. Although we will not show that this is true here, we

will show that when T1 < 1, the remaining terms are also decreasing for a given

l. In this section we will first estimate T1 and use the asymptotic with l = dk to

determine the critical value, d1, where T1 < 1 when d < d1 and T1 > 1 otherwise.

4.3.1 An Asymptotic for T1

By equation (4.2), we see that the first term of E(2s) is

T1 =

(

l

1

) k
∏

j=1

1 +
(

1 − 2c
j

)

2
= l

k
∏

j=1

(

1 −
c

j

)

. (4.3)

We wish to determine the behavior of this term as k → ∞ to find the values of l

for which it is less than 1. Clearly, the behavior of T1 is largely determined by the

product. We set t1(c, k) to be this product. Since we regard k to be fixed, we will

simply write this as t1(c), thus

t1(c) =
k
∏

j=1

(

1 −
c

j

)

. (4.4)

Before finding when T1 < 1, we will need to estimate t1(c). The asymptotic analysis

of t1(c) will use estimates derved from the bounds summarized in the lemmas stated

below. The proofs of these lemmas are standard and will be given after the proof

of the theorem. The first lemma gives upper and lower bounds on the kth harmonic

number.

Lemma 4.1 Let γ = 0.5772 . . . be the Euler-Mascheroni constant. Then for 0 <

c < 1/2 and k ≥ 1,

log k + γ +
1

2k
−

1

12k2
≤

k
∑

j=1

1

j
≤ log k + γ +

1

2k
−

1

12k2
+

1

60k4
. (4.5)

41



Notice that since we are adding a finite number of terms above that are O(k−1),

this inequality tells us that

k
∑

j=1

1

j
= log k + γ + O

(

1

k

)

.

This is a standard estimate for the harmonic number, Hk, that we will use in the

proof of Theorem 4.1. The more explicit bounds given above will be needed in

Section 4.3.3 for the error analysis of the theorem that will give tighter bounds on

t1(c).

We will also need the following inequality.

Lemma 4.2 Let k ≥ 1 and m ≥ 2. Then

ζ(m) −
1

(m − 1)km−1
+

1

2km
−

m

12km+1

≤
k
∑

j=1

1

jm

≤ ζ(m) −
1

(m − 1)km−1
+

1

2km
−

m

12km+1
+

m(m + 1)(m + 2)

15 · 4!km+3
(4.6)

where ζ(m) is the Riemann zeta function.

From this lemma, we will be using the estimate

k
∑

j=1

1

jm
= ζ(m) + O

(

1

km−1

)

in the analysis of t1(c). Again, the more precise bounds will be used in the error

analysis of Theorem 4.1.

Finally, we will need

Lemma 4.3 Let 0 < c < 1/2 and k ≥ 1. Then

c2

2k
<

∞
∑

m=2

cm

m(m − 1)km−1
<

2c2

3k
.

It will be sufficient to use the estimate

∞
∑

m=2

cm

m(m − 1)km−1
= O

(

1

k

)

in the proof of Theorem 4.1.
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We are now ready to find an asymptotic for t1(c). These lemmas will become

necessary throughout the proof.

Theorem 4.1 Let 0 < c < 1/2. Then as k → ∞,

t1(c) =

k
∏

j=1

1 + (1 − 2c
j )

2
∼ k−ce−cγ−hζ(c), (4.7)

where hζ(c) =
∑∞

m=2
cm

m ζ(m).

Proof: We begin by rewriting the product as an exponential function.

t1(c) =
k
∏

j=1

1 + (1 − 2c
j )

2

=
k
∏

j=1

(

1 −
c

j

)

= exp







k
∑

j=1

log

(

1 −
c

j

)







To expand the exponent, we use the Taylor series for log,

t1(c) = exp







k
∑

j=1

log

(

1 −
c

j

)







= exp







k
∑

j=1

(

−
∞
∑

m=1

(

c

j

)m 1

m

)







.

We now partially expand the double sum to a single sum on which we can apply the

first lemma above as well as a double sum which we will need to analyze further.

t1(c) = exp







k
∑

j=1

(

−
∞
∑

m=1

(

c

j

)m 1

m

)







= exp







−
k
∑

j=1

c

j
−

k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m







(4.8)

At this point, we have two sums that we must estimate in order to obtain the result

we desire. The first sum is simply the kth harmonic number which we bounded in

Lemma 4.1. By the comment immediately following the lemma, we know

k
∑

j=1

1

j
= log k + γ + O

(

1

k

)

. (4.9)
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By using the big-O term, we are introducing a certain amount of error. Along with

another O(k−1) term introduced later, we must be careful that the error incurred is

in fact small enough to be ignored. The exact bounds given in the lemmas give the

error check that we need. These lemmas show that the sums that appear in t1(c)

are O(k−1), implying the error is bounded. Therefore we use the estimate (4.9) in

equation (4.8) to obtain

t1(c) = exp







−
k
∑

j=1

c

j
−

k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m







= exp







−c log k − cγ + O

(

1

k

)

−
k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m







.

We can now concentrate on the double sum. Notice that

k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m
<

k
∑

j=1

∞
∑

m=2

(

c

j

)m

.

Since c/j < 1, the series on the right is convergent. Since the series on the left is

positive and bounded above by a convergent series, the original sum is absolutely

convergent. Therefore we may switch the order of summation to get

t1(c) = exp







−c log k − cγ + O

(

1

k

)

−
k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m







= exp







−c log k − cγ + O

(

1

k

)

−
∞
∑

m=2

cm

m

k
∑

j=1

1

jm







. (4.10)

From Lemma 4.2, we have

k
∑

j=1

1

jm
= ζ(m) + O

(

1

km−1

)

.

Substituting this into (4.10) and separating the exponent we find

t1(c) = exp







−c log k − cγ + O

(

1

k

)

−
∞
∑

m=2

cm

m

k
∑

j=1

1

jm







= k−ce−cγ+O( 1
k )exp

{

−
∞
∑

m=2

cm

m
ζ(m)

}

exp

{

−
∞
∑

m=2

cm

m
O

(

1

km−1

)

}

.(4.11)
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The first sum above converges to a constant depending on c. To see this, note that

ζ(m) decreases with m, so that for m ≥ 2,

ζ(m) ≤
π2

6
,

giving an upper bound for the infinite series,

∞
∑

m=2

cm

m
ζ(m) <

π2

6

∞
∑

m=2

cm

m
.

We find that the sum on the right converges also. In fact, this is the Taylor expansion

for −c − log(1 − c). Thus

π2

6

∞
∑

m=2

cm

m
=

π2

6
(− log(1 − c) − c).

Since the original sum of positive terms is bounded above by a convergent series,

we know that it converges and set

hζ(c) =
∞
∑

m=2

cm

m
ζ(m).

This gives

t1(c) = k−ce−cγ+O( 1
k )exp

{

−
∞
∑

m=2

cm

m
ζ(m)

}

exp

{

∞
∑

m=2

cm

m
O

(

1

km−1

)

}

= k−ce−cγ−hζ(c)+O( 1
k )exp

{

∞
∑

m=2

cm

m
O

(

1

km−1

)

}

. (4.12)

Lemma 4.3 gives bounds on the remaining series and we use the estimate

∞
∑

m=2

cm

m

1

(m − 1)km−1
= O

(

1

k

)

.

Substituting this expression in (4.12), we obtain

t1(c) = k−ce−cγ−hζ(c)+O( 1
k )exp

{

∞
∑

m=2

cm

m
O

(

1

km−1

)

}

= k−ce−cγ−hζ(c)eO( 1
k )

= k−ce−cγ−hζ(c)

(

1 + O

(

1

k

))

.
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The last expression is found using the first two terms of the Taylor expansion of e.

This gives

t1(c)

k−ce−cγ−hζ(c)
= 1 + O

(

1

k

)

.

Since 1 + O(k−1) → 1 as k → ∞, this implies

t1(c) =

k
∏

j=1

1 + (1 − 2c
j )

2
∼ k−ce−cγ−hζ(c).

2

Knowing the behavior of t1(c), we can use this in equation (4.3) to find that

the first term of E(2s) is approximately

T1 ∼ lk−ce−cγ−hζ(c). (4.13)

We see that the dominant factor here is k−c so that the asymptotic behavior of T1

depends heavily on both k and c. We will use (4.13) shortly to determine what l

must be in order to ensure that T1 is less than 1.

4.3.2 Proofs of the Lemmas

We will first prove the three lemmas used in the proof of Theorem 4.1. In

Section 4.3.3, we will check the error introduced by using these lemmas to estimate

the sums. We use Euler Maclaurin summation to prove the results of the necessary

lemmas. The general formula and a brief explanation is given below.

Euler Maclaurin Summation Formula For any integers a, b and n ≥ 0 and any

function f in Cn+1[a, b], we have

∑

a<i≤b

f(i) =

∫ b

a
f(t) dt +

n
∑

r=0

(−1)r+1Br+1

(r + 1)!
(f (r)(b) − f (r)(a))

+
(−1)n

(n + 1)!

∫ b

a
Bn+1(t)f

(n+1)(t) dt,

where Br is the rth Bernoulli number and Br(t) is the corresponding periodic exten-

sion of the rth Bernoulli polynomial.

The periodic functions Br(t) are extensions of the the Bernoulli polynomials,

br(t), and are used to control the error encountered by the integral approximation
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of the series. The Bernoulli polynomials are defined on the interval [0, 1] by the

following three conditions:

b0(t) := 1

b′r(t) := rbr−1(t), r ≥ 1
∫ 1

0
br(t) dt = 0, r ≥ 1.

The first five Bernoulli polynomials are as follows.

b0(t) = 1

b1(t) = t −
1

2

b2(t) = t2 − t +
1

6

b3(t) = t3 −
3

2
t2 +

1

2
t

b4(t) = t4 − 2t3 + t2 −
1

30

The rth Bernoulli function, Br(t), is then defined to be the function with period 1

that agrees with br(t) on [0, 1). Observe that the integral condition on the Bernoulli

polynomials requires br(0) = br(1) for r > 1. This implies that the extension,

Br(t), is a continuous differentiable function over the entire range of the integral.

Furthermore, set

Br := Br(0) = br(0)

to be the rth Bernoulli number. The sequence of Bernoulli numbers begins

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B3 = 0, B4 = −

1

30
, . . .

It is a fact that B2r+1 = 0 for all r ≥ 1.

The Euler Maclaurin formula is extremely powerful in approximating sums.

The first integral and following sum give a function that estimates the desired series

and the final integral in the formula provides an error bound for the asymptotic

formula. We will now use Euler Maclaurin to prove the three lemmas stated earlier.
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Lemma 4.1 Let γ = 0.5772 . . . be the Euler-Mascheroni constant. Then for k ≥ 1,

log k + γ +
1

2k
−

1

12k2
≤

k
∑

j=1

1

j
≤ log k + γ +

1

2k
−

1

12k2
+

1

60k4
. (4.14)

Proof: Let f(x) = x−1. By Euler Maclaurin summation,

k
∑

j=1

1

j
= 1 +

∫ k

1

dx

x
+

n
∑

r=0

(−1)r+1Br+1(0)

(r + 1)!
(f (r)(b) − f (r)(a))

+
(−1)n

(n + 1)!

∫ b

a
Bn+1(t)f

(n+1)(t) dt.

Choosing n = 3 will give enough accuracy for our purposes.

k
∑

j=1

1

j
= 1 +

∫ k

1

dx

x
− B1

(

1

k
− 1

)

+
B2

2!

(

−1

k2
+ 1

)

+
B4

4!

(

−3!

k4
+ 3!

)

−
4!

4!

∫ k

1
B4(t)

dt

t5

= 1 + log k +
1

2k
−

1

2
−

1

12k2
+

1

12
+

1

120k4
−

1

120
−

∫ k

1
B4(t)

dt

t5

= log k +
1

2k
−

1

12k2
+

1

120k4
+

1

2
+

1

12
−

1

120
−

∫ k

1
B4(t)

dt

t5
(4.15)

The Euler-Mascheroni constant is defined as

γ = lim
n→∞





n
∑

j=1

1

j
− log n



 .

Letting k go to infinity in (4.15), we find that

γ =
1

2
+

1

12
−

1

120
−

∫ ∞

1
B4(t)

dt

t5
.

We can substitute this definition of γ back into (4.15) to find that

k
∑

j=1

1

j
= log k + γ +

1

2k
−

1

12k2
+

1

120k4
+

∫ ∞

k
B4(t)

dt

t5
. (4.16)

Finally, observe that the Bernoulli polynomial b4(t) = t4 − 2t3 + t2 − 1
30 satisfies

|b4(t)| ≤
1
30 when t ∈ [0, 1]. We can easily check that b4(t) has critical points at

t = 0, 1/2, and 1 and that b4(0) = b4(1) = 1
30 and b4(1/2) = 7

240 < 1
30 . Therefore,

since B4(t) is the periodic extension of b4(t), it is also true that |B4(t)| ≤
1
30 for all
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t. Thus

∣

∣

∣

∣

∫ ∞

k
B4(t)

dt

t5

∣

∣

∣

∣

≤

∫ ∞

k
|B4(t)|

dt

t5

≤
1

120k4
.

Using this with (4.16), we get

∣

∣

∣

∣

∣

∣

k
∑

j=1

1

j
− log k − γ −

1

2k
+

1

12k2
−

1

120k4

∣

∣

∣

∣

∣

∣

≤
1

120k4
.

Writing out the absolute value gives (4.5). 2

We will use Euler Maclaurin summation often throughout this chapter to

find asymptotic functions and to bound the resulting error as we have done here.

The result seen in this and the following lemmas is typical of results by this method.

The final big-O term in Theorem 4.1 required the following two lemmas.

Lemma 4.2 Let k ≥ 1 and m ≥ 2. Then

ζ(m) −
1

(m − 1)km−1
+

1

2km
−

m

12km+1

≤
k
∑

j=1

1

jm

≤ ζ(m) −
1

(m − 1)km−1
+

1

2km
−

m

12km+1
+

m(m + 1)(m + 2)

15 · 4!km+3

where ζ(m) is the Riemann zeta function.

Proof: Let f(x) = x−m and let n = 3. By the Euler Maclaurin summation formula,

k
∑

j=1

1

jm
= 1 +

∫ k

1

dx

xm
− B1

(

1

km
− 1

)

+
m(m + 1)(m + 2)B4

4!

(

−1

km+3
+ 1

)

+
mB2

2!

(

−1

km+1
+ 1

)

−
m(m + 1)(m + 2)(m + 3)

4!

∫ k

1
B4(t)

dt

tm+4

= 1 −
1

(m − 1)km−1
+

1

m − 1
+

1

2km
−

1

2
−

m

12km+1
+

m

12

+
m(m + 1)(m + 2)

30 · 4! km+3
−

m(m + 1)(m + 2)

30 · 4!
−

(

m + 3

4

)
∫ k

1
B4(t)

dt

tm+4

=
−1

(m − 1)km−1
+

1

2km
−

m

12km+1
+

m(m + 1)(m + 2)

30 · 4! km+3
+

1

2
+

1

m − 1

+
m

12
−

m(m + 1)(m + 2)

30 · 4!
−

(

m + 3

4

)
∫ k

1
B4(t)

dt

tm+4
.
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Letting k → ∞ in this equation, the left side becomes ζ(m) and we find

ζ(m) =
∑

j≥1

1

jm
=

1

2
+

1

m − 1
+

m

12
−

m(m + 1)(m + 2)

30 · 4!
−

(

m + 3

4

)
∫ ∞

1
B4(t)

dt

tm+4
.

Substituting this expression for ζ(m) into the above equation,

k
∑

j=1

1

jm
= ζ(m) −

1

(m − 1)km−1
+

1

2km
−

m

12km+1
+

m(m + 1)(m + 2)

30 · 4! km+3

+

(

m + 3

4

)∫ ∞

k
B4(t)

dt

tm+4
. (4.17)

Using the fact that |B4(t)| ≤ 1/30 for all t as shown in the previous proof, we have

∣

∣

∣

∣

(

m + 3

4

)∫ ∞

k
B4(t)

dt

tm+4

∣

∣

∣

∣

≤

(

m + 3

4

)∫ ∞

k
|B4(t)|

dt

tm+4

≤
m(m + 1)(m + 2)

30 · 4! km+3
.

Substituting this back into (4.17), we now have

∣

∣

∣

∣

∣

∣

k
∑

j=1

1

jm
− ζ(m) +

1

(m − 1)km−1
−

1

2km
+

m

12km+1
−

m(m + 1)(m + 2)

30 · 4! km+3

∣

∣

∣

∣

∣

∣

≤
m(m + 1)(m + 2)

30 · 4! km+3
,

thus giving the desired inequalities. 2

The final lemma can be proved without Euler Maclaurin summation.

Lemma 4.3 Let 0 < c < 1/2 and k ≥ 1. Then

c2

2k
<

∞
∑

m=2

cm

m(m − 1)km−1
<

2c2

3k
.

Proof: Observe that the lower bound given above is simply the first term of the

series. Since the terms are all nonnegative, then the sum of any bounded number

of these terms gives a lower bound. To find the upper bound, we first pull out the

first term. This gives

∞
∑

m=2

cm

m(m − 1)km−1
=

c2

2k
+

∞
∑

m=3

cm

m(m − 1)km−1
.
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Rewriting the series on the right to begin with m = 0, we have

∞
∑

m=2

cm

m(m − 1)km−1
=

c2

2k
+

c3

k2

∞
∑

m=0

cm

(m + 3)(m + 2)km

<
c2

2k
+

c3

6k2

∞
∑

m=0

( c

k

)m

=
c2

2k
+

c3

6k2

1

1 − c/k
.

Since c < 1/2, then for any k ≥ 1,

1

1 − c/k
< 2,

giving
∞
∑

m=2

cm

m(m − 1)km−1
<

c2

2k
+

c3

3k2
.

Again using the fact that c < 1/2, we find that

∞
∑

m=2

cm

m(m − 1)km−1
<

c2

2k
+

c2

6k
=

2c2

3k
,

giving the result. 2

In Theorem 4.1, the results of these lemmas provided big-O terms that al-

lowed us to find an asymptotic expression for t1(c). In the next section, we use the

inequalities found in each lemma to give an even tighter asymptotic for t1(c).

4.3.3 Error Analysis for Theorem 4.1

In the proof of Theorem 4.1, we made extensive use of asymptotic notation.

This is extremely useful in seeing how t1(c) behaves, but each introduction of a

big-O term incurs a certain amount of error. It is very important to be sure that

the error is under control when using estimates as we are. If we are adding a fixed

number of terms that are all O(k−1), then the sum of these terms is, in fact, O(k−1)

and the approximations made are valid. On the other hand, if we are adding an

unbounded number of terms that behave in this way, we must be careful that the

sum isn’t larger than O(k−1). If the number of terms added is actually a function

of k, it is possible that the sum could be, for example, O(k−1/2), or worse, the

error could be unbounded as k → ∞. If this were true, the error would be more

significant than claimed and possibly be a dominant term in the the asymptotic.
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Although we added an unbounded number of terms that were O(k−1) in Theorem

4.1, the inequalities given in the lemmas show that we can actually reduce this to

the sum of only two O(k−1) terms, implying the error is bounded. In this section,

we use the inequalities in Lemmas 4.1, 4.2, and 4.3 to find a tighter estimate for

t1(c).

Notice that the first equation in the proof of Theorem 4.1, equation (4.8), is

an exact expression:

t1(c) = exp







−
k
∑

j=1

c

j
−

k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m







.

We then used the fact that

k
∑

j=1

1

j
= log k + γ + O

(

1

k

)

to replace the harmonic sum above. The result of Lemma 4.1 gives precise upper

and lower bounds for the product, namely

exp







−c log k − cγ −
c

2k
+

c

12k2
−

c

60k4
−

k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m







≤ t1(c)

≤ exp







−c log k − cγ −
c

2k
+

c

12k2
−

k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m







. (4.18)

By inequality (4.18) we see that the upper and lower bounds are extremely close,

differing only by a factor of e−c/60k4
. As k → ∞, the two bounds become even

closer.

We now must handle the double sum. Recall that we were able to switch

the order of summation so that

k
∑

j=1

∞
∑

m=2

(

c

j

)m 1

m
=

∞
∑

m=2

cm

m

k
∑

j=1

1

jm
.
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We may now use the result of Lemma 4.2 on the inside sum on the right to eliminate

the double sum.

exp

{

−c log k − cγ −
c

2k
+

c

12k2
−

c

60k4
− hζ(c) +

∞
∑

m=2

cm

m

1

(m − 1)km−1

−
∞
∑

m=2

cm

m

(

1

2km
−

m

12km+1
+

m(m + 1)(m + 2)

15 · 4! km+3

)

}

≤ t1(c)

≤ exp

{

−c log k − cγ −
c

2k
+

c

12k2
− hζ(c) +

∞
∑

m=2

cm

m

1

(m − 1)km−1

−
∞
∑

m=2

cm

m

(

1

2km
−

m

12km+1

)

}

(4.19)

Here we are using the previous definition of hζ(c),

hζ(c) =

∞
∑

m=2

cm

m
ζ(m).

We now use Lemma 4.3 to find another set of inequalities bounding the product.

exp

{

−c log k − cγ −
c

2k
+

c

12k2
−

c

60k4
− hζ(c) +

c2

2k

−
∞
∑

m=2

cm

m

(

1

2km
−

m

12km+1
+

m(m + 1)(m + 2)

15 · 4! km+3

)

}

≤ t1(c)

≤ exp

{

−c log k − cγ −
c

2k
+

c

12k2
− hζ(c) +

2c2

3k

−
∞
∑

m=2

cm

m

(

1

2km
−

m

12km+1

)

}

(4.20)

At this point in the proof of Theorem 4.1 we didn’t have these remaining

terms to deal with. Since we are adding an infinite number of positive terms, we

must find bounds on the remaining sums to show that they are small. We summarize

this in the following lemmas.

Lemma 4.4 Let 0 < c < 1/2 and k ≥ 1. Then

c2

4k2
<

1

2

∞
∑

m=2

( c

k

)m 1

m
<

c2

2k2
.
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Proof: Proceeding as in Lemma 4.3,

1

2

∞
∑

m=2

( c

k

)m 1

m
=

c2

4k2
+

1

2

∞
∑

m=3

( c

k

)m 1

m

=
c2

4k2
+

c3

2k3

∞
∑

m=0

( c

k

)m 1

m + 3

<
c2

4k2
+

c3

6k3

∞
∑

m=0

( c

k

)m

=
c2

4k2
+

c3

6k3

1

1 − c/k

<
c2

4k2
+

c3

3k3
.

Then since c < 1/2 and k ≥ 1,

1

2

∞
∑

m=2

( c

k

)m 1

m
<

c2

4k2
+

c2

6k2
<

c2

2k2
.

The lower bound is found by pulling out the first term and observing that the

remaining sum is positive. 2

Lemma 4.5 Let 0 < c < 1/2 and k ≥ 1. Then

c2

12k3
<

1

12k

∞
∑

m=2

( c

k

)m
<

c2

6k3
.

Proof: The lower bound comes from the first term of the series. To find the upper

bound, observe that

1

12k

∞
∑

m=2

( c

k

)m
=

c2

12k3
+

c3

12k4

∞
∑

m=0

( c

k

)m

=
c2

12k3
+

c3

12k4

1

1 − c/k

<
c2

12k3
+

c3

6k4
.

So

1

12k

∞
∑

m=2

( c

k

)m
<

c2

12k3
+

c2

12k3
=

c2

6k3

as needed. 2

Lemma 4.6 Let 0 < c < 1/2 and k ≥ 1. Then

c2

30k5
<

1

15 · 4!

∞
∑

m=2

cm(m + 1)(m + 2)

km+3
<

2c2

15k5
.
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Proof: The first term of the series gives the lower bound above. The proof of the

upper bound requires the use of the following derivative.

d2

dx2

[

1

xm+1

]

=
(m + 1)(m + 2)

xm+3

We expand as before and use this derivative to get

1

15 · 4!

∞
∑

m=2

cm(m + 1)(m + 2)

km+3
=

12c2

15 · 4! k5
+

1

15 · 4!

∞
∑

m=3

cm(m + 1)(m + 2)

km+3

=
c2

30k5
+

1

15 · 4!

d2

dk2

[

c3

k4

∞
∑

m=0

( c

k

)m
]

=
c2

30k5
+

1

15 · 4!

2c3(10 − 15c/k + 6c2/k2)

k6(1 − c/k)3
.

Then since c < 1/2,

1

15 · 4!

∞
∑

m=2

cm(m + 1)(m + 2)

km+3
<

c2

30k5
+

1

15 · 4!

8c3

k6(1 − c/k)3

<
c2

30k5
+

4 · 8c2

15 · 4! k5

=
11c2

90k5

<
2c2

15k5
.

This gives the desired inequality. 2

The results of Lemmas 4.4, 4.5, and 4.6 provide the remaining bounds needed

for t1(c). These lemmas imply

exp

{

−c log k − cγ − hζ(c) −
c

2k
+

c

12k2
−

c

60k4
+

c2

2k
−

c2

2k2
+

c2

12k3
−

2c2

15k5

}

≤ t1(c)

≤ exp

{

−c log k − cγ − hζ(c) −
c

2k
+

c

12k2
+

2c2

3k
−

c2

4k2
+

3c2

6k3

}

. (4.21)

We now have very accurate bounds on t1(c). We can use the inequalities in 4.21 to

give a more precise estimate for the product:

t1(c) = k−c exp
{

−cγ − hζ(c) −
c

2k
+

c

12k2

}

(

1 + O

(

1

k

))

.

Although this estimate is more precise, the asymptotic given in Theorem 4.1 is still

very accurate. We will use that asymptotic in our work.
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4.3.4 Finding the Critical Value

With an asymptotic for t1(c) and consequently for T1, we are now in a

position to determine the range of l where T1 < 1. Recall in Section 4.3.1 that we

found the first term of E(2s) to be

T1 ∼ lk−ce−cγ−hζ(c). (4.22)

Since l = dk, we may substitute this into (4.22) to find the new approximation

T1 ∼ dk1−ce−cγ−hζ(c). (4.23)

To find the critical range for l, we will instead use this asymptotic to determine the

range for d where T1 < 1. To do this, we must solve the inequality

dk1−ce−cγ−hζ(c) < 1. (4.24)

Observe that k1−c is the dominant term in (4.23) and k1−c > 1. As k → ∞, this

term becomes quite large. So d will need to be very small in order to obtain T1 < 1.

The inequality in (4.24) is solved easily and we find that

d <
ecγ+hζ(c)

k1−c
(4.25)

ensures that T1 < 1. We define d1 to be this critical value, that is

d1 =
ecγ+hζ(c)

k1−c
. (4.26)

When d < d1, we know that T1 < 1 and we hope to see that the largest term of

E(2s) is the 0th term. If this is the case and the remaining terms are small enough,

then E(2s) → 1 and the vectors generated are, with high probability, independent.

This will mean that l1 = d1k is a lower bound for the number of vectors needed

to generate a dependent set. Notice that l1 is not very large. For example, if

k = 1000 and c = 1/3, this result implies that the first 14 randomly chosen vectors

could be independent. This small lower bound may be somewhat surprising when

we compare it to the much larger lower bound for the fixed weight vector case.

Recall our hypothesis in Section 4.2 that we would need to generate fewer vectors

to see dependency with this model than we did in the fixed weight model. Although
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this result does not prove that claim, it does make the lower bound less surprising.

However, we still must check that the remaining terms are decreasing and that their

contribution to E(2s) is negligible.

4.4 The Second Term, T2

The plots we saw in Section 4.2 seemed to suggest that the terms of E(2s)

are unimodular. If we knew this to be true, then we would know that T2 is less

than T1 in the critical range we just found. Since we don’t know that the terms are

unimodular, we will show that T2 < T1 whenever T1 < 1 in this section. By (4.2),

the second term of E(2s) is

T2 =

(

l

2

) k
∏

j=1

1 +
(

1 − 2c
j

)2

2
(4.27)

As with T1, we see that T2 consists of two factors: a function of l and a product

that depends on k. Let t2(c, k) ≡ t2(c) be

t2(c) =
k
∏

j=1

1 +
(

1 − 2c
j

)2

2
. (4.28)

Before determining the values of l where T2 < T1, we must determine the behavior

of t2(c). Once we find an asymptotic function describing t2(c), we will be able to

find a critical range for l as we did in the last section.

4.4.1 A Naive Approximation for T2

A first approach to this problem might be to proceed as we did in the proof

of Theorem 4.1. There, we first rewrote t1(c) as an exponential function. Using this

technique, t2(c) becomes

t2(c) =

k
∏

j=1

1 +
(

1 − 2c
j

)2

2

= exp







k
∑

j=1

log

(

1 +

(

1 −
2c

j

)2
)

− log 2







.
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Finding bounds for the sum of the logs is difficult with the added exponent. Instead

of continuing with this expression, let’s rewrite t2(c).

t2(c) =

k
∏

j=1

1 +
(

1 − 2c
j

)2

2

=

k
∏

j=1

(

1 −
2c

j

(

1 −
c

j

))

(4.29)

Continuing now as in Theorem 4.1, the product becomes

t2(c) =

k
∏

j=1

(

1 −
2c

j

(

1 −
c

j

))

= exp







k
∑

j=1

log

(

1 −
2c

j

(

1 −
c

j

))







and we may now replace the log function with a Taylor series. Bounds for this

function are still difficult to obtain due to the extra factor 1− c/j. Notice, however,

that as j grows, 1− c/j becomes extremely close to 1. Concentrating on this factor,

we can replace it by constant upper and lower bounds, allowing us to find bounds

for the product.

To find a good upper bound for t2(c), we must be sure that the lower bound

on 1− c/j is close to 1. For all j, 1− c/j ≥ 1− c > 1/2, but we desire an even better

bound. As j increases, the lower bound becomes better. Let ε = c/10 and observe

that

1 −
c

j
≥ 1 − ε >

19

20

for all j ≥ 10. We can then see that

k
∏

j=10

(

1 −
2c

j

(

1 −
c

j

))

≤
k
∏

j=10

(

1 −
2c(1 − ε)

j

)

.

Since this bound is only true for j ≥ 10, we must separate the first terms and

include them in the final bound. To extend this bound to the original product, we

first define

P =

9
∏

j=1

(

1 −
2c

j

(

1 −
c

j

))

.

With this, the upper bound for t2(c) now becomes

t2(c) ≤ P

k
∏

j=10

(

1 −
2c(1 − ε)

j

)

.
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Proceeding as in Theorem 4.1 on the product for j ≥ 10, we find

t2(c) ≤ k−2c(1−ε)Pe−2c(1−ε)γ+ 7129
1260

c(1−ε)−h′

ζ(2c(1−ε))

(

1 + O

(

1

k

))

(4.30)

where

h′
ζ(z) =

∞
∑

m=2

zm

m



ζ(m) −
9
∑

j=1

1

jm



 .

The terms in this bound are similar to what we saw in the asymptotic for t1(c).

However, in finding a better lower bound by pulling out the first nine terms, we

have added quite a bit of difficulty to the result.

To find a lower bound that we can compare to the upper bound just found,

we factor out the first nine terms. Now observe that 1 − c/j < 1 for all j, so that

t2(c) > P
k
∏

j=10

(

1 −
2c

j

)

.

The above product can be analyzed as in Theorem 4.1 to obtain the following lower

bound:

t2(c) > k−2cPe−2cγ+ 7129
1260

c−h′

ζ(2c)

(

1 + O

(

1

k

))

. (4.31)

We again see factors similar to those we found in (4.30) and (4.7). To determine

an asymptotic for t2(c), we would need to take a limit of both the upper and lower

bounds. But the factor of 1−ε appearing in the upper bound makes it impossible to

do this. However, we expect that t2(c) behaves like the lower bound and will need

to find a different method to find the estimate.

What we do see from the bounds above is that it appears as though the

r = 2 term is roughly the square of the r = 1 term with a little “extra” thrown

in. To be slightly more precise, the bounds given in (4.30) and (4.31) indicate that

t2(c) is roughly t1(2c) along with a correction, or error, factor. In the next section,

we will use this idea to find a better asymptotic for t2(c).

4.4.2 A Better Asymptotic for T2

The basic idea behind the approximation found in this section is the same

as in the last section: the factor 1 − c/j is very close to 1. This means that as j
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increases,

1 −
2c

j

(

1 −
c

j

)

becomes closer to

1 −
2c

j
.

This motivates us to compare t2(c) to the product

k
∏

j=1

(

1 −
2c

j

)

.

Observe that this last expression is actually t1(2c). In fact, we were already doing

this comparison in Section 4.4.1. In this section, we will be more precise, allowing

us to write t2(c) as a function of t1(c) as well as eliminating the need to separate

the initial term of the product. We first define

Q2,k(c) =

k
∏

j=1

1 − 2c
j

(

1 − c
j

)

1 − 2c
j

(4.32)

to be the ratio of t2(c) to t1(2c) and define Q2(c) to be the limit of Q2,k(c) as k → ∞.

As in Theorem 4.1, we will be using error estimates in this proof. The statements

and proofs of these estimates will be delayed until the next section.

Theorem 4.2 Suppose 0 < c < 1/2 and define t1(c) and t2(c) as follows:

t1(c) =
k
∏

j=1

1 + (1 − 2c
j )

2
,

t2(c) =
k
∏

j=1

1 +
(

1 − 2c
j

)2

2
=

k
∏

j=1

1 −
2c

j

(

1 −
c

j

)

.

Then the ratio of the two products,

Q2,k(c) =
t2(c)

t1(2c)
,

converges to Q2(c) as k → ∞. Furthermore,

t2(c) ∼ t1(2c)Q2(c). (4.33)
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Proof: The ratio, Q2,k(c), will allow us to determine how close t2(c) is to t1(2c).

First observe that

Q2,k(c) =
t2(c)

t1(2c)

=
k
∏

j=1

1 − 2c
j

(

1 − c
j

)

1 − 2c
j

as defined in (4.32). Furthermore,

k
∏

j=1

1 − 2c
j

(

1 − c
j

)

1 − 2c
j

=

k
∏

j=1

1 − 2c
j + 2c2

j2

1 − 2c
j

=

k
∏

j=1

1 +
2c2

j2

(

1 −
2c

j

)−1

. (4.34)

Consider the final product given in (4.34). We claim that this converges as k → ∞.

From real analysis we know that when aj ≥ 0, the infinite product

∞
∏

j=1

(1 + aj)

converges if and only if the series
∞
∑

j=1

aj

converges. Since 2c < 1, 2c/j < 1 also. Thus

2c2

j2

(

1 −
2c

j

)−1

≥ 0

for all j. Furthermore, when j > 2, 1 − 2c/j > 1/2, so

(

1 −
2c

j

)−1

< 2.

We use this to find the following upper bound for the positive sum,

∞
∑

j=3

2c2

j2

(

1 −
2c

j

)−1

<

∞
∑

j=3

4c2

j2
.

Since the series on the right is a convergent p−series, the sum on the left converges

also. Thus as k → ∞, the finite product Q2,k(c) converges to the infinite product

∞
∏

j=1

1 − 2c
j

(

1 − c
j

)

1 − 2c
j

.
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We set this limit to be Q2(c).

Since Q2(c) converges for fixed c, we can use it to write t2(c) in terms of

t1(2c). It is simple to write t2(c) as a function of Q2,k(c) and t1(2c): by definition,

t2(c) = t1(2c)Q2,k(c). (4.35)

We wish to replace Q2,k(c) above with Q2(c). However, since Q2,k(c) approaches

Q2(c) as k → ∞, the substitution is not exact. We will need to include an error

term to account for the fact that Q2(c) is an infinite product while Q2,k(c) is finite.

This substitution will eliminate the parameter k, and enable us to give an estimate

for t2(c) for fixed c. First observe that

1 <
Q2(c)

Q2,k(c)

=

∞
∏

j=k+1

1 − 2c
j

(

1 − c
j

)

1 − 2c
j

=
∞
∏

j=k+1

(

1 +
2c2

j2

(

1 −
2c

j

)−1
)

.

The expression above is the error incurred by replacing Q2,k(c) by Q2(c). To find

an approximation for this error, we bound it above by an exponential function.

∞
∏

j=k+1

(

1 +
2c2

j2

(

1 −
2c

j

)−1
)

< exp







∞
∑

j=k+1

2c2

j2

(

1 −
2c

j

)−1






= exp







∞
∑

j=k+1

2c2

j(j − 2c)







= exp

{

O

(

1

k

)}

= 1 + O

(

1

k

)

We will discuss the error found in replacing the sum by the big-O term further in

Section 4.4.3, but this gives a relation between Q2,k(c) and Q2(c) in terms of the

difference between the two:

Q2(c) = Q2,k(c)

(

1 + O

(

1

k

))

.
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Since (1 + x)−1 = 1 + O(x), we may write

Q2,k(c) = Q2(c)

(

1 + O

(

1

k

))

,

thus giving an expression to substitute for Q2,k(c). Along with (4.35), this gives

t2(c) = t1(2c)Q2(c)

(

1 + O

(

1

k

))

.

Finally, since 1 + O(k−1) → 1 as k → ∞, we have shown (4.33). 2

As we conjectured from the bounds given in (4.30) and (4.31), this theorem

shows that t2(c) is closely related to t1(c) and in fact, t2(c) is t1(2c) times a little

“extra,” the convergent product, Q2(c). To be precise, we now have

t2(c) ∼ k−2ce−2cγ−hζ(2c)
∞
∏

j=1

1 +
(

1 − 2c
j

)2

2
(

1 − 2c
j

) . (4.36)

We will soon use this estimation for t2(c) to determine when T2 < T1, but will first

take a look at the error encountered in the last proof.

4.4.3 Error Analysis for Theorem 4.2

In Theorem 4.2 we use the fact that

∞
∑

j=k+1

2c2

j(j − 2c)
= O

(

1

k

)

.

Since we are adding an infinite number of terms that are O(k−1), we must check

that this series is in fact O(k−1). The following lemma gives the bounds we need.

Lemma 4.7 Let 0 < c < 1/2 and k ≥ 2. Then

c2

k
<

∞
∑

j=k+1

2c2

j(j − 2c)
<

2c2

k
. (4.37)

Proof: We find the upper bound first. Observe that since 2c < 1, j − 2c > j − 1 and

therefore
∞
∑

j=k+1

2c2

j(j − 2c)
<

∞
∑

j=k+1

2c2

j(j − 1)
. (4.38)

In Theorem 4.2 we showed that the infinite series in (4.37) converges. Similarly, we

can show that the new series in (4.38) converges. Furthermore, since the terms of

the sum are all positive, it is absolutely convergent. Therefore we may rearrange
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the terms. The series can be decomposed into the difference of two other sums,

∞
∑

j=k+1

2c2

j(j − 1)
= 2c2





∞
∑

j=k+1

1

j − 1
−

∞
∑

j=k+1

1

j



 .

We simplify the difference to find the desired upper bound,

∞
∑

j=k+1

2c2

j(j − 2c)
<

2c2

k
. (4.39)

To find the lower bound, we observe that j − 2c < j, so

∞
∑

j=k+1

2c2

j(j − 2c)
>

∞
∑

j=k+1

2c2

j2
.

Rewriting this series, we see that

∞
∑

j=k+1

2c2

j2
= ζ(2) −

k
∑

j=1

2c2

j2
.

By Lemma 4.2, we find a lower bound to be

∞
∑

j=k+1

2c2

j2
>

2c2

k
−

c2

k2
+

c2

6k3
−

c2

15k5
.

Since c2/6k3 − c2/15k5 > 0, we can simplify this bound and see that

∞
∑

j=k+1

2c2

j2
>

2c2

k
−

c2

k2
.

Finally, since k > 1,
∞
∑

j=k+1

2c2

j2
>

2c2

k
−

c2

k
=

c2

k
. (4.40)

The inequalities in (4.39) and (4.40) prove the result. 2

From this lemma, we have the estimate

∞
∑

j=k+1

2c2

j(j − 2c)
= O

(

1

k

)

used to bound the error introduced by replacing Q2,k(c) by Q2(c) in the proof of

Theorem 4.2.

We now have an asymptotic for t2(c):

t2(c) ∼ k−2ce−2cγ−hζ(2c)
∞
∏

j=1

1 +
(

1 − 2c
j

)2

2
(

1 − 2c
j

) .
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Consequently, this gives an approximation for T2,

T2 =

(

l

2

)

t2(c)

∼
l(l − 1)

2
k−2ce−2cγ−hζ(2c)

∞
∏

j=1

1 +
(

1 − 2c
j

)2

2
(

1 − 2c
j

) . (4.41)

We can now use (4.41) to find a range of l values where T2 < T1.

4.4.4 Finding the Critical Value

In Section 4.3.4, we found that T1 < 1 when l < l1 = d1k where

d1 =
ecγ+hζ(c)

k1−c
.

As stated there, we suspect that T2 < T1 in this range also. With the asymptotic

for T2, we can show that this is true. Substituting l = dk, equation (4.41) becomes

T2 ∼
dk(dk − 1)

2
k−2ce−2cγ−hζ(2c)Q2(c).

To determine when T2 is less than

T1 ∼ dk1−ce−cγ−hζ(c),

we solve the inequality

dk1−ce−cγ−hζ(c) >
dk(dk − 1)

2
k−2ce−2cγ−hζ(2c)Q2(c). (4.42)

Solving this, we find that T2 < T1 when

d <
2

k1−cQ2(c)
ecγ+hζ(2c)−hζ(c) +

1

k
. (4.43)

Set d2 to be the right side of (4.43). If we can show that d1 < d2, then we will have

shown that T2 < T1 whenever T1 < 1. We do this in the next theorem.

Theorem 4.3 Let 0 < c < 2/5 and l = dk. If T1 < 1, then T2 < T1 also.

Proof: Let l = dk and suppose that T1 < 1. From previous work we know that

T1 < 1 when

d < d1 =
ecγ+hζ(c)

k1−c
.
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and that T2 < T1 when

d < d2 =
2

k1−cQ2(c)
ecγ+hζ(2c)−hζ(c) +

1

k
.

Since T1 < 1 by assumption, d < d1. To show that T2 < T1, we must prove that

d < d2 also. If we can show that d1 < d2, we will be done. Observe that

d2 =
2

k1−cQ2(c)
ecγ+hζ(2c)−hζ(c) +

1

k

=
ecγ+hζ(c)

k1−c

2ehζ (2c)−2hζ(c)

Q2(c)
+

1

k

= d1
2ehζ(2c)−2hζ (c)

Q2(c)
+

1

k
. (4.44)

Then d1 < d2 when

d1 < d1
2ehζ(2c)−2hζ(c)

Q2(c)
+

1

k
.

It is sufficient to show that

d1 < d1
2ehζ(2c)−2hζ(c)

Q2(c)
,

since

d1
2ehζ(2c)−2hζ (c)

Q2(c)
< d1

2ehζ(2c)−2hζ (c)

Q2(c)
+

1

k
= d2.

Thus we would like to show that

Q2(c)e
2hζ (c)−hζ(2c) < 2. (4.45)

In order to find an upper bound on Q2(c)e
2hζ (c)−hζ(2c), we want to first find an

equivalent expression that is more straightforward to analyze. Observe that we can

rewrite 2hζ(c) − hζ(2c) in terms of logs. By the definition of hζ(c),

2hζ(c) − hζ(2c) = 2
∞
∑

m=2

cm

m
ζ(m) −

∞
∑

m=2

(2c)m

m
ζ(m)

= 2

∞
∑

m=2

cm

m

∞
∑

j=1

1

jm
−

∞
∑

m=2

(2c)m

m

∞
∑

j=1

1

jm
.
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Recall that hζ(c) is absolutely convergent when c < 1. Rearranging the terms, we

see

2hζ(c) − hζ(2c) = 2

∞
∑

m=2

cm

m

∞
∑

j=1

1

jm
−

∞
∑

m=2

(2c)m

m

∞
∑

j=1

1

jm

=
∞
∑

j=1

(

2
∞
∑

m=2

(

c

j

)m 1

m
−

∞
∑

m=2

(

2c

j

)m 1

m

)

.

Now, recognizing that this is one term away from the Taylor expansion for log, we

rewrite this one more time to find

hζ(2c) − 2hζ(c) =

∞
∑

j=1

(

∞
∑

m=2

(

2

∞
∑

m=2

(

c

j

)m 1

m
−

2c

j

)m
1

m

)

=

∞
∑

j=1

(

−2 log

(

1 −
c

j

)

−
2c

j
+ log

(

1 −
2c

j

)

+
2c

j

)

=
∞
∑

j=1

log







1 − 2c
j

(

1 − c
j

)2






.

Substituting this in the exponential function, this becomes

ehζ(2c)−2hζ(c) = exp











∞
∑

j=1

log







1 − 2c
j

(

1 − c
j

)2

















=

∞
∏

j=1

1 − 2c
j

(

1 − c
j

)2 .

With this expression, the left side of (4.45) becomes

Q2(c)e
2hζ (c)−hζ(2c) =

∞
∏

j=1

1 +
(

1 − 2c
j

)2

2
(

1 − c
j

)2

=

∞
∏

j=1

1 +
c2

(j − c)2
. (4.46)

We now want to show that the product given in (4.46) is less than 2. We will be

using the fact that j − c > j − 1 to rewrite this expression and as a result will need

to be careful of the range of the product. We will separate the initial term of the
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product to do this and in order to obtain a sharper result. Observe that

Q2(c)e
2hζ (c)−hζ(2c) =

∞
∏

j=1

1 +
c2

(j − c)2

=

(

1 +
c2

(1 − c)2

)

exp







∞
∑

j=2

log

(

1 +
c2

(j − c)2

)







<

(

1 +
c2

(1 − c)2

)

exp







∞
∑

j=2

c2

(j − c)2







.

Now, since j − c > j − 1, we can bound the last expression above by

(

1 +
c2

(1 − c)2

)

exp







∞
∑

j=2

c2

(j − c)2







<

(

1 +
c2

(1 − c)2

)

exp







∞
∑

j=2

c2

(j − 1)2







=

(

1 +
c2

(1 − c)2

)

exp







∞
∑

j=1

c2

j2







.

Finally, since the sum over the squares is ζ(2), we find that

Q2(c)e
2hζ (c)−hζ(2c) <

(

1 +
c2

(1 − c)2

)

ec2π2/6. (4.47)

Since this expression is maximized when c = 2/5, we find that

Q2(c)e
2hζ(c)−hζ(2c) <

13

9
e2π2/75 < 1.87932 . . . (4.48)

Since this is less than 2, we have shown that the inequality in (4.45) is true. Thus

d < d2 whenever d < d1 and therefore T2 < T1 when T1 < 1. 2

This theorem supports our expectation that the terms of E(2s) continue to

decrease when T1 < 1 for 0 < c < 2/5. In the following sections, we will check that

the remaining terms are decreasing quickly enough to allow E(2s) to converge to 1.

4.5 The rth Term, Tr

In order for the terms of E(2s) to be unimodal with the maximum term

being the 0th term, we need to know that Tr+1 < Tr for all r ≥ 0. We know that

this inequality is true for r = 0 and r = 1, that is, T2 < T1 < T0 for appropriate

values of d. In the next few sections, we will show that this is true for r ≥ 2. To do

this, we will first need an approximation on the size of Tr for r ≥ 3.
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4.5.1 A Heuristic for Tr

In Section 4.2, we set the rth term of E(2s) to be

Tr =

(

l

r

) k
∏

j=1

1 +
(

1 − 2c
j

)r

2
. (4.49)

As with T1 and T2, the part of Tr that is difficult to analyze is the product. Let

tr(c, k) ≡ tr(c) be

tr(c) =

k
∏

j=1

1 +
(

1 − 2c
j

)r

2
. (4.50)

In this section, we find a heuristic for the size of tr(c). Although this heuristic will

be valid for a limited number of r values, it will give an idea of the behavior of tr(c)

and enable us to state a more exact theorem in the next section.

As we have seen, it is simpler to deal with sums than with products, so we

rewrite the product as

tr(c) =

k
∏

j=1

1 +
(

1 − 2c
j

)r

2
= exp







k
∑

j=1

log





1 +
(

1 − 2c
j

)r

2











and look at the new sum

k
∑

j=1

log





1 +
(

1 − 2c
j

)r

2





to give us information about tr(c).

Now, if 2c/j is close to 0, then we can use the approximation

(

1 −
2c

j

)r

' e−θ/j,

where θ = 2cr. Since this will just be a heuristic, we will not give a careful analysis

of error in this section. Since log is a smooth function, it is natural to estimate our

sum with an integral using Euler Maclaurin summation. Thus

k
∑

j=1

log





1 +
(

1 − 2c
j

)r

2



 '
k
∑

j=1

log

(

1 + e−θ/j

2

)

'

∫ k

1
log

(

1 + e−θ/x

2

)

dx. (4.51)
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Notice that we have only used the integral approximation from Euler Maclaurin. If

we were to make this heuristic more exact we would need to include more terms,

but this estimate will be sufficient.

As it is written now, the integral in (4.51) is difficult to integrate. So we

need to transform it to an integral that is easier to compute. Notice that

1 + e−θ

2
<

1 + e−θ/x

2
< 1

so that the integral will be negative. The most negative part of the integrand occurs

when θ/x is large, or when x is small. But the integrand very quickly approaches

0, making the contribution of small x to the integral minute. Since the integrand is

close to 0 for most of the interval, the x values in this range have the most effect on

the value of the integral. So we will concentrate on this range to see how much it

does contribute. Thus when θ/x is small, or when x is large, we need to determine

how the integrand behaves.

Now, when θ/x is small, the Taylor series expansion for e−θ/x gives e−θ/x '

1 − θ
x . Thus

1 + e−θ/x

2
'

1 + 1 − θ
x

2
= 1 −

θ

2x
.

Along with the Taylor series expansion for log, this gives the asymptotic

log

(

1 + e−θ/x

2

)

' log

(

1 −
θ

2x

)

'
−θ

2x
.

So we see in the area of interest, the integrand behaves like −θ/2x. Now this

function is easy to integrate. We now add and subtract −θ/2x from the integral to

end up with the sum of an integral that we know how to do and another integral

that is smaller than the first. The “smaller” integral will be what remains after

removing the contribution of −θ/2x to the integral. We will then need to estimate
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the remaining integral. Returning to (4.51), we find

∫ k

1
log

(

1 + e−θ/x

2

)

dx =

∫ k

1
log

(

1 + e−θ/x

2

)

+
θ

2x
−

θ

2x
dx

=

∫ k

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx −

∫ k

1

θ

2x
dx

=

∫ k

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx −

θ

2
log k. (4.52)

Combining (4.51) and (4.52), we now have

k
∑

j=1

log





1 +
(

1 − 2c
j

)r

2



 '

∫ k

1
log

(

1 + e−θ/x

2

)

dx

= −
θ

2
log k +

∫ k

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx.(4.53)

We now consider the last integral above. We use the fact that for fixed θ, the integral

∫ ∞

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx

is convergent. Replacing the definite integral by an improper integral will allow

us to write the integral in (4.53) as the sum of an exact value and the tail of the

integral. The integrand for large values of x is extremely small so we will be able to

find an estimate for the size of the integral tail. Observe that

∫ k

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx

=

∫ ∞

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx −

∫ ∞

k
log

(

1 + e−θ/x

2

)

+
θ

2x
dx. (4.54)

Since

e−θ/x < 1 −
−θ

x
+

θ2

2x2

by the Taylor expansion of e−y, we see that

log

(

1 + e−θ/x

2

)

< log

(

1 −
θ

2x
+

θ2

4x2

)

< −
θ

2x
+

θ2

4x2
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by a standard upper bound for the Taylor expansion of log. Thus we may bound

the tail of the integral above and find an estimate as follows.

∫ ∞

k
log

(

1 + e−θ/x

2

)

+
θ

2x
dx <

∫ ∞

k
−

θ

2x
+

θ2

4x2
+

θ

2x
dx

=

∫ ∞

k

θ2

4x2
dx

=
θ2

4k

= O

(

1

k

)

Therefore (4.54) becomes

∫ k

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx =

∫ ∞

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx + O

(

1

k

)

.

We now need to estimate the improper integral. Let u = x/θ. Then

∫ ∞

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx = θ

∫ ∞

1/θ
log

(

1 + e−1/u

2

)

+
1

2u
du.

Since the latter integral grows as θ increases, we will decompose the integral and

express it as the sum of a convergent integral and an integral whose limits depend

on θ. So we get

θ

∫ ∞

1/θ
log

(

1 + e−1/u

2

)

+
1

2u
du

= θ

∫ ∞

1
log

(

1 + e−1/u

2

)

+
1

2u
du + θ

∫ 1

1/θ
log

(

1 + e−1/u

2

)

+
1

2u
du.

The first integral converges to give

D1 =

∫ ∞

1
log

(

1 + e−1/u

2

)

+
1

2u
du = 0.123329 . . .

On the interval (0, 1], the log function above is close to 0 and its integral converges.

Therefore we can rewrite the second integral as

θ

∫ 1

1/θ
log

(

1 + e−1/u

2

)

+
1

2u
du = θ

∫ 1

1/θ
log

(

1 + e−1/u

2

)

du + θ

∫ 1

1/θ

1

2u
du

=
θ

2
log θ + θ

∫ 1

1/θ
log

(

1 + e−1/u

2

)

du.
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As 1/θ → 0, this final integral converges to

D2 =

∫ 1

0
log

(

1 + e−1/u

2

)

du = −0.56051 . . .

Since the integral converges and is always negative, then for fixed, large θ,

θ

∫ 1

1/θ
log

(

1 + e−1/u

2

)

+
1

2u
du = θD2 + e1,

where e1 is an error term depending on θ. So for the improper integral, we have

∫ ∞

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx = θD1 + θD2 +

θ

2
log θ + e1. (4.55)

Finally, putting together (4.53) and the estimation of the integral leading to (4.55),

we have found

k
∑

j=1

log





1 +
(

1 − 2c
j

)r

2





' −
θ

2
log k +

∫ k

1
log

(

1 + e−θ/x

2

)

+
θ

2x
dx

= −
θ

2
log k + θD1 + θD2 +

θ

2
log θ + e1 + O

(

1

k

)

. (4.56)

With the asymptotic in (4.56), we return to tr(c) and find

tr(c) =

k
∏

j=1

1 +
(

1 − 2c
j

)r

2

= exp







k
∑

j=1

log





1 +
(

1 − 2c
j

)r

2











' exp

{

−
θ

2
log k + θ(D1 + D2) +

θ

2
log θ + e1 + O

(

1

k

)}

= k−θ/2θθ/2eθ(D1+D2)+e1+O( 1
k )

= k−rc(2rc)rce2cr(D1+D2)+e1

(

1 +

(

1

k

))

.

So we see that tr(c) is similar to the asymptotics we found for t1(c) and t2(c): the

dominant term is k−rc and there is a natural exponential factor. However, as stated

before, we are only using this as a heuristic to begin to understand the behavior of

tr(c). It turns out that the error incurred by our estimates and integrals restricts

the values of r for which the work above is valid.
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The problem arises from the behavior of

log





1 +
(

1 − 2c
j

)r

2



 ; (4.57)

in particular, how quickly it increases to 0. The index, j, does not have to be

very large before
(

1 − 2c
j

)r
is close to 1. Since the majority of the terms satisfy

this, this range contributes the most to the sum. Therefore we want to have a

very small absolute error in our approximations for these terms. However, e−2cr/j

is an extremely close approximation to
(

1 − 2c
j

)r
in this range. So the integral

approximation we use in (4.51) is very close to the actual contribution made by

the summand here. On the other hand, when
(

1 − 2c
j

)r
is very small, or when j is

small, we see that (4.57) is very close to − log 2. Since this occurs for so few values

of j, we can allow large absolute error because it really does contribute so little to

the sum.

But we must analyze the error and we run into problems when we start

quantifying it. The measure of error actually relies heavily on r. Let’s say
(

1 − 2c
j

)r

is small when it is close to 1/k. Then

(

1 −
2c

j

)r

'
1

k
⇔ r '

j log k

2c
,

or when

j <
2cr

log k
.

But this means that r must be larger than log k/2c for this to be meaningful. So

it becomes very difficult to measure error as it is so dependent on r. In fact, the

asymptotic given is only valid for large r anyway. When evaluating the integral

θ

∫ 1

1/θ
log

(

1 + e−1/u

2

)

du,

we made the assumption that θ = 2cr was large. Since 0 < 2c < 1, we are really

making the assumption that r is large. Furthermore, we are assuming that 1/θ < 1.

Since we must have r > 1/2c for this to happen, if c is small, r must be quite large

to even evaluate this integral as we have. Although this discussion has given us

an idea of cases of r where an error analysis of this heuristic would be useful, we
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would still need to find an alternate method of analyzing tr(c) for small r. In the

next section, we will approach the problem from a different direction, resulting in

an asymptotic that will be valid for all r ≥ 3.

4.5.2 A Better Asymptotic for Tr

Although the error is difficult to analyze above, we now have a rough idea

of what tr(c) looks like. The factor of k−rc indicates that tr(c) looks something like

t1(c) with rc substituted for c. This is the behavior we saw when analyzing t2(c)

and we found that t2(c) behaves similarly to t1(2c). In this section, we will prove a

theorem similar to Theorem 4.2, by comparing

tr(c) =
k
∏

j=1

1 +
(

1 − 2c
j

)r

2

to the product

t1(rc) =

k
∏

j=1

1 + (1 − 2rc
j )

2
=

k
∏

j=1

1 −
rc

j
.

Observe that if we were to expand the numerator of tr(c), it would be similar to

the numerator given in t1(rc), further justifying the given comparison. However, we

run into problems with the second product when j < rc. In this range, t1(rc) < 0,

leading us to compare a negative product to a quantity that we know to be positive,

resulting in an incorrect asymptotic. To overcome this problem, we will consider

the product over this range separately. In fact, it is beneficial to split the product

and look at it for j ≤ 2rc and the product for j > 2rc. When j > 2rc, we find

1

2
< 1 −

rc

j
< 1,

giving less fluctuation in the product we’re interested in. So we will write

k
∏

j=1

1 +
(

1 − 2c
j

)r

2
=
∏

j≤2rc

1 +
(

1 − 2c
j

)r

2

k
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
(4.58)

and analyze each part of (4.58). We look at the product over small j first.
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Lemma 4.8 Let 0 < c < 1/2 and let r ≥ 3. Then

2−b2rccee−2rc−2rc2/(1−2c)
e2rcC3e−r/4−e−2/2−rcC2

<
∏

j≤2rc

1 +
(

1 − 2c
j

)r

2

< 2−b2rccee−1
e2rcC1 . (4.59)

Proof: Rewriting the product above, we find that

∏

j≤2rc

1 +
(

1 − 2c
j

)r

2
= exp







∑

j≤2rc

log

(

1 +

(

1 −
2c

j

)r)

− log 2







= 2−b2rcc exp







∑

j≤2rc

log

(

1 +

(

1 −
2c

j

)r)






. (4.60)

We wish to find bounds on the sum in (4.60) to prove the lemma. Starting with an

upper bound, we use the Taylor expansion of log to bound the summand as follows.

log

(

1 +

(

1 −
2c

j

)r)

<

(

1 −
2c

j

)r

< e−
2rc
j

Thus the sum is bounded above by

∑

j≤2rc

log

(

1 +

(

1 −
2c

j

)r)

<
∑

j≤2rc

e−
2rc
j .

We bound this exponential sum using Euler-Maclaurin summation.

∑

j≤2rc

e−
2rc
j < e−2rc +

∫ 2rc

1
e−

2rc
x dx +

1

2
(e−1 − e−2rc) +

∫ 2rc

1
B1(t)e

−2rc/t 2rc

t2
dt

Following the method of Lemma 4.1, we see that

∣

∣

∣

∣

∫ 2rc

1
B1(t)e

−2rc/t 2rc

t2
dt

∣

∣

∣

∣

<
1

2

∫ 2rc

1
e−2rc/t 2rc

t2
dt =

1

2
(e−1 − e−2rc).

This implies that

∑

j≤2rc

e
− 2rc

j < e−1 +

∫ 2rc

1
e−

2rc
x dx

= e−1 + 2rc

∫ 1

1/2rc
e−1/u du.
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The latter integral is obtained using the substitution x = 2rcu. Since 1/2rc > 0

and e−1/u > 0, we can bound this integral above by another integral that does not

depend on r or c,
∫ 1

1/2rc
e−1/u du <

∫ 1

0
e−1/u du.

The final integral converges to C1 = 0.1484 . . . . Thus

e−1 + 2rc

∫ 1

1/2rc
e−1/u du < e−1 + 2rc

∫ 1

0
e−1/u du

= e−1 + 2rcC1.

Combining this with (4.60), we get

∏

j≤2rc

1 +
(

1 − 2c
j

)r

2
< 2−b2rcc exp







∑

j≤2rc

e−
2rc
j







< 2−b2rccee−1
e2rcC1 ,

proving the upper bound.

To show that the lower bound is true, we will need the following facts.

log

(

1 +

(

1 −
2c

j

)r)

>

(

1 −
2c

j

)r

−
1

2

(

1 −
2c

j

)2r

(4.61)

(

1 −
2c

j

)r

> exp

{

−2rc

j
−

2rc2

j(j − 2c)

}

(4.62)

(

1 −
2c

j

)2r

< exp

{

−4rc

j

}

(4.63)

Putting these facts together, we find the lower bound

∑

j≤2rc

log

(

1 +

(

1 −
2c

j

)r)

>
∑

j≤2rc

(

1 −
2c

j

)r

−
1

2

(

1 −
2c

j

)2r

>
∑

j≤2rc

exp

{

−2rc

j
−

2rc2

j(j − 2c)

}

−
1

2

∑

j≤2rc

exp

{

−4rc

j

}

. (4.64)

Euler Maclaurin summation can be used to find bounds on both of the above ex-

ponential sums; we begin with the second. The estimations and substitutions used
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are similar to those we saw when finding the upper bound.

∑

j≤2rc

exp

{

−4rc

j

}

< e−2 +

∫ 2rc

1
e−4rc/x dx

= e−2 + 2rc

∫ 1

1/2rc
e−2/u du

< e−2 + 2rc

∫ 1

0
e−2/u du

= e−2 + 2rcC2

where C2 is the convergent integral and

C2 = 0.0375 · · · =

∫ 1

0
e−2/u du.

Thus

1

2

∑

j≤2rc

exp

{

−4rc

j

}

<
1

2
e−2 + rcC2. (4.65)

Before proceeding with the remaining exponential sum, we comment that any inte-

gral used to approximate this sum will be difficult to evaluate if the exponent is left

in its current form. Thus far, we have been able to use a substitution that gives a

convergent integral, but this sum is more difficult because of the added term in the

exponent. However, observe that when j ≥ 2,

2rc2

j(j − 2c)
≤

rc2

2(1 − c)
.

Since the latter expression is increasing in c, we find

rc2

2(1 − c)
<

r

4

over the range of interest. Therefore, when j ≥ 2,

exp

{

−2rc

j
−

2rc2

j(j − 2c)

}

> exp

{

−2rc

j
−

r

4

}

= e−2rc/je−r/4.

This allows us to replace the exponent of the sum with an expression that is similar

to the functions we have already integrated. In fact, we don’t even have to use

Euler Maclaurin summation: since e−2rc/x is an increasing, concave down function,
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we can find a lower bound for the given sum simply by evaluating an integral.

∑

j≤2rc

exp

{

−2rc

j
−

2rc2

j(j − 2c)

}

= e−2rc−2rc2/(1−2c) +
∑

2≤j≤2rc

exp

{

−2rc

j
−

2rc2

j(j − 2c)

}

> e−2rc−2rc2/(1−2c) +
∑

2≤j≤2rc

exp

{

−2rc

j
−

r

4

}

> e−2rc−2rc2/(1−2c) + e−r/4

∫ 2rc

1
e−2rc/x dx

= e−2rc−2rc2/(1−2c) + 2rce−r/4

∫ 1

1/2rc
e−1/u du

Finally, since j ≥ 2 in the sum estimated by the integral, we note that 2rc ≥ j ≥ 2

implies that 1/2rc ≤ 1/2. Thus

∑

j≤2rc

exp

{

−2rc

j
−

2rc2

j(j − 2c)

}

> e−2rc−2rc2/(1−2c) + 2rce−r/4

∫ 1

1/2rc
e−1/u du

> e−2rc−2rc2/(1−2c) + 2rce−r/4

∫ 1

1/2
e−1/u du

= e−2rc−2rc2/(1−2c) + 2rce−r/4C3, (4.66)

where

C3 = 0.1297 · · · =

∫ 1

1/2
e−1/u du.

Combining (4.64), (4.65), and (4.66) we find that

∑

j≤2rc

log

(

1 +

(

1 −
2c

j

)r)

> e−2rc−2rc2/(1−2c) + 2rcC3e
−r/4 −

1

2
e−2 − rcC2. (4.67)

Substituting this bound into (4.60), we find the lower bound for the original product,

proving both the upper and lower bounds given in (4.59). 2

The upper and lower bounds for the product over small j given in Lemma

4.8 are similar. When we return to analyzing Tr, we will use the simpler upper

bound in our calculations, but we must first look at the remaining part of tr(c).

Recall the earlier determination that tr(c) behaved like t1(rc) and the realization

that the behavior of t1(rc) for small j would require splitting this product into two

parts. For large j, we will compare the two products over the appropriate range,
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2rc < j ≤ k. We define t′1(c) and redefine tr(c) to be

t′1(c) =
k
∏

j>2c

1 + (1 − 2c
j )

2
, (4.68)

tr(c) =

k
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
. (4.69)

This gives

t′1(rc) =
k
∏

j>2rc

1 + (1 − 2rc
j )

2
=

k
∏

j>2rc

(

1 −
rc

j

)

(4.70)

as the product that we need to compare to tr(c). The next theorem is similar to

Theorems 4.1 and 4.2. We will show that tr(c) is approximately t′1(rc) along with

an error term.

Theorem 4.4 Suppose 0 < c < 1/2, r ≥ 3, and define t′1(c) and tr(c) as follows:

t′1(c) =

k
∏

j>2c

1 + (1 − 2c
j )

2
,

tr(c) =
k
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
.

Then the ratio of tr(c) and t′1(rc),

Qr,k(c) =
tr(c)

t′1(rc)
,

converges to

Qr(c) =
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
(

1 − rc
j

)

as k → ∞. Furthermore,

tr(c) ∼ t′1(rc)Qr(c). (4.71)

Proof: First observe that

t′1(rc) =
k
∏

j>2rc

1 + (1 − 2rc
j )

2
=

k
∏

j>2rc

1 −
rc

j
.
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Expanding out the numerator of tr(c) gives

tr(c) =

k
∏

j>2rc

1 +
(

1 − 2c
j

)r

2

=

k
∏

j>2rc

1 +
∑

n≥0

(r
n

)

(−1)n
(

2c
j

)n

2

=
k
∏

j>2rc

1

2



2 −
2rc

j
+
∑

n≥2

(

r

n

)

(−1)n
(

2c

j

)n




=

k
∏

j>2rc

1

2



2 −
2rc

j



1 −
1

r

∑

n≥2

(

r

n

)

(−1)n
(

2c

j

)n−1








=
k
∏

j>2rc



1 −
rc

j



1 −
1

r

∑

n≥2

(

r

n

)

(−1)n
(

2c

j

)n−1






 .

Then Qr,k(c) can be simplified as follows.

Qr,k(c) =
tr(c)

t′1(rc)

=
k
∏

j>2rc

1 − rc
j

(

1 − 1
r

∑

n≥2

(r
n

)

(−1)n
(

2c
j

)n−1
)

1 − rc
j

=
k
∏

j>2rc

1 +
c

j

(

1 −
rc

j

)−1
∑

n≥2

(

r

n

)

(−1)n
(

2c

j

)n−1

=

k
∏

j>2rc

1 +
2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

We claim that Qr,k(c) converges as k → ∞. Recall from Theorem 4.2 that the

infinite product
∏

j>2rc

1 + aj

converges if and only if the series
∑

j>2rc

aj

converges absolutely. We first observe that

2c2

j(j − rc)
≥ 0
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if and only if j > rc, certainly this is true when j > 2rc. Also, the alternating sum

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

=

(

r

2

)

−

(

r

3

)

2c

j
+ · · · + (−1)r

(

2c

j

)r−2

will be positive if j is large enough so that the absolute value of the terms decrease.

In particular, we need

1 >

(

r
t+3

)

(

2c
j

)t+1

( r
t+2

)

(

2c
j

)t =
r − t − 2

t + 3
·
2c

j
.

Thus the (t + 1)st term is less than the tth term when

j > 2c ·
r − t − 2

t + 3
.

Since the expression on the right decreases as t increases, the maximum value of

this quotient occurs when t = 0, implying the terms of the sum are decreasing when

j > 2
3 c(r − 2). Consequently, the sum is positive when j is in this range. Since

j > 2rc > 2
3 c(r − 2), the alternating sum is positive. Thus

2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

≥ 0

in the range we are interested in. Finally, we note that when j > 2rc,

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

≤

(

r

2

)

and rc/j < 1/2, implying

2c2

j(j − rc)
=

2c2

j2

(

1 −
rc

j

)−1

<
4c2

j2
.

This enables us to find an upper bound on the alternating series,

∑

j>2rc

2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

<
∑

j>2rc

(

r

2

)

4c2

j2
.

Since the latter sum is a convergent p−series,

∑

j>2rc

2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n
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is an absolutely convergent series. Therefore

k
∏

j>2rc

1 +
2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

converges as k → ∞ to

Qr(c) =
∏

j>2rc

1 +
2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

=
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
(

1 − rc
j

) . (4.72)

By definition we have

tr(c) = t′1(rc)Qr,k(c). (4.73)

To eliminate the parameter k in (4.73), we replace Qr,k(c) by Qr(c) and determine

the error introduced by this substitution.

1 <
Qr(c)

Qr,k(c)

=

∞
∏

j=k+1

1 +
2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

< exp







∞
∑

j=k+1

2c2

j(j − rc)

∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n






= exp

{

O

(

1

k

)}

= 1 + O

(

1

k

)

.

We will give a proof of this error estimate in Section 4.5.3. Therefore,

Qr,k(c) = Qr(c)

(

1 + O

(

1

k

))

,

and along with (4.73), this gives

tr(c) = t′1(rc)Qr(c)

(

1 + O

(

1

k

))

.

Finally, since 1 + O(k−1) → 1 as k → ∞, we have shown the result. 2
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This theorem along with Lemma 4.8 is the beginning of an asymptotic for

tr(c). Using the upper bound from Lemma 4.8, we have found that

k
∏

j=1

1 +
(

1 − 2c
j

)r

2
=

∏

j≤2rc

1 +
(

1 − 2c
j

)r

2

k
∏

j>2rc

1 +
(

1 − 2c
j

)r

2

∼ 2−b2rccee−1
e2rcC1t′1(rc)Qr(c). (4.74)

This gives

Tr ∼

(

l

r

)

2−b2rccee−1
e2rcC1t′1(rc)Qr(c) (4.75)

as an approximation for the rth term of E(2s). We will soon find an asymptotic for

t′1(rc), but first we will check the error from Theorem 4.4.

4.5.3 Error Analysis for Theorem 4.4

In comparing Qr,k(c) to Qr(c) in Theorem 4.4, we used the fact that the

alternating sum is O(k−1). The following lemma shows that this error estimation is

true.

Lemma 4.9 Let 0 < c < 1/2, k ≥ 2, r ≥ 3, and let

Ar,c(j) =
∑

n≥0

(

r

n + 2

)

(−1)n
(

2c

j

)n

.

Then

0 <

∞
∑

j=k+1

2c2

j(j − rc)
Ar,c(j) <

(

r

2

)

2c2r

k
.

Proof: First note that by the definition of tr(c), k + 1 > k > 2rc and by the work

in Theorem 4.4, we know that the terms of Ar,c(j) are decreasing. Thus

0 <

(

r

2

)

−

(

r

2

)

2c

j
< Ar,c(j) <

(

r

2

)

.

Substituting this into the infinite series,

0 <

∞
∑

j=k+1

2c2

j(j − rc)
Ar,c(j) <

(

r

2

) ∞
∑

j=k+1

2c2

j(j − rc)
. (4.76)

Continuing with the upper bound, since 0 < c < 1/2, then j − rc > j − r. Thus

∞
∑

j=k+1

2c2

j(j − rc)
<

∞
∑

j=k+1

2c2

j(j − r)
.
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Since j > k ≥ r, the sum on the right is positive and bounded above by a convergent

p−series. So the sum is absolutely convergent and we can rearrange it. In particular,

we find that

∞
∑

j=k+1

2c2

j(j − r)
= 2c2





∞
∑

j=k+1

1

r(j − r)
−

∞
∑

j=k+1

1

rj





= 2c2





∞
∑

j=k−r+1

1

rj
−

∞
∑

j=k+1

1

rj





=
k
∑

j=k−r+1

2c2

rj
.

Combining this with (4.76), we now have

0 <
∞
∑

j=k+1

2c2

j(j − rc)
Ar,c(j) <

(

r

2

) k
∑

j=k−r+1

2c2

rj
. (4.77)

Rewriting the sum above to begin with index 0, we find

∞
∑

j=k+1

2c2

j(j − rc)
Ar,c(j) <

(

r

2

) k
∑

j=k−r+1

2c2

rj

=

(

r

2

) r−1
∑

i=0

2c2

r(k − i)

=

(

r

2

)

1

k

r−1
∑

i=0

2c2

r(1 − i/k)
. (4.78)

The final sum in (4.78) is easy to bound upon observing that since k ≥ r,

i

k
≤

r − 1

k
≤

r − 1

r
= 1 −

1

r
.

Thus, 1 − i/k ≥ 1/r, so

r−1
∑

i=0

2c2

r(1 − i/k)
≤

r−1
∑

i=0

2c2r

r

= 2c2r.

Using this in (4.78), we have the new upper bound

∞
∑

j=k+1

2c2

j(j − rc)
A(j) <

(

r

2

)

2c2r

k
, (4.79)

proving the result. 2
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We now continue with the asymptotics given in Section 4.5.2

k
∏

j=1

1 +
(

1 − 2c
j

)r

2
∼ 2−b2rccee−1

e2rcC1t′1(rc)Qr(c)

and

Tr ∼

(

l

r

)

2−b2rccee−1
e2rcC1t′1(rc)Qr(c).

To further improve these estimations, we must determine how t′1(rc) behaves. We

do this in the next section.

4.5.4 An Asymptotic For t′1(rc)

From the work in Section 4.5.1, we expect to see a factor of k−rc in the

asymptotic for Tr. Since we have found bounds for the product part of Tr over

small j that do not include this factor, this behavior must come from the latter part

of the product that we defined in Theorem 4.4 to be tr(c). There, we found tr(c) to

be t′1(rc) times a correction factor Qr(c), where

t′1(rc) =

k
∏

j>2rc

1 −
rc

j
.

To analyze t′1(rc), we will, as usual, rewrite it as an exponential function. This gives

t′1(rc) = exp







k
∑

j>2rc

log

(

1 −
rc

j

)







= exp







−
k
∑

j>2rc

∑

m≥1

(

rc

j

)m 1

m







= exp







−
k
∑

j>2rc

rc

j
−

k
∑

j>2rc

∑

m≥2

(

rc

j

)m 1

m







.

When finding estimates for the sums in the exponent, we will use approximations

similar to those we’ve seen before, but we must take care to not include the first

terms where j < 2rc. With this in mind, the analysis of t′1(rc) breaks into two cases:

2rc < 1 and 2rc ≥ 1.
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Case 1: 2rc < 1

Observe that when 2rc < 1, t′1(rc) is the full product, that is

t′1(rc) =

k
∏

j=1

1 −
rc

j
.

Therefore we may use the asymptotic found for t′1(c) in Theorem 4.1. Substituting

rc into the function there we have

t′1(rc) ∼ k−rce−rcγ−hζ(rc), (4.80)

where

hζ(rc) =
∑

m≥2

(rc)m

m
ζ(m).

Returning to Tr, we observe that the bounds found in Lemma 4.8 are not necessary

as the product for small j < 2rc is empty. Thus the asymptotic for Tr when 2rc < 1

consists only of the binomial coefficient along with (4.80) and Qr(c),

Tr ∼

(

l

r

)

k−rce−rcγ−hζ(rc)Qr(c). (4.81)

The use of this asymptotic is dependent on whether or not it converges;

the question of convergence comes down to hζ(rc). Although not mentioned above,

hζ(rc) converges when 2rc < 1 because rc < 1. When 1 ≤ 2rc < 2, it is still true

that rc < 1, implying that hζ(rc) converges in this case also. Therefore we may

still use the asymptotic for t′1(rc) given in equation (4.80) when 2rc < 2. So the

estimate given for Tr in (4.81) is valid for r ≥ 3 when 2rc < 2.

Once 2rc ≥ 2, we may no longer use this asymptotic. Not only does hζ(rc)

not converge when 2rc ≥ 2, now rc ≥ 1 and there are some terms in the product

t′1(rc) that are negative or possibly 0. Therefore the manipulation of t′1(rc) to

rewrite it as an exponential function is no longer valid as there will be terms not in

the domain of log. When this happens, we must turn to more careful estimations

of sums.
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Case 2: 2rc ≥ 1

When 2rc ≥ 1, t′1(rc) is no longer the full product and we must take this

into account in our approximations. The methods used in the next lemma will be

similar to what we have done before but the resulting asymptotic will have extra

terms due to the missing factors in the product we are looking at.

Lemma 4.10 Let 0 < c < 1/2 and r ≥ 3. Then

t′1(rc) ∼

(

k

b2rcc

)−rc

exp

{

rc

2b2rcc
−

rc

12b2rcc2
+

rc

12b2rcc4

}

∗ exp







−rch1

(

rc

b2rcc

)

+ h2

(

rc

b2rcc

)

−
h3

(

rc
b2rcc

)

b2rcc







, (4.82)

where

h1(x) = 1 +
(1 − x) log(1 − x)

x
,

h2(x) = −
1

2
log(1 − x) −

x

2
,

h3(x) =
−x2

12(x − 1)
.

Proof: As defined in Theorem 4.4,

t′1(rc) =

k
∏

j>2rc

1 + (1 − 2rc
j )

2
=

k
∏

j=b2rcc+1

1 −
rc

j
.

We can rewrite this expression in terms of an exponential function,

t′1(rc) = exp







k
∑

j>2rc

log

(

1 −
rc

j

)







= exp







−
k
∑

j>2rc

∑

m≥1

(

rc

j

)m 1

m







= exp







−
k
∑

j>2rc

rc

j
−

k
∑

j>2rc

∑

m≥2

(

rc

j

)m 1

m







.

Considering the first sum in the exponent, an application of Euler Maclaurin sum-

mation shows

k
∑

j>2rc

1

j
= log k − logb2rcc −

1

2b2rcc
+

1

12b2rcc2
−

1

60b2rcc4
+ O

(

1

k

)

.
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Replacing the first sum in the exponential expression with this estimate and switch-

ing the order of summation on the double series, we see

t′1(rc) = exp

{

−rc log k + rc logb2rcc +
rc

2b2rcc
−

rc

12b2rcc2
+

rc

60b2rcc4

}

∗ exp







−
∑

m≥2

(rc)m

m

k
∑

j>2rc

1

jm







exp

{

O

(

1

k

)}

=

(

k

b2rcc

)−rc

exp

{

rc

2b2rcc
−

rc

12b2rcc2
+

rc

60b2rcc4

}

∗ exp







−
∑

m≥2

(rc)m

m

k
∑

j>2rc

1

jm







(

1 + O

(

1

k

))

. (4.83)

Another application of Euler Maclaurin shows that

k
∑

j>2rc

1

jm
=

1

(m − 1)b2rccm−1
−

1

2b2rccm
+

m

12b2rccm+1
+ O

(

1

km−1

)

.

Applying this to the inner sum in (4.83) gives

∑

m≥2

(rc)m

m

k
∑

j>2rc

1

jm

=
∑

m≥2

(rc)m

m

(

1

(m − 1)b2rccm−1
−

1

2b2rccm
+

m

12b2rccm+1
+ O

(

1

km−1

))

=
∑

m≥2

(rc)m

m

(

1

(m − 1)b2rccm−1
−

1

2b2rccm
+

m

12b2rccm+1

)

+ O

(

1

k

)

.

Substituting this back into (4.83), we obtain

t′1(rc) =

(

k

b2rcc

)−rc

exp

{

rc

2b2rcc
−

rc

12b2rcc2
+

rc

60b2rcc4

}

∗ exp







−
∑

m≥2

(rc)m

m

(

1

(m − 1)b2rccm−1
−

1

2b2rccm

)







∗ exp







−
∑

m≥2

(rc)m

m

m

12b2rccm+1







(

1 + O

(

1

k

))

. (4.84)
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Finally, we define h1(x), h2(x), and h3(x) as the following infinite sums.

h1(x) =
∑

m≥2

xm−1

m(m − 1)
= 1 +

(1 − x) log(1 − x)

x

h2(x) =
∑

m≥2

xm

2m
= −

1

2
log(1 − x) −

x

2

h3(x) =
∑

m≥2

xm

12
=

−x2

12(x − 1)

Letting x = rc/b2rcc and substituting h1(x), h2(x), and h3(x) into (4.84), we have

the result. 2

The analyses of the error terms encountered here are similar to the analyses

done in Sections 4.4.3 and 4.5.3 and will therefore be omitted. We can now use

Lemmas 4.8 and 4.10 with Theorem 4.4 to give an asymptotic for the rth term of

E(2s) when 2rc ≥ 1. We summarize the results of this section and Section 4.5.4 in

the next theorem.

Theorem 4.5 Let 0 < c < 1/2 and r ≥ 3. The behavior of the rth term of E(2s)

can be summarized in two cases.

(i) When 2rc < 1,

Tr ∼

(

l

r

)

k−rce−rcγ−hζ(rc)Qr(c),

where

Qr(c) =
∏

j≥1

1 +
(

1 − 2c
j

)r

2
(

1 − rc
j

) .

(ii) When 2rc ≥ 1,

Tr ∼

(

l

r

)(

k

b2rcc

)−rc

2−b2rccee−1
e2rcC1Qr(c)

∗ exp

{

rc

2b2rcc
−

rc

12b2rcc2
+

rc

60b2rcc4

}

∗ exp







−rch1

(

rc

b2rcc

)

+ h2

(

rc

b2rcc

)

−
h3

(

rc
b2rcc

)

b2rcc







,

where C1, h1(x), h2(x), and h3(x) are defined as before and

Qr(c) =
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
(

1 − rc
j

) .
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Recall that although the first case is stated for 2rc < 1, we can also use this asymp-

totic when 1 ≤ 2rc < 2. The two approximations for Tr in this range are slightly

different, but we will find use for both of them later in the chapter.

4.6 Comparing Consecutive Terms

With an asymptotic expression for Tr, r ≥ 3, we are now prepared to return

to determining the values of l = dk for which E(2s) approaches 1. Recall that we

have shown that T1 < 1 when

d < d1 =
ecγ+hζ(c)

k1−c

and 0 < c < 2/5. We have also shown that T2 < T1 in this range. To show

that E(2s) approaches 1 for these values of d, we must show that the sum of the

remaining terms is negligible. Since the factor k−rc appears in the asymptotic of Tr,

it seems reasonable to expect E(2s) to behave like a geometric series. In fact, the

terms are decreasing when d < d1 and we will show that they are bounded above

by a geometric series that converges to 1 for a given function l = l(k).

One approach to this would be to find the sequence of dr, r ≥ 1, such that

Tr+1 < Tr. If this sequence is increasing as r increases, then the sequence of terms,

Tr, is decreasing. We have already found d1 and d2 and have seen that d1 < d2,

showing that T2 < T1 for l greater than what is even needed to have T1 < 1. One

advantage to this approach is showing that the sequence dr strictly increases would

imply the terms are unimodal. However, we would still need to prove that the sum

of the remaining terms is small and E(2s) approaches 1.

On the other hand, we know the range for d we’re interested in; we know

that d must be less than d1 before T1 is small enough to possibly see E(2s) approach

1. If we show that Tr+1 < Tr when d < d1, then we will be showing that the terms

are decreasing in the range of interest. To do this, we may determine if

Tr+1

Tr
< 1

in the critical range. This is a more direct approach than the latter and will have the

result of giving an upper bound on the ratio of consecutive terms. The advantage
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of this approach is that this upper bound enables us to bound E(2s) above by a

geometric series, not only showing that the terms are decreasing, but giving an

upper bound on the sum itself.

4.6.1 The Range of Interest

Since the asymptotics for Tr depend on l, we must be sure to compare

approximations with the correct values of l substituted in to find an upper bound

on the ratio of consecutive terms. To narrow down the range we are interested in,

observe that the numerator of d1 is increasing in c. Then since 0 < c < 2/5,

1 < ecγ+hζ(c) < e2γ/5+hζ (2/5) < 1.4893.

This allows us to bound d1,

kc−1 < d1 < 1.4893kc−1.

Setting l1 = d1k to be the critical l value such that T1 < 1 when l < l1 , this implies

that

kc < l1 < 1.4893kc. (4.85)

Certainly, if l ≤ kc, l is in the range where T1 < 1. We will concentrate our remaining

work in this area. We will first look at the ratio of consecutive terms when l = kc.

4.6.2 The Ratio of Consecutive Terms, l = kc

We will be using the asymptotics given in Theorem 4.5 to find an upper

bound for the ratio

Tr+1

Tr
.

In this section, we will take l = kc. Since the asymptotic we use for Tr changes

depending on the size of 2rc, we will need to consider three different cases based on

the values of 2rc and 2(r + 1)c:

Case 1: 2rc < 2(r + 1)c < 1;

Case 2: 2rc < 1, 1 ≤ 2(r + 1)c < 2;

Case 3: 1 ≤ 2rc < 2(r + 1)c.
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The cases are broken up in this way so that we will be able to compare similar

asymptotics. Cases 1 and 2 will use the approximation given in part (i) of Theorem

4.5 for both Tr and Tr+1 while the comparisons for case 3 will use part (ii) of

the theorem. It is necessary to have case 2 as what we might call a “crossover”

comparison between the two different asymptotics. It is certainly possible in case 2

to use part (i) for Tr and (ii) for Tr+1 in the ratio, but the resulting expression will

be very difficult to analyze. Since both estimations we have found for Tr are valid

when 1 ≤ 2rc < 2, we use similar expressions to simplify our work. We also observe

that this is the only case that needs to be set up this way. Since 2c < 1,

2(r + 1)c < 2rc + 1,

thus it is never possible to have the case when 2rc < 1 while 2(r + 1)c ≥ 2.

This also brings up the fact that b2rcc may not be equal to b2(r +1)cc. The

impact of this will arise in case 3 where we will need to decompose the case even

further according to the value of the two floors.

Case 1: 2rc < 2(r + 1)c < 1

We first consider the case when 2rc and 2(r+1)c are both small. By Theorem

4.5, the rth term of E(2s) is

Tr ∼

(

l

r

)

k−rce−rcγ−hζ(rc)Qr(c) (4.86)

while the (r + 1)st term is

Tr+1 ∼

(

l

r + 1

)

k−(r+1)ce−(r+1)cγ−hζ((r+1)c)Qr+1(c). (4.87)

We wish to find an upper bound on the ratio of these two terms. Taking the ratio

of (4.86) and (4.87) and simplifying, we find that

Tr+1

Tr
∼

( l
r+1

)

( l
r

) k−ce−cγ−hζ((r+1)c)+hζ(rc) Qr+1(c)

Qr(c)

=
l − r

r + 1
k−ce−cγ−hζ((r+1)c)+hζ (rc) Qr+1(c)

Qr(c)
. (4.88)
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We will divide the analysis of this ratio into three parts: the ratio of binomial

coefficients along with the factor k−c, the natural exponential function, and the

remaining infinite product.

We are assuming right now that l = kc. Since r ≤ l, we may write r = αl =

αkc, where α ≤ 1. Substituting this into the first part of the expression, we have

l − r

r + 1
k−c =

kc − αkc

kc
·

1

r + 1

=
1 − α

r + 1

<
1

r + 1
.

Finally, since r ≥ 3,

l − r

r + 1
k−c <

1

4
. (4.89)

Moving on to the exponential function, we can show that it is less than 1. First

observe that

hζ(y) =
∑

m≥2

ym

m
ζ(m)

increases with the argument. If y1 < y2, then for m ≥ 2,

ym
1

m
ζ(m) <

ym
2

m
ζ(m).

Therefore, hζ(y1) < hζ(y2). Then since rc < (r + 1)c,

hζ(rc) < hζ((r + 1)c).

This implies that the exponent, −cγ − hζ((r + 1)c) + hζ(rc), is negative. Thus,

e−cγ−hζ((r+1)c)+hζ(rc) < e0 = 1. (4.90)

Equations (4.89) and (4.90) together give an upper bound so far to be

l − r

r + 1
k−ce−cγ−hζ((r+1)c)+hζ (rc) Qr+1(c)

Qr(c)
<

1

4

Qr+1(c)

Qr(c)
.

If the remaining product is less than 4, then the ratio of consecutive terms will be

less than 1. This will imply that we may bound the sum of Tr, r ≥ 3, above by a

convergent geometric series when 2rc < 2(r + 1)c < 1.
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The remaining ratio requires more work. Recall that

Qr(c) =
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
(

1 − rc
j

)

was the accumulated error from replacing tr(c) by t′1(rc). In this case, both Qr(c)

and Qr+1(c) are over j ≥ 1. The ratio we are looking at here is

Qr+1(c)

Qr(c)
=
∏

j≥1

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

. (4.91)

We expect this product to be close to 1; consider the first fraction above,

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ,

for fixed j. Since 0 < 1 − 2c/j < 1, the difference between having an exponent r or

an exponent r + 1 is minimal, especially as j → ∞. Therefore the numerator and

denominator of this fraction are very close. The denominator is only slightly larger

than the numerator, so this ratio is less than 1 for all j and approaches 1 as j → ∞.

On the other hand,
1 − rc

j

1 − (r+1)c
j

is greater than 1 since (r + 1)c/j > rc/j for all j. So the product of these two

fractions approaches 1 as j → ∞. But since one ratio is slightly larger than 1 while

the other is slightly smaller, we can’t determine whether their product is greater or

less than 1 with the information we have.

We can, however, bound their product for fixed j using the expansion of the

binomial term. Observe that since j > 2rc,

1 −
2rc

j
<

(

1 −
2c

j

)r

< 1 −
2rc

j
+

2r(r − 1)c2

j2
.
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With these bounds,

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

<
1 − (r+1)c

j + (r+1)rc2

j2

1 − rc
j

·
1 − rc

j

1 − (r+1)c
j

=
1 − (r+1)c

j + (r+1)rc2

j2

1 − (r+1)c
j

= 1 +
(r + 1)rc2

j2
·

1

1 − (r+1)c
j

.

Since j > 2(r + 1)c, observe that

1

1 − (r+1)c
j

< 2.

We use this in the bound found above to see for fixed j,

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

< 1 +
2(r + 1)rc2

j2
. (4.92)

We substitute this back into (4.91) to find that

Qr+1(c)

Qr(c)
<

∏

j≥1

1 +
2(r + 1)rc2

j2

= exp







∑

j≥1

log

(

1 +
2(r + 1)rc2

j2

)







< exp







∑

j≥1

2(r + 1)rc2

j2







by the Taylor expansion for log. Now, the sum over the squares in the exponent is

ζ(2) = π2/6. This, along with the fact that 2rc < 2(r + 1)c < 1, gives

Qr+1(c)

Qr(c)
< exp







∑

j≥1

2(r + 1)rc2

j2







= exp{2(r + 1)rc2ζ(2)}

< eπ2/12. (4.93)
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Applying this in (4.88) with the earlier bounds, we now have that

Tr+1

Tr
∼

l − r

r + 1
k−ce−cγ−hζ((r+1)c)+hζ (rc) Qr+1(c)

Qr(c)

<
1

4
eπ2/12

= 0.56902 . . . (4.94)

This upper bound is exactly what we had hoped for. Not only have we found a

constant upper bound, we have shown that the ratio of consecutive terms is less than

1. This means that we can bound the portion of E(2s) where 2rc < 2(r + 1)c < 1

by a partial geometric series. In the next cases, we will apply similar techniques to

find upper bounds on this same ratio. Case 2, when 2rc < 1 and 1 ≤ 2(r + 1)c < 2,

will be similar to what we have done here, although we will need to take more care

with the infinite product. Case 3, when 2(r + 1)c > 2rc > 1, will be more tedious

since there are more factors to analyze. The ratio of Qr+1(c) to Qr(c) will again be

a difficult step as the upper bound given in this section will not be valid there.

Case 2: 2rc < 1, 1 ≤ 2(r + 1)c < 2

In order to compare similar expressions for the case where 2rc < 1 and

1 ≤ 2(r + 1)c < 2, we use part (i) of Theorem 4.5 for both Tr and Tr+1. Recall

the earlier discussion in Section 4.5.4 on the validity of using this expression when

1 ≤ 2(r + 1)c < 2. Therefore Tr and Tr+1 in this case will be

Tr ∼

(

l

r

)

k−rce−rcγ−hζ(rc)Qr(c), (4.95)

Tr+1 ∼

(

l

r + 1

)

k−(r+1)ce−(r+1)cγ−hζ((r+1)c)Qr+1(c). (4.96)

This gives the ratio of Tr+1 to Tr to be

Tr+1

Tr
∼

l − r

r + 1
k−ce−cγ−hζ((r+1)c)+hζ(rc) Qr+1(c)

Qr(c)
, (4.97)

as in equation (4.88). Since these are the same asymptotics used in the last section,

much of the work here will be identical to the work seen there. In fact, any estimates

in the last section that did not require the use of the bounds on 2rc or 2(r + 1)c

will follow through in this case. Thus the bounds from (4.89) and (4.90) hold and
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we know that

l − r

r + 1
k−ce−cγ−hζ((r+1)c)+hζ (rc) <

1

4
. (4.98)

All that remains is to find the upper bound on the ratio of Qr+1(c) to Qr(c),

Qr+1(c)

Qr(c)
=
∏

j≥1

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

.

The bound we found earlier for this ratio was highly dependent on the upper bound

of 1 for both 2rc and 2(r +1)c. When we extend the range of 2(r +1)c, the work on

this ratio is no longer valid. In particular, the analysis breaks down when finding

an upper bound for the product factors for fixed j. There, we used the fact that

2(r + 1)c < 1 to show that

1

1 − (r+1)c
j

< 2

for all j, enabling us to find the final upper bound given. In case 2, we now have

(r + 1)c < 1. When j = 1, this implies that

1

1 − (r + 1)c
< ∞.

Clearly this is not a useful bound. But j = 1 is the only problem; when j ≥ 2,

(r + 1)c/j < 1/2. This means

1

1 − (r+1)c
j

< 2

for all j ≥ 2, indicating that it will be useful to handle the first term of the infinite

product separately and analyze the remaining product as before. We rewrite this

ratio as

Qr+1(c)

Qr(c)
=

1 + (1 − 2c)r+1

1 − (r + 1)c
·

1 − rc

1 + (1 − 2c)r

∏

j≥2

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

.

Then following the steps leading to (4.92), we find that

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

< 1 +
2(r + 1)rc2

j2
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when j ≥ 2. This leads to

∏

j≥2

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

<
∏

j≥2

1 +
2(r + 1)rc2

j2

< exp







∑

j≥2

2(r + 1)rc2

j2







as before. Now we find that 2(r+1)rc2 < 1 and the sum over the squares is ζ(2)−1.

Thus

exp







∑

j≥2

2(r + 1)rc2

j2







< eπ2/6−1. (4.99)

Returning to the initial term of the ratio, we use the standard upper bound for

(1 − 2c)r+1 to see that

1 + (1 − 2c)r+1

1 − (r + 1)c
<

2(1 − (r + 1)c)

1 − (r + 1)c
< 2. (4.100)

Also, since 0 < 1 − rc < 1 and 1 + (1 − 2c)r > 1, we have

1 − rc

1 + (1 − 2c)r
< 1. (4.101)

Then, combining equations (4.99), (4.100), and (4.101), we finally have

Qr+1(c)

Qr(c)
< 2eπ2/6−1. (4.102)

We are now able to find an upper bound for the ratio of consecutive terms:

Tr+1

Tr
'

l − r

r + 1
k−ce−cγ−hζ((r+1)c)+hζ (rc) Qr+1(c)

Qr(c)

<
1

2
eπ2/6−1

= 0.95293 . . . (4.103)

We have again shown that the ratio of consecutive terms is less than 1 in this case.

As r increases, this upper bound becomes even smaller. We may therefore bound

the terms of E(2s) where 2rc < 1 and 1 ≤ 2(r + 1)c < 2 above by a convergent

geometric series.
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Case 3: 2(r + 1)c > 2rc ≥ 1

Case 3 considers the remaining possibilities for 2rc and 2(r + 1)c. By Theo-

rem 4.5, when 2rc ≥ 1, the rth term of E(2s) is approximately

Tr ∼

(

l

r

)(

k

b2rcc

)−rc

2−b2rccee−1
e2rcC1Qr(c)

∗ exp

{

rc

2b2rcc
−

rc

12b2rcc2
+

rc

60b2rcc4

}

∗ exp







−rch1

(

rc

b2rcc

)

+ h2

(

rc

b2rcc

)

−
h3

(

rc
b2rcc

)

b2rcc







where C1, h1(x), h2(x), and h3(x) are defined in Lemmas 4.8 and 4.10 as

C1 = 0.1484 · · · =

∫ 1

0
e−1/u du,

h1(x) =
∑

m≥2

xm−1

m(m − 1)
= 1 +

(1 − x) log(1 − x)

x
,

h2(x) =
∑

m≥2

xm

2m
= −

1

2
log(1 − x) −

x

2
,

h3(x) =
∑

m≥2

xm

12
=

−x2

12(x − 1)
,

and

Qr(c) =
∏

j>2rc

1 +
(

1 − 2c
j

)r

2
(

1 − rc
j

) .

Similarly, since 2(r + 1)c ≥ 1, we have

Tr+1 ∼

(

l

r + 1

)(

k

b2(r + 1)cc

)−(r+1)c

2−b2(r+1)ccee−1
e2(r+1)cC1Qr+1(c)

∗ exp

{

(r + 1)c

2b2(r + 1)cc
−

(r + 1)c

12b2(r + 1)cc2
+

(r + 1)c

60b2(r + 1)cc4

}

∗ exp

{

−(r + 1)ch1

(

(r + 1)c

b2(r + 1)cc

)

+ h2

(

(r + 1)c

b2(r + 1)cc

)}

∗ exp







−
h3

(

(r+1)c
b2(r+1)cc

)

b2(r + 1)cc







.

Comparing these two expressions is possible, but it is extremely difficult to show

what we need with the exponential functions written as they are above. The ratio of

consecutive terms becomes more manageable if we return to a more exact expression
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for Tr and Tr+1. We will instead be using the asymptotic

Tr ∼

(

l

r

)

2−b2rccee−1
e2rcC1t′1(rc)Qr(c) (4.104)

for Tr rather than substituting the approximation to t′1(rc) found in Lemma 4.10.

Similarly,

Tr+1 ∼

(

l

r + 1

)

2−b2(r+1)ccee−1
e2(r+1)cC1t1((r + 1)c)Qr+1(c). (4.105)

With these approximations, we will need to look at the ratio

t1((r + 1)c)

t′1(rc)

as well as the ratio of Qr+1(c) to Qr(c) as in the previous two cases.

The analyses of these two ratios are challenging due to the values of 2rc and

2(r + 1)c. Although we have eliminated almost all of the floor functions in Tr by

returning to a more exact expression, we must still be careful with the range of the

two product ratios. To be more precise, since

t′1(rc) =

k
∏

j>2rc

1 −
rc

j
,

then the ratio of t1((r + 1)c) to t′1(rc) is

t1((r + 1)c)

t′1(rc)
=

∏k
j>2(r+1)c

(

1 − (r+1)c
j

)

∏k
j>2rc

(

1 − rc
j

) .

If b2rcc = b2(r +1)cc, the range of each product is the same and this ratio is simply

t1((r + 1)c)

t′1(rc)
=

k
∏

j>2rc

1 − (r+1)c
j

1 − rc
j

=

k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

.

On the other hand, if b2rcc 6= b2(r + 1)cc, then the denominator has extra terms.

However, since 2c < 1 we must have b2rcc+ 1 = b2(r + 1)cc and t′1(rc) only has one

additional term. Therefore, we see

t1((r + 1)c)

t′1(rc)
=

(

1 −
rc

b2rcc + 1

)−1 k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

.
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The same anomaly occurs with Qr+1(c)/Qr(c). This requires us to decompose case

3 even further to consider Tr and Tr+1 where (a) b2rcc = b2(r + 1)cc and (b)

b2rcc 6= b2(r + 1)cc.

Before continuing, we present two lemmas that will aid in analyzing Tr+1/Tr.

The proofs of these lemmas appear in the next section. The first gives an upper

bound for a product related to t1((r + 1)c)/t′1(rc).

Lemma 4.11 Suppose 2(r + 1)c > 2rc ≥ 1. Then

k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

<

(

k

b2(r + 1)cc

)−c

exp

{

c

b2(r + 1)cc

}

.

The second lemma will be used in bounding Qr+1(c)/Qr(c). In cases 1 and

2, we used the inequality

∏

j

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

< exp







∑

j

2(r + 1)rc2

j2







where the product and sum are over the appropriate range for j. The key to ob-

taining the final upper bound on the product was in the upper bounds on 2rc and

2(r + 1)c. In this case, we no longer have these bounds. Therefore it is necessary to

find an alternate upper bound for the infinite product. The next lemma will aid in

finding this bound.

Lemma 4.12 Suppose 2(r + 1)c > 2rc ≥ 1. Then

∏

j>2(r+1)c

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

< exp

{

8rc2

b2(r + 1)cc

}

.

With these lemmas, we will be able to complete the desired analysis. From (4.104)

and (4.105), the ratio of consecutive terms is asymptotically

Tr+1

Tr
∼

l − r

r + 1
2b2rcc−b2(r+1)cce2cC1

t1((r + 1)c)

t′1(rc)

Qr+1(c)

Qr(c)
. (4.106)

We first observe that 2cC1 < C1, so that

e2cC1 < eC1 .
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This implies that

Tr+1

Tr
<

l − r

r + 1
2b2rcc−b2(r+1)cceC1

t1((r + 1)c)

t′1(rc)

Qr+1(c)

Qr(c)
. (4.107)

At this point, we must divide our analysis into two parts. We first consider the state

when b2rcc = b2(r + 1)cc. When this is true, we see that

2b2rcc−b2(r+1)cc = 1,

giving

Tr+1

Tr
<

l − r

r + 1
eC1

t1((r + 1)c)

t′1(rc)

Qr+1(c)

Qr(c)
. (4.108)

Since b2rcc = b2(r + 1)cc, the products t1((r + 1)c) and t′1(rc) are over the same

range of j. Therefore we know that

t1((r + 1)c)

t′1(rc)
=

k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

<

(

k

b2(r + 1)cc

)−c

exp

{

c

b2(r + 1)cc

}

by Lemma 4.11. Qr+1(c) and Qr(c) are also over the same values of j and Lemma

4.12 implies

Qr+1(c)

Qr(c)
=

∏

j>2(r+1)c

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

< exp

{

8rc2

b2(r + 1)cc

}

.

Replacing b2(r + 1)cc by b2rcc and substituting these inequalities into (4.108), we

find that

Tr+1

Tr
< eC1

l − r

r + 1

(

k

b2rcc

)−c

exp

{

c

b2rcc

}

exp

{

8rc2

b2rcc

}

. (4.109)

This expression can now be bounded above by a constant. Consider first the ratio

l − r

kc
.

With l = kc and r = αl, we find that

l − r

kc
= 1 − α < 1
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as in cases 1 and 2. Since b2rcc < 2rc < r < r + 1,

b2rccc

r + 1
<

(r + 1)c

r + 1
= (r + 1)c−1.

Furthermore, r ≥ 3 and c < 2/5 implies that

b2rccc

r + 1
<

1

43/5
.

Moving on to the exponential functions, we recall that b2rcc ≥ 1 to see that

exp

{

c

b2rcc

}

< e2/5.

Finally, since 2rc < b2rcc + 1, we have that 2rc/b2rcc < 1 + 1/b2rcc. Therefore,

exp

{

8rc2

b2rcc

}

< exp

{

4c

(

1 +
1

b2rcc

)}

< e16/5.

Applying these results to (4.109), we have shown that when 2(r+1)c > 2rc ≥ 1 and

b2rcc = b2(r + 1)cc, then the ratio of consecutive terms is bounded above by

Tr+1

Tr
<

1

43/5
e18/5+C1

< 18.4806 . . . (4.110)

Certainly this is not quite as low of an upper bound as we hoped for, but it decreases

quickly as r, 2rc, and 2(r + 1)c grow. In fact, when 2rc ≥ 2, this bound is already

reduced to 6.7986 . . .

We must also look at Tr+1/Tr when b2rcc 6= b2(r +1)cc. In this case, all the

work leading up to (4.107) still holds, and we begin with the inequality

Tr+1

Tr
<

l − r

r + 1
2b2rcc−b2(r+1)cceC1

t1((r + 1)c)

t′1(rc)

Qr+1(c)

Qr(c)
.

Here, b2rcc + 1 = b2(r + 1)cc, so that

2b2rcc−b2(r+1)cc =
1

2
,

modifying the above bound to be

Tr+1

Tr
<

eC1

2

l − r

r + 1

t1((r + 1)c)

t′1(rc)

Qr+1(c)

Qr(c)
. (4.111)
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Although the remaining ratios will involve more work to analyze, they will lead to a

better bound for Tr+1/Tr. Per the discussion leading to Lemma 4.11, we may write

t1((r + 1)c)

t′1(rc)
=

(

1 −
rc

b2rcc + 1

)−1 k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

.

Observe again that 2rc < b2rcc + 1. This implies that

rc

b2rcc + 1
<

1

2

and therefore,
(

1 −
rc

b2rcc + 1

)−1

< 2.

Along with the result of Lemma 4.11, this gives

t1((r + 1)c)

t′1(rc)
< 2

(

k

b2(r + 1)cc

)−c

exp

{

c

b2(r + 1)cc

}

.

Qr(c) also has more factors than Qr+1(c), so

Qr+1(c)

Qr(c)
=

1 − rc
b2rcc+1

1 +
(

1 − 2c
b2rcc+1

)r

∏

j>2(r+1)c

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

.

Another inequality for b2rcc will enable us to bound the initial term. Since the

denominator of this factor is strictly greater than 1,

1 − rc
b2rcc+1

1 +
(

1 − 2c
b2rcc+1

)r < 1 −
rc

b2rcc + 1
.

Then b2rcc ≤ 2rc gives the inequality

rc

b2rcc + 1
≥

1

2

b2rcc

b2rcc + 1
.

Finally, since b2rcc ≥ 1,

1 −
rc

b2rcc + 1
≤ 1 −

1

2

b2rcc

b2rcc + 1
≤

3

4
.
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Then this result with Lemma 4.12 shows

Qr+1(c)

Qr(c)
=

1 − rc
b2rcc+1

1 +
(

1 − 2c
b2rcc+1

)r

∏

j>2(r+1)c

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

<
3

4
exp

{

8rc2

b2(r + 1)cc

}

.

Returning to the ratio of consecutive terms, the inequality given in (4.111) becomes

Tr+1

Tr
<

3

4
eC1

l − r

r + 1

(

k

b2(r + 1)cc

)−c

∗ exp

{

c

b2(r + 1)cc

}

exp

{

8rc2

b2(r + 1)cc

}

. (4.112)

The remaining non-constant factors can be handled as before. With l = kc and

r = αl,

l − r

kc
< 1.

The fact that b2(r + 1)cc ≤ 2(r + 1)c gives

b2(r + 1)ccc

r + 1
< (r + 1)c−1 <

1

43/5
.

Now, since b2(r + 1)cc = b2rcc + 1 and b2rcc ≥ 1,

exp

{

c

b2(r + 1)cc

}

< e1/5.

Finally, since 2rc < b2(r + 1)cc,

exp

{

8rc2

b2(r + 1)cc

}

< e4c < e8/5.

We apply these bounds to (4.112) to find the final upper bound of

Tr+1

Tr
<

3

4

1

43/5
e9/5+C1

< 2.2911 . . . (4.113)

When 2rc ≥ 2, this constant upper bound decreases to 1.9052. . .
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Proofs of the Lemmas

We have now shown that the ratio of Tr+1 to Tr can be bounded above by a

constant in each of the three cases. Before summarizing the results found in the last

sections and commenting on them, we prove the lemmas used in the last section.

Lemma 4.11 gives a necessary partial bound on the ratio of t1((r + 1)c)

to t′1(rc). Since the same product appears both when b2rcc = b2(r + 1)cc and

b2rcc 6= b2(r + 1)cc, we needed to find an upper bound on this product. The

following proof will first find an upper bound on the product factors for fixed j and

use this to give the final result.

Lemma 4.11 Suppose 2(r + 1)c > 2rc ≥ 1. Then

k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

<

(

k

b2(r + 1)cc

)−c

exp

{

c

b2(r + 1)cc

}

.

Proof: To find an upper bound on the factors of the product, we first observe that

the ratio
1 − (r+1)c

j

1 − rc
j

(4.114)

is very close to 1 for all j > 2(r + 1)c. In fact, since (r + 1)c > rc, this ratio is

slightly less than 1. We can find an upper bound for the ratio by finding a lower

bound on the distance between 1 and (4.114). Subtracting the ratio from 1, we see

1 −
1 − (r+1)c

j

1 − rc
j

=
c/j

1 − rc/j
.

Since 1 − rc/j < 1 for all j > 2(r + 1)c, we find that

1 − (r+1)c
j

1 − rc
j

>
c

j
.

Therefore
1 − (r+1)c

j

1 − rc
j

< 1 −
c

j
(4.115)

for all j > 2(r + 1)c. We apply this bound to the original product to see that

k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

<

k
∏

j>2(r+1)c

1 −
c

j
. (4.116)
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This product can be rewritten as an exponential function,

k
∏

j>2(r+1)c

1 −
c

j
= exp







k
∑

j>2(r+1)c

log

(

1 −
c

j

)







.

By the Taylor expansion of log, we know that − log(1 − x) > x, so that

exp







k
∑

j>2(r+1)c

log

(

1 −
c

j

)







< exp







k
∑

j>2(r+1)c

−
c

j







.

An application of Euler Maclaurin summation will show that

k
∑

j>2(r+1)c

1

j
> log k − logb2(r + 1)cc +

1

k
−

1

b2(r + 1)cc
.

Substituting this into the inequality above and simplifying, this gives

exp







k
∑

j>2(r+1)c

−
c

j







<

(

k

b2(r + 1)cc

)−c

exp

{

−
c

k
+

c

b2(r + 1)cc

}

.

We bound this final expression to obtain the result

k
∏

j>2(r+1)c

1 − (r+1)c
j

1 − rc
j

<

(

k

b2(r + 1)cc

)−c

exp

{

c

b2(r + 1)cc

}

,

as desired. 2

Recall that the asymptotic for t′1(rc) found in Section 4.5.4 contains a factor

of k−rc and the asymptotic for t1((r +1)c) contains k−(r+1)c. The ratio of these two

asymptotics would have a factor of k−c, as the upper bound given above does. This

supports the result of Lemma 4.11 and tells us that this bound is correct.

The next lemma was needed in order to look at the ratio of Qr+1(c) to Qr(c).

Since the upper bound on this ratio used in cases 1 and 2 was so dependent on 2rc

and 2(r + 1)c being bounded above, we needed another result that didn’t depend

on this.

Lemma 4.12 Suppose 2(r + 1)c > 2rc ≥ 1. Then

∏

j>2(r+1)c

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

< exp

{

8rc2

b2(r + 1)cc

}

.
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Proof: As in the proof of Lemma 4.11, we first find an upper bound on one factor

of the product. To simplify notation slightly, define x = c/j. Then

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

=
1 + (1 − 2x)r+1

1 + (1 − 2x)r
·

1 − rx

1 − (r + 1)x
.

Set f(r, x) to be this expression. We know that this ratio is close to 1. Subtracting

1 from f(r, x) and simplifying, we obtain

f(r, x) − 1 =
x(1 − (1 − 2x)r(1 − 2rx))

(1 − (r + 1)x)(1 + (1 − 2x)r)
.

Since this ratio, call it g(r, x), is positive, then an upper bound for it will give an

upper bound for f(r, x), which is what we desire.

Consider the denominator of g(r, x). Observe first that since j > 2(r + 1)c,

we have that (r + 1)x < 1/2. Therefore

1 − (r + 1)x >
1

2
.

Furthermore, 1 + (1 − 2x)r > 1, so that the denominator of g(r, x) is greater than

1/2. Thus,

g(r, x) < 2x(1 − (1 − 2x)r(1 − 2rx)).

Using the standard lower bound, (1 − 2x)r > 1 − 2rx, we now have

g(r, x) < 2x(1 − (1 − 2x)r(1 − 2rx))

< 2x(1 − (1 − 2rx)2)

= 8rx2(1 − rx)

< 8rx2.

This implies that

f(r, x) < 1 + 8rx2.

Returning to the original notation and applying this to the product, we have

∏

j>2(r+1)c

1 +
(

1 − 2c
j

)r+1

1 +
(

1 − 2c
j

)r ·
1 − rc

j

1 − (r+1)c
j

<
∏

j>2(r+1)c

1 +
8rc2

j2
.
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We rewrite this as an exponential function and bound it above using an upper bound

on the exponent.

∏

j>2(r+1)c

1 +
8rc2

j2
= exp







∑

j>2(r+1)c

log

(

1 +
8rc2

j2

)







< exp







∑

j>2(r+1)c

8rc2

j2







Since 1/x2 is decreasing and concave up, we can find an upper bound on the last

sum above by evaluating the corresponding integral from b2(r + 1)cc to infinity. So

∑

j>2(r+1)c

8rc2

j2
<

∫ ∞

b2(r+1)cc

8rc2

x2
dx

=
8rc2

b2(r + 1)cc
.

Substituting this into the exponential function gives the desired result. 2

The bound found in this lemma is actually the reason that the constant

upper bound for Tr+1/Tr is larger than we would like. Although this bounding

function becomes very close to the actual truth as r increases, this is not the case

for small r. A better bound, however, would require different methods.

Summary of Cases

In each of the outlined cases, we have shown that the ratio of consecutive

terms of E(2s) is bounded above by the constant 19, better in most cases. The

bounds found for Cases 1, 2, and 3 are summarized in the next theorem.

Theorem 4.6 Suppose r ≥ 3. Let Tr be the rth term of E(2s) and Tr+1 the (r+1)st

term.

(i) When 2rc < 2(r + 1)c < 1,

Tr+1

Tr
<

1

4
eπ2/12 < 0.5690 . . . ;

(ii) When 2rc < 1 and 1 ≤ 2(r + 1)c < 2,

Tr+1

Tr
<

1

2
eπ2/6−1 < 0.9529 . . . ;
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(iii) When 2(r + 1)c > 2rc ≥ 1 and b2rcc = b2(r + 1)cc,

Tr+1

Tr
<

1

43/5
e18/5+C1 < 18.4806 . . . ;

(iv) When 2(r + 1)c > 2rc ≥ 1 and b2rcc + 1 = b2(r + 1)cc,

Tr+1

Tr
<

3

4

1

43/5
e9/5+C1 < 2.2911 . . .

As discussed in the work for Case 1 and Case 2, since the bounds found for these

two cases are less than 1, we can bound the terms of E(2s) above by a convergent

geometric series while 2rc and 2(r+1)c fall into one of these categories. On the other

hand, although the upper bounds improve in the last two cases above and even fall

below 1 when r is large enough, we cannot initially bound the terms in this range

by a convergent geometric series. What this means is that our methods will not

allow us to prove what we want with the assumptions we have now on l. Recall that

we chose l = kc as a result of determining when T1 < 1. Although we cannot show

that E(2s) can be entirely bounded above by a geometric series with our results, we

will be able to show that this can be done for smaller l. Therefore, l = kc will serve

as the threshold function that we have been searching for. In the next section, we

will show that E(2s) approaches 1 for smaller l, and that it approaches infinity for

larger l.

4.7 The Threshold Theorems

We can determine how much smaller l needs to be before we can show that

E(2s) approaches 1 by the bounds given in Theorem 4.6. That theorem tells us that

for r ≥ 3,

Tr+1

Tr
=

( l
r+1

)

tr+1(c)
(l
r

)

tr(c)
< 19.

As previously mentioned, the upper bound is, in fact, better than this for most cases

considered, but we take the largest bound to take care of all cases. We also know

that this bound is true for r < 3 as well. Since T1 < 1 when l < d1k = kcecγ+hζ(c),

then

T1

T0
= T1 < 1
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when l = kc < kcecγ+hζ(c). Then since T2 < T1 whenever T1 < 1 by Theorem 4.3,

we know

T2

T1
< 1

when l = kc. Our goal is still to bound E(2s) above by a geometric series that

converges to 1. To do this, we must choose l small enough to force the largest upper

bound of 19 to instead be less than 1. Set ε < 1/19 and l = εkc. Observe that

choosing l this way gives l < kc. Consider the ratio of consecutive terms for r ≥ 3,

Tr+1

Tr
=

( l
r+1

)

tr+1(c)
(

l
r

)

tr(c)

=
l − r

r + 1
·
tr+1(c)

tr(c)
.

With l = εkc and r = αl, this ratio can be bounded above by

Tr+1

Tr
=

l − r

r + 1
·
tr+1(c)

tr(c)

< ε

(

kc − αkc

r + 1
·
tr+1(c)

tr(c)

)

< 19ε

< 1.

Therefore, when ε < 1/19, the ratio of consecutive terms for all r is less than 1.

Furthermore, as ε → 0, the ratio decreases. This gives a function for l for which

we can bound E(2s) above by a geometric series. We are now prepared to state the

threshold theorem we have been searching for.

Theorem 4.7 Suppose 0 < c < 2/5 and l = l(k).

(i) If l/kc → 0, then E(2s) → 1.

(ii) If l/kc → ∞, then E(2s) → ∞.

Proof: Much of the work to prove part (i) has been done already. We will complete

the proof of part (i) here and prove part (ii) as well.

(i) Suppose l = εkc where ε → 0. We will show that we can bound

E(2s) =

l
∑

r=0

Tr =

l
∑

r=0

(

l

r

)

tr(c)
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above by a geometric series that converges to 1 as ε → 0. Observe that

T1

T0
= lt1(c) = εkct1(c) < ε

by the results from Section 4.3.4. Theorem 4.3 also implies that

T2

T1
=

l − 1

2

t2(c)

t1(c)

< ε
kc

2

t2(c)

t1(c)

< ε.

A careful analysis similar to the one leading to Theorem 4.6 will show that T3/T2 <

1.1988 . . . when l = kc. As we saw in that discussion, we must consider the case

when 2rc < 1 as well as when 2rc ≥ 1 for r = 3. The methods of Section 4.6.2 can

be used for both cases. Then for l = εkc,

T3

T2
< 1.2ε.

Finally, when r ≥ 3,

Tr+1

Tr
=

l − r

r + 1
·
tr+1(c)

tr(c)

< ε

(

kc − αkc

r + 1
·
tr+1(c)

tr(c)

)

< 19ε

by Theorem 4.6. Therefore, for all r ≥ 0,

Tr+1

Tr
< 19ε. (4.117)

Beginning with r = 0, equation (4.117) implies that T1/T0 < 19ε, so that

T1 < 19ε.

Similarly, by equation (4.117), T2 < 19εT1, so that

T2 < (19ε)2.
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Continuing in this manner, we see that Tr+1 < 19εTr, thus

Tr+1 < (19ε)r+1

for all 0 ≤ r < l. Applying this to the sum E(2s), we find

E(2s) =

l
∑

r=0

Tr

<

l
∑

r=0

(19ε)r

<
∞
∑

r=0

(19ε)r

=
1

1 − 19ε
. (4.118)

Then as ε → 0,

E(2s) → 1.

(ii) Suppose that l = Mkc, where M → ∞. We want to show that E(2s) approaches

infinity also. We have seen that T1 < 1 when l < kc. When l is larger than the

critical value, roughly when l > 1.4892kc, we know that T1 > 1. We use this fact to

show the desired result. Observe that

E(2s) =

l
∑

r=0

Tr

> T1

∼ lk−ce−cγ−hζ(c)

since Tr > 0 for all r. Then substituting Mkc in for l, we see that

E(2s) > Me−cγ−hζ(c).

Then for fixed c,

E(2s) → ∞

as M → ∞. 2 We can restate Theorem 4.7 more precisely to make the limits

clearer.

Theorem 4.8 Suppose 0 < c < 2/5 and l = l(k).
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(i) If l < εkc, then

E(2s) < 1 +
19ε

1 − 19ε
.

(ii) If l > Mkc, then
E(2s) > Me−cγ−hζ(c).

Observe that as ε → 0 above, E(2s) → 1. Similarly, E(2s) → ∞ as M → ∞.

The bounding functions come directly from the previous proof and we can see that

Theorem 4.7 is also a consequence of this theorem.

We now have the threshold function that describes the behavior of E(2s) for

this model. Theorem 4.7 tells us when l is small compared to l∗(k) = kc, in particular

when l < εkc, then E(2s) approaches 1. Then when l is large with respect to l∗(k),

the sum approaches infinity. Thus l = εkc is a lower bound for the number of vectors

needed before E(2s) increases above 1.

4.8 Conclusion

We return now to the application we are interested in. Recall our question,

introduced in Chapter 1:

Question: Choose l vectors randomly from a vector space based on a given prob-

ability distribution. How large must l be to ensure with high probability that a

subset of the l vectors is linearly dependent?

The work in this chapter has been devoted to analyzing the probability model

in which the vectors chosen have probability c/j of having a 1 in the jth position.

That is, if v is a vector generated under this model, then

Pr(v[j] = 1) =
c

j

where 0 < c < 2/5. Our goal was to find a lower bound on the number of vectors

needed in order to ensure that a subset of those vectors is linearly dependent with

high probability. In this chapter, we have identified the threshold function discussed

in the introduction, l∗(k), which desribes the behavior of the sum E(2s).

Theorem 4.8 gives critical values for fixed k for which E(2s) approaches 1

and infinity. Recall that E(2s) is the expected size of the left null space of the matrix

whose jth row is the jth vector chosen. When the expected size of the left null space
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is 1, we only expect there to be 1 vector in the null space, the zero vector. If this

is the case, the vectors chosen are almost surely independent. By Theorem 4.8, we

see that when l < εkc, the expected size of the left null space is close to 1, implying

that the probability the l vectors generated are dependent is close to 0. Therefore

we must generate at least εkc vectors before we can expect to see dependence among

the vectors.

On the other hand, when the size of the left null space becomes very large, it

becomes more likely that the vectors chosen are dependent. Unfortunately we are not

able to use the results of the theorem to predict when the probability of dependence

is close to 1. Since the threshold function describes the expected size of the left null

space rather than the expected dimension, it merely tells us when E(2s) approaches

infinity, and 2s grows much more quickly than s, the dimension of the left null

space. The threshold function describing the behavior of E(2s) certainly provides

a lower bound for the threshold function describing the probability of dependence.

However, the actual probability threshold results may be better than what we have

shown here. For future work, we would like to determine a threshold function for the

probability of dependence. This will be a function, l∗(k), such that when l(k)/l∗(k)

approaches 0, the probability of dependence is very small. Then when l(k)/l∗(k)

approaches infinity, the probability of dependence approaches 1, that is, the vectors

are almost surely dependent.

Figure 4.9 shows the threshold graph representing our results.Observe that

the probability that the vectors are dependent is small when l < εkc. Calculations

of E(2s) seem to show that it approaches 1 for values of l closer to kc than our

results imply. This would mean that l vectors are almost surely independent for a

larger range of l than what we have shown. We also believe these results to be true

for 0 < c < 9/20. However, we will need a different approach or different method

to prove these statements. Finally, since we don’t have an upper bound for the

number of vectors needed for dependency, we are not able determine how sharp the

threshold is. Finding an upper bound for l will require further study.
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1

ε kc M kc

Figure 4.9 Threshold Graph for c/j Model

We have now given a lower bound for the number of vectors we need to

generate before it is possible for dependence to occur. In Section 4.2, we claimed

that the number of vectors needed should be less under this model than under the

fixed weight vector model since these vectors are very sparse. Our results do not

prove this statement, but seem to indicate that it is true. We have shown that we

need to generate at least εkc vectors under this probability model to ensure with

high probability that the vectors are dependent.
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