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Abstract

Representation theoretic results of Schmidt suggest that one should be able to con-
struct a Saito-Kurokawa lifting that has mixed level, i.e., the level is paramodular at some
places and congruence level at other places. Adapting Schmidt’s proof we show that indeed
one can construct such a lifting using representation theory. The goal then becomes to con-
struct such a lifting classically as the more explicit nature of such a construction lends itself
nicely to arithmetic applications. To this end we obtain half of the classical construction by
giving the cuspidal lifting Gps : Jg ,(To(M)) — Sk (T'm([t]), generalizing the cuspidal lifting

of Ibukiyama and the cuspidal lifting of Gritsenko.
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Chapter 1

Introduction

From an arithmetic point of view, it is the Fourier series expansion that modular
forms possess that make them highly interesting complex functions to study. There are
ample examples of modular forms of degree n = 1, called elliptic modular forms, whose
Fourier coefficients are numbers of interest that show up in many parts of mathematics.
This thesis deals with modular forms of higher degree as developed by Siegel. In particular,
the focus is on degree 2 where the modular forms are holomorphic functions of three complex
variables that live on the symplectic group Sp,. These forms are known as Siegel modular
forms when they satisfy transformation properties with respect to arithmetic subgroups of
Sp4(Q). In Chapter 2, we recall the basic properties that these functions satisfy with an
emphasis on the Fourier development for any degree n.

One arithmetic family is the family of paramodular groups. In this case, the Siegel
modular forms satisfying transformation properties with respect to paramodular groups are
called paramodular forms. Historically, paramodular groups arised in geometry due to their
connection to abelian surfaces with non-principal polarization. They are not as prevalent
in the literature on Siegel modular forms as the discrete subgroups of Sp,(Z), however
interest in these groups has recently increased due to an extension to the degree 2 of the
Taniyama-Shimura-Weil conjecture for abelian surfaces by Brumer and Kramer known as

the paramodular conjecture ([15]). Chapter 3 starts with the geometrical connection with



the paramodular groups of any degree n, and then discusses the implication of the basic
properties of Siegel modular forms in Chapter 2 to the case of paramodular forms of degree
2.

While it is relatively easier to understand the significance of Fourier coefficients for
elliptic modular forms, it is usually harder to even compute Fourier coefficients for higher
degree modular forms. The reason is that these coefficients are indexed by matrices rather
than by integers. Instead, finding connections betweeen the higher degree modular forms
and elliptic modular forms proved to be fruitful. These connections, called liftings, are
linear mappings between the different spaces of modular forms that provide us with ways
to construct examples of higher degree modular forms and, most importantly, they provide
relations between the Fourier coefficients. Our focus will be on the Saito-Kurokawa liftings
relating elliptic modular forms to Siegel modular forms of degree 2.

Given a normalized eigenform f € So,_2(SLa(Z)), Saito and Kurokawa conjectured
in 1977 the existence of a cuspidal Siegel eigenform F' of weight x and level Sp,(Z) whose
Spinor L-function is given by L(s, F,spin) = ((s —k+1){(s — k+2)L(s, f). This conjecture
was later proven in a series of papers by Andrianov, Maass, Kohnen, and Zagier for the
classical set-up and by Piatetski-Shapiro in the language of automorphic forms. The fact
that the L-function of F' factors like this gives that F'is a cusp form that locally looks like
an Eisenstein series. In particular, one uses this to show that the Ramanujan-Petersson
conjecture fails on GSp, for general cuspidal automorphic forms.

The Saito-Kurokawa correspondence is a composition of two explicit isomorphisms

involving the space of Jacobi forms of index 1:

Sar—2(SLa(Z)) = JS 1 = S:(Spa(Z)).

The second isomorphism is the full level Maass lifting whose image is characterized by
the Maass subspace. In Chapter 5, we review the theory of Jacobi forms of degree 1. In

addition, we discuss the connections of Jacobi forms to other spaces of modular forms and



in particular the components of the Saito-Kurokawa lifting and its generalizations.

From a classical point of view, there are two explicit constructions that generalize
the classical full level Saito-Kurokawa lifting to a higher level. We have the congruence level
Saito-Kurokawa lifting

S5, (To(M)) = TS (Do(M)7) — S(T5 (M),

R,

where the second map is the Maass lifting V with level M > 1 recently proved by Ibukiyama
([31]). It takes a cuspidal Jacobi form of index 1 and level M to the space of cuspidal Siegel
modular forms of degree 2 with respect to the congruence subgroup F(()Q) (M) of Spy(Z).
Another generalization is the paramodular level Saito-Kurokawa lifting which is also a

composition of two linear maps. The second map
G Jor = Sk(I[t]),

called Gritsenko’s lifting, takes a cuspidal Jacobi form of index ¢ and full level to the space
of cuspidal paramodular forms of level ¢ ([27]).

In the last twenty years such lifted forms have been proven to be very powerful
tools to study a host of problems in arithmetic, analysis, and geometry. For instance, a
recent conjecture of Brumer and Kramer states that p-adic congruences between a Saito-
Kurokawa lift of paramodular level and a non-lifted form should correspond to a p-torsion
point on the abelian surface associated to the non-lifted form ([15]). Paramodular Saito-
Kurokawa lifts have been used to study the rank of p-adic Selmer groups of 2-dimensional
Galois representations by Skinner and Urban ([82]). One can also use Saito-Kurokawa
lifts of congruence level to study p-torsion in p-adic Selmer groups of 2-dimensional Galois
representations ([1]). As such, there are numerous reasons why one would like to generalize
the known class of liftings.

Using representation theoretic methods, Schmidt ([74]) explained that Saito-Kurokawa

lifts are predicted by Langlands functoriality. He gives an alternate and unified representa-



tion theoretic construction of each of the classical Saito-Kurokawa lifts. His construction is
local in nature that allows us in Chapter 7 to construct Saito-Kurokawa lifts with a congru-
ence level and with a paramodular level together with a factorization of their L-functions.
We call such Saito-Kurokawa lifts mixed level lifts. The degree 2 Siegel modular forms
are in this case mixed level Siegel modular forms satisfying transformation properties with
respect to the mixed level paramodular group I'js[t] defined in Chapter 6.

One disadvantage of the representation theoretic approach is that it does not ex-
plicitly describe the linear mappings between the spaces of modular forms and hence does
not give a concrete relation between the Fourier coefficients. A remedy to this is to use
the lengthier classical approach of constructing the liftings explicitly by defining a linear
mapping L between the spaces and show that the lifted form, say L(f) satisfy the properties
defining a cuspidal modular form in the degree 2 setting.

This brings up to the main chapter of this thesis, Chapter 6, where we general-
ize the theory of Maass-Gritsenko cuspidal liftings and construct a mixed level cuspidal
lifting Gaq - J&t(FO(M)J) — Sk(T'ar[t]) that is an injective linear map into the space of
cuspidal mixed level forms. When M = 1, our lifting Guq recovers Gristenko’s lifting G,
and when t = 1 it gives the Maass lifting with level M. The proof consists of proving the
holomorphicity of the lift, its modularity with respect to I'p/[¢] and finally that the lift is
a cuspidal form. While proving modularity, we also characterize the modularity proofs of
the Maass-Gritsenko lifts by presenting a general framework that all modularity proofs of
these liftings fit into. We find out that this general framework is basically dictated by the
theory of maximal parabolic subgroups of highest type and by presenting generators of the
level in degree 2 using the same type maximal parabolic subgroups. In this framework, we
reprove the modularity of Ibukiyama’s Maass lifting by presenting generators of the Hecke
congruence subgroup of degree 2 in terms of its maximal parabolic subgroup. To prove the
modularity of our lift, we also give generators for the mixed level I'y/[t]. In addition, based
on the framework characterizing the theory of Maass-Gritsenko lifts and mixed level lifts,

we present ingredients of the modularity of any lifting from the space of Jacobi forms of



any integral index with respect to congruence subgroups of SLa(Z).

While cuspidality in case of degree 1 is easier to establish as the cusps of a congruence
subgroup I" of SLy(Z) are just the zero degree cusps corresponding to points on the rational
boudary QU {co} of the upper half plane h! fixed by the action of the parabolic elements in
I", higher degree cusps have a more complicated structure. To understand this structure, we
describe in Chapter 4 the Satake compactification of Siegel varieties "\ ™. The theory of
compactification of Siegel varieties is in turn governed by the theory of parabolic subgroups
of general linear algebraic groups. We give a brief review of this in Chapter 4. For the
Satake compactification of I'\ h™, we need the structure of the n representatives of conjugacy
classes of maximal parabolic subgroups of Spy,, (Q), called the standard maximal parabolic
subgroups. For each degree 0 < r < n—1, we have the standard maximal parabolic subgroup
Ch.r(Q) of type (n,r) and correspondingly we have a standard rational boundary component
(cusp) of degree r associated to it. If the level T is different than the Siegel modular group
Sp2,(Z), it turns out the number of the associated rational boundary components of each
degree r is equal to the cardinality of the I'-conjugacy classes of parabolic subgroups C,, ».(Q)
in Sp,,, (Q). This cardinality is a finite number according to results from Borel’s reduction
theory of arithmetic groups as reviewed in the Appendix. Constructing a more global Siegel
® operator whose components are linear operators for each rational boundary allows us to
make more sense of the definition of cusp forms found in the literature and which is given
in Chapter 2 and in Chapter 3. Most importantly, we get that when proving a form is a
cusp form, it suffices to show it vanishes at the maximal degree cusps which correspond
bijectively to the double cosets I'\ Sp,,(Q)/Cp n—1(Q), where Cy, ,—1(Q) is the maximal
type standard maximal parabolic subgroup of Sp,,,(Q). Therefore, in our case, the maximal
degree cusps that are needed to be computed to prove the cuspidality of the lifting Gys are
representatives of the double cosets space I'p/[t] \ Sps(Q)/C2.1(Q). Using the structure of
the cusps obtained for the level I', where I represents F(()2) (M), T[t] or T'ps[t], we characterize
the cuspidality of any Siegel modular form of degree 2 of level I' (not necesarily a lift) using

its Fourier-Jacobi expansion.



Chapter 2

Siegel Modular Forms

The roots of the theory of modular functions of many variables go back to the
nineteenth century. In the same manner as the theory of elliptic functions leads to elliptic
modular forms, the theory of compact Riemann surfaces and abelian functions leads to
the theory of modular forms of several variables. These forms arise as examples of theta
functions. It was Siegel in 1935 in connection with his investigations of the theory of
quadratic forms who provided a systematic function theoretic foundation of the theory of
modular forms of many variables. These forms were then given the name Siegel modular
forms in his honor. They live on the Siegel upper half space of genus n > 1, a generalization
of the upper half plane of genus 1. Working with abelian varieties in place of elliptic
curves, Siegel modular forms provide the right setting to generalize the Taniyama-Shimura
conjecture. The role played by the Siegel upper half plane to Siegel modular forms is the
same role played by the upper half plane to elliptic modular forms.

As a generalization of the linear fractional transformation group SLy(Z) acting on
the upper half plane, there is the notion of an arithmetic group I' as a discrete subgroup
of a real Lie group G = Aut(D) of biholomorphic automorphisms of a Hermitian bounded
symmetric domain D. The quotient space I' \ D is a complex analytic space. In this
chapter we restrict our presentation to D being the Siegel upper half plane. We recall basic

definitions and properties of symplectic matrices and Siegel modular forms. We generously



borrow from the standard references [4], [5], and [39].

2.1 Basics of Siegel Modular Forms

2.1.1 The Real Symplectic group

Consider a finite dimensional real vector space and a non-degenerate skew symmetric

bilinear form A of degree 2n. The real automorphism group associated to A is defined as

Sp(A4,R) = {g € GL,(R)|'gAg = A}.

These symplectic groups in general are known as paramodular groups. In this chapter, we
deal with the standard skew symmetric bilinear form which we will denote by J,, and in
Chapter 3 we will consider a more general bilinear form leading to the so-called paramodular
groups.

The standard skew symmetric bilinear form J,, is given by the square matrix of order

where 1,, is the n X n identity matrix and 0, is the n x n zero matrix. Observe that

Jol=—7J,="1,.

n

When n = 2 we usually denote Jo by J.

Definition 2.1.1. A matrix g € Mats, is said to be symplectic if it belongs to the following
group:
Gn = GSpy, = {9 € GLan 1 ‘gJn g = p1n(9) Jn, in(g) € GL1}.

The nonzero scalar p,(g) is called the multiplier of g.

One can see that G, is a subgroup of GLg, due to the fact that u, is a group

7



homomorphism called the multiplier homomoprhism.

Definition 2.1.2. Define the general real positive symplectic group of genus n or the group
of symplectic similitudes consisting of all real symplectic matrices of order 2n with positive

mutlipliers:

GSp4,(R) = {g € GLon(R) : ‘gJn g = pn(g) In, ptn(g) > 0}

The real symplectic group of genus n

Spa,, (R) = ker(pn),

is the automorphism group of the bilinear form J,.

A, B
Given an element g € GSp,,(R), we will often write g = " 7" with Ay, By, Cn, Dy €

Cn, Dy,
Mat, (R). If n = 2 we will often drop it from the notation. The following proposition char-

acterizes elements in Sp,,,(R) and provides the so called symplectic relations.

A, B
Proposition 2.1.3. 1. The matriz g = M e Sp,y,, (R) if and only if the follow-
C

ing relations hold
tAnDn _tCan = 1n7 tAnCn =" CnAn7 tBnDn =t Dan

In particular, Spy(R) = SLy(R).

2. The transpose of g, 'g = Jn g 1 I, is symplectic and hence

n

‘A, D, -'B,C, =1,, 'A,B,="'B,A,, C.D,=D.C,.



3. The inverse of g is given by
g_l = ng thn =

For n = 1, symplecticity just means det(g) = 1. In general, one can derive from the
relations above that for an arbitrary g € Sps,(R),det(g)?> = 1 and hence detg = +1. In

fact we will see below that det(g) = 1 is true but the converse does not hold for n > 1.

Proposition 2.1.4 ([4], Theorem 1.2.2). The real symplectic group Sps,(R) is generated

by the following elements:

I, S
1. T(S)= " where S is symmetric in Mat, (R),

-t 0,
2. U(V)= where V € GL,,(R),

Corollary 2.1.5. If g € Sp,,,(R), then det(g) = 1.

Proof. Since all generators of Spy,(R) given in Proposition 2.1.4 have determinant 1, the

conclusion follows immediately. O

2.1.2 The Siegel Upper Half Space

Let n > 1 be an integer.

Definition 2.1.6. The Siegel upper half space of genus n consists of all symmetric complex

n X n matrices whose imaginary part is positive definite, i.e.,

b ={Z e Mat,(C): Z=2,Z=X+1iY,Y =Im(Z) > 0}



where X,Y € Mat,(R) are symmetric real matrices of size n and ¥ > 0 means that

‘aY a > 0 for all vectors o € R™, o # 0.

Definition 2.1.7. A convex cone C in R™ is a convex set such that whenever z lies in C,

so does the entire ray from the origin to z. It is equivalent to

C={zeR"tx € A for all t>0}.

Proposition 2.1.8. Consider the subspace

S, ={Y € Mat,,(R): v =Y}

of symmetric matrices in Mat,(R). The imaginary part of the points Z € §™ form the
subspace

P,={YeS,:Y >0

. n(n+1) . . .
of S, in R™ 2. Then P, is a convex cone with vertex at the origin, called the cone of

positive definite matrices or the cone of positive definite quadratic forms in R™ 2 .

Proof. Let Y7,Y2 > 0 be two positive matrices and let A € R such that 0 < A < 1. We then

have AY; + (1 — A\)Y3 > 0. Hence

P, ={Y € Mat,(R): ¥ =Y,V >0}

. n(n+1) . . . . .
is a convex subspace of R~ 2 . Moreover, the ray originating from the point 0 and passing

through any point y € P, lies completely in P,. Therefore, P, is a convex cone with vertex

at the origin. 0

Proposition 2.1.9. The Siegel upper half space is an w dimensional complex convex

domain.

n(n+1)

Proof. We sketch a proof of this result. We first indicate that it is a subset of C™ 2 .

n(n+1)
2

Then we show it is a convex subspace of C and then lastly we indicate why it is an

10



open subset. All of the assertions made conclude the assertion that the Sigel upper half

. .. n(n+1) .. .
plane is a complex convex domain in C~ 2. Writing Z = (zx) = (xg + iyx) where

1 <k <1< n, and considering the independent entries zy; (k < 1), h” becomes a subset of

n(n+1) . . i i n(n+1) . . .
C~ =2 . Proposition 2.1.8 implies that ™ is a convex subset of C™ 2 and in particular it

is simply connected. For each Z € h", Z € GL,(C) and —Z~! € h". Hence h" is an open

submanifold of the % dimensional complex Euclidean space.

2.1.3 The Action of the Symplectic Group

Similar to the one variable case where PSLy(R) = PSpy(R) is the group of biholo-
morphic automorphisms of the upper half plane h' due to the action of SLa(R) on h!, we

have the following.

Proposition 2.1.10. The real symplectic group Sps, (R) acts on §™ as a group of biholo-

morphic automorphisms. This action is given by

A, B, X
g= L Z v gZ = (AnZ + Bp)(CoZ + Dy) 7Y, (2.1)
C. D,

for Z e p™.

In order to verify this, one has to check that the mapping (2.1) is well defined (i.e.
(CnZ + D,,) is invertible), that it maps the Siegel upper half space to itself and that it

satisfies

(9192)Z = g1(927), 1oy Z = Z.

For a proof, we refer to [5], Lemmas 1.3 and 1.4.

S

1
The elements of the form | in the generators of Sp,,, (R) correspond to the
On 1n
translation transformation Z — Z + S in the Siegel upper half space h™. The elements of

11



On

the form correspond to the dilation Z —!UZU in the Siegel upper half space
0, U!
0, 1,
h". The element J, = corresponds to the involution Z — —Z~! in the Siegel
-1, 0,

upper half space h.
As a consequence of the action of the real symplectic group Sp,,,(R) on h”, we obtain

that for a fixed g € Spy,,(R) the map

h" — h", 4w gZ (2.2)

is biholomorphic. Assigning for each g € Sp,,(R) the automorphism (2.2) we obtain a
group homomorphism

Spy, (R) — Aut(h™). (2.3)

Remark 2.1.11. Two symplectic Matrices g, ¢’ € Sp,,,(R) have the same action on h™ if

and only if g = £¢'.

Proof. To prove this remark it suffices to show the kernel of the homomorphism (2.3) is

{#12,}. This is clearly seen from the definition of the action

gz =7

for Z € h™, which is equivalent to

AnZ + By = Z(CoZ + Dy,).

By specializing to Z = z1,,, we obtain

A, = Dy, By, = Cp, = Op.

This implies that A,Z = ZA,, and consequently A, = al,,. It follows from the symplectic

12



relations that a® = 1, which means that A4, = D,, = +1,,. ]
This remark shows that the kernel of the homomorphism (2.3) is {#19,}. It can be
also shown that this homomorphism is surjective ([39], page 3) and hence we obtain that

Aut(h") = Spy, (R)/{£12n}

2.1.4 The Siegel Upper Half Space Revisited

Definition 2.1.12. A domain is called homogeneous if the group of biholomorphic auto-

morphisms acts transitively.
Proposition 2.1.13. The Siegel upper half space h™ is a homogeneous space.

Proof. The proof depends on the crucial fact that every point Z = X + Y € h” is of the
form gil, with g € Sp,,,(R). Since Y > 0, we can write Y =! AA with A € GL,(R). Then

we have
1, X A 0
Z=" " Gi1y)
0, 1,/ \0, 47!
A B
It follows that the matrix g = with B = X!A~! is symplectic. O
0, ‘A1

Lemma 2.1.14 ([4], Lemma 1.2.5). Let

K ={g € Spy,,(R) : gil,, = il,}

be the stabilizer of ily in Spy, (R). It is given by

A B
€ Sp2n (R)
-B A

13



A B
The mapping — A+ iB is an isomorphism of K onto the unitary group of

-B A
order n. In particular K is compact.

Proposition 2.1.13 enables us the following identification of real manifolds

b" = Spy, (R)/K.

Proposition 2.1.15. The mapping g — gil, defines a one to one correspondence Spy,,(R)/K —
h™ which is compatible with the actions of the group Sps,, (R), where on the left side the group

acts by multiplication from the left.

Definition 2.1.16. Let n be a positive integer. The unit disk of degree n is defined as

D, = {W € Mat,(C)|'W = W,1 — WW > 0}.

It is a generalization of the unit disk to several complex variables. It is a bounded domain

. n(n+tl) . . .
in C™ 2 and is related to h™ by a generalized Cayley transformation.

Proposition 2.1.17 ([39], § 1, Proposition 2). The Cayley transformation

l:5" — D,
Z = W:=1U02)=(Z—-il)(Z+il)~}

maps h™ biholomorphically onto ©,,. The inverse of this map is

Z=1""W)=i(1+W)1-w)"L

By this Cayley transformation, the Siegel upper half space h™ is realized as a
bounded domain. This bounded realization by considering the generalized unit disk model
of the Siegel upper half plane has geometrical advantages which will be seen when we later

look at the compactification of the Siegel upper half space.
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Definition 2.1.18. A domain is called symmetric if to each point there exists an involution

in the group of biholomorphic automorphisms with the given point as a single fixed point.

Cartan [17] classified the bounded symmetric domains and showed that each bounded

symmetric domain is homogeneous. The unit disk of degree n, ©,, is one of Cartan’s main

types.

Proposition 2.1.19. The space h™ is a moncompact Hermitian symmetric space in the

sense of Cartan.

Proof. The involution

anbn%hn

corresponding to the element J,, in Sp,,,(R) which sends Z to —Z~! has il,, as an isolated
fixed point. As the real symplectic group Sps, (R) acts transitively, we obtain the same

property for any other point of h”. O

There exists an element of volume on h™ which is invariant under the group Sp,,,(R).

Before we present this volume element we need the following two lemmas.

Lemma 2.1.20 ([4], Lemma 1.2.7). Let

dZ =dXdY = || dawdyr, (Z=X+iY = (zr) = (@1 + igr))
1<k<i<n

be the Fuclidean element of volume on h™. Then for each matriz g = € Sp,y,,(R),

the following relation holds:
dgZ = |det (CZ 4 D)|~?"2dZ.

Lemma 2.1.21 ([4], Lemma 1.2.8). Let 2/ = X' +Y' = gZ with Z = X +iY and

15



A B
g= € Spa,(R). Then,
D

Y'=CZ+D)'Y(CZ+ D)™

in particular,

det Y' = |det (CZ + D)| 2 det Y.

We can now define the symplectic volume element of h.

Proposition 2.1.22 ([4], Proposition 1.2.9). Let d*Z be the element of volume on h™ given

by

d*Z = (det Y)_n_le = (det ykl)_n_l H dxidy
1<k<I<n

with Z = X +1iY = (zr) = (xg1) + i(yrr) € b™. Then d*Z is invariant under all symplectic

transformations on h™, i.e.
d*g(Z) =d"Z (g € Spy,(R)).

2.1.5 The Siegel Modular Group

Definition 2.1.23. A subgroup G of the topological group Sps,(R) is called discrete if
there exists a neighborhood U of the unit element 1s, such that no other element of G is

contained in U.

Definition 2.1.24. The symplectic group with coefficients in Z, Sps,(Z), is called the

Siegel modular group.

Proposition 2.1.25 ([4], Proposition 1.3.7.). Let v € GSp,,,(Q) be a symplectic matriz of

order 2n with entries in Q. Then there exists a matriz g € Spy,,(Z) such that

A B
97 =
0, D

16



Theorem 2.1.26. Let I'™ be the subgroup of Sps,,(Z) generated by the following matrices:

1
.| where S is symmetric in Mato, (Z),
O 1n
U oo,
2. where U € GLap(Z) with det(U) = £1,
—1
0, U
0 1
. I, = " "
-1, Oy

Then the Siegel modular group Spe,,(Z) is equal to T™.

Proof. We prove this theorem using Proposition 2.1.25. Let « be in Sp,,,(Z). Then there

exists a matrix g € I'" such that

Since ' is symplectic, it follows that ‘AD = 1, and ‘BD = 'DB. Since 7/ is integral, it
follows that A, D € GL,,(Z) and S = BD~! = {BD™1) is a symmetric matrix with integral

entries. Thus v/ = T(S)U(D), and v = g~ 14 € T™. O

Definition 2.1.27. Let M > 1. The kernel of the natural projection homomorphism
(mod M)
Lon (M) := ker (Spy,(Z) — Spa,(Z/MZ))

is called the principal congruence subgroup of level M. It is a normal subgroup of Sp,,,(Z)

of finite index.

Definition 2.1.28. A subgroup

is called a congruence subgroup if it contains a principal congruence subgroup I'y,, (M) C T’

as a subgroup of finite index.

17



The following is true only in the case n > 1.

Theorem 2.1.29 ([10], Theorem 1). Fach subgroup I' C Sp,,,(Z) of finite index is a con-

gruence subgroup.

A congruence subgroup that we shall make use of in this thesis is the generalized

Hecke group defined by

Iy’ (M):=<g= g € Spy,(2)|Cp, =0 (mod M)
n Dn

Definition 2.1.30. A matrix g € Sp,,,(R) is called a projectively rational symplectic matrix

if there exists a number ¢ # 0 such that tg has rational entries.

We now define commensurable subgroups of the real symplectic group as defined in

[22], Chapter II, Definition 6.3.

Definition 2.1.31. A subgroup G of Sp,,(R) is commensurable with Spy,, (Z) if
1. Every element g € G is projectively rational.
2. The intersection G N Spy,,(Z) is of finite index in both G and Sps,,(Z).

We will refer to such groups as arithmetic groups.

Important examples of arithmetic groups are the congruence subgroups of Sps,,(Z).
This definition shows that each arithmetic group is a discrete subgroup in Sp,,, (R). There-
fore, besides the Siegel modular group Sp,,,(Z) and its congruence subgroups, examples of
discrete subgroups are subgroups G of the real symplectic group Sp,,,(R) commensurable

with Spy,(Z).

Definition 2.1.32. A subgroup G of Sp,,, (R) acts properly discontinuously on h™ if each
orbit

G(Z):={9Z:9€ G}
of each point Z € h™ has no accumulation point in h™.

18



In particular, the stabilizer

Gy :={9€eG:9Z=7}

of a point Z € h" is finite. Moreover, for any Z € h” there exists a neighborhood U of Z
such that

{gGGgUﬂU#V)}:GZ

Proposition 2.1.33 ([39], § 3, Proposition 1). Let G be any subgroup of Sps,(R). Then G

acts properly discontinuously on h™ if and only if G is discrete.

Proof. 1t is not hard to show that discontinuity implies discreteness. The other direction

follows from Proposition 2.1.15 and the following general fact. 0

Lemma 2.1.34. Let X be a homogeneous space G/K for a real Lie group G and a compact

subgroup K. Then any discrete subgroup of G acts properly discontinuously on X.

Lemma 2.1.34 implies that each of the Siegel modular group Sp,,, (Z), its congruence
subroups, and any group G commensurable with Sp,,, (Z) acts properly discontinuously on
the Siegel upper half plane h™. When n = 1, this goes back to an old result of Poincare.
Discrete subgroup of SLy(R) are called Fuchsian groups.

In this thesis, we will be dealing with automorphic froms for subgroups I' of the
symplectic group Spy,,(R). These are holomorphic functions on the Siegel upper half plane
satisfying functional equations connecting its values at points of each I'-orbit on h™ given
by

IZ={yZlyeT} (Zeb")

Such functions are uniquely determined by their restriction to any subset of h” that meets
each I'-orbit on h™. Such subsets are called fundamental domains which are, roughly speak-
ing, irreducible complete sets of representatives for the orbits of the underlying group action.

Here we recall more formally the definition of a fundamental domain:
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Definition 2.1.35. A closed subset D of a topological space X is called a fundamental
domain for a discrete transformation group I' acting on X if it meets each of the I'-orbits

'z = {yz|y € I'} with z € X and has no distinct inner points belonging to the same orbit.

It follows that X can be decomposed in the following way
X =UyeryryD T'={yeTl|yz =, for allz € X}

such that its components pairwise have no common inner points.

In general fundamental domains need not exist and if they exist their construction
is very difficult. Siegel constructed a fundamental domain for the action of Spy,(Z) for all
n that is called the Siegel fundamental domain. It is denoted by F;, and reduces for n =1
to the well known standard fundamental domain in the upper half plane. For more general
arithmetic groups acting on bounded symmetric domains, the existence of fundamental
domains is due to Borel ([23]).

We briefly recall the main ideas in the construction of a fundamental domain for
the n = 1 case. The imaginary part of a point z = = + iy € h! is called the height of z and

is denoted by h(z). Lemma 2.1.21 implies that

5 a b
h(gz) = lcz+d|""h(z), g= € SLy(Z).
c d

Because for a fixed z the following inequality
ez +d|? = (cx +d)* + (ey)? < 1

has finitely many solutions in integers c, d, this implies that on each orbit, the height takes
only finitely many values greater than a fixed one. Thus, each SLy(Z)z orbit on h! contains
points of maximal height. These points are characterized by the inequalities |cz + d| > 1

where (¢, d) runs over the set of second rows of all matrices in SLy(Z) which is equivalent
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to say (¢, d) runs over all pairs of coprime integers. The translations z — z+b, where b € Z
do not change the height and hence can be chosen so that |z 4+ b| < 1/2. This shows that

each SLy(Z)-orbit on h' meets the set

Fl={s=z+iyeh' |z <1/2|cz+d|>1, ¢,d€Z and gcd(c,d) =1}.

In fact, this set F| can be defined by a finite number of inequalities (see [4], page 44) and

which turns out to be equal to the set

Fi={z=a+iyech' :|z]<1/2,|z| = 2® +4* > 1}

which is the well-known fundamental domain for SL2(Z) on .

The construction of a fundamental domain for Sp,,,(Z) for arbitrary n is similar to
the case n = 1 which is based on the following idea: each orbit of Spy, (Z) on h™ contains
points Z = X + Y of maximal height h(Z) = detY. Better representatives are obtained
by applying transformations of Sp,,,(Z) that do not change the height. In the n = 1 case,
the only such transformations are the translations z — z + b with b € Z; but when n > 1,
besides the translations Z +— Z + B where B is symmetric in Mat, (Z) there are also
mappings Z — UZU with U € GL,(Z).

In general, if we consider the subgroup

v,
U(V) € Spy,(R)|U(V) = ,V € GL,(R)
0, V
of Sp,,,(R), which is canonically isomorphic to GL,(R), then the action of Sp,, (R) on h”

induces the action of GL,,(R) on the cone of real positive definite matirces of order n,

P, = {Y € Mat,(R)|'Y =Y,Y > 0}
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to which the imaginary parts of elements Z € h™ belong. This action is given by

GL.(R) x P, — P,

(V,Y) = WYV.

This discussion shows that there is a connection between the action of Sp,, (R)
on h™ and the action of GL,(R) on P,. The same relation holds for arithmetically defined
subgroups of Spy,,(R) and GL, (R), respectively. For instance, we take Sp,,,(Z) and GL,,(Z).
We call GL,,(Z), the unimodular group U, of degree n. It consists of all n-rowed matrices
u with integral entries and det u = £1, called unimodular matrices. Siegel’s construction of
a fundamental domain for the action of Spy,,(Z) on h™ is based on the Minkowski reduction
theory of positive definite quadratic forms. This theory, which is concerned with the action
of GL,(Z) on P,, is used to determine a fundamental domain for the action of U, on the
cone of real positive definite matrices P,. The idea is based on finding a nice reduced
representative UY U of the orbit GL,(Z)Y = {VYV;V € GL,(Z)} of each point Y € h™.
This representative is found by determining U column by column using certain (see [39]
page 12 or [4] page 46) minimization conditions. For the full details, the reader can consult
the original reference [81], Section VI. The fundamental domain for the action of U, on P,

turns out to be the following set R,,, called Minkowski’s reduced domain.

Definition 2.1.36 ([39], § 2, Definition 1). Minkowski’s reduced domain is the set

R, ={Y € P,|Y satisfying 1) and 2) }

where

1. Y g > ypr, 1 < k < n, for all integral g = (g;) € Z" where g1, g2, . . ., gn are relatively

prime.

2. Yppt1 20,1 <k<n—1.
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Now to construct a fundamental domain for the action of Sp,,,(Z) on h”, we first

choose representatives Z of Spay(Z)-orbits satisfying the inequalities |det CZ 4+ D| > 1,

A B
where (C, D) runs over the set of second rows of all matrices € Span(Z). Such a

C D

pair of matrices is called coprime symmetric pair. We now briefly sketch why it is possible
to find such representatives.
Analogous to the case n = 1, we call det Y the height of the point Z in h". Lemma

2.1.21 says that the height satisfies
) A B
hgZ) = |detCZ + D|"h(Z), g = € Span(Z),
C D

and that for every g € Span(Z), h(Z) > h(gZ) is equivalent to the condition | det CZ + D| >
1 where (C, D) is the second raw of the matrix g. For a fixed Z € h”, it turns out (see
[4], page 57) that the inequality |det CZ + D| < 1 has only finitely many solutions in
non-equivalent coprime symmetric pairs (C, D). This implies that the functions h(gZ) on
Sp,y,,(Z) takes only finitely many different values greater than h(Z) and that each Sps,, (Z)-
orbit contains a point Z of maximal height. This point is characterized by the inequality

|det CZ + D| > 1 for every coprime symmetric pair (C, D). In addition, the height remains

U Stu-!
unchanged by applying transformations of Sp,,,(Z) of the form where U €

0, U
GL,(Z) and S € Mat,(Z) is a symmetric matrix. This allows one (see [39], page 29) to

obtain a representative Z whose imaginary part Y is in R,,, the Minkowski reduced domain.

Theorem 2.1.37 ([5], Theorem 1.16). Let F,, be the subset of h™ consisting of those Z =

X +1iY € §™ which statisfy the following conditions:
1. |det CZ + D| > 1 for all coprime symmetric pairs (C, D) of matrices of order n;
2.'Y € R, where Ry, is the Minkowsi reduced domain;
8. X €Xn={X= (o), X=X:|on| <3,1<klI<n)}
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Then F, is a fundamental domain for the action of Spy,(Z) on h™.

Corollary 2.1.38 ([5], page 16). If Z = X +iY € F,,, then
Y >b,l, and Tr(Y 1) < nb,,

where by, is a positive constant depending only on n, and Tr denotes the trace.

It follows from Corollary 2.1.38 that the fundamental domain is closed in the space
of all complex symmetric matrices. Siegel proved that F}, is connected and that its boundary
consists of a finite number of algebraic hypersurfaces. The images of F,, under the Siegel
modular group cover h™ without gaps. The domain F}, has only finitely many neighbors and
each compact subset of h™ is covered by finitely many images of F,. It is not compact, since
iA1l, belongs to F,, for any arbitrary A > 1. But as an another consequence of Corollary
2.1.38, it can be shown that the volume of the fundamental domain F}, with respect to the
invariant symplectic element of volume is finite ([5], page 16). In fact, Siegel calculated

precisely its volume:
n

vol F,, = 2x—n(nt1)/ H — 1)I¢(2k).

Fundamental domains also exist for congruence subgroups of Spy,(Z). Let I" be a

subgroup of finite index n in Spy,, (Z). We set
I’ = T U (—1o,)T.

Then, I is again a subgroup of Sp,,,(Z).

Theorem 2.1.39 ([5], Theorem 1.19). Each subgroup of the symplectic group Sps,(R) of
the formT9 = g~ 'T'g, where T is a subgroup of finite index in Sps,,(Z) and g is a projectiveliy

rational subgroup of Spy,(R), has a fundamental domain F(I'?) on h™ given by

F(IY) = U'yGF’\F(g_l'Y)Fn,
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where F,, is a fundamental domain for Sps, (Z), and 7y ranges over a system of representa-

tives of different left cosets of I' modulo T”.

Proposition 2.1.40. Let I' C Spy,(Z) be a subgroup of finite index. Let F(I') be a funda-

mental domain for I' on b™. Then the volume

vol(F(T)) = /F " a2z,

does not depend on the choice of fundamental domain and is finite.

Proof. Proposition 2.1.22 shows that vol(F(T")) is independent of the choice of F(T"). Taking
F(T) = U 1viF,, where {v; : : = 1,...n} is a set of representatives for the left cosets of

Sps,(Z) modulo I as defined above, we then have

1d'n

vol(F(T")) = Z::/ d*7 = i/n d* v Z

=> / d*Z = [Sp,(Z) : T'] vol(F},).
1=1 n
This finishes the proof since we know vol(F},) is finite. O

2.2 Siegel Modular Forms

Definition 2.2.1 ([4], Lemma 1.4.1). Let S be a semigroup acting on a set H. This action

is given by g : h +— g(h) for g € S and h € H. A mapping
¢p:SxH—-T
where T is a group, is called a T-valued factor of automorphy of S on H if it satisfies

#(g192,h) = ¢(g1,92(h))d(g2, h)

for all g1,92 € S and h € H.
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Lemma 2.2.2. Let ¢ : S x H = T be a T-valued factor of automorphy of S on H and
let F': H— V, where V is a left T—module, and g € S, be a mapping, then the mapping

Flg: H—V given by

(Flg)(h) = (Flsg)(h) = 6(g,h) " F(g(h)
satisfies
Flgilg2 = Flg192
for all g1,g99 € S.

Proof. 1t follows immediately from the definition that

(Flg1]g2)(h) = ¢(g2, h) " (Flg1)(g2(h))
= ¢(g2,h) " d(g1, 92(h)) "' F(g1(g2h))
= ¢(g192,h) " F(g192(h))

= (Flg192)(h).

O
In our treatment of Siegel modular forms of integral weight «,
j(v,Z) =det (CZ + D)"*
A B
where v = € Spy, (R), is a C*-valued factor of automorphy of the real symplectic
C D

group Sp,,,(R) on the Siegel upper half plane h™. The slash operator of integral weight

action on complex valued functions F' on h”, given by

F = Floy: (Flay)(2) = det (CZ + D)""F(v2),
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sends holomorphic functions to holomorphic functions. By the lemma above, we have the

relations

Flamiv2 = (Flem1)|e2 (2.4)

for every v1,72 € Spy, (R).

We are now ready to define a Siegel modular form for a general arithmetic group.

Definition 2.2.3. A character x of a group G is a group homomorphism of G into the

group of roots of unity with kernel of finite index in G.

Definition 2.2.4. Let I' be an arithmetic group, x a character of I' and x an integer. A
complex valued function F' on h” is called a Siegel modular form of degree n, weight x and

character x for the group I' if it satisfies the following conditions:

1. F is holomorphic on §7,

2. for every matrix v € I' we have that

Floy = x()F,

3. for every projective rational symplectic matrix g € Sp,,(R), F|,g is bounded in subsets

of h™ of the form h™(e) = {Z = X +iY € h”|Y > €la, }, with € > 0.

Remark 2.2.5. 1. The set of all modular forms of weight x and character x for the
group I' is a vector space over C that we denote by My(I",x). If x is the trivial

character, then we write M, (T, x) as M, (T).

2. For n > 1, we shall see that the third condition in the definition of a Siegel modular
form follows immediately from the first two conditions due to Koecher principle, which
we will state below. However for n = 1, we require that every function F|.g for
g € SLa(Q) is bounded in subsets of h! of the form {z = x + iy € blly > €}, with

e > 0.
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Definition 2.2.6. A character of a congruence subgroup I' is called a congruence character

if it is trivial on a principal congruence subgroup contained in I'.

A B
Example 2.2.7. Let x be a Dirichlet character modulo M. Then for an element €
C D
F(()n)(M), the mapping
A B A B
=[xl = x(det D)
C D C D

is clearly a congruence character of Fén)(M ).

Proposition 2.2.8 ([5], Proposition 1.21). Assume that T' C Sps,(R) is a congruence
subgroup, x a congruence character of ' and g € Sps,,(R) is a projectively rational symplectic

matriz. Then

I =g 'y

is also a congruence subgroup of Spy,(R). For every ¢’ € g~'T'g, the character x9(g') =

X(gg’g_l) of this group is a congruence character of I'Y. Moreover,
|,.C Fe MH(F,X) — F|ng S MH(Fg7xg)'

Proof. Tt suffices to consider g € Spy,, (Q). Let ¢ € N be such that I'"(¢) C T and x trivial
on I'"(q). Let W € T"(q). We would like to show that gWg~! € T"™(q). We write

gWg™ = g(lay + (W — 12,,))g ™"

= 1o +qg(g (W — 12,))g "

lis congruent to 1z, modulo ¢ and x9(W) = x(gWg~!) = 1. It remains to

Hence gWg™
show that F|.g € M.(I'9, x9) for any degree n. The function F|.g is holomorphic because

the matrix (C'Z 4 D) is invertible (implicit in the definition of the action of Sp,,,(R) on h™)
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where (C, D) is the lower row of block matrices defining g. Let R be in 'Y, then R = g~ 'S¢

with S; € I'. Now relations (2.4) imply that

(Flxg)|xR = (F|x9)|xg *S1N = F|.S19 = x(S1)F|xg = X°(S)F|xg-

For n =1, let W be in SLg(Z), then we have

F‘NQ’HW = F‘fch

Propostion 2.1.25 implies that we can write gW = W'g" where W’ € SLy(Z) and ¢ =

with ad = u(N) > 0. Hence
0 d

(Flag)lsW = Flo(W'g') = d™"(F|-W')(az/d + b/d).

Since F|,W' is bounded on h'(ae/d) for any e > 0 , it follows that (F|.g)W is bounded on

hl(e) and this proves that F|.g € M.(T'9,x9) for any n > 1. O

2.2.1 Fourier Series of a Siegel Modular Form

Arithmetically, we are interested in expanding a Siegel modular form into a Fourier
series. In the case n = 1 we require F' to be holomorphic at the cusps (equivalent to the
third condition in the definition of a Siegel modular form) so that F' has a Fourier expansion.
However, for n > 1, a Siegel modular form of degree n has a Fourier expansion automatically
as a consequence of being holomorphic and satisfying the transformation properties due to
the Koecher principle. This phenomenon is absent in the n = 1 case and is only true in
several complex variables. The Koecher principle was proved by Max Koecher in 1954 [40]
and says that the boundedness of Siegel modular forms in subsets of h™ of the form h"(e)
is automatically satisfied in the case n > 1. A corresponding principle for Hilbert modular

forms was already known in 1928 by Fritz Gotzky [24].
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Theorem 2.2.9. (Koecher principle) Let F' be a Siegel modular form of degree n > 2,
weight k and level T' that satisfies only the first two conditions in the defintion of a Siegel
modular form. Then F and all its conjugate functions F|.g are bounded on any subset of

h™ of the form h™(e) = {Z = X +iY € h"|Y > €la,} with e > 0.

Theorem 2.2.10. Let F € M. (T, x) be a modular form of integral weight k and a congru-
ence character x for a congruence subgroup I' of Sps,, (R), then for every g € Sp,,,(Q), the

following expansion holds

(Flg)(Z2)= Y ag(N)eh T2, (2.5)
NeE" N>0

with constant coefficients ay(N), where
E" = {N = (n;;) € Mat,,(Z)|'N = N,n;; € 2Z}

is the set of even matrices of order n, Tr denotes the trace and where h = h(I',x) is the

least positive integer such that the group I' contains a subgroup of the form

1, hS
T(h) = T"(h) = S =15 ¢ Mat,(Z) ;. (2.6)
0 1,

The series converges absolutely on h™ and uniformly on subsets of h™ of the form h"(e); in
particular, each function F|.g is bounded on each of the subsets h™(e).

The coefficients aq(N) satisfy
ag("V NV) = (det V)”X(A)e*%ﬂ(NVU)ag(N), ( for every N € E"), (2.7)

for every matriz A of the group I' of the form
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If kK > 0, then
[(Fleg)(Z)] < cdet(Y)",  Z=X+iY €b”,

and

ag(N) < d(det N)*
where ¢ and ¢ are constants depending on F' and on g.

Proof. 1t suffices to prove all the above for the modular form F'; we obtain the corresponding
results for the conjugate functions F|,g due to Proposition 2.2.8. In the case n = 1, an

elliptic modular form f is periodic with period h

f(z+h) = f(z) forevery z=ux+iych!

where h is the smallest positive integer such that € I'. As such, it has a Laurent
0 1

TiZ —27
series of a holomorphic function in the variable ¢ = eZ#* when lg| = e " Y < 1, except,
possibly, at ¢ = 0. This Laurent series in the variable g looks like the Fourier expansion in

the original variable z. This expansion is of the form
2nmiz
f(2) =) a(n)g" = a(n)e .
ne”Z neZ

The boundedness of f(z) for y > ¢, the third condition in the definition of a modular form

which is also referred to as holomorphicity of f at the cusp oo, shows that f is bounded in

—2my —27e

lgf =en <eh with € > 0.

This, together with Riemann’s criterion of removable singularities imply that f becomes
holomorphic at ¢ = 0. Hence, a(n) = 0 for negative n. It follows that the series converges
uniformly on any h!(e) with e > 0.

For n > 2, the transformation formula that I satisfies applied to the type of matrices
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1, hS
of order 2n in T(h) C T of the form becomes
0o 1,
F(Z+hS)=F(Z) (Z=(21)€bh™ S ="'S¢cMat,(Z)). (2.9)

This means that F' is a periodic function of period h in its n(n + 1)/2 variables zj;, k < [.

Since F' is also holomorphic, it can be expanded in a Fourier series of the form

(T Z nklltkz)
F(Z)=) d(N;Y)e\ I1shksi=n :
N/
where Z = X +14Y with X = (z;), and N' = (ny;) ranges over the set of all upper triangular
matrices of order n with integral entries ng;. Due to holomorphicity, the series can also be

differentiated with respect to all variables. Now taking even matices N = N'+ ‘N’ of order

n running in the set E™ and since

2 Z NEITr = TI‘(NZ),
1<k<i<n

the expansion can be rewritten in the form

27

F(Z)= ) a(N;Y)en N2,
NeEn
where a(N,Y) = o/ (N’ 1/)(3(_77r Tr(NY) | Since F(Z) is holomorphic in each of the variables
zx1, it satisfies the Cauchy Riemann equations with respect to zj;, which can be written in

the form

a—F—O where 9 _1 ﬂ—kzg
afkl_’ 0z 2\ 0x oy )

Since the last expansion can be differentiated term by term, it follows that

0a(N,Y) _i0a(N,Y) _ o' 4 _poycp
0z 2 Oym
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Hence the coefficients a(N,Y) = a(N) are independent of Y, and we get the Fourier expan-

sion of F

with constant coefficients.

As in the n = 1 case, this expansion can be considered as a Laurent expansion of
the holomorphic Function F' in the n(n + 1)/2 variables gy = ezmﬁﬂ, and so it converges
absolutely on h™.

The transformation property of a Siegel modular form for a matrix A as given in

the form (2.8), gives the relation

(det(V)) ™ Y a(N)e® BVTIZNTHENUVTY — 3 (4) 3 a(W)ed TVD_ - (2.10)
NEEn NEEn
Replacing N by % NV on the left and comparing the coefficients, we get the relation (2.7).
It remains to show that a(N) = 0 unless N > 0 and that the series converges uniformly on
subsets of the form h™(e). The proof of this is what goes into Koecher’s argument. We just
give a brief sketch of this.
Restricting to matrices A(0,V) in the kernel of the character x, for V' € GL,(Z),
relation (2.7) becomes a(*V NV) = (det (V))*a(N) and in particular for V € SL,(Z), we
have that a(*V NV) = a(N). Now for such V’s and if a(N) # 0, we sum over matrices

N’ ='W NV and the series a(N) Ze% Te(N'Z) converges absolutely for every Z € h" (
N/
that is, Z en TN'2) jg convergent) because it is a partial sum of an absolutely convergent
N/
series and in particular the series Z e Tr(N'1n)
Nl

based on proving if N does not satisfy IV > 0, then this last series diverges and this proves

is convergent. Now the rest of the proof is

the assertion that a(/N) = 0 unless N > 0, which proves the expansion

F(Z) = Z a(N)em‘w

N€eE»,N>0
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as a consequence of the first two conditions in the definition of a Siegel modular form.
The uniform convergence on subsets of h™ of the form h"(e) is established first by

using the fact

Tr(AR) > Tr(BR) if A>B and R>0.

Now when Z = X +iY € h"(e), we have that
Tr(NA) > eTr(N),

for every N € E™. Next, we show that the Fourier expansion of F,

F(Z) _ Z a(N)eﬂ_iTr(hNZ) :

NEEn,N>0

is majorized on each set h™(€) by a convergent series with nonnegative constant coefficients.

For Y > €l,,, we obtain

N€eE»,N>0

< D> Ja@)|e 7T < oo,
NeE" N>0

FZ)l< 3 Ja(V)le 7 TOY)

Finally, for the proof on the bounds of F|,,g and its Fourier coefficients, we refer to [4], page
70.
O

Remark 2.2.11. 1. The expansion (2.5) is called the Fourier expansion of F'|.g and the

numbers ay(N) with N € E", N > 0 are the Fourier coefficients of F|.g.

2. Instead of summing over even matrices in E™, it is also possible to consider summing
over half integral symmetric matrices T = (¢;;), where half integral is meant to indicate

the linear form

n
X = Tr(TX) = Ztlml +2 Z thiTh
k=1 k<l=1
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has integral coefficients, i.e., that the integers i are integers and for | < k, 2t are

integers. In this case, the Fourier expansion of F' can be written as
F(z)= Y a@)es 12,
Tesz'(z)

The notation SZ%(Z) means that T ranges over positive semidefinite semi-integral

symmetric n X n matrices T

3. In case the congruence subgroup I' is the full level Sp,,,(Z) or the congruence subgroup
TG (M), then I' will contain the subgroup T(h) as given in (2.6) above with A = 1. In

particular, modular forms for such levels I' will satisfy
F(Z+S8)=F(Z) (Z=(z2n)€h™,S="9 cMat,(Z)),

and hence becomes a periodic function of period 1 in each of its n(n + 1)/2 variables

2k, k <l and has a Fourier expansion of the form F(Z) = Z a(N)e™ THNZ)
NEE",N>0

2.3 Cusp Forms

If I' is a congruence subgroup, x a congruence character of I', and g is a projectively
rational symplectic matrix, then Theorem 2.2.10 tells us that the function F'|,g has a Fourier

expansion of the form

(Flg)(2)= Y apg(N)eh T2
NeE" N>0

with a positive integer h depending on I', x and g.

Definition 2.3.1. The modular form F is called a cusp form if the coeflicients ap 4(NV)

satisfy the conditions

arg(N) =0 for everyg € Spy,(Q), N € E" with det N =0.
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The subspace of cusp forms of M (T, x) will be denoted S, (T, x).

Proposition 2.3.2. Let I' be a congruence subgroup and x a congruence character of I'.
Then for each cusp form F € S, (T, x) and for each g € Sps,,(Q), the modular form F|.g €

M, (T9,x9) is a cusp form with a Fourier expansion of the form

(Flog)(2) = Y ag(N)em

N€EE",N>0

where h is a positive integer. If k > 0, then the form F|.g satisfies
[(Fleg)(X +13Y)| < c(det V)2, Z =X +1iY e,
and its Fourier coefficients satisfy
lapg(N)| < ¢(det N)*/2

for all N € E™ with N > 0, where c¢,c are constants depending only on F and g.

Proof. The Fourier expansion and the inclusion F|.g € S, (T'Y, x9) follow from Proposition
2.2.8 and the definition of cusp forms. For the rest of the proof, the reader can consult the

proof of Proposition 1.25 on page 2 of [5]. O

2.3.1 The Siegel ® operator

Siegel was able to connect modular forms of many variables to modular forms of
fewer variables. The Siegel operator @ is a linear map relating modular forms on h™ to
modular forms on ! with the weight x being fixed. The relation is based on the properties
of Fourier expansions of modular forms described in the previous section. Let F,, denote

the set of all Fourier series of the form (2.5) which converge absolutely on h™ and uniformly
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on subsets of h™ of the form h"(¢) with € > 0. Let F € F,,. If Z' € h" 1(¢) and X > ¢, then

7 0. §
Z)\ = S [] (6)
0 A

Since the series F' converges uniformly, we can take the following limit term by term and

we obtain
li 1) = i FTr(NZ})
yim F(Z) > all) Jim e A
NeEn
N %
N = , then Tr(N Z}) = Tr(N'Z’) 4+ iANpy. Hence
* NTL'I’L
- . 5 TWN'Z) i N, =0
lim en T"NA) = Jim e Mk T2 ‘ B =
A—+00 A—+00 .
07 lf Nnn > O
Since N > 0, the equality N, = 0 implies that Ny, = Np1 = ... = Np—1p = Npyjp—1 =0,
N’ 0n-1
ie. N = . Thus, for all Z' € h»~ !, we have
0 0
N, On— s} 171
(FI®)(Z)= lim F(Zy)= Y  a n= | vz
A——+00
N’€E"—1 N’>0 0 0

The last series is a partial series for the Fourier expansion of F', and so it converges absolutely
on h”~! and uniformly on subsets of h™ of the form h"(¢) with € > 0. Thus we have
F|® €F,_;.

If n =1, we set

(F|®)(icc) = lim F(i).

A—+00

Arguing as above, the limit always exists and is equal to the constant term of the Fourier

expansion of F. Taking Fyp = C, we obtain that &, called the Siegel operator, is a linear
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operator

P . Fn — Fn—la

for all n € N.
Now, we consider the action of the Siegel operator on modular forms for congruence
subgroups of Spy,,(R). Let n > 1. For a matrix
A B

g = . € Spy(n—1)(R)

with square blocks A’, B, C’, and D’ of order n — 1, we set

oy A B
i(g') = :
C D
where
A A" 0,1 B B 0,1 o= cC' o D— D 0
0 1 0 0 0 0 0 1

It is clear that i is an injective homomorphism of Spy(,_1)(R) into Spy,(R). Its image is

the subgroup of the real symplectic group Sp,,, (R)

Sn,nfl — {g c San(R)‘ g = i(g/)’g/ - sz(n—l)(R)} .

The corresponding subgroups in the rational symplectic group Sp,,,(Q) and in the Siegel
modular group Sp,,,(Z) are denoted by S™"~}(Q) and S™"~1(Z) respectively.

For a subgroup K C Sp,, (R), we set

K1 — kns» 1 and K™D = i_l(Kn’n_l) C Spg(nq) (R).
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Lemma 2.3.3. Let K be a congruence subgroup of Spy,(R) and let x be a congruence
character of K. Then the group K™Y is a congruence subgroup of Sp2(n_1)(R) and the
map X2 given by

X 2(g) = xilg)
is a congruence character of the group K™=,
Proof. We have that K contains a principal congruence subgroup Iy, (¢). We have ™" ~1(q) =
Ton(q) NS™"1 ¢ K"~ hence

FQn—Q(Q) = FQn(Q)(nil) = Zlil(rn’nil(q)) C _[{(”*1)7

and the character Y22 is trivial on Ton—2(q). O

Theorem 2.3.4. Let K be a congruence subgroup of Spsy,(R) and let x be a congru-
ence character of K. Then the Siegel operator ® maps the space My (K, x) into the space
MH(K(nfl)’X(%*Z)) .

© My (K,x) = My(K1 xGr=2)),

and for n =1, we set M,(K"=D x@=2)) = M, (KO, x©)) =C.

A B
Proof. Let F € M (K,x), Z' € h" 1 and ¢ = € Spa,_2(Q), then for A > 0, we
c' D
have
/ Z' On—l n A B i n,n—1
Zy= b g= =i(g') € S™"(Q),
0 i\ C

1
AZ+B o)\ ([(cz+D o

9z = =47,
0 i\ 0 1

C'Z'+D 0
det (CZ) + D) = det =det (C'Z' + D).
0 1
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It follows that

(F|®)|.d'(Z) = )\lim det (C'Z' + D) "F(4' Z}) (2.11)
—+00

= A11111 det (CZ\ + D) "F(gZ}) = (F|.9)|®(Z"). (2.12)
——+00

In particular, if ¢ € K", we have

(F|®)]xg’ = x(g)F|® = x*"=(g)F|®.

Also, equation (2.11) tells us that any function (F|®)|.¢" with ¢’ € Spy,,_o(Q) is bounded
on each h™~!(e) with € > 0 since the function F|.i(g’) is bounded on h"(e). Finally, since

F|® € F,,_1, it follows that F'|® is holomorphic on ™! and this finishes the proof. O
We now give useful characterizations of cusp forms in terms of the Siegel operator.

Proposition 2.3.5. Let K be a congruence subgroup of Sps,, (R), x a congruence character

of K, and F € My(K,x). Then the following three conditions are equivalent:
1. F is a cusp form;

2. F satisfies

(Flxg)|® =0 forall g€ Spy,(Q),

where ® is the Siegel operator;

3. F satisfies

(Flxy)|® =0 for all ~ € Spy,(Z),

Proof. Tt follows from the definition of cusp forms and formula (2.3.1) that condition 1
implies condition 2. Condition 3 is a special case of condition 2. Therefore, it remains
to show that condition 3 implies F' € Si(K,x). Proposition 2.1.25 implies that every

g € Sps,(Q) can be written in the form g = ~v¢’, where v € Sp,,,(Z) and ¢’ has the form
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A B
. Since F|.g = Flxvg = F|xy|xg’, the Fourier expansion of the function F|.g
0, D'

can be rewritten in the form

Yo ag(N)e® ND = (Flg)(Z) = (det D) (F|7)(A'ZD'~! + B'D')
N€E?,N>0

= (det D')" Z av(Nl)e%}' Te(N'B'D'™1) 77 Tr(D’*lN’A’Z),
N'€E",N'>0
where a(N') are the coefficients of the Fourier expansion (2.5) of the function F|.y. Hence
if ay(N') = 0 for all N € E" with det N’ = 0, then a4(N) = 0 for all N € E" with
det N = 0. O

Proposition 2.3.5 allows us to say that F' € M, (', x) is a cusp form if for every

g € Spa,(Z), the Fourier expansion of F|.g € M. (', x9) is of the form

(Flg)(Z2)= Y ag(N)eh T2,
NEeE",N>0

i.e. ag(N) =0, unless N > 0. Also, by Proposition 2.3.5, we give the following characteri-
zation of the subspace of cusp forms.

Let K be a congruence subgroup of Sp,,,(Z). Let v be the index [Sp,,,(Z) : K] of K
in Sps,,(Z). Let My, ..., M, be a system of representatives for the cosets. For a F' € M, (K),
we consider the functions

Fy = F|.M,...,F, = F|.M,.

Using Proposition 2.2.8, we have that F; € M,(K™i) and using Theorem 2.3.4 we have
that F;|® € M,((KM)™=1). Denoting M, (KM:=1) .= M, ((K)"=1) we define the

vector valued Siegel operator

B 1 My (K, x) = M (KM D) s s M (KM=
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F|® = (F\|®,...,F,|®).

Proposition 2.3.5 implies that the kernel of ® coincides with the subspace Sk (K) of cusp
forms. This characterization of cusp forms means that F'(Z) tends to zero as Z approaches

any rational boundary component of h™. We will explain this statement in Chapter 4.

Definition 2.3.6. Let F' € M (K, x), where K is a congruence subgroup of Sp,,,(Z). The
constant term a4(0) of the Fourier expansion of F'|.g with g € Sp,,(Z) is called a boundary

value of F' and it is given by

ag(o) = lim (Fle9)(irln) = (Flc9)|®]...|®,

A——+00

where the Siegel operator @ is applied n-times. For a fixed g in case n = 1, the constant term
aq(0) is the image of F'|,g under the Siegel ® operator which happens to be its boundary

value at its zero-degree rational boundary component.

2.3.2 Spaces of Modular Forms

Theorem 2.3.7 ([5], Theorem 1.30). Let K be a congruence subgroup of Spy,(R), x a
congruence character of K, and k a nonnegative inetger. Then the space M(K,x) of
modular forms of weight k and character x for the group K is a finite dimensional vector

space over the field C.
The proof of this theorem is based on the following important lemma.

Lemma 2.3.8 ([5], Lemma 1.31). Let

F(Z) _ Z a(N)STriTr(NZ)
NeE™»,N>0

be a cusp form of a monnegative integral weight k and the unit character for the Siegel
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modular group Spsy,,(Z). Suppose that the Fourier coefficients satisfy the conditions

a(N)=0 if Tr(N)< Q:bn,

where by, is a constant such that if Z = X +1iY € F,, (the fundamental domain of Spy,,(Z)

on h"), then' Y > b,1,,. Then the form F is identically equal to zero.

Theorem 2.3.9 ([4], Theorem 2.4.5). Let I'"(q) C K be a congruence subgroup of Sps,,(Z),
X a congruence character of K, and k an integer. Then the dimension of M, (K, x) over C

satisfies
1. dim (M. (K, x)) < dp(kv(K)q)" " )/2 if k > 0, where d,, depends only on n, and
v(K) is the index of K in Spy,(Z).
1, ify=1
0, ifx#1

3. dim (M, (K,x)) =0, if k < 0.

2. dim (My(K, x)) =

The proof is based on Theorem 2.3.7 and on induction arguments using the Siegel

® operator. For the full details, we refer to page 95 in [4].

Proposition 2.3.10. The Space of modular forms of full level and trivial character

MR(SPQn(Z)) = {0}

if nk is odd.

Proof. The coefficients a(N) of a modular form F' € M, (Sp,,,(Z)) satisfy the relation (2.7)
given by
a('VNV) = (det V)re ™ TNV 4 (N, (for all N € E™).

In particular for U = 0, the coefficients a(N) satisfy

a('VNV) = (det V) a(N), (for all N € E").

43



Now taking V' = —1,,, then the coefficients satisfy a(N) = (—1)""a(NV) so that if F' does
not vanish identically the integer nx must be even. Hence any modular form of weight

vanishes identically if kn =1 mod 2.

O]

Remark 2.3.11. 1. In case of n > 1 and full level I' = Sp,,, (Z), it is noted on page
181 of [47] that is reasonable to assume the weight s to be an integer as there are no

nonidentically zero modular forms with weight « ¢ N.

2. Finding explicit formulas for the dimension of My (Spay,(Z)) is still an ongoing program
in which the Rankin Selberg trace formula is a key tool (See the references in [39] on

page 54).

3. We have seen so far that there are no modular forms different from zero if nx is odd or
k < 0. If k is even and x > n+ 1 nontrivial forms do exist and are given by Eisenstein

series. These examples will be seen in Chapter 4, § 4.4.1.1.

2.3.3 Petersson Scalar Product

Every space of cusp forms Sy (K, x) of integral weight x and a congruence character
x for a congruence subgroup K in Sp,,,(Z) can be endowed with the structure of a Hilbert
space by means of a scalar product called the Petersson scalar product. For two functions

F and F’ on h", we consider the differential form on ™ defined by
we(F, F") = F(Z)F(Z)hWZ)"d*Z,

where h(Z) = h(X +iY) = det Y is the height of Z and d*Z is the invariant volume defined
in (2.1.22). It follows from Lemmas 2.1.20 and 2.1.21 that for each matrix g € GSpj, (R),

the form satisfies the relation (see [5] page 35)

we(F, F)(92) = u(g)"" ™ we(Flrg, F'leg)(Z).
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In particular if F, F' € M, (K, x) and g € K, we then have

we(F, F')(9Z) = we(x(9)F, x(9)F')(Z) = we(F, F')(Z).

It follows that the integral

/ wy(F, F')(2)
F(K)

converges absolutely on a fundamental domain F'(K) of K on h™ provided at least one of the
forms is a cusp form ([5], Lemma 1.37) and does not depend on the choice of fundamental
domain. This justifies the following definition.

For two modular forms F, F' € M. (K, x), such that at least one of the forms is a

cusp form, we define their scalar product (F, F”), called the Petersson scalar product, by

(F,F') = v(K") /F S EE)

where K’ = K U (—12,)K,v(K') = [Spy,(Z) : K'] and F(K) is a fundamental domain for
K on h™.

Theorem 2.3.12 ([5], Theorem 1.38). The Petersson scalar product has the following prop-

erties:

1. (F, F") converges absolutely and is independent of the choice of fundamental domain
F(K);

2. (F,F'") is independent of the choice of the group K with F, F' € M, (K, x),

3. (F,F') is linear in F and is conjugate linear in F';

4. (F/7F):(F7F,)7'

5. (F,F) >0, and (F,F) =0 if and only if F = 0;
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6. If g € GSps, (Q), then

(Flxg), F'lng) = nlg) " (F, F).

Definition 2.3.13. Let E. (K, x) be the subspace of all modular forms of M, (K, x) which
are orthogonal to the subspace of cusp forms Sy (K, x) with respect to the Petersson scalar

product:
E.(K,x)={F € M.(K,x): (F,G) =0 forall Ge Sq(K,x)}.

From the properties of the Petersson scalar product and linear algebra we obtain

the following.

Proposition 2.3.14. 1. The space M (K, x) is a direct sum of E.(K,x) and Sk(K, x):

MH(K7 X) = E,{(K, X) S5 SH(Kv X)'

2. If F € E. (K, x) and g a projectively rational symplectic matriz, then F|.g € E(K9,x9).

The second part of this proposition follows from Proposition 2.3.2.
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Chapter 3

Paramodular Forms

3.1 Introduction

This chapter deals with paramodular forms. These are modular forms that live
on the Siegel upper half plane h™ and satisfy a transformation formula with respect to
paramodular groups (certain arithmetic subgroups of Sp,(Q)). Paramodular groups have
been studied in geometry for their connection to polarized abelian varieties. Arithmetic
interest in the degree two case of these groups has increased in the past years due to a
conjecture by Brumer and Kramer known as the paramodular conjecture. This conjecture
is the analogue of the Taniyama-Shimura conjecture for abelian surfaces along the lines
of Langlands philosophy which suggests that the L-series of an abelian surface A over Q
should be associated to a cuspidal Siegel eigenform of weight 2 with rational eigenvalues
for some arithmetic group. Brumer and Kramer’s search for a modularity conjecture for
abelian surfaces over Q whose endomorphism ring is Z showed that the right group to
be considered for the modular forms should be the paramodular group of degree two. In
addition, Roberts and Schmidt obtained a local newform theory for paramodular forms in
[64]. Gristenko ([27]) obtained a lifting from Jacobi cusp forms of index ¢ > 1 to the space of
paramodular cusp forms. This lifting will be discussed in Chapters 5 and 6. The newforms

of weight 2 which are perpendicular to the Gritsenko lifts are called non-lifts. Here we state
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the paramodular conjecture:

Conjecture 3.1.1 ([15], Conjecture 1.1). There is a one-to-one correspondence between
isogeny classes of abelian surfaces A over QQ of conductor N with Endg A = Z and weight
2 non-lifts f of level I'[N], the paramodular group, with rational eigenvalues, up to scalar

multiplication such that the L-series of A and f should agree.

Ibukiyama ([30]) computed a dimension formula for degree two paramodular cusp
forms of weight x > 5 with respect to the paramodular group of level p for every prime
p. Also, Ibukiyama and Onodera in [32] described the ring structure of the graded ring
of paramodular forms of degree two with respect to the paramodular group of level two.
Gritsenko lifts played a crucial role in constructing paramodular cusp forms. Poor and
Yuen ([60]) used dimension formulas for paramodular cusp forms and dimension of spaces
of Gritsenko lifts to obtain the desired paramodular nonlifts for the paramodular conjecture.

In fact, they found the following.

Theorem 3.1.2 ([60], Theorem 1.2). For primes p < 600 and not in the set

{277,349, 353, 389,461, 523, 587},

the space of paramodular cusp forms of degree 2 and of paramodular level p is spanned by

Gritsenko lifts.

In this chapter, we first introduce geometrically the paramodular groups for any
degree as they have been known historically. Later, we describe their elements and present

the paramodular forms.

3.2 Geometric Introduction to Paramodular Groups

Our goal in this section is to introduce the paramodular groups through the moduli
space of polarized abelian varieties. In the process, we briefly discuss complex tori that

are abelian varieties. We keep our discussion elementary. We do not go into the formal
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language of defining polarization as a cetain class of a line bundle on the complex torus,
instead we just describe a polarization by a Riemann form. In order not to make this
exposition very lengthy, we will not provide proofs. In addition, some theorems presented
here are not trivial to prove as they originate from groundbreaking research done by Cartan
([18]), Lefschetz ([46]), and Serre ([76]). For a general and a comprehensive reference for
this section we recommend [11].

Let V be a real vector space of finite dimension n. In Chapter 2, we have defined
discrete subgroups of the symplectic group Sps,,(R). We now define discrete subgroups of

a real vector space and highlight the difference.

Definition 3.2.1. A subgroup L of V is discrete if for any compact subset K of V., KN L

is finite.
For instance, Z™ is a discrete subgroup of R™.

Proposition 3.2.2 ([19], Theorem 1.2 ). A subgroup L of V is discrete if and only if there
exists an integer r < n, and vectors e1,..., e, that are linearly independent over R, such
that

L=7e1&...6%Ze,.

The integer r is uniquely determined: it is the dimension of the subspace L ®z R of

V. It is called the rank of L.

Definition 3.2.3. If the rank r of L which occurs in Proposition 3.2.2 is equal to the
dimension of V', then L is called a lattice in V. In other words, a lattice L in V is a discrete

subgroup of maximal rank, the dimension of V.

We consider the canonical map 7 : V' — V/L where L is a lattice of V. The quotient
topology on V/L makes it connected. Moreover, since L is of maximal rank as a discrete
subgroup of V', thus V/L is the image of a bounded subset of V' and due to Heine-Borel

theorem we conclude that it is compact.
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Definition 3.2.4. Let X be a topological space and let G be a discrete group acting on
X. The action of G is said to be discontinuous if for any point x € X, there exists a

neighborhoood U, of z such that

g(Uy)NU, =0, for all non trivial g € G.

Definition 3.2.5. We say that the action is free if the stabilizer of every point x € X is

the trivial group.

Recalling the definition of a properly discontinuous action from Chapter 2, we have

the following.

Proposition 3.2.6. An action is discontinuous if and only if it is properly discontinuous

and free.

Now, given a lattice L C V, then L acts by translations of V' and defines an equiv-

alence relation on V' in the following way:

v~ ev—0o e L.

In fact, the action of L on V is discontinuous. Moreover, the set of equivalence classes
{[v]} ={v+1:1€ L} is a compact Hausdorff space homeomorphic to a product of n circles
and is called the torus V/L associated to L.

From now on, we consider the case of a complex torus

X =C"/L,

where L C C" is a lattice. Or more generally, we consider a finite dimensional complex
vector space V' of dimension n and L a lattice in V. Thus, L is a free abelian group of rank

2n and we consider the complex torus

X =V/L.
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A generalization of the concept of a complex manifold as defined by Cartan is
an analytic space that allows singularities. For the formal definition that requires the
definition of a ringed space using the language of sheafs, we refer to Cartan [18]. A properly
discontinuous action turns out to be the right action required in order to put an analytic

structure on a quotient space as given by the following.

Theorem 3.2.7. (Cartan) Let X be an analytic space, G a group acting properly discon-
tinuously on X by biholomorphic maps, and let m : X — X/G be the quotient map. The
sheaf of rings O on X/G defined for any open set U of X/G by

oU)={f:U— C‘f om is holomorphic in = 1(U)},

determines an analytic space structure on X/G.

A discontinuous action is a nicer property than a properly discontinuous action. In
the special case when X is a complex manifold and the action of GG is discontinuous, then

the following gives that we obtain a smooth structure on the corresponding quotient space.

Corollary 3.2.8 ([11], Corollary A.7.). Let X be a complex manifold and G is a group

acting discontinuously on X. Then X/G is a complex manifold.

Since the action of L on V is discontinuous, then the complex torus X = V/L
endowed with the quotient topology admits a complex manifold structure by defining a
sheaf of holomorphic functions on it. This is achieved as in Theorem 3.2.7 by declaring that
if U is open X, a function f : U — C is holomorphic if and only if f o7 is holomorphic over
the open set 7=1(U) in V. In other words, the holomorphic functions on U correspond to

L-periodic holomorphic functions on 7=1(U).

Remark 3.2.9. This is the difference between a lattice as a discrete subgroup of a real
vector space and in a general a discrete subgroup G of the real symplectic group Sp,, (R).
For the latter, Proposition 2.1.33 in Chapter 2 together with Theorem 3.2.7 say that the

quotient space Sp,,(R)/G has an analytic structure which is not necessarily a manifold
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structure due to the existence of points in X with nontrivial stabilizer. These points are

the singularities in the quotient space.

An application of Liouville’s theorem says that the holomorphic functions on a
complex torus are the constant functions. The meromorphic functions on X are defined
in an analogous manner as in Theorem 3.2.7. These are the meromorphic functions on V'
which are L-periodic. They are known as the abelian functions and they form the field of

functions of the complex torus.

Definition 3.2.10. An abelian function f is a meromorphic function on C™ or on V that

is periodic with respect to L:

f(z4+w) = f(z) forall we L.

Definition 3.2.11. An abelian function has 2n periods which are linearly independent over
R and lives on the complex torus C"/L. In the case n = 1, an abelian function is an elliptic

function.

The addition on the vector space V induces the structure of an abelian complex Lie
group on V/L. In fact, any connected compact complex Lie group X of dimension n is a

complex torus. (See [11], Lemma 1.1.1).

3.2.1 Complex Tori as Abelian Varieties

Definition 3.2.12. Over any field K, an abelian variety X is a projective nonsingular
algebraic variety together with an algebraic group law m : X x X — X such that m and

1

the inverse map X — X given by x +— 2" are morphisms of varieties, both defined over

K.

To any algebraic variety X over the complex numbers one can associate a complex

analytic space X" following Serre’s GAGA functorial construction in [76]. We thus have
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Proposition 3.2.13. Let X be an abelian variety over C. Then X = V/L, as complex
manifolds, where V' is a C vector space of dimension = dim A = n (say) and L is a lattice

m V' of rank 2n.

An abelian variety of dimension n is a higher dimensional generalization of an elliptic
curve (n = 1). Over any field of characteristic different from 2 or 3, an elliptic curve may

be described by an equation of the form

y* =23 + azx +b.

The set of points satisfying the equation of such an elliptic curve together with a point at
infinity form an abelian group. Using the theory of elliptic functions, one can show that
for an elliptic curve over the complex numbers C, the set of points can be identified with
a complex torus C/L, where L can be taken in the form L = Z @ 7Z for some 7 € h'.
We will see below why a complex torus of dimension 1 is an abelian variety. A complex
abelian variety of dimension n is a complex torus of dimension n that is also a projective
algebraic variety over C. A theorem of Chow ([25], page 167) states that any compact
complex subvariety of a projective space is an algebraic projective subvariety and hence
defined by homogeneous polynomial equations. Thus, in order for a complex torus to be
an abelian variety, it is necessary and sufficient that it admits a holomorphic embedding in
projective space. When n > 1, not every complex torus can be embedded in a projective
space. The tori that are also abelian varieties are, according to a theorem of Lefschetz,
exactly those complex tori equipped with a Riemann form w. In fact, Lefschetz’s theorem
shows how to construct a projective embedding of a complex torus X into projective space

given the Riemann form w.
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An elementary matrix 7T is a diagonal matrix of the form

tt 0 --- 0
T := o BE tieN,  tiftisi (1<i<n).

We now consider the classification of integral alternating bilinear forms which comes

as a consequence of the elementary divisor formula.

Proposition 3.2.14 ([19], Proposition 6.1). Let L be a lattice and let w be an nondegenerate

alternating bilinear form which is integral on L, i.e.,
1. w(a+b,c) =w(a,c)+wb,c);
2. w(a,b) = —w(b,a);
3. w(a,z) =0 forallr € L =a=0;

4. w(z,y) €Z for all x,y € L.

Then there exists positive integers (elementary divisors) t1, ..., t, that satisfy t1| ... |tn, and
a Z-basis wi, wa, . .., way of L in which the matriz of w is given by
0, T
?
=T 0,
where T is the elementary matriz with entries ti| ... |t, on the diagonal uniquely determined

by the nondegenerate alternating bilinear form and the lattice L.

Remark 3.2.15. Another formulation of the result obtained in Proposition 3.2.14 can be
given in this way: for every integral alternating matrix w whose determinant is different from

zero, there exists a unimodular matrix U € GL,,(Z) and a uniquely determined elementary
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matrix T" with the property

0, T
UwU =

=T 0y,

The matrices of w in different bases have the same determinant. Proposition 3.2.14
shows the determinant of w is positive. In fact, it is the square of a natural number. We

call its positive square root

vdetw = t1.ta.... 1,
the Pfaffian of w.

Definition 3.2.16. A Hermitian form H on V is a map

H:VxV—=C

satisfying the following properties:

1. H(z,y) is linear on z and antilinear on y.

2. H(z,y) = H(y,x).

Let H be a Hermitian form. Decomposing H into a real part and an imaginary part

H(z,y) = S(z,y) +iA(x,y),

then
S(z,y) = Aliz,y).
In addition the real part and the imaginary parts of H are uniquely determined.

Proposition 3.2.17. Given a Hermitian form H as above, then

1. the real part S(x,y) is a symmetric, R-valued and R-bilinear form on V' satisfying

S(iz,iy) = S(z,y)
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for all x,y € V and such a symmetric form is the real part of a unique Hermitian

form.

2. The imaginary part A(x,y) is an R-valued, R-bilinear alternating form on 'V satisfying
satisfying
Aliz, iy) = Az, y)

for all xz,y € V. Conversely any such real alternating bilinear form is the imaginary

part of a unique Hermitian form, given by

H(z,y) = A(iz,y) + iA(z,y)

Remark 3.2.18. Proposition 3.2.17 shows that there is a bijection between Hermitian
forms H on a complex vector space V' and real alternating bilinear forms A on V satisfying

A(iz,iy) = A(z,y). This correspondence is given by

H— A=Im(H),

and

A H(z,y) = Aliz,y) + iA(z,y).

Definition 3.2.19. A Riemann form on a complex vector space V with a lattice L is a

Hermitian form H on V with the following properties:
1. Im H(A1,A2) € Z for all A\j, Ay in L.

2. H is positive definite, i.e.

H(xz,z) >0 forall x#0.

The Riemann form H is also sometimes called nondegenerate to imply H is positive definite.
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Alternatively and due to Proposition 3.2.17 or Remark 3.2.18, one can also define a

Riemann form in terms of the corresponding alternating form in the following way:

Definition 3.2.20. A Riemann form on a complex vector space V with a lattice L is an

alternating R-bilinear form w : V x V — R satisfying
1. w(iz,iy) = w(x,y) for all z,y € V.
2. w takes values in Z on L x L, that is w(A1, A2) € Z for all A\j, Ay in L.

3. w(iz,z) > 0 for all z # 0 € V (equivalently the corresponding Hermitian form is

positive definite).

We also say that w is a polarization for V/L. A complex torus equipped with a polarization

is called a polarized abelian variety.

Theorem 3.2.21. (Riemann Conditions) In order for the complex torus V/L to embed in
a projective space, it is necessary and sufficient that there exists a basis B of the complex
vector space V', positive inetgers ti,...,t,, and a complex symmetric square matriz Z of

order n with positive definite imaginary part, such that, in the basis B,

L=27"oTZ",

where T is the diagonal matriz with diagonal coefficients t1, ..., t,.

Definition 3.2.22. The vector (t1,...,t,), as well as the matrix T, are called the type of
the polarization. An important special case of polarization is when the Riemann form w is
unimodular over the lattice L, that is its Pfaffian equals 1 and it is of the type (1,...,1). In
this case, one says the polarization is prinicipal and (X, w) is a principally polarized abelian

variety.

We now sketch why an elliptic curve is an abelian variety.
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Example 3.2.23. Suppose X = C/L is an elliptic curve. We may take {1,7} with 7 € h!

as a basis for L. Define
H:CxC — C

Then H is a Hermitian form, Im(H (L, L)) C Z and H is positive definite.

3.2.2 Moduli Space of Polarized Abelian Varieties

Our goal is to describe the moduli space of polarized abelian varieties. We work
with the notion of moduli space as viewed by [11], Chapter 8. A moduli space for a set of
abelian varieties means a complex analytic space or a complex manifold whose points are
in one to one correspondence with the elements of the set.

Let T' = (71,...,72n) be a complex n x 2n matrix. If the columns of I are linearly

independent over R, then they span a lattice Ly C C™:

2n
Lp:=) Zv.
=1

If H is a Hermitian n X n matrix, we can consider the Hermitian form on C" given by
H(z,2') := 2HZ'. Tt is interesting to know what matrix I' and what Hermitian matrix will
make the form H a Riemann form.

Suppose we have an integral n X n matrix T whose determinant is different from
zero, and Z € h™. The columns of the matrix I' = (T, Z) generate a lattice L(T, Z) in C",
the quotient space C"/L(T,Z) is a complex torus. Define a Hermitian form H (T, Z) by
the matrix (Im Z)~! with respect to the standard basis of C*. Then H(T, Z) is a Riemann
form on C"/L(T, Z) for the following reasons: as Z € h”, it is clear that H(T, Z) is positive
definite. Consider the R-linear isomorphism R?® — C" defined by the matrix (T, Z). Then
the columns of the matrix (7', Z) with respect to the standard basis of C" are the images
of the standard basis of R?" in C". This means the columns of the matrix (T, Z) form a

basis of L(T, Z). With respect to this basis Im(H (T, Z))|L(T, Z) x L(T, Z) is given by the
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matrix

=T 0y,

This shows that for every Z € h™, one can associate a polarized abelian variety of fixed type
T.

Conversely, we consider triples (V, L, H), where L is a lattice in a finite-dimensional
complex vector space V and H is a nondegenerate Riemannian form up to isomorphism.

Two triples are isomorphic

(V.L,H)= (V' L', H'),

if there exists an isomorphism

o: VoV

with the property

L' =0(L), H'(o(2),0(2))=H(z72") forallz, 2 €V.

To select a nice representative of each isomorphism class, we choose a lattice basis {w1, ..., w2, }
. . On T .
as provided by Theorem 3.2.21 such that w := Im H is of the form , with an
-T 0,

elementary matrix T'. The lattice basis contains a C-basis for V. More precisely, let W be
the real vector space generated by wq,...,w,. To show that V = W @ W, it suffices to
show that W NiW = {0} since wy,...,w, are linearly independent over R. If z = iz is
an element of the intersection, then we have H(z,z) = w(iz, z) = w(—2',2) = 0 because
w(wj, w;) = 0. The positive definiteness of H shows that z = 0. Hence {w1,...,w,} is a
C-basis for the complex vector space V. Now we consider the isomorphism which transforms
the basis to the standard basis. Hence we can assume that V = C" and (wy,...w,) =T
where T is the diagonal matrix with diagonal elements t1,...,t,. We collect the remain-
ing lattice vectors together in an n X n matrix Z := (wp41, - ..,ws,) and hence we denote

the lattice L by (7, 7). It turns out that Z € h™ and the Riemann form H is given by
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H(z,2') ='(Im Z)~12'. So we have shown that if we consider the set of all triples (V, L, H)
up to isomorphism, a nice representative of the isomorphism class is given by the following

proposition.

Proposition 3.2.24 ([11], Proposition 8.1.1). For each nondegenerate Riemann form H

on a lattice L in a complex vector space V', there exists
1. an elementary matriz T,
2. a matriz Z € h",

such that

(V,L,H) = (C", L(T, Z), H(T, Z))

where L(T, Z) is the lattice
L(T,Z) =TZ" & ZZ".

Summing up, we have that the assignment

Z— (C"L(T,Z),H(T, 2))

gives a bijection between the Siegel upper half space h™ and the set of isomorphism classes

of polarized abelian varieties of type T'. This can be expressed as follows.

Proposition 3.2.25 ([11], Proposition 8.1.2). Given a fized type T, the Siegel upper half

space b is a moduli space for polarized abelian varieties of type T'.

Next, we would like to put an analytic structure on the moduli space of polarized
abelian varieties of type T'. Recall that by Theorem 3.2.21 each abelian variety (V, L, H) of
type T is isomorphic to one of the form Xz = (C", L(Z,T), H(Z,T)) where the lattice L is
generated by the columns of the matrix L = L(Z,T) for a uniquely determined elementary
matrix 1" and Z is in the Siegel upper half space h™. In order for two varieties Xz and

Xz of type T to be isomorphic, we seek an isomorphism u of C™ that takes the lattice
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Ly =Z7" ®TZ" to Ly = Z'7Z" & TZ™. Let R € GL,(C) be the matrix of the C-linear

map u in the canonical basis of C", then we seek a matrix R such that

RL(Z,T) = L(Z',T).

This condition can be formulated as follows (refer to Section 1.2 in [11]): there is a matrix

N € GLgy(Z) with the property

(Z',T) = R(T, Z)'N.

Decomposing N into four n x n blocks

then the condition reads as

7' = R(Z'A+T'B),

T=R(Z'C+T'D).

Therefore, the matrix R is determined by

R=T(Z'C+T'D)7!,

and T71Z' = (Z'C + T'D)"(Z'A + T'B). Now using the fact that Z’ is symmetric, we

can rewrite this last equation in the form

7' = (AZ + BT)(CZ + DT)"'T.

This is equivalent to saying that the integral matrix N € GLag,(Z) preserves the polarization,
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that is it satisfies

tNO”TNZO"T

T 0, T 0,

The set of all matrices with this property is in fact a group, and is called the integral

paramodular group of level T.

Definition 3.2.26. The integral paramodular group of level T, I'*[T], consists of all integral

N of order 2n given by

Z. (o T 0n T
I[T] = { N € GLy,(Z)| 'N N=
T 0, T 0,

Therefore, an isomorphism between two abelian varieties with fixed polarization T

creates an equivalence relation on elements in h™ given by the following.

Definition 3.2.27. Two points Z, Z’ € h™ are equivalent modulo I'*[T] if there exists a

matrix N € T%[T] such that

1. the matrix CZ + DT is invertible.

7' = (AZ 4+ BT)(CZ + DT)"'T.

The equivalence classes of elements in h™ correspond to the orbits of the action of
the integral paramodular group of h™.
Proposition 3.2.28. The action of I*[T] on h™ is given by

A B
v = Z | —~Z=(AZ+ BT)(CZ + DT)"'T.
C D

Summing up, we have have proved the implication (1) = (2) of the following propo-

sition.
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Proposition 3.2.29 ([11], Proposition 8.1.3). For Z,Z' € h™, the following statements are

equivalent.
1. The polarized abelian varieties Xz and X', of the same type T are isomorphic.
2. Z' =~Z for v € TY[T].

Consider the automorphism o

1, 0, 1, 0,
P P
0, T 0, T

of GL2,(Q) and consider the matrix

-1

A B 1, Op A B 1, Oy, A BT

c' D 0, T C D 0, T T-'Cc TDT

We can rewrite equation (2) in Definition 3.2.27 in the form

7' =(AZ+B)(C'Z+ D)

A B
Hence, we obtain that the matrix M := is rational symplectic and satisfies
c' D
M M =
1, 0, 1, 0,

Thus, we have obtained an injective homomorphism

o7 : T[T] = Spyy, (Q),
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mapping
A B A B
D c' D
The image of I'*[T] by this homomorphism is called the paramodular group I'[T] of level T

Definition 3.2.30. The paramodular group of level T is defined as

I[T] = or(Matan(Z)) N Spa, (Q)

A B
= € Spy,(Q)| A, BT, TC, TDT" with integer coefficients
C D

The advantage of this definition of the paramodular group is that it is now a sub-
group of the rational symplectic group Sp,,(Q) and hence acts on the Siegel upper half

space of genus n using the usual action as defined in Chapter 2.

Proposition 3.2.31. T'[T] acts on h™ and this action is given by
L[T] <" —p"
A B
M = Z | > MZ = (AZ + B)(CZ + D).
C D

In fact, we have the following:

Lemma 3.2.32 ([65], page 78). The paramodular group T[T] is commensurable with the

Siegel modular group Spy,,(Z).

Proof. Every element M in I'[T] is clearly projective rational.
A B . 1
I'[T] N Spy,(Z) = € Spy,(Q)| A, B,C, D, BT, TC,TDT™" € Mat,(Z)
C D

contains a principal congruence subgroup I's, (M) for any integer M with MT~! integral.

O]
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As an arithmetic group, the paramodular group is a discrete subgroup of Spy,, (R)

and hence using Proposition 2.1.33 we have.

Proposition 3.2.33. The paramodular group acts properly discontinuously on the Siegel

upper half plane h™.

Theorem 3.2.7 implies that the quotient space §™/T'[T] with its natural quotient
structure is an analytic space of dimension n(n + 1)/2. Also, because or(I'![T]) = I'[T],
then h™/T[T] is an analytic space of the same dimension n(n + 1)/2. The identity on h™
induces an isomorphism

h"/TY[T) = b /T[T].
Applying Prpositions 3.2.25 and 3.2.29, we have:

Theorem 3.2.34. The analytic space §™ /T[T is a moduli space for polarized abelian vari-

eties of type T.

Remark 3.2.35. If T is the unit matrix or a multiple of it, that is 7" is the fixed principal
polarization on the set of abelian varieties, then the isomorphism oy, is the identity on
Spsy, (R) and the paramodular group I'[T] coincides with the Siegel modular group Sps,,(Z)

and hence h™/ Sp,,,(Z) is the moduli space of principally polarized abelian varieties.

We say a point y in an analytic space Y is smooth if there exists a neighborhood
of y in Y which is a complex manifold. Otherwise we say y is a singular point of Y. With
the properly discontinuous action of G on a complex manifold X, not all points in X have
a trivial stabilizer. In the neighborhood of these points, the quotient space X/G looks
like the quotient of a manifold by finite group, hence the points with nontrivial stablizer
are the singular points of the quotient. It is nice to note that because every point Z in
h™ corresponds to an isomorphism class of polarized abelian varities of dimension n and
polarization T', the stabilzer I'[T|z of such a point under the action of I'[T] corresponds
to the automorphism group of the abelian variety X7 consisting of automorphims that

preserve the polarization. Hence the singular points are those corresponding to polarized
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abelian varieties whose automorphism group strictly contains {+identity}. In fact we have

the following result due to Tai.

Theorem 3.2.36 ([19], Theorem 7.5). The smooth points of " /T[T] correspond exactly,

forn > 3, to polarized abelian varieties with automorphism group {+identity}.

3.3 Paramodular Groups

In this section, we keep the notation as in the previous section. We have seen how
paramodular groups arise when parametrizing isomorphism classes of polarized abelian
varieties of type T' and that when T' = 1,,, we get back the Siegel modular group Sps,,(Z).
Now, we present paramodular groups from the group theoretic point of view and give a

generalization of the symplectic groups defined in Chapter 2.

Definition 3.3.1. Let

0, T
Pr .=
-T 0,

The general symplectic group asscociated to T is

GSpy, (T, R) = {g € GL2,(R),'gPrg = n(g)Pr},

for a multiplier homomorphism u : GLg,(R) — GL;(R). The subgroup of matrices of

positive multiplier is

GSp3,(T,R) = {g € GSp,,, (T, R), u(g) > 0}.

The real symplectic group associated to T,

Span (T, R) = {g € GSpy,, (T, R), u(g) = 1},

is the automorphism group of the alternating form associated to T'.
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The integral paramodular group of type T is then defined as
I*[T] = Spoy (T, Z) = Spay (T, R) N Matz, (Z).

Note that when 7" = 1,, we drop 1,, from the notation and we get back the groups
defined in Chapter 2.
Using this definition, we can can easily obtain the following relations on elements

in Sp2n (T7 R)

A
Proposition 3.3.2. The matriz g = "M e Span (T, R) if and only if the following

relations hold

‘A, TD, - 'C, TB, =T, ‘A, TC,=1'C,TA,, 'B,TD,="'D,TB,.
FEspecially, Spy(T,R) = SLa(R).

2. The inverse g—' € Sp, (T, R) for 'gPrg = Pr is equivalent to g~ Prg=' = Pr. It is
given by

T-'tpD, T —T71'B,T
gfl — Pj:l tgPT — n n
—T-Yte, T T-YA,T

3. The transpose tg = PTg_lel 18 symplectic and hence

D, T A, —C, T ''B, =T, D, T7''C,,B,T A, are symmetric.

Using these symplectic relations and recalling the conjugation map or relating ele-

ments of the integral paramodular group I'![T] and the paramodular group I'[T] in Sp,,, (Q)
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in the following way

. 1, O 1, 0
I =or@r)=|" " |r1| " .
0, 77! 0, T
or
—1
1, 0 1, 0
I =op (I =| " " A
0, T 0, T
we obtain:
Corollary 3.3.3.
i _ A B t ot _ t t .
[T = € GL2n(Z)|'ATD — 'CTB =T, 'ATC, ‘BT D symmetric

C D

Remark 3.3.4. For notational preference, from now on we would rather deal with the

conjugate of the map op that we will also call op. That is,

-1

A B 1, 0O, A B 1, 0O,
or =
c D 0, T c' D 0, T
Consequently,
-1
i 1, 0Op i I, Op
I'T] = or(I'[T]) = [T , (3.1)
0, T 0, T
and
-1
Z. B L, O, L, Oy
T[T = o7 (T[T]) = (7] - (3-2)
0, T O T

We would like to determine the shape of the elements in the paramodular group

I'[T]. For this we use
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A B A B ;
[T =q9= € Sp2,(Q)| o e I'[T]
D C D
Consequently, we have

A B
1. Using the usual symplectic relations (Proposition 2.1.3), € Sp,,,(Q) implies
C D

that
‘tAD -'CB =1,,'AC,!BD symmetric.
L A B A BT A
o = € I'[T]
D T-'C T-'DT
means that

A,BT, T71C, T7'DT € Mat,(Z),

and also using the symplectic relations in Proposition 3.3.2, we get that
‘ADT — 'CBT =T, 'AC,T'BDT symmetric.

tD _ tB
3.9t = € I'[T] also implies that
—ic A

D, BT, T7Y'C, T~ AT € Mat,,(Z).

Putting all this together and working on the level of the elements of the matrices in con-

sideration where A = (a;), B = (bs;),C = (¢i5), D = (dij), we get that

A B
Proposition 3.3.5. The element € Spy, (Q) is in T[T if and only if the following
C D
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holds

t; . _ S
ﬁZ j>1 tilZ j>i .
a5 € , bij € , bij € oin (i,j)Z’
7  i>j t7'Z >
\
tZ g > 7 j=>t
Cij € , dij S
L7 P> L7 i>j
\ 7
1
In particular, when n =2 and T = for t > 1, then
0 ¢
Definition 3.3.6.
.
* Tk % *
x  ox %t Lk
* bk % *
{ tx  tx  tx *
* tx ox tx
. * % k%
[T = N Maty(Z)
* Tk ok
* % k%
\ Vs

Remark 3.3.7. There is no containment between the paramodular groups I'[t] and T'[t'] if

t,t' # 1. To see this, note the element

10 0 0
00 0 ¢!
00 -1 0
t 0 0 0

is contained in I'[t/] with ¢’ # 1 if and only if ¢ = ¢. This is in contrast to the situation of

(2)

congruence levels as there one has I'y” (N) C F(()z)(M) if M| N.
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It is easy to verify that

Applying the conjuguation o7, we get that

Jr i=or (Jn) = € F[T].

Rosati gave generators for the paramodular groups.
Theorem 3.3.8 ([65], Theorem 2.1). Consider the following subgroup

QT) = {U € GL,(Z)| T7'UT € Mat,(Z)}

of GL(Z). The group T'[T] is generated by

0, T7!
Jr =
-T 0,
and the two subgroups
vt o,
UeQT),;,
0, U
and
1, S

ST € Mat,(Z), S =' S

0, 1,

Also in his thesis Kapler has shown that

Lemma 3.3.9 ([50], Lemma 2.1.3). let t; ; := t;t; ' and Ej; be the matriz with the (i,7)-

. 1, Si;
entry is 1 and all others are zero. T''[T] is then generated by J, and matrices "o

0, 1,
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where
Eij if 1=,
tiJ‘Eij + Eji if 1<].
Since all generators of the paramodular groups have determinant 1, we deduce the

following

Corollary 3.3.10. If g € I'|T], then detg = 1.

3.4 Paramodular Forms

Definition 3.4.1. Let n > 2 and k € Z. A function f: h® — C is a paramodular form of

degree n, weight k if it satisfies the following:

1. fis holomorphic,

A B
2. for all v = e I'[T], Z € h™ we have
C D
f(vZ) =det (CZ + D)"f(Z).

We denote the complex vector space of paramodular forms by M, (I'[T]) and denote

by M(T) = &M (T'[T]) the ring of paramodular forms of polarization 7.

Remark 3.4.2 ([65], page 77). In greater generality, paramodular groups are defined using
a symmetric rational matrix A € GL,(Q) instead of an elementary matrix 7. But,
1. For any r € Q we have the isomorphism

—1
1, 0, 1, 0,
(A

On Tln On TlTL
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which induces the isomorphism
f(Z)e M(A) — f(rZ) e M(rA).

Hence, we may assume that the matrix A is integral and primitive.

. Every paramodular group I'[A] is conjugate to a paramodular group I'[T] where T is
an elementary matrix as decribed in §1 of this chapter. This is due to the well known
fact that for any integral symmetric matrix A, there exists unimodular matrices U and
V in GL,(Z), such that A = UTV for a diagonal matrix T given by the elementary

divisors of A. The equality A = UTV induces the isomorphim

I — T[a]

A B
If M = , then
D

. (vTtAau uT'BU!
M = e I'A]
tcu wbDU!

follows from the fact that M € T'[T] and the symplectic relations. This is equivalent

to say M’ € Sp,,(Q) and that,

A'=UtAU, BA=U'BTV, A~'c¢'=Vv-'T'cU, AT'D'A=Vv T DTV
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all belong to Mat,,(Z). The isomorphism

-1

also induces an isomorphism

f(Z)e M(A) — f(UZU) € M(T).

. Therefore for the interest in paramodular forms, it is enough to work with an ele-
mentary matrix 7. We can also choose T such that ¢; = 1 and t;/t;—1 € N for all

2 < ¢ < n. In this case we call the polarization T' to be minimal polarization.

. When the degree n equals to 2, we will always deal with the minimal polarization

and denote T'[T],T[T], Pr and Jr by T'[t], T[], P; and J; respectively.

Applying the transformation formula of a paramodular form f with respect to gen-

erators of the paramodular groups I'[T], we get that f satisfies the following

f(Uzv)
f(Z+8) = f(Z) forall S=15 with ST € Mat,(Z),

(detU)f(Z) forall Ue QT),

f(=T1Z7'T=Y) = (det (-T2))f(Z).

Since I'[T] is a commensurable group, a paramodular form has then an absolutely

convergent Fourier development (we refer the reader to the details in Chapter 2). It is

periodic because of the relation f(Z + S) = f(Z) for all S =' S with ST € Mat,(Z).

Denoting the entries of ST by s;;t;, we have then s;; € ti_IZ and s;; € tj_lZ for all ¢ >

Following the same arguments in the Fourier development of a Siegel modular form
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as in Theorem 2.2.10, we obtain that a paramodular form f € M, (I'[T]) has a Fourier

development of the form

f(Z): Z a(N)em'Tr(NZ)

NEE(T)
where
2x11t1 e xlntn
E(T)={ N='N|N= : : with w;; € Z.
Tintn ... 2Tpntn

Similar to the relations that the Fourier coefficents of a Siegel modular form hold

(see Theorem 2.2.10), one can also show that
a('UNU) = (detU) "a(N) forall N €E(T),U € Q(T).
The Koecher principle also says that if IV is not positive semidefinite then

ST la(N)le TN

N€eE(T)

diverges. In other words, a(N) = 0 for all N not positive semidefinite. That is, we have

shown that

Theorem 3.4.3. Let f € M. (I'[T]), then f has an absolutely convergent Fourier series

f(Z) —_ Z a(N)e”iTr(NZ).
NEE(T),N>0
Summing over half integral matrices N in the set

J,‘llt] e xln/2tn

SRUZ,T)={ N='N|N=| '+ -~ with z;; € Z,N > 0

9

$1n/2tn e xnntn

we can instead write the Fourier expansion of a paramodular form f € M (T'[T]) in the
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following form

f(Z) _ Q(N)BQMTr(NZ)‘

10
For the degree n = 2 case, using the minimal polarization T' = , a paramod-

0 t

ular form satisfies the following equation

[(Z+58) = f(2),

a b 11
for all S = with a,b,d € Z. In particular taking S = we have that f

S
o
—_
|

satisfies

fr+1Lz2+ 1,7 +1/t) = f(r,2,7).

Let S5°(Z,t) be defined by

n /2
S5°(Z,t) = / e S5%Z) :m,n,r € Z
r/2 mt

We have that f € M, (I'[t]) has a Fourier expansion of the form

f(Z) _ Z af(N)eQﬂ'iTr(NZ).
NeS5%(z,t)

3.5 Paramodular Cusp Forms

Let T be an elementary matrix of order n and let F' € M (I'[T]). We have shown

that such F' has a Fourier expansion of the form

F(Z)= Y a(N)e ™),
NEE(T),N>0

Applying the Siegel ® operator,
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Z* 0

(FI®)(Z2*) = limyso0 F
0 A
Z* 0
miTr| N
0 A
= limye Y a(N)e i
N€eE(T),N>0
- S a(N) lim R Z) 2,
A—00
Ny *
7NZO
*  2xppt
= Z ; Ny * T TH (N Z7)
N1€E(T1),N120 *  2Tpptn
One can verify that
(FI®)(M*Z") = limpoo F
0 2

= det (C*Z* + D*)"(F|®)(Z*).
Proposition 3.5.1. We have

®: M (T[T]) — M(T[T1])
F +— F|®.

That is, the Siegel ® operator takes paramodular forms of degree n to paramodular forms of
degree n — 1.
To define cusp forms, we have the following criterion.

Lemma 3.5.2. Let F € M, (I'[T]), then F is a cusp form if (F|,M)|® = 0 for all M €
Sp2n(Q)'

We will show in Chapter 4 § 4.4 that it suffices to check Lemma 3.5.2 for finitely
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many matrices. More precisely, we will show the following;:

Theorem 3.5.3. F' € M, (T'[T]) is a paramodular cusp form if F|M|® for all representatives
M in D[T]\ Spp,(Q)/Crin-1(Q).
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Chapter 4

Compactification of Siegel varieties

[\ b"

4.1 Introduction

Let T' be an arithmetic group. Quotients of the Siegel upper half space h™ by T,
denoted T'\ h™, are called Siegel varieties. The ultimate goal of this chapter is to describe
the cusps of Siegel varieties. Cusps are related to the geometry at infinity of these varieties
and can be studied through compactifications. Compactifications of noncompact quotients
of the upper half plane h' have played an important role in the theory of modular forms
in one variable. It is natural to study compactifications of noncompact quotients of h™ to
better understand the theory of modular forms in many variables.

It turns out that several different compactifications have been constructed in the
literature. Each is built for a specific purpose and is motivated by a certain problem in
mathematics that imposes a different structure on the type of boundary components that
should be used.

In order to relate modular forms with respect to Sp,,(Z) to meromorphic func-
tions on Spy,(Z) \ h™ (a problem posed by Siegel), Satake ([66]) defined a compactifica-

tion (Spy,(Z) \ )¢ of Spy,(Z) \ h™ by constructing a topological space obtained by ad-
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joining the disjoint union of the lower dimensional spaces Sp,,(Z) \ h” of the same type,
0 <r <n—1, with a certain topology called the Satake topology that turns the quotient

space (Sps,(Z) \ h™)¢ into a compact Hausdorff topological space:

(SP2n(Z) \ 0")° = Spo(Z) \ B USpag,_1)(Z) \ 5" U U Sy (Z) \ b;

where h° denotes a space of one point and SpQ(O) (Z) denotes a group composed of the
neutral element, that is Spy(g)(Z) \ h? = {ico}, the unique standard cusp of SLy(Z) \ h".
This compactification is not in general a complex manifold but Satake also showed in [66]
that it has a complex analytic structure and conjectured that with this analytic structure,
it is a projective variety.

It was Baily who showed the following.

Theorem 4.1.1 ([8], Theorem 4). The compactification (Sps,, (Z)\h™)¢ is a normal analytic

space which extends the analytic structure on Spy,(Z) \ ™.

Moreover he showed that a projective embedding of (Sp,,,(Z) \ ™) into a complex
projective space as a normal projective subvariety may be obtained by means of automorphic

forms. A corollary of such a result is:

Theorem 4.1.2 ([8], Theorem 5). Let n > 2. Every meromorphic function on Spy, (Z)\ h"

is a quotient of two modular forms of the same weight.

More generally, Satake was able to provide a compactification of quotients of the
upper half space h™ by an arithmetic group I'. We will describe the compactification of

T\ h"in § 4.3.3.

4.2 Parabolic Subgroups of Algebraic Groups

The compactification of Siegel varieties I' \ ™, where I is an arithmetic group, is
governed by the theory of parabolic subgroups of Sp,,,(Q). In this section, we give a brief

description of the structure of the set of parabolic subgroups of an algebraic group G without
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explaining thoroughly every term involved in the description. Any detailed exposition with
proofs would divert our purpose too far. We start with some known facts in the theory
of linear algebraic groups following the helpful summary presented in [54]. For a general
reference, the reader can consult [52] and for the general algebraic geometry facts we refer
to [29]. We will also give examples of parabolic subgroups but even proving the examples
would mean one has to invoke the whole theory, so we just limit ourselves to the description
of their structure.

Given a group G, the commutator subgroup is defined as
¢V =[G,G) = (wyaly e,y € C).

The derived series of G is found by computing iteratively the commutator subgroups. That

is, a derived series of G is given by the following series of subgroups
GO >agW > .

where G©) = G and GU+YD = (GO, G,

Example 4.2.1. An abelian group A has the derived series
A> {1} > {1}...

since the commutator zyz~'y~! of any two elements is the identity.

Definition 4.2.2. A group G is called solvable if the derived series eventually terminates

to the trivial group.

Example 4.2.3. The subgroup of GL,(C) consisting of upper triangular matrices is solv-

able.

For the rest of this section we assume that we are working over an algebraically

closed field F' unless otherwise noted.
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Definition 4.2.4. An algebraic group G defined over a field F' is an algebraic variety over
F and a group such that the multiplication map m : G x G — G, m(a,b) = ab, and the

1

inverse map i : G — G, i(a) = a~" are morphisms of algebraic varieties.

Morphisms between algebraic groups, called homomorphisms, are morphisms of al-
gebraic varieties and group homomorphisms. If G is an algebraic set in F™ for some natural
number n (the variety G is affine), we say G is a linear algebraic group. Another charac-

terization of linear algebraic groups is the following.

Definition 4.2.5. A linear algebraic group G is a Zariski closed subgroup of the general

linear group GL,,(F') for some natural number n:
G = {9 = (9j) € GLn(F)|Fa(gij) = 0,a € A},

where each P, is a polynomial in g¢;;, A a parameter space. If the polynomials P, have

coefficients in a subfield K, G is called a linear algebraic group defined over K.

If K is a subfield of F', A linear algebraic group G is said to be defined over K if
the polynomials which define G as a subvariety of GL, (F) have coefficients in K. In this
case, the set G(K) := G N K" is called the K-rational points of G.

Example 4.2.6. The first example of a linear algebraic group is GL,(C) which is a

connected linear algebraic group of dimension n?. It is contained in the afffine space

Mat, (C) = Cc’. Ttis a variety because of the embedding

GL,(C) — Mat,(C) x C = C"*+!
(9i) —  ((gi3), (det (gi)) 7"
Let X;;, Z be the coordinates of Mat, (C) x C. Then the image is the affine hypersurface
det (X;;)Z = 1, which is a polynomial in Xj;, Z.
Other examples of linear algebraic groups often occur as the automorphism group

of some structures such as determinant and bilinear forms. For example, SL,, = SL,(C) =
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{9 € GL,,(C)|det g = 1}, and the symplectic groups Sp,,, = Sp,,,(C). It is clear that SL,

and Sp,,, are defined over Q.

Definition 4.2.7. Let G C GL,(C) be a linear algebraic group defined over Q. Let
G(Q) ¢ GL,(C) be the set of its rational points, and G(Z) C GL,(Z) be the set of its
elements with integral entries. A subgroup I' C GL,,(Q) is called an arithmetic subgroup if

it is commensurable to G(Z), i.e., I' N1 G(Z) has finite index in both I and G(Z).

This definition depends on the embedding G C GL,(C) and the integral subgroup

GL,(Z). However, we have the following.

Proposition 4.2.8 ([36], Proposition 4.2). Let G, G’ be two linear algebraic groups defined
over Q and ¢ : G — G’ is an isomorphism defined over Q. Then ¢(G(Z)) is commensurable

to G'(Z).
As consequence of this, we get.

Corollary 4.2.9 ([36], Corollary 4.3). If I' is an arithmetic subgroup of G, then for any

g € G(Q), gT'g~ 1 is also an arithmetic subgroup.

Definition 4.2.10. An element g of a linear algebraic group G is unipotent if (g —I)™ =0
for some integer m. A linear algebraic group G is said be unipotent if every element g € G

is unipotent.

Clearly, the subgroup U of GL,,(C) consisting of upper triangular matrices with ones
on the diagonal is unipotent and clearly any subgroup of U is also unipotent. The converse
is also true; any connected unipotent algebraic group is isomorphic to a subgroup of U. A

unipotent group is always solvable.

Definition 4.2.11. A linear algebraic group T is called a torus if it is isomorphic to a

product of F* = GLy(F).

Another characterization is that a linear algebraic group T is a torus if and only if

T is connected and abelian, and every element of T is diagonalizable. Let K be a subfield
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of F'. A torus T is a K-torus if T is defined over K. Let T be a K-torus. We say T splits

over K if T is K-isomorphic (isomorphism defined over K) to a product of GL;(K).

Example 4.2.12. Let T be the subgroup of GL,(C) consisting of diagonal matrices. Then

T is a K-split torus for any subfield K of C.

Example 4.2.13. Consider

(01 01
Th=1g¢€ SLQ((C) g g =
10 10
a
Now if g = € T, then one can show that b=c =0 and d = a~! and hence
c d
a 0

T =< g€ SLy(C)|g=

This implies that 77 = GL1(C) over Q under the map g — a.

A character of a torus 7" is a homomorphism of algebraic groups in X (7') = Hom (T', GL; (F")).
The group X(T') is the set of characters of T', called the character group. The Lie alge-
bra of G is denoted by g. There is an adjoint representation Ad : G — GL(g) which is a
homomorphism of algebraic groups such that Ad(T') consists of commuting diagonalizable
elements, and so it is diagonalizable.

Now, let G be a connected linear algebraic group which contains at least one torus.
Then there is partial order on the set of tori in G given by inclusion and the set of tori has
maximal elements called maximal tori of G. All maximal tori are conjuguate and the rank
of G is defined to be the dimension of a maximal torus in G.

We define an abstract root system, we then associate to G and to a maximal torus

T a root system.

Definition 4.2.14. An abstract root system in a finite dimensional real vector space V is
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a subset R of V that satisfies the following axioms:
1. R is finite, R spans V and 0 ¢ R.

2. If a € R, there exists a reflection s, relative to a such that s,(R) C R. A reflection
relative to « is a linear transformation sending o to —« that restricts to the identity

map on a subspace of codimension one.
3. If a, B € R, then s,(8) — f is an integer multiple of .

The rank of R is defined to be dim(V'). The Weyl group W (R) is the subgroup of GL(V)

generated by the set {s,|a € R}. A base of R is a subset 0 = {ay,..., o}, | = rank(R),
l

such that § is a basis of V' and each o € R is uniquely expressed in the form o = Z cQg,
where the c}s are all integers, no two of which have different signs. The eleme;:t; of §
are called simple roots. The set of positive roots RT is the set of @ € R such that the
coefficients of the simple roots in the expression for «, as a linear combination of simple

roots are all nonnegative. Similarly, R~ consists of those & € R such that the coefficients

are all nonpositive. R is the disjoint union of Rt and R™.
Given o € X(T),let go ={X €g | Ad(t)X = a(t)X, forallt € T}.

Definition 4.2.15. The nonzero o € X(7') such that g, # 0 are the roots of G relative to

T. The set of roots of G relative to T" are denoted by ®; = ®(G,T).

Let (®;) be the subgroup of X (T') generated by ®; and let V = (®;) ®z R. Then &,
is a root system for V. Since any two maximal tori are conjugate, then ®; depends only on
G up to conjugation.

A connected algebraic group G contains a unique maximal normal connected solvable
subgroup that we call it the radical R(G) of G. The set R,(G) of unipotent elements in

R(G) is a normal closed subgroup of G and is called the unipotent radical of G.

Definition 4.2.16. A connected linear algebraic group G is called semisimple if the radical

R(G) = {e}.
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Equivalently, G is semisimple if and only if G has no nontrivial connected abelian

normal subgroups.

Definition 4.2.17. A connected linear algebraic group G is called reductive if the unipotent

radical R, (G) = {e}.

The general linear group GL,, is reductive but not semisimple, since its center is the
set of scalar matrices and hence GL,, has nontrivial radical. A maximal torus is given by
the diagonal matrices which is isomorphic to GL}. The group of upper triangular matrices
is not reductive because of the subgroup of upper triangular matrices with ones on the
diagonal.

We have that G/R(G) is semisimple and G/R,(G) is reductive.

4.2.1 Borel and Parabolic Subgroups

The set of connected closed solvable subgroups of GG, ordered by inclusion, contains

maximal elements.

Definition 4.2.18. A Borel subgroup B of an algebraic group G is a maximal closed and

connected solvable algebraic subgroup.

Fixing a Borel subgroup B, then every other Borel subgroup is conjugate to B. In
otherwords, there is a single conjugacy class of Borel subgroups. An example of a Borel
subgroup is the subgroup of upper triangular matrices in GL,,(C).

Closed subgroups between a Borel subgroup B and the group G are called parabolic
subgroups. Hence, the Borel subgroups are the minimal parabolic subgroups. Another way
to characterize a parabolic subgroup is: P is a parabolic subgroup if and only if G/P is a
projective variety. If P is a parabolic subgroup, then P is connected and normal. If P and
P’ are parabolic subgroups containing a Borel subgroup B, and P and P’ are conjugate,
then P = P'.

From now on, assume G is connected reductive linear algebraic group. Let T be a

maximal torus in G. Then T lies inside some Borel subgroup B of G. The set of Borel
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subgroups of G which contain 7" is in one to one correspondence with the set of bases of ;.
Let ¢ be the base of ®; corresponding to B. For every subset I of §, there is a corresponding
parabolic subgroup P; of G containing B and every subgroup of G containing B is equal
to some some parabolic subgroup P; for some subset J of . We note that the parabolic
subgroup P associated to [ is obtained through the Bruhat decomposition of an algebraic
group relative to its Borel subgroup B. (For a brief description of the construction of the
parabolic subgroups associated to subsets of simple roots using the Bruhat decomposition,
one can check [54], page 386.) If I and J are subsets of §, then I C J if and only if
Pr C Pj. A parabolic subgroup Pr is conjugate to Py if and only if I = J. A parabolic
subgroup is called standard if it contains B. Any parabolic subgroup P is conjugate to
some standard parabolic subgroup. Hence, the set of representatives of conjugacy classes
of parabolic subgroups of G is the set of standard parabolic subgroups which is in bijection
with the set of all subsets of the set of simple roots d. The Borel subgroup correspond to the
empty set and the group G correspond to the set of all simple roots. When § — I consists of
one element, then Pr is a proper maximal parabolic subgroup and every maximal parabolic
subgroup of G is conjugate to one of the P;. In fact, the number of simple roots is equal
to the number of conjugacy classes of proper maximal parabolic subgroups. If a parabolic

subgroup P is defined over Q, it is called a rational parabolic subgroup.

4.2.2 Description of the Levi Decomposition of Parabolic Subgroups with

Examples

Let G, B and T be as above. Let I C §. There is a corresponding parabolic subgroup

Pr according to the discussion above. The set

@IZ{ae@ﬂa:ZCiai:aiEI,cieZ}

)

forms a root system. Let Ny = R, (Pr) and T be the identity component of (Nyer ker ).

Now, we let M7 be the centralizer of T7 in G. The set ®; coincides with the set of roots
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in ®; which are trivial on T7. The group M is reductive such that ®(M;,T) = ®; and

normalizes Ny = R, (Pr) such that

P; = M7 x Nj. (4'1)

We call M the Levi component or the Levi factor of Pr and the decomposition given by
equation 4.1 is called a Levi decomposition of Py.

Since any other parabolic subgroup P of G is conjugate to a standard parabolic
subgroup Py for some I, it then has also a Levi decomposition via conjugation from a Levi

decomposition of P;.

Example 4.2.19. Let G = GL,(C), n > 2. G is a reductive group but not semisimple.
The group

T = {dlag (tl,tg, ... ,tn) 1t € C*}

is a maximal torus in G. The set of simple roots § consists of n — 1 elements. The
corresponding Borel subgroup is the subgroup of G consisting of upper triangular matrices.

For any subset I of 0, there exists a partition (n,ng,...,n,) of n such that

T; = {diag (a1,...,a1,a2,...,a2,...,04r,...,a;)| ai,asg,...,a, € C*},

where a; appears n; times, for 1 <i < n.

M = GL,, (C) x GL,,(C) x ... x GL,,.(C)

and
ln, = * *
lp,
Ny =
*
\ Ln, J
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such that Pr = Mj x Nj.

Example 4.2.20. G = SLy(C). The only conjugacy class of parabolic subgroups is the
minimal parabolic subgroups. The standard minimal parabolic subgroup which coincides

with the Borel subgroup is

P is defined over Q. Its real locus is the stabilizer of ico in SLa(R). Its unipotent radical is

19
N = beR ;,
0 1
and its Levi factor is
a O
M = a € R*
0 a!

Example 4.2.21. G = Sp,(C). The group

T = {diag (a,b,a™ 1,07 ') : a,b € C*}

is a maximal torus in G. The set of simple roots consists of two roots § = a, 3. Hence the
set of conjugacy classes of parabolic subgroups consists of a single conjugacy class of Borel
subgroups (minimal parabolic subgroups) and two conjugacy classes of maximal parabolic
subgroups. The standard Borel subgroup which corresponds to the set of simple roots is the
subgroup B of upper triangular matrices in G. The standard maximal parabolic subgroups
will be denoted by (39 and Ca 1 where 0 corresponds to o and 1 corresponds to (.

For Cy,

Ty = {diag (a,a,a™",a"V)]a € C},
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A 0

M()— AGGLQ(C) R
02 tg—1
19 B
Ny = B € Maty(C),)B =B},
02 1o
and
0270:M0D<N0.
For C2’1
Ty = {diag (1,a,1,a")|a € C*},
a 0 b 0
0 a O 0
M, = a€C*dd —bd=1p=SLyC) x C*,
d 0 d 0
0 0 0 ot )
1 0 0 =z
r 1 =z
le Y )
0 01 —x
0 0 0 1
and
0271:M1D<N1.

4.2.3 Maximal Parabolic Subgroups of Sp,,(R)

The maximal torus is the set of diagonal matrices diag(t1,ts, ... ,tn,tl_l, N e
The corresponding Borel subgroup or the standard minimal parabolic subgroup is the sub-
group of upper triangular matrices. The set of simple roots consists of n roots. Hence, we
have 2™ conjugacy classes of parabolic subgroups containing n conjugacy classes of maximal

parabolic subgroups. For each r, 0 < r <n — 1, the standard maximal parabolic subgroup
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of Spy, (R) is given by:

A 0
A U
Cn,r = 2!
Cy 0
0 O

By B
By B A B
€ Sp2n(R) € Sp2r(R)7u € GL?I—?”(R)

Dy Dy C, D
0 fu!

1, 0 0 n

‘m 1, ™ b

n—r tnm+ b= tmn+ tb ’
0 0 1, —m
O 0 0 1,

and its Levi factor M, is (G, x Gy—,) where

and

Aq
0
Cy

Gnr =

J P

0
0

By

0
D
0

1

0

In—r

0 0 1,

0

0 0 0 Wt

Hence the Levi decomposotion says that

Cn,r = (Gr

Ay By
S Sp2r<R) = SpQr(R)a
Ci D
u € GL,—(R) p = GL,,—(R).
X Gp—r) X Ny.
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We now describe how we obtain the standard maximal parabolic subgroups C,, , as
subgroups of Spy,(R). The set C,, can be defined as the set of matrices M € Sp,,(R)

whose elements in the first 2n — r columns and last n — r rows vanish. That is,

* *

Cn,r =qMe Sp2n(R) M=

On—r,Qn—r *

B
If we decompose each n x n block in an element M = of Spy, (R) into r x (n—1)

C

blocks in the following way:

Ar Ap Bi1 B C1 Ci2 D1 Dia
B C D
A1 A By By Cy (o Dy1 Do

then M € Cnﬂ« implies that A1 = 0,C12 =0,C% = 0,C =0, D91 = 0 and

A By
€ Sp2r (R)
Ciy D

That is,
Ai 0 By By

Ay Ay B B
Cnr ={Me Sp2n(R) M= “ ’ . ’

&) 0 Dy Do

0 0 0 Do

Remark 4.2.22. Due to the symplectic relations, it suffices to say that M € Sp,,(R) is in
Ch,r if and only if A1 =0, C12 =0, and Cy = 0, (or equivalently, M € Sp,,(R) N C,, - if
and only if Cy; =0, Cy =0, and Dy = 0).
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When r =0,

A B
Cro = { M € Spy,(R)| M =
0, ‘A1
When r = n — 1, C,, 1 consists of matrices whose last row is of the form (0,0,...,0,*)

with the first 2n — 1 elements are zeros. That is,

Al 0 Bl Blg

Aoy Ay B B
oot = 3 M € Spy, (R)| M = 21 A2 b2y 2 7

where

4.3 Concrete Description of the Satake Compactification of
A\ b"

In this section, we give a concrete description of the rational boundary components
(cusps) that are added to the space I' \ h™ to obtain its Satake compactification I"\ (h™)*.
We follow closely the presentation of [55] that is based on the work of Piatetski-Shapiro in
[58].

We first start by considering two important projections. For any fixed r, we have

the following maps:
x:h" — B

7* % ,
7 = — Z*
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where Z7* = 7 , and
On—r

wp: Cpy —  Spo,.(R)
A1 By

M — M=
C1 Dy

It can be easily verified that the map w; is a group homomorphism. On the other

side, we consider the injection of Sp,,.(R) in Spy, (R) defined by

A By v 0 1,.» O 0
1 Dy 1 0 Dy 0
0 0 0 1,—,

then w, ot =1, which means that w, is surjective.
Remark 4.3.1. Every element M € C),, acts on h” because w,(M) € Sp,,.(R).

Both projections * and w, are called projections onto the standard boundary com-
ponent of degree r (this will be defined below). In fact, they are compatible with each
other

MZ* = w,(M)Z*

for every M € C,,, and Z € h".

4.3.1 Description of the Rational Boundary Components

To describe the rational boundary components of the space I' \ h™ and form its
Satake compactification, we first start with the natural compactification of h™ obtained
from the realization of the Siegel upper half space h™ as analytically isomorphic to the

bounded symmetric domain ®,, in the space of symmetric complex matrices of degree n
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using the Cayley transformation

Z = (Z —il,)(Z +il,) "

This realization is known as the Harish-Chandra realization of a homogeneous space. We
then express this natural compactification in terms of boundary components. To obtain
the Satake compactification of the space I' \ h”, we instead need to consider the so-called
rational boundary components of the Siegel upper half space h™. This is how general
compactifications of Siegel varieties are described. To make sense of this, the reader can
consult the appendix in which a general approach of compactifying spaces like Siegel varieties
is outlined.

Let ®, = {Z € Mat,(C) : Z=1Z,1,,— ZZ > 0} be the topological closure of ®,, in
the space of complex symmetric matrices of order n. ®,, is therefore a compact space and
provides what is called the natural compactification of h™.

For two points p,q in the topological closure ®,, of ©,,, there is an equivalence

relation defined in the following manner
p~q< thereexists §: D ={2z€C:|z|<1} =D, i=1,...m,
holomorphic maps, such that &(0) = p, &,(0) = ¢, and &(D) N &41(D) # (. Loosely

speaking, p ~ ¢ if they can be connected by a finite number of holomorphic curves.

Definition 4.3.2. A maximal subset in ©,, of mutually equivalent points is called a bound-

ary component of 9.

The space ®,, is then equal to the disjoint union of all of its boundary compo-
nents. For n = 1, the boundary components of the unit circle are the single points of the

circumference.

Example 4.3.3 ([55], Proposition 4.4, Claim 4.4.1 and Lemma 4.4.2). 1. The set F, =
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Z*
Z* €9, ) 29, is a boundary component for every 0 < r < n.
Op—r lp—p

2. In particular, ®,, itself is a boundary component.
We know that the symplectic group Sps,(R) acts on the Siegel upper half plane

h™. It turns out that the corresponding action of Sp,, (R) on ®,, induced from the Cayley

transformation extends to the boundary.

Proposition 4.3.4 ([55], Proposition 4.3). The action of Spy,, (R) on ©,, induced from the

Cayley transformation

[T e I (A—iC)(Z+1,)+(B—iD)i(Z—1,)) (A +iC)(Z + 1,) + (B +iD)i(Z — 1,)) "
C D

extends to the closure of ©,,.

By this action, a boundary component is transformed into another. Therefore, the

division of ®,, into boundary components is invariant under the action of Spy,, (R).

Proposition 4.3.5 ([55], Proposition 4.4). 1. We have a bijective correspondence be-
tween the set of boundary components {F} and the set of real subspaces {U} in R®" of

dimension r < n defined in the following way: Let W be the subspace in C*" spanned

Z+1, _
by the columns of for Z € ®,, then

i(Z — 1)

F=FU)={Z€®,|Uc=UC=WnW}

2. For F, the corresponding real subspace (see Remark 4.5.7) W is of dimension n —r

and F, = F({0}).

3. For a boundary component F' = F(U) and M € Sp,,(R) we denote the action of
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M € Sp,,,(R) on the set of boundary components by M.F and we have
M.F =F(M.U)

where M acts on R?™ ( considered as a set of column vectors) as a 2n-matriz.

4. Any boundary component of ©, has the form M.F, for some M € Sp,,(R) and

0<r<n.

5. Consider the compact space ®,, which is the disjoint union of all the boundary com-

ponents. Because of the action of Sp,y, (R) on the boundary as in Proposition 4.3.4,

we can then write ©, as the disjoint union of all Spy,(R) orbits of the boundary

components F,. for 0 <r <mn:

Dn=J Sps(R).F,.

0<r<n
6. If F = M.F, for M € Spy,(R), we say F is of degree r and we denote this by
deg (F) =r. In general, for F = F(U) we have:

deg (F') + dim (U) = n.

That is, if F' has degree v it is then called an n —r dimensional boundary component.

Definition 4.3.6. For 0 < k < n, a k-th boundary component of ®,, is a boundary

component F(U) with dimU = k and of degree n — k.

Remark 4.3.7. We note that F,. = F(U,) where U, is the space generated by the columns
of
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4.3.2 Structure of the Parabolic Subgroup Associated with a Boundary

Component

To each boundary component F', the stabilizer of F' in Sp,, (R) is called a parabolic

subgroup.

Definition 4.3.8. Let F' be a boundary component of ©,. We define the following;:
1. P(F)={M € Spy,(R) | M.F = F} is the parabolic subgroup associated to F,
2. W(F') is the unipotent radical of P(F).

Lemma 4.3.9 ([55], Lemma4.7). Let Fy and F» be two boundary components. If M.F| = Fy
for an element M € Spy,, (R), then P(Fy) = M P(F))M L. Similarly W (Fy) = MW (Fy)M~*.

Proof. Tt suffices to show that P(Fy) = M P(F;)M~!. Using the fact that P(F}) stabilizes

F, we then have

P(Fy).Fy = MP(F\)M ™. Fy = MP(F\).F| = M.F, = F.

Hence M P(Fy)M~! is the stablizer of the boundary component F. O

Remark 4.3.10. Because every boundary component F' = M.F, for some 0 <r <n —1

and due to Lemma 4.3.9, it is enough to know the structure of the groups given in Definition

4.3.8 for F;.

Proposition 4.3.11 ([55], Proposition 4.8). For a boundary component F = F,., 0 <r <n,

the subgroups of Sp,,,(R) given as in Definition 4.3.8 can be expressed explicitly as follows.

Ar 0 By Bio

Az u Ba1 Bs Ay By
1. Pr = P(Fr) = Cn,r = € Spgn(R) S SPQT(R>, u < GLn_T(R)

Cy 0 Dy Dqs Ci1 D

0 0 0 ft
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2. W, =W(F,) =N, = hm+b="mn+ b
0 0 1, —m

0 0 0 1,

A B
Proof. Tt suffices to prove (1). Let g = € P(F,). Decompose every n x n block
C
in the following way:
A A Ay B B1 B C— G Oy D— Dy D, |
Ag A4 B3 By Cg 04 D3 Dy

such that the matrices with index 1 are r x r matrices, with index 2 are r x (n — r), with
index 3 are (n —r) x r and with index 4, (n —r) X (n — r) respectively.

By Propositon 4.3.5, (3), we have

P(F) = P(F(U)) ={g € Sp2,(R) | .U = U}.

Applying this to U = U, as in Remark 4.3.7, we see that

Ay =Ch = 0,04 = 0.

Also using the symplectic relations for g, we get

C3=D3=0, ‘A4Dy=1,

and
A1 B1
€ Sp2r (R)
Cl Dy
To see why for example C3 = 0 and ‘44D, = 1,, we rewrite the symplectic relation
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tAD — 'CB =1 in terms of block matrices, we obtain

17" Or,n—r Al Or,n—'r Dl D2

Cl Or,n—r Bl B2

t t

On—r,r 1n—7" A3 A4 DS D4 C13 On—r,n—r B3 B4
tAlDl + tA3D3 — tclBl — @333 tAlDQ + tA2D4 — tcleQ — thB4
tA4D3 tA4D4

The lower half of the last matrix shows that

tA4D4 =1, and tA4D3 = 07177‘,7‘7

hence
D3 = On—’r‘,r-

O]

Proposition 4.3.11 and equation (4.2) imply that P(F;) is the semidirect product of
(G, (F,) X Gp—r(F})) with W(F,.).

P(F,) =P, = (G (Fy) X Gp—r(Fy)) x W(E,),

where
Aq 0 By 0
0 1, O 0 A B
Gn(Fy) = € Spy(R) ¢ = ¢(Spa(R)).
4 0 D, 0 Ci Dy
0 0 0 1,
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1, 00 0
0 u O 0

Gr(F) = u € GLy_(R) § 2 GL,_,(R).
0 0 1, 0
00 0 ft )

Remark 4.3.12 ([55], Remark 4.11). For any boundary component F', the parabolic sub-

group P(F) acts transitively on D,,.
We now investigate the relationships between boundary components.
Proposition 4.3.13 ([55], Proposition 4.12). Let W be the vector space in C*" spanned

Z+1
by the columns of " |. Take the boundary component F = F(U), for U C R?",

i(Z - 1n)
Then, the topological closure of F in ®,, is

F={Zec®,,UcCcWnW}

Fact 4.3.14. If F is a boundary component, then its closure F in ®,, may be indentified
with the natural compactification of F' and its boundary components are also boundary

components of D,.

For two boundary components F, F’ of ©,,, we write

F<F if Fc(F).

This defines a partial order on the set of boundary components. Proposition 4.3.13 says

that for F = F(U) and F' = F(U'),

F<F ifandonlyif UDU.

Theorem 4.3.15 ([55], Theorem 4.14 ). For two boundary components F and F' of ®,

with F < F', we have
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1. Guey(F) D Gy (F'),
2. G.(F) C G.(F").

3. There is an element M € Spy,, (R) such that F,, = M.F and F,, = M.F" with ry < ry.

4.3.2.1 Rationality of Boundary Components

Definition 4.3.16. A boundary component F' of ®,, is called rational if it satisfies one of

the following conditions.

1. P(F) is defined over Q.
2. F = F(U) and U is defined over Q (i.e. a basis is chosen in Q").

3. There exists M € Sp,,(Q) with M.F = F,.

In particular, the boundary components F;. for 0 < r < n — 1 are rational boundary
components. The rational closure of ©,, which is defined to be the space ©,, enlarged by

its rational boundary is called the partial compactification of ©,,.

Definition 4.3.17. The rational closure of ®,, is given by

9,= |J F= {J Spu(@F CcD,.
F:rational O<rzn
Remark 4.3.18 ([55], Remark 4.16). If F' is a rational boundary component of ®,,, then
there is M € Sp,,,(Z) such that M.F = F,.

Definition 4.3.19. A k-rational boundary component F' (dim F' = k) is said to be a k-th
cusp of degree n—k or cusp of depth k and degree n—k. The rational boundary components

F, for 0 <r <n—1 are called the standard cusps of degree r or the (n — r)-cusps.

Definition 4.3.20. The partial order defined on the boundary components implies that
the degree n — 1 cusps are the maximal cusps of depth 1 that correspond to 1—dimensional
subspaces U. The minimal cusps are the cusps of zero degree and of depth n that correspond

to n-dimensional subspaces U.
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Now to define a topology on the partial compactification, Satake provided a topology
which induces a topology on the quotient space I'\ D7 that makes this space Hausdorff and
compact and contains I' \ ©,, as an open dense subset. Note that I" acts on ©,, and its
closure ®,,, then T' acts in a natural way on ©7. In another way, Piatetski-Shapiro has
equipped the rational closure ®; with a certain topology called the cylindrical topology
(see [58]) which is not the same as the Satake topology, but Kierna and Kobayashi [37]
have proved that both topologies define the same quotient topology on the compactification
(I'\D,)¢ of I' \ ©,,. A description of the cylindrical topology put on the rational closure
D7 is found in [55] on page 34.

Here we reach the main theorem which says the the topological space I' \ D7 is the

Satake compactification of I \ ©,,.

Theorem 4.3.21 ([55], Theorem 5.10). Let I' C Sp,,,(Q) be an arithmetic group acting on
D,. We consider the rational closure (D,)* of D, equipped with the cylindrical topology.
Then

1. T acts on (Dy)* properly discontinuously.

2. (T\®,)¢:=T\ (D,)* with its quotient topology is compact and contains D, /T as an

open dense subset.

3. (T'\ ©,)¢ admits a canonical structure of a normal analytic space such that T\ D,
is an analytic open subset. Moreover, it can be given a projective algebraic variety

structure using explicitly constructed modular forms.

We call T\ (D,,)* the Satake-Baily-Borel compactification of I \ ®,, when referring
to its projective structure and the Satake compactification when referring to its topological

structure.
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4.3.3 Concrete Description of the Compact Space I'\ (h")* in terms of its

Rational Boundary Components.

We give a description of the rational boundary attached to I' \ X following [18],
Exposés 12 and 13. To understand the topology defined on the compactified space and for
other useful details on normal analytic spaces, we refer the reader to the same reference.
Let T" be the Siegel modular group Sp,,,(Z). According to the discussion above, we have

that

o= U F= U Sew®@F

F:rational 0<r<n
Going back to the Siegel upper half plane h™ through the inverse of the Cayley

transofrmation, we then have

U SpZn(Z)b

0<r<n

Considering the action of Spy,(Z) from the left, we get

Sp2n( U SpZn \Sp2n( )hr

0<r<n

The stabilizer of h" in Spy, (Z) is Spy,(Z) N Cp, whose action on h” is equal to that of
Wy (Spa,(Z) N Cpy) = Spo,.(Z). Therefore Spy,,(Z) \ Spa, (Z)h" is identified with Sp,,.(Z) \ h”

and consequently we obtain the following decomposition of the Satake compactification of

r\pm

Spon(Z)\ (0" = |J Sp2(Z)\ B

0<r<n

= Sp2a(Z) \ ™ USpy—1)(Z) \ H" 1 U... USLa(Z) \ b USLy()(Z) \ b°,
(4.3)

where SLo(o)(Z) \ b is just the infinity cusp {ico}. Hence, in case of the full Siegel modular
group, we have a single cusp for each degree 0 < r < n — 1 given by the Siegel variety of

degree 7.
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In particular, when n = 2, we have that

Spa(Z) \ (8*)" = Sp4(Z) \ h* USL2(Z) \ b' U {00}

The cusps in this case are the open modular curve SLa(Z) \ h! of degree 1 and the single
cusp oo of degree zero.
Now let I' C Sp,,,(Q) be a commensurable subgroup with Sp,,(Z). We adjoin all

rational boundary components of h” in the following manner

") = |J Sp2(@b =0"U |J Span (@Y

0<r<n 0<r<n—1

For each 0 < r < n — 1, we decompose Sp,,,(Q) from the right by Sp,, (Q) N Cy,, and from

the left by I', we obtain

SPon(Q) = [T M, A(SP2,(Q) N Cry)
A

for finitely many representatives M, y for each r. We then have the corresponding decom-

position of (h™)*,

0" =b"U () (JTMaA(Sp2a, (@) N Cry)b"

0<r<n—1 X\

But Sp,,,(Q) Ny, is the stabilizer of h” in Sp,,, (Q), consequently we get
(") =p"u YT M, ab"
oA
Taking the quotient of (h™)* by I' from the left,
T\ (5" =T\p" U JUT\TM,\b".
oA

For fixed r, the stabilizer of a rational boundary component of degree r, I'M, \h", in the
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commensurable group M ;I‘Mm Ais M~ ;FMT, ANCh, . Its action on h" is given by the group

D(M, ). F) i= w (M T M, N Cpp).

7,

Now I'(M, x.F;) as subgroup of Sp,,.(R) is commensurable with Sp,,.(Z) and the quotient
space I'\I'M, \h" is identified with the quotient space I'(M, ».F}) \ h”. Hence each rational
boundary component of the quotient space I'\ h™ has the structure of a Siegel variety of lower
degree than n and we obtain the following concrete decomposition of the Satake compact

space I'\ (h™)* in the following way:

P\ =T\b"U | JT(MeaF)\ b

0<r<m—1 X

The elements M, ) for fixed r are the finitely many representatives of double cosets I'\
Spon(Q)/(Cpr N Spy,(Q)). That is, for each degree r, we have finitely many cusps corre-
sponding to representatives M, ) of a double coset space. This is why we give the cusps a
group theoretic description through double cosets and it is with these double cosets that
we work.

We note that it would be interesting to compute the groups I'(M,. x.F;.) for specific
arithmetic groups of interest like the Hecke congruence subgroup F(()Q) (N) or the paramodu-
lar group I'[t] in degree two. Doing so will help identify geometrically the modular curves of
degree 1 and the cusps of degree zero. Poor and Yuen have recently geometrically identified

the cusps in case I' = I'[t] in their joint work [62].

4.3.4 Cusps in Degree n =1
In this part, we describe the cusps when the degree n = 1. Plenty of references can
be found for this section, we refer to [20], [35], and [77].
One model of the hyperbolic plane is the Poincaré upper half plane
h' = SLy(R)/SO(2)
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dx?+dy?
2

endowed with the Poincaré metric ds? = where

cos@ —sinf
K =S50(2) = 0eR
sinf cos@

is the special orthogonal group of order two. The group SLy(R) acts isometrically and
transitively on h' by fractional linear transformations which makes h* the simplest example
of a symmteric space of noncompact type.

Another model of the hyperbolic plane is the Poincaré disc

D ={zeC||z] <1} 2SU,1)/U(Q1)

2
endowed with the Poincaré metric ds? = %, where

a b 5 )
SU(1,1) = a,be C,lal*—|b]* =1

is the special unitary group of order two that acts transitively and isometrically on ©; by
fractional linear transformations. The two models are identified by the Cayley transforma-

tion
zZ—1
41

bt 5D, 2+

The disc ©; can be compactified by adding the unit circle and the SU(1,1) action on ®;
extends continuously to the boundary. Transporting this to the upper half plane, the natural

compactification of h! is homeomorphic to

(") =b" URU {ico}

as a subset of P1(C) = CU {ioo}. Therefore we view h! as a subset of P}(C) whose natural

boundary is P'(R).
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We now consider the group GLz(C). It acts on P!(C) = C U {icc} by fractional
linear transformations. Let g € GLy(C) be such that g is not the identity transformation

i.e., g is not a scalar matrix. Form the theory of Jordan canonical forms, the matrix g is

conjugate to a matrix of either the form or of the form , where \ # pu.
0 A 0 u

When we restrict to elements in SLs(C) we have the following classification of elements.
Proposition 4.3.22 ([77], Proposition 1.12). Let g # 15 € SLa(C). Then,

1. g is parabolic if and only if Tr(g) = £2.

2. g is elliptic if and only if Tr(g) is real and | Tr(g)| < 2.

3. g is hyperbolic if and only if Tr(g) is real and | Tr(g)| > 2.

4. g is lozodromic if and only if Tr(g) is not real.

Evidently, if we restrict to SLa(R), then there would be no loxodromic elements.

For every s € P}(R) = RU {ico}, define

F(s) = {g€SLa(R)gs = s}

P(s) = {g€ F(s)|g is parabolic or g = £15}.
Then
a n
F(oo) = aeR*neR,,
0 a!
1 h
P(oo) = (&£ heRp 2R x {£}.
0 1

Since SLa(R) acts transitively on P!(R), hence for any s € P!(R), there is an
element g € SLa(R) such that goo = s. This allows us to relate the groups F(s) and P(s)

in SL2(R) to the groups F'(co) and P(o0). We clearly see that,



This shows that if an element in SLy(R) has a fixed point in P!(R), then it is either parabolic
or hyperbolic. Parabolic elements in SLy(R) are characterized by being the elements that

have a unique fixed point in P!(R) = R U {icc} and no fixed points in h?.

Proposition 4.3.23 ([77], Proposition 1.13). Let g # +12,g € SLa(R), then g is parabolic

if and only if g has only one fived point on P(R).

Definition 4.3.24. Let I' be a discrete subgroup of SLa(R). An element s € P!(R) is

called a cusp of I if there exists a parabolic element g € I" such that gs = s.

Proposition 4.3.25 ([77], Proposition 1.17). Let T" be a discrete subgroup of SLa(R) and
let s be a cusp of ' and T's = {g € T'| gs = s}, then every element of T's is either £19 or

parabolic, i.e., I's =T'N P(s).

A cusp s of T is then a point in P}(R) fixed by a parabolic element in I' N P(s)

where P(s) is the real parabolic subgroup associated to s. For example, we have

1 n
e =Ploo)NT'=< £ n e

Similar to above, since SLa(R) acts transitively on P!(R), then for any other cusp s

s = (gP(c0)g™) NT.

4.3.5 Cusps of SLy(Z)

First, let us describe the cusps geometrically. We consider the open modular curve

SL2(Z)\b" = SL2(Z) \ SL2(R)/SO(2),

which is the moduli space of complex elliptic curves.
The well known j function maps bijectively the open modular curve SLy(Z) \ h! to

C and hence provides the complex projective space P!(C) = CU{ioo} as a compactification
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of this open modular curve by adding a single cusp {ico}. We now explain the single cusp

100 added in a group theoretic manner.

Proposition 4.3.26. Let ' be the special linear group SLa(Z). The set of cusps of T is

ezactly the points in P*(Q) = QU {ico}.

11
Proof. First it is clear that ioco is a cusp as it is fixed by the parabolic element of

01
SL2(Z). For any g € Q with p € Z,q € Z and ged (p,q) = 1, we take integers ¢ and u so

U a b
that pt — qu = 1. Then, g = g € SLy(Z) and g(ico) = g. Conversely, if is

q t c d
a parabolic element of I', it has only one fixed point s. If s is finite, it satisfies

cs®+(d—a)s—b=0, c#0.

The discriminant of this equation vanishes, hence s must be contained in Q. This shows

that all points of Q U {ico} are cusps of SLy(Z). O

We have also shown that all cusps of SLa(Z) are equivalent under an element of

SL2(Z) to the cusp ico. Let (h1)* = ht U PH(Q), then

SL2(Z) \ (§')" = SLa(Z) \ ' U {ico}.

m

1 1
P(o0) = SLy(Z)ee = { + ‘ mez
0 1

Now if I is a congruence subgroup of SLy(Z), then the cusps of I" are I'-equivalence classes

of P1(Q). When I' = T'(N) the principal congruence subgroup of SLy(Z), then

n

1 N

I'(N)oo = D(N) N SLy(Z)se nez

0 1
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To find an explicit set of representatives for the cusps modulo I'(V)-equivalence, we use the

following.

Lemma 4.3.27 ([77], Lemma 1.41). Let a,b,c,d € Z such that ged (a,b) = 1, ged (¢,d) =1

a c a
and = (mod N). Then there exists an element g of I'(N) such that =
b d b
c
)
d
a
Thus, the cusps of I'(IV) are I'(N)s, s = ¢ for all pairs + (mod N) such that
b
ged (a,b) = 1.

However, we can express the cusps of any congruence subgroup of SLy(Z) with a

purely group-theoretic description.

Proposition 4.3.28 ([20], Proposition 3.8.5). Let I be a congruence subgroup of SLa(Z).
Let P = P(oc0) be the parabolic subgroup of SLa(Z) and let S be the set of cusps of I'. Then

the map
'\ SLy(Z)/P — S
LgP +— Tg(ico)
a b
is a bijection. Specifically, the map is T’ P—T(%).
c d

Proof. The map is well defined since if I'gP = I'¢’P then ¢’ = vgp for some v € T and
p € P, so that I'¢'(icc) = Tygp(ico) = I'(ico) since v € T’ and p fixes co. The map is
injective since the condition I'¢’(ic0) = I'g(ic0) is equivalent to ¢'(ico) = yg(ioco) for some
v €T. Or, g~y 1g € P for some v € I'. This means that I'¢’P = I'gP. Finally, it is clear

that the map is surjective. O

Remark 4.3.29. 1. Note that the proof of Proposition 4.3.28 is essentially identical to

showing first that SLo(Z)/P identifies with P1(Q) = QU {ico} through the map that
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a b a
sends every to its first column . The double coset space I' \ SLy(Z)/P
c d c

identifies then with the cusps of '\ P1(Q).

2. The identification T'\ SLa(Z)/P with T'\ P}(Q) generalizes to higher degree n when
using the maximal parabolic subgroup C,, ,—1(Q). That is the maximal degree cusps of
an arihmetic group I of Sp,,, (Q) are given by the double coset space I'\Spy,, (Q) /Cy.n—1(Q)

(See Proposition 6.5.7 in Chapter 6).

3. The group theoretic description of maximal degree cusps in all degrees n, which in
particular when n = 1 gives all the cusps (not just maximal) because of the single
conjugacy of parabolic subgroups, is in line with the geometric description of the

boundary components of a Siegel variety I' \ h™ as done in § 4.3.3 above.

One can view compactifications of I' \ ! in the following manner. There is a close
relation between the compactifications of h* and I\ h!. Instead of adding the full boundary
R U {ioco} of the compactification (h')¢ of h!, we add only a partial boundary consisting of

the so-called rational boundary components Q U {ico} and we call
hl UQU {ico}

the partial compactification of h'. A certain topology called the Satake topology is defined
by means of neighborhood basis such that for the finite part we have the ususal neighbor-
hoods and if s # 900, a typical open neighborhood of s is the set {s}U{interior of a circle in h' tangent to R
If s = ico, a neighborhood is given by the set {ico} U {z € h! | Iz > ¢} for any ¢ > 0, ¢ in
R. The I' action extends properly to h* UQ U {ico} so that the quotient I'\ h* UQ U {ico}
is a compact Hausdorff space that provides a compactification of "\ h?.
In fact, the rational boundary P'(Q) added was not a choice. It is directly related
to a fundamental domain for I'. The closure of the fundamental domain for SL(Z) in the

Riemann sphere P'(C) meets the natural boundary of h' at the point ico. Taking the
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fundamental domain of a congruence subgroup of I' which is a union of translates of the
fundamental domain of SLg(Z), then its closure in P!(C) meets P!(R) in points in QU{ico}
which are the I'-translates of the point ¢0o. For a general description of this procedure, we

refer to § 4.5.

4.4 The Siegel ® Operator Revisited

The Siegel ® operator was introduced in Chapter 2 as a linear operator that reduces
the number of variables when acting on modular forms. Understanding the Satake com-
pactification of Siegel varieties I' \ h™ enables us to view the Siegel ® operator in a more
meaningful way. In this section, we define a global linear operator that projects functions
living on the Siegel upper half space of degree n to all the rational boundaries of lower
degrees. This global operator reduces to the Siegel ® operator when considering only the
maximal standard cusps of degree n — 1. One advantage of this generalization is that it
allows us to give a general notion of cusp forms and to bridge this new notion with the
classical one found in the literature. More importantly, it helps to explain why it suffices to
check the conditions given in Proposition 2.3.5 for only finitely many matrices (See Remark

4.4.27). We keep all notations as in the previous section.

4.4.1 Cusp Forms for The Siegel Modular Group

In this part, we explain why it is enough to show a Siegel modular form with respect
to the Siegel modular group Sp,,,(Z) is a cuspidal form by showing it belongs to the kernel
of the Siegel ® operator. When n = 1, we usually say a modular f € M, (SL2(Z)) is a cusp
form if it vanishes at the cusp ico. It is then natural to extend this definition to higher
degree n and say that a Siegel modular F' € M, (Spy,(Z)) is a cusp form if it vanishes at
all cusps. We now make sense of this statement.

Let T'y, = Spy,,(Z) and let M, (")) be the space of modular forms of weight £ with
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respect to the Siegel modular group I';,. The compactification of Ty, \ h™ is the space

T\ (0™ =T, \h" Ul \ " P u...UTy \ b’

The lower dimensional spaces

T \ "L .. T\ B°

are called the cusps or the rational boundary components of "\ (h™)*.

Definition 4.4.1. With respect to the full modular group I'j,, we have a unique cusp
F,. :=T,\b" for each degree 0 < r < n — 1 which is called the standard cusp of degree r.

The cusp Fy,_1:=I,_1\ h” ! is called the standard maximal cusp.

On the other hand, we have seen that the Siegel ® operator is a linear operator such
that
d: M, (T)) = Mc(Tp-1).

Therefore, we can now give the following definition from the point of view of compactifica-

tion.

Definition 4.4.2. For every F' € M, (T',), F|® is a projection of F' to the standard maximal

cusp of degree n — 1.

Equivalently, this definition says that the Siegel ® operator is the operator associated

with the maximal degree standard cusp Fj,_1 = I',_1 \ h» L. That is,

=0 .

It associates to a Siegel modular form F' € M, (T',,) its projection F'|® to the maximal degree

standard rational boundary component. This projection is a modular form for

Ipo1= wn—l(rn N Cn,n—l)-
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Now for any 1 < j < n, the j-fold Siegel operator ®/ is defined as follows

Definition 4.4.3. For 1 < j < n,

. 75 Oney .
F|#/(2") = lim F ) . (ZFepr).
* Op—r ALy

One can show that
Proposition 4.4.4. The projection of F, F|®7, belongs to Mg(T'p—;).
Moreover, the Siegel ® operator enjoys the following transitivity property:

Proposition 4.4.5 ([67], page 14-17). For 0 < s < r < n, the Siegel operator satisfies
P (D7) = ",

Using this transitivity property, it is easy to verify that the j-fold operator ®/ means

applying the Siegel ® operator j-times. This brings us to the following conclusion:

Proposition 4.4.6. For each 1 < j < n, applying the Siegel ® operator j-times gives a
projection F|® of F € M(T',) to the standard cusp Foj:=Tn;\ b7 of degree n — j.
Applying it n—times gives the projection of F to the zero dimensional cusp Fy := ico. That
18,

=g

n—j
is the Siegel operator associated to the standard cusp of degree n — j.

We are now ready to give a more general definition of the Siegel operator. This
operator associates to each F' € M,(I',) the collection of automorphic forms (F|®7)1< <,
which are the projections of F' to all the standard rational boundary components or to all

standard cusps (which are in this case the only cusps) for I';, \ b™.

%
Definition 4.4.7. The Siegel operator ® is the linear operator which projects a Siegel

modular form F' € M,(I',) to the standard cusps of I'y, \ (h™)* of all degrees 0 <r <n —1.
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_>
QM (T)y) — Me(Tho1)x... X M(Tn—j) x ... x Mg(I'1) x Mg(Tp)
F w (F|®,...,F|®, ... F|®" ! F|®"),

where

]-—‘nfj = wnfj(l_‘n N Cn,nfj)
for1 <j<n.

This allows us to generalize the classical definition of cusp forms to a one that take

cares of all the cusps in case of the Siegel modular group.

Definition 4.4.8. A modular form F € M,(I';) is called a cusp form if
F|® =0

where 0 is a zero vector of order n.

In other words, F'is a cusp form if
F|CI>j:0 forall 0<j<mn-—1.

Remark 4.4.9. 1. This definition says that a modular form F' € M,(T',) is a cusp form
if its projections to all of the standard rational boundary components, or to all of
standard cusps, vanish. Implicitly, we can say that F' € S, (T),) if it vanishes at all
the cusps. This makes the refined definition of a cusp form of degree n > 2 more in
parallel to the definition of cusp form when n = 1 for the full level. For in the latter

case, if F' € M, (SL2(Z)), the projection of F' to the unique cusp ioco is defined as
F(o0) = F|®(ic0) = lim F(i)),
A—00

and that’s why we say F' is a cusp form with respect to SLa(Z) if it vanishes at the
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unique cusp %00.

2. Due to the transitivity property 4.4.5 of the Siegel ® operator, it suffices to say that
F € M.(T,) is a cusp form if it vanishes at the maximal degree cusp (or the n — 1
degree rational boundary component), and hence this brings us back to the usual

definition of cusp forms for n > 2 which is more commonly found in the literature.

We now discuss the surjectivity of the Siegel ® operator and we follow [39] and the
references listed there. We recall that M, (Ty) = S,(T'y) = C.
4.4.1.1 Eisenstein Series

The surjectivity of
P Mi(I'y) = Mg(Ty1)

is guaranteed for some k if

Sp(Ty) C " " (Mg(Ty,))

is valid for 0 < r < n, because then we can deduce by induction (see [39], page 59) that

M(Ty) C " "(My(Ty)).

To achieve this, we must lift cusp forms to modular forms of higer degree with respect to
® | but this is not easy as we must increase the number of variables. The main instrument
that will provide a positive answer when « is even and sufficiently large is the construction
of Eisenstein series associated to boundary components by which modular forms can be

lifted from a boundary component to all of h™.

Definition 4.4.10. Let n > 1 and let r be a natural number with 0 < r < n. Suppose

that F' € S,(I',) with even weight £ > 0. We attach to F' the Eisenstein Series associated
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to the standard rational boundary component of degree r defined by

Ef (Z;F):= Y F(7Z%)det(CZ+D)"
YECRH, NI\

A B
where Z € h™ and v =

¢ D

In case r = 0, F is constant, say F' = 1, we get the classical Eisenstein series
E;,(Z;1)= ) det(CZ+D)™"
(C,D)

where the summation runs over a full set of representatives for the left cosets Cp, o N T, \ T',.

Also in case r = n, Cp ,, =I'), the Eisenstein series consists of only one term which is F'(Z).

Theorem 4.4.11 ([39], Chapter II, Theorem 1). Letn>1,0<7r<n, k >n+r+1 and

K is even. For any cusp form F € Si(I';), the Eisenstein series Ey; (Z; F) € My (I'y).

We now affirm that the Eisenstein series is the right procedure to lift cusp forms

with respect to .

Proposition 4.4.12 ([39], Chapter II, Proposition 5). Letn>1,0<r<n,k >n+r+1

and k is even. For any cusp form F € S,(T,),

B (Z; P)@"™" = F(Z),
Corollary 4.4.13. The Siegel ® operator

®: M(Ty) = Mi(Ty—1)

is surjective for even k > 2n.

Remark 4.4.14. From the surjectivity of ® we deduce the isomorphism M, (T',_1) =

M, (T',)/Sk(I'y,) for even k > 2n. This formula helps in obtaining results on M, (I'y,) from the
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subspaces of cusp forms by an induction argument. Also any information on the dimension

of M, (T';,) can be reduced to cusp forms in this way.

Another consequence of the surjectivity of the Siegel ® operator and Remark 4.4.14,

we have

Proposition 4.4.15 ([39], Chapter II, Proposition 6). For even k > 2n the Eisenstein
series {Ey (Z; F) | F € Sg(['y),0 < v < n} span the vector space of all modular forms of

degree n and weight k.

For a generalization of this result and the surjectivity of the Siegel ® operator which
is used in the argument that the quotient space I' \ (h™)* can be embedded in a projective

space, the reader can consult [18], Exposé 16.

4.4.2 Cusp Forms for Arithmetic Groups

Let I" C Sp,,,(Q) be a commensurable group with Spy, (Z) and let F' € M, (I'). In
this section, we give a general definition of cusp forms with respect to I'. Using the maximal
parabolic subgroups Cy, »(Q) = C,,» N Spy,(Q) of Sp,,,(Q) and the homomorphism w,, we
can now restate using a better notation the image of the space of modular forms M, (T")
under the Siegel ® operator. In addition, by forming a more global map than the Siegel ®
operator we will explain why it is not enough to show that F' belongs to the kernel of the
Siegel ® operator to prove it is a cusp form but rather we require also that all its conjugates
F|.M to belong to the kernel of the Siegel ® operator.

We start by clarifying the image space of the usual Siegel ® operator.

Proposition 4.4.16. The image of the Siegel ® operator is given by

@:MH(F) — Mn(wnfl(rﬁcn,nfl((@)))
F — F|® '
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Also the image the j-fold Siegel ® for 1 < j<n—1is

DI My(T) — My(wn—;(TNChp—ji(Q)))
F +— F|®

To verify this one needs to just rewrite the old notation in terms of the projection
map wy.

Definition 4.4.17. For any M € Sp,,(Q), the conjugates of a Siegel modular form F €
M (T) are F|.M € M,(TM) where

™ .— M~ M.

Applying the Siegel ® operator on the conjugates of F' € M, (T'), we get
Proposition 4.4.18. For F' € M, (T),

D : MH(FM) — Mn(wn—l(FM N Cn,n—l(Q)))
FluM o5 (Fl M) |

Also extending the definition of the j-fold Siegel ® operator we get that for 1 < j <mn—1,

& M (TM) = My(wp—i(TM N Cp s (Q)))
FluM o (Fl M) |

We now recall the structure of the boundary of compactification of the quotient
space I'\ h",
I\ = |J Urdham)\e,

0<r<n A

such that

1. M, for fixed r are the finitely many representatives of double cosets

I \ Sp2n(@)/(Cn,r(@) N Sp2n(@>)a
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2. T(My 5. Fp) := wr(M, xT My 5 N Cpyp),
3. I'(F) =w(I'NCyy).

4. For each degree 0 < r < n — 1, we have the standard cusp of degree r
E=T(F)\ b,
and all its I'-conjugates which we call the nonstandard cusps of degree r
My 5. Fr =T (M, x.F) \ b"

which correspond to the double cosets representatives of I'\ Sp,,, (Q) /(Ch, » NSp,,, (Q)).

Unlike the case of the Siegel modular group I';, = Spy,,(Z) where the quotient space
'y, \ ™ has a unique cusp (the standard cusp) for each degree 0 < r < n — 1, with respect
to a commensurable group I" € Sp,,,(Q), the quotient space I' \ h™ has finitely many cusps
for each degree 0 < r < mn — 1 corresponding to double cosets I' \ Spy,,(Q)/(Spa, (Q) N Cy. ).

From this point of view, we will now attach to each cusp F; of the quotient space
I\ (h™)* an associated linear operator @, but we always reserve the notation ® and ®’
to be the usual Siegel ® operator and j-fold Siegel operator respectively. When F' = M.F}.,

then we denote ®r by @5/ 5.
Proposition 4.4.19. Let F € M.(T"), then

1. The ® operator associated to the maximal (degree n — 1) standard cusp F,—1 :=
D(Fp_1) \ "1 s
®p, =

®p, | projects the Siegel modular form F' to the standard maximal cusp Fy_1 such
that
F|® € M (T(F,-1)).
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2. For the remaining nonstandard finitely many cusps of mazximal degree (degree n — 1)
that are I'-conjugate to F,,—1 and that correpsond to the double cosets representatives

M1, the associated linear ® operator denoted by ®ny, , ,.F,_, 5 given by

Fl@, 5 Fr) = (FleMp—1,)|®.
It projects the Siegel modular form F to a maximal nonstandard cusp such that

F‘(I)(MnfoFn—l) S M,Q(F(Mn_l’)\.Fn_l)).

3. For any standard lower degree cusp F, for 0 <r < n—2, the associated ® operator is
given by
Q)F = q)niT

r

that projects F to the standard cusp of degree r, T'(F,) \ b, such that

F|® e M(T(F})).

4. For all the remaining nonstandard finitely many cusps of degree r that are I'-conjugate
to Iy and that correspond to the double coset representatives M, y, the associated ®

operator denoted by P, , F, is given by

Fl®ny,  ry = (FleMp )9

It projects the Siegel modular form F to the cusp of degreer, M, \.F, := T'(M, x.Fy)\bh"
such that

F|®y, , 7y € Muo(D(M . Fy))

We now give a definition of a linear for each degree r which associates to each

F € M,(T') its extensions to all cusps of fixed degree .
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Definition 4.4.20. To each degree r, 0 < r < n — 1, we define a linear operator

= n—r
¢, = ((fD 7((I)(MT,A-FT)))‘)

where M, ».F, are the nonstandard cusps of degree r that correspond to the double cosets
representatives M, x € I'\Sp,,,(Q)/(Cy»NSpP,, (Q)). It is then clear that the linear operator

_>
®,. associates to F' its projections to all cusps of degree r such that

_>
O, My(T) — My = [[ Ma(D(M, 1. F))

%
F oo F@ = (Fl", (Fl@a,m)) ) = (FIO", (Fled)[@" 7))
Remark 4.4.21. When I' = Sp,,,(Z), we have one cusp for each degree 0 <r <n —1. In

%
this case, &, = "7,

_>
Having defined ®, for all cusps of same degree, we now define the general linear

operator that takes care of cusps of all degrees.

Definition 4.4.22. The general operator for all cusps (of all degrees) is defined by

- =
o P

= (®r)o<r<n—1-

such that
%
¢ M () — TI, M,

— —
F + F|® = (F|®,),.

_>
Remark 4.4.23. When I' = Sp,,,(Z), ® reduces to the operator defined in 4.4.7.
Definition 4.4.24. A Siegel modular form F' € M, (T") is a cusp form if it vanishes at all
cusps. Equivalently, F' € S, (T") if and only if

F|® =0.

Remark 4.4.25. 1. Going back to Definition 4.4.20 of the general operators we defined,
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F € 5,(I') if and only if for all double cosets representatives M, y of the double coset
space I'\ Sp,, (Q)/(T'Mrx N C,, - (Q)) for every 0 < r < n—1, F|,; M, vanishes at the

cusps.

2. When F € M, (I"), for I' a congruence subgroup of SLa(Z), we have only degree zero
- =
cusps. That is ® = @9 = (P, (®(as,.ix))r), Where ioco is the standard cusp and M) o0

are the nonstandard cusps which are I'-conjugate to ioc.

One can transfer the transitivity property 4.4.5 of the Siegel ® operator to become

%
a transitivity property for the operator @,. Consequently, we have

Proposition 4.4.26. F' € S, (') if and only if it vanishes at all maximal cusps of degree

n — 1, which is equivalent to say F € S, (T') if and only if
F|®,_1 =0
Remark 4.4.27. Proposition 4.4.26 is equivalent to say F' € S, (T") if and only if
(F|xMy)|® =0,

for all My € T'\ Sp,,,(Q)/(Sps,(Q) N Chp—1).-

4.5 Satake Compactifications of Locally Symmetric Spaces

The goal of this section is to generally describe Satake’s procedure in compactify-
ing more general spaces than the Siegel varieties. These general spaces are called locally
symmetric spaces (see below). In the appendix, we present a more general approach given
by Borel and Ji to compactifying these spaces and give a brief description of the rational

boundary components in this setting.

Definition 4.5.1. Let G be a connected semisimple Lie group and K a maximal compact
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subgroup of G. If the homogeneous space

X =G/K

is endowed with a G-invariant metric, then X is said to be a symmetric space of noncompact
type. In this setting, G = Aut (X). Let I" be an arithmetic subgroup of G acting properly
discontinuously on X, then

N\xX=r\G/K
is called the associated noncompact locally symmetric space.

We have seen in Chapter 2 that the Siegel upper half space h™ can be realized as
the homogeneous space Spy,,(R)/K where K is the unitary group of order n, a maximal
compact subgroup of Sps,, (R). Moreover, we can endow h™ with an invariant Riemannian
metric (check [39], Chapter 1). This makes h™ a symmetric space of noncompact type and
Siegel varieties I' \ h™ locally symmetric spaces. Locally symmetric spaces are important
for classification problems in geometry. They arise for example as moduli spaces of elliptic
curves or of abelian varities with a polarization. These spaces are not compact in general.

Satake ([68]) started the modern theory of topological compactifications of general
symmetric spaces and locally symmetric spaces. In fact, Satake provided finitely many
nonisomorphic compactifications on these spaces that form a partially ordered set. The
minimal one is the one which corresponds to the compactification of Siegel varieties I"\ h™.
To get a brief outline of how Satake proceeded we refer the reader to the appendix of this
thesis.

One class of symmetric spaces consists of the so called Hermitian symmetric spaces.
These are symmetric spaces with a G-invariant complex structure. When X is a Hermitian
symmetric space of noncompact type, I'\ X is a noncompact Hermitian locally symmetric
space and hence equipped with a complex structure. When X is a Hermitian symmetric
space, I'\ X has a complex structure and hence once can talk about meromorphic functions.

Siegel raised the question whether the transcendental degree of the field of meromorphic
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functions of I' \ X, M(T"\ X), is equal to dimc (I'\ X). Now if I' \ X is compact, then
Kodaira’s embedding theorem implies that I' \ X is a projective variety and hence the
transcendental degree of M (I"\ X) is equal to the complex dimension of '\ X. If I'\ X
is noncompact but admits a compactification (I' \ X )¢ which is a normal projective variety
and the codimension of the boundary (I' \ X)¢ —I' \ X is of complex dimension at least
two, or equivalently dimc ((I'\ X)¢—T"\ X) < dim¢ (I'\ X) — 2, then facts about normal
spaces imply that every meromorphic function on I'\ X extends to a meromorphic function
on the projective variety (I' \ X)¢. Consequently, M (I" \ X) is an algebraic function field
and each meromorphic function F' € M(I"\ X) is a quotient of two modular forms of the
same weight.

Motivated to solve this question which was solved by Baily in case of Spy,(Z) \ h™
(see Theorem 4.1.2), Baily and Borel ([9]) used the minimal Satake topology to construct
the compactification of locally Hermitian symmetric spaces I' \ X. Then they were able to
prove that such compactification is a normal projective variety and hence answering Siegel’s
question. We refer to the compactification of I' \ X with the normal projective structure as
the Satake-Baily-Borel compactification. Here are the general three steps used to achieve

the Satake-Baily-Borel compactification.

1. Apply the general procedure in [68] to construct a topological compactification of

I'\ X using the minimal Satake compactification of X.

2. Define a sheaf of analytic functions on the topological compactification to turn it into

a compact normal analytic space.

3. Embed the compactification into a complex projective space as a normal projective

variety by using automorphic forms.

Remark 4.5.2. We note that in [9], Baily and Borel did not use the minimal Satake
compactification of X as exactly described by Satake in [69] but used the fact that if X is
a Hermitian symmetric space of noncompact type then X is biholomorphic to a bounded

symmetric domain. This is the so-called Harish-Chandra realization of X as a bounded
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domain D. Realizing X as a bounded symmetric domain provides a natural compactification
of X by taking the closure of D. Moore showed ([53]) that this natural compactification of

X is isomorphic to the minimal Satake compactification of X.
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Chapter 5

Jacobi Forms

Jacobi forms are the automorphic forms on the Jacobi group. The classical Jacobi
forms of degree 1 are the functions ¢ : h! x C — C which are holomorphic in both variables
7 € h! and z € C and invariant under the action of the Jacobi group. They are a mixture of
elliptic modular forms and elliptic functions. Eichler and Zagier have developed a systematic
theory of Jacobi forms along the line of the theory of elliptic modular forms in their joint
book [21], which is the standard reference for Jacobi forms. Understanding Jacobi forms
is crucial to the understanding of other types of more complicated modular forms like the
Siegel modular forms of one degree higher. In fact, there are a number of well-known
isomorphisms between spaces of Jacobi forms and other types of modular forms. In more
general settings, Jacobi forms can be defined for higher degree n as in [87]. We limit our
exposition here to the degree 1 case, which serves as a bridge between the space of elliptic

modular forms and Siegel modular forms of degree two.

5.1 Basics of Jacobi forms

In this section we give the basics of Jacobi forms as presented in [21]. We reserve
the notations 7 and z for the variables in h* and C respectively.

We start with the real Jacobi group acting on the domain of definition h' x C
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of Jacobi forms under which these forms satisfy transformation formulas. To discuss the

arithmetic theory, we then consider the action of discrete Jacobi groups.

5.1.1 The Real Jacobi Group

We start by defining the Heisenberg group over any commutative ring R with iden-

tity.

Definition 5.1.1. Define the Heisenberg group H(R) by
H(R) = {(\, ;) : (A, ) € R*, € R}
with the group law
N s s) Ny ) = N+ N+ e+ 50+ 2 = N'p).

We sometimes denote the elements of the Heisenberg group as (X, ») where X = [\, p].

The subgroup
ZH(R) = {(anv %)a S R}

is the center of H(R). We have
H(R)/Zyry = R*.

By identifying (0,0; 5) with s, the center Zp gy can be identified with R and we get the

following short exact sequence
1-R—-HR) » R —1

giving the Heisenberg group H(R) as the central extension of R? by R. As a set we have
H(R) = R* x R.
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The group SLy(R) acts on H(R) on the right by

(X, 50)y = (Xv,%), v €SL(R), (5.1)

where X+ means a 1 x 2 row vector multiplied by a matrix in SLy(R).
We now define the real Jacobi group of degree one, SLa(R)7, to be the semidirect
product of SLy(R) with the Heisenberg group H(R).

Definition 5.1.2. The real Jacobi group of degree one SLa(R)? is defined to be the set

SL2(R)” := SLy(R) x H(R) = {n:= (v, X, %) : v € SLa(R), (X = [\, p], %) € H(R)}

with the group multiplication

X~
(7, X, 5).(7, X', ) = | v/, X+ X', e+ 5 + det /
X

The real Jacobi group SLa(R)” acts on h! x C by

(7,2) = at+b z+ AT+ p
M%) = ct+d er+d

a b
where n = (v, X, ») and v =
c d

Fixing integers x and m, the action of the real Jacobi group SLz(R)” on functions

{¢: h! x C — C} is given by the following slash operators:

L g 2mim % at +0b z
(Plemy)(7,2) = (cT +d) e ( )¢ (cr+d’m+d> (5.2)
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a b
for every v = € SLy(R), and
c d
(ln(A 1, 20))(7, 2) 1= STMOTERAANEA G (7 2 4 AT ) (5-3)

for every (A, p, ») € H(R).

Remark 5.1.3. Note that for the later goal of defining certain index shifting operators on
Jacobi forms, we can actually define a larger action of GL3 (R) on functions living on h* x C

by

— —K 2ﬁiml(%ii> at +b lz 4
(Blem)(7,2) = (7 +d) e o(T0 L (5.4

a b
for every v = € GLj (R) with dety =1 > 0.
c d

Given the action of SLy(R) on the Heisenberg group as in equation (6.2.4), the

following relations

(¢‘n,m7)|n,m7/ = (b‘n,m(”wl),
<¢‘mX)‘mX/ - ¢’m(X + X’),

(¢

H,m'Y) Im Xy = (¢[mX) |H,m7

for all 7,~7" € SL2(R) and X, X’ € R? show that the slash operators jointly define an action

a b
of a general element n := | M = ,(X = (A, ), 5) | of the real full Jacobi group

c d
SLa(R)” on functions {¢ : h* x C — C}. A general element of the Jacobi group acts first

by the matrix and then by the vector. We define the following factor of automorphy:

2
—m—&—)@fr—&-%\z—i—)\uﬁ-%)

. _ 27rim( o d
Jjn,(1,2)) = (et +d) "e (5.5)
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The joint action of SL2(R)” on {¢ : h! x C — C} is then given by

(5.6)

(@lkmn) (T, 2) := §(n, (1,2))¢ ((IT +b 2+ AT+ M)

ctr+d  er+d

a b

for every n:= |~ (X = (\ ), %) | € SLa(R)’.

c d

5.1.2 Jacobi Forms

To discuss the theory of Jacobi forms, we need to consider discrete subgroups of the

real Jacobi group.

Definition 5.1.4. The full Jacobi group is the semidirect product SLy(Z)? = SL2(Z) x

H(Z). For any subgroup I of SLy(Z) of finite index, we call '/ = I' x H(Z) a general Jacobi
b

a
group. In particular, when I is the congruence subgroup I'o(M) = ¢=0 (mod M)

c d
the Jacobi group I'g(M)” = T'q(M) x H(Z) is called the Jacobi group with level M > 1.

I’

We now consider holomorphic functions ¢ : h' x C — C invariant under the actions

given by equations (5.2) and (5.3) above. That is,

Olemy = ¢, forevery v e SLo(Z
o 2 (5.7)
dlmn = ¢, forevery n=(X,») e H(Z).
1
For the smallest positive integer h such that € I' where T is a congruence
01
1 h
subgroup of SLy(Z), if we apply the transformation formulas (5.7) with v = and
0 1

n = (0,1,0) to ¢ we get that

O(T+ h,z) =p(1,2 4+ 1) = o(, 2).

132



Hence ¢ is periodic with period h with respect to the variable 7 and with period 1 with
respect to the variable z and therefore possesses a Fourier expansion with respect to both

7 and z

¢<7—7 Z) = Z C(?’I,/h7 r)eQﬂ'i(”/h)Te%rirz.

n,reZ
Remark 5.1.5. If I' = SLy(Z) or I'o(M), then h = 1 and consequently a holomorphic

function on h! x C satisfying equations (5.7) has a Fourier expansion of the form ¢(7,z) =

Z c(n, T)eQﬂin762ﬂirz.

n,reZ

We now define Jacobi forms for congruence subgroups I' of SLa(Z).

Definition 5.1.6. Let xk,m be integers. A Jacobi form of weight x and index m on a

congruence subgroup I is a holomorphic function ¢ : h! x C — C such that

L. @lemy = ¢, for every v € T,

2. ¢lmX = ¢, for every X € Z2,

3. for any v € SLa(Z), ¢|xm~ has the Fourier expansion of the form

(T, 2) | kmy = E ey (n/h, r)e2mim/ )T g2mi(r2)
n,rez
4mn/h—r2>0

where h is defined as above.

Remark 5.1.7. The condition 72 < 4mn/h is a condition to make the function analytic as

T — 100.

Definition 5.1.8. If ¢ satisfies the additional condition that c,(n/h,r) = 0 whenever

4mn/h = r? for every v € SLy(Z) then ¢ is a cusp form.

The vector space of Jacobi forms with respect to I'/ is denoted by J,.@,m(I‘J ). When
I' = SLy(Z), we simply denote it by Jy . The space of cusp forms with respect to I’ is
denoted by Jg,,(I'7). When I' = SLy(Z), it is simply denoted by J¢ ,,.
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Remark 5.1.9. Note that because e?™H+%) = 1 for (\, u,») € H(Z), equation (5.3)

reduces to the action
(Blml X ) (7, 2) = eCmmMOTERN G (7 5 AT 4 1)

for every (A, p) € Z?. Consequently, the definition of Jacobi forms with respect to the Jacobi
group T'o(M)” := To(M) x H(Z) is equivalent to the definition of Jacobi forms with respect
to the group I'g(M) x Z2. The latter is consistently used in the literature. To discuss the

arithmetic theory, it is enough to use I'o(M) x Z2. We will do the same below.

Remark 5.1.10. 1. Restricting the variable z to z = 0 and considering the first trans-
formation formula of Jacobi forms, we get the classical elliptic modular transformation

formula

6 (257) = (e arotm).

Hence the form ¢(7,0) is a classical modular form of the same weight .

2. The second transformation fromula in (5.7) expresses an invariance under translations

by the integer lattice spanned by {1,7}.

3. Interesting Jacobi forms occur for positive index only. For fixed 7 € h', a Jacobi form
¢(7, z) as a function of z is an elliptic function on C/(Z + 7Z) whose number of zeros
(counting multiplicity) in any fundamental domain of the action of the lattice Z7 +7Z
on C is equal to 2m (See [21], Theorem 1.2). Hence there are no holomorphic Jacobi
forms of negative index. Also, a Jacobi form of index m = 0 is independent of z and

becomes an elliptic modular form in 7 of weight .

4. Let A, u be rational numbers. We can associate to the Jacobi form ¢ the function
F(7) = e2™mN°T (7 A1 4 1) which is a modular form of weight x with respect to some
subgroup I" of finite index depending on I" and on A, . (For details see [21], Theorem
1.3).

134



5. The interesting weight of Jacobi forms is nonnegative as Jj ,,, is the zero vector space

for £ < 0 unless kK = m = 0 in which case it reduces to constants. ([21], page 11).

The first examples of Jacobi forms are Jacobi theta series (see § 5.2.1 below). These
were first studied by Jacobi and is the reason the forms defined above are referred to as

Jacobi forms. They are given by

O s(7,2) = Z e2wi<%7+rz>7
r€Zr=8 (mod 2m)
where m is a positive integer and ¢ an integer modulo 2m. These forms are elements in
J 1 ’m(F0(4m)J ). Jacobi forms of half integral weight will not be defined in this thesis but one
can check the work of Shimura [78] on half integeral weight modular forms for a reference.
These Jacobi theta series turn out to be not only the first examples of Jacobi forms but in
fact they span the space of Jacobi forms (See § 5.2.1). For more general examples of theta

series, the reader can consult [21], § 7.

5.1.3 Structural Theorems

Theorem 5.1.11 ([21], Theorem 1.1). For fized x,m, the space J.,m(T7) is finite dimen-

sional as a vector space over C.

The product of two Jacobi forms of weight k1 and ks and index m; and mo is a
Jacobi form of weight x = k1 + k2 and index m = my + ms. In fact we have the following

theorem.

Theorem 5.1.12 ([21], Theorem 1.5). The Jacobi forms form a bigraded ring J,. =

@n,m Jﬂvm‘

Let Eq(1) =1+ 2402 o3(n)e?™ ") and Eg(r) = 1 — 504205(71)62”("7) be the
n>0 n>0
classical elliptic Eisenstein series of weight 4 and 6 respectively with respect to SLo(Z),

where o4(n) is the sum of positive divisors function. Let M, (SLa(Z)) denote the complex

vector space of elliptic modular forms of weight x and level 1. The difference between the
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bigraded ring J, . and the graded ring M, := @, M, (SLa(Z)) of elliptic modular forms is
that while the latter is a finite dimensional graded ring over C with the well-known classical
isomorphism M, = C[Ejy, Eg], the latter is not finitely generated over C (see Theorem
5.1.17).

Consider the subgroup SLa(Z)Z, of SLa(Z)” defined by:

7 1 n
SL2(Z)OO =qn=|* ) (O,H) n,pu €z
0 1

Definition 5.1.13. Given integers m > 0 and « > 4, we define the Jacobi-Eisenstein series

for SLo(Z), Ey m, by

En,m(7'7 z) = E (Hmm’y) (1,2)
’YESLQ(Z)‘O]O\SLQ(Z)J
1 —K 27Tim<)\2 ;L:j—_rg +2X (“rj—d - F(;‘Zfd)
= 3 E E (et +d) e - g g .

c,d€EZ NEZ
ged (¢,d)=1

Theorem 5.1.14 ([21], page 17 and Theorem 2.1). The Jacobi-Eisenstein series Ey ,, €
Jiem-

Remark 5.1.15. We note that when m = 0, the definition of the Jacobi-Eisenstein series

E, » reduces to the well-known elliptic Eisenstein series

1 —K
BE.(7) = > (1sA)(7) = 5 > (er+d),
YESL2(Z) o \SL2(Z) c,deZ
ged (e,d)=1

1 n
where SLa(Z)oo = { £ n € Z  is the parabolic subgroup of SLa(Z).

0 1

Since elliptic modular forms can be considered Jacobi forms of zero index, if we
multiply a Jacobi form by an elliptic modular form we obtain a Jacobi form with same

index but different weight. It turns out that the space Ji m, := @rezJw,m is a module over
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the ring M, = C[E4, Eg]. In fact, it is a free module of rank 2m (see [21], page 90) and

reduces to M, if m = 0. In case m = 1, the two generators are given as follows.

Theorem 5.1.16 ([21], Theorem 3.5). The space of Jacobi forms of index 1 on SLa(Z),
Ji1, is a free module of rank 2 over M, with generators the Jacobi-Eisenstein series Ey 1

and E671 .
The structure theorem of the bigraded ring of Jacobi forms is given by:

Theorem 5.1.17 ([21], Theorem 8.4). The ring of Jacobi forms J . is free as a module
over M, of transcendence degree 2 over M, and is an infinitely generated ring over C of

transcendence degree 4.

5.1.4 Petersson Scalar Product

Writing 7 = u +4v (v > 0) and z = z + iy we have a volume element dV on h* x C
given by
dV = v 3dadydudv.

This is invariant under the action of SLy(Z)” on h* x C.

Definition 5.1.18. If ¢ and 1 transform like Jacobi forms of weight x and index m then
the expression

Ve TG (7, ) (7, 2)
is invariant under SLy(Z)”. The Petersson scalar product of ¢ and v is defined by
(P, ) = / vke_hmyg/”(ﬁ(ﬂ 2)Y(1,2)dV
SLa(Z)7\h1 xC

Theorem 5.1.19 ([21], Theorem 2.5). The Petersson scalar product of ¢ and v is well
defined and converges when at least one of ¢ and ¥ is a cusp form. It is positive definite

on the space of Jacobi cusp forms.
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The proof actually follows from a certain expansion of a Jacobi form in terms of
elliptic modular forms hs called the theta expansion of ¢ (refer to § 5.2.1) and from the

corresponding statements for those elliptic modular forms (see Theorem 5.2.3).

5.1.5 Linear operators

For [ > 0 Eichler and Zagier ([21], page 41) define linear operators Uj, V; on functions
¢ : bl x C = C as follows:

1.
U : Jmm — Jﬁ’le
given by
(¢|n,mUZ)(Tv Z) = ¢(Tv ZZ)
2.
Vi ch,m — Jn,ml
given by
@lemV)(r,2) =150 > (dleay) (7, 2),
~vESL2(Z)\M}
where
; a b
M; = € Maty(Z),ad — bec =1
c d

Theorem 5.1.20 ([21], Theorem 4.2). Let ¢ € Jy,, with Fourier expansion ¢(7,z) =
Z C(?’L, r)€27ri(n7)627ri(7’z)' Then,

n,r

¢|U1(T, Z) _ Z C(TL, T/l)627ri(m—)627ri(rz)

n,r
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with the convention c(n,r/l) =0 if [ {r and
¢|W(T7 Z) _ Z Z a e (né’ T) 627ri(n7—)€27ri(rz).
a’’ a
n,r \alged (n,rl)

In addition, the operators U; and V) satisfy the following relations:
UpoUy = Uy,

UoVy=Vyol,
VioUp= Y d" 'UzoViye.
dlged (1,1)
Proof. The proof of the Fourier expansion ¢|U; is clear from the definition. The action
of the V; operators on the Fourier coefficients is obtained by taking the standard set of

representatives

a b
,a,d,>0,0<b<d—1,ad=1

0 d

for the action of SL2(Z) on M}. For the remaining details, one can find them on page 43 in

[21]. O

Remark 5.1.21. The index shifting operators V; (I > 1) on Ji ., play a crucial role in

establishing the full level Maass lifting and Gritsenko lifting (see Section 5.3 below).

5.2 Connections of Jacobi Forms to Other Types of Modular

Forms

5.2.1 Theta expansion

The second transformation formula for Jacobi forms breaks the Fourier coefficients

into congruence classes modulo 2m.
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Theorem 5.2.1 ([21], Theorem 2.2). Let ¢ be a Jacobi form of weight k and index m in

Ji,m with Fourier development Z c(n, 7)) CTIZ)  Then the coefficients c(n,r)
n,r,dmn>r?2

depend only on the discriminant v> — 4nm and on the value of r (mod 2m). That is,
c(n,r) = ¢ .(4nm — 1) where ¢,/ (N) = ¢, (N) for v’ =r mod 2m. If k is even and m = 1
or m is prime, then c(n,r) depends only on 4nm — 2. If m = 1 and k is odd then ¢ is

identically zero.

Proof. For any X = [\, u] € Z2,

T — cln.r e27rinT627riTz
QZ) ) 3

n,r,dmn>r?

— 6(2Wim(>‘2T+2)‘Z))¢(T,Z+)\T+,u)

— e27ri()\2m)7'€27ri(2)\m)z Z c(n, T)e(QﬂinT) (6(271'1'2) e27ri)\7> "

n,r,dmn>r2
_ Z c(n, 7")e27ri(n+/\2m+)\r)7'627ri(r+2>\m)z'

n,r,dmn>r2

Hence,

c(n,r) = c(n+ XN2m + Ar,r 4+ 22m).

That is, ¢(n,r) = c¢(n’,r’) whenever ' = r mod (2m) and 4n'm — r? = 4m(\>m + M +

n) — (r +2Am)? = 4nm — r2. Consequently, if we write
c(n,r) = c.(4mn — r2),

then

c¢(N)=cu(N) for r=7" (mod 2m). (5.8)

Equation (5.8) gives us coefficients ¢5(IV) for all § € Z/2mZ and all integers N > 0 satisfying
N = —42% (mod 4m). Namely,

N +1r?
4m

es(N) == c < ,r> . (r€Z, r=5 (mod 2m)). (5.9)
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This proves the first statement in the theorem. If s is even, then by applying the first
transformation law of Jacobi forms to —Is € SLa(Z), we get that ¢(7,—z) = (—1)"¢(T, 2)

which implies that ¢(n, —r) = (—=1)"¢(n,r) = ¢(n,r). If m is 1 or a prime, then
dn'm — 1" = dnm —r? = ' = £r  (mod 2m) = ¢(n,r) = c¢(n/,1").

Finally, if m = 1 and & is odd then ¢ = 0 because c¢(n, —r) = —c(n,r) but 4nm — (-r)? =

4nm —r? and —r = r (mod 2m) in this case. O

We extend the definition of coefficients given in equation (5.9) to all N (see [21],

page 58) by setting cs(N) = 0 if N # —62 (mod 4m). Then,

(Z) T 2 _ cln.r 627rin7'€27r7ﬁrz
) 5
n,r,dmn>r2

_ § : E : § : 4nm o T2)62ﬂzn7627rzrz

§ (mod 2m) r€L n>r?/4m
r=§ (mod 2m)

_ Z Z Z 06 27Tz i 2)7' 2mir

4 (mod 2m) reZ N>0
(mod 2m)
2 2 2 2
— Z Z C6 mi( m) Z e m(r)T i
§ (mod 2m) N>0 re’

r=0 (mod 2m)

We now set

hs(r) == 3 (V) @™, (6 € Z/2mT),
N>0
and for each congruence class modulo 2m we have the theta series of weight 1/2 and index
m given by
omi (1
gm,é(T, Z) — Z e m(mﬂ-rz).
reZ
r=6 (mod 2m)

The above calculations give the theta expansion of a Jacobi form ¢ as linear combi-
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nation of fixed theta functions as follows:

$(rz) = > h(1)0ms(7,2). (5.10)

§ (mod 2m)
From this expansion, we conclude that knowing the (2m)-tuple (hs)s (mod 2m) of functions
of one variable is equivalent to knowing ¢. Reversing the above calculations, we obtain a
function ¢ with Fourier coefficients satisfying equation (5.14) and which transforms like a
Jacobi form with respect to z — z + A7 + pu, (A, € Z) and with the right expansion at
infinity. Now, since ¢ is a Jacobi form of weight x and index m, then the functions hg

must be modular forms of weight x — 1/2. To specify their transformation properties, we

1 1
consider the transformation law of the theta series with respect to the generators ,

01
-1
of SLQ(Z)
1 0

52
O s(T + 1, 2) = X™im 0, 5(7, 2),

and using Poisson summation formula,

1 z T % 27rim£ 2mwi(—vé)
Om.s <—T,T> = <%> € T Z Hm,V(Taz)e m

v mod 2m

Using these transformation formulas together with the transformation law of ¢, we obtain

the following transformation of hs(7)
2
hs(r +1) = e 2t by (1), (5.11)

and

— v mod 2m

1 TH 2mwi(vd)
0 < T> [ 2mT ¢ (T) ( )

We have shown
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Theorem 5.2.2 ([21], Theorem 5.1). Equation (5.10) gives an isomorphism between Jy m,
and the space of vector valued modular forms (hs)s (mod 2m) o1 SLa(Z) satisfying the trans-

formation laws (5.11) and (5.12) and bounded as Im 1 tends to co.

Another consequence of the theta expansion (5.10) of a Jacobi form is that we can
express the Petersson scalar product of two Jacobi forms ¢ and 1 in terms of the Petersson

product of the modular forms (hg)s.

Theorem 5.2.3 ([21], Theorem 5.3). Let

and

be two Jacobi forms in J. . Then,

(p,10) = > he(r)gs(r)v" 2 dudo.

SL2(Z)\b! d (mod 2m)

5.2.1.1 Involutions on J; ,,

Using the theta expansion of a Jacobi form given in equation (5.10) together with
the equations

9m,—§(T) Z) — 9m,5(7_’ _Z)a

and

¢(7_7 _Z) = (_1)H¢(7—7 Z),

we obtain for each congruence class § modulo 2m

h_s = (=1)"hs.
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Hence every 2m tuple (hs)s reduces to an (m + 1)-tuple of forms (hs + h_s5)o<s<m if & is
even and to an (m — 1)-tuple of forms (hs — h_s)o<s<m if k is odd.

If m is composite then there is a finer splitting on the (hs)s. Let m’ be a divisor of
m such that ged (m’, m/m/) = 1. There are 2"(™) such divisors where v(m) is the number of
distinct prime factors of m. Using the Chinese Remainder Theorem, we can find a unique

integer & = &,y modulo 2m such that
=1 (mod2m/m'), &=-1 (mod 2m’).

The set

{gm’ :m’ ’ m’ng (mlvm/m/) = 1}

is precisely the set
Z(m)={¢ (mod 2m)|e2 =1 (mod 4m)} = (Z/2Z)"™ .
e can map the collection of (2m)-tuples (hgs into itse the permutation
Wi p th llecti f(2 ) pl (h )6 (mod 2m) I itself by the p I

(hs)s  (mod 2m) 7 (Pes)s  (mod 2m)-

Because ¢2 = 1, (mod 4m), equations (5.11) and (5.12) are preserved. Hence we have

shown the following:

Theorem 5.2.4 ([21], Theorem 5.2). For each divisor m’' of m such that ged (m',m/m’) =

1, there is an operator Wy, from Jy p, to itself given by

¢(7_, Z) — Zc(njr)e%ri(m‘)ekri(rz) — ((p‘Wm’)(Ta Z) _ Z c(n’, 7,/)627ri(n/7-)627ri(7~/z)

n,r n',r!

where ' = —r (mod 2m’), ' = r (mod 2m/m’), and 4n'm — r”* = 4nm — r%. These

operators are all involutions that form a group isomorphic to Z(m) and generated by the

Wp;’i with m = H§:1 p;ji .
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5.2.1.2 Connection with Modular Forms of Degree 1

In this section we identify the space of Jacobi forms of index 1 or prime p, with
the space of half integral weight modular forms. Before we do so we review some features
of elliptic modular forms which we take from [51], Chapter 4. For all the details, skipped
definitions, and arguments, the reader should consult the reference.

Let f € S2.(T'9(N)) be a cusp form. We have seen in Chapter 2 that f has a

Fourier expansion of the form f(z) = Z a(n)e?™™*  Attached to f is the Dirichlet series

n>1
a(z)’ s € C, which converges absolutely for R(s) > « + 1.

or L-function, L(s, f) = Z

n>1

0 -1
Let ay = € GL3(Q). It is easy to verify that conjugation by ay
N 0

preserves I'g(N). Define Wy to be the operator (called Fricke involution) that acts by an

on f
(Wn f)(2) = (VN2)*f(=1/N2).

Then Wy is an involution (W3 = 1) and preserves the space Sa.(I'o(N)). Therefore the
only possible eigenvalues for Wy are ey = £1, and consequently we obtain a splitting of

the space of cusp forms into +1-eigenspaces
S2(Lo(N)) = S24(Lo(N)) ™ @® S2u(Lo(N) ™.

Hecke showed the following:

Theorem 5.2.5 ([51], Theorem 4.4). Let f € Sa.(I'o(N)) be a cusp form in the ex
eigenspace. Then L(s, f) can be analytically continued to a meromorphic function on the

whole complex plane, and satisfies the functional equation

A(s, f) = en(—1)"A(k — s, f) (5.13)
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where

A(s, f) = N*/(2m)~*T(s)L(s, f),
and I'(s) is the Gamma function.

Remark 5.2.6. 1. We call the term ex(—1)" the sign of the functional equation satisfied
by the Dirichlet series L(s, f).

2. When we use the minus sign in the notation of the subspace of cusp forms S, (I'o(V)),

we mean the subspace of modular forms f whose functional equation sign ey (—1)% =

—1. Tt is not to be confused with the subspace Sa.(To(N))~! of forms with ey = —1.
3. For a prime divisor p of N such that ged (p, N/p) = 1, we can define an operator
called the Atkin-Lehner involution at p, W), given by the matrix
p a
N pb
with determinant p and whose eigenvalue ¢, = £1.
4. When N = 1, Wy = I, where I is the identity map, since ay € SLy(Z) and S5} = {0}.

5. When N =1, then L(s, f) satisfies the functional equation

A(s, f) = (=1)"A(k = s, f).
The Dirichlet series L(s, f) is called an L-function if and only if it satifies a functional
equation and has an Euler product factorization.

Proposition 5.2.7 ([51], Proposition 4.5 ). The Dirichlet series L(s, f) has an Euler prod-

uct expansion of the form




if (and only if)

a(mn) = a(m)a(n), if ged (m,n) =1

a(p)a(p”) = a(p"t) +p*ta(p"t) ifr>1,ged(p,N)=1

a(p”) = a(p)” ifr>1,p| N.

Hecke defined linear maps for each positive integer n > 1
T(n) : SQH(FO(N)) — SQH(FO(N))

called the Hecke operators, and proved the following theorems.
Theorem 5.2.8 ([51], Theorem 4.7). The linear maps T'(n) have the following properties:
1. T(mn) =T(m)T(n) if ged (m,n) = 1,
2. T(p)T(p") =TE*") +p* 'T(p™") if ged (p,N) = 1,
3. T(P") =Tw)" ifpr|N,
4. all T(n) commute.

Theorem 5.2.9 ([51], Theorem 4.8). Let f(z) = Z a(n)e*™* € S5, (To(N)) be an eigen-
n>1
form for all the Hecke operators T'(n) with eigenvalues A(n). Then

a(n) = A(n)a(1). (5.14)

Corresponding to f in Theorem 5.2.9, we define the Dirichlet series Z(s, f) =

A
Z @, which is absolutely convergent for R(s) > x + 1 ([2], Theorem 1.2.2). We have
n
n>1
the identity

L(s, ) = a(1)Z(s, f).

As a consequence of equation (5.14), if f is an eigenform of all Hecke operators,
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then its Fourier coefficients inherit properties of the Hecke operators. Applying Proposition

5.2.7 we obtain:

Corollary 5.2.10. Let f € So.(I'0(N)) be an eigenform for all Hecke operators normalized

so that a(1l) =1, then

1 1
L(s, f)=1]] T A" 1T = Ap)p— + 1

ged (p,V)=1

The problem of finding cusp forms f whose Dirichlet series have Euler product
expansions is then a problem of finding simultaneous eigenforms for the Hecke operators
T(n) : Sox(T'o(N)) — S25(I'o(N)). The answer is in the spectral theorem from Hilbert

theory on finite dimensional complex vector spaces.

Theorem 5.2.11. (Spectral Theorem) Let V' be a finite dimensional complex vector space

equipped with a positive definite Hermitian form (,).

1. Lett:V — V be a linear map which is Hermitian. Then V has a basis consisting of

etgenvectors for t; i.e., t is diagonalizable.

2. Let t1,ta,... be a sequence of Hermitian operators sending V' to V which commute
with each other. Then V has a basis consisting of vectors which are eigenvectors for

all the t;; i.e., t; are simultaneously diagonalizable.

A linear map T : V' — V is self-adjoint (or hermitian) relative to the form (,) if
(Tv,w) = (v, Tw) for all v,w € V.

The Petersson inner product defines a positive-definite hermitian form on the vec-
tor space of cusp forms Sox(T'g(IN)). The Hecke operators T'(n) are self-adjoint for all
ged (n, N) = 1. Applying the spectral theorem to the sequence of Hecke operators T'(n)

with ged (n, N) = 1 on the complex vector space Sa.(I'g(N)), we obtain a decomposition

Sox(To(N)) = &V;
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into a direct sum of orthogonal subspaces V; each of which is a simultaneous eigenspace for
all T'(n) with ged (n, N) = 1.

The Fricke involution Wy is self-adjoint with respect to the Petersson product,
and commutes with T'(n) for ged (n, N) = 1, and so each V; decomposes into orthogonal
eigenspaces

‘/i — ‘/7;+1@V;71

for Wx. However, Wy does not commute with the T'(p)’s for p | N. Hence we can not
have a single f that is simultaneously an eigenvector for Wy (and hence its L-function
satisfies a functional equation) and for all T'(n) (and hence its L-function has an Euler
product factorization). The obstacle to obtaining such a form is due to the existence of
a space of old forms. If M is a proper divisor of N, then I'o(N) is a subgroup of I'g(M)
and S2.(Fo(M)) C S2x(I'0(N)). For every divisor m of N/M, f(mz) € S2.(Io(N)). The
subspace of Sa, (I'0(N)) spanned by all forms f(m7) with f € So,(I'o(M)), mM | N, M # N
is called the space of old forms and is denoted by S$!4(I'o(N)). The orthogonal complement
SEWV(To(N)) is called the space of new forms. It is stable under all the operators T'(n) and

Wy and so it decomposes into a direct sum of orthogonal subspaces W;
S (To(N)) = Wi,
each of which is a simultaneous eigenspace for all T'(n) with ged (n, N) = 1. The T'(p) for

p | N and Wy stabilize each W;.

Theorem 5.2.12 ([51], Theorem 26.21). The spaces W in the above decomposition all have

dimension 1.

Because they have dimension 1, each W; is also an eigenspace for Wy and T'(p)
for p | N. Consequently, there exists exactly one normalized cusp form in each W that is
an eigenform for all the Hecke operators and for the Fricke involution. For this form, its

L-function L(s, f) has an Euler product factorization as in (5.2.7) and satisfies a functional
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equation as in (5.13). Such cusp form is called a newform. The newforms form a basis for
the space of new forms S5V (I'og(IV)).

Finally there is a direct sum decomposition of the space So.(I'g(IV)) as

Sax(To(N)) = @ {f(m7)|f € S5 (To(M))}.
mM|N
A basis of S2,(I'g(IV)) consists of the functions f(m7) where m | N and f a newform of
level dividing N/m.
Half integral weight modular forms are similar to modular forms of integral weight,

a
except that the automorphy factor describing the action of a matrix involves the

c d

Legendre symbol (5) For a definition of this symbol and for an extensive treatment of
modular forms of half integral weight, we refer to [80].

Shimura showed that one can also define Hecke operators T'(p) on the space of
modular forms M,,_;/2(I'o(4m)) for all primes p { 4m and that M, _5(Io(4m)) is spanned
by simultaneous eigenforms of these operators. He defined a Hecke equivariant lifting that
associates to a Hecke eigenform in M,,_; /5(I'o(4m)) a Hecke eigenform of weight 2k —2 with
the same set of eigenvalues but its level was unclear. This lifting goes under the name of
Shimura correspondence. Later Niwa [56] showed that the right level of the eigenform of
integral weight obatined under the Shimura lifting is 2m. For the case m = 1 and later for
the case of m odd squarefree ([41], [42], [43]) Kohnen showed that one could get all the way

down to level m by restricting the Shimura correspondence to the subspace

M,j_l/2(4m) =< fe Mk_l/g(F0(4m)) flr) = Z Cf(n)e%im (5.15)
n>0
(—1)"*1n56,1 (mod 4)

consisting of forms in Mj_;/5(T'o(4m)) whose n*l Fourier coefficient vanishes for all n
with (=1)*"!n = 2,3 (mod 4). This subspace is called “Kohnen’s +-space. ” Kohnen

also showed that one can define commuting Hecke operators T'(p) on M," | /2 (4m) for all p
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agreeing with Shimura’s Hecke operators if p # 2 and that under a refined vesion of Shimura

correspondence, M;" . . (4m) becomes isomorphic to Ma,_2(I'g(m)) as modules over the ring

k—1/2
of Hecke operators. (There is a 1-1 correspondence between eigenforms h € M]:r_l /2(4m)
and f € May,_2(Tg(m)) such that the eigenvalues of h and f agree for all p). To be more
precise, this correspondence is between certain subspaces of newforms. All the details can
be found in the papers [42], [43].

Now for the connection of Jacobi forms with half integral weight modular forms,

Theorem 5.2.2 is the main key to understand the connection found by Eichler and Zagier.

In case m =1, let ¢(7,2) € Ji,1 where & is even. Then using the theta expansion, we have

$(rz) = . hs(r)bis(r,2)

4 (mod 2)
= h0(7)9170(T, Z) + h1(7)9171(7', Z).

Define
h(T) = ho(47) + hi(47).

Now, ¢ is a Jacobi form if and only if hy and h; satisfy the transformations (5.11) and

(5.12) above. This translates to

h(r+1) = h(r)

h <4TT+1> = (47 + 1) 2n(7).
11 10
Since I'g(4) is generated by and , this shows that
01 4 1
W)= > )4 N (V)N e M 2(To(4)).
N=0 (mod 4) N=3 (mod 4)

One can reverse the calculation and show that hg and h; satisfy the proper transformation

properties given in (5.11) and (5.12). We have sketched the following result.
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Theorem 5.2.13 ([21], Theorem 5.4). Let k be an even integer. Then

Ml:_—l/2(4) = Jea

with the isomorphism given by

Z C(N)e27ri(N7') — Z c(4n _ T2)627ri(n’r+rz)‘
N>0 n,reZ

N=0,3 (mod 4) An—r2>0
This isomorphism is in fact an isomorphism of Hecke modules.
Using Kohnen’s work as discussed above together with Theorem 5.2.13, we have:

Corollary 5.2.14 ([21], Corollary 3, page 66). If ¢ € Ji 1 is an eigenfunction of all Hecke
operators Tj(l) (see § 5.3), then there is a Hecke eigenform in May_o(SLa(Z)) with the

same eigenvalues. Moreover, this correspondence is bijective.

Remark 5.2.15. We note that using the map

¢(r,2) = h(r)= Y hs(4mr),
6 (mod 2m)
which generalizes the map ¢(7,z) — ho(47) + h1(47) above, Eichler and Zagier proved an

analogue of Theorem 5.2.13 when the index m is prime.

One can generalize Kohnen’s work for arbitary m not necessarily odd square free
but technical difficulties occur as mentioned in [84]. Skoruppa and Zagier overcame these
difficulties by replacing the space of half integral weight modular forms by Jacobi forms
and established the Shimura correspondence for Jacobi forms, bypassing the space of half

integral weight forms. One has the following result.

Theorem 5.2.16 ([85], Theorem 5). For each pair of integers k,m € Z, m > 0, the space
of Jacobi forms J, m is Hecke-equivariantly isomorphic to the subspcae M, o(T'o(m)) of

the space Ma,—o(Lo(m)) of all elliptic modular forms of weight 2k — 2 on I'y(m).
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Moreover, Skoruppa and Zagier in [85] defined a notion of new forms for the space

of Ji ,, and obtained a Hecke equivariant isomorphism

Santa(To(m)) = Jom™. (5.16)

5.2.2 Connection with Siegel Modular Forms of Degree 2
5.2.2.1 Some Preliminaries

For all the definitions below, we follow [2]. For Siegel modular forms of degree n > 2,
there are more Hecke operators than there are for the degree n = 1. For each prime p we
no longer have just one corresponding Hecke operator T'(p). An additional complication
is the theory of L-functions which are not defined through Fourier coefficients since these
coefficients are attached to matrices. Let F' be a Siegel modular form in M, (Sp4(Z)).
Suppose F' is an eigenfunction of all the Hecke operators (see § 5.3) Ts(m) € T3 (for
m=1,2...):

Ts(m)F = Ap(m)F.

For every prime p, let

Qp.r(t) =1 = Ap(p)t + (Ap(p)? — Ap(?) — p* )t — Ap(p)p®3¢3 + p** 64,

For some right half plane R(s) > o, let

Z(Sv F) = H(Qp,F(p_s))_l' (5.17)
Then
Z(s,F)=((2s — 2k +4) Y A;”Z),
m>1

where ((s) is the Riemann zeta-function ([2], Theorem 2.2.1).
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5.2.2.2 The Fourier-Jacobi Development of a Siegel Modular Form of Degree
2

We saw in Chapter 2 that for any genus n > 1, a Siegel modular form F' has a
Fourier expansion. But in case n > 1 there are other developments that provide additional
information, like the so-called Fourier-Jacobi development of a Siegel modular form. We

limit our exposition to the case n = 2.

T oz
For n = 2, we can write Z € h? as with 7,7 € h! and z € C and the

z T

condition Im(Z) > 0 translates to Im(2)? < Im(7)Im(7'). We summarize this into the

definition of the Siegel upper half space of genus 2 as
B2={z= z e C,7,7 € b, Im(2)? < Im(7) Im(7")

Let F be a Siegel modular form of weight x on h2. We know that F has a Fourier expansion
of the form
F(Z) _ Z a(T)e27rz' T (TZ)

Tes5%(z)

where T € SQEO(Z) means that T ranges over positive semidefinite semi-integral symmetric
. >0 n o r/2

2 x 2 matrices T. For every T' € S5 (Z), we set T = where n,r,m € Z,n,m >
r/2 m

0,72 < 4nm, and Tr(TZ) = n7t + rz + m7'. We write F(7,z,7') instead of F(Z) and we

also write a(n,r,m) for a(T), so the Fourier development of F' becomes

F(r,z,7) = Z a(n,r, m)e2m(m+m+m7/).

n,m,re”z
m,n,dnm—r2>0

Rearranging the Fourier expansion of F' and writing it in terms of 7/, we obtain the Fourier-
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Jacobi expansion of F":

F(r,2,7) = Z a(n, r, m)e2rinrrztm) (5.18)

m,n,reZ
m,dmn—r2>0

_ Z Z a(n’ r m)e27ri(nr+rz)627ri(m'r’) (5'19)
m>0 n,rez
dAmn—r2>0

= Z G (T, z)e2m(mT/). (5.20)

m>0
We now extend Theorem 6.1 in [21] and we also prove it for cusp forms.

Theorem 5.2.17. Let F' be a Siegel modular form of weight k with respect to the Hecke

congruence subgroup F(()Q)(M). Consider the Fourier-Jacobi development of F':

F(r,z2,7) = fm(r,2)e*™ ),

m>0

then for each m, ¢ is a Jacobi form of weight k and index m with respect to the Jacobi
group To(M)”?. Moreover, if F € SH(F(()Q)(M)), then ¢, is a cusp form with respect to
Lo(M)? for each m.

Proof. Consider the mapping

a 0 b O
a b 0O 1 00 a b
L — for all e Lo(M).
Mc d Mc 0 d O Mc d
0O 0 0 1

Then ¢ : To(M) — FSQ)(M ) is an injective group homomorphism for ad —bMC =1 and the

image satisfies the symplectic relations.
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Similarly, the map

1 0 0 pu

A1l uw O 5
h:(Ap)— for all (A\,u) €Z

00 1 =X

0 0 0 1

is an injective homomorphism. The action of the matrices

a 0 b 0 100 pu
0 10 0 A1l o 0
and (5.21)
Mc 0 d O 00 1 —Xx
0 0 0 1 00 0 1
on h? is given by
(r,2,7) = ar +b z , Mecz?
AT Mer+d Mer+d | Mer+d)’

(T,Z,T') = (ryz+ M+ p, 7 + 22z + )\27') )

Now applying the transformation formula for Siegel modular forms we get the two trans-
formation laws of Jacobi forms for the Fourier coefficients ¢,,, and the Fourier expansion of
the Jacobi forms is given from the Fourier development of the Siegel modular form equation
(5.18) where the condition 4nm > r? is coming from the condition on the matrices 7. That
is, we have shown that for every m, ¢, € Jom(To(M)7).

For the rest of the proof, we know (see Chapter 2) that every Siegel modular form

F of degree two has a Fourier expansion

(Fle)(Z) = Z a’y(T)e%riTr(TZ)’
Tesz%(z)
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for every v € Spy(Z). When F € S,@(FSQ)(M)), then for all v € Spy(Z), a(T") = 0 for every
T e SQZO(Z) such that detT" = 0. In particular, taking v € Sp,(Z) in the image ¢(SLa(Z))
and working with the same notation used above where det T = 0 translates to 72 = 4mn,

we have

F(r 2 7)oy = Z ay(n,, m)62”(”7+”2+m7’)

m,n,reZ
m,dmn—r2>0

) o
_ § : § : ary (n’ r m)€2m(n‘r+rz)e27rz(m7' )

m>1  n,rez
Amn—r2>0

- Z G (T, z)|’y’62m(m7/)’

m>0

where 7/ is the inverse image of v in SLy(Z). The condition a,(T") = 0 for every T € SQZO(Z)

such that det T = 0 translates to

¢m (7_7 Z) |’Y/ - Z Ay (na r, m)ezﬂi(nT—Hﬂz)?
n,re€Z
Amn—r2>0
which proves that ¢, € J;ﬁ,m(Fo(M)J), .

Using Theorem 5.2.17, we have an injective map

H: Mo(TP (M) = [ Jen(To(M)7),

m>0

and a corresponding map for the space of cusp forms

HE: S (LP (M) = T I m(To(M)7).

m>1

In case M =1, these maps reduce to

H: M. (Spy(Z)) — H Jem,

m>0
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and a corresponding map for the space of cusp forms

M Su(Spa(Z) = [] 72

m>1
5.2.2.3 The Maass Lifting

Liftings in the study of modular forms are of considerable importance. We study an
important linear map from the space of Jacobi forms to the space of Siegel modular forms
of degree 2 called the Maass lifting.

Maass identified a subspace M (Sp4(Z)) in M, (Sp4s(Z)) called the Maass subspace

consisting of forms F' whose Fourier coefficients a(7T) for T' = depend only on
r/2 m
the discriminant D(T) = 4nm — r? and the content e(T) = ged (n,7,m). It is explicitly
defined by
M*(Spy(Z)) = { F € M.(Sp4(Z))| a(n,r,m) = > d"a(1,r/d, mn/d?)

d>0,d|ged (n,r,m)

The corresponding space in the space of cusp forms is denoted by S (Sp4(Z)).
The inverse of the map F' +— ¢; that sends a Siegel modular form in M, (Spy(Z))
to its first Fourier-Jacobi coefficient ¢y € J, 1 is the full level Maass lifting due to [48]. We

present its proof exactly as given in [21].

Theorem 5.2.18 ([21], Theorem 6.2). Let ¢ be a Jacobi form of weight k and index 1 with
respect to the full Jacobi group SLo(Z)”. Then the Siegel modular form V(¢) whose Fourier

Jacobi coefficients are ¢|Vy, (m > 0) is a Siegel modular form of weight  in M, (Sp4(Z)).

Proof. The proof consists of verifying that the form V(¢) transforms like a Siegel modular
form under the generators of Sp(4,Z). When ¢ € J,. 1, ¢|Vin, € Jim. The map V(¢) is given
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V(@)Z) = D Vinl(@)(r,2)em ")

m>0

= Z Z a(n7 T, m)eQTFi(nT+TZ)627ri(mT’)

m>0n,rdmn—r2>0

where according to the action of V,,, we have that

a(n,r,m) = Z a" e (T;—gn, 2) (5.22)
alged (n,r,m)

given that ¢(7,2) = Z c(n, 7)™ ("7+2) g the Fourier expansion of ¢.
n,rdmn—r2>0

)627ri(m7’)

In general, a function defined by the series Z G (T, 2 transforms like a

m>0
Siegel modular form under the action of matrices in Sp,(Z) in the image subspace ¢(SL2(Z))

of the map ¢ given in equation (5.2.2.2) when M = 1 and in the image of h(Z?). In particular

this holds for the function

V(O)Z) =D Vinl()(r, 2)e™ ("),

m>0

On the other hand, the Fourier expansion of ¢ is symmetric in n and m. From this, we
deduce that V(¢) is symmetric in 7 and 7’. Equivalently, this says that it transforms like a

Siegel modular form with respect to the matrix

01 0O

1 0 0 O
R =

0 0 0 1

0 010

Since the matrix R together with matrices of the form +(SLg(Z)) and h(Z?) generate Sp,(Z),
this shows that V(¢) € M. (Sp4(Z)). O

Recall that by associating to a Siegel modular form its Fourier-Jacobi coefficients
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we have the injective map

H: MN(SPAL(Z)) — H Jf{,m-

m>0

The full level Maass lifting shows that we also have a map in the other direction
Vi Jey — My(Spy(Z)),
such that the composition

Jea = My(Spy(Z)) = [] Teun = T

m>0

is the identity (where the last map is the projection to the first coefficient). Thus V is
injective and the image is exactly the set of F with F' = V(H(F)), i.e of Siegel modular
forms whose Fourier Jacobi expansion has the property ¢,, = ¢1|V,, for all m. This means

that the Fourier coefficients defined by (5.22) satisfy the following relation

nm — r?
a(n,r,m) = Z d"le <4d2> . ((nym,m) #(0,0,0)),

d|ged (n,r,m)

where

a(n,0,1) if N =4n
c¢(N) =
a(n,1,1) if N =4n — 1.

Equivalently, we can characterize the image by the subspace of Siegel modular forms whose

Fourier coefficients satisfy the relations

a(n,r,m) = Z d g (T;—gn, 2, 1)

d|(n,r,m)

for all (n,r,m). These relations are exactly the Maass relations satisfied by forms in the

Maass subspace M, (Sp,(Z)).
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Summarizing, the full level Maass lifting implies the isomorphism

Jie1 = M (Spy(Z)). (5.23)

5.3 The Classical Saito Kurokawa lifting

Andrianov [3] has shown that the Maass subspace S} (Sp4(Z)) is invariant under the
action of Hecke operators. Using the fact that the Maass subspace is the image of the full
level Maass lifting, it is shown in [21] that the full level Maass lifting V' : J¢ | — S (Spa(Z))
is compatible with the action of Hecke operators in J ;1 and My (Sp,(Z)). This implies that
VY maps Hecke eigenforms to Hecke eigenforms. We now give the Hecke operators used for
Jacobi forms of index ¢ and for Siegel modular forms with general level ['o(M )7 and I’(()Q) (M)
respectively. The Hecke operators in the symplectic case are defined as in [2] using double
coset operators.

The Hecke algebra ’]I‘% for the Jacobi group I'g(M)” is generated over Z by the
operators T;(p),p 1 tM and Ujy(p),p | M which are defined as in [49] and their actions on

Fourier coefficients are given by

TN = S @ UETE) prny (529)
D<0,reZ
D=r? (mod 4t)

where

D D
(D) =D+ () epiry 42 (5.0

and ¢(D,r) =0 if D or r is not an integer,

(r2_D
WU = S @D ) (5.25)
D<0,reZ
D=r? (mod 4t)

The Hecke algebra ’]I'% for the symplectic case is generated over Z by Tg(p) and
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T¢(p) when p { M and by Ug(p) when p | M ([31], page 157). For p{ M,

)(M) diag (1,1, p, p)T P (M).

°N

Ts(p) =T
Define

Tia(p?) = TP (M) diag (1, p, p, p)TS? (M),
Too(p?) = TP (M) diag (1,1, 2, p*)T P (M),

Tii(p?) = T (M) diag (p, p, p, p)TSY (M).

Let
Ts(p®) := Tia(p®) + To2(p®) + T11(p°)
and
/ _ 2 2\ 3 2 2 2
Ts(p) = Ts(p)” — Ts(p®) = (p° +p° + p)T11(p”) + pT12(p”).
For p | M,

Us(p) = T (M) diag (1, 1, p, p)T (M). (5.26)

Theorem 5.3.1 ([21], Theorem 6.3). The full level Maass lifting V : Js1 — M.(Sps(Z))
is Hecke equivariant with respect to the Hecke algebra homomorphism (' : ’]I‘% — ’]I‘% defined

on the generators of the Hecke algebra by

V(Ts(p)) = Ty(p) +p" " + "2,

J(Ts(p) = (p 1+ p" )Ty (p) + 272 + p> 4.
Equivalently, the Maass lifting satisfies

(VO)IT = V(e|/(T))
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S
for any Hecke operator T' € T.

If ' € M (Sp4(Z)) is a Hecke eigenform such that Ts(p) F' = v, F" and T (p) ' = v, F,

then we can associate a zeta function as the one given in equation (5.17)

Z(s, F) = H<1 D (), — PR i g kbt L
p

If F =YV(¢) with Tj(p)¢ = A\p¢, then it follows from Theorem 5.3.5 that

!/

Yp = )\p _|_pli—1 _|_pn—2’ ’Yp — (pn—l +pn—2))\p + 2p2n—3 +p2/e—4
and hence
1— '}’pt + (,Y; _ 2p2nf4)t2 _ ,ypp2n73t3 +pn76t4 — (1 _ pnflt)<1 . pant)(l . Apt +p2n73t2).

Corollary 5.2.14 says that there is a 1-1 correspondence between eigenforms in Mo, _o
and Jy 1, the eigenvalues being the same. This, together with the Hecke equivariance of the

Maass lifting whose image is the Maass subspace allows us to deduce the following:

Theorem 5.3.2 ([21], Corollary 1, § 6). The space S (Sp4(Z)) is spanned by Hecke eigen-
forms. These are in 1-1 correspondence (when k is even) with normalized Hecke eigenforms

f € Son_2a, the correspondence being such that
Z(s,F)=C((s—rk+1)((s—r+2)L(s, f). (5.27)

The result obtained in Theorem 5.3.2 asserts the existence of a lifting from Sa;_o(SL2(Z)) —
S, (Sp4(Z)) such that equation (5.27) relating their L-functions holds when & is even. This
lifting is called the classical Saito-Kurokawa lifting (of full level). As constructed above
when & is even, the Saito-Kurokawa lifting is constructed as the composition of three linear
maps

San—2(SLa(Z)) = ST 15(To(4)) = JZ | — Sk(Sp4(Z))
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where ST

A /2(F0 (4)) is Kohen’s +-space defined by equation (5.15) using the corresponding

space of cusp forms. The first isomorphism is obtained via the Shimura isomorphism as
adjusted by Kohnen ([41]), the second isomorphism is as obtained by Zagier (Theorem
5.2.13) and the third one is the full level Maass lifting (Theorem 5.2.18).

5.3.1 Congruence Level Saito-Kurokawa Lifting

Given a Siegel modular form F' € M, (F(()2) (M)), we have obtained an injective map

H: 5u(57 (M) = [ J¢m(To(21))
m>1

using the Fourier-Jacobi expansion of F'.

The inverse of the map F +— ¢; projecting I’ to its first component induces the
Maass lifting with level. As far as the author knows, its proof had never appeared in
the literature before a very recent paper of Ibukiyama [31], with most authors just citing
Eichler-Zagier [21]. Ironically, the Eichler-Zagier book never contained a real proof of the
Maass lifting with level except the statement that says the same arguments used in the
proof of the full level Maass lifting work also for the Maass lifting with level.

We state the Maass lifting with level as done by Ibukiyama, we will include its proof

in Chapter 6.

Theorem 5.3.3 ([31], Theorem 3.2). Let ¢ be a Jacobi cusp form in J,§71(F0(M)J). Then

the function defined by

V(@) (1, 2,7) = D Vin(9) (1, 2)e>™ ™t

m>1

belongs to Sﬁ(Féz) (M)).

Remark 5.3.4. The V,, operators used in the Maass lifting with level are a generalized
version of the V,, operators defined in equation (5.1.5) and used in the full level Maass

lifting.
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The Maass lifting with level is compatible with the following Hecke algebra homo-

morphism.

Theorem 5.3.5 ([31], Theorem 4.1). The Maass lifting with level is Hecke-equivariant with
respect to the Hecke algebra homomorphism o : ’]I‘% — T% defined on the generators of the

Hecke algebra by

/(Ts(p)) = Ty(p) + "+ (pt M),
(Te(p)) = (0" + ") Tu(p) + (20" 2 + ™Y (pt M),

V(Us(p) =Us(p) (p|M).

Equivalently, the Maass lifting satisfies

V(NIT = V(¢]/(T))

S
for any operator T' € T .

Using a generalization of the Eichler-Zagier map when M is odd and squarefree and

% even, we have that J¢, (To(M)”7) = ST

K,l/g(FO(4M)) from [44]. Combining with Kohnen’s

isomorphism ([43])
S5 (To(M)) 22 8,195 (Do (4M))

we obtain the congruence level Saito-Kurokawa lifting

S (Do (M) 2 S0 (Po(4M) 2 JEI™ (Do(M)T) = S.(I (M),

where J21V(To(M)”) is defined as in [49].

5.3.2 Paramodular level Saito-Kurokawa lifting

Let k > 2 and ¢ > 1 be integers. Let Sy, (I'o(¢)) be the subspace of cusp forms

of weight 2k — 2 with level I'y(¢) whose L—functions satisfy the functional equation (5.13)
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with sign —1. Skoruppa and Zagier showed in [85] that

Saey (Fo(t)) = o™ (5.28)

K,t

as Hecke modules for the Hecke operators T'(n), ged (n,t) = 1. Equivalently, starting with
€85 (To(t)) a normalized Hecke eigenform, one can associate to it a unique (up to
scalar) Jacobi cusp form ¢; having the same eigenvalues of f under the Hecke operators
T(n), ged (n,t) = 1.

On the other hand, Gritsenko obtained a lifting [26] from the space of Jacobi forms
Jyt to the space of paramodular forms M, (I'[t]). Here we state Gritsenko’s lifting for cusp

forms:

Theorem 5.3.6 ([27], Theorem 3). Let ¢y be a Jacobi cusp form of weight k > 2, index

t > 1 and level SLa(Z)” with the Fourier exzpansion

r = X enrmon),
n,r€Z,n>0
Ant>r?

Then
G()(m,2,7) == Vin(er)(r, 2)e*™ ™™

m>1

is a paramodular cusp form of weight k with respect to the paramodular group T'[t].

Remark 5.3.7. 1. The map G that associates to a Jacobi form of weight «, index ¢t > 1,
and level SLy(Z)” a paramodular form with respect to the paramodular group I'[¢] is

injective.
2. Gritsenko’s lifting is a generalization of the full level Maass lifting V' : J¢ | — S, (Spy(Z)).

3. The V,, operators used in the definition of G are the same as the operators used in

the definition of the full level Maass lifting.

Combining Gritsenko’s lifting G with the Skoruppa-Zagier lifting given in equation
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(5.16), we obtain the Saito-Kurokawa lifting of paramodular level ¢:

Sos (Do(t)) =2 Joy ™ — Sk(T[E]). (5.29)

K,t
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Chapter 6

Generalized Maass-Gritsenko

Cuspidal Liftings

6.1 Introduction

We recall from Chapter 5 that Gritsenko obtained a generalization of the full level
Maass lifting V' : J¢ | — Sx(Sp4(Z)). He constructed an injective map G that associates to
a Jacobi cusp form of weight x, index ¢ > 1, and level SLa(Z)” a paramodular cusp form

with respect to the paramodular group I'[t] of level ¢ :
G:Jos — Sk(L[t)).

In this chapter we give a cuspidal lifting that generalizes both the Maass lifting with level
and Gritsenko’s lifting starting from a Jacobi cusp form of level I'g(M)”’. This amounts to
proving the modularity of the lift and the cuspidality of the lift. In proving modularity,
we obtain a general characterization of the modularity of Maass-Gritsenko liftings. This
characterization is based on the maximal standard proper parabolic subgroup Cs; of type
(2, 1) of the Hecke congruence subgroups of degree two or the paramodular groups. We recall

that this standard parabolic subgroup is associated with the maximal degree standard cusp
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of the compactified space (h2)* /T, where I is either Sp,(Z), its Hecke congruence subgroup
Fé2) (M), the paramodular group I'[t], or the mixed level group I'j/[t], a subgroup of I'[¢]
that we will introduce later in this chapter. We also obtain a more general characterization
of modularity of liftings from Jacobi forms of level I'V for any congruence subgroup I' of
SLa(Z). The conclusion is that the theory of liftings from Jacobi forms is governed by the
theory of maximal parabolic subgroups of Sp,(Q).

To obtain the cuspidality of our lift, we have to give a description of the double cosets
associated to the maximal degree cusps of the compact space (h2)*/T'y/[t]. The structure of
these cusps says that the lifting is cuspidal if and only if the Jacobi form is cuspidal. We also
notice that the structure of the maximal degree cusps of the compact space (h2)*/ F(()Q)(M )
can give a shorter proof of the cuspidality of the Maass lifting with level than that given
by Ibukiyama ([31]). Another consequence of the structure of the maxiaml degree cusps is
that we obtain a characterization of cuspidal Siegel modular forms (not necessarily lifts)
with respect to the Hecke congruence subgroup FE)Q) (M) and with respect to the mixed level
paramodular group I'j/[t] in terms of Fourier-Jacobi expansions. Finally, the description of
the image of the cuspidal mixed level lifting as forms whose Fourier coefficients satisfy linear
relations similar to the classical Maass relations enables us to define a subspace of forms
similar to the Maass subspace that we hope to characterize in the future. Towards that
goal, we attempt to describe Fourier-Jacobi expansions of mixed level paramodular forms.
We note that Ibukiyama, Poor and Yuen ([33]) are interested in such characterizations and
have been successful in the case of paramodular forms M (I'[t]) when ¢t = 1,2,3,4.

We start by presenting the ingredients of the modularity of the Maass lifting with
level M > 1. We note that during our work on this topic and finding out the general frame-
work of liftings from Jacobi forms, we have proved the modularity of the Maass lifting with
level M independently of Ibukiyama’s recent proof in [31]. We then work out modularity
ingredients of a lifting that generalizes both the Maass lifting with level and Gritsenko’s

lifting. To prove cuspidality, we review the cusps given by Ibukiyama and Gritsenko and

present the cusps for our generalized lifting.
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6.2 Modularity of the Maass lifting with Level M

6.2.1 Maximal Parabolic Subgroups

Fix n the degree of the Siegel upper half plane h™. We have seen in Chapter 4
that we have n proper standard maximal parabolic subgroups of Sp,,(Q), C,.»(Q), for
0 < r < n—1, associated with the standard cusp of corresponding degree r. For each

0 <r <n—1, the subgroup Cy,,(Q) is of the form

Cnyr(Q) = { M € Spy,,(Q)| M = )

Ay, B
where R Sps,-(Q) and U € GL,,—(Q). We call C,, ,(Q) the standard maximal

Cui Dn
parabolic subgroup of type (n,r).

For genus n = 2, we have two standard maximal parabolic subgroups: Cs1(Q) of
type (2, 1) associated with the standard cusp of degree 1 (maximal degree) and C3o(Q) of
type (2,0) associated with the standard cusp ico of degree zero (see Chapter 4). For our

purpose of proving lifting theorems, we will be interested in Co ;1 (Q):

a 0 b 2
r u z oy
C2,1(Q) = {7 € Spy(Q)| v = : (6.1)
c 0 d —a
0 0 0 ut
a b
where € SL2(Q) and u € GL1(Q). We give a characterization of standard maximal
c d

subgroups C31(Q) of type (2,1). The same characterization holds for any degree n (See
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Chapter 4).

A B
Remark 6.2.1. An element € Spy(Q), where A = (ai;), B = (bij), C = (cij)

C D
and D = (d;;) with 1 <4,5 < 2, belongs to C1(Q) if and only if ¢12 = 21 = 2 = 0 and
c11 # 0, or equivalently a19 = ¢19 = co2 = 0.
B

Proof. Since a general element € Sp,(Q) satisfies the symplectic relations, we

C D

then have C'D and 'AC are symmetric matrices. This implies that we must have do; =

a1l = 0. O

The Levi decomposition (see Chapter 4) of Co1(Q) allows us to write elements of

C5,1(Q) uniquely in the following way:

a 0 b O 1 0 0 =z

O w 0 O z 1 z vy
C2,1(Q) = {7 € Sps(Q) |7 =

c 0d O 0 0 1 —x

00 0 uwt 0 00 1

For any arithmetic subgroup I' of Sp,(Q), the corresponding standard maximal
parabolic subgroups are I'NCy 1 (Q) of highest type (2, 1) and I'NC5 0(Q) of type (2,0). When
I" is the Hecke congruence subgroup Fém (M), we will denote the standard maximal parabolic
subgroup F(()Q)(M) N C2,1(Q) of type (2,1) by I'ns,o0(Z). When M = 1, the corresponding
standard maximal parabolic subgroup of type (2, 1) of the Siegel modular group Sp,(Z) will

be denoted by I'no (Z).

Proposition 6.2.2. The standard mazimal parabolic subgroup of Fé2) (M) of type (2,1) is

given by
a 0 b 2
z 1 2z y
Tatoo(Z) = {7 € TP (M) =
Mec 0 d —2'
\ 0 0 0 =#£1 )
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Proof. Since I'y 0 (Z) = F(()z)(M) N C2,1(Q), it is clear from equation (6.1) that

a 0 b 72
r o u z Yy
FM,OO(Z) =37 = >
Mc 0 d -2
0 00 u'!
/
a b ) )
where € I'g(M) and u € GL1(Z). Because I'y0(Z) is a subgroup of I'y™” (M),
Mc d
then every element v € I'p/oo(Z) must have determinant equal to 1. But det(y) =
a b
det uu~! = 1. This proves the final form of elements of I'j o (Z). O
Mc d

Remark 6.2.3. By considering the projective parabolic subgroup I'as s (Z)/£14, we can

always assume u = 1. Since we can do so we will instead abuse notation and denote

a 0 b 2
zr 1 2z y
PpoolZ) = q v =
Mc 0 d -2
0O 0 0 1
\ Vs

6.2.2 Jacobi Group with Level M as a Maximal Parabolic Subgroup of
I§ (M) of Type (2,1)

We recall from Chapter 4 the surjective group homomorphism

wl:FM,OO(Z) — P[)(M)

a b
v
Mc d
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which is a projection onto the SLo part. The kernel of w; is the set of all matrices

1 0 0 u
Al pu kK
A)M?'%GZ )
0 01 —X
0 00 1

which is isomorphic to the integral Heisenberg group H(Z) through the embedding

1 00 pu
1 K
(O s ) 3 8
00 Y\
000 1

We also recall the embedding of T'o(M) into I‘(()2)(M ) defined by

i: To(M) — TP (M)

a 0 b 0

a b 0 1 00
—

Mc d Me 0 d O

0O 0 0 1

Identifying H(Z) and I'g(M) with their corresponding images in FSQ) (M), we obtain
an exact sequence

1= H(Z) = Tyme(Z) - To(M) -1

which splits because of the injection i. Consequently, we have that Iy o0 (Z) = T'o(M) x
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H(Z), where the action of I'o(M) on H(Z) is given by
9= (X,5) = (Xg,£)),
for (X = (\,pn),k) € H(Z), g € I'o(M) and Xg means row multiplication by a matrix.

Thus, we have shown that:

Theorem 6.2.4. The Jacobi group T'o(M) x H(Z), where H(Z) is the integral Heisenberg

group, is isomorphic to T'n o0 (Z).

Consequently, every element v of the parabolic subgroup I' s o0 (Z) is written uniquely

as
a 0 b 0 1 00 =z
2) 0 1 0 O z 1 2z y
ICroo(Z) =S yely’ (M)|vy=

Mc 0 d O 001 —=z
{ 0 0 01 000 1

a b

for €To(M) and z,y,z € Z.
Mc d

6.2.3 Jacobi Forms as Forms with respect to Maximal Parabolic Sub-

group of Type (2,1)

With this realization of the Jacobi group I'g(M )7 as the maximal parabolic subgroup

T'aroo(Z) of F(()Q)(M), a Jacobi form can be viewed as a I'jf o (Z)-invariant function on h?.

Definition 6.2.5. A holomorphic function ¢ on h' x C is called a Jacobi form of weight &,

index ¢ > 1 and level I'g(M)” if the corresponding 5 living on h? defined by

(1, 2,7) = ¢(r, z)e%m/
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z

-
for Z = is a modular form of weight x with respect to Iy, »0(Z). That is,

z T

1. luy = ¢ for all v € Tyy00(Z),

2. for each v € SLy(Z) it has a Fourier expansion

(5"&.(7)) (r2 )= Y. ey(n,r)emimretiT),

n,r€Z,n>0
4nt—r2>0

We say ¢ is a Jacobi cusp form if ¢y (n,7) = 0 when 4nt — r? = 0 for every ~y in SL2(Z).

This definition is equivalent to the usual definition of Jacobi forms presented in
Chapter 5. We now show why. First, we have seen that Iy o (Z) is generated by its sub-

group i(I'g(M)) and the embedding of the integral Heisenberg group consisting of matrices

1 0 0 pu
Al pu K T z
h(\, p, k) = . Now writing an element Z = € b2 as (1,2,7),
0 01 =X z T
0 0 0 1
we compute the action (AZ + B)(CZ + D)~! of i(To(M)) on Z by decomposing a ma-
A B a 0 b 0
trix v € i(I'o(M)) as a block matrix , where A = ,B = ,C =
C D 0 1 0 0
Mc 0 d 0
, D= , and ad — Mbc = 1. We obtain
0 0 0 1
at +b z Mcz?
W(To(M))Z = F— .
i(To(M)) (MCT—i—d’MCT—i—d’T Mc7‘+d>

The functional equation @|.y = ¢, where ¢|.y = det (CZ + D) "¢(yZ) becomes

ar +b z ) 2mit (77— ez
(&

M d K 7]Wc7'+d) — 27T’L't7'/.
(Mer +d) ¢<Mc7'+d’]\/[c7'+d o(r: 2)e

Cancelling the factor e2™7’ from both sides of the equation, we obtain the usual transfor-
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mation formula for a Jacobi form ¢(7, z) with respect to the I'g(M) elements in the Jacobi

group I'o(M) x H(Z)

at +0b z omit (— Mez2 .
¢<MCT+d’MCT+d>€ t< MCTH) = (Mct +d)" (7, 2).

Similarly, computing the action of h(\, u, k) on Z = (7, 2,7’), we get

1 0 0 u
Al p K 5
Z = (1,2 4+ AT+, \°7 + 22X+ pX + 6+ 7).
00 1 -\
000 1

The functional equation @|.h(, 11, k) = ¢ becomes

¢(T 24 N+ M)627rit(>\27'+2z)\+p)\+fi+7") _ ¢(T 2)627rit7".

. . ; /
Again, cancelling the common factor e? 7

from both sides of the equations gives the right
transformation formula for a Jacobi form with respect to the Heisenberg elements in the

Jacobi group I'o(M) x H(Z).

Remark 6.2.6. Using Definition 6.2.5, we get a one to one correspondence between the
set of Jacobi forms {¢} on h* x C with respect to ['g(M) x H(Z) and the set of functions
{(73} on h? invariant under the action of the standard maximal parabolic subgroup Iy, (Z)

of F((]2)(M) of type (2,1).
{¢ € Jut(To(M)”)} ¢ {¢ € My(Tnr0(Z))}- (6.2)

The beauty of this correspondence is that it now translates the complicated transformation
formulas of Jacobi forms (see Chapter 5) to the nice invariance transformation formula given

in Definition 6.2.5.
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As another consequence of Definition 6.2.5 we have

Proposition 6.2.7. The Jacobi group I'o(M)x H(Z) stabilizes the Fourier-Jacobi expansion
of a Siegel modular form F € MH(F(()Q)(M)).

Proof. We recall from Chapter 5 that the Fourier expansion of a Siegel modular form F' €

MH(F(()z) (M)) can be rearranged as a Fourier-Jacobi expansion

F(r,2,7) = Z G (T, 2)e>™T
m>0
with ¢m € Jim(To(M)7).
Using correspondence (6.2), we can rewrite this Fourier-Jacobi expansion in the

following manner:

F(r,z,7) = Z G (T, 2)e(2mimt")

m>0

= Z b (T, 2, 7).

m2>0

From this series, it is clear that standard maximal parabolic subgroup I'js - (Z) stabilizes
each of its terms. But since F' is the uniform limit of this series, we have then that I'y7 ~(Z)
stabilizes the Fourier-Jacobi expansion of F'. This together with Theorem 6.2.4 finishes the

proof. O

6.2.4 Generators

We give generators for the Hecke congruence subgroup Féz) (M). We note that Aoki
and Ibukiyama in [6] have obtained generators for F(()2) (M) that are in fact equivalent to
the generators we will give below. Since our goal is to characterize modularity of liftings
from Jacobi forms with index 1 or index ¢ > 1, we would like to present generators that fit

into the general framework we are presenting. We also note that our proof will start with

similar steps as theirs but will be slightly modified afterwards. We start with a classical
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lemma.

Lemma 6.2.8 ([4], Lemma 1.3.8.). Let t = (t1,...,ty) be a non-zero integral column with

m > 2. Then there exists a matric V € SL,,,(Z) such that

where d = ged (t1, ..., tm).

Proof. The proof goes by induction on m. For the base case m = 2 the proof is very simple.

For any nonzero integers t1,t2, we have that ged (%, %2) = 1. Then there exists integers

o, B such that a(%) — B(=%2)) = 1, where d = ged (t1,t2). Thus o, &, 3, 2 fit into a matrix

V' in SLg(Z) and that at; + Bty = d. Equivalently,

« ,8 t1 d
2 L\t 0
For the rest of the details, the reader can consult [4]. O
Let

0100
1 0 00

R—
0 0 01
0010

Theorem 6.2.9. The Hecke congruence subgroup F((]Q)(M) is generated by I'pr oo (Z) and R,
i.e.,

F[()Q)(M) = <FM,OO(Z)7 R)
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Proof. We have seen that I'y o (Z) has elements of the following form

S|
o
S
o
—_
o
)
=

1 0 Al u K
S(a,b,c,d) = , h(\ u, k) =
Mc 0 d O 0 0 —A
0 0 0 1 0 0 0 1
For an element S(a,b, ¢, d), we have
1 0 0 0
a 0 b
RS(a,b,c,d)R = ,
0 0 1 0
0 Mc 0 d
and for an element h(A, p, k), we have
1 A &k u
01 u 0
Rh(\, p, k)R =
0 0 0
00 =X 1
A Bl o
Now, we take a general element v = e I'y’ (M), where
MC
A = (aij), B = (bij), C = (¢i5), D = (dij),
ari
a
for 4,5 € {1,2}. The first column of v is then 2 . Assuming aq1,a91 > 0 (we can al-
Mery
Meoy

ways do so since we can always mulitply it from the left by S(—1,0,0,—1) or RS(—1,0,0,—1)R
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a21

. . Aag1 + ain
if we need to). Multiplying v from the left by h(A,0,0)R we get , SO we
MCQl)\MCH
Meqr

can always start with a matrix v whose ag; entry is zero. Let m = ged (a1, ¢11), then

ged (4L <L) = 1. Moreover, since det (y) = 1, we get that ged (a1, M) = 1. This im-

m’ m

plies that ged (52, M <L) = 1 and consequently there exists integers « and (3 such that

a%l — BM (ﬂ) = 1. Applying the matrix S (a,ﬁ, —M<L m), we obtain

m m

all m
0 0
S<aa67_MC£7E) =
mom MCH 0
Mea Meay
Now applying the matrix h(—1,0,0), we have
m m
0 m
h(1,0,0) —
0 —Mcoq
Mea Mea

Since any row or any column of a modular matrix consists of coprime numbers, we have
ged (m, Mcg) = 1. Arguing similarly to the previous step, there are integers o’ and 3’ such

that o/m + ' Meco = 1. Multiplying by RS(a/, ', —Mca1, m)R, we obtain

m m
;L m B 1
RS(d/, ', —Mca1,m)R =
—Mcoy —Mecy
MCQl 0
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Similarly because ged (m, —Meca1) = 1, Multiplying by a suitable matrix S(a, b, ¢,d) we get

m 1
1 1

S(a,b,c,d) =
—M621 0
0 0

Finally, multiplying by h(—1,0,0), we have
1 1
1 0
h(-1,0,0)| | =
0 0
0 0

Using that 7 is a symplectic matric in Sp,(R), it follows that that c12 = di2 = 0 and
azay  ba

that d;; = 1. This means that € I'o(M) and we can multiply v by
Mecag  dao

RS(aga, —bao, —Mcaa, a22) R to get that C' = 0 and dj2 = 0. Summing up, so far we

have multiplied « by a sequence of matrices, say T, that transformed it into

_

a2 bir b

0 az bar ba

[an)

0o 1 0

@)

0 dor do

But since a symplectic matrix should have determinant 1, we get that

1 a2 bir b

0 1 bar Do
Ty =

0 O 1 0

0 0 dor 1
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Lastly, we notice that Ty is an element of the form Rh(\, u, k) R. This finishes the proof. [J

6.2.5 The Maass Lifting with Level M

We now have the ingredients to prove the modularity of the Maass lifting with level.

6.2.5.1 Index shifting operators

We need to consider a suitable definition of the V,,, operators
Vit Jut(To(M)7) = T me (Do (M)7)

that were already presented in Chapter 5 for Jacobi forms with respect to the full Jacobi
group SL2(Z)7. We use the same notation for these operators, but it will be clear from the
context which ones we mean. We let

b

a
M3y = € Maty(Z) : ad — Mbec =m, (a, M) =1,
Mc d

and then define
Vin o) (7, 2) = m"*! ST (Gle)(7,2).

v€lo (M)\M;;l]\/]

Taking the standard set of representatives

a
ca,d>0,gcd(a, M) =1,ad =m,b (mod d)
0 d

for T'o(M) \ M3",, we have

! at +b mz
V() (r,2) =m™ ! > ded)t( y ,d>.
0

ad=m b=
ged (a,M)=1
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Using the Fourier expansion of ¢(7,z) = Z c(n, r)e%”'(”ﬂ”’z) and calculations

n,reZ
r2<dtn
exactly like the ones done in [21] on page 44, we obtain the Fourier expansion of V;,,(¢¢)(T, 2)

in the following form

Vi(@)(r.2) = > 3 aﬁflc(@ f) e2milnT+r2), (6.3)

a®’a
n,rez al(n,r,m)
r2<dmtn \ged (a,M)=1

Lemma 6.2.10 ([31], Lemma 3.1). If ¢; € J.:(To(M)7), then Vi (¢t) € Jome(To(M)7)
and if ¢y € J,it(Fg(M)J), then Vi, (¢¢) € J;mt(FO(M)J).

6.2.6 Modularity of the Maass Lift with Level

Theorem 6.2.11 ([31], Theorem 3.2). Let M > 1 be an integer. Let ¢ € J,il(l“o(M)J).
The map
V:J51(To(M)”) = Su(T (1)

given by sending ¢ to

s an injective linear map.
We now prove the modularity of the Maass lift V(¢), i.e. that V(¢) € MH(FéQ)(M)).

Proof. The Maass lift V(¢) is given by a Fourier-Jacobi expansion whose Fourier-Jacobi
coefficients given by V;,(¢)(7, z) are Jacobi cusp forms (Lemma 6.2.10) of indices m with
associated functions m(ﬂ 2,7") = Vin(9) (7, 2)e(2mim7") on the Siegel upper half plane
h2. The correspondence given by equation (6.2) implies that m(T,Z,TI ) is T'a00(Z)-
invariant. This implies that V¢ is I'as o0 (Z)-invariant. Using Theorem 6.2.9, it remains to

show the invariance of V¢ with respect to R. The action of R on h? is given by

(T? Z? T/) % (T,7 Z? T)'
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To show that V(¢) transforms properly under the action of R, which in turn is equivalent
to showing that it is symmetric in 7 and 7/, it suffices to show that its Fourier coefficients
are symmetric with respect to n and m. The Fourier coefficients of V¢(r, z) are given in

equation (6.2.10) which clearly shows that they are symmetric with respect to n and m. [

Remark 6.2.12. We note that within our general framework, we present the ingredients
of proving the modularity of the full level Maass lifting which are a special case (M = 1) of

the ingredients above and which turn out equivalent to the proof given in Chapter 5.
1. We consider the standard maximal parabolic subgroup, I's(Z) of Sp4(Z) of type (2,1).
2. The Jacobi group SLo(Z) x H(Z) = T« (Z).
3. Correspondence (6.2) implies that the forms V;,(¢) are I's(Z)-invariant.
4. One can show similarly that Sp,(Z) is generated by I'no(Z) and R.

5. Invariance of the lift with respect to R becomes clear from the form of the lift which

2mimT!

is given by its Fourier-Jacobi expnasion Z Vin (@) (7, 2)e
m2>1

6.3 Mixed Level Lifting

Throughout this section we fix positive integers M and t such that ged (¢, M) = 1.
Our goal is to generalize Gritsenko’s lifting G : Ji; — S, (I'[t]) and the Maass lifting with

level and hence provide a lifting
G < JE(Do(M)7) = S (Tag[t])

from the space of Jacobi forms of weight x, index ¢ > 1 and level I'o(M)” to a space of

cuspidal paramodular forms with mixed level. In this section, we show we have a map

Gar 2 IS, (Do(M)”) — My (Darlt])
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and show that it commutes under certain involutions operators that we will define below.

6.3.1 Mixed Level I'y,[t]

We start by defining the mixed level our lifted forms will have.

Definition 6.3.1. We define the subgroup of the paramodular group of paramodular level

t with congruence level M to be

Z tZ Z Z

A 7 7 t'z
Ty[t] = Spa(Q) ) [ : (6.4)
t

MtZ MtZ t7 Z

We show that indeed T'j;[t] is a subgroup of I'[t]. The identity element 1, €

A B
Tpr[t]. Decomposing every g € I'j/[t] into a block matrix g = , where A =
C D
*  tx * * Mx  Mtx * %
,B = ,C = ,D = , and applying the inverse
x % x tTlx Mtx  Mtx tx ok

‘D -B
formula for a matrix in block form given by ¢=! = ( , we indeeed obtain that

A B
g = € T'a[t], then

B
g~! € Ty[t]. Tt remains to show that if g =
C D c D

AA"+bC" AB'+ BD'

99 = € T'y[t]. Performing the multiplication of elements of
CA'+ DC' CB' + DD'

each block matrix in g¢’ and analyzing elementarily the elements, we find out that gg’ is

indeed in I'p/[t].

Remark 6.3.2. 1. The group I'j/[t] has mixed levels in it; it is of paramodular level ¢
and of congruence level M. We will call I'j/[¢] a mixed level paramodular subgroup

or congruence level paramodular group.
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2. For M = 1, I'j/[t] = I'[t]; hence we can say that the paramodular group I'[t] is of

congruence level 1.

3. The group Sp,(Z) is recovered from the paramodular group I'[t] of level ¢ by restricting
to t = 1. Similarly, for ¢ = 1, the congruence subgroup I'j/[t] of I'[t] is the congruence

subgroup F(()2)(M) of Spy(Z).

6.3.2 Standard Maximal Parabolic Subgroup of Type (2,1) in I"y,[t]

The standard maximal parabolic subgroup of type (2,1) in I'p[t] is Tar[t] N Ca1(Q).

We will denote it by I' s c0[t].

Lemma 6.3.3. The standard mazimal parabolic subgroup, I t], of Tar[t] of type (2,1)

consists of elements in T'pr[t] of the following form

Cieolt] = v € Tult]|y =

=
a
o
IS
|
8\

Proof. Considering the form of the elements of the mixed level paramodular group in equa-
tion (6.4) and the form of the elements of C5;(Q) as given in equation (6.5.13), we can

clearly see that

a 0 b 2

r u =z yt_l
FM,oo[t] = Y= )

Mc 0 d -2

0 0 0 wut

a b
where € I'g(M) and u € GL1(Z). Because I'ys o[t] is a subgroup of I'y/[t], every
Mc d

a b
element v € I"j7 o0 [t] must have determinant equal to 1. But det () = det uu~! =
Mc d
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1. This proves the final form of the elements of I"y/ o [t]. O

Let
1 00 O
01 0 1/t
A(t) =
001 O
00 0 1

Proposition 6.3.4. The standard maximal parabolic subgroup of Taslt] of type (2,1),
Caroolt], is generated by I'yoo(Z) (the standard mazimal parabolic subgroup of Fé2) (M)
of type (2,1)) and A(t), i.e.,

FM,OOM = <FM,OO(Z)7 A(t)>

Proof. The inclusion D is obvious. To prove the reverse inclusion, we start with a general

element

a 0 b 2

r +1 z yt!
Mc 0 d -2

0 0 0 =1

of T'y[t] for some a, b, c,d, z,y,x € Z such that ad — Mbc = 1. Let,

1 00 0
y(t-=1)
om Ay [0 1 0 T
0 0 1 0
0 0O 1
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Then,

a 0 b z a 0 b =z

z +l oz Y4+ (y—1Y) x £l oz oy
ay = - )

c 0 d -z c 0 d —=z

0O 0 O +1 0O 0 0 =1

which is clearly an element 5 € I'ys oo (Z). That is, we have shown that
v =A)"EWEIB € (T o0(Z), At)).

O]

Remark 6.3.5. We note that we can prove Proposition 6.3.4 similar to how we proved

Theorem 6.2.4. We use the same projection map

wlzl“M?oo[t] — FO(M)
a b

v o ,
Mec d

which is a surjective group homorphism onto the I'g(M)-part. However its kernel is now

the set of all matrices

100 p

Al kt™!
H := H

0 0 -

0 0 0 1
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Using the same injective map i

a 0 b 0

a b 0O 1 0 O
= )

Mc d Mc 0 d O

0O 0 0 1

we obtain an exact sequence

1—H— FM,oo[t] — Fo(M) — 1,

which splits because of the injection ¢. Consequently, we have that

a 0 b 0 100 pu

0 100 A1 opost?
FM,oo[t]g X y

Mc 0 d O 0 0 1 =X

0 0 01 ) 0 0 O 1 )

where the action of I'o(M) on H is given by

9= (X, ) = (Xg,)),

for (X = (\, ), ») € H(Z), g € T'o(M) and X ¢ means row multiplication by a matrix.
This shows that every element 7 of the parabolic subgroup I'psoo[t] is written

uniquely as a product of an element in i(I'g(M)) and an element of H. We have
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a 0 b 0 1 00 z

0 1 00 x 1 z yt!
Faroolt] =< v € Tilt]|y =

Mc 0 d O 001 —=z

0O 0 0 1 0 0 O 1

However, every element in H can be decomposed as

eloy(M) z,y,2€Z
Mc d

y—yt

1 00 =z 1 0 0 O
x 1 z y 1 0 1/t

0
0 01 —x 001 0
0

ja)

0 0 1

Remark 6.3.6. We note that the set of elements

1 00 pu
Al kt—1
H = a
0 01 =X
0 0 O 1
V4

is not isomorphic to the Heisenberg group H(Z) because multiplying two elements in H

yields the following multiplication

100 u 100 4 1

A1 pu wth N o1 4 Kt A+ N

0 0 1 =X 0 0 1 =X - 0
\ 0 0 O 1 ) 0 0 O 1 ) 0

This shows that H corresponds to the following group

H(t,Z) ={(A p, 5) | A, 5 € Z}
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with the group law

A
st 1)- (N 1) = [ AN | ,+t_1(f€+%’)
A

6.3.3 Mixed Level Paramodular Forms

Since I'j[t] is a subgroup of Sp,(Q), it also acts on the Siegel upper half plane h? by

fractional linear transformations. We can use this to define modular forms of mixed level.

Definition 6.3.7. Fix an integer k. A holomorphic function F : h? — C is said to be a
mixed level paramodular form of weight « if it is a paramodular form with respect to I'ps[¢],
i.e., it satisfies F|,y = F for all v € T'y/[t]. We denote the space of such paramodular
forms by M, (T'a[t]). The space of cuspidal mixed level paramodular forms is denoted by

SH(FM[t])

Proceeding as in the case of Siegel modular forms F' € MK(F(()Q)(M)) in Chapter 5,

§ 5.2.2.2, mixed level paramodular forms have a Fourier-Jacobi expansion

) o
F(Z) _ 2 : 2 : (IF(’I’L,T,m/)627TZ(nT+TZ) p2mim’T
m’>0 \ n>0,reZ
Anm’ >r?

Y b

m'>0

However, when dealing with paramodular forms, we will show below that the Fourier-Jacobi

coefficients of such forms are Jacobi forms with indices divisible by ¢.

Theorem 6.3.8. Let F' € M. (I'y[t]) be nonzero. We can rewrite its Fourier-Jacobi ex-

pansion as

F(r,z,7") = Z G (7, 2) 2™

m>0
Then, for each m, its Fourier-Jacobi coefficient ¢ belongs to J&mt(FO(M)J). Moreover,

if F € Sp(Talt]), then ¢y € JE 1y (Do(M)7) for each m > 1.
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Proof. We have that the Fourier-Jacobi expansion of F' € My(Ty[t]) is F(7,2,7") =

Z Gy (7,2)€>™™ T We use the invariance of F with respect to the standard max-
m’>0
imal parabolic subgroup I'y[t]. We have seen in Proposition 6.3.4 that I'pso[t] =

(I'm,00(Z), A(t)). Applying the invariance of F' with respect to I'ys0(Z) to particular

matrices of the following type

a 0 b O 10 0 u
0 1 00 Al p
g1 = and  gp =
Mc 0 d 0 00 1 =X
0 0 01 000 1

and using the same arguments as in the proof of Theorem 5.2.17, we get that ¢, €
Jem(To(M)7).  Also, using the same cuspidality argument as in the proof of the same
theorem, we have that if F' € S, (I'p[t]), then ¢y, € J,im,(I‘O(M)J).

It remains to show that in case of paramodular forms of level ¢, then the Fourier-

Jacobi coefficients have indices divisible by ¢. The invariance of F' with respect to A(t),
(F|HA(t))(T> Zs 7_/) = F(Tv Zs 7_/)7
gives the following relation:

(FIeA@®) (7,2, 7) = F(r,2,741/t) = Y ¢ (1, 2)2T T3 = P(r,2,7) = 3 dy(7,2)€>™77.

m’>0 m’'>0

This implies that

O (7'7 Z>62mm//t = Qpy (7—7 2)7

which is only true when ¢,,/ is zero or when ¢|m’. Therefore, the Fourier-Jacobi coefficients

of a nonzero paramodular modular form F with paramodular level ¢ must have their indices
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divisble by t. Hence, we write the Fourier-Jacobi expansion of F' as

F(r,2,7) =) $a(r, 2)e2mm07

m>0
and its Fourier-Jacobi coefficients belong to Jy yi(I'o(M) x H(Z)). O
The same proof works when we substitute M = 1 and we get:

Corollary 6.3.9. Let FF € M.(T'[t]). For each m, the Fourier-Jacobi coefficient ¢t of
F belongs to Jemt(SLa(Z) x H(Z)). If F € Si(T[t]), then for each m, ¢m belongs to
J mi(SL2(Z) x H(Z)).

K

The Fourier-Jacobi expansion of a mixed level paramodular form (Theorem 6.3.8)

gives an injective map

H o Ma(Tarlt]) = [ Teme(To(2)7),

m>0

and a corresponding injective map for the space of cusp forms

H: Su(Calt]) = [T Jime(To(M)7).

m>1

In case M = 1, these maps reduce to

H: Mo(T[t) = [T Tt

m>0

and a corresponding map for the space of cusp forms

He: Se(@E) = ] T8 me

m>1

Proposition 6.3.10. The standard mazimal parabolic subgroup T'aroo[t] of type (2,1) sta-

bilizes the Fourier-Jacobi expansion of a mized level paramodular form F € M, (T p[t]).
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Proof. Let F' € M, (T'a[t]) with Fourier-Jacobi expansion

F(r,z,7) =Y ¢mu(r,2)e?™™ =N gpu(r, 2, 7).

m>1 m>1

Correspondence (6.2) implies that 'y o0(Z) stabilizes the Fourier-Jacobi expansion of F.

Now,

(@;\HA(t)) (1, 2,7) = Gma(T, 2,7 + k™)

_ 2mimt (T +rt 1)
¢mt T, % )

— (z)mt T, Z) 2mimitr’

(

(

= (T, 2)e2TmtT G2mim
(

= qut(T z,7").

Using Proposition 6.3.4, we have that I'y7[t] stabilizes the Fourier-Jacobi expansion of

F € M (Tp[t]). In other words, the Fourier-Jacobi coefficients of a mixed level paramodular

form F of level T'y/[t] are T'ps o0[t]-invariant on h2. O

6.3.4 The Generalized Gritsenko Lifting

Before we give our generalization of Gritsenko’s lifting, we give a theorem giving the
generators of the mixed level group I'y/[t]. The proof of this theorem will be given later in
section § 6.5.3.

Let V; € Spy(R) be the transformation given by

U, 0
.‘/t:
0 U;
where
0 (Vi)™
U; =

Vi 0
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Theorem 6.3.11. The generators of the mized level T'yf[t] are given by

PM[t] = <FM,oo[t]7 WFM,oo[t]%>'

Theorem 6.3.12. Let ¢; be a Jacobi cusp form of weight k > 2, index t, and level To(M)”

with Fourier expansion

o1, 2) = Z c(n,r)ezm(m”z).
n,r€Z,n>0
Ant>r?

Then, the series Gpr(¢¢) given by

G (1) (7.2, 7) ==Y Vin(e) (7, 2)e*™ ™™

m>1

lies in M (T p[t]).

Proof. We assume that the series defines a holomorphic function and proceed to prove mod-
ularity of the lift. We will come back and prove the holomorphicity of the lift in a separate
part. Since Vj, : J,€7t(F0(M)J) — Jemt(Do(M)7), we have that V,,(¢;) € J,imt(I‘o(M)J).
The function Gy (¢¢) is then clearly I'yf oo (Z)-invariant function since it is the uniform limit
of I' 1,00 (Z)-invariant functions. The lift Gar(¢) is given by a Fourier-Jacobi expansion such
that every Fourier-Jacobi coefficient is a Jacobi form of index divisible by ¢. Proposition
6.3.10 implies that Gps(¢:) is also invariant under A(¢) and hence according to Proposition
6.3.4, it is invariant under I'p/ oo [t].

We calculate the Fourier expansion of Gys(¢;) by applying the action of the linear

operators V,, on the Fourier expansion of

w(r )= 3 eln, )i

n,reZ
r2<dnt
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given by

Vin(ée)(7, 2) = Z e (n, 1) 2FTHT2)

n,rez
r2<dnmt
where
4 /nm r
em(n,r) = Z d*~te (ﬁ’ 8) .
d|(n,r,m)
(d,M)=1
Therefore,

G (60) (7, 2, 7') Z Z Z d1e (%2”’2) 2mi(nT+rz) 2mimir!

m>1n,reZn>0d|(n,r,m)
4nmt>7"2 (d,M)=1

It is clear that this Fourier expansion is invariant under the substitution n — m and m — n.

This shows that Gy (é¢)(7, z,7') is invariant under the change of variables

T = tr,

ot
The element V; € Sp,(R) realizes this transformation as

Vi(r,z,7") = (t7, 2, t717).

Computing the action of V; on Gyr(¢;), we obtain

M(th)(T? 2, T/)‘f'ivt = (_1)ngM(¢t)(tT/7 2 tilT) = (_1)HgM(¢t)(Tv 2 T/)'

Now,
G (D) Vil moo[tIVe = (=1)"Gar(0¢) |kl 2,00 [t] V2
= (=1)"Gum(¢e) Vi
(—=1)*"Gar(¢r)
= Gu(d).
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The modularity of the lift with respect to the group I'y[t] follows now from Theorem
6.3.11. O

6.3.4.1 Holomorphicity of the Lift

To prove that the lift Gps is holomorphic, we need to show that the series defining
it absolutley and uniformly converges on subsets of the Siegel upper half space of the form
Y =1Im(Z) > cla (see Chapter 2). Let ¢ > 0 be a real number. The proof is similar to the
proof given in the Maass and Gritsenko lifting. We note that Gritsenko’s proof is based on
an estimate on Jacobi forms in a fundamental domain of the action of the Jacobi group on
h! x C. This estimate on the Jacobi forms and the fundamental domain was already proven
by Klingen in [38]. We also note that Choie had pointed us to another proof following
the theta expansion of Jacobi forms with respect to a congruence subgroup. The theta
expansion of Jacobi forms with respect to a congruence subgroup which can be found in
the proof of Theorem 2 in [34] and also in [83] is exactly similar to the theta expansion of

Jacobi forms developed in Chapter 5. The Fourier coefficients of a Jacobi form ¢; of index

t depend only on 7 (mod 2t) and on 4tn — 2, so we define cs(N = 4tn —r?) = ¢ (NLTQ , 7“),

where 7 = § (mod 2t) and cs(N) = 0 if N # —§? (mod 2t). We then have

d(r2) = > hs(r)ys(T,2), (6.6)

§ (mod 2t)

where

ho(r) = Y es(N)e2™ G, (6 € Z/21E),
N>0

are modular forms in M,._;/5(I'o(4t), u) with p a certain character and

/2
07&75(7', Z) Z 6271'2 (Z—t’r—{-rz)

reZ
r=0 (mod 2m)
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are theta functions independent of the Jacobi form ¢ and are exactly the ones used in
Chapter 5.
There is an estimate on the Fourier coefficients of modular forms with a certain

character as in [57], which was cited in Shimura’s article [79]. This estimate is given by
les(N)| < Cy(e) N™/2714,

Cs(¢t) is a constant depending on ¢; and 6. Now taking C' = maxs Cs(¢;) and using

equation (6.6), we obtain a bound on the coefficients of the Jacobi form ¢
e(n.7)| < CNW/2VA

The Fourier expansion of the lift is

gM(¢t>(7—7 2, Tl) = Z Z Z dk_lc (72772717 g) e27ri(n7'+rz)e2ﬂ'imt7’

m>1n,reZ,n>0d|(n,r,m)
dnmt>r? (d,M)=1

= Z AGar (1) (T) it (T ) )
TeS;(Z)

n r/2
where the summation is taken over S5 ? (z) = ‘ n,r,m € Z,r% < dnmt

r/2 mt
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Therefore, the Fourier coefficients of the lift satisfy

o nm r
agun@] = | > @ le (%50
d|(n,r,m
ans
Anmt  r?
k—1
=Lz H z _d2>’
d|(n,r,m)
(d,M)=1
Anmit r2 Kk/2—1/4
Kk—1
= C D d ( 2 _d2>
d|(n,r,m)
(d,M)=1
< C(4nmt—r2)“/2—1/4 Z Jr—1—rt1/2
d|(n,r,m)
(d,M)=1
< C(detT)R/2-1/4N " g 1/2
d=1

< C(det T)"/2= /4,

where the last inequality follows because d > 1. Using the formula detT =

eTrlogdet(T)) together with the inequality log(n) < n, we can say that there is a constant

(' such that
la(T)| < Creme ™),

Now,

(G(00)(m,2, 7)< Y lagy o) (T)|e>m D
TeS3 ) (Z)

o Z e—2m Tr (T(Y-£12)) )
S51(2)

IN

That is, for Im(Z) > §1o,

1Gri (1) (7,2, 7)) < Cy Z eI (T) o o

>0

The proof of the convergence of the majorant series is very classical and is shown as in the

proof of the convergence of the Fourier series of a Siegel modular form as in Chapter 2.
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Corollary 6.3.13. The map Gy : J& (To(M)7) — M (Tag[t]) is linear and injective.

Proof. The holomorphicity of the lift together with the form of the lift shows clearly that
it is linear. For injectivity, since the lifting is decribed by its Fourier-Jacobi expansion we

see that if we start with a Jacobi cusp form ¢, # 0, then Gps(p:) # 0. O

6.3.4.2 Involutions Vj

For each divisor d | ¢ such that ged (¢,t/d) = 1, we can find integers z,y € Z such

that zd — y4 = 1. We have involutions as defined in [28] on page 4 and on page 11, given
d

by
1

Vidx v 0
1

-ty Va0 0

vy=| Vd 1 € Sp,(R).
0 0 Vd L
1

0 0t Vdx

We note that zd+y% = —1 (mod 2d) and zd+y4 =1 (mod 2%). For all Vg, one can verify
that

VZeTult], Vilam[t)Va=Tult].

Thus the Vj are involutions for the group I'y/[t]. In particular, when d = t, we can write V;

in the following way:

0 vVt 0 0
1
Wzﬁ0007
1
0 0 0
0 0 Vvt 0

which is the involution that occured in the proof of Theorem 6.3.12 above.
We have seen in Chapter 5, §5.2.1.1, that there is a decomposition for the space of

Jacobi forms due to the involutions Wy for each divisor d | t such that ged (¢,¢/d) = 1. We
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have in the exact same way as proven in Chapter 5 that
Tra(To(M)”) = €D T4 (o (M) ).
€d
The subspace J, s’jd (To(M)”) is the eigenspace under the action of the involution Wy, namely
Jei' (Co(M)7) = {6 € JZ,(To(M)”) : ¢lWa = ead},

and ¢4 is the eigenvalue at the involution Wy such that

H €q =€ = (—1)~.

djt
ged (d,5)=1

We show that the lifting Gy; commutes with these involutions. In other words, we

have:

Theorem 6.3.14. Let ¢; be a Jacobi cusp form in JE (Do(M)”) and Gar(¢¢) be its lift. For

each divisor d of t with ged (t,5) =1, we have

Gr(06)|Va = G (Dt Wa).

Proof. The proof goes exactly like the proof of Theorem 2.1 given by Gritsenko and Hulek

A B
in [28]. Writing each matrix V; in a block form , the action of V; on the lift
C D

Gu () is given by
(Gr(8)]xVa)(Z) = det (CZ + D) "G () (VaZ).

Because we have the relation zd — yé =1, then det (CZ + D) = 1. It remains to compute
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the action of V; on an element Z € h2. Taking

dr —t
Ad = )

—y d

we observe that

VuZ = d YA, ZA,.

Hence

(Gu(e)|Va)(Z2) = Gul)(d ' AaZ 'Ag)
_ Z agM(@)(T)ezmTr(dfltAdTAdZ)
TeS; 1 (Z)

= ) agy(e)(d AT Ay ),
TeS;)(2)

- L d t - . n /2
where Ay = dA;" = Let T =d 'tA,TA; =
y dx /2 mt

. Then, det T = det T

and

i
I

dn + yr + y*mi,
m = n+azr+dz’m,

and

" —r (mod 2d)

F= r(ya +dx)+2(nt +xymt) and 7=

r (mod 2%).

Hence the elements n,r,m and 7, m,7 have a common set of divisors, and the Fourier

coefficients of Gr(¢¢)|xVy are given by:

IR (WP
d|ged (n,r,m)

which are the Fourier coefficients of ¢;|.Wy (see Theorem 5.2.4 in Chapter 5). That is, we
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have shown that

Gri (D) Va = G (D¢ Wa) = Grr(eadr) = €aGnr (1),

and that the lifting preserves the eigenvalue at the involution Wy for each d | t such that

ged (d, %) = 1. This finishes the proof. O

In particular, we have seen during the proof of Theorem 6.3.12 that

Gu(@)|eVe = (=1)"Gnr(¢n).

6.3.5 Gritsenko Liftings

Since we are characterizing modularity of lifts between Jacobi forms and Siegel
modular forms of degree 2, we now state Gritsenko’s lifting in order to present the ingredients

that went in the proof of its modularity.

Theorem 6.3.15. ([26], Theorem 3) Let ¢y be a Jacobi cusp form of weight k > 2, index

t>1 and level SLQ(Z)J with the Fourier expansion

(T, 2) = Z c(n, r)e2minTrz))
n,reZ,n>0
4nt2r2

Then
G(or) (2, 7) = Y Vin(e) (7, 2)e2m e

m>1

is a paramodular cusp form of weight k with respect to the paramodular group T'[t]. The

map G : J:, — Sk(L'[t]) is injective.

Remark 6.3.16. 1. For index ¢ = 1, the lifting G : 1 — G(¢1) is the full level Maass

lifting.

2. Gritsenko’s theorem says that the Maass lifting is only the first member in an infinite
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series of liftings. In particular, given F' € S, (Sp4(Z)) with Fourier-Jacobi expansion

F(r,2,7) =Y ¢m(7, 2)e(2mims’),

m>1

we get an infinite series of lifted functions G(¢,,) € Sk(I'[m]). Thus, we have a map

Sk(SPa(Z)) = [1>1 Sx(I'lm]) given by

Si(Spa(Z)) — Hmzl JE,m - Hmzl Sy (L[m])

Fr——"m— (¢m)m21 — (g((ﬁm))le‘

We now give the ingredients of the proof of the modularity of the Gritsenko lift.

1. Starting from a Jacobi cusp form ¢; of index ¢, the forms V,,(¢;) have all indices
divisible by t. Hence forming the lift in degree 2 by its Fourier-Jacobi expansion whose
Fourier-Jacobi coefficients are V;,,(¢;) shows that the lift is invariant with respect to
A(t).

—~—

. Correspondence (6.2) implies that all forms V,,(¢;) are invariant under the standard

[\

maximal parabolic subgroup I'so(Z) of Spy(Z) of type (2,1).

3. Now, I'o(Z) together with A(t) generate the standard maximal parabolic subgroup

' [t] of the paramodular group I'[t] of type (2,1).

4. The Fourier-Jacobi expansion of the lift show that it belongs to the eigenspace of the

involution V;. (Note that when t = 1, V; reduces to R. )

5. One can show that the paramodular group is generated by I'w[t] and by ViI'o[t]V2
due to Theorem 6.5.13 and Remark 6.5.16.
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6.4 Characterization of Modularity of Liftings from Jacobi

Forms to Siegel Modular Forms of degree 2

Based on the general framework we provided above for proving the Maass lifting (full
level and level M), Gritsenko’s lifting and mixed level liftings, we now present modularity
ingredients of any lifting from the space of Jacobi forms of integral weight and index to
Siegel modular forms of degree 2. Starting with a Jacobi cusp form of index 1 with respect
to a Jacobi group I" x H(Z), where I" is a congruence subgroup of SLs(Z), we consider the
embedding i(T") and h(H(Z)) in Spy(Z). Then, i(T") x h(H(Z)) is the maximal standard
parabolic subgroup of type (2,1) of the subgroup of Sp,(Z) generated by i(I') x h(H(Z))

and the involution R. We consider the correct notion of V,,, operators:

Vin(@)(r,2) =m"1 Y (¢ls17)(7,2) (6.7)

yer\Myy,

and form the lift Fy by its Fourier-Jacobi expansion.
For any congruence subgroup I' of Sp,(Z), we take its intersection I' N C31(Q) to
obtain the standard maximal parabolic subgroup of type (2,1) in I'.  We denote it by
I'y1. Consider the projection wy of I'g 1 onto the SLg part. Then wq(I'g;) is a congruence

subgorup of SLy(Z). Moreover,
wl(l“gyl) X H(Z) = F271.

Hence, wi(I'g;1) x H(Z) is the level of the Jacobi form that we should consider. The
generators of I' should be in terms of I'y 1 and a certain involution. This involution depends
on the index of the Jacobi form we are lifting. If the index is 1, then the involution is R.

Next, we find a suitable definition of the V,,, operators. These operators should be defined
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in the following way:

Vin(9)(7,2) = m"™! > (@ls17)(7; 2)-

YEWL (F2,1)\M2T?M

We then form the lift by a Fourier-Jacobi expansion

Fy(t,2,7) = Z Vin (o) (T, 2)62”"”/.

m>1

The correspondence (6.2) of Jacobi forms show that each term of the Fourier-Jacobi ex-
pansion is invariant under I'y ;. The holomorphicity of the lift, which can be proved as we
did above, implies that Fy is holomorphic. The symmetry of the Fourier-Jacobi expansion
suggested naturally by the structure of the Fourier expansion of V,,,(¢) then shows that the
lift is modular with respect to I.

Now when the Jacobi form ¢; has index ¢ > 1 with respect to the Jacobi group
IV x H(Z), where I' is a congruence subgroup of SLg(Z), we consider the right notion of
the V;,, operators as in equation 6.7. The forms V,,,(¢;) have all indices multiple of ¢t. Hence
forming the lift in degree 2 by its Fourier-Jacobi expansion whose Fourier-Jacobi coefficients
are Vi,(¢¢) show that the lift is invariant with respect to A(t). In addition, using the
embeddings i(I') and h(H(Z)) show that their semidirect product is the maximal standard
parabolic subgroup of type (2,1) of the subgroup of Sp,(Z) generated by i(I') x h(H(Z))
and the involution R that we denote by I', . Correspondence (6.2) implies that all forms of
the lift are invariant under I', . But I, and A(t) generate the standard maximal parabolic
subgroup I'/_[t] of a certain subgroup I"[¢] of the paramodular group I'[t] of level ¢ generated
by T [t] and VI [t]Vi. The Fourier-Jacobi expansion of the lift shows its invariance under
the second set of generators VI, [t]V.

Conversely, starting with a congruence subgroup I'[t] of the paramodular group
I'[t] such that T'[1] is a congruence subgroup of Sp,(Z). We consider the standard maximal

parabolic subgroup I, [t] = I"[t] N Ca,1(Q) of I"[¢] such that I"[¢] is generated by I'_[¢] and
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Vi [t]V: and T7_[t] is generated by I, (Z) (the standard maximal parabolic subgroup of
type (2,1) of I"[1]) and A(t). We consider the projection w; (I',[¢]) onto the SLy part. Then
wy (T [t]) x H(Z) is isomorphic to I', (Z). We then should consider to lift a Jacobi form
¢ with index t with respect to the Jacobi group wi (I, [t]) X H(Z) using the V,,, operators
defined by

Vin(0)(7, 2) = m"™! > (@le17)(7; 2).

yews (Do [\Mg"

This shows then that that the lift defined by Z Vm(gbt)e%im”/ is then a Siegel modular
m>1
form with respect to I'[t].

Note that Poor and Yuen in [61] have obtained a lifting from Jacobi forms of index
t/2 > 1/2 to Siegel modular forms with respect to the Igusa paramodular subgroup and
their lifting fits exactly into the characterization described above even though they lifted a
Jacobi form of half integral index ¢/2.

We also believe one can characterize lifting Jacobi forms of degree n — 1 to Siegel
modular forms of degree n using the same method described above by working with the
standard maximal parabolic subgroup of type (n,n—1). However, in that setting we believe

it will be difficult to compute the corresponding notion of the V,,, operators.

6.5 Cuspidality of Lifts

To prove that a Siegel modular form F' € M, (") of degree n is a cusp form, one needs
to show that it vanishes at all the rational boundary components (cusps) of every degree
0 <r <n—1. Chapter 4 together with the appendix give a group theoretic description of
all the rational boundary components in terms of double cosets spaces I'\ Sps,, (Q)/Cy, (Q).
However, it turns out according to the discussion in Chapter 4, § 4.4 that it suffices to
show it vanishes at the maximal degree cusps of degree n — 1. These maximal degree cusps
correspond to the coset space I'\ Spy, (Q)/Ch.n—1(Q). Therefore, to prove the cuspidality of

all the lifting theorems for genus 2 presented in the previous sections, we need to compute
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the cusps I'' \ Spy(Q)/C2,1(Q), where I' = F(()z) (M), the paramodular group I'[¢], the mixed

level paramodular group I'j/[t]. This will be the task of this section.

6.5.1 Maximal Degree Cusps when I' = FE)2)(M)

To prove the cuspidality of the Maass lift with level M > 1, Ibukiyama computed

the double coset representatives of

T (M) \ Sp4(Q)/Ca,1(Q).

Theorem 6.5.1 ([31], Lemma 3.4). The representatives of the double cosets F(()Q)(M) \

01 00

1 0 0 0
Sp4(Q)/C2,1(Q) are chosen from the elements in Ca 1(Q)R where R is given by

0 001

0 010

We give Ibukiyama’s proof and follow his notation.

Proof. Let P1(Q) := C21(Q), and consider P{ = R™'P(Q)R = RP;(Q)R. Then

.
* k% % %
, 0 *x *x %
Pl = € Sp4(Q) )
0 0 % 0
{ 0 * *x x* )

where * runs over rational numbers.

Since Spy(Q) = Sps(Q)R and P{R = RPi(Q), it suffices to show that the repre-
sentatives of F(()Q)(M) \ Sp,(Q)/P{ are taken in P;(Q). We do this because if Sp,(Q) =
U, TP (M)g:P!, then Sp,(Q) = U, TP (M)g:P/R = |J, TP (M)g; RP,(Q) and hence the
representatives g;R € P;(Q)R.

We decompose any g € Sp4(Q), including the coset representative of the form g =
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where A = (a;5), B = (bij), C = (¢i5) and D = (d;;) with 1 <4,j < 2. To show that g can
be taken from P;(Q), we need to show that cio = ca1 = co2 = 0. We can always assume the
block C' in the representative ¢ is such that ci; or cs; is nonzero, since if otherwise both

elements are zeros then aj; or ag; is nonzero or otherwise g would be such that det g = 0.

1o 0
Multiplying ¢ by an element € F(()Q) (M) from the left makes the lower left

M1y 1o

) Mayy Maiz + ci2 L
block of g look like which implies that we can always make c1; or

Maor Masgs + co9

C21 nonzero.

Now using Lemma 6.2.8, we can find U € SLg(Z) such that for any z,y € Q¥,

U=t o
U'l(z,y) = (2,0). So multiplying g from the left by for some U € SLy(Z), we
0 U
can assume that cp; = 0 and ¢11 # 0. Taking V' = (vi;) € SLa(Z) such that (cgo,d22)V =
1 0 0 O
0 V11 0 V12
(0, %) and multiplying by € Pj from the right, we can take co2 = 0. Also,
0 0 1 0
0 w1 0 wo
1 —Cﬁlclg 0 0
0 1 0 0
multiplying by € P| from the right, we can take cio = 0. By
0 0 1 0
0 0 Cfllclg 1
the characterization given in Remark 6.2.1, the result is obtained. ]

To show the Maass lift is cuspidal, it is sufficent to show that F'|,y|® = 0 for every
v E F(()2) (M) \ Sp4(Q)/C2,1(Q), where ® is the Siegel ® operator. According to Theorem
6.5.1, it suffices to show that

(FlxpR)[® = 0,

for every p € C21(Q). We give a shorter proof of Ibukiyama’s cuspidality proof of the Maass

lift with level according to the following proposition.
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Proposition 6.5.2. Fixn > 1. For each

Y= S Cn,n—l(@)a

Q
o
S
*

we have
Fly[® = u™"(F|®)]xwnn-1(7)
Ay B
where Wy pn—1(y) =7 = € Spy(n—1)(Q), u € Q\ {0} and F is a Siegel modular
Ci Dy

form of degree n.

Proof. Before we start, we note that the following computations follow from more detailed
computations done in the proof of Theorem 2.3.4 and from the definition of the Siegel ®

operator on Fourier expansions. We have

(Flay[®)(Z') = limysoo(Flxy)
0 A

= limy, oo det (CZ5 + D) "F(vZ))
= uw "det (C1Z' + D1) " limy_y00 F (11 Z))
= uw "(F|®l:m)(2"),

A B Z' 0
where v = and 7} = : O
C D 0 A

We now show that the Maass lift with level M (Theorem 6.2.11) is cuspidal. The
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Fourier expansion of the Maass lift,

F(b(Ta 2, T/) = Z Vm(¢) (7_7 Z>€27rim7"

m>1

= Z Z Z d"i—lc (7:171:" 2) 627ri(n7—+rz+m7./)

m>1  n,reZ  d|ged(n,r,m)
dnm—r?>0 (d,M)=1

— Z a¢(T)627ri Tr(TZ)’
TeS57°(2)

n r/2
where T' = / > 0, shows that F'|® = 0. To show F is a cuspidal Siegel modular

/2 m
form, we need to show that (F'|.pR)|® = 0. However,

(F’,ipR”‘I) = (F|,$p|,§R)q).

Since the action of R only exchanges 7 and 7/, (F|.pR)|® = 0 will follow from (F|.p)|® = 0.

Writing p € Co1(Q) as

a 0 b x
* u_l * %
b= )
c 0 d =
0 0 0 w
and using Propostion 6.5.7 we get
a

(Flep)|® = u™"(F|®) |,
c d

which clearly vanishes since F'|® = 0.

Remark 6.5.3. In the proof of the cuspidality of the Maass lift, we have implicitly shown
due to the structure of the maximal degree cusps (the double cosets) that the Maass lift is

cuspidal because the Jacobi form we are lifting is cuspidal.
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6.5.2 Maximal Degree Cusps when I' = I'[t]

The maximal degree cusps of the compact space I'[t] \ (h?)* correspond bijectively
to representatives of double cosets I'[t] \ Sp,(Q)/C2,1(Q). Reefschldger in his PhD thesis
[63] showed that the number of maximal degree cusps for the paramodular group of degree
two is equal to the number of divisors of t.

Theorem 6.5.4 ([63], Satz p.19). Let t = [[;", p;" be the prime factor decomposition of t,
then the number of degree 1 (mazximal) cusps is given by
n
T[]\ Spa(Q)/C1(Q)| = [ [ (i + 1).

=1

Gritsenko also computed representatives of the double cosets in [27]. We now present
Gritsenko’s work in [27] for finding representatives of the double cosets I'[t]\ Sp4(Q)/C2,1(Q)

with detailed proofs omitted in [27].

Definition 6.5.5. A vector X = (1, z9, 23, 24) € Z*is said to be primitive if gcd (21, 22, 23, 4) =

1.

10
Definition 6.5.6 ([27], p.97). Let T = . Consider the lattice

I 04, 4t
L, = 7" = {X ez ’ X = (wl,xg,xg,tm)}.
0 T

A vector X = (x1, 2, 23,t14) € Ly is said to be primitive if ged (21, x9, 3, 74) = 1.
We denote the set of primitive integral vectors in L; by Lj.

Proposition 6.5.7 ([50], Corollary 2.5.8). The quotient Sps, (Q)/Cpn-1(Q) is isomorphic
to P*"~1(Q) = (Q**\ {0})/Q* via the transformation which maps yCyp n—1(Q) onto the n-th

column of .
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Proof. We prove that the map is well-defined and injective first. Let 71,72 be in Spy, (Q)
such that their n-th column are the same up to a constant multiple. Consider ~; 1o, Then

its n-th column corresponds to a constant multiple a # 0 of the unit vector. Writing ~; Lo

A B

in block form and using the symplectic relations A'C' = C'Aand A'D-C'B = 1,,,
C D

we obtain that c,1 = cp2 = ... = cyu_1) = 0and dpy = dp2 = ... = dy(y—1) = 0, dpp = 1/a.

Therefore, 7, 1y, € Cnn—1(Q). To prove surjectivity we proceed as follows. We take a
representative = of an element in P?"~1(Q) to be a column vector x = {z1, ..., xa,) of order

2n consisting of primitive integral entries. Using Lemma 6.2.8, we can find U € GL,(Z)

such that
Ut(xla 71:71) = t(O’ 71) =6,
and
U 0
! t(1:17 . 71'211) t(eayla yn)
0, -1
11 Op— Op—1 ¥
Let y := Yy1,...,yn), A= nt Tt ,B=0,C= nl ,and D = 1,. Set
0o 1 Yo oun
A B
v = , then v € Sp,,,(Q) by verifying that A, B, C, and D satisfy the symplectic
C D
relations. In addition, we have
-1
u o,
0, U
has x as its n-th column. ]
In particular, we have
Sp4(Q)/C21(Q) = P*(Q).

Since elements of P3(Q) are equivalence classes, we can choose a representative in
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7Z* and since for every vector X in Z* we can write it as X = (gcd X)X’ for some primitive

vector X’ in Z*. We have that

Lemma 6.5.8.
P(Q) = Li/+1,
where L} is the set of primitve vectors in Ly.
Remark 6.5.9. The integral paramodular group I''[t] stabilizes the primitive lattice in Z*
1o 0 19

and since I'[t] = o, Y(T'[t]) = I[t] , we see that the action of I'[t] on
0o 7! 0 T

the primitive lattice in Z* is equivalent to the action of I'[t] on the primitive lattice L;. This

is because for every v € I'[t] and every primitive vector X = Y1, 29, z3,74) in Z*, we have

15 0 1, 0 1 0 1, 0
~ 2 X — 2 2 - 2 X
0o 7 0o 7T 0o 71! 0 7T

Therefore, I'[t] stabilizes L;. Because +14 € I'[t], we have then

L[t] \ Sp4(Q)/C2,1(Q) = I'[t] \ L.

Lemma 6.5.10 ([27], Lemma 2.3’). For a primitive integral vector X € Lj,

I[tX =Tt (d(X),1,0,0),

where di(X) is a divisor of t.

In fact, Lemma 6.5.10 comes as a consequence of the following lemma and Remark

6.5.9.

Lemma 6.5.11 ([27], Lemma 2.3). For a primitve integral vector X € Z*, the orbit T'[t]X

contains an element of the form {d;(X),1,0,0), where di(X) is a divisor of t.
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Remark 6.5.12. The proof of this lemma is done by showing that an element X of the
primitive lattice in Z* can be reduced to the form (d;(X),1,0,0) using the action of the
generators of the integral paramodular group, which we will show below in the proof of

Theorem 6.5.17. In fact, it is given implicitly in the proof of this theorem.

Therefore, to find representatives of double cosets of I'[t] \ Sp,(Q)/P(Q), we need

to find convenient generators of I'[¢].

Theorem 6.5.13 ([27], Lemma 2.2). The paramodular group I'[t] is generated by I's[t] and

by the element J;.

The proof of this theorem follows from proving a corresponding set of generators

of the integral paramodular group. We first give examples of elements in I'*[t]. Recall the

U, 0 0 (Vi)
involution V; = ! where U; = VD) . The element
0 U Vi o0
02 1o
Jo =
—1s 09
, 10 Io 09
belongs to I'*[t]. Let T = and I} = , consider
0 t 0y T

Jt = Ut(JQ) = ItJQIt_I.

We know (see §3 in the special case when M = 1) that the standard maximal

parabolic subgroup of I'[t] of type (2,1), denoted by I'w[t], is the set of elements

a 0 b o a 0 b 0 100 =
Il = y 1 z zt7! _ 01 00|y 1 2 27!

c 0 d —v c 0d O 001 -y

0 0 O 1 00 01 0 0 O 1
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To prove that the group I'o[t] and J; generate the paramodular group I'[t], we
equivalently prove that the integral paramodular group I'[t] is generated by o; *(T'so[t])
and o; ' (J;) = Jo.

Definition 6.5.14. The parabolic subgroup I’ [t] of T%[t] is o; ' (T's[t]). Tt is given by:

a 0 b 2t a 0 b 0 1 0 0 at
; 7 y 1 =z =z 01 00 y 1 =z =z
Tt =0, ' (Toolt]) = =
c 0 d —y't c 0 d O 0 0 1 —yt
0 0 0 1 0 0 01 0 00 1

Proposition 6.5.15. We provide typical elements in the integral paramodular group T¢[t].

1. The set of elements

a 0 b 0
a b 01 00 .
i = e I't]
c d c 0 d 0
0 0 0 1
a b
for all € SLo(Z). In particular,
c d
0 010
0 1 0O 1 00
.= =
-1 0 -1 0 0 O
0O 0 0 1

216



\
100 = 1 0 0 at
a y 1 z zt7! y 1 x» =z
H:={h(z,y,2)} = o; " = .
00 1 —y 0 0 1 —yt
000 1/ 000 1
forx,y,z € Z.
3.
J:Ut_l(Jt)7
4.
.
1 —yt 0 O
. . 0 1 00 3
JHI ™ =S Jh(z,y,2)] " = (z,y,2) €Z2° 5,
0 —at 1 0
—-r —z y 1 )
5.
10 00
fa b _1 . a b . 0 a 00D
c d c d 0010
0 ¢c 0 d

a b
for all . € SLa(Z).
c

Proof. 1t is easy to verify that if we apply the geometric definition of the integral paramod-
ular group as given in Chapter 3, then each of the type of elements presented above preserve

the bilinear form given by the matrix J(t). O

Remark 6.5.16. If we consider the involution V; of the paramodular group I'[t], then we
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can express J; in another way

0 1 0 1
Jy =V Vii
-1 0 -1 0
We now prove the following theorem which is a more detailed proof than the one

given by Gritsenko. This proof gives immediately the proof of Theorem 6.5.13.

Theorem 6.5.17. The integral paramodular group T'*[t] is generated by I'’_[t] and J. That
18,

D[] = (DL [t], J).

Proof. Let Gi be the group generated by T [t] and J. Using Proposition 6.5.15, we have
that G¢ C I''[t]. We now show the other inclusion. For this end, take an element g € T[t],
and consider the second column g = {twz1, 29, tx3,24). Then g is a primtive vector of Z*
since ¢ is an integral matrix with detg = 1. We can always assume x4 # 0 because we
know that at least one of the elements of the vector gs should be nonzero since otherwise
det g = 0 and because we can always multiply g by an element Jh(z,y,z)J ' of JHJ L.
For example if x3 # 0 then multiplying by Jh(0,1,0)J~! transforms g into a column with

nonzero x4. Next we can find z,y, z € Z such that

h(:E? Y, 2)92 =t (tyla Y2, ty?)’ y4)

with ged (y2,y4) = 1. For this part, we follow exactly the argument given in [61] Proposition
11, Step 2. Let w = ged (w2, x4), then w # 0 because x4 # 0 and x3 can never be zero
since otherwise det g = 0. Consider wy = tged (21, 23) and w3 = ged (z4/w, w!®), then

ged (z4/(wws), w) = 1 and there exists integers a,b, € Z such that wy = atzy + btxs.

Now mulitplying go by h (%}3, zifut , z) from the left, we obtain that h (:%‘3, %;3, z) go ="

(ty1,y2,tys, ys) where ys = x4 and yo = xo + wgw%g + zxy. Let plys be a prime. If plw

then p|xs and p does not divide wq since ged (tx1, xo, tas, z4) = 1. Also, p does not divide
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o since ged (z4/(wws), w) = 1. This implies p does not divide y» and so in this case
ged (y2,y4) = 1. The other case is when p does not divide w. Then p does not divide x5
and p| 7+ since p|r4 and p does not divide w. In addition, p does not divide w3 or else p|w

Then p does not divide y2 and we also obtain that ged (y2,y4) = 1.

so that p|

T4

wws *
)

Now using Lemma 6.2.8, we can find a matrix V € SLy(Z) such that V' 2| =

Y4

1
. Consequently multiplying go by a = j(V') from the left we obtain that

0

b
ah <$4 — ,Z> g2 =" (ty1, 1, tys, 0).

wws wws

Applying 8 = h(0,y1,0) we have then

bry ax
Bah <4v —2 Z) g2 =" (0,1, ty3, ty1y3)-
wWws wws
1 0
Using v = j we get
—ty1ys 1
bry axy t
yBah [ —, ;2 ) g2 ="(0,1,1y3,0).
Ww3 wWws
Multiplying by I we get
bx4 axr4 t
IyBah | —=, == 2 g =" (ty3,1,0,0).
ww3 wws

Finally multiplying by Jh(0,ys,0)J ! we reach that

b
Th(0,ys,0)J ' TyBah (‘”4 iy ,z> g2 ="(0,1,0,0).
ww3 wWws

This shows that we transformed g € I'*[t] to a matrix whose second column is {0, 1,0,0).
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Equivalently, Jh(0,ys3,0)J ' IyBah (bx—“ axd z)g € I'_[t] € G and consequently g €

wws’ wws’

ai. 0

6.5.3 Maximal Degree Cusps When I' = T'y,[t]

Definition 6.5.18. For t, M € N, ged (¢, M) = 1, we define the group Gy to be the group

generated by I'azo0(t] and Vil'ar o0 [t VA, e,
Gut = (Do) Vil moo[tIVE) -
Our goal is to show that the mixed level paramodular group is given by
Tart] = G

To achieve this, we prefer to work with the integral mixed level paramodular group.

M[t] = Ufl(PM[t]) = € Maty(Z)

Mx Mx x %

We recall the standard maximal parabolic subgroup of the congruence level paramodular

group of type (2,1), I'nyroo[t] = Tar[t] N Co1(Q). It is given by

a 0 b o a 0 b 0 10 0 =
y 1 x 27! 0 1 0 0 y 1 o zt7!
I'aoolt] = =
Mc 0 d -y Mc 0 d 0 001 -y
0 0 0 1 0 001 0 00 1

Definition 6.5.19. The corresponding parabolic subgroup of the integral mixed level
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paramodular group is

Moolt] == 07 (Carcolt]) =

Mec

o O

0 b 0 1
1 00 Y
0 d 0 0
0 01 0

xt

Consider the involution of the integral paramodular group corresponding to the

involution V;:

Vi=0;' (V) =

0
+—1/2
0
0

Vit
0
0
0

0
0

0
+—1/2

0

0
Vit
0

We now provide a set of typical elements in the integral mixed level paramodular group.

Lemma 6.5.20. The following are elements of the mized level integral paramodular group

T[]

1. The set of elements

. a b
i
Mc d
for all e To(M).
Mec d
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1 00 = 1 0 0 at
, B y 1 x zt7! y 1 = =z
H]ZW = {h(a:,y, Z)} =0y ! = )
0 01 -y 0 0 1 —yt
0 00 1 0 00 1
Vs \

forx,y,z € Z.
3.
.
1 —yt =z xt
S 0 1 xt O 5
ViHN V= | (z,y,2) €Z
0 0 1 0
0 0 wyt O
4.
1 0 00
a b . a b 0 a 0 b
J = Vi Vi= :
Mc d Mc d 0 0 10
0 Mc 0 d
a b
for all ey(M).
Mc d
a b
Proof. Using the injective homomorphism ¢, we clearly see that ¢ eTyuoolt] C
Mc d
. L . b a b
I'a[t]. The corresponding set of elements in 'y, _[t]is o, ~ | @ =1
Mc d Mc d
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100 =
y 1 z 27! .
The elements € I'moolt] and hence h(z,y,z) € I'y [t]. Now
0 01 -—y
0 00 1
W
o . , , a b 1 a b
Vi H, Vi e Iy, [t] since V} is an involution of I}, [t]. Lastly, j =0, | Vii Vi
Mc d Mc d

10
Definition 6.5.21. Let T = be the diagonal matrix with diagonal entries 1 and

0 ¢
M 0
t and let Ml = where ged (¢, M) = 1.
0 M
1. We consider the lattice
1, 0 1o 0 A A .
LMﬂg = 7" = {X ez ‘X = (xl,xg,ng,th4)}.

0 T 0 M

2. The dual lattice of Ly is

1, 0 1, 0 A
L= A
0 M! 0o 71

3. We also consider the lattice

b 0, 4 t
Ly Z :{XGZ ’X: (.1‘1,:E2,M$3,MJ}4)}.
0 M

4. The dual lattice of Ly is
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Definition 6.5.22. A vector X = 1,29, M3, tMzy4) € Ly is said to be primitive if
X Ly, = Z. We denote the set of primitive integral vectors in Lz by LMt. Similarly, a

vector X = H(z1,x9, Ma3, Mxy) € Ly is said to be primitive if X L%, = Z.

Equivalently, a vector X = (a1, z2, Mx3,tMxzy4) € Ly, is primitive if ged (21, 22, 23, 74) =

1 and a vector X = {x1, 29, Ma3, Mxy) € Ly is primitive if ged (21, 22, 23, 24) = 1.

Remark 6.5.23. The mixed level paramodular group I'j/[t] stabilizes Lys;. We see this
because the integral mixed level paramodular group FlM [t] stabilizes the lattice Ly and for
every 7 € I'j/[t] we have:

15 0 120Z 13 0 1 0 15 0 1o 0

v z!
0 T 0 M 0o T 0 71 0o T 0 M

v

Theorem 6.5.24. The mized level paramodular group I'p[t] is generated by I'n oo[t] and
by Vil' M oo [t]V4, i€,

Tyt = Gy = (FM,oo[t]v VtFM,OO[t]Vt> :

Proof. To prove this statement, we will proceed with the integral version of the groups.
It is clear from the definition of the integral parabolic group FZM’OO[t] and from Lemma
6.5.20 that G%,, C I'},[t]. For the other direction, take an element g € I'},[t]. Its second
column go = Ytxy,wo, Mtxs, Mxy4) is primitive since det g = 1. Repeating a similar first
step as discussed in the proof 6.5.2, we can always multiply go from the left by an element

h(z,y,z) € H}, such that

h(.%', Y, 2)92 = t(tyh Y2, Mty37 My4)

such that ged (yo, Mys) = 1 for some z,y,z € Z. Now there exists integers a and b in Z
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a b

such that ays + bMys = 1 and hence using elements of type j , we get
Mc d
1 0 0 0 tn ty1
0 a 0 b Y2 1
0 0 10 Mtys - Mtys
0 —Mys 0 y2) \ Mys 0

Let ged (ty1, tMys) = tged (y1, Mys) := tm. There are integers « and  such that t(ay; +

BMys) = tm and using elements of type i ¢ we obtain
Mc d
a 0 B 0 ty1 tm
0 1 0 1 1
Mys 0 —y; O Mtys N 0
0 0 0 1 0 0

1 —mt 0 O tm 0
0 1 0 0 1 1
0 0 1 0 0 - 0
0 0 mt O 0 0

Summing up, we have multiplied a matrix g € I'},[t] from the left by a sequence of matrices

0

in GlMt and we have obtained a matrix whose second column is . Using the char-
0

0

acterization of the standard maximal parabolic subgroups (see Remark 6.2.1), this shows
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that

1 —mt 0 O a 0 B 0 1 0 0 0

0 1 0 O 0 1 0 0 a 0 b ; ;
h(CC,y, Z)g € FM,oo[t] C GMt‘

0 0 1 0||My 0 —yu 0l]0 0 1 0

0 0 mt o0 0 0 0 1)]\0o —Mys 0 u

O

We now give representatives of the double cosets I'y[t] \ Sps(Q)/C21(Q). With
similar reasoning as in case of the paramodular group I'[t], we get that P3(Q) = Ly /+14.

Because +14 € I'j/[t], we have

Car[t] \ Sp4(Q)/C21(Q) = Tag[t] \ Liysy-

We select a primitive vector X € Ljs; such that tx L}k\/f,t = Z. We write X :=
1,2, Mxs, Mtxy) where x1, xo, x3, x4 € Z with ged (x1, 22,23, 24) = 1. Let g := ged (xa, Mxy).
)

Then there exists integers (a,b) € Z? such that axe + bM x4 = g. Consequently,

1 0 0 O x1 T1
0 a 0 bt! T2 g
0 0 1 0 Maxs N Mzxs
0 Mtxy/g 0 x2/g Mtxy 0

Similarly, we take m := ged (z1, Mx3). Then there exists integers (o, 3) € Z? such that
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axy + fMx3 = m. Consequently,

o 0 I} 0 T m
0 1 0 0 g g
Mzz/m 0 —x1/m O M3 - 0
0 0 0 1 0 0

Since tXLMt = Z, we have ged (m,g) = 1. So we can find integers ¢ and d such that

cm + dg =1 and

1 0 00 m m

0 1 00 g g

0 cM 1 0 0 N cgtM
ccM dtM 0 1 0 Mt

We repeat the first step by finding integers ¢, d’ such that /g + d’M =1 and

1 0 0 0 m m
0 ¢ 0 dt! g 1
0 0 1 0 ctMg N ctMg
0 —Mt 0 g Mt 0

Lastly, taking dyys := ged (m, ctMg) and repeating the second step we obtain a representa-

tive of the form

Proposition 6.5.25. Each representative of a double coset in I'p[t] \ Sps(Q)/C21(Q) is
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of the form

1 a 0 O
01 0 O
Rot(a) = ra€Z
00 1 0
0 0 —a 1

Proof. Let o be an element in Sp,(Q). Then the discussion above implies that there a

v € I'ar[t] such that

x  Bdipy x ok
* I5] * %
T =
* 0 * ok
* 0 * %
for some 5 € Q*. Then,
* 0 *x x
. x B *x x
Rot(dyp) ™ 'ya = € (2,1(Q)
* 0 *x %
* 0 % x
by Remark 6.2.1. O

To prove the lift Gys(¢¢) is cuspidal, we need to show that Gys(¢¢)|«(Rot(a))|® = 0,
or equivalently we need to show that the Fourier expansion of Gys(¢¢)|.(Rot(a)) is restricted
to postive definite matrices T € S; ?(Z). Before we do so, we prove a more general propos-

tion.

Proposition 6.5.26. Let F' be a Siegel modular form of degree 2 and weight . Then,
F|® =0 if and only if F|;Rot(a)|® =0.

Proof. Assume F|® = 0. Equivalently, this means that the Fourier coefficients a(7') in
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the Fourier series development F(Z) = Z a(T)e?™ ™ (T2) are equal to zero unless T is
Tesz®
>0 A 02 1 a
positive definite for all T' € S5°. Writing Rot(a) as , where A = , we
0y ‘A1 01
have
(F|lxRot(a))(Z) = det(0,Z +1A~Y) "F(AZ)
= (det A)FF(AZ'A)
— (det A)n Z a(T)€27ri Tr(TAZ!A)

Tesz®
T>0

_ Z a(T)€27ri Tr(*tATAZ)

Tesy®
7>0

_ Z a(tA—lNA—l)e%riTr(NZ).

Nesz?
N>0

This shows that the Fourier coefficients of F|, Rot(a) vanish unless they are re-
stricted to positive definite and hence F|, Rot(a)|® = 0. The other direction is immedi-

ate. t
Theorem 6.5.27. Let ¢y € JS ,(To(M)”). Then Gr(dr) € Se(Tat]).

Proof. Tt remains to show the cuspidality of the lift. Because V;,,(¢;) is a cusp form (Lemma

6.2.10), if we write

Vi @)(1,2) = D cv(an(n )™,

n,r€Z,mn>0
Anmt>r?

we have that ¢y, (4,)(n,r) = 0 unless 4mnt > r?. The Fourier coefficients of the lift Gar(¢¢)

are given by

agas(6e)(T) = vy () (05 7)

where T" € S;?(Z) = > 0[n,r,m € Z p . Therefore, we have that Gy (¢;)|® =
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0. Using Proposition 6.5.26, we get

M (61)]s Rot(a)|® = 0.

This proves that the lift is cuspidal. O

Remark 6.5.28. 1. For t = 1 the lifting

Gu o1 — Gur(o1)

is the Maass lifting with level
Vo J (To(M)T) — S0P (M
. H,l( 0( ) ) R( 0 ( ))

2. For M =1 the lifting

Gu : o — Gur(9r)

is Gritsenko’s lifting
G:Jdgy — Sk(T[t]).

Using the Fourier-Jacobi expansion of F' € Sy (I"y[t]) together with first projection

map gives us a map

L: = [ 751 @o(d)7) = J2 ,(To(M)7).
leN

The inverse of this map gives the mixed level lifting Gps which gives us a form F' € Sy (I pz[t]).
Corollary 6.5.29. The linear map Gay : JE ,(To(M)”) = Sc(Tar[t]) is injective.

Proof. The composition of the mixed level lifting Gy together with the map L

Jea(To(M)”) = = [ T @o(M)”) = J¢,(Lo(M)”)
leN
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is the identity. Hence
Gar : T4 (Do(M)”) = Se(T[t])

is injective since otherwise, if we start with a nonzero Jacobi cusp form ¢, such that
its mixed level lift Gys(¢;) is zero, then all its Fourier-Jacobi coefficients are zero and in

particular L(Gar(¢:)) = ¢ = 0. A contradiction. O

Ibukiyama and Skoruppa in [34] showed that J; ;(To(M)”) = 0 for all ged (¢, M) =
1. In fact, Schmidt removed the restriction on the integers ¢ and M and showed that
J14(To(M)7) = 0 for all integers ¢ and M ([75], Theorem 2). As an easy corollary to this

result, we have
Corollary 6.5.30. There are no mixed level lifts Gyr(pr) of weight 1.

The Fourier-Jacobi expansion of a mixed level paramodular cusp form F' € S, (T /[t])

given by
; /
7_ z, 7_ E :¢lt T,z 27rzlt7'

>1

combined with the mixed level lifting G gives us a map

= [T 750@o(d1)7) = T Se(Talit).

leN leN

Thus, as in the original work of Gritsenko, from our mixed level lifting one obtains an

infinite family of liftings given by

Se(Cmlt]) —=TIi> Jg,lt(FO(M)J) — L1 ST [it])

Fi (¢1t)i>1 > (G(d1t))1>1-

In particular, for each [ > 1 using the Ith projection map (projection map to the Ith

Fourier-Jacobi coefficient), we get a paramodular level raising lifting between mixed level
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paramodular cusp forms
Se@ult]) = T2 (Lo(M)”) = Se(Tar[it).

Therefore combining Fourier-Jacobi expansions giving us Jacobi forms with the mixed level
lifting applied iteratively gives an infinite sequence of paramodular level raising liftings
between mixed level paramodular cusp forms starting from paramodular level ¢ > 1 to all

possible paramodular levels multiples of :

= [T 750To(dM)”) = [ ] Se(Tarlit)

leEN leEN

=TT 11 Zman @o)7) = T 11 Se(Taslmit))
leNmeN leNmeN

- H H H T iy To(M)”) — H H H S (Tar[nmit]) — ...
leNmeNneN leNmeNneN

Also if we start with F' € S, (T, r{ )(M )) and combining Fourier-Jacobi expansion of
Siegel modular forms together with the general Gritsenko’s lifting Gas we get infinitely many

liftings to paramodular cusp forms of all possible paramodular levels [
2 c
So(0@ (M) = T JeaCo(d)”) = T Su(Carlt).
le N le N

Combining this with the infinitely many paramodular level raising liftings between paramod-
ular cusp forms we get an infinite sequence of liftings starting from Siegel modular forms
with level I‘(OQ) (M) to mixed level paramodular cusp forms of paramodular level any natural

number.

6.5.4 Image of the Mixed Level Lifting and a Certain Maass Subspace

Let SSX(T[t]) € Sk(Tast]) be the image of the lifting Gys. Note that for F €

SSK(T'r[t]), the Fourier-Jacobi coefficients of F are of the form Vj,(¢;) for some ¢; €
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JE ((To(M)7). Recall the action of the Vy, operators

- (80)(7, 2) Z Z dnflc (7”;7;17 2) p2mi(nT+rz)

n>1,r€Z d|(n,r;,m)
r2<4mnt ged (d,M)=1

Using this, we see that the lifted forms Gps () satisfy the following linear relations in terms

of the Fourier coefficients of the Jacobi form that we are lifting.

Proposition 6.5.31. The subspace S3X(T'r[t]) consists of modular forms whose Fourier

coefficients satisfy the following relations

ag,(g,) (0,7, M) = Z d* ey, (Z—T Z) .

d|(n,r,m),r?<dnmt
ged (d,M)=1

We note that the linear relations of the forms in S$X(T'y/[t]) as given in 6.5.31 are
similar to the classical Maass relations (see Chapter 5) in case t = M = 1. This naturally
suggests that that we give a description of a certain subspace of mixed level paramodular

forms whose Fourier coefficients satisfy the following linear relations.

Remark 6.5.32. When t = 1, the space SSX(T'y[t]) = SEK(F(()Z) (M)) is the image of the
Maass lifting with level (see Theorem 6.2.11) that consists of Siegel modular forms V(¢) of

degree two in S (Fé2)(M )) whose Fourier coefficients satisfy the relations

ay(g)(n,m,m) = Z d" ey (T;—gn, 2) :

d|(n,rym),r2<dnm
ged (d,M)=1

Definition 6.5.33. We say F' € S, (I'a[t]) is in the Maass subspace S} (I"y/[t]) if and only

if the Fourier coefficients of F' satisfy

ap(n,r,mt) = Z d"lap (@ z,t) (6.8)
d|(n,r,m)
ged (d,M)=1

for every m,n,r € Z with m,n,4mnt — > > 0.
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mn

In particular, cg, (’2—’;", g) = AGas () ( e ,g,t), we have then:

Corollary 6.5.34. With the notation as above we have the following isomorphism of vector

spaces

rt(To(M)7) = S (Tar[t]) © Sg(Taalt).

Note that for t = M =1, S} (I"p[t]) is the classical Maass subspace S} (Sp4(Z)) (see
Chapter 4). While in case t = M = 1, the Maass subspace completely characterizes the
image of the full level Maass lifting, we don’t yet have this when M > 1 or ¢t > 1. While
we have that the subspace generated by the mixed level lifts sits inside S} (I'a[t]), it would
be very nice for computational purposes to obtain the other inclusion and give a complete
characterization of the image of the mixed level lifts. Writing the forms in the subspace
S¥(Tpr[t]) in terms of their Fourier-Jacobi expansion, the problem resides in the choice of
the Fourier-Jacobi coefficient to which we should project to so that when we lift we get back
again the form we start it with. There are certain operators Ug(p) for (p | M) on Fourier

expansions given by

(F|Us(p))(7,2,7") = > ap(np,rp,mip)e(nt + 1z +mpt’). (6.9)
m,n,r€Z
m,n,dmtn—r2>0

Given F € S} (T'as[t]), calculating the Fourier coefficient of F|Ug(p), we have that

_ mn 2 T

d|(np,rp,mp)
ged (d,M)=1

for every m,n,r € Z with m,n, 4mtn — r? > 0. But since ged (d,p) = 1, we get that

2
o mnp* rp
aF‘Us(p)(T) = aF(np,Tp,mtp) = Z d l(IF <d27d7t> .
d|(n,r,m
gcdl((d,M))zl

Hence the operators Ug(p) for (p | M) preserve Si(I'a[t]). The Fourier coeflicients of the
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form Gar(é:)|Us(p) are given by

2
B nmp= rp
aQM(¢t)\US(P)(T) = aghl(¢t)(np7rp7 mtp) = § : d lc¢t < 2 7d> )
d|(n,r,m
gcdl((d,M))zl

2

for every m,n,r € Z such that m,n,4mtn — r* > 0. Comparing this with the Fourier

coefficient of

i1 nm r
ag,(¢)(T) = Z d”cg, (?7 g) )
d|(n,r,m
gcd|((d,M)):1

for every m,n,r € Z such that m,n,4mtn —r? > 0, we observe that it is not clear how the

Maass relations as given in Definition 6.5.33 describe the relationship between ag,, (4,)Us(p)

and ag ., (é4)-

6.6 Cuspidality Characterized by Fourier-Jacobi coefficients

We consider the Fourier-Jacobi expansion of a Siegel modular form F' € MH(I‘(()Q) (M),

F(T, 2, T/) — Z aF(T)GQM Tr(TZ)

/2 m

_ Z Z ar (n’ r m)627ri(n‘r+rz+m7’)
m>0 n,reZ (610)

r2<4nm

_ Z ¢m(7_’ 2)627rim7—/

m>0

) L,
_ § : Z Com (n’ T)€27rz(n7'+rz) 627r7,m’r )

m>0 n,r
r2<4mn

We have seen (Chapter 5, Theorem 5.2.17) that if F' is a cusp form then each of its Fourier-
Jacobi coefficients is a cusp form. We now prove that the converse is also true due to the

structure of the maximal degree cusps.
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Theorem 6.6.1. A modular form F € MK(F(()Z)(M)) is a cusp form if and only if each of

its Fourier-Jacobi coefficients ¢m, is a Jacobi cusp form.

Proof. Suppose each ¢,, is a Jacobi cusp form. This implies that the coeflicients cg,, (n,7)

n r/2 n r/2
vanish unless % < 4mn. But, since ap / = ¢4, (n,7), then ap / =0
/2 m r/2 m

for all T such that det(T) = 0. In other words, we have F'|® = 0, where ® is the Siegel
® operator. Now to show F € SH(F((E)(M)), we have to show that F|,y|® for all v €
I‘(()Q)(M)) \ Sp4(Q)/C2,1(Q). According to Theorem 6.5.1, the representatives v come form
C2,1(Q)R. Using Propostion 5.4 and the same argument as in the proof of Theorem 5.5, we

obtain the cuspidality of F. O

Given F' € M, (I'ps[t]), we have seen (Theorem 6.3.8) that its Fourier-Jacobi coeffi-

cients all have indices divisible by ¢.

F(T, 2, 7_/) — Z ap (T)€27ri Te(TZ)
n r/2
T= €850(2)
r/2 mit

; /
— Z Z ap (n’ r mt)e27rz(nr+rz+mt7 )

m>0 n,reZ (611)
r2<4nmt

= Z B (7, 2)627rimt7’

m>0

_ 2mi(nT4rz 2mimtT’
= E g Cpmi (M1, T)E ( )| e .

m>0 n,T
r2<4nmt

We have also seen (Theorem 6.3.8) that if F' € S, (I'as[t]) is a cusp form then, each of it is
Fourier-Jacobi coefficients ¢.,,; is a cusp form. We now prove that the converse is also true

due to the structure of the maximal degree cusps.

Theorem 6.6.2. A paramodular form F € M, (T y[t]) is a cusp form if and only if each of

its Fourier-Jacobi coefficients ¢me is a Jacobi cusp form.
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Proof. Similar to the proof of Theorem 6.6.1 and as a consequence of the cuspidalilty of

Ome Tor each m, we have
QF(TL, e mt) = CLF(T) = C¢mt (n’ T)

n r/2
vanish for all T' = / such that det(T) = 0. Equivalently, F'|® = 0. To show
r/2 mt

F € S.('nt]), we need to show F|,y|® for all v € T'p[t] \ Spy(Q)/C2,1(Q). According to
Theorem 6.5.25, the representatives 7 are of the form Rot(a). But using Propostion 6.5.26,

we immediately get the cuspidality of the F. O

Remark 6.6.3. We note that in general we can’t claim that if the Fourier-Jacobi coefficients
of a Siegel modular form are cusp forms then the form is a cusp form. But, we have been able
to obtain such results for the Siegel modular forms with respect to the Hecke congruence
subgroup F(()2)(M ) and the mixed level paramodular group I'j/[¢] and in particular with

respect to Sp,(Z) and I'[t] due to the structure of the cusps.

6.7 When Is the Inverse of the Fourier-Jacobi Expansion

Map a Mixed Level Paramodular Form

U, 0y

The action of the involution V; = on paramodular forms is given by
02 U

(FlxVe)(Z) = (det(Ur)) " F(V; Z).
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We have V;Z =tU,ZU; ', U7 = Uy, and det (U;) = —1, hence

(F’H)W(Z) _ (_l)ﬁ Z aF<T)€27riTr(TtUtZUt)
TeS3 ) (Z)

— (_1)n Z aF(T)e%ri Tr(U:TU+ Z)
TeS3 ()

— (_1)& Z aF(UtTtUt)€27ri Tr(TZ)‘
TeS5 ) (Z)

That is,
ap)v,(T) = ap(UTT).

n r/2
IfT = / € S5 (Z), then
r/2 mt

r/2
UTU, = /
r/2 nt

Also, since V; is an involution, it splits the space of paramodular forms in M, (T'js[¢]) into

plus and minus eigenspaces. Consequently, we have
(F[:Vi)(Z) = eF'(Z),
and on the level of the Fourier coefficients we have
(=) apr(UTU;) = e;ap(T).

Writing this relationship in terms of the Fourier coefficients ¢y, . (n,r) of the Fourier-Jacobi
coefficients ¢, we get the relationship that the Fourier-Jacobi coefficients of a paramodular
form of level ¢ should satisfy the following relationship:

Cme (na T) = €Copy (m,r), (6'12)
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where € = +1.

For each d | t, we have an involution Vj such that

aF|,€Vd(T) =ap(7T),

where the description of the matrices T can be found in § 6.3.4.2.
Also since each Vj is an involution, it splits the space of paramodular into plus and

minus eigenspaces. Let €5 be the eigenvalue at Vg, where [, €4 = ¢, then
(F|xVa)(Z2) = eaF'(2).

Comparing the Fourier coefficients, we get

ar (T) = edCLF(T)

Writing this relationship in terms of the Fourier coefficients of the Fourier-Jacobi

coefficients of the Fourier-Jacobi expansion of F' is

Copme (ﬁ7 f) = €dCons (na T)v

where m,n and 7 are as defined in § 6.3.4.2.

We recall that the Fourier-Jacobi expansion of a Siegel modular form gives a map

H e Me(Tart]) = [T Jeame(To(M)7).

m>0

Restricting this map to the eigenspace MS(I'y/[t]) and denoting this restriction by H€,
the image of H¢ sits in the subspace of [[,,>q Jumt(To(M)”) consisting of Jacobi forms

whose Fourier coefficients satisfy the relationship given by equation (6.12). We denote this
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subspace by

[T 7 me(To(aa)”.

m>0

That is, we have an injective map

H Me I‘M H mmt )

m>0

Theorem 6.7.1. Taking a collection of Jacobi forms {¢pm:} € [] (To(M)”) such

m>0 H ,mt

that the series Z Ot (T, z)e%im” converges on compact subsets of the Siegel upper half
m>0
space b2, then it defines a mized level paramodular form in MS(Tar[t]). Moreover, if {pmi} €

II Jo¢ (Do(M)7), then it defines a mized level paramodular cusp form in SE(Tas(t]).

m>0 “k,mt

Proof. Since the series Z Gt (7, 2)€>™™ with {p} C IL.>o J;,mt(FO(M)J) is conver-
m>0
gent on compact subsets of the Siegel upper half space h?, hence it defines a holomorphic

function F on h2. We now show that F' € M<(T y[t]). Since each of the Jacobi forms have
index divisible by ¢, then using Proposition 6.3.10, we get that each of the Jacobi forms is
invariant under A(t). Also, using Definition 6.2.5, we see that each of the term of the series

Z qﬁmte%im”/ is invariant under I'ys o (Z). But since I'pfoo[t] is generated by I'azo0(Z)
m>0
and A(t), we have that each of the term of the series is invariant under I'js o [t]. Since the

series converges on compact subsets of the Siegel upper half space h2, we conculde that F
is invariant under I'ps oo [t]. Working backwards, the relationship given by equation (6.12)
on the Fourier coefficients of the Jacobi forms, imply that the function F' defined by the

series satisfies F'|;V; = eF. Therefore,
F|r{‘/tFM,oo[t]‘/t = 6F|EFM,oo[t]‘/t = EF‘K‘/t =F

In other words, we have shown that F' € MS(I'p[t]). In addition, if we require all Jacobi

forms in the Fourier series Z Gmee?™ ™ belong to JE mi(To(M)7), we get using Theorem
m2>0

6.6.2 that F € S<(Tt]). 0
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Ibukiyama, Poor and Yuen in [33] working with full level paramodular forms have
weakened the requirement of the holomorphicity of the series by requiring the Fourier co-
efficients of the Jacobi forms satisfy a certain growth condition that suffices to show the
holomorphicity of the function F' ([33], Theorem 2.2). We believe the same result also works
for mixed level paramodualr forms. We also add that their result should also work for cusp

forms due to Theorem 6.6.2 in the particular case when M = 1.
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Chapter 7

Mixed Level Saito-Kurokawa Lifts
From a Representation Theoretic

Point of View

The goal of this chapter is to construct the mixed level Saito-Kurokawa lifts via

representation theory.

7.1 Introduction

From a classical point of view, we have seen in § 5.3 of Chapter 5 that there are two
constructions that generalize the classical Saito-Kurokawa lifting. When M is odd squarefree
and k a positive even integer, we have the construction that we called the congruence level
Saito-Kurokawa lifting. It is given by

S35 (To(M)) = S

L p(AM) = IS (To(M)7) = SER(P ().

We recall that the third linear map is the Maass lifting with level M that is generally true

for any x and for M not necessarily squarefree.
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The other classical construction that generalizes the classical Saito-Kurokawa lifting,
the paramodular level Saito-Kurokawa lifting, works without assuming « to be an even

integer. Given positive integers x and ¢, we have
Soy (Lo(t)) = J5, — Se(T[t]).

This construction involves the middle space of Jacobi forms of index ¢ > 1 with respect to
the full Jacobi group and produces a paramodular form with respect to the paramodular
level I'[t] for any ¢ > 1 from an elliptic newform in the minus subspace.

We note that if f € So,_2(SL2(Z)), the functional equation satisfied by its L-function

as discussed in Remark 5.2.6 of Chapter 5 is given by

As, f) = (=1)""A(k = s, f).

It is then clear that the condition that x be an even positive integer agrees with the condition
of being in the minus subspace when considering the full level SLy(Z).

Assume k is an even integer and m squarefree. Starting with a newform f €
S5y (Lo(m)), one can classically construct two different Saito-Kurokawa lifts Fy € S,{(F((f) (m))
and Fy € S, (T'[m]) associated to f. Our goal is to construct mixed level Saito-Kurokawa
liftings, where we impose some congruence conditions at some primes dividing the level and
some paramodular condition at the other primes dividing the level. Our method is based
on Schmidt’s approach in [74] which frames the Saito-Kurokawa lifiting under Langlands
functoriality.

We note that the Saito-Kurokawa liftings have been considered and generalized in
many different points of view by different authors, one instance is in the general framework
of automorphic representations. In [59], Piatetski-Shapiro looks at these liftings from the
point of view of dual reductive pairs and the Weil representation.

Using representation theoretic methods and exploiting the connection between au-

tomorphic forms and representations, one can reformulate the classical theory of forms for
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a certain underlying algebraic group G in terms of local and global automorphic represen-
tations of G. One can then apply results obtained from the representation theoretic point
of view to get results on classical modular forms.

In general, given a linear algebraic group G viewed over the base field Q behind the
definition of a classical cuspidal modular form f, then one can view f as an automorphic
form ®; on G which generates a global automorphic representation 7y of the adelized
group G(A) where A is the ring of adeles of Q. This global representation 7y, if irreducible,
can be decomposed as the restricted tensor product of local components m, which are
representations of the corresponding local group G(Q,). If f is a modular form with respect
to some level I', then the local component 7, contains a non-zero vector invariant under the
local group corresponding to I'.

This procedure of associating an automorphic representation to a classical modular
form is well known in the elliptic case (G = GLg). Here we review it very briefly following

[16], Section 3.6.

7.]_.1 G: GL2

For the degree n = 1, the Q-algebraic group G behind the definition of elliptic
modular forms is GLa. Let f € S;(T'g(NN)) be an elliptic cusp form. One can associate a
cuspidal automorphic representation 7y = ®m, of GL2(A). Here is a brief summary of the
steps involved:

First we associate to f a function ¢; : GLj (R) — C. Let Z be the center of GLy
and SO2(R) := K, be the special orthogonal group which is a maximal compact subgroup
of GL3 (R). For every z € Z(R), k € K, g € GLJ (R), let the associated holomorphy factor

be j(g, z) := det(g)~"/?(cz + d). Define a function

or(g) = j(g,4) " f(g - 9).

Let G := GLg, G 1= G(R) D Koo 1= O2(R), Ky =[], GL2(Z,) and Ko(N) =
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a b
[Lv GL2(Zp) % [, v Kp(N), where Ky(N) = € GLy(Zp)| ¢ =0 (mod N)
c d

Take K := K Ky.
Using a strong approximation theorem ([16], Theorem 3.3.1), we have that G(A) =
G(Q)GT(R)Ky. Hence, we transport ¢ ¢ to a function on G(A) by decomposing g € G(A)

as g = goYookocky and defining

¢f(g) = j(gookom Z')ﬂQi.](.(gookoo : Z)

Since f is a cusp form, ¢y is an element of L?(G(Q) \ G(A)/Z(A)) ([16], Theorem
3.6.1). Welet G act on L?(G(Q)\G(A)/Z(A)) by right translation and let 7; be the unitary
PGLy(A)-subrepresentation of this L?-space generated by ¢;.

In case f is an eigenform for the Hecke operators, then using strong multiplicity one
for GL2, one has that the associated automorphic representation ¢ is irreducible according

to the following theorem.

Theorem 7.1.1 ([71], Theorem 1.1). The representation m¢ is irreducible if and only if f
is an eigenform for the Hecke operators T(p) for almost all primes p. If this is the case,

then f is automatically an eigenform for T(p) for all p{ N.

Thus to each eigenform f, there is a corresponding automorphic representation
Tf=&Tfp

If f has no nebentypus, then 7y will have trivial central character and descends to a rep-
resentation of PGLy(A). Identifying the local representations 7y, is well known at the
archimidean place co and for all finite primes p not dividing N. These are described by the
weight x and the Hecke eigenvalues A, of f. At the archimidean place, 7y is the discrete
series representations of PGLy(R) with a lowest weight vector k. For finite primes p { N,

7fp is an unramified principal series representation (an infinite dimensional representation
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containing a non-zero GLy(Zj,)-fixed vector) characterized by its Satake parameter a whose
relationship to its Hecke eigenvalue )\, is given by A, = p*~1/2(a 4+ a~1) ([71], page 3).
Identifying the local components at the bad places is not as easy.

If N is squarefree and f € SP°V(I'y(V)) a newform, then Schmidt ([71]) shows that
the local representation 7¢,, at a place p | N contains non-trivial vectors invariant under an

Iwahori subgroup I, where

I = € GLy(Z,) : ce€pZ,

It is determined in the following theorem.

Theorem 7.1.2 ([71], Theorem 1.2). Assume N is a squarefree positive integer, and let
f € Sk(To(N)) be a newform. Then the local component 7y, of the associated automorphic

representation wy at a place p | N is given as follows:

§StGL(2) Zf €p = 1

SteLz) o &= -1,

Tfp =

where €, is the eigenvalue of the Atkin-Lehner involution al p, Stqrz) is the Steinberg

representation of GL2(Q)p) and £ is the unique non-trivial unramified quadratic character of
Qp-

Moreover, the local L-factor at p | N is given by
—s—1/2)—1'

Ly(s,mfp) =1+ €p

The archimedean and unramified factors L,(s,7¢,) are such that

L(s—1/24+ /2, f) = L(s,7y).
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7.1.2 G =GSp,

In this section, we refer the reader to Section 3 in [7] for all the details concerning
the construction of cuspidal automorphic representations associated to Siegel cusp forms.
For the degree n = 2, the Q-algebraic group behind the definition of Siegel modular forms
is GSp,. Using a strong approximation theorem one can regard a cuspidal eigenform F
of weight x with no character as an automorphic function ® on GSp,(A) in the cuspidal
subspace LZ(Z(A) GSpy(Q)\ GSpy(A)) where Z(A) is the center of GSp4(A). If we consider
the subrepresentation II generated by ®p in this space then it may not be irreducible
because there is no strong multiplicity one result for GSp,. We decompose II into a direct
sum of irreducibles II = @II;. When F' is an eigenform, then all irreducible components
of II will turn out to be isomorphic. This isomorphism class is the cuspidal automorphic
representation IIx attached to F', which is in fact a representation of PGSp,(A). We can
decompose it into local components Iy = ®IIg, with IIx), a representation of PGSp,(Q)).
In case F' € S;,(Spy(Z)), it is shown in ([70], Proposition 4.1.3) that the local components
I, of the cuspidal automorphic representaiton Il are also described in terms of the weight
and the Hecke eigenvalues of F. In fact, the local component IIf ., is the discrete series
representation of PGSp,(R) of weight x and the I, for finite p is the spherical (containing
a non-zero vector fixed by the maximal compact subgroup GSp,(Z,) of GSp,(Q))) principal
series representation determined by the Hecke eigenvalues of F.

If Fe SH(F(()Q(N)), determining the local components IIg,, for all p | N even for N
squarefree is more complicated because of the longer list of Iwahori-spherical representations
of GSp,(Qp) (14 of them!) containing non-trivial vectors fixed under the local analogue of
the Siegel congruence subgroup F(()2) (N) (see Table 3 in [72]). We will focus below on those

that arise as components of the Saito-Kurokawa lifts so we do not comment further here.

7.1.2.1 L-Functions

Consider a Siegel modular form F € Sy (Sps,(Z)) that is an eigenform for all the

Hecke operators T' € T3 with eigenvalues Ap(T). Associated to F are the Satake p-
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parameters which are the complex numbers of the n + 1-tuple (agy,...,anyp) for each
prime p. The n + 1-tuple is in (C*)"*!/W where W is the Weyl group. For more details,
the reader can consult [86]. The L-function of F' can be expressed in terms of the Satake

p-parameters as follows. We restrict to the case n = 2.

Definition 7.1.3. Let F' € S.(Sps(Z)) be a simultaneous eigenform for all the Hecke

operators 1" € Hsy. Define the spinor L-function
L(s, F,spin) = HLp(s, F)
P

where

Ly(s, F) = [(1 — aopp™ ) (1 — cgpa1pp™ ) (1 — cgpaz pp~°) (1 — aO,pal,pO‘pris)]ila

and ag p, a1,p, o p are the Satake p-parameters of F.

Remark 7.1.4. According to Andrianov [2], we have associated a zeta function

Z(s,F) = [ [(@Qpr™)) ™"

p

to a Siegel modular form F' of degree two. It turns out ([2], Theorem 1.3.2) that this zeta

function is the same as the spinor L-function for

Qpr(t) = 1=Xp(p)t+ (Ar(p)? — Ar(p?) — p* Nt — Ap(p)p? =313 + p*F—614

= (1= agpt)(1 — agpapt)(1 — agpazpt) (1 — agpar paz pt).

Asgari and Schmidt in [7] explained the definition of the spinor L-function within
the general framework of automorphic representations. We have seen above that we can
associate an automorphic representation IIp = ®Ilg, to F € S.(Sps(Z)). At the finite
places, the p-adic representations Ilf, are spherical denoted by m(xo, x1, x2) where x; are

certain unramified characters of Q) with Satake parameters b;, = xi(p). We refer to [7],

248



section 2.2 and section 3.4 for all the details. We associate to each spherical representation

I1r, a local L-factor as follows.

Lemma 7.1.5 ([7], Lemma 2.4.2). The local L-factor corresponding to the spherical prin-

cipal series representation Iy, is given by:

—5 —5 —s —s\1—1
L(s,pyp) = [(1 —bopp~*)(1 = bopb1pp~ %) (1 — bopba,pp™*) (1 — bo pb1,pb2 pp )] )

where the complex numbers by p, ..., b, are the Satake parameters associated to Ilfy,.

This shows that there is a relation between the classical Satake p-parameters o, of
F and the Satake parameters b; ;,, associated to the local component IIx,, of the automorphic
representation Ilp associated to F. Here we give a lemma for general degree n that says

these Satake parameters are essentially the same.

Lemma 7.1.6 ([7], Lemma 3.4.1). If agyp,...,anyp are the classical Satake p-parameters of

Fe SR(SPQn(Z))7 then

n(n+1)/4—nr/2

p Q0p, Al py---5Qnp

are the Satake parameters by, ..., bn of the spherical principal series representation g .

Using Langlands Theory of Fuler products, one can associate to IIr a global L-
function L(s,11r) as an Euler product of the local L-factors corresponding to the spherical

prinicipal series representation Ilr, as given in Lemma 7.1.5.

Definition 7.1.7. Let I be the associated cuspidal automorphic representation of a Siegel

modular form F € S, (Sps,(Z)). The Langlands L-function of Il is given by
L(s,Tp) == [ [ L(s,TIry).
p

The product is taken over all finite places. Sometimes, this is referred to as the incomplete

Langlands L-function in the literature.

Moreover, Asgari and Schmidt gave the following relation to the classical L-function.
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Theorem 7.1.8 ([7], Theorem 3.6.1). Let IIr be the associated cuspidal automorphic rep-
resentation of a Siegel modular form F € S, (Spy(Z)), then for the spinor L-function of F

we have

L(s', F,spin) = L(s,TIp),

where s' = s+ k — 3/2. For general degree n, s' = s+ nk/2 —n(n+1)/4.

7.2 Saito-Kurokawa Lifting As a Functorial Lifting

Langlands ([45], § 3) interpreted Saito-Kurokawa liftings in terms of Langland’s
principle of functoriality. This principle predicts the existence of a lifting of automorphic

forms from

PGLy(A) x PGLy(A) — PGSpy(A)

coming from the embedding of

SLQ(C) X SLQ((C) — Sp4(C>

as a homomorphism of complex Lie groups given by as in [73] § 4, Equation (20)

a 0 0 ¥V

a b a b 0 a b 0
s —>

c d d d 0 ¢c d O

d 0 0 d

Schmidt in [70] shows that the classical Saito-Kurokawa lifting proves Langlands
functoriality for the representations of the algebraic groups PGLs x PGLy of the form
(mg,m2). The first factor is the cuspidal automorphic representation 7y of PGL2(A) at-
tached to f € Sax_2(SL2(Z)) as above and 7 is a noncuspidal representation of PGLa(A)
not depending on f whose archimedean component 72 o, is the lowest discrete series repre-

sentation of PGLg(R) denoted by D(1) and each of the local components for finite p is the
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trivial representation. To such a pair (7, m3), the automorphic PGSp, representation II Fy
associated to the Saito-Kurokawa lift F; of f is then the representation obtained by the
expected lifting of 7y ® w2 predicted by Langlands functoriality. For more details on this,

we refer the reader to [70].

7.2.1 Schmidt’s Main Lifting Theorem

Working within the framework of Langlands functoriality in [73], Schmidt unified
both constructions of the Saito-Kurokawa liftings described in § 7.1. From the local point of
view, GSp,(Qp) has two conjugacy classes of maximal open compact subgroups: the stan-
dard maximal open compact subgroup GSp,(Z,) and the local analogue of the paramodular
group K (p). Consequently, a unified construction makes sense to exist and it explains the
existence of more than one Saito-Kurokawa lift.

For each finite set S of places of Q, we have an automorphic representation g =

®@mg,p of PGLa(A) defined by

1GLz if p ¢ S
TSp =

StGL2 ifpes,

such that 1gr, is the trivial representation and Stgr, is the Steinberg representation
for PGLgy. The global representation mg is a noncuspidal automorphic representation of
PGLy(A).

Let 7y = ®@my,), be the cuspidal irreducible automorphic representation on PGLy(A)
attached to f € S5Vo(I'o(m)) with m squarefree. We consider the pair (7¢,7g), where S
is a finite set of places of Q such that for each p € S, the local component 7y, is square
integrable. These places are some of the finite places p dividing the level m or p = oco. If the
set .S satisfies certain conditions, Schmidt shows using local and global theta liftings that
the lifting II(7¢ ® mg) = ®II,, where II, = ®II(1, ® mg ) is a global cuspidal automorphic

representation of PGSp,(A).
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We now state Schmidt’s main lifting theorem given in [73] based on the lifting

predicted by Langlands functoriality.

Theorem 7.2.1 ([73], Theorem 3.1). Assume m is squarefree. Let wy be the cuspidal auto-
morphic representation of PGLa(A) corresponding to a classical newform f € S5, (Fo(m)).
Let S be a finite set of places p of Q such that ¢, is square integrable (i.e p | m or
p = 00). Let mg = ®7g, be the non-cuspidal automorphic representation of PGLa(A) as

defined above. Assume that the sign condition (—1)'%| = €(1/2,7;) is fulfilled. Then

1. The global lifting II(mf @ wg) := @I (7p, @ Tsyp) is an automorphic representation of

PGSpy(A) which appears discretely in the space of automorphic forms.

2. If L(1/2,7) =0 or if S # 0, then Il(my @ mg) is a cuspidal automorphic representa-

tion.

The term €(1/2,7f) is the sign of the functional equation satisfied by the L-function

associated to f. We now describe this representation locally as is done in § 5 of [74].

7.2.1.1 Local Components of II(ry ® 7g)

We note that the choice of S will always contain the archimedean place oo in order
to obtain holomorphic forms. Therefore when it exists, the global lifting will be a cuspidal
automorphic representation of PGSp,(A) whose local component at oo is given by II(7 o ®
Steo). Since f has weight 2k — 2, the archimedean component 7 is the discrete series
representation of PGLa(R) with a lowest weight vector 2k — 2 denoted by D(2k — 3) and the
archimedean component mg o := St is the lowest discrete series representation D(1) of
PGL2(R). It is shown in [7] that II(D(2x — 3) ® D(1)) is the archimedean component of an
automorphic representation corresponding to a holomorphic Siegel modular form of weight
. In other words, II(D(2k —3) ® D(1)) is the holomorphic discrete series representation of
PGSp,(R) with weight .

For places p { m, the local representations II(7s, ® mg,) are unramified of the

form II(7s ), ® 1g1,), where 7, is the unramified principal series representation containing
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non-zero vectors fixed by GLa(Zy).

It remains to describe the local representations of the global lifting for finite places p |
m. For such a place p|m when m is squarefree, the local component 7, is given by Theorem
7.1.2 and the local component 7g, was determined in equation (7.2.1). Consequently, there

is a total of four possible lifts for such a p:
L. T(Stgre) ®1),
2. H(StaL2) ® Stare),
3. TI(& Star,2) ®1),
4. TI(& Star(2) @ Staw2))-

However, for the choices of the set of places S, the fourth representation will be avoided
because it turns out to be supercuspidal. A supercuspidal local representation cannot occur
as a local component of an automorphic representation associated to a Siegel modular form

when the level m is squarefree.

7.2.1.2 Atkin-Lehner Eigenvalues

We follow Schmidt in [74], page 4 and define the local Atkin-Lehner element is the

matrix
00 10
0 0 0 1
7” fry
p 0 0 O
0O p 0O

We will call the local analogue of the Siegel congruence subgroup, P;, and the local analogue
of the paramodular group, P>, Iwahori subgroups of GSp,(Q,). To see an explicit description
of these, we refer the reader to the same paper [74], page 4. Let H denote one of these
groups. Then 7 acts on the space of H-invariant vectors for any representation (m, V') of

GSp4(Qp). If we assume that 7 has trivial central character, then 7(n) acts as an involution.

253



We call these operators Atkin-Lehner involutions. They split the space of V! of H invariant
vectors into +1-eigenspaces Vf and V. If v is an eigenvector, we call its eigenvalue the
Atkin-Lehner eigenvalue of v. One has via table (30) of [74]:

The Atkin-Lehner eigenvalue of IT(Stgr,2) ®1) is —1 and the Atkin-Lehner eigenvalue

of H(StGL(Z) & StGL(Q)) and H(f StGL(Z) ®1) is 1.

7.2.1.3 Local L-factors

The global L-function of mg is given by ([73], § 1)

L(577TS) = (HpQSLp(SVl» (HpGSLP(S’StGL(2))>
Ly (s,St )
= (1, Ll ) (TTpes 25 5eue))
Lp(s,St
= Z(s+ D25~ 1) (TTes 2yoma))

Here Z(s) is the completed Riemann zeta function, and

Ly (s, Star2)) (s—3), if pis archimedean

Ly(s,1 -
p(5)1) 1—p=st/2if p is finite.

We have seen that in Theorem 7.1.8 that if F' is a Siegel modular form for the full
modular group, and an eigenform for the Hecke operators, then the classically defined spinor
L-function coincides up to a shift in the argument with the Langlands L-function L(s, IIx).
Now when F' is a Siegel modular form for a congruence subgroup, it is not clear how to
classically associate an L-function because there is no a well-defined notion of a space of
newforms. We can associate an L-function to F' to be the Langlands L-function associated

to the cuspidal automorphic representation IIr induced from F':
L(s+ k —3/2, F,spin) := L(s,IIf),

where L(s,IIr) =[], L(s,Ilgyp). For finite places p N, the Langlands L-factors are given

254



as the Langlands L-factors attached to IIg for F' Siegel modular form for the full Siegel
modular group. As for the finite places p | N, the local L-factors are given using Local
Langlands correspondence as given in Table 2 in [72] for all types of Iwahori-spherical
representations of GSpy.

Now Schmidt’s main theorem gives a cuspidal automorphic representation II(7f ®
7g) = RI(7s, ® wgp) of GSpy. We are interested in computing the L-function of this
representation so that when we extract from it a Siegel modular form F with level, we can
talk about its L-function. In the squarefree situation, the only Langlands L-factors that
need to be determined are for the finite places dividing the level. That is, we only need to
determine the local L-factors for the three local liftings IT(Stqr,2) ®1), TI(Star,2) @ Star2))
and I1(& Stgr,2) ®1). These are given in Table 33 in [74] and taken from Table 2 in [72]:

L(s,II(Stgr ®1)) = (1—p s V/2)72(1 —p=s+1/2)~1,
L(s, (€ Starey ®1)) = (1—p ™= V)71 1 —p=sT/2) =1 (1 4 p===1/2)=1 - (7.1)
L(s,II(Stare) ® Star)) = (1—p 5 Y2)72

7.2.2 The Relationship to Classical Saito-Kurokawa Lifts

The relationship between the representation theoretic Saito-Kurokawa liftings and
the classical Saito-Kurokawa liftings comes from two different (non-empty) choices of the set
of places S. The conditions x even and the —1 sign are the conditions that the choice of the
set S has to meet in order for the global lifting to occur. This is equivalent to saying that
the two different classical Saito-Kurokawa lifts corresponding to the two different choices
of S are vectors in different automorphic representations of PGSp,(Ag). Here we give a

lemma given by Brown and Pitale that summarizes what we said.
Proposition 7.2.2 ([14], Lemma 2.4). Let f € S5V, (T'o(m)).

1. If m is odd, squarefree and k is even, let Fy be the congruence level Saito- Kurokawa
lift associated to f. If one chooses S = {oo} U{p|m : e, = —1}, then Il(ry ® 7g) is

the cuspidal automorphic representation of GSpy(A) corresponding to Fy.
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2. If the sign of the functional equation of L(s, f) is —1, let Fy be the paramodular level
Saito-Kurokawa lift associated to f. If one chooses S = {oo}, then II(my ® g) is the

cuspidal automorphic representation of GSpy(A) corresponding to Fy.

7.3 Mixed Level Representation Theoretic Saito-Kurokawa

Lifts

Let t, M € N be such that ged(M,t) = 1. Recall, the congruence paramodular level

subgroup

Z L I T
Z I 7 t'Z
Taft] = Spa(Q)[ )

MZ MtZ Z Z

MtZ MtZ tZ Z

In the previous chapter, we have defined mixed level Siegel modular forms with
respect to the congruence paramodular level I'j;[¢] and we classically described a mixed level
lifting from the space of Jg ;(Uo(M)”) to the space of cusp forms Sy (I'a[t]). In this section,
we will show that we can choose a set S that will produce mixed level Saito-Kurokawa lifts
from a representation theoretic point of view when tM is squarefree.

Corresponding to a cusp form F' € S, (I'5[t]), one can attach a cuspidal automorphic
representation of PGSp, as is done in [7]. To do so, one has to define compact open
subgroups of GSp,(Q) as a local analogue of T"ps[t].

Let m, M, and t be square-free integers with gcd(M,t) = 1. Given a prime p, define

a b
Ko p(m) = € GL2(Zp) : ¢ =0 (mod mZy) p ,
c d
@) a b
Ky, (M) = € GSpy(Zp) : ¢c=0 (mod MZy,) ;,
c d
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and

al ta2 bl bg

ag a4 b3 t_1b4
KZSQ) [t]=<~v= € GSpy(Qp) : ai, b, ciy di € Zp,det(y) € Z,;

c1 teg dy do

tC3 tcy tdg d4

Note that in the case that p { M we have K(()iz (M) = GSpy(Zp) and if p t t we have

KIgZ) [t] = GSp4(Z,). Define

K@M = [[ &S00 T &1 [T GSpa(Zy).
p|M plt ptMt

One should note if M = p, there is the possibility of confusion between the local group
KI(,Q) [t] and the global group denoted the same way, but it will always be clear from context
what is meant.

One can check that
Tult] = GSps(Q) N GSpf (R)K 7 [t]

where GSp; (R) is the group of elements in GSp,(R) with positive multiplier.

We consider the following subspace of cusp forms.

Definition 7.3.1. Let t, M € N be squarefree such that ged (M,t) = 1. We define the

following subspace of elliptic cusp forms:
S3e—2(Lo(Mt)) = {f € Sax—a(To(M?)) : fIW; = (=1)"f},

where W; is the Atkin-Lehner involution at ¢. Note that in case M =1, Si__,(To(Mt)) =

S;nfz(l“g(t)) and in case t = 1, S§H72(F0(Mt)) = SQK_Q(FO(M)).

Definition 7.3.2. We will call a set S of places of Q that satisfies the conditions given in
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Schmidt’s main lifting theorem an admissible set. We note that such a set always exists
as long as 7y is square integrable and will always be nonempty for we always assume it

contains the archimedean place.

Notation 7.3.3. We denote the global lifting associated to f € S5c¥,(I'o(m)) as given in

Schimdt’s main lifting theorem by
Iy :=1l(7y @ ms) = Qp<oollyyp-

We now give all possible admissible sets S.

Lemma 7.3.4. Let t, M € N be square-free such that gcd (M,t) = 1. Fiz f a newform in

S5y (Lo(tM)). All the possible choices of admissible sets S are given below.
1. If f € S5y (Do(Mt)), then S = {oo}.
2. If K is even , then S = {oo} U{p|tM : ¢, = —1}.
5. 1f £ € Sy (To(M1)), S = {00} U{p | M : 6y = —1}.

Proof. 1. When S = {oo}, (—1)Il = —1. The sign of the functional equation satis-
fied by the L-function corresponding to f is €(1/2,77). When f € S5."5 (To(Mt)),

€(1/2,m¢) = —1. This proves the admissibility of S.

2. Let § = {oo} U{p|tM;e, = —1}. The sign of the functional equation is €(1/2,7f) =
(—1)lesps where €y is the Atkin-Lehner eigenvalue at tM. Because ged (M, t) =

1, we then have that [, ep = (let ep) (HpIM ep>. But €, = =1, therefore
[Ljer = (—1)HPlter==1} " Similarly, e = (—1){pIM:ep==1} " According to our
choice of the set S, we have [, & [T,n €p = (=1)ISI=L. Consequently, €(1/2,7;) =

(=1)F=1(=1)!81=1 which is clearly equal to (—1)I%| when assuming & is even.

3.If f € S’;ffvzv(Fg(Mt)), arguing as in the second case, we have that the sign of the

functional equation is €(1/2,7f) = (—1)" e where e = (let ep) (leM ep> =
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o (Thyaren) = e (-D/@MO=H) - But (M : 6, = ~1)] = (~1)/S and

e = (—1)". Hence, e(1/2,7y) = ((=1)* (-1 (~)F¥I7!) = (-1)> 1 (-1)I¥I! =
(1) 2 (=)= (=15,

Conversely, let S be an admissible set containing the archimedean place. Then the

condition (—1)I1 = ¢(1/2,7) could be satisfied when ¢(1/2,7;) = —1. This gives that

|S| = 1 and hence S = {co}. More generally, e(1/2,7f) = (—1)" ‘e = (—1)15! can be

1911 and & being even which means S = {oco}U{p[tM : ¢, =

satisfied either when €37 = (—1)
—1}, or when €51 = €,€p7 and S contains some of the finite places. Since tM is such that
ged (t, M) =1, then S = {oo} U{p|M : ¢, = —1} or S = {oo} U {p|t : ¢, = —1}. Suppose,
S = {oo} U{p|M : ¢, = —1}, then (—1)" e = (—1)Leens = (—1) ey (—1)ISI71 =
(—1)!5 implies that e; = (—1)*. This explains the third choice of the set S. Reversing the
roles of ¢ and M explains the possibility of the choice of the set S = {oco} U {p|t : ¢, = —1}.

O]

Theorem 7.3.5. The mized Saito-Kurokawa lifts from a representation theoretic point of
view occur by considering the set S = {oo} U {p | M;e, = —1}.

In other words, given f € Sy*%(To(Mt)), there exists a unique (up to scalars)
Siegel modular form Fy € Se(I'nlt]) extracted from 11y := I(ny ® wg) that we call the

mized Saito-Kurokawa lift associated to f.

Proof. We will show that for the other choices of admissible sets listed in Lemma 7.3.4, the
Saito-Kurokawa lifts are the classical ones.

If f €55, (Do(Mt)), Lemma 7.3.4 with S = {oo} says that there exists a cuspidal
lifting IT; to GSp,(A) as described by Schmidt’s main lifting theorem. Its local components
at the bad primes (p | tM) are given by II(Stgr, ®1) or II(£ Stgr, ®1) since for all p | tM,
p ¢ S. Following the proof of Theorem 5.2 in [74], we can extract a unique up to scalars
Fy e S (T[tM]).

If kiseven and f € S5c¥,(I'g(Mt)), Lemma 7.3.4 with S = {co}U{p | tM : ¢, = —1}

says that there exists a cuspidal lifting IT; to GSp4(A) as described by Schmidt’s main lifting
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theorem. For p | tM (p |t or p | M), if ¢, = 1 then p ¢ S and hence the corresponding
local component is II1(§ Stgr, ®1). And if €, = —1, whether p |t or p | M, then p € S. The
corresponding local component is then II(Stqr, ® Star,). Following the proof of Theorem
5.2 in [74], we can then extract a unique up to scalars Fy € S,{(F((f) (tM)) .

For the last choice of the set S, the proof will be included in the proof of Theorem
7.3.7. O

Remark 7.3.6. Note that the definition of the space S§,__,(Io(Mt)) is symmetric in ¢ and
M. We could have defined instead the space S _,(To(Mt)) and accordingly chose the set
S = {oo}U{p|t:e = —1} in place of the third choice above. The corresponding mixed
Saito Kurokawa lift 'y then belongs to S, (I'i[M]).

We now give the main theorem describing the mixed Saito-Kurokawa lift. One can

see Theorem 5.3 of [74] for the result in the case M or ¢ is 1.

Theorem 7.3.7. Let M and t be square-free integers, gcd(M,t) = 1, kK > 2 an even integer,
and f € S;’;lfg(Fo(Mt)) a newform. Let €, be the eigenvalue of f under the Atkin-Lehner
involution at p and let n, be the Atkin-Lehner involution of degree 2 at p. There exists
an eigenform Fy € S, (T'a[t]), unique up to constant multiples, whose Spinor L-function is

given by

L(s, Fy,spin) = H (1-— p_5+“_1) C(s—rk+1)((s—rK+2)L(s, f).

p|M
ep=—1

Moreover, for each p |t we have n,F = €,Fy and for each p | M we have n,Fy = Fy.

Proof. Let m¢ be the cuspidal automorphic representation of PGLa(A) corresponding to f.
We have seen from Lemma 7.3.4 and from Theorem 7.3.5 that the set S = {oco} U{p| M :

€p = —1} is an admissible set and that we obtain a cuspidal lifting

Uy =&y = ®H(7Tf7p ® 7TS,]D)
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whose local components IIy ), are given by

1. for p | t,
H(f StGL(g) ®1) if €p = 1
Iy = )
H(Stare) ®1)  if ¢ = —1;
2. forp| M,
H(f StGL(g) ®1) if €p = 1
My =

II(Star(2) @ Stare)  if ¢ = —1;

3. for p{tM, Il is the unramified representation of PGSp4(IR) that contain a vector ®,,
fixed by the open compact subgroup GSp,(Zy) of GSp,(Q). The vector ®,, is called a

spherical vector;

4. for p = 00, I = II(7f 00 ® Stoo) = II(D(2k — 2) ® D(1)), where D(2x — 2) is the
holomorphic discrete series representation of PGSp,(R) of weight (k, ). It contains

a distinguished lowest weight vector ®..

Now for the other components at the bad primes, table (30) in [74] says that in the com-
ponents Iy, for p | ¢, the space of vectors invariant under K;(,Z) [t] is one dimensional and
hence each of the components in part 1) contains a unique paramodular invariant vector
®,,. Similarly, in the components Ilf, for p | M, from the same table (30), the space of
vectors invariant under K(()iz (M) is one dimensional and each of the components in part 2)
contains unique vector ®, invariant under the local congruence subgroup K (()7213 (M). Piecing
all these vectors together, ® = ®®,, and following the procedure on page 21 in [74], we
see that ® corresponds to a classical holomorphic Siegel cuspform of weight x with respect
to Tas[t] = GSpys(Q) N GSpI(R)K](VQI) [t]. This shows how to extract a Siegel modular form
F € S,(I'y[t]) from the representation II; corresponding to f & SEPY (To(tM)).

As for the uniqueness proof (up to scalar factors), it goes exactly as in the proof

of Theorem 5.2 in [74]. We include it for the convenience of the reader. Assume F’ is

another cusp form with the L-function as in the statement of the theorem. Let ® be the
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corresponding adelic function, generating a multiple of an automorphic representation IT'.
From the form of Euler factors at good primes, we see that the local components of Iy and
IT" coincide almost everywhere. Using a theorem of Piatetski-Shapiro ([59], Theorem 2.2),
the representation IT’ is also a lift of the form II(7’®7Y) for some automorphic representation
7’ of GL2(A) and some set of places S”. The local components IT}, being Iwahori-spherical
must therefore be amongst the ones occuring in table (30) of [74]. Looking at the Euler
factors ([74], table 33), it shows that IIf ., = IT,,, and that II;, = IT}, for p | tM. Therefore
the global representations are isomorphic. Using the multiplicity one result (Theorem 6.2 in
[59]) for lifts from SLy(A), the representations II; and II' coincide as spaces of automorphic
forms. Hence ® and @' are elements of the same irreducible space of automorphic forms.
The uniqueness now follows from the local uniqueness of vectors expressed by the one-
dimensionality of the spaces of fixed vectors in table (30).

The result on the L-functions now follow from the local L-functions defined above
in 7.1 and from L(s,7g). It is exactly as given in Theorem 5.3 in [74] upon switching from
the automorphic normalizations of the L-functions to the modular normalizations used here
as described in Theorem 7.1.8. The result on the Atkin-Lehner eigenvalues can be read off

from the information in 7.2.1.2. O]

Remark 7.3.8. If f € Sy 5"(T'g(Mt)) and & is even, then we can associate to f three

K

Saito-Kurokawa liftings based on the prime factorization of Mt. We list the possible three

Saito-Kurokawa lifts attached to f.
1. If S = {00}, then we have a Saito-Kurokawa lift F} € S, (I'[tM]).
2. If S ={oo} U{p | tM : e, = —1}, we get a Saito-Kurokawa lift F, € SH(F62)(Mt)).

3. If S={ooc} U{p| M : ¢ = —1}, we get a Saito-Kurokawa lift F3 € S, (I'p[t]).
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Appendix A

On Compactifications of Locally

Symmetric Spaces ['\ X

In Chapter 4, we gave a concrete description of the cusps attached to the Siegel
variety I' \ h” for any arithmetic group I' in order to form the Satake compactification
of this variety. These cusps are the rational boundary components whose stabilizers are
the standard rational maximal parabolic subgroups C;, »(Q) and their conjugates. In this
description, we have seen how the boundary varieties representing the cusps are dictated
by these maximal rational parabolic subgroups. Our first goal in this appendix is to briefly
outline the general ideas of Satake compactifications of locally symmetric spaces I' \ X.
According to Satake ([13]), the compactification of the locally symmetric space I'\ X depends
on the compactification of the symmetric space X. Borel and Ji ([13]) found a uniform
approach to the many different types of compactifications present in the literature. Their
approach is based on the fact that parabolic subgroups play a crucial role in understanding
the geometry at infinity of symmetric and locally symmetric spaces. Instead of working
with each compactification separately by building geometrically the boundary components
suitable for the purpose of the compactification, they used the correspondence between those
components and the type of parabolic subgroups associated to them. They have been able

to reconstruct all compactifications using group-theoretic methods by making a choice on
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the type of parabolic subgroups of I' to be used and then associating boundary components
to the symmetric space X using the Langlands decomposition of the parabolic subgroups.
This Langlands decomposition induces a decomposition of the space X and shows how to
attach boundary spaces to X. Our second goal in this appendix is to outline Borel and
Ji’s approach just to give the reader a global picture of why we worked with maximal
parabolic subgroups when dealing with the Satake compactification of '\ h” in Chapter
4. We can’t provide the details because unfortunately Borel and Ji’s approach relies a lot
on big theories of mathematics like the theory of Lie groups, Lie algebras, algebraic groups
and Borel reduction theory of arithmetic groups. In the last part, we come back to Satake’s
approach and give a concrete description of the boundary of the Satake compactification of
I'\ X that was described in general terms in the first part and that gives a generalization

of the description given in Chapter 4 in case of T"\ h™.

1 Satake Compactifications of I' \ X

We mentioned in Chapter 4 that Satake started the modern theory of compactifica-
tions of symmetric spaces X and locally symmetric spaces I'\ X which gives in particular the
topological construction of (Sp,,,(Z)\h™)¢. Unlike the case of the Siegel variety Sp,,,(Z)\h",
there are no obvious choices of lower dimensional locally symmetric spaces which can be
attached at infinity to obtain a topological compactification of I'\ X. To obtain the desired
boundary spaces and the required topology to attach these spaces to X in order to form the
compactification of I' \ X, Satake in [68] proceeded in two steps. He first constructed com-
pactifications X¢ of X. In fact, he provided finitely many non-isomorphic compactifications
of X which form a partially ordered set. The minimal Satake compactification is the one
used in the Satake compactification of the Siegel upper half space h™ which is usually known
as the Satake compactification in the literature. The real parabolic subgroups needed for a
Satake compactification of X are then used to decompose the boundary of the compactifi-

cation X°¢ into lower dimensional symmetric spaces, called boundary components. We will
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provide an explanation of this process below.

Second, to get the compactification of the locally symmetric space I'\ X, only certain
rational boundary components (similar to what we we described in Chapter 4 as rational
boundary components) are needed to form the rational compactification X* of X. To
obtain these rational boundary components, Satake needed a suitably chosen fundamental
set ¥ of I'. This fundamental set is constructed using reduction theory of arithmetic groups
as laid out by Borel [12] which gives Siegel sets associated to rational parabolic subgroups.
Taking the closure ¥ of ¥ in X¢ and using facts from reduction theory, ¥ intersects X¢ with
finitely many boundary components X;. These boundary components will be the standard
rational ones and all other rational boundary components are I' conjugate to them. I" then
acts properly discontinuously on the partial compactification X* with a compact Hausdorff
quotient I' \ X* which defines a Satake compactification of I\ X.

Implicitly in his constructions, Satake showed that his compactifications of I' \ X
depend on the his compactifications X¢ of X and provided a general method of passing

from a compactification of the symmetric space X to a compactification of I' \ X.

Remark 1.1. 1. As mentioned above, Satake created a family of compactifications of
I'\ X based on a family of compactifications of the symmetric space X equipped with
a partial order. What we refer to in this thesis as the Satake compactification and
which is used to compactify the Siegel variety I'\ h™ in [18] corresponds to the minimal

Satake compactification of the locally symmetric space I' \ X as decribed in [68].

2. The compactification of a fundamental domain of I' in X is different from compacti-

fication of I" \ X, and there are difficulties in passing from one to other (see [13]).

2 The Approach of Borel and Ji

The discussion above shows that the construction of Satake compactifications of
locally symmetric spaces I' \ X depends on compactifications of the symmetric space X

and on forming a partial compactification of X with a suitable choice of a fundamental set
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from compactifications of X. It turns out that to every I'-rational boundary component
F in the boundary of the compactified locally symmetric space corresponds a rational
parabolic subgroup P(F'). Moreover, the map F' — P(F') induces a bjiection of the set of
rational boundary components onto the set of proper rational parabolic subgroups used.
From this point of view, Borel and Ji in [13] reframed the compactification of symmetric
spaces X = G/K and of their corresponding locally symmetric spaces using the theory of
parabolic subgroups of G by attaching boundary components of real parabolic subgroups in
case of compactification of symmetric spaces and rational boundary components attached
to rational parabolic subgroups in case of compactification of locally symmetric spaces.
This uniform approach is based on the reduction theory of arithmetic groups [12] which
aims at constructing suitable fundamental domains of arithmetic groups I'" based on certain
sets called Siegel sets or fundamental sets associated to parabolic subgroups. The benefit
of this uniform approach is that the compactification of I' \ X is done intrinsically and
avoids obtaining the rationality of the compactification of X from its compactification X¢
which was a key step to to pass from a compactification of the symmetric space of X to a
compactification of I'\ X as done by Satake. From now on, we closely follow the presentation
of [13] in providing the general setting of how to associate to parabolic subgroups boundary
components. Every single fact or result listed below can be found in this reference. We

leave most of the details and all the proofs for the reader to consult in this reference.

2.1 Symmetric Spaces

Suppose X = G/K is a symmetric space. The uniform approach given by Borel
and Ji for the construction of the compactifications of a symmetric space X depends on the
structure of real parabolic subgroups of G.

Given a connected reductive linear group G, we have seen in Chapter 4 that as-
sociated to every subset I of the set of simple roots § we associate a conjuguacy class of

parabolic subgroups whose representative Py is called a standard parabolic subgroup. Each
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standard (and hence every) parabolic subgroup enjoys a Levi decomposition

P]:M[IXN[

with M its Levi factor and Ny its unipotent radical. We refer the reader to Chapter 4 for
the details. The Levi factor M; = Z(17) is the centralizer of T, the identity component
of (Naerkera). Ty is called the split component in G and M; is the maximal reductive

subgroup of P;. Now M; can be written as the following product

M]:A[XT[

for some semisimple group A;. As an example of this, we have expressed the parabolic

subgroups Cy, , in Chapter 4 § 4.2.3. as

Chnyr = (Gr X Gp—y) X N,.

As a consequence of this finer Levi decomposition of the parabolic subgroup P, we can
write

Pr=T1 ANy

and obtain the well known Langlands decomposition of P;:

P=TA;N; =T x Ar x Ny (Al)

because the map

(t,a,n) —tan (t€Tr,a € Ar,n € Ny)

is an analytic isomorphism of analytic manifolds.
Let K1 = A;N K be a maximal compact subgroup in A;. It is also maximal compact
in Pr. The quotient
Xy =Ar/Kr = Pr/K[Ti Ny
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is a symmetric space of noncompact type for A; called the boundary symmetric space
associated to P; attached at the infinity of X. The reason for naming it this way is that it
often appears in the boundary of compactification of X.
The Iwasawa decomposition G = N AK which decomposes a semisimple group G as
the product of nilpotent, abelian, and compact subgroups respectively such that NA C P
implies that
G = PK.

Consequently, P acts transitively on X = G/K and the Langlands decomposition of P as
in equation (A.1) induces a decomposition of X associated to P, called the horospherical

decomposition of X. It is given by

XgN[XT[XXp.

It can be shown that K N P; = K N Aj and the Langlands decomposition of Pr also induces

the following horospherical decomposition of G:

G:N]T]A]KgN] X A[ X A]K.

Consider the roots ®(Pr,T7). For any ¢ > 0, define a cone in T7 by

T[7a = {t eTr ‘ t* > a,o € (I)(P[,T])}.

Let U C Ny, V C X1 be bounded subsets. Then the subset

Spuvae=UxTraxV CcX

is called the Siegel set associated with Pj.

Example 2.1. Let I' be SLa(Z). A good fundamental domain for SLy(Z) is found using

reduction theory (discussed below) and is well-known and simple.
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In Chapter 2, we have seen that a fundamental domain F' for SLy(Z) on h! is given

by the following region

1 1

We have seen that we can view h! as a subset of P!(C) whose boundary is P'(R)
which contains P!(Q). Taking the closure of F in P!(C), it meets P!(R) at exactly one

point z00.
Corollary 2.2 ([36], Corollary 2.8). The quotient SLo(Z) \ b* has finite area.

Proof. The fundamental domain F' is contained in the subset

V3 o1 1
27 9 2 (-

S:{z::c—&—iyebl]y>,—<x<

Then

Area(I'\ bl) :/ dxdxy < / drdry dy
F S

= — < 0.
y2 y2 § y2

O

Remark 2.3. The set S is called a Siegel set for SLy(Z) associated with the cusp ico. It

plays an important role in the general reduction theory.

In general the region

. 1 1
Sy = x+zy|—§§x§§,y>t
can be expressed as
St—UXTPt
1 b a 0
where U = ‘—§§b§§ and Tp; = a > ti/?
0 1 0 a!
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A subset of h' of the form S; is called a Siegel set associated with the parabolic

subgroup P given by

a,beR

The parabolic subgroup P is defined over Q. Its real locus is the stabilizer of ico in SLa(RR).

The components of its Langlands decomposition are:

1. Its unipotent radical is

= beR,,
01
2. its split component is
a 0
T= a€R"
0 at
3. and
10
A=<+
0 1

2.2 Uniform approach

In the description of the Satake compactification of a symmetric space X, the sta-
bilizers of boundary components are given by real parabolic subgroups. This shows that
parabolic subgroups are naturally associated with the geometry at infinity of symmetric
spaces. To develop a uniform intrinsic approach to constructing a compactification of a
noncompact bounded symmetric spaces X without embedding X into some compact space,
boundary points should be given in terms of points of the symmetric space X and the
topology of the compactification should be given in terms of convergent sequences of inte-
rior points to the boundary points. All this can be done using Siegel sets associated to real
parabolic subgroups. Using Siegel sets, the G-action extends continuously to the bound-

ary of the compactification and a certain property of these Siegel sets called the strong
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separation property helps in proving the Hausdorff property of the compactification. This
strong separation property is related to Minkowski reduction theory. Another benefit of
this approach is that an explicit description of the neighborhoods of the boundary points
in the compactification of X can be also described using the Siegel sets. Here are the three

basic steps of the intrinsinc method.

1. A suitable collection of parabolic subgroups of G which is invariant under conjugation

by elements of G.

2. For every parabolic subgroup P in the collection, define a boundary component e(P)
by making use of the Langlands decomposition of P or the induced horospherical

decomposition of X.

3. For every parabolic subgroup in the collection, attach the boundary component e(P)
to X via the horospherical decomposition of X to obatin X U [[pe(P) and show
that the induced topology is compact and Hausdorff and the G—action on X extends

continuously to the compactification.

Different compactifications can be constructed using this intrinsic approach by varying the
choices of the collection of parabolic subgroups. For the Satake compactification the collec-
tion of parabolic subgroups that is used is the collection of maximal parabolic subgroups.

We now, as an example, outline how we form the boundary components e(P) asso-
ciated to maximal parabolic subgroups in order to form the Satake (minimal one) compact-
ification X¢ of X. Let @@ be a maximal standard parabolic subgroup, and let § be the set
of simple roots. The associated boundary symmteric space X has the following canonical
splitting:

X = Fr x Fr,

where I C § — {a}, a € 6, I' =5 — {a} \ I. Define the boundary component of e(Q) of Q
by



Now when we consider the Satake compactification or the Baily-Borel compactification, we
assume that X is also a Hermitian space. We are interested that the compactification X to
also be Hermitian, and hence it was essential to split the boundary symmetric space X¢ for
it is not Hermitian. Instead, the boundary component e(Q) is a Hermitian space of lower
rank.

For any parabolic subgroup @), the boundary symmetric space X is a homogeneous
space of Q. Now when @ is a maximal parabolic subgroup, the boundary component
e(Q) = Fy is also a homogenous space of (). Here is how the action of Q on F7 is defined.
Let

m:Xg=Fr xFp— Fy

be the projection onto the first factor. For any ¢ € Q and z = aKg € F}, define the action

q.z2 =7(q.aKg),

where aK( is a point in Xg and q.aKg is given by the action of @) on Xg.

Once the boundary components are defined, we are ready to describe the compact-
ification X¢ in the following manner. Let Q be the collection of maximal real parabolic
subgroups,

X=XxUJ]e@=xu]] F
QeQ QeQ

To describe the convergence of interior points of X to the boundary points in X¢, the horo-
spherical decomposition of X is used. The neighborhoods of boundary points in boundary
components are explicitly described in [13]. Moreover, using properties of the Siegel sets, it

is shown that the topology on X¢ is Hausdorff.

2.3 Locally Symmetric Spaces

The advantage of this intrinsic description of the compactification of symmetric

spaces of noncompact type is that similar steps are taken to construct compactification of
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locally symmetric spaces I'\ X but in the latter only boundary components associated with
rational parabolic subgroups will be used.

Compactifications of locally symmetric spaces depend on a suitably chosen funda-
mental set for the action of an arithmetic group I' of a semisimple linear algebraic group
G on a symmetric space X. The problem of finding a fundamental set is called reduction
theory of G. The goal of reduction theory is construct fundamental sets of arithmetic groups

in terms of the Siegel sets of rational parabolic subgroups.

2.4 Borel Reduction Theory of Arithmetic Subgroups

Let G be a connected linear algebraic group defined over Q. Let G(Q) C GL,(Q)
be the set of its rational points, and G(Z) C GL,(Z) the set of its elements with integral
entries.

Assume from now on that G is a connected semisimple linear algebraic group defined

over Q and I' an arithmetic subgroup of G.

Definition 2.4. A subset S of G(R) is called a fundamental set for I" if
1. S = SK, where K is some maximal compact subgroup of G(R).
2. ST =G(R)

3. For any g € G(R), the set {y € T'| gSN~S # 0} is finite.
To define the fundamental sets of a fixed arithmetic group I', condition (2) can be

replaced by a weaker condition:
4. The set {y € T'| SN~S # 0} is finite.

Condition (2) is called the Siegel finiteness property which plays an important role
in defining the topology of compactifications of I\ X and showing that it is Hausdorff. Due
to condition (1), the projection S" = 7(S) of a fundamental set in G(R) into X = G(R)/K

satisfies the conditions

273



r.s’=x

and condition (3). A subset of X satisfying these conditions is called a fundamental set for
I'in X. Thus S is a fundamental set for I" in G(R) if and only if S = 7(S) is one in X.
We now state a classical reduction theory which gives fundamental sets for I' in

terms of Siegel sets of rational parabolic subgroups.

Proposition 2.5 ([36], Proposition 6.14). Let G be a reductive linear algebraic group defined
over Q, andI' C G(Q) an arithmetic subgroup. Let Syt = Np,, X Apy be a fundamental set
for GL,(Z). Then there exists finitely many elements by, ..., b, € GL,(Q) and an element
a € G such that

F((U::Ib;lsu,ta) NX)=X.

Proposition 2.6 ([36], Proposition 6.15). Let G be a reductive linear algebraic group defined
over Q and I' an arithmetic subgroup. If P is a minimal rational parabolic subgroup, then
MNG(Q)/P(Q) is finite, i.e., there are only finitely many T'-conjugacy classes of rational
parabolic subgroups. Let C' be a finite set of representatives of this double coset space. Then

there exists a Siegel set Spy such that

(Ur_1b; 1S, 0a) N X C CSpy.

Hence C'Spy is a fundamental set for I' in X.

The finite set C' can be identified with the I'—conjugacy classes of minimal rational
parabolic subgroups. So Proposition 2.6 can be reformulated as follows. Let Pi,... P, be
a set of representatives of I'-conjugacy classes of minimal rational parabolic subgroups of

G. Then for each P; there exists a Siegel set Sp, ;, such that

X = F(Uﬁlsﬂ',ti)'
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This is the classical reduction theory of an arithmetic group I'. It only gives a

fundamental set for T'.

Remark 2.7 ([36], page 46). Let I" be an arithemtic group. The finiteness of I'-conjuguacy
classes of minimal rational parabolic subgroups P is equivalent to the finiteness of I'-
conjuguacy classes of rational parabolic subgroups. That is, if R is any rational parabolic

subgroup, then the double coset space I'\G(Q)/R(Q) is finite.

Example 2.8. When G = SLs, we have seen in Chapter 4 that every proper rational
parabolic subgroup is minimal and conjugate to the standard one given by P. We have
also seen that there is a one-to-one correspondence between I'-conjugacy classes of rational
parabolic subgroups and the cusps of I'\ h. That is the set of cusps for the Riemann surface
I'\bh' is given by I'\SL2(Q)/P(Q), where P(Q) is the rational locus of the parabolic subgroup

P associated to the cusp ico.

There is a refined version of reduction theory which allows one to get a fundamental
domain of I' or an exact fundamental set without overlap under I'-translates. Such a theory
is called the precise reduction theory. To state this precise version, one needs to define

Siegel sets slightly differently. We will denote them by Spr.

Proposition 2.9 ([36], Proposition 6.17). Let Pi,..., P be a set of representatives of
I'—conjugacy classes of all proper (not only minimal) rational parabolic subgroups. There
exists a bounded set Qg in X. For each P; define a corresponding Siegel set Sp, 1, such that
each is mapped injectively into '\ X under the projection 7 : X — I' \ X. The space X

admits the decomposition
k
X=QyU HSPi7T7;7
i=1

and
k

T\ X =m(Q) U] (Sp.m).
=1
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2.5 Uniform Construction of Compactification of I' \ X

While one can think that a compactification of I' \ X can be achieved using Propo-
sition 2.9, it turns out that the reduction theory plays a crucial role in showing Step (4)
below. We now list the steps used in the general approach of compactifying locally sym-

metric spaces.
1. Choose a I'-invariant collection P of rational parabolic subgroups.

2. For every rational parabolic subgroup P of G in P, define a boundary component

e(P) using the Langlands decomposition of P.

3. Form a partial compactification of X by attaching all the rational boundary compo-

nents in P.

xX*=xu]J ep)
PecP

using the rational horospherical coordinate decomposition of X with respect to P.

4. Show that X* is a Hausdorff space and I" acts continuously with a compact Hausdorff

quotient. Then I'\ X* is a compactification of "\ X.

Remark 2.10. 1. Different choices of the collection of rational parabolic subgroups and

their boundary components e(P) lead to different compactifications.

2. For the Satake-Baily-Borel compactification, P is the collection of maximal rational

parabolic subgroups.

For the Satake-Baily-Borel compactification, X is a Hermitian space and the goal is to
make the compactification of I' \ X a complex space. Therefore, each boundary component
needs to be a complex space. The boundary symmetric space Xp associated to a rational

parabolic subgroup is in general not Hermitian. However, it admits a certain decomposition

Xp=Xpn*x Xp,
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where Xp), is Hermitian and Xp; is a linear symmetric space. Accordingly, we take the

boundary component to be

with a suitable topology, where P is the collection of maximal rational parabolic subgroups.
The benefit of this uniform approach is that it provides an intrinsic description of
the compactification of I'\ X rather than obtaining it from a compactification of X as done

by Satake.

3 Concrete Boundary Components of the Satake Compacti-

fication of '\ X

We briefly review the procedure of constructing the Satake (minimal one) compact-
ification of I'\ X from the Satake compactification of X as given in [68]. The reader should
compare with § 4.3.3. The main idea as discussed in § 1 is to get a partial compactification
of X from a compactification X¢ of X by adding only rational boundary components of X¢.
For each maximal real parabolic subgroup @, the associated symmetric boundary space X¢

splits as X¢ 1 x X¢ p. Define the boundary component e(Q) of @ to be e(Q) = X;. Then
X =XU[Je@)=xU]]Xq.
Qi Qi

Let 3 be a fundamental set constructed from Siegel sets of rational parabolic subgroups as
discussed in § 2.4. We then take the closure ¥ of ¥ in X¢ that meets X¢ with only finitely
many boundary components X of X¢. The action of the subgroup I' N Q) on X induces a

discrete group I'x, in the automorphism group of X;. The boundary of X* is given by

m
X\ X =Jrxg,.1.
=1

277



Taking the quotient of X* by I', we obtain
m
T\ X*=T\XU|JT\TXq, .
i=1

The quotient space I'\I'X, ; identifies with I'x,, , \ X¢, 1. Hence each boundary of I\ X*

is a quotient of the boundary space X¢, ; and

m
T\X*=T\XU|JTx,,, \ Xq.1-
=1

defines a compactification of I' \ X, where ); are representatives of I'-conjugacy classes of
maximal rational parabolic subgroups. The boundary of X™* is a union of what is called

I'—rational boundary component of X¢. They are also called the cusps.
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