
Clemson University
TigerPrints

All Dissertations Dissertations

8-2007

Planning, Scheduling, and Timetabling in a
University Setting
Christine Kraft
Clemson University, cstemm@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Applied Mathematics Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Kraft, Christine, "Planning, Scheduling, and Timetabling in a University Setting" (2007). All Dissertations. 96.
https://tigerprints.clemson.edu/all_dissertations/96

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268635327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/96?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

PLANNING, SCHEDULING, AND TIMETABLING IN A
UNIVERSITY SETTING

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Mathematical Sciences

by
Christine R. Kraft

August 2007

Accepted by:
Dr. James P. Jarvis, Committee Chair

Dr. Warren P. Adams
Dr. Mark E. Cawood

Dr. Herman F. Senter

ABSTRACT

Methods and procedures for modeling university student populations, predicting course

enrollment, allocating course seats, and timetabling final examinations are studied and pro-

posed. The university enrollment model presented uses a multi-dimensional state space

based on student demographics and the Markov property, rather than longitudinal data to

model student movement. The procedure for creating adaptive course prediction models

uses student characteristics to identify groups of undergraduates whose specific course en-

rollment rates are significantly different than the rest of the university population. Histor-

ical enrollment rates and current semester information complete the model for predicting

enrollment for the coming semester. The course prediction model aids in the system for re-

serving course seats for new students during summer registration sessions. The seat release

model addresses how to estimate seat need each session, how to release seats among mul-

tiple course sections, and how to predict seat shortages and surpluses. Finally, procedures

for creating reusable university final examination timetables are developed and compared.

Course times, rather than individual courses, are used as the assignment elements because

the demand for course times remains relatively constant despite changes in course sched-

ules. Our heuristic procedures split the problem into two phases: a clustering phase—to

minimize conflicts—and a sequencing phase—to distribute exams throughout finals week

while minimizing the occurrence of consecutive exams. Results for all methods are com-

pared using enrollment data from Clemson University.

ACKNOWLEDGMENTS

I give so many thanks to my adviser, Dr. James P. Jarvis, for the motivation of this

study and all the help along the way, both academic and personal. My gratitude goes to

my committee members: to Dr. Mark E. Cawood, for all his encouragements to me during

the process; to Dr. Warren P. Adams, for turning me on to math programming with his

excellent courses; and to Dr. Herman F. Senter, for bringing me back to math after a sojourn

in economics. I owe much to all my professors at Clemson for teaching me more than I ever

thought I would know, and for helping me begin to grasp how much more there is to learn.

I acknowledge and thank Dr. Robert Walsh for allowing me and encouraging me to

advance in mathematics at a high school without an advanced program. He has been a

wonderful mentor and example. I gratefully acknowledge my undergraduate professors

Dr. Crump Baker, Dr. Chris Lang, and Dr. James Woeppel for allowing me to take more

mathematics than their program offered and for all of their help along the way.

Thanks are not enough to give to my parents, Steve and Dorothy, for instilling in me the

value of an education, for loving me through all my choices, and for giving me more than I

deserve. Mom has been my rock and Dad has been my hero. I give warm acknowledgments

to my mutti, Jane, who listens to me and loves me when I need her, and who did a fabulous

job raising the wonderful person I call my husband. I owe many thanks to my sweet Ringo

for all the joy he has brought to our lives.

To my husband, Nicholas, for believing in me, supporting my decisions, and loving me

always, I will be indebted forever. I love you.

TABLE OF CONTENTS

Page

TITLE PAGE . i

ABSTRACT . iii

ACKNOWLEDGMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xiii

CHAPTER

1 Introduction . 1
1.1 Research Problems . 2
1.2 Dissertation Outline . 3

2 University Population Modeling . 5
2.1 Related Work . 7
2.2 Data . 14
2.3 University Population Modeling Procedure 17

2.3.1 State Identification . 18
2.3.2 Transition Matrix Estimation and Verification 21
2.3.3 Historical Verification . 25
2.3.4 Model Usage . 28

2.4 Hypothetical Analyses . 33

3 Predicting Course Enrollment . 41
3.1 Related Work . 43
3.2 Data . 45
3.3 Course Enrollment Prediction Procedure 46

3.3.1 Identification of Significant Factors 49
3.3.2 Parameter Estimation and Verification 51
3.3.3 Historical Verification . 52
3.3.4 Model Usage . 54

3.4 Results . 56

4 Seat Allocation and Release Systems . 59
4.1 Related Work . 60
4.2 Criteria . 62

Table of Contents (Continued)

Chapter Page

4.3 Data . 65
4.4 Seat Allocation Procedure . 66

4.4.1 Terminology . 67
4.4.2 Initialization . 67
4.4.3 Seat Need Estimation . 71
4.4.4 Capacity Adjustment . 71
4.4.5 System Usage . 72

4.5 Results . 74

5 Final Examination Timetabling . 79
5.1 Mathematical Background . 81
5.2 Related Work . 83
5.3 Data . 91
5.4 Timetabling Algorithms . 93

5.4.1 Multi-criteria Formulation . 93
5.4.2 Clustering Algorithms . 96
5.4.3 Sequencing . 107
5.4.4 Implementation . 116

5.5 Results . 118

6 Conclusions . 131

BIBLIOGRAPHY . 135

viii

LIST OF TABLES

Table Page

2.1 Fall target and actual new student populations at Clemson University. 6
2.2 Fields included in records stored for each student at Clemson Univer-

sity each semester. 15
2.3 Possible values of Academic Status and Housing Status fields. 15
2.4 Possible values of the Semester Class and Enrollment Status fields. 16
2.5 Possible values of College and Termination fields. 16
2.6 Contingency table for residency status versus the event moving to a

higher semester class. 19
2.7 Description and number of states for university population model. 21
2.8 Example of transition counts and transition matrix. 22
2.9 Error rates for total university population by year. 26
2.10 Equilibrium population counts and percentage difference by varying

first-time and transfer assumptions. 34
2.11 Equilibrium population counts and percentage difference by varying

freshman drop-out rate assumptions. 35
2.12 Equilibrium population counts and percentage difference by varying

graduation rate assumptions. 36
2.13 Equilibrium population counts and percentage difference by varying

freshman drop-out and graduation rate assumptions. 37

3.1 University and MATH 106 enrollment rates for designated groups
(fall 2003). 50

3.2 Preliminary test results for MATH 106 model with parameters derived
from fall 2003 data. 52

3.3 Course enrollment rates for new students in MATH 106. 53
3.4 Final test results for MATH 106 model. 54
3.5 Model for University and MATH 106 enrollment of first-time general

engineering students. 55
3.6 MATH 106 prediction and result for fall 2005. 56
3.7 Fall 2005 predicted and actual enrollment and percentage error for

four times during the planning period. 57
3.8 Fall 2006 predicted and actual enrollment and percentage error for

four times during the planning period. 58

4.1 Seat allocation survey answers from several American universities. 61
4.2 Breakdown of mathematics course enrollment by enrollment status

per section per orientation session, 2004. 64

List of Tables (Continued)

Table Page

4.3 Ideal course release, initially 10 and increasing 8 per session per sec-
tion, for a course with four sections over five orientation sessions. 66

4.4 Example of orientation enrollments prior to session 3 by group. 69
4.5 Example of orientation enrollment and expectations for future enroll-

ments prior to session 3 by group. 70
4.6 Example of expected seat need by group by session. 71
4.7 Example of course enrollment data needed each orientation session. 73
4.8 Example of adjusted section capacities after new and continuing stu-

dent seat release. 74
4.9 Estimated new student enrollment in four mathematical sciences courses

at four times in 2006. 75
4.10 Enrollment, seat release, and possible seat releases by session for

MATH 102 during 2006. 76

5.1 Sorting criteria used in graph-coloring algorithms tested in [Carter et al. 1996]. 83
5.2 Overview of approaches for examination timetabling in the literature

as presented in [Burke and Petrovic 2002]. 85
5.3 Heuristic and meta-heuristic approaches for examination timetabling

as presented in [Burke and Petrovic 2002]. 86
5.4 Approaches used in examination timetabling as presented in [Petrovic

and Burke 2004]. 87
5.5 Example of clustering not invariant under ordering. 99
5.6 Example of representative elements not invariant under ordering. 105
5.7 Four strategies for using historical data in the exam timetabling problem. 117
5.8 Comparison of average sequencing results over fall 2004 to spring

2006 using the STSP or the extended Levchenkov et al. formulation. 121
5.9 Comparison of average performance measures over fall 2004 to spring

2006 for three alternatives of the proposed 20-period, 5-day timetable. . . . 123
5.10 Summary of the current 7-day, 21-period exam schedule at CU. 124
5.11 Summary of the proposed 5-day, 20-period exam schedule. 125
5.12 Summary of the proposed 7-day, 21-period exam schedule. 127
5.13 Comparison of current and proposed timetables. 128
5.14 Comparison of spacing for the current and proposed timetables. 129

x

LIST OF FIGURES

Figure Page

2.1 Grade progression ratio model. 8
2.2 Markov chain model. 10
2.3 Cohort flow model: Example of constituents of one state. 12
2.4 Dendrogram of clustering on majors of first semester students within

the college of Engineering and Science in fall 2005. 20
2.5 Sums of one year in advance error rates over years predicted for sev-

eral groups using four methods. 23
2.6 Error rates for total population when predicting one year forward us-

ing four methods. 23
2.7 Error rates for total population when predicting two-years forward

using four methods. 24
2.8 Average sum of Euclidean distances from actual population using four methods. 24
2.9 Actual and predicted total university population. 26
2.10 Actual and predicted full-time students by class. 27
2.11 Actual and predicted graduating students. 27
2.12 Transition diagram for modeling example given in Table 2.8. 29
2.13 Actual and predicted total university population. 31
2.14 Actual and predicted total university population scaled. 31
2.15 Actual and predicted full-time university population by class. 32
2.16 Equilibrium total population by varying freshman drop-out and grad-

uation rate assumptions. 37

3.1 Partial diagram of Clemson University Mathematical Sciences depart-
ment’s current model for predicting Calculus I (MATH 106) en-
rollment. 45

3.2 Template for course enrollment model. 48

4.1 Registration time line at Clemson University. 62
4.2 Schema of seat allocation procedure. 68
4.3 Results for MATH 102 seat allocation using 95% confidence interval. 77

5.1 Fixing the middle element of a triple. 90
5.2 Depiction of agglomerative and divisive clustering methods. 98
5.3 Example of clustering not invariant under ordering. 100
5.4 Two-dimensional example of PAC clustering algorithm. 106
5.5 Comparison of the K-means, PAM, and PAC clustering algorithms. 109
5.6 Example of TSP solution and final timetable. 111
5.7 Fixing the two middle elements of a quadruple. 115

List of Figures (Continued)

Figure Page

5.8 Conflicts generated by two clustering methods on 98 elements. 119
5.9 Conflicts generated by two clustering methods on 32 pre-grouped elements. . . 119
5.10 Conflicts generated by three clustering methods on 32 pre-grouped

elements into 18 clusters. 120
5.11 Current 7-day, 21-period exam schedule. 124
5.12 Proposed 5-day, 20-period exam schedule. 126
5.13 Proposed 7-day, 21-period exam schedule. 127

xii

LIST OF ALGORITHMS

Algorithm Page

2.1 Procedure for modeling university populations. 18

3.1 Procedure for predicting course enrollment. 49

4.1 Procedure for allocating course seats. 67

5.1 Sequencing formulation by Levchenkov et al.: Stage 1 90
5.2 Sequencing formulation by Levchenkov et al.: Stage 2 91
5.3 Scalarized multi-criteria binary linear final examination timetabling formulation. 96
5.4 Hierarchical, agglomerative clustering algorithm. 99
5.5 Part I of Partitioning Around Medoids (PAM) Algorithm. 104
5.6 PAC clustering algorithm. 108
5.7 STSP formulation of the sequencing problem. 110
5.8 Extension of sequencing formulation by Levchenkov et al.: Stage 1 113
5.9 Extension of sequencing formulation by Levchenkov et al.: Stage 2 114
5.10 Examination Scheduling Problem (ESP) Heuristic Procedure 115

Chapter 1

Introduction

Planning, scheduling, and timetabling are tasks faced by all colleges and universities.

Modeling university populations is necessary to allocate university resources, to examine

the effects of policy changes, and to plan for future enrollments. Predicting course enroll-

ment is imperative for accommodating student demand for courses and for planning instruc-

tor assignments to classes prior to registration. An objective system to allocate course seats

to new and continuing students is important in order to create equitable enrollment choices

for each student. Students and faculty desire final examination timetables that have few

conflicts and few consecutive exams. Universities benefit from comprehensive planning

models to address these issues.

The literature on these topics in planning, scheduling, and timetabling for universities

is diverse, delving deeply into some areas and wholly ignoring others. Hopkins and Massy

[1981] present a survey that addresses modeling university populations, mentions predicting

course enrollment, and focuses the remainder of the book on other topics. Balachandran and

Gerwin [1973] study the problem of predicting course enrollment, but give little evidence

of the applicability of their models. We have found no literature on the topic of course

seat allocation systems. Several authors, including Burke, Carter, Petrovic, and Schaerf,

address the problem of timetabling final exams [Burke and Petrovic 2002; Carter 1986;

Schaerf 1999].

In this study, we develop and present procedures for modeling university populations,

predicting course enrollments, allocating course seats, and timetabling final examinations.

We dedicate a chapter to each problem where we review the related work, develop the

model building procedures, and present results. In the next section, we briefly describe

each problem.

1.1 Research Problems

Problem 1: Modeling University Student Populations

Modeling the student population of a university involves recording the number and char-

acteristics of students in order to observe and predict changes in the population. We present

our procedure for building such models and apply these to a specific scenario. The goals of

this part of our study are to design a procedure for building university population models in

general, and specifically to build a model that can be used for both long- and short-term pro-

jection, while simultaneously being used to model intra-university movement. We describe

our procedure in detail, specifying when alternate decisions can be made to form different

university population models.

Problem 2: Predicting Course Enrollments

Predicting course enrollment is an important part of building course schedules. We de-

scribe our procedure for creating adaptive course prediction models in this study. Our goal

is to create models that make accurate predictions early in the course scheduling process,

and yet can be updated as information becomes available. We use student characteristics to

identify groups of undergraduates whose course enrollment rates are significantly different

than the rest of the university population. The model we develop utilizes historical enroll-

ment rates and current semester information to predict course enrollment for the coming

semester.

Problem 3: Allocating and Releasing Course Seats to Student Groups

Allocating course seats to specific student groups requires predicting the size of student

groups, estimating the number of course seats needed by each group, and holding and re-

leasing seats such that an equitable number of seats are available to the specific groups. We

develop a system that addresses these problems. The course prediction model we develop

aids in the system for allocating course seats to new students during summer registration

sessions. Our goals are to estimate seat demand accurately, and to develop a system that

hedges our estimates without undermining the objective of giving students similar enroll-

2

ment choices regardless of when they register—during early registration, any summer ori-

entation, or make-up registration. We describe how to estimate seat demand each session,

how to release seats among multiple course sections, and how to predict seat shortages and

surpluses.

Problem 4: Timetabling Final Examinations

We develop a two-phase heuristic procedure to build reusable final examination timeta-

bles. We map course times, rather than individual courses, to exam periods because the

demand for course times remains relatively constant despite changes in course schedules

from year to year. Our approach splits the problem into two phases: a clustering phase—to

minimize conflicts—and a sequencing phase—to distribute exams throughout the exam pe-

riod while minimizing the occurrences of consecutive exams. Results for all methods are

compared using enrollment data from Clemson University (CU).

1.2 Dissertation Outline

Because the topics covered in this study are diverse, we present the related work as a subsec-

tion of each chapter. In Chapter 2 we develop a procedure for building university population

models using Markov chains. We follow the procedural description with a specific model

for projecting populations at CU. In Chapter 3 we present a procedure for building course

enrollment models and specific models for predicting course enrollment in four mathemat-

ics courses at CU. In Chapter 4 we describe a system to allocate course seats to specific

groups of students. We give results using this system for allocating course seats for four

courses at CU over multiple summer registration sessions for new students. In Chapter 5

we develop heuristics for creating reusable examination timetables. We give examples of

proposed timetables for CU. In Chapter 6 we summarize our results.

3

Chapter 2

University Population Modeling

Predicting student populations is an important part of planning and forecasting for uni-

versities. Accurate, detailed student population models aid in revenue management, re-

source allocation, and course enrollment prediction. These models also allow investiga-

tion of hypothetical changes under alternate assumptions of admissions, graduation, and

retention rates. This affords the opportunity to consider the consequences of proposed pol-

icy changes prior to implementation. The ability to identify groups of students, examine

changes in their sizes, and predict how they will change in the future is central to university

enrollment planning. Detailed student population models also aid in examining changes

that have already occurred in student populations.

Creating university student population models is challenging due to the variability in-

herent in student groups. For example, the number of students for whom it is their first-time

in college—we will refer to these students as first-time students—changes from year to

year, as do the characteristics of the students within this group. The trade-off between accu-

racy and detail becomes evident as we identify the level of detail needed to model student

populations. That is, we may be able to model an aggregate population, such as first-time

students, very well, but we may have to sacrifice the ability to forecast a subpopulation,

such as first-time students who are freshman biology majors, because more specificity in

the model typically results in more variability in the prediction. We discuss this element of

modeling university student populations in Section 2.3.

The goal of building university population models is to accurately predict student popu-

lations. Our criteria for accurate models is to have error rates less than those of the model’s

exogenous variables. The exogenous variables include the number of first-time and trans-

fer students enrolling in the university. These variables are governed by university policy

decisions and can change from year to year. Table 2.1 shows the first-time and transfer

populations targeted by the administration at Clemson University (CU) along with actual

First-time Transfer
Percent Percent

Target Actual Difference Target Actual Difference
2001 2,800 2,555 8.8% 500 561 10.9%
2002 2,500 2,480 0.8% 600 694 13.5%
2003 2,800 2,758 1.5% 800 787 1.7%
2004 2,800 3,020 7.9% 800 685 16.8%
2005 2,800 2,904 3.7% 800 688 16.3%
2006 2,800 2,813 0.5% 800 782 2.3%

Table 2.1: Fall target and actual new student populations at Clemson University.

populations. The error rates for the first-time population are between .5% and 8.8% with

an average of 3.9%; the error rates for the transfer population are between 1.7% and 16.8%

with an average of 10.3%. Our goal is to forecast populations associated with first-time

students such that our error rates are less than 3.9%. Similarly, our criteria for forecasting

populations associated with transfer students is that our estimates should have error rates

less than 10.3%. In general our goal is to forecast aggregate populations such that error

rates are less than 5.3%, which is the weighted sum of the average first-time and average

transfer error rates.

In this chapter we describe a procedure for creating a university population model, and

use that procedure to build a specific model. This model forecasts student populations from

the fall of one year to the fall of the next. This timing is chosen because large inputs to the

university’s populations primarily occur in the fall when new students and transfer students

enroll. However, our model still incorporates students who graduate or enroll in the spring

and summer. Furthermore, our model can be adapted easily to forecast specifically for

spring enrollments.

The remainder of this chapter is structured as follows. We review the literature on uni-

versity population modeling in Section 2.1. We discuss the data used in building university

population models at CU in Section 2.2. In Section 2.3 we describe the procedure used

to create and use our population model and we present results for predicting university

populations using our model at CU in Section 2.4.

6

2.1 Related Work

University enrollment modeling has become increasingly important as a means to facilitate

budget projections and allocate resources. The goal of enrollment modeling may affect

the type of model used [Hopkins and Massy 1981]. For example, if the goal is to predict

revenues from fees and tuition, the model will use aggregations with categories of students

based on their pay rate. If the goal is to help plan courses and curriculum, the model must

use more detail to separate students into groups based on the courses in which they are

likely to enroll. The literature on enrollment modeling is segmented by the goals for which

the model is built.

Some of the earliest literature in university enrollment modeling specifically targets

forecasting the entire university population. Techniques for achieving this goal utilize mea-

sured populations exogenous to the university as input data for the model [Schmid and

Shanley 1952]. The ratio method uses the state population as an approximation for the base

from which its students are derived. The method requires estimates for the ratio of students

enrolled in the university to the state population. These estimates are derived from trend

analysis on historical ratios [Schmid and Shanley 1952]. The cohort-survival method also

uses data from outside the university as input. It applies survival analysis on the number of

students in various grade levels in schools in the state to estimate the number of students

who will eventually enroll at the university [Schmid and Shanley 1952]. Because of the

outside influences on state population and the prevalence of university students from other

states and countries, both of these models have been overhauled to reflect new ideas in en-

rollment modeling, as seen by the similarly-named techniques presented by [Hopkins and

Massy 1981].

Hopkins and Massy [1981] focus on modeling for revenue prediction and thus make

predictions on an aggregate level. They categorize the flow models used in university en-

rollment planning as (1) grade progression ratio (GPR) methods; (2) Markov chain models;

and (3) cohort flow models [Hopkins and Massy 1981].

The GPR method uses ratios of the number of students in one class to the number

in the next lower class to predict future enrollments. Figure 2.1 shows four classes in a

7

1 1

44

33

22

f(t)=incoming

p12N1(t-1)

p34N3(t-1)

p23N2(t-1)

Year t - 1 Year t

Figure 2.1: Grade progression ratio model. This diagram shows the progression of students
from one class to the next class or out of the university.

university: (1) freshman, (2) sophomore, (3) junior, and (4) senior. Following the notation

of Hopkins and Massy [1981], Figure 2.1 shows a schema of the GPR method, where N j(t)

is the number of students in class j at time t and p j−1, j = N j(t)/N j−1(t − 1). The ratios

are estimated using historical data. The GPR method is straightforward and requires little

data—only total counts of students in each class during each year. However, it does not

account for students who stay in the same class for more than one year or for students who

leave and then return. This lack of detail can cause large errors in prediction.

Before describing the Markov chain models presented by Hopkins and Massy [1981],

we briefly review the definition and properties of Markov chains. First, we note that a

stochastic process is defined as a model of a system that evolves randomly according to a

probability distribution [Kulkarni 1995]. We denote a stochastic process by {Xn , n ≥ 0},

where Xn ∈ S is the state of the system at time n, and S , called the state space, is the set

of possible values taken by Xn. The Markov property, simply stated, says that the future

of a stochastic process depends only on the present. More formally, if the state space S is

8

countable, the Markov property is given by

P(Xn+1 = x|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = P(Xn+1 = x|Xn = xn), (2.1)

where xi is the realization of the random variable Xi.

A Markov chain is a stochastic process that possesses the Markov property. A discrete

time Markov chain (DTMC) is a Markov chain with discrete, but not necessarily equally

spaced, time intervals [Kulkarni 1995]. Using the notation of [Kulkarni 1995], we denote

the conditional probability of moving to state j at time n + 1, given that Xn = i, for each

i, j ∈ S , as follows:

pi j(n) = P(Xn+1 = j|Xn = i). (2.2)

If pi j(n) = pi j(k) for all k ≥ 0 and for all i, j ∈ S , the DTMC is time-homogeneous and

we denote pi j(n) = pi j. The Markov chain models we will be examining will be time-

homogeneous DTMCs with finite state spaces. We define the one-step transition probability

matrix, P, for a DTMC with state space {1, 2, . . . ,m} as

P =



p11 p12 . . . p1m−1 p1m

p21 p22 . . . p2m−1 p2m

...
...
. . .

...
...

pm1 pm2 . . . pmm−1 pmm


. (2.3)

The value p(n)
i j is the probability of moving from state i to state j in n steps and is called

the n-step transition probability. The Chapman-Kolmogorov equations state that the n-step

transition probabilities satisfy

p(n)
i j =

∑
r∈S

p(k)
ir p(k)

ir (2.4)

where i, j ∈ S and k is a fixed integer such that 0 ≤ k ≤ n [Kulkarni 1995]. The Chapman-

Kolmogorov equations can be used to prove the following theorem, which gives a property

of P(n), the n-step transition probability matrix. Theorem 2.1.1 will be used in Section 2.3.4.

Theorem 2.1.1. P(n) = Pn.

9

1 1

44

33

22

f1(t)

p12N1(t-1)

p33N3(t-1)

p44N4(t-1)

p34N3(t-1)

p23N2(t-1)

p22N2(t-1)

p11N1(t-1)

Year t - 1 Year t

f2(t)

Figure 2.2: Markov chain model. This diagrams shows a Markov chain model with four
states and nine transitions.

A matrix is called stochastic if each element is nonnegative and if the elements of each

row sum to one [Kulkarni 1995]. A substochastic matrix has nonnegative elements and

each row sums to less than or equal to one with at least one strict inequality. A DTMC

evolves according to its transition matrix, which is stochastic.

Markov chain models can be more detailed than GPR models because they allow for

more state changes than from one class to the next higher class. They can account for

students who remain in a class for more than one year, for students who enter at a class

level higher than one, and for students who leave the university and then return. Figure 2.2

shows a schema for a Markov chain model with four states—(1) freshman, (2) sophomore,

(3) junior, and (4) senior—with new students entering the system at class (1) freshman or (2)

sophomore. Note that the Markov chain models are not Markov chains due to the exogenous

input (new students) to the system every year and the students who leave the system when

graduating or stopping for other reasons. However, the models are similar to Markov chains

and we can use some of the properties of Markov chains to aid in their analysis. Thus, we

abuse the notation slightly and continue to refer to the models representing our system as

DTMCs. See Section 2.3.4.

10

Note that we can increase the detail of the model by increasing the state space or by

increasing the number of transitions. For example, instead of modeling the class level of

the students in the university, we may model their semester class. This would increase the

number of states to eight. Also, since some students are able to complete enough course-

work in a year to move from the first class to the third class, we could add a transition to

represent this. The added detail of the Markov chain models may help them perform better

than the GPR models [Hopkins and Massy 1981]. A drawback to Markov chain models

is the amount of data needed to calculate the proportions. Compared to the GPR method

example above, which requires three parameters to be estimated, the Markov chain example

given in Figure 2.2 requires nine parameters to be estimated. Actual models would most

likely include more transitions than those depicted, which would result in more parameters.

Determining these parameter values may be difficult depending on the data collected by a

university. We begin to see the trade-off between accuracy and ease of use.

The last and most comprehensive model on enrollment that Hopkins and Massy [1981]

discuss is the cohort flow model. A cohort in this context is defined as a group of students

entering the university at the same time. Cohorts can be more narrowly defined by their

date of enrollment and other attributes, such as their major or residency status. The cohort

flow model accounts for the past states of a student [Hopkins and Massy 1981]. While

the first two models use a cross-sectional approach to define states, the cohort flow model

uses a longitudinal approach. Cross-sectional data is gathered as a snapshot of a specific

point in time; longitudinal data is gathered over time such that records include all historical

data about an individual. The Markov chain and GPR models take into account only the

state of the student from the previous year. The Markov chain model allows for students

who stay in a class for more than one year, but does not distinguish among students in that

group—whether they have been there for one, one and a half, or two years. The Markov

chain model also does not distinguish among students in the second year who are transfer

students versus those who have been in the university for a year. The cohort flow model’s

longitudinal approach accounts for these differences [Hopkins and Massy 1981]. It cat-

egorizes students into cohorts based on their entry state into the university. These states

could be new freshman, new sophomore, transfer freshman, transfer sophomore, etc. as

11

2

P21(0)f 1 (t)

P21(N)f 1 (t-N)

P21(1)f 1 (t-1)

P2K(N)f K (t-N)

P24(N)f 4 (t-N)

.

.

.

.

.

.

.

.

.

Figure 2.3: Cohort flow model: Example of constituents of one state. This diagram shows
the sources of students for one state in a cohort flow model.

well as any other attributes that are relevant to the model. The model tracks the cohorts

by keeping a cumulative total of their stay in the university. The cohorts split as their stay

continues—some new freshmen become sophomores in the next year, some may still be

freshmen, and some may leave the university. The cohort flow model uses survivor frac-

tions, defined as P jk(s) = the fraction of students in cohorts of type k who are enrolled in

class j, s periods after entry, to represent how students move through the university [Hop-

kins and Massy 1981]. Figure 2.3 shows a schema of the number of students in one class

based on the cohort flow model. Following the notation of Hopkins and Massy [1981], N is

the maximum number of periods after entry that a student could be enrolled, K is the num-

ber of cohorts, and fi(t − s) is the number of students in cohort i who entered the university

in time period t − s . Note that the cohort flow model could be represented as a Markov

chain model with states to represent each cohort and class level in each time period.

The obvious disadvantage of the cohort flow model is the amount of data needed to

estimate the survivor fractions. However, according to Hopkins and Massy [1981] cohort

flow models make the most reliable predictions of the three models presented and are robust

in the presence of changing student bodies.

12

The models that Hopkins and Massy [1981] present can be used for both long- and

short-term projections whereas other models are constructed specifically for one or the

other. Models used for long-term projections often depend on variables exogenous to the

university including the business cycle, national policies for financial aid, and projected

state budgets. Time series analysis, yields from populations components, and curve fitting

are methods used in long-term modeling [Salley 1979; Armstrong and Nunley 1981]. Mod-

els used for short-term projections, for example those presented in [Weiler 1980; Salley

1979], utilize information unavailable in the long term such as new student applications,

admissions, and realized enrollment. The model presented by Salley [1979] utilizes a time

series analysis to identify the trend and the variation in university enrollment. By identify-

ing the trend, short-term variations are not extrapolated into the future, which could cause

significant prediction errors.

Marshall and Oliver [1970] present a Markov chain model called a constant-work model

in which students either complete a unit of work and move to the next class level, or they

do not complete the unit of work and remain in the same class. This model has less detail

than the Markov chain models already discussed. Marshall [1973] compares a Markov

chain model and a cohort flow model used for predictive purposes. He finds that the two

models have similar results when the cohort sizes remain constant, but that the cohort model

yields better predictions when no assumptions about the cohort sizes are made. Marshall

[1973] finds that there are considerable problems in building the cohort model due to data

requirements, and uses averages for some of the parameters that are not available. The

forecasts made by both models have large errors—up to more than ten percent.

Campbell [1975] presents a programming model for enrollment planning that tracks

students based on their program of study similar to the cohort flow model previously dis-

cussed. The objective of the model is to find an optimal make-up of the student body

categorized into cohorts. Thus, the model does not make forecasts, but instead produces a

plan for student admissions which will, theoretically, reach a steady state. Heiberger [1993]

presents a Markov chain model predicting university enrollment that groups students simi-

lar to a cohort flow model. The model then uses survival analysis to determine how long a

student remains in a state [Heiberger 1993].

13

Many university enrollment models focus on student retention, for example [Brazziel

1987; Murtaugh et al. 1999; Titus 2004]. Murtaugh et al. [1999] present a method for

predicting the retention of university students that could be used as part of an enrollment

prediction model. They use survival analysis and historical data to derive retention rates of

groups of students.

Lacking in the literature is a robust model for university enrollment that can be used

for both long- and short-term projections while simultaneously being used to model intra-

university movement. Furthermore, a general procedure to create such a model is needed.

This provides the background and motivation for our study.

2.2 Data

The data needed to model university populations depends on the purpose and detail of the

model. The data available to us for this study is that recorded by Clemson University. We

made use of the records on all undergraduates in each semester and summer session from

fall 1998 to spring 2007. A complete listing of fields within each record is presented in

Table 2.2. Note that the variables are split into common information and term information.

The common information is that which typically does not change from term to term such

as race, gender, and SAT score. The term information is expected to change each semester

and includes credit hours attempted in the current semester and credit load. Possible values

of selected fields are presented in Tables 2.3, 2.4, 2.5.

The fields we predominantly use include semester class, college, enrollment status,

residency status, and credit load. Enrollment status is an attribute assigned to each student

by the university identifying him or her as a first-time, transfer, returning, continuing or

transient student. Residency status identifies each student as in-state or out-of-state, and

credit load identifies each student as full-time or part-time. The average number of students

in a fall semester within our study data is 13,861.

14

COMMON INFORMATION TERM INFORMATION
ID number (CUID) Term
State Enrollment On Campus
Race Enrollment Off Campus
Gender Credit Load
Birth date College
Original Entry Status Major
Honors Program Minor
Home County Termination
Marital Status Academic Status
Religious Preference Residency Status
Original Entry Major Semester Class
First Year GPR Enrollment Status
Degree Sought Semester Hours Attempted
SAT Verbal Semester Hours Earned
SAT Math Semester Grade Points Earned
ACT Composite Semester GPR
Athlete Credit Hours Attempted to Date
Academic Suspensions Credit Hours Earned to Date
Satisfactory Progress Grade points Earned to Date
Curriculum Year GPR to Date
Curriculum Version Special Program
Academic Renewal Term Student Fee
Veteran Housing Status
Date Enrolled

Table 2.2: Fields included in records stored for each student at Clemson University each
semester.

Academic Status (Code) Housing Status (Code)
Good Standing (0) Not in University Housing ()
Academic Renewal (1) Reservation Canceled (R)
Admitted on Probation (3) Residence Hall (1)
Appealed Suspension (6) Married Student Housing (2)
Suspension (7) Broken Contract (3)
Appealed Dismissal (8) Offer Housing (4)
Dismissal (9) Other (6)

Co-op (7)
Withdrawn for Practice Teaching (8)
Withdrawn from School (9)

Table 2.3: Possible values of Academic Status and Housing Status fields.

15

Semester Class (Code) (Hours) Enrollment Status (Code)
Unclassified (0) Transient (0)
1st Sem. Freshman (1) (0-15) First-time (1)
2nd Sem. Freshman (2) (16-29) Transfer (2)
1st Sem. Sophomore (3) (30-45) Returning (3)
2nd Sem. Sophomore (4) (46-59) Continuing (4)
1st Sem. Junior (5) (60-77)
2nd Sem. Junior (6) (78-94)
1st Sem. Senior (7) (95-111)
2nd Sem. Senior (8) (112-999)
Postgraduate (12)
Post baccalaureate (15)

Table 2.4: Possible values of the Semester Class and Enrollment Status fields.

College (Code) Termination (Code)
Agriculture, Forestry and Life Sciences (10) Candidate (C)
Architecture, Arts, and Humanities (30) Discharged (D)
Business and Behavioral Sciences (40) Deficient (F)
Engineering and Science (50) Graduated (G)
Health, Education and Human Development (70) Grad Posthumously (P)
Undergraduate School (80) Deceased (X)

Table 2.5: Possible values of College and Termination fields.

16

2.3 University Population Modeling Procedure

A main goal of our study is to build a model for university enrollment that can be used for

both long- and short-term projection. Potentially, this model could take on many different

forms. One model may simply predict total population and movement between class levels

without differentiating between college, course load, and residency status. Another more

detailed model may track the movement of students by college, major and class. Our design

is based on the Markov chain models discussed in Section 2.1 because of the flexibility they

afford—from very simple GPR models to very detailed cohort flow models.

The other main goal of our study is to design a procedure for creating university popu-

lation models. As noted by Hopkins and Massy, the goal of enrollment modeling may affect

the type of model used [1981]. Furthermore, the goal of the model may affect the amount

of data gathered and the student characteristics studied. Because each university population

model may serve a different purpose, very little has been published on procedures to create

university population models in general. In this section we present a straightforward proce-

dure for creating university population models. Utilizing this procedure, we give examples

from a particular population model built for Clemson University.

The purpose of the model we build is threefold: (1) to predict the total university popu-

lation and several subgroups of the population with accuracy in the short term; (2) to project

total university population and several sets of subgroups of the population in the long term

given assumptions about incoming students and graduation and drop out rates; and (3) to

predict population changes resulting from changes in transition rates including freshman

retention and senior graduation rates. A university population model that meets these crite-

ria can be used to project scenarios under alternate assumptions, which aids in developing

policy decisions and other university planning.

The procedure we have developed for creating university enrollment models has the

four major steps outlined in Algorithm 2.1. Each step is presented individually in the next

four subsections.

17

Algorithm 2.1: Procedure for modeling university populations.

1. State identification.
2. Transition matrix estimation and verification.
3. Historical verification.
4. Model usage.

2.3.1 State Identification

The first step in modeling university population using a Markov chain model is to identify

the state space. We consider two sets of student characteristics in this step: those that must

be distinguished in the model results and those that are needed to model the population with

accuracy. The second set of characteristics may not be needed for reporting purposes, but

aids in creating states that have significantly different transition rates than the rest of the

population. Deciding which characteristics to consider is guided by experience and testing.

Experience may indicate that part-time students move through the university at a different

rate than full-time students. Testing might identify other characteristics that lead to a more

accurate or robust model.

The procedure to identify the state space begins with choosing sets of characteristics

to consider. The next step is to test for correlation between the characteristics we initially

select and the events we want to model. This step may have no effect on attributes that must

be distinguished in the model results, but plays a role in the testing of the other attributes.

A variable that approximates the events to be modeled may be used for this step. Because

we are modeling population movement and total population in the university, we choose

to measure correlation of potential state variables (characteristics) to the event of moving

to a higher semester class. For example, if we find that students with different residency

statuses move to the next higher class with significantly different rates, we may include

residency status in our model. We use the χ2 test for independence for testing. The two-

way χ2 statistic tests the null hypothesis of independence between the row variable and the

column variable of a contingency table. When the sample size is large—typically greater

than 30 with at least five elements in each cell—and the null hypothesis is true, the test

statistic’s distribution is approximately χ2 with (c − 1)(r − 1) degrees of freedom, where

18

Remain in Move to Total
current class higher class

In-state 1,885 7,089 8,974
21% 79%

Out-of-state 1,188 2,627 3,815
31% 68%

All 3,073 9,716 12,789
24% 75%

Table 2.6: Contingency table for residency status versus the event moving to a higher
semester class.

c is the number of columns and r is the number of rows [Ross 2002]. Table 2.6 shows

the contingency table from a χ2 test on residency status versus our event variable class

movement. The test shows that the row and column variables are not independent, and thus

residency status is a significant variable.

The product of the number of possible values for each characteristic gives an upper

bound on the number of states. It is an upper bound and not the actual number because

some combinations could be infeasible or could be excluded by choice. An example of

the former situation is that it is not possible for a first-time student to be a senior at CU

because he or she has not had the opportunity to accumulate enough credits, even with AP

credits. Note that there is a drawback associated with specifying many states. The counts of

students in each state become low and the variability in predicting the associated transitions

becomes high, which reduces the accuracy of the model. Thus, practicing parsimony is

important when choosing characteristics and identifying states. For example, we choose

not to split part-time students by class and college because there are few part-time students.

At this stage of model building, there is often much trial and error to decide on the

final set of states. For example, because there are too many majors to use individually as

states in our model, we attempt to identify and cluster together majors with significantly

different rates of movement. This could capture the populations of students with different

movement due to major, but would not require as many states. To accomplish this, we clus-

ter majors based on the courses in which they enroll and then use this grouping as states.

We first order all possible courses—suppose there are n—and assign each a unique num-

ber. We represent major m by an n-vector where the jth component represents the number

19

 3 14 7 1 9 8 6 11 12 5 10 13 4 2
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

S
im

il
ar

it
y

1 General Engineering

2 Civil Engineering

3 Polymer and Textile Chemistry

4 Textile Management

5 Chemistry (BA)

6 Chemistry

8 Computer Science (BA)

9 Computer Science

10 Geology

11 Mathematical Sciences (BA)

12 Mathematical Sciences

13 Physics (BA)

14 Physics7 Computer Information Systems

Majors

Figure 2.4: Dendrogram of clustering on majors of first semester students within the col-
lege of Engineering and Science in fall 2005.

of m majors taking course j. We measure the distance between two majors as the angle

between their representative vectors. To group the majors, we use a hierarchical agglom-

erative clustering technique, which joins the closest pairs iteratively until all elements are

grouped into one cluster. The graphic representation of this clustering technique is called a

dendrogram. Figure 2.4 shows a dendrogram of a clustering where no clear groupings are

evident. Two problems arise from attempting to group on major. The first is that few of the

clusterings result in obvious groupings. The second problem is that because semester class

and college are two characteristics we want to keep in the model, we first group majors by

semester class and college. This reduces the individual cell counts and ultimately leads us

to abandon having major as part of the state space.

20

Semester College Enrollment Residency Number of
Status Status states

1 AFLS First-time In-state
2 AAH Transfer Out-of-state
3 BBS Continuing
4 ENSC

HEHD 120
5 AFLS Transfer In-state
6 AAH Continuing Out-of-state

BBS
ENSC
HEHD 40

7 AFLS Continuing In-state
8 AAH Out-of-state

BBS
ENSC
HEHD 20

Total number of states 180

Table 2.7: Description and number of states for university population model.

In our model the state identification step resulted in 204 states: ten states for incoming

students, six states for leaving students, and 188 states for students within the university.

The ten states for incoming students include designating each student as transient, first-

time, transfer, returning, or ‘continuing from a semester not in the model’ and in-state or

out-of-state. The six leaving states include graduating, leaving from freshman, sophomore,

junior, or senior class, and leaving from any other state. Four of the 188 states for students

within the university are part-time students who are returning students or not, who are in-

state or out-of-state. Four of the remaining 184 states for students within the university are

full-time students who are returning or transient, who are in-state or out-of-state. The other

180 states are detailed in Table 2.7.

2.3.2 Transition Matrix Estimation and Verification

The second step in modeling university population using a Markov chain model is to esti-

mate the transition matrix. We do this by first counting the number of students transitioning

between each pair of states for each pair of years that we have data available. Note that if

the model is to be used by semester, we would count for each semester. Table 2.8 shows

21



0 3, 060 360 180 0 0
0 330 2, 310 330 0 330
0 0 435 1, 885 290 290
0 0 0 660 1, 980 660
0 0 0 0 1, 080 2, 520
0 0 0 0 0 0


⇒



0 0.85 0.1 0.05 0 0
0 0.1 0.7 0.1 0 0.1
0 0 0.15 0.65 0.1 0.1
0 0 0 0.2 0.6 0.2
0 0 0 0 0.3 0.7
0 0 0 0 0 0


Table 2.8: Example of transition counts and transition matrix.

a simple example of transition counts for a model with six states, where state 0 represents

incoming students, states 1-4 represent the freshman through senior classes, and state 5 is

the exiting state. We convert the transition counts into a transition matrix by dividing each

element by its row sum.

The procedure just described finds transition matrices based on one year of data. This

may not be the best transition matrix to use for predictive purposes because of the variability

that could occur from one year to the next. To find an average transition matrix for two or

more years, we find the weighted average of the respective transition matrices by adding

the transition count matrices from these years and calculating the transition matrix in the

same manner as before. Note that we cannot simply add two transition matrices because the

resulting matrix would not necessarily be stochastic or substochastic. We must decide how

many years of data to include in the transition matrix for the model. To guide in making

this decision, we test and compare four methods with available data for one to five year

periods. The four methods include using the transition matrix from (1) the previous year,

(2) a two-year moving average, (3) a three-year moving average, and (4) the average of all

data available. Figures 2.5, 2.6, 2.7, and 2.8 show the results of these comparisons.

Figure 2.5 shows the sum of absolute error rates for predicting the total population and

several subgroups of the population one year in advance using the four methods over five

years. The error rates for the freshman are high because we use the number of incoming stu-

dents estimated by the admissions office for future predictions. These estimates sometimes

have high error rates themselves as we showed at the beginning of this chapter. Figures

2.6 and 2.7 show the error rates for predicting the total population one and two years in

advance, respectively, using the four methods. Figure 2.8 shows the average square root of

the sum of squared error, which is the Euclidean distance between the actual values and the

22

0%

5%

10%

15%

20%

25%

30%

Tota
l

In
-st

ate

Out-
of

-st
ate

Fres
hm

an

Sop
ho

mor
e

Ju
nio

r

Sen
ior

Previous

2 yr avg

3 yr avg

Average

Figure 2.5: Sums of one year in advance error rates over years predicted for several groups
using four methods.

0.000%

0.200%

0.400%

0.600%

0.800%

1.000%

1.200%

1.400%

1.600%

1.800%

2.000%

Fall 02 Fall 03 Fall 04 Fall 05 Fall 06

Previous

2 yr avg

3 yr avg

Average

Figure 2.6: Error rates for total population when predicting one year forward using four
methods.

23

0.000%

0.200%

0.400%

0.600%

0.800%

1.000%

1.200%

1.400%

1.600%

1.800%

2.000%

Fall 03 Fall 04 Fall 05 Fall 06

Previous

2 yr avg

3 yr avg

Average

Figure 2.7: Error rates for total population when predicting two-years forward using four
methods.

0

50

100

150

200

250

300

350

400

450

500

One Two Three Four Five

Predicted Years Out

Previous

2 yr MA

3 yr MA

Average

Figure 2.8: Average sum of Euclidean distances from actual population using four meth-
ods.

24

predicted values, for each of the four methods when used to predict future populations one

to five years in the future. Because we have limited available data, the number of elements

in the sum is fewer when predicting out farther. Thus, we must take the average of the

sums of error in order to have commensurate data. Note that the error tends to increase with

more extrapolation, but the three-year moving average and the total average tend to have

the lowest error within each year.

Because the projections based on the previous year’s data tend to be volatile in terms of

error rates, we eliminate it from consideration. The transition matrices that depend on all

available data require too much data to be used consistently in the future when many more

years of data are available. Furthermore, as university policies change earlier data will

become irrelevant to future transition probabilities. Thus, we eliminate that method from

consideration and are left with the two and three-year moving averages. Because the three-

year moving average has consistently lower sum of squared error for future predictions

than the two-year moving average, we choose the three-year moving average to estimate

our transition probability matrices.

2.3.3 Historical Verification

The third step in modeling university population using a Markov chain model is to verify

the accuracy of the model on historical data. If the accuracy is not within the desired range,

steps one and two may need to be repeated. We measure the accuracy of our model on

predicting the total university population, several subgroups, and the graduating population.

We present the results for total population predictions in Figure 2.9 and Table 2.9. The lines

in Figure 2.9 represent the projections made from a given year. We assume that predictions

for the following year are made after the start of the semester of the current year. Thus,

we know the counts for the current year when predicting forward. For example, in fall

2002 we know the total university population for fall 2002 and project out one to four years

to predict the population for fall 2003 to fall 2006, respectively. The series marked by

triangles represent these projections. Table 2.9 shows that the error rates are within 1%

when projecting out one year and are within 1.5% when projecting out up to five years.

Because the populations of current and previous semesters are known with certainty, the

25

13600

13700

13800

13900

14000

14100

14200

14300

14400

14500

Fall 01 Fall 02 Fall 03 Fall 04 Fall 05 Fall 06

From Fall 01

From Fall 02

From Fall 03

From Fall 04

From Fall 05

Actual

Figure 2.9: Actual and predicted total university population.

From Fall 01 Fall 02 Fall 03 Fall 04 Fall 05
To \
Fall 02 -0.2%
Fall 03 0.7% 1.0%
Fall 04 0.1% 0.4% -0.6%
Fall 05 0.4% 0.3% -1.2% -0.7%
Fall 06 0.9% 1.0% -0.6% -0.4% -0.2%

Table 2.9: Error rates for total university population by year.

table is lower triangular reflecting that we are forcasting forward. The error rates are well

within the 5% error rate criteria that we set for forecasting aggregate populations.

Figure 2.10 shows the actual and predicted full-time students in the university by class.

On average, the absolute error rates for predicting one year forward are less than 4% for

freshmen, 2% for sophomores, 1% for juniors, and 1% for seniors. These error rates are

within or near the bounds of 3.9% for populations associated with first-time students, 10.3%

for populations associated with transfer students, and 5.3% for aggregate populations. Note

that the freshman population is made up of continuing, first-time, and transfer students.

Figure 2.11 shows the actual and predicted graduating students in the university. The

error rates are within 5.3% for all projections. Note that from these and other forecasts we

can estimate the retention and graduation rates of specific populations, which we do in the

26

From Fall 02 From Fall 03 From Fall 04 From Fall 05 ActualFrom Fall 01

2700

2800

2900

3000

3100

3200

3300

3400

3500

Fall 01 Fall 02 Fall 03 Fall 04 Fall 05 Fall 06
2700

2800

2900

3000

3100

3200

3300

Fall 01 Fall 02 Fall 03 Fall 04 Fall 05 Fall 06

3000

3100

3200

3300

3400

3500

Fall 01 Fall 02 Fall 03 Fall 04 Fall 05 Fall 06
3100

3200

3300

3400

3500

Fall 01 Fall 02 Fall 03 Fall 04 Fall 05 Fall 06

Freshmen Sophomores

Juniors Seniors

Figure 2.10: Actual and predicted full-time students by class.

2400

2500

2600

2700

2800

2900

Fall 01 Fall 02 Fall 03 Fall 04 Fall 05 Fall 06

From Fall 01

From Fall 02

From Fall 03

From Fall 04

From Fall 05

Actual

Figure 2.11: Actual and predicted graduating students.

27

next section. Because the errors for predicting the number of graduates seem to increase

for the later years we predict, we suspect that qualitative changes, such as a decrease in

graduation requirements, may have occured that are not yet being recorded by the transition

matrices. In the next section we discuss investigating scenarios under alternate assumptions,

which can aid in making accurate projections when policy changes occur.

2.3.4 Model Usage

The fourth step in modeling university population using a Markov chain model is to use

the model for forecasting student populations. In Section 2.3.3 we tested the model by

projecting forward within the data we have available and testing for accuracy. The final

step is to project beyond the available data. Because we are using a Markov chain model,

we can take advantage of certain properties to aid in this projection.

We now introduce more properties and notation about DTMCs using the notation and

definitions of [Kulkarni 1995]. Let S be the state space of a DTMC, P be the transition

matrix, and i, j ∈ S . If, for some n ≥ 0, p(n)
i j > 0, then state j is accessible from state i; we

denote this as i → j. If i is accessible from state j as well, then i is said to communicate

with j; we denote this as i ↔ j. A communicating class C ⊆ S has the properties (1) for

all i, j ∈ C, i ↔ j and (2) every element that communicates with an element in C is also

in C. If for all i ∈ C and for all j < C, j is not accessible from i, then C is called a closed

communicating class. If all the states of a DTMC are in one closed communicating class,

the DTMC is called irreducible. Otherwise, it is called reducible. A state is called transient

if there is a positive probability that once the system has left the state, it will never return.

A state is called recurrent if this probability is zero. Note that a finite Markov chain cannot

have all transient states.

We revisit the simple modeling example from Table 2.8 by showing the transition dia-

gram in Figure 2.12. This is a simplified version of our university population model. Recall

that state 0 represents incoming students, states 1-4 represent the freshman through senior

classes, and state 5 is the exiting state. States 0-4 are clearly transient because after follow-

ing an arrow from one of these states, there is no directed path to return to it. The transition

matrix governing the four internal states is as follows:

28

0

1 2

3 4

5

In

M
C

 (substochastic)

Out

Figure 2.12: Transition diagram for modeling example given in Table 2.8.

P =



0.1 0.7 0.1 0

0 0.15 0.65 0.1

0 0 0.2 0.6

0 0 0 0.3


.

Note that P is substochastic because at least one row sum is less than one. In Figure 2.12 we

represent state 5 as an absorbing state, which means that once a student has left the system,

he or she remains gone. This assumption is relaxed in our actual model where we allow

returning students.

Let us focus on the internal transient states of our model. Let Π(n) be the vector of

university populations at some time n. In our simple example, Π(n) is the vector of students

in states 1-4. Let P be the transition matrix of the internal states. Note that P is substochas-

tic because students leave the system and, therefore, P has at least one row that sums to

less than one. Furthermore, because all students eventually leave the system, all states are

transient meaning for some n > 0 the n-step transition probability pn
i j = 0 for all internal

states i, j. Thus, we have that limn→∞ Pn = 0.

29

Continue to define P and Π(n) as above. Let ∆ be the vector of incoming students each

year and Π(0) = C be the vector of students at time zero, both of which are represented

in the same manner as Π(n) above. We solve the following system of equations to find the

population at time n ≥ 0.

Π(1) = Π(0)P + ∆

= CP + ∆

Π(2) = Π(1)P + ∆

= (CP + ∆)P + ∆

= CP2 + ∆P + ∆
...

Π(n) = Π(n − 1)P + ∆

= CPn + ∆Pn−1 + ∆Pn−2 + . . . + ∆P + ∆

= CPn + ∆
∑n−1

i=0 Pi.

To find the equilibrium population, we take the limit of Π(n) as n increases without bound

as follows:

limn→∞Π(n) = limn→∞
[
CPn + ∆

∑n−1
i=0 Pi

]
= C limn→∞ Pn + ∆ limn→∞

∑n−1
i=0 Pi

= ∆
∑∞

i=0 Pi

= ∆ [I − P]−1 .

(2.5)

The final equality of 2.5 is a consequence of two theorems on matrix sequences and series

whose proofs can be found in [Cullen 1990]. We take the relevant parts of those to form the

following theorem, which shows that (I − P) is invertible.

Theorem 2.3.1. Let {Am} be a sequence of matrices from Cn×n. If the matrix sequence

{Am} → 0, then (I − A) is invertible and (I − A)−1 =
∑∞

m=0 Am.

Because {Pn} → 0, it follows from Theorem 2.3.1 that (I−P) is invertible and (I−P)−1 =∑∞
n=0 Pn. We forgo the proof because it is beyond the scope of this study.

Using (2.5) we can find the equilibrium population assuming that transition rates and

the make-up of the incoming class remain constant. Although we expect changes in the

30

13400

13600

13800

14000

14200

14400

14600

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

actual

2001

2002

2003

2004

2005

2006

Figure 2.13: Actual and predicted total university population.

0

3000

6000

9000

12000

15000

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

actual

2001

2002

2003

2004

2005

2006

Figure 2.14: Actual and predicted total university population scaled.

31

2500

3000

3500

4000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Freshmen

Sophomores

Juniors

Seniors

2500

3000

3500

4000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Freshmen

Sophomores

Juniors

Seniors

(a)

(b)

Figure 2.15: Actual and predicted full-time university population by class.

system in the form of differing incoming classes, changing graduation rates, etc., finding the

equilibrium populations aids in developing policy decisions by setting target populations.

Figures 2.13 and 2.14 show the actual and predicted total university population for Clemson

University. The series in the figures predict out ten years starting at fall 2001 to fall 2006,

each of which has different transition matrices and input. The constant predictions near the

end of the series indicate that the equilibrium population has been approximately reached.

Figure 2.14 shows Figure 2.13 to scale and gives us an appreciation of the accuracy which

our projections possess.

32

Figure 2.15 shows the actual and predicted values of the full-time university population

by class. The values are actual from 1999 to 2006 and are predicted from 2007 and beyond.

Figure 2.15(a) shows each class prediction by year. We can see that a large freshman class

results in a large sophomore class the following year, a large junior class in two years, and

a large senior class in three years. To visualize these ripple effects better, Figure 2.15(b)

has the freshman series on the actual year and each higher class shifted back one year. We

can see that after the high or low inputs have rippled through and a constant incoming class

is predicted, an equilibrium population becomes apparent. However, our model can also

account for incoming classes of varying sizes, which may be the norm.

In the following section we give more results based on alternate assumptions for the

input, output, and transition probabilities of the model.

2.4 Hypothetical Analyses

Section 2.3.3 showed test results for our model on how accurately it predicts total univer-

sity populations, full-time populations by class, and graduating populations within the data

available. Section 2.3.4 gave model results on predicting forward to examine how input

changes filter through the model and how the system settles on an equilibrium population.

In this section, we analyze equilibrium populations formed from alternate assumptions, and

also discuss how to derive other relevant information, such as probability of graduating and

average time to graduate, using the properties of our model.

Example 1: Varying admission

Since 2003, Clemson University has had a target new student enrollment of 2,800 first-

time students and 800 transfer students each fall. However, actual enrollments were dif-

ferent than the targets in several years by up to two hundred first-time students and three

hundred transfer students. We have seen the effects of these perturbations in the previous

section as ripples through class levels. Although we do not expect actual enrollments to

match target enrollments every year, examining the equilibrium populations resulting from

differing incoming populations aids in making admissions policy decisions. Table 2.10

33

First-time 2,800 2,600 (-7%) 3,000 (7%) 2,800 (%)
Transfer 800 800 (0%) 800 (0%) 700 (-13%)

Class Freshmen 3,268 3,055 (-7%) 3,481 (7%) 3,237 (-1%)
Sophomores 3,079 2,912 (-5%) 3,246 (5%) 3,008 (-2%)
Juniors 3,349 3,181 (-5%) 3,518 (5%) 3,269 (-2%)
Seniors 3,411 3,246 (-5%) 3,575 (5%) 3,331 (-2%)

College AFLS 2,305 2,177 (-6%) 2,433 (6%) 2,259 (-2%)
AAH 2,055 1,944 (-5%) 2,166 (5%) 2,011 (-2%)
BBS 3,673 3,481 (-5%) 3,865 (5%) 3,591 (-2%)
ENSC 3,040 2,865 (-6%) 3,214 (6%) 2,995 (-1%)
HEHD 2,035 1,928 (-5%) 2,142 (5%) 1,990 (-2%)

Load Full-time 13,363 12,646 (-5%) 14,081 (5%) 13,100 (-2%)
Part-time 975 941 (-3%) 1,009 (3%) 951 (-3%)
Total 14,339 13,587 (-5%) 15,090 (5%) 14,050 (-2%)

Table 2.10: Equilibrium population counts and percentage difference by varying first-time
and transfer assumptions.

shows the equilibrium population targeted by four sets of proposed incoming populations

assuming that transition probabilities remain constant. That is, the outcomes in Table 2.10

would result from the actual first-time and transfer populations equaling the number of

first-time and transfer students given, with no other changes in the system. We use 2,800

first-time students and 800 transfer students as the base enrollment and show the percent-

age difference when using alternate enrollment assumptions. A seven percent increase or

decrease in the number of first-time students results in a five percent increase or decrease,

respectively, in the equilibrium total population. In recent years the number of new transfer

students at CU has been nearer to 700 than the target of 800. The last column of Table 2.10

shows the result of transfer admissions remaining at 700, which includes a drop in total

population of about 300 students.

Example 2: Changing retention rates

CU has adopted several new teaching methods in largely freshman courses that have

lowered the failing rates in those courses significantly. If lower failing rates translate into

lower freshman drop-out or stop rates (higher freshman retention), this will have an effect

on the total university population. For example, between fall 2005 and fall 2006 the uni-

versity drop-out rate for full-time, in-state, first-time freshmen in the college of engineering

and science was 14.5%. If that rate decreases by 10% of the current rate to 13.05%, more

34

Change in Freshman
Drop-out Rates 0% -10% 10%
First-time 2800 2800 2800
Transfer 800 800 800

Class Freshmen 3,268 3,272 (.1%) 3,265 (-.1%)
Sophomores 3,079 3,117 (1.2%) 3,041 (-1.2%)
Juniors 3,349 3,390 (1.2%) 3,309 (-1.2%)
Seniors 3,411 3,451 (1.2%) 3,371 (-1.2%)

College AFLS 2,305 2,326 (.9%) 2,284 (-.9%)
AAH 2,055 2,072 (.9%) 2,037 (-.9%)
BBS 3,673 3,709 (1.%) 3,636 (-1.%)
ENSC 3,040 3,070 (1.%) 3,009 (-1.%)
HEHD 2,035 2,052 (.8%) 2,018 (-.8%)

Load Full-time 13,363 13,487 (.9%) 13,240 (-.9%)
Part-time 975 984 (.9%) 966 (-.9%)
Total 14,339 14,472 (.9%) 14,206 (-.9%)

Table 2.11: Equilibrium population counts and percentage difference by varying freshman
drop-out rate assumptions.

students would remain in the university, assuming all other transition rates from this state

are adjusted and all other rates are held constant. Table 2.11 shows the equilibrium popula-

tion for no change, a ten percent decrease, and a ten percent increase in freshman drop-out

rates relative to the current rates and assuming that other transition probabilities remain

constant.

Example 3: Changing graduation rates

CU has adopted several curriculum changes in the past two years including changing

general education requirements and lowering the minimum number of credit hours required

to graduate. These changes imply that students’ academic careers at CU could be shortened

and thus graduation rates may increase. Recall that in Figure 2.11 the number of students

graduating in 2006 is higher than the predictions. Table 2.12 shows the equilibrium popu-

lation for no change, a ten percent increase, and a ten percent decrease in graduation rates

relative to the current rates and assuming that other transition probabilities remain constant.

For example, between fall 2005 and fall 2006 the graduation rate for full-time, in-state,

continuing first semester seniors in the college of engineering and science was 37.41%. If

that rate increases by 10% of the current rate to 41.15%, fewer students would remain in the

35

Change in
Graduation Rates 0% 10% -10%
First-time 2800 2800 2800
Transfer 800 800 800

Class Freshmen 3,268 3,268 (-.01%) 3,269 (.01%)
Sophomores 3,079 3,076 (-.1%) 3,082 (.1%)
Juniors 3,349 3,336 (-.4%) 3,364 (.4%)
Seniors 3,411 3,230 (-5.3%) 3,612 (5.9%)

College AFLS 2,305 2,280 (-1.1%) 2,333 (1.2%)
AAH 2,055 2,022 (-1.6%) 2,092 (1.8%)
BBS 3,673 3,618 (-1.5%) 3,733 (1.6%)
ENSC 3,040 2,990 (-1.6%) 3,096 (1.9%)
HEHD 2,035 2,000 (-1.7%) 2,074 (1.9%)

Load Full-time 13,363 13,157 (-1.5%) 13,594 (1.7%)
Part-time 975 926 (-5.1%) 1,031 (5.7%)
Total 14,339 14,083 (-1.8%) 14,625 (2.%)

Table 2.12: Equilibrium population counts and percentage difference by varying graduation
rate assumptions.

university assuming that all other transition rates from this state are adjusted and all other

rates are held constant.

Example 4: Simultaneous rate changes

Our model is also able to examine the effects of multiple changes at once, which is a

more realistic assumption than only one change occurring at a time. Table 2.13 shows the

equilibrium population for two combined changes in graduation rates and freshman drop-

out rates assuming that other transition probabilities remain constant. Figure 2.16 shows

the total population for several changes to freshman drop-out rates and graduation rates.

Example 5: Making use of the Markov property

Because of the properties of DTMCs, we can use our model not only to predict the

outcome of policy decisions but also to back into policy decisions given the desired results

or predicted changes. For example, suppose graduation rates are expected to increase by five

percent, which would eventually lower the total university populations. If administrators

want to keep the university population heading toward the estimated equilibrium population,

we can use our model to find the number of new students needed each year to keep the

36

Change in Freshman
Drop-out Rates 0% -5% -10%
Change in
Graduation Rates 0% 5% 10%
First-time 2800 2800 2800
Transfer 800 800 800

Class Freshmen 3,268 3,270 (.1%) 3,271 (.1%)
Sophomores 3,079 3,096 (.6%) 3,114 (1.1%)
Juniors 3,349 3,363 (.4%) 3,377 (.8%)
Seniors 3,411 3,338 (-2.1%) 3,268 (-4.2%)

College AFLS 2,305 2,303 (-.1%) 2,301 (-.2%)
AAH 2,055 2,047 (-.4%) 2,039 (-.8%)
BBS 3,673 3,663 (-.3%) 3,654 (-.5%)
ENSC 3,040 3,029 (-.4%) 3,020 (-.7%)
HEHD 2,035 2,025 (-.5%) 2,016 (-.9%)

Load Full-time 13,363 13,319 (-.3%) 13,278 (-.6%)
Part-time 975 954 (-2.2%) 934 (-4.2%)
Total 14,339 14,273 (-.5%) 14,213 (-.9%)

Table 2.13: Equilibrium population counts and percentage difference by varying freshman
drop-out and graduation rate assumptions.

0: No Change

1: Change in Freshman Drop Out Rate = -5%

2: Change in Freshman Drop Out Rate = -10%

3: Change in Graduation Rate = 5%

4: Change in Graduation Rate = 10%

5: 1 and 3

6: 2 and 4

14000

14100

14200

14300

14400

14500

14600

0 1 2 3 4 5 6

Figure 2.16: Equilibrium total population by varying freshman drop-out and graduation
rate assumptions.

37

population on the desired path. We return to our simple example from Table 2.8 to illustrate

the computation necessary to derive this input. First we find the equilibrium population

toward which the current system is moving. Note that the row sum of row zero of the

transition counts matrix is 3,600, which indicates that 3,600 new students enroll each year.

Furthermore, the zero row gives us ∆ =[3,060, 360, 180, 0], which is the distribution of

the new students. Using (2.5), the given ∆, and P from Section 2.3.4, we find that the

equilibrium population is Π ≈[3,400, 3,224, 3,269, 3263]. Next we adjust P to reflect the

five percent increase in graduation rates using the formula P̂i j=
(
Pi j/
∑4

i=1 Pi j
)

(1 − 1.05Pi5).

The new transition matrix is given as

P̂ =



0.0995 0.696 0.0995 0

0 0.149 0.6465 0.0995

0 0 0.1975 0.5925

0 0 0 0.265


.

To find the number of new students needed each year for the population to continue

toward the given equilibrium population, we solve Π = ∆̂(I − P̂)−1 for ∆̂, which yields

∆̂ = [3,061, 377, 201, 141]. Thus, the number of new students needed each year is ap-

proximately 3,780. Notice that ∆̂ has a different distribution of incoming students than ∆,

including a number of new students entering as seniors. If the administration thinks that the

distribution of incoming students will not change, but they still want to adjust admissions

such that the total university population moves toward the previous equilibrium population,

we can still use our model to derive the number of new students needed each year. We solve

the equation ∆(I − P)−1ONE = α∆(I − P̂)−1ONE, where ONE is a column vector of ones,

for α. We find that α ≈ 1.023 and, thus, ∆̂ = α∆ ≈ [3,130, 368, 184, 0] indicating that the

number of new students needed each year is approximately 3,682. The difference between

the two proposed inputs is that the first will produce an equilibrium population with the

same distribution across class levels as the initial target while the second input will produce

an equilibrium population with the same total population, but a different distribution across

class levels.

In practice, we use the latter approach because few, if any, new students enter as seniors

and the distribution of incoming students is difficult to control. From Table 2.13 we see that

38

the equilibrium population toward which Clemson is currently moving is 14,339. If fresh-

man drop-out rates decrease by ten percent and graduation rates increase by ten percent,

the total equilibrium population decreases to 14,212. Using the second approach to find the

input necessary for specific populations, we find that to balance these changes the number

of first-time and transfer students must increase from 2,800 and 800 to approximately 2,828

and 808, respectively. For this case α ≈ 1.0099.

We can also use our model to find the average time students are in the system and the

probability that they reach a certain state. Specifically, we can find the probability and

average time for a student to graduate by representing the graduating state as an absorbing

state. Again we use our example to illustrate this procedure assuming that the leaving

state represents graduating. To find the probability, u, of graduating beginning at any of

the internal states, we must solve (I − P)u = b for u, where b is the transition submatrix

representing transitions from the internal states to the graduating state. In our case, b′ =

[.1, .1, .2, .7]. Because (I − P) is invertible, it follows that u = (I − P)−1b. For our example,

u′ = [1, 1, 1, 1], as expected. Using the three-year average transition matrix from the 2004-

2006 CU data, we find that the probability of graduation for a first-time student who enters

the university as a first-semester freshman is .66.

To find the average time to graduation, m, we solve m = ONE + Pm, where ONE is a

column vector of ones. Because (I − P) is invertible, it follows that m = (I − P)−1ONE.

For our example, m′ ≈ [3.8, 3.1, 2.3, 1.4]. The first entry of m indicates that if students start

as freshmen, they spend an average of 3.8 years in the system. We can use this procedure

to find the average time that a student spends at Clemson. Using the same data as above,

we find that on average a first-time student who enters the university as a first-semester

freshman stays for 3.76 years. This includes students who drop-out as well as graduate.

The average time until graduation for a first-time student who enters the university as a

first-semester freshman is 4.10 years.

In summary, the error rates for the projections presented for the various subgroups of

the population are representative of the results for all the categories into which we split the

population. The university population model we built can be used for projecting forward

39

in the short term of one to five years to examine how changes to the systems will ripple

through the university. It can also be used in the long term to set targets for enrollment

management when considering policy changes. The results indicate that the model yields

accurate results in practice. Furthermore, the inherent properties of Markov chains allow us

to use the model to find conditional probabilities of graduation, average time to graduation,

and inputs necessary to achieve specific populations. The procedure we outlined can be

used to produce similar Markov chain models with varied purposes and state spaces.

40

Chapter 3

Predicting Course Enrollment

Scheduling university courses first requires predicting the number of students expected

to enroll in each course. The predictions guide the number and size of sections to be of-

fered. Since course schedules are prepared and submitted well in advance of the start of the

semester, predicting course enrollment is a problem faced by every department at every uni-

versity. Models to assist with enrollment prediction can be extremely simple. If schedules

are rolled over from a previous semester, we can simply use the course enrollments from

the previous semester as the prediction. At the other extreme, course enrollment models

can predict for each individual student, resulting in great detail. In this chapter we present

our procedure for creating accurate, robust models that predict course enrollment on an ag-

gregate level. Although this work has wide applicability to other colleges and universities,

the following discussion refers specifically to Clemson University (CU).

At CU, schedules for fall semester are due in February, a time when admissions esti-

mates, course pass rates, and student retention are uncertain. The schedules are published in

March, early registration for continuing students begins in April, spring grades are recorded

in May, and freshmen and transfer registration begins in mid-June. Adjusting the number of

instructors or adding and canceling sections after June is not desirable, and may not be pos-

sible. Making accurate predictions at the time the schedules are constructed, and adjusting

these predictions as soon as changes become apparent, are extremely important. Another

need for detailed course prediction models is to identify and predict the number of enrolled

students in distinct groups, such as first-time and transfer students. Because many lower

level courses have space reserved for first-time students, this information could be used to

reserve a more accurate number of course seats for the incoming class, whose enrollment

is set by the admissions office. Furthermore, if the enrollment models were more detailed,

first-time seats could be released based on the expected demand of the students attending

each orientation session instead of uniformly over all sessions as is the current practice.

Although complete information relative to student enrollment in the following semester

is not available at the time of prediction, available information includes course rolls and stu-

dent information such as major and enrollment status, which is a code the university uses to

identify each student as first-time, transfer, continuing, or returning. The admissions office

also releases the estimates of the number of new first-time and transfer students expected to

enroll in the fall. This information, along with analysis of historical data, makes it possible

to construct generic course prediction models that are robust and accurate.

A challenge that all service departments—those departments that teach courses for stu-

dents majoring in other disciplines—face is the uncertainty of the admissions estimates of

first-time and transfer student enrollment. At CU these numbers have differed from their

targets by more than 300 students in recent years. These variations appear after the schedule

is set in the spring or during freshmen orientation when students are already registering. If

admissions estimates are high and therefore more sections than necessary have been sched-

uled, department and university resources are not used efficiently. If the estimates are low,

it is difficult to accommodate the unexpected students because too few sections have been

scheduled. Therefore, predicting enrollment using a range of possible university enrollment

numbers is desirable to ensure adequate capacity in each section.

The future total university population is not known at the time of course enrollment

estimation because schedules must be submitted early in the previous semester. Even the

number of students who will be continuing from the present semester must be estimated

because students graduate, transfer, or leave for other reasons, thus changing enrollment

numbers. Since course enrollment estimates depend on university population estimates, our

models must determine these estimates to ensure accurate course enrollment predictions.

The goal of our course prediction models is to make accurate predictions early in the

scheduling process and to update predictions as new information becomes available. Sim-

ilar to our university prediction model discussed in Chapter 2, our criteria for accurate

predictions is based on the accuracy of the exogenous variables. In general, our goal is to

predict course enrollments such that error rates are less than 5.3%, which is the weighted

sum of the average first-time and average transfer error rates as given in Table 2.1.

42

The remainder of this chapter is structured as follows. We review the literature on

predicting course enrollment in Section 3.1. In Section 3.2 we describe the data used in

studying course prediction at CU. We discuss our course prediction procedure and models

in Section 3.3 in the context of a lower-level math course with large enrollment at CU. We

present results for course prediction models at CU in Section 3.4.

3.1 Related Work

Most of the research published on enrollment modeling focuses on the entire student body.

There is little published work that specifically examines course enrollment prediction. Hop-

kins and Massy [1981] claim that the same techniques used for predicting on the aggregate

level can be used at the department and course level, but they do not develop the neces-

sary models. We briefly review their university population models here as a precursor to

other more specific models; a full description was given in Chapter 2. Hopkins and Massy

[1981] present three categories of flow models used in university enrollment planning: the

grade progression ratio (GPR) method, Markov chain models, and cohort flow models. The

GPR method and the Markov chain models use cross-sectional data and historical yields

to predict the university population. The cohort flow models use longitudinal data to track

students through the university and use historical yields for predictive purposes. They do

not develop or test these models on course enrollment.

Balachandran and Gerwin [1973] present three variable-work models for predicting

course enrollments: the work model, the eligible-work model accounting for prerequisites,

and the eligible work model with program requirements. The authors claim that all three

models can predict course enrollments semesters ahead using estimates for certain prob-

abilities, forecasts of new students each semester, and the initial distribution of students

[Balachandran and Gerwin 1973]. The work model uses the conditional probability that

a student will take a course, given that he has not already, to predict how many students

will enroll in that course. The eligible-work model accounting for prerequisites pares down

the number of students eligible to take a course by accounting for prerequisites and then

uses the conditional probability that they will take the course for predictive purposes. The

43

eligible work model with program requirements categorizes eligible and ineligible students

based on how much work they have completed in progress toward a degree. Conditional

probabilities are used for each group to predict the total number of students who will enroll

in the course in question. In testing of the models, the parameters—the conditional proba-

bilities—were estimated using the average rates from one year, 1971. Note that each model

is more detailed that the last and thus requires more data for parameter estimation. Bal-

achandran and Gerwin [1973] test the work and eligible-work models on graduate courses.

Because the enrollments are so low, the error rates are often high and the effectiveness of

the models is not clear because of the minimal amount of testing. The authors concede that

the models are not a replacement for intuition, but instead a complement [Balachandran and

Gerwin 1973].

The course prediction models currently used in the Mathematical Sciences Department

at Clemson University are similar to the Markov Chain models described by Hopkins and

Massy [1981], but focus on conditional probabilities. The models use historical proportions

to estimate the number of students in one specific group who will enroll in the course;

we call this the primary estimate. Then the model backs into the total course enrollment

estimate using historical proportions and the primary estimate. For example, as shown in

Figure 3.1, in fall 2003 there were 3,241 freshmen enrolled at Clemson, 740 freshmen were

enrolled in Calculus I (MATH 106), and 842 total students were enrolled in MATH 106.

That is, 22.83% of the freshmen were enrolled in MATH 106 and 87.89% of the students

in MATH 106 were freshmen. An estimated 3,450 freshmen were expected to enroll in fall

2004. To predict the number of students in MATH 106, we multiply the number of expected

freshmen by 22.83% to get 788. This is the number of freshmen we expect to enroll in

MATH 106 in fall 2004, the primary estimate. To find the total course enrollment estimate,

we multiply the primary estimate, 788, by 1/87.89% to get 896 students. Figure 3.1 shows

this example in detail. The schema under the fall 2003 heading shows the information

available at the time of fall 2004 enrollment estimation. The percentages shown on the

edges are multiplied by the number at the tail of the edge to arrive at the number at the head

of the edge. The schema under the fall 2004heading shows the flow of estimations using

44

740
freshmen in
MATH 106

3,241
freshmen

842
students in
MATH 106

87.89%

22.83%

788
freshmen in
MATH 106

3,450
freshmen

(estimated)

896
students in
MATH 106

1/ 87.89%

22.83%

Fall 2003 Fall 2004

Figure 3.1: Partial diagram of Clemson University Mathematical Sciences department’s
current model for predicting Calculus I enrollment.

the data from fall 2003. Notice that the direction of the second edge is reversed in the fall

2004 schema to depict that the model backs into the final estimate.

Because the literature involving course enrollment models is limited, more work in this

area is warranted especially in creating procedures for robust, detailed course prediction

models and in describing case studies using these models.

3.2 Data

We use three sets of data to create the course enrollment models. The first is the estimated

new student populations, including first-time and transfer students. This information, which

is usually a targeted number set by the admissions office, is not derived from historical data.

These estimates may be volatile and often change before the semester begins. For this

reason, we may want to use a range of estimates centered on the targeted numbers.

The second set of data is the current course enrollments. From these we obtain the num-

ber and characteristics of the students currently enrolled in each course, its prerequisites,

and the rest of the university. Some of the variables available to us for each student through

the enrollment data are major, SAT score, ACT score, class, gender, race, age, course load,

quantity of semester hours earned this term, and quantity of credit hours earned to date.

Because we do not know the course pass and fail rates for the current semester courses at

the time of prediction, we must estimate these. We update our model after the grades are

45

recorded at the end of the current semester to reflect the actual pass and fail rates and then

adjust our predictions at that time.

The third and largest set of data needed for the model is historical enrollment data.

There are 12,000 to 14,000 undergraduates enrolled at CU in any fall or spring semester

and 4,000 to 6,000 students enrolled in courses taught by the Mathematical Sciences de-

partment each semester. From the current enrollment data and the historical enrollment

data, we are able to determine which student characteristics and enrollments are signifi-

cant predictors for modeling course enrollment. Because course descriptions, course pass

rates, and program curricula change, we use just a few preceding years (typically three)

to estimate parameters for the current year in light of these qualitative changes. Examples

from CU of qualitative changes affecting course enrollment are the fall 2005 decrease in the

required number of hours for graduation—from approximately 135 hours to just over 120

hours—and the decrease in the number of required math courses for some programs from

two to one.

Thus far, we have focused on models used for predicting fall enrollment. However,

the models we develop can be used for both semesters. The differences are slight and

primarily include differing sizes of student populations. The fall semester has a large new

student population with many first-time students, and course enrollment depends heavily

on such admissions. New student populations are much smaller in the spring. At that time,

course enrollment predictions rely more heavily on students in prerequisite courses and the

population of continuing students. In developing generic models adaptable for both the fall

and spring, we typically include the significant groupings needed for both semesters.

3.3 Course Enrollment Prediction Procedure

Most of the course enrollment models currently used in the Department of Mathematical

Sciences at Clemson University predict future populations using the previous semester’s

enrollments and an appropriate conditional probability model. There are exceptions where

regression on historical aggregate data provides the model. Regression is often not appro-

priate because of the changing curriculum requirements on the number of hours required to

46

graduate and the number of math courses required, as well as fluctuating fail and withdrawal

rates. Using multivariate or logistic regression on individual students results in extremely

high variability. In order to isolate these variations, we split students into groups with simi-

lar enrollment rates and identify groups whose rates have been fluctuating. In this study, we

take advantage of extensive data that includes detailed information on student characteris-

tics and course enrollments. The results of this study are applicable to other departments,

universities, and institutions in need of enrollment prediction models.

We aggregate students into groups instead of predicting on an individual basis because

there is higher variability in the latter approach. Furthermore, we ensure that the groups

are well populated. Some attributes relevant to course enrollment, such as major, divide the

population into a large number of groups with few students in each. These fine divisions

again have too much variability to be useful predictors. We instead use broader categories

to determine the significant student groupings. We use goodness-of-fit tests and past expe-

rience of enrollment behavior as our guides in determining which groups to use.

Figure 3.2 shows the groupings of a single variable Calculus I (MATH 106) model,

where continuing students and returning students are denoted “Cont” and “Return”, respec-

tively. The figure shows a decision tree that yields final groupings of students for predicting

course enrollment. General engineering majors (GE Major), other students whose majors

require MATH 106 (106 Group), and all the rest of the first-time students (Other) are the

final groups into which first-time students are divided for the MATH 106 model. From the

final groupings we record the conditional probabilities of students in the group enrolling in

the course from historical data. Then we use this information to aid in estimating the con-

ditional probabilities for the coming year. We multiply these proportions by the estimated

university enrollment of the respective groups to determine total course enrollment. The

number of nodes in the diagram is course dependent, and varies depending on the behav-

ior of students enrolling in the course to be modeled. More parsimonious models may be

used in the case of limited data. For example, a simpler model may only include the nodes

extending two branches from the root of the tree—using parameters for first-time, transfer,

and continuing student characteristics.

47

All
students

New

Cont

Return

GE
Major

First-time

Transfer

Prereq

Neither

106

MATH
106

Other

106
Group

GE
Major

Other

106
Group

F or W

Pass

F or W

Pass

Figure 3.2: Template for course enrollment model. This diagram shows the template for the
course enrollment model using MATH 106 as the guide. Nodes could be added or removed
depending on the detail of the model.

48

The procedure we develop for creating course prediction models has four major steps

outlined in Algorithm 3.1. Each step is presented individually in the next four subsections.

Algorithm 3.1: Procedure for predicting course enrollment.

1. Identification of significant factors.
2. Parameter estimation and verification.
3. Historical verification.
4. Model usage.

3.3.1 Identification of Significant Factors

Identifying student characteristics that are significant in predicting course enrollment is

the first step in creating course enrollment prediction models. We do this by testing for

correlation between the grouping variable and enrollment in the course we are modeling.

Specifically, we use a χ2 test for independence. With this test we are able to determine if

the outcome—enrollment in the course we are predicting—and the variable—the student

characteristic we are testing—are correlated or independent.

To keep the model simple, we only use the most significant factors in predicting course

enrollment and exclude information that increases the variability of our model’s predictions.

For example, we have the major codes for each student and could use these individually to

estimate rates of enrollment. Because there are over 100 majors, many such groups are

small and prone to high variability in their enrollment behavior. Thus, instead of using

major codes individually to group students, we group students with similar enrollment be-

havior. For the MATH 106 model, we group students as general engineering majors, majors

required to take MATH 106, or all other majors. We do not include general engineering ma-

jors with all the other majors requiring MATH 106 because the admissions office provides

an estimate of first-time general engineering majors that is not derived from historical data,

but set by the university. We use this target for predicting enrollment in courses highly pop-

ulated by first-time general engineering students. Furthermore, this MATH 106 grouping

yields better estimates than grouping all the first-time students together because first-time

49

Conditional Enrollment Rates
% in Group % in MATH 106

New Students Fall 2003 Fall 2003
First-time GE Majors 25% 55%

106 Group 29% 29%
Everyone Else 46% 8%

Transfer GE Majors 10% 22%
106 Group 24% 11%
Everyone Else 66% 2%

Continuing Students Spring 2003 Spring 2003
In Prerequisite Pass 61% 49%
(Previous Term) Fail or Withdraw 39% 14%
In Course, GE Major A, B, C 44% 0%
(Previous Term) D, F or Withdraw 56% 16%
In Course, 106 Group Pass 58% 5%
(Previous Term) Fail or Withdraw 42% 20%
In Course, Other Major Pass 58% 0%
(Previous Term) Fail or Withdraw 42% 0%
Everyone Else Sem 1, 2, 3 12% 1%
(Previous Term) Sem ≥ 4 88% 0%

Other Students Fall 2003 Fall 2003
All Students Other Students 2% 1%

Table 3.1: University and MATH 106 enrollment rates for designated groups (fall 2003).

general engineering majors enroll in MATH 106 at a significantly higher rate than all other

first-time and continuing students.

Many model changes are made while determining which grouping variables to include

in the model. We want groupings that make sense and show promise empirically to be good

predictors. The χ2 tests guide us in model creation. However, there are instances where we

use grouping variables despite a test result indicating independence relative to the grouping.

Because we typically want the same model for both the spring and fall semesters, and

because certain groupings may be significant in only the fall semesters or only the spring

semesters, we also use past experience and empirical results to guide us. For example,

the number of new first-time students is high in the fall and very low in the spring. Thus,

first-time groupings found to be significant in the fall may not be significant in the spring

because the cell counts in the spring χ2 tests are too low to yield conclusive results. In these

50

cases, past experience and empirical results showing that groupings yield accurate predic-

tions aid in our modeling decisions.

Table 3.1 shows the final groupings for the MATH 106 model. Note that the conditional

enrollment rates for new students are given for fall 2003 while the rates for continuing stu-

dents are given for spring 2003. This is because, for the fall prediction models, new students

first enter the university in the fall and we therefore use the conditional probabilities from

that time. However, in the current semester when we predict for the following semester, the

number of current students who will continue from the spring to the fall is unknown. Thus,

the conditional probability for current students is the probability that they will return the

following semester and enroll in the specific course, given that they are currently enrolled.

3.3.2 Parameter Estimation and Verification

After determining groups whose course enrollment rates are significantly different than the

rest of the population, our second step is to estimate the parameters of the model. We

base our initial prototype model solely on data from one year by recording university and

mathematical sciences course enrollment rates for the identified groupings. When we use

the model in practice, we first estimate the number of students in each of the groups and

then predict the number of students who will enroll in the course from each of the groups

using conditional probabilities estimated from historical data. In our prototype model, we

gather both the university and course enrollment rates from each of the final groupings for

one year. Table 3.1 also gives the MATH 106 model parameters derived from 2003 data.

Note that the university and course enrollment rates are conditional on being in the group

on the left. For example 25% of the first-time students are general engineering (GE) majors

and 55% of the first-time GE majors enroll in MATH 106.

We test the accuracy of model predictions and the robustness of the model by using the

parameter values estimated from a single year to predict course enrollment for other years

whose results are known. For our example, we use the parameter estimates in Table 3.1 for

MATH 106 and test the model on data from fall 2002 and fall 2004. After grouping the

data for the previous semesters, we count the number of students in each group enrolled in

the university. For initial testing, we use the actual numbers of students in each group to

51

Semester Fall 2002 Fall 2004
Actual Enrollment 792 937
Predicted Enrollment 802 915
Error 10 -22
% Error 1% -2%

Table 3.2: Preliminary test results for MATH 106 model with parameters derived from fall
2003 data.

test the course prediction rates. Recall that in the final model we must estimate the size of

these groups since complete university enrollment information is not available at the time

course enrollments are predicted. We multiply the parameter values by the counts to get

the predicted number of students in the course for that semester. Table 3.2 compares the

predicted and observed values. Note that the error rates are well within the 5.3% error rate

criteria we set based on the error rates of exogenous variables.

We also perform goodness-of-fit tests to ensure that the groupings significant in the fall

and spring of the given year are also significant for the other years. After modification of

the variables, we find the final groupings that are significant relative to course enrollment.

3.3.3 Historical Verification

The third step of the creating course prediction models is verifying the model with historical

data. The final model uses university and course enrollment rates from several years to

determine parameter estimates. We typically use data from the previous three years. We do

not include less recent data because of possible changes in courses, retention, and university

population. Such qualitative changes undermine the applicability of data that is older than

a few years.

The probability distribution of course enrollment rates is unknown. To understand better

the amount of variation in the rates, we calculate the minimum, maximum, and average

historical rates for university and course enrollment over the range of years we have chosen.

Table 3.3 shows the rates of new students in MATH 106 for the fall semesters of 2002, 2003,

and 2004. There are noticeable differences between the rates of enrollment of GE majors,

the 106 group, and the rest of the population. Notice that the percentage of transfer students

who are GE majors and enrolled in MATH 106 changed significantly each of the three

52

Enrollment Rates Variation over Fall 2002 to Fall 2004
Fall 2002 Fall 2003 Fall 2004 Minimum Maximum Average

First-time
GE Major 56% 55% 57% 55% 57% 56%
106 Group 31% 29% 30% 29% 31% 30%
Other 7% 8% 8% 7% 8% 8%
Transfer
GE Major 8% 22% 32% 8% 32% 21%
106 Group 9% 11% 8% 8% 11% 9%
Other 1% 2% 2% 1% 2% 2%

Table 3.3: Course enrollment rates for new students in MATH 106.

years recorded, while the percentage of first-time GE majors enrolled in MATH 106 stayed

relatively constant. Grouping students and observing rates over multiple years allows us to

identify these differences.

To complete the historical verification step, we test the model using both the university

and course enrollment rates derived from the recent data. We test the model on past data as

it would have been used for predicting future enrollments. Thus we use only the information

that we would have known at the time the schedule was submitted. We estimate university

enrollment for each group in our model that we can not count or obtain at the time of

prediction. For the MATH 106 model, we count from the historical data the numbers of

first-time, transfer, and continuing students in their respective groupings, such as those who

are in MATH 106 and are GE majors. We then estimate the number of students in the final

groupings by multiplying the average university enrollment rates derived from historical

data by these counts. In the MATH 106 model we estimate the number of students who pass

the prerequisite by multiplying the number of students in the prerequisite by the average

pass rate. Finally, we predict the course enrollment from each group by multiplying the

average course enrollment rates with the group estimates. Summing the number of students

expected to take the course in each group gives us our total prediction.

The MATH 106 model predictions shown in Table 3.4 were within one section of the

actual enrollment for each year we tested, with error between 10 and 19 students. If the

error for a model is large at this point in the procedure, the model should be changed before

continuing to the prediction step. High error may be a sign that the groups in the model do

53

Semester Fall 2002 Fall 2003 Fall 2004
Actual Enrollment 792 860 937
Predicted Enrollment 808 870 918
Error 16 10 -19
% Error 2% 1% -2%

Table 3.4: Final test results for MATH 106 model.

not capture the significant groups of students who enroll in the course. High error rates may

also indicate that the course has changed over the years of data used and a shifting mix of

students is enrolling in the course.

3.3.4 Model Usage

The final step of the procedure is using the model for course enrollment prediction. In

predicting future enrollment we follow the procedure used for final testing, except that we

do not automatically use the average rate from the historical data for predictive purposes.

Instead, we observe the minimum, maximum, and average historical rates multiplied by

the current populations as well as any previous trend that is apparent in the absolute en-

rollments. We make our estimate for each group based on these factors. Table 3.5 shows

the university and course predictions for first-time GE students in MATH 106 for fall 2005.

The numbers that appear below the term date are the past enrollments and enrollment rates

of first-time GE students in the university and in MATH 106, respectively. The numbers in

the fourth through sixth columns of the university enrollment row are the past minimum,

maximum, and average rates of enrollment multiplied by the admissions estimate of 2,800

new first-time students. Because a target is set for the number of first-time GE students,

we use that estimate of 725 rather than the average of the previous years. However, the

percentage of first-time GE students who enroll in MATH 106 has been relatively constant

over the past three years. Our estimate for first-time GE MATH 106 enrollment reflects that

trend by choosing a rate similar to the historical rates.

We make estimates using the same method for each group in the course enrollment

model. The sum of these estimates yields the total prediction for the course. We can also

find the sum of the minimum, maximum, and average estimates to give perspective to the

54

First-time Students (Target of 2800 for Fall 2005)
Enrollment Rates Variation Fall 2005
Fall Fall Fall Min Max Average Estimate

2002 2003 2004
University Enrollment 660 696 734 680 744 710 725
(GE Major) 27% 25% 24% 24% 27% 25% 26%
MATH 106 Enrollment 369 381 421 397 416 406 410
(GE Major) 56% 55% 57% 55% 57% 56% 57%

Table 3.5: Model for University and MATH 106 enrollment of first-time general engineer-
ing students.

number we ultimately decide to use. To calculate the variance of our estimate, we collapse

the decision tree for our model groupings to find the probability that a student will enroll in

the course, given no information about which group the student is in. We treat whether or

not a student enrolls in the course as a Bernoulli random variable. As such, we can estimate

the variance and construct confidence intervals for our prediction.

Let X be the probability that a student in a given group enrolls in a given course. Let

Y be the number of students in the group who will enroll in the course. Y is a binomial

random variable with parameters n and X, where n is the number of students in the group

and X is the binomial proportion. Thus, Y is distributed as B(n, X). The expectation of Y is

given by

E[Y] =
∫ 1

0
E[Y |X = x]P[X = x]dx

=

∫ 1

0
nxP[X = x]dx

= n
∫ 1

0
xP[X = x]dx

= nE[X]

(3.1)

which is equivalent to the calculations performed above to estimate the number of students

expected to enroll in the course each session. From [Ross 2002] we have that

Var[Y] = E[Var(Y |X)] + Var[E(Y |X)] (3.2)

55

Prediction 926
Observed 889
Error 37
% Error 4%
80% Confidence Interval [889, 963]
95% Confidence Interval [870, 982]

Table 3.6: MATH 106 prediction and result for fall 2005.

Therefore, the variance of Y is given by

Var[Y] = E[Var(Y |X)] + Var[E(Y |X)]

= E[nX(1 − X)] + Var[nX]

= E[nX] − E[nX2] + n2Var[X]

= n(E[X] − E[X2]) + n2Var[X]

= n(E[X] − E[X2] + E[X]2 − E[X2]) + n2Var[X]

= n(E[X] − Var[X] − E[X2]) + n2Var[X]

= n(E[X](n − 1)Var[X] − E[X2])

(3.3)

The prediction we made for fall 2005 MATH 106 enrollment is given in Table 3.6

along with the 80% and 95% confidence intervals. The actual enrollment of 889 is 37

students—about four percent or one section—less than our initial prediction. The actual

enrollment is captured by both the 80% and 95% confidence intervals, and is equal to the

lower bound on the 80% confidence interval. The error is within the 5.3% error rate criteria.

We used the course prediction model on three other large, primarily freshman courses and

the error rates of our predictions for those courses were also low. In the next section we

give further results for other courses and years.

3.4 Results

Four of the largest enrollment courses in the Department of Mathematical Sciences at Clem-

son University are MATH 101, 102, 106, and 108, titled Essential Mathematics, Introduc-

tion to Mathematical Analysis, Calculus of a Single Variable I, and Calculus of a Single

56

Course Early Mid Late Final Actual
(March) (May) (July) (August)

101 584 684 677 657 653
(-11%) (5%) (4%) (1%)

102 734 734 756 804 823
(-11%) (-11%) (-8%) (-2%)

106 926 951 934 921 889
(4%) (7%) (5%) (4%)

108 380 380 394 366 369
(3%) (3%) (7%) (-1%)

Table 3.7: Fall 2005 predicted and actual enrollment and percentage error for four times
during the planning period.

Variable II, respectively. Tables 3.7 and 3.8 show the predictions made for each of these

courses for fall 2005 and 2006 using models built from the procedure just described. The

tables show predictions made at four different times during the planning period: early in

February or March, mid May or in June after early registration and spring grades have been

recorded, late in July after new student registrations have finished, and finally in August just

before courses begin. Note that in the majority of cases the predictions are more accurate

as more information becomes available. All of the predictions have percentage errors near

our 5.3% criteria except for the early prediction of MATH 101 enrollment for fall of 2006,

and to a lesser degree the early prediction of MATH 101 for fall 2005. These errors are high

for qualitative reasons—there was a change in the curriculum beginning in fall of 2005 that

continued to show itself in the continuing student enrollment behavior in the fall of 2006.

Some qualitative changes can be addressed by investigating the groups of students affected

by the change and adjusting conditional enrollment rates accordingly. For example, prior to

2005 education majors were not required to earn credit in MATH 101. If this information

had been available to us at the time of prediction, we could have allowed for this change in

our prediction. It became apparent after the early registration period and we were able to

adjust our estimates.

In summary, we have developed a procedure to build models for predicting course en-

rollment that uses student characteristics as predictors of enrollment behavior. We use the

models on an aggregate level to predict the total number of students enrolling in a course.

These models are sufficiently detailed and robust to predict courses with low enrollment

57

Course Early Mid Late Final Actual
(Feb.) (June) (July) (August)

101 676 605 552 566 548
(23%) (10%) (1%) (3%)

102 804 754 751 756 744
(8%) (1%) (1%) (2%)

106 919 896 883 870 844
(9%) (6%) (5%) (3%)

108 388 379 390 405 426
(-9%) (-11%) (-8%) (-5%)

Table 3.8: Fall 2006 predicted and actual enrollment and percentage error for four times
during the planning period.

or to predict for specific groups of students such as those attending a single summer ori-

entation. The next chapter will use the course prediction models as a starting point for

developing seat allocation and release systems for summer registration sessions.

58

Chapter 4

Seat Allocation and Release Systems

Similar to course scheduling, which requires prediction of the number of students ex-

pected to enroll in each course, allocating and releasing space in a given course to student

groups requires predicting the number of students in each group expected to enroll in the

course. This prediction is the first step in allocating seats to student groups. Reserving

space and then releasing that space to specific groups as they register are the next steps.

Seat allocation is reserving or holding back space in courses in the form of course seats and

then releasing those seats at a later time to specific student groups. Seat allocation systems

are applicable to colleges and universities that face the problems of predicting, reserving,

and releasing seats for new students or other student groups. Although this work has wide

applicability to other colleges and universities, the following discussion refers specifically

to Clemson University.

Seat allocation systems give students equal access to the most desired course sections.

Reserving seats for new students during continuing student registration ensures that contin-

uing students do not take all the seats in the limited number of desirable sections, leaving

fewer time choices for new students during summer registration. Releasing seats gradually

during the orientation sessions gives students at each orientation session equitable enroll-

ment choices. Seat allocation systems also hedge fall course predictions by partially filling

each section over time rather than filling each section in sequence. This is important be-

cause, if during the orientations we realize that one more course section will be needed, we

may open it knowing that there is room not only in the newly opened section that occurs

at one given time, but there is also capacity in the remaining sections. If there was no seat

release system, the most desirable sections would fill quickly, leaving students in remain-

ing orientation sessions with fewer choices. Opening one new section may not fulfill the

demand for the course because of time conflicts with other courses.

The problem we address first considers which courses would benefit from the use of a

seat allocation system. We find that reserving and then releasing seats is appropriate for

courses that have many sections as well as significant expected new student enrollment.

We then address the problem of how to release seats to students during summer orientation

sessions, at which time registration occurs. The release of course seats during the multiple

orientation sessions depends on the fall enrollment predictions. We present a new model

for seat allocation that addresses how to estimate seat needs each session, how to allocate

seats for multiple course sections, and how to predict seat shortages and surpluses.

The remainder of this chapter is structured as follows. We review related work on seat

allocation systems in Section 4.1. In Section 4.2 we present criteria for determining whether

or not a course could benefit from a seat allocation system. In Section 4.3 we describe the

data used in allocating seats. We discuss our allocation procedure and resulting system in

Section 4.4. Finally, we present results for this system at CU in Section 4.5.

4.1 Related Work

To our knowledge, literature on seat allocation systems is nonexistent at the time of this

writing, although the problem of reserving and releasing seats is common. The American

Association of Collegiate Registrars and Admissions Officers (AACRAO) and the Associ-

ation for Institutional Research have many publications detailing enrollment management

systems, strategic planning, and student tracking, for example see [Glover and Krotseng

1993; Ewell 1995; Sevier 2000; Black 2004; Dooris et al. 2004; Rodgers and Zimar 1993].

However, we have found nothing detailing the process of reserving and releasing seats to

groups of students. To give background for our work, we have surveyed a sample of reg-

istrars at universities in the United States. We also describe in detail the seat allocation

system currently in use at CU.

Table 4.1 shows the seat allocation survey responses we collected from eleven American

universities. We use the shorthand N/A to refer to not applicable. All of the universities

reserve course seats or course sections in at least one course for new students. Most of

the respondents said that they reserve seats or sections in basic mathematics and English

60

Reserve seats Release seats Process for releasing seats
/sections for to new
new students (in students
≥ 1 course)

Duke University Yes N/A New student registration
prior to orientation
using on line registration

Indiana University Yes Yes Release during
orientation sessions

Louisiana State Yes Unknown Unknown
University
Mississippi State Yes Yes Release during
University orientation sessions
North Carolina Yes No Students are pre-registered
State University for core classes
Ohio State Yes Yes Release during
University orientation sessions
University of Yes Yes Release during
Central Florida orientation sessions
University of Yes Yes Release during
Connecticut orientation sessions
University of Yes Unknown Unknown
Minnesota
University of Yes Yes Release during
Virginia orientation sessions
Vanderbilt University Yes No N/A

Table 4.1: Seat allocation survey answers from several American universities.

courses populated primarily by new students. Many of the universities release these seats

using some system during orientation sessions. Note that North Carolina State University

does not release seats directly to students for registration. Instead they pre-register students

for core courses, for which seats have been reserved. Duke University also uses a novel

approach for new student registration. Their new students use an on-line registration system

prior to orientation that assesses their interests and uses that assessment in conjunction with

their placement scores to guide them in registering for courses. All of the other universities

could potentially benefit from a seat allocation system that considers the demand for courses

at each orientation session.

The Office of Registration Services at CU manage the seat release program, which grad-

ually releases space during summer orientation sessions in courses that reserve seats for new

61

April June July AugustMay

Departments set
freshman and total
reserve.

Registration Services
freeze capacities giving
no access to freshman
seats. Departments may
reset reserves.

At each orientation
session Registration
Services release
seats for selected
courses.

Early Registration Orientations Fall Semester

March

Figure 4.1: Registration time line at Clemson University. This diagram shows a description
of the activities involving registration over time at Clemson University.

students. The system releases the reserved seats uniformly during the orientation sessions;

that is, it releases k
n of all the reserved seats during the kth orientation session, where there

are n sessions total. Figure 4.1 shows the time line for registration at Clemson University.

The course schedule for the following fall is built prior to early registration, which begins

in April. Building the schedule involves setting the number of seats to be reserved for new

students. Thus, during early registration, continuing students do not have access to seats

intended for freshmen. Departments have opportunities to reset these reserves until orienta-

tions start in mid-June. At this time, the Office of Registration Services uniformly releases

seats to new students during orientation sessions.

4.2 Criteria

We consider several criteria in deciding whether or not to use a seat release system. These

include the number of seats needed for new students, the number of course sections, and the

number of seats to be released on average per section per orientation session. We assume

that the seat allocation system will release seats just before each session. However, this

assumption may be relaxed if there is a need for releasing at other times.

The first consideration in developing a seat allocation system is the number of reserved

seats. If the number of reserved seats is low, then the seat need per section is also low.

This implies that the system would reserve only a few seats per section, and then release a

fraction of those each session. Thus, a minimum number of reserved seats is part of the

62

criteria in deciding whether or not to choose a seat allocation system. This minimum num-

ber may depend on the number of releases that are planned.

A second criterion is the number of sections of the course in question. If the number

of sections is low, there are limited choices for class times, even assuming that the sections

are scheduled at different times during the course week. Since one of the major reasons

for using a seat allocation system is to give students at each registration session similar

enrollment choices, few sections already hinder this goal. Thus, we assert that a minimum

number of sections are required to motivate the use of a seat allocation system.

Another consideration for using a seat allocation system is the seat need per session

per section for the course. For a seat allocation system to be worthwhile, seats must be

released each session that are representative of the entire schedule for that course. Thus, on

average, we would like to release at least one seat per section at every orientation session.

This requirement, along with the number of sections and orientation sessions, gives a lower

bound on the number of seats we must reserve in order for a release system to be applicable.

Depending on the type of orientations held, this criterion may be split to accommodate the

needs of the university. If there are fewer orientation sessions for transfer students than for

first-time students, the minimum seat need per session per section may be less for the first-

time student sessions than for the transfer sessions and yet represent a significant proportion

of students enrolling in a course. For example, if the seat need per session per section for

transfer sessions is one and the number of sections is 20, the total seat need is 40, assuming

there are two transfer orientation sessions. Assuming a capacity of 35 per section, the total

capacity is 700; thus, 40 students is fewer than six percent of the total. However, if there

are nine first-time sessions and the seat need per session per section for those sessions is 3
4

and the number of sections is 20, the total first-time seat need is 135, or about 19 percent of

the total.

At CU, after reviewing the data on lower-level mathematics courses including the num-

ber of sections, average class size, new student enrollment in each course, and number of

orientation sessions, we set the criteria levels. For background, note that the orientation

schedule includes nine summer orientation sessions from mid-June to mid-July, a month-

long break, and then two make-up sessions just prior to the start of the semester. The nine

63

Student counts Seat need per session
per section

Course sections cont first transfer (new) total first transfer (new)
(MATH) time time

101 22 179 339 69 408 587 1.93 1.05 1.69
102 29 179 498 96 594 773 2.15 1.10 1.86
106 27 98 829 48 877 975 3.84 0.59 2.95
108 11 152 185 20 205 357 2.10 0.61 1.69
117 6 37 82 32 114 151 1.71 1.78 1.73
118 3 76 1 5 6 82 0.04 0.56 0.18
119 3 63 7 4 11 74 0.29 0.44 0.33
203 9 206 17 20 37 243 0.24 0.74 0.37
206 13 345 89 36 125 470 0.86 0.92 0.87
207 12 243 44 35 79 322 0.46 0.97 0.60
208 6 182 0 9 9 191 0.00 0.50 0.14
301 8 234 28 16 44 278 0.44 0.67 0.50
302 4 105 0 5 5 110 0.00 0.42 0.11
309 9 296 6 10 16 312 0.08 0.37 0.16
311 4 121 2 0 2 123 0.06 0.00 0.05

TOTAL 179 2,674 2,754 451 3,205 5,879

Table 4.2: Breakdown of mathematics course enrollment by enrollment status per section
per orientation session, 2004.

summer orientation sessions include seven two-day sessions designed for first-time students

and two one-day sessions for transfer students. The two make-up sessions are each one day;

one is for first-time students and the other is for transfer students. In all, there are eight first-

time sessions and three transfer sessions. We considered the overall seat need per session

per section instead of breaking that number into transfer and first-time components because

of the relatively few transfer sessions in CU’s orientation schedule. We set the minimum

number of sections criterion to eight because CU has fourteen regularly scheduled class

times, and eight is more than half of that. Assuming that the sections are spread out in the

schedule, eight sections ensure course time diversity. We use one as the minimum seat need

per section per session. Thus, the minimum number of reserved seats is set to eighty-eight.

These minimums are set as guides, and can be adjusted if appropriate.

Table 4.2 shows the breakdown of course enrollment for mathematical sciences courses

in fall 2004 by enrollment status, which describes a student as continuing, transfer, or first-

time. The last column of the table is the weighted average of the first-time and transfer

seat need per respective session per section. The first four rows indicate the courses for

which CU uses a seat allocation system. Note that the four courses that use the seat release

64

system, MATH 101, 102, 106, and 108, have more than eight sections and that the seat

need per session per section is above the criteria set. Two courses that might benefit from

a seat allocation system appear to be 117 and 206. Each satisfies two of the three criteria

set. MATH 117 does not meet the minimum number of sections required, and MATH 206

does not meet the minimum seat need per session per section. Again, if appropriate, these

criteria may need to be relaxed.

4.3 Data

The seat release system we present requires three sets of data. The first is produced by the

model we created for predicting course enrollment. The model specifies the groupings that

are significant and gives conditional enrollment rates for these groups. The second set of

data needed is the current enrollments in the course by section. Note that when orientation

begins, continuing students will have already had the opportunity to register for courses

during early registration.

The third set of data we need is the number and characteristics of students attending

each orientation session. All new students are required to attend an orientation session.

Most do this during the summer, although there are two make-up orientation sessions held

just prior to the start of the semester. Since the attendance at each orientation session is

limited, students must pre-register. Although there are additions (walk-ins) and deletions

(no-shows), these numbers are typically small. Hence, the number and characteristics of

students attending an orientation is very accurate just prior to that orientation, but less so

for future sessions because the orientation registration process may not be complete. Thus,

after each orientation session we update the orientation and course enrollments to obtain

current information on the change in orientation enrollments and the number of remaining

course seats.

We group students attending each orientation session by their characteristics as we did

in the course prediction model. The numbers of students in each group are significantly

smaller than the numbers we encountered in the course prediction model since we are pre-

dicting for each of several orientation sessions.

65

We use data from students registered for every session, not just the current session.

Although we have less confidence in the estimates for more distant sessions, the counts

for the future sessions help us predict the overall number of seats we need and allow us to

confirm or alter our previous predictions.

4.4 Seat Allocation Procedure

Ideally, our predictions made in the spring would be exactly realized, and we could use those

predictions to reserve seats for new students. We could then set section capacities based on

the seat need predictions for continuing students to allow them to register in the spring

and could release seats uniformly to new students during summer orientation sessions. An

example of an ideal system is given in Table 4.3. The total prediction for the course is

200 students—40 continuing and 160 new. During spring registration, we allocate seats

uniformly for 40 students among the four sections-ten per section. Since our predictions are

correct and the students register promptly (because they are ideal), all continuing students

have taken their seats in the course by the first orientation session, and we have only to

release seats for new students. In our ideal scenario, students attend orientation sessions

uniformly and we therefore release seats in the same manner—eight per session per section.

Table 4.3 shows the capacities of the sections and reflects the cumulative release of seats.

In practice, section capacities usually are not this high and a seat release system may not be

appropriate for this example because there are only four sections.

Section Capacities
Session 1 2 3 4
Spring 10 10 10 10

1 18 18 18 18
2 26 26 26 26
3 34 34 34 34
4 42 42 42 42
5 50 50 50 50

Table 4.3: Ideal course release, initially 10 and increasing 8 per session per section, for a
course with four sections over five orientation sessions.

66

Obviously this ideal situation is not realistic. At least four sets of imbalances prevent the

system from working so smoothly: (1) we cannot allocate the exact number of seats needed

since we do not know that number; (2) the attendance at orientation sessions is uncertain

and therefore must be estimated; (3) our seat release is not uniform across sections because

enrollments are not uniform and room capacities differ; and (4) some sections are favored

by students (e.g., not eight AM). Our seat release system shows how to overcome these

imbalances to obtain accurate estimates of seat need and how to allocate seats to students.

Figure 4.2 shows the schema for our seat allocation procedure and Algorithm 4.1 outlines

the major steps of the procedure. Each step will be presented individually in the following

subsections after the terminology used in the procedure is presented.

Algorithm 4.1: Procedure for allocating course seats.

1. Initialization.
2. Seat need estimation.
3. Capacity adjustment.
4. System usage.

4.4.1 Terminology

Course reserve is the number of seats reserved for a certain group, such as all, new, or con-

tinuing students. Course capacity is the number of seats currently available and is typically

increased as orientations progress to make room for incoming students. The total capacity

may not exceed the total reserve. The total reserve must be adjusted to allow for more ca-

pacity. Seat release refers to making available seats in a given course by changing section

capacities.

4.4.2 Initialization

Preparation for summer orientation seat release begins in the spring prior to early registra-

tion. At this time, we use our course enrollment predictions for new and continuing students

to set course reserves. We reserve a portion of seats in each section for new students and the

remaining is reserved for continuing students. During early registration we set the section

67

Admissions
List

Orientation
Enrollment

Walk-in Student
Information

Query for session
enrollment by group

Update session
enrollment numbers

Make course enrollment
estimates for kth session;
hedge by using the upper

value of a confidence
interval

Present
Enrollment ;

Present Reserves;
Session Number

Calculate
proportion of

remaining
seats needed

Calculate
proportion of

sections to open

Calculate the
expected seat

release from each
section

Calculate the
adjusted seat

release from each
section

Calculate
shortage and

surplus in each
section

Set aside seats
for continuing

students

Calculate number
of remaining first-
time seats in each

section

Use rounding
rule to calculate

seat release

Enrollment Model
Predictions & Yields

Set
Continuing

Capacity

Set
Freshman
Capacity

m
er

g e

process

Start

End

Continuing
Student

Computations

First-time
Student

Computations

Set Total
Capacity

Figure 4.2: Schema of seat allocation procedure. This diagram shows the data and proce-
dures involved in releasing seats to students during summer orientation sessions at Clemson
University.

68

Orientation Session Total
Student group 1 2 3 4 5 First-time Transfer

GE Major 27 12 25 4 2 56 14
106 Group 40 16 34 18 6 92 22

Other 45 46 53 12 16 110 62
TOTAL 112 74 112 34 24 258 98

Table 4.4: Example of orientation enrollments prior to session 3 by group.

capacities to make available only enough seats to accommodate the continuing students.

That is, we release all the continuing student seats at one time since they have access to reg-

istration at the same time. We only release seats for continuing students so that the residual

capacity is held for new students who will register later in the summer.

Before orientation sessions begin, we update our course predictions using updated ad-

missions information and pass rates that have now been recorded. Recall that early registra-

tion is prior to the end of the spring semester when grades are issued. We also observe and

reset, if necessary, the section capacities based on continuing student registrations. If our

continuing student prediction was too high, we may need to lower the continuing student

reserves and the section capacities.

With the number and characteristics of students registered for each orientation session

and the course enrollment model, we group students into the groupings detailed in the

model. Table 4.4 shows an example of first-time and transfer student orientation enroll-

ment using the MATH 106 model groupings in preparation for the third orientation ses-

sion. Sessions two and five are transfer sessions. Note that we may have first-time and

transfer students attending the same session, but for simplicity we will keep them separate

in our example. Suppose there are three summer orientation sessions (shown in the first

three columns) and there are two make-up sessions (shown in the fourth and fifth columns).

Since in our example we are preparing for the seat release of the third orientation session,

the registrations for the two make-up sessions—held much later in the summer—are low in

comparison to the regular session enrollments because students have yet to register for an

orientation session.

Using our predictions for total fall enrollment, we estimate the number of students, by

group, who have not yet registered for an orientation session by calculating the difference

69

Orientation Enrollment Estimated Number of
Predictions Students Yet to Enroll

Student group First-time Transfer First-time Transfer
GE Major 73 23 17 9

106 Group 109 29 17 7
Other 145 94 35 32

TOTAL 327 146 69 48

Table 4.5: Example of orientation enrollment and expectations for future enrollments prior
to session 3 by group.

between the group prediction and the sum of orientation registrants so far in that group. For

our example, the expected number of first-time GE majors yet to register for orientation is

17, and is shown in Table 4.5. This estimate of 17 is the difference between 73—shown in

Table 4.5 as the total prediction for first-time GE majors—and 56—shown in Table 4.4 as

the total number of first-time GE majors already registered for orientation. As orientation

sessions progress, the estimates of students who have yet to register for an orientation ses-

sion will decrease. If they become negative, we have underestimated the number of students

in that particular group and must make adjustments. If they remain large, we have overes-

timated and also need to adjust. Observing these totals will help us gauge the accuracy of

our predictions and help us make adjustments as soon as the need for corrections becomes

apparent.

At CU there is an extended period of time between the last summer orientation session

and the make-up sessions. During that interim time, updates of the number of students ex-

pected for the make-up sessions can be made. In the interim period, some transfer students

may forgo the orientation process and register for courses. We need to identify these stu-

dents and exclude them from the total number that we expect to attend the late orientation

sessions. As these students are identified, we subtract them from the estimates of students

yet to register to keep an accurate count of the students that we still expect to register for

courses.

70

Estimated Seat Need for
Orientation Students Yet to Register

Session for Orientation
Student group 1 2 3 4 5 First-time Transfer

GE Major 15 3 14 2 0 10 2
106 Group 12 2 10 5 1 5 1

Other 3 1 4 1 0 3 1
Total 30 6 28 8 1 18 3

95% CI 40 13 37 14 6 24 9

Table 4.6: Example of expected seat need by group by session.

4.4.3 Seat Need Estimation

Just before each orientation session, we update course and orientation enrollment numbers

so that we have current information. Using the recorded counts of students attending each

session, we estimate the number of course seats needed for each group in the current and

future orientation sessions using the course enrollment model. We construct a confidence

interval for our estimate using the same method used in the course enrollment model pre-

diction. An example of these calculations is given in Table 4.6, where the last two columns

give the expected seat need for students who have not yet registered for an orientation ses-

sion. The last row in Table 4.6 gives the upper bound on the confidence interval. To hedge

our estimate, we may want to release slightly more seats than we expect to need.

4.4.4 Capacity Adjustment

We make seats available by adjusting section capacities using our estimates of seat need and

the current course and section enrollments. The course enrollments include both continuing

and new students, and thus adjusting section capacities is the method for releasing seats to

both groups.

Continuing students have had access to course seats since early registration, and many

of the seats intended for them will be filled prior to new student orientation. Because at CU

new students may take seats intended for continuing students if they are open, but continu-

ing students only have access to seats set aside for them, we take any empty seats intended

for continuing students back prior to the first orientation session and then gradually release

71

them over the summer. In this way, we are still giving continuing students opportunities

to register and change sections over time, but we are also protecting their seats from being

used by new students.

We use the estimates we have calculated to release seats for new students and use a

proportion—such as session number over n, where n is the total number of sessions—to

release the seats held for continuing students. Thus, at each orientation session, we reset

the total capacity in each course section to allocate seats for new and continuing students.

Unlike our ideal example given in Table 4.3, almost certainly current section enroll-

ments will not be uniform. Therefore, we increase the capacity in each section proportional

to the number of remaining seats available. Since new and continuing students have differ-

ing numbers of seats intended for them based on the course model predictions, we calculate

their releases separately and then adjust the section capacities using the two allocations. We

use the estimated new student seat need divided by the total number of remaining seats for

new students as the proportion of seats to release from the seats in each section remaining

for new students. The expected release for new students, then, is simply their estimated seat

need. Again, to hedge against a lack of available seats for new students, we may choose

to use the upper bound on an appropriate confidence interval instead of the estimated seat

need.

After each orientation, we update the course enrollment numbers. When we adjust

the section capacities for the next release, we use these current enrollment numbers, not

the capacities we previously set. That is, the allocation of seats is always based on current

enrollment and predicted needs. Hence, over or under estimation of needs in a single session

is not cumulative. All empty seats, whether there are more or fewer than we expected, are

incorporated into future allocations through the enrollments at the time of release.

4.4.5 System Usage

The seat release system we have presented has three main components: estimation, allo-

cation, and recovery. We estimate seat need for each session using the course prediction

model; we allocate seats using proportions of remaining seats; and we recover from hedg-

ing or unforeseen demand by using current enrollments instead of prior predictions.

72

Section 1 2 3 4 TOTAL
Initialize New Reserve 48 32 40 40 160

Continuing Reserve 12 8 10 10 40
Total Reserve 60 40 50 50 200

Update New Enrollment 21 11 19 14 65
each session Continuing Enrollment 8 5 7 9 29

Total Enrollment 29 16 26 23 94

Table 4.7: Example of course enrollment data needed each orientation session.

We extend the example from Tables 4.4, 4.5, and 4.6 to finish the illustration of the

seat release system. Table 4.7 shows the course data needed for initializing the seat release

system and the course data needed to be updated just before each session. The initialization

includes recording the reserves for new and continuing students-shown as new reserve and

continuing reserve, respectively in Table 4.7. The sum of these makes up the total course

reserve. Each session we update the current enrollment for new and continuing students.

This current information helps us in allocating seats for the next orientation session and

may alert us of potential problems in our course enrollment predictions.

The calculations for new and continuing student seat release are shown for our example

in Table 4.8. There, the remaining continuing seats and the remaining new seats are shown.

We calculate the remaining number of available seats by subtracting the current enrollment

from the appropriate reserve. (Calculating remaining seats may be more involved depending

on the enrollment rules at the university using the system. Holding back seats for continuing

students or other groups may complicate the calculation.) Our example is for the third

of five orientation sessions, so we release three-fifths of the remaining continuing student

seats. The proportion of remaining new student seats we release is 37—the upper bound

on the 95% confidence interval shown in Table 4.5 for session 3—divided by 95—the total

number of remaining new seats, which is shown in Table 4.8. The updated capacity is the

total current enrollment plus the continuing and new student releases. Table 4.8 shows these

sums for our example. Note that using the current enrollment after each orientation session

as the base for calculating remaining seats, instead of using the estimates on what we expect

to happen or a pre-conceived plan, allows for recovery from unforeseen demand or other

abnormalities.

73

Section 1 2 3 4 TOTAL
Total Enrollment 33 25 30 37 125

Remaining Continuing Seats 4 3 3 1 11
Continuing Release

(proportion = 3/5) 2 2 1 1 6
Remaining New Seats 27 21 21 26 95

New Release
(proportion = 37/95) 11 8 8 10 37

Updated Capacity 42 26 35 34 138

Table 4.8: Example of adjusted section capacities after new and continuing student seat
release.

A desirable side effect of our seat allocation and release system is that fewer seats are

released from sections with more than average enrollment. This is because we release a

fixed proportion of seats from the remaining seats in each section. Sections with more than

average enrollment have fewer than average remaining seats, resulting in fewer seats being

released. This is especially helpful in keeping uniform the distribution of students enrolled

in each section because students tend toward the desirably timed sections.

4.5 Results

We used the seat allocation system presented in this chapter at CU during the summer of

2006. The system released seats for four of the largest enrollment mathematical sciences

courses with success in making accurate estimates of seat need and releasing equitable

distributions of course seats each orientation session. The first measure of this success is

shown in Table 4.9. There, the estimated new student enrollment is recorded for each of the

four courses at four times in 2006 along with the actual enrollment at the start of the fall

semester. With the aid of the course prediction model, we made the first two estimates. The

seat allocation system helped in adjusting these estimates during the orientation sessions,

and in most cases improved the estimates. The error rates are, for the most part, near our

5.3% criteria. The error rates for MATH 108 are higher than the others in part due to

relatively low enrollment compared to the other courses.

A second measure of success for our seat allocation system is the actual release in

comparison to the uniform release that had been taking place. Note that the uniform release

74

Course Early Mid Late Final Actual
(Feb.) (June) (July) (August) Actual

101 460 449 448 446 425
-(8%) -(6%) -(5%) -(5%)

102 580 559 559 561 560
-(4%) (0%) (0%) (0%)

106 809 791 786 787 732
-(11%) -(8%) -(7%) -(8%)

108 219 219 211 239 258
(15%) (15%) (18%) (7%)

Table 4.9: Estimated new student enrollment in four mathematical sciences courses at four
times in 2006.

allots approximately the same number of seats to release each session. The number may not

be exactly the same because the number of orientation sessions may not divide the number

of reserved seats. In practice, the effective release will vary because the number of seats that

were left over (or taken beyond capacity) from the previous session will still be available (or

already taken). The last column of Table 4.10 shows examples of where the effective release

is greater than or less than the uniform release. Our seat allocation system does not suffer

from differing effective and actual releases because it releases seats based on the number

of students currently enrolled on the day of the release; it does not depend on previous

estimates to make the current release. Table 4.10 shows the actual MATH 102 enrollment

each session along with the number of seats released by our model. The enrollment during

a session can be negative if more students drop the course than add it. In the fourth column

we have included the number of seats that would be released had we used a smaller version

of our model that lacks some of the detail in the course prediction. The stripped model

does not include the breakdown of students into major groups. It simply uses whether a

student is classified as transfer or first-time to make predictions. The fifth column of Table

4.10 shows the number of seats that would have been released if the seats had been released

uniformly. The numbers given in parentheses are the differences between the release and

the actual enrollment. The uniform release performs poorly because it uses the estimate for

new students from June to release seats throughout the orientation sessions. There is no

update during the summer as estimates change. Note that the stripped model does almost

as well as the full model. One more point is that the number of seats we released is greater

75

session actual model stripped model uniform effective uniform
enroll. release release release release

1 34 47 46 54 54
(13) (12) (20)

2 61 80 81 54 74
(19) (20) (13)

3 63 86 84 54 67
(23) (21) (4)

4 58 89 91 54 58
(31) (33) (0)

5 69 108 106 53 53
(39) (37) (-16)

6 39 94 90 54 38
(55) (51) (-1)

7 42 110 107 54 53
(68) (65) (11)

8 65 107 114 54 65
(42) (49) (0)

9 80 95 109 54 54
(15) (29) (-26)

Interim 32 20 20 0 -26
(-12) (-12) (-58)

10 -9 49 49 53 -5
(58) (58) (4)

11 17 58 58 54 58
(41) (41) (41)

Table 4.10: Enrollment, seat release, and possible seat releases by session for MATH 102
during 2006.

than the number of students we expected. To hedge against too few seats available at a

session, we released the upper bound on a 95% confidence interval of our estimate at each

session. We used a 95% confidence interval in the simulation of our stripped model as well.

Figure 4.3 shows the results for the MATH 102 seat allocation for both the full and

the stripped model. The lines with markers show the actual student enrollment, the actual

release using the full model, and the simulated release using the stripped model respectively.

The lines without markers show the expected enrollment in the remaining sessions based

on future orientation enrollments at each session. Note that these increase and tend toward

the actual enrollment as the sessions continue. Recall that this is because students register

for sessions up until that session. Therefore, we have more confidence in our estimates

76

Expected start

Actual start

Expected end

Reserve

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 I 10 11

Session

S
tu

de
nt

s

Actual Seats (full model) Seats (stripped model)

Figure 4.3: Results for MATH 102 seat allocation using 95% confidence interval. This
graph shows the increasing expectation of student enrollment in MATH 102 as students
register for orientation sessions. Note that the actual number of students at the end of the
orientation sessions is slightly less than the expected ending point.

of session registration the closer we are to that session; the more confidence in session

registration implies more confidence in course enrollment estimates. The line indicating

the reserve in Figure 4.3 is the number of seats allotted for the course by the department.

The “Expected End” is the number of seats we expect to need. The “Expected Start” is the

number of continuing students we expected to have already enrolled by the time orientation

sessions began. The “Actual Start” is the number of continuing students who had enrolled

at the time of the first orientation. The graph indicates that our course prediction model and

our seat allocation system yield accurate predictions when used together.

77

In summary, the results presented for MATH 102 are representative of the results for

all four courses for which we used the seat allocation system. The seat allocation system

we presented is a realistic approach to managing course seats during multiple registration

sessions. The system of estimation, allocation, and recovery allows for imbalances in orien-

tation attendance and course registration, which inevitably occur. The results indicate that

the model yields accurate results in practice.

78

Chapter 5

Final Examination Timetabling

Timetabling final examinations at most universities is an arduous task if new schedules

are considered and analyzed each semester. Finding a conflict-free schedule is impossible

for many universities because of the limited time in which the final exam timetable must fit.

Furthermore, the gap between the theory and practice of examination timetabling is large

due to the practices of rolling over old exam schedules or using ad hoc techniques. In this

chapter we develop reusable examination timetabling methods that are straightforward and

robust.

Full timetabling problem formulations are specific to the institution for which they are

used. Depending on the institution, the problem formulation may include many other con-

straints. The literature considers hard and soft constraints. Hard constraints are those

which cannot be violated; soft constraints lead to desirable features in a timetable, but may

be violated in order to produce a feasible solution [Burke and Petrovic 2002]. An example

of a hard constraint is a maximum number of students sitting for an exam in any one period

due to room capacity constraints. An example of a soft constraint is no student having more

than one exam per day.

We develop straightforward algorithms for examination timetabling that use course

times, rather than individual courses, as the assignment elements for building exam sched-

ules. Course times are sets of course meeting times. For example, a set might be all courses

that meet at 8:00 MWF or 8:00 MW. Using course times rather than the set of all courses to

build the final exam schedule allows us to use the built-in structure of the course timetable,

which is the schedule of courses for the university for a given term. That is, we can take

advantage of the fact that one person cannot sit for two courses at the same time. Further-

more, most universities have many more individual courses than course times. By using

course times as the unit of measurement, we reduce the exam timetabling problem size.

We demonstrate our algorithms by creating several alternative timetables for final exam-

inations at Clemson University. Unlike some universities that recreate the exam timetable

each semester based on that semester’s course enrollment, CU uses an exam schedule

that remains constant for several semesters—requiring update only every few years. Us-

ing course times as the unit of measurement facilitates this goal since the demand for

course times remains relatively constant despite changes in course schedules that occur

from semester to semester. Furthermore, using course times as the assignment elements

allows us to take advantage of the inherent structure of the course timetable including the

assignment of rooms and non-overlap of students in courses scheduled at the same time.

Using course times instead of individual courses may also yield fewer constraints in formu-

lations since these constraints may have already been resolved through the constraints on

students schedules imposed by the course timetable. This approach is appropriate for other

schools and universities with the same goal of reusing exam schedules and is especially ap-

propriate where exam timetables are developed university wide, but course timetables are

not. Also, this approach can be modified easily for updating timetables each semester if

that is desired.

The criteria we use to develop the exam timetables and measure their quality include the

number of conflicts generated, the frequency of consecutive exams, and the number of mul-

tiple exams in a single day. We also analyze the placement of common exams during exam

week and the number of students sitting for exams in each exam period. We consider the

exam timetabling problem in two distinct ways. We first formulate the exam timetabling

problem using a multi-criteria approach where we measure conflicts, consecutive exams,

and constraints in one formulation. In the approach we develop, we split the problem and

develop algorithms to build timetables in two phases. In the first phase, we group course

times into the desired number of exam periods with the objective of minimizing conflicts

when course times are grouped together. We present two distinct algorithms for this pur-

pose. In the second phase, we sequence the groups in order to minimize the number of

consecutive exams. We present two distinct formulations for this phase as well.

The remainder of this chapter is structured as follows. We first introduce the mathemat-

ical background for the exam timetabling problem in the next section. We review the litera-

80

ture on examination timetabling in Section 5.2. In Section 5.3 we describe the data used in

studying exam timetabling at CU. We discuss our timetabling algorithms and formulations

in a general setting in Section 5.4. We present results for alternative exam timetables at CU

in Section 5.5.

5.1 Mathematical Background

The basic examination timetabling problem is defined here as the mapping of courses to

exam periods in order to minimize conflicts produced by courses with common students

being mapped to the same exam period. A simplification of this basic problem, finding a

conflict-free timetable with no restriction on the number of exam periods, can be formulated

as a graph coloring problem by letting each vertex in a graph represent a course and requir-

ing that courses with common students have an edge between their vertices. The graph

coloring problem is finding the minimum number of colors required such that all vertices

are colored, and no two vertices connected by an edge have the same color. This number

is known as the chromatic number of the graph. The graph coloring formulation produces

a conflict-free timetable with the number of exam periods equal to the chromatic number

of the graph. Finding a minimum coloring of a graph is an NP-hard problem [Karp 1974],

which makes even the most basic exam timetabling problems difficult to solve.

When the length of the examination timetable is fixed, we can represent the examination

timetabling problem as a quadratic program (QP) with binary variables as follows:

min x′Qx

s.t.
∑

j∈J x̂i j = 1, i ∈ I

x̂i j binary ∀i ∈ I, ∀ j ∈ J.

(5.1)

In (5.1) we assume we have c courses, I = {1, . . . , c}, and we want to schedule e < c

exam periods, J = {1, . . . , e}. The vector x is a c · e by one vector where xm = x̂i j with

m = (i − 1)e + j, m ∈ {1, . . . , c · e}, and x̂i j = {1 if course i is assigned to exam period

j; 0 otherwise }, i ∈ I, j ∈ J. The coefficient matrix Q is given by Qmn = Q̂(i j)(kl) where

81

m = (i − 1)e + j, n = (k − 1)e + l, and m, n ∈ {1, . . . , c · e}. We define Q̂ =
[
Q̂(i j)(kl)

]
by

Q̂(i j)(kl) =


f (dik) if j = l and (i j) ≺ (kl)

0 otherwise
(5.2)

where i, k ∈ I, j, l ∈ J, the distance matrix D = [dik] where dik = the number of students

enrolled in both courses i and k, f is a penalty function for conflicts, and (i j) ≺ (kl) is

defined as (i − 1)e + j < (k − 1)e + l. Note that the number of binary variables in this

formulation is equal to c · e, and Q is upper triangular.

The objective function in (5.1) is the number of conflicts associated with a given map-

ping. The constraints in the formulation ensure that all courses are mapped to exactly one

exam time. Because Q is not necessarily positive definite or positive semi-definite, the ob-

jective function is not necessarily convex. The indefinite nature of Q makes solving (5.1)

increasingly difficult as the sets I and J get large.

The exam timetabling problem may also be represented as a multi-criteria program. We

give the definition of a multi-criteria program here, and present the specific formulation for

an exam timetabling problem in Section 5.4.1. In general a multi-criteria problem may be

formulated as follows:

min F(x) = [f1(x), f2(x), . . . , fn(x)]

s.t. x ∈ X

where F : <m →<n

X ⊂ <m.

(5.3)

A worsening of one criteria, i.e. f1, may result in a better value of another criteria, i.e. f2.

A solution x̂ is said to be a Pareto efficient solution of (5.3) if there does not exist another

x ∈ X such that fi(x) ≤ fi(x̂), i ∈ {1, . . . , n} with strict inequality for at least one i. The set of

Pareto efficient solutions is called the Pareto set, and from this set the decision maker may

choose a solution.

The formulations presented in this section will aid in understanding the diverse ap-

proaches to the problem, which we discuss as we review the literature in the next section.

82

5.2 Related Work

The literature on exam timetabling includes several comprehensive surveys of the topic.

Carter et al. [1996] present a survey of final examination timetabling studies that discusses

various strategies for solving graph coloring problems—the basic formulation of exam

timetabling problems. They test these strategies on real examination timetabling problems

from several universities accounting for conflicts generated. They refer to conflicts as costs.

They do not account for side constraints that are university specific. Carter et al. [1996] also

test the strategies on the related graph-coloring problems (without costs) derived from the

real timetabling problems and on randomly-generated cases. Carter et al. [1996] note that

one major difference in graph-coloring heuristics is the method used for deciding which

vertex to color next. Table 5.1 describes five sorting criteria used in list sorting methods of

graph-coloring problems that are presented and compared in [Carter et al. 1996].

Carter et al. [1996] also discuss other strategies to be used in conjunction with the list

processing methods presented in Table 5.1 to solve the exam timetabling problem using the

graph coloring formulation. The first strategy is to run the graph coloring algorithm with

proximity costs as proposed by [Laporte and Desroches 1984]. This is no longer a graph

coloring problem, but an examination timetabling problem. The second strategy is to find

large cliques in the examination timetabling data and schedule the elements in the cliques

prior to running the graph coloring algorithm. A clique is a set of pairwise adjacent vertices.

This strategy is used to schedule exams with the most course time conflicts first [Carter et al.

1996]. The third strategy is to use backtracking while running the graph coloring algorithm.

Sorting criteria Description Properties
Largest Largest number of This and (SD) yields minimum conflict
degree (LD) conflicting exams timetables for most cases in [Carter et al. 1996]
Saturation Largest number of Yields minimum number of periods
degree (SD) conflicting periods for most cases in [Carter et al. 1996]
Largest weighted Largest number of Non remarkable for most cases
degree (LWD) common students in [Carter et al. 1996]
Largest Largest enrollment Second to (LD) and (SD) in terms
enrollment (LE) of minimum conflict timetables.
Random Randomly chosen Primarily used for test cases. Yields worst
ordering (RO) results for all performance measures.

Table 5.1: Sorting criteria used in graph-coloring algorithms tested in [Carter et al. 1996].

83

Backtracking is described by Carter et al. [1996] as undoing some assignments in order to

schedule an examination that is in conflict with every examination so far scheduled. Thus,

Carter et al. [1996] tested forty different strategies: five sorting criteria, with or without

cliques, using proximity costs or not, and using backtracking or not. They found that us-

ing cliques is beneficial on real problems but not on randomly generated ones, that using

backtracking yields shorter exam schedules, and that using proximity costs yields longer

exam schedules. They propose that the clique strategy is not useful on randomly gener-

ated problems because of the uniform spacing of the elements, which is not typically the

case in real problems. The authors believe that backtracking yields shorter exam schedules

because backtracking corrects “mistakes” previously made during the coloring algorithm

[Carter et al. 1996]. Finally, they contend that using proximity costs yields longer exam

schedules because the algorithms try to evenly distribute the exams instead of clustering

them together [Carter et al. 1996]. This article updates a previously published examination

timetabling survey [Carter 1986].

The saturation degree criteria shown in Table 5.1 was first proposed by Brelaz [1979],

where he defines the “saturation degree of a vertex as the number of different colors to

which it is adjacent (colored vertices).” A number of other researchers have presented

graph-theoretic approaches as methods for solving final examination timetabling problems

including [Mehta 1981; de Werra 1985; Burke et al. 1994]. In particular [Mehta 1981] uses

graph-theoretic methods as a starting solution and then uses a compression algorithm to

fit the timetable into a specified number of exam periods. We use a similar compression

method for our hierarchical clustering algorithm.

Schaerf [1999] presents a survey of timetabling problems that includes school timetabling,

course timetabling, and examination timetabling. He notes the similarity in solution tech-

niques of the three problems. Schaerf [1999] defines direct heuristics as those which are

meant to solve problems by simulating the methods used by humans to solve the problems.

Schaerf describes successive augmentation as extending a timetable course by course until

all courses are assigned an exam period and classifies this technique as a direct heuristic

[Schaerf 1999]. He also classifies integer programming techniques, network flow tech-

niques, and graph coloring techniques in this category. Schaerf classifies simulated an-

84

Approach Description Examples
Sequential Order and schedule events Graph coloring
methods sequentially minimizing conflicts. techniques.
Cluster Events are grouped to satisfy hard None given.
methods constraints, then sequenced to

satisfy soft constraints.
Constraint-based Find a feasible solution None given.
approaches using deductive reasoning to

decrease the search space.
Meta- Start with initial solution, Simulated annealing, tabu
heuristics search feasible region with search, genetic algorithms,

efforts to avoid local minima. hybrid approaches.

Table 5.2: Overview of approaches for examination timetabling in the literature as pre-
sented in [Burke and Petrovic 2002].

nealing, tabu search, genetic algorithms, and constraint satisfaction as artificial intelligence

techniques used to solve timetabling problems [Schaerf 1999]. Simulated annealing is a

search technique in which the randomness of the search is reduced, or annealed, in a con-

trolled fashion as the search continues. Tabu search techniques attempt to avoid previously

searched regions of the feasible region in order to find better search paths. Genetic al-

gorithms consider populations of solutions that evolve according to certain mutation and

crossover rules. Schaerf [1999] gives examples of studies using techniques from both cate-

gories, but cannot compare solution qualities as the test cases are not commensurate.

Burke and Petrovic [2002] present the work of the Automated Scheduling, Optimisa-

tion and Planning Research Group (ASAP) at the University of Nottingham, which focuses

on course and final examination timetabling. They first present a brief overview of past

timetabling methods and then present their novel approaches to the problem. Table 5.2

outlines the past timetabling methods and includes sequential methods, cluster methods,

constraint-based approaches and meta-heuristics. Sequential methods attempt to schedule

the courses to exam periods in sequence. Cluster methods attempt to solve the problem in

phases, focusing on the hard constraints first. Constraint-based approaches search for feasi-

ble solutions by satisfying constraints and thus reducing the search space. Meta-heuristics

begin with an initial solution and search the feasible region using methods to avoid local

minima. Table 5.3 outlines new methods presented by Burke and Petrovic [2002]. These

methods include hybrid heuristic methods, which combine multiple heuristics for solving

85

Approach Description
Hybrid heuristic Combination of graph-theoretic approaches and selection
methods techniques such as tournament selection and bias selection.
Genetic and Genetic algorithms are global optimization algorithms that work
memetic algorithms on a population of solutions and employ methods similar to those

found in evolutionary biology to search the feasible region. Memetic
algorithms work with genetic algorithms on neighborhood search.

Multi-criteria Account for hard and soft constraints at once in the evaluation
approaches of the solution. Specifically, compromise programming

is used to find solutions closest to the ideal point.
Case-based Solving new problems based on similar previously solved
reasoning problems.

Table 5.3: Heuristic and meta-heuristic approaches for examination timetabling as pre-
sented in [Burke and Petrovic 2002].

the timetabling problem. Genetic algorithms attempt to find global optimal solutions by

considering populations of solutions; memetic algorithms assist genetic algorithms in local

neighborhood searches. Multi-criteria approaches to the exam timetabling problem con-

sider multiple objectives at once—for example, minimizing conflicts, consecutive exams,

and multiple exams per day. Case-based reasoning approaches attempt to use previously

solved exam or graph-coloring problems that are similar to the present problem to build a

new timetable. Burke and Petrovic [2002] do not compare the quality of the solutions found

by the methods presented.

Other studies on multi-criteria approaches to timetabling problems include [Silva et al.

2004; T’kindt and Billaut 2002]. Silva et al. [2004] present meta-heuristic multi-criteria

methods for machine, personnel, and educational scheduling problems and includes an

overview of multi-criteria modeling and decision making. Finding the Pareto set is the goal

of many multi-criteria approaches, although some approaches rank the importance of crite-

ria prior to the search and look for one solution that takes this ranking into account [Silva

et al. 2004]. Silva et al. [2004] characterize multi-phase approaches, compromise program-

ming, and multi-criteria evolutionary algorithms as multi-criteria approaches. Multi-phase

approaches attempt to optimize one or more criteria in each phase, reducing the feasible

region at each phase. The authors define compromise programming as a method to “find

compromise solutions that are close to the ideal point,” which is the vector with the best

value for each criteria [Silva et al. 2004]. Multi-criteria evolutionary algorithms measure

86

Approach Description Properties
Mathematical Usually binary linear programs. High computational
programming demands.
Graph Vertices are events, edges are conflicts. Heuristics are easy
coloring Many methods for list sorting. to implement.
Cluster Two phase approach: first satisfy hard May yield poor
methods constraints, then soft. solutions.
Constraint- Assign values until an infeasible solution is None given.
based reached; backtrack and reassign; continue search.
Meta- Starting with initial solution(s), search for Significant parameter
heuristics optimal solution while avoiding local optima. tuning, high

computational cost.
Multi- Criteria measure the violation of constraints. Can Allows for explicit
criteria solve problem in stages or simultaneously. ranking of criteria.
Case-based Use previous solutions to similar problems and Measuring similarity of
reasoning backtracking to make up for new constraints. problems is difficult.

Table 5.4: Approaches used in examination timetabling as presented in [Petrovic and Burke
2004].

multiple criteria in the evaluation of the population. The authors give examples and dis-

cussions of each approach. The studies they cite are not commensurate and therefore no

comparison between the three methods are given. We present a multi-criteria formulation

for the examination timetabling problem in Section 5.4.1, and multi-phase models in the

rest of Section 5.4.

The review by Petrovic and Burke [2004] updates the surveys by Carter et al. [1996] and

Burke and Petrovic [2002] and is the most recent survey to date. Again, Petrovic and Burke

[2004] focus on both course and examination timetabling in their study. Table 5.4 presents

the timetabling approaches discussed in [Petrovic and Burke 2004], which include math-

ematical programming, graph coloring, cluster methods, constraint-based programming,

meta heuristics, multi-criteria algorithms, and case-based reasoning. The authors specifi-

cally focus on and write in detail about multi-criteria approaches and case-based reasoning

approaches to timetabling, which they claim are the state-of-the-art timetabling algorithms

[Petrovic and Burke 2004]. Petrovic and Burke [2004] do not compare the quality of solu-

tions from any of the methods presented.

Our study focuses on clustering and sequencing methods applied to final examination

timetabling. White and Chan [1979] use a two-phase approach to timetabling similar to

the one we propose. Their first phase clusters courses and the second phase sequences the

87

clusters to obtain an exam timetable. Our approaches differ in that we use course times in-

stead of courses in our timetabling algorithm and their clustering algorithm uses both hard

and soft constraints to develop their clustering [White and Chan 1979]. Lofti and Cerveny

[1991] also use a multi-phase approach to solving exam timetabling problems. Their first

phase clusters courses using a quadratic assignment problem (QAP) formulation without

column constraints [Lofti and Cerveny 1991]. The next three phases seek to minimize var-

ious criteria that we minimize in our sequencing phase. The clustering references we pre-

dominantly use are [Kaufman and Rousseeuw 1990] and [Hartigan 1975]. The algorithms

we use or extend from these references are explained in Subsection 5.4.2.

Several researchers [Mehta 1981; Fisher and Shier 1983; Carter 1986] have suggested

using a traveling salesman problem (TSP) formulation to minimize consecutive exams after

a clustering has been established. Given n clusters to be sequenced into n exam periods with

σi students in cluster i ∈ {1, . . . , n}, Fisher and Shier [1983] order the clusters by increasing

number of students: 0 ≤ σ1 ≤ σ2 ≤ . . . ≤ σn. Their initial solution to the exam scheduling

problem is to sequence the clusters in the following manner:

σnσ1σn−2σ3 . . . σ4σn−3σ2σn−1. (5.4)

They then attempt to improve the solution by swapping pairs of clusters. Their use of this

technique on several contrived problems resulted in solutions that were on average 1.4%

away from the optimal solution. We use the heuristics proposed by [Fisher and Shier 1983]

to perform local searches after using our heuristics for clustering and sequencing. We also

consider using (5.4) as a starting point for swapping clusters.

Balakrishman et al. [1992] use a modified TSP formulation to minimize consecutive

exams excluding evening to morning occurrences. The authors formulate the problem as a

network flow problem and solve a Lagrangrian relaxation [Balakrishman et al. 1992]. The

primary sequencing references we use are [Wolsey 1998] and [Levchenkov et al. 2006]. The

TSP formulation we extend from [Wolsey 1998] is given in Subsection 5.4.3. We finish this

section with a description of the sequencing algorithm by [Levchenkov et al. 2006].

88

Levchenkov et al. [2006] formulated a two-phase binary linear program for sequencing

exams at Cornell University. Cornell maps course times to exam times, in the same manner

we propose. Their timetabling problem is smaller than those thus far described in that they

have fewer course times than exam periods. Thus, they do not use any clustering methods

to reduce the number of course times to the number of exam periods. Furthermore, they

are able to schedule common exams and course times within the exam schedule with no

overlap. Thus, their problem is to sequence the exams in a pleasing manner. To do this,

the authors attempt to minimize the number of three exams in a day, two exams in a day,

two consecutive exams in a day, three consecutive exams, and two consecutive exams. The

formulation presented by [Levchenkov et al. 2006] is specific to a 21-period, 7-day exam

schedule and includes constraints concerning the specific needs of the authors’ university.

The formulation, less the constraints specific to Cornell’s needs, is given in Formulation 5.1

and Formulation 5.2.

The solution procedure employs a two-stage approach. The first stage attempts to min-

imize the number of three exams in a day, two exams in a day, and consecutive exams in

a day by identifying triples of course times and/or common exams to be grouped together

each day. Common exams are used for certain courses with sections across multiple course

times that give students in all sections the final at a single, common time. A triple in this

context is a set of three course times. The result of the first stage of the algorithm is seven

unordered triples, with the center elements fixed. Minimizing the frequency of consecutive

exams in a day fixes the inner element by eliminating the pair in the triple with the maxi-

mum common students. Figure 5.1, taken directly from [Levchenkov et al. 2006], gives an

example of a triple with the number of common students between each pair labeled. Fixing

the middle element reduces the number of two consecutive exams in a day from 100 to 90.

This intuitive approach for minimizing the number of two consecutive exams in a day, RD2,

is seen in the formulation in Formulation 5.1.

The second stage of the algorithm attempts to minimize the number of two consecutive

exams (including overnight) and three consecutive exams (including overnight) by sequenc-

ing, and ordering forward or backward, the seven triples into the seven days of the exam

schedule. The number of variables in the first stage is C21
3 = 1, 330. CPLEX, software by

89

Formulation 5.1: Sequencing formulation by Levchenkov et al.: Stage 1

Goal: Minimize the weighted sum of 3 exams in a day, 2 exams in a day, and 2 consecutive
exams in a day, by identifying the triples to be grouped together each day.
Preprocessing: Fix the inner cluster in each possible triple (by minimizing 2 exams in a
row in a day).
Number of variables: C21

3 = 1, 330

Notation, variable definitions
E = {1, 2, ..., 21} is the set of clusters.
T (2)

i j =number of students who have exams for courses in clusters i and j ∈ E.

T (3)
i jk=number of students who have exams for courses in clusters i, j, and k ∈ E.

xi jk ∈ {0, 1} determines whether clusters within the triple (i, j, k) ∈ T ={
(i, j, k) ∈ E3 : i < j < k

}
are scheduled on the same day.

Performance measures:
• 3 in a day D3 =

∑
(i, j,k)∈T xi jk

(
T (3)

i jk

)
• 2 in a day D2 =

∑
(i, j,k)∈T xi jk

(
T (2)

i j + T (2)
ik + T (2)

jk

)
• 2 consecutive in a day RD2 =

∑
(i, j,k)∈T xi jk

(
T (2)

i j + T (2)
ik + T (2)

jk −max
{
T (2)

i j ,T
(2)
ik ,T

(2)
jk

})
⇒ the middle cluster is fixed

Problem Formulation:
min
∑

(i, j,k)∈T {w1D3 + w2D2 + w3RD2}
s.t.
∑

m∈(i, j,k)∈T xi jk = 1 ∀m ∈ E
where w1, w2, w3 are weights determined by the decision maker.

Let S 1 = the solution set.

1

2

3

1

3

2

60

40

50 60

50

40

Figure 5.1: Fixing the middle element of a triple. This diagram shows that to fix the middle
element of a triple, we separate the pair of elements with the maximum number of common
students.

90

Formulation 5.2: Sequencing formulation by Levchenkov et al.: Stage 2

Goal: Minimize the weighted sum of 2 consecutive exams (including overnight) and 3
consecutive exams (including overnight) by sequencing and ordering the seven triples
given in S1.
Number of variables: 7! · 27 = 645, 120

Notation, variable definitions
yi ∈ {0, 1}, 1 ≤ i ≤ 645, 120, represents a permutation of S1, with each triple ordered
forward or backward.
Y =
{
y1, · · · , y645,120

}
is the set of permutations of S1, with each triple ordered forward or

backward.

Performance measures:
• 2 consecutive R2i for permutation i
• 3 consecutive R3i for permutation i

Problem Formulation:
min
∑645,120

i=1 (v1R2i + v2R3i)yi

s.t. yi ∈ Y
where v1 and v2 are weights determined by the decision maker.

Let y∗ be the optimal solution.

ILOG for solving linear, mixed integer, quadratic and mixed integer quadratic programs,

can process 1, 330 variables in a binary program easily [CPLEX 2006]. The second stage

is solved by complete enumeration of the permutations and orderings of the seven triples.

That is, each day must have one of the triples, no repeats, which yields 7! possibilities.

Because each triple can be ordered forward or backward, the result is 7! · 27 = 645, 120

possible permutations. That number, also shown as the number of variables in the second

stage of the algorithm in Formulation 5.2, is misleading because the constraints have been

taken away from the formulation, allowing more permutations to be feasible than would be

in practice. Levchenkov et al. [2006] report that for their specific problem, the number of

permutations was fewer than 100,000.

5.3 Data

The first step of this study involved gathering data on all enrolled students and all courses

taught at Clemson University during the fall and spring semesters of 2003-2006. We pre-

91

processed this data using Microsoft Access and its SQL capabilities. We narrowed our

study to courses and students with final exams held during finals week. This excluded labs

and courses without final exams. Administrative policy at CU is to schedule variations of

standard class times at the same exam time. For example a class that meets at eight o’clock

Monday, Wednesday, Friday (8:00MWF) during the semester will be mapped to the same

exam time as a class that meets at eight o’clock Monday, Wednesday (8:00MW). Hence-

forth we will use 8:00MWF to refer to all courses whose first meeting time of the week is

8:00 Monday, Wednesday, or Friday and refer to this as a pre-grouped course time. This

mapping policy may cause exam conflicts to be built into the examination timetable. If

students are enrolled in a course that meets 8:00 Monday and a different course that meets

at 8:00 Wednesday, then those students will have a conflict in their exam schedule because

both of those course meeting times will be mapped to the same exam period. For fall 2004,

spring 2005, fall 2005, and spring 2006 there were 178, 167, 328, and 460 built-in con-

flicts, respectively. However, as many as 72% of these conflicts are associated with one

department, which schedules their own finals.

Current policy at CU is that classes not scheduled to begin at a standard class time do

not receive an exam assignment. In keeping with this policy, we narrowed our study to

only those courses beginning at standard class times, which make up more than 96% of the

courses during finals week. Finally, some classes at CU are mapped to exam times not by

the time at which they meet during the semester, but by the course title. These exams are

common exams. Currently, there are six departments giving common exams: Accounting,

Chemistry, Communications, Experimental Statistics, Mathematical Sciences, and Physics.

Because the common exams given by the Mathematical Sciences department are taken by

nearly twice the number of students of any other exam, we split it into two exams consisting

of non-engineering courses, refered to as MTHSC1, and engineering courses, refered to as

MTHSC2. In our results, we abbreviate the names of the common exams to ACCT, CH,

COMM, EX ST, MTHSC1, MTHSC2, and PHYS. Thus, the scope of our study consists

of courses at CU offered during the spring and fall semesters of 2003-2006 with finals and

standard starting class times or common exams. As many universities use standard class

times and also give common exams, the input data is appropriately general. To appreciate

92

the size of this problem, note that in fall 2005, there were 61,974 exams scheduled for

17,284 students at CU, and there were 98 individual course times or common exams and 32

pre-grouped course times and common exams.

This data gives the reader a sense of the scope of the examination timetabling problem.

We will present algorithms to solve the problem in general in the next section. The spe-

cific results for the alternative timetables created using our algorithms for CU are given in

Section 5.5.

5.4 Timetabling Algorithms

The approaches to the examination timetabling problem we present in this section are a

multi-criteria quadratic program using binary variables and heuristics that break the prob-

lem into several steps where individual criteria are considered at each step. We discuss the

formulation of the multi-criteria approach in Subsection 5.4.1. Our timetabling algorithms

using the second approach have two phases that include clustering and sequencing. We use

two distinct clustering methods in the first phase. These methods and the exact formulation

for the clustering are discussed in Subsection 5.4.2. In Subsection 5.4.3 we discuss the

sequencing phase of the algorithm and present two formulations for sequencing. The im-

plementation of the algorithms and several approaches to finding representative timetables

are discussed in Subsection 5.4.4.

5.4.1 Multi-criteria Formulation

To solve the exam timetabling problem in one step, we define a multi-criteria program

that encapsulates the criteria and constraints of the problem. Suppose we are interested in

minimizing the number of conflicts and the number of two consecutive exams. We may

add additional constraints after the initial formulation. We define a multi-criteria quadratic

program with binary variables to represent the exam timetabling problem as follows. First

recall the notation from Section 5.1 and equations (5.1) and (5.2) in particular. Suppose we

have c courses, I = {1, . . . , c}, and we want to schedule e < c exam periods, J = {1, . . . , e}.

The vector x is a (c · e)-by-1 vector where xm = x̂i j with m = (i − 1)e + j, m ∈ {1, . . . , c · e},

93

and x̂i j = {1 if course time i is assigned to exam period j; 0 otherwise }, i ∈ I, j ∈ J.

The coefficient matrices Q1 and Q2 are given by Q1
mn = Q̂1

(i j)(kl) and Q2
mn = Q̂2

(i j)(kl),

respectively, where m = (i − 1)e + j, n = (k − 1)e + l, and m, n ∈ {1, . . . , c · e}. We define

Q̂1 =

[
Q̂1

(i j)(kl)

]
by

Q̂1
(i j)(kl) =


f1(dik) if j = l and (i j) ≺ (kl)

0 otherwise
(5.5)

and Q̂2 =

[
Q̂2

(i j)(kl)

]
by

Q̂2
(i j)(kl) =


f2(dik) if | j − l| = 1 and (i j) ≺ (kl)

0 otherwise
(5.6)

where i, k ∈ I, j, l ∈ J; the distance matrix D = [dik] where dik = the number of students

in both course times i and k; f1, is a penalty function for conflicts; f2, is a penalty function

for consecutive exams, and (i j) ≺ (kl) means that (i − 1)e + j < (k − 1)e + l. Then the

multi-criteria formulation is given as follows:

min F(x) =
[
x′Q1x, x′Q2x

]
s.t.

∑
j∈J x̂i j = 1, i ∈ I

x̂i j binary ∀i ∈ I, ∀ j ∈ J.

(5.7)

We can reduce this multi-criteria program into a single objective quadratic program.

Define the coefficient matrix Q by Qmn = Q̂(i j)(kl) where m is defined as above. We define

Q̂ =
[
Q̂(i j)(kl)

]
by

Q̂(i j)(kl) =


f1(dik) if j = l and (i j) ≺ (kl)

f2(dik) if | j − l| = 1 and (i j) ≺ (kl)

0 otherwise

(5.8)

where the indices have the same meaning as above. Using this coefficient matrix, the single

objective QP is formulated as in (5.1).

94

The formulation given in (5.1) is NP-hard to solve as written. Furthermore, since the

objective function is not convex, most commercial quadratic programming software does

not guarantee convergence to the global optimum, possibly becoming trapped at a local

optimum. To solve the latter problem, we may use the special structure of the program

to re-write it as an integer program with linear objective function as follows. Using the

notation from above, let yp = ŷmn = ỹ(i j)(kl) = {1 if x̂i j = x̂kl = 1; 0 otherwise }, where

i, k ∈ I and j, l ∈ J such that i < k and | j − l| ≤ 1. Then y is a c(c− 1)(3e− 2)/2 by 1 column

vector with p defined as follows:

p =


(i − 1)σi + 2(k − i − 1) + l if j = 1

(i − 1)σi + 2(c − i) + 3(k − i − 1) + (l − j + 2) if j < {1, e}

(i − 1)σi + 2(c − i) + 3(e − 2)(c − i) + 2(k − i − 1) + l − (e − 2) if j = e
(5.9)

where σi =
∑i−1

q=1(3e−2)(c−q) = (i−1)(3e−2)(c− i/2). The intuition behind these indices

is as follows. When course time i is mapped to exam period j = 1, the only other mappings

that produce conflicts or consecutive exams associated with course time i are when course

time k is mapped to exam period l = {1, 2}. At the other end of the schedule, when course

time i is mapped to exam period j = e, the only other mappings that produce conflicts

or consecutive exams associated with course time i are when course time k is mapped to

exam period l = {e − 1, e}. When course time i is mapped to exam period j < {1, e}, the

only other mappings that produce conflicts or consecutive exams associated with course

time i are when course time k is mapped to exam period l ∈ { j − 1, j, j + 1}. In order to

avoid redundant variables (i.e. y(11)(21) and y(21)(11)) we enforce the restrictions i < k and

| j − l| ≤ 1. This results in a decreasing number of variables with index i as i increases,

explaining the function σi. The vector y has c(c − 1)(3e − 2)/2 additional binary variables.

Recall there are already c·e binary variables given in the quadratic formulation. Formulation

5.3 defines the cost vector c and presents the integer linear program (ILP) formulation of

the multi-criteria program.

The formulation given in (5.11) generates many variables. For example, when mapping

c = 32 course times to e = 20 exam periods, the number of variables is c(c− 1)(3e− 2)/2+

95

Formulation 5.3: Scalarized multi-criteria binary linear final examination timetabling for-
mulation.

Define the cost vector s for all i < k and | j − l| ≤ 1 as follows:

sp = ŝmn = s̃(i j)(kl) =

{
f1(dik) if j = l
f2(dik) if | j − l| = 1.

(5.10)

Then, the LP representing the multi-criteria final exam timetabling problems is given by

min sy
s.t.

∑
j∈J xi j = 1, i ∈ I

y(i j)(kl) ≤ xi j

y(i j)(kl) ≤ xkl

y(i j)(kl) ≥ xi j + xkl − 1
xi j binary ∀i ∈ I, ∀ j ∈ J
y(i j)(kl) binary where i, k ∈ I, and j, l ∈ J : i < k and | j − l| ≤ 1.

(5.11)

c · e = 29, 408. The number of variables is large enough that insufficient memory problems

can be encountered using commercial QP solvers. Even if memory is not a problem, the

amount of time to solve (5.11) is large as demonstrated by the computational results in

Section 5.5.

The difficulties in the implementation of the exam timetabling problem when formu-

lated as a QP or an ILP lead us to split at the problem into segments. The algorithms we

develop for the exam timetabling problem build timetables in two phases. In the first phase,

we group course times into a number of groups equal to the specified number of exam

periods. In this phase, we attempt to minimize conflicts resulting from the groupings. In

the second phase, we sequence the groups in order to minimize the number of consecutive

exams. We present the results of this study in the following three subsections.

5.4.2 Clustering Algorithms

In the first phase of our exam timetabling algorithms, we group course times into a number

of groups equal to the specified number of exam periods. Theoretically, we can find an

optimal clustering by using the formulation given in (5.1), where J is the set of clusters, Di j

is the number of conflicts generated by mapping course times i and j to the same cluster,

and x̂i j = {1 if course time i is assigned to cluster j; 0 otherwise }. Again, there are several

96

problems with this formulation; it is NP-hard to solve and QP solvers may not converge

to the global optimal solution because the objective function is not necessarily convex. If

re-written as an ILP, it is highly degenerate because the ordering of the clusters is irrelevant.

In addition, computer memory requirements may prevent a solution to the IP from being

found. Furthermore, because the goal is to find reusable examination timetables using his-

toric data, the optimal solution to the clustering is not necessarily the optimal clustering

for the new timetable. Thus, we develop two different clustering heuristics to perform this

grouping; one is a hierarchical agglomerative algorithm and the other is a partitioning algo-

rithm. Both algorithms use the 1-norm to measure distance. For a vector x = (x1, x2, ..., xn)

the 1-norm is defined as

‖x‖1 =
n∑

i=1

|xi| .

We use the 1-norm because when a third course time, C, is grouped with two course times,

A and B, we incur the conflicts between A and B as well as the conflicts between C and A

and between C and B. That is, the distance between two clusters X and Y is the sum

D(X,Y) =
nX∑
i=1

nY∑
j=1

d(xi, y j) (5.12)

where nX and nY indicate the number of elements in clusters X and Y , respectively; xi ∈ X,

y j ∈ Y; and d(xi, y j) is the number of students taking classes in both course times xi and yi.

Hierarchical clustering methods construct groupings based on previously constructed

groupings. These methods can be agglomerative or divisive. Agglomerative methods begin

with each element as a singleton and successively join elements to create fewer, larger

clusters. Divisive methods begin with large clusters and successively divide clusters to

create more, smaller clusters. The tree structure obtained from hierarchical clusterings is

known as a dendrogram. Figure 5.2 shows a dendrogram for clustering three elements.

The arrows at the top and bottom show the difference between agglomerative and divisive

methods.

We develop a hierarchical agglomerative clustering algorithm for the exam timetabling

problem. The algorithm starts with all variations of course times as distinct clusters. It finds

97

A

B

C

A, B

A, B, C

0 1 2

0 1 2

Divisive

Agglomerative

Figure 5.2: Depiction of agglomerative and divisive clustering methods.

the minimum distance between two distinct course times and joins the times. We employ an

additional data structure to keep track of which course times are clustered. The algorithm

uses the distance matrix of conflicts between course times as described previously. During

the algorithm when two course times i and j, i < j, are clustered, row i and column i are

updated to reflect the join as follows: Dik = Dik + D jk, and Dki = Dki + Dk j for all k. That

is, the data for course time i now reflects the conflicts of both course time i and course

time j with every other course time. Row j and column j can be deleted from the matrix.

This procedure repeats until the desired number of exam periods is reached. Note that there

could be ties for the value of the minimum distance. Ties are broken by choosing the first

minimum element in the matrix, where first is the element with the lowest sum of row and

column indices. In case of a tie for the sum, the element with the lowest row index is used.

The algorithm is summarized in Algorithm 5.4.

The order in which the course times are joined may affect the final clustering. In addi-

tion the order may affect the number of conflicts that the final clustering yields. Table 5.5

and Figure 5.3 shows an example of a clustering that is not invariant under the initial order-

ing of the elements. The highlighted number in each matrix is the minimum Di j; elements

i and j will be clustered in the next step. Clustering 1 results in two clusters—course times

1 and 2 and course times 3 and 4—with a total six conflicts. Clustering 2 results in two

clusters—course times 2 and 3 and course times 1 and 4—with a total of 4 conflicts.

To address this ordering problem, we run our clustering algorithm repeatedly, each time

using a different initial order of the course times, until pre-set criteria, such as a maximum

98

Algorithm 5.4: Hierarchical, agglomerative clustering algorithm.

Input:

1. Symmetric matrix D of distances between elements.
2. Number n of elements.
3. Array Anx1 for recording the mapping of elements to clusters. Initially, A(i) = i.
4. Number k of desired clusters.
5. Number of conflicts, c = 0 at start.

Algorithm:

1. Find minimum, non-diagonal element Di j, i < j.
2. Join elements i and j by updating D as follows: Dim = Dim+D jm, and Dmi = Dmi+Dm j

for all m.
3. Delete row and column j from D.
4. Update c = c + Di j.
5. Update n = n − 1.
6. Update A(j) = i.
7. If n = k, stop. If n > k, repeat 1-7.

Output:

1. Array of elements mapped to one of k clusters.
2. Number of conflicts, c, generated by clustering.

Clustering 1


0 1 6 3
1 0 1 4
6 1 0 5
3 4 5 0

 ⇒


1 7 7

7 0 5
7 5 0

 ⇒


1 14

14 5


Conflicts: 0 1 6

Clustering 2


0 1 6 3
1 0 1 4
6 1 0 5
3 4 5 0

 ⇒


0 7 3
7 1 9

3 9 0

 ⇒


3 16
16 1


Conflicts: 0 1 4

Table 5.5: Example of clustering not invariant under ordering.

99

1 2

3 4

1
6 4

5

1

3

1 2

3 4

1
6 4

5

1

3

1, 2

3 4

7

7

5

1

1

2, 3 4

1

7

9

3

1, 2

3, 4

14

5

1

1, 4

2, 3

1

16

3

Clustering 1 Clustering 2

Figure 5.3: Example of clustering not invariant under ordering.

100

number of iterations, has been achieved. For simplicity in Table 5.5, we begin with the same

distance matrix for both clusterings. However, our algorithm rearranges the ordering of the

elements for repeated runs and uses the first minimum element rule for joining elements.

Our hierarchical algorithm is similar to the compression algorithm described by Mehta

[1981]. However, Mehta proposed to use his compression algorithm only as an addition

when graph-theoretic methods failed to find an appropriately small chromatic number of

the graph created by the distance matrix. He also did not note or address the dependence

of the final solution on the initial ordering. Our hierarchical agglomerative algorithm is

the same as the joining algorithm described in chapter twelve of Clustering Algorithms

[Hartigan 1975]. Hartigan [1975] claims but does not prove that the clustering produced by

the hierarchical agglomerative algorithm is invariant under initial ordering if all distances

computed during the algorithm are distinct. We pose this assertion as Proposition 5.4.1 and

prove it below.

Proposition 5.4.1. The clustering produced by the hierarchical agglomerative algorithm

is invariant under initial ordering of the elements to be clustered if all distances computed

during the algorithm are distinct.

Proof. Assume all distances computed at each step of the algorithm are distinct. Suppose,

by way of contradiction, that two distinct initial orderings, σ1 and σ2, with distance ma-

trices D1 and D2, respectively, produce two distinct clusterings. Then, during at least one

step, σ1 joins elements i and j while σ2 joins elements k and l where {i, j} , {k, l}. Let

step α be the first in which σ1 and σ2 join different elements. If D1
i j < D2

kl, then σ2 joins

i and j rather than k and l. If D1
i j > D2

kl, then σ1 joins k and l rather than i and j. Since

D1
i j , D2

kl through step α, and because at step α, σ1 and σ2 join different elements, we must

have D1
i j = D2

kl, which is a contradiction to the assumption that all distances computed at

each step of the algorithm are distinct. Thus, the proposition holds. �

The other clustering algorithm we consider uses a partitioning method. Partition clus-

tering algorithms work differently from hierarchical methods in that they do not use previ-

ously constructed clusters to generate new clusters. Some partitioning algorithms specify

a minimum radius and construct clusters that fit within that radius [Hartigan 1975]. Other

101

partitioning algorithms, including k-means and partitioning around medoids, find a spec-

ified number of representative elements and then cluster around these elements [Hartigan

1975; Kaufman and Rousseeuw 1990; Rencher 1995].

A k-means clustering algorithm first selects k representative elements either randomly

or by some specified criteria. It then assigns each remaining element to the closest rep-

resentative element using a specified metric. When a cluster has more than one element,

the representative element is replaced by the centroid of the cluster, which is the mean of

the elements in the cluster. The algorithm examines each element and reassigns it to an-

other cluster if it is closer to the centroid of another cluster. Note that centroids must be

recalculated after each reassignment. The k-means clustering algorithm iterates between re-

assignment and recalculation until no more reassignments can be made or until some other

specified metric for convergence has been achieved [Rencher 1995].

The clustering algorithm known as partitioning around medoids (PAM) was developed

by Kaufman and Rousseeuw [1987]. The authors define a medoid as “that object of the clus-

ter for which the average dissimilarity to all the objects of the cluster is minimal” [Kaufman

and Rousseeuw 1990]. To our knowledge, the algorithm has never been used in examination

timetabling. The algorithm is similar to the k-means algorithm in that it first finds k rep-

resentative elements and then clusters the remaining elements around the k medoids based

on the distance to the medoid [Kaufman and Rousseeuw 1990]. At this point the PAM al-

gorithm diverges from the k-means algorithm. The medoid never becomes the mean of the

cluster; it remains the representative element of the cluster—similar to the median of a set,

suggesting the name medoid. The PAM algorithm calculates the sum of the dissimilarities

in each cluster from the representative medoid. That is, it calculates the sum

S =
k∑

i=1

nk∑
j=1

∣∣∣x j − mi
∣∣∣ (5.13)

where k is the number of medoids, nk is the number of elements in each cluster, |.| is the

distance metric, and mi, 1 ≤ i ≤ k, are the medoids. In order to improve the clustering,

the algorithm chooses each medoid, i, in turn and each element that is not a medoid, j, and

examines the change to S if their roles are interchanged. That is, it calculates S ′ as if j

102

was a medoid and i was a non-medoid. Thus, S ′ reflects the reassignment of elements to

the clusters of the closest medoid when j is a medoid and i is not. Then, the pair i, j with

the minimal S ′ is chosen. If S − S ′ is positive, the two elements are interchanged, and the

algorithm continues. If S − S ′ is negative or zero, the objective cannot be decreased by

swapping and thus the algorithm ends. Because all possible interchanges are considered,

Kaufman and Rousseeuw [1990] note that the algorithm is invariant under the initial or-

dering except when the distances between multiple objects are tied. This means that the

optimal value of the objective function will not change despite permutations to the initial

ordering. However, the clustering produced by the algorithm could be different depending

on the initial ordering if there exist more than one clustering with the optimal objective

function value.

The PAM method does not suit the needs of clustering course times to exam periods

because it does not take into account the cumulative nature of joining course times together.

Recall from (5.12) that when a third course, C, is grouped with two courses, A and B, we

incur the conflicts between A and B as well as the conflicts between C and A and between

C and B. Thus, we use a modified PAM algorithm for our second clustering algorithm. We

begin by choosing k representative elements using the method used in the PAM algorithm.

The method for choosing these medoids is outlined in [Kaufman and Rousseeuw 1990] and

is reproduced in Algorithm 5.5. Note that in selecting the k representative elements, the

objective function is the sum of the dissimilarities between each element and the nearest

representative object.

If we let s be the sum of the dissimilarities from each object to its nearest medoid after

the k medoids have been found, but before the algorithm has continued, we note that the

value of the sum s is not invariant under the initial ordering of the elements to be clustered,

even if all distances are distinct. As an example, suppose we are clustering four elements,

e1, e2, e3, and e4 into two clusters. Let the elements have the distance matrix

D =



0 1 6 2

1 0 5 3

6 5 0 4

2 3 4 0


.

103

Algorithm 5.5: Part I of Partitioning Around Medoids (PAM) Algorithm.

The first object is the one for which the sum of the dissimilarities to all other objects is as
small as possible. This object is most centrally located in the set of objects. Subsequently,
at each step another object is selected. This object is the one which decreases the objective
function as much as possible. To find this object, the following steps are carried out:

1. Consider each object i which has not yet been selected.
2. Consider each other non selected object j and calculate the difference between its

dissimilarity D j with the most similar previously selected object, and its dissimilarity
d(j, i) with object i.

3. If this difference is positive, object j will contribute to the decision to select object i.
Therefore, we calculate C ji = max (D j − d(j, i), 0).

4. Calculate the total gain obtained by selecting object i:
∑

j C ji

5. Choose the not yet selected object i which
maximizesi

∑
j C ji

This process is continued until k objects have been found.

The sum of the dissimilarities to all other elements for each element is simply the row sum

representing that element. This value is nine for e1, e2, and e4. It is fifteen for element

e3. Thus, we may choose element e1, e2, or e4 as the element with the minimum sum

of dissimilarities to all other elements. Table 5.6 shows the calculations and results from

choosing e1 or e2 as the first representative element. The results show s is not invariant

under the initial ordering.

Our algorithm diverges from the PAM algorithm after we find the initial k representative

objects. Instead of labeling the representative objects medoids as in PAM, we will define

them as cumoids, which represent the cumulative distance from every element in the cluster.

Thus, we designate the algorithm we use as partitioning around cumoids (PAC). At this

point we cluster the remaining elements around the k cumoids, using a different metric

than is used in the PAM algorithm. As in our hierarchical clustering algorithm, we use

the 1-norm to find the distance between a cluster and an element. That is, we cluster the

remaining elements around the closest cumoids using the distance metric

D(X, y) =
nX∑
i=1

d(xi, y)

where nX indicates the number of elements in cluster X; xi ∈ X; y is the element yet to be

104

The first representative element chosen is e1 with s = 9.
i = e2 j = e2: De2 = 1, d(e2, e2) = 0⇒ Ce2e2 = max {1 − 0, 0} = 1

j = e3: De3 = 6, d(e3, e2) = 5⇒ Ce3e2 = max {6 − 5, 0} = 1
j = e4: De4 = 2, d(e4, e2) = 3⇒ Ce4e2 = max {2 − 3, 0} = 0
⇒
∑

j C je2 = 2
i = e3 j = e2: De2 = 1, d(e2, e3) = 5⇒ Ce2e3 = max {1 − 5, 0} = 0

j = e3: De3 = 6, d(e3, e3) = 0⇒ Ce3e3 = max {6 − 0, 0} = 6
j = e4: De4 = 2, d(e4, e3) = 4⇒ Ce4e3 = max {2 − 4, 0} = 0
⇒
∑

j C je3 = 6
i = e4 j = e2: De2 = 1, d(e2, e4) = 3⇒ Ce2e4 = max {1 − 3, 0} = 0

j = e3: De3 = 6, d(e3, e4) = 4⇒ Ce3e4 = max {6 − 4, 0} = 2
j = e4: De4 = 2, d(e4, e4) = 0⇒ Ce4e4 = max {2 − 0, 0} = 2
⇒
∑

j C je4 = 4
⇒ the second representative element chosen is e3 resulting in s = 9 − 6 = 3.
The first representative element chosen is e2 with s = 9.
i = e1 j = e1: De1 = 1, d(e1, e1) = 0⇒ Ce1e1 = max {1 − 0, 0} = 1

j = e3: De3 = 5, d(e3, e1) = 6⇒ Ce3e1 = max {5 − 6, 0} = 0
j = e4: De4 = 3, d(e4, e1) = 2⇒ Ce4e1 = max {3 − 2, 0} = 1
⇒
∑

j C je2 = 2
i = e3 j = e1: De1 = 1, d(e1, e3) = 6⇒ Ce1e3 = max {1 − 6, 0} = 0

j = e3: De3 = 5, d(e3, e3) = 0⇒ Ce3e3 = max {5 − 0, 0} = 5
j = e4: De4 = 3, d(e4, e3) = 4⇒ Ce4e3 = max {3 − 4, 0} = 0
⇒
∑

j C je3 = 5
i = e4 j = e1: De1 = 1, d(e1, e4) = 2⇒ Ce1e4 = max {1 − 2, 0} = 0

j = e3: De3 = 5, d(e3, e4) = 4⇒ Ce3e4 = max {5 − 4, 0} = 1
j = e4: De4 = 3, d(e4, e4) = 0⇒ Ce4e4 = max {3 − 0, 0} = 3
⇒
∑

j C je4 = 4
⇒ the second representative element chosen is e3 resulting in s = 9 − 5 = 4.

Table 5.6: Example of representative elements not invariant under ordering.

105

0 2 4 6
0

1

2

3

4

5

6

7

0 2 4 6
0

1

2

3

4

5

6

7

0 2 4 6
0

1

2

3

4

5

6

7

Figure 5.4: Two dimensional example of PAC clustering algorithm. This diagram shows
the steps of the PAC algorithm—from elements, to representative elements, to clusters. Note
that the clusters defined by the representative elements are not necessarily the final clusters.

clustered; and d(xi, y) is the overlap of students between periods xi and y. See the example

of the PAC clustering algorithm given in Figure 5.4.

Like the PAM algorithm, the PAC algorithm calculates the sum of the dissimilarities

over all clusters. The formula for this calculation is

T =
k∑

i=1

D(Xi, Xi) =
k∑

i=1

nXi∑
j=1

nXi∑
l= j+1

d(x j, xl)

where k is the number of cumoids, Xi represents the clusters, nXi is the number of elements

in each cluster, and d(xi, yi) is the overlap of students between periods xi and yi. In order

to improve the clustering, the PAC algorithm chooses one cumoid and one element that

is not a cumoid and examines the change to T if their roles are interchanged. That is, it

calculates T ′ as if the non-cumoid was a cumoid and the cumoid was a non-cumoid. Thus,

T ′ reflects the reassignment of elements to the clusters of the closest cumoid. If T − T ′ is

positive, the two elements are interchanged. Unlike the PAM algorithm which converges

to the optimal solution after iterating through all possible clusters, the PAC algorithm does

not guarantee an optimal solution. Due to the nature of the 1-norm, the order in which

elements are assigned to clusters may affect the final clustering and number of conflicts

the clustering yields. That is, the results of the PAC algorithm are not invariant under the

initial ordering. Furthermore, unlike the hierarchical agglomerative clustering algorithm,

106

the objective function value obtained using the PAC algorithm is not invariant under initial

ordering even when all the distances computed during the algorithm are distinct. As an

example where the initial ordering matters to the outcome of the PAC algorithm when the

distances are all distinct, suppose we are clustering five elements e1, e2, e3, e4, and e5 into

two clusters. Let the elements have the distance matrix

D =



0 1 2 3 4

1 0 5 6 8

2 5 0 7 10

3 6 7 0 9

4 8 10 9 0


.

When the elements are ordered e1, e2, e3, e4, e5, the clustering is {e1 , e2, e3}, {e4 ,e5}

and the objective function value is seventeen; when they are ordered e4, e2, e3, e1, e5,

the clustering is {e1 , e2, e4}, {e3 ,e5} and the objective function value is twenty. Thus,

as in our hierarchical algorithm, we randomly order the elements and run the algorithm

repeatedly until a convergence metric has been achieved. A summary of the partitioning

around cumoids algorithm is given in Algorithm 5.6.

Figure 5.5 shows the difference between the K-means, PAM, and PAC clustering algo-

rithms using Euclidean distances in two dimensions. Each algorithm yields one cluster over

four points, but the cost associated with the clustering is different in each case as shown by

the lines drawn in each diagram. In this simple example there is only one cluster of all

points. The algorithms may find different clusterings when more than one cluster is sought.

Empirical results comparing the two clustering algorithms and the optimal solution ob-

tained by (5.11) are given in Section 5.5. The next subsection describes the second phase

of our final examination timetabling procedure: the sequencing phase.

5.4.3 Sequencing

After we cluster the course times and thus determine which course times will be grouped

into the same exam period, we determine a sequence of the clusters that minimizes the

number of consecutive exams. This sequencing is the second phase of our examination

timetabling algorithm. We formulate this phase of the problem in one of two ways. The

107

Algorithm 5.6: PAC clustering algorithm.

Input:

1. Symmetric matrix D of distances between elements.
2. Number n of elements.
3. Empty array Anx1 for recording the mapping of elements to clusters.
4. Number k of desired clusters.
5. Number of conflicts, S = 0 at start.
6. Index i = 0.
7. Let Dcopy be a copy of D.

Algorithm:

1. Find k representative elements.

(a) Use the partitioning around medoids approach using D.
(b) Update i = i + 1 for each addition of a representative element j.
(c) Update A(j) = i.
(d) Let B = A.

2. Cluster remaining elements around representative elements.

(a) Starting with the first non-representative element i, find the nearest representa-
tive element j.

(b) Join i and j by updating D as follows: Dim = Dim + D jm, and Dmi = Dmi + Dm j

for all m.
(c) Delete row and column j from D.
(d) Update A(i) = A(j).
(e) Update S = S + Di j.
(f) Repeat (a)-(e) until all non-representative elements have been clustered.

3. Swap non-representative elements with representative elements one at a time. Repeat
2.

(a) For each representative element i and each non-representative element j, let
B(j) = B(i) and B(i) be null. That is, let element j be a representative element
and element i be non-representative.

(b) Repeat step 2 with D = Dcopy, A = B, and S = S ′.
(c) If S − S ′ > 0, record C = B and c = S ′. Else, record C = A and c = S .

Output:

1. Array of elements, C mapped to one of k clusters.
2. Number of conflicts, c, generated by clustering.

108

0 2 4 6
0

1

2

3

4

5

6

7

8

9

10
K-means

0 2 4 6
0

1

2

3

4

5

6

7

8

9

10
PAM

0 2 4 6
0

1

2

3

4

5

6

7

8

9

10
PAC

Figure 5.5: Comparison of the K-means, PAM, and PAC clustering algorithms. This dia-
gram shows the results of clustering four points into one cluster using the K-means, PAM,
and PAC clustering algorithms, respectively.

first is formulating the sequencing problem as a symmetric traveling salesman problem

(STSP) where the distance between two clusters is the number of two consecutive exams

that would result in scheduling the two clusters in consecutive exam periods. The problem is

to find a cycle containing every cluster that minimizes the cost. Several researchers [Mehta

1981; Fisher and Shier 1983; Carter 1986] have suggested using a STSP formulation for

sequencing clusters similar to what we propose here. The STSP is given in Formulation

5.7 as it is given in [Wolsey 1998], but we change the variable definitions to match the

particulars of sequencing clusters.

Note that constraints (a) and (b) require that each cluster be placed in the sequence only

once. Constraint (c) eliminates sub tours so that the sequence is continuous. The STSP is

another famous NP-hard problem [West 2001]. Because the instances we are working with

have few clusters—typically fewer than thirty—we used a reliable TSP solver that solves

small TSP problems to optimality. The TSP solver we use is called Concorde and can be

downloaded for free at www.tsp.gatech.edu/concorde/index.html [Concorde 2005].

In order to solve the STSP, we construct the symmetric matrix C where Ci j is the number

of consecutive exams resulting from scheduling clusters i and j in subsequent exam periods.

109

Formulation 5.7: STSP formulation of the sequencing problem.

min
∑k

i=1
∑k

j=1 ci jxi j

s.t.
∑

j: j,i xi j = 1, i = 1, . . . , k (a)∑
i:i, j xi j = 1, j = 1, . . . , k (b)∑
i:i∈S
∑

i: j<S xi j ≥ 1, S ⊂ N, S , ∅ (c)
xi j binary for i = 1, . . . , k, j = 1, . . . , k

(5.14)

where

xi j =

{
1 if clusters i and j are scheduled subsequently
0 otherwise,

ci j is the cost of scheduling clusters i and j subsequently,
and k is the number of clusters (and also the number of exam periods).

Note that the diagonal entries are equal to zero because the same exam cannot be scheduled

in two periods. We use Concorde to find the optimal cycle of clusters. [Fisher and Shier

1983] suggest including a dummy cluster with zero distance to all other clusters such that

the result of the TSP algorithm is a path instead of a cycle. We considered this technique

and tested several examples using it. However, our final timetabling algorithm does not use

this technique because we want to give decision makers more flexibility in where to begin

the sequence.

The final decisions in the exam timetabling problem are choosing an edge on which to

break the cycle and choosing a direction for the sequence. See the first diagram in Figure

5.6 for an example cycle of twelve clusters where the number of exam periods per day

is three. In general, suppose that k is the number of exam periods to be scheduled each

day of the timetable—typically three or four. Removing an edge of the cycle fixes the

performance measures consecutive exams and multiple exams in a day. One strategy for

which edge to choose is to remove the cycle edge of maximum value. This decreases the

total number of consecutive exams by the greatest amount, but does not directly take into

account the number of multiple exams in a day. Because breaking the cycle on every kth

edge results in the same number of multiple exams in a day, within the cycle edges there

are k equivalence classes with respect to multiple exams in a day. Instead of breaking on

the edge of maximum value, another strategy is to break the cycle on an edge from the

equivalence class with the fewest number of multiple exams in a day. For example, Figure

110

K

L

A B C

D

E

F

GHI

J

K

L

A B C

D

E

F

GHI

J

Day 1

Day 2

Day 3

Day 4

Figure 5.6: Example of TSP solution and final timetable. This diagram shows the step from
the TSP solution to the final timetable.

5.6 has three equivalence classes, denoted by gray, black, and black dotted lines. Breaking

the cycle on the edge between B and C would result in a timetable with the same number of

three exams in a day as breaking on the edge between H and I. A final strategy we suggest

is breaking the sequence so that certain exams are strategically placed. For example, if we

require exam L in Figure 5.6 to occur on the first day of exam week, we have limited the set

of edges for which we can break the cycle. These strategies can be used simultaneously. For

example, we can use the first two by choosing the equivalence class with the fewest number

of multiple exams in a day and then breaking on the edge of maximum value within the

equivalence class.

Once an edge has been removed from the sequence, we have an ordering of exam pe-

riods. This ordering will preserve the number of consecutive exams and the number of

multiple exams in a day whether it is enforced directly or in reverse. These final ordering

decisions are often left to policy makers.

Recall from Section 5.2 that [Fisher and Shier 1983] develop a heuristic for solving the

sequencing problem of the examination timetabling problem. Because we have the ability

to solve the problem to optimality using Concorde, we do not use their initial solution to

the problem given in (5.4). Furthermore, our TSP sequencing methodology includes more

111

criteria than just consecutive exams. However, in cases where other constraints were present

such that we could not use the optimal sequence, we did utilize (5.4) as a starting solution.

The second formulation for sequencing the exam clusters is an extension of the work of

Levchenkov et al. [2006]. Recall from Section 5.2 that the work on the Cornell timetable

does not include a clustering phase as the number of course times is fewer than the number

of exam periods. Also recall that the Cornell formulation is a two-stage sequencing problem

specifically designed for a 7-day, 21-period exam schedule. When we are working on a 7-

day, 21-period exam schedule, we use the formulation given by [Levchenkov et al. 2006]

directly on the established clusterings with two exceptions. First, we remove the specific

constraints used for the Cornell timetable and add our own specific constraints. Second,

instead of limiting our search to the C21
3 = 1, 330 unordered triples and fixing the middle

element, we examine all P21
3 = 7, 980 ordered triples. This widens our feasible region and

allows us to consider more permutations of the set of clusters in stage one.

We are interested also in a 5-day, 20-period exam schedule, so we extend the Cornell

formulation to accommodate an extra period per day. We define a quadruple here as a set of

four clusters of course times. We examine C20
4 = 4, 845 unordered quadruples and consider

more criteria in each phase because of the fourth cluster being added. Because of the

great number of variables and limited computing resources, examining the P20
4 = 116, 280

ordered quadruples is impractical. In addition to the criteria examined in the 7-day, 21-

period formulation, we also consider four exams in a day and three consecutive exams in a

day. The complete algorithm, less the specific constraints, is given in Formulations 5.8 and

5.9.

Our extension of the formulation given by [Levchenkov et al. 2006] remains a two-stage

approach. The first stage attempts to minimize the number of four exams in a day, three

exams in a day, two exams in a day, and three consecutive exams in a day by identifying

the quadruples to be grouped together each day. The first three criteria do not affect the

ordering of the clusters in each quadruple. To minimize the fourth criterion, we fix the

inner two clusters, but do not order them. Similar to the Cornell formulation for fixing the

center element of a triple, to fix the two inner clusters and evaluate the number of three

consecutive exams in a day, we add the number of common students in all C4
3 = 4 triples

112

Formulation 5.8: Extension of sequencing formulation by Levchenkov et al.: Stage 1

Goal: Minimize the weighted sum of 4 exams in a day, 3 exams in a day, 3 consecutive
exams in a day, and 2 exams in a day by identifying the quadruples to be grouped together
each day.
Preprocessing: Fix the inner two clusters in each possible quadruple (by minimizing 3
consecutive exams in a day).
Number of variables: C20

4 = 4, 845

Notation, variable definitions
E = {1, 2, ..., 20} is the set of clusters.
T (2)

i j =number of students who have exams for courses in clusters i and j ∈ E.

T (3)
i jk=number of students who have exams for courses in clusters i, j, and k ∈ E.

T (4)
i jkl=number of students who have exams for courses in clusters i, j, k, and l ∈ E.

xi jkl ∈ {0, 1} determines whether clusters within the quadruple
(i, j, k, l) ∈ T =

{
(i, j, k, l) ∈ E4 : i < j < k < l

}
are scheduled on the same day.

Performance measures:
• 4 in a day D4 =

∑
(i, j,k,l)∈T xi jklT

(4)
i jkl

• 3 in a day D3 =
∑

(i, j,k,l)∈T xi jkl
(
T (3)

i jk + T (3)
ikl + T (3)

i jl + T (3)
jkl

)
• 3 consecutive in a day RD3 =

∑
(i, j,k,l)∈T xi jkl

(
T (3)

i jk + T (3)
ikl + T (3)

i jl + T (3)
jkl −max

{
T (3)

i jk ,T
(3)
ikl ,T

(3)
i jl ,T

(3)
jkl

}
−max

{{
T (3)

i jk ,T
(3)
ikl ,T

(3)
i jl ,T

(3)
jkl

}
\max

{
T (3)

i jk ,T
(3)
ikl ,T

(3)
i jl ,T

(3)
jkl

}})
⇒ the middle two clusters are fixed, but not ordered.
• 2 in a day D2 =

∑
(i, j,k,l)∈T xi jkl

(
T (2)

i j + T (2)
ik + T (2)

il + T (2)
jk + T (2)

jl + T (2)
kl

)
Problem Formulation:
min
∑

(i, j,k,l)∈T {w1D4 + w2D3 + w3RD3 + w4D2}
s.t.
∑

m∈(i, j,k,l)∈T xi jkl = 1 ∀m ∈ E
where w1, w2, w3, and w4 are weights determined by the decision maker.

Let S 1 = the solution set.

113

Formulation 5.9: Extension of sequencing formulation by Levchenkov et al.: Stage 2

Goal: Minimize the weighted sum of 2 consecutive exams in a day, 2 consecutive exams
(including overnight), and 3 consecutive exams (including overnight) by sequencing and
ordering the five quadruples given in S1. Note that each quadruple can be ordered in one
of four ways: center elements forward or backward, end elements forward or backward.
Number of variables: 5! · 45 = 122, 880

Notation, variable definitions
yi ∈ {0, 1}, 1 ≤ i ≤ 122, 880, represents a permutation of S1, with each quadruple ordered
one of four ways as noted.
Y =
{
y1, · · · , y122,880

}
is the set of permutations of S1, with each quadruple ordered one of

four ways as noted.

Performance measures:
• 2 consecutive in a day RD2i for permutation i
• 2 consecutive R2i for permutation i
• 3 consecutive R3i for permutation i

Problem Formulation:
min
∑122,880

i=1 (v1RD2i + v2R2i + v3R3i)yi

s.t. yi ∈ Y
where v1, v2, and v3 are weights determined by the decision maker.

Let y∗ be the optimal solution.

in the quadruple and then subtract the values from the two triples with the most common

students. An example of these calculations is given in Figure 5.7. Also note the formulation

of the criterion three consecutive exams in a day, RD3, in Formulation 5.8.

The result of the first stage is five unordered quadruples, with the two center elements

fixed. The second stage attempts to minimize the number of two consecutive exams in a

day, two consecutive exams (including overnight), and three consecutive exams (including

overnight) by sequencing and ordering the five quadruples. Note that each quadruple can be

ordered in one of four ways: center elements forward or backward, end elements forward

or backward. Thus, the number of permutations of the five quadruples is 5! · 45 = 122, 880.

Although this number is manageable, in practice the number is smaller due to specific

constraints making many permutations infeasible. Similar to the original algorithm by

[Levchenkov et al. 2006], our second stage is solved also by complete enumeration of the

permutations and orderings of the five triples.

114

1

2

3

4

20

30

40 60

4

1

2

3

60

20

30 40

Figure 5.7: Fixing the two middle elements of a quadruple. This diagram shows that to fix
the two middle elements of a triple, we separate the two triples with the highest numbers of
common students.

We use Fisher and Shier’s [1983] concept of swapping clusters within the timetable

to search for a local optimal solution about the current timetable, S, at which we have

arrived thus far (after the clustering and sequencing phase). The authors outline their pro-

cedure, which they name the Examination Scheduling Problem (ESP) Heuristic Procedure,

in [Fisher and Shier 1983], and we reproduce it in Algorithm 5.10 changing only notation.

Note that n is the number of exam periods.

Formulation 5.10: Examination Scheduling Problem (ESP) Heuristic Procedure

ESP Heuristic Procedure

1. Calculate the number of consecutive exams of the timetable S . Let this be f (S).
2. Set m = 0, i = 0.
3. Set i = i + 1. If i ≥ n, set i = 1.
4. Set j = i + 1.
5. If j > n go to Step 3.
6. Set m = m + 1. If m > n(n − 1)/2, then STOP. Let S ′ be the timetable with periods i

and j exchanged. If f (S) − f (S ′) > 0 then interchange periods i and j in S , and set
m = 0.

7. Set j = j + 1. Go to Step 5.

115

The results of using this heuristic are presented in Section 5.5. Unlike the problem

discussed in [Fisher and Shier 1983], many institutions have more course times than exam

periods and must cluster the course times into the number of exam periods before sequenc-

ing. For this reason, we extended the ESP heuristic procedure of Fisher and Shier to swap

elements within clusters in order to minimize the number of consecutive exams. This swap-

ping changes the clustering and the sequencing of the examination timetable. The results

of this extension are presented in Section 5.5.

We also considered moving elements from one cluster to another, but not swapping,

since some clusters contain more elements than others. For example, one cluster might

have course times 3:00MWF and 3:30MW while another has only 10:10MWF. Instead of

enforcing swapping, which ensures that the number of elements in each cluster remains

fixed, we considered moving elements from one cluster to another. Without further restric-

tions, this would result in every other exam period being empty as the empty periods ensure

a minimum number of consecutive exams. Because we are satisfied with the quality of the

solutions up to this point, we leave this potential heuristic for future research.

Empirical results comparing the two sequencing algorithms are given in Section 5.5.

5.4.4 Implementation

In implementing the exact ILP formulation for clustering, we used CPLEX with mixed

results [CPLEX 2006]. We used CPLEX version 10.0 on a Sun V440 with 16GB RAM,

4x1.6GHz CPU, running Solaris 10. CPLEX was the only commercial software we found

able to manage the large problems—MATLAB does not guarantee convergence of the QP

and requires too much memory for the IP; SAS/OR was not able to solve the QP as of this

writing; the COIN/OR QP solver Bonmin and the CPLEX QP solver also does not guaran-

tee convergence of non-convex QP’s [MATLAB 2006; Bonami et al. 2007; SAS/OR 2003].

The COIN/OR QP solver Bonmin (Basic Open-source Nonlinear Mixed INteger program-

ming) can be downloaded for free at https://projects.coin-or.org/Bonmin. The algorithms

used by Bonmin are discussed in [Bonami et al. 2005]. The computation time for CPLEX

to solve the ILP was extremely long. The minimum run time was more than seven days.

The implementation of the clustering heuristics we developed was more efficient in terms

116

of memory usage and execution time. We programmed both of our clustering algorithms

using MATLAB, and execution time for a run on one semester’s worth of data was a matter

of seconds.

Another implementation issue is the amount of data to use. We use several strategies

for determining the best clusterings shown in Table 5.7 including: (1)-(2) using the average

distance matrix from the previous four (six) semesters and (3)-(4) running the clustering

algorithm on each of the past four (six) semesters, pregrouping the clusterings found re-

peatedly in more than a fixed percentage of the semesters and then running again on the

average of the past four (six) semesters. We use these strategies to find the best four clus-

terings based on the number of conflicts for each of the past six semesters. We then run the

sequencing phase. We compare each timetable based on conflicts, two consecutive exams,

and multiple exams in a day for each of the past (four) six semesters. If this comparison

reveals one timetable that dominates all the others in all aspects, the choice is obvious.

However, the final decision is often left to qualitative considerations such as placement of

common exams and large enrollment course times.

Adding constraints to the heuristic timetabling methods we have presented is possible

and was necessary to complete the timetabling solutions for the empirical section of this

study. For example, if two course times are required to have the same exam time, then the

course times are pre-grouped prior to running the clustering algorithm. If certain course

times are required to have exam times in the evening while others must meet during the

day, two simultaneous clusterings can be done for each set of exam times. If certain course

times are required to have exam times within a subset of periods during exam week, this

constraint can be handled in the sequencing formulations. In particular, we can use a special

structure of the local search procedure given in Algorithm 5.10 in which the swapping must

Strategy Data Description
1 4 semesters Average distance matrix for
2 6 semesters clustering and sequencing.
3 4 semesters Individual clustering; pre-group repeated
4 6 semesters clusterings and run on average; average sequencing.

Table 5.7: Four strategies for using historical data in the exam timetabling problem.

117

occur only in subsets of exam periods to ensure that evening courses are mapped to evening

exams, common exams occur within the correct periods, etc.

5.5 Results

In this section we present results for our examination timetabling algorithms tested on

Clemson University data. First we present the clustering results comparing the PAC and

the hierarchical clustering algorithms. We also examine the clustering results from the ex-

act formulation programmed as an ILP and a QP. We then consider results from the two se-

quencing formulations presented previously: the STSP and the extension of the Levchenkov

et al. formulation. We also present local search results using the swapping heuristic pro-

posed by Fisher and Shier [Fisher and Shier 1983]. Finally, we present the proposed timeta-

bles for CU. We compare the statistics from these timetables to the current timetable.

Clustering results

Both the hierarchical and the PAC clustering algorithms perform well on CU data. The

results for some of the clusterings are shown in Figures 5.8 and 5.9. Figure 5.8 shows that

the PAC method yields significantly fewer conflicts than the hierarchical method when used

on the individual course times prior to pregrouping. However, after the data has been pre-

grouped into fewer clusters, the PAC method and the hierarchical method perform well, but

the PAC method still dominates the hierarchical method (Figure 5.9).

Figure 5.10 shows the solutions for the exact (ILP) formulation, as given in Formulation

(5.11) with f1(dik) = dik and f2(dik) = 0, compared to the PAC and hierarchical methods

when clustering 32 elements into 18 exam periods. Recall that pre-grouping the course

times into groups prior to clustering yields built-in conflicts. For fall 2004, spring 2005, fall

2005, and spring 2006 there were 178, 167, 328, and 460 built-in conflicts, respectively. We

are only counting the number of conflicts generated by the clustering algorithms, not the

built-in conflicts. For this problem, the ILP has 32 ·18+18 ·
∑31

i=1 i = 9, 504 binary variables.

We use CPLEX to run the program. We also try solving the exact QP formulation as given

in (5.1) using the COIN-OR solver Bonmin. The QP has 32 ·18 = 576 binary variables. We

118

0

50

100

150

200

250

300

18 period 211 218 271 291 53 68 107 86

20 period 73 89 59 112 16 27 32 32

21 period 36 74 71 79 7 19 10 18

F 2004 S 2005 F 2005 S 2006 F 2004 S 2005 F 2005 S 2006

Hierarchical Partitioning

Figure 5.8: Conflicts generated by two clustering methods on 98 elements.

0

20

40

60

80

100

120

18 period 45 67 109 79 43 53 86 53

20 period 16 22 25 24 10 19 17 22

21 period 7 10 12 12 5 10 12 12

F 2004 S 2005 F 2005 S 2006 F 2004 S 2005 F 2005 S 2006

Hierarchical Partitioning

Figure 5.9: Conflicts generated by two clustering methods on 32 pre-grouped elements.

119

0

20

40

60

80

100

120

ILP 41 53 70 53

Partitioning 43 53 86 53

Hierarchical 45 67 109 79

Fall 2004 Spring 2005 Fall 2005 Spring 2006

Figure 5.10: Conflicts generated by three clustering methods on 32 pre-grouped elements
into 18 clusters.

use the NEOS server, found at http://neos.mcs.anl.gov/neos/, for running Bonmin [Czyzyk

et al. 1998; Dolan 2001; Gropp and Moré 1997]. The running times were relatively short,

but the solution quality was extremely bad, 4,921, 4,228, 4,769, and 4,674 conflicts for fall

2004, spring 2005, fall 2005, and spring 2006, respectively. Bonmin does not guarantee

convergence for non-convex objective functions, and our formulations are non-convex.

Figure 5.10 shows that the PAC method finds the optimal solution for two of the four

problems. Both heuristics find solutions close to the optimal solutions in much less time.

The reason that we have few results on the exact formulation is the length of time it takes to

arrive at a solution: a minimum of seven-days. Many problems continued to run in CPLEX

for more than 79 days before we ended the programs without an integer solution. The run-

time for our heuristic methods is seconds even taking into account random orderings and

multiple runs. These results are typical for the 20-period and 21-period clusterings as well.

Sequencing results

To compare the two sequencing strategies—the TSP formulation versus the formulation

by [Levchenkov et al. 2006]—we complete the clustering phase of our exam timetabling

algorithm and sequence the established clustering using both strategies. Table 5.8 shows

120

Performance Extended Levchenkov STSP
measures (exams) et al. formulation formulation
4 in a day 16 16
4 consecutive 58 50
(including overnight)
3 in a day 912 1,023
3 consecutive 569 353
3 consecutive 735 655
(including overnight)
2 in a day 11,232 11,207
2 consecutive 7,073 4,311
2 consecutive 7,523 5,205
(including overnight)

Table 5.8: Comparison of average sequencing results over fall 2004 to spring 2006 using
the STSP or the extended Levchenkov et al. formulation.

the average criteria over the fall and spring semesters between 2004 and 2006 when twenty

clusters are sequenced using the STSP or the extended Levchenkov et al. formulation. Both

formulations perform well, but the STSP formulation has significantly lower values for two

consecutive exams and two consecutive exams including overnight. This is due to the re-

stricted number of permutations considered by the extended Levchenkov et al. formulation.

Because of the two phase approach of that formulation and the fixing of the quadruples

in the first phase, the second phase has a limited region in which to search for an optimal

solution.

Local search results

When we have constraints that do not allow us to use the optimal TSP sequencing

solution, we use an extension of the ESP heuristic procedure by Fisher and Shier [1983]

to perform local searches after completing our exam timetabling algorithms in which the

objective is to minimize consecutive exams. Instead of allowing the heuristic freedom to

swap any pair of clusters, we restrict the heuristic to swapping clusters within two sets of

four mutually exclusive groups. The groups here are particular to a five-day, twenty-period

schedule. The first set of groups are (1) clusters mapped to the evening periods (last period)

of the first three days, (2) clusters mapped to the evening periods of the last two days, (3)

clusters mapped to the day periods (first three periods) of the first three days of exam week,

121

and (4) clusters mapped to the day periods of the last two days of exam week. The second

set of groups are (5) clusters with common exams and evening course times, (6) clusters

with common exams and no evening course times, (7) all other clusters with evening course

times, and (8) all other clusters. These groups reflect the restrictions Clemson has placed on

its exam timetable, including evening course times must be mapped to evening exam periods

and common exams must occur within the first three days of exam week. Elements within

each group may be swapped. However, we have to keep track of the exchanges because

swapping within one group may cause another set of groups to change. For example, if we

exchange a pair of clusters in set (1), sets (6) and (5) may be changed. If we exchange a

pair of clusters in set (8), sets (3) and (4) may be changed.

Because the number of course times exceeds the number of exam periods for all of our

timetables, many exam periods have multiple course times mapped to them. We will refer

to course times as elements of a cluster for the present discussion. Thus, many clusters

contain multiple elements. To expand our search, we consider swapping elements instead

of entire clusters. This gives us more freedom to explore the decision space. Note that ex-

changing elements results in a new clustering and sequencing, whereas swapping clusters

allowed the clustering to remain fixed. Swapping elements is more challenging than swap-

ping clusters because, for example, an element that is not a common element or an evening

element may be in a cluster with those elements. This non-special element is allowed to be

mapped to any exam period. However, the common element or the evening element still has

restrictions about where it can be mapped. We restrict element swapping using the same

two sets of groups outlined above. This restricts the decision space such that it is not pos-

sible for non-special elements in clusters with common or evening elements to swap out of

clusters with common or evening elements. For example, given a starting timetable with the

element (course time) 12:20MWF mapped to the twelfth exam period of a twenty-period,

five-day exam timetable, that element may be swapped to clusters four, eight, sixteen, and

twenty. However, under our swapping restriction, it can not be mapped to any exam pe-

riods during the day (the first three periods) even though it is not an evening course time.

Because this is simply a local search meant to make marginal improvements in the number

of consecutive exams after our timetabling algorithms are completed, we do not mean for

122

Performance Proposed 5 day Timetable
measures (exams) No Cluster Element

swapping Swapping Swapping
conflicts 346 346 501
4 in a day 16 18 19
4 consecutive 50 61 47
(including overnight)
3 in a day 1,023 1,119 1,053
3 consecutive 353 376 369
3 consecutive 655 628 617
(including overnight)
2 in a day 11,207 10,972 10,754
2 consecutive 4,311 4,303 4,276
2 consecutive 5,205 5,025 4,858
(including overnight)

Table 5.9: Comparison of average performance measures over fall 2004 to spring 2006 for
three alternatives of the proposed 20-period, 5-day timetable.

it to be exhaustive. Complete swapping may be another area to examine in future research

along with element moving.

Table 5.9 presents the performance measures for three alternatives of the proposed

twenty-period, five-day timetable. The three alternatives are the proposed five-day timetable

as given by our timetabling algorithms with no swapping, with cluster swapping, and with

element swapping. The element swapping alternative significantly increases the average

number of conflicts. This is the drawback of allowing for more freedom in exploring the

search space. The cluster swapping alternative shows slightly lower numbers of three con-

secutive exams including overnight, two exams in a day, two consecutive exams, and two

consecutive exams including overnight. However, the numbers are not much improved over

the proposed five-day schedule with no swapping and are worse in several instances.

Final results

We measure the timetabling criteria for the current exam schedule at CU and present

the results in Table 5.10 and Figure 5.11. The current schedule is a seven-day, twenty-

one period schedule that runs from Saturday to Saturday, skipping Sunday. Figure 5.11

shows the average the number of students taking exams each period for the semesters fall

2004–spring 2006. Table 5.10 shows the performance measures for each semester and

123

Performance Fall Spring Fall Spring Average
measures (exams) 2004 2005 2005 2006
conflicts 239 230 437 588 374
4 in a day 0 0 0 0 0
4 consecutive 121 121 126 130 125
(including overnight)
3 in a day 339 301 404 319 341
3 consecutive 339 301 404 319 341
3 consecutive 895 823 892 783 848
(including overnight)
2 in a day 8,230 7,840 8,485 7,510 8,016
2 consecutive 5,850 5,465 5,679 5,140 5,534
2 consecutive 6,801 6,512 6,691 6,220 6,556
(including overnight)

Table 5.10: Summary of the current 7-day, 21-period exam schedule at CU.

3:30TTH

9:30TTH

6:15W, 7:15MW

9:05MWF

2:00TTH

12:20MWF

11:00TTH

1:25MWF

5:00TTH,
6:15T

11:15MWF

8:00TTH
3:35MWF,
4:00MW

2:30MWF

10:10MWF

MTHSC, EX ST,
6:15TH, 6:30TTH

8:00MWF

12:30TTH

ACCT, CH

5:45MW, 6:15M,
6:15F

COMM, PHYS

4:40MWF

0

1000

2000

3000

4000

5000

6000

0 3 6 9 12 15 18 21

Exam Period

S
tu

de
nt

s

Figure 5.11: Current 7-day, 21-period exam schedule.

the average of all semesters presented. These numbers serve as a baseline for comparison

against our proposed timetables.

In the current schedule, the last exam period is also used as a conflict-resolution period,

which is a pre-specified period designed for students to take exams in the event that they

have a conflict in their exam schedule. However, the current schedule has course times

mapped to the conflict-resolution period. Thus, conflicts with the conflict-resolution pe-

riod could occur. Current policy allows a student with three exams in a day to move an

exam. If no other time can be found, the conflict-resolution period may be used. There

is no empirical data showing how often the conflict-resolution period is used. Because it

is the last period on the last day of exam week, we speculate that it is not widely used

124

Performance Fall Spring Fall Spring Average
measures (exams) 2004 2005 2005 2006
conflicts 234 225 397 529 346
4 in a day 15 14 13 20 16
4 consecutive 62 41 49 47 50
(including overnight)
3 in a day 1,010 965 1,049 1,069 1,023
3 consecutive 384 337 368 322 353
3 consecutive 704 607 671 637 655
(including overnight)
2 in a day 11,568 10,812 11,814 10,634 11,207
2 consecutive 4,595 4,025 4,767 3,857 4,311
2 consecutive 5,274 4,991 5,693 4,861 5,205
(including overnight)

Table 5.11: Summary of the proposed 5-day, 20-period exam schedule.

even by students with conflicts. We do not include a conflict-resolution period in our pro-

posed five-day, twenty-period timetable because it innately causes more conflicts. This is

so because a conflict-resolution period takes the place of a regularly scheduled exam pe-

riod, leaving fewer exam periods in which to fit the entire exam schedule. We do include a

conflict-resolution period in our proposed twenty-one period schedule because the current

twenty-one period schedule has one. If a conflict-resolution period is desired in our other

timetables, we suggest that the exam period with the lowest number of exams is chosen.

Note that the common exams are given in the 15th, 18th, and 20th exam periods in the

current timetable. The average numbers of students taking scheduled exams on the first day

and final day are around 7,500 and 2,250, respectively. The average number of students

sitting for exams on any given day is around 8,400.

We created a five-day, twenty-period exam timetable because of the desires of stu-

dents to eliminate the first Saturday of exam week (so that there is a reading day built

into the schedule) and the desires of the faculty to eliminate the second Saturday of exam

week (so that there is more time for grading before graduation grade collection deadlines).

The twenty-period schedule consists of five days with four exams per day and no conflict-

resolution period. Table 5.11 and Figure 5.12 show the relevant properties of the schedule

had it been implemented during the fall and spring semesters of 2004–2006. This schedule

is appealing because it eliminates both the first and last Saturdays of the current exam sched-

125

ACCT

8:00MWF

8:00TTH,
6:15F,

7:15MW

2:00TTH

12:30TTH

12:20MWF

MTHSC2,
EX ST

11:15MWF
10:10MWF

3:35MWF,
4:00MW,
4:40MWF

9:30TTH 11:00TTH

COMM, 5:45MW,
 6:15M, 6:15TH

CH

PHYS,
MTHSC1,

 6:15W

2:30MWF

5:00TTH, 6:15T, 6:30TTH

9:05MWF

3:30TTH

1:25MWF

0

1000

2000

3000

4000

5000

6000

0 4 8 12 16 20

Exam Period

S
tu

de
nt

s

Figure 5.12: Proposed 5-day, 20-period exam schedule.

ule. The trade-off between eliminating both Saturdays is that the number of exams taken

per day increases to around 11,700, which is about 7/5 of 8,400, or 40 percent greater. This

multiplier is expected because we are compressing a seven-day schedule into five.

We also considered an eighteen and a twenty-one period exam schedule. The eighteen-

period schedule would consist of six days with three three-hour exams per day and no

conflict-resolution period running from Monday to Saturday. Because the schedule was

compressed to eighteen periods, the number of conflicts increased and the number of exams

held on the last day increased significantly. Thus, this schedule was abandoned as an option.

The twenty-one period exam schedule consists of seven days with three exams per day

and a conflict-resolution period in the last exam period. This schedule is the same length

as the current schedule, but has only twenty dedicated exam periods. Thus, the clustering

is different from the current timetable. Because we cluster the course times into twenty

periods, leaving one period open for the conflict-resolution period, we use the same clus-

tering as we used in the twenty-period schedule. We re-sequence to minimize the number

of conflicts, two consecutive exams, and three consecutive exams. Table 5.12 and Figure

5.13 show the relevant properties of the schedule had it been implemented during the fall

and spring semesters of 2004–2006.

Notice that the number of students sitting for exams in the proposed schedules have

a consistent high-low high-low property. This is due to efforts to minimize consecutive

exams during the second phase of our algorithm. When there are an even number of exam

126

Performance Fall Spring Fall Spring Average
measures (exams) 2004 2005 2005 2006
conflicts 234 225 397 529 346
4 in a day 0 0 0 0 0
4 consecutive 105 99 116 118 110
(including overnight)
3 in a day 332 471 374 434 403
3 consecutive 332 471 374 434 403
3 consecutive 845 877 1,030 813 891
(including overnight)
2 in a day 8,482 8,064 8,739 7,947 8,308
2 consecutive 5,206 4,481 5,280 4,450 4,854
2 consecutive 5,711 5,152 5,974 5,207 5,511
(including overnight)

Table 5.12: Summary of the proposed 7-day, 21-period exam schedule.

8:00TTH,
6:15F,

7:15MW

CR

3:30TTH
8:00MWF

10:10MWF

12:30TTH

COMM, 5:45MW,
6:15M, 6:15TH

2:00TTH

12:20MWF
3:35MWF,
4:00MW,
4:40MW

1:25MWF

CH
MTHSC2,

EX ST

5:00TTH,
6:15T,

6:30TTHACCT

PHYS,
MTHSC1,

6:15W

2:30MWF

9:05MWF
11:15MWF

11:00TTH9:30TTH

0

1,000

2,000

3,000

4,000

5,000

6,000

0 4 8 12 16 20

Exam Period

S
tu

de
nt

s

Figure 5.13: Proposed 7-day, 21-period exam schedule.

127

Performance Current Proposed Proposed
measures 21 period 20 period 21 period
(exams) 7 day 5 day 7 day
conflicts 374 346 346
4 in a day 0 16 0
4 consecutive 125 50 110
(including overnight)
3 in a day 341 1,023 403
3 consecutive 341 353 403
3 consecutive 848 655 891
(including overnight)
2 in a day 8,016 11,207 8,308
2 consecutive 5,534 4,311 4,854
2 consecutive 6,556 5,205 5,511
(including overnight)

Table 5.13: Comparison of current and proposed timetables.

periods each day of a timetable, this high-low, high-low property results in the number of

students sitting for exams each day to be distributed more evenly than when each day has

an odd number of periods. The number of exam periods per day may also affect other parts

of a timetable. In particular, if certain clusters are required to be mapped to specific exam

periods, problems may arise if the clusters represent to few or too many students. At CU,

evening course times are mapped to evening or weekend exam periods. The four periods

per day in the twenty-period schedule is convenient for this mapping because the evening

course times typically have lower enrollment, so the schedule can have the high-low high-

low property without any adjustment to the clustering. In the twenty-one period schedule,

which has three exam periods per day, we could not have this high-low, high-low property

without mapping some non-evening clusters to the evening exam periods. Because there are

more exam periods to which we can map evening clusters than there are evening clusters,

this was not a problem. However, it could be the case that clusterings have to be adjusted

in order to comply with policy restrictions.

Table 5.13 shows a comparison of the statistics on the current and proposed exam sched-

ules. In both proposed schedules, the number of conflicts and the number of two consecutive

exams are less than in the current schedule. The proposed twenty-period schedule has sig-

nificantly more occurrences of two and three exams in a day than either of the twenty-one

128

Block Performance Current Proposed Proposed
measures 21 period 20 period 21 period
(exams) 7 day 5 day 7 day

4 exam block 4 in a block 8 3 6
3 in a block 238 192 242
2 in a block 2,099 2,240 2,203

3 exam block 3 in a block 49 42 57
2 in a block 1,145 1,243 1,188

Table 5.14: Comparison of spacing for the current and proposed timetables.

period timetables. This is expected and it is due to eliminating two days from the schedule

and adding a fourth exam period to each day. Instead of an average of 8,400 exams per day

in the current twenty-one period schedule, there are an average of 11,700 exams per day in

the proposed twenty-period schedule. In the twenty-one period schedule, there is only one

way in which to have three exams per day—they must be consecutive. In the twenty-period

schedule, there are C4
3 = 4 ways in which to have three exams per day. Thus we would

expect the number of three exams in a day in the twenty-period timetable to be four times

the number in the twenty-one period timetable. It is exactly that compared to the current

timetables and less than that compared to the proposed twenty-one period timetable. In the

twenty-one period schedule there are C3
2 = 3 ways in which to have two exams in a day

while there are C4
2 = 6 ways in the twenty-period schedule. Thus, we would expect the

number of two exams in a day in the twenty-period timetable to be twice the number in the

twenty-one period timetable. In fact, we see that the number of two exams in a day in the

twenty-period schedule is close to 7/5 of the number in the current and proposed twenty-one

period timetable.

The numbers in Table 5.13 are somewhat misleading in that they do not show a standard

measure for the spread of the exams within the schedules. This is because two of the

schedules have three exams per day while the five-day schedule has four exams per day.

Table 5.14 shows the spread of the exams by considering blocks of exams in each schedule

and counting the number of occurrences of multiple exams. We consider exam blocks of

length three (three-exam blocks) and four (four-exam blocks) because these are the lengths

of exam days in the various schedules. To find the spread in four-exam blocks in the twenty-

one period, seven-day schedules, we compute the statistics on periods 1-4, 5-9, . . ., 17-20

129

and then again 2-5, 6-10, . . .,18-21. We average the two to get the numbers in Table 5.14.

Similarly, we take an average on three sets of periods for the eighteen period schedule. In

a similar manner we find the spread in three-exam blocks in the twenty-period schedule.

Table 5.14 shows that the proposed twenty-period schedule is spread out nearly as much

as the current and proposed twenty-one period schedules even though it has more students

on average in each exam period because. The proposed twenty-one period schedule has

approximately commensurate spread as the current schedule. The proposed schedule has

a dedicated conflict-resolution period, has the common exams nearer to the beginning of

the week, and has fewer exams on the first day of exam week than the current schedule.

Without these restrictions, the twenty-one period schedule could be the more spread out.

In summary, our timetabling algorithms have produced two alternative timetables of

varying length. Each timetable surpassed at least some of the performance measures of the

current timetable. Because our algorithms are straightforward, need very little run time,

and produce quality results in comparison to the current timetable, they are desirable for

creating reusable examination timetables.

130

Chapter 6

Conclusions

In this study we developed and presented procedures for modeling university popula-

tions, predicting course enrollments, allocating course seats to student groups, and timetabling

final examinations. We briefly review the problems and our contributions.

Problem 1: Modeling University Student Populations

Modeling the student population of a university involves recording the number and

characteristics of students in order to observe and predict changes in the population. We

presented our procedure for building university population models and a specific model in

Chapter 2. A main goal of this part of our study was to build a model for university en-

rollment that can be used for both long- and short-term projection. The results given in

Sections 2.3.3, 2.3.4, and 2.4 show that we met that goal. The university enrollment model

we presented uses an extended state space and the Markov property, rather than longitudinal

data, to model student populations. The error rates for our projections are within the criteria

we set, which reflects the error rates of variables exogenous to the model. The other main

goal of this part of our study was to design a procedure for creating university population

models. We met this goal in Section 2.3 where we described our procedure in detail, speci-

fying when alternate decisions can be made to form different university population models.

Testing the model’s predictions as more information becomes available, using the model to

develop strategies to adjust admission levels gradually in the face of changing retention and

graduation rates or desired population changes, and extending the model to other colleges

or universities are areas of further work.

Problem 2: Predicting Course Enrollments

Predicting course enrollment is an important part of building course schedules. We de-

scribed our procedure for creating adaptive course prediction models in Chapter 3. We used

student characteristics to identify groups of undergraduates whose course enrollment rates

are significantly different than the rest of the university population. Our model utilizes his-

torical enrollment rates and current information to predict course enrollment for the coming

semester. Our goal was to create models that make accurate predictions early in the course

scheduling process and that can be updated as more information becomes available. Section

3.4 presented results that show we met this goal. The error rates for our course enrollment

predictions were near or within the criteria we set. Areas for future work include continued

prediction and testing, extension to other departments and universities, and model refine-

ment as courses change.

Problem 3: Allocating Course Seats to Student Groups

Allocating course seats to specific student groups requires predicting the size of stu-

dent groups, estimating the number of course seats needed by each group, and holding and

releasing seats such that the correct number of seats are available to the specific groups.

We developed a system that addresses these problems in Chapter 4. The course prediction

model described in Chapter 3 aids in the system for allocating course seats to new students

during summer registration sessions. Our goals were to estimate seat need accurately and

develop a system that hedged our estimates without undermining the objective to give stu-

dents similar enrollment choices no matter when they register. In meeting these goals, we

addressed the concerns on how to estimate seat need each session, how to release seats

among multiple course sections, and how to predict seat shortage and surpluses in Section

4.4. Our results presented in Section 4.5 show that we met our goals. There is great need to

extend this work to other departments and universities.

Problem 4: Timetabling Final Examinations

In Chapter 5, we developed a two-phase heuristic procedure to build reusable final ex-

amination timetables. The first phase involves clustering course times into n groups, where

n is the number of exam periods. The objective of this phase is to minimize the number of

exam conflicts. We presented two distinct clustering heuristics for this phase: an established

hierarchical technique and a novel partitioning technique. The objective of the second phase

132

is to minimize consecutive exams. We presented two methods for accomplishing this goal:

formulating and solving the problem as a traveling salesman problem and formulating and

solving the problem as an integer linear program. We finish the heuristic procedure with a

local search for improved solutions.

Both the hierarchical and the PAC clustering algorithms produced relatively few con-

flicts when used on Clemson University data. We showed that the PAC algorithm achieves

the optimal solution in several cases, and both heuristics we developed are near optimal in

many cases. Both sequencing formulations performed well, but the STSP formulation had

significantly lower values for two evaluation criteria. We showed that the heuristic proce-

dure we developed yields timetables with fewer conflicts and fewer consecutive exams than

the current timetable at Clemson University. Results are given in Section 5.5.

133

BIBLIOGRAPHY

A, D. F.  N, C. W. 1981. Enrollment projection within a decision-making
framework. The Journal of Higher Education 52, 295–309.

B, K. R.  G, D. 1973. Variable-work models for predicting course
enrollments. Operations Research 21, 823–834.

B, N., L, A.,  W, R. T. 1992. Scheduling examinations to reduce
second-order conflicts. Computers and Operations Research 19, 353–361.

B, J. 2004. Essentials of Enrollment Management: Cases in the Field. AACRAO,
Washington, DC, USA.

B, P., B, P., F, J. J., L, L., L, C., L, J., M, F., 
W, A. 2007. Coin/or bonmin project. https://projects.coin-or.org/Bonmin.

B, P., B, L., C, A., C, G., G, I., L, C., L, J., L,
A., M, F., N.S, W, A. 2005. An algorithmic framework for convex
mixed integer nonlinear programs by ibm. IBM Research Report RC23771.

B, W. F. 1987. Forecasting older student enrollment: A cohort and participation rate
model. The Journal of Higher Education 58, 223–231.

B, D. 1979. New methods to color the vertices of a graph. Communications of the
ACM 22, 4, 251–256.

B, E. K., E, D. G., W, R. F. 1994. A university timetabling system based
on graph colouring and constraint manipulation. Journal of Research on Computing in
Education 27, 1, 1–18.

B, E. K.  P, S. 2002. Recent research directions in automated timetabling.
European Journal of Operational Research 140, 266–280.

C, L. H. 1975. A programming model for student enrollment planning. Journal of
the Australian Mathematical Society 19, 30–39.

C, M. W. 1986. A survey of practical applications of examination timetabling algo-
rithms. Operations Research 34, 193–202.

C, M. W., L, G.,  L, S. Y. 1996. Examination timetabling: Algorithmic
strategies and applications. Journal of the Operational Research Society 47, 373–383.

Concorde 2005. Concorde traveling saleman problem solver.
www.tsp.gatech.edu/concorde/index.html. Retrieved February 20, 2006.

CPLEX 2006. Cplex version 10.0. http://www.ilog.com/products/optimization/archive.cfm.

C, C. G. 1990. Matrices and Linear Transformations, 2 ed. Dover, New York.

C, J., M, M.,  M́, J. 1998. The neos server. IEEE Journal on Computa-
tional Science and Engineering 5, 68–75.

 W, D. 1985. An introduction to timetabling. European Journal of Operational
Research 19, 98–110.

D, E. 2001. The neos server 4.0 administrative guide. Technical Memorandum
ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Lab-
oratory.

D, M. J., K, J. M.,  T, J. F. 2004. Successful strategic planning. Jossey-
Bass, San Francisco, CA, USA.

E, P. 1995. Student tracking: new techniques, new demands. Jossey-Bass, San Fran-
cisco, CA, USA.

F, J. G.  S, D. R. 1983. A heuristic procedure for large-scale examination
scheduling problems. Congressus Numerantium 39, 399–409.

G, R. H.  K, M. V. 1993. Developing executive information systems for
higher education. Jossey-Bass, San Francisco, CA, USA.

G, W.  M́, J. 1997. Optimization environments and the neos server. In Approxi-
mation Theory and Optimization. Cambridge University Press, 167–182.

H, J. A. 1975. Clustering algorithms. Wiley, New York, NY, USA.

H, R. M. 1993. Predicting next year’s enrollment: Survival analysis of university
enrollment histories. In American Statistical Association, Social Statistical Section. Amer-
ican Mathematical Society, 143–148.

H, D. S. M, W. F. 1981. Planning models for colleges and universities. Stan-
ford University Press, Stanford, CA, USA.

K, R. M. 1974. Complexity of computation. In SIAM-AMS proceedings. American Math-
ematical Society, Providence, RI, USA.

K, L.  R, P. 1987. Statistical Data Analysis based on the L1 Norm.
Elsevier, North-Holland, Amsterdam, 405–416.

K, L.  R, P. 1990. Finding groups in data : an introduction to cluster
analysis. Wiley series in probability and mathematical statistics. Wiley, New York, NY,
USA.

K, V. G. 1995. Modeling and Analysis of Stochastic Systems. Chapman and Hall
Texts in Statistical Science Series. Chapman and Hall, London.

L, G.  D, S. 1984. Examination timetabling by computer. Computers and
Operations Research 11, 351–360.

L, D., B, R.,  S, D. 2006. Scheduling final exams at cornell univer-
sity. INFORMS 2006 Conference Presentation.

L, V.  C, R. 1991. A final exam-scheduling package. Journal of the Opera-
tional Research Society 42, 205–216.

136

M, K. T. 1973. A comparison of two personnel prediction models. Operations
Research 21, 810–822.

M, K. T.  O, R. M. 1970. A constant-work model for student attendance and
enrollment. Operations Research 18, 193–206.

MATLAB 2006. Matlab version 7.2. http://www.mathworks.com/products/matlab/.

M, N. K. 1981. The application of a graph coloring method to an examination scheduling
problem. Interfaces 11, 57–65.

M, P. A., B, L. D.,  S, J. 1999. Predicting the retention of university
students. Research in Higher Education 40, 355–371.

P, S.  B, E. 2004. University timetabling. In Handbook of scheduling:
algorithms, models, and performance analysis, J. Y. T. Leung, Ed. Chapman & Hall/CRC,
Boca Raton.

R, A. C. 1995. Methods of multivariate analysis. Wiley series in probability and
mathematical statistics. Wiley, New York, NY, USA.

R, M.  Z, H. 1993. SEM Anthology. AACRAO, Washington, DC, USA.

R, S. M. 2002. A First Course in Probability, 6th ed. Prentice Hall, Upper Saddle River,
New Jersey, USA.

S, C. D. 1979. Short-term enrollment forecasting for accurate budget planning. The
Journal of Higher Education 50, 323–333.

SAS/OR 2003. Sas/or version 9.1. http://www.sas.com/.

S, A. 1999. A survey of automated timetabling. Artificial Intelligence Review 13,
87–127.

S, C. F.  S, F. J. 1952. Techniques of forecasting university enrollment. The
Journal of Higher Education 23, 483–488+502–503.

S, R. A. 2000. Strategic Planning in Higher Education: Theory and Practice. CASE
Books.

S, J. D. L., B, E. K.,  P, S. 2004. Multiobjective metaheuristics
for scheduling and timetabling. In Metaheuristics for Multiobjective Optimisation,
X. Gandibleux, M. Sevaux, K. Sorensen, and V. T’kindt, Eds. Lecture Notes in Economics
and Mathematical Systems. Springer-Verlag, Berlin.

T, M. A. 2004. An examination of the influence of institutional context on student per-
sistence at 4-year colleges and universities: A multilevel approach. Research in Higher
Education 45, 673–699.

T’, V.  B, J.-C. 2002. Multicriteria Scheduling: Theory, Models, and Algo-
rithms. Springer-Verlag, Berlin.

W, W. C. 1980. A model for short-term institutional enrollment forecasting. The Journal
of Higher Education 51, 314–327.

137

W, D. 2001. Introduction to Graph Theory, 2 ed. Prentice-Hall, Upper Saddle River, NJ,
USA.

W, G.  C, P. W. 1979. Toward the construction of optimal examination timetables.
INFOR 17, 219–229.

W, L. A. 1998. Integer Programming. Wiley-Interscience Series in Discrete Mathe-
matics and Optimization. Wiley, New York, NY, USA.

138

	Clemson University
	TigerPrints
	8-2007

	Planning, Scheduling, and Timetabling in a University Setting
	Christine Kraft
	Recommended Citation

	Planning, Scheduling, and Timetabling in a University Setting

