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Abstract

In this dissertation we focus on different variations of the stable matching (marriage) problem, ini-

tially posed by Gale and Shapley in 1962 [16]. In this problem, preference lists are used to match n men with

n women in such a way that no (man, woman) pair exists that would both prefer each other over their cur-

rent partners. These two would be considered a blocking pair, preventing a matching from being considered

stable. In our research, we study three different versions of this problem.

First, we consider batch testing of stable marriage solutions. Gusfield and Irving presented an open

problem in their 1989 book The Stable Marriage Problem: Structure and Algorithms [18] on whether, given

a reasonable amount of preprocessing time, stable matching solutions could be verified in less than O(n2)

time. We answer this question affirmatively, showing an algorithm that will verify k different matchings in

O((m+ kn) log2 n) time.

Second, we show how the concept of an adaptive algorithm can be used to speed up running time in

certain cases of the stable marriage problem where the disorder present in preference lists is limited. While

a problem with identical lists can be solved in a trivial O(n) running time, we present an O(n + k) time

algorithm where the women have identical preference lists, and the men have preference lists that differ in

k positions from a set of identical lists. We also show a visualization program for better understanding the

effects of changes in preference lists.

Finally, we look at preference list based matching as a heuristic for cost based matching problems.

In theory, this method can lead to arbitrarily bad solutions, but through empirical testing on different types

of random sources of data, we show how to obtain reasonable results in practice using methods for generat-

ing preference lists “asymmetrically” that account for long-term ramifications of short-term decisions. We

also discuss several ways to measure the stability of a solution and how this might be used for bicriteria

optimization approaches based on both cost and stability.
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Chapter 1

Introduction

Stable matching is a computational problem involving pairing elements in such a way that no pair (or

group) would all prefer to break off and change their local assignments instead of staying with their current

configuration. David Gale and Lloyd Shapley proposed and solved the stable marriage problem in 1962 [18],

and since that time its variants have grown into a large area of research and theory in the field of computing.

They have numerous practical applications, such as roommate matching, hospital residency matching, job

scheduling, and product delivery [16, 30, 9, 4].

In this dissertation, we present work that has been completed in the last three years on a collection of

problems in the domain of stable matching. We explore batch testing to answer an open question proposed by

Gusfield and Irving, we apply the concepts of “adaptive” algorithms to stable matching, and we experiment

with the practical use of preference list versus cost based matching.

The format of the document is as follows. This chapter includes general notation, motivation, back-

ground material, and a review of relevant literature. The next three chapters each focus on the three principal

areas of research undertaken in this work. Each will use terminology and notation that has been described in

earlier chapters, but otherwise they will be somewhat self-contained. Notation, terminology, and details from

the literature pertaining specifically to one chapter will be found in that chapter. Chapter 2 is mostly drawn

from a previously published paper of the author and his advisor in Algorithmica [8], and Chapter 3 is adapted

from a paper published in the proceedings of the ACM Southeast Conference [7].
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1.1 Stable Matching Background and Notation

The stable marriage problem was first introduced in 1962 by Gale and Shapley [16], and forms the

basis for our area of research. The first problem they considered was to match applicants and colleges based

on factors such as preference and a quota q that colleges would seek to fill but not exceed. Since the colleges

could not merely accept their top q applicants because some might choose to go elsewhere, and because

they did not have certain details such as which other colleges were preferred by the applicants or would

accept the applicants, they could only come “reasonably close” to the desired number of students. Gale and

Shapley sought to achieve a solution satisfactory to both groups while exactly filling quotas if possible. They

introduced the notion of an unstable assignment in which an applicant and a college are not paired together

but both prefer each other to their current assignment. In this situation, both would benefit by breaking their

current arrangements and accepting that applicant to that college. The college and applicant in this case are

called a blocking pair [16].

As a special instance of stable matching, Gale and Shapley presented the stable marriage problem.

The classical stable marriage problem has input consisting of a set M of men and a set W of women, where

|M| = |W |. Each man i ∈ M submits a ranked preference list over all the women, and each woman j ∈W

submits a ranked preference list over all the men (we use variables i and j instead of m and w to avoid any

potential confusion with the m edges in an instance). The goal is to find a matching M between M and W

that is stable, meaning that it contains no blocking pair – a pair (i, j) /∈ M for which i and j would both

prefer to leave their current assignment in M and to match with each other. An example of a stable marriage

problem is shown in Figure 1.1. Note that an individual always prefers being matched over being single, and

therefore that every stable matching must be perfect (pairing up every man and woman) since otherwise we

would have an unmatched man i and woman j who together would form a blocking pair.

Gale and Shapley proved constructively that a stable matching always exists by giving a simple

O(n2) time algorithm for finding such a matching, where n = |M| = |W |. This running time is linear in the

size of the input (so in the worst case, the process of solving a stable matching problem takes no longer than

that of simply reading its input), and moreover there is a matching Ω(n2) worst-case lower bound on the

running time of any algorithm for this problem, as shown in [18]. However, McVitie and Wilson [25] show

that there are possible speedups in practice, and for many common instances, the Gale-Shapley algorithm

runs much faster than in O(n2) time, often computing a stable matching in closer to O(n) time if most of the

men end up with highly-preferred partners.
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13 2 4 1

21 4 2 3

34 2 3 1

41 2 4 3

Men Women

1 4 1 2 3

2 1 4 2 3

3 1 2 4 3

4 1 4 2 3

Figure 1.1: An example instance of the stable marriage problem, with men and their
preference lists on the left, and women and their preference lists on the right. A stable
matching is shown.

One of the most prominent examples of stable matching used in practice today is the National

Resident Matching Program (NRMP), which is a centralized service to coordinate the assignment of over

30,000 medical school graduates to hospitals in the USA [30, 32, 31]. The hospitals and the applicants both

submit preference lists that are used to find a stable solution.

1.2 The Gale-Shapley Algorithm

The Gale-Shapley algorithm for computing a stable matching involves a series of proposals from

one sex to the other and ends with everybody married in such a way as to avoid blocking pairs. As the

algorithm runs, the men propose to the women (although it works the same way if women do the proposing).

Each man will ask for, in order from most to least desired, the hands of the women on his preference list

in marriage. If a woman is currently single, she temporarily accepts his offer and “keeps him on a string”

instead of permanently accepting him [16]. Unfortunately, this union can be broken if at some point another

man proposes to that woman who is higher on her preference list than her current partner, in which case she

immediately leaves for the better offer. The newly single man will then pick himself up and continue down

his list, looking for another woman who will accept his proposal. When everyone is married, the algorithm

terminates.

The algorithm above runs in Θ(n2) time in the worst case time due to the possibility of n proposals

to n− 1 women and 1 proposal to the remaining woman [18]. In Chapter 3, we will see how to streamline

3



these proposals in order to speed up the Gale-Shapley algorithm for instances in which there is a high degree

of “consistency” in the men’s preference lists.

Several remarkable properties of stable matching solutions follow easily from the Gale-Shapley al-

gorithm. First, all men and women always end up matched at termination, since every woman, once matched,

stays matched forever, and a woman j cannot end up unmatched, since this would imply that there is also

an unmatched man i, who would have at some point in time proposed to j. Secondly, the matching obtained

by the Gale-Shapley algorithm is always stable (thereby giving a constructive proof that every instance of

the stable marriage problem admits a stable solution). If the resulting matching were to contain a blocking

pair (i, j), then this means i is matched with someone he prefers less than j. However, this would mean

that j rejected i at some point, so j is matched with someone she prefers more than i, thereby contradicting

the assumption that (i, j) is a blocking pair. Finally, let us say that j is a stable partner of i if i and j can

be matched in some stable matching. It can be shown (see [18] for a simple proof) that the Gale-Shapley

algorithm always outputs a stable matching M m that is man-optimal, in which every man is matched with

his most-preferred stable partner. Interestingly, M m can also be shown to be woman-pessimal, since each

woman ends up with her least-preferred stable partner (and this situation would be reversed if the women did

the proposing instead of the men). It is possible that only one stable solution exists, in which case both men

and women have their best and worst stable partners. Because the proposers will always end up with their

best possible stable matching, an interesting corollary is that it does not matter in which order the proposals

happen; the Gale-Shapley algorithm always outputs M m irrespective of the men’s proposal order. In Chapter

2, we will discuss in further detail the structure of the set of all possible stable solutions to an instance, along

with an intriguing augmenting structure called a rotation that allows us to move from one stable solution to

another.

1.3 Overview of Results

We narrow our focus in this work to a few specific problems dealing with stable matching. First, we

have developed a batch testing algorithm for stable marriage solutions. Gusfield and Irving presented an open

question of whether with “reasonable” preprocessing (they suggest O(n4)) the stability of many matchings

can be checked faster than checking each separately [18]. We answer this question affirmatively by describing

an algorithm that will accomplish what they are asking which runs in O((m+kn) log2 n) time, verifying each

matching in O(n log2 n) amortized time after O(m log2 n) preprocessing. Our algorithm uses dynamic graph

4



connectivity data structures to test whether a certain matching cleanly splits a graph of the “rotations” that

exist for given preference lists into different connected components.

Second, we introduce an “adaptive” approach to the stable marriage problem. Some problems, for

example sorting, admit the possibility of algorithms that have running times not merely based on the size of

the input but also some other measure of its inherent complexity. This approach cannot improve the running

time in the worst case, but it can run much faster in situations where the input has some special structure,

such as a mostly-sorted array in the case of sorting algorithms. For example, the worst-case running time of

insertion sort on an array A[1...n] in terms of problem size is O(n2), but a more precise analysis shows that

the running time is actually Θ(n + I), where I denotes the number of inversions in the input array — “out

of order” pairs of elements (i, j) with i < j but A[i] > A[ j]. In other words, an inversion exists when one

element appears before another element in the sequence, yet the first would be considered greater than the

second. Therefore, the running time of insertion sort scales gracefully between O(n) and O(n2), depending

on the inherent “unsortedness” of A measured in terms of inversions. These algorithms are called “adaptive”

and are useful because in practice these kinds of inputs are common [12]. Given an instance of this problem

with n men and n women with initially identical lists and a set of changes to k elements on lists on one side,

we provide an algorithm to obtain a stable solution in O(n+ k) time. We explore expanding this approach to

deal with changes to both sides of the preference lists and to correct a solution after adding more cycles of

change. This chapter contributes a faster way to compute stable matchings for a fairly reasonable model in

practice.

Finally, motivated by the fact that “ordinal” matching problems (matching problems with preference

lists) can be typically solved much faster than matching problems with explicit edge costs, we investigate the

use of ordinal matching as a heuristic for quickly obtaining near-optimal solutions to cost-based matching

problems. In theory, this can result in much worse than optimal results in the worst case. However, through

extensive computational experiments on random instances of several types, we show that in practice, one

may indeed obtain reasonable solutions to cost-based problems using a variety of heuristics based on ordinal

matching. In particular, we investigate several interesting ways to transform cost-based problems into prob-

lems with preference lists, where the preference lists capture not only “immediate” costs but also longer-term

effects of possible choices. As opposed to the first two chapters, this chapter focuses on empirical research

where we examine practical benefits and drawbacks, instead of theoretical bounds that may be rarely encoun-

tered in practice. We also look at relaxing stability requirements, showing how we can potentially consider

“bicriteria” methods that seek to obtain good solutions both in terms of stability and cost.

5



Chapter 2

Batch Testing of Stable Marriage

Solutions

For many computational problems, it seems easier from an algorithmic standpoint to verify the

correctness or optimality of a candidate solution than to solve the problem outright. Even if this is not

possible, it is sometimes possible to verify a batch of candidate solutions more efficiently than by checking

each one individually, often by preprocessing an instance of the problem to build a data structure that supports

fast queries to verify candidate solutions.

We show in this chapter how to perform efficient batch testing for stability of a set of matchings

in the well-studied stable marriage problem. Given a stable marriage problem instance represented by a

bipartite graph having 2n vertices and m (generally n2, but we reduce this by methods described later) edges,

we describe an algorithm that can verify the stability of k different matchings in a batch fashion in O((m +

kn) log2 n) time, effectively verifying each single matching in O(n log2 n) amortized time after O(m log2 n)

preprocessing time. This affirmatively answers a longstanding open question from the book of Gusfield

and Irving on stable marriage problems [18] as to whether stability can be verified in a batch setting (after

sufficient preprocessing) in time sub-quadratic in n; this question is motivated by existence of an Ω(n2) lower

bound on the worst-case running time for verifying stability of a single matching [27]. In their 1989 book

on the stable marriage problem, Gusfield and Irving presented a number of open questions “in the hope of

encouraging others to enjoy the challenge and fascination of the subject” [18]. The specific problem we

answer asks whether it is possible to test for stability of matchings in a batch fashion significantly faster than

6



testing each matching individually. It is important to note that we cannot simply list the solutions and check

against them because the maximum number of solutions grows exponentially with n; in fact, enumeration of

stable marriage solutions has been found to be #P-complete [22]. McVitie and Wilson do present an algorithm

that will find all stable solutions [25].

Our results are built upon a new characterization of stable matchings in terms of the connectivity a

certain graph related to the underlying set of rotations induced by the stable matching instance. Using this

characterization, we then apply efficient data structures for fully dynamic connectivity in graphs [19, 33] to

obtain an efficient test for stability.

In the next section, we describe the model we are focusing on in detail and summarize its rele-

vant mathematical properties. Following this, we introduce our new connectivity-based characterization of

stability, upon which we build our data structure for verifying the stability of a series of candidate matchings.

2.1 Preliminaries

In this chapter, we focus on a well-studied generalization of the stable marriage problem allowing for

incomplete preference lists. Here, our input is described by a bipartite graph G = (M∪W,E), with 2n vertices

and m = |E| edges. Each man i ∈ M submits a ranked preference list over the set of women { j | (i, j) ∈ E}

to which he is adjacent, and likewise for the women. The definition of stability remains the same, except we

only consider couples (i, j)∈ E as potential blocking pairs. In this setting, we may not be able to find a stable

matching M ⊆ E for which all men and women are assigned. However, since our results already include

an allowance for preprocessing, we assume that we have “cleaned up” our instance by eliminating any men

and women who are not assigned in any stable matching. Furthermore, we assume that we have removed any

edges from E that are not included in any stable matching. Both steps are easily accomplished in linear time

(O(m) time). The reader is referred to [18] for further details. Any matching we later attempt to verify that

involves one of the vertices or edges removed during this preprocessing step can be immediately classified as

unstable.

Rotations. As with many algorithmic results for the stable matching problems (e.g., [21, 22, 23]),

our methods in this chapter make use of an alternative characterization of the set of all stable matchings in

terms of rotations, cyclic augmenting structures that allow us to move from one stable matching to another.

Rotations were first introduced by Irving as “all-or-nothing cycles” [21]. This term was originally used

in reference to the stable roommates problem, which differs from stable marriage in that all people in the

7



problem belong to one set instead of being separated into men and women. Unlike stable marriage problems,

an instance of the stable roommates problem can possibly have zero solutions [16]. This concept was first used

in relation to the stable marriage problem in [22] in which rotations were used to give a characterization of the

set of stable matchings for a given instance. More recently, Baiou and Balinski [4] and Dean and Munshi [9]

have generalized the concept of rotations to solve and improve algorithms for the stable allocation problem,

which is a stable bipartite matching problem with both sides having non-unit size, in which the assignments

between elements are nonnegative real numbers.

For our purposes, we define a rotation π = (πM,πW ) as a set of men πM ⊆ M and a set of women

πW ⊆W . We say that a rotation π is exposed in a stable matching M if we obtain another stable matching by

advancing the assignments in πM and retreating those in πW , where by “advancing” we mean assigning each

man i ∈ πM to an entry in his preference list at some point following his partner in M , and by “retreating”

we mean assigning each woman j ∈ πW to an entry in her preference list somewhere before her partner in

M . The process of moving from M to another stable matching by advancing πM and retreating πW is known

as eliminating π from M. For example, in Figure 2.1, boxes around entries in preference lists indicate stable

partners, and the matching currently shown (given by the left-most box in each man’s preference list and the

rightmost box in each woman’s list) has only the light blue rotation exposed. If we were to eliminate this

rotation, man one would change his partner from woman 6 to woman 5, and man 6 would change his partner

from woman 5 to woman 6. Elimination of the light blue rotation also exposes the magenta rotation, whose

elimination would then expose the dark blue rotation.

As mentioned before, when the men propose we get a solution where the men enjoy their best

possible partners while the women end up with their worst. Every stable matching instance admits two

special stable solutions, a “man-optimal, woman-pessimal” matching M m where every man is assigned his

first stable choice and every woman her last stable choice, and a “woman-optimal, man-pessimal” matching

M w where every woman is assigned her first stable choice and every man his last stable choice. Note that it

is possible for these two solutions to be the same in the event that there is only one stable solution.

As shown in [25, 23], we can find rotations by breaking up one match and then continuing the Gale-

Shapley algorithm until it once again stabilizes (or does not if no more solutions exist.) This process can lead,

depending on the marriage that is broken, to multiple rotations being combined together in one. That is, it

appears that one rotation was found, but in reality, part of that rotation could have taken place without the rest

and still provided a stable solution. This occurs when a marriage is broken that is not part of the next exposed

rotation. Nothing actually prevents the algorithm from finding another stable matching, provided one exists,
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16 2 3 5 4 1

22 6 4 5 1 3

36 2 5 1 3 4

43 6 1 2 4 5

53 1 2 5 6 4

62 5 3 6 4 1

Men

1 3 6 4 2 1 5

2 3 5 6 2 4 1

3 4 5 6 1 3 2

4 5 4 6 1 2 3

5 2 4 1 3 6 5

6 5 4 6 1 3 2

Women

Figure 2.1: An example of the stable marriage problem with solutions and rotations
marked. Men and their preference lists appear on the left-hand side, and women and their
preference lists appear on the right-hand side. Note that the man-optimal solution (shown
with boxes highlighted in bold, as well as with lines matching each man with his corre-
sponding partner) is the leftmost marked elements on the men’s side (man 1 with woman 6,
man 2 with woman 4, man 3 with woman 2, and so on) and the woman-optimal solution is
the rightmost marked elements on the men’s side. The arrows mark rotations moving from
one stable solution to the next.

but any rotations that would have to precede the intended one would take place as well to reach the solution.

As shown in Figure 2.1, certain rotations happen after others. The same rotation (dark blue) on the first man’s

preference list is also on the fifth man’s list. The key point to note is that on the first man’s list there are two

other rotations that should happen first before the dark blue rotation while that same dark blue rotation is the

first (and only) one to affect the fifth man’s list. If we started with the man-optimal solutions and decided to

break the 5th man’s marriage up and continue Gale-Shapley until it re-stabilized, we would end up with the

woman-optimal solution. That would make it appear that only one rotation and 2 stable solutions exist, but as

the figure shows, there are 3 possible rotations and 4 stable solutions. There are at least two ways to find an

actual “next” rotation to follow in order to see all rotations. First, it can be done by breaking up each man’s

marriage and each time keeping track of the difference in total movement by each man down his preference

list from the broken matching to the next stable solution that is found. The smallest difference is the next
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rotation. Another way to find the next is to unassign an arbitrary man and restart Gale-Shapley if we are not

already at the woman optimal solution. Eventually, everyone will be assigned. The last man assigned comes

from the rotation with no prerequisites, so we can start over again by breaking up that man’s marriage to find

the next rotation.

In this chapter we have eliminated men, women, and edges not involved in any stable matching,

so our definitions of rotations now change slightly compared. We obtain another stable matching from an

exposed rotation by advancing the assignments in πM and retreating those in πW , but we now “advance” by

assigning each man i ∈ πM to the entry in his preference list now immediately following his partner in M ,

and “retreat” by assigning each woman j ∈ πW to the entry in her preference list immediately preceding her

partner in M , eliminating π from M . Note that now our definition of a rotation is somewhat simpler than the

standard definition of a rotation in the literature, owing to the fact that we have already pruned away useless

entries from our preference lists. For a more detailed introduction to rotations and all of their properties we

introduce in this chapter, see [21, 22, 23].

Suppose we start with the man-optimal assignment M m and repeatedly move to a new stable match-

ing by eliminating an arbitrary exposed rotation, stopping when we reach M w (note that every stable match-

ing except M w exposes some rotation). The sequence of rotations we apply during this process is called a

rotation elimination ordering. Remarkably, it turns out that every rotation elimination ordering involves the

exact same set Π of rotations. Moreover, for each man i and each woman j in i’s preference list (i.e., for

each edge (i, j) ∈ E), there is a unique rotation π−(i, j) ∈ Π whose elimination advances i’s assignment to

j (unless j is the first entry on i’s preference list), and there is a unique rotation π+(i, j) ∈ Π whose elimi-

nation advances i’s assignment past j (unless j is the last entry on i’s preference list). For example, Figure

2.2(a) shows an example stable matching instance with 8 rotations labeled A . . .H, where π−(1,6) = C and

π+(1,6) = D. In order to ensure that π−(i, j) and π+(i, j) are clearly defined for every edge (i, j) ∈ E, we

include two dummy rotations π− and π+ in Π, with π−(i, j) = π− if j is the first woman on i’s preference

list, and π+(i, j) = π+ if j is the last woman on i’s preference list.

The set Π of all rotations adheres to a natural partial ordering: for any two rotations π,π ′ ∈ Π, we

say π ≺ π ′ if π ′ cannot be exposed until π is eliminated (i.e., if π precedes π ′ in every possible elimination

ordering). Observe from Figure 2.2(a) that two rotations π and π ′ share a precedence relationship if and

only if πM ∩π ′M 6= /0, in which case their relative ordering amongst the common preference lists of πM and

π ′M determines whether π ≺ π ′ or π ′ ≺ π . Also note that π− � π and π+ � π for all π ∈ Π. We commonly

represent the set of all rotations using a directed acyclic graph (DAG), D, where V (D) = Π and (π,π ′)∈E(D)
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4 46 27 6 8
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6 67 83 54 1 42
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D
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E
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G
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G
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Figure 2.2: An example instance of the stable matching problem. In (a), the men and their
preference lists are shown on the left of the bipartite matching graph G, and the women on
the right. The eight rotations (labeled A . . .H) are shown overlaid on the preference lists,
and the reduced rotation DAG is shown in (b) to the right of the matching instance. A
stable matching M is indicated with shaded entries in the men’s preference lists, and its
corresponding closure is outlined in the rotation DAG. The expanded rotation graph H ′ is
shown in (c). Note that the removal of the edges P(i, j) corresponding to (i, j) ∈M leaves
H ′ with two connected components, one containing π− and the other containing π+.

if and only if π ≺ π ′. From an algorithmic standpoint, it typically suffices to omit a large number of edges

implied by transitivity and consider a reduced DAG D′ with V (D′) = Π and (π,π ′) ∈ E(D′) if and only if

π = π−(i, j) and π ′ = π+(i, j) for some edge (i, j)∈ E. An example of such a reduced rotation DAG is shown

in Figure 2.2(b). Letting n = |M| = |W | and m = |E| describe the size of our (pruned) bipartite input graph

G, it is easy to see that |V (D′)|= |Π| ≤ m and |E(D′)|= m. One can show that D is the transitive closure of
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D′, and one can also compute in O(m) time the values π−(i, j) and π+(i, j) for all (i, j) ∈ E, the structure of

all rotations in Π, and the reduced rotation DAG D′ [18].

For any subset S ⊆ Π, let S∗ be the set of all rotations π such that π � π ′ for some π ′ ∈ S (i.e., the

set of all rotations π from which there exists a directed path in D (equivalently, D′) to some rotation π ′ ∈ S).

We say S is a closure if S = S∗. We now arrive at a key structural connection between the rotation DAG D′

and stable matchings, a proof of which appears in [22].

Lemma 1. There is a 1-to-1 correspondence between stable matchings in G and closures S in D′ such that

π− ∈ S and π+ /∈ S.

The closure S⊆Π corresponding to a stable matching M contains precisely the set of rotations that

must be applied starting from M m, according to some valid elimination ordering (a topological ordering of

S), in order to reach M . The condition π− ∈ S and π+ /∈ S has been added to ensure that M m and M w both

correspond to a distinct closure; this condition holds automatically for the closure corresponding to any other

stable matching M .

2.2 A Connectivity-Based Characterization

Given an instance of the stable marriage problem, we build its expanded rotation graph H (an

undirected graph) by including in V (H) a vertex representing π−, a vertex representing π+, and a vertex

for every pair (π, i) where π ∈ Π−{π−,π+} and i ∈ πM . The edge set E(H) is given by P∪R, where

P = {P(i, j) : (i, j) ∈ E} is a set of precedence-related edges, with edge P(i, j) connecting vertex (π−(i, j), i)

to vertex (π+(i, j), i); that is, each edge P(i, j) connects the two rotation instances surrounding the edge (i, j)

in i’s preference list, reflecting the precedence relationship between these two rotations. The set R contains

rotation-related edges, and consists of an an arbitrarily-chosen forest in which we have a spanning tree on the

vertices originating from each distinct source rotation π ∈Π−{π−,π+} (i.e., the vertices (π, i) with i∈ πM).

Note that P∩R = /0, since each rotation π ∈ Π appears at most once in each preference list. One can show

that |V (H)|= m−n+2 = O(m) and |E(H)|= 2m−n+2−|Π|= O(m), and one can build H in O(m) time

by first computing the structure of all rotations in Π.

We now arrive at a new characterization of stability in terms of the connectivity of H:

Lemma 2. A matching M is stable if and only if π− and π+ lie in different connected components in H,

after the edge set P(M ) = {P(i, j) : (i, j) ∈M } is deleted.
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Proof. Let H ′ denote H with edge set P(M ) deleted, as shown in Figure 2.2(c). Since we never delete edges

from the forest R, note that each rotation π ∈ Π−{π−,π+} remains “intact”, with all its corresponding

vertices (π, ·) in the same connected component of H ′. Also note that there is a path of precedence-related

edges from π− to the vertex (π−(i, j), i), and from the vertex (π+(i, j), i) to π+, for every (i, j) ∈M , which

implies that H ′ either consists of one large connected component, or two connected components, with one

containing π− and the other π+.

Suppose M is stable but that H ′ consists of just one single component. Let S ⊆ Π be the closure

corresponding to M according to Lemma 1. Since π− ∈ S and π+ /∈ S, if we follow any path p from π− to π+

in H ′, we must at some point traverse a precedence-related edge P(i, j) where π−(i, j) ∈ S and π+(i, j) /∈ S.

But then (i, j) ∈ M , so P(i, j) would have been removed when constructing H ′, a contradiction. Suppose

now that H ′ consists of two components. Here, we obtain a valid closure S by taking all rotations lying in the

π− component, so the corresponding matching M must be stable.

2.3 An Efficient Batch Algorithm for Verifying Stability

Given the characterization from Lemma 2, let us now build the dynamic connectivity data structure

of [19] on H. This structure supports the insertion and deletion of edges in an r-vertex graph in O(log2 r)

amortized time, and it can determine whether or not an arbitrary pair of vertices lie in the same connected

component in O(logr/ log logr) time. In our case, since |V (H)|= O(m), we obtain amortized running times

of O(log2 m) = O(log2 n) and O(logm) = O(logn) respectively. We can build the initial structure in a batch

fashion (without inserting edges one by one) in only O(m) time, although amortization requires that we

charge O(m log2 n) for this step, giving us a credit for future work to be redeemed later at query time.

To verify the stability of a candidate matching M , we now simply delete the n edges P(i, j) for all

(i, j) ∈ M from H in O(n log2 n) amortized time and issue a connectivity query to test whether π− and π+

lie in the same component. Our matching M is stable if and only if the answer to this query is negative.

We then restore the edges P(i, j) to H in anticipation of future queries. Our time for verifying k queries is

therefore O((m+kn) log2 n), which is effectively O(n log2 n) amortized time per stability query after spending

O(m log2 n) preprocessing time.
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2.4 Concluding Remarks

Note that we cannot claim an O(n log2 n) worst-case bound (after preprocessing) for verifying a

single matching, since due to amortization, some of the O(m log2 n) “preprocessing time” is actually spent

during queries instead of during preprocessing. It is an interesting open question to see if one can obtain a

reasonable worst-case bound for queries. Presently, the best-known dynamic graph connectivity data struc-

tures with worst-case bounds [13, 11] seem insufficient to yield a stability test with worst-case running time

sub-quadratic in n.

The running time of our algorithm can be easily improved if one obtains a stronger dynamic con-

nectivity data structure. For example, Thorup [33] uses randomization to obtain an expected amortized up-

date time of O(logn(log logn)3), which gives an O((m + kn) logn(log logn)3) total expected running time

(whereas our original running time is deterministic). Perhaps a faster time can possibly be obtained by ex-

ploiting the special structure of H combined with the fact that we really only need to accommodate edge

deletions, rather than deletions plus insertions.
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Chapter 3

Adaptive Stable Marriage Algorithms

In the second branch of our research on stable matching, we introduce the concept of adaptive

algorithms to the stable marriage problem. There are limits as to how fast it is possible to perform certain

tasks in the worst case. For instance, Ω(n logn) time is necessary in the worst case to run a comparison-based

sorting algorithm. Recall that the worst case input for solving a stable marriage problem with n men and

n women will lead to an Θ(n2) running time. Estivill-Castro and Wood, however, present a survey of what

Mehlhorn called an adaptive algorithm, one that, with certain input, possibly achieves an improvement by

utilizing a running time that is based on both the size of and the “disorder” present in the input [12, 26]. They

show that Burge in 1958 had seen that the order of the input would affect the choice of the best algorithm for

sorting [5]. For that problem, one method of measuring disorder is the number of inversions present in the

input. [12] They also provide references that show that “nearly sorted sequences are common in practice,”

giving motivation for the use of these adaptive sorting algorithms [12]. The running time of an adaptive

sorting algorithm scales not only based on the size of input but also on the amount of disorder present in

that input. Recall the example of insertion sort that scales gracefully between O(n) and O(n2) based on

the number of inversions in the input. This kind of analysis makes practical sense because of the common

occurrence of mostly-sorted data in the real world.

In a stable marriage problem, it makes sense that preference lists would also in some cases tend

to have less disorder, in this case represented by changes that exist from one list to another. If one woman

is particularly attractive, it stands to reason that many men will place her high on their lists. For another

example, we refer back to the NRMP that is used to match med-school graduates with hospitals. Although

the preference lists submitted to this system are (for obvious reasons) confidential, one might expect highly
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reputable or geographically advantageous hospitals to appear near the top of a large number of graduate

preference lists, and likewise, we might see the strongest students near the top of a large number of hospital

preference lists. We seek to take advantage of this behavior to create an adaptive algorithm for stable marriage

problems that would improve running time in practice.

3.1 Preliminaries

Although the Gale-Shapley algorithm runs quite fast in practice, often in nearly linear time, it carries

a worst-case running time of Θ(n2) (and recall that the stable marriage problem in general involves a worst-

case lower bound of Ω(n2) [18], mostly due to the fact that its input has size Θ(n2)). By contrast, suppose we

know in advance that each man in our input instance has the same preference list, and that the women also

have identical preference lists; this reduces the effective size of the input to only O(n), since we only need to

write down one copy of each preference list. In this case, Gusfield and Irving also describe a simple inductive

proof that there is a unique stable matching: for simplicity, let us assume the women are ordered according to

the preference list of the men, and vice-versa. Hence, man 1 and woman 1 are both their own respective first

choices, and therefore both must be matched together in any stable assignment (otherwise they would form

a blocking pair). Continuing in an inductive fashion, we see that man 2 and woman 2 must be matched, and

so on, leading to a trivial O(n) algorithm for the special case where we are told in advance that all men share

a common preference list, and all women share a common preference list. For notational simplicity, let us

say that a stable marriage instance is M-consistent if it contains only one common preference list shared by

all men, W -consistent if it contains one common preference list shared by all women, and MW -consistent if

both of these cases apply.

Obviously, we can not expect full MW -consistency for many instances of the problem in practice.

We then need to introduce disorder through a number of small changes in the preference lists which will

complicate the algorithm while making it more interesting and practical. Our contribution in this chapter

is an O(n + k) adaptive algorithm for W -consistent instances of the stable marriage problem. This result is

weaker than one that works for fully MW -consistent lists, but it does actually turn out to be similar to the

behavior of some sports drafts such as that used by the NFL. The women’s side with the uniform preference

lists can represent an order of draft picks while the women themselves become the players. This behavior is

realistic in that the players themselves don’t (or at least shouldn’t) have a say in by whom they are drafted,

instead agreeing to play for whoever drafts them in a predetermined order based on records from the previous
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season (and trades of draft picks which we will ignore for now). The men become the teams in the draft,

each choosing the highest player in his list when his turn comes. Because all the women have the same order

and because at this point the current man is the highest unmatched in the women’s list, he will always be

accepted. The fact that the men, or teams, start off with the same list and then have a few differences in their

rankings of women, or players, also mimics the draft. Players with the most potential will be highly valued

by every team, but different organizations will have different experiences scouting out the incoming talent,

leading to slight differences. Obviously, this model is somewhat simplified from the actual draft. It actually

does present a few other options for problems to study using this framework, though. We discuss these areas

in the final part of this section.

There are a number of options for how to measure and encode disorder in our problem. We con-

sidered inversions, which have the problem of the possibility of a quadratic number of inversions when

comparing two lists, leading to a cubic number overall and an O(n3) running time. A different method was

to consider the changes necessary to move from one list to another. This method can keep the running time

lower, but it is slightly less informative when comparing how similar two lists are. In a list of size n for

instance, changing woman 1 with woman n could be considered a more significant change than changing

woman 1 with woman 2, but both appear the same using this method. For the sake of speed, we used the sec-

ond method for our algorithm, but it may be interesting to consider a measurement of disorder for preference

lists that can combine both without disproportionately valuing either.

In order to prevent us from having to examine an input of size Ω(n2), we must encode our input

concisely. We can encode a nearly-MW -consistent instance as follows. For the men, we first specify a global

“consensus” preference list, and then for each individual, we list only the entries in his preference list that

differ from the consensus list (e.g., “entry 7 is changed to women 2, and entry 9 is changed to woman 5”).

Preference lists of the women are encoded the same way. If we let k denote the total number of differing

entries over all men and women, this entire encoding requires Θ(n+ k) space, ranging from Θ(n) if we have

complete MW -consistency, up to Θ(n2) if preference lists are highly inconsistent.

The succinct encoding above raises the question of whether or not one can design an adaptive algo-

rithm for the stable marriage problem running in only O(n+k) time. Note that this type of adaptive algorithm

result would be slightly weaker than, say, an adaptive sorting algorithm, since we still need to explicitly en-

code the input of the problem as above in order for the algorithm to be able to exploit partial MW consistency

(in contrast to an adaptive sorting algorithm, which is not told any extra structural information beyond just

the array to be sorted). However, with the stable marriage problem, succinct encoding is an unavoidable
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requirement — even if we have complete MW consistency, an algorithm cannot leverage this fact unless it is

informed about it in advance; otherwise, it may still need to examine essentially all of its Θ(n2)-size input.

Hence, a partially MW -consistent instance is only of use to us if it is succinctly encoded1.

Consider a succinctly-encoded W -consistent instance of the stable marriage problem with n men

and n women. We number the women 1 . . .n in the order of the consensus preference list of the men, and

likewise we number the men 1 . . .n in the order specified by the consensus preference list of the women (if

the men and/or women are not ordered this way initially in our input, then it only takes O(n) time to re-order

them accordingly). The consensus preference list of the men now lists all women in the order 1,2, . . .n, and

the consensus preference list for the women now lists all men in the order 1,2, . . . ,n. Since our instance is

W -consistent, only the men can have changes in their preference lists deviating from the consensus list. We

encode the changes away from the consensus list for man m using a list Cm of ordered pairs (i,w), where each

such pair indicates that index i in m’s preference list is changed to woman w (note that i 6= w, since i = w in

the consensus list). We denote the total amount of change in all of the men’s preferences by k = ∑m |Cm|.

A matching M is a subset of n man-woman pairs (m,w) such that no two pairs share a common man

or woman. We write wM (m) to denote the woman partnered with m in M , and similarly we write mM (w)

to denote the man partnered with woman w (when clear from context, we often omit the M subscript). A

matching M is stable if it admits no blocking pair (m,w) /∈M where m prefers w to wM (m) and w prefers

m to mM (w).

3.2 The Algorithm

The key idea of our algorithm is to speed up the implementation of the simplified Gale-Shapley

algorithm above by keeping track of the set of women who are not yet assigned, but who should have been

chosen already if the men had identical preference lists. If all men shared the same preference list 1,2, . . . ,n,

then by the time our algorithm considered man m, we would have already assigned man i with woman i for

i = 1 . . .m−1. The two ways that another woman would have been preferred at the time of choosing for man

i are for disorder to exist on list i or for it to exist on a previous list, leaving a woman < i still available at the

time of his choosing.

Hence, we keep track of a list R, stored in a doubly-linked list, which in iteration m keeps a sorted

1As a brief side note, observe that the related problem of determining the most succinct encoding for a partially MW -consistent
instance (an encoding that minimizes k) is solvable in polynomial time by a straightforward reduction to a weighted bipartite matching
problem.
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AdaptiveStableMarriage:
1 for each woman w = 1 . . .n:
2 S[w] = True
3 for each man m = 1 . . .n:
4 Append m to the end of R
5 min = n+1
6 for each pair (i,w) in Cm with S[w] = True:
7 T [w] = True
8 if i < min:
9 w(m) = w

10 min = i
11 for all women w starting from the front of R:
12 if S[w] = False:
13 Delete w from R, Continue
14 if T [w] = False
15 if w < min:
16 w(m) = w
17 Break
18 for each pair (i,w) in Cm:
19 T [w] = False
20 S[w(m)] = False

Figure 3.1: Pseudocode for our algorithm.

list of all the women in the set {1, . . . ,m} who are still single (the array R may also end up containing

some women who are assigned, but these are cleaned out of from R whenever they are encountered). When

considering the partner to whom man m should propose, this will either be one of the women in Cm, or it will

be the first single woman in R who is not also in Cm.

The pseudocode in Figure 3.1 illustrates the operation of the algorithm. We make use of a boolean

array S[1 . . .n], where S[w] = True if and only if woman w is still single, and we also use a temporary boolean

array T [1 . . .n], where T [w] = True if woman w appears in the change list Cm for the current iteration. To

further clarify the structure of the algorithm, a detailed example is shown in Figure 3.2.

Observe that the algorithm assigns each man m to a woman either from his change list Cm in line

9, or alternatively he is assigned in line 16 to his most-preferred woman in R (who is not also in Cm). It is

important to note that at least one of these two cases always applies, so each man must end up assigned a

partner. If Cm is empty, then line 16 will definitely be triggered for at least one woman in R, since by the time

we process man m, we will have added m entries to R but deleted at most m−1 of them, leaving at least one

single woman still present in R.

Theorem 3. Our algorithm runs in Θ(n+ k) time.
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Proof. Discounting the “for” loop starting on line 11, it is clear that for each man m, we spend only linear

time checking the entries in Cm, for a total of O(n + ∑m |Cm|) = O(n + k) time. To analyze the “for” loop

starting in line 11, we note that the amount of time spent deleting entries from R (line 13) will be at most

O(n) over the entire algorithm, since each woman is added and hence also deleted at most once from R.

Not counting the time spent on entries of R that are deleted, the “for” loop on line 11 spends O(1 +q) time,

where q denotes the number of entries w in R with T [w] = True (since we break the loop immediately when

we encounter an entry w with T [w] = False). However, since q ≤ |Cm|, the work spent in the for loop is

dominated by the running time of the rest of the algorithm.

It is crucial that we break the “for” loop starting in line 11 immediately upon reaching an entry w

in R with T [w] = False, since the list R can grow quite long; for example, in an instance where Cm contains

(1,n−m+1) for all m = 1 . . .n, R grows each iteration until m = n/2.

Theorem 4. Our algorithm computes a stable matching.

Proof. To prove this, we need only show that every man m proposes to the first single woman in his preference

list; stability then follows from our earlier inductive argument. Consider now the point in time when our

algorithm processes some man m who is at position m on the women’s consistent preference list, and let L

denote the first m women on m’s preference list. We claim that at least one of the women in L must still be

single, since at most m−1 women have already been assigned. The women in L with S[w] = True are either

entries from Cm (all of which are explicitly checked by our algorithm), or they belong to {1,2, . . . ,m}, all

of which have previously been added to the list R by line 4; moreover, every women w ∈ {1,2, . . . ,m} with

S[w] = True must still remain in R, since only women w with S[w] = False are deleted from R. Among these,

our algorithm explicitly examines the one most highly preferred by m. As a result, while processing m, our

algorithm must consider (and issue a proposal to) the most preferred single woman w ∈ L.

3.3 Future directions

Expanding the algorithm to related problems

The adaptive stable marriage model introduced in this paper leads to a number of interesting direc-

tions for future research. Foremost, there is the question of whether an algorithm with complexity close

to O(n + k) can be developed for the fully-general adaptive stable marriage problem, not assuming W -

consistency as we have above. This problem seems to be quite challenging, since when changes appear
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Figure 3.2: An instance of a W -consistent stable marriage problem is shown in (a).
Rectangular boxes show what the solution would have been if all men had the identical
preference list 1,2, . . . ,n. The circles show which entries in the men’s preference lists
have changed from these identical lists, and the triangles show the new stable solution for
individuals for whom it is different from the original. In (b), we see two snapshots showing
information at different times in the execution of the algorithm on the provided instance.
They show the list R of women who remain single but would not have, if preference lists
had not been changed. Also shown are the list of changes Cm for the current man m and the
boolean array S indicating which women are still single.
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in preference lists on both sides of the instance, we can lose much of the useful structure that our algorithm

manages to exploit. If it seems that an efficient algorithm is possible for the general case, then a number of

other problems stand to be addressed. In particular, there may no longer be a single unique stable solution,

so one might want to see if it is possible to compute the rotation DAG that implicitly describes the set of all

stable solutions in an efficient manner (see [21, 22, 23] for additional detail on the underlying structure of the

set of all stable solutions).

Another interesting direction (which we believe also seems quite challenging) might be to approach

the problem from a “data structure” perspective. For example, can one encode the state of a computation in

an appropriate fashion so that after making a single new change (say, a single swap in one of the preference

lists), a new stable solution can be recomputed more quickly than by solving the problem again from scratch?

It is worth noting that a single swap in one preference list has the potential to change the assignment for every

single man and woman, so a data structure solving this problem will likely need to maintain some sort of

implicit encoding of the solution, which we can query to determine the current state of the assignment.

An example of this change can be seen in figure 3.3. Notice that the only change from the top

instance to the bottom instance is a swap on the last man’s preference list of woman 1 and woman 9, yet every

man and woman end up with a different partner in the new solution. The picture itself comes from screen

shots of a visualization program that we implemented to study the effects of these changes on solutions. Note

that it also includes a count of rotations for situations where there can be more than one solution (not the W-

consistent case). We also developed another version that displays all solutions and rotations for an instance

of the problem.

Stable marriage problems with incomplete preference lists, or with preference lists containing ties,

have been well-studied in the literature (see, e.g., [18]). Perhaps results for these variants can also be extended

to work in the adaptive case. Another direction to consider could be expanding our algorithm to work in the

case where instead of one consensus preference list we have a constant number of them.

An expanded view of the draft model

As mentioned before, a W-consistent case of the stable marriage problem can resemble a draft. This

leads to a few other models that would also make sense in the context of a draft and that could be studied

in the future. One problem would involve a matching in which a team is able to choose multiple players

similar to the multiple rounds in a draft. This problem actually would be similar to the college admissions

problem presented by Gale and Shapley, where the colleges actually try to fill a quota of applicants instead

of only one. [16] To make things more interesting, in this model teams would be allowed to trade picks
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Figure 3.3: An example of a simple change in preference lists causing an Θ(n) change in
solution.

when they feel it would benefit them overall. For instance, a team could have a cycle of non-uniformity in

its list that moves one player much higher than the teams choosing after the current one would value him.

In this case, the team would know that it could trade for a lower pick and still get the valued player while

gaining added benefit in another pick. The other team would have to be willing to give up something later

in exchange for moving up in the selection order to pick a player before the competition does. This trade

would only make sense if both teams felt they would benefit from the transaction. This model could make

even more sense with a value-based matching instead of with preference lists, where a value could be created

based on where the picks take place in the draft and distance along preference lists. Another way to make

this problem more complex would be adding different categories for the players in the same way that they

play different positions. A team might value 3 players in the same position highly, but once one is chosen

the value of the remaining players to that team could decrease. Additionally, since some teams are closer

rivals than others, it can be valuable for one team to choose a player in order to prevent another team from

getting him. All of these problems could be interesting from a computational standpoint. There are many

experts in this field who would propose different drafting strategies, and it would be interesting to see how

an algorithm would differ from their decisions. Unfortunately, the strategies that are actually used by teams
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are likely kept fairly secret because of the large amounts of money that a sport represents and the competition

between teams. Finally, how does the strategy of one team change when it is not aware of the preference lists

of its competitors? Interestingly, in the stable marriage problem, the men all have their best matches in the

same solution and then move together down their preference lists toward the woman-optimal solution. Does

this suggest that teams would be better off being open about their preferences? How does this compare to

previous work on dishonesty in preference lists? [20, 18]
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Chapter 4

Cost-Based Versus Ordinal Matching

Several authors (e.g., [23]) have considered adding costs to the edges of an ordinal (preference list

based) matching problem, in order to find solutions that are not only, say, stable, but also low in cost. In

other words, these results aim to improve the quality of the solution to an ordinal matching problem by

incorporating aspects of matching problems with explicit costs. In this chapter, we explore what is in some

sense the opposite approach: how ordinal matching can be used as a heuristic for quickly obtaining good

solutions to cost-based matching problems. We discuss, implement, and test different methods of translating

costs to preference lists and compare their results. We also explore “bicriteria” approaches that trade off

between stability and cost.

Bipartite matching problems with explicit edge costs have received substantial attention in the lit-

erature, and are quite prevalent in practice. The simplest example is perhaps the minimum-cost bipartite

assignment problem, which we can write as a linear program as

Minimize
n
∑

i=1

n
∑
j=1

c(i, j)x(i, j)

Subject to
n
∑
j=1

x(i, j) = 1 ∀i

n
∑

i=1
x(i, j) = 1 ∀ j

x(i, j) ∈ {0,1} ∀(i, j),

where x(i, j) is a decision variable that is 1 if man i is matched with woman j, and where c(i, j) is the cost

of matching man i with woman j. In this chapter, we focus on a generalization of this problem allowing for

non-unit sized elements on the left and right side of the matching problem:
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Minimize
n
∑

i=1

m
∑
j=1

c(i, j)x(i, j)

Subject to
m
∑
j=1

x(i, j) = 1 ∀i

n
∑

i=1
p(i)x(i, j)≤ c( j) ∀ j

x(i, j) ∈ [0,1] ∀(i, j).

This problem appears in several domains of application; for example, it is known as the transportation prob-

lem in the context of optimally routing goods from factories (supply nodes) to warehouses (demand nodes).

It can also serve as a good model for a common scheduling problem: given n jobs with processing times

p(1) . . . p(n) and m machines with capacities c(1) . . .c(m), as well as a cost c(i, j) for assigning job i to ma-

chine j, compute a minimum-cost preemptive1 schedule that fully assigns every job2, and that does not fill

any machine beyond its capacity. We adopt this scheduling viewpoint for this chapter, so that we have more

concrete terminology at our disposal (i.e., we can refer to “jobs” and “machines” instead of “left hand side

elements” and “right hand side elements”). The “many to many” nature of this problem also necessitates

that we move away from “men” and “women”, to avoid any awkwardness involved with multiple-partner

matchings.

Part of the motivation for our studying heuristics for the problems above is that their best-known run-

ning times are not realistic to apply to large-scale instances in practice. For example, the currently strongest

running times known for minimum-cost assignment problem are O(mn + n2 logn), due to Gabow [14], and

O(
√

n lognα(m,n)m log(nC)), due to Gabow and Tarjan [15], where α(·) denotes the inverse Ackermann

function. For the high-multiplicity variant of this problem (the scheduling problem above), these bounds be-

come even worse, as the problem becomes essentially a minimum-cost flow problem. As a result, large-scale

instances of these problems can be quite challenging to solve to optimality. A good case study is the company

Akamai Technologies, which performs load balancing of traffic from a large number of source regions on the

Internet across thousands of servers spread around the world, a problem naturally modeled as an instance

of bipartite matching. Although Akamai initially relied on cost-based algorithms for its load balancing in-

frastructure, the increasing size of its network eventually forced the company to consider other alternatives

(based on ordinal matching heuristics, as we discuss in this chapter) in order to meet its real-time performance

1A non-preemptive assignment is required to schedule every job in its entirety during a contiguous block of time on a single machine;
a preemptive schedule has the flexibility to terminate a job before its completion and resume it later on the same machine or on a different
machine. Our linear program allows preemptive solutions since our decision variables x(i, j) are allowed to take fractional values in the
range [0,1].

2To ensure the existence of a feasible solution, we assume our instance has been augmented with a “dummy” machine capable with
very high capacity (and high assignment cost) to which every job could be mapped; assignment of part of a job to the dummy machine
corresponds to that part of the job being unassigned.
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Figure 4.1: Trivial example that demonstrates how bad the greedy approach can perform
in the worst case. Illustration (a) shows a bipartite assignment problem with optimal so-
lution in bold, and (b) shows the greedy solution to this problem, whose cost is arbitrarily
bad compared to the cost of the optimal solution. In (c), we see that the solution of a stable
marriage instance obtained by “symmetric” construction of preference lists is the same as
the greedy solution.

demands.

Cost-based matching problems that have special properties often can be solved or approximated

more efficiently. Examples include input that satisfies the triangle inequality, the Monge property, and bi-

partite and non-bipartite problems using points in a Euclidean plane [17, 1, 6, 34]. Researchers have also

considered various approximation algorithms for cost-based matching problems. For the maximum-weight

matching problem in general graphs, linear-time algorithms with performance guarantees 1/2 and 2/3− ε

were proposed by Drake and Hougardy [10, 35], and a 2-approximation algorithm for minimum-cost perfect

matching in general graphs with edge costs forming a metric (i.e., satisfying the triangle inequality) was

developed by Goemans and Williamson [17]. Numerous other authors have also considered approximation

approaches for cost-based matching problems, with perhaps the heuristics given by Kurtzberg in 1962 [24]

being the first rigorous study of such methods. See the survey of Avis [2] for further references.

In contrast to the excessive running times required to optimally solve cost-based problems, ordinal

matching problems (based on ranked preference lists) can typically be solved much faster. For example, the

Gale-Shapley algorithm can solve the stable marriage problem (the ordinal analog of the bipartite assignment

problem) in a bipartite graph with m edges in only O(m) = O(n2) time, and it often runs in closer to O(n) time

if most of the men end up with highly-ranked partners (since in this case it does not explore far down many

of the preference lists). A recent result of Dean and Munshi [9] shows how to solve the stable allocation

problem (the ordinal analog of the high-multiplicity scheduling problem above) in only O(m logn) time,

which is also nearly linear in the size of the input, and also much faster than algorithms for the analogous

cost-based problem.
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4.1 Greedy Approaches

Perhaps the most natural heuristic for quickly obtaining a reasonable solution to a cost-based match-

ing problem is a greedy one: repeatedly select the edge (i, j) of minimum cost from those remaining, increase

x(i, j) as much as possible, and then delete from consideration any nodes that are fully assigned. Another

outlook on this process is that we repeatedly select the node i on the left-hand side whose best available

match is the best overall, and then we match i with its best possible partner j by increasing x(i, j) as much as

possible. The running time of this approach is only O(m logn) – just the time needed to sort the edges in our

problem by cost.

From a worst-case perspective, unfortunately, the greedy approach above can perform quite poorly.

For example, in Figure 4.1, we see a simple instance on which the greedy algorithm is forced to deliver

a solution whose cost is arbitrarily worse than that of an optimal solution. Moreover, even if our instance

satisfies certain nice properties, the greedy approach can still perform poorly. For instance, even if edge

costs satisfy the triangle inequality (even if these edges represent distances between nodes embedded on a

one-dimensional number line), Reingold and Tarjan show the (tight) bound that a greedy assignment for the

general matching problem can be as bad as (4/3)nlog(3/2)−1 ≈ (4/3)n0.585−1 times the cost of an optimal

assignment [29].

Even though the greedy approach can perform poorly in the worst case, its performance in prac-

tice tends to be somewhat more reasonable. To see this, we have performed a number of computational

experiments to compare the quality of a greedy solution with that of an optimal solution on various randomly-

generated instances. Since we will be using the same underlying computational testing framework throughout

this chapter, we now briefly describe how our random inputs are generated, and then continue our discussion

of the quality of the greedy heuristic.

We use three methods of constructing random bipartite instances on which to test the different ap-

proaches outlined in this chapter, as well as the performance of the greedy approach above. Each randomly

assigns costs to edges, with slightly different distributions to allow us to measure which of our methods are

effective under different common scenarios:

• Geometric. Here, we randomly generate n orange points and n purple points in a unit square in the 2D

plane. The weight of an edge between an orange and a purple point corresponds to Euclidean distance.

Geometric bipartite matching instances of this sort arise commonly in practice in applications such as

tracking objects through multiple frames of a video. According to [3], the non-bipartite variant of this
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random input distribution leads to some rather interesting asymptotic characteristics in optimal and

greedy solutions; for example, as n increases, the ratio of quality between the optimal and a greedy

solution tends to a fixed constant.

• Random-1. Here, we simply assign random real weights in the range [0,M] to every edge in a bipartite

graph with n nodes on the left and n nodes on the right, where we currently use M = 100 (although

changing M should not effect the relative performance of any heuristic compared to the quality of an

optimal solution). For such instances, Kurtzberg [24] showed the remarkable result that the expected

cost of an optimal assignment is at most 3M, independent of n, and Walkup [36] showed that the

expected performance of the greedy heuristic is lnn+O(1).

• Random-2. In this case, we randomly assign real weights in [0,M] to all nodes in a bipartite graph

with n nodes on the left and n nodes on the right. We then set the weight of an edge (i, j) to be the

sum of the weight of i plus the weight of j plus a zero-mean Gaussian-distributed random number with

standard deviation σ (we set M = 100 and σ = 10 in our tests). The instance in this case is intended

to resemble real-world instances such as those we anticipated in Chapter 3, in that distances start out

somewhat “uniform” in the sense that there is a clear underlying ordering of both sides, but this is

obscured slightly by having random noise added.

We also in each case give all jobs and machines a random size (processing time, in the case of jobs,

and capacity, in the case of machines) in the range [0,100], giving us a high-multiplicity matching problem.

We do not take any steps to ensure equality of the total multiplicities of the two sides. Since the resulting

imbalance may affect how well certain approaches we try perform as heuristics, we need to keep track of this

characteristic when reporting our results. If the processing times of all jobs total more than the aggregate

capacity of all machines, we say that an instance is job-heavy, while machine-heavy instances will have

an abundance of capacity. The amount by which an instance is job-heavy (∑i pi −∑ j c j) we will call job-

overflow. The fact that one side will be “heavier” than the other means that that side will not be completely

matched. For simplicity, we assume that both sides of our instance are fully assigned by introducing a dummy

job and dummy machine to be assigned an amount equal to the job-overflow (or negative job-overflow in

the case of a machine-heavy instance). We have found that the magnitude and sign of the job-overflow can

dramatically affect how different methods of generating preference lists compare to a simple greedy approach,

as discussed throughout the rest of the chapter.

Since the heuristics introduced in the rest of this chapter are intended to serve as stronger approxi-
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Job-heavy inputs Machine-heavy inputs
Average: 19.13% Average: 19%
StdDev: 5.32% StdDev: 5.03%
Min: 5.18% Min: 9.87%

G
eo

m
et

ri
c

Max: 29.73% Max: 32.4%
Average: 65.29% Average: 73.93%
StdDev: 23.48% StdDev: 28.23%
Min: 24.52% Min: 33.85%

R
an

do
m

-1
Max: 155.57% Max: 134.69%
Average: 18.57% Average: 18.49%
StdDev: 3.24% StdDev: 2.47%
Min: 12.35% Min: 13.35%

R
an

do
m

-2

Max: 28.67% Max: 24.17%

Table 4.1: A comparison of greedy and optimal solutions. Percentage values are (greedy-
optimal)/optimal * 100.

mation to an optimal assignment than the greedy algorithm, it will help to first have some idea how far from

optimal a greedy solution tends to be in practice. In Figure 4.1, we see a comparison between greedy and op-

timal for our three different types of random instances, using CPLEX 10.1 to compute optimal solutions. As

with all computational experiments throughout the chapter, we run each approach on 100 random instances of

each random input type. The percentages shown in the table indicate improvement in cost relative to the cost

of an optimal solution. Note that random-1, the most random instance, shows by far the largest gap relative

to an optimal solution, while the other two methods of generating instances show on average a gap of around

20%. In these two cases, we have “less room to work with”, which can explain why our methods will have

somewhat more difficulty generating a high percentage improvement for them. The more randomness in the

input, however, the harder it seems for greedy to compete with an optimal cost-based solution.

4.2 “Symmetric” Preference List Construction and Greedy Solutions

Our goal in this chapter is to develop heuristics based on stable matching approaches that improve

on the greedy solution while still maintaining a relatively fast running time. To do this, we must convert

the problem into a stable allocation problem with preference lists in such a way that we save on running

time while maintaining a nearly-optimal solution. An obvious first approach to consider would be to create

preference lists based solely on the cost to match the jobs to the machines. With complete preference lists, this
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takes O(n2 logn) time based on the necessary sorting of O(n) lists of size n. Recall that we do lose information

in this process, which is one way in which we expect our solution to gain in cost. A transformation such as

this makes sense to try because the cost of the solution is directly affected by the cost of the chosen edges.

Unfortunately, a trivial example can show how this could result in an arbitrarily bad solution in the worst

case, and as we will see later, there turns out to be no benefit over a greedy solution.

In the example shown in Figure 4.1, the min-cost solution for the instance in (a) would be to use

both edges that have cost 2. In the converted problem (c), though, the difference between 1 and 2 becomes

indistinguishable from the difference between 2 and +∞ — both are one location on a preference list apart.

Because the edge of cost 1 is the cheapest, it is the highest on the preference lists for the nodes on both sides,

and so will be included in the solution, forcing the worst edge also into play. Otherwise stated, the cost 1 edge

becomes a blocking pair if not used. So with an adversary setting up the problem, it can lead to an arbitrarily

bad solution, compared with the cost of an optimal solution. Our work tests different kinds of instances to

see in which we can accomplish more reasonable solutions. Figure 4.1 (b) shows the greedy solution that

is in this case equivalent to the stable matching. It turns out that this will happen every time we construct

preference lists in this manner, leading us to the following lemmas.

Lemma 5. When a cost-based matching problem with no ties is converted to a stable allocation problem

with preference lists where lower cost means earlier in the preference list for both sides of the problem, there

is a unique stable solution that is the same as the greedy solution.

Proof. Because there are no ties, there will always be one lowest cost edge overall for the problem. This

edge, the first chosen by the greedy algorithm, would consequently be the lowest cost edge between the job

and machine it connects and will then be in the first position on each’s preference list when converted. If

either the job or machine is matched with any other without this edge being fully saturated, then both the

job and machine would prefer to be matched together and would therefore be a blocking pair, preventing the

solution from being stable. Once the edge in question is completely filled, a new lowest cost edge (among

the remaining jobs and machines) exists and would be chosen by the greedy algorithm. This edge must then

also be chosen for a stable matching as it is the highest remaining edge on both affected preference lists, and

by induction this process will therefore lead to the one unique stable solution.

If we expand our view to a more general outlook, we can see that this is actually the case for any

instance in which preference lists are constructed symmetrically based on the costs ranked in order for each

job and for each machine. When we say “symmetrically,” we do not mean that the lists are the same or mirror
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images but instead that they are created using the same cost or the same value to rank preferences for both

sides. That is, when every edge can be ranked in some way and both sides base their lists on these rankings

and only these rankings, we say that we have symmetrically constructed lists.

Lemma 6. Any matching problem with preferences based on a “symmetric” measurement between jobs and

machines will have a single unique solution equal to that of the greedy algorithm.

Proof. This is proved in a very similar manner to Lemma 1. The greedy algorithm will always start with a

job i on the left hand side with the best possible partner opportunity. Job i is then matched greedily with its

best possible partner. At the same time we can, through a proposal based algorithm, create a stable solution.

Because the lists are created symmetrically based on the same costs, what is best overall from one side will

also be best overall for the other. Therefore when the job i proposes to machine j because j is most preferred

over all machines for all jobs, the machine j will also have job i first in its preference list for the stable

matching, creating a pair that will either be matched or blocking. i would propose to j and since i is the best

remaining choice, it would be accepted and never rejected later in the algorithm since any future proposals

will happen farther down j’s list. This holds throughout the algorithm, allowing only one possible stable pair

to be added at each step, the same pair chosen by the greedy algorithm. Both problems have the same sizes

and capacities, so each would terminate at the same time with the same solution.

Another prominent example fitting this mold is that of maximum-cardinality bipartite matching.

Here, our goal is to compute a matching containing as many edges as possible in a bipartite graph. Perhaps

the most natural greedy heuristic for this problem is to define Di, for each left-hand node i, as the minimum

degree among i’s neighbors. We then repeatedly select a left-hand node with minimum Di and match it to its

minimum-degree neighbor; the intuition is that high-degree nodes are left for the end of the process, since

they presumably have more flexibility in their choices for the matching. As we see in Lemma 6, the solution

obtained by this greedy algorithm will be equivalent to the solution we would obtain by solving a stable

marriage problem, where every node’s preference list is sorted in decreasing order by degree.

As a consequence of this behavior, our research follows two main directions. First, because basing

both left and right sides of the preference lists on the same cost ranking will always result in nothing more

than the greedy solution, we explore methods in which one side’s lists are based on costs but the other’s

adopt a more “long term” approach by attempting to avoid future penalties. In other words, we move into

“asymmetrically” generated preference lists to make the problem more interesting and to open a path toward

improving cost over greedy. We try different means of creating these new lists, compare and combine the
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methods, and test the output to judge how they fare against a greedy solution. Secondly, we notice that since

the one solution provided by the greedy algorithm and the stable allocation algorithm is unique and therefore

in the context of stable matchings is both job and machine optimal, the optimal solution overall must, if

it is different, be unstable. This makes sense if you look at the bad example in Figure 4.1 and notice that

allowing instability gives the option of moving to the better solution and avoiding the trap that we illustrate.

We examine different ways to measure the “instablity” of a solution and also discuss the tradeoff between

stability and solution cost. Section 4.3 focuses on the asymetric methods of generating preference lists and

the experiments that test them while Section 4.4 details our study of instability.

4.3 Asymmetric Preference List Construction

Because the symmetrically created preference lists end up giving us results identical to those ob-

tained by the greedy algorithm, we move on to new classes of lists constructed with different methods of

rankings for the left and right hand side lists. In our experiments, the left hand side will always use the cost

based approach to ranking. For the right hand side we utilize different approaches based on how connected

nodes are and how costs rise in the future in order to hopefully order choices in such a way that we avoid

forcing ourselves into a bad choice.

4.3.1 “Pagerank”-Based Preference Lists

Our first attempt involves a system similar to Pagerank algorithms used by Google to index the Web.

We seek to generate our order based on how connected a job is, a factor that leads us to believe that it would

have sensible fallback choices in the event that it is not immediately chosen.

Let I = {1,2, . . . ,n} and J = {1,2, . . . ,m} denote the sets of jobs and machines respectively, let

c(i, j) denote the cost of assigning one unit of job i ∈ I on the left with machine j ∈ J on the right, and let

c−1(i, j) denote 1/c(i, j). For notational shorthand, we use set notation to indicate summations; for example

c(I, j) = ∑i∈I c(i, j) and c−1(I,J) = ∑i∈I ∑ j∈J c−1(i, j).

Let us now define a random walk on our bipartite matching graph, where the probability of transi-

tioning from i ∈ I to j ∈ J is pi j = c−1(i, j)/c−1(i,J), and the probability of transitioning from j ∈ J to i ∈ I

is p ji = c−1(i, j)/c−1(I, j). According to these transition probabilities, it is more likely to transition outward

from a node along an edge of lower cost than it is along an edge of higher cost. The n×m matrix P = [pi j]

encodes all of our transition probabilities. In terms of this random walk, we can now define a random walk
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on just the jobs by starting at some i ∈ I, and then by taking consecutive pairs of steps from the walk above,

each taking a step to a machine j ∈ J and then back to another job i′ ∈ I. The transition probability matrix for

this job-oriented walk is the n×n matrix PPT , known as a Markov matrix since its rows all sum to 1.

A well-known fact about random walks is that any random walk on a connected non-bipartite graph

must converge eventually to a “stationary” probability distribution over all vertices in the graph, and this

distribution is given by the principal eigenvector3 of W T , where W is the Markov matrix defining the transition

probabilities of the walk. Vertices with high weight in the stationary distribution are visited frequently during

a random walk, and hence must be both “centrally located” and “well connected” in our graph. These vertices

are sometimes said to have high eigenvector centrality in our graph, and this premise is the central idea

underlying the Google “Pagerank” algorithm for quantifying the importance of a web page based on how

well-connected it is in the context of the larger graph [28].

Computation of the principal eigenvector of a random walk on a graph G can be done very efficiently

using the so-called power method, where we start with some arbitrary vector x and repeatedly multiply it by

W T , normalizing after each step. Each multiplication takes time linear in the number of edges in the graph,

and convergence to a reasonable approximation of the principal eigenvector usually only takes a small con-

stant number of iterations (as evidence that this process can be done efficiently, Google frequently computes

the principal eigenvector of a random walk of the entire Web graph, which has billions of vertices and edges).

In our case, we are using PPT as our transition matrix, so each step of the power method involves computing

(PPT )T x = PPT x = P(PT x), which requires two matrix-vector multiplications both taking time linear in the

number of edges in our bipartite matching instance.

In our application of cost-based matching, we suggest that jobs i∈ I with high weight in the principal

eigenvector of PPT are those who have the most flexibility in terms of the availability of good edges usable

for matching in their local neighborhoods. Jobs having low weight are the most highly constrained, having

few options for good matching edges in their local neighborhoods. This motivates the heuristic of allowing

vertices with low weight to choose their partners first, after which the high-weight vertices (presumably with

more good choices to begin with) have their turn. We therefore define preference lists for the machines by

the sorted ordering of all jobs according to their weight in the principal eigenvector of our random walk.

Recall how in Chapter 3 the adaptive case had a similar composition with a global priority ordering

of the nodes on the left hand side based on identical preference lists. In this case, the global priority is

3The Markov matrix corresponding to a random walk in a connected, non-bipartite always has a single distinguished eigenvalue
(known as the principal eigenvalue) equal to one; its corresponding eigenvector is called the principal eigenvector. All other eigenvalues
have magnitude strictly less than one).
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Job-heavy inputs Machine-heavy inputs
Average: -4.06% Average: 0.78%
StdDev: 5.51% StdDev: 3.7%
Min: -22.41% Min: -10.03%
Max: 5.12% Max: 6.17%
Average Benefit: 0.5% Average Benefit: 1.1%

G
eo

m
et

ri
c

StdDev Benefit: 1.19% StdDev Benefit: 1.61%
Average: -2.59% Average: -0.65%
StdDev: 9.37% StdDev: 8.04%
Min: -28.88% Min: -15.91%
Max: 12.77% Max: 14.64%
Average Benefit: 2.55% Average Benefit: 3.09%

R
an

do
m

-1

StdDev Benefit: 3.97% StdDev Benefit: 4.43%
Average: 0.82% Average: 0.67%
StdDev: 0.83% StdDev: 0.7%
Min: -1.11% Min: -1.35%
Max: 2.7% Max: 2.32%
Average Benefit: 0.87% Average Benefit: 0.73%

R
an

do
m

-2

StdDev Benefit: 0.74% StdDev Benefit: 0.61%

Table 4.2: Percent improvements over greedy while using pagerank to construct prefer-
ence lists.

based on how “well connected” the jobs are in the instance. After preliminary tests, we found that a pure

“pagerank” based approach generally was not as successful as we would like in generating good solutions

and at times was quite bad. This is logical because we are completely abandoning the costs in determining

machine preference lists. We modify the algorithm to normalize the costs and the pageranks before then

combining the two, giving a score of x times cost plus (1− x) times pagerank, for some mixing ratio x (we

use x = 0.1 and x = 0.925 in our tests, after noting that these seem to give the best results). At this point, we

are no longer using a global priority ordering but are back to different lists with the costs again as a factor.

After testing we determined that the split should vary based on the way the instance was created with different

styles of input varying widely in how pagerank performed.

Pagerank in general does not seem to perform very well in creating lists. As there are a few similar

charts in the following pages, here we describe the format. We separate the input into job-heavy and machine-

heavy instances because sometimes this difference can produce a noticeable effect. For each method of

randomly generating an instance, labeled on the left, we include the average, min, max, and standard deviation

for all types of inputs. The percentages are percent improvement over greedy. In this case we take percentage
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improvement over 100 instances of each type of input and compute our statistics on these results. The other

two categories, those dealing with benefits, are what we get when we use the minimum cost (so maximum

improvement) of the method the chart is based on and the greedy method, so we basically are only looking

at the positive numbers or 0 since greedy is the baseline. Interesting to note about the pagerank results

is that random-2 seems to show a slight improvement with only a small change due to removing negative

improvement values (average to average benefit in the tables) while random-1 shows bad results in general

but individual runs are far enough on either side of 0 so we do see a larger improvement when we remove the

negative values.

4.3.2 Regret-Based Preference Lists

Another method we consider for defining preference lists on the right-hand side is based on a notion

of “regret”4. Suppose a machine j ∈ J must decide between two jobs i and i′, with c(i, j) = c(i′, j). Both

may look equally attractive in terms of their immediate matching costs, but it could be the case that i’s next

alternative is not much worse than c(i, j) in cost, while the next alternative of i′ is significantly worse. In this

case, rejecting i does not worry us much, since i has other good alternatives on which to fall back. Rejection

of i′ might be a decision we would regret, however, since i′ is now condemned to make do with a set of much

costlier alternatives.

Consider any pair (i, j) with i ∈ I and j ∈ J. Let γi j(p) denote the pth entry in i’s preference list

after j. For example, γi j(0) = j, and γi j(1) is the element i would propose to next if it were rejected by j. We

define the additive regret of j rejecting i as

Ra(i, j) = c(i,γi j(1))− c(i, j),

and the multiplicative regret of this rejection as

Rm(i, j) = c(i,γi j(1))/c(i, j).

Both expressions reflect some measure of how much worse i’s immediate prospects become as a consequence

of rejection from j. It therefore seems reasonable to consider assigning the preference list of every machine

j ∈ J in decreasing order of either Ra(i, j) or Rm(i, j).

4Some of the original ideas from this section are based on discussions with M. Goemans and others previously working in the load
balancing group at Akamai Technologies.
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Job-heavy inputs Machine-heavy inputs
Average: -105.54% Average: -9.96%
StdDev: 55.07% StdDev: 7.05%
Min: -241.7% Min: -31.13%
Max: -22.56% Max: 1.54%
Average Benefit: 0% Average Benefit: 0.05%

G
eo

m
et

ri
c

StdDev Benefit: 0% StdDev Benefit: 0.24%
Average: -849.95% Average: 5.34%
StdDev: 15.38% StdDev: 342.97%
Min: -1690.85% Min: -48.64%
Max: -317.22% Max: 30.45%
Average Benefit: 0% Average Benefit: 9.25%

R
an

do
m

-1

StdDev Benefit: 0% StdDev Benefit: 8.76%
Average: -44.05% Average: -6.35%
StdDev: 10.63% StdDev: 3.83%
Min: -66.15% Min: -18.76%
Max: -21.27% Max: 0.69%
Average Benefit: 0% Average Benefit: 0.02%

R
an

do
m

-2

StdDev Benefit: 0.0% StdDev Benefit: 0.1%

Table 4.3: Percent improvements over greedy while using additive regret to construct
preference lists.

There is the special case to consider regarding the final position on a regret based preference list.

Obviously this cannot work directly with the expressions above because the next entry in this case does

not exist. The initial solution considered for this situation was to move this last entry to the front of the

preference list. The reasoning behind this move was that this is the last possible choice before the job

becomes completely unassigned, inspiring some kind of dramatic effort at preventing the unassignment from

happening. Unfortunately, initial testing using this method shows it to result in extremely poor solutions

for job-heavy instances. Some jobs remain unassigned, as would be expected in this case, but many more

receive their worst possible choice. A closer examination of the process by which the jobs are matched shows

why this occurs. First, it is important to realize that when the machines cannot handle work of all the jobs,

job-overflow processing time will not be assigned except to dummy. We want to make sure that the jobs

that don’t get assigned are the ones that would end up in bad matches if they were assigned. Unfortunately,

if we are not careful the opposite occurs. Once a job, through proposals and rejections, arrives as its final

choice in its preference list (a point in which it already knows it is a relatively bad solution), this job gets
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Job-heavy inputs Machine-heavy inputs
Average: -13.72% Average: -1.12%
StdDev: 8.64% StdDev: 3.84%
Min: -39.61% Min: -9.99%
Max: -2.42% Max: 5.03%
Average Benefit: 0% Average Benefit: 0.96%

G
eo

m
et

ri
c

StdDev Benefit: 0% StdDev Benefit: 1.49%
Average: -28.17% Average: 5.97%
StdDev: 22.35% StdDev: 9.81%
Min: -80.06% Min: -22.28%
Max: 9.85% Max: 26.7%
Average Benefit: 0.23% Average Benefit: 7.67%

R
an

do
m

-1

StdDev Benefit: 1.52% StdDev Benefit: 7.14%
Average: -26.56axs% Average: -3.68%
StdDev: 6.77% StdDev: 2.48%
Min: -40.66% Min: -8.72%
Max: -13.49% Max: 1.25%
Average Benefit: 0% Average Benefit: 0.03%

R
an

do
m

-2

StdDev Benefit: 0% StdDev Benefit: 0.17%

Table 4.4: Percent improvement over greedy while using multiplicative regret to construct
preference lists.

priority over any other job that could (and likely does) have a better solution. Even worse, this triggers a

chain reaction moving jobs down their preference lists until each hits the worst choice and is then accepted.

The algorithm cannot terminate until job-overflow weight is assigned to dummy, but this pattern continues to

accept bad choices before they can be completely rejected and unassigned by normal machines. A better idea

then would be to say that once a job is at the end of its preference list it is also at the end of the machine’s, so

if someone is already a bad choice and is not assigned already, then it will be the first to be unassigned. To

avoid ties and ensure that the worst solution is thrown out first, we can modify this to sort any jobs with the

machine in question as a last choice by order of increasing cost to that machine. Another possible solution

that could make sense in future work is to have an actual cost for each job to remain unassigned. Maybe some

jobs are expensive to schedule but are very important so it is actually worse for the overall solution to have

them unassigned than another job that costs little but also has little penalty for not being completed.

One important thing to notice about simple regret based matching is that it just cannot seem to handle

job-heavy input well at all. In only one case do we get any positive result at all, and still that case averages
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about 28% worse than greedy. The reasoning we see for this result is that the comparison with the next job

in the list is a bad way to move a bad solution all the way down a list, and in job heavy lists this is necessary

because some jobs will be assigned to dummy, the last choice of everyone’s list.

Even on machine-heavy instances, only in the very rare cases is simple regret based construction

useful. An explanation could be that it is hard to improve on greedy with close points or similar lists. More

random lists, though, where greedy tested poorly against optimal, give this approach room to improve the

solution but again only in machine heavy instances.

4.3.3 A More Refined “Longer Look” Approach

Part of the reason preference lists based on purely additive or multiplicative regret (as defined above)

seem not to work well, is that they disregard “immediate” information about the cost of proposals. For

example, if j ∈ J is considering two alternatives i and i′ with c(i, j) >> c(i′, j), then j does not consider this

fact while deciding which to reject. To remedy this, it seems that perhaps a measure combining regret with

the immediate assignment cost is more appropriate. Furthermore, it seems that our notion of regret for (i, j)

may be somewhat “short-sighted” in only comparing with the cost of the next alternative for i after rejection,

and not the alternatives further down the road in i’s preference list. We therefore use least squares regression

to fit a degree-2 function to entire set of remaining costs on i’s preference list after j. That is, we take the set

of points (x,c(i,γi j(x))) and fit a degree-2 polynomial a2x2 +a1x+a0 so as to minimize the error

e(a2,a1,a0) = ∑
x=0,1,2,...

α
x|a2x2 +a1x+a0− c(i,γi j(x))|2,

where we chose α < 1 to place exponentially-decreasing emphasis on errors arising far down i’s preference

list (so the fit should be best for the entries in the preference list right after j). We use α = 0.1 in our testing;

after experimenting with several values of α , this value seems to give good performance. By setting ∇e = 0,

we can compute the optimal coefficients a2, a1, and a0 by solving the linear system


∑x λ xx4

∑x λ xx3
∑x λ xx2

∑x λ xx3
∑x λ xx2

∑x λ xx1

∑x λ xx2
∑x λ xx1

∑x λ x




a2

a1

a0

 =


∑x λ xx2c(i,γi j(x))

∑x λ xxc(i,γi j(x))

∑x λ xc(i,γi j(x))

 .

To ensure the system has a unique solution, we replicate the last entry of each preference list (and its cost)

twice, thereby giving at least 3 distinct points to use for our fit; this is necessary since we are fitting 3
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Job-heavy inputs Machine-heavy inputs
Average: 0.57% Average: 1.23%
StdDev: 1.83% StdDev: 1.92%
Min: -2.24% Min: -3.09%
Max: 5.93% Max: 6.44%
Average Benefit: 0.99% Average Benefit: 1.51%

G
eo

m
et

ri
c

StdDev Benefit: 1.41% StdDev Benefit: 1.49%
Average: 8.67% Average: 9.38%
StdDev: 8.26% StdDev: 8.44%
Min: -8.47% Min: -6.49%
Max: 24.06% Max: 29.49%
Average Benefit: 9.31% Average Benefit: 9.85%

R
an

do
m

-1

StdDev Benefit: 7.23% StdDev Benefit: 7.75%
Average: 2.96% Average: 2.79%
StdDev: 1.68% StdDev: 1.05%
Min: -0.56% Min: 0.82%
Max: 7.13% Max: 5.64%
Average Benefit: 2.98% Average Benefit: 2.79%

R
an

do
m

-2

StdDev Benefit: 1.65% StdDev Benefit: 1.05%

Table 4.5: Percent improvement over greedy while using a more long term look at regret
to construct preference lists.

parameters.

Despite its complicated appearance, this actually only takes O(1) time to solve for each (i, j), for a

total of linear time over the entire stable matching process, so it does not impact our total asymptotic running

time. Due to the geometric nature of the summations in the matrices above, each entry can be updated in only

O(1) time when updating the system after computing the previous entry, so that we are considering (i,γi j(1))

instead of (i, j).

After solving the system above for a particular (i, j), we set ai j(x) =−a2x2−a1x+a0. This reflects

the positive “immediate” cost a0 of matching (i, j) (which is not exactly c(i, j), but a more forward-looking

analog of this cost based on our curve fit). The linear and quadratic terms are negated, since both of these

indicate forms of “regret”: the linear term is a more sophisticated analog of the additive regret we formulated

in the previous section, and the quadratic term indicates a higher-order form of regret in terms of the projected

rate at which regret will be increasing as i keeps moving down its preference list. To form preference lists for

each machine j, we now simply sort all jobs i ∈ I in increasing order by ai j(x), for some specified value x.
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Job-heavy inputs Machine-heavy inputs
Average: 1.49% Average: 2.1%
StdDev: 1.51% StdDev: 1.96%
Min: 0% Min: 0%

G
eo

m
et

ri
c

Max: 5.03% Max: 6.44%
Average: 9.97% Average: 13.85%
StdDev: 6.77% StdDev: 7.51%
Min: 0% Min: 0%

R
an

do
m

-1
Max: 24.06% Max: 30.45%
Average: 2.98% Average: 2.79%
StdDev: 1.64% StdDev: 1.05%
Min: 0% Min: 0.82%

R
an

do
m

-2

Max: 7.13% Max: 5.64%

Table 4.6: Percent improvement over greedy while using a combination of all methods to
construct preference lists.

Our choice of x indicates how “forward-looking” j should be. By setting x = 0, we select only the term a0

that corresponds to immediate cost (with some forward-looking bias based on the curve fit). As we increase

x, we place less emphasis on immediate cost and more and more emphasis on the higher-order measures of

regret. More experimentation with x determined that x of about 2.5 is a good choice for the multiple types of

random instances.

The longer look approach seems to be by far the best both because it can provide good improvements

for different kinds of random (but still best on fully random) and also because it does not have the same

massive penalties when using job heavy instances. Also, the improvement seems to come from actually

better solutions instead of relying on greedy to set a lower bound for which other methods sometimes take

advantage of to add to their solutions.

4.3.4 Combining Different Methods

Finally, we take all of these methods, the longer look approach generally being the best overall but

others showing promise in certain instances, and combine them to determine how much of an increase we can

show over greedy. We took 100 of each random type of instance, solved them using preference lists created

by all previously discussed approaches, and took the maximum gain over greedy (including 0 for greedy

itself) and find that we do see a significant improvement overall. This improvement does seem to vary quite

a bit, however, based on instance type. For example, the fully random distances (random-1) show somewhat
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larger improvements, but this is to be expected with the differences seen when comparing greedy and optimal

for that case. Interestingly, we did see noticeable improvements over the longer look method by itself for

both geometric and random-1 instances, even when they turn out to be job-heavy. This can happen when

individual executions turn out much better but are hidden by a large number of bad tests.

4.4 Bicriteria Approaches

The other main direction we consider in this chapter is the relationship between stability and cost.

The optimal solution to a cost based matching problem is generally not the same as the stable solution of an

ordinal problem to which it is converted. Multiple factors account for this, for example the loss of information

(although normally much less extreme) as seen in the bad example in Figure 4.1. Accordingly, a stable

allocation algorithm loses the ability to measure “how much worse” is one position on a preference list than

earlier positions. However, even though the optimal solution to a cost-based matching problem may not be

stable, we would still expect it to be “somewhat” stable, in the sense that many of the edges not in the optimal

solution should not be blocking pairs. This leads to the interesting question of how one can quantify the

amount of “instability” present in a particular solution.

Perhaps the most obvious measurement of instability for a particular solution is the number of block-

ing pairs it admits (or perhaps a more reasonable measurement is the fraction of all edges that are blocking

pairs). However, this measurement fails to capture the “degree” to which a blocking pair might be blocking.

For instance, an edge (i, j) might be a blocking pair if its cost is only 1% lower than edges used by i or j in an

optimal solution. In such a case, one could argue that this only constitutes a minor infraction against stability,

and that i and j may still be sufficiently content to stay put with their current assignments (i.e., the “cost of

divorce” might be high enough that it is not worth considering a switch to alternative solutions that are only

marginally better).

In order to quantify the degree to which an edge (i, j) not in an assignment is blocking, we introduce

two new measures, which we call additive and multiplicative instability. Let ai denote the maximum cost of

all edges (i, ·) used by i in the assignment in question, and let b j denote the maximum cost of all edges (·, j)

used by j. We then define the additive instability of (i, j) as

ε(i, j) = max(0,min(ai,b j)− ci j),
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Alpha Epsilon
Max: 78.7 Max: 0.34
Avg: 1.57 Avg: 0.04

G
eo

m

Max unstable: 3.72% Avg unstable: 1.45%
Max: 3473.86 Max: 4.94
Avg: 5.63 Avg: 0.81

R
an

d-
1

Max unstable: 0.99% Avg unstable: 0.53%
Max: 727.68 Max: 74.73
Avg: 28.12 Avg: 16.08

R
an

d-
2

Max unstable: 11.38% Avg unstable: 8.23%

Table 4.7: Statistics measuring instability based on number of unstable pairs and how far
the most extreme blocking pairs are in each instance.

Instability

C
o

s
t

Stable solutions

Min−cost solution

Figure 4.2: Trade-off curve between cost and stability of solutions.

where the maximum with zero ensures that ε(i, j) ≥ 0 always. We similarly define the multiplicative insta-

bility of (i, j) as

α(i, j) = max(1,min(ai,b j)/ci j),

where again the maximum with one ensures that α(i, j)≥ 1.

To understand what “reasonable” values of these measurements are in practice, we measured the

maximum and average of α and ε over all blocking pairs over 100 examples of optimal solutions to randomly-

generated instances (using the same methods for random generation as before). Results are shown in Figure

4.7.

A potentially interesting direction for future research is a study of “bicriteria” approximation algo-

rithms that consider a sliding scale between stability and cost. In general, the lower we want to make cost,
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the higher we must allow for instability (measured according to one of our metrics above), giving rise to a

trade-off curve of the form shown in Figure 4.2. This curve is interesting since we can know how to eas-

ily compute solutions at its endpoints – either a cost-optimal solution that has no regard for stability, or a

stable solution that has no regard for cost5. Moreover, stable solutions can be computed much faster than

cost-optimal solutions.

This motivates the algorithmic question of whether one might be able to solve for a solution not just

at endpoints. For example, we could ask for a minimum-cost solution subject to a constraint limiting the

maximum amount of instability present in any edge, or we could ask for a solution minimizing the maximum

instability of an edge, subject to a constraint limiting the cost of the solution by a specific threshold. While we

currently do not know if it is possible to solve either of these questions efficiently, this might be an interesting

direction for future study, since this might allow for a continuous trade-off between cost and stability that,

from an algorithmic perspective, allows us to achieve as much speedup as possible through the use of ordinal

techniques.

5Note that we can compute a minimum-cost stable solution in polynomial time [23], but that the best-known methods for doing so
are currently slower than the best-known methods for solving a minimum-cost assignment problem.
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Chapter 5

Conclusions

Over the course of this dissertation, we have developed results in three main areas of study:

• We resolved the open question of Gusfield and Irving on the possibility of efficient batch testing of

stable marriage solutions. We presented an algorithm that accomplishes this job by utilizing a charac-

terization of matching based on rotations and a dynamic connectivity data structure. It will check the

validity of k queries in O((m + kn) log2 n) time, effectively O(n log2 n) amortized time per query after

O(m log2 n) preprocessing. The results of this research have been published in Algorithmica [8].

• We have also created an algorithm to solve instances of stable marriage with disorder restricted to the

men’s preference lists. This work takes advantage of properties of “adaptive” algorithms to allow the

running time to scale with both the size of input and the disorder present within it. It produces the

stable solution in O(n + k) time where n is the size of the input and k is the total amount of change

from uniform preference lists on the men’s side. This work has been presented at the Association for

Computing Machinery (ACM) Southeast Conference [7].

• Finally, we have experimented with ordinal matching using as a heuristic for cost-based matching

problems. Using three different methods of creating random cost-based instances, we converted them

to problems with preference lists created by a variety of ”asymmetric” techniques. We tested how well

these ideas performed and demonstrated that stable allocation performs better than a greedy algorithm

on average using our techniques in these situations. Additionally, we explore just how unstable an

optimal solution to these problems can be, and we present ideas on where this viewpoint can lead in

the future.
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5.1 Future Work

The research in this dissertation can lead to other problems to be studied both as direct improve-

ments to the results in this work, and also as more open-ended exploration based on the ideas we present. For

our results in batch testing, the main open question yet remaining is whether these results can be achieved in

a worst-case, rather than amortized setting. In the domain of adaptive stable matching algorithms, the largest

remaining open question is whether it is possible to construct an efficient algorithm for non-W-consistent in-

puts. Other interesting ideas include an expansion of the “draft” model of this problem, and a “data structure”

viewpoint where we try to re-compute a stable solution quickly after a single change is made to one of the

preference lists.

Regarding our work on ordinal matching as a heuristic for cost-based matching, we bring up the

idea of a tradeoff between stability and solution cost: could one design algorithms that exploit this tradeoff,

producing bicriteria approximation solutions that are reasonably good both in terms of stability and cost? To

do so, one may need to address another longstanding open question of Gusfield and Irving [18] as to how

one can characterize the set of all stable solutions in an instance with ties in preference lists. One could also

explore the creation of new heuristics, or the fine-tuning of our existing heuristics further, for example by

tuning the parameters underlying these approaches in an adaptive fashion. For job-heavy instances, perhaps

one can apply a preprocessing heuristic of some sort to eliminate all job-overflow, since this seems to have a

dramatic effect on the quality of many of our heuristics.
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