
Clemson University
TigerPrints

All Dissertations Dissertations

12-2009

A Cognitive Model for Problem Solving in
Computer Science
Jennifer Parham
Clemson University, jparham@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Parham, Jennifer, "A Cognitive Model for Problem Solving in Computer Science" (2009). All Dissertations. 470.
https://tigerprints.clemson.edu/all_dissertations/470

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/470?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A Cognitive Model for Problem Solving in Computer
Science

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Computer Science

by
Jennifer R. Parham

December 2009

Accepted by:
Dr. D. E. Stevenson, Committee Chair

Dr. Kenneth Weaver
Dr. Harold Grossman

Dr. Stephen T. Hedetniemi
Dr. Leo Gugerty

Abstract

According to industry representatives, computer science education needs to emphasize the

processes involved in solving computing problems rather than their solutions. Most of the current

assessment tools used by universities and computer science departments analyze student answers to

problems rather than investigating the processes involved in solving them. Approaching assessment

from this perspective would reveal potential errors leading to incorrect solutions.

This dissertation proposes a model describing how people solve computational problems by

storing, retrieving, and manipulating information and knowledge. It describes how metacognition

interacts with schemata representing conceptual and procedural knowledge, as well as with the

external sources of information that might be needed to arrive at a solution. Metacognition includes

higher-order, executive processes responsible for controlling and monitoring schemata, which in

turn represent the algorithmic knowledge needed for organizing and adapting concepts to a specific

domain. The model illustrates how metacognitive processes interact with the knowledge represented

by schemata as well as the information from external sources.

This research investigates the differences in the way computer science novices use their

metacognition and schemata to solve a computer programming problem. After J. Parham and L.

Gugerty reached an 85% reliability for six metacognitive processes and six domain-specific schemata

for writing a computer program, the resulting vocabulary provided the foundation for supporting

the existence of and the interaction between metacognition, schemata, and external sources of in-

formation in computer programming. Overall, the participants in this research used their schemata

6% more than their metacognition and their metacognitive processes to control and monitor their

schemata used to write a computer program. This research has potential implications in computer

science education and software development through its understanding of the cognitive behavior

used to solve computational problems.

ii

Dedication

To my special Grammy, Marcia Adele D. Young, June 24th, 1932 - August 4th, 2006. For

my son, Austin Keith Mocello, May 12th, 2007 -.

iii

Acknowledgments

I want to begin by thanking Dr. Steve Stevenson for bringing me to Clemson University

and believing in me every step of the way with or without tears:) His leadership, “out-of-the-box”

thinking, determination to find answers, and passion for creating thinkers drive this research and

taught me to always explore outside a vaccuum. This leads me to a special thanks to Dr. Lee

Gugerty on my committee for spending a year of his time helping me carry out this research, and

without his expertise, it would not have been possible. I want to thank Dr. Dean Bushey, Dr.

Ken Weaver, and Dr. Steve Stevenson for listening to one semester on the relationship between

schemata and cooking a turkey dinner. Without these discussions, I would have never discovered

metacognition! In addition to the turkey dinner discussions, a big thank you to Dr. Bill Hanson,

Dr. Bob Horton, Carol Wade, and all the other seminar people for picking my brain:) One of my

biggest thanks goes to the wonderful Barbara Ramirez for helping me through the writing of this

document and being a friend. She is one of a kind that every university needs. Thank you to the

eleven participants in this research study who volunteered one hour of their time for $10, and thank

you Rose Lowe and Dr. Robert Geist for letting me recruit these students from your class.

I want to thank all my friends and family for supporting me and listening to my discussions

about metacognition and schemata, but a special thank you to my husband, Brian K. Mocello, for

dealing with me daily through this research, keeping my head above water, and encouraging me to

keep going. Without my husband’s passion for my passions, this dissertation would not have been

possible. I want to thank my parents, Laura and Stephen Sams, for instilling fortitude, courage,

and independence. It is their hard-working ethics that have always inspired me. In addition, I am

thankful for my grandfather’s, John R. Young’s, thought provoking questions about my research and

for all my mother’s sisters, Peggy Roberts, Robin Roberts and Lynne Parker, who influenced my

love for teaching, compassion for others, and creativity. Also, I am thankful for all the free Lucky

iv

Strike Jr. meals from my grandparents, Stephen and Judy Sams.

Lastly, I want to thank all the teachers and professors impacting my life in the mathematical

and computing sciences. The teachers impacting my life prior to college include Philomeno Cone,

Anita Cooley, and T. Sheriff. I want to thank Deloras Parks from Appalachian State University

for introducing me to computer science and suggesting that I change my major from secondary

education in mathematics to computer science. I am thankful for all my computer science professors

at Appalachian State University for giving me a strong foundation in computer science that enabled

me to succeed. As a master’s student, I am thankful for all the research opportunities from Dr.

Don Morton with the Arctic Region Supercomputing Center as well as his mentorship through

my master’s thesis, and I thank Dr. Mark Cracolice from the University of Montana’s chemistry

department for introducing me to higher order thinking and pushing me to pursue a Computer

Science PhD. which led me to Clemson University.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

1 Introduction . 1

2 Background . 4
2.1 Past Research in Problem Solving . 4
2.2 Knowledge . 8
2.3 Metacognition . 12
2.4 Memory . 13
2.5 Reasoning . 14
2.6 Education . 14

3 Details of Proposed Model . 15
3.1 Flow Between Metacognition and Data . 17
3.2 Schemata Functionality . 18
3.3 External Sources . 21
3.4 Hypothesis . 22

4 Research Design and Methods . 24
4.1 Participants . 26
4.2 The Pilot Study . 26
4.3 The Research Study . 28
4.4 Transcription of the Data . 28
4.5 Analysis of a Transcript . 29

5 Results and Discussion . 32
5.1 A Taxonomy of Mental Processes . 32
5.2 The Existence of Metacognition and Schemata . 34
5.3 The Relationship Between Metacognition and Schemata 37
5.4 Cognitive Behavior by Participant . 61
5.5 Knowledge Represented by Participants . 63
5.6 Correlation With Problem-Solving Performance . 65

vi

6 Conclusions . 69
6.1 Broader Impact . 70
6.2 Future Research . 71
6.3 Research Questions . 72

Appendices . 74
A Demographics sheet #1 . 75
B Demographics sheet #2 . 76
C IRB Informational Letter . 77
D Problem and Goals/Schemata - Version 1 . 79
E Problem and Goals/Schemata - Version 2 . 81
F Subject 6 Morae Produced .CSV Data (First 10 minutes) 83
G Participant 6 Level 1 Verbal Transcript and Coding 94
H Final Coding Document . 115
I Version 1 of The Coding Document . 122
J Version 2 of The Coding Document . 134
K Version 3 of The Coding Document . 142
L Version 4 of The Coding Document . 150
M Version 5 of The Coding Document . 158
N Version 6 of The Coding Document . 167
O Participant 6 Level 2 Problem Behavior Graph . 178
P Participant 6 Level 3 Model Results . 185
Q Raw Observations & Off-line Interviews with 11 Participants 189

Bibliography . 197

vii

List of Tables

3.1 Examples of possible interactions between metacognitive processes and schematic op-
erations . 20

5.1 A taxonomy for the metacognitive and schematic processes used by the participants
in this research to solve the problem in Appendix E. 33

5.2 Results for total visits to metacognition, schemata, and external sources of information
per participant. 35

5.3 Participant 2’s interactions among metacognition, schemata, and external sources of
information. 48

5.4 Participant 3’s interactions among metacognition, schemata, and external sources of
information. 49

5.5 Participant 4’s interactions among metacognition, schemata, and external sources of
information. 50

5.6 Participant 5’s interactions among metacognition, schemata, and external sources of
information. 51

5.7 Participant 6’s interactions among metacognition, schemata, and external sources of
information. 52

5.8 Participant 7’s interactions among metacognition, schemata, and external sources of
information. 53

5.9 Participant 8’s interactions among metacognition, schemata, and external sources of
information. 54

5.10 Participant 9’s interactions among metacognition, schemata, and external sources of
information. 55

5.11 Participant 10’s interactions among metacognition, schemata, and external sources of
information. 56

5.12 Participant 11’s interactions among metacognition, schemata, and external sources of
information. 57

5.13 Participant revisits to the problem before or after starting a goal. 62
5.14 Resulting grades based on two grading schemes. 66
5.15 Results based on two grading scheme, details for receiving the grade, and demographic

information per participant. 67

viii

List of Figures

3.1 A diagram of the problem-solving process, beginning with the problem statement and
its relationship to the proposed model. 15

3.2 A cognitive model for solving problems illustrating the interaction among the con-
trolling and monitoring operations of metacognition, the schemata representing prior
content knowledge, and the information coming from external sources. 17

5.1 Average uses of mental processes by these 10 participants. 36
5.2 Participant 2 (0-12 minutes) . 38
5.3 Participant 2 (12-20 minutes) . 38
5.4 Participant 2 (20-32 minutes) . 39
5.5 Participant 3 (0-16 minutes) . 39
5.6 Participant 3 (16-24 minutes) . 39
5.7 Participant 3 (24-41 minutes) . 39
5.8 Participant 4 (0-7 minutes) . 40
5.9 Participant 4 (7-15:30 minutes) . 40
5.10 Participant 5 (0-14:45 minutes) . 40
5.11 Participant 5 (14:45-24:45 minutes) . 41
5.12 Participant 6 (0-13:30 minutes) . 41
5.13 Participant 6 (13:30-26:45 minutes) . 41
5.14 Participant 7 (0-11 minutes) . 42
5.15 Participant 7 (11-19:20 minutes) . 42
5.16 Participant 8 (0:30-10:30 minutes) . 42
5.17 Participant 8 (10:30-17:30 minutes) . 43
5.18 Participant 9 (0-8:20 minutes) . 43
5.19 Participant 9 (8:20-15:15 minutes) . 43
5.20 Participant 9 (15:15-21:15 minutes) . 44
5.21 Participant 10 (0:44-9:50 minutes) . 44
5.22 Participant 10 (9:50-17:15 minutes) . 44
5.23 Participant 10 (17:15-23:45 minutes) . 45
5.24 Participant 11 (0:15-9:15 minutes) . 45
5.25 Participant 11 (9:15-15:40 minutes) . 45
5.26 Participant 11 (15:40-19 minutes) . 45
5.27 The cognitive model for cs problem solving supported by the comparison between the

proposed model in Chapter 3 and the analysis of verbal protocols. 46
5.28 Participant 2’s Pathfinder network for uses of metacognition, schemata, and external

sources of information. 48
5.29 Participant 3’s Pathfinder network for uses of metacognition, schemata, and external

sources of information. 49
5.30 Participant 4’s Pathfinder network for uses of metacognition, schemata, and external

sources of information. 50

ix

5.31 Participant 5’s Pathfinder network for uses of metacognition, schemata, and external
sources of information. 51

5.32 Participant 6’s Pathfinder network for uses of metacognition, schemata, and external
sources of information. 52

5.33 Participant 7’s Pathfinder network for uses of metacognition, schemata, and external
sources of information. 53

5.34 Participant 8’s Pathfinder network for uses of metacognition, schemata, and external
sources of information. 54

5.35 Participant 9’s Pathfinder network for uses of metacognition, schemata, and external
sources of information. 55

5.36 Participant 10’s Pathfinder network for uses of metacognition, schemata, and external
sources of information. 56

5.37 Participant 11’s Pathfinder network for uses of metacognition, schemata, and external
sources of information. 57

5.38 Overall interactions between domain-specific strategies derived from software devel-
opment methods and metacognition. 60

x

Chapter 1

Introduction

Both computing professors and industry leaders acknowledge the need to give students in the

computing sciences a real-world perspective through problems requiring a wide-range of skills [61].

However, even though the Association for Computing Machinery (ACM) and the IEEE Computing

Society (IEEE-CS) recognize the necessity of teaching problem solving in the computing curricula

[189], industry leaders believe that universities are not meeting this goal [56]. They believe that

universities teach students to solve problems haphazardly by rummaging for a solution rather than

teaching them to understand the processes required to reach a solution to a complex problem. Even

though books used by universities to introduce computer science topics mention the importance of

problem-solving skills in developing and analyzing algorithms, they do little to cultivate these skills

[25] [104] [117] [87]. For example, these books may discuss problem solving in the first few sections,

but subsequent sections emphasize writing computer code rather than the processes involved in

developing an algorithm. Even though computer science professors might agree that the perfect

student understands Computers and Intractability in its entirety [207], most universities do not use

this book, which focuses on solving problems [73] as a foundation for the problem-solving knowledge

required to be a computer science graduate, and in Computing Curricula 2005, the most recent

curriculum published by the ACM, the authors acknowledge problem solving without providing

instructors the details of how, what, and when to deliver this knowledge to students.

The reason for the disconnect between the problem-solving knowledge needed by industry

and the skills taught at universities might be the lack of a unified view of what problem solving is, and

this disconnect is further compounded by the fact that some researchers place importance on such

1

artifacts as proofs and counterexamples resulting from solving a problem, rather than the history

and process of how the solutions were developed [111]. Many computer science departments use

assessment tools, such as standardized tests, pseudocode, and a computer program, to evaluate the

ability to provide a correct answer to a problem, but these do not take into account the processes

used by the student to arrive at a solution. This method of assessment and evaluation leads to

frustration for both the professor and the student because of the inability to understand the possible

errors leading to an incorrect result. The research in this dissertation focuses on discovering the

processes involved in determining solutions to computing problems through the analysis of past

problem-solving research, introducing a dynamic model to explain how people solve computing

problems, and suggesting new testing strategies to capture this process in the computing sciences.

The theoretical framework for this research begins in 1910 with John Dewey’s book, How We

Think. Dewey posited that people construct thoughts through reflection and regulation [57], and in

1957, his work influenced George Polya, who validated the construction of thoughts in mathematical

problem solving, recognizing the specific processes involved [166]. Dewey and Polya were among the

first educational leaders to recognize problem solving as a set of processes rather than one process

leading to a solution. Later, in 1985, Robert Sternberg used the idea of constructivism to develop

his triarchic theory of intelligence, providing a detailed breakdown of the mental processes used to

learn and solve general problems. Subsequently, he used this theory to compare expert and novice

problem solvers [196]. Constructivism is now a well-established theory, in which individuals do not

perceive the world directly but rather perceive interpretations of it, mediated by the interpretive

frameworks developed [186]. The constructivist perspective serves as the foundation for two aspects

of problem solving that are used as a focus in this research. The first aspect is the knowledge

base and the second is metacognition, which controls and monitors thinking [65] [88]. According

to Immanuel Kant, knowledge is represented through schemata, which form images and construct

models using procedural rules [222]. Schemata are viewed as inert representations and structures

that form the knowledge base, and the higher-order, metacognitive processes are responsible for

choosing knowledge representations [197]. This research develops, evaluates, and assesses a new

model representing the dynamic relationship between metacognition and knowledge representations

to explain how people solve computer science problems.

More specifically, investigating the interactions between metacognition and schemata ad-

dresses the question of how people store, retrieve, and manipulate problem-solving knowledge and

2

algorithms. In the model developed by this research, schemata represent the knowledge used to

develop, analyze, and learn algorithms in computer science, and metacognition controls and moni-

tors operations resulting in the storage, retrieval, and manipulation of dynamic schemata used for

computer problem solving. Schemata include concepts, procedures, and patterns, which might be a

design pattern for software development in computer science [72], and an example of a metacognitive

process used to control schemata in computer science might select which design pattern to apply

to the specific software being developed. To explore this issue of constructivism and the dynamics

of problem solving, the research presented here utilizes the verbal protocol method in Ericsson and

Simon’s book, Protocol Analysis [62], to explain the relationships between students cognitive pro-

cesses in solving a computer programming problem. After reaching an inter-rater reliability greater

than eighty percent, this research established a common vocabulary of possible schemata, of results

from operations on schemata, and of executive processes of metacognition used to solve problems in

computer programming. The resulting vocabulary from this initial study was used to code the verbal

protocols from second-semester and third-semester computer science students solving a first-semester

computer programming problem, in order to determine the existence and uses of metacognition and

schemata described by the model. Qualitative and quantitative analysis of the data collected from

this methodology reveals that participants in this study used their metacognition 32 to 110 times,

their schemata 60 to 133 times, and 0 to 25 external sources to determine a solution. To solve this

problem, participants used their schema for writing code the most and the metacognitive process

for inspecting their solution second most. The data from this study suggests that most students do

not use the design schema for writing a program and metacognitive processes are responsible for

determining when to write code as well as when to compile and execute the program. While some

metacognitive processes and schemata are used more than others, on average, metacognition inter-

acts with every schemata identified in the taxonomy. The results from this research may change the

way people view the storage, retrieval, and manipulation of knowledge in computer problem solving,

thereby impacting pedagogy, learning, and testing strategies at the university level.

3

Chapter 2

Background

Section 2.1 presents relevant research on problem solving to provide the basis for an inves-

tigation into the knowledge and metacognition needed for computer science. Sections 2.2 and 2.3

outline the primary studies in knowledge and metacognition, respectively. Research into memory

as a container, reasoning for the justification, and education for development of knowledge and

metacognition is presented in Sections 2.4, 2.5, and 2.6.

2.1 Past Research in Problem Solving

2.1.1 Historical Development

Until the 1890’s, problem solving was defined in terms of a solution. In 1910, John Dewey

defined a problem as anything that perplexes or challenges the mind to make the belief uncertain

[57]. According to Dewey, belief is based on five steps of reflective activity.

1. The occurrence of a difficulty (sense problem)

2. Definition of the difficulty (specify problem)

3. The occurrence of a suggested explanation (propose solution)

4. The rational elaboration of an idea (evaluate solution)

5. Formation of a concluding belief (test solution)

4

Dewey described thinking as the process of reflection and regulation leading to a belief,

and thought is a result of belief [57]. He explains this reflective activity as a transition between

meanings and facts and connecting facts for thought. Induction is movement from particulars to a

universal, connected view, and deduction is the process of making connections between universals

and particulars. Dewey asserted that education advocates induction rather than deduction, i.e. the

reasoning process.

Dewey applied and researched “how people think” in educational settings, and he presents

thought as an artifact of thinking. Dewey explains that “I think so” implies that one does not yet

“know so,” i.e. knowledge requires thought (or belief), but thought is not knowledge and thinking

is not knowing. In his investigation of thinking applied to problems, he discovered that thinking is

a constructive process.

Expanding on Dewey’s constructivist ideas of actively “building” knowledge and skills for

problem solving, Bruner viewed problem solving as a systematic process involving readiness, a spiral

organization, and going beyond the information given [30]. Bruner provides the following principles

of constructivist learning

• instruction must be concerned with the experiences and contexts that make the student willing

and able to learn (readiness)

• instruction must be structured so that it can be easily grasped by the student (spiral organi-

zation)

• instruction should be designed to facilitate extrapolation (going beyond the information given).

Cognitive structures, such as schemata, provide meaning and organization to experiences and allow

the individual to “go beyond the information given” [31].

Parallel to Bruner’s insights on constructivist learning, George Polya investigated how people

solve mathematical problems. The mathematics education community is most familiar with Polya’s

work through his (1945/1957) introductory volume How To Solve It, in which he introduced the

term “modern heuristic” to describe the art of problem solving [166]. Building on the work of John

Dewey, Polya introduced four specific steps solving mathematical problems.

1. Understand the problem.

2. Find a connection between the data and unknown.

5

3. Devise a plan and take action on the solution.

4. Examine the results obtained.

Polya suggests that the result of a mathematician’s work is demonstrative reasoning, a proof, but

the proof is discovered by plausible reasoning, by guessing....

Mathematical facts are first guessed and then proved, and almost every passage in this

book endeavors to show that such is the normal procedure. If the learning of mathematics

has anything to do with the discovery of mathematics, the student must be given some

opportunity to do problems in which he first guesses and then proves some mathematical

fact on an appropriate level [167].

Robert Sternberg adapts Polya’s view of mathematical problem solving to general problem

solving using his triarchic theory of intelligence [196], [197], [198]. In the late 1960s [88] and 1970s

[64], metacognition became a topic of interest in psychology, and Sternberg incorporated metacog-

nition into the constructivist view of problem solving. He stated that metacognition is needed in

problem solving to select one or more representation/organization for knowledge and understand-

ing [196]. His triarchic theory is built around three components: metacomponents, performance

components, and knowledge-acquisition components. Metacomponents are the higher-order, exec-

utive processes used to plan, monitor, and evaluate problem solving. Performance components are

lower-order processes executing commands issued by metacomponents, and knowledge-acquisition

components are used for learning to solve problems.

In The Triarchic Mind, Sternberg outlines seven executive processes that makeup the meta-

components critical to problem solving intelligence [198].

1. Recognizing the existence of a problem.

2. Defining the nature of the problem.

3. Generating a set of steps needed to solve the problem.

4. Strategy selection: ordering the steps for problem solution.

5. Deciding how to represent information about the problem.

6. Allocating mental and physical resources to solving the problem.

6

7. Monitoring a solution to the problem.

About the same time, artificial intelligence (AI) began to have an impact on problem solving

research, and many researchers used AI in conjunction with cognitive science to model problem

solving methodologies. In 1972, Minsky introduced the concept of a frame, which is a data-structure

for representing a stereotyped situation, such as being in a living room or going to a child’s birthday

party [138]. Parallel to Minsky’s research, Newell and Simon developed the General Problem Solver

(GPS) theory of human problem solving in the form of a simulation program. They used production

systems, which are series of rules explaining the storage, retrieval, and manipulation of knowledge in

problem solving [146]. Soon after, Anderson developed the ACT* theory of how people organize and

use their knowledge, and he validated his theory using a programming language, LISP. His theory,

also based on productions, has been used to explain how people program and learn new languages

[8]. In 1978, Rumelhart began studying schemata and the processes, or modes of learning, used

by them. Rumelhart identifies three modes of learning; accretion, structuring and tuning [180],and

Schank and Abelson use script theory as the basis for a dynamic model of memory [184].

In 1992, Alan Schoenfeld wrote an extensive review of past problem solving research intro-

ducing both cognitive psychology and AI, entitled in “Learning to Think Mathematically” [186]. He

pointed out five aspects of cognition based on research on how to solve problems:

1. a knowledge base

2. a problem solving strategy

3. control and monitoring

4. beliefs and affects

5. practices

A knowledge base includes chunks of information referred to as scripts, frames, and schema, and

control and monitoring include self-regulation from the psychology, AI, and education literature.

Schoenfeld provides a time-line graph displaying the differences in the time spent on each aspect,

between an expert and novice solving a mathematical problem [186]. Schoenfeld demonstrated that

the novice is unaware of or fails to use the executive skills used by experts, and he further addressed

the need to teach these metacognitive skills for successful problem solving.

7

2.1.2 Expert vs. Novice Problem Solvers

More specifically, Robert Sternberg explored the differences between expert and novice

problem solvers by explaining how the former classify a problem as a specific example of a particular

class within a specific domain [199]. As a result, expert knowledge is connected and organized around

important concepts, i.e. it is “conditionalized” to specify the context in which it is applicable, thereby

supporting understanding and transfer to other contexts rather than only the ability to remember

[50]. Consequently, experts are likely to understand a problem in terms of its structure and dynamics.

As such, they are more likely to recognize what problems are analogous based on Polya’s research

[173]. Once this context is established, experts group terms into chunks of information for easier

access into their knowledge network [130].

According to Reisberg, chunking is an unscientific term for organizing elements of informa-

tion into a non-fixed quantity grouped by relations; experts organize their knowledge around these

patterns of information [173]. This concept is based on Miller’s ideas from 1956 that the working

memory holds 7 plus or minus 2 chunks. In the late 1970’s, Hinsley explained how mathemat-

ics experts quickly recognize patterns of information, such as specific problem types that involve

specific classes of mathematical solutions [50]. Hinsley, Hayes, and Simon found that even with a

moderate level of expertise, subjects categorize problems in terms of their structure and type of

solution rather than in terms of their superficial features [173]. These researchers believe chunking

is achieved through schemata [186]. Similarly, Chi, Feltovich, and Glaser [36] found that experts

in physics chunk various elements of a configuration that are related by an underlying function or

strategy.

In the area of AI, an expert system is artificial intelligence software that uses data as input

and incorporates concepts derived from expert knowledge in a field to provide problem analysis

[120]. Dendral, Caduceus, and Mycin are examples of expert systems applied to the medical field.

An expert system uses knowledge engineering to reason the same way as experts but independent

of Sternberg’s research on expert problem solvers.

2.2 Knowledge

Content knowledge, or expertise, determines how information is encoded and organized

[199], meaning that this prior knowledge influences how learners interpret and decide what aspects

8

of this new information are relevant. Various types of knowledge such as facts, concepts, procedures,

and experiences are required for understanding problems [92]. Problem solving and the resultant,

learning, creates, or builds, new knowledge [148]. This knowledge is a continuum of knowing-how,

or implicit knowledge, and knowing-that, or explicit knowledge [181].

Implicit knowledge is known as tacit, procedural, and operational knowledge. Sternberg

uses schematic knowledge and tacit, or implicit, knowledge interchangeably [203]. This knowledge

is organized as a recursive web of connected information and implies the ability to follow and create

fundamental principles and systematic instructions that proceed from a problem statement to a

solution [92].

In addition to implicit knowledge, explicit knowledge is needed for concepts, declarations,

definitions, facts, and propositions. Explicit knowledge is known as conceptual, declarative, or

propositional and includes relationships organized in a web-like network [92]. Cognitive psychologists

believe concepts and definitions are stored as propositions resulting in true or false. John R. Anderson

expands this idea using networks based on propositions having syntactical representation through

relationships dependent on an object and agent, e.g. “Dogs eat bones” versus “Bones eat dogs” [7].

A person must resolve the propositional statement and relationships to use a concept from explicit

knowledge.

According to Greeno, algorithmic knowledge is a continuum between explicit and implicit

knowledge that links concepts and procedures using schemata, and competence for a principle con-

cept may use many schemata to determine a solution [80]. The psychology and mathematics dis-

ciplines use schema theory as an explanation for procedural knowledge and its interactions with

explicit knowledge during problem solving [92]. Past research exposes differences in the way indi-

viduals organize their knowledge leading to better problem solving skills [191].

2.2.1 Schematic Knowledge

Schemata are a valid explanation for algorithmic knowledge because the definition implies

representation and structure through organization. Schema theory began in philosophy with Im-

manuel Kant. In Kantian philosophy, a schema represented knowing-how and solved the problem

of how categories have “sense and significance” [221]. Kant defined a schema as the procedural rule

by which a category or pure, non-empirical concept is associated with a mental image of an object

[222]. Each category has one schema, and some schemata are shared by other categories in the same

9

classification. The schema for a concept is the representation of a general procedure by which an

image can be supplied for a concept.

The general application of schema theory is introduced by psychology and cognitive science,

where a schema is a cognitive or mental structure implying a collective representation. People use

schemata to organize knowledge and provide a framework for future understanding [49]. Schemata

are used in logic to specify rules of inference, in mathematics to describe theories with infinitely many

axioms, and in semantics to give adequacy conditions for definitions of truth. Examples of schemata

include rubrics, stereotypes, social roles, scripts, worldviews, and archetypes. The architecture or

structure of the mind was investigated through artificial intelligence using Schank’s scripts, Minsky’s

frames, and Rumelhart’s schemata.

Schemata have specific application in problem solving. In 1932, Sir Frederic Bartlett sug-

gested that memory takes the form of schemata, which provide a mental framework for understanding

and remembering information [17]. Bartlett investigated schemata used to solve problems through

evaluating responses to open-ended questions [16]. For example, he gave students a beginning and

ending number in a series and asked the students to fill in the series of numbers in the middle, i.e.

1...17. The various series of numbers supplied by the students revealed the different schema used to

solve the problem and the mistakes commonly made in the solution.

In addition to Bartlett’s experiments in the 1950’s, Jean Piaget and Barbel Inhelder referred

to problem-solving skills as schemata [98]. In Piaget’s theory of development, children adopt a series

of schemata to understand the world. His research included schemata development among children

and the assimilation and accommodation of schemata. He used the example of an infant’s push

and pull schemata to demonstrate assimilation and accommodation. Assimilation is the process

of integrating new information into an existing schema, and accommodation occurs when existing

schemas or operations must be modified or new schemas are created to account for a new experience.

Adaptation is the self-regulation process that operates through assimilation and accommodation

[163].

Following Piaget and Bartlett’s research, AI simulated the processes of schemata in problem

solving using a computer to demonstrate and explain the psychology of how a human solves prob-

lems. In the 1970’s, Rumelhart and Norman added two new processes to schemata called accretion

and tuning [178]. In accretation, learners take the new input and assimilate it into their existing

schema without making any changes to the overall schema. Tuning is when learners realize that

10

their existing schema is inadequate for the new knowledge and modify their existing schema accord-

ingly. Rumelhart redefined Piaget’s accommodation using the term restructuring. Restructuring is

the process of creating a new schema addressing the inconsistencies between the old schema and

the newly acquired information [180]. John Anderson used Rumelhart’s research on processes of

schemata to develop the ACT* theory that uses neural networks in an expert production system to

solve problems [8] [7].

Based on Anderson’s theory on schemata, Sandra Marshall attached four components to

schemata needed for mathematical problem solving [125]. She proposed a theory based on every

schema having four main components that must all be active to have a fully functional schema [127]

[124]. These four independent components and a description are as follows:

1. Feature recognition contains knowledge about the schema and specific situations for applying

the schema.

2. Constraints are the set of rules and conditions for instantiating the schema.

3. Planning has the mechanisms for setting goals and subgoals used for implementation of the

schema.

4. Implementation contains the actions and procedures for executing the goals and subgoals in

the plan.

If any component is missing, a schema cannot be used to solve the problem, and a person would

need more information to either trigger one of the properties or understand that the schema being

used is not able to solve the given problem. Marshall developed the Story Problem Solver, SPS,

assessment tool to show the existence of schemata in arithmetic problem solving [128].

2.2.2 Construction of Knowledge

Problem solving actively builds knowledge and skills using schemata, and this process is

known as constructivism [47]. Solving problems in the sciences is built upon the scientific method,

which is a constructive activity and not absorptive, where the solution is automatic for a person.

John Dewey is thought of as the father of constructivism, and Jerome Bruner applied Dewey’s

constructivist ideas to learning. Bruner provides the following principles of constructivist learning:

instruction must be concerned with the experiences and contexts that make the student willing and

11

able to learn (readiness), instruction must be structured so that it can be easily grasped by the

student (spiral organization), and instruction should be designed to facilitate extrapolation (going

beyond the information given) [31].

Radical constructivism, derived from Piaget in the 1950s, is based on the assumption that

children construct mental structures by observing the effects of their own actions on the environment

[47]. Knowledge is constructed in the mind of the learner [24]. This knowledge is constructed as the

learner organizes experiences around pre-existing mental structures or schemata. A constructivist

model allows for a bi-directional flow of knowledge between students and teachers, and constructivism

builds from the student’s understanding towards the teacher’s [24].

Students construct their knowledge by creating their own internal representations [93]. They

bring information from their prior knowledge and modify the information they remember. There are

pros and cons to constructivism because every learner constructs knowledge differently, but there

are patterns to the construction of knowledge. Knowledge is created at three points: socialization,

externalization, and internalization through metacognition [149] [148].

2.3 Metacognition

Metacognition has a directing or monitoring connotation depending on the context in which

it is used. According to Flavell, metacognition is the control one has over their own cognition and

learning [64]. Flavell made the distinction between metacognitive knowledge and metacognitive

awareness. Metacognitive knowledge refers to explicit knowledge about our own cognitive strengths

and weaknesses. Metacognitive awareness refers to the feelings and experiences one has when en-

gaged in cognitive processes, such as retrieval. People must be confronted with contradictions or

complexities that they must resolve by their own thinking and data gathering [65].

Self-regulation is a cyclic process beginning with observations assimilated by current

mental structures that drive behavior that has previously been linked to specific conse-

quences (i.e.specific outcomes), and the outcome is determined to be either a good match

or a poor match with accommodation needed [64].

J. T. Hart defines metacognition as the processes that allow an individual to observe, reflect

on, or experience his or her own cognitive processes [88]. Monitoring informs the person of the state

of their cognition relative to their current goal. Metacognitive monitoring includes feeling-of-knowing

12

judgments, judgments of learning, ease-of-learning judgments, warmth judgments, and judgments

of comprehension. Following Hart’s research, Baker observed metacognitive processes including

planning, monitoring, and modifying cognition at various stages in the acquisition of knowledge and

skills [15].

Robert Sternberg defines metacognition as the higher-order, executive processes used to

direct and monitor cognition. His triarchic theory of intelligence includes metacomponents (de-

cide what to do, monitor while being done, and evaluate what is done), performance components

(execute task), and knowledge acquisition components (learn how to perform task) [199]. Stern-

berg developed seven detailed roles of metacomponents (refer to Section.2.1.1). Metacomponents

are executive processes activating performance and knowledge-acquisition components. Allen and

Armour-Thomas constructed a test to validate six of Sternberg’s metacomponents, and their results

demonstrate that metacognition is an autonomous, multi-dimensional, general construct, and the

six roles of metacomponents work through interaction [4].

2.4 Memory

According to Schoenfeld’s diagram taken from Silver, the higher-order processes of metacog-

nition are a part of working memory, and working memory uses stimuli, such as vision, hearing, taste,

smell, and touch, from the sensory buffer and knowledge from long-term memory as inputs [186].

The metacognitive processes and mental representations in working memory use the input from

the sensory buffers and long-term memory, as well as internal feedback from working memory, to

produce a solution to the problem and store knowledge in long-term memory.

Memory is explained as a container, where metacognition and knowledge reside, divided into

short-term and long-term memory [186]. Short-term memory is known as working memory, and is

responsible for output from and storing knowledge in long-term memory [186]. Schoenfeld describes

long-term memory as a permanent repository for knowledge, but the behavior and organization of

knowledge for loading into short-term memory is still being researched. However, many researchers

agree that knowledge in long-term memory is stored as chunks and organized as a neural network,

or web of connected schemata [92].

13

2.5 Reasoning

The knowledge contained in memory is only knowledge if it is “justified, true, and believed”

[205]. According to Plato, S knows p if and only if

1. p is true;

2. S believes that p;

3. S is justified in believing that p.

Reasoning is defined as drawing conclusions or inferences through the use of logical thinking through

justification or support [46]. Therefore, reasoning is needed for the justification of knowledge.

In psychology, mental models are used for reasoning. According to Craik, a mental model is a

dynamic representation of a corresponding system in the external world that simulates the continuous

change of the external system [53]. Following Craik’s research, Johnson-Laird views mental models

as the mechanisms which humans use to solve deductive reasoning problems [102]. He defines mental

models as psychological representations of real, hypothetical or imaginary situations [103].

“Thinking consists of the construction and use of models in the brain that are structurally

isomorphic to the situations they represent [39].”

A schema is a type of mental model serving as a storage container for information used to represent

problem solving knowledge.

2.6 Education

Problem solving and learning are two sides of the same coin in education. Learning is the

process of acquiring knowledge, and problem solving is the process of using the acquired knowledge

and results in learning. How one retrieves knowledge for problem solving reflects how one learns

to solve problems [50]. Evaluating the way experts and novices solve problems demonstrates the

differences in how people learn. Learning and problem solving retrieve, store, and manipulate

knowledge.

14

Chapter 3

Details of Proposed Model

Based on the background presented in Chapter 2, this research proposes a cognitive model

to illustrate the dynamics of solving problems in computer programming. Figure 3.1 provides a

visual representation of the problem-solving paradigm indicating the transition from the problem

statement to the cognitive model proposed in this research. As outlined in the previous chapters,

problem solving begins with a problem, which is processed through one of the five senses, leading to

an associated context that uses cognitive processing to establish it, to chunk the problem statement

based on this context, to process these chunks, and to return to the problem statement. The cognitive

processing proposed here defines the interaction between the metacognition and schemata needed

when solving computational problems.

Figure 3.1: A diagram of the problem-solving process, beginning with the problem statement and
its relationship to the proposed model.

While the literature serves as a foundation for this diagram, it expands past research to

include the dynamics of schemata and their interactions with metacognition and external sources of

15

information. Since this research is not concerned with the physiology of the brain, it does not consider

its neurological make-up. Rather, it focuses on its apparent functionality when solving problems

in computer science, as well as the relationships among the three components of metacognition,

schemata, and external sources. According to Lev Vygotsky, people solving problems in a social

setting will use their peers, books, and teachers, which are external sources of information, to help

solve the problem [217] [218].

These three components, represented in Figure 3.2 by the three main boxes, act as initial

and terminal states in the proposed cognitive model. Metacognition, the top box, serves as both an

initial and a terminal state, controlling and monitoring the retrieval, storage, and manipulation of the

schemata and the external sources of information. These processing units are represented by the blue

and green boxes and the flow of data by the two sets of read/write arrows, while the schemata and

external sources are only terminal states. In memory, knowledge or its representations are read and

written by metacognition, and the information in an external source, eg. Google, is read and written

by both schemata and metacognition. Schemata, as represented in the purple box, are templates

for knowledge: External sources, shown by the orange box, can be many things such as books,

peers, or the Internet. While some cognitive psychologists separate metamemory processes from

metacognitive processes about individual beliefs [186], for the purpose of the model in Figure 3.2,

metacognition includes both of these, as they function on the meta-level. In addition, the research

reported here considers when knowledge is learned only in the broadest sense: that is, metacognitive

and schematic knowledge either is in long-term or in short-term memory. The labels on the arrows

between metacognition, schemata, and external sources are proposed operations initiating data

flow, and at this time, this dissertation does not propose any other labels until collecting empirical

evidence. The focus here is to capture the capability of a person to control and monitor data

both from schemata and elsewhere. The executive, higher-order processes of metacognition are a

collection of operations that can be categorized and processed as either controlling or monitoring,

as represented by the green and blue box in Figure 3.2. These processes, as well as their operations,

can occur simultaneously. For instance, a process controlling the recognition of a schema might issue

a series of read operations, while at the same time, a process monitoring the results from a different

schema issues a collection of other operations. Read and write operations transfer knowledge to and

from metacognition, schemata, and external sources of information, represented by the two parallel

data streams labeled read and write. However, if a schematic operation or series of operations fails,

16

Figure 3.2: A cognitive model for solving problems illustrating the interaction among the controlling
and monitoring operations of metacognition, the schemata representing prior content knowledge, and
the information coming from external sources.

then metacognitive processes determine when, what, and how to access external sources to provide

the missing information.

3.1 Flow Between Metacognition and Data

As shown in Figure 3.2, problem-solving knowledge is carried back and forth among schemata,

metacognition, and external sources through operations and data connections. More specifically, a

metacognitive operation of reading information from an external source can be sent at the same

time as a scheduling operation for schemata or a metacognitive operation of reading schemata can

occur simultaneously with an operation of writing a schema. Processing units control and monitor

schemata and the use of an external source through a collection of operations specifying when and

17

where to access the information needed. According to Schoenfeld, metacognition transfers knowledge

between long-term and short-term memory [186], even though metacognition is stored in memory.

As represented by Figure 3.2, the process of metacognition transferring knowledge from long-term

to short-term memory can be explained through a series of events, such as those in a von Neu-

mann computer where data/programs in memory are read and written by the central processing

unit (CPU). However, in the proposed model, metacognition acts as the CPU reading and writing

knowledge/schemata in memory. First, the control processing unit in metacognition issues a read

operation containing the schema location in long-term memory, and then, the schema is transferred

to metacognition, represented by the up arrow labeled “read”. Next, the control processing unit is-

sues a write operation to a short-term memory location, and the schema is transferred to short-term

memory, depicted by the downward-pointing arrow labeled “write”.

Going beyond the common, serial metacognitive processing used to transfer knowledge be-

tween long-term and short-term memory, more complicated examples include parallelism among

processes and operations. For example, operations that control writing schemata to memory may

occur at the same time as operations that monitor reading schemata from memory, and directly fol-

lowing these operations, other operations might be issued to control information being read from an

external source. With this example, the initial operations from the control and monitor processing

units are issued in parallel, but the operations used to control data from an external source are not;

however, data may flow to and from different locations at the same time, based on the amount of

data being written and/or read. Using Figure 3.2 as a visual aid, operations from the green and blue

boxes are issued in parallel and schemata flow on both arrows between metacognition and the purple

box. In addition, information may simultaneously flow on the up arrow between metacognition and

the orange box, even though the operation controlling the flow was not issued at the same time as the

others. Therefore, the order in which the transfer of data are completed cannot be determined, yet

metacognitive processes handle the synchronization of schemata and other data through high-level

operations.

3.2 Schemata Functionality

As discussed in Section 3.1, when solving problems, metacognition interacts with schemata,

which are templates for algorithmic knowledge, through two processing units and shared opera-

18

tions. These operations are shared by metacognition and schemata to enable interactions and other

dynamics for schema execution. Schemata use these operations to interact with other schemata

and to determine the knowledge represented by the schemata. As seen in Figure 3.2, schemata are

representations for conceptual and procedural knowledge, and the transformation from schemata

to algorithmic knowledge is represented by the solid, black unidirectional arrows inside the purple

box. Algorithmic knowledge, which is used to solve problems, lies on a continuum between explicit

and implicit knowledge in memory, and schemata are templates and networks of templates repre-

senting the conceptual and procedural knowledge used in problem solving. The model described

in Figure 3.2 is concerned only with the schemata representing prior content knowledge, which is

the domain-specific knowledge from long-term memory used to solve the current problem, and simi-

larly to metacognitive processes, the schematic processes, such as accommodation, assimilation, and

adaptation discussed in Section 2.2.1, can use a collection of operations. For example, operations

such as write, join, and check might be performed on schemata when assimilating new knowledge.

According to Sternberg, the executive processes of metacognition, known as metacompo-

nents, are used during problem solving as well as while learning knowledge [198]. The model in this

research uses six of Sternberg’s problem-solving metacomponents and elaborates on these metacom-

ponents with additional metacognitive processes unique to the computational sciences (refer to the

left column in Table 3.1). For example, recognizing a schema is a detailed metacognitive process

of Sternberg’s metacomponent defining the nature of the problem. In Figure 3.2, the control and

monitor processes of metacognition and the internal schematic processes share a common list of op-

erations to use, those proposed in the top row of Table 3.1. Match, write, read, order, delete, create

and copy are a few examples of schematic operations that might be used by metacognition as well

as schemata. The storage, retrieval, and manipulation of schemata can occur simultaneously while

using and learning knowledge, and they may require network connections and special operations for

synchronization, scheduling, and error-handling. A schema may use other schemata in its internal

network through operations such as communicate, schedule, invoke, and follow connections.

A schema is linked to other schemata through operations and connections. The model

presented in this research follows Hiebert’s observation that the more thoroughly information is un-

derstood, the stronger and more numerous are the connections [92]. The network of connections and

the metacognitive and schematic processes determine whether a schema is used as a conceptual or

procedural schema, respectively, leading to conceptual or procedural knowledge that can be trans-

19

Table 3.1: Examples of possible interactions between metacognitive processes and schematic opera-
tions

ferred among schemata, metacognition, and external sources. Conceptual knowledge includes facts,

definitions, concepts, and propositions; whereas, procedures and experiences are classified as proce-

dural knowledge. This research acknowledges episodic knowledge, but for the purposes of this model,

experiences from episodic knowledge used in problem solving are classified as procedural knowledge.

The model in Figure 3.2 uses schemata as representations and as structures of knowledge. A knowl-

edge structure is a network of knowledge representations. Just as computer programs have data

representations, data structures, and operations, a schema can contain knowledge representations

and structures consisting of a single schema or networks of schemata, as well as schematic processes

and operations. The representations in a schema determine how general or specific the schema is.

Depending upon the problem, metacognition and schemata dynamically interact to determine the

representations and operations responsible for the storage, retrieval, and manipulation of knowledge.

In addition to connections and operations that determine the representation and structure

20

of schemata, there are common properties among all schemata, such as feature recognition, con-

straints, planning, and implementation [124]. The model presented in this research includes another

property, which is termed criteria. Criteria denotes the set of principles used to determine whether

a schema is instantiated. The recognition of a schema is a result of a metacognitive process read-

ing the feature recognition property, and activation is a result of a successful match between the

context of the problem and the criteria property of a schema. Ultimately, this property is used

by metacognition as the primary reason for choosing a schema. For example, a person may read

a sorting problem in computer science and immediately recognize the bubble sort, quick sort, and

merge sort schemata, and then, after determining the context of the specific problem, the person

may use this information and the criteria property of all recognized schemata to metacognitively

choose, for example, the bubble sort schema. The constraints property and planning property of

schemata are used to generate the steps needed for a solution and a strategy for ordering the steps;

the execution of a schema is based on the implementation. Metacognition controls and monitors

the recognition, choosing, ordering, and execution of a schema using these properties, knowledge

representations, operations, and data connections. Schemata and metacognition may use external

sources of information in order to complete the recognition, choosing, ordering, and execution of

schemata, in case of errors or missing knowledge.

3.3 External Sources

A schema may use an external source of information to fill in data that is constant and does

not need to be permanently stored. For example, a person might not store the gravitational constant

in memory; rather, he/she may have an operation that reads this value from the nearest source of

information. In addition, when a schematic operation or series of operations fails, metacognitive

processes might use an external source of information to fix the error. Not all errors result in the

use of an external source, such as those refered to as misconceptions. Misconception implies an error

in conceptual knowledge; the model presented in Figure 3.2 captures more than just conceptual

knowledge. Therefore, misconceptions, as well as other errors in metacognition and schemata, are

included in the proposed model, and these errors can occur in the metacognitive control and monitor

processes, in a schematic operation, in a schema property, in conceptual and procedural knowledge,

and in the network. Generally, if these errors do not cause a disruption in a person’s cognition,

21

then the errors are not fixed intentionally. However, if a person metacognitively notices one of

these errors, then he/she may decide to use an external source of information. Just as schemata

are a part of memory and evolve over time by manipulating existing schemata and storing new

schemata, metacognition is also a part of memory and can evolve through the manipulation of

existing metacognitive processes and storing new metacognitive processes. This explains why a

person may need an external source to solve a problem one time, and the next time the person does

not use an external source of information to solve the same (or similar) problem.

Books, articles, the Internet, teachers, and peers are examples of external sources of infor-

mation. These sources can provide the missing information needed to solve a problem. However,

the information retrieved from an external source may not be true and may either be learned per-

manently or lost right after its use, depending on whether the information is integrated into working

memory and transferred back to long-term memory. Metacognition may use an external source of

information in any of the following cases:

• Missing a Schema: A schema for a specific problem cannot be selected because the schema

is not stored in memory. This is the result of attempting to check, match, or execute a missing

schema.

• Missing a Connection: A connection does not exist between schemata. This results in a

failure to follow a connection from one schema to another.

• Missing a Property: A missing schema property cannot be accessed or used. Failure to read

properties of a schema results in the inabilty to use the schema.

• Mismatch in Results: There is a mismatch between the expected and actual results of a

schema. The tracked behavior of a schema does not match the expected behavior.

3.4 Hypothesis

Based on Figure 3.2 and the description of the proposed model presented in this chapter,

the following hypothesis is proposed:

“Figure 3.2 is a valid cognitive model for solving problems in computer programming,

where metacognitive processes are responsible for controlling and monitoring the need for

22

external sources of information and the schematic operations that result in the storage,

retrieval, and manipulation of schemata, which are representations of knowledge marked

by continuous change, activity, and progress.”

The cognitive model in Figure 3.2 provides a visual representation of the roles of metacognition and

schemata in computer problem solving. The goal of this research is to establish interactions between

content schemata and metacognitive processes as an integral part of the discipline, using the model

as a foundation for establishing the details of how people store, retrieve, and manipulate knowledge.

This research has the potential of improving computer science learning and pedagogy through a bet-

ter understanding of the operations on schemata as well as the validation of metacognitive processes,

such as Sternberg’s six metacomponents. Ultimately, the significance of this research is to validate

a model and develop a vocabulary for educators to better understand, teach, and assess individual

and groups of students’ behavior while solving problems in computer science. This has the potential

to lower frustration between the educator and the student and to positively impact learning through

a focus on pedagogical strategies emphasizing the process of storing and retrieving information.

23

Chapter 4

Research Design and Methods

To address the issue of retrieving and storing information while solving computational prob-

lems, this study uses verbal protocols from first-year and second-year computer science students as

they solve a problem requiring prior content knowledge about the array data structure, looping, and

other basic concepts used to write a computer program. Verbal protocols include all methods for

obtaining oral and/or written reports of thinking, such as interviews, thinking aloud while solving

a problem, categorizing problems, reflective thinking about solutions or problem statements, and

asking participants to describe or explain their verbalizations. Since different methods yield different

results, several can be combined. For example, a mixed-method protocol requiring thinking aloud

while solving a problem combined with interviews and reflective reasoning helps capture parallel

thoughts.

This methodology, well-known in many disciplines including cognitive psychology, physics,

chemistry, mathematics, education, business, artificial intelligence (AI), and human-computer inter-

action (HCI) [36], [90], [215], [141], [42], [20], [67], [146], [182] has yielded innovative assessment tools

in chemistry [213] and physics [90]. For example, in physics, Hestenes et al. used verbal protocols to

develop the Force Concept Inventory (FCI), an assessment tool measuring student misconceptions

about motion and force [90]. The three-year study initiating the creation of this instrument [86] was

based on John Clement’s 1982 publication, Students’ Preconceptions in Introductory Mechanics [41],

and his research, in turn, was based on two articles by a physicist and an educator studying student

understanding of velocity and acceleration through written answers and verbal protocols [214] [215].

To create the multiple-choice test preceding the FCI, McDermott, Clement, and Hestenes collected

24

more than five years of data by videotaping/recording students writing answers and interviewing

them to determine the reasoning behind these answers. This record of students solving problems

captured their stepwise solutions for the alternative answers on the multiple-choice tests, with the

interviews capturing their reasoning and misconceptions. More recently, John Clement and faculty

from computer science held a research panel discussing misconceptions in discrete mathematics [6],

which resulted in an NSF grant to collect verbal protocols to aid in the development of a new

assessment tool based on the FCI [5].

As computer science researchers have begun to recognize a need for domain-specific tran-

scripts and analysis [5] [37] [160], they have adapted Ericsson and Simon’s guidelines for producing

and analyzing verbalizations in Protocol Analysis. This book defines verbalizations resulting from

thinking aloud as representations of subsets of sequences of thoughts reflecting the details of the

retrieved information even though these thoughts do not describe why this knowledge was chosen

[62]. The authors acknowledge other methods for measuring cognitive processes, such as EEG and

eye tracking; however, none claim to capture all thoughts, including thinking aloud. Ericsson and

Simon posit that people may have unconscious thoughts while they are silent, that thinking aloud

captures only sequential thoughts, and that the combination of verbal protocols, such as interviews

and experimenter interjection, with other methodologies like eye-tracking help capture unconscious

and parallel thoughts. In addition, researchers tend to criticize verbal protocols for disrupting nor-

mal cognitive behavior, but any “online” method which observes a person while performing a task

can be disruptive to normal behavior [59].

After comparing various methods, verbal protocols were determined to be an appropriate

methodology for yielding details about metacognition and schemata used in computer science prob-

lem solving, and the research presented here is based on Ericsson and Simon’s protocol for explaining

the details of student cognitive processes when solving a complex computer science problem. To in-

vestigate their metacognition and schemata more accurately, this research collected verbalizations

from participants using a combination of thinking aloud while solving a problem, providing partici-

pants with information when asked, and conducting off-line interviews after the participant reached

a solution. The mixed-method approach employed here addresses the details of the dynamics of

cognition required to explore the relationship between metacognition and schemata during problem

solving in computer science. At this time, this research is concerned only with conscious thoughts

as well as parallel thoughts captured by the interview; however, it recognizes unconscious thoughts

25

and does not dismiss the possibility of their being a part of the explanation for the results during

periods of silence.

4.1 Participants

The participants included students enrolled in either Computer Science II (CPSC 102) or

Data Structures and Algorithms (CPSC 212) at Clemson University who volunteered one hour of

their time in exchange for ten dollars from the experimenter (under IRB consent #IRB2008-170

entitled “Test of Computational Thinking”) to participate in this research study. After being given

a brief introduction to the experiment, the participants were recruited by passing a calendar around

the two classes asking students to sign up for a date and time when they were available to participate.

This yielded a sample size of eleven, and if offered more money, for example twenty dollars, the

sample size may have increased but so would the cost. On the other hand, if the experimenter was

an instructor of a course, then the students could have been recruited through an extra credit or

homework option in lieu of a traditional assignment. After volunteering to participate in this research

study, participants received an email welcoming them to the study and providing them with the IRB

informational letter (see AppendixC). Each participant was sent an email 24 hours prior to his/her

sign-up date reminding them of their time and the location, Brackett Hall, Room 317A, along with

a demographics sheet to minimize confounding variables such as years of professional programming

experience versus university programming experience. This quiet, well-lighted room without any

distractions is located in the Psychology Department and dedicated to conducting verbal protocols.

The time of the day for the experiment varied based on each participant and the room availability;

the physical, mental, and emotional state of the participant was ignored. However, future studies can

capture this information on the demographics sheet to establish the differences in metacognition and

schema use under different conditions due to external variables such as caffeine, sleep deprivation,

empty stomach, and stress.

4.2 The Pilot Study

A pilot study was conducted to ensure analyzable data based on the initial demographic

sheet and the problem selected. For example, the first participant was given the original demograph-

26

ics sheet (see Appendix A), but after completing the verbal protocol, the demographics sheet was

updated to include the number of English speaking years for accuracy in transcription and analysis.

In addition, the demographics sheet was modified to capture information on ethnicity, grade in past

CPSC course at Clemson, and whether the participant is a first-generation university student (see

Appendix B). Prior to recording, each participant in this study was read the IRB Informational

Letter, which was sent in the initial welcoming email (see Appendix C), followed by a brief expla-

nation of a verbal protocol using adding eleven plus eleven as an example; i.e., the experimenter’s

verbal protocol was “One plus one, two. One plus one, two. Twenty-two.” After informing the

participants that they could ask a question at any time, the researcher supplied every participant

with a computer capable of browsing the web, accessing old programs, and writing new programs

as well as a blank piece of paper, pencils, pens, textbooks on Java, C, and C++ languages, and a

paper-copy of the problem statement.

In this study, in order to capture the details of metacognition and schemata in the transcript,

piloting the selected problem was important. A problem too simple or too hard will not yield as

much verbalization as a problem complex enough to stimulate thought [62]. For instance, if the

research question involves the carry schema used in addition, then the problem needs to be difficult

enough for the participant to verbalize details about it. The experimenter’s verbal example of eleven

plus eleven was too simple to contain any information regarding the carry schema. For the purposes

of this research, the problem was chosen to provide details about the looping and array schemata

as well as the interactions within and among these schemata, metacognition, and external sources

of information.

Before the students were instructed to begin working on the problem, the experimenter

read the following version of Chapter 8 Programming Project 1 from Problem Solving and Program

Design in C [87]:

Write a program to take two numerical lists of the same length ended by a sentinel value

and store the lists in arrays x and y, each of which can hold a maximum number of 10

elements, and populate both lists by entering the actual data values from within the

program. Let n represent the actual number of data values in each list. For example, x

and y can hold up to 10 elements, but the two arrays may only contain 5 actual data

values, i.e. n=5. Store the product of corresponding elements of x and y in a third array

z, also of maximum size 10. Print the contents of the arrays x, y, and z. Then compute

27

and print the square root of the sum of the items in z.

This problem was given to the initial five students with various backgrounds, and the resulting data

contained enough detail among these participants to continue using in the research study.

4.3 The Research Study

As in the pilot study, every participant in the research study was instructed to meet in

Brackett Hall, Room 317A on the date and time specified on the volunteer sheet. They were read the

IRB informational letter, given an example verbal protocol, and supplied with texts, paper, pencils,

and a computer. The verbal protocols were recorded on a desktop computer in the room using

Morae software and a microphone. Morae software records a person’s voice and computer actions,

resulting in a video of the participant writing computer code and talking aloud simultaneously while

solving a computer science problem. Due to the absence of a video camera and eye tracking software,

participants were instructed to verbalize their actions performed off the computer such as designing,

reading the problem statement, and using textbooks. The student could use books, the internet,

scratch paper, the interviewer, and old programs when he/she could not remember information or

simply did not know the answer. The interviewer answered questions and provided hints only when

the student specifically asked the interviewer for help or appeared to be struggling on the same

thought for longer than 5 minutes, and participants were reminded to think aloud if silent for more

than 10 seconds to increase the number of thoughts captured.

4.4 Transcription of the Data

The original format of the data was a Morea video clip accessible only by using the Morae

software, which transferred the video clip into a Windows movie (.wmv) file and a comma-separated

values (.csv) file containing the elapsed time, the computer page/program, the keystrokes, the ap-

plication changes, and the internet searches (see Appendix F). Using the Morae .csv spreadsheet

and the coding guidelines in Appendix H, columns A through E in the Level 1 spreadsheet were

created to capture the details about participant computer actions and keystrokes (see Appendix H).

The verbal statements were manually transcribed into text, while viewing and listening to the movie

file, and entered into column F next to the corresponding computer actions in the Level 1 sheet

28

(see Appendix G). The recorded data from the eleven participants consisted of 298 minutes of audio

and video, but due to the inability to understand the first participant, this verbal protocol was not

transcribed or analyzed. This yielded 241 minutes and 32 seconds of audio/video to transcribe and

analyze as well as 357 pages of .csv data to transfer to columns A through E in Level 1. For this

research study, the average initial setup time for columns A through E was 2 hours, which depended

on the participant’s total time to solve the problem and the number of computer actions during that

time. Initially, transcribing the data averaged one hour for every 2 minutes of participation, but the

experimenter reduced the transcription time by half after three participants. After four more par-

ticipants, the transcription time was again reduced to one hour for every 6 minutes of participation,

and the Level 1 transcript in columns A through E for the 10 participants resulted in 200 pages of

data to analyze and code. Even though transcription and analysis might take less time using only

computer actions, the verbal transcript is needed to capture the relationship between schemata and

the metacognitive processes.

4.5 Analysis of a Transcript

After transcribing the 10 participants, a process of joint and individual coding of tran-

scripts was used to establish the reliability for the vocabulary and transcript analysis. Initially,

the researchers analyzed the transcripts for general commonalities using the experimenter’s raw

observations after each verbal protocol (see Appendix Q) to develop the initial coding document

for metacognitive processes and schemata (see Appendix I). To code the high-level and low-level

domain-specific schemata of a participant, the problem statement was divided into the goals and

subgoals needed for the solution (see Appendix D). The starting time for the participant’s implicit

and explicit goals and subgoals were recorded in columns G and H of the Level 1 spreadsheet as

well as the time when the participant finished coding and completing his/her answers. Errors in the

goals and subgoals were recorded in column I, along with the participant’s detection and correction

of these errors. The final coding document in Appendix H is a result of seven versions of joint and

individual coding/recoding to reach an acceptable inter-rater reliability greater than 80% on the

metacognitive processes and programming schemata.

Jointly, the researchers created a list of goals and subgoals for the problem (see Appendix

D), as well as an initial coding scheme based on the patterns among the transcripts, the metacogni-

29

tive processes proposed in Table 3.1, common programming strategies, the domain-specific schemata

need to solve the problem, and Bloom’s taxonomy (see Appendix I). After applying this first coding

document to the ninth participant’s transcript, the researchers met for 1.5 hours discussing their

differences in the first 8.5 minutes of participant 9. This discussion led to modifications, additional

examples, and clearer definitions, all of which can be seen in Appendix J. The most significant mod-

ifications included renaming the terminology for the programming strategies and omitting Bloom’s

taxonomy due to its inability to capture or add details about metacognition and schemata in com-

puter science problem solving. The ninth participant was recoded using version 2, followed by a

3-hour meeting discussing disagreements on the first 8.5 minutes of the recoding. A direct result of

this meeting was the addition of a code, learn syntax by guessing and compiling, as well as details to

the goals and subgoals (see Appendix K). The goals and subgoals were divided into columns G and

H, and the start time for beginning code, finishing code, and evaluating code for goals and subgoals

was added to the document. Using version 3 of the coding scheme, participant 9 was recoded again,

and the researchers discussed their disagreements on the first 14 minutes of the transcript. Version

4 added examples and improved definitions (see Appendix L), and after recoding participant 9, the

researchers reached a joint agreement on the analysis of the first 14 minutes of this student. Reaching

this agreement on the vocabulary took approximately 150 hours over two months.

The next two months consisted of the researchers individually coding two students to reach

an acceptable inter-rater reliability on the coding scheme for the metacognition and the schemata

used in this computer science problem. The first half of the transcript from the fourth participant was

chosen at random for independent coding. Using version 4 of the coding document, the researchers

reached a 71% agreement on 60 codes from 1:53-8:33 minutes of this participant. This inter-rater

reliability is lower than the accepted 80% or higher in psychology leading to another 2-hour meeting.

The topic of this meeting was the development of a new code to capture the participants’ diagnosing

errors before fixing them and was to improve definitions (see Appendix M). The first half of the

fourth participant was recoded jointly using version 5, and then, participant 6 was randomly chosen

for the second individual coding. The first 13 minutes of this participant yielded 120 codes, and

the raters agreed on 60% of them across columns G through K. This inter-rater reliability was

lower than the initial reliability, perhaps because of the addition of codes without clear definitions

and/or a longer transcript with twice as many codes as participant 4. Based on the disagreements

and 10 more hours of meetings, subcodes were added to the diagnose code to capture the different

30

diagnosing strategies such as recognition, elimination, and backtracking and to the planning code to

include general scheduling of activities (see Appendix N) as well as a second analysis of the problem

goals and subgoals (see Appendix E). This sixth version of the coding document was re-applied to

the first half of participant 6, and the researchers individually coded the remaining 13 minutes of

this participant. Of 96 codes, the raters agreed on 64, improving the inter-rater reliability of the

coding document to 67%. Most of the disagreements in this third inter-rater reliability coding were

due to subcodes rather than the high-level codes. Therefore, the coding document was simplified

by combining and removing subcodes (see Appendix H), and the individual coding from the last

13 minutes of participant 6 were recoded using this version, resulting in an 85% reliability for

the vocabulary used to code metacognitive and schematic processes. Using the final version of

codes, columns G through K from the first half of participant 6 was recoded (see Appendix G),

and coding the errors, metacognitive processes, domain-specific schemata, and the use of external

sources of information averaged the experimenter one hour for every 5 minutes of participation in

the remaining transcripts.

31

Chapter 5

Results and Discussion

After reaching an agreeable inter-rater reliability, a vocabulary for metacognitive and schematic

processes was established to determine each participant’s Level 1 coding (see Appendix G). This

vocabulary led to the development of Level 2 graphs capturing participant behavior among goals and

their movement through the model proposed in Figure 3.2. The patterns and interactions among

these Level 2 goals, errors, metacognitive processes, and schematic processes were then analyzed for

commonalities and differences, and these results compared to the participant’s grade on the problem,

to their demographic information, and to Figure 3.2. The analysis of the data required a taxonomy

of mental processes, Level 2 graphs, and grading schemes for the problem.

5.1 A Taxonomy of Mental Processes

The vocabulary from Chapter 4 provides the foundation for supporting Sternberg’s six

metacognitive processes, including: define the nature of the problem, generate possible steps needed

to solve the problem, order the steps, decide how to represent information about the problem,

allocate mental and physical resources to solve it, and monitor the solution. It also provides the

foundation for researching some schematic operations, such as match, invoke, read, order, and check,

proposed in Table 3.1. At this time, this research reliably supports 6 processes from metacognition

and 6 strategies from schemata that are used to write a computer program (see Table 5.1). Provided

in the taxonomy in Table 5.1 is a brief definition (see Appendix I for a longer definition) and an

example of each metacognitive process and schematic strategy, which are high-level schemata repre-

32

Table 5.1: A taxonomy for the metacognitive and schematic processes used by the participants in
this research to solve the problem in Appendix E.

senting strategies from procedural knowledge that determine the context for using other schemata.

The domain-specific strategies identified in this research were derived from the waterfall and iterative

methods for software development, i.e. requirements/plan, design, implementation, testing, evalua-

tion, and maintenance. For example, write code is a domain-specific strategy used in computer sci-

33

ence that determines the syntax of the conceptual and procedural knowledge, which are represented

by schemata, needed for implementation. The results of this research address the existence of only

these schemata, their interactions with one another, and the interactions with the 6 metacognitive

processes identified in the taxonomy. Future studies can determine how these high-level schemata

interact with other computer science strategies, procedures, concepts, facts, experiences, and design

patterns.

To address this research hypothesis on the existence of metacognition, schemata, external

sources of information, and their interactions, the final taxonomy in Appendix I was used to code

Level 1 columns G through K for each participant (see Appendix G). The Level 1 coding translated

into problem behavior graphs, which are concise descriptions of the state of knowledge and the

operations used to transfer one state of knowledge to another while solving a specific problem [146],

consolidating 200 pages from 10 participants’ Level 1 coding into 58 pages of graphs. A hard-copy

example of one problem behavior graph can be seen in Appendix O. Initially, the Level 2 coding

for the first two participants averaged 1 hour for every 6 minutes of participation, but this time

was reduced to 1 hour for every 8 minutes for the next three. The Level 2 coding for the last

five participants was further reduced to 1 hour for every 10 minutes. These problem behavior

graphs capture the participant’s movement through the goals in the problem; the metacognitive and

schematic processes used within each goal; and the misconceptions, which implies errors in one’s

conceptual knowledge, as well as other errors occurring in metacognition and schemata as defined

in Section 3.3.

5.2 The Existence of Metacognition and Schemata

In order to support the need for metacognition, schemata, and external sources of infor-

mation in computer science problem solving, the sum of visits to each process and external source

identified in the Level 2 coding was calculated for each participant (see Table 5.2). Based on in-

dividual participants, Table 5.2 addresses the total visits to the 6 metacognitive processes and 6

schematic strategies from the taxonomy in Table 5.1 as well as to external sources. Since the hy-

pothesis for this research addresses the establishment of metacognitive processes, schemata, and

external sources in computer science problem solving as well as the interactions among them and

external sources (see Figure 3.2), the results presented here do not address the time spent within

34

each process, even though this information is recoverable from the data (see Chapter 6.2). Table 5.2

supports the existence of metacognition and schemata in computer science problem solving based

on these participants’ uses of metacognitive processes ranging from 27% to 54% of their total men-

tal processes, which exclude their uses of external sources, with an average of 44%, and 80% of

these participants used metacognition in 40-50% of their mental processes. These numbers support

metacognition as a tool for problem solving, and 90% of the participants had to use the Internet,

books, or the experimenter to solve the problem.

Table 5.2: Results for total visits to metacognition, schemata, and external sources of information
per participant.

On average, participants used schemata more than metacognition or external sources, av-

eraging 87 visits to schemata, 71 visits to metacognition, and 8 visits to external sources. Of the

schemata for strategies identified in this research, write code was used the most, averaging 27% of

all their mental processes used to solve this problem. Diagnose and fix code are the next two most

used strategies in schemata averaging 9% and 10% of the total mental processes. The average visits

to fix code exceeds the average visits to the diagnose strategy due to participants’ lack of an implicit

35

or explicit diagnosis. The compile and execute schemata for checking and detecting errors averaged

6% and 3% of all mental processes. The compile strategy is used more by participants to find the

syntax errors, and after a successful compilation, the participants began using the executing strat-

egy for finding errors. Since these participants used the compile strategy before using the execute

strategy, their average use of the compile/execute strategy was 8% less than their use of the schema

for fix code. This is due to the participants’ use of the inspect metacognitive process for mentally

inspecting their solution, which averaged 17% of their total uses of all mental processes.

Figure 5.1: Average uses of mental processes by these 10 participants.

Metacognition was 44% of the participants’ total mental processes, and the two processes,

start/revisit goals and inspect, were the most widely used metacognitive processes, averaging 13%

and 17% of all their mental processes used. The third most used metacognitive process was un-

derstand problem/plan averaging 9% of their mental processes used to solve the problem. The last

metacognitive process used by every participant was verbalize low knowledge, which averaged 4% of

their mental processes. There were two metacognitive processes not visited by all participants, and

these include comparing a solution to the problem and reading/considering a design. The majority,

which was 60% of the participants, compared their solution to the problem, but these visits only

averaged 1% of the total mental processes. However, none of the participants used read/consider

design, which might be attributed to 90% of the participants never using the strategy to design a

36

solution to the problem, except for participant 3 who wrote the variable names, x, y, z, and n, on

paper.

Of all the mental processes used by these participants to solve the problem in this research

study, the strategy write code averaged the most uses, and the metacognitive process for inspect-

ing a solution averaged 10% lower. The metacognitive processes used to inspect and start/revisit

goals were used more than any other domain-specific strategy besides write code, and combined,

these two metacognitive processes averaged more uses than any other mental process used by these

participants. The fourth most used mental process was the fix code strategy from schemata, which

averages 1% more than their visits to the diagnose strategy. The understand problem/plan and

verbalize low prior knowledge from metacognition average more uses than the compile and execute

strategies from schemata. The mental processes used the least include the metacognitive process

compare, the design strategy in schemata, and the read/consider design. This analysis provides

insight into the existence of metacognition, schemata, and external sources of information used by

these participants to solve the computer science problem provided in this study.

5.3 The Relationship Between Metacognition and Schemata

The support for the existence of metacognition, schemata, and external sources in com-

puter science problem solving allows for the analysis of the interactions among them. To capture

the relationship proposed in Figure 3.2, the Level 2 problem behavior graphs were color-coded and

grouped by location, and similar processes were combined based on functionality (see Figures 5.2

to 5.26). The design strategy and metacognitive process read/consider design were dropped from

these graphs due to the lack of use, and the inspect and compare processes from metacognition,

as well as the compile and execute strategies from schemata, were combined. Both processes and

strategies are used for checking and detecting errors, but each set resides in different areas of the

model. On average, participants metacognitively compared their solution to the problem statement

1% of all their mental processes, and the execute strategy was not used without being proceeded by

a successful compilation of the program. The start/revisit goals and verbalize low prior knowledge

metacognitive processes are grouped together and colored blue to classify them as control, which is

a type of metacognitive process responsible for choosing and invoking specific schemata as well as

determining when to visit an external source; whereas, the understand problem/plan and inspect/-

37

compare processes from metacognition are grouped together and colored green to classify them as

monitor, which is used to check the solution, detect errors, and evaluate the progress toward a goal.

The visits to a strategy from schemata are colored purple and to an external source are colored

orange to correspond to the colors in the original model. For individual participants, Figures 5.2 to

5.26 illustrate the relationship among the mental processes established in Table 5.1.

Figure 5.2: Participant 2 (0-12 minutes)

Figure 5.3: Participant 2 (12-20 minutes)

38

Figure 5.4: Participant 2 (20-32 minutes)

Figure 5.5: Participant 3 (0-16 minutes)

Figure 5.6: Participant 3 (16-24 minutes)

Figure 5.7: Participant 3 (24-41 minutes)

39

Figure 5.8: Participant 4 (0-7 minutes)

Figure 5.9: Participant 4 (7-15:30 minutes)

Figure 5.10: Participant 5 (0-14:45 minutes)

40

Figure 5.11: Participant 5 (14:45-24:45 minutes)

Figure 5.12: Participant 6 (0-13:30 minutes)

Figure 5.13: Participant 6 (13:30-26:45 minutes)

41

Figure 5.14: Participant 7 (0-11 minutes)

Figure 5.15: Participant 7 (11-19:20 minutes)

Figure 5.16: Participant 8 (0:30-10:30 minutes)

42

Figure 5.17: Participant 8 (10:30-17:30 minutes)

Figure 5.18: Participant 9 (0-8:20 minutes)

Figure 5.19: Participant 9 (8:20-15:15 minutes)

43

Figure 5.20: Participant 9 (15:15-21:15 minutes)

Figure 5.21: Participant 10 (0:44-9:50 minutes)

Figure 5.22: Participant 10 (9:50-17:15 minutes)

44

Figure 5.23: Participant 10 (17:15-23:45 minutes)

Figure 5.24: Participant 11 (0:15-9:15 minutes)

Figure 5.25: Participant 11 (9:15-15:40 minutes)

Figure 5.26: Participant 11 (15:40-19 minutes)

45

The graphs in Figures 5.2 through 5.26 provide a visual representation of the participants’

uses of mental processes and external sources during the problem-solving exercise. The participants

appear to move between control and monitor metacognitive processes, which was not proposed in

the original model, and 70% of the participants, except participants 2, 5, and 7, used monitor

processes more than control processes, with participants 3, 4, and 10 using them more than twice

the number of those categorized as control. With the addition of the interaction between processes

in metacognition and the domain-specific strategies represented by schemata, these figures support

the proposed model describing how people solve problems in computer science. These additions are

added to the proposed model and colored red in Figure 5.27. Even though Figures 5.2 through 5.26

support the interaction of metacognitive processes with schemata and external sources, the taxonomy

used to determine these interactions does not provide enough detail to capture the operations, such

as reading or writing data. Therefore, the supported model in Figure 5.27 does not distinguish the

Figure 5.27: The cognitive model for cs problem solving supported by the comparison between the
proposed model in Chapter 3 and the analysis of verbal protocols.

46

type of interactions among metacognition, schemata, and external sources. Instead, the resulting

model illustrates the existence of these two-way relationships with bi-directional, unlabeled arrows.

The basic terms inside the purple box representing schemata are taken from the psychology and AI

literature; however, this dissertation does not investigate these terms related to computer science

schemata or the labels for the arrows between schemata and its represented knowledge.

In order to analyze the interactions among specific metacognitive processes, schemata, and

external sources, the interactions in Figures 5.2 through 5.26 were counted for each participant and

entered into Tables 5.3 to 5.12. The design strategy was dropped from these tables, even though one

participant, student 3, used it once. This participant appeared to go from understand problem/plan

to design and from design to start/revisit goals, and he never used read/consider design. Tables 5.3

through 5.12 capture the participants’ movements from a metacognitive process, schematic strategy,

or external source to another, as well as the lack of any interactions, in order to analyze the specific

interactions in the model as well as identify the cyclic behavior within the processes, strategies, and

external sources. After averaging the total uses of each interaction table, the Pathfinder network

analysis software [54] was used to generate knowledge networks for each participant. These par-

ticipants show no interactions between a start/revisit goals process and another start/revisit goals

process; whereas, all other mental processes and strategies appear to have a relationship with an-

other mental process or strategy of the same type. For example, a participant in this study might

write code to declare the arrays and then write code to initialize the arrays without using a different

process or strategy. These are counted as two separate uses of the write code strategy for the different

subgoals within the goal of creating and initializing data structures identified in Appendix E. Most

interactions between the schemata for checking/detecting errors were due to a successful compila-

tion followed by executing the code, and the other interactions were between two execute strategies.

In this research, none of the participants appeared to move from start/revisit goals directly to

the strategies in schemata for checking/detecting errors; whereas, 12% of the participants’ uses of

metacognitive processes for checking/detecting errors were directly after start/revisit goals. Both of

the metacogntive processes and the schematic strategies for checking/detecting errors each averaged

12% of the mental processes leading to goals, but there was no evidence of participants writing code

directly before diagnosing an error without using metacognition or schemata for checking/detecting

errors. In addition, there was no evidence of the participants using the compile or execute strategies

before fixing an error without diagnosing the error, and only 6% of the participants’ uses of fix

47

code were before fixing a different error without a diagnosis between errors. External sources were

not used by these participants before fixing errors, but on average, 31% of the participant visits to

external sources were before checking/detecting and diagnosing errors.

Table 5.3: Participant 2’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.28: Participant 2’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

48

Table 5.4: Participant 3’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.29: Participant 3’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

49

Table 5.5: Participant 4’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.30: Participant 4’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

50

Table 5.6: Participant 5’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.31: Participant 5’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

51

Table 5.7: Participant 6’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.32: Participant 6’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

52

Table 5.8: Participant 7’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.33: Participant 7’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

53

Table 5.9: Participant 8’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.34: Participant 8’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

54

Table 5.10: Participant 9’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.35: Participant 9’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

55

Table 5.11: Participant 10’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.36: Participant 10’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

56

Table 5.12: Participant 11’s interactions among metacognition, schemata, and external sources of
information.

Figure 5.37: Participant 11’s Pathfinder network for uses of metacognition, schemata, and external
sources of information.

57

While there were only a few processes and strategies from metacognition and schemata show-

ing no interactions, the processes and strategies listed below had less than 5% of their interactions

with other metacognitive processes or schemata. These interactions include:

• starting/revisiting goals before verbalizing low prior knowledge or diagnosing an error

• verbalizing low prior knowledge before diagnosing an error

• understanding the problem/plan before verbalizing low prior knowledge, compiling/executing

code, diagnosing an error, or fixing an error

• inspecting/comparing the solution before verbalizing low knowledge or fixing an error

• writing code before verbalizing low knowledge, compiling/executing code, or fixing an error

• compiling/executing code before verbalizing low knowledge, understanding the problem/plan-

ning, or writing code

• diagnosing an error before verbalizing low knowledge, understanding the problem/planning,

or compiling/executing code

• fixing an error before verbalizing low knowledge, understanding the problem/planning, or

diagnosing an error

This list of one-way relationships averaging less than 5%, with some less than %1, plus the list

of no interactions provide little support for the interactions between the write code and diagnose

strategies, the write code and compile/execute strategies, the diagnose strategy and metacognitive

process for verbalizing low knowledge, and the fix code strategy and the understand problem/plan

process from metacognition. In addition, the metacognitive processes verbalize low knowledge and

inspect/compare as well as the diagnose strategy from schemata had less than a 5% relationship with

another process or strategy of the same type, and none of the strategies from schemata averaged

greater than 3% of their uses leading to an external source. This low interaction implies that these

participants used metacognitive processes to determine when, what, and where to visit an external

source. On average, 30% of the visits to two metacognitive processes, verbalize low knowledge and

understand problem/plan, were used before visiting an external source, and 14% of the visits to

external sources resulted in the use of another external source without visiting metacognition or

schemata between sources. It appears that 66% of the participants’ uses of external sources were to

58

understand problem/plan, inspect/compare, write code, or diagnose an error, while other interactions

averaged less than 5% and 1%.

Even though the interactions between metacognition, schemata, and external sources listed

above resulted in less than 5% of their interactions with other processes and strategies in this

study, there are specific processes and strategies from metacognition and schemata that averaged

higher than 10%. The use of the diagnose strategy before fixing an error was the only interaction

with an average greater than 50%, and 30% of the other uses of diagnose were to revisit goals

implying that the participants diagnosed an error outside their current goal requiring revisiting a

prior goal before fixing the error. This interaction between diagnose and start/revisit goals explains

why 24% of the visits to goals were directly before fixing an error. Participant 9 was the only

one who did not have any interactions between start/revisit goals and fix code, which implies that

most of his errors were detected and corrected while working on a goal before moving to the next

goal. The majority, 47%, of the uses of the metacognitive process for start/revisit goals resulted

in write code, and another 24-25% of start/revisit goals interacted with a monitor process from

metacognition. Even though control processes can be followed by another control process from

metacognition, most had interactions with schemata and external sources, and more specifically,

39% of the verbalizations of low knowledge led directly to write code or start/revisit goals without

using an external source to correct the low knowledge. However, 14% of their verbalizations of

low knowledge did result in using an external source. It appears that the metacognitive processes

classified as monitor are used before using other metacognitive processes, but the inspect/compare

processes versus the understand problem/plan process average more interactions with schemata.

This is due to the participants’ using 29% of their mental processes to understand problem/plan

before start/revisit goals, and 29% of their inspect/compare metacognitive processes before visiting

their schemata for diagnose. The use of metacognition to diagnose errors was only 4% lower than

the average use of the compile/execute strategies leading to a diagnosis, and another third of the

interactions with compile/execute were between the compiler and executing the program. These

two interactions account for 68% of all the interactions with the schemata for checking/detecting

errors; while, 12% of the remaining interactions were with goals implying that participants rarely

compiled or executed their program between goals without having any errors. On average, 33% of

participants’ uses of write code led to metacognitive processes for checking/detecting errors, and

25-26% of the uses of a monitor process in metacognition led back to write code, totaling 51% of all

59

uses of the write code strategy. Another 37% of the uses of write code were from another write code

strategy. Only 2% of the uses of write code were after using the compiler or executing the program,

also showing that participants in this study rarely had successful compilations or executions and had

successful ones after completing all goals, when the write code strategy is no longer needed. After

fixing errors, participants typically used either a metacognitive process or schema for evaluating

their fix and checking/detecting more errors; each averaging 33% and 30% of the mental processes

after fixing an error.

The analysis of these ten participants’ interactions between domain-specific strategies from

schemata and the metacognitive processes reveal how students move through the software devel-

opment process using metacognition to solve the problem in Appendix E (see Figure 5.38). On

average, participants in this study did not use the design strategy to develop their software; there-

fore, showing no interactions between one of the initial software development strategies and write

code. However, students did appear to use their metacognitive process understand problem/plan

before write code. The sixth taxonomy from Chapter 4(see Appendix N) had a requirements strat-

egy as part of its vocabulary, but the strategy was dropped due to its confusion with metacognitive

planning. Figure 5.38 illustrates the appearance of these participants’ relationships between their

metacognition and their software development strategies occurring more than 3%. As seen in this

Figure 5.38: Overall interactions between domain-specific strategies derived from software develop-
ment methods and metacognition.

figure, the participants do not go from write code to the compile/execute strategy, but rather, they

appear to use metacognition before compiling or executing. In addition, these students’ write code

strategy had an inverse relationship with fix code, where an average of 12% of the uses of fix code

returned to write code, and 30% of the uses returned to the compile/execute strategy. Even though

these participants appeared to have few interactions between write code and compile/execute, they

60

did move from compile/execute to diagnose and from diagnose to fix code without skipping the

diagnose strategy. However, every strategy during their software development appeared to have a

relationship with metacognition, which is ignored in the current methods, and these participants

used their metacognition to return to previous strategies, except when returning to write code or

compile/execute from fixing an error.

5.4 Cognitive Behavior by Participant

Beyond the results supporting the existence of metacognition, schemata, and external

sources and the average cognitive behavior of the participants in this study, each participant ap-

peared to cognitively behave differently and have different knowledge represented by their schemata.

Using the problem behavior graphs, participants’ cognitive behavior is analyzed individually. For

example, participant 3 was the only one who used the design programming strategy for this problem,

and 90% of the participants, except participant 8, required outside help/hints to progress, meaning

that the use of an external source is independent of the initial steps. Instead of using the design

programming strategy first, all participants used their metacognition, but 50% of the participants

used understand problem/plan before starting their initial goal, while the other 50% started a goal

then went directly to write code. In addition, all participants ended in metacognition to determine

if all goals were complete. Almost half, 40%, of the participants used schemata for checking/de-

tecting errors before completing, while the other 60% used processes from metacognition to monitor

their solution. Of these participants using metacognition before finishing, 20% used understand

problem/plan, 30% explicitly compared their solution to the problem, and 10% visually inspected

their solution to determine whether they were finished solving the problem, and two of the four

participants who visited their schemata before finishing worked examples to check their answers.

Unlike the small percentage of participants who used understand problem/plan before finishing, the

majority, 70%, of the participants used this metacognitive process before start/revisit goals, whereas,

participants 2 and 4 primarily revisited the problem after beginning a goal. Participant 9 was the

only one who revisited the problem equally before and after starting a goal, and participants 3 and

8 are the only ones who exclusively who used the process before a goal. However, participant 8 was

not one of the five who used understand problem/plan before working on the solution. Table 5.13

shows the statistics for the number of times and when each participant revisited the problem:

61

Table 5.13: Participant revisits to the problem before or after starting a goal.

Additional analysis of participant actions addresses the relationship between goals and error

detection and correction. The most obvious difference among participants is the amount of time

they checked for errors using the compiler. Three participants, 4, 7, and 9, out of ten incrementally

compiled their programs as they wrote code, and two more, 5 and 6, compiled within the first

half of solving the problem. Most participants diagnosed and fixed errors before compiling their

programs using metacognition to inspect their solutions, but two diagnosed errors without fixing

them by using the compiler to see if their diagnoses were correct. While the number of participants

differs between these actions, the largest discrepancy is between the number of times the participants

performed these actions. Participants 2, 5, and 11 were the only three who diagnosed errors then

used the compiler for validation, performing this action 3, 2, and 1 times, respectively. However,

all participants, except participant 4, diagnosed and fixed errors by inspecting their solutions before

using the compiler, the number of times for each listed below:

• Participant 2 - 5 times

• Participant 3 - 9 times

• Participant 5 - 4 times

• Participant 6 - 3 times

• Participant 7 - 4 times

• Participant 8 - 4 times

• Participant 9 - 3 times

• Participant 10 - 17 times

62

• Participant 11 - 7 times

5.5 Knowledge Represented by Participants

In this study, the participants represented different knowledge in their solution. The problem

behavior graphs provide details about the schemata used within the goals for this problem, as well

as the number of participants completing each goal. Below is a list of each goal and the different

schema used to accomplish it, with the number in parenthesis indicating the number of participants

who accomplished the goal and who used a specific schema within each.

Schemata Details for Solution to Problem:

1. Construct a main routine (10)

• Return 0 (8)

• Return 1 (1)

• No return statement (1)

2. Include library files (math.h and stdio.h) (10)

• Included unnecessary libraries, ex. stdlib.h (6)

3. Create arrays with 10 elements (10)

4. Populate/Fill arrays (10)

• At time of declaration (3)

• Use loop (4)

• Individual Elements (3)

5. Multiply two arrays and store in third (10)

• Use while loop (4)

• Use for loop (5)

• Use no loop (1)

6. Print arrays (10)

63

• Use while loop (4)

• Use for loop (5)

• Use no loop (1)

7. Sum elements in an array (10)

• Use while loop (3)

• Use for loop (5)

• Use no loop (2)

8. Use square root function (10)

• Compiled with -lm option (7)

• Compiled with -lm using help (2)

• Never compiled with -lm (1)

9. Use print statement to print square root (10)

As this list of goals with associated schemata and the participants’ completion of each

task shows, all were able to complete the goals. However, the details of the schemata used by the

participants varied from incorrect to correct and inefficient to efficient. For instance, 60% of the

participants included stdlib.h, which is a standard library header not needed for this solution. Even

though including this file does not affect the solution, the inclusion of the header is inefficient. Seven

of the ten participants initialized their arrays within a loop or at the time of declaration, whereas

three inefficiently initialized individual array elements after creating the array. When populating

their arrays, only 40% acknowledged the sentinel value, which was directly in the problem statement.

Half of these students used a for loop to multiply and print arrays, while others used a while loop,

and one used no loop at all. The shift in the number of participants using a while loop and no

loops between the sixth and seventh goals is due to two students. One student switched from a

while loop to a for loop after continuously forgetting to reset and increment the loop counter, and

another student went from using for loops to using no loop after struggling with remembering how

to sum array elements in a loop, which was a struggle to other students. All students remembered

to create a sum variable, but one student forgot to initialize the variable, relying on the compiler to

64

set the variable to zero. Seven of the ten student participants knew to compile with the -lm option,

when using the gcc compiler, and two more students remembered after receiving a hint from the

researcher.

5.6 Correlation With Problem-Solving Performance

To compare participant behavior with grades for the problem, two schemes for assigning

grades was developed. The first such scheme assigns point values to the goals and subgoals estab-

lished in Appendix E.

Grading Scheme Based on Goals

Goal 1 Begin program (10 points)

• Construct main routine +5

• Include library files +5

Goal 2 Create/Initialize data structures (30 points)

• Declare x, y, and z array with 10 elements +10

• Populate the x and y array with data values ended by sentinel value +10

• Declare other variables +5

• Initialize other variables +5

Goal 3 Compute/Store product of x and y in z (15 points)

• Construct loop to step through arrays +10

• Multiply elements in x and y and assign to z +5

Goal 4 Print arrays (15 points)

• Construct loop to step through arrays +10

• Construct print statement to output values +5

Goal 5 Compute square root of sum of z (25 points)

• Construct loop to step through arrays +10

65

• Calculate the sum of the values in the z array +10

• Use square root function +5

Goal 6 Print square root of sum of z (5 points)

• Construct print statement to output values +5

While this grading scheme is based only on the achievement of goals and subgoals, the other grading

scheme below accounts for the quality and features of the schemata used in the solution. It uses an

expanded version of the goals established by the nine associated schemata (see Appendix E).

Grading Scheme Based on Schema Details

100% - Correctly implement schemata 1-9; correctly using for loops and add/use sentinel value

90% - Implement schemata 1-9 either w/o using a sentinel value or w/o using for loops

80% - Implement schemata 1-9 without using for loops and a sentinel value

70% - Implement schemata 1-9 without any loops or sentinel value

60% - Incorrect answer to problem, i.e. incorrect multiply, sum, square root, etc.

below 60% - No clue/Implementation that doesn’t execute/compile

Table 5.14 provides the number of participants scoring an A, B, C, and D using the two grading

schemes. As this table shows, there is a decrease in the number of As using the grading scheme

based on the details of schemata.

Table 5.14: Resulting grades based on two grading schemes.

In addition, participant problem behavior graphs and demographic sheets were compared

to the grades earned using the two schemes. Table 5.15 identifies the participant grades, details for

receiving the grades, current computer science courses, grade point averages (GPA), and genders. As

shown in the details column in Table 5.15, the participants received either the same or a lower grade

based on the quality and features of their schemata. The students received a lower grade for using

a while loop instead of a for loop, which is a more efficient choice for the solution to this problem.

66

Table 5.15: Results based on two grading scheme, details for receiving the grade, and demographic
information per participant.

67

There were two students who shifted from an A to a B for this reason, and both were enrolled in

CPSC 102. However, the two students receiving the lowest grades were CPSC 212 students, and

the two receiving the highest grades were in CPSC 102, accounting for the sentinel value ending

the actual values. There was only one female participant, a CPSC 212 student who incorrectly

used while loops to step through her arrays. This female participant and two other participants

with the highest GPAs performed the worst on the problem in this study. Only one of the four

participants with the highest GPA scored above a 90%. Those participants with the next highest

GPA performed the best, all scoring about 80%, and the student with the lowest GPA performed the

best on the problem except for using while loops. At this time, Table 5.15 explains the similarities

and differences among participants based on their demographics information and the correctness and

quality of schemata. The grades ignore cognitive behavior and the interactions between schemata

and metacognition, which might explain the only correlation between grades and the number of

interactions between the metacognitive process start/revisit goals and the programming strategy

write code. The participant with the most interactions between mental processes performed the best

on the problem, and the two with the least amount of interactions performed the worst. Future

research on experts versus novices and additional correlations between behavior and performance

can determine new grading schemes, as well as provide support for the predictability of the model.

68

Chapter 6

Conclusions

The resulting taxonomy and observations from the 10 participants in this research provide

initial support for Figure 5.27. This model is in its initial stages of development, and results from

the model in research with additional participants on different problems will affect the development

of this model. However, the results from the data in this experiment support the hypothesis that

solving computer science problems requires the existence of and the interaction among metacogni-

tion, schemata, and external sources of information, as illustrated in Figure 5.27. The interactions

reported here occur while retrieving and manipulating information when solving a computer science

problem. At this time, the model serves as a foundation for explaining how people think in com-

puter science when solving a programming problem, and the executive processes of metacognition

appear to provide the dynamics of domain-specific schemata through interactions. All combinations

of interactions between metacognition, schemata, and external sources are possible, and generally

speaking, people use some type of check/detect strategy before diagnosing an error and diagnose an

error before fixing it. In addition, every participant used understand problem/plan more than once,

and most participants used this process to begin working on the solution. This might be explained

by the number of subgoals and goals exceeding seven plus or minus two, which is also known as

cognitive load theory (CLT) [116]. The problem behavior graphs provide the details of participant

movement through the goals and subgoals in addition to the misconceptions and other errors that

can be used to develop multiple-choice tests of reasoning, which are used in physics and chemistry

[90] [114]. The errors made by the participants in this research reveal some misconceptions such

as not being able to use a for loop with a condition that is array[i] not equal to NULL and being

69

able to initialize array elements by using the array name by itself, i.e. array={1, 2, 3, 4};. In this

research, the data supports the hypothesis that metacognition, schemata, and external sources inter-

act when retrieving and manipulating information while solving a computer programming problem

by establishing a vocabulary for describing these processes as well as a model for illustrating their

interactions.

However, some interactions were never witnessed. The interactions not supported by the

data in this research are from write code to diagnose and from compile/execute to fix code. Many

participants in this research did not use an external source when they verbalized low knowledge,

and some participants went directly to writing code or fixing code after their verbalization. CLT

might explain why half the students did not address the sentinel value in this problem, but even

when some students reread the problem and used an external source to determine the meaning,

they still ignored the sentinel value and redefined the problem to meet their needs. These data do

not support a correlation between metacognition and schemata and participant performance on this

problem, but this may be due to the context by which the metacognitive process is used. Version 6

of the vocabulary for metacognitive and schematic processes in Appendix N attempted to capture

finer details and sublevels of these processes, which might be the reason why this research is not

showing any correlation to performance.

6.1 Broader Impact

The broader impact of this research can improve learning and pedagogy through a better

understanding of the operations on schemata and the validation of additional metacognitive processes

that are important for computer science problem solving. In addition, this research provides a

model for educators to understand individual and groups of students’ mental processes when solving

problems in computer science, which has the potential to lower frustration between the educator and

student and increase retention rates. An explanation of the differences in how people store, retrieve,

and manipulate knowledge while solving and learning computer science problems can help educators

facilitate knowledge more effectively and efficiently through a pedagogical focus directed toward

student needs rather than toward the educator’s perceived student needs. This is accomplished by a

focus on the dynamics of the mental processes used to arrive at a solution rather than the analysis

of a final solution, and understanding the differences in the dynamics between experts and novices

70

can help expedite the creation of expertise in computer science.

6.2 Future Research

At this time, the research presented here does not address experts versus novices as well as

learning, which is responsible for storing knowledge, but the model has implications in the learning

sciences. Misconceptions and other errors within schemata and their interactions with metacognition

are proposed in the model, but they are not directly related to the hypothesis and can be addressed

in future research studies. In addition, this is a sample size of ten and only one problem, but future

studies can address different problems and tactics for gathering these mental processes to increase

sample size as well as developing a narrower vocabulary for these processes. Provided below is a list

of suggested future studies based on the conclusions and potential impact of this research.

• Using the current data, determine if the time spent within each process has a correlation to

grade and demographic information.

• Using the current data, determine all misconceptions and other errors in the specific schemata

used to solve this problem.

• Using the current data, develop a narrower vocabulary with sublevels and more terms to

capture the context of these processes.

• Investigate the interactions within schemata and determine how conceptual and procedural

knowledge interact.

• Determine a list of schemata and features used in computer science.

• Collect more data using experts, senior computer students, industry workers, and many prob-

lems.

• Collect data from various conditions on memory being accessed, e.g. under time pressure,

coffee enhanced, sleep deprived, etc.

• Conduct studies using eye-tracking and other methods in conjuction with verbal protocols to

further study peoples thoughts as they solve computer science problems.

• Research computer science problem solving in relationship to Figure 3.1.

71

• Develop a multiple-choice assessment tool for computer science to capture the collection of

processes involved in solving a problem as well as the student’s reasoning for using each process.

• Develop refutation texts for computer science providing students with correct solutions and

common errors.

6.3 Research Questions

Beyond the immediate future studies resulting from this research, additional pending re-

search questions are listed below.

• What are all the processes in problem solving starting from the problem statement in Figure

3.1?

• How does an individual proceed through the steps involved in problem solving such as parallel

steps as the problem statement is read?

• How do the steps in Figure 3.1 relate to other steps of problem solving as defined by Poicare

(1913), Wallas (1926), and Polya (1956) as well as others that are a part of the Gestalt theory

of problem solving?

• How do experts and novices differ as they proceed through the steps defined in Figure 3.1?

• How does an individual use deductive and inductive reasoning when problem solving?

• How does the static model of a single process of many processes evolve over time?

• How does the static model of a single process relate to and interact with the many parallel

processes occurring over time?

• When during the problem-solving process is the problem statement’s context determined?

• How is the problem statement’s context determined and why?

• How does context determination interact with the model in Figure 5.27?

• When during the problem-solving process is the problem statement chunked?

• How do experts versus novice chunck problem statements?

72

• How are the chunks organized and processed among individuals?

• How does the chunking process interact with the model in Figure 5.27?

• How does the model in Figure 5.27 interact with each step in Figure 3.1, i.e. schema is used

for chunking?

• How exactly is the model in Figure 5.27 activated through the five senses when solving a

problem?

• Do experts use the model in Figure 5.27 for solving CS problems, and how does it differ from

novices?

• How does instinctual Implicit Knowledge differ from the schemata used for procedural memory

as a part of Implicit Knowledge?

• How does problem solving change when external information is removed from the model in

Figure 5.27?

• How do experts and novices use Marshall’s four properties of schemata differently, and is there

a Criteria feature?

• What are the processes associated with learning and schema?

• How are experiences incorporated and used with schema as a part of procedural knowledge?

73

Appendices

74

Appendix A Demographics sheet #1

75

Appendix B Demographics sheet #2

76

Appendix C IRB Informational Letter

Information Concerning Participation in a Research Study Clemson University

Test of Computational Thinking

Description of the research and your participation

You are invited to participate in a research study conducted by a computer science professor, Dr.

D. E. Stevenson, and PhD candidate, Jennifer R. Parham. The purpose of this research is to

collect cognitive data used to solve computing problems from students enrolled in a computer

science course. This study is used for research purposes only. The research involves testing

computational thinking skills while taking a computer science course. The results will be used to

assess the students schematic and metacognitive knowledge and evaluate the correlation between

schemata and metacognition in computational thinking. There will be about 20-25 participants per

year for the next year of this study.

Your participation will involve solving one to three computing problems or case studies. Each case

study or problem may ask a series of questions and ask you to verbalize your thoughts as you solve

the problem by thinking aloud. The voice recording of your thoughts will be analyzed to measure

the correlation between schematic and metacognitive knowledge in the computing sciences.

The amount of time required for your participation will vary depending on the number of problems

or case studies presented, but your participation will not require more than 60 minutes.

Risks and discomforts

There are no known risks associated with this research. The data will not have any identifying

information, such as Clemson IDs, Social Security #s, names, or addresses, attached to the test

results.

Potential benefits

Students may receive a better computer science education resulting from this research. The results

will explain the potential errors in student computing knowledge used to solve problems and

ultimately affect learning through new testing strategies and teaching methods. This research may

77

help us to understand the interactions between schemata and metacognition through specific

processes involved in solving computer science problems.

Protection of confidentiality

We will do everything we can to protect your privacy in this research. We will not ask for any

identifiable information other than general demographic information, such as gender, race, and

class status. Your identity will not be revealed in any publication that might result from this study.

Voluntary participation

Your participation in this research study is voluntary. You may choose not to participate and you

may withdraw your consent to participate at any time. You will not be penalized in any way

should you decide not to participate or to withdraw from this study.

Contact information

If you have any questions or concerns about this study or if any problems arise, please contact Dr.

D. E. Stevenson at Clemson University at 864-656-5880. If you have any questions or concerns

about your rights as a research participant, please contact the Clemson University Office of

Research Compliance at 864.656.6460.

78

Appendix D Problem and Goals/Schemata - Version 1

Problem Statement:

Write a program to take two numerical lists of the same length ended by a sentinel value and store

the lists in arrays x and y, each of which can hold a maximum number of 10 elements, and

populate both lists by entering the actual data values from within the program. Let n represent

the actual number of data values in each list. For example, x and y can hold up to 10 elements,

but the two arrays may only contain 5 actual data values, i.e. n=5. Store the product of

corresponding elements of x and y in a third array z, also of maximum size 10. Print the contents

of the arrays x, y, and z. Then compute and print the square root of the sum of the items in z.

Goal 1 Begin program

Subtasks:

1. Create/open program file

2. write main routine

Goal 2 Create arrays

Subtasks:

1. create x, y, and z with 10 elements

2. populate/initialize the x and y array

3. add a sentinel value at the end.

Goal 3 Store product of x and y in z.

Subtasks:

1. create loop to go until sentinel value or n found by sentinel value

2. multiply x[i] and y[i] and assign to z[i]

Goal 4 Print arrays

Subtasks:

1. include stdio.h (if not already included)

2. create loop to go until sentinel value or n found by sentinel value**

3. print x[i], y[i], and z[i].

*Can use three loops or one loop to print x, y, and z arrays.**

Goal 5 Compute square root of sum of z.

79

Subtasks:

1. include math.h (if not already included)

2. create a sum variable

3. initialize sum variable to 0

4. create loop to go until sentinel value or n found by sentinel value

5. sum variable gets z[i] plus previous sum value

6. find square root of sum.

Goal 6 Print square root of sum of z.

Subtasks:

1. print square root of sum.

80

Appendix E Problem and Goals/Schemata - Version 2

Problem Statement:

Write a program to take two numerical lists of the same length ended by a sentinel value and store

the lists in arrays x and y, each of which can hold a maximum number of 10 elements, and

populate both lists by entering the actual data values from within the program. Let n represent

the actual number of data values in each list. For example, x and y can hold up to 10 elements,

but the two arrays may only contain 5 actual data values, i.e. n=5. Store the product of

corresponding elements of x and y in a third array z, also of maximum size 10. Print the contents

of the arrays x, y, and z. Then compute and print the square root of the sum of the items in z.

Goals:

• Subtasks in bullets

Goal 1 Begin Program

• Construct main routine

• Include library files

Goal 2 Create/Initialize Data Structures

• Declare x, y, and z with 10 elements

• Populate the x and y array w/ data values ended by sentinel value

• Declare other variables

• Initialize other variables

Goal 3 Compute/Store product of x and y in z.

• Construct loop to step through arrays

• Multiply elements in x and y and assign to z

Goal 4 Print arrays

• Construct loop to step through arrays

81

• Construct print statement to output values

Goal 5 Compute square root of sum of z.

• Construct loop to step through arrays

• Calculate the sum of the values in the z array

• Use square root function

Goal 6 Print square root of sum of z.

• Construct print statement to output values

82

Appendix F Subject 6 Morae Produced .CSV Data (First 10

minutes)

83

00:00.0 problem [E informed P that we were recording and he could ask any questions] Where do I click to get? [E helps P get started]

00:08.2 Mouse Clicksputty.exe Windows ExplorerRunning Applications

00:10.6 Keystrokes login

00:20.0 Keystrokes ls

00:25.4 Keystrokes clear

00:32.8 Keystrokes Ctrl c

00:37.2 Keystrokes clear

00:41.8 Keystrokes mkdir test

00:48.6 Keystrokes cd test

00:52.4 Keystrokes nano test.c

01:16.0 Keystrokes #include "math.h

01:23.8 Mouse ClicksWindows ExplorerL Button DownFolderView

01:24.2 Keystrokes Windows Explorer Left Arrow

01:25.2 Mouse Clicksputty.exe Windows ExplorerRunning Applications

01:26.6 Keystrokes Left Arrow

01:26.8 Keystrokes Left Arrow

01:26.8 Keystrokes Left Arrow

01:27.0 Keystrokes Left Arrow

01:27.2 Keystrokes Left Arrow

01:27.4 Keystrokes Left Arrow

01:28.0 Keystrokes Backspace

01:28.4 Keystrokes Shift Shift

01:28.4 Keystrokes Shift <

01:29.0 Keystrokes Right Arrow

01:29.0 Keystrokes Right Arrow

01:29.2 Keystrokes Right Arrow

01:29.4 Keystrokes Right Arrow

01:29.6 Keystrokes Right Arrow

01:29.6 Keystrokes Right Arrow

01:30.2 Keystrokes Shift Shift

01:30.4 Keystrokes Shift >

01:30.6 Keystrokes Enter

01:31.6 Keystrokes Shift Shift

01:32.0 Keystrokes Shift Shift

01:32.2 Keystrokes Shift Shift

01:32.2 Keystrokes Shift Shift

01:32.2 Keystrokes Shift Shift

01:32.2 Keystrokes Shift Shift

01:32.2 Keystrokes Shift Shift

01:32.2 Keystrokes Shift #

01:32.6 Keystrokes i

01:33.4 Keystrokes c

01:34.2 Keystrokes Backspace

01:34.4 Keystrokes n

01:34.8 Keystrokes c

01:35.2 Keystrokes l

01:35.4 Keystrokes u

01:35.6 Keystrokes d

01:36.0 Keystrokes e

01:36.0 Keystrokes Spacebar

01:36.6 Keystrokes Shift Shift

01:36.8 Keystrokes Shift <

01:37.0 Keystrokes s

01:37.4 Keystrokes t

01:37.8 Keystrokes d

01:37.8 Keystrokes i

01:38.0 Keystrokes o

01:38.6 Keystrokes .

01:40.2 Keystrokes h

01:40.6 Keystrokes Shift Shift

01:40.6 Keystrokes Shift >

01:41.2 Keystrokes Enter

01:44.8 Keystrokes Shift Shift

01:45.2 Keystrokes Shift #

01:45.6 Keystrokes Backspace

01:48.8 Keystrokes Up Arrow

01:49.0 Keystrokes Right Arrow

01:49.6 Keystrokes Right Arrow

01:49.6 Keystrokes Right Arrow

01:49.6 Keystrokes Right Arrow

01:49.6 Keystrokes Right Arrow

01:49.6 Keystrokes Right Arrow

01:49.8 Keystrokes Right Arrow

01:49.8 Keystrokes Right Arrow 84

01:49.8 Keystrokes Right Arrow

01:49.8 Keystrokes Right Arrow

01:49.8 Keystrokes Right Arrow

01:49.8 Keystrokes Right Arrow

01:50.0 Keystrokes Right Arrow

01:50.0 Keystrokes Right Arrow

01:50.0 Keystrokes Right Arrow

01:50.0 Keystrokes Right Arrow

01:50.0 Keystrokes Right Arrow

01:50.0 Keystrokes Right Arrow

01:50.2 Keystrokes Left Arrow

01:50.4 Keystrokes Left Arrow

01:50.6 Keystrokes Left Arrow

01:51.2 Keystrokes Backspace

01:51.4 Keystrokes Backspace

01:52.2 Keystrokes l

01:52.4 Keystrokes i

01:52.8 Keystrokes d

01:53.2 Keystrokes Backspace

01:53.4 Keystrokes Backspace

01:54.6 Keystrokes i

01:54.8 Keystrokes b

01:55.8 Keystrokes Right Arrow

01:56.0 Keystrokes Right Arrow

01:56.0 Keystrokes Right Arrow

01:56.6 Keystrokes Enter

01:56.8 Keystrokes Enter

01:58.4 Keystrokes i

01:58.4 Keystrokes n

01:58.6 Keystrokes t

01:58.8 Keystrokes Spacebar

02:03.6 Keystrokes m

02:03.8 Keystrokes a

02:03.8 Keystrokes i

02:03.8 Keystrokes n

02:04.4 Keystrokes Spacebar

02:05.0 Keystrokes Backspace

02:05.2 Keystrokes Shift Shift

02:05.4 Keystrokes Shift (

02:05.6 Keystrokes Shift)

02:06.2 Keystrokes Shift Shift

02:06.4 Keystrokes Shift {

02:06.8 Keystrokes Enter

02:07.2 Keystrokes Enter

02:18.4 Keystrokes i

02:18.4 Keystrokes n

02:18.6 Keystrokes t

02:18.6 Keystrokes Spacebar

02:19.2 Keystrokes Backspace

02:41.4 Keystrokes Spacebar

02:41.6 Keystrokes x

02:42.6 Keystrokes [

02:44.2 Keystrokes 1

02:45.4 Keystrokes 0

02:46.4 Keystrokes]

02:50.4 Keystrokes Spacebar

02:50.6 Keystrokes =

02:50.8 Keystrokes Spacebar

02:51.6 Keystrokes Shift Shift

02:51.8 Keystrokes Shift {

02:53.6 Keystrokes 1

02:53.6 Keystrokes ,

02:53.8 Keystrokes Spacebar

02:54.6 Keystrokes 2

02:55.0 Keystrokes ,

02:55.2 Keystrokes Spacebar

02:55.8 Keystrokes 3

02:58.4 Keystrokes ,

02:58.6 Keystrokes Spacebar

02:58.8 Keystrokes 4

03:00.0 Keystrokes ,

03:00.2 Keystrokes Spacebar

03:00.4 Keystrokes 5

03:01.2 Keystrokes Shift Shift 85

03:01.4 Keystrokes Shift }

03:02.4 Keystrokes ;

03:02.6 Keystrokes Enter

03:03.8 Keystrokes i

03:04.0 Keystrokes n

03:04.0 Keystrokes t

03:04.2 Keystrokes Spacebar

03:05.0 Keystrokes y

03:05.2 Keystrokes Spacebar

03:05.6 Keystrokes Backspace

03:06.4 Keystrokes [

03:07.4 Keystrokes 1

03:07.6 Keystrokes 0

03:08.8 Keystrokes]

03:09.4 Keystrokes Spacebar

03:10.0 Keystrokes =

03:10.2 Keystrokes Spacebar

03:10.8 Keystrokes Shift Shift

03:11.0 Keystrokes Shift {

03:11.4 Keystrokes 1

03:11.6 Keystrokes ,

03:11.8 Keystrokes Spacebar

03:12.0 Keystrokes 2

03:12.4 Keystrokes ,

03:12.4 Keystrokes Spacebar

03:14.0 Keystrokes Backspace

03:14.2 Keystrokes Backspace

03:14.4 Keystrokes Backspace

03:14.6 Keystrokes Backspace

03:14.6 Keystrokes Backspace

03:14.8 Keystrokes Backspace

03:16.0 Keystrokes 4

03:16.2 Keystrokes ,

03:16.4 Keystrokes Spacebar

03:17.2 Keystrokes 5

03:17.4 Keystrokes ,

03:17.4 Keystrokes Spacebar

03:17.6 Keystrokes ,

03:17.8 Keystrokes 6

03:18.0 Keystrokes Spacebar

03:18.6 Keystrokes Backspace

03:18.8 Keystrokes Backspace

03:19.0 Keystrokes Backspace

03:19.6 Keystrokes 6

03:20.4 Keystrokes ,

03:20.6 Keystrokes Spacebar

03:21.2 Keystrokes 7

03:21.8 Keystrokes ,

03:22.4 Keystrokes Spacebar

03:23.4 Keystrokes 8

03:23.8 Keystrokes Shift Shift

03:24.0 Keystrokes Shift }

03:25.2 Keystrokes ;

03:25.4 Keystrokes Enter

03:25.8 Keystrokes Enter

03:38.0 Keystrokes i

03:38.2 Keystrokes n

03:38.4 Keystrokes t

03:38.8 Keystrokes Spacebar

03:39.4 Keystrokes Backspace

03:39.8 Keystrokes Spacebar

03:40.4 Keystrokes z

03:40.6 Keystrokes Spacebar

03:41.6 Keystrokes Backspace

03:42.0 Keystrokes [

03:42.8 Keystrokes 1

03:43.4 Keystrokes 0

03:43.8 Keystrokes]

03:45.2 Keystrokes ;

04:08.0 Keystrokes Enter

04:08.2 Keystrokes Enter

04:09.0 Keystrokes i

04:09.2 Keystrokes n

04:09.2 Keystrokes t 86

04:09.4 Keystrokes Spacebar

04:09.6 Keystrokes n

04:10.6 Keystrokes ;

04:11.8 Keystrokes Enter

04:12.0 Keystrokes Enter

04:21.2 Keystrokes Backspace

04:21.6 Keystrokes Backspace

04:21.8 Keystrokes Backspace

04:25.8 Keystrokes Spacebar

04:26.2 Keystrokes =

04:26.4 Keystrokes Spacebar

04:27.4 Keystrokes 5

04:28.8 Keystrokes ;

04:29.2 Keystrokes Enter

04:29.4 Keystrokes Enter

04:36.8 Keystrokes f

04:37.0 Keystrokes o

04:37.8 Keystrokes r

04:40.6 Mouse Clicks L Button DownSoftware Update

04:45.6 Keystrokes Backspace

04:45.8 Keystrokes Backspace

04:46.0 Keystrokes Backspace

04:46.4 Keystrokes Backspace

04:47.4 Keystrokes i

04:47.4 Keystrokes n

04:48.2 Keystrokes t

04:48.4 Keystrokes Spacebar

04:48.6 Keystrokes i

04:50.0 Keystrokes ;

04:50.4 Keystrokes Enter

04:50.6 Keystrokes Enter

04:51.4 Keystrokes w

04:51.6 Keystrokes h

04:51.6 Keystrokes i

04:51.8 Keystrokes l

04:52.2 Keystrokes e

04:52.2 Keystrokes Spacebar

04:53.0 Keystrokes Shift Shift

04:53.2 Keystrokes Shift (

04:53.8 Keystrokes i

04:54.6 Keystrokes Spacebar

04:54.8 Keystrokes Shift Shift

04:55.0 Keystrokes Shift <

04:55.6 Keystrokes Spacebar

04:58.2 Keystrokes 5

04:58.4 Mouse Clicks L Button Downspider5.cs.clemson.edu - PuTTY

05:00.6 Keystrokes Left Arrow

05:00.8 Keystrokes Right Arrow

05:01.4 Keystrokes Backspace

05:01.6 Keystrokes 4

05:02.4 Keystrokes Shift Shift

05:02.4 Keystrokes Shift)

05:03.0 Keystrokes Up Arrow

05:03.2 Keystrokes Left Arrow

05:03.4 Keystrokes Up Arrow

05:03.8 Keystrokes Down Arrow

05:04.0 Keystrokes Left Arrow

05:04.8 Keystrokes Spacebar

05:05.0 Keystrokes =

05:05.4 Keystrokes Spacebar

05:06.2 Keystrokes 0

05:07.0 Keystrokes Down Arrow

05:07.2 Keystrokes Down Arrow

05:07.4 Keystrokes Down Arrow

05:08.0 Keystrokes Up Arrow

05:09.0 Keystrokes Down Arrow

05:09.4 Keystrokes Right Arrow

05:11.0 Keystrokes Backspace

05:11.4 Keystrokes Backspace

05:12.0 Keystrokes Shift Shift

05:12.2 Keystrokes Shift {

05:12.6 Keystrokes Enter

05:12.8 Keystrokes Enter

05:21.2 Keystrokes x 87

05:23.6 Keystrokes Shift Shift

05:24.0 Keystrokes Shift Shift

05:24.2 Keystrokes Shift Shift

05:24.2 Keystrokes Shift Shift

05:24.2 Keystrokes Shift Shift

05:24.2 Keystrokes Shift Shift

05:24.2 Keystrokes Shift Shift

05:24.4 Keystrokes Shift Shift

05:24.4 Keystrokes Shift Shift

05:24.4 Keystrokes Shift Shift

05:24.4 Keystrokes Shift Shift

05:24.4 Keystrokes Shift Shift

05:24.4 Keystrokes Shift Shift

05:24.6 Keystrokes Shift Shift

05:24.6 Keystrokes Shift Shift

05:24.6 Keystrokes Shift Shift

05:24.6 Keystrokes Shift Shift

05:24.6 Keystrokes Shift Shift

05:24.6 Keystrokes Shift Shift

05:24.8 Keystrokes Shift Shift

05:24.8 Keystrokes Shift Shift

05:24.8 Keystrokes Shift Shift

05:24.8 Keystrokes Shift Shift

05:24.8 Keystrokes Shift Shift

05:24.8 Keystrokes Shift Shift

05:24.8 Keystrokes Shift Shift

05:25.0 Keystrokes Shift Shift

05:25.0 Keystrokes Shift Shift

05:25.0 Keystrokes Shift Shift

05:25.0 Keystrokes Shift Shift

05:25.0 Keystrokes Shift Shift

05:25.0 Keystrokes Shift Shift

05:25.2 Keystrokes Shift Shift

05:25.2 Keystrokes Shift Shift

05:25.2 Keystrokes Shift Shift

05:25.2 Keystrokes Shift Shift

05:25.2 Keystrokes Shift Shift

05:25.4 Keystrokes Shift Shift

05:25.4 Keystrokes Shift {

05:26.0 Keystrokes Backspace

05:26.8 Keystrokes [

05:27.0 Keystrokes i

05:28.0 Keystrokes Backspace

05:28.0 Keystrokes Backspace

05:28.2 Keystrokes Backspace

05:29.0 Keystrokes z

05:30.4 Keystrokes [

05:31.6 Keystrokes i

05:32.8 Keystrokes]

05:33.0 Keystrokes Spacebar

05:33.4 Keystrokes =

05:33.6 Keystrokes Spacebar

05:34.4 Keystrokes x

05:35.8 Keystrokes [

05:37.6 Keystrokes i

05:37.8 Keystrokes Spacebar

05:38.2 Keystrokes Backspace

05:38.8 Keystrokes]

05:39.0 Keystrokes Spacebar

05:39.4 Keystrokes Shift Shift

05:40.0 Keystrokes Shift *

05:40.0 Keystrokes Spacebar

05:41.8 Keystrokes y

05:42.0 Keystrokes Spacebar

05:42.8 Keystrokes Backspace

05:43.0 Keystrokes [

05:44.2 Keystrokes i

05:45.4 Keystrokes]

05:46.4 Keystrokes ;

05:46.6 Keystrokes Enter

05:47.6 Keystrokes i

05:48.2 Keystrokes Shift Shift

05:48.4 Keystrokes Shift +

05:48.6 Keystrokes Shift + 88

05:49.4 Keystrokes ;

05:51.0 Keystrokes Enter

05:51.8 Keystrokes Shift Shift

05:52.0 Keystrokes Shift }

05:52.4 Keystrokes Enter

06:11.8 Keystrokes Down Arrow

06:13.8 Keystrokes w

06:14.0 Keystrokes h

06:14.2 Keystrokes i

06:14.2 Keystrokes l

06:14.4 Keystrokes e

06:14.4 Keystrokes Spacebar

06:14.8 Keystrokes Backspace

06:15.2 Keystrokes Spacebar

06:15.4 Keystrokes Shift Shift

06:15.8 Keystrokes Shift (

06:18.2 Keystrokes Backspace

06:18.4 Keystrokes Backspace

06:19.0 Keystrokes Backspace

06:19.0 Keystrokes Backspace

06:19.0 Keystrokes Backspace

06:19.0 Keystrokes Backspace

06:19.0 Keystrokes Backspace

06:19.0 Keystrokes Backspace

06:19.2 Keystrokes Backspace

06:19.2 Keystrokes Backspace

06:19.2 Keystrokes Backspace

06:20.6 Keystrokes Enter

06:20.8 Keystrokes Enter

06:21.4 Keystrokes Shift Shift

06:21.4 Keystrokes Shift }

06:21.6 Keystrokes Enter

06:22.4 Keystrokes Enter

06:23.0 Keystrokes i

06:23.0 Keystrokes Spacebar

06:23.6 Keystrokes =

06:23.6 Keystrokes Spacebar

06:23.8 Keystrokes 0

06:25.0 Keystrokes ;

06:25.4 Keystrokes Enter

06:25.8 Keystrokes Enter

06:26.4 Keystrokes w

06:26.4 Keystrokes h

06:26.6 Keystrokes i

06:26.6 Keystrokes l

06:26.8 Keystrokes e

06:27.6 Keystrokes Spacebar

06:28.4 Keystrokes Shift Shift

06:28.6 Keystrokes Shift (

06:29.4 Keystrokes i

06:29.6 Keystrokes Shift Shift

06:30.2 Keystrokes Shift Shift

06:30.2 Keystrokes Shift Shift

06:30.2 Keystrokes Shift Shift

06:30.4 Keystrokes Shift Shift

06:30.4 Keystrokes Shift Shift

06:30.4 Keystrokes Shift Shift

06:30.4 Keystrokes Shift Shift

06:30.4 Keystrokes Shift Shift

06:30.4 Keystrokes Shift Shift

06:30.4 Keystrokes Shift Shift

06:30.6 Keystrokes Shift Shift

06:30.6 Keystrokes Shift Shift

06:30.6 Keystrokes Shift <

06:31.2 Keystrokes 4

06:33.0 Keystrokes Shift Shift

06:33.2 Keystrokes Shift)

06:34.2 Keystrokes Shift Shift

06:34.4 Keystrokes Shift {

06:34.6 Keystrokes Enter

06:35.0 Keystrokes Enter

06:38.4 Keystrokes f

06:38.4 Keystrokes p

06:38.6 Keystrokes r 89

06:38.8 Keystrokes i

06:38.8 Keystrokes n

06:39.0 Keystrokes t

06:39.6 Keystrokes f

06:40.0 Keystrokes Shift Shift

06:40.4 Keystrokes Shift (

06:41.0 Keystrokes s

06:41.2 Keystrokes t

06:41.6 Keystrokes d

06:41.6 Keystrokes o

06:42.0 Keystrokes u

06:42.2 Keystrokes t

06:42.4 Keystrokes ,

06:42.6 Keystrokes Spacebar

06:43.6 Keystrokes Shift Shift

06:43.8 Keystrokes Shift '

06:46.2 Keystrokes Shift Shift

06:46.6 Keystrokes Shift %

06:47.2 Keystrokes d

06:47.4 Keystrokes Spacebar

06:48.8 Keystrokes Backspace

06:49.0 Keystrokes Backspace

06:49.2 Keystrokes Backspace

07:00.8 Keystrokes Spacebar

07:01.6 Keystrokes Shift Shift

07:01.6 Keystrokes Shift A

07:02.0 Keystrokes r

07:02.2 Keystrokes r

07:02.4 Keystrokes a

07:02.6 Keystrokes y

07:03.8 Keystrokes Left Arrow

07:03.8 Keystrokes Left Arrow

07:04.0 Keystrokes Left Arrow

07:04.2 Keystrokes Left Arrow

07:04.4 Keystrokes Left Arrow

07:04.8 Keystrokes Backspace

07:05.4 Keystrokes Right Arrow

07:05.6 Keystrokes Right Arrow

07:05.8 Keystrokes Right Arrow

07:05.8 Keystrokes Right Arrow

07:06.2 Keystrokes Right Arrow

07:06.6 Keystrokes Spacebar

07:08.0 Keystrokes Shift Shift

07:08.2 Keystrokes Shift X

07:08.6 Keystrokes Shift Shift

07:08.6 Keystrokes Shift :

07:09.0 Keystrokes Spacebar

07:09.8 Keystrokes Shift Shift

07:10.0 Keystrokes Shift A

07:10.2 Keystrokes r

07:10.4 Keystrokes r

07:10.8 Keystrokes a

07:10.8 Keystrokes y

07:11.6 Keystrokes Spacebar

07:12.4 Keystrokes Backspace

07:12.4 Keystrokes Backspace

07:12.6 Keystrokes Backspace

07:12.8 Keystrokes Backspace

07:12.8 Keystrokes Backspace

07:13.0 Keystrokes Backspace

07:13.4 Keystrokes Spacebar

07:13.6 Keystrokes Spacebar

07:14.0 Keystrokes Shift Shift

07:14.2 Keystrokes Shift A

07:14.4 Keystrokes r

07:14.6 Keystrokes r

07:14.8 Keystrokes a

07:15.0 Keystrokes y

07:15.4 Keystrokes Spacebar

07:15.8 Keystrokes Shift Shift

07:15.8 Keystrokes Shift U

07:16.2 Keystrokes Backspace

07:16.4 Keystrokes y

07:17.0 Keystrokes Backspace 90

07:17.2 Keystrokes Shift Shift

07:17.2 Keystrokes Shift Y

07:17.8 Keystrokes Shift Shift

07:18.2 Keystrokes Shift :

07:18.6 Keystrokes Spacebar

07:19.2 Keystrokes Shift Shift

07:19.4 Keystrokes Shift A

07:19.8 Keystrokes Backspace

07:20.0 Keystrokes Spacebar

07:20.2 Keystrokes Spacebar

07:20.6 Keystrokes Shift Shift

07:20.8 Keystrokes Shift A

07:21.0 Keystrokes r

07:21.4 Keystrokes r

07:21.8 Keystrokes a

07:22.4 Keystrokes Backspace

07:22.6 Keystrokes Backspace

07:22.8 Keystrokes Backspace

07:22.8 Keystrokes Backspace

07:23.4 Keystrokes Shift Shift

07:23.6 Keystrokes Shift P

07:24.0 Keystrokes r

07:24.2 Keystrokes o

07:24.6 Keystrokes Backspace

07:25.4 Keystrokes o

07:25.6 Keystrokes d

07:25.6 Keystrokes u

07:26.0 Keystrokes c

07:26.4 Keystrokes t

07:28.6 Keystrokes Spacebar

07:28.6 Keystrokes o

07:29.0 Keystrokes f

07:29.0 Keystrokes Spacebar

07:29.8 Keystrokes Shift Shift

07:30.0 Keystrokes Shift X

07:30.6 Keystrokes Spacebar

07:33.0 Keystrokes a

07:33.2 Keystrokes n

07:34.6 Keystrokes d

07:35.2 Keystrokes Spacebar

07:35.8 Keystrokes Shift Shift

07:36.2 Keystrokes Shift Y

07:42.8 Keystrokes Shift Shift

07:43.2 Keystrokes Shift Shift

07:43.2 Keystrokes Shift Shift

07:43.4 Keystrokes Shift Shift

07:43.4 Keystrokes Shift Shift

07:43.4 Keystrokes Shift Shift

07:43.4 Keystrokes Shift Shift

07:43.4 Keystrokes Shift Shift

07:43.4 Keystrokes Shift Shift

07:43.6 Keystrokes Shift Shift

07:43.6 Keystrokes Shift Shift

07:43.6 Keystrokes Shift Shift

07:43.6 Keystrokes Shift Shift

07:43.6 Keystrokes Shift Shift

07:43.6 Keystrokes Shift Shift

07:43.8 Keystrokes Shift Shift

07:43.8 Keystrokes Shift Shift

07:43.8 Keystrokes Shift Shift

07:43.8 Keystrokes Shift Shift

07:43.8 Keystrokes Shift Shift

07:43.8 Keystrokes Shift Shift

07:44.0 Keystrokes Shift Shift

07:44.0 Keystrokes Shift Shift

07:44.0 Keystrokes Shift Shift

07:44.0 Keystrokes Shift Shift

07:44.0 Keystrokes Shift Shift

07:46.2 Keystrokes Spacebar

07:48.4 Keystrokes Spacebar

07:50.2 Keystrokes Backspace

07:50.8 Keystrokes Backspace

07:50.8 Keystrokes Backspace

07:50.8 Keystrokes Backspace 91

07:50.8 Keystrokes Backspace

07:50.8 Keystrokes Backspace

07:50.8 Keystrokes Backspace

07:51.0 Keystrokes Backspace

07:51.0 Keystrokes Backspace

07:51.0 Keystrokes Backspace

07:51.0 Keystrokes Backspace

07:51.0 Keystrokes Backspace

07:51.0 Keystrokes Backspace

07:51.2 Keystrokes Backspace

07:51.2 Keystrokes Backspace

07:51.2 Keystrokes Backspace

07:51.2 Keystrokes Backspace

07:51.2 Keystrokes Backspace

07:51.6 Keystrokes Backspace

07:51.8 Keystrokes Backspace

07:52.0 Keystrokes Shift Shift

07:52.2 Keystrokes Shift A

07:52.4 Keystrokes r

07:52.6 Keystrokes r

07:53.0 Keystrokes a

07:53.0 Keystrokes y

07:53.4 Keystrokes Spacebar

07:54.0 Keystrokes Shift Shift

07:54.2 Keystrokes Shift X

07:54.2 Keystrokes Shift Z

07:55.0 Keystrokes Backspace

07:55.2 Keystrokes Backspace

07:55.4 Keystrokes Shift Shift

07:55.6 Keystrokes Shift Z

07:56.6 Keystrokes Spacebar

07:56.8 Keystrokes Shift Shift

07:57.0 Keystrokes Shift (

07:57.4 Keystrokes Shift Shift

07:57.6 Keystrokes Shift P

07:57.8 Keystrokes r

07:58.0 Keystrokes o

07:58.6 Keystrokes d

07:59.0 Keystrokes u

07:59.2 Keystrokes c

07:59.6 Keystrokes t

07:59.8 Keystrokes Spacebar

07:59.8 Keystrokes o

08:00.0 Keystrokes f

08:00.0 Keystrokes Spacebar

08:00.4 Keystrokes Shift Shift

08:00.6 Keystrokes Shift X

08:00.6 Keystrokes Spacebar

08:01.0 Keystrokes a

08:01.0 Keystrokes n

08:01.2 Keystrokes d

08:01.4 Keystrokes Spacebar

08:01.6 Keystrokes Shift Shift

08:01.6 Keystrokes Shift W

08:01.8 Keystrokes h

08:02.0 Keystrokes i

08:02.0 Keystrokes l

08:02.2 Keystrokes e

08:02.4 Keystrokes Backspace

08:02.6 Keystrokes Backspace

08:02.8 Keystrokes Backspace

08:02.8 Keystrokes Backspace

08:03.2 Keystrokes Backspace

08:03.6 Keystrokes Shift Shift

08:04.0 Keystrokes Shift Y

08:04.6 Keystrokes Shift Shift

08:04.8 Keystrokes Shift)

08:06.6 Keystrokes Left Arrow

08:07.2 Keystrokes Left Arrow

08:07.2 Keystrokes Left Arrow

08:07.2 Keystrokes Left Arrow

08:07.4 Keystrokes Left Arrow

08:07.4 Keystrokes Left Arrow

08:07.4 Keystrokes Left Arrow 92

08:07.4 Keystrokes Left Arrow

08:07.4 Keystrokes Left Arrow

08:07.4 Keystrokes Left Arrow

08:07.4 Keystrokes Left Arrow

08:07.6 Keystrokes Left Arrow

08:07.6 Keystrokes Left Arrow

08:07.6 Keystrokes Left Arrow

08:07.6 Keystrokes Left Arrow

08:07.6 Keystrokes Left Arrow

08:07.6 Keystrokes Left Arrow

08:07.8 Keystrokes Left Arrow

08:07.8 Keystrokes Left Arrow

08:07.8 Keystrokes Left Arrow

08:07.8 Keystrokes Left Arrow

08:07.8 Keystrokes Left Arrow

08:07.8 Keystrokes Left Arrow

08:08.0 Keystrokes Left Arrow

08:08.0 Keystrokes Right Arrow

08:08.2 Keystrokes Right Arrow

08:08.6 Keystrokes Right Arrow

08:09.2 Keystrokes Shift Shift

08:09.6 Keystrokes Shift :

08:09.6 Mouse Clicks L Button DownFolderView

08:10.2 Keystrokes Right Arrow

08:11.6 Mouse Clicks L Button Downspider5.cs.clemson.edu - PuTTY

08:13.0 Keystrokes Right Arrow

08:13.4 Keystrokes Right Arrow

08:13.4 Keystrokes Right Arrow

08:13.6 Keystrokes Right Arrow

08:13.6 Keystrokes Right Arrow

08:13.6 Keystrokes Right Arrow

08:13.6 Keystrokes Right Arrow

08:13.6 Keystrokes Right Arrow

08:13.6 Keystrokes Right Arrow

08:13.8 Keystrokes Right Arrow

08:13.8 Keystrokes Right Arrow

08:13.8 Keystrokes Right Arrow

08:13.8 Keystrokes Right Arrow

08:13.8 Keystrokes Right Arrow

08:13.8 Keystrokes Right Arrow

08:14.2 Keystrokes Right Arrow

08:14.4 Keystrokes Right Arrow

08:14.4 Keystrokes Right Arrow

08:14.6 Keystrokes Right Arrow

08:14.8 Keystrokes Right Arrow

08:15.0 Keystrokes Right Arrow

08:15.8 Keystrokes Spacebar

08:18.2 Keystrokes Shift Shift

08:18.6 Keystrokes Shift S

08:18.8 Keystrokes q

08:19.2 Keystrokes u

08:19.4 Keystrokes a

08:19.8 Keystrokes r

08:20.0 Keystrokes e

08:20.2 Keystrokes Spacebar

08:20.6 Keystrokes r

08:20.6 Keystrokes o

08:20.8 Keystrokes o

08:21.0 Keystrokes t

08:21.0 Keystrokes Spacebar

08:21.2 Keystrokes o

08:21.4 Keystrokes f

08:21.4 Keystrokes Spacebar

08:21.8 Keystrokes Shift Shift

08:22.0 Keystrokes Shift Z

08:23.0 Keystrokes Shift Shift

08:23.2 Keystrokes Shift :

08:23.6 Keystrokes Shift Shift

08:23.6 Keystrokes Shift '

08:25.4 Keystrokes Shift Shift

08:25.8 Keystrokes Shift)

08:27.0 Keystrokes ;

08:27.8 Keystrokes Enter

08:28.2 Keystrokes Enter 93

Appendix G Participant 6 Level 1 Verbal Transcript and

Coding

94

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

0
0
:0

0
.0

[E
 i
n
fo

rm
e
d
 P

 t
h
a
t

w
e
 w

e
re

 r
e
c
o
rd

in
g

a
n
d
 h

e
 c

o
u
ld

 a
s
k
 a

n
y

q
u
e
s
ti
o
n
s
]

O
k
,

I

ju
s
t

g
o
?
 [

E
 t

e
lls

 y
e
s
 t

h
a
t

h
e
 c

a
n
 s

ta
rt

]

0
0
:0

8
.2

p
u
tt

y.
e
x
e

W
in

d
o
w

s
 E

x
p
lo

re
r

R
u
n
n
in

g

A
p
p
lic

a
ti
o
n
s

0
0
:1

0
.6

lo
g

in

u
s
r

n
a
m

e
/p

s
s
w

d

0
0
:2

0
.0

c
o
m

p
u
te

r

p
ro

b
le

m

W
a
it
,

is
 t

h
a
t

it
?

It
's

 n
o
t

s
h
o
w

in
g

a
n
yt

h
in

g
.

 [
E

 s
e
e
m

s
 p

e
rp

le
x
e
d
 a

n
d

a
s
k
s
 h

e
rs

e
lf
 w

h
y

it
 i
s
n
't

d
o
in

g
 a

n
yt

h
in

g
]

0
0
:3

2
.8

C
tr

l
c

[E
 s

a
ys

,
o
k
 t

h
e
re

 i
t

is
 a

ft
e
r

ty
p
in

g

C
tr

l+
c
]

s
ta

rt

0
0
:3

7
.0

u
n
ix

_
c
m

d
 =

 c
le

a
r

s
c
re

e
n

c
le

a
r

O
k
,

I'm
 j
u
s
t

g
o
in

g
 t

o
 m

a
k
e
 a

 f
ile

.

0
0
:4

2
.0

u
n
ix

_
c
m

d
 =

 m
a
k
e
 d

ir
m

k
d
ir
 t

e
s
t

J
u
s
t

a
 n

e
w

 d
ir
e
c
to

ry
 s

o
 I

 d
o
n
't,

 u
h
.

0
0
:4

8
.6

u
n
ix

_
c
m

d
 =

 c
h
a
n
g

e
 d

ir
c
d
 t

e
s
t

0
0
:5

2
.4

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
 =

n
a
n
o
,

n
e
w

 f
ile

n
a
n
o
 t

e
s
t.

c

Y
e
a
h
,

I'm
 j
u
s
t

m
a
k
in

g
 a

 n
e
w

 d
ir
e
c
to

ry

s
o
 I

 d
o
n
't

h
a
v
e
 t

o
 u

h
 j
u
s
t

k
e
e
p
 i
t

s
e
p
a
ra

te
 f

ro
m

 e
v
e
ry

th
in

g
 e

ls
e
.

 T
h
e
n

I'm
 g

o
in

g
 t

o
 m

a
k
e
 a

 f
ile

,
u
m

 l
e
t's

 s
e
e
.

W
e
'll

 j
u
s
t,

 I
'll

 c
a
ll

it
.

p
ro

b
le

m

O
k
,

n
o
w

 I
'm

 i
n
 m

y
p
ro

g
ra

m
.

 O
k
,

fi
rs

t

o
ff

 I
 s

e
e
 t

h
a
t

yo
u
'r
e
 g

o
n
n
a
 h

a
v
e
 t

h
e

s
q

u
a
re

 r
o
o
t

in
 h

e
re

,
s
o
 y

o
u
'r
e
 g

o
n
n
a

n
e
e
d

m
a
th

.h
.

s
ta

rt
:

b
e
g

in
 p

ro
g

ra
m

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

s
q

u
a
re

ro
o
t

in
 p

ro
b
 n

e
e
d
s

m
a
th

.h
)

0
1
:1

6
.0

p
u
tt

y.
e
x
e

tx
t_

e
d
 =

 t
yp

in
g

#
in

c
lu

d
e

"m
a
th

.h

S
o
,

I'l
l
in

c
lu

d
e
 t

h
a
t

b
e
c
a
u
s
e
 o

th
e
rw

is
e
 i
t

w
o
n
't

w
o
rk

.

s
ta

rt
:

in
c
lu

d
e

lib
ra

ry
 f

ile
s

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
c
lu

d
e
 m

a
th

lib
)

0
1
:2

3
.8

W
in

d
o
w

s

E
x
p
lo

re
r

L
 B

u
tt

o
n
 D

o
w

n
F

o
ld

e
rV

ie
w

w
ri
te

 c
o
d
e

0
1
:2

4
.2

W
in

d
o
w

s

E
x
p
lo

re
r

L
e
ft

 A
rr

o
w

O
h
 n

o
.

[P
 i
s
 h

a
v
in

g
 t

ro
u
b
le

 u
s
in

g
 t

h
e

te
x
t

e
d
it
o
r]

w
ri
te

 c
o
d
e

0
1
:2

5
.2

p
u
tt

y.
e
x
e

W
in

d
o
w

s
 E

x
p
lo

re
r

R
u
n
n
in

g

A
p
p
lic

a
ti
o
n
s

w
ri
te

 c
o
d
e

0
1
:2

6
.6

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
6

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

0
1
:2

8
.0

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
1
:2

8
.4

tx
t_

e
d
 =

 t
yp

in
g

<

w
ri
te

 c
o
d
e

0
1
:2

9
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 6
R

ig
h
t

A
rr

o
w

I'l
l
h
a
v
e
 t

o
 r

e
m

e
m

b
e
r,

 I
 d

o
n
't

k
n
o
w

w
h
ic

h
 w

a
y

it
's

 g
o
in

g
 t

o
 b

e
.

lo
w

 p
ri
o
r

k
n
o
w

l

(i
n
c
lu

d
e
 s

yn
ta

x
)

w
ri
te

 c
o
d
e

0
1
:3

0
.4

tx
t_

e
d
 =

 t
yp

in
g

>

W
e
'll

 f
in

d
 o

u
t

la
te

r.
w

ri
te

 c
o
d
e

0
1
:3

0
.6

tx
t_

e
d
 =

 w
h
it
e
s
p

E
n
te

r
w

ri
te

 c
o
d
e

0
1
:3

1
.6

tx
t_

e
d
 =

 t
yp

in
g

#
ic

w
ri
te

 c
o
d
e

0
1
:3

4
.2

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
1
:3

4
.4

tx
t_

e
d
 =

 t
yp

in
g

n
c
lu

d
e

<
s
td

io
.h

>

T
h
e
n
 u

h
,

yo
u
'll

 p
ro

b
a
b
ly

 n
e
e
d
 o

th
e
r

in
c
lu

d
e
 f

ile
s
.

 I
 d

o
n
't

k
n
o
w

 i
f

th
a
t's

 c
+

+

o
r

c
,

b
u
t

w
e
'll

 f
in

d
 o

u
t.

lo
w

 p
ri
o
r

k
n
o
w

l
(o

th
e
r

in
c
lu

d
e
 f

ile
s
)

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
c
lu

d
e
 s

td
io

 l
ib

)

0
1
:4

1
.2

tx
t_

e
d
 =

 w
h
it
e
s
p

E
n
te

r
U

h
,

I
g

e
t

th
e
m

 c
o
n
fu

s
e
d
.

w
ri
te

 c
o
d
e

0
1
:4

5
.2

tx
t_

e
d
 =

 t
yp

in
g

#

w
ri
te

 c
o
d
e

95

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

0
1
:4

5
.6

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

A
n
d
 t

h
a
t,

w
ri
te

 c
o
d
e

0
1
:4

8
.8

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

0
1
:4

9
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 1
8

R
ig

h
t

A
rr

o
w

a
c
tu

a
lly

 i
t's

 u
h
,

in
c
o
rr

e
c
t

d
e
te

c
ti
o
n
:

lib
 e

rr
o
r

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

d
ia

g
n
o
s
e
 (

e
v
a
lu

a
te

s
td

io
.h

 a
s
 i
n
c
o
rr

e
c
t

a
n
d
 u

s
e
 s

td
lib

.h
)

0
1
:5

0
.2

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
3

L
e
ft

 A
rr

o
w

fi
x
 c

o
d
e

0
1
:5

1
.2

tx
t_

e
d
 =

 d
e
le

te
,

2
B

a
c
k
s
p
a
c
e

fi
x
 c

o
d
e

0
1
:5

2
.2

tx
t_

e
d
 =

 t
yp

in
g

lid

fi
x
 c

o
d
e

0
1
:5

3
.2

tx
t_

e
d
 =

 d
e
le

te
,

2
B

a
c
k
s
p
a
c
e

fi
x
 c

o
d
e

0
1
:5

4
.6

tx
t_

e
d
 =

 t
yp

in
g

ib

th
a
t

s
h
o
u
ld

 b
e
 i
t,

 I
 t

h
in

k
.

c
o
d
e
d
:

in
c
lu

d
e

lib
ra

ry
 f

ile
s

in
c
o
rr

e
c
t

fi
x
/e

rr
o
r:

d
e
le

te
s
 n

e
e
d
e
d

lib
ra

ry
 (

s
td

io
.h

)
 a

d
d
s

u
n
n
e
e
d
e
d
 l
ib

ra
ry

(s
td

lib
.h

)
fi
x
 c

o
d
e

0
1
:5

5
.8

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
R

ig
h
t

A
rr

o
w

w
ri
te

 c
o
d
e

0
1
:5

6
.6

tx
t_

e
d
 =

 w
h
it
e
s
p

E
n
te

r
w

ri
te

 c
o
d
e

0
1
:5

6
.8

E

n
te

r
w

ri
te

 c
o
d
e

0
1
:5

8
.4

tx
t_

e
d
 =

 t
yp

in
g

in

t
m

a
in

I'm
 g

o
in

g
 t

o
 s

ta
rt

 m
a
in

,
I

g
u
e
s
s
.

 I
t's

 n
o
t

g
o
in

g
 t

o
 r

e
tu

rn
 a

n
yt

h
in

g
,

b
u
t

w
e
'll

 j
u
s
t

c
a
ll

it
 i
n
t

b
e
c
a
u
s
e
 t

h
a
t

is
 s

ta
n
d
a
rd

.

s
ta

rt
:

c
o
n
s
tr

u
c
t

m
a
in

 r
o
u
ti
n
e

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(b

e
g

in
 m

a
in

s
u
b
ro

u
ti
n
e
;

in
t

m
a
in

()

{)

p
ro

b
le

m

O
k
,

w
e
'r
e
 g

o
in

g
 t

o
 n

e
e
d
 t

h
re

e
 a

rr
a
ys

,
x
,

y,
 a

n
d
 z

,
a
n
d
 i
t

lo
o
k
s
 l
ik

e
 t

h
e
y

w
ill

 h
o
ld

in
te

g
e
rs

.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n

(p
a
ra

p
h
ra

s
in

g
,

th
re

e

in
te

g
e
r

a
rr

a
ys

)

0
2
:0

5
.0

p
u
tt

y.
e
x
e

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
2
:0

5
.2

tx
t_

e
d
 =

 t
yp

in
g

()

{
w

ri
te

 c
o
d
e

0
2
:0

6
.8

tx
t_

e
d
 =

 w
h
it
e
s
p

E
n
te

r
w

ri
te

 c
o
d
e

0
2
:0

7
.2

tx
t_

e
d
 =

 w
h
it
e
s
p

E
n
te

r
w

ri
te

 c
o
d
e

0
2
:1

8
.4

tx
t_

e
d
 =

 t
yp

in
g

in

t

W
a
it
,

n
o
.

 W
e
ll,

 y
e
a
h
.

 I
'm

 r
e
a
d
in

g
 i
t

[r
e
fe

rr
in

g
 t

o
 t

h
e
 p

ro
b
le

m
]

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

re
a
d

p
ro

b
)

w
ri
te

 c
o
d
e

p
ro

b
le

m

O
k
,

ye
a
h
 s

o
,

u
h
,

if
 I

 r
e
m

e
m

b
e
r

h
o
w

 t
o

d
o
 a

rr
a
ys

 r
ig

h
t.

s
ta

rt
:

c
re

a
te

/i
n
it
ia

liz
e

d
a
ta

 s
tr

u
c
tu

re
s

lo
w

 p
ri
o
r

k
n
o
w

l

(a
rr

a
ys

)
0
2
:1

9
.2

p
u
tt

y.
e
x
e

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

0
2
:4

1
.6

tx
t_

e
d
 =

 t
yp

in
g

 x
[1

0
]

=
 {

1
,

2
,

3
,

4
,

5
};

A
n
d
 I

 j
u
s
t

in
it
ia

liz
e
 t

h
e
m

 t
o
 a

n
yt

h
in

g
?
 [

E

re
s
p
o
n
d
s
 y

e
s
]

s
ta

rt
:

d
e
c
la

re

a
rr

a
ys

;

 s
ta

rt
:

p
o
p
u
la

te
 a

rr
a
ys

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

w
h
a
t

to
 i
n
it
ia

liz
e
 a

rr
a
ys

 t
o
)

u
s
e
 e

x
te

rn
a
l
s
o
u
rc

e

O
k
,

I'l
l
ju

s
t

d
o
 1

 t
h
ro

u
g

h
 1

0
 I

 g
u
e
s
s
.

 O
r

w
a
it
,

th
e
y

d
o
n
't

h
a
v
e
 t

o
 b

e
 c

o
m

p
le

te
ly

fu
ll,

 t
h
e
y

c
a
n
 j
u
s
t

b
e
 a

n
yt

h
in

g
.

 S
o
,

to

s
a
v
e
 t

im
e
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

w
h
a
t

to
 i
n
it
ia

liz
e
 a

rr
a
ys

 t
o
)

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(d

e
c
la

re
 a

n
d
 i
n
it

x
 &

 y
 a

rr
a
y

a
t

s
a
m

e

ti
m

e
)

0
3
:0

2
.6

E

n
te

r
w

ri
te

 c
o
d
e

0
3
:0

3
.8

tx
t_

e
d
 =

 t
yp

in
g

in

t
y

w
ri
te

 c
o
d
e

0
3
:0

5
.6

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
3
:0

6
.4

tx
t_

e
d
 =

 t
yp

in
g

[1

0
]

=
 {

1
,

2
,

I
h
a
v
e
n
't

d
o
n
e
 a

rr
a
ys

 i
n
 s

o
 l
o
n
g

.
 W

a
it

le
t's

 g
e
t

s
o
m

e
th

in
g

 d
if
fe

re
n
t.

lo
w

 p
ri
o
r

k
n
o
w

l

(a
rr

a
ys

)
w

ri
te

 c
o
d
e

0
3
:1

4
.0

tx
t_

e
d
 =

 d
e
le

te
,

6
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
3
:1

6
.0

tx
t_

e
d
 =

 t
yp

in
g

4
,

5
,

6
,

S
o
 w

e
 c

a
n
 g

e
t

s
o
m

e
th

in
g

 f
o
r

6
.

w

ri
te

 c
o
d
e

96

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

0
3
:1

8
.6

tx
t_

e
d
 =

 d
e
le

te
,

3
B

a
c
k
s
p
a
c
e

A
h
,

th
a
t's

 n
o
t

ri
g

h
t.

w
ri
te

 c
o
d
e

0
3
:1

9
.6

tx
t_

e
d
 =

 t
yp

in
g

6
,

7
,

8
};

6
,

7
,

8
.

 O
k
,

c
o
d
e
d
:

p
o
p
u
la

te

a
rr

a
ys

e
rr

o
r:

 d
o
e
s
n
't

a
d
d

s
e
n
ti
n
e
l
v
a
lu

e
 t

o
 x

 o
r

y
a
rr

a
y

w
ri
te

 c
o
d
e

0
3
:2

5
.4

E

n
te

r
w

ri
te

 c
o
d
e

0
3
:2

5
.8

E

n
te

r

I
h
a
v
e
 t

h
a
t

a
n
d
 w

e
'r
e
 g

o
in

g
 t

o
 n

e
e
d
 o

n
e

z
,

b
u
t

it
 w

ill
 b

e
 e

m
p
ty

 r
ig

h
t

n
o
w

 b
e
c
a
u
s
e

z
 i
s
.

 W
h
a
t

is
 z

?

w
ri
te

 c
o
d
e

p
ro

b
le

m
T

h
e
 p

ro
d
u
c
t

o
f

x
 a

n
d
 y

,
s
o
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

z
 h

a
s

th
e
 p

ro
d
u
c
t

o
f

x
 a

n
d

y)

0
3
:3

8
.0

p
u
tt

y.
e
x
e

tx
t_

e
d
 =

 t
yp

in
g

in

t

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(d

e
c
la

re
 a

rr
a
y;

in
t

z
[1

0
])

0
3
:3

9
.4

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
3
:3

9
.8

tx
t_

e
d
 =

 t
yp

in
g

 z

w
ri
te

 c
o
d
e

0
3
:4

1
.6

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
3
:4

2
.0

tx
t_

e
d
 =

 t
yp

in
g

[1

0
];

T
h
a
t

w
o
n
't

b
e
 a

n
yt

h
in

g
 y

e
t.

A

n
d
 t

h
e
n

w
e
 n

e
e
d
,

u
h
 l
e
t's

 s
e
e
.

c
o
d
e
d
:

d
e
c
la

re

a
rr

a
ys

w
ri
te

 c
o
d
e

p
ro

b
le

m

[E
 a

s
k
s
 P

 w
h
a
t

h
e
 i
s
 l
o
o
k
in

g
 a

t]

"L
e
t

n

re
p
re

s
e
n
t.

"

s
ta

rt
:

d
e
c
la

re

v
a
ri
a
b
le

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

re
a
d

p
ro

b
)

I
d
o
n
't

k
n
o
w

 i
f

w
e
 a

c
tu

a
lly

 n
e
e
d
 n

.
 I

m
e
a
n
,

w
e
ll.

Y

e
s
.

 T
e
c
h
n
ic

a
lly

 w
e
 d

o
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

th
e

p
u
rp

o
s
e
 o

f
n
)

0
4
:0

8
.0

p
u
tt

y.
e
x
e

E

n
te

r

0
4
:0

8
.2

E

n
te

r

0
4
:0

9
.0

tx
t_

e
d
 =

 t
yp

in
g

in

t
n
;

 W
e
'll

 p
u
t

it
 i
n
 h

e
re

.
 I

f
w

e
 d

o
n
't

n
e
e
d
 i
t,

w
e
'll

 t
a
k
e
 i
t

o
u
t

la
te

r.
 [

la
u
g

h
s
]

c
o
d
e
d
:

d
e
c
la

re

v
a
ri
a
b
le

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

p
u
t

it
 i
n

n
o
w

 &
 l
a
te

r
ta

k
e
 o

u
t)

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(d

e
c
la

re
 n

v
a
ri
a
b
le

)
0
4
:1

1
.8

E

n
te

r
w

ri
te

 c
o
d
e

0
4
:1

2
.0

E

n
te

r

O
k
,

s
o
 w

e
'r
e
 g

o
n
n
a
 n

e
e
d
.

 W
e
ll,

 r
ig

h
t

n
o
w

,
s
in

c
e
 I

 m
a
d
e
 a

 n
,

I
k
n
o
w

 t
h
a
t

e
a
c
h

o
n
e
 i
s
 g

o
n
n
a
 h

a
v
e

s
ta

rt
:

in
it
 v

a
ri
a
b
le

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
it
 n

 v
a
ri
a
b
le

 t
o

n
u
m

b
e
r

o
f

a
c
tu

a
l

e
le

m
e
n
ts

)

0
4
:2

1
.2

tx
t_

e
d
 =

 d
e
le

te
,

3
B

a
c
k
s
p
a
c
e

5
 e

le
m

e
n
ts

.
w

ri
te

 c
o
d
e

0
4
:2

5
.8

tx
t_

e
d
 =

 t
yp

in
g

 =

 5
;

S
o
,

n
 c

a
n
 g

o
 a

h
e
a
d
 a

n
d
 b

e
 5

.
c
o
d
e
d
:

in
it
 v

a
ri
a
b
le

w
ri
te

 c
o
d
e

0
4
:2

9
.2

E

n
te

r

c
o
d
e
d
:

c
re

a
te

/i
n
it
ia

liz
e
 d

a
ta

s
tr

u
c
tu

re
s

w
ri
te

 c
o
d
e

0
4
:2

9
.4

E

n
te

r

A
n
d
 t

h
e
n
,

w
e
'r
e
 g

o
in

g
 t

o
 n

e
e
d
 a

 l
o
o
p
 t

o

g
o
 t

h
ro

u
g

h
 a

n
d
 c

a
lc

u
la

te
 o

u
r

u
h
,

p
ro

d
u
c
t.

s
ta

rt
:

c
o
m

p
u
te

/s
to

re

p
ro

d
u
c
t

s
ta

rt
:

c
o
n
s
tr

u
c
t

lo
o
p

w
ri
te

 c
o
d
e

0
4
:3

6
.8

tx
t_

e
d
 =

 t
yp

in
g

fo

r
S

o
,

w
ri
te

 c
o
d
e

0
4
:4

5
.6

tx
t_

e
d
 =

 d
e
le

te
,

4
B

a
c
k
s
p
a
c
e

le
t's

,
I

d
o
n
't

lik
e
 f

o
r

lo
o
p
s
.

w
ri
te

 c
o
d
e
:

lo
w

 p
ri
o
r

k
n
o
w

l
(a

v
o
id

s
 u

s
e
 o

f

fo
r

lo
o
p
s
)

97

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

0
4
:4

7
.4

tx
t_

e
d
 =

 t
yp

in
g

in

t
i;

S
o
,

w
e
'r
e
 g

o
n
n
a
 m

a
k
e
 a

n
 i
.

 i
 w

ill
 b

e
 a

c
o
u
n
te

r.

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(n

e
e
d
 c

o
u
n
te

r

fo
r

w
h
ile

)

0
4
:5

0
.4

E

n
te

r
w

ri
te

 c
o
d
e

0
4
:5

0
.6

E

n
te

r
w

ri
te

 c
o
d
e

0
4
:5

1
.4

tx
t_

e
d
 =

 t
yp

in
g

w

h
ile

 (
i
<

 5
s
o
 u

h
,

i
is

 l
e
s
s
 t

h
a
n
 5

.

e
rr

o
r:

 d
o
e
s
n
't

u
s
e
 n

a
n
d
 h

a
rd

 c
o
d
e
s
 l
o
o
p

e
n
d
in

g
 v

a
lu

e

w
ri
te

 c
o
d
e
:

lo
w

 p
ri
o
r

k
n
o
w

l
(w

h
ile

s
ta

te
m

e
n
t)

0
5
:0

0
.6

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
3

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

0
5
:0

0
.8

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

w
ri
te

 c
o
d
e

0
5
:0

1
.4

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

U
h
,

a
c
tu

a
lly

 4
.

in
c
o
rr

e
c
t

d
e
te

c
ti
o
n
:

d
e
le

te
s
 c

o
rr

e
c
t

lo
o
p

in
d
e
x
 e

n
d
in

g
 v

a
l
(i
 <

5
)

a
d
d
 i
n
c
o
rr

e
c
t

in
d
e
x
 e

n
d
in

g
 v

a
l

(i
<

4
)

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

d
ia

g
n
o
s
e
 (

e
v
a
lu

a
te

 5

a
s
 w

ro
n
g

 a
n
d
 c

h
a
n
g

e

to
 4

);

 f

ix
 c

o
d
e

0
5
:0

1
.6

tx
t_

e
d
 =

 t
yp

in
g

4
)

e
rr

o
r:

 o
n
ly

 m
u
lt
ip

lie
s

4
 o

f
5
 v

a
lu

e
s
 i
n
 t

h
e

a
rr

a
ys

fi
x
 c

o
d
e

0
5
:0

3
.0

U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

0
5
:0

3
.2

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

0
5
:0

3
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

0
5
:0

3
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

w
ri
te

 c
o
d
e

0
5
:0

4
.0

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

0
5
:0

4
.8

 =

 0

B
e
c
a
u
s
e
 t

h
e
 w

a
y

th
e
 a

rr
a
ys

 a
re

c
o
u
n
te

d
,

s
ta

rt
 a

t
0
 a

n
d
 g

o
 t

o
 4

.

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
it
ia

liz
e
 l
o
o
p

c
o
u
n
te

r;
 a

rr
a
y

in
d
ic

e
s

s
ta

rt
 a

t
0
)

0
5
:0

7
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

3
D

o
w

n
 A

rr
o
w

in
it
ia

liz
e
 i
 b

a
c
k
 t

o
 u

h
,

0
.

[P
 i
s
 r

e
fe

rr
in

g
 t

o

in
it
ia

liz
in

g
 t

h
e
 i
 b

e
fo

re
 e

n
te

ri
n
g

 t
h
e
 l
o
o
p
,

w
h
ic

h
 i
s
 p

a
rt

 o
f

lo
o
p
 c

o
n
s
tr

u
c
ti
o
n
]

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

le
d
g

e
 (

in
it
ia

liz
e

lo
o
p
 c

o
u
n
te

r;
 a

rr
a
y

in
d
ic

e
s
 s

ta
rt

 a
t

0
)

0
5
:0

8
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

0
5
:0

9
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

w
ri
te

 c
o
d
e

0
5
:0

9
.4

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

w
ri
te

 c
o
d
e

0
5
:1

1
.0

tx
t_

e
d
 =

 d
e
le

te
,

2
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
5
:1

2
.0

tx
t_

e
d
 =

 t
yp

in
g

{

T
h
e
n
,

u
m

w
ri
te

 c
o
d
e

0
5
:1

2
.6

E

n
te

r
w

ri
te

 c
o
d
e

0
5
:1

2
.8

E

n
te

r

w
e
'll

 g
o
 c

a
lc

u
la

te
 i
t.

It

 w
ill

 b
e
 x

.
 I

f
I

re
m

e
m

b
e
r

th
is

 r
ig

h
t.

s
ta

rt
:

m
u
lt
ip

ly

e
le

m
e
n
ts

w
ri
te

 c
o
d
e

0
5
:2

1
.2

tx
t_

e
d
 =

 t
yp

in
g

x
{

It
's

 p
ro

b
a
b
ly

 g
o
n
n
a
 b

e
 b

a
d
 b

u
t,

lo
w

 p
ri
o
r

k
n
o
w

l

(c
a
lc

u
la

ti
n
g

 p
ro

d
u
c
t

o
f

a
rr

a
ys

)
w

ri
te

 c
o
d
e

0
5
:2

6
.0

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
5
:2

6
.8

tx
t_

e
d
 =

 t
yp

in
g

[i

i,
 n

o
 w

e
 n

e
e
d
 z

,
z
.

w
ri
te

 c
o
d
e

0
5
:2

8
.0

tx
t_

e
d
 =

 d
e
le

te
,

3
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
5
:2

9
.0

tx
t_

e
d
 =

 t
yp

in
g

z
[i
]

=
 x

[i

z
 o

f
i
e
q

u
a
ls

 [
p
a
u
s
e
]

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(z

[i
]

g
e
ts

 x
[i
]

ti
m

e
s
 y

[i
]

fo
r

th
e

p
ro

d
u
c
t)

98

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

0
5
:3

8
.2

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
5
:3

8
.8

tx
t_

e
d
 =

 t
yp

in
g

]

*
y

 i
 t

im
e
s
 y

 i
.

w
ri
te

 c
o
d
e

0
5
:4

2
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
5
:4

3
.0

tx
t_

e
d
 =

 t
yp

in
g

[i
];

c
o
d
e
d
:

m
u
lt
ip

ly

e
le

m
e
n
ts

w

ri
te

 c
o
d
e

0
5
:4

6
.6

E

n
te

r
w

ri
te

 c
o
d
e

0
5
:4

7
.6

tx
t_

e
d
 =

 t
yp

in
g

i+

+
;

in
c
re

a
s
e
 t

h
e
 c

o
u
n
te

r.

re
v
is

it
:

c
o
n
s
tr

u
c
t

lo
o
p

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
c
re

m
e
n
t

lo
o
p

c
o
u
n
te

r
a
t

e
n
d
 o

f
lo

o
p
)

0
5
:5

1
.0

E

n
te

r

a
n
d
 g

o
 a

n
d
,

n
e
x
t

w
o
u
ld

 b
e
 s

to
re

 t
h
e

p
ro

d
u
c
t,

 o
k
 I

'v
e
 d

o
n
e
 t

h
a
t.

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

(c
o
d
e
 f

o
r

p
ro

d
u
c
t

lo
o
k
s
 o

k
)

0
5
:5

1
.8

tx
t_

e
d
 =

 t
yp

in
g

}

c
o
d
e
d
:

c
o
m

p
u
te

/s
to

re

p
ro

d
u
c
t

c
o
d
e
d
:

c
o
n
s
tr

u
c
t

lo
o
p

w
ri
te

 c
o
d
e

0
5
:5

2
.4

E

n
te

r
a
n
d
 t

h
e
n
 p

ri
n
t

a
ll

o
f

th
e
m

.
s
ta

rt
:

p
ri
n
t

a
rr

a
ys

w
ri
te

 c
o
d
e

0
6
:1

1
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

S
o
,

I
c
o
u
ld

 d
o
 t

h
e
 s

a
m

e
 t

h
in

g
.

w
ri
te

 c
o
d
e

0
6
:1

3
.8

tx
t_

e
d
 =

 t
yp

in
g

w

h
ile

s
ta

rt
:

c
o
n
s
tr

u
c
t

lo
o
p

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(u

s
e
 a

n
o
th

e
r

w
h
ile

)

0
6
:1

4
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
6
:1

5
.2

tx
t_

e
d
 =

 t
yp

in
g

 (

w
ri
te

 c
o
d
e

0
6
:1

8
.2

tx
t_

e
d
 =

 d
e
le

te
,

1
1

B
a
c
k
s
p
a
c
e

A
c
tu

a
lly

,
w

e
'll

 h
a
v
e
 t

o
 r

e
in

it
ia

liz
e
 t

h
e
 i

b
a
c
k
 t

o
,

w
h
o
o
p
s
 t

h
a
t

w
a
s
 t

o
o
 f

a
r,

 i
 b

a
c
k

to
 z

e
ro

.

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
it
ia

liz
e
 l
o
o
p

c
o
u
n
te

r;
 a

rr
a
y

s
ta

rt
 a

t

0
)

0
6
:2

0
.6

E

n
te

r
w

ri
te

 c
o
d
e

0
6
:2

0
.8

E

n
te

r
w

ri
te

 c
o
d
e

0
6
:2

1
.4

tx
t_

e
d
 =

 t
yp

in
g

}

w
ri
te

 c
o
d
e

0
6
:2

1
.6

E

n
te

r
w

ri
te

 c
o
d
e

0
6
:2

2
.4

E

n
te

r
w

ri
te

 c
o
d
e

0
6
:2

3
.0

tx
t_

e
d
 =

 t
yp

in
g

i
=

 0
;

w
ri
te

 c
o
d
e

0
6
:2

5
.4

E

n
te

r
w

ri
te

 c
o
d
e

0
6
:2

5
.8

E

n
te

r
w

ri
te

 c
o
d
e

0
6
:2

6
.4

tx
t_

e
d
 =

 t
yp

in
g

w

h
ile

 (
i
<

 4
){

e
rr

o
r:

 d
o
e
s
n
't

u
s
e
 n

a
n
d
 h

a
rd

 c
o
d
e
s
 l
o
o
p

e
n
d
in

g
 v

a
lu

e

w
ri
te

 c
o
d
e
:

lo
w

 p
ri
o
r

k
n
o
w

l
(w

h
ile

s
ta

te
m

e
n
t)

0
6
:3

4
.6

E

n
te

r

e
rr

o
r:

 o
n
ly

 p
ri
n
ts

 4
 o

f

5
 v

a
lu

e
s
 i
n
 t

h
e

a
rr

a
ys

w
ri
te

 c
o
d
e

0
6
:3

5
.0

E

n
te

r
w

ri
te

 c
o
d
e

0
6
:3

8
.4

tx
t_

e
d
 =

 t
yp

in
g

fp
ri
n
tf

(s
td

o
u
t,

"%
d

fo
u
r,

 u
m

,
fp

ri
n
tf

 s
ta

n
d
a
rd

 o
u
t

[m
u
m

b
le

]

p
e
rc

e
n
t

d
.

 W
e
ll,

 w
e
 w

a
n
t

s
o
m

e
th

in
g

 s
o

p
e
o
p
le

 k
n
o
w

 w
h
a
t

w
e
 a

re
 p

ri
n
ti
n
g

.

s
ta

rt
:

c
o
n
s
tr

u
c
t

p
ri
n
t

s
ta

te
m

e
n
t

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(u

s
e
 t

e
x
t

to

id
e
n
ti
fy

 p
ri
n
te

d

n
u
m

b
e
rs

)

0
6
:4

8
.8

tx
t_

e
d
 =

 d
e
le

te
,

3
B

a
c
k
s
p
a
c
e

L
e
t's

 s
e
e
 [

la
u
g

h
].

w
ri
te

 c
o
d
e

0
7
:0

0
.8

tx
t_

e
d
 =

 t
yp

in
g

 A

rr
a
y

W
e
ll

it
's

 j
u
s
t

g
o
in

g
 t

o
 b

e
 a

 r
a
n
d
o
m

 l
is

t
o
f

n
u
m

b
e
rs

,
yo

u
 c

a
n
't

ju
s
t

h
a
v
e
 u

m
.

w
ri
te

 c
o
d
e

0
7
:0

3
.8

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
5

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

99

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

0
7
:0

4
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
7
:0

5
.4

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 5
R

ig
h
t

A
rr

o
w

w
ri
te

 c
o
d
e

0
7
:0

6
.6

tx
t_

e
d
 =

 t
yp

in
g

 X

:
A

rr
a
y

W
e
'll

 c
a
ll

th
is

 a
rr

a
y

x
,

a
n
d
 w

e
'll

 h
a
v
e

a
rr

a
y.

w
ri
te

 c
o
d
e

0
7
:1

2
.4

tx
t_

e
d
 =

 d
e
le

te
,

6
B

a
c
k
s
p
a
c
e

L
e
t's

 p
u
t

m
o
re

 s
p
a
c
e
s
 i
n
 t

h
e
re

.
w

ri
te

 c
o
d
e

0
7
:1

3
.4

tx
t_

e
d
 =

 t
yp

in
g

A
rr

a
y

U
A

rr
a
y

y.
w

ri
te

 c
o
d
e

0
7
:1

6
.2

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
7
:1

6
.4

tx
t_

e
d
 =

 t
yp

in
g

y

w
ri
te

 c
o
d
e

0
7
:1

7
.0

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
7
:1

7
.2

tx
t_

e
d
 =

 t
yp

in
g

Y

:
A

A
n
d
 t

h
e
n
 w

e
'll

 h
a
v
e

w
ri
te

 c
o
d
e

0
7
:1

9
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
7
:2

0
.0

tx
t_

e
d
 =

 t
yp

in
g

A
rr

a
a
rr

a
y,

 u
h
.

w
ri
te

 c
o
d
e

0
7
:2

2
.4

tx
t_

e
d
 =

 d
e
le

te
,

4
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
7
:2

3
.6

tx
t_

e
d
 =

 t
yp

in
g

P

ro
w

ri
te

 c
o
d
e

0
7
:2

4
.6

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
7
:2

5
.4

tx
t_

e
d
 =

 t
yp

in
g

o
d
u
c
t

o
f

X

a
n
d
 Y

I
fo

rg
o
t

to
 d

o
 t

h
e
 s

q
u
a
re

 r
o
o
t,

 b
u
t

w
e

c
a
n
 d

o
 t

h
a
t

la
te

r.

T
h
is

 i
s
 g

o
in

g
 t

o
 b

e
 a

h
u
g

e
 l
in

e
.

 X
 a

n
d
 y

,
a
n
d
 t

h
e
n
,

th
a
t's

a
c
tu

a
lly

 g
o
in

g
 t

o
 b

e
 z

,
b
u
t.

w
ri
te

 c
o
d
e

0
7
:5

0
.2

tx
t_

e
d
 =

 d
e
le

te
,

2
0

B
a
c
k
s
p
a
c
e

L
e
t's

 c
h
a
n
g

e
 t

h
a
t,

 I
 d

o
n
't

lik
e
 t

h
a
t

[l
a
u
g

h
s
].

w
ri
te

 c
o
d
e

0
7
:5

2
.0

tx
t_

e
d
 =

 t
yp

in
g

A

rr
a
y

X
Z

w
ri
te

 c
o
d
e

0
7
:5

5
.0

tx
t_

e
d
 =

 d
e
le

te
,

2
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
7
:5

5
.6

tx
t_

e
d
 =

 t
yp

in
g

Z
 (

P
ro

d
u
c
t

o
f

X
 a

n
d
 W

h
ile

A
rr

a
y

z
,

a
n
d
 u

m
.

 I
 w

a
s
 t

h
in

k
in

g
 a

h
e
a
d
,

th
a
t's

 w
h
a
t

I
d
id

.
w

ri
te

 c
o
d
e

0
8
:0

2
.4

tx
t_

e
d
 =

 d
e
le

te
,

5
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
8
:0

4
.0

tx
t_

e
d
 =

 t
yp

in
g

Y

)
w

ri
te

 c
o
d
e

0
8
:0

6
.6

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
2
4

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

0
8
:0

8
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
R

ig
h
t

A
rr

o
w

w
ri
te

 c
o
d
e

0
8
:0

9
.6

tx
t_

e
d
 =

 t
yp

in
g

:

w
ri
te

 c
o
d
e

0
8
:0

9
.6

L
 B

u
tt

o
n
 D

o
w

n
F

o
ld

e
rV

ie
w

w
ri
te

 c
o
d
e

0
8
:1

0
.2

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

T
h
e
 p

ro
d
u
c
t

o
f

x
 a

n
d
 y

.

0
8
:1

1
.6

L
 B

u
tt

o
n
 D

o
w

n

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

0
8
:1

3
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 2
1

R
ig

h
t

A
rr

o
w

E
rr

o
r:

 P
ri
n
ts

 h
e
a
d
e
r

in
s
id

e
 l
o
o
p

0
8
:1

5
.8

tx
t_

e
d
 =

 t
yp

in
g

 S
q

u
a
re

 r
o
o
t

o
f

Z
:"

);

a
n
d
 t

h
e
n
 w

e
'll

 h
a
v
e
 s

q
u
a
re

 r
o
o
t

o
f

z
.

T
h
a
t's

 g
o
in

g
 t

o
 b

e
 h

o
rr

ib
le

 f
o
r

fo
rm

a
tt

in
g

,
b
u
t

a
n
yw

a
y.

s
ta

rt
:

s
q

u
a
re

 r
o
o
t

o
f

z
;

s
ta

rt
:

p
ri
n
t

s
q

u
a
re

 r
o
o
t

w
ri
te

 c
o
d
e
:

lo
w

 p
ri
o
r

k
n
o
w

l
(p

ri
n
t

h
e
a
d
e
r

in
s
id

e
 l
o
o
p
)

0
8
:2

7
.8

E

n
te

r
w

ri
te

 c
o
d
e

0
8
:2

8
.2

E

n
te

r

o
k
,

s
o
 w

e
 h

a
v
e
 t

h
a
t.

M

a
k
e
 s

u
re

 w
e
'r
e

d
o
in

g
 t

h
a
t

ri
g

h
t,

w

ri
te

 c
o
d
e

p
ro

b
le

m

s
to

re
 t

h
e
 p

ro
d
u
c
t

[m
u
m

b
le

]
th

e
n
 p

ri
n
t.

[E
 r

e
m

in
d
s
 P

 t
o
 t

h
in

k
 a

lo
u
d
]

O
k
,

I
a
m

re
a
d
in

g
 t

h
e
 l
a
s
t

tw
o
 s

e
n
te

n
c
e
s
.

 "
S

to
re

th
e
 p

ro
d
u
c
t.

"

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

re
a
d

la
s
t

2
 s

e
n
te

n
c
e
s
)

O
k
,

I
c
o
u
ld

 d
o
 t

h
is

 a
ll

in
 o

n
e
 g

o
,

lik
e
,

lik
e
 I

'm
 d

o
in

g
 n

o
w

 I
 h

a
v
e
.

 W
h
ic

h
 w

o
u
ld

b
e
 o

k
 b

u
t

it
's

 n
o
t

e
x
a
c
tl
y

w
h
a
t

th
e

d
ir
e
c
ti
o
n
s
 s

a
y

to
 d

o
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n

100

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

 I
t

s
a
ys

 p
ri
n
t

c
o
n
te

n
ts

 o
f

x
,

y,
 a

n
d
 z

,

th
e
n
 g

o
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

o
rd

e
r

o
f

p
ri
n
t

a
n
d
 s

q
u
a
re

ro
o
t)

B
u
t,

 I
 w

a
n
t

to
 b

e
 f

a
s
t

s
o
 I

 w
a
n
t

to
 g

o

a
h
e
a
d
 a

n
d
 d

o
 t

h
is

.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n

0
9
:0

8
.4

tx
t_

e
d
 =

 t
yp

in
g

fp

ri
n
t

D
o
 i
t

m
y

w
a
y.

e
rr

o
r:

 i
n
c
o
rr

e
c
t

fp
ri
n
tf

,
le

a
v
e
s
 o

ff
 f

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(p

ri
n
t

a
rr

a
y

v
a
lu

e
s
)

0
9
:0

9
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
9
:1

0
.2

tx
t_

e
d
 =

 t
yp

in
g

(s

td
o
u
t,

S
o
 t

h
a
t

it
's

 t
h
e
 s

a
m

e
 e

n
d
 p

ro
d
u
c
t.

w
ri
te

 c
o
d
e

0
9
:1

5
.2

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

O
h
,

le
t's

 d
o
 a

 s
la

s
h
 n

,
w

ri
te

 c
o
d
e

0
9
:1

5
.4

U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

0
9
:1

5
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
R

ig
h
t

A
rr

o
w

w
ri
te

 c
o
d
e

0
9
:1

6
.8

tx
t_

e
d
 =

 t
yp

in
g

\n

w
h
ic

h
 i
s
 a

 n
e
w

lin
e
.

 M
a
k
e
 i
t

lo
o
k
 p

re
tt

y.
w

ri
te

 c
o
d
e

0
9
:1

9
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
D

o
w

n
 A

rr
o
w

N
o
w

,
u
m

,
w

ri
te

 c
o
d
e

0
9
:2

2
.6

tx
t_

e
d
 =

 t
yp

in
g

"

w
ri
te

 c
o
d
e

0
9
:2

3
.4

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

0
9
:2

3
.6

tx
t_

e
d
 =

 t
yp

in
g

S

p
a
c
e
b
a
r

w
ri
te

 c
o
d
e

0
9
:2

3
.8

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

w
e
'll

 h
a
v
e

w
ri
te

 c
o
d
e

0
9
:2

6
.0

tx
t_

e
d
 =

 t
yp

in
g

%
d

%

d

%
d

D

p
e
rc

e
n
t

d
.

 W
a
it
 n

o
,

w
e
'r
e
 g

o
n
n
a
 h

a
v
e

to
 c

h
a
n
g

e
 t

h
a
t

b
e
c
a
u
s
e
 i
f

I
le

a
v
e
 i
t

th
e

w
a
y

it
 i
s
.

 L
e
t

m
e
 g

o
 a

h
e
a
d
 a

n
d
 f

in
is

h

th
is

.
 P

e
rc

e
n
t

d
,

p
e
rc

e
n
t

d
,

a
n
d
 t

h
e
n
 i
t

w
ill

 a
c
tu

a
lly

 b
e
.

 I
 t

h
in

k
 i
f

I
re

m
e
m

b
e
r

ri
g

h
t.

re

v
is

it
:

p
ri
n
t

a
rr

a
ys

lo
w

 p
ri
o
r

k
n
o
w

l

(s
yn

ta
x
 f

o
r

fp
ri
n
t)

w
ri
te

 c
o
d
e

0
9
:4

7
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

0
9
:4

8
.2

tx
t_

e
d
 =

 t
yp

in
g

%

lf

L
 f

,
th

a
t

w
o
u
ld

 a
c
tu

a
lly

 b
e
 u

h
,

a
 f

lo
a
ti
n
g

p
o
in

t
o
r

d
o
u
b
le

 o
r

w
h
a
te

v
e
r,

 w
h
ic

h
 I

w
a
n
t

to
 b

e
 u

s
in

g
.

w
ri
te

 c
o
d
e

0
9
:5

2
.2

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
3

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

0
9
:5

3
.0

tx
t_

e
d
 =

 t
yp

in
g

w
ri
te

 c
o
d
e

0
9
:5

3
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
R

ig
h
t

A
rr

o
w

w
ri
te

 c
o
d
e

0
9
:5

5
.6

tx
t_

e
d
 =

 t
yp

in
g

",

 x
[i
],

 y

a
n
d
 t

h
is

 w
ill

 b
e
 x

 o
f

i,
 t

h
e
n
 y

 s
u
b
 i
,

w
ri
te

 c
o
d
e

1
0
:0

8
.6

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

1
0
:0

9
.0

tx
t_

e
d
 =

 t
yp

in
g

[i
],

 x
w

ri
te

 c
o
d
e

1
0
:1

3
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

a
n
d
 t

h
e
n
,

w
ri
te

 c
o
d
e

1
0
:1

4
.0

tx
t_

e
d
 =

 t
yp

in
g

z

w
ri
te

 c
o
d
e

1
0
:1

4
.8

tx
t_

e
d
 =

 d
e
le

te
,

2
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

1
0
:1

9
.4

tx
t_

e
d
 =

 t
yp

in
g

z
[i
],

 s
q

rt
r

it
 w

ill
 b

e
 u

h
,

z
 s

u
b
 i
,

a
n
d
 t

h
e
n
 r

ig
h
t

h
e
re

it
 w

ill
 b

e
 s

q
u
a
re

 r
o
o
t,

 I
 t

h
in

k
 t

h
a
t's

 r
ig

h
t,

re
v
is

it
:

s
q

u
a
re

 r
o
o
t

o
f

s
u
m

 o
f

z
;

re
v
is

it
:

p
ri
n
t

s
q

u
a
re

ro
o
t

s
ta

rt
:

u
s
e
 s

q
u
a
re

ro
o
t

fu
n
c
ti
o
n

w
ri
te

 c
o
d
e

1
0
:2

8
.0

tx
t_

e
d
 =

 d
e
le

te
,

2
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

1
0
:2

9
.2

tx
t_

e
d
 =

 t
yp

in
g

t(

z
[i
])

o
f

z
 o

f
i,

c
o
d
e
d
:

s
q

u
a
re

 r
o
o
t

o
f

s
u
m

 o
f

z
;

c
o
d
e
d
:

p
ri
n
t

s
q

u
a
re

ro
o
t

c
o
d
e
d
:

u
s
e
 s

q
u
a
re

ro
o
t

fu
n
c
ti
o
n

e
rr

o
r:

 i
n
c
o
rr

e
c
t

s
q

u
a
re

 r
o
o
t

o
f

in
d
iv

id
u
a
l
it
e
m

s
 i
n
 z

w
ri
te

 c
o
d
e

1
0
:2

9
.2

tx
t_

e
d
 =

 t
yp

in
g

);

a
n
d
 t

h
e
n
.

 P
ri
n
t

th
e
 z

's
,

c
h
e
c
k
.

 T
h
e
re

,

o
n
e
 m

o
re

.
re

v
is

it
:

p
ri
n
t

a
rr

a
ys

re
v
is

it
:

c
o
n
s
tr

u
c
t

p
ri
n
t

s
ta

te
m

e
n
t

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

w
ri
te

 c
o
d
e

101

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

1
0
:4

5
.2

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
3
3

L
e
ft

 A
rr

o
w

a
n
d
 t

h
e
n
 g

o
 b

a
c
k
 a

n
d
 p

u
t

a
 n

e
w

lin
e
.

w
ri
te

 c
o
d
e

1
0
:4

8
.0

tx
t_

e
d
 =

 t
yp

in
g

\n

O
th

e
rw

is
e
 i
t

w
ill

 l
o
o
k
 m

e
s
s
y.

c
o
d
e
d
:

c
o
n
s
tr

u
c
t

p
ri
n
t

s
ta

te
m

e
n
t

w
ri
te

 c
o
d
e

1
0
:5

0
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

2
U

p
 A

rr
o
w

O
k
,

u
m

.
w

ri
te

 c
o
d
e

1
0
:5

5
.6

L
e
ft

 A
rr

o
w

I'm
 g

o
in

g
 t

o
 n

e
e
d
 t

o
 c

u
t

th
is

 o
u
t

b
e
c
a
u
s
e
 o

th
e
rw

is
e
 e

v
e
ry

ti
m

e
 i
t's

 g
o
in

g

to
 p

ri
n
t.

d
e
te

c
te

d
:

h
e
a
d
e
r

in
s
id

e
 l
o
o
p
 e

rr
o
r

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

d
ia

g
n
o
s
e
 (

h
e
a
d
e
r

in

w
ro

n
g

 p
la

c
e
,

in
s
id

e

lo
o
p
)

1
0
:5

6
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

2
U

p
 A

rr
o
w

fi
x
 c

o
d
e

1
0
:5

6
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

fi
x
 c

o
d
e

1
0
:5

8
.0

L
 B

u
tt

o
n
 D

o
w

n

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

fi
x
 c

o
d
e

1
0
:5

9
.6

L
 B

u
tt

o
n
 D

o
w

n

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

fi
x
 c

o
d
e

1
1
:0

0
.2

L
 B

u
tt

o
n
 D

o
w

n

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

I
d
o
n
't

k
n
o
w

 i
f

it
 w

o
rk

s
 t

h
is

 w
a
y,

 b
u
t

w
e
'll

tr
y

it
.

fi
x
 c

o
d
e

1
1
:0

1
.6

R
 B

u
tt

o
n
 D

o
w

n

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

o
h
 n

o
,

w
h
a
t

h
a
p
p
e
n
e
d
?

I
s
e
e
.

 O
o
o
h
,

th
a
t

w
a
s
 m

e
s
s
y.

L
e
t's

 s
e
e
,

h
u
h
.

1
1
:1

3
.0

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

1
1
:1

6
.8

E

n
te

r

[P
 s

e
e
m

s
 p

e
rp

le
x
e
d
 a

b
o
u
t

c
u
t

a
n
d

p
a
s
te

.
 E

 t
e
lls

 P
 t

h
a
t

it
 j
u
s
t

p
a
s
te

d
 i
t

tw
ic

e
]

 T
h
a
t

m
ig

h
t

b
e
 i
t.

1
1
:2

0
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

3
D

o
w

n
 A

rr
o
w

1
1
:2

1
.2

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

4
U

p
 A

rr
o
w

1
1
:2

3
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
D

o
w

n
 A

rr
o
w

O
h
,

o
k
.

1
1
:2

5
.0

tx
t_

e
d
 =

 d
e
le

te
,

4
9

B
a
c
k
s
p
a
c
e

L
e
t's

 s
e
e
.

fi
x
 c

o
d
e

1
1
:3

6
.8

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 2
2

R
ig

h
t

A
rr

o
w

fi
x
 c

o
d
e

1
1
:3

8
.8

tx
t_

e
d
 =

 d
e
le

te
,

2
3

B
a
c
k
s
p
a
c
e

W
e
ll,

 i
n
 t

h
a
t

c
a
s
e
 w

e
'll

 j
u
s
t

u
h
,

d
o
 t

h
e

e
a
s
y

th
in

g
.

fi
x
 c

o
d
e

1
1
:4

2
.8

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
2
2

L
e
ft

 A
rr

o
w

fi
x
 c

o
d
e

1
1
:4

5
.0

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

fi
x
 c

o
d
e

1
1
:4

5
.8

tx
t_

e
d
 =

 t
yp

in
g

S

p
a
c
e
b
a
r

fi
x
 c

o
d
e

1
1
:4

6
.6

S

p
a
c
e
b
a
r

fi
x
 c

o
d
e

1
1
:4

6
.8

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
2
2

L
e
ft

 A
rr

o
w

fi
x
 c

o
d
e

1
1
:4

9
.4

T

a
b

L
e
t's

 m
o
v
e
 t

h
a
t

in
.

e
rr

o
r:

 b
re

a
k
s
 u

p
 a

p
ri
n
t

s
ta

te
m

e
n
t

w
/

ta
b

fi
x
 c

o
d
e

1
1
:4

9
.8

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

3
U

p
 A

rr
o
w

fi
x
 c

o
d
e

1
1
:5

1
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 4
R

ig
h
t

A
rr

o
w

W
e
'll

 c
u
t

th
is

 o
u
t.

fi
x
 c

o
d
e

1
1
:5

1
.6

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
1
8

L
e
ft

 A
rr

o
w

 I
'm

 t
ry

in
g

 t
o
 t

h
in

k
 w

h
a
t

th
a
t

c
o
m

m
a
n
d

w
o
u
ld

 b
e
.

fi
x
 c

o
d
e

1
1
:5

3
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

fi
x
 c

o
d
e

1
1
:5

3
.2

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

fi
x
 c

o
d
e

1
1
:5

3
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

fi
x
 c

o
d
e

1
1
:5

3
.8

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

fi
x
 c

o
d
e

1
1
:5

4
.8

C
tr

l

k
fi
x
 c

o
d
e

102

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

1
1
:5

5
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

3
D

o
w

n
 A

rr
o
w

fi
x
 c

o
d
e

1
1
:5

6
.6

C
tr

l

C
tr

l
u

T
h
e
re

 w
e
 g

o
.

fi
n
is

h
:

c
o
n
s
tr

u
c
t

p
ri
n
t

s
ta

te
m

e
n
t

fi
x
e
s
:

h
e
a
d
e
r

in
s
id

e

lo
o
p
 e

rr
o
r

w
ri
te

 c
o
d
e

1
1
:5

8
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

w
ri
te

 c
o
d
e

1
1
:5

9
.2

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

2
U

p
 A

rr
o
w

T
h
a
t

w
a
s
 n

ic
e
.

w
ri
te

 c
o
d
e

1
2
:0

0
.8

E

n
te

r
w

ri
te

 c
o
d
e

1
2
:0

2
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

3
D

o
w

n
 A

rr
o
w

O
k
,

w
e
'll

 n
e
e
d
 a

 i
 p

lu
s
,

p
lu

s
.

re
v
is

it
:

c
o
n
s
tr

u
c
t

lo
o
p

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
c
re

m
e
n
t

lo
o
p

c
o
u
n
te

r
a
t

e
n
d
 o

f
lo

o
p
)

1
2
:0

4
.4

tx
t_

e
d
 =

 t
yp

in
g

i+

+

e
rr

o
r:

 l
e
a
v
e
s
 o

ff

s
e
m

ic
o
lo

n

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(i
n
c
re

m
e
n
t

lo
o
p

c
o
u
n
te

r
a
t

e
n
d
 o

f
lo

o
p
)

1
2
:0

7
.4

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
3

L
e
ft

 A
rr

o
w

w
ri
te

 c
o
d
e

1
2
:0

8
.2

E

n
te

r
w

ri
te

 c
o
d
e

1
2
:0

8
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
R

ig
h
t

A
rr

o
w

w
ri
te

 c
o
d
e

1
2
:0

9
.8

E

n
te

r
w

ri
te

 c
o
d
e

1
2
:1

0
.4

E

n
te

r
w

ri
te

 c
o
d
e

1
2
:1

1
.4

tx
t_

e
d
 =

 t
yp

in
g

}

A
n
d
 t

h
e
n
 w

e
'll

 d
o
 t

h
a
t,

 a
n
d
.

c
o
d
e
d
:c

o
n
s
tr

u
c
t

lo
o
p

w
ri
te

 c
o
d
e

1
2
:1

6
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

9
U

p
 A

rr
o
w

W
a
it
,

w
h
a
t's

 g
o
in

g
 o

n
 h

e
re

?
c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

1
2
:1

7
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 2
1

R
ig

h
t

A
rr

o
w

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

1
2
:2

1
.6

tx
t_

e
d
 =

 d
e
le

te
,

5
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

1
2
:2

4
.0

tx
t_

e
d
 =

 t
yp

in
g

f

w
ri
te

 c
o
d
e

1
2
:2

6
.6

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

1
2

D
o
w

n
 A

rr
o
w

W
e
 n

e
e
d
 t

o
 c

lo
s
e
 t

h
a
t.

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

(c
h
e
c
k
in

g
 t

h
a
t

b
ra

c
k
e
ts

 {
}

m
a
tc

h
)

1
2
:4

4
.2

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

3
9

D
o
w

n
 A

rr
o
w

O
k
,

I'm
 g

o
in

g
 t

o
 n

e
e
d
 t

o
 c

lo
s
e
.

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

(c
h
e
c
k
in

g
 t

h
a
t

b
ra

c
k
e
ts

 {
}

m
a
tc

h
)

1
2
:4

6
.8

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

2
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

(c
h
e
c
k
in

g
 t

h
a
t

b
ra

c
k
e
ts

 {
}

m
a
tc

h
)

1
2
:4

7
.6

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
D

o
w

n
 A

rr
o
w

I
g

o
t

th
a
t

o
n
e
 c

lo
s
e
d
.

c
o
d
e
d
:

p
ri
n
t

a
rr

a
ys

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

(c
h
e
c
k
in

g
 t

h
a
t

b
ra

c
k
e
ts

 {
}

m
a
tc

h
)

1
2
:4

9
.4

E

n
te

r
w

ri
te

 c
o
d
e

1
2
:4

9
.8

tx
t_

e
d
 =

 t
yp

in
g

re

tu
rn

 0
;

e
v
e
n
 t

h
o
u
g

h
 w

e
'r
e
 j
u
s
t

g
o
in

g
 t

o
 r

e
tu

rn

z
e
ro

 j
u
s
t

b
e
c
a
u
s
e
 c

 w
ill

 f
o
rg

e
t

if
 w

e

d
o
n
't.

re
v
is

it
:

b
e
g

in

p
ro

g
ra

m

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(r

e
tu

rn
 f

ro
m

m
a
in

)

1
2
:5

2
.6

E

n
te

r
w

ri
te

 c
o
d
e

1
2
:5

2
.8

E

n
te

r
w

ri
te

 c
o
d
e

1
2
:5

3
.6

tx
t_

e
d
 =

 t
yp

in
g

}

c
o
d
e
d
:

b
e
g

in

p
ro

g
ra

m

c
o
d
e
d
:

c
o
n
s
tr

u
c
t

m
a
in

 r
o
u
ti
n
e

w
ri
te

 c
o
d
e

103

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

1
2
:5

4
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

4
8

U
p
 A

rr
o
w

1
2
:5

7
.2

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

4
4

D
o
w

n
 A

rr
o
w

a
n
d
 n

o
w

 I
 g

u
e
s
s
 I

 c
a
n
 t

ry
 i
t

a
n
d
 r

u
n
 i
t,

a
n
d
 s

e
e
 h

o
w

 b
a
d
 I

 d
id

 a
t

it
.

lo
w

 p
ri
o
r

k
n
o
w

l

(q
u
a
lit

y
o
f

th
e

p
ro

g
ra

m
)

1
3
:0

0
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

1
6

U
p
 A

rr
o
w

1
3
:0

3
.0

C
tr

l

C
tr

l
o

w
ri
te

 i
t

o
u
t.

1
3
:0

4
.4

E

n
te

r

1
3
:0

5
.4

C
tr

l

x

1
3
:0

6
.6

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g

g
c
c
 -

W
a
ll

-l
m

te
s
t.

c

g
c
c
,

w
a
ll

fo
r

w
a
rn

in
g

s
,

a
n
d
 b

e
c
a
u
s
e

m
a
th

.h
 i
s
 i
n
 t

h
e
re

,
yo

u
 h

a
v
e
 t

o
 d

o
 l
m

o
th

e
rw

is
e
 i
t

w
ill

 f
re

a
k
 o

u
t

a
g

a
in

.
c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
3
:1

5
.6

E
n
te

r

I'm
 p

ro
b
a
b
ly

 g
o
in

g
 t

o
 g

e
t

3
0
0
 w

a
rn

in
g

s
.

Y
e
a
.

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

 I
 l
e
ft

 o
u
t

a
n
 i
n
c
lu

d
e
.

 T
h
a
t's

 w
h
a
t

I
d
id

.

re
v
is

it
:

b
e
g

in

p
ro

g
ra

m

d
e
te

c
te

d
:

lib
ra

ry

e
rr

o
r

(l
e
ft

 o
u
t

s
td

io
.h

)

c
h
e
c
k
-d

e
te

c
t:

c
o
m

p
ile

r;
 d

ia
g

n
o
s
e

(l
e
ft

 o
u
t

lib
)

1
3
:2

2
.2

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

1
3
:2

4
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
D

o
w

n
 A

rr
o
w

1
3
:2

5
.8

tx
t_

e
d
 =

 t
yp

in
g

#
in

c
lu

d
e
<

s
td

i

o
.h

>
u
h
,

u
m

 s
-t

-i
,

s
ta

n
d
a
rd

 i
o
 f

o
r

a
ll

th
o
s
e
.

c
o
d
e
d
:

b
e
g

in

p
ro

g
ra

m

fi
n
is

h
:

in
c
lu

d
e

lib
ra

ry
 f

ile
s

fi
x
e
s
:

a
d
d
s
 l
ib

ra
ry

fi
x
 c

o
d
e

1
3
:3

5
.4

E

n
te

r

1
3
:3

6
.6

C
tr

l

o

1
3
:3

7
.2

E

n
te

r

1
3
:3

8
.6

C
tr

l

x

N
o
w

,
I

s
h
o
u
ld

 p
ro

b
a
b
ly

 s
h
o
u
ld

 h
a
v
e

c
h
e
c
k
e
d
 t

h
e
 o

th
e
r

e
rr

o
rs

 a
n
d
 t

ri
e
d
 t

o
 f

ix

th
e
m

 t
o
o
,

b
u
t

1
3
:3

9
.6

u
n
ix

_
c
m

d
 =

 c
le

a
r

s
c
re

e
n

U
p
 A

rr
o
w

c
le

a
r,

 m
a
k
e
 i
t

e
a
s
ie

r.

1
3
:4

4
.0

E

n
te

r

1
3
:4

4
.6

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
3
:4

6
.0

E

n
te

r

o
k
,

2
5
,

2
6
,

p
ro

d
u
c
t

u
n
d
e
c
la

re
d
,

w
h
a
t?

O
k
,

a
n
yw

a
y.

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
3
:5

6
.8

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

[E
 a

s
k
s
 P

 w
h
a
t

h
e
 i
s
 r

e
a
d
in

g
]

 I
f

I
fi
x
,

u
s
u
a
lly

 w
h
e
n
 y

o
u
 g

e
t

th
e
s
e
 t

yp
e
 o

f

c
o
m

p
ile

r
e
rr

o
rs

,
if
 y

o
u
 g

e
t

o
n
e
 t

h
a
t

s
a
ys

m
is

s
in

g
 s

o
m

e
th

in
g

,
a
 l
o
t

o
f

th
e
 o

n
e
s

a
ft

e
r

it
 c

a
n
 b

e
 e

lim
in

a
te

d
 j
u
s
t

b
e
c
a
u
s
e

yo
u
 l
e
ft

 s
o
m

e
th

in
g

 o
u
t.

It

 r
e
a
d
s

e
v
e
ry

th
in

g
 e

ls
e
 i
n
c
o
rr

e
c
tl
y.

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
4
:1

1
.2

E

n
te

r
W

o
w

,
I

m
e
a
n
t

to
 o

p
e
n
 i
t,

 n
o
t

c
o
m

p
ile

 i
t.

1
4
:1

2
.4

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

1
4
:1

4
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

1
2

D
o
w

n
 A

rr
o
w

S
o
,

w
h
e
re

v
e
r

lin
e
 2

5
 i
s
.

d
ia

g
n
o
s
e

1
4
:1

7
.0

C
tr

l

c
th

a
t's

 1
3
.

d
ia

g
n
o
s
e

1
4
:1

8
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

1
2

D
o
w

n
 A

rr
o
w

g
e
t

o
n
 d

o
w

n
 s

o
m

e
 m

o
re

.
d
ia

g
n
o
s
e

1
4
:2

1
.0

C
tr

l

C
tr

l
c

it
's

 t
h
e
re

.
[P

 i
s
 o

n
 l
in

e
 2

5
]

d
ia

g
n
o
s
e

1
4
:2

4
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

d
ia

g
n
o
s
e

104

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

1
4
:2

4
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

H
m

m
m

,
[p

a
u
s
e
]

le
t's

 s
e
e
.

 L
e
t

m
e
 g

o

b
a
c
k
 o

n
e
 m

o
re

 l
in

e
 i
t'l

l
m

a
k
e
 i
t.

d
e
te

c
te

d
:

p
ri
n
t

s
ta

te
m

e
n
t

o
n
 t

w
o

lin
e
s
 e

rr
o
r

d
ia

g
n
o
s
e
 (

o
n
 l
in

e
 2

6

a
n
d
 n

e
e
d
 t

o

b
a
c
k
s
p
a
c
e
)

1
4
:3

3
.0

tx
t_

e
d
 =

 d
e
le

te
,

2
B

a
c
k
s
p
a
c
e

fi
x
e
s
:

p
ri
n
t

s
ta

te
m

e
n
t

o
n
 t

w
o
 l
in

e
s
 e

rr
o
r

fi
x
 c

o
d
e

1
4
:3

6
.4

p
u
tt

y.
e
x
e
 =

 r
e
s
iz

e

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

1
4
:4

0
.2

C
tr

l

C
tr

l
c

Y
e
a
h
,

th
a
t's

 2
5
,

s
o
 g

o
 t

h
a
t.

W

e
 g

o
t

th
a
t

o
n
e
.

[E
 a

s
k
s
 P

 t
o
 s

a
y

w
h
a
t

h
e
 i
s

th
in

k
in

g
]

I'm
 t

ry
in

g
 t

o
 f

ig
u
re

 o
u
t,

 I
'm

 j
u
s
t

lo
o
k
in

g
 a

t
th

e
 u

h
.

 E
v
e
ry

th
in

g
 l
o
o
k
s
 f

in
e
.

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

1
5
:0

2
.0

C
tr

l

C
tr

l
o

L
e
t

m
e
 t

ry
 i
t

a
g

a
in

 j
u
s
t

to
 b

e
 s

u
re

.

1
5
:0

3
.2

E

n
te

r

1
5
:0

4
.0

C
tr

l

C
tr

l
x

1
5
:0

4
.8

u
n
ix

_
c
m

d
 =

 c
le

a
r

s
c
re

e
n

U
p
 A

rr
o
w

1
5
:0

6
.0

E

n
te

r

1
5
:0

6
.4

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
5
:0

7
.4

E
n
te

r

S
e
e
,

ju
s
t

b
y

m
o
v
in

g
 t

h
o
s
e
 t

w
o
 m

o
v
e
 i
t

a
ro

u
n
d
.

 O
k
.

 I
 l
e
ft

 o
u
t

u
h
 f

 o
n
 t

h
a
t.

 [
P

 i
s

re
fe

rr
in

g
 t

o
 t

h
e
 c

o
m

p
ile

r
m

s
s
g

 a
b
o
u
t

fp
ri
n
t]

d
e
te

c
te

d
:

fp
ri
n
tf

 e
rr

o
r

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

(l
e
s
s
 e

rr
o
rs

 a
n
d
 e

rr
o
r

a
b
o
u
t

p
ri
n
t

s
tm

t)
;

d
ia

g
n
o
s
e
 (

le
ft

 o
u
t

f
o
n

p
ri
n
t

s
ta

te
m

e
n
t)

1
5
:1

3
.8

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

1
5
:1

5
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

3
1

D
o
w

n
 A

rr
o
w

s
o
m

e
w

h
e
re

,
w

h
e
re

 i
s
.

d
ia

g
n
o
s
e

1
5
:1

8
.8

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

3
U

p
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:1

9
.4

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 6
R

ig
h
t

A
rr

o
w

ye
a
h
.

d
ia

g
n
o
s
e

1
5
:2

1
.2

tx
t_

e
d
 =

 t
yp

in
g

f

th
a
t'l

l
fi
x
 t

h
a
t

w
h
ic

h
 c

o
u
ld

 f
ix

 t
h
e
 o

th
e
r

o
n
e
s
.

fi
x
e
s
:

fp
ri
n
f

e
rr

o
r

fi
x
 c

o
d
e

1
5
:2

2
.2

C
tr

l

C
tr

l
o

1
5
:2

2
.6

E

n
te

r

1
5
:2

3
.2

C
tr

l

C
tr

l
x

1
5
:2

4
.0

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
5
:2

5
.0

E

n
te

r

O
k
,

3
3
.

[P
 i
s
 r

e
fe

rr
in

g
 t

o
 a

 s
e
m

ic
o
lo

n

e
rr

o
r]

I

n
e
v
e
r

u
s
e
d
 n

.
[P

 r
e
fe

rr
in

g
 t

o

c
o
m

p
ile

r
m

s
s
g

]
L
e
t's

 s
e
e
,

le
t's

 s
e
e
 w

h
y.

d
e
te

c
te

d
:

d
id

n
't

u
s
e

n
 &

 l
in

e
 3

3

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

(e
rr

o
r

o
n
 l
in

e
 3

3
 &

d
id

n
't

u
s
e
 n

)

1
5
:3

3
.8

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

B
u
t

le
t

m
e
 f

ix
 m

y
3
3
 f

ir
s
t.

I

m
is

s
e
d

s
o
m

e
th

in
g

.

1
5
:3

9
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:3

9
.8

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

d
ia

g
n
o
s
e

1
5
:4

1
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

4
0

D
o
w

n
 A

rr
o
w

G
o
 d

o
w

n
.

d
ia

g
n
o
s
e

105

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

1
5
:4

3
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

8
U

p
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:4

4
.6

C
tr

l

c
[P

 i
s
 o

n
 l
in

e
 3

0
]

d
ia

g
n
o
s
e

1
5
:4

5
.6

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

5
D

o
w

n
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:4

7
.2

C
tr

l

C
tr

l
c

[P
 i
s
 o

n
 l
in

e
 3

5
]

d
ia

g
n
o
s
e

1
5
:4

9
.6

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

1
2

U
p
 A

rr
o
w

W
a
it
,

w
h
a
t

d
id

 i
t.

d
ia

g
n
o
s
e

1
5
:5

3
.2

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:5

3
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

1
0

U
p
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:5

4
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:5

5
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

d
ia

g
n
o
s
e

1
5
:5

6
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

3
U

p
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:5

7
.2

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 4
R

ig
h
t

A
rr

o
w

d
ia

g
n
o
s
e

1
5
:5

8
.6

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
D

o
w

n
 A

rr
o
w

d
ia

g
n
o
s
e

1
5
:5

9
.2

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

2
U

p
 A

rr
o
w

W
e
ll,

 I
 c

a
n
 u

s
e
 n

 b
u
t

w
e
 d

o
n
't

n
e
e
d
 i
t

c
a
u
s
e
 t

h
is

 i
s
 a

ll
s
ta

ti
c
 a

n
d
 w

e
 w

e
re

n
't

d
o
in

g
 a

n
yt

h
in

g
 d

yn
a
m

ic
.

d
ia

g
n
o
s
e

1
6
:0

0
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 4
R

ig
h
t

A
rr

o
w

1
6
:0

1
.2

tx
t_

e
d
 =

 d
e
le

te
,

1
1

B
a
c
k
s
p
a
c
e

fi
x
e
s
:

d
e
le

te
s
 n

v
a
ri
a
b
le

fi
x
 c

o
d
e

1
6
:0

3
.4

C
tr

l

o

1
6
:0

3
.6

E

n
te

r

1
6
:0

4
.6

C
tr

l

x

1
6
:0

5
.8

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
6
:0

7
.2

E
n
te

r

U
m

,
o
k
,

"e
x
p
e
c
te

d
 s

e
m

ic
o
lo

n
 b

e
fo

re

[m
u
m

b
le

]"
 [

P
 r

e
a
d
s
 l
in

e
 3

3
 e

rr
o
r

a
g

a
in

]

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

(e
x
p
e
c
te

d
 s

e
m

ic
o
lo

n
)

1
6
:1

2
.6

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

1
6
:1

3
.8

E

n
te

r

1
6
:1

4
.2

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
9

D
o
w

n
 A

rr
o
w

O
k
,

c
o
u
n
ti
n
g

 b
ra

c
k
e
ts

 o
r

b
ra

c
e
s
 o

r

w
h
a
te

v
e
r

th
e
y'

re
 c

a
lle

d
.

 T
h
a
t

a
n
d
 t

h
a
t.

T
h
o
s
e
 t

w
o
 g

o
 t

o
g

e
th

e
r.

M

a
in

 i
s
 u

p

th
e
re

.
 T

h
a
t

o
n
e
 a

n
d
 t

h
a
t

o
n
e
,

a
n
d
 t

h
a
t.

d
ia

g
n
o
s
e

1
6
:2

7
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
R

ig
h
t

A
rr

o
w

 o
h
 r

ig
h
t

h
e
re

.

d
e
te

c
te

d
:

m
is

s
in

g

s
e
m

ic
o
lo

n
d
ia

g
n
o
s
e

1
6
:2

8
.4

tx
t_

e
d
 =

 t
yp

in
g

;

T
h
a
t's

 w
h
a
t

I
n
e
e
d
e
d
.

fi
x
e
s
:

a
d
d
e
d

s
e
m

ic
o
lo

n
fi
x
 c

o
d
e

1
6
:2

9
.6

C
tr

l

C
tr

l
o

1
6
:2

9
.8

E

n
te

r

1
6
:3

0
.8

C
tr

l

C
tr

l
x

1
6
:3

1
.6

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
6
:3

2
.4

E

n
te

r
o
k
,

it
 c

o
m

p
ile

d
.

fi
n
is

h
:

b
e
g

in
 p

ro
g

ra
m

fi
n
s
h
:

m
a
in

c
o
n
s
tr

u
c
t;

 f
in

is
h
:

d
e
c
la

re
 a

rr
a
ys

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

1
6
:3

5
.2

u
n
ix

_
c
m

d
 =

 r
u
n
 p

ro
g

./
a
.o

u
t

n
o
w

,
w

e
 t

ry
 r

u
n
n
in

g
 i
t.

T

h
a
t's

 h
a
lf
 t

h
e

b
a
tt

le
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

106

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

1
6
:3

7
.2

E

n
te

r

N
o
w

,
it
 d

id
n
't

fo
rm

a
t

c
o
rr

e
c
tl
y,

 b
u
t

o
k
.

[E
 i
n
fo

rm
s
 P

 t
h
a
t

th
e
 f

o
rm

a
tt

in
g

 i
s
n
't

v
e
ry

 i
m

p
o
rt

a
n
t.

]
 W

e
 g

o
t

s
q

u
a
re

 r
o
o
t

o
f

4
 i
s
 2

,
s
o
 t

h
a
t's

 r
ig

h
t.

S

q
u
a
re

 r
o
o
t

o
f

1
0
,

th
a
t's

 a
b
o
u
t

ri
g

h
t.

T

h
a
t's

 a
b
o
u
t

ri
g

h
t,

 a
n
d
 t

h
a
t's

 a
b
o
u
t

ri
g

h
t.

fi
n
is

h
:

c
re

a
te

/i
n
it

d
a
ta

 s
tr

u
c
tu

re
s
;

fi
n
is

h
:

c
o
m

p
u
te

/s
to

re

p
ro

d
u
c
t

in
 z

;

fi
n
is

h
:

p
ri
n
t

a
rr

a
ys

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(f
o
rm

a
tt

in
g

 a
n
d
 s

q
u
a
re

ro
o
t

o
f

e
le

m
e
n
ts

)

1
7
:0

1
.2

W
in

d
o
w

s

E
x
p
lo

re
r

L
 B

u
tt

o
n
 D

o
w

n
s
ta

rt
If

 w
e
 w

a
n
t

to
 b

e
 r

e
a
l
te

c
h
n
ic

a
l,
 w

e
 c

a
n
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:0

2
.6

W
in

d
o
w

s
 E

x
p
lo

re
r

L
 B

u
tt

o
n

D
o
w

n

[c
o
m

p
u
te

r
p
ro

b
le

m
s
,

E
 i
n
fo

rm
s
 P

 t
h
a
t

it

is
 s

lo
w

 w
h
ile

 r
e
c
o
rd

in
g

]
L
e
t's

 s
e
e
,

u
m

.

T
h
e
re

 o
k
,

s
o
,

w
e
 c

a
n
 t

ry
 1

0
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:2

9
.8

C
a
lc

u
la

to
r

L
 B

u
tt

o
n
 D

o
w

n
1
0

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:3

1
.2

L
 B

u
tt

o
n
 D

o
w

n
s
q

t

ye
p
,

th
a
t's

 r
ig

h
t.

It

 r
o
u
n
d
e
d
 f

o
r

u
s
,

h
o
w

n
ic

e
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:3

7
.2

L
 B

u
tt

o
n
 D

o
w

n
C

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:3

8
.2

L
 B

u
tt

o
n
 D

o
w

n
1
8

W
e
 g

e
t

1
8
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:3

9
.2

L
 B

u
tt

o
n
 D

o
w

n
s
q

t
ye

p
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:4

4
.6

L
 B

u
tt

o
n
 D

o
w

n
C

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:4

5
.8

L
 B

u
tt

o
n
 D

o
w

n
2
8

th
e
n
 2

8
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:4

7
.4

L
 B

u
tt

o
n
 D

o
w

n
s
q

t
ye

a
h
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:5

1
.2

L
 B

u
tt

o
n
 D

o
w

n
C

a
lc

u
la

to
r

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

1
7
:5

2
.4

p
u
tt

y.
e
x
e

W
in

d
o
w

s
 E

x
p
lo

re
r

R
u
n
n
in

g

A
p
p
lic

a
ti
o
n
s

S
o
,

I
m

e
a
n
,

if
 y

o
u
 w

a
n
t

m
e
 t

o
,

I
c
a
n
 g

o

a
n
d
 f

ix
 t

h
e
 f

o
rm

a
tt

in
g

?

d
ia

g
n
o
s
e
 (

o
n
ly

fo
rm

a
tt

in
g

 e
rr

o
rs

)

1
7
:5

5
.0

u
n
ix

_
c
m

d
U

p
 A

rr
o
w

[E
 t

e
lls

 P
 n

o
].

u
s
e
 e

x
te

rn
a
l
s
o
u
rc

e

1
7
:5

8
.4

u
n
ix

_
c
m

d
 =

 c
le

a
r

s
c
re

e
n

c
le

a
r

O
k
,

[l
a
u
g

h
s
]

I
m

e
a
n
 w

e
 g

e
t

g
ra

d
e
d
 f

o
r

th
a
t,

 s
o
.

[I
n
tr

e
s
ti
n
g

 t
h
a
t

th
e
 o

u
tp

u
t

fo
rm

a
t

g
e
ts

 g
ra

d
e
d
 b

u
t

h
e
 d

o
e
s
n
't

w
o
rr

y

a
b
o
u
t

in
te

rn
a
l
fo

rm
a
tt

in
g

,
i.
e
.

e
v
e
ry

th
in

g

lin
e
d
 u

p
 o

n
 l
e
ft

 m
a
k
in

g
 i
t

h
a
rd

 t
o
 r

e
a
d
]

a
ll

th
e
 c

o
d
e
 i
s
 l
in

e
d

u
p
 o

n
 t

h
e
 l
e
ft

 b
u
t

h
e

is
 w

o
rr

ie
d
 a

b
o
u
t

o
u
tp

u
t

fo
rm

a
tt

in
g

1
7
:5

9
.4

E

n
te

r

[E
 a

s
k
s
 P

 i
f

h
e
 w

o
u
ld

 s
a
y

th
a
t

h
e
 i
s

d
o
n
e
]

 L
e
t

m
e
 r

e
a
d
 t

h
ro

u
g

h
 i
t,

 j
u
s
t

to
 b

e

s
u
re

,
a
n
d
 m

a
k
e
 s

u
re

 t
h
a
t

I
d
id

e
v
e
ry

th
in

g
.

c
h
e
c
k
-d

e
te

c
t:

c
o
m

p
a
re

1
8
:1

1
.0

p
ro

b
le

m

 [
p
a
u
s
e
 w

h
ile

 r
e
a
d
in

g
]

"p
o
p
u
la

te
d
 b

y"
.

O
k
,

s
o
 t

h
e
re

's
 n

o
 d

yn
a
m

ic
 i
n
p
u
t,

 s
o
.

It
's

 a
ll

s
ta

ti
c
 i
f

yo
u
 d

o
 i
t

fr
o
m

 w
it
h
in

 t
h
e

p
ro

g
ra

m
.

 S
o
,

th
a
t

m
e
a
n
s
 t

h
e
 m

e
 t

h
e

p
ro

g
ra

m
m

e
r

k
n
o
w

s
 w

h
a
t

I'm
 g

o
n
n
a
 g

e
t,

s
o
 h

e
n
c
e
 a

ll
g

o
o
d
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

re
a
d

p
ro

b
);

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

a
ll

s
ta

ti
c
 n

o
t

d
yn

a
m

ic
 i
n

p
ro

b
le

m
)

107

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

B
u
t

w
e
 d

o
n
't

n
e
e
d
 i
t

c
a
u
s
e
 w

e
 a

lr
e
a
d
y

k
n
o
w

.

c
h
e
c
k
-d

e
te

c
t:

c
o
m

p
a
re

N
o
w

 i
f

w
e
 c

h
a
n
g

e
 i
t,

 w
e
'll

 h
a
v
e
 t

o

c
h
a
n
g

e
 e

v
e
ry

th
in

g
 e

ls
e
,

b
u
t.

[E
 a

s
k
s
 P

w
h
a
t

a
ll

h
e
 w

o
u
ld

 h
a
v
e
 t

o
 c

h
a
n
g

e
]

 L
ik

e
,

if
 y

o
u
 w

e
re

 t
o
 c

h
a
n
g

e
 i
n
s
te

a
d
 o

f
m

e
 j
u
s
t

h
a
v
in

g
 i
 g

u
e
s
s
 p

u
t

5
 i
n
 e

a
c
h
 o

n
e
 a

n
d

yo
u
 w

e
re

 t
o
 p

u
t

lik
e
 6

 i
n
 e

a
c
h
 o

n
e
,

th
e
n

yo
u
'd

 h
a
v
e
 t

o
 m

a
k
e
 y

o
u
r

lo
o
p
 c

o
u
n
te

r

o
n
ly

 c
o
u
n
t

th
a
t

m
a
n
y

o
r

if
 y

o
u
 h

a
d
 a

d
if
fe

re
n
t

a
m

o
u
n
t

in
 e

a
c
h
 o

n
e
,

yo
u
'd

h
a
v
e
 t

o
.

 F
o
r

th
e
 l
a
rg

e
r

o
n
e
,

yo
u
'd

 h
a
v
e

to
 c

o
u
n
t

a
ll

th
e
 w

a
y

u
p
 f

o
r

it
,

a
n
d
 f

o
r

th
e

s
m

a
lle

r
o
n
e
,

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

yo
u
 c

o
u
ld

 d
o
 i
t

s
e
p
a
ra

te
ly

 o
r

if
 y

o
u
 w

e
re

a
m

b
it
io

u
s
,

yo
u
 c

o
u
ld

 d
o
 t

h
e
m

 i
n
 t

h
e

s
a
m

e
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n

B
u
t

I'm
 n

o
t

th
a
t

a
m

b
it
io

u
s
,

s
o
 I

 w
o
u
ld

 d
o

it
 t

h
e
 q

u
ic

k
e
s
t

a
n
d
 f

a
s
te

s
t

w
a
y.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

d
o
 t

h
e

fa
s
te

s
t)

"S
to

re
",

 y
e
s
 I

 d
id

 t
h
a
t

in
 a

 t
h
ir
d
 a

rr
a
y.

P
ri
n
te

d
 t

h
e
m

 a
ll

o
u
t,

 a
n
d
 t

h
e
n
.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

re
a
d

p
ro

b
);

 c
h
e
c
k
-

d
e
te

c
t:

 c
o
m

p
a
re

W
a
it
,

I
re

a
d
 t

h
a
t

w
ro

n
g

.

d
ia

g
n
o
s
e
 (

re
a
d
 p

ro
b

w
ro

n
g

)

1
9
:3

5
.2

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

I
fo

u
n
d
 t

h
a
t.

1
9
:4

0
.2

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

3
7

D
o
w

n
 A

rr
o
w

o
k
.

c
h
e
c
k
-d

e
te

c
t:

c
o
m

p
a
re

1
9
:4

2
.6

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

9
U

p
 A

rr
o
w

S
o
,

w
e
 c

a
n
 g

e
t

ri
d
 o

f,
 u

h
,

n
o
t

th
e

s
q

u
a
re

 r
o
o
t

o
f

e
a
c
h
 i
te

m
 i
n
 z

,

d
e
te

c
te

d
:

s
q

u
a
re

ro
o
t

o
f

in
d
iv

id
u
a
l

it
e
m

s
 i
n
 z

d
ia

g
n
o
s
e
 (

n
o
t

s
q

u
a
re

ro
o
t

o
f

e
a
c
h
 i
te

m
,

b
u
t

th
e
 s

u
m

 o
f

it
e
m

s
)

1
9
:4

5
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

fi
x
 c

o
d
e

1
9
:4

5
.6

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

fi
x
 c

o
d
e

1
9
:4

6
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
3

R
ig

h
t

A
rr

o
w

b
u
t

th
e
 s

u
m

 o
f

a
ll

th
e
 i
te

m
s
 i
n
 z

.

re
v
is

it
:

c
o
m

p
u
te

s
q

u
a
re

 r
o
o
t

o
f

s
u
m

o
f

z
fi
x
 c

o
d
e

1
9
:4

9
.2

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

fi
x
 c

o
d
e

1
9
:4

9
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

fi
x
 c

o
d
e

1
9
:4

9
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
9

R
ig

h
t

A
rr

o
w

fi
x
 c

o
d
e

1
9
:5

1
.8

L
e
ft

 A
rr

o
w

I
h
a
d
 a

 g
o
o
d
 p

ro
g

ra
m

 t
h
o
u
g

h
.

fi
x
 c

o
d
e

1
9
:5

3
.2

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

3
U

p
 A

rr
o
w

fi
x
 c

o
d
e

1
9
:5

5
.2

L
e
ft

 A
rr

o
w

fi
x
 c

o
d
e

1
9
:5

6
.4

tx
t_

e
d
 =

 d
e
le

te
,

2
4

B
a
c
k
s
p
a
c
e

o
k
,

le
t's

 g
o
 a

h
e
a
d
 a

n
d
 j
u
s
t

c
h
a
n
g

e
 t

h
a
t.

fi
x
 c

o
d
e

1
9
:5

9
.8

tx
t_

e
d
 =

 t
yp

in
g

\n

")
;

fi
x
 c

o
d
e

2
0
:0

2
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

4
D

o
w

n
 A

rr
o
w

L
e
t's

 s
e
e
,

fi
x
 c

o
d
e

2
0
:0

6
.6

L
e
ft

 A
rr

o
w

fi
x
 c

o
d
e

108

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

2
0
:0

6
.8

L
e
ft

 A
rr

o
w

fi
x
 c

o
d
e

2
0
:0

8
.8

tx
t_

e
d
 =

 d
e
le

te
,

1
2

B
a
c
k
s
p
a
c
e

w
e
 d

o
n
't

n
e
e
d
 t

h
is

.

fi
x
e
s
:

d
e
le

te
 s

q
u
a
re

ro
o
t

o
f

e
a
c
h
 e

le
m

e
n
t

fi
x
 c

o
d
e

2
0
:1

2
.2

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

5
D

o
w

n
 A

rr
o
w

I
m

e
a
n
,

I
c
a
n
 m

a
k
e
 a

 s
e
p
a
ra

te
 l
o
o
p
,

b
u
t

th
a
t's

 j
u
s
t.

e
rr

o
r:

 d
o
e
s
 n

o
t

d
e
le

te
 t

h
e
 %

lf
 i
n
 p

ri
n
t

s
ta

te
m

e
n
t

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(n

e
e
d
 s

e
p
a
ra

te

lo
o
p
 o

r
n
o
t)

2
0
:2

2
.2

E

n
te

r
ye

a
h
,

le
t's

 g
o
 a

h
e
a
d
 a

n
d
 d

o
 i
t.

s
ta

rt
:

c
o
n
s
tr

u
c
t

lo
o
p

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(u

s
e
 a

n
o
th

e
r

lo
o
p
)

2
0
:2

3
.8

tx
t_

e
d
 =

 t
yp

in
g

w

h
ile

 (
i<

w
h
ile

 t
o
 c

a
lc

u
la

te
 t

h
e
 u

h
.

w
ri
te

 c
o
d
e
:

lo
w

 p
ri
o
r

k
n
o
w

l
(c

o
n
s
tr

u
c
t

w
h
ile

lo
o
p
)

2
0
:2

8
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

2
4

U
p
 A

rr
o
w

w
e
'r
e
 g

o
in

g
 t

o
 n

e
e
d
 a

 s
u
m

.

re
v
is

it
:

c
re

a
te

/i
n
it

d
a
ta

 s
tr

u
c
tu

re
s

s
ta

rt
:

d
e
c
la

re
 o

th
e
r

v
a
ri
a
b
le

s

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(n

e
e
d
 a

 s
u
m

v
a
ri
a
b
le

)

2
0
:3

0
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

6
D

o
w

n
 A

rr
o
w

2
0
:3

1
.2

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

8
U

p
 A

rr
o
w

u
p
 h

e
re

.

2
0
:3

2
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

5
D

o
w

n
 A

rr
o
w

2
0
:3

5
.4

tx
t_

e
d
 =

 t
yp

in
g

in

t
s
u
m

;

c
o
d
e
d
:

c
re

a
te

/i
n
it

d
a
ta

 s
tr

u
c
tu

re
s

c
o
d
e
d
:

d
e
c
la

re

o
th

e
r

v
a
ri
a
b
le

s

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(d

e
c
la

re
 s

u
m

v
a
r)

2
0
:3

9
.2

E

n
te

r
w

ri
te

 c
o
d
e

2
0
:3

9
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
1

D
o
w

n
 A

rr
o
w

2
0
:4

2
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 9
R

ig
h
t

A
rr

o
w

o
k
,

w
h
ile

 i
 i
s
 l
e
s
s
 t

h
a
n
 4

 b
e
c
a
u
s
e
 w

e
'r
e

g
o
n
n
a
 h

a
v
e
 4

 i
n
 t

h
e
re

.

re
v
is

it
:

s
q

u
a
re

 r
o
o
t

o
f

s
u
m

 o
f

z

re
v
is

it
:

c
o
n
s
tr

u
c
t

lo
o
p

e
rr

o
r:

 t
h
e
re

 a
re

 5

e
le

m
e
n
ts

 n
o
t

4

w
ri
te

 c
o
d
e
:

lo
w

 p
ri
o
r

k
n
o
w

l
(t

h
e
 n

e
e
d
 f

o
r

4

a
s
 t

h
e
 l
o
o
p
 e

n
d
in

g

v
a
lu

e
)

2
0
:4

5
.4

tx
t_

e
d
 =

 t
yp

in
g

4
)

w
ri
te

 c
o
d
e

2
0
:4

8
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

2
0
:4

8
.8

E

n
te

r
W

e
 n

e
e
d
 t

o
 r

e
in

it
ia

liz
e
 i
.

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(n

e
e
d
 t

o

re
in

it
ia

liz
e
 I

 f
o
r

w
h
ile

lo
o
p
)

2
0
:5

0
.0

tx
t_

e
d
 =

 t
yp

in
g

i
=

 0
;

I
a
m

 a
ll

o
v
e
r

th
e
 p

la
c
e
.

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(n

e
e
d
 t

o

re
in

it
ia

liz
e
 I

 f
o
r

w
h
ile

lo
o
p
)

2
0
:5

3
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

2
0
:5

3
.6

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 5
R

ig
h
t

A
rr

o
w

G
o
 t

o
 u

h
,

2
0
:5

6
.0

tx
t_

e
d
 =

 t
yp

in
g

{

 l
e
t's

 s
e
e
.

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(o

p
e
n
 w

h
ile

s
tm

t)

2
0
:5

7
.2

E

n
te

r
w

ri
te

 c
o
d
e

2
0
:5

7
.4

E

n
te

r
W

e
'll

 n
e
e
d
 u

h
,

w
ri
te

 c
o
d
e

2
1
:0

3
.8

tx
t_

e
d
 =

 t
yp

in
g

s
u
m

 =
 s

u
m

 +

z
[i
];

s
u
m

 e
q

u
a
ls

 s
u
m

 p
lu

s
,

it
'll

 b
e
 z

 i
.

s
ta

rt
:

c
a
lc

u
la

te

s
u
m

 o
f

z
;

c
o
d
e
d
:

c
a
lc

u
la

te
 s

u
m

 o
f

z

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(c

a
lc

u
la

te
 t

h
e

s
u
m

 o
f

v
a
lu

e
s
 i
n
 z

a
rr

a
y)

2
1
:1

7
.8

E

n
te

r
a
n
d
 t

h
e
n
,

w
ri
te

 c
o
d
e

109

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

2
1
:1

9
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

2
1
:1

9
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

2
1
:2

0
.2

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

5
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

2
1
:2

1
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

5
D

o
w

n
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

2
1
:2

2
.6

tx
t_

e
d
 =

 t
yp

in
g

}

c
lo

s
e
 t

h
a
t.

c
o
d
e
d
:

c
o
n
s
tr

u
c
t

lo
o
p

e
rr

o
r:

 d
o
e
s
 n

o
t

in
c
re

m
e
n
t

th
e
 l
o
o
p

c
o
u
n
te

r

w
ri
te

 c
o
d
e
:

lo
w

 p
ri
o
r

k
n
o
w

l
(c

lo
s
e
 w

h
ile

 s
tm

t

w
/o

 i
n
c
re

m
e
n
ti
n
g

 l
o
o
p

c
o
u
n
te

r)

2
1
:2

3
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

2
7

U
p
 A

rr
o
w

2
1
:2

4
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

B
u
t,

 t
o
 d

o
 t

h
a
t,

2
1
:2

5
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 6
R

ig
h
t

A
rr

o
w

th
is

 w
ill

 n
e
e
d
 t

o
 b

e
 a

 z
e
ro

.

re
v
is

it
:

c
re

a
te

/i
n
it

v
a
ri
a
b
le

s

s
ta

rt
:

in
it
ia

liz
e

o
th

e
r

v
a
ri
a
b
le

s

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(n

e
e
d
 t

o
 i
n
it
ia

liz
e

s
u
m

 t
o
 z

e
ro

)

2
1
:2

6
.4

tx
t_

e
d
 =

 t
yp

in
g

 =

 0

c
o
d
e
d
:

c
re

a
te

/i
n
it

v
a
ri
a
b
le

s

c
o
d
e
d
:

in
it
ia

liz
e

o
th

e
r

v
a
ri
a
b
le

s

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(n

e
e
d
 t

o
 i
n
it
ia

liz
e

s
u
m

 t
o
 z

e
ro

)

2
1
:2

8
.6

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
8

D
o
w

n
 A

rr
o
w

o
th

e
rw

is
e
 w

e
'll

 g
e
t

a
n
 i
n
c
o
rr

e
c
t

v
a
lu

e

b
e
c
a
u
s
e
 s

u
m

 c
o
u
ld

 b
e
 a

n
yt

h
in

g
 o

n
 t

h
e

fi
rs

t
ru

n
,

u
m

.
c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

2
1
:3

0
.8

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

T
h
a
t

c
a
lc

u
la

te
d
 t

h
e
 s

u
m

.

fi
n
is

h
:

c
a
lc

u
la

te

s
u
m

 o
f

z
c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

2
1
:3

8
.6

E

n
te

r
w

ri
te

 c
o
d
e

2
1
:3

9
.0

E

n
te

r
w

ri
te

 c
o
d
e

2
1
:4

0
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

2
1
:4

1
.6

tx
t_

e
d
 =

 t
yp

in
g

fp

rt
N

o
w

 w
e
 c

a
n
 j
u
s
t

d
o
 u

h
,

f

re
v
is

it
:

p
ri
n
t

s
q

u
a
re

ro
o
t

o
f

s
u
m

s
ta

rt
:

c
o
n
s
tr

u
c
t

p
ri
n
t

s
ta

te
m

e
n
t

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(c

o
n
s
tr

u
c
t

a
 p

ri
n
t

s
ta

te
m

e
n
t)

2
1
:4

5
.4

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

2
1
:4

5
.8

tx
t_

e
d
 =

 t
yp

in
g

in
tf

(s
td

o
u
t,

"%
ld

p
ri
n
tf

 o
u
t

th
e
n
 i
t'l

l
b
e
 p

e
rc

e
n
t

l
f.

w
ri
te

 c
o
d
e

2
1
:5

2
.6

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

2
1
:5

2
.6

tx
t_

e
d
 =

 t
yp

in
g

f"

w

ri
te

 c
o
d
e

2
1
:5

5
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

2
1
:5

6
.6

tx
t_

e
d
 =

 t
yp

in
g

,

S
w

a
n
d
 t

h
e
n
 u

m
,

th
a
t'l

l
b
e
 t

h
e

re
v
is

it
:

s
q

u
a
re

 r
o
o
t

o
f

s
u
m

 o
f

z

s
ta

rt
:

u
s
e
 s

q
u
a
re

ro
o
t

fu
n
c
ti
o
n

e
rr

o
r:

 s
q

u
a
re

 r
o
o
t

fu
n
c
ti
o
n
 i
s
 c

a
p
it
a
l

w
ri
te

 c
o
d
e
:

h
ig

h
 p

ri
o
r

k
n
o
w

l
(u

s
e
 s

q
u
a
re

 r
o
o
t

fu
n
c
ti
o
n
)

2
1
:5

9
.0

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

2
1
:5

9
.2

tx
t_

e
d
 =

 t
yp

in
g

q

rt
o

s
q

u
a
re

 r
o
o
t

w
ri
te

 c
o
d
e

2
2
:0

0
.8

tx
t_

e
d
 =

 d
e
le

te
B

a
c
k
s
p
a
c
e

w
ri
te

 c
o
d
e

2
2
:0

1
.4

tx
t_

e
d
 =

 t
yp

in
g

(s

u
m

)
o
f

s
u
m

.

c
o
d
e
d
:

s
q

u
a
re

 r
o
o
t

o
f

s
u
m

 o
f

z
;

c
o
d
e
d
:

u
s
e
 s

q
u
a
re

ro
o
t

fu
n
c
ti
o
n
;

w
ri
te

 c
o
d
e

tx
t_

e
d
 =

 t
yp

in
g

);

U
m

,
p
a
re

n
th

e
s
is

 a
g

a
in

.

re
v
is

it
:

p
ri
n
t

s
q

u
a
re

ro
o
t

o
f

s
u
m

;

c
o
d
e
d
:

p
ri
n
t

s
q

u
a
re

ro
o
t

o
f

s
u
m

re
v
is

it
:

c
o
n
s
tr

u
c
t

p
ri
n
t

s
ta

te
m

e
n
t;

c
o
d
e
d
:

c
o
n
s
tr

u
c
t

p
ri
n
t

s
ta

te
m

e
n
t

c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

w
ri
te

 c
o
d
e

2
2
:0

9
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

w
ri
te

 c
o
d
e

110

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

2
2
:0

9
.6

E

n
te

r
w

ri
te

 c
o
d
e

2
2
:1

0
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

w
ri
te

 c
o
d
e

2
2
:1

0
.8

C
tr

l

C
tr

l
o

2
2
:1

1
.2

E

n
te

r

2
2
:1

2
.0

C
tr

l

C
tr

l
x

2
2
:1

2
.8

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

N
o
w

 w
e
 c

a
n
 t

ry
 i
t,

 c
o
m

p
ili

n
g

 i
t

a
n
d
 s

e
e

w
h
a
t.

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

2
2
:1

4
.6

E
n
te

r

o
k
,

th
a
t's

 w
e
ir
d
.

O
k
,

o
n
.

 O
k
.

 [
E

 a
s
k
s
 P

w
h
a
t

h
e
 i
s
 t

h
in

k
in

g
 i
s
 w

e
ir
d
]

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

2
2
:2

9
.0

I
h
a
rd

ly
 e

v
e
r

g
e
t

u
n
d
e
fi
n
e
d
 s

ym
b
o
ls

,
b
u
t

I'l
l
ju

s
t

h
a
v
e
 t

o
 g

o
 l
o
o
k
 a

n
d
 s

e
e
 i
f

I

ty
p
e
d
 s

o
m

e
th

in
g

 w
ro

n
g

.
c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

 "
T

o
o
 f

e
w

 a
rg

u
m

e
n
ts

,
lin

e
 n

u
m

b
e
r

2
9
"

[P
 r

e
a
d
in

g
 c

o
m

p
ile

r
e
rr

o
r]

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

2
2
:4

4
.4

E

n
te

r
d
ia

g
n
o
s
e

2
2
:4

4
.8

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

2
1

D
o
w

n
 A

rr
o
w

S
o
,

le
t's

 g
o
 t

o
 l
in

e
 2

9
.

d
ia

g
n
o
s
e

2
2
:4

6
.8

C
tr

l

C
tr

l
c

d
ia

g
n
o
s
e

2
2
:4

8
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

8
D

o
w

n
 A

rr
o
w

d
ia

g
n
o
s
e

2
2
:5

0
.0

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

d
ia

g
n
o
s
e

2
2
:5

1
.2

C
tr

l

C
tr

l
c

d
ia

g
n
o
s
e

2
2
:5

2
.8

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 3
8

R
ig

h
t

A
rr

o
w

o
h
,

I
to

o
k
 o

u
t.

S

ti
ll

g
o
tt

a
 t

a
k
e
 o

u
t

th
a
t,

d
e
te

c
te

d
:

%
lf
 i
n
 p

ri
n
t

s
ta

te
m

e
n
t

fo
r

a
rr

a
ys

d
ia

g
n
o
s
e
 (

to
o
k
 o

u
t

a
rg

s
o
 n

e
e
d
 t

o
 t

a
k
e
 o

u
t

th
e

fo
rm

a
tt

in
g

 f
o
r

it
)

2
2
:5

5
.0

tx
t_

e
d
 =

 d
e
le

te
,

7
B

a
c
k
s
p
a
c
e

a
n
d
 d

o
 t

h
a
t.

fi
x
 c

o
d
e

2
2
:5

8
.0

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

1
2

D
o
w

n
 A

rr
o
w

fi
x
e
s
:

p
ri
n
t

s
ta

te
m

e
n
t

fo
r

a
rr

a
ys

2
3
:0

1
.8

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

Y
e
a
h
,

I
th

in
k
 I

 d
id

 c
a
p
it
a
l
S

.

d
e
te

c
te

d
:

s
q

u
a
re

ro
o
t

fu
n
c
ti
o
n

d
ia

g
n
o
s
e
 (

c
a
p
it
ia

l
S

u
s
e
d
 i
n
 s

q
u
a
re

 r
o
o
t)

2
3
:0

2
.0

tx
t_

e
d
 =

 m
o
v
e
 l
e
ft

,
9

L
e
ft

 A
rr

o
w

d
ia

g
n
o
s
e

2
3
:0

3
.2

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t

R
ig

h
t

A
rr

o
w

It
 l
o
o
k
s
 l
ik

e
 c

a
p
it
a
l
S

,
I

c
a
n
't

te
ll.

d
ia

g
n
o
s
e

2
3
:0

4
.4

B

a
c
k
s
p
a
c
e

fi
x
 c

o
d
e

2
3
:0

4
.6

s

ye
p
,

it
 i
s
 c

a
p
it
a
l
S

.

fi
x
e
s
:

s
q

u
a
re

 r
o
o
t

fu
n
c
ti
o
n

fi
x
 c

o
d
e

2
3
:0

5
.6

C
tr

l

C
tr

l
o

2
3
:0

6
.0

E

n
te

r
T

h
a
t

w
o
u
ld

 b
e
 t

h
e
 p

ro
b
le

m
.

fi
n
is

h
:

s
q

u
a
re

 r
o
o
t

o
f

s
u
m

 o
f

z
.

fi
n
is

h
:

u
s
e
 s

q
u
a
re

ro
o
t

fu
n
c
ti
o
n

2
3
:0

6
.8

C
tr

l

C
tr

l
x

2
3
:0

7
.6

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

2
3
:0

9
.0

E
n
te

r
o
k
.

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

2
3
:0

9
.8

u
n
ix

_
c
m

d
 =

 r
u
n
 p

ro
g

U
p
 A

rr
o
w

n
o
w

 w
e
'll

 t
ry

 r
u
n
n
in

g
 i
t

a
g

a
in

.
c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
3
:1

2
.8

E

n
te

r
a
n
d
 I

'm
 n

o
t

g
e
tt

in
g

 a
 p

ri
n
t

o
f.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(n
o
 p

ri
n
t

o
f

s
q

u
a
re

ro
o
t)

111

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

2
3
:1

8
.0

E

n
te

r
o
k
,

th
a
t's

 w
e
ir
d
,

le
t's

 s
e
e
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
3
:2

5
.0

C
tr

l

C
tr

l
c

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
3
:2

7
.8

u
n
ix

_
c
m

d
 =

 o
p
e
n
 f

ile
U

p
 A

rr
o
w

It
 l
o
o
k
e
d
 l
ik

e
 a

n
 e

n
d
le

s
s
 l
o
o
p
 o

r

s
o
m

e
th

in
g

 g
o
in

g
 o

n
.

d
ia

g
n
o
s
e
 (

e
n
d
le

s
s

lo
o
p
)

2
3
:3

0
.2

E

n
te

r

2
3
:3

0
.4

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
,

4
4

D
o
w

n
 A

rr
o
w

o
h
,

it
 w

o
u
ld

 h
e
lp

 i
f

I
u
h
,

d
ia

g
n
o
s
e

2
3
:3

6
.6

tx
t_

e
d
 =

 m
o
v
e
 u

p
,

7
U

p
 A

rr
o
w

in
c
re

a
s
e
 t

h
e
 c

o
u
n
te

r
in

 h
e
re

s
o
m

e
w

h
e
re

.

d
e
te

c
te

d
:

d
id

 n
o
t

in
c
re

m
e
n
t

lo
o
p

c
o
u
n
te

r
d
ia

g
n
o
s
e

2
3
:3

8
.6

tx
t_

e
d
 =

 m
o
v
e
 d

o
w

n
D

o
w

n
 A

rr
o
w

[l
a
u
g

h
s
]

fi
x
 c

o
d
e

2
3
:3

9
.0

E

n
te

r
fi
x
 c

o
d
e

2
3
:3

9
.4

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

fi
x
 c

o
d
e

2
3
:4

0
.8

tx
t_

e
d
 =

 t
yp

in
g

i
+

o
th

e
rw

is
e
 i
t

is
 a

lw
a
ys

 g
o
in

g
 t

o
 b

e
 l
e
s
s

th
a
n
 4

.
c
h
e
c
k
-d

e
te

c
t:

 i
n
s
p
e
c
t

fi
x
 c

o
d
e

2
3
:4

5
.0

B

a
c
k
s
p
a
c
e

fi
x
 c

o
d
e

2
3
:4

5
.0

B

a
c
k
s
p
a
c
e

fi
x
 c

o
d
e

2
3
:4

5
.6

tx
t_

e
d
 =

 t
yp

in
g

 +

+
;

fi
x
 c

o
d
e

2
3
:4

7
.8

tx
t_

e
d
 =

 m
o
v
e
 u

p
U

p
 A

rr
o
w

fi
x
e
s
:

in
c
re

m
e
n
t

lo
o
p

c
o
u
n
te

r
fi
x
 c

o
d
e

2
3
:4

8
.0

tx
t_

e
d
 =

 m
o
v
e
 r

ig
h
t,

 1
3

R
ig

h
t

A
rr

o
w

2
3
:4

9
.4

E

n
te

r

2
3
:5

0
.2

C
tr

l

C
tr

l
o

2
3
:5

0
.6

E

n
te

r
th

e
re

 w
e
 g

o
.

2
3
:5

1
.2

C
tr

l

C
tr

l
x

2
3
:5

1
.8

u
n
ix

_
c
m

d
 =

 c
o
m

p
ile

p
ro

g
U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

2
3
:5

3
.4

E
n
te

r
c
h
e
c
k
-d

e
te

c
t:

 c
o
m

p
ile

r

2
3
:5

4
.0

u
n
ix

_
c
m

d
 =

 r
u
n
 p

ro
g

U
p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
3
:5

8
.4

E
n
te

r
u
m

,
ye

a
h
 t

h
a
t.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
4
:0

2
.0

U
p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
4
:0

2
.4

U

p
 A

rr
o
w

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
4
:0

5
.0

W
in

d
o
w

s

E
x
p
lo

re
r

L
 B

u
tt

o
n
 D

o
w

n
s
ta

rt

L
e
t

m
e
 o

p
e
n
 u

p
,

a
w

e
 t

h
is

 i
s
 g

o
in

g
 t

o

ta
k
e
 f

o
re

v
e
r

a
g

a
in

 [
s
lo

w
 o

p
e
n
in

g
 o

f

c
a
lc

u
la

to
r]

.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:0

6
.2

W
in

d
o
w

s
 E

x
p
lo

re
r

L
 B

u
tt

o
n

D
o
w

n
o
k
,

le
t's

 s
e
e
.

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:2

9
.0

C
a
lc

u
la

to
r

L
 B

u
tt

o
n
 D

o
w

n
4

4

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:3

0
.0

L
 B

u
tt

o
n
 D

o
w

n
+

p
lu

s

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:3

0
.8

L
 B

u
tt

o
n
 D

o
w

n
1
0

1
0

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

112

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

2
4
:3

2
.0

L
 B

u
tt

o
n
 D

o
w

n
+

p
lu

s

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:3

2
.8

L
 B

u
tt

o
n
 D

o
w

n
1
8

1
8

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:3

4
.2

L
 B

u
tt

o
n
 D

o
w

n
+

p
lu

s

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:3

4
.6

L
 B

u
tt

o
n
 D

o
w

n
2
8

2
8

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:3

5
.6

L
 B

u
tt

o
n
 D

o
w

n
=

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:3

7
.0

L
 B

u
tt

o
n
 D

o
w

n
s
q

t
s
q

u
a
re

 r
o
o
t

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

(c
a
lc

u
la

to
r)

2
4
:4

1
.6

L
 B

u
tt

o
n
 D

o
w

n
C

ye
p
.

fi
n
is

h
:

p
ri
n
t

s
q

u
a
re

ro
o
t

c
h
e
c
k
-d

e
te

c
t:

 e
x
e
c
u
te

2
4
:4

2
.2

L
 B

u
tt

o
n
 D

o
w

n
C

a
lc

u
la

to
r

2
4
:4

5
.4

p
u
tt

y.
e
x
e

L
 B

u
tt

o
n
 D

o
w

n

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

o
k
,

a
n
d
 I

 c
o
u
ld

'v
e
 g

o
t

it
 w

ro
n
g

 a
g

a
in

.

c
h
e
c
k
-d

e
te

c
t:

c
o
m

p
a
re

2
4
:4

6
.2

u
n
ix

_
c
m

d
 =

 c
le

a
r

s
c
re

e
n

U
p
 A

rr
o
w

S
o
,

I
m

ig
h
t

w
a
n
n
a
 r

e
a
d
 i
t

th
ro

u
g

h
 a

g
a
in

ju
s
t

to
 m

a
k
e
 s

u
re

.

c
h
e
c
k
-d

e
te

c
t:

c
o
m

p
a
re

2
4
:4

9
.0

E

n
te

r

2
4
:5

1
.0

p
ro

b
le

m

O
k
.

[P
 i
s
 r

e
re

a
d
in

g
 t

h
e
 p

ro
b
le

m

s
ta

te
m

e
n
t]

Y

e
s
,

o
k
.

 [
P

 i
s
 c

o
n
ti
n
u
in

g
 t

o

re
a
d
 t

h
e
 p

ro
b
le

m
]

T
h
a
t's

 w
e
ir
d
 t

h
o
u
g

h
,

th
e
 d

ir
e
c
ti
o
n
s
.

 I
 j
u
s
t

re
a
liz

e
d

s
o
m

e
th

in
g

.
 I

f,
 l
e
t's

 s
a
y

it
 s

a
ys

 e
a
c
h
 c

a
n

h
o
ld

 u
p
 t

o
 1

0
,

b
u
t

th
e
 t

w
o
 a

rr
a
ys

 c
a
n

c
o
n
ta

in
 5

 a
c
tu

a
l.

I
d
o
n
't

k
n
o
w

 i
f

I
c
o
u
ld

d
o
 a

n
yt

h
in

g
 a

b
o
u
t

th
is

 b
e
c
a
u
s
e
 I

 d
id

n
't

w
ri
te

 t
h
e
 d

ir
e
c
ti
o
n
s
.

 I
'll

 j
u
s
t

c
o
m

p
la

in
,

b
u
t

u
m

,
if
 y

o
u
 h

a
d
 o

n
e
 t

h
a
t

is
 3

e
le

m
e
n
ts

 l
o
n
g

 a
n
d
 t

h
e
 o

th
e
r

o
n
e
 i
s
 5

e
le

m
e
n
ts

 l
o
n
g

.
 I

t
s
a
ys

 "
s
to

re
 t

h
e

p
ro

d
u
c
t

o
f

c
o
rr

e
s
p
o
n
d
in

g
 e

le
m

e
n
ts

",

o
n
c
e
 y

o
u
 g

e
t

to
 t

h
e
 4

th
 o

n
e
,

th
e
re

's

n
o
th

in
g

 t
h
e
re

 f
o
r

th
e
 3

rd
 o

n
e
.

 I
 d

o
n
't

w
a
n
t

to
 d

e
a
l
w

it
h
 t

h
a
t

b
e
c
a
u
s
e
 I

 d
o
n
't

k
n
o
w

 i
t

w
e
ll

e
n
o
u
g

h
 t

o
 s

a
y

h
e
y.

I

d
o
n
't

a
rr

a
ys

 w
e
ll

e
n
o
u
g

h
 t

o
 s

a
y

w
h
a
t

h
a
p
p
e
n
s

w
h
e
n
 y

o
u
 t

ry
 t

o
 m

u
lt
ip

ly
 t

h
e
 4

th
 e

le
m

e
n
t

b
y

th
e
 3

rd
 t

h
a
t

is
 n

o
n
-e

x
is

te
n
t

b
u
t

yo
u

c
a
n
't

s
a
y

z
e
ro

.
 [

E
 r

e
m

in
d
s
 P

 t
h
a
t

th
e

p
ro

b
le

m
 s

ta
te

m
e
n
t

s
a
ys

 t
h
a
t

th
e
 t

w
o

a
re

 o
f

th
e
 s

a
m

e
 l
e
n
g

th
].

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

re
a
d

p
ro

b
);

 c
h
e
c
k
-

d
e
te

c
t:

 c
o
m

p
a
re

;

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

w
h
a
t

a
b
o
u
t

u
n
e
v
e
n
 a

rr
a
ys

)
u
s
e
 e

x
te

rn
a
l
s
o
u
rc

e

113

E
la

p
s
e
d

T
m

C
o
m

p
u
te

r
/

P
a
p
e
r

P
a
g

e
U

s
e
r

C
o
m

p
u
te

r
A

c
ti
o
n
s

K
e
ys

tr
o
k
e
s
/D

e
ta

il
V

e
rb

a
l
T

ra
n
s
c
ri
p
t

P
ro

b
le

m
 G

o
a
ls

S
u
b
ta

s
k
 o

f
G

o
a
l

M
a
k
in

g
 a

n
d
 F

ix
in

g

E
rr

o
rs

M
e
ta

c
o
g

n
it
iv

e

S
tr

a
te

g
ie

s

P
ro

g
ra

m
m

in
g

S
tr

a
te

g
ie

s

 S
o
 t

h
e
n
 t

h
e
y

a
re

 b
o
th

 g
o
in

g
 t

o
 b

e

s
q

u
a
re

.

u
n
d
e
rs

ta
n
d

p
ro

b
le

m
/p

la
n
 (

a
rr

a
ys

a
lw

a
ys

 e
v
e
n
)

2
6
:4

6
.6

fi
n
is

h
L
 B

u
tt

o
n
 D

o
w

n

s
p
id

e
r5

.c
s
.c

le

m
s
o
n
.e

d
u
 -

P
u
T

T
Y

T
h
e
n
 I

 t
h
in

k
 I

 a
m

 d
o
n
e
.

fi
n
is

h

e
rr

o
r:

 n
o
 s

e
n
ti
n
e
l

v
a
lu

e
 i
n
 a

rr
a
ys

c
h
e
c
k
-d

e
te

c
t:

c
o
m

p
a
re

114

Appendix H Final Coding Document

115

Coding Definitions for Test of Computational Thinking research study As of: 5/23/2009

Accepted abbreviations:

E = experimenter; P = participant; MB = mumble; SH = sigh; HM = humming; TP = tapping;

Col A Time of each user computer action

Time from start of session; format = minutes:seconds (eg, 02:32.4 = 2 min 32.4 sec)

 Col B Morae computer action (not used; may be hidden)

Col C Current user computer or paper page

URL of current web page

Title of current book

putty.exe = code this when user is interacting with the ssh terminal

problem page = code this when user is interacting with the piece of paper with question to

answer

design page = code this when user is interacting with the blank piece of paper for writing down

thoughts

Col D User computer actions can code > 1 on one line

compprob = computer problem; describe problem in column F (verbal transcript)

 eg, [ssh terminal trouble]

readprob = Reading the problem document; describe what part is being read in column F(verbal

transcript)

bookpage = Reading from a book; describe what is being indexed and read in column F(verbal

transcript)

designpage = Writing on a sheet of paper; describe what is written in column F(verbal

transcript)

 SSH Terminal Actions

login = Logging onto a unix machine using the ssh terminal

unix_cmd = Entering a unix command; specify the command

list dir = List the entries in the directory;

move file = Move a file to another directory or to another file w/ different name;

copy file = Copy a file to another directory or to another file w/ different name;

make dir = Create a new directory;

change dir = Change into a specific directory;

open file = Opening a file using a text editor; describe the text editor and the file being

opened

compile prog = Compile a program; specify the compiler and the program being compiled

run prog = Execute a program; specify the program being executed and describe the

program output in column F (verbal transcript)

txt_ed = Working in a text editor; specify the action

copy = Copy text; describe the text being copied

cut = Cut text; describe the text being cut

paste = Paste text

move = Moving the cursor around in the text editor; specify up, down, left, right and how

many times.

whitesp = Creating newlines/white space in the program for readability

delete = Delete text by backspacing; describe the text that is being deleted

typing = Typing text in the editor; (The text is captured in column E)

exit = Exit the text editor;

save = Save the current file in the text editor;

 Web/URL Actions

web = Working in a web browser; specify the action

brwwith = Browsing within a content site; clicking a link on a content site that leads to

another page in content site

116

brwbetw = Browsing between content sites = clicking a link on a content site that leads to a

new content site.

goseng = Going to a search engine from the problem start page

sengsearch = Doing a search engine search

sengresult = Clicking on a search engine result.

sengresultnext = Browsing to the next (or previous) page of search engine results.

sitesearch = Doing a site search (ie, a within-site search engine search)

typurl = Typing a URL into the browser address bar.

back = Clicking BACK button

mouseover = Mousing over popup and cascading menus or over link text or headers.

copy = Copying info from a web site

scan = Scanning a page

scroll = Scrolling within a page

Col E = keys typed by user

Col F Verbal transcript (from verbal protocol and E notes)

 Transcribe ALL verbal comments by participant and experimenter;

 may do a small bit of paraphrasing as long as you keep all the original meaning;

 when in doubt, transcribe every word.

 eg, when P is reading aloud from the problem page, do NOT code (reading prob page),

do code the words P is saying Reason: it’s important to know what info the P thinks is

important enough to read

 Segmenting verbal statements correctly is very important. Segmentation refers to the decision

about how to break the participant’s actions and statements into segments that we can

code. We can make our segments big (with a lot of actions and statements in each segment)

or small (with just one action and just one statement per segment). All of the actions and

statements in 1 segment go on 1 line of the excel coding file. We need to make our

segments small enough so that we know exactly what actions & statements our codes apply

to. See examples below:

Bad segmenting: because you don’t know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

Is a sentinal vaue just like null sentinel value) using external info: E

or what? [E "You can use null consider prob (confusion re

as an ending, umhum, it is a sentinel value)

terminating value"] ok

Good segmenting: because you DO know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

 sentinel value)

Excel line 2: Is a sentinal vaue just like null consider prop (confusion re

 or what? sentinel value)

Excel line 3: [E "You can use null as an using external info: E

ending, umhum, it is a

terminating value"] ok

 Integrate info from other sources (eg experimenter’s notes, experimenter’s words) when

needed to understand participant’s verbal comments. If P says “This sentence is confusing”

and the notes say “P pointed to 2nd sentence of problem page”, include this comment in

the transcript, in brackets.

 Formatting

 Put participant’s words in without brackets.

 Use period to indicate end of a thought, even if the thought is incomplete, eg, Just looking

at.

 If P is reading from the problem text or a website put in quotes, eg, “Let n represent the

actual number of data values.”

117

 Put explanatory comments and comments by E (these are not statements made by P) in

brackets,

 Eg, This sentence is confusing [P pointed to 3rd sentence of page]

 Accepted abbreviations (see top of page 1); You can make up your own abbreviations, as

long as they are clear.

--

Col G & H Goals (see problem statement w/ goals and subtasks)

Background: The goals will mostly refer to user statements about the problem, and the

subtasks will mostly refer to domain-specific tasks to complete goals from the problem (see

the problem statement). For this example, the goals will refer to concepts from the

problem; whereas, the subtasks will refer to arrays, loops, products, summing, square root,

etc.

Code the goals in column G and the subtasks of goals in column H. In addition, code the

start, revisit, coding, and finish of the goals/subtasks. Code whenever:

• P explicitly mentions the reason for or goal of a current or planned action

 Eg, “I am going to start with main”, code start: begin program in column G, code

start: construct main in column H

• You can infer the reason for or goal of a current or planned action from P’s words,

comp actions, and/or keystrokes; eg, [P is typing int main(void) {], code start: begin

program in column G, code start: construct main in column H

• P leaves a goal or sub-goal/task in working memory and then returns to the goal/sub-

goal/task – also code what he/she is revisiting, eg, revisit: begin program in column G,

code revisit: construct main in column H

• P finishes writing code for a particular goal or subtask. This is coded in red; eg, code

coded: begin program in column G, code coded: construct main in column H

• P finishes answering a particular goal or subtask after testing and validating to evaluate

as ok. This is coded in red; eg, code finish: begin program in column G, code finish:

construct main in column H

 Eg of: Goals explicitly mentioned by user

Eg 1: user comment=“Now I am going to compute and print the square root of the sum of

z.”

 Code=start: compute and print square root in column G

Eg of: Goal/Subtask not explicitly mentioned but can be inferred from user’s words and

keystrokes

Eg 2: user comment = “If we do the square root then we probably need math.” Then the

user types

“#include <math.h>”

 From the user’s words and keystrokes, you can infer a goal and subtask.

 Code=start: include library files in column H

Note: There is no need to code the specific details about the goal or answer, as well as any

observations made by E, because errors and content knowledge are coded in columns I & K.

--

Col I Making and fixing errors

Background: These errors can include syntax, semantic, and suboptimal errors.

Code whenever:

• P makes a syntax error in the subtask causing compiler errors; Eg, “that should be it, I

think.” [P changed stdio.h to stdlib.h], code as error: deletes needed library (stdio.h)

adds unneeded library (include stdlib.h)

• P makes a logical error causing incorrect output; Eg, “Uh, actually 4.” [P changed i<5 to

i<4 for 5 elements], code as error: deletes correct loop index ending val (i < 5) add

incorrect index ending val (i<4)

• P makes a suboptimal error that doesn’t adversely affect the solution; Eg, error: Prints

header inside loop

• P makes a goal/subtask error; Eg, error: incorrect square root of individual items in z

Code the error, when the error is detected, and when the error is fixed in red in column I.

118

When an error is introduced during coding, code error:

description

When an error is detected, code detected:

description

When P detects what P thinks is an error, but it is actually not, code incorrect

detection: description

When an error is fixed, code fixes:

description

When an error is introduced while not fixing another error, code incorrect

fix/error: description

When a fix to an error has been tested and validated as being fixed done fixing:

description

--

Cols J & K Metacognitive & Programming Strategies/Schemata can code > 1 on one

line

Background: Metacognition (MC) – In Col J, code whenever P makes a statement about his or

her own thinking or his or her information search processes while solving a computational

problem.

OR

Background: Schema (S) – In Col K, code whenever P makes a statement about his/her own

content knowledge or makes a statement about a domain strategy used in the development

of an answer, and these statements may be a written or a verbal response to a

computational problem.

1. Understand the Problem/Plan (MC) code whenever P thinks about the problem

statement, explicitly states needing to read or re-read the problem, reads or re-reads the

problem statement or part of it out loud (also note what part of problem read), or asks a

question/makes a statement about the problem statement (these could include statements

that a part of the problem is difficult or confusing or questions about the next task in the

problem). Note: If P is comparing his/her code to the problem statement, then this is

coded as check-detect: compare. Can also code whenever P discusses general scheduling of

activities, how he/she will allocate his/her time, how his/her high-level decision will affect

multiple parts of the solution, or the needs and conditions to meet for specific tasks in the

solution.

eg, “Sentinel, what is a sentinel?”, could code: understand problem/plan (confusion re

sentinel value)

eg, “and now I need to print them out, right. Let's see, where is it? [P re-reads the

problem]”, could code: understand problem/plan (determine if next goal is to print

out arrays)

eg, “First I have to sum the elements in z, then I can take the square root.”, could code:

understand problem/plan

eg, “I’m gonna hard code 5 elements in the arrays and get that working, then I’ll go back

and make it more portable.”, could code: understand problem/plan

eg, “I will name them exactly what they are in the program, uh in the problem.”, could

code: understand problem/plan

eg, “We'll put it in here. If we don't need it, we'll take it out later.”, could code:

understand problem/plan

eg, “If we do the square root then we probably need math.”, could code: understand

problem/plan (square root in prob needs math.h)

2. Design (S) code when P draws, designs, and/or takes notes on the blank piece of paper;

also note what was drawn.

eg, P writes pseudo-code for creating arrays in the solution to a problem before writing the

computer code, code as design (create arrays pseudo-code)

read/consider design (MC) code when P reads information from the piece of paper

containing his/her design, drawings, and/or notes (also note what was read from the

design) or P asks a question/makes a statement about his/her design

3. Write code (S) code when P writes code or mentions wanting to write code for the

solution, eg, write code: - also code the details whenever P searches memory for relevant

prior knowledge, makes statements that use his/her own prior knowledge including general

119

statements about the code, considering options for answer, self-questioning/ explaining

statements about one’s code, or low-level planning statements about prior content

knowledge – also code whether the prior knowledge was high or low based on the

correctness as well as the content knowledge.

[high|low] prior knowl (S) code when P’s code (w/ or w/o words) shows accurate use

of prior knowledge (and note the knowledge showing evidence of having, especially

for loops & arrays) or shows inaccurate use/errors in prior knowledge. Note: The

low prior knowl is similar to the errors coded in column I; however, this code may

include more detail when the prior knowledge is not a syntax or semantic error but

is low domain knowledge, such as using a while loop when a for loop is more

appropriate.

eg “I just want to make it initialized by just go up by one, but, um”, could code as

high prior knowl (initialize array to contiguous numbers using loop)

eg “z sub i equals x sub i plus y sub i”, could code as high prior knowl

(compute/store product of 2 arrays)

eg “We can either use a for loop or a while loop to initialize x and y [P writes for

loop]”, could code as high prior knowl (chooses for loop to init)

eg “I can use a for loop or a while loop to calculate the sum. [P writes a while loop]”,

could code as low prior knowl (chooses while loop instead of a for loop)

eg “Ok, done with the loop. [P forgets to incr loop]”, could code as low prior knowl

(P closes loop w/o incrementing loop counter)

low prior knowl (MC) code whenever P’s verbalization (not code) explicitly states

needing to learn or find out more about a particular topic, i.e. help-seeking

behavior, makes a clear low confidence statement about his/her answer, mentions

the difficulty of some part of their task, or explicitly states guessing the computer

syntax and using the compiler to determine correctness. Note: If P asks a question

regarding the problem statement or mentions the difficulty of part of the

problem/question, code as understand problem/plan.

eg, “what is the syntax for filling up an array?” [P uses the web to find out the

syntax], code as low prior knowl (array initialization syntax).

eg, “I really need to learn how to initialize arrays when I declare them”, code as low

prior knowl (array initialization at time of declaration).

eg, “I know I should use a for loop, but I’m not good at for loops”, low prior knowl

(for loop)

eg, “this is the same thing I had trouble with a second ago”, code as low prior knowl

(using arrays inside a loop)

eg, “probably easier to just test it out and see if, and see what works”, code as low

prior knowl (guessing then compile)

4. Check-Detect (S & MC) code whenever P considers his/her answer or performs the act of

testing, validating, or detecting errors (or lack of) in the solution. This includes when P:

inspect (MC) code when P checks code via visual/mental inspection and compares it to

own knowledge and/or uses his/her own knowledge to execute existing code

mentally, i.e. desk-checking. This includes when P reads computer code he/she has

written to check the code or detect errors, evaluates/considers whether some

information (eg, a partial answer) is a complete or correct answer, or quickly notices

a logical error (other than typing or editor errors) and quickly changes his/her

answer. Note: If P is comparing his/her answer to the problem statement, code this

as check-detect: compare.

eg, “Print the z’s, check. There, one more.” [P is reading coding and matching

parenthesis]; could code inspect (reading print statement & matching parens)

eg, P is scanning over his/her loop and evaluating whether the loop is correct or

complete; could code inspect (evaluating re loop)

eg, “Actually, it’s uh” [P changes loop from i<5 to i<4]; could code inspect (loop

stopping value)

eg, “that equals one, then that will go to the second thing in the list equals one, so

everything in the list will equal one and then,”, code as inspect (predicting list

contents)

120

compare (MC) code whenever P compares his/her code or knowledge to the problem

statement. P could be looking either at the problem statement or at his/her answer

when comparing.

eg, “Yep, I took the square root then printed it”; could code compare (read prob

and mentally inspect sol)

eg, “ok, and I have completed summing the items, now what?”; could code compare

(decide if solution meets prob stmt)

compile (S) code whenever P tests code via compiling it and inspecting the compiler

error messages. This also includes when P reads information from the compiler or

asks a question or makes a statement about the compiler message. Note: P is NOT

looking at their code, only the compiler message, and if P is considering his/her

answer after detecting an error, then code as diagnose

eg, P compiles code after writing some code; could code check-detect: compile

eg, “uh, for loop [referring to the error message given by the compiler]”, could code

as compile (evaluate for loop as error)

execute (S) code whenever P tests or mentions testing by executing a compiled

program and compares the actual and expected output or uses test-write-

statements or a debugging application/environment to inspect internal program

data. This also includes when P explicitly reads information from the output after

executing a program or asks a question or makes a statement about the program

output by comparing the output to expected output/goals. Note: P is NOT looking

at their code, only the program output, and if P is considering his/her answer after

detecting an error, then code as diagnose

eg, P executes code after successfully compiling; could code check-detect: execute

eg, P inserts a print statement to check the sum of array elements before taking the

square root of the sum, as specified in the problem; could code execute (test-

write for sum variable)

eg, “Let me use the calculator to check my answers”; could code execute (compare

output to calculator)

eg, “good, ok, just what I wanted [output from program x is printed with the values

1 - 10]”, could code as execute (output matched expected)

5. Diagnose (S) code whenever P uses reasoning strategies to identify the cause of incorrect

output/error or uses statements identifying the cause of an error without explicitly stating

the reasoning. This includes when P poses possible questions and answers about the error

he/she is diagnosing , checks code via visual/mental inspection and compares it to a

compiler message or program output giving an error, or uses a specific approach

(backtracking, recognition, elimination, etc.) for finding an error. Note: P must detect an

error using one of the above methods, before using this code.

eg, P is scanning over his/her loop and determining the possible error by comparing the

code and a compiler message; could code diagnose (inspecting compiler mssg and

evaluating loop)

eg, P is scanning over his/her loop and determining the possible error by comparing the

code and the output that was incorrect; could code diagnose (inspecting program

output and evaluating print loop)

eg. “I left out the include statement” [P automatically fixes error w/o inspecting], code

as diagnose (recognize left out stdio.h)

eg, “The x and y variables have the correct value, so it must be the z variable causing

problems”, could code as diagnose (eliminate problem to z array)

eg, “It might be the type of brackets I used in the array declaration causing the error or

it could be a brace I’m missing in one of my loops”, could code as diagnose

(hypothesize about brackets in array creation or loops)

6. Fix code (S) code whenever P changes code after detecting and diagnosing an error using

one of the above methods. Eg, [P deletes stdlib.h in program and adds stdio.h], could code

as fix code

Use external source: [book | web | old prog | E] code in Col K whenever P uses an external

source of information to help with understanding the problem or answering the problem. In

addition, code where the information is coming from, i.e. book, internet, old program, or E. Eg,

P uses the experimenter to help with a problem, code as using external source: E.

121

Appendix I Version 1 of The Coding Document

122

Coding Definitions for Test of Computational Thinking research study As of: 1/21/2009

Accepted abbreviations:

E = experimenter; P = participant; MB = mumble; SH = sigh; HM = humming; TP = tapping;

Col A Time of each user computer action

Time from start of session; format = minutes:seconds (eg, 02:32.4 = 2 min 32.4 sec)

 Col B Morae computer action (not used; may be hidden)

Col C Current user computer or paper page

URL of current web page

Title of current book

putty.exe = code this when user is interacting with the ssh terminal

problem page = code this when user is interacting with the piece of paper with question to

answer

design page = code this when user is interacting with the blank piece of paper for writing down

thoughts

Col D User computer actions can code > 1 on one line

Note: when P answers a particular goal or subtask, this is coded in red. eg, answer goal 1, sub 1

(test.c program)

compprob = computer problem; describe problem in column F (verbal transcript)

 eg, [ssh terminal trouble]

readprob = Reading the problem document; describe what part is being read in column F(verbal

transcript)

bookpage = Reading from a book; describe what is being indexed and read in column F(verbal

transcript)

designpage = Writing on a sheet of paper; describe what is written in column F(verbal

transcript)

 SSH Terminal Actions

login = Logging onto a unix machine using the ssh terminal

unix_cmd = Entering a unix command; specify the command

list dir = List the entries in the directory;

move file = Move a file to another directory or to another file w/ different name;

copy file = Copy a file to another directory or to another file w/ different name;

make dir = Create a new directory;

change dir = Change into a specific directory;

open file = Opening a file using a text editor; describe the text editor and the file being

opened

compile prog = Compile a program; specify the compiler and the program being compiled

run prog = Execute a program; specify the program being executed and describe the

program output in column F (verbal transcript)

123

txt_ed = Working in a text editor; specify the action

copy = Copy text; describe the text being copied

cut = Cut text; describe the text being cut

paste = Paste text

move = Moving the cursor around in the text editor; specify up, down, left, right and how

many times.

whitesp = Creating newlines/white space in the program for readability

delete = Delete text by backspacing; describe the text that is being deleted

typing = Typing text in the editor; (The text is captured in column E)

exit = Exit the text editor;

save = Save the current file in the text editor;

 Web/URL Actions

web = Working in a web browser; specify the action

brwwith = Browsing within a content site; clicking a link on a content site that leads to

another page in content site

brwbetw = Browsing between content sites = clicking a link on a content site that leads to a

new content site.

goseng = Going to a search engine from the problem start page

sengsearch = Doing a search engine search

sengresult = Clicking on a search engine result.

sengresultnext = Browsing to the next (or previous) page of search engine results.

sitesearch = Doing a site search (ie, a within-site search engine search)

typurl = Typing a URL into the browser address bar.

back = Clicking BACK button

mouseover = Mousing over popup and cascading menus or over link text or headers.

copy = Copying info from a web site

scan = Scanning a page

scroll = Scrolling within a page

Col E = keys typed by user

Col F Verbal transcript (from verbal protocol and E notes)

 Transcribe ALL verbal comments by participant and experimenter;

 may do a small bit of paraphrasing as long as you keep all the original meaning;

 when in doubt, transcribe every word.

 eg, when P is reading aloud from the problem page, do NOT code (reading prob page),

do code the words P is saying Reason: it’s important to know what info the P thinks is

important enough to read

 Segmenting verbal statements correctly is very important. Segmentation refers to the decision

about how to break the participant’s actions and statements into segments that we can

code. We can make our segments big (with a lot of actions and statements in each segment)

or small (with just one action and just one statement per segment). All of the actions and

124

statements in 1 segment go on 1 line of the excel coding file. We need to make our

segments small enough so that we know exactly what actions & statements our codes apply

to. See examples below:

Bad segmenting: because you don’t know what statements codes refer to

 Action Transcript Strategies/Metacognition Revised

Bloom

Excel line 1: Sentinel, what is a sentinel? need to learn (sentinel value) 1.1

Remember: Recalling,

Is a sentinal vaue just like null consider prob or answer D.a

Metacognitive: Strategic

or what? [E "You can use null (confusion re sentinel value) 2.1

Understand: Interpreting,

as an ending, umhum, it is a D.a

Metacognitive: Strategic

terminating value"] ok

 External Source: Exp

Good segmenting: because you DO know what statements codes refer to

 Action Transcript Strategies/Metacognition Revised

Bloom

Excel line 1: Sentinel, what is a sentinel? need to learn (sentinel value) 1.1

Remember: Recalling,

 D.a

Metacognitive: Strategic

Excel line 2: Is a sentinal vaue just like null consider prob or answer 2.1

Understand: Interpreting, or what?

 (confusion re sentinel value) D.a Metacognitive: Strategic

Excel line 3: [E "You can use null as an

 External Source: Exp

ending, umhum, it is a

terminating value"] ok

 Integrate info from other sources (eg experimenter’s notes, experimenter’s words) when

needed to understand participant’s verbal comments. If P says “This sentence is confusing”

and the notes say “P pointed to 2nd sentence of problem page”, include this comment in

the transcript, in brackets.

 Formatting

 Put participant’s words in without brackets.

 Use period to indicate end of a thought, even if the thought is incomplete, eg, Just looking

at.

 If P is reading from the problem text or a website put in quotes, eg, “Let n represent the

actual number of data values.”

125

 Put explanatory comments and comments by E (these are not statements made by P) in

brackets,

 Eg, This sentence is confusing [P pointed to 3rd sentence of page]

 Accepted abbreviations (see top of page 1); You can make up your own abbreviations, as

long as they are clear.

--

Col G User goals (see problem statement w/ goals and subtasks)

 Code whenever:

• P explicitly mentions the reason for or goal of a current or planned action; OR

• You can infer the reason for or goal of a current or planned action from P’s words,

comp actions, and/or keystrokes

 These goals will mostly refer to user statement about the problem (see the problem

statement), so they will refer to arrays, loops, products, summing, square root, and other

concepts from the problem. See examples below.

 Eg of: Goals explicitly mentioned by user

Eg 1: user comment=“I am going to re-read the problem statement”

 Code=”re-read the problem”

Eg 2: user comment=“Now I am going to compute and print the square root of the sum of

z.”

 Code=”answer question; goal 2, subtask 1”

Eg of: Goals not explicitly mentioned but can be inferred from user’s words and keystrokes

Eg 4: user comment = “If we do the square root then we probably need math.” Then the

user types

“#include <math.h>”

 From the user’s words and keystrokes, you can infer a goal and subtask.

 Code=”answer question; goal 5, subtask 1”

Col H Strategies / Metacognition details

Background: code whenever P makes a statement about his or her own thinking or his or her

information search processes while solving a computational problem. Can code > 1.

Codes:

read prob code when P reads or re-reads the problem statement or part of it; also note what

part of problem read, eg, read prob (1
st

 sentence)

draw/design code when P draws, designs, and/or takes notes on the blank piece of paper; also

note what was drawn.

read design code when P reads information from the piece of paper containing his/her design,

drawings, and/or notes; also note what was read from the design.

read prog code when P reads computer code he/she has written; also note what was read

from the program.

consider prob or answer code when the participant:

126

• asks a question or makes a statement about the problem statement (these could include

statements that a part of the problem is difficult or confusing)

 eg, “Sentinel, what is a sentinel?”, could code: consider prob or answer (prob

confusion re sentinel value)

• OR is evaluating or considering whether some information (eg, a partial answer) is a

complete or correct answer (these could include statements by P of low or high

confidence in his/her answer)

eg, P evaluating whether his loop is correct or complete & says “I know I should use a

for loop, but I don’t like for loops”; could code consider prob or answer

(evaluating answer re low confidence in for loop)

Note: This includes judgment of knowing, feeling of knowing, monitoring progress toward

goals, task difficulty, etc.

paraphrasing code whenever P summarizes the gist of some information coming from E, the

web, or a book. Note: if P summarizes part of the problem or answer, code this as consider

prob or answer (paraphrasing prob), NOT just paraphrasing

task difficulty code whenever P mentions the difficulty of some part of their task. However, if P

mentions the difficulty of part of the problem/question, code this under consider prob or

answer,

eg, “this is the same thing I had trouble with a second ago”, code as task difficulty

support code when P mentions that 2+ pieces of knowledge support or agree with or confirm

or provide evidence for each other– also code the 2 pieces of knowledge. Note: this is a

positive content evaluation.

 eg, P retrieves a potential piece of code from own knowledge but says she needs to verify it;

P searches and finds code in a book; then P enters this answer (or accepts previously

entered answer as ok). The verifying info in the book would be coded as support-ing the

potential answer from own knowledge

lack of support code when P mentions a contradiction or disagreement or lack of support

between 2 or more pieces of knowledge – also code the 2 pieces of knowledge in

parentheses. Note: this is a negative content evaluation.

need to learn code when the participant states needing to learn or find out more about a

particular topic & uses an external source of information to answer, i.e. help-seeking

behavior, and code the topic in parentheses if unclear, eg, “what is the syntax for filling up

an array?”, code as need to learn(array initialization syntax).

self-question/answer code whenever the person poses a question to him/herself concerning an

external source of information (a question that is not part of the problem or answer) or

gives an explanation/answer to a self-posed question (code self-answer when P answers

self due to a self-question or prior knowledge activation search)

prior knowledge activation code whenever P searches memory for relevant prior knowledge

either before performing a task or during task performance, Note: this includes self-

questioning statements about one’s answer, goals, sub-goals, etc. eg, “I just want to make

it initialized by just go up by one, but, um”, code as prior knowledge activation.

127

site credibility code whenever P refers to the credibility or believability or quality or accuracy

of the current website, or mentions high or low confidence or trust in the info on the

website.

planning code whenever P discusses scheduling of activities or how he/she will allocate his/her

time and effort. Note: planning includes goal statements about operations that are

possible, postponed, or intended.

revisit goal code whenever P restates a goal or sub-goal in working memory – also code what

he/she is recycling in parenthesis, eg, revisit goal (need two arrays, Goal 2, Subtask 1)

recycle goal code whenever P reuses a goal or sub-goal in working memory – also code what

he/she is recycling in parenthesis.

hypothesizing code when P asks questions that go beyond the information presented in the

problem, in the answer, and/or in an external source.

knowledge elaboration code whenever P elaborates on the information read, seen, or heard

using his/her prior knowledge – also code the knowledge that is being elaborated in

parenthesis,

eg, “ok, so, i is zero, put in numbers because that helps”, code as knowledge elaboration

(evaluation strategy for answer)

interest statement code whenever P mentions some part of their task is interesting – also

indicate whether the statement was positive or negative, as well as the task of interest.

eg, “no, for loop again, god”, code as interest statement (negative for loops)

Col I Revised Blooms Taxonomy (processes; knowledge)

Background: code whenever P verbalizes a complete thought or enough verbalization to infer

meaning using P’s computer actions – indicate processes, sub-processes, knowledge, and

sub-knowledge.

Note: Terms and definitions directly taken from A taxonomy for learning, teaching and

assessing: A revision of Bloom's Taxonomy of educational objectives.

eg, “how do I initial, uh, urrr, make them in a loop and add each other?”, code as 1.1

Remember: Recognizing; C.a Procedural: Skills/Algorithms

Processes

1. Remember – retrieve relevant knowledge from long-term memory

1.1. Recognizing – locating knowledge in long-term memory that is consistent with

presented material

Example: Look for specific schema in memory needed for solution to a problem.

Quote: “how do I initial, uh, urrr, make them in a loop and add each other.”

1.2. Recalling – retrieving relevant knowledge from long-term memory

Example: Describe the schema located from long-term memory.

Quote: ”alright, start off with main file”

2. Understand – construct meaning from instructional messages, including oral, written, and

graphic communication

2.1. Interpreting – changing from one form of representation (e.g., numerical) to another

(e.g., verbal) (e.g., paraphrase important speeches and documentation)

128

Example: Recognize the essential and nonessential parts of a problem statement.

Quote: “It says new data structure though.”

2.2. Exemplifying – finding a specific example or illustration of a concept or principle (e.g.,

give examples of various artistic painting styles)

Example: Provide/Use a specific example of the problem or answer to aid in

understanding.

Quote: “ok, so, i is zero, put in numbers because that helps.”

2.3. Classifying – determining that something belongs to a category (e.g., concept or

principle) (e.g., classify observed or described cases of mental disorders)

Example: Recognize how a data structure applies to many problems or visa versa.

Quote: “Ok so I was thinking either you have an array or a linked list of some sort…”

2.4. Summarizing – abstracting a general theme or major point(s) (e.g., write a short

summary of the events portrayed on a videotape)

Example: Paraphrasing the problem statement in one’s own words.

Quote: “ok I just need to store the products in z.”

2.5. Inferring – drawing a logical conclusion from presented information (e.g., in learning a

foreign language, infer grammatical principles from examples)

Example: Determine the skills/algorithm to use for a problem based on an example

from a similar problem.

Quote: “alright, based on a similar problem I want to add in this problem”

2.6. Comparing – detecting correspondences between two ideas, objects, and the like (e.g.,

compare historical events to contemporary situations)

Example: Use two programs to determine how they are similar.

Quote: “and I'm going through that old code to compare to this code”

2.7. Explaining – constructing a cause-and-effect model of a system (e.g., Explain the causes

of important 18
th

 century events in France) Note: this may include low-level planning

statements.

Example: Provide the relationship between operations in a procedure affected by each

other.

Quote: “we're just going to make the first value initialed to something, then I can do a

plus plus”

3. Apply – carry out or use a procedure in a given situation

3.1. Executing – applying a procedure to a familiar task (e.g., divide one whole number by

another whole number, both with multiple digits) Note: usually execution is with the

intent to analyze or evaluate.

Example: Apply an abstract algorithm to a specific example/situation, i.e. execute

statements w/ values.

Quote: “Then we insert a 9 into the list.”

3.2. Implementing – applying a procedure to an unfamiliar task (e.g., use Newton’s second

law in situations in which it is appropriate)

Example: Write computer code to perform a specific procedure.

Quote: “x values colon, percent d”

4. Analyze –aid in fuller understanding or prelude to evaluation; used to convey the meaning

or establish a conclusion of a communication, e.g. problem statement, design, solution, etc.

Note: this includes syntax and logic.

129

4.1. Differentiating – distinguishing relevant from irrelevant parts or important from

unimportant parts of presented material (e.g., Distinguish between relevant and

irrelevant numbers in a mathematical word problem)

Example: Recognize which statements, groups of statements, or methods to check

when an error occurs in an algorithm or program.

Quote: “Is there some kind of data structure that I should be using other than this, other

than the linked list?”

4.2. Organizing – determining how elements fit or function within a structure (e.g.,

structure evidence in a historical description into evidence for and against a particular

historical explanation)

Example: Determine the overall design pattern and structure of a computer statement,

group of statements, or an entire program.

Quote: “The point was to keep the data structure, the data organized.”

4.3. Attributing – determine a point of view, values, or intent underlying presented material

(e.g., determine the point of view of the author of an essay in terms of his or her

political perspective)

Example: Determine how the variables behave in a procedure.

Quote: “2 got added in now 2 is my minimum and then 3 got added so 3 is still greater

than 2 so 2 is still my minimum.”

5. Evaluate – make judgments based on criteria and standards. Note: this includes syntax and

logic.

5.1. Checking – detecting inconsistencies or fallacies within a process or product;

determining whether a process or product has internal consistency; detecting the

effectiveness of a procedure as it is being implemented (e.g., determine if a scientist’s

conclusions follow from observed data)

Example: Indicating/Detecting the logical fallacies in conditional statements.

Quote: “I can check the variables in the loop”

5.2. Critiquing – detecting inconsistencies between a product and external criteria,

determining whether a product has external consistency; detecting the

appropriateness of a procedure for a given problem (e.g., judge which of two methods

is the best way to solve a given problem)

Example: Recognize the consequences to using a specific procedure to answer a

problem.

Quote: “leaving the j variable in will give us some more fun values”

6. Create – put elements together to form a coherent or functional whole; reorganize

elements into a new pattern or structure

6.1. Generating – coming up with alternative hypotheses based on criteria (e.g., generate

hypotheses to account for an observed phenomenon)

Example: Design an illustration of the entire data structure by putting together

individual components.

Quote: “I’m going to re-draw an array list with some random data so I can get an idea of

what the structure looks like.”

6.2. Planning – devising a procedure for accomplishing some task (e.g., plan a research

paper on a given historical topic). Note: this includes high-level planning statements

about goals and sub-goals (often confused with 2.7).

130

Example: Create specifications for a computer program.

Quote: “I need to insert these in the right order, because it should be going to the front

of the list not the back.”

6.3. Producing – inventing a product (e.g., build habits for a specific purpose)

Example: Develop a scheme for classifying the types of problems that use specific data

structures.

Quote:

Knowledge

A. Factual Knowledge – the basic elements students must know to be acquainted with a

discipline or solve problems in it.

a. Knowledge of terminology – technical vocabulary, musical symbols

Example: Define what a data structure is by giving its attributes and properties.

Quote: “… you would have your basic array list with a head and a tail and when you

want to push … you would just find the last element…”

b. Knowledge of specific details and elements – major natural resources, reliable

sources of information

Example: Describe the difference in properties between data structures.

Quote: “…you just have elements of each, an integers I guess and either an array or

the nodes that you have in the list um.”

B. Conceptual Knowledge – the interrelationships among the basic elements within a

larger structure that enable them to function together

a. Knowledge of classifications and categories – periods of geological time, forms of

business ownership

Example: Recognize how a data structure applies to many problems or visa versa.

Quote: “Ok so I was thinking either you have an array or a linked list of some sort…”

b. Knowledge of principles and generalizations – Pythagorean theorem, law of supply

and demand

Example: Understanding of major principles for a specific data structure.

Quote: “I just want to make it initialized by just go up by one, but, um”

c. Knowledge of theories, models, and structures – theory of evolution, structure of

congress

Example: Describe the theory of an algorithm.

Quote:

C. Procedural Knowledge – how to do something, methods of inquiry, and criteria for

using skills, algorithms, techniques, and methods

a. Knowledge of subject-specific skills and algorithms – skills used in painting with

watercolors, whole-number division algorithm

Example: Describe a specific procedure used to accomplish a goal or sub-goal.

Quote: “so, ok, so the first initial in the list, i, in uh, ok, so the first thing in the array

equals,”

b. Knowledge of subject-specific techniques and methods – interviewing techniques,

scientific method

Example: Describe the operations needed for a specific data structure.

Quote: “Uh, push you just increment the counter and then save the integer on to

the list, or array, or whatever you want to call it.”

131

c. Knowledge of criteria for determining when to use appropriate procedures – criteria

used to determine when to apply a procedure involving Newton’s second law,

criteria used to judge the feasibility of using a particular method to estimate

business costs

Example: Define the elements used to judge correctness of a data structure.

Quote: “In O(1) time means you have to be able to jump right to it.”

D. Metacognitive Knowledge – knowledge of cognition in general as well as awareness and

knowledge of one’s own cognition

a. Strategic knowledge – knowledge of outlining as a means of capturing the structure

of a unit of subject matter in a textbook, knowledge of the use of heuristics.

Example: Re-reading the problem statement to plan the next goals and sub-goals.

Quote: “Alright, I am re-reading the problem to start off.”

b. Knowledge about cognitive tasks, including appropriate contextual and conditional

knowledge – knowledge of the types of tests particular teachers administer,

knowledge of the cognitive demands of different tasks

Example: Describe/Make a reference to task difficulty for self.

Quote: “This will take longer if I create a for loop rather than using a while.”

c. Self-knowledge – knowledge that critiquing essays is a personal strength, whereas

writing essays is a personal weakness; awareness of one’s own knowledge level

Example: Describe one’s own ability to accomplish a task.

Quote: “I'm in a brain freeze figuring out how to do that.”

Col J Systems/Software Development Methodology

Planning – To generate a high-level view of the intended project and determine the goals of the

project.

Example: Stating the need to read the problem to determine what needs to be done.

Quote: “Alright, I am re-reading the problem to start off.”

Requirements – the tasks that go into determining the needs or conditions to meet for a new or

altered product, taking account of the possibly conflicting requirements of the various users.

These requirements include user and system requirements.

Example: Recognize the specific tasks required in creating a new program to solve a

computational problem.

Quote: “If we do the square root then we probably need math.”

Design -a process of problem-solving and planning for a software solution

Example: Write pseudo-code for a particular solution to a problem before writing the

computer code.

Quote:

Implementation/Code - the process of writing and debugging/troubleshooting the source code

written in a programming language.

Example: Describe the computer statements needed to write a program to solve a specific

problem.

132

Quote: “make a z because we are going to need that too”

Verification/Testing - an empirical investigation conducted to provide users with information

about the quality of the product. This includes, but is not limited to, the process of

executing a program or application with the intent of finding errors.

Example: Make judgments on the software quality based on observations from executing a

piece of software.

Quote: “good, ok, just what I wanted”

Maintenance - the modification of a software product to correct faults, to improve performance

or other attributes.

Example: Determine what needs to be altered to correct errors in the software.

Quote: “I need to initialize the variable in the for loop to get better results.”

133

Appendix J Version 2 of The Coding Document

134

Coding Definitions for Test of Computational Thinking research study As of: 2/04/2009

Accepted abbreviations:

E = experimenter; P = participant; MB = mumble; SH = sigh; HM = humming; TP = tapping;

Col A Time of each user computer action

Time from start of session; format = minutes:seconds (eg, 02:32.4 = 2 min 32.4 sec)

 Col B Morae computer action (not used; may be hidden)

Col C Current user computer or paper page

URL of current web page

Title of current book

putty.exe = code this when user is interacting with the ssh terminal

problem page = code this when user is interacting with the piece of paper with question to

answer

design page = code this when user is interacting with the blank piece of paper for writing down

thoughts

Col D User computer actions can code > 1 on one line

compprob = computer problem; describe problem in column F (verbal transcript)

 eg, [ssh terminal trouble]

readprob = Reading the problem document; describe what part is being read in column F(verbal

transcript)

bookpage = Reading from a book; describe what is being indexed and read in column F(verbal

transcript)

designpage = Writing on a sheet of paper; describe what is written in column F(verbal

transcript)

 SSH Terminal Actions

login = Logging onto a unix machine using the ssh terminal

unix_cmd = Entering a unix command; specify the command

list dir = List the entries in the directory;

move file = Move a file to another directory or to another file w/ different name;

copy file = Copy a file to another directory or to another file w/ different name;

make dir = Create a new directory;

change dir = Change into a specific directory;

open file = Opening a file using a text editor; describe the text editor and the file being

opened

compile prog = Compile a program; specify the compiler and the program being compiled

run prog = Execute a program; specify the program being executed and describe the

program output in column F (verbal transcript)

txt_ed = Working in a text editor; specify the action

135

copy = Copy text; describe the text being copied

cut = Cut text; describe the text being cut

paste = Paste text

move = Moving the cursor around in the text editor; specify up, down, left, right and how

many times.

whitesp = Creating newlines/white space in the program for readability

delete = Delete text by backspacing; describe the text that is being deleted

typing = Typing text in the editor; (The text is captured in column E)

exit = Exit the text editor;

save = Save the current file in the text editor;

 Web/URL Actions

web = Working in a web browser; specify the action

brwwith = Browsing within a content site; clicking a link on a content site that leads to

another page in content site

brwbetw = Browsing between content sites = clicking a link on a content site that leads to a

new content site.

goseng = Going to a search engine from the problem start page

sengsearch = Doing a search engine search

sengresult = Clicking on a search engine result.

sengresultnext = Browsing to the next (or previous) page of search engine results.

sitesearch = Doing a site search (ie, a within-site search engine search)

typurl = Typing a URL into the browser address bar.

back = Clicking BACK button

mouseover = Mousing over popup and cascading menus or over link text or headers.

copy = Copying info from a web site

scan = Scanning a page

scroll = Scrolling within a page

Col E = keys typed by user

Col F Verbal transcript (from verbal protocol and E notes)

 Transcribe ALL verbal comments by participant and experimenter;

 may do a small bit of paraphrasing as long as you keep all the original meaning;

 when in doubt, transcribe every word.

 eg, when P is reading aloud from the problem page, do NOT code (reading prob page),

do code the words P is saying Reason: it’s important to know what info the P thinks is

important enough to read

 Segmenting verbal statements correctly is very important. Segmentation refers to the decision

about how to break the participant’s actions and statements into segments that we can

code. We can make our segments big (with a lot of actions and statements in each segment)

or small (with just one action and just one statement per segment). All of the actions and

statements in 1 segment go on 1 line of the excel coding file. We need to make our

136

segments small enough so that we know exactly what actions & statements our codes apply

to. See examples below:

Bad segmenting: because you don’t know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

Is a sentinal vaue just like null sentinel value) using external info: E

or what? [E "You can use null consider prob (confusion re

as an ending, umhum, it is a sentinel value)

terminating value"] ok

Good segmenting: because you DO know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

 sentinel value)

Excel line 2: Is a sentinal vaue just like null consider prop (confusion re

 or what? sentinel value)

Excel line 3: [E "You can use null as an using external info: E

ending, umhum, it is a

terminating value"] ok

 Integrate info from other sources (eg experimenter’s notes, experimenter’s words) when

needed to understand participant’s verbal comments. If P says “This sentence is confusing”

and the notes say “P pointed to 2nd sentence of problem page”, include this comment in

the transcript, in brackets.

 Formatting

 Put participant’s words in without brackets.

 Use period to indicate end of a thought, even if the thought is incomplete, eg, Just looking

at.

 If P is reading from the problem text or a website put in quotes, eg, “Let n represent the

actual number of data values.”

 Put explanatory comments and comments by E (these are not statements made by P) in

brackets,

 Eg, This sentence is confusing [P pointed to 3rd sentence of page]

 Accepted abbreviations (see top of page 1); You can make up your own abbreviations, as

long as they are clear.

--

Col G Domain-Specific Schemata (see problem statement w/ goals and subtasks)

 Code whenever:

• P explicitly mentions the reason for or goal of a current or planned action; OR

• You can infer the reason for or goal of a current or planned action from P’s words,

comp actions, and/or keystrokes; OR

137

• P finishes answering a particular goal or subtask, this is coded in red. Eg 1, completed

goal 1, sub 1

These goals will mostly refer to user statement about the problem (see the problem

statement), so they will refer to arrays, loops, products, summing, square root, and other

concepts from the problem. See examples below.

 Eg of: Goals explicitly mentioned by user

Eg 2: user comment=“Now I am going to compute and print the square root of the sum of

z.”

 Code=”answer question; goal 2, subtask 1”

Eg of: Goals not explicitly mentioned but can be inferred from user’s words and keystrokes

Eg 3: user comment = “If we do the square root then we probably need math.” Then the

user types

“#include <math.h>”

 From the user’s words and keystrokes, you can infer a goal and subtask.

 Code=”answer question; goal 5, subtask 1”

Note: Include any specific details about the goal or answer, as well as any observations made by

E, in parenthesis beside the goal. Eg 4, answer question; goal 3, subtask 1 (chooses a while

loop) or completed goal 3, sub 1 (no sentinel value)

Col H Metacognitive Strategies can code > 1 on one line

Background: code whenever P makes a statement about his or her own thinking or his or her

information search processes while solving a computational problem.

read design code when P reads information from the piece of paper containing his/her design,

drawings, and/or notes; also note what was read from the design.

read prob code when P reads or re-reads the problem statement or part of it; also note what

part of problem read, eg, read prob (1
st

 sentence)

consider prob code when P asks a question or makes a statement about the problem

statement (these could include statements that a part of the problem is difficult or

confusing)

eg, “Sentinel, what is a sentinel?”, could code: consider prob (confusion re sentinel value)

task difficulty code whenever P mentions the difficulty of some part of their task. However, if P

mentions the difficulty of part of the problem/question, code this under consider prob,

eg, “this is the same thing I had trouble with a second ago”, code as task difficulty

time planning code whenever P discusses scheduling of activities or how he/she will allocate

his/her time and effort.

eg, “First, I am going to work on initializing the arrays, and then I will print them out ”, code

as time planning

138

revisit goal code whenever P leaves a goal or sub-goal in working memory and then returns to

the goal/sub-goal – also code what he/she is recycling in parenthesis, eg, revisit goal (Goal

2, Subtask 1)

knowledge elaboration code whenever P elaborates on the information read, seen, or heard –

also code the knowledge that is being elaborated in parenthesis,

eg, “ok, so, i is zero, put in numbers because that helps”, code as knowledge elaboration

(evaluation strategy for answer)

interest statement code whenever P mentions some part of their task is interesting – also

indicate whether the statement was positive or negative, as well as the task of interest.

eg, “no, for loop again, god”, code as interest statement (negative for loops)

Col I Programming Strategies Schemata can code > 1 on one line

Background: code whenever P makes a statement about his/her answer or makes a statement

used in the development of an answer, which may be a program or a verbal solution to a

computational problem.

using external info code whenever P uses an external source of information to help with

understanding the problem or answering the problem. In addition, code where the

information is coming from, i.e. book, internet, old program, or E. Note: if P is doing any of

the following while using an external source of information, code in parenthesis:

paraphrasing code whenever P summarizes the gist of some information coming from E,

the web, a book, or an old program. Note: if P summarizes part of the problem or

question, code this under consider prob

support code when P mentions that 2+ pieces of knowledge support or agree with or

confirm or provide evidence for each other– also code the 2 pieces of knowledge.

Note: this is a positive content evaluation.

 eg, P retrieves a potential piece of code from own knowledge but says she needs to

verify it; P searches and finds code in a book; then P enters this answer (or accepts

previously entered answer as ok). The verifying info in the book would be coded as

support-ing the potential answer from own knowledge, using external info: book

(support: book verify own)

lack of support code when P mentions a contradiction or disagreement or lack of support

between 2 or more pieces of knowledge – also code the 2 pieces of knowledge. Note:

this is a negative evaluation

site credibility code whenever P refers to the credibility or believability or quality or

accuracy of the current external source of info, or mentions high or low confidence or

trust in the info.

requirements code when P makes a statement about or recognizes needs and conditions to

meet for specific tasks in the solution, taking account of the possibly conflicting

requirements. These requirements include any (user and system requirements) used to

determine solution; also note what was required.

139

eg, “If we do the square root then we probably need math.”, code as requirements

(math.h)

design code when P draws, designs, and/or takes notes on the blank piece of paper; also note

what was drawn.

eg, P writes pseudo-code for creating arrays in the solution to a problem before writing the

computer code, code as design (create arrays pseudo-code)

write code code when P writes code or mentions wanting to write code for the solution,

eg, write code: - also code the details

using prior knowl code whenever P searches memory for relevant prior knowledge or

makes statements that use his/her own prior knowledge either before performing a task

or during task performance, Note: this includes general statements about the code, self-

questioning/explaining statements about one’s answer, goals, sub-goals, code, etc., and

low-level planning statements about operations that are possible, postponed or

intended – also code the low-level schemata.

eg 1, “I just want to make it initialized by just go up by one, but, um”, could code as

using prior knowl (initialize array to contiguous numbers using loop)

eg 2, “z sub i equals x sub i plus y sub i”, could code as using prior knowl (store product

of 2 arrays in 3
rd

 array)

eg 3, “We can either use a for loop or a while loop to initialize x and y”, could code as

using prior knowl (plan loop type)

need to learn code when P explicitly states needing to learn or find out more about a

particular topic OR when P asks a question & uses an external source of

information to answer, i.e. help-seeking behavior – also code the topic in parentheses if

unclear. Note: If P asks a question regarding the problem statement, code this under

consider prob.

eg, “what is the syntax for filling up an array?”, code as need to learn (array

initialization syntax).

recycle goal code whenever P reuses a goal or sub-goal in working memory. This includes

cutting and pasting code from one goal to answer another goal – also code what he/she

is recycling in parenthesis.

confidence code whenever P makes a high or low confidence statement about his/her code

or answer. These include judgments of knowing and feeling of knowing statements –

also code details in parenthesis.

eg, “I know I should use a for loop, but I don’t like for loops”, confidence (low re for

loop)

debug code whenever P mentions testing the solution, considers his/her answer, or performs

the act of testing/validating the solution. eg, debug: - also code the details

incremental testing code whenever P quickly tests or mentions the need to test small

pieces of code as they are

added (by any of the methods below) Note: This may include commenting out code to

see what works

140

inspection code whenever P checks code via visual inspection and compares it to own

knowledge or knowledge from an external source. This includes when P

• reads computer code he/she has written; also note what was read from the

program OR

• is evaluating or considering whether some information (eg, a partial answer) is a

complete or correct answer

eg, P is scanning over his/her loop and evaluating whether the loop is correct or

complete; could code inspection (evaluating re loop)

compile code whenever P tests code via compiling it and inspecting the compiler error

messages

execute using output code whenever P tests by executing a compiled program and

comparing the actual and expected output

execute using internal data code whenever P tests by executing a compiled program and

using test-write-statements or a debugging application/environment to inspect internal

program data

diagnose code whenever P uses reasoning strategies to identify the cause of incorrect output

or internal data (eg, backtracking from output code that gave bad output to prior code that

provided data to the output code)

hypothesize code when P poses possible questions and answers about the error he/she is

diagnosing – also code the details of the generated hypothesis(es) in parenthesis

eg, “It might be the type of brackets I used in the array declaration causing the error”,

could code as diagnose: hypothesize (brackets in array creation)

fix code code whenever P changes code after using some of the above debugging methods

141

Appendix K Version 3 of The Coding Document

142

Coding Definitions for Test of Computational Thinking research study As of: 2/19/2009

Accepted abbreviations:

E = experimenter; P = participant; MB = mumble; SH = sigh; HM = humming; TP = tapping;

Col A Time of each user computer action

Time from start of session; format = minutes:seconds (eg, 02:32.4 = 2 min 32.4 sec)

 Col B Morae computer action (not used; may be hidden)

Col C Current user computer or paper page

URL of current web page

Title of current book

putty.exe = code this when user is interacting with the ssh terminal

problem page = code this when user is interacting with the piece of paper with question to

answer

design page = code this when user is interacting with the blank piece of paper for writing down

thoughts

Col D User computer actions can code > 1 on one line

compprob = computer problem; describe problem in column F (verbal transcript)

 eg, [ssh terminal trouble]

readprob = Reading the problem document; describe what part is being read in column F(verbal

transcript)

bookpage = Reading from a book; describe what is being indexed and read in column F(verbal

transcript)

designpage = Writing on a sheet of paper; describe what is written in column F(verbal

transcript)

 SSH Terminal Actions

login = Logging onto a unix machine using the ssh terminal

unix_cmd = Entering a unix command; specify the command

list dir = List the entries in the directory;

move file = Move a file to another directory or to another file w/ different name;

copy file = Copy a file to another directory or to another file w/ different name;

make dir = Create a new directory;

change dir = Change into a specific directory;

open file = Opening a file using a text editor; describe the text editor and the file being

opened

compile prog = Compile a program; specify the compiler and the program being compiled

run prog = Execute a program; specify the program being executed and describe the

program output in column F (verbal transcript)

txt_ed = Working in a text editor; specify the action

143

copy = Copy text; describe the text being copied

cut = Cut text; describe the text being cut

paste = Paste text

move = Moving the cursor around in the text editor; specify up, down, left, right and how

many times.

whitesp = Creating newlines/white space in the program for readability

delete = Delete text by backspacing; describe the text that is being deleted

typing = Typing text in the editor; (The text is captured in column E)

exit = Exit the text editor;

save = Save the current file in the text editor;

 Web/URL Actions

web = Working in a web browser; specify the action

brwwith = Browsing within a content site; clicking a link on a content site that leads to

another page in content site

brwbetw = Browsing between content sites = clicking a link on a content site that leads to a

new content site.

goseng = Going to a search engine from the problem start page

sengsearch = Doing a search engine search

sengresult = Clicking on a search engine result.

sengresultnext = Browsing to the next (or previous) page of search engine results.

sitesearch = Doing a site search (ie, a within-site search engine search)

typurl = Typing a URL into the browser address bar.

back = Clicking BACK button

mouseover = Mousing over popup and cascading menus or over link text or headers.

copy = Copying info from a web site

scan = Scanning a page

scroll = Scrolling within a page

Col E = keys typed by user

Col F Verbal transcript (from verbal protocol and E notes)

 Transcribe ALL verbal comments by participant and experimenter;

 may do a small bit of paraphrasing as long as you keep all the original meaning;

 when in doubt, transcribe every word.

 eg, when P is reading aloud from the problem page, do NOT code (reading prob page),

do code the words P is saying Reason: it’s important to know what info the P thinks is

important enough to read

 Segmenting verbal statements correctly is very important. Segmentation refers to the decision

about how to break the participant’s actions and statements into segments that we can

code. We can make our segments big (with a lot of actions and statements in each segment)

or small (with just one action and just one statement per segment). All of the actions and

statements in 1 segment go on 1 line of the excel coding file. We need to make our

144

segments small enough so that we know exactly what actions & statements our codes apply

to. See examples below:

Bad segmenting: because you don’t know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

Is a sentinal vaue just like null sentinel value) using external info: E

or what? [E "You can use null consider prob (confusion re

as an ending, umhum, it is a sentinel value)

terminating value"] ok

Good segmenting: because you DO know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

 sentinel value)

Excel line 2: Is a sentinal vaue just like null consider prop (confusion re

 or what? sentinel value)

Excel line 3: [E "You can use null as an using external info: E

ending, umhum, it is a

terminating value"] ok

 Integrate info from other sources (eg experimenter’s notes, experimenter’s words) when

needed to understand participant’s verbal comments. If P says “This sentence is confusing”

and the notes say “P pointed to 2nd sentence of problem page”, include this comment in

the transcript, in brackets.

 Formatting

 Put participant’s words in without brackets.

 Use period to indicate end of a thought, even if the thought is incomplete, eg, Just looking

at.

 If P is reading from the problem text or a website put in quotes, eg, “Let n represent the

actual number of data values.”

 Put explanatory comments and comments by E (these are not statements made by P) in

brackets,

 Eg, This sentence is confusing [P pointed to 3rd sentence of page]

 Accepted abbreviations (see top of page 1); You can make up your own abbreviations, as

long as they are clear.

--

Col G Goals (see problem statement w/ goals and subtasks)

 Code whenever:

• P explicitly mentions the reason for or goal of a current or planned action; OR

• You can infer the reason for or goal of a current or planned action from P’s words,

comp actions, and/or keystrokes; OR

145

• P finishes answering a particular goal or subtask, this is coded in red. Eg 1, completed

goal 1, sub 1

These goals will mostly refer to user statement about the problem (see the problem

statement), so they will refer to arrays, loops, products, summing, square root, and other

concepts from the problem. See examples below.

 Eg of: Goals explicitly mentioned by user

Eg 2: user comment=“Now I am going to compute and print the square root of the sum of

z.”

 Code=”answer question; goal 2, subtask 1”

Eg of: Goals not explicitly mentioned but can be inferred from user’s words and keystrokes

Eg 3: user comment = “If we do the square root then we probably need math.” Then the

user types

“#include <math.h>”

 From the user’s words and keystrokes, you can infer a goal and subtask.

 Code=”answer question; goal 5, subtask 1”

Note: Include any specific details about the goal or answer, as well as any observations made by

E, in parenthesis beside the goal. Eg 4, answer question; goal 3, subtask 1 (chooses a while

loop) or completed goal 3, sub 1 (no sentinel value)

Col H Metacognitive Strategies can code > 1 on one line

Background: code whenever P makes a statement about his or her own thinking or his or her

information search processes while solving a computational problem.

read design code when P reads information from the piece of paper containing his/her design,

drawings, and/or notes; also note what was read from the design.

read prob code when P reads or re-reads the problem statement or part of it; also note what

part of problem read, eg, read prob (1
st

 sentence)

consider prob code when P asks a question or makes a statement about the problem

statement (these could include statements that a part of the problem is difficult or

confusing or questions about the next task in the problem)

eg, “Sentinel, what is a sentinel?”, could code: consider prob (confusion re sentinel value)

eg, “and now I need to print them out, right. Let's see, where is it?”, could code: consider

prob (determine if next goal is to print out arrays)

task difficulty code whenever P mentions the difficulty of some part of their task. However, if P

mentions the difficulty of part of the problem/question, code this under consider prob,

eg, “this is the same thing I had trouble with a second ago”, code as task difficulty

time planning code whenever P discusses scheduling of activities or how he/she will allocate

his/her time and effort.

eg, “First, I am going to work on initializing the arrays, and then I will print them out ”, code

as time planning

146

revisit goal code whenever P leaves a goal or sub-goal in working memory and then returns to

the goal/sub-goal – also code what he/she is revisiting in parenthesis, eg, revisit goal (Goal

2, Subtask 1)

knowledge elaboration code whenever P elaborates on the information read, seen, or heard –

also code the knowledge that is being elaborated in parenthesis,

eg, “ok, so, i is zero, put in numbers because that helps”, code as knowledge elaboration

(evaluation strategy for answer)

interest statement code whenever P mentions some part of their task is interesting – also

indicate whether the statement was positive or negative, as well as the task of interest.

eg, “no, for loop again, god”, code as interest statement (negative for loops)

Col I Programming Strategies Schemata can code > 1 on one line

Background: code whenever P makes a statement about his/her answer or makes a statement

used in the development of an answer, which may be a program or a verbal solution to a

computational problem.

using external info code whenever P uses an external source of information to help with

understanding the problem or answering the problem. In addition, code where the

information is coming from, i.e. book, internet, old program, or E. Note: if P is doing any of

the following while using an external source of information, code in parenthesis:

paraphrasing code whenever P summarizes the gist of some information coming from E,

the web, a book, or an old program. Note: if P summarizes part of the problem or

question, code this under consider prob

support code when P mentions that 2+ pieces of knowledge support or agree with or

confirm or provide evidence for each other– also code the 2 pieces of knowledge.

Note: this is a positive content evaluation.

 eg, P retrieves a potential piece of code from own knowledge but says she needs to

verify it; P searches and finds code in a book; then P enters this answer (or accepts

previously entered answer as ok). The verifying info in the book would be coded as

support-ing the potential answer from own knowledge, using external info: book

(support: book verify own)

lack of support code when P mentions a contradiction or disagreement or lack of support

between 2 or more pieces of knowledge – also code the 2 pieces of knowledge. Note:

this is a negative evaluation

site credibility code whenever P refers to the credibility or believability or quality or

accuracy of the current external source of info, or mentions high or low confidence or

trust in the info.

requirements code when P makes a statement about or recognizes needs and conditions to

meet for specific tasks in the solution, taking account of the possibly conflicting

requirements. These requirements include any (user and system requirements) used to

determine solution; also note what was required.

147

eg, “If we do the square root then we probably need math.”, code as requirements

(math.h)

design code when P draws, designs, and/or takes notes on the blank piece of paper; also note

what was drawn.

eg, P writes pseudo-code for creating arrays in the solution to a problem before writing the

computer code, code as design (create arrays pseudo-code)

write code code when P writes code or mentions wanting to write code for the solution,

eg, write code: - also code the details

using prior knowl code whenever P searches memory for relevant prior knowledge or

makes statements that use his/her own prior knowledge either before performing a task

or during task performance, Note: this includes general statements about the code,

considering options for answer, self-questioning/explaining statements about one’s

answer, goals, sub-goals, code, etc., and low-level planning statements about operations

that are possible, postponed or intended – also code the low-level schemata.

eg 1, “I just want to make it initialized by just go up by one, but, um”, could code as

using prior knowl (initialize array to contiguous numbers using loop)

eg 2, “z sub i equals x sub i plus y sub i”, could code as using prior knowl (store product

of 2 arrays in 3
rd

 array)

eg 3, “We can either use a for loop or a while loop to initialize x and y”, could code as

using prior knowl (plan loop type)

need to learn code when P explicitly states needing to learn or find out more about a

particular topic OR when P asks a question & uses an external source of

information to answer, i.e. help-seeking behavior – also code the topic in parentheses if

unclear. Note: If P asks a question regarding the problem statement, code this under

consider prob.

eg, “what is the syntax for filling up an array?”, code as need to learn (array

initialization syntax).

recycle goal code whenever P reuses a goal or sub-goal in working memory. This includes

cutting and pasting code from one goal to answer another goal – also code what he/she

is recycling in parenthesis.

confidence code whenever P makes a high or low confidence statement about his/her code

or answer. These include judgments of knowing and feeling of knowing statements –

also code details in parenthesis.

eg, “I know I should use a for loop, but I don’t like for loops”, confidence (low re for

loop)

learn syntax by guess/compile code whenever P makes statements about guessing the

computer syntax or mentions intentions of using the compiler to determine correctness.

eg, “probably easier to just test it out and see if, and see what works”, code as learn

syntax by guess/compile

debug code whenever P considers his/her answer or performs the act of testing/validating the

solution.

148

eg, debug: - also code the details

incremental testing code whenever P quickly tests or mentions the need to test small

pieces of code as they are

added (by any of the methods below) Note: This may include commenting out code to

see what works

inspection code whenever P checks code via visual inspection and compares it to own

knowledge or knowledge from an external source. This includes when P

• reads computer code he/she has written; also note what was read from the

program OR

• is evaluating or considering whether some information (eg, a partial answer) is a

complete or correct answer

eg, P is scanning over his/her loop and evaluating whether the loop is correct or

complete; could code inspection (evaluating re loop)

compile code whenever P tests code via compiling it and inspecting the compiler error

messages

execute using output code whenever P tests by executing a compiled program and

comparing the actual and expected output

execute using internal data code whenever P tests by executing a compiled program and

using test-write-statements or a debugging application/environment to inspect internal

program data

diagnose code whenever P uses reasoning strategies to identify the cause of incorrect output

or internal data (eg, backtracking from output code that gave bad output to prior code that

provided data to the output code) OR uses statements identifying the cause of an error

without explicitly stating the reasoning.

hypothesize code when P poses possible questions and answers about the error he/she is

diagnosing – also code the details of the generated hypothesis(es) in parenthesis

eg, “It might be the type of brackets I used in the array declaration causing the error”,

could code as diagnose: hypothesize (brackets in array creation)

fix code code whenever P changes code after debugging using some of the above methods

149

Appendix L Version 4 of The Coding Document

150

Coding Definitions for Test of Computational Thinking research study As of: 3/10/2009

Accepted abbreviations:

E = experimenter; P = participant; MB = mumble; SH = sigh; HM = humming; TP = tapping;

Col A Time of each user computer action

Time from start of session; format = minutes:seconds (eg, 02:32.4 = 2 min 32.4 sec)

 Col B Morae computer action (not used; may be hidden)

Col C Current user computer or paper page

URL of current web page

Title of current book

putty.exe = code this when user is interacting with the ssh terminal

problem page = code this when user is interacting with the piece of paper with question to

answer

design page = code this when user is interacting with the blank piece of paper for writing down

thoughts

Col D User computer actions can code > 1 on one line

compprob = computer problem; describe problem in column F (verbal transcript)

 eg, [ssh terminal trouble]

readprob = Reading the problem document; describe what part is being read in column F(verbal

transcript)

bookpage = Reading from a book; describe what is being indexed and read in column F(verbal

transcript)

designpage = Writing on a sheet of paper; describe what is written in column F(verbal

transcript)

 SSH Terminal Actions

login = Logging onto a unix machine using the ssh terminal

unix_cmd = Entering a unix command; specify the command

list dir = List the entries in the directory;

move file = Move a file to another directory or to another file w/ different name;

copy file = Copy a file to another directory or to another file w/ different name;

make dir = Create a new directory;

change dir = Change into a specific directory;

open file = Opening a file using a text editor; describe the text editor and the file being

opened

compile prog = Compile a program; specify the compiler and the program being compiled

run prog = Execute a program; specify the program being executed and describe the

program output in column F (verbal transcript)

txt_ed = Working in a text editor; specify the action

151

copy = Copy text; describe the text being copied

cut = Cut text; describe the text being cut

paste = Paste text

move = Moving the cursor around in the text editor; specify up, down, left, right and how

many times.

whitesp = Creating newlines/white space in the program for readability

delete = Delete text by backspacing; describe the text that is being deleted

typing = Typing text in the editor; (The text is captured in column E)

exit = Exit the text editor;

save = Save the current file in the text editor;

 Web/URL Actions

web = Working in a web browser; specify the action

brwwith = Browsing within a content site; clicking a link on a content site that leads to

another page in content site

brwbetw = Browsing between content sites = clicking a link on a content site that leads to a

new content site.

goseng = Going to a search engine from the problem start page

sengsearch = Doing a search engine search

sengresult = Clicking on a search engine result.

sengresultnext = Browsing to the next (or previous) page of search engine results.

sitesearch = Doing a site search (ie, a within-site search engine search)

typurl = Typing a URL into the browser address bar.

back = Clicking BACK button

mouseover = Mousing over popup and cascading menus or over link text or headers.

copy = Copying info from a web site

scan = Scanning a page

scroll = Scrolling within a page

Col E = keys typed by user

Col F Verbal transcript (from verbal protocol and E notes)

 Transcribe ALL verbal comments by participant and experimenter;

 may do a small bit of paraphrasing as long as you keep all the original meaning;

 when in doubt, transcribe every word.

 eg, when P is reading aloud from the problem page, do NOT code (reading prob page),

do code the words P is saying Reason: it’s important to know what info the P thinks is

important enough to read

 Segmenting verbal statements correctly is very important. Segmentation refers to the decision

about how to break the participant’s actions and statements into segments that we can

code. We can make our segments big (with a lot of actions and statements in each segment)

or small (with just one action and just one statement per segment). All of the actions and

statements in 1 segment go on 1 line of the excel coding file. We need to make our

152

segments small enough so that we know exactly what actions & statements our codes apply

to. See examples below:

Bad segmenting: because you don’t know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

Is a sentinal vaue just like null sentinel value) using external info: E

or what? [E "You can use null consider prob (confusion re

as an ending, umhum, it is a sentinel value)

terminating value"] ok

Good segmenting: because you DO know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

 sentinel value)

Excel line 2: Is a sentinal vaue just like null consider prop (confusion re

 or what? sentinel value)

Excel line 3: [E "You can use null as an using external info: E

ending, umhum, it is a

terminating value"] ok

 Integrate info from other sources (eg experimenter’s notes, experimenter’s words) when

needed to understand participant’s verbal comments. If P says “This sentence is confusing”

and the notes say “P pointed to 2nd sentence of problem page”, include this comment in

the transcript, in brackets.

 Formatting

 Put participant’s words in without brackets.

 Use period to indicate end of a thought, even if the thought is incomplete, eg, Just looking

at.

 If P is reading from the problem text or a website put in quotes, eg, “Let n represent the

actual number of data values.”

 Put explanatory comments and comments by E (these are not statements made by P) in

brackets,

 Eg, This sentence is confusing [P pointed to 3rd sentence of page]

 Accepted abbreviations (see top of page 1); You can make up your own abbreviations, as

long as they are clear.

Col G Goals (see problem statement w/ goals and subtasks)

 Code whenever:

• P explicitly mentions the reason for or goal of a current or planned action; OR

• You can infer the reason for or goal of a current or planned action from P’s words,

comp actions, and/or keystrokes; OR

153

• P finishes answering a particular goal or subtask, this is coded in red. Eg 1, completed

goal 1, sub 1

These goals will mostly refer to user statement about the problem (see the problem

statement), so they will refer to arrays, loops, products, summing, square root, and other

concepts from the problem. See examples below.

 Eg of: Goals explicitly mentioned by user

Eg 2: user comment=“Now I am going to compute and print the square root of the sum of

z.”

 Code=”answer question; goal 2, subtask 1”

Eg of: Goals not explicitly mentioned but can be inferred from user’s words and keystrokes

Eg 3: user comment = “If we do the square root then we probably need math.” Then the

user types

“#include <math.h>”

 From the user’s words and keystrokes, you can infer a goal and subtask.

 Code=”answer question; goal 5, subtask 1”

Note: Include any specific details about the goal or answer, as well as any observations made by

E, in parenthesis beside the goal. Eg 4, answer question; goal 3, subtask 1 (chooses a while

loop) or completed goal 3, sub 1 (no sentinel value)

Col H Metacognitive Strategies can code > 1 on one line

Background: code whenever P makes a statement about his or her own thinking or his or her

information search processes while solving a computational problem.

read design code when P reads information from the piece of paper containing his/her design,

drawings, and/or notes; also note what was read from the design.

read prob code when P reads or re-reads the problem statement or part of it; also note what

part of problem read, eg, read prob (1
st

 sentence)

consider prob code when P asks a question or makes a statement about the problem

statement (these could include statements that a part of the problem is difficult or

confusing or questions about the next task in the problem)

eg, “Sentinel, what is a sentinel?”, could code: consider prob (confusion re sentinel value)

eg, “and now I need to print them out, right. Let's see, where is it?”, could code: consider

prob (determine if next goal is to print out arrays)

task difficulty code whenever P mentions the difficulty of some part of their task. However, if P

mentions the difficulty of part of the problem/question, code this under consider prob,

eg, “this is the same thing I had trouble with a second ago”, code as task difficulty

time planning code whenever P discusses scheduling of activities or how he/she will allocate

his/her time and effort.

eg, “First, I am going to work on initializing the arrays, and then I will print them out ”, code

as time planning

154

revisit goal code whenever P leaves a goal or sub-goal in working memory and then returns to

the goal/sub-goal – also code what he/she is revisiting in parenthesis, eg, revisit goal (Goal

2, Subtask 1)

knowledge elaboration code whenever P elaborates on the information read, seen, or heard –

also code the knowledge that is being elaborated in parenthesis,

eg, “ok, so, i is zero, put in numbers because that helps”, code as knowledge elaboration

(evaluation strategy for answer)

interest statement code whenever P mentions some part of their task is interesting – also

indicate whether the statement was positive or negative, as well as the task of interest.

eg, “no, for loop again, god”, code as interest statement (negative for loops)

mentally inspect/exe code whenever P inspects a mental representation of code rather than

actual written code or executes code mentally to evaluate correctness.

eg, “that equals one, then that will go to the second thing in the list equals one, so

everything in the list will equal one and then,”, code as mentally inspect/exe

(predicting effects of code)

Col I Programming Strategies Schemata can code > 1 on one line

Background: code whenever P makes a statement about his/her answer or makes a statement

used in the development of an answer, which may be a program or a verbal solution to a

computational problem.

using external info code whenever P uses an external source of information to help with

understanding the problem or answering the problem. In addition, code where the

information is coming from, i.e. book, internet, old program, or E. Note: if P is doing any of

the following while using an external source of information, code in parenthesis:

paraphrasing code whenever P summarizes the gist of some information coming from E,

the web, a book, or an old program. Note: if P summarizes part of the problem or

question, code this under consider prob

support code when P mentions that 2+ pieces of knowledge support or agree with or

confirm or provide evidence for each other– also code the 2 pieces of knowledge.

Note: this is a positive content evaluation.

 eg, P retrieves a potential piece of code from own knowledge but says she needs to

verify it; P searches and finds code in a book; then P enters this answer (or accepts

previously entered answer as ok). The verifying info in the book would be coded as

support-ing the potential answer from own knowledge, using external info: book

(support: book verify own)

lack of support code when P mentions a contradiction or disagreement or lack of support

between 2 or more pieces of knowledge – also code the 2 pieces of knowledge. Note:

this is a negative evaluation

site credibility code whenever P refers to the credibility or believability or quality or

accuracy of the current external source of info, or mentions high or low confidence or

trust in the info.

155

requirements code when P makes a statement about or recognizes needs and conditions to

meet for specific tasks in the solution, taking account of the possibly conflicting

requirements. These requirements include any (user and system requirements) used to

determine solution; also note what was required.

eg, “If we do the square root then we probably need math.”, code as requirements

(math.h)

design code when P draws, designs, and/or takes notes on the blank piece of paper; also note

what was drawn.

eg, P writes pseudo-code for creating arrays in the solution to a problem before writing the

computer code, code as design (create arrays pseudo-code)

write code code when P writes code or mentions wanting to write code for the solution,

eg, write code: - also code the details

using prior knowl code whenever P searches memory for relevant prior knowledge or

makes statements that use his/her own prior knowledge either before performing a task

or during task performance, Note: this includes general statements about the code,

considering options for answer, self-questioning/explaining statements about one’s

answer, goals, sub-goals, code, etc., and low-level planning statements about operations

that are possible, postponed or intended – also code the low-level schemata.

eg 1, “I just want to make it initialized by just go up by one, but, um”, could code as

using prior knowl (initialize array to contiguous numbers using loop)

eg 2, “z sub i equals x sub i plus y sub i”, could code as using prior knowl (store product

of 2 arrays in 3
rd

 array)

eg 3, “We can either use a for loop or a while loop to initialize x and y”, could code as

using prior knowl (plan loop type)

need to learn code when P explicitly states needing to learn or find out more about a

particular topic OR when P asks a question & uses an external source of

information to answer, i.e. help-seeking behavior, OR when P follows a question with

a learn syntax by guess/compile,– also code the topic in parentheses if unclear. Note: If

P asks a question regarding the problem statement, code this under consider prob.

eg, “what is the syntax for filling up an array?”, code as need to learn (array

initialization syntax).

eg, “how do I add the elements inside the loop?”, code as need to learn (array

initialization syntax).

recycle goal code whenever P reuses a goal or sub-goal in working memory. This includes

cutting, pasting, and editing code from one goal to answer another goal – also code

what he/she is recycling in parenthesis.

confidence code whenever P makes a high, medium, or low confidence statement about

his/her code or answer. These can include judgment of knowing and feeling of knowing

statements – also code details in parenthesis.

eg, “I know I should use a for loop, but I don’t like for loops”, confidence (low re for

loop)

156

eg, “I think I can declare and initialize the i inside the loop ”, confidence (medium re

knowl about i in loop)

learn syntax by guess/compile code whenever P makes statements about guessing the

computer syntax or mentions intentions of using the compiler to determine correctness.

eg, “probably easier to just test it out and see if, and see what works”, code as learn

syntax by guess/compile

debug code whenever P considers his/her answer or performs the act of testing/validating the

solution.

eg, debug: - also code the details

incremental testing code whenever P quickly tests or mentions the need to test small

pieces of code as they are

added (by any of the methods below) Note: This may include commenting out code to

see what works

inspection code whenever P checks code via visual inspection and compares it to own

knowledge or knowledge from an external source. This includes when P

• reads computer code he/she has written; also note what was read from the

program OR

• is evaluating or considering whether some information (eg, a partial answer) is a

complete or correct answer

eg, P is scanning over his/her loop and evaluating whether the loop is correct or

complete; could code inspection (evaluating re loop)

compile code whenever P tests code via compiling it and inspecting the compiler error

messages

execute using output code whenever P tests or mentions testing by executing a compiled

program and comparing the actual and expected output

execute using internal data code whenever P tests or mentions testing by executing a

compiled program and using test-write-statements or a debugging

application/environment to inspect internal program data

diagnose code whenever P uses reasoning strategies to identify the cause of incorrect output

or internal data (eg, backtracking from output code that gave bad output to prior code that

provided data to the output code) OR uses statements identifying the cause of an error

without explicitly stating the reasoning.

hypothesize code when P poses possible questions and answers about the error he/she is

diagnosing – also code the details of the generated hypothesis(es) in parenthesis

eg, “It might be the type of brackets I used in the array declaration causing the error”,

could code as diagnose: hypothesize (brackets in array creation)

fix code code whenever P changes code after debugging using some of the above methods

157

Appendix M Version 5 of The Coding Document

158

Coding Definitions for Test of Computational Thinking research study As of: 4/08/2009

Accepted abbreviations:

E = experimenter; P = participant; MB = mumble; SH = sigh; HM = humming; TP = tapping;

Col A Time of each user computer action

Time from start of session; format = minutes:seconds (eg, 02:32.4 = 2 min 32.4 sec)

 Col B Morae computer action (not used; may be hidden)

Col C Current user computer or paper page

URL of current web page

Title of current book

putty.exe = code this when user is interacting with the ssh terminal

problem page = code this when user is interacting with the piece of paper with question to

answer

design page = code this when user is interacting with the blank piece of paper for writing down

thoughts

Col D User computer actions can code > 1 on one line

compprob = computer problem; describe problem in column F (verbal transcript)

 eg, [ssh terminal trouble]

readprob = Reading the problem document; describe what part is being read in column F(verbal

transcript)

bookpage = Reading from a book; describe what is being indexed and read in column F(verbal

transcript)

designpage = Writing on a sheet of paper; describe what is written in column F(verbal

transcript)

 SSH Terminal Actions

login = Logging onto a unix machine using the ssh terminal

unix_cmd = Entering a unix command; specify the command

list dir = List the entries in the directory;

move file = Move a file to another directory or to another file w/ different name;

copy file = Copy a file to another directory or to another file w/ different name;

make dir = Create a new directory;

change dir = Change into a specific directory;

open file = Opening a file using a text editor; describe the text editor and the file being

opened

compile prog = Compile a program; specify the compiler and the program being compiled

run prog = Execute a program; specify the program being executed and describe the

program output in column F (verbal transcript)

txt_ed = Working in a text editor; specify the action

159

copy = Copy text; describe the text being copied

cut = Cut text; describe the text being cut

paste = Paste text

move = Moving the cursor around in the text editor; specify up, down, left, right and how

many times.

whitesp = Creating newlines/white space in the program for readability

delete = Delete text by backspacing; describe the text that is being deleted

typing = Typing text in the editor; (The text is captured in column E)

exit = Exit the text editor;

save = Save the current file in the text editor;

 Web/URL Actions

web = Working in a web browser; specify the action

brwwith = Browsing within a content site; clicking a link on a content site that leads to

another page in content site

brwbetw = Browsing between content sites = clicking a link on a content site that leads to a

new content site.

goseng = Going to a search engine from the problem start page

sengsearch = Doing a search engine search

sengresult = Clicking on a search engine result.

sengresultnext = Browsing to the next (or previous) page of search engine results.

sitesearch = Doing a site search (ie, a within-site search engine search)

typurl = Typing a URL into the browser address bar.

back = Clicking BACK button

mouseover = Mousing over popup and cascading menus or over link text or headers.

copy = Copying info from a web site

scan = Scanning a page

scroll = Scrolling within a page

Col E = keys typed by user

Col F Verbal transcript (from verbal protocol and E notes)

 Transcribe ALL verbal comments by participant and experimenter;

 may do a small bit of paraphrasing as long as you keep all the original meaning;

 when in doubt, transcribe every word.

 eg, when P is reading aloud from the problem page, do NOT code (reading prob page),

do code the words P is saying Reason: it’s important to know what info the P thinks is

important enough to read

 Segmenting verbal statements correctly is very important. Segmentation refers to the decision

about how to break the participant’s actions and statements into segments that we can

code. We can make our segments big (with a lot of actions and statements in each segment)

or small (with just one action and just one statement per segment). All of the actions and

statements in 1 segment go on 1 line of the excel coding file. We need to make our

160

segments small enough so that we know exactly what actions & statements our codes apply

to. See examples below:

Bad segmenting: because you don’t know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

Is a sentinal vaue just like null sentinel value) using external info: E

or what? [E "You can use null consider prob (confusion re

as an ending, umhum, it is a sentinel value)

terminating value"] ok

Good segmenting: because you DO know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

 sentinel value)

Excel line 2: Is a sentinal vaue just like null consider prop (confusion re

 or what? sentinel value)

Excel line 3: [E "You can use null as an using external info: E

ending, umhum, it is a

terminating value"] ok

 Integrate info from other sources (eg experimenter’s notes, experimenter’s words) when

needed to understand participant’s verbal comments. If P says “This sentence is confusing”

and the notes say “P pointed to 2nd sentence of problem page”, include this comment in

the transcript, in brackets.

 Formatting

 Put participant’s words in without brackets.

 Use period to indicate end of a thought, even if the thought is incomplete, eg, Just looking

at.

 If P is reading from the problem text or a website put in quotes, eg, “Let n represent the

actual number of data values.”

 Put explanatory comments and comments by E (these are not statements made by P) in

brackets,

 Eg, This sentence is confusing [P pointed to 3rd sentence of page]

 Accepted abbreviations (see top of page 1); You can make up your own abbreviations, as

long as they are clear.

--

Col G Goals (see problem statement w/ goals and subtasks)

 Code whenever:

• P explicitly mentions the reason for or goal of a current or planned action; OR

• You can infer the reason for or goal of a current or planned action from P’s words,

comp actions, and/or keystrokes; OR

161

• P finishes answering a particular goal or subtask, this is coded in red. Eg 1, completed

goal 1, sub 1

These goals will mostly refer to user statement about the problem (see the problem

statement), so they will refer to arrays, loops, products, summing, square root, and other

concepts from the problem. See examples below.

 Eg of: Goals explicitly mentioned by user

Eg 2: user comment=“Now I am going to compute and print the square root of the sum of

z.”

 Code=”answer question; goal 2, subtask 1”

Eg of: Goals not explicitly mentioned but can be inferred from user’s words and keystrokes

Eg 3: user comment = “If we do the square root then we probably need math.” Then the

user types

“#include <math.h>”

 From the user’s words and keystrokes, you can infer a goal and subtask.

 Code=”answer question; goal 5, subtask 1”

Note: Include any specific details about the goal or answer, as well as any observations made by

E, in parenthesis beside the goal. Eg 4, answer question; goal 3, subtask 1 (chooses a while

loop) or completed goal 3, sub 1 (no sentinel value)

Col H Metacognitive Strategies can code > 1 on one line

Background: code whenever P makes a statement about his or her own thinking or his or her

information search processes while solving a computational problem.

read design code when P reads information from the piece of paper containing his/her design,

drawings, and/or notes; also note what was read from the design.

consider design code when P asks a question or makes a statement about his/her design

eg, “”, could code: consider design

read compiler code when P reads information from the compiler; also note what was read

from the compiler.

consider compiler code when P asks a question or makes a statement about the compiler

message eg, “uh, for loop [referring to the error message given by the compiler]”, could

code: consider compiler (evaluate for loop as error)

read output code when P reads information from the output after executing a program; also

note what was read.

consider output code when P asks a question or makes a statement about the program output

eg, “good, ok, just what I wanted [output from program x is printed with the values 1 - 10]”,

could code: consider output (output matched expected)

read prob code when P reads or re-reads the problem statement or part of it; also note what

part of problem read, eg, read prob (1
st

 sentence)

162

consider prob code when P asks a question or makes a statement about the problem

statement (these could include statements that a part of the problem is difficult or

confusing or questions about the next task in the problem)

eg, “Sentinel, what is a sentinel?”, could code: consider prob (confusion re sentinel value)

eg, “and now I need to print them out, right. Let's see, where is it?”, could code: consider

prob (determine if next goal is to print out arrays)

task difficulty code whenever P mentions the difficulty of some part of their task. However, if P

mentions the difficulty of part of the problem/question, code this under consider prob,

eg, “this is the same thing I had trouble with a second ago”, code as task difficulty

[type] planning; [type = general|time|etc.] code whenever P discusses general scheduling of

activities or how he/she will allocate his/her time and effort.

eg, “First, I am going to work on initializing the arrays, and then I will print them out.”, code

as time planning

eg, “I will name them exactly what they are in the program, uh in the problem.”, code as

general planning

revisit goal code whenever P leaves a goal or sub-goal in working memory and then returns to

the goal/sub-goal – also code what he/she is revisiting in parenthesis, eg, revisit goal (Goal

2, Subtask 1)

knowledge elaboration code whenever P elaborates on the information read, seen, or heard –

also code the knowledge that is being elaborated in parenthesis,

eg, “ok, so, i is zero, put in numbers because that helps”, code as knowledge elaboration

(evaluation strategy for answer)

interest statement code whenever P mentions some part of their task is interesting – also

indicate whether the statement was positive or negative, as well as the task of interest.

eg, “no, for loop again, god”, code as interest statement (negative for loops)

mentally inspect code whenever P inspects a mental representation of code rather than actual

written code and/or executes non-existent code mentally to evaluate correctness.

eg, “that equals one, then that will go to the second thing in the list equals one, so

everything in the list will equal one and then,”, code as mentally inspect

Col I Programming Strategies Schemata can code > 1 on one line

Background: code whenever P makes a statement about his/her answer or makes a statement

used in the development of an answer, which may be a program or a verbal solution to a

computational problem.

using external info code whenever P uses an external source of information to help with

understanding the problem or answering the problem. In addition, code where the

information is coming from, i.e. book, internet, old program, or E. Note: if P is doing any of

the following while using an external source of information, code in parenthesis:

paraphrasing code whenever P summarizes the gist of some information coming from E,

the web, a book, or an old program. Note: if P summarizes part of the problem or

question, code this under consider prob

163

support code when P mentions that 2+ pieces of knowledge support or agree with or

confirm or provide evidence for each other– also code the 2 pieces of knowledge.

Note: this is a positive content evaluation.

 eg, P retrieves a potential piece of code from own knowledge but says she needs to

verify it; P searches and finds code in a book; then P enters this answer (or accepts

previously entered answer as ok). The verifying info in the book would be coded as

support-ing the potential answer from own knowledge, using external info: book

(support: book verify own)

lack of support code when P mentions a contradiction or disagreement or lack of support

between 2 or more pieces of knowledge – also code the 2 pieces of knowledge. Note:

this is a negative evaluation

site credibility code whenever P refers to the credibility or believability or quality or

accuracy of the current external source of info, or mentions high or low confidence or

trust in the info.

requirements code when P makes a statement about or recognizes needs and conditions to

meet for specific tasks in the solution, taking account of the possibly conflicting

requirements. These requirements include any (user and system requirements) used to

determine solution; also note what was required.

eg, “If we do the square root then we probably need math.”, code as requirements

(math.h)

design code when P draws, designs, and/or takes notes on the blank piece of paper; also note

what was drawn.

eg, P writes pseudo-code for creating arrays in the solution to a problem before writing the

computer code, code as design (create arrays pseudo-code)

write code code when P writes code or mentions wanting to write code for the solution,

eg, write code: - also code the details

using prior knowl code whenever P searches memory for relevant prior knowledge or

makes statements that use his/her own prior knowledge either before performing a task

or during task performance, Note: this includes general statements about the code,

considering options for answer, self-questioning/explaining statements about one’s

answer, goals, sub-goals, code, etc., and low-level planning statements about operations

that are possible, postponed or intended – also code the low-level schemata.

eg 1, “I just want to make it initialized by just go up by one, but, um”, could code as

using prior knowl (initialize array to contiguous numbers using loop)

eg 2, “z sub i equals x sub i plus y sub i”, could code as using prior knowl (store product

of 2 arrays in 3
rd

 array)

eg 3, “We can either use a for loop or a while loop to initialize x and y”, could code as

using prior knowl (plan loop type)

need to learn code when P explicitly states needing to learn or find out more about a

particular topic OR when P asks a question & uses an external source of

information to answer, i.e. help-seeking behavior, OR when P follows a question with

164

a learn – also code the topic in parentheses if unclear. Note: If P asks a question

regarding the problem statement, code this under consider prob.

eg, “what is the syntax for filling up an array?”, code as need to learn (array

initialization syntax).

eg, “how do I add the elements inside the loop?”, code as need to learn (array

initialization syntax).

recycle goal code whenever P reuses a goal or sub-goal in working memory. This includes

cutting, pasting, and editing code from one goal to answer another goal – also code

what he/she is recycling in parenthesis.

confidence code whenever P makes a high, medium, or low confidence statement about

his/her code or answer. These can include judgment of knowing and feeling of knowing

statements – also code details in parenthesis.

eg, “I know I should use a for loop, but I don’t like for loops”, confidence (low re for

loop)

eg, “I think I can declare and initialize the i inside the loop ”, confidence (medium re

knowl about i in loop)

learn syntax by guess/compile code whenever P makes statements about guessing the

computer syntax or mentions intentions of using the compiler to determine correctness.

eg, “probably easier to just test it out and see if, and see what works”, code as learn

syntax by guess/compile

debug code whenever P considers his/her answer or performs the act of testing/validating the

solution.

eg, debug: - also code the details

incremental testing code whenever P quickly tests or mentions the need to test small

pieces of code as they are

added (by any of the methods below) Note: This may include commenting out code to

see what works

inspection: [compareto]; [compareto = own|output|compiler|book|etc.] code whenever

P checks code via visual inspection and compares it to own knowledge or knowledge

from an external source such as the compiler, a book, or output from executing the

program. This includes when P

• reads computer code he/she has written; also note what was read from the

program OR

• is evaluating or considering whether some information (eg, a partial answer) is a

complete or correct answer

eg, P is scanning over his/her loop and evaluating whether the loop is correct or

complete; could code inspection: own (evaluating re loop)

eg, P is scanning over his/her loop and determining the possible error by comparing the

code and output; could code inspection: output (evaluating re loop)

execute using knowl code whenever P uses his/her own knowledge to execute existing

code mentally eg, “that equals one, then that will go to the

165

second thing in the list equals one, so everything in the list will equal one and then,”,

code as execute using knowl (predicting effects of code)

compile code whenever P tests code via compiling it and inspecting the compiler error

messages

execute using output code whenever P tests or mentions testing by executing a compiled

program and comparing the actual and expected output

execute using internal data code whenever P tests or mentions testing by executing a

compiled program and using test-write-statements or a debugging

application/environment to inspect internal program data

diagnose code whenever P uses reasoning strategies to identify the cause of incorrect output

or internal data (eg, backtracking from output code that gave bad output to prior code that

provided data to the output code) OR uses statements identifying the cause of an error

without explicitly stating the reasoning.

hypothesize code when P poses possible questions and answers about the error he/she is

diagnosing – also code the details of the generated hypothesis(es) in parenthesis

eg, “It might be the type of brackets I used in the array declaration causing the error”,

could code as diagnose: hypothesize (brackets in array creation)

fix code code whenever P changes code after debugging using some of the above methods

166

Appendix N Version 6 of The Coding Document

167

Coding Definitions for Test of Computational Thinking research study As of: 5/04/2009

Accepted abbreviations:

E = experimenter; P = participant; MB = mumble; SH = sigh; HM = humming; TP = tapping;

Col A Time of each user computer action

Time from start of session; format = minutes:seconds (eg, 02:32.4 = 2 min 32.4 sec)

 Col B Morae computer action (not used; may be hidden)

Col C Current user computer or paper page

URL of current web page

Title of current book

putty.exe = code this when user is interacting with the ssh terminal

problem page = code this when user is interacting with the piece of paper with question to

answer

design page = code this when user is interacting with the blank piece of paper for writing down

thoughts

Col D User computer actions can code > 1 on one line

compprob = computer problem; describe problem in column F (verbal transcript)

 eg, [ssh terminal trouble]

readprob = Reading the problem document; describe what part is being read in column F(verbal

transcript)

bookpage = Reading from a book; describe what is being indexed and read in column F(verbal

transcript)

designpage = Writing on a sheet of paper; describe what is written in column F(verbal

transcript)

 SSH Terminal Actions

login = Logging onto a unix machine using the ssh terminal

unix_cmd = Entering a unix command; specify the command

list dir = List the entries in the directory;

move file = Move a file to another directory or to another file w/ different name;

copy file = Copy a file to another directory or to another file w/ different name;

make dir = Create a new directory;

change dir = Change into a specific directory;

open file = Opening a file using a text editor; describe the text editor and the file being

opened

compile prog = Compile a program; specify the compiler and the program being compiled

run prog = Execute a program; specify the program being executed and describe the

program output in column F (verbal transcript)

168

txt_ed = Working in a text editor; specify the action

copy = Copy text; describe the text being copied

cut = Cut text; describe the text being cut

paste = Paste text

move = Moving the cursor around in the text editor; specify up, down, left, right and how

many times.

whitesp = Creating newlines/white space in the program for readability

delete = Delete text by backspacing; describe the text that is being deleted

typing = Typing text in the editor; (The text is captured in column E)

exit = Exit the text editor;

save = Save the current file in the text editor;

 Web/URL Actions

web = Working in a web browser; specify the action

brwwith = Browsing within a content site; clicking a link on a content site that leads to

another page in content site

brwbetw = Browsing between content sites = clicking a link on a content site that leads to a

new content site.

goseng = Going to a search engine from the problem start page

sengsearch = Doing a search engine search

sengresult = Clicking on a search engine result.

sengresultnext = Browsing to the next (or previous) page of search engine results.

sitesearch = Doing a site search (ie, a within-site search engine search)

typurl = Typing a URL into the browser address bar.

back = Clicking BACK button

mouseover = Mousing over popup and cascading menus or over link text or headers.

copy = Copying info from a web site

scan = Scanning a page

scroll = Scrolling within a page

Col E = keys typed by user

Col F Verbal transcript (from verbal protocol and E notes)

 Transcribe ALL verbal comments by participant and experimenter;

 may do a small bit of paraphrasing as long as you keep all the original meaning;

 when in doubt, transcribe every word.

 eg, when P is reading aloud from the problem page, do NOT code (reading prob page),

do code the words P is saying Reason: it’s important to know what info the P thinks is

important enough to read

 Segmenting verbal statements correctly is very important. Segmentation refers to the decision

about how to break the participant’s actions and statements into segments that we can

code. We can make our segments big (with a lot of actions and statements in each segment)

or small (with just one action and just one statement per segment). All of the actions and

statements in 1 segment go on 1 line of the excel coding file. We need to make our

169

segments small enough so that we know exactly what actions & statements our codes apply

to. See examples below:

Bad segmenting: because you don’t know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

Is a sentinal vaue just like null sentinel value) using external info: E

or what? [E "You can use null consider prob (confusion re

as an ending, umhum, it is a sentinel value)

terminating value"] ok

Good segmenting: because you DO know what statements codes refer to

 Action Transcript Metacognitive/Programming Strategies

Excel line 1: Sentinel, what is a sentinel? consider prob (what is the

 sentinel value)

Excel line 2: Is a sentinal vaue just like null consider prop (confusion re

 or what? sentinel value)

Excel line 3: [E "You can use null as an using external info: E

ending, umhum, it is a

terminating value"] ok

 Integrate info from other sources (eg experimenter’s notes, experimenter’s words) when

needed to understand participant’s verbal comments. If P says “This sentence is confusing”

and the notes say “P pointed to 2nd sentence of problem page”, include this comment in

the transcript, in brackets.

 Formatting

 Put participant’s words in without brackets.

 Use period to indicate end of a thought, even if the thought is incomplete, eg, Just looking

at.

 If P is reading from the problem text or a website put in quotes, eg, “Let n represent the

actual number of data values.”

 Put explanatory comments and comments by E (these are not statements made by P) in

brackets,

 Eg, This sentence is confusing [P pointed to 3rd sentence of page]

 Accepted abbreviations (see top of page 1); You can make up your own abbreviations, as

long as they are clear.

--

Col G & H Goals (see problem statement w/ goals and subtasks)

Background: The goals will mostly refer to user statements about the problem, and the

subtasks will mostly refer to domain-specific tasks to complete goals from the problem (see

the problem statement). For this example, the goals will refer to concepts from the

problem; whereas, the subtasks will refer to arrays, loops, products, summing, square root,

etc.

170

Code the goals in column G and the subtasks of goals in column H. In addition, code the

start, code, and finish of the goals/subtasks. Code whenever:

• P explicitly mentions the reason for or goal of a current or planned action

 Eg, “I am going to start with main”, code start: begin program in column G, code

start: construct main in column H

• You can infer the reason for or goal of a current or planned action from P’s words,

comp actions, and/or keystrokes; eg, [P is typing int main(void) {], code start: begin

program in column G, code start: construct main in column H

• P finishes writing coding for a particular goal or subtask. This is coded in red; eg, code

code: begin program in column G, code code: construct main in column H

• P finishes answering a particular goal or subtask after testing and validating to evaluate

as ok. This is coded in red; eg, code finish: begin program in column G, code finish:

construct main in column H

 Eg of: Goals explicitly mentioned by user

Eg 1: user comment=“Now I am going to compute and print the square root of the sum of

z.”

 Code=start: compute and print square root in column H

Eg of: Goal/Subtask not explicitly mentioned but can be inferred from user’s words and

keystrokes

Eg 2: user comment = “If we do the square root then we probably need math.” Then the

user types

“#include <math.h>”

 From the user’s words and keystrokes, you can infer a goal and subtask.

 Code=start: include files in column H

Note: Include any specific details about the goal or answer, as well as any observations made by

E, in parenthesis beside the goal. Eg 3, start: construct loop (while loop) in column H OR

Eg 4, finish: create arrays (no sentinel value) in column G

Col I Errors in Goals, Subtasks, or Logic

Background: These errors can include syntax, semantic, and suboptimal errors. Code the error,

when the error is detected, and when the error is fixed in red in column I.

Code whenever:

• P makes a syntax error in the subtask causing compiler errors; Eg, “that should be it, I

think.” [P changed stdio.h to stdlib.h], code as deletes needed library (stdio.h) adds

unneeded library (include stdlib.h)

• P makes a logical error causing incorrect output; Eg, “Uh, actually 4.” [P changed i<5 to

i<4 for 5 elements], code as deletes correct loop index ending val (i < 5) add incorrect

index ending val (i<4)

• P makes a suboptimal error that doesn’t adversely affect the solution; Eg, Prints header

inside loop

• P makes a goal/subtask error; Eg, incorrect square root of individual items in z

171

Cols J & K Metacognitive & Programming Strategies/Schemata can code > 1 on one

line

Background: Metacognition (MC) – In Col J, code whenever P makes a statement about his or

her own thinking or his or her information search processes while solving a computational

problem.

OR

Background: Schema (S) – In Col K, code whenever P makes a statement about his/her answer

or makes a statement used in the development of an answer, which may be a program or a

verbal solution to a computational problem.

1. Understand the Problem (MC) code whenever P thinks about the problem statement.

read prob (MC) code when P explicitly states needing to read or re-read the problem OR P

reads or re-reads the problem statement or part of it out loud; also note what part of

problem read, eg, read prob (1
st

 sentence)

consider prob (MC) code when P asks a question or makes a statement about the problem

statement (these could include statements that a part of the problem is difficult or

confusing or questions about the next task in the problem)

eg, “Sentinel, what is a sentinel?”, could code: consider prob (confusion re sentinel

value)

eg, “and now I need to print them out, right. Let's see, where is it?”, could code:

consider prob (determine if next goal is to print out arrays)

2. Planning (S & MC) code when makes statements prior or during answering a goal or

subtask that usually reflect on P’s own knowledge for doing some task.

time planning (MC) code when P discusses general scheduling of activities or how he/she

will allocate his/her time and effort

eg, “First, I am going to work on initializing the arrays, and then I will print them out.”,

code as time planning

global planning (MC) code whenever P makes a high-level decision affecting multiple parts

of the solution. This includes when P deals with:

• the order of modules/functions in solution OR

• the order of working on solution.

eg, “First I have to sum the elements in z, then I can take the square root.”, code as

global planning

eg, “I’m gonna hard code 5 elements in the arrays and get that working, then I’ll go back

and make it more portable.”, code as global planning

eg, “I will name them exactly what they are in the program, uh in the problem.”, code as

global planning

eg, “We'll put it in here. If we don't need it, we'll take it out later.”, code as global

planning

eg, “I don’t like for loops” [P decides to use while loops throughout solution], code as

global planning

requirements (S) code when P makes a statement about or recognizes needs and

conditions to meet for specific tasks in the solution, taking account of the possibly

172

conflicting requirements. These requirements include any (user and system

requirements for the language, domain content, or answer) used to determine solution;

also note what is required. Eg, “If we do the square root then we probably need

math.”, code as requirements (math.h)

revisit goal/subtask (MC) code whenever P leaves a goal or sub-goal/task in working

memory and then returns to the goal/sub-goal/task – also code what he/she is revisiting

in parenthesis, eg, revisit goal/subtask (looping)

3. Design (S) code when P draws, designs, and/or takes notes on the blank piece of paper;

also note what was drawn.

eg, P writes pseudo-code for creating arrays in the solution to a problem before writing the

computer code, code as design (create arrays pseudo-code)

read design (MC) code when P reads information from the piece of paper containing

his/her design, drawings, and/or notes; also note what was read from the design.

consider design (MC) code when P asks a question or makes a statement about his/her

design

eg, “”, could code: consider design

4. Write code (S) code when P writes code or mentions wanting to write code for the

solution,

eg, write code: - also code the details

using prior knowl (S) code whenever P searches memory for relevant prior knowledge or

makes statements that use his/her own prior knowledge either before performing a task

or during task performance, Note: this includes general statements about the code,

considering options for answer, self-questioning/explaining statements about one’s

answer, goals, sub-goals, code, etc., and low-level planning statements about operations

that are possible, postponed or intended – also code the low-level schemata.

eg 1, “I just want to make it initialized by just go up by one, but, um”, could code as

using prior knowl (initialize array to contiguous numbers using loop)

eg 2, “z sub i equals x sub i plus y sub i”, could code as using prior knowl (store product

of 2 arrays in 3
rd

 array)

eg 3, “We can either use a for loop or a while loop to initialize x and y”, could code as

using prior knowl (plan loop type)

need to learn (MC) code when P explicitly states needing to learn or find out more about a

particular topic OR when P asks a question & uses an external source of

information to answer, i.e. help-seeking behavior – also code the topic in parentheses if

unclear.

Note: If P asks a question regarding the problem statement, code this under consider

prob OR

If P asks his/herself a question without using an external source to answer the question,

do not code

eg, “what is the syntax for filling up an array?” [P uses the web to find out the syntax],

code as need to learn (array initialization syntax).

173

eg, “I really need to learn how to initialize arrays when I declare them”, code as need to

learn (array initialization at time of declaration).

recycle goal (MC) code whenever P reuses a goal or sub-goal in working memory. This

includes cutting, pasting, and editing code from one goal to answer another goal – also

code what he/she is recycling in parenthesis.

confidence (MC) code whenever P makes a clear high or low confidence statement about

his/her code or answer. These can include judgment of knowing and feeling of knowing

statements qualified by statements such as “If I remember…” – also code details in

parenthesis. Note: This does not include statements qualified by “I think”.

eg, “I know I should use a for loop, but I’m not good at for loops”, confidence (low re for

loop)

eg, “I use loops all the time, and I really know how to use for loops”, confidence (high re

knowl about for loops)

task difficulty (MC) code whenever P mentions the difficulty of some part of their task.

However, if P mentions the difficulty of part of the problem/question, code this under

consider prob,

eg, “this is the same thing I had trouble with a second ago”, code as task difficulty

learn syntax by guess/compile (MC) code whenever P makes statements about guessing

the computer syntax OR mentions intentions of using the compiler to determine

correctness. This includes statements such as “We’ll try it” and “we’ll let the compiler

catch it”.

eg, “probably easier to just test it out and see if, and see what works”, code as learn

syntax by guess/compile

eg, “We’ll find out later if it works”, code as learn syntax by guess/compile

5. Check/Detect (S & MC) code whenever P considers his/her answer or performs the act of

testing, validating, or detecting errors (or lack of) in the solution. eg, detect: - also code the

details

incremental testing/fixing (MC) code whenever P quickly tests or mentions the need to

test small pieces of code as they are added (by any of the methods below) Note: This

may include commenting out code to see what works OR incrementally fixing errors to

detect errors/re-check code

inspection: [own | ext source] (MC) code whenever P checks code via visual inspection

and compares it to own knowledge OR knowledge from an external source such as

another program, the internet, or a book, i.e. desk-checking. Note: Do not use this code

when detecting editor errors. This includes when P

• reads computer code he/she has written to check the code or detect errors; also

note what was read from the program OR

• is evaluating or considering whether some information (eg, a partial answer) is a

complete or correct answer OR

• quickly notices a logical error (other than typing or editor errors) and quickly

changes his/her answer.

174

eg, “Print the z’s, check. There, one more.” [P is reading coding and matching

parenthesis]; could code inspection: own (reading print statement & matching parens)

eg, P is scanning over his/her loop and evaluating whether the loop is correct or

complete; could code inspection: own (evaluating re loop)

eg, “Actually, it’s uh” [P changes loop from i<5 to i<4]; could code inspection: own

(loop stopping value)

mental execution (MC) code whenever P uses his/her own knowledge to execute existing

code mentally eg, “that equals one, then that will go to the

second thing in the list equals one, so everything in the list will equal one and then,”,

code as execute using knowl (predicting effects of code)

compile (S) code whenever P tests code via compiling it and inspecting the compiler error

messages

read compiler (MC) code when P explicitly reads information from the compiler; also

note what was read from the compiler.

consider compiler (MC) code when P asks a question or makes a statement about the

compiler message eg, “uh, for loop [referring to the error message given by the

compiler]”, could code: consider compiler (evaluate for loop as error)

execute using: [output | test-write] (S) code whenever P tests or mentions testing by

executing a compiled program and compares the actual and expected output OR uses

test-write-statements or a debugging application/environment to inspect internal

program data

eg, P executes code after successfully compiling; could code execute using: output

eg, P inserts a print statement to check the sum of array elements before taking the

square root of the sum, as specified in the problem; could code execute using: test-

write (print sum variable)

read output (MC) code when P explicitly reads information from the output after

executing a program; also note what was read.

consider output (MC) code when P asks a question or makes a statement about the

program output by comparing the output to expected output/goals

eg, “good, ok, just what I wanted [output from program x is printed with the values

1 - 10]”, could code: consider output (output matched expected)

6. Diagnose (S) code when P uses reasoning strategies to identify the cause of incorrect

output/error or internal data (eg, backtracking from output code that gave bad output to

prior code that provided data to the output code) OR uses statements identifying the

cause of an error without explicitly stating the reasoning,

eg. “I left out the include statement” [P automatically fixes error w/o inspecting], code as

diagnose:

inspection: [compiler mssg | prog output] (S) code whenever P checks code via visual

inspection and compares it to a compiler message or program output giving an error.

175

eg, P is scanning over his/her loop and determining the possible error by comparing the

code and a compiler message; could code inspection: compiler mssg (evaluating re

loop)

eg, P is scanning over his/her loop and determining the possible error by comparing the

code and the output that was incorrect; could code inspection: program output

(evaluating re print loop)

debug strategy: [backtracking | elimination | half split] (S) code when P uses a specific

approach for finding an error – also code any details about the strategy in parenthesis

eg, “The x and y variables have the correct value, so it must be the z variable causing

problems”, could code as debug strategy: elimination (narrow problem to z array)

hypothesize (MC) code when P poses possible questions and answers about the error

he/she is diagnosing – also code the details of the generated hypothesis(es) in

parenthesis

eg, “It might be the type of brackets I used in the array declaration causing the error”,

could code as diagnose: hypothesize (brackets in array creation)

7. Fix code: [correct | incorrect] (S) code whenever P changes code after detecting an error

using some of the above methods – also code whether the repair was correct/incorrect and

what was repaired in parenthesis

eg, [P deletes stdlib.h in program and adds stdio.h], could code as fix code: correct (change

stdlib.h to stdio.h library)

8. Use external source: [book | web | old prog | E] code in Col I whenever P uses an

external source of information to help with understanding the problem or answering the

problem. In addition, code where the information is coming from, i.e. book, internet, old

program, or E. Eg P uses the experimenter to help with a problem, code as using external

source: E. Note: if P is doing any of the following while using an external source of

information, code in Col H:

paraphrasing (MC) code whenever P summarizes the gist of some information coming

from E, the web, a book, or an old program. Note: if P summarizes part of the problem

or question, code this under consider prob

support (MC) code when P mentions that 2+ pieces of knowledge support or agree with

or confirm or provide evidence for each other– also code the 2 pieces of knowledge.

Note: this is a positive content evaluation.

 eg, P retrieves a potential piece of code from own knowledge but says she needs to

verify it; P searches and finds code in a book; then P enters this answer (or accepts

previously entered answer as ok). The verifying info in the book would be coded as

supporting the potential answer from own knowledge, using external info: book

(support: book verify own)

lack of support (MC) code when P mentions a contradiction or disagreement or lack of

support between 2 or more pieces of knowledge – also code the 2 pieces of knowledge.

Note: this is a negative evaluation

176

site credibility (MC) code whenever P refers to the credibility or believability or quality or

accuracy of the current external source of info, or mentions high or low confidence or

trust in the info.

177

Appendix O Participant 6 Level 2 Problem Behavior Graph

178

.-
--

-
e

rr
o

rs
 -

--
.-

--
u

s
e

 e
x

tr
n

l
s

rc
 -

--
.-

--
 m

is
c

o
n

c
e

p
ti

o
n

s
 -

--

s
6

 T
im

e
G

o
a

ls

m
c

o
g

:
 d

o
 n

e
x

t

g
o

a
l
in

/o
u

t
s

e
q

;

s
w

it
c

h
;

re
v

is
it

m
c

o
g

:

u
n

d
e

rs
ta

n
d

p
ro

b
le

m
/p

la
n

D
e

s
ig

n

(d
e

ta
il
s

)

W
ri

te
 C

o
d

e

h
ig

h
 l
o

w

(d
e

ta
il
s

)

m
c

o
g

:
 l
o

w

p
ri

o
r

k
n

o
w

l

C
h

e
c

k
-

D
e

te
c

t:

in
s

p
e

c
t

(m
c

o
g

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

il
e

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

e
x

e
c

u
te

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

a
re

(m
c

o
g

)

D
ia

g
n

o
s

e

(d
e

ta
il
s

)

F
ix

 C
o

d
e

(d
e

ta
il
s

)

a
n

s
w

e
r

a
c

ti
o

n
s

e
rr

o
r;

 d
e

te
c

te
d

;

fi
x

e
s

;
d

o
n

e
 f

ix
in

g
;

in
c

o
rr

e
c

t
d

e
te

c
t/

fi
x

(d
e

ta
il
s

)

U
s

e
 E

x
te

rn
a

l
S

o
u

rc
e

:

b
o

o
k

;
 e

x
p

;
o

ld
 p

ro
g

;

w
e

b

In
fo

 r
e

 w
ro

n
g

 a
n

s
 R

e
d

 =

c
o

m
p

le
te

ly
 w

ro
n

g

G

re
e

n
 =

p
a

rt
ia

ll
y

w
ro

n
g

 w
/
s
o

m
e

 r
ig

h
t

0
0

:3
2

.8
s
ta

rt

0
0

:4
8

.6
d

o
 n

e
xt

 g
o

a
l
in

 s
e

q

0
0

:5
2

.4
s
ta

rt
:
G

o
a

l
1

s
q

u
a

re
 r

o
o

t
in

p
ro

b
 n

e
e

d
s

m
a

th
.h

0
1

:1
6

.0

h
ig

h
 (

in
c
lu

d
e

m
a

th
 l
ib

)

0
1

:2
9

.0
in

c
lu

d
e

 s
yn

ta
x

0
1

:3
4

.4

h
ig

h
 (

in
c
lu

d
e

s
td

io
 l
ib

)

o
th

e
r

in
c
lu

d
e

fi
le

s

h
ig

h
 (

in
c
lu

d
e

s
td

io
 l
ib

)

0
1

:4
9

.0
in

s
p

e
c
t

e
va

lu
a

te

s
td

io
.h

 a
s

in
c
o

rr
e

c
t
a

n
d

u
s
e

 s
td

lib
.h

in
c
o

rr
e

c
t
d

e
te

c
tio

n

0
1

:5
1

.2

d
e

le
te

s

n
e

e
d

e
d

 l
ib

ra
ry

(s
td

io
.h

)
 a

d
d

s

u
n

n
e

e
d

e
d

lib
ra

ry

in
c
o

rr
e

c
t
fi
x/

e
rr

o
r

0
1

:5
8

.4

h
ig

h
 (

b
e

g
in

m
a

in

s
u

b
ro

u
tin

e
;
in

t

m
a

in
()

 {
)

p
a

ra
p

h
ra

s
in

g
,

th
re

e
 in

te
g

e
r

a
rr

a
ys

0
2

:0
5

.0
w

ri
te

 c
o

d
e

0
2

:1
8

.4
re

a
d

 p
ro

b
s
w

itc
h

0
2

:1
9

.2
s
ta

rt
:
G

o
a

l
2

a
rr

a
ys

0
2

:4
1

.6

w
h

a
t
to

 in
iti

a
liz

e

a
rr

a
ys

 t
o

e
xp

w
h

a
t
to

 in
iti

a
liz

e

a
rr

a
ys

 t
o

h
ig

h
 (

d
e

c
la

re

a
n

d
 in

it
x

&
 y

a
rr

a
y

a
t
s
a

m
e

tim
e

)

0
3

:0
6

.4
a

rr
a

ys

0
3

:1
9

.6

e
rr

o
r:

 d
o

e
s
n

't
a

d
d

s
e

n
tin

e
l
va

lu
e

 t
o

 x
 o

r

y
a

rr
a

y

0
3

:2
5

.8

z
 h

a
s
 t
h

e
 p

ro
d

u
c
t

o
f

x
a

n
d

 y

h
ig

h
 (

d
e

c
la

re

a
rr

a
y;

 in
t

z
[1

0
])

0
3

:4
2

.0
re

a
d

 p
ro

b

th
e

 p
u

rp
o

s
e

 o
f

n

m
c

o
g

:
g

o
a

ls
/r

e
c

o
g

n
iz

e
 s

c
h

e
m

a
.-

--
-

p
ro

g
ra

m
m

in
g

 s
tr

a
te

g
y

 s
c

h
e

m
a

/(
o

p
ti

o
n

a
l)

 m
c

o
g

:
s

tr
a

te
g

y
 -

--

179

.-
--

-
e

rr
o

rs
 -

--
.-

--
u

s
e

 e
x

tr
n

l
s

rc
 -

--
.-

--
 m

is
c

o
n

c
e

p
ti

o
n

s
 -

--

s
6

 T
im

e
G

o
a

ls

m
c

o
g

:
 d

o
 n

e
x

t

g
o

a
l
in

/o
u

t
s

e
q

;

s
w

it
c

h
;

re
v

is
it

m
c

o
g

:

u
n

d
e

rs
ta

n
d

p
ro

b
le

m
/p

la
n

D
e

s
ig

n

(d
e

ta
il
s

)

W
ri

te
 C

o
d

e

h
ig

h
 l
o

w

(d
e

ta
il
s

)

m
c

o
g

:
 l
o

w

p
ri

o
r

k
n

o
w

l

C
h

e
c

k
-

D
e

te
c

t:

in
s

p
e

c
t

(m
c

o
g

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

il
e

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

e
x

e
c

u
te

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

a
re

(m
c

o
g

)

D
ia

g
n

o
s

e

(d
e

ta
il
s

)

F
ix

 C
o

d
e

(d
e

ta
il
s

)

a
n

s
w

e
r

a
c

ti
o

n
s

e
rr

o
r;

 d
e

te
c

te
d

;

fi
x

e
s

;
d

o
n

e
 f

ix
in

g
;

in
c

o
rr

e
c

t
d

e
te

c
t/

fi
x

(d
e

ta
il
s

)

U
s

e
 E

x
te

rn
a

l
S

o
u

rc
e

:

b
o

o
k

;
 e

x
p

;
o

ld
 p

ro
g

;

w
e

b

In
fo

 r
e

 w
ro

n
g

 a
n

s
 R

e
d

 =

c
o

m
p

le
te

ly
 w

ro
n

g

G

re
e

n
 =

p
a

rt
ia

ll
y

w
ro

n
g

 w
/
s
o

m
e

 r
ig

h
t

m
c

o
g

:
g

o
a

ls
/r

e
c

o
g

n
iz

e
 s

c
h

e
m

a
.-

--
-

p
ro

g
ra

m
m

in
g

 s
tr

a
te

g
y

 s
c

h
e

m
a

/(
o

p
ti

o
n

a
l)

 m
c

o
g

:
s

tr
a

te
g

y
 -

--

0
4

:0
9

.0

p
u

t
it

in
 n

o
w

 &

la
te

r
ta

k
e

 o
u

t

h
ig

h
 (

d
e

c
la

re

n
 v

a
ri
a

b
le

)

0
4

:1
2

.0

h
ig

h
 (

in
it

n

va
ri
a

b
le

 t
o

n
u

m
b

e
r

o
f

a
c
tu

a
l

e
le

m
e

n
ts

)

0
4

:2
9

.2
d

o
 n

e
xt

 g
o

a
l
in

 s
e

q

0
4

:2
9

.4
s
ta

rt
:
G

o
a

l
3

lo
w

 (
a

vo
id

s

u
s
e

 o
f

fo
r

lo
o

p
s
)

0
4

:4
7

.4

h
ig

h
 (

n
e

e
d

c
o

u
n

te
r

fo
r

w
h

ile
)

0
4

:5
1

.4

h
ig

h
 (

w
h

ile

s
ta

te
m

e
n

t)

0
5

:0
1

.4
in

s
p

e
c
t

0
5

:0
1

.6

e
va

lu
a

te
 5

 a
s

w
ro

n
g

 a
n

d

c
h

a
n

g
e

 t
o

 4
in

c
o

rr
e

c
t
d

e
te

c
tio

n

o
n

ly
 m

u
lt
ip

lie
s

4
 o

f
5

 v
a

lu
e

s

in
 t
h

e
 a

rr
a

ys
e

rr
o

r

0
5

:0
4

.8

h
ig

h
 (

in
iti

a
liz

e

lo
o

p
 c

o
u

n
te

r;

a
rr

a
y

in
d

ic
e

s

s
ta

rt
 a

t
0

)

0
5

:2
1

.2

c
a

lc
u

la
tin

g

p
ro

d
u

c
t
o

f

a
rr

a
ys

0
5

:2
9

.0

h
ig

h
 (

z
[i]

 g
e

ts

x[
i]

tim
e

s
 y

[i]

fo
r

th
e

p
ro

d
u

c
t)

0
5

:4
7

.6

h
ig

h

(i
n

c
re

m
e

n
t

lo
o

p
 c

o
u

n
te

r

a
t
e

n
d

 o
f

lo
o

p
)

0
5

:5
1

.0

in
s
p

e
c
t

(c
o

d
e

 f
o

r

p
ro

d
u

c
t

lo
o

k
s
 o

k
)

0
5

:5
1

.8
d

o
 n

e
xt

 g
o

a
l
in

 s
e

q

0
5

:5
2

.4
s
ta

rt
:
G

o
a

l
4

0
6

:1
3

.8

h
ig

h
 (

u
s
e

a
n

o
th

e
r

w
h

ile
)

0
6

:1
8

.2

h
ig

h
 (

in
iti

a
liz

e

lo
o

p
 c

o
u

n
te

r;

a
rr

a
y

s
ta

rt
 a

t

0
)

0
6

:2
6

.4

lo
w

 (
w

h
ile

s
ta

te
m

e
n

t)

e
rr

o
r:

 o
n

ly
 p

ri
n

ts
 4

 o
f

5
 v

a
lu

e
s
 in

 t
h

e
 a

rr
a

ys

180

.-
--

-
e

rr
o

rs
 -

--
.-

--
u

s
e

 e
x

tr
n

l
s

rc
 -

--
.-

--
 m

is
c

o
n

c
e

p
ti

o
n

s
 -

--

s
6

 T
im

e
G

o
a

ls

m
c

o
g

:
 d

o
 n

e
x

t

g
o

a
l
in

/o
u

t
s

e
q

;

s
w

it
c

h
;

re
v

is
it

m
c

o
g

:

u
n

d
e

rs
ta

n
d

p
ro

b
le

m
/p

la
n

D
e

s
ig

n

(d
e

ta
il
s

)

W
ri

te
 C

o
d

e

h
ig

h
 l
o

w

(d
e

ta
il
s

)

m
c

o
g

:
 l
o

w

p
ri

o
r

k
n

o
w

l

C
h

e
c

k
-

D
e

te
c

t:

in
s

p
e

c
t

(m
c

o
g

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

il
e

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

e
x

e
c

u
te

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

a
re

(m
c

o
g

)

D
ia

g
n

o
s

e

(d
e

ta
il
s

)

F
ix

 C
o

d
e

(d
e

ta
il
s

)

a
n

s
w

e
r

a
c

ti
o

n
s

e
rr

o
r;

 d
e

te
c

te
d

;

fi
x

e
s

;
d

o
n

e
 f

ix
in

g
;

in
c

o
rr

e
c

t
d

e
te

c
t/

fi
x

(d
e

ta
il
s

)

U
s

e
 E

x
te

rn
a

l
S

o
u

rc
e

:

b
o

o
k

;
 e

x
p

;
o

ld
 p

ro
g

;

w
e

b

In
fo

 r
e

 w
ro

n
g

 a
n

s
 R

e
d

 =

c
o

m
p

le
te

ly
 w

ro
n

g

G

re
e

n
 =

p
a

rt
ia

ll
y

w
ro

n
g

 w
/
s
o

m
e

 r
ig

h
t

m
c

o
g

:
g

o
a

ls
/r

e
c

o
g

n
iz

e
 s

c
h

e
m

a
.-

--
-

p
ro

g
ra

m
m

in
g

 s
tr

a
te

g
y

 s
c

h
e

m
a

/(
o

p
ti

o
n

a
l)

 m
c

o
g

:
s

tr
a

te
g

y
 -

--

0
6

:3
8

.4

h
ig

h
 (

u
s
e

 t
e

xt

to
 id

e
n

tif
y

p
ri
n

te
d

n
u

m
b

e
rs

)

0
8

:1
3

.0

p
ri
n

t
h

e
a

d
e

r

in
s
id

e
 l
o

o
p

e
rr

o
r:

 p
ri
n

ts
 h

e
a

d
e

r

in
s
id

e
 l
o

o
p

0
8

:1
5

.8
s
w

itc
h

s
ta

rt
:
G

o
a

l
5

a
n

d
 6

re
a

d
 l
a

s
t
2

s
e

n
te

n
c
e

s

0
8

:2
8

.2

o
rd

e
r

o
f

p
ri
n

t
a

n
d

s
q

u
a

re
 r

o
o

t

0
9

:0
8

.4

h
ig

h
 (

p
ri
n

t

a
rr

a
y

va
lu

e
s
)

e
rr

o
r:

 in
c
o

rr
e

c
t
fp

ri
n

tf
,

le
a

ve
s
 o

ff
 f

0
9

:2
6

.0
re

vi
s
it

re
vi

s
it:

 G
o

a
l
4

s
yn

ta
x

fo
r

fp
ri
n

t
1

0
:1

9
.4

re
vi

s
it

re
vi

s
it:

 G
o

a
l
5

a
n

d
 6

h
ig

h
 (

u
s
e

s
q

u
a

re
 r

o
o

t

fu
n

c
tio

n
 a

n
d

p
ri
n

t
it)

1
0

:2
9

.2

h
ig

h
 (

u
s
e

s
q

u
a

re
 r

o
o

t

fu
n

c
tio

n
 a

n
d

p
ri
n

t
it)

e
rr

o
r:

 in
c
o

rr
e

c
t

s
q

u
a

re
 r

o
o

t
o

f

in
d

iv
id

u
a

l
ite

m
s
 in

 z
re

vi
s
it

re
vi

s
it:

 G
o

a
l
4

in
s
p

e
c
t

1
0

:4
5

.2

h
ig

h
 (

c
lo

s
e

p
a

re
n

s
 a

n
d

a
d

d
 n

e
w

lin
e

)

1
0

:5
5

.6
in

s
p

e
c
t

h
e

a
d

e
r

in

w
ro

n
g

 p
la

c
e

,

in
s
id

e
 l
o

o
p

d
e

te
c
te

d
:
h

e
a

d
e

r

in
s
id

e
 l
o

o
p

 e
rr

o
r

1
1

:4
9

.4

ta
k
e

 h
e

a
d

e
r

o
u

t
o

f
lo

o
p

e
rr

o
r:

 b
re

a
k
s
 u

p
 a

p
ri
n

t
s
ta

te
m

e
n

t
w

/
ta

b

1
1

:5
6

.6

p
u

t
h

e
a

d
e

r
a

t

to
p

 o
f

lo
o

p

fi
xe

s
:
h

e
a

d
e

r
in

s
id

e

lo
o

p
 e

rr
o

r

1
2

:0
4

.4

h
ig

h

(i
n

c
re

m
e

n
t

lo
o

p
 c

o
u

n
te

r

a
t
e

n
d

 o
f

lo
o

p
)

e
rr

o
r:

 l
e

a
ve

s
 o

ff

s
e

m
ic

o
lo

n

1
2

:1
6

.4
in

s
p

e
c
t

1
2

:2
1

.6
h

ig
h

 (
)

1
2

:2
6

.6

in
s
p

e
c
t

(c
h

e
c
k
in

g

th
a

t
b

ra
c
k
e

ts

{}
 m

a
tc

h
)

1
2

:4
7

.6
re

vi
s
it

1
2

:4
9

.4
re

vi
s
it:

 G
o

a
l
1

h
ig

h
 (

re
tu

rn

fr
o

m
 m

a
in

)

1
2

:5
7

.2

q
u

a
lit

y
o

f
th

e

p
ro

g
ra

m

1
3

:0
6

.6
c
o

m
p

ile

1
3

:1
5

.6
le

ft
 o

u
t
lib

d
e

te
c
te

d
:
lib

ra
ry

 e
rr

o
r

(l
e

ft
 o

u
t
s
td

io
.h

)

1
3

:2
5

.8
a

d
d

s
 s

td
io

.h
fi
xe

s
:
a

d
d

s
 l
ib

ra
ry

1
3

:4
4

.6
c
o

m
p

ile

181

.-
--

-
e

rr
o

rs
 -

--
.-

--
u

s
e

 e
x

tr
n

l
s

rc
 -

--
.-

--
 m

is
c

o
n

c
e

p
ti

o
n

s
 -

--

s
6

 T
im

e
G

o
a

ls

m
c

o
g

:
 d

o
 n

e
x

t

g
o

a
l
in

/o
u

t
s

e
q

;

s
w

it
c

h
;

re
v

is
it

m
c

o
g

:

u
n

d
e

rs
ta

n
d

p
ro

b
le

m
/p

la
n

D
e

s
ig

n

(d
e

ta
il
s

)

W
ri

te
 C

o
d

e

h
ig

h
 l
o

w

(d
e

ta
il
s

)

m
c

o
g

:
 l
o

w

p
ri

o
r

k
n

o
w

l

C
h

e
c

k
-

D
e

te
c

t:

in
s

p
e

c
t

(m
c

o
g

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

il
e

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

e
x

e
c

u
te

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

a
re

(m
c

o
g

)

D
ia

g
n

o
s

e

(d
e

ta
il
s

)

F
ix

 C
o

d
e

(d
e

ta
il
s

)

a
n

s
w

e
r

a
c

ti
o

n
s

e
rr

o
r;

 d
e

te
c

te
d

;

fi
x

e
s

;
d

o
n

e
 f

ix
in

g
;

in
c

o
rr

e
c

t
d

e
te

c
t/

fi
x

(d
e

ta
il
s

)

U
s

e
 E

x
te

rn
a

l
S

o
u

rc
e

:

b
o

o
k

;
 e

x
p

;
o

ld
 p

ro
g

;

w
e

b

In
fo

 r
e

 w
ro

n
g

 a
n

s
 R

e
d

 =

c
o

m
p

le
te

ly
 w

ro
n

g

G

re
e

n
 =

p
a

rt
ia

ll
y

w
ro

n
g

 w
/
s
o

m
e

 r
ig

h
t

m
c

o
g

:
g

o
a

ls
/r

e
c

o
g

n
iz

e
 s

c
h

e
m

a
.-

--
-

p
ro

g
ra

m
m

in
g

 s
tr

a
te

g
y

 s
c

h
e

m
a

/(
o

p
ti

o
n

a
l)

 m
c

o
g

:
s

tr
a

te
g

y
 -

--

1
4

:1
4

.4
o

n
 l
in

e
 2

6
 a

n
d

1
4

:2
4

.6

n
e

e
d

 t
o

b
a

c
k
s
p

a
c
e

d
e

te
c
te

d
:
p

ri
n

t

s
ta

te
m

e
n

t
o

n
 t
w

o

lin
e

s
 e

rr
o

r

1
4

:3
3

.0

p
ri
n

t

s
ta

te
m

e
n

t
o

n

tw
o

 l
in

e
s

fi
xe

s
:
p

ri
n

t
s
ta

te
m

e
n

t

o
n

 t
w

o
 l
in

e
s
 e

rr
o

r

1
4

:4
0

.2
in

s
p

e
c
t

1
5

:0
6

.4

c
o

m
p

ile

(l
e

s
s
 e

rr
o

rs

a
n

d
 e

rr
o

r

a
b

o
u

t
p

ri
n

t

s
tm

t)

1
5

:0
7

.4

le
ft

 o
u

t
f

o
n

p
ri
n

t
s
ta

te
m

e
n

t
d

e
te

c
te

d
:
fp

ri
n

tf
 e

rr
o

r

1
5

:2
1

.2
fp

ri
n

t
e

rr
o

r
fi
xe

s
:
fp

ri
n

f
e

rr
o

r

1
5

:2
4

.0

c
o

m
p

ile

(e
rr

o
r

o
n

 l
in

e

3
3

 &
 d

id
n

't

u
s
e

 n
)

1
5

:3
9

.8
d

id
n

't
u

s
e

 n

d
e

te
c
te

d
:
d

id
n

't
u

s
e

 n

&
 l
in

e
 3

3

1
6

:0
1

.2
d

e
le

te
 n

fi
xe

s
:
d

e
le

te
s
 n

va
ri
a

b
le

1
6

:0
5

.8

c
o

m
p

ile

(e
xp

e
c
te

d

s
e

m
ic

o
lo

n
)

1
6

:1
4

.2

m
is

s
in

g

s
e

m
ic

o
lo

n

d
e

te
c
te

d
:
m

is
s
in

g

s
e

m
ic

o
lo

n

1
6

:2
8

.4

a
d

d

s
e

m
ic

o
lo

n

fi
xe

s
:
a

d
d

e
d

s
e

m
ic

o
lo

n

1
6

:3
1

.6
c
o

m
p

ile

1
6

:3
5

.2

e
xe

c
u

te

(f
o

rm
a

tt
in

g

a
n

d
 s

q
u

a
re

ro
o

t
o

f

e
le

m
e

n
ts

)

1
7

:0
1

.2

e
xe

c
u

te

(c
h

e
c
k
 w

/

c
a

lu
la

to
r)

1
7

:5
2

.4

(o
n

ly
 f

o
rm

a
tt
in

g

e
rr

o
rs

)

1
7

:5
5

.0

e
rr

o
r:

 a
ll
 t
h

e
 c

o
d

e
 is

lin
e

d
 u

p
 o

n
 t
h

e
 l
e

ft

b
u

t
h

e
 is

 w
o

rr
ie

d

a
b

o
u

t
o

u
tp

u
t

fo
rm

a
tt
in

g
e

xp

1
7

:5
9

.4
c
o

m
p

a
re

1
8

:1
1

.0

(r
e

a
d

 p
ro

b
);

 (

a
ll

s
ta

tic
 n

o
t

d
yn

a
m

ic
 in

p
ro

b
le

m
)

c
o

m
p

a
re

in
s
p

e
c
t

re
a

d
 p

ro
b

d
o

 t
h

e
 f

a
s
te

s
t

re
a

d
 p

ro
b

c
o

m
p

a
re

re
a

d
 p

ro
b

w
ro

n
g

1
9

:4
0

.2
c
o

m
p

a
re

182

.-
--

-
e

rr
o

rs
 -

--
.-

--
u

s
e

 e
x

tr
n

l
s

rc
 -

--
.-

--
 m

is
c

o
n

c
e

p
ti

o
n

s
 -

--

s
6

 T
im

e
G

o
a

ls

m
c

o
g

:
 d

o
 n

e
x

t

g
o

a
l
in

/o
u

t
s

e
q

;

s
w

it
c

h
;

re
v

is
it

m
c

o
g

:

u
n

d
e

rs
ta

n
d

p
ro

b
le

m
/p

la
n

D
e

s
ig

n

(d
e

ta
il
s

)

W
ri

te
 C

o
d

e

h
ig

h
 l
o

w

(d
e

ta
il
s

)

m
c

o
g

:
 l
o

w

p
ri

o
r

k
n

o
w

l

C
h

e
c

k
-

D
e

te
c

t:

in
s

p
e

c
t

(m
c

o
g

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

il
e

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

e
x

e
c

u
te

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

a
re

(m
c

o
g

)

D
ia

g
n

o
s

e

(d
e

ta
il
s

)

F
ix

 C
o

d
e

(d
e

ta
il
s

)

a
n

s
w

e
r

a
c

ti
o

n
s

e
rr

o
r;

 d
e

te
c

te
d

;

fi
x

e
s

;
d

o
n

e
 f

ix
in

g
;

in
c

o
rr

e
c

t
d

e
te

c
t/

fi
x

(d
e

ta
il
s

)

U
s

e
 E

x
te

rn
a

l
S

o
u

rc
e

:

b
o

o
k

;
 e

x
p

;
o

ld
 p

ro
g

;

w
e

b

In
fo

 r
e

 w
ro

n
g

 a
n

s
 R

e
d

 =

c
o

m
p

le
te

ly
 w

ro
n

g

G

re
e

n
 =

p
a

rt
ia

ll
y

w
ro

n
g

 w
/
s
o

m
e

 r
ig

h
t

m
c

o
g

:
g

o
a

ls
/r

e
c

o
g

n
iz

e
 s

c
h

e
m

a
.-

--
-

p
ro

g
ra

m
m

in
g

 s
tr

a
te

g
y

 s
c

h
e

m
a

/(
o

p
ti

o
n

a
l)

 m
c

o
g

:
s

tr
a

te
g

y
 -

--

1
9

:4
2

.6

n
o

t
s
q

u
a

re
 r

o
o

t

o
f

e
a

c
h

 it
e

m
,

b
u

t
th

e
 s

u
m

 o
f

ite
m

s

d
e

te
c
te

d
:
s
q

u
a

re
 r

o
o

t

o
f

in
d

iv
id

u
a

l
ite

m
s
 in

z
1

9
:4

5
.4

re
vi

s
it

1
9

:4
5

.6
re

vi
s
it:

 G
o

a
l
5

d
e

le
te

 s
q

u
a

re

ro
o

t
o

f
e

a
c
h

e
le

m
e

n
t

2
0

:0
8

.8

d
e

le
te

 s
q

u
a

re

ro
o

t
o

f
e

a
c
h

e
le

m
e

n
t

fi
xe

s
:
d

e
le

te
 s

q
u

a
re

ro
o

t
o

f
e

a
c
h

 e
le

m
e

n
t

2
0

:1
2

.2

h
ig

h
 (

n
e

e
d

s
e

p
a

ra
te

 l
o

o
p

o
r

n
o

t)

e
rr

o
r:

 d
o

e
s
 n

o
t
d

e
le

te

th
e

 %
lf
 in

 p
ri
n

t

s
ta

te
m

e
n

t

2
0

:2
2

.2

h
ig

h
 (

u
s
e

a
n

o
th

e
r

lo
o

p
)

2
0

:2
3

.8

lo
w

 (
c
o

n
s
tr

u
c
t

w
h

ile
 l
o

o
p

)
re

vi
s
it

2
0

:2
8

.4
re

vi
s
it:

 G
o

a
l
2

h
ig

h
 (

n
e

e
d

 a

s
u

m
 v

a
ri
a

b
le

)

2
0

:3
5

.4

h
ig

h
 (

d
e

c
la

re

s
u

m
 v

a
r)

2
0

:3
9

.2
re

vi
s
it

2
0

:4
2

.6
re

vi
s
it:

 G
o

a
l
6

lo
w

 (
th

e
 n

e
e

d

fo
r

4
 a

s
 t
h

e

lo
o

p
 e

n
d

in
g

va
lu

e
)

e
rr

o
r:

 t
h

e
re

 a
re

 5

e
le

m
e

n
ts

 n
o

t
4

2
0

:4
8

.8

h
ig

h
 (

n
e

e
d

 t
o

re
in

iti
a

liz
e

 I
 f

o
r

w
h

ile
 l
o

o
p

)

2
0

:5
6

.0

h
ig

h
 (

o
p

e
n

w
h

ile
 s

tm
t)

2
1

:0
3

.8

h
ig

h

(c
a

lc
u

la
te

 t
h

e

s
u

m
 o

f
va

lu
e

s

in
 z

 a
rr

a
y)

2
1

:1
9

.4
in

s
p

e
c
t

2
1

:2
2

.6

lo
w

 (
c
lo

s
e

w
h

ile
 s

tm
t
w

/o

in
c
re

m
e

n
tin

g

lo
o

p
 c

o
u

n
te

r)

e
rr

o
r:

 d
o

e
s
 n

o
t

in
c
re

m
e

n
t
th

e
 l
o

o
p

c
o

u
n

te
r

re
vi

s
it

2
1

:2
5

.0
re

vi
s
it:

 G
o

a
l
2

h
ig

h
 (

n
e

e
d

 t
o

in
iti

a
liz

e
 s

u
m

to
 z

e
ro

)

2
1

:2
8

.6
in

s
p

e
c
t

2
1

:4
0

.0
re

vi
s
it

2
1

:4
1

.6
re

vi
s
it:

 G
o

a
l
6

h
ig

h

(c
o

n
s
tr

u
c
t
a

p
ri
n

t

s
ta

te
m

e
n

t)
2

1
:5

5
.8

re
vi

s
it

2
1

:5
6

.6
re

vi
s
it:

 G
o

a
l
5

h
ig

h
 (

u
s
e

s
q

u
a

re
 r

o
o

t

fu
n

c
tio

n
)

e
rr

o
r:

 s
q

u
a

re
 r

o
o

t

fu
n

c
tio

n
 is

 c
a

p
ita

l
2

1
:5

9
.0

re
vi

s
it

2
2

:0
1

.4
re

vi
s
it:

 G
o

a
l
6

in
s
p

e
c
t

183

.-
--

-
e

rr
o

rs
 -

--
.-

--
u

s
e

 e
x

tr
n

l
s

rc
 -

--
.-

--
 m

is
c

o
n

c
e

p
ti

o
n

s
 -

--

s
6

 T
im

e
G

o
a

ls

m
c

o
g

:
 d

o
 n

e
x

t

g
o

a
l
in

/o
u

t
s

e
q

;

s
w

it
c

h
;

re
v

is
it

m
c

o
g

:

u
n

d
e

rs
ta

n
d

p
ro

b
le

m
/p

la
n

D
e

s
ig

n

(d
e

ta
il
s

)

W
ri

te
 C

o
d

e

h
ig

h
 l
o

w

(d
e

ta
il
s

)

m
c

o
g

:
 l
o

w

p
ri

o
r

k
n

o
w

l

C
h

e
c

k
-

D
e

te
c

t:

in
s

p
e

c
t

(m
c

o
g

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

il
e

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

e
x

e
c

u
te

(d
e

ta
il
s

)

C
h

e
c

k
-

D
e

te
c

t:

c
o

m
p

a
re

(m
c

o
g

)

D
ia

g
n

o
s

e

(d
e

ta
il
s

)

F
ix

 C
o

d
e

(d
e

ta
il
s

)

a
n

s
w

e
r

a
c

ti
o

n
s

e
rr

o
r;

 d
e

te
c

te
d

;

fi
x

e
s

;
d

o
n

e
 f

ix
in

g
;

in
c

o
rr

e
c

t
d

e
te

c
t/

fi
x

(d
e

ta
il
s

)

U
s

e
 E

x
te

rn
a

l
S

o
u

rc
e

:

b
o

o
k

;
 e

x
p

;
o

ld
 p

ro
g

;

w
e

b

In
fo

 r
e

 w
ro

n
g

 a
n

s
 R

e
d

 =

c
o

m
p

le
te

ly
 w

ro
n

g

G

re
e

n
 =

p
a

rt
ia

ll
y

w
ro

n
g

 w
/
s
o

m
e

 r
ig

h
t

m
c

o
g

:
g

o
a

ls
/r

e
c

o
g

n
iz

e
 s

c
h

e
m

a
.-

--
-

p
ro

g
ra

m
m

in
g

 s
tr

a
te

g
y

 s
c

h
e

m
a

/(
o

p
ti

o
n

a
l)

 m
c

o
g

:
s

tr
a

te
g

y
 -

--

h
ig

h
 (

fi
n

is
h

p
ri
n

t

s
ta

te
m

e
n

t)

2
2

:1
2

.8
c
o

m
p

ile

2
2

:4
4

.4

lo
o

k
in

g
 f

o
r

lin
e

s
 f

ro
m

c
o

m
p

ile
r

2
2

:5
2

.8

to
o

k
 o

u
t
a

rg
 s

o

n
e

e
d

 t
o

 t
a

k
e

o
u

t
th

e

fo
rm

a
tt
in

g
 f

o
r

it

d
e

te
c
te

d
:
%

lf
 in

 p
ri
n

t

s
ta

te
m

e
n

t
fo

r
a

rr
a

ys

2
2

:5
8

.0

p
ri
n

t
s
tm

t
fo

r

a
rr

a
ys

fi
xe

s
:
p

ri
n

t
s
ta

te
m

e
n

t

fo
r

a
rr

a
ys

2
3

:0
1

.8

c
a

p
iti

a
l
S

 u
s
e

d

in
 s

q
u

a
re

 r
o

o
t

d
e

te
c
te

d
:
s
q

u
a

re
 r

o
o

t

fu
n

c
tio

n

2
3

:0
4

.4

s
q

u
a

re
 r

o
o

t

fu
n

c
tio

n

fi
xe

s
:
s
q

u
a

re
 r

o
o

t

fu
n

c
tio

n

2
3

:0
7

.6
c
o

m
p

ile

2
3

:0
9

.8

e
xe

c
u

te
 (

n
o

p
ri
n

t
o

f

s
q

u
a

re
 r

o
o

t)

2
3

:2
7

.8
e

n
d

le
s
s
 l
o

o
p

2
3

:3
6

.6

d
id

n
't

in
c
re

m
e

n
t
i

d
e

te
c
te

d
:
d

id
 n

o
t

in
c
re

m
e

n
t
lo

o
p

c
o

u
n

te
r

2
3

:3
8

.6
in

c
re

m
e

n
t
i

2
3

:4
0

.8
in

s
p

e
c
t

2
3

:4
5

.0

fi
n

is
h

in
c
re

m
e

n
tin

g
 i

fi
xe

s
:
in

c
re

m
e

n
t
lo

o
p

c
o

u
n

te
r

2
3

:5
1

.2
c
o

m
p

ile

2
3

:5
3

.4
e

xe
c
u

te

2
4

:0
5

.0

e
xe

c
u

te

(c
h

e
c
k

o
u

tp
u

t
to

c
a

lc
u

la
to

r)

2
4

:4
5

.4
c
o

m
p

a
re

2
4

:5
1

.0
re

a
d

 p
ro

b

c
o

m
p

a
re

w
h

a
t
a

b
o

u
t

u
n

e
ve

n
 a

rr
a

ys

e
xp

a
rr

a
ys

 a
lw

a
ys

e
ve

n

2
6

:4
6

.6
c
o

m
p

a
re

184

Appendix P Participant 6 Level 3 Model Results

185

Design
Write
Code

Check-
Detect

Diagnose
Fix
Code

00:48.6
do next goal

in seq

00:52.4

square root

in prob

needs

math.h

01:16.0
high (include

math lib)

01:29.0
include

syntax

01:34.4
other

include files

high (include

stdio lib)

01:49.0 inspect

evaluate stdio.h as

incorrect and use

stdlib.h

01:51.2

needed library

(stdio.h) adds

unneeded

library

01:54.6

01:58.4

high (begin

main

subroutine;

int main() {)

paraphrasin

g, three

integer

arrays

02:05.0 write code

02:18.4 read prob

switch

02:19.2 arrays

02:41.6
what to

initialize

arrays to

exp

what to

initialize

arrays to

high (declare

and init x & y

array at same

time)

03:06.4 arrays

03:19.6

03:25.8
z has the

product of x

and y

high (declare

array; int

z[10])

03:42.0 read prob

the purpose

of n

04:09.0
put it in now

& later take

out

high (declare

n variable)

04:12.0

high (init n

variable to

number of

actual

elements)

04:29.2
do next goal

in seq

04:29.4
low (avoids

use of for

loops)

04:47.4
high (need

counter for

while)

04:51.4
high (while

statement)

05:01.4 inspect

05:01.6
evaluate 5 as wrong

and change to 4

only multiplies

4 of 5 values

in the arrays

05:04.8

high (initialize

loop counter;

array indices

start at 0)

05:21.2
calculating

product of

arrays

05:29.0

high (z[i] gets

x[i] times y[i]

for the

product)

05:47.6

(increment

loop counter

at end of

loop)

05:51.0
inspect (code

for product

looks ok)

05:51.8
do next goal

in seq

05:52.4

06:13.8
high (use

another

while)

06:18.2

high (initialize

loop counter;

array start at

0)

06:26.4
low (while

statement)

06:38.4

high (use text

to identify

printed

numbers)

08:13.0
print

header

inside loop

08:15.8 switch

read last 2

sentences

08:28.2
order of

print and

square root

09:08.4
high (print

array values)

09:26.0 revisit

syntax for

fprint

10:19.4 revisit

high (use

square root

function and

print it)

10:29.2

high (use

square root

function and

print it)

revisit

inspect

 S6
Extnl

Src

Strategies/SchemataMetacognition
Control

Processes
Monitor

Processes

186

Design
Write
Code

Check-
Detect

Diagnose
Fix
Code

 S6
Extnl

Src

Strategies/SchemataMetacognition
Control

Processes
Monitor

Processes

10:45.2
high (close

parens and

add newline)

10:55.6 inspect

header in wrong place,

inside loop

11:49.4
take header

out of loop

11:56.6
put header at

top of loop

12:04.4

(increment

loop counter

at end of

loop)

12:16.4 inspect

12:21.6 high ()

12:26.6

inspect

(checking that

brackets {}

match)

12:47.6 revisit

12:49.4
high (return

from main)

12:57.2
quality of

the

program

13:06.6 compile

13:15.6 left out lib

13:25.8 adds stdio.h

13:44.6 compile

14:14.4 on line 26 and

14:24.6 need to backspace

14:33.0
print statement

on two lines

14:40.2 inspect

15:06.4
compile (less

errors and error

about print stmt)

15:07.4
left out f on print

statement

15:21.2 fprint error

15:24.0
compile (error

on line 33 &

didn't use n)

15:39.8 didn't use n

16:01.2 delete n

16:05.8
compile

(expected

semicolon)

16:14.2 missing semicolon

16:28.4 add semicolon

16:31.6 compile

16:35.2

execute

(formatting and

square root of

elements)

17:01.2
execute (check

w/ calulator)

17:52.4 (only formatting errors)

17:55.0 exp

17:59.4 compare

18:11.0

(read prob);

(all static

not dynamic

in problem)

compare

inspect

read prob

do the

fastest

read prob

compare

read prob wrong

19:40.2 compare

19:42.6
not square root of each

item, but the sum of

items

19:45.4 revisit

19:45.6
delete square

root of each

element

20:08.8
delete square

root of each

element

20:12.2
high (need

separate loop

or not)

20:22.2
high (use

another loop)

20:23.8
low

(construct

while loop)

revisit

20:28.4
high (need a

sum variable)

20:35.4
high (declare

sum var)

20:39.2 revisit

20:42.6

low (the need

for 4 as the

loop ending

value)

20:48.8
high (need to

reinitialize I

for while loop)

20:56.0
high (open

while stmt)

21:03.8

high

(calculate the

sum of values

in z array)

21:19.4 inspect

21:22.6

low (close

while stmt w/o

incrementing

loop counter)

revisit

187

Design
Write
Code

Check-
Detect

Diagnose
Fix
Code

 S6
Extnl

Src

Strategies/SchemataMetacognition
Control

Processes
Monitor

Processes

21:25.0
high (need to

initialize sum

to zero)

21:28.6 inspect

21:40.0 revisit

21:41.6

high

(construct a

print

statement)

21:55.8 revisit

21:56.6
high (use

square root

function)

21:59.0 revisit

22:01.4 inspect

high (finish

print

statement)

22:12.8 compile

22:44.4
looking for lines from

compiler

22:52.8
took out arg so need to

take out the formatting

for it

22:58.0
print stmt for

arrays

23:01.8
capitial S used in

square root

23:04.4
square root

function

23:07.6 compile

23:09.8
execute (no

print of square

root)

23:27.8 endless loop

23:36.6 didn't increment i

23:38.6 increment i

23:40.8 inspect

23:45.0
finish

incrementing i

23:51.2 compile

23:53.4 execute

24:05.0
execute (check

output to

calculator)

24:45.4 compare

24:51.0 read prob

compare

what about

uneven

arrays

exp

arrays

always

even

compare

26:46.6 finish

188

Appendix Q Raw Observations & Off-line Interviews with

11 Participants

Subject #1 102 Student He used design on paper first, then found a program that he

had written that somewhat matched what he wanted to do, but he got himself stuck by going that

direction. Next, he went in a different direction, and wondered if he needed two loops. He then

abandoned that idea and tried compiling the program, but couldn’t figure out the errors. He knew

the error was on line 9, where the for loop was; so he used the web to review for loops. He saw that

the logic behind his for loop was wrong, so he tried fixing that, and then still failed. Now he goes

back to original idea, and get the thing to compile. However, now he is stumped by the output! At

this point it has been 45 minutes...

Subject #2 102 Student No design on paper at any point. He tried to find an array

program in his directory, but then went to google to remember how to do an array. Began writing

the program, but didn’t follow the syntax given in the google example! Continues to write code, and

looks up for loops in google to construct that. He never initializes the sum variable that he uses w/o

a value (he better be glad that it was automatically initialized to zero!). Then he goes to the second

part of the question, the square root stuff, w/o compiling, running, testing the first bit of code!!!

(this is a good reason to keep this in here). After it doesn’t compile, he comments out the square

root stuff and works on the first part. Uses google to analyze the arrays again, then changes the

declaration, but doesn’t understand what he is really doing because what he codes doesn’t match

what he is saying. Once it gives output, he assumes it works correctly! Then he focuses on the

square root, but doesn’t work because gcc can’t find math.h. I ask if he wants to use a different

compiler, and he says that he can’t because gcc gives him warnings and error messages! This is

when we stopped at 45 minutes...!

Subject #3 102 Student He began by re-reading the problem statement (which they all

did). He wrote the variables he was interested in capturing on paper before coding. Then he went

to coding. Began with writing comments (the first to do that!), and declares x and y arrays, but

the first to think about room for a sentinel value. Thinks about portability and asking a user vs.

hard-coding the elements of the array; however, he hard-codes the n vs. using the sentinel value to

find the n, which would make it way more portable. Then he considers a while versus a for loop

and chooses a while loop because some flaw in thinking about conditionals and for loops. Then

189

he wonders if he needs two/nested loops, but no. He also does the square root stuff before ever

compiling and running to make sure the first part is right. Debugging: He then uses other programs

to check on main syntax, doesn’t look up anything on the web and uses own work around knowledge

to get the arrays initialized and working, then realizes he doesn’t increment the variable in his while

loop (that he really should have been using a for loop!). His program worked and he did a good job,

minus some misconceptions. This is when we stopped at 45 minutes...!

In this example, he never tested the output with different input, but he did analyze the

output! He recognized the sentinel value and defined it as -1. Instead of finding the n value, which

would be more portable, he hard coded this value and made it harder to change, i.e. what is the

purpose of the sentinel value at this point.

Subject #4 212 Student He began by re-reading the problem. He opened up the terminal

and began coding. He declared three, x, y, and z, arrays to hold a max of 10 elements, and then

he initialized the x and y arrays to two elements (another who initialized the elements outside the

declaration, i.e. x[0]= and x[1]=.) But then it got interesting...

He decided not to use any loops because he said, ”it would take longer to construct for loops,

and since we are hard-coding the array values, then we can just write out the array multiplication

and printing.” Therefore, he decided to populate two elements in x and y, then he hard-coded the

two elements of z to equal x[]*y[]. Then of course he hard coded the print statements for both

elements rather than using a for loop... He compiles, fixes things, analyzes his two elements and the

first part of the problem, then goes to the second part. He hard-codes the sum of the two elements

in z and prints the square root. He compiles, executes, analyzes, and says he is done...

So, I ask him, ”what happens if he wants to test the array with 8 elements.” I proceeded to

tell him, ”I know that you said this was easy and you were only using two elements out of the 10,

but what happens if you do want to add add more elements and how much code would you have to

change.” He told me, ”Well, I am already in there to hard-code elements in the array, so I can just

add more code, cut and paste”.

At this point I got really discouraged and stopped recording b/c the ”verbal protocol” isn’t

about changing the student’s mind! After I stopped recording and went into teacher mode, I asked,

”what happens if he wants to change his code to get input from the user or from a file?”, and he

answered, ”well, if this were for a class and a I had a few days, then I would make it more robust. I

would have created for loops and put the arithmetic and prints in loops.” I asked what he thought

190

the purpose of the sentinel value and n value where, and he replied, ”Oh yeah, I meant to look up

sentinel value. I didn’t know what that was, and then I got forgot about that and when I re-read

the problem I didn’t even see that.”

He never looked up anything on the web, book, or did any kind of design on paper.

After we stopped recording, he expressed his concerns about the raytracing application in

all his classes because he doesn’t feel he knows how to apply anything outside of raytracing. His

biggest concern seems to be with the data structures. I guess he feels like he isn’t getting a complete

view of cs, and he said several times that he thought graphics would be cool to do and study at age

10, but now that he is older he wants to know more about his options in cs.

Subject #5 102 Student The subject seemed to be having trouble understanding the

problem and what z should equal. It became evident when he started writing the program, but he

continued to re-read the problem to understand and analyze his solution.

He began by re-reading the problem. He opened up the terminal and began coding. He

declared an x and y array arrays with no maximum elements, and then he initialized the x and y

arrays at the time of declaration with three elements. Then he declares the n variable.

He uses a while loop to find n by counting the elements in x that are not equal to NULL.

Then he does this for y and sums the number of elements in x and y. He re-reads the problem, and

by the example given in the problem, he realizes he is wrong and corrects his program.

Then he uses a for loop to find elements in z, but he declares another variable to increment

through the arrays. He realizes he needs to declare z as he writes the statement to fill elements of z

in the loop. He uses ¡= in loop and populates one too many elements in z, which he never fixes.

He creates another for loop to print the three arrays, and declares another variable to

increment through arrays!!!

He compiled, figured out errors, re-compiled, until it ran correctly. Then, he worked on the

second part of the problem. Wondered if he could print the square root and do everything in the

loop above when he printed x, y, z, but he decided to create another for loop for the summation of

elements in z. Again, he declares yet another increment variable (he has run out of i, j, k, and now

he uses d)!!!!

He never designed on paper, and he was apprehensive of looking things up on the web at

first. Then, he ignored what it said because he assigned the value from sqrt to an integer.

He compiles, gets all the output, but never tests with different numbers or analyzes the

191

output.

He didn’t verbalize much (but he did talk more than the first subject), and his ethnicity

was Latin-American. After recording, he said that he was a little nervous and that might have made

him not do some things.

Interesting observation, but no one really uses ++ for incrementing by one.

Subject #6 102 Student He began by re-reading the problem, and then opened up his

terminal and began coding. He never wrote anything down on paper, and he never used an external

source of information. Instead, he would say things like, ”well, I know I should use a for loop, but I

don’t like for loops (laugh) So, I am just going to use whiles.”

He began his code by including math.h because of the square root function (most people

ignored this part of the problem until later).

When he goes to create his while loop, he decides to have an increment variable, i, and then

he decides to hard code the conditional value, instead of using the n value (which he also hard coded

instead of using a sentinel value to find the number of actual data values). He did use i++, which

no one else is using.

He creates another while loop to print the arrays, and then starts on the second part of the

problem. He wants to print and do the second part in the same loop where he prints so that he

doesn’t have to create another loop. He does this and takes the square root of each element in z

(which is not the problem). He compiles, fixes (however at one point he is looking for the wrong

thing, but corrects the right thing. The compiler said he was missing a ; before a , and then he

was looking for pairs???)... He re-compiles, executes, and he actually analyzes his output with a

calculator!! But, he doesn’t test with other data values. He acts like he is done, so I ask him if he

is, and he says, ”well, let me re-read the problem to make sure I am doing everything right.”

That is when he realized he did the second part of the problem wrong. Creates another

while loop to find the sum of the elements in z and takes the square root of the sum. However,

he has forgotten to put i++ in his while; so, when he compiles and runs it is in an infinite loop.

However, he fixes it, gets it running again with the right output. Whew....

In the interview after the recording, I find out that he doesn’t like for loops because he

knows several different programming languages and gets the syntax all wrong in C, and he already

knows while loops. I asked him that if he knew he should use a for loop and have access to books

and the internet, why wouldn’t you look it up? He shrugged his shoulders:)

192

I told him that kind of thinking will get him into trouble later:) I told him that it already

got him into trouble when he had the infinite loop b/c he forgot the i++ in his last while loop. If

he had of used the for loop, chances are that he wouldn’t have forgotten that because the syntax of

the for loop lends itself to remember: initialize, test, increment...

His metacognition was very high, i.e. he knew when he should and shouldn’t be doing

things but he has learned bad habits because he is self taught from 7th grade! Also, he has been my

youngest subject, 18.

Subject #7 212 Student Oh goodness, goodness, there is a pattern resurrecting itself!!!

Another student who said he knew he should use a for loop, but he doesn’t like them!!! So,

of course he wrote two while loops, and when he got himself into trouble with the second while he

used a for loop for the second part of the problem. (which he constructed and used just fine!) So,

now one question I have is ”why are they so scared of the for loop?” This is a metacognitive question

about confidence. Maybe they need more practice to become confident (and I would say the same

about arrays!!!).

Also, he too had issues with initializing his array. He wanted to do it separate from the

declaration, but wanted to initialize all elements in one line by setting the array name to the

values, i.e. x = 1, 2, 3; He didn’t understand why this didn’t work, so he moved the initialization

up to declaration (which many have done this orjust separated the elements, i.e. x[0]=1; x[1]=2;

x[2]=3;Yes, this is what you are supposed to do it, but I found out through these verbal protocols

that they don’t know why it doesn’t work and why what they did fixes it, i.e. schema isn’t fully

developed for arrays and their addressing.

He did look up arrays on the web but he got himself into a pickle when he didn’t realize he

was looking at C#, which I had noticed immediately and then had to tell him.

He again didn’t design or write anything down, and he did solve the problem incorrectly

because he also took the square root of each element in z and ignored the sum. I asked him once if

he was done and he re-read the problem and said, ”oh no, I think I need doubles because it doesn’t

say anything about the type.” So he fixed that, and then when I asked him again if he was done

he said yes. So, I said, ”ok, will you re-read the second part of the problem”.And then he realized

what he did wrong, but at this point it would just be watching him change his code a bit.

Subject #8 212 Student He did the best job so far, but I really had to remind him to

think out loud. He told me in the end that if the problem had been harder, then he would have

193

talked more.

Anyway, he still ignored the sentinel value. I think there have only been two people who

have accounted for the value.

He didn’t design or write anything down on paper, but he did solve the problem incremen-

tally and kept going back to the problem statement to check to make sure he was doing things right

and move forward to the next step.

He got as far as writing, whil, then backspaced and used nothing but for loops. He was the

first to populate the arrays using a loop, and used an n value for his loops, which was hard coded

and not found by the sentinel value. He got down to the end of his program and realized that he

forgot, int main() .

Of course I noticed it when he first started out, but I wondered why he noticed it way at

the end and w/o seeing the top of his program or compiling it. After the recording I asked this and

he told me because he is anal about indenting and he noticed all his for loops were all the way left

and they should be in a few spaces. I said that was interesting that he says that b/c I have always

thought programming requires attention to detail and a little anal retentiveness:)

He never looked anything up, and he seemed to be pretty bright. When asked about the

sentinel value, he did understand it but just forgot about it.

Subject #9 212 Student He begins by asking me what a sentinel value is (so he does

know what it means, but then never uses it). After the recording I asked why he didn’t use it, and

he said, ”oh yeah, well, I kind of forgot about it”. I told him that I thought that was interesting

because Dr. Gugerty (and the psych world) say that people tend to redesign the problem when

problem solving, and they do this for various reasons. It is fine if someone has thought long and

hard about the problem and redesigns it to more efficiently and effectively meet the goal. However,

it is something quite different when people redesign the problem to fit to their needs, and there are

many reasons for this!

Anyway, he starts by trying to find an old program with arrays, but it becomes too much

hassle, so he just recalls from memory. He populates his lists using a for loop, and gets very confused

about how to set the elements to 1, 2, 3, 4, etc. He finally declares another variable, j, that is used

to assign the values (still not sure why he didn’t use the i and n that he already has!). Oh yeah,

and he assigns all 10 values (not just a few to test with!).

However, I must say that he was the first to incrementally write, compile, and execute his

194

code as he programmed versus writing the whole thing (or most of it) and having lots of errors. I

encouraged this behavior at the end:)

The only other strange thing was that he fumbled for a while on how to sum the elements

in z, but then he finally got it.

He returned the square root to an integer variable, but he did notice that his answer was

rounded. However, he didn’t do anything about it, but that isn’t explicitly stated by the problem

either.

Subject #10 212 Student This was the first female participant. She began by adding

the whole main template with return statement, and then declared 3 arrays of size 10. She asks

about the total number of values in the arrays, and the experimenter tells her that she can choose

the number. She chooses 6 and sets n value, and uses a while loop to populate the x and y arrays

for 6 values. She considers NULL as a sentinel value, but then changes to use 0 as sentinel because

NULL is a character. However, she puts the sentinel at the last element rather than where the last

value is, i.e. x[6] and y[6]. Next, she determines that the arrays must be initialized to 0 before

populating them, or it will seg fault. This is not correct thinking! Because of this, she changes the

sentinel value to 15 for an unjustified reason because 15 could be a number in the array.

Consistently she uses the wrong variable for the index values in her while loops, but she

diagnoses and fixes these errors later. However, she writes the whole program before compiling or

debugging. She never uses the sentinel value and only uses while loops. She sums and prints array

elements that dont have values in them, and she doesnt change her loops to increment through 6

elements that she populated instead of all 10.

Throughout the verbal protocol and after, she expressed being burned out from writing a

ray tracing program. She never seemed to understand completely why she should not have used all

10 elements when only initializing 6 elements and needed another loop to initialize 10 elements to

zero before populating the arrays. The experimenter explain that a seg fault happens when accessing

an element that is not there, i.e. going outside memory which is why it sometimes changes when

more lines are added or subtracted from the program.

Subject #11 212 Student He began by rereading the problem. He ignores the sentinel

value in the problem, and he uses a for loop to populate all 10 elements in his arrays. He makes a

lot of syntax errors in his for loops such as commas instead of semicolons and switching the position

of the conditional statement and incrementing the index. However, he does find all these errors by

195

inspecting his code or compiling. He struggles with summing the elements in a loop, so he hard

codes summing the elements in z.

He overlooks the loop error where he increments before checking the condition several times,

even after compiling and recompiling, before the experimenter gave a hint about the where to look.

In addition, the experimenter reminds him to think about the compiler in order to remember to use

lm with the compiler, which he does remember unlike subject #2. He seems to make numerous little

errors, and he acts very confused and tired. He is the first one to not put any library files until the

end after compiler errors, and he doesnt compile until after writing the whole program. Like most

students, he doesnt change values to check his answer. He accepts his answer based on appearance.

After the verbal protocol, he expressed how tired he was from the ray tracing program that

#10 was tired from writing. He says that he knew how to sum the items in a loop, but just couldn’t

think of it because he was tired.

196

Bibliography

[1] P. Adey, M. Shayer, and C. Yates. Thinking science: Student and teachers materials for the
CASE Intervention. Nelson Thornes, London, 3rd edition, 2001.

[2] Esma Aimeur, Claude Frasson, and Michel Lalonde. The role of conflicts in the learning
process. SIGCUE Outlook, 27(2):12–27, 2001.

[3] Shereef Abu Al-Maati and Abdul Aziz Boujarwah. Literate software development. Journal
for Computing Sciences in Colleges, 18(2):278–289, December 2002.

[4] Brenda Allen and Eleanor Armour-Thomas. Construct validation of metacognition. The
Journal of Psychology, 127(2):203–211, 1991.

[5] Vicki L. Almstrum, Peter B. Henderson, Valerie Harvey, Cinda Heeren, William Marion,
Charles Riedesel, Leen-Kiat Soh, and Allison Elliott Tew. Concept inventories in computer
science for the topic discrete mathematics. SIGCSE Bull., 38(4):132–145, 2006.

[6] Vicki L. Almstrum, David Klappholz, Steven Condly, and John Clement. Are they learning
what (we think) we’re teaching? In SIGCSE ’06: Proceedings of the 37th SIGCSE technical
symposium on Computer science education, pages 195–195, Houston, Texas, USA, March 2006.
ACM Press.

[7] J. Anderson. The Architecture of Cognition. Harvard University Press., Cambridge, MA, 1983.

[8] John R. Anderson, James G. Greeno, and Paul J. Kline. Acquisition of Problem-Solving Skills,
chapter 6, pages 191–230. Lawrence Erlbaum Associates, Inc, Hillsdale, N.J., 1981.

[9] L. W. Anderson and D. R. Krathwohl. A taxonomy for learning, teaching and assessing: A
revision of Bloom’s Taxonomy of educational objectives: Complete edition. Longman, New
York, 2001.

[10] Anonymous. An update on learning styles/cognitive styles research. The Teaching Professor,
19(1):3, January 2005.

[11] Eleanor Armour-Thomas and Norris M Haynes. Assessment of metacognition in problem
solving. Journal of Instructional Psychology, 15(3):87–93, September 1988.

[12] Karina V. Assiter. Accessibility of analysis of algorithms: From programming to problem
solving. Journal for Computing Sciences in Colleges, 21(2):185–194, December 2005.

[13] David P. Ausubel. Educational psychology; a cognitive view. Holt, Rinehart and Winston,
New York, 1968.

[14] Roger Azevedo, John T. Guthrie, and Diane Seibert. The role of self-regulated learning in
fostering students’ conceptual understanding of complex systems with hypermedia. Journal
for Educational Computing Research, 30(1 & 2):87–111, 2004.

197

[15] L. Baker and A. L. Brown. Metacognition skills and reading, pages 353–394. Longmans, Green,
New York, 1984.

[16] Sir Frederic Bartlett. Thinking: An Experimental and Social Study. Basic Books, Inc, New
York, 1958.

[17] Sir Frederic C. Bartlett. Remembering: A study in experimental and social psychology. The
University Press, Cambridge, MA, 1932.

[18] Jonathan Baxter. A bayesian/information theoretic model of bias learning. In COLT ’96:
Proceedings of the ninth annual conference on Computational learning theory, pages 77–88,
New York, NY, USA, June 1996. ACM Press.

[19] Beryl Lieff Benderly. Every day intuition. Psychology Today, 23(9):35–39, September 1989.

[20] B. S. Bloom and Lois J. Broder. Problem-solving Processes of College Students: Ana Ex-
ploratory Investigation. The University of Chicago Press, 1950.

[21] B. S. Bloom and D. R. Krathwohl. Taxonomy of educational objectives: The classification of
educational goals, by a committee of college and university examiners. Handbook 1: Cognitive
domain. David McKay Company, Inc., New York, 1956.

[22] Toni L. Blum and Wayne J. Staats. The assessment of cognitive skills for computer science
education. Technical report, 29th ASEE/IEEE Frontiers in Education Conference, San Juan,
Puerto Rico, November 1999.

[23] National Science Board. Higher Education in Science and Engineering, chapter 2, pages 1–39.
National Science Foundation, http://www.nsf.gov/statistics/seind06/pdf/c02.pdf, 2006.

[24] George M. Bodner. Constructivism: A theory of knowledge. Journal of Chemical Education,
63(10):873–878, October 1986.

[25] Grady Booch. Object-oriented Analysis and Design. Benjamin/Cummings, Redwood Cita,
CA, 2nd edition, 1994.

[26] M. Bower. A taxonomy of task types in computing. In Proceedings of the 13th Annual
Conference on innovation and Technology in Computer Science Education, June 2008.

[27] John D. Bransford and Barry S. Stein. The Ideal Problem Solver. W. H. Freeman and Company,
New York, 2nd edition, 1993.

[28] Grant Braught, Craig S. Miller, and David Reed. Core empirical concepts and skills for
computer science. SIGCSE 2004, pages 245–249, March 2004.

[29] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Computing with Production
Systems, chapter 1, pages 3–31. Addison-Wesley Publishing Co., Inc, 1985.

[30] Jerome S. Bruner. Readiness for Learning, chapter 23, pages 413–425. Harvard University
Press, Cambridge, MA, 1960.

[31] Jerome S. Bruner. Beyond the information given; studies in the psychology of knowing. Norton,
New York, 1973.

[32] Jerome S. Bruner. Acts of meaning. Harvard University Press, Cambridge, MA, 1990.

[33] Patricia F. Campbell and George P. McCabe. Predicting the success of freshman in a computer
science major. Communications of the ACM, 27(11):1108–1113, November 1984.

198

[34] Zhengxin Chen. Building expert systems through the integration of mental models. ACM,
pages 754–761, 1988.

[35] Perry C. Cheng, Danny Kilis, and Graeme Knight. Knowledge assessment using fuzzy con-
ceptual representation. In SAC ’97: Proceedings of the 1997 ACM symposium on Applied
computing, pages 3–9, New York, NY, USA, 1997. ACM Press.

[36] Michelene T. Chi, Paul J. Feltovich, and Robert Glaser. Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5:121–152, 1981.

[37] D. Chinn, C. Spencer, and K. Martin. Problem solving and student performance in data struc-
tures and algorithms. In Proceedings of the 12th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, June 2007.

[38] Ashraful A. Chowdhury, C. Van Nelson, Clinton P. Fuelling, and Roy L. McCormick. Predict-
ing success of a beginning computer course using logistic regression (abstract only). In CSC
’87: Proceedings of the 15th annual conference on Computer Science, page 449, New York,
NY, USA, 1987. ACM Press.

[39] Chris. Reasoning: Mental Models. Mixing Memory,
http://mixingmemory.blogspot.com/2004/12/reasoning-mental-models.html, December
19 1994.

[40] Michael J. Clancy and Marcia C. Linn. Patterns and pedagogy. SIGCSE 1999, March 1999.

[41] John Clement. Students’ preconceptions in introductory mechanics. American Journal of
Physics, 50:66–71, 1982.

[42] John Clement. A Conceptual Model Discussed by Galileo and Used Intuitively by Physics
Students., chapter 14, pages 325 – 340. L. Erlbaum Associates, 1983.

[43] John M. Clement. A call for action (research): Applying science education research to com-
puter science instruction. Computer Science Education, 14(4):343–364, 2004.

[44] Douglas H. Clements. Effects of logo and cai environments on cognition and creativity. Journal
of Educational Psychology, 78:309–318, 1986.

[45] Douglas H. Clements and Bonnie K. Nastasi. Measurement of metacomponential processing
in young children. Psychology in the Schools, 24(4):315–322, 1987.

[46] Andrew M. Colman. A Dictionary of Psychology. Oxford University Press,
http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t87.e7017, 2nd
edition, 2006.

[47] Andrew M. Colman. A Dictionary of Psychology: constructivism. Oxford University Press,
http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t87.e1823,
2006.

[48] Jack Copeland. Turing’s o-machines, penrose, searle, and the brain. Analysis, pages 128–138,
1998.

[49] John Corcoran. Schema. Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/schema/, May 2004.

[50] National Research Council. How People Learn: Brain, Mind, Experience, and School. National
Academy Press, Washington, 2000.

199

[51] National Research Council. Knowing what Student Know: The Science and Design of Educa-
tional Assessment. National Academy Press, Washington, September 2001.

[52] National Research Council. Evaluating and Improving Undergraduate Education: In Science,
Technology, Engineering, and Mathematics. The National Academies Press, Washington, D.C.,
2003.

[53] K. J. W. Craik. The Nature of Explanation. Cambridge University Press, 1943.

[54] Donald W. Dearholt and Roger W. Schvaneveldt. Pathfinder Associative Networks: Studies
in Knowledge Organization. Ablex Publishing Corporation, 1990.

[55] Peter J. Denning. A debate on teaching computing science. Communications of the ACM,
32(12):1397–1414, December 1989.

[56] Dr. Robert B.K. Dewar and Dr. Edmond Schonberg. Computer science education: Where are
the software engineers of tomorrow? CrossTalk: The Journal of Defense Software Engineering,
21(1):28–30, January 2008.

[57] J. Dewey. How we think. DC Heath and Company, Boston, MA, 1910.

[58] Linda P. DuHadway, Stephen W. Clyde, Mimi M. Recker, and Donald H. Cooley. A concept-
first approach for an introductory computer science course. Journal for Computing Sciences
in Colleges, 18(2):6–16, 2002.

[59] F. T. Durso, K. Rawson, and S. Girotto. Comprehension and situation awareness, chapter 7,
pages 163–193. Wiley, 2nd edition, 2007.

[60] Caroline Brayer Ebby. The powers and pitfalls of algorithmic knowledge: a case study. Journal
of Mathematical Behavior, 24:73–87, 2005.

[61] Aaron Enright, MaryAnn Robbert, Randall Stafford, Kathryn Wilkens, and Linda Wilkens.
Staying in sync with industry needs. Journal for Computing Sciences in Colleges, 15(5):32–35,
May 2000.

[62] K. A. Ericsson and H. A. Simon. Protocol Analysis: Verbal Reports as Data. MIT Press,
Cambridge, MA, 1993.

[63] S. Fitzgerald, B. Simon, and L. Thomas. Strategies that students use to trace code: an analysis
based in grounded theory. In ICER ’05: Proceedings of the first international workshop on
Computing education research, pages 69–80, New York, NY, USA, October 2005. ACM.

[64] J. H. Flavell. Metacognitive Aspects of Problem Solving, pages 231–235. Lawrence Erlbaum
Associates, Inc, New Jersey, 1976.

[65] J. H. Flavell. Metacognition and cognitive monitoring: A new area of cognitive-developmental
inquiry. American Psychologist, 34(10):906–911, October 1979.

[66] J. H. Flavell. Cognitive Development. Prentice Hall, Englewood Cliffs, NJ, 1985.

[67] K. J. Ford, N. Schmitt, S. L. Schechtman, B. M. Hults, and M. L. Doherty. Process tracing
methods: Contributions, problems, and neglected research questions. Organizational Behavior
and Human Decision Processes, 43:75–117, 1989.

[68] Rob Foshay and Jamie Kirkley. Principles for Teaching Problem Solving: Technical Paper 4.
PLATO Learning, Inc., 2003.

200

[69] Norman Frederiksen, Robert J. Mislevy, and Isaac I. Bejar. Test theory for a new generation
of tests. L. Erlbaum Associates, Hillsdale, N.J., 1993.

[70] LiMin Fu. Knowledge discovery based on neural networks. Communications of the ACM,
42(11):47–50, 1999.

[71] U. Fuller, C. G. Johnson, T. Ahoniemi, D. Cukierman, I. Hernán-Losada, J. Jackova, E. Lahti-
nen, T. L. Lewis, D. M. Thompson, C. Riedesel, and E. Thompson. Developing a computer
science-specific learning taxonomy. SIGCSE Bulletin, 39(4):152–170, December 2007.

[72] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patters: Elements
of Reusable Object Oriented Software. Addison-Wesley Publishing Co., Inc, 1995.

[73] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

[74] J. Paul Gibson and Jackie O’Kelly. Software engineering as a model of understanding for
learning and problem solving. In ICER ’05: Proceedings of the 2005 international workshop
on Computing education research, pages 87–97, Seattle, WA, USA, October 2005. ACM Press.

[75] Jay N. Giedd, Jonathan Blumenthal, Neal O. Jeffries, F. X. Castellanos, Hong Liu, Alex
Zijdenbos, Tomás caron Paus, Alan C. Evans, and Judith L. Rapoport. Brain development
during childhood and adolescence: a longitudinal mri study. Nature Neuroscience, 2:861–863,
1999.

[76] Gerd Gigerenzer. Calculated Risks: How to know when numbers deceive you. Simon & Schuster,
New York, 2002.

[77] Will D. Gillett and Eric B. Muehrcke. A pedagogical processor model. SIGCSE Bulletin,
15(1):159–164, February 1983.

[78] Kenneth Goldman. A concepts-first introduction to computer science. SIGCSE 2004, pages
432–436, March-April 2004.

[79] W. D. Gray. A view of schema theory. [review of the book: Schemas in problem solving.].
Contemporary Psychology, 42(2):158–159, 1997.

[80] J. G. Greeno, M. S. Riley, and R. Gelman. Conceptual competence and children’s counting.
Cognitive Psychology, 16:94–143, 1984.

[81] James Greeno. Theory and practice regarding acquired cognitive structures. Educational
Psychologist, 10(3):117–122, 1973.

[82] Norman E. Gronlund. Assessment of student achievement. Allyn and Bacon, Boston ; New
York, 7th edition, 2003.

[83] Mark Haas and Johnette Hassell. A proposal for a measure of program understanding. SIGCSE
’83: Proceedings of the fourteenth SIGCSE technical symposium on Computer science educa-
tion, pages 7–13, 1983.

[84] Hisham Haddad. Post-graduate assessment of cs students: Experience and position paper.
Journal for Computing Sciences in Colleges, 18(2):189–197, December 2002.

[85] Thomas H. Haladyna. Writing test items to evaluate higher order thinking. Allyn and Bacon,
Boston, MA, 1997.

201

[86] Ibrahim Abou Halloun and David Hestenes. The initial knowledge state of college physics
students. American Journal of Physics, 53(11):1043–1048, November 1985.

[87] Jeri R. Hanly and Elliot B. Koffman. Problem Solving and Program Design in C. Addison
Wesley, 5th edition, July 2006.

[88] J. T. Hart. Memory and the feeling-of-knowing experience1. Journal of Educational Psychol-
ogy, 56(4):208–216, 1965.

[89] Orit Hazzan, Yael Dubinsky, Larisa Eidelman, Victoria Sakhnini, and Mariana Teif. Qualita-
tive research in computer science education. In SIGCSE ’06: Proceedings of the 37th SIGCSE
technical symposium on Computer science education, pages 408–412, New York, NY, USA,
March 2006. ACM.

[90] David Hestenes, Malcolm Wells, and Gregg Swackhamer. Force concept inventory. The Physics
Teacher, 30(3):141–158, 1992.

[91] Richards J. Heuer. Psychology of Intelligence Analysis. Center for the Study of Intelligence
Central Intelligence Agency, http://www.cia.gov/csi/books/19104/, 1999.

[92] James Hiebert. Conceptual and Procedural Knowledge: The Case of Mathematics. Lawrence
Erlbaum Associates, Inc, New Jersey, 1986.

[93] James Hiebert and Thomas P. Carpenter. Learning and Teaching with Understanding, chap-
ter 4, pages 65–97. Macmillan, New York, 1992.

[94] Rowan W. Hollingworth and Catherine McLoughlin. Developing science students’ metacogni-
tive problem solving skills online. Australian Journal of Educational Technology, 17(1):50–63,
2001.

[95] Philip Holmes, Chuck Niederriter, Robert M. Panoff, and Ernest Sibert. Undergraduate com-
putational science education (panel session). In SIGCSE ’00: Proceedings of the thirty-first
SIGCSE technical symposium on Computer science education, pages 419–420, New York, NY,
USA, 2000. ACM Press. Chairman-Angela B. Shiflet.

[96] Mary A. Hudak and David E. Anderson. Formal operations and learning style predict success
in statistics and computer science courses. Teaching of Psychology, 17(4):231–234, December
1990.

[97] Earl B. Hunt. Concept learning, an information processing problem. Wiley, New York, 1966.

[98] Barbel Inhelder and Jean Piaget. The Growth of Logical Thinking from Childhood to Adoles-
cence. Basic Books, Inc, USA, 1958.

[99] Maria Jakovljevic. Concept mapping and appropriate instructional strategies in promoting
programming skills of holistic learners. In SAICSIT ’03: Proceedings of the 2003 annual
research conference of the South African institute of computer scientists and information tech-
nologists on Enablement through technology, pages 308–315, Republic of South Africa, 2003.
South African Institute for Computer Scientists and Information Technologists.

[100] Ljubomir Jerinic and Vladan Devedzic. A survey of components for intelligent tutoring peda-
gogical aspects of get-bits model. SIGCUE Outlook, 27(1):3–24, January 1999.

[101] C. G. Johnson and U. Fuller. Is bloom’s taxonomy appropriate for computer science? In
Proceedings of the 6th Baltic Sea Conference on Computing Education Research: Koli Calling
2006, February 2006.

202

[102] P. Johnson-Laird. How could consciousness arise from the computations of the brain?, chap-
ter 4, pages 101–105. Basil Blackwell, Oxford, 1987.

[103] P. N. Johnson-Laird, Vittorio Girotto, and Paolo Legrenzi. Mental Models: a gen-
tle guide for outsiders. The Interdisciplinary Committee on Organizational Studies,
http://www.si.umich.edu/ICOS/gentleintro.html, April 1998.

[104] Barbara Johnston. Java Programming Today. Prentice Hall, October 2003.

[105] Anthony E. Kelly. Handbook of Research Design in Mathematics and Science Education.
Lawrence Erlbaum Associates, Inc, Mahwah, N.J., 2000.

[106] Malcolm S. Knowles. The modern practice of adult education : from pedagogy to andragogy.
Follett Pub. Co., Chicago, 1980.

[107] Malcolm S. Knowles, Elwood F. III Holton, and Richard A. Swanson. The Adult Learner: The
Definitive Classic in Adult Education and Human Resource Development. Gulf Publishing
Company, Houston, Texas, USA, 5th edition, 1998.

[108] Stephen Krause, James Birk, Richard Bauer, Brooke Jenkins, and Michael J. Pavelich. Devel-
opment, testing, and application of a chemistry concept inventory. 34th ASEE/IEEE Frontiers
in Education Conference, page T1G, October 2004.

[109] Barry L. Kurtz. Investigating the relationship between the development of abstract reasoning
and performance in an introductory programming class. SIGCSE Bull., 12(1):110–117, 1980.

[110] Hannu Kuusela and Pallab Paul. A comparison of concurrent and retrospective verbal protocol
analysis. American Journal of Pyschology, 113(3):387–404, Autumn 2000.

[111] Imre Lakatos. Proofs and refutations : the logic of mathematical discovery. Cambridge Uni-
versity Press, Cambridge, MA, 1976.

[112] Lesley Pek Wee Land, Aybuke Aurum, and Meliha Handzic. Capturing implicit software
engineering knowledge. IEEE, pages 108–114, 2001.

[113] A. E. Lawson. Science Teaching and the Development of Thinking. Wadsworth, Belmont, CA,
1995.

[114] A. E. Lawson. Classroom Test of Scientific Reasoning: Multiple Choice Version. Arizona State
University, Tempe, AZ, revised edition edition, August 2000.

[115] A. E. Lawson. The neurological basis of learning, development, and discovery : implications
for science and mathematics instruction. Kluwer Academic Publishers, Dordrecht; Boston,
2003.

[116] W. Leahy, G. Cooper, and J. Sweller. Interactivity and the constraints of cognitive load theory,
chapter 7, pages 89–103. Palgrave MacMillan, New York, NY, 2003.

[117] John Lewis and Joseph Chase. Java Software Structures: Designing and Using Data Structures.
Addison Wesley, 2nd edition, December 2004.

[118] Tracy L. Lewis and Mary Beth Rosson. A measure of design readiness: Using patterns to
facilitate teaching introductory object-oriented design. OOPSLA ’02, pages 8–9, November
2002.

[119] Loucas Louca, Andrew Elby, David Hammer, and Trisha Kagey. Epistemological resources:
Applying a new epistemological framework to science instruction. Educational Psychologist,
39(1):57–68, 2004.

203

[120] George F. Luger. Representation and Intelligence: The AI Challenge, chapter 6-7, pages
197–302. Addison-Wesley Publishing Co., Inc, 4th edition, 2002.

[121] Howard Margolis. Patterns, Thinking, and Cognition: A Theory of Judgment. The University
of Chicago Press, Chicago, 1987.

[122] Jane Margolis and Allan Fisher. Unlocking the clubhouse: women in computing. MIT Press,
Cambridge, MA, 2002.

[123] David Marr. Vision: a computational investigation into the human representation and pro-
cessing of visual information. W. H. Freeman and Company, San Francisco, 1982.

[124] S. P. Marshall. Assessing Schema Knowledge, chapter 7, pages 155–180. Lawrence Erlbaum
Associates, Inc, Hillsdale, N.J., 1993.

[125] S. P. Marshall. Schemas in problem solving. Cambridge University Press, Cambridge, MA,
1995.

[126] S. P. Marshall, C. A. Pribe, and J. D. Smith. Schema knowledge structures for representing
and understanding arithmetic story problems. Technical Report 86-01, Center for Research in
Mathematics and Science Education, San Diego State University, San Diego, CA, March 1987.

[127] Sandra P. Marshall. The Assessment of Schema Knowledge for Arithmetic Story Problems:
A Cognitive Science Perspective, chapter 10, pages 155–168. American Association for the
Advancement of Science, Washington, 1990.

[128] Sandra P. Marshall, Barthuli, Kathryn E., Margaret A. Brewer, and Frederic E. Rose. Story
problem solver: A schema based system for instruction. ONR Contract 89-01, Center for
Research in Mathematics and Science Education, San Diego State University, San Diego, CA,
February 1989.

[129] C. Dianne Martin. Computing curricula 2001: Reverse engineering a computer science cur-
riculum (part 2). inroads - The SIGCSE Bulletin, 35(2):9–10, June 2003.

[130] Richard E. Mayer. Thinking, Problem Solving, Cognition. W. H. Freeman and Company, New
York, 2nd edition, 1992.

[131] Richard E. Mayer. Cognitive, metacognitive and motivational aspects of problem solving.
Instructional Science, 26(1-2):49–63, 1998.

[132] Richard E. Mayer, Jennifer L. Dyck, and William Vilberg. Learning to program and learning
to think: What’s the connection? Communications of the ACM, 29(7):605–610, 1986.

[133] Ron McClamrock. Marr’s three levels: A re-evaluation. Minds and Machines, 1(2):185–196,
May 1991.

[134] Katherine B. McKeithen, Judith S. Reitman, Henry H. Rueter, and Stephen C. Hirtle.
Knowledge organization and skill differences in computer programmers. Cognitive Psychol-
ogy, 13:307–325, 1981.

[135] Curtis McKnight, Andy Magad, Teri J. Murphy, and Michelynn McKnight. Mathematics Ed-
ucation Research: A Guide for the Research Mathematician. American Mathematical Society,
2000.

[136] Susan Mengel and William Lively. Using a neural network to predict student responses. In
SAC ’92: Proceedings of the 1992 ACM/SIGAPP symposium on Applied computing, pages
669–676, New York, NY, USA, 1992. ACM Press.

204

[137] J. Metcalfe and A. P. Shimamura. Metacognition: Knowing about Knowing. MIT Press,
Cambridge, MA, 1994.

[138] M. Minsky. Form and content in computer science. J.A.C.M., pages 1–30, January 1972.

[139] M. Minsky. A framework for representing knowledge, chapter 10, pages 211–277. McGraw-Hill,
New York, 1975.

[140] Robert J. Mislevy. Foundations of a New Test Theory, chapter 2, pages 19–39. Lawrence
Erlbaum Associates, Inc, Hillsdale, N.J., 1993.

[141] M. B. Nakhleh. Students’ models of matter in the context of acid-base chemistry. Journal of
Chemical Education, 71(6):495–499, June 1994.

[142] Pavol Navrat. Hierarchies of programming concepts: Abstraction, generality, and beyond.
SIGCSE Bulletin, 26(3):17–28, September 1994.

[143] Craig E Nelson. Student diversity requires different approaches to college teaching, even in
math and science. American Behavioral Scientist, 40(2):165–175, November/December 1996.

[144] Craig E Nelson. On the Persistence of Unicorns: The Trade-Off between Content and Critical
Thinking, chapter 14, pages 168–183. Pine Forge Press, Thousand Oaks, California, 1999.

[145] Craig E Nelson. Achieving higher-level educational outcomes: Fostering critical thinking &
mature valuing across the curriculum. Technical report, First Annual Conference on Teaching
& Learning, University of Windsor and Oakland University, 2007.

[146] A. Newell and H. A. Simon. Human Problem Solving. Prentice Hall, Englewood Cliffs, NJ,
1972.

[147] S. Travis Nielsen and Douglas M. Campbell. Current trends in computer science graduate
admissions: A survey of the top 108 programs. SIGCSE Bulletin, 31(2):31–34, June 1999.

[148] Ikujiro Nonaka. A dynamic theory of organizational knowledge creation. Organizational Sci-
ence, 5(1):14–37, 1994.

[149] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation. Oxford University Press, 1995.

[150] Hyacinth S. Nwana. Is computer science education in crisis? ACM Computing Surveys,
24(4):322–324, 1997.

[151] J. O’Kelly, S. Bergin, S. Dunne, P. Gaughran, J. Ghent, and A. Mooney. Initial findings on the
impact of an alternative approach to problem based learning in computer science. Technical
report, PBL International Conference 2004, Pleasure by Learning, Mexico, 2004.

[152] J. O’Kelly and J. P. Gibson. Pbl: Year one analysis-interpretation and validation. Technical
report, PBL International Conference 2005, PBL In Context - Bridging work and Education,
Lahti, Finland, 2005.

[153] J. O’Kelly, A. Mooney, J Ghent, P. Gaughran, S. Dunne, and S. Bergin. An overview of the
integration of problem based learning into an existing computer science programming module.
Technical report, PBL International Conference 2004, Pleasure by Learning, Mexico, 2004.

[154] Committee on Undergraduate Science Education. Science Teaching Reconsidered: A Handbook.
National Academy Press, Washington, 2003.

205

[155] Oxford Reference Online. The Concise Oxford English Dictionary. Oxford University Press,
http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t23.e30870,
11th edition, 2006.

[156] Randall C. O’Reilly. Levels of Analysis. University of Colorado Boulder, http://psych-
www.colorado.edu/ oreilly/cecn/node11.html, April 2000.

[157] Jason W. Osborne. Measuring metacognition: Validation of the assessment of cognition mon-
itoring effectiveness. Dissertation Abstracts International Section A: Humanities and Social
Sciences, 59(5-A):1459, November 1998.

[158] Kaori Ozawa. Introduction to Cognitive Science: Chapter 2 - Marr. www.wam.umd.edu/ koza-
wa/NACS728/NACS728 Marr.doc, December 2004.

[159] Richard Pak. Recap of our meeting on tuesday... private communication, October 2007.

[160] Jennifer Parham, Donald Chinn, and D. E. Stevenson. Using blooms taxonomy to code verbal
protocols of students solving a data structure problem. In Proceedings of the ACM Southeast
Conference: Clemson, SC 2009, March 2009.

[161] Jennifer R. Parham. An assessment and evaluation of computer science education. Journal of
Computing in Small Colleges, 19(2):115–127, December 2003.

[162] Michael Pavelich, Brooke Jenkins, James Birk, Richard Bauer, and Steve Krause, editors.
Development of a Chemistry Concept Inventory for Use in Chemistry, Materials and other
Engineering Courses. 2004 American Society for Engineering Education Annual Conference &
Exposition, American Society for Engineering Education, 2004.

[163] J. Piaget. The Psychology of Intelligence. Routledge & Paul, London, 1967.

[164] J. Piaget. Structuralism. Basic Books, Inc, New York, 1970.

[165] J. Piaget. Success and Understanding. Harvard University Press., Cambridge, MA, 1978.

[166] G. Polya. How to Solve It: A New Aspect of Mathematical Method. Princeton University
Press, Princeton, NJ, 2nd edition, 1957.

[167] G. Polya. Mathematics and plausible reasoning: Patterns of plausible inference, volume 2.
Princeton University Press, Princeton, NJ, 1968.

[168] R. Porter and P. Calder. Patterns in learning to program: an experiment? In R. Lister
and A. Young, editors, In Proceedings of the Sixth Conference on Australasian Computing
Education - Volume 30, pages 241–246, Dunedin, New Zealand, 2004. ACM International
Conference Proceeding Series, vol. 57, Australian Computer Society.

[169] Michael Pressley and Peter Afflerbach. Verbal protocols of reading: the nature of constructively
responsive reading. Lawrence Erlbaum Associates, Inc, Hillsdale, N.J., 1995.

[170] Edward A. Price and Marcy P. Driscoll. An inquiry into the spontaneous transfer of problem-
solving skill. Contemporary Educational Psychology, 22:472–494, 1997.

[171] Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. Self-efficacy and mental mod-
els in learning to program. ITICSE 2004, pages 171–175, June 2004.

[172] Cecylia Rauszer. Algebraic methods in logic and in computer science. Institute of Mathematics,
Polish Academy of Sciences, Warszawa, 1993.

206

[173] Daniel Reisberg. COGNITION: Exploring the Science of the Mind. W. W. Norton & Company,
New York, 1997.

[174] M. Reiss, M. Behr, R. Lesh, and T. Post. Cognitive processes and products in proportional rea-
soning. Proceedings of the Ninth International Conference for the Psychology of Mathematics
Education, pages 352–356, July 1985.

[175] Dawn Rickey and Angelica M. Stacy. The role of metacognition in learning chemisty. Journal
of Chemical Education, 77(7):915–920, July 2000.

[176] Robert S. Rist. Schema creation in programming. Cognitive Science, 13:389–414, 1989.

[177] Kenneth H. Rosen. Common Mistakes in Discrete Mathematics, pages 406–414. McGraw-Hill
Higher Education, 6th edition, 2006.

[178] D. E. Rumelhart. Schemata: The building blocks of cognition., chapter 2, pages 33–58.
Lawrence Erlbaum Associates, Inc, Hillsdale, N.J., 1980.

[179] David E. Rumelhart and James L. McClelland. Levels indeed! a response to broadbent.
Journal of Experimental Psychology, 114(2):193–197, 1985.

[180] David E. Rumelhart and Donald A. Norman. Analogical Processes in Learning, chapter 11,
pages 335–360. Lawrence Erlbaum Associates, Inc, Hillsdale, N.J., 1981.

[181] Gilbert Ryle. The Concept of Mind. Barnes & Noble, 1962.

[182] Penelope Sanderson and Carolanne Fisher. Exploratory sequential data analysis: Foundations.
Human-Computer Interaction, 9:251–317, 1994.

[183] Walter Schaeken, Andre Vandierendonck, Walter Schroyens, and Gery d’Yewalle. The Mental
Models Theory of Reasoning: Refinements and Extensions. Lawrence Erlbaum Associates, Inc,
Mahwah, N.J., 2007.

[184] R. C. Schank and R. Abelson. Scripts, Plans, Goals, and Understanding. Erlbaum Assoc.,
Hillsdale, N.J., 1977.

[185] I. Scheffler. Conditions of Knowledge: An introduction to epistemology and education. Uni-
versity of Chicago Press, Chicago, 1965.

[186] A. H. Schoenfeld. Learning to think mathematically: Problem solving, metacognition and sense
making in mathematics, pages 334–370. Macmillan, New York, 1992.

[187] Bennett L. Schwartz and Timothy J. Perfect. Introduction: toward an applied metacognition,
chapter 1, pages 1–14. Cambridge University Press, 2002.

[188] Elaine Seymour and Nancy M. Hewitt. Talking about leaving : why undergraduates leave the
sciences. Westview Press, Boulder, Colorado, 1997.

[189] Russell Shackelford, James H. Cross II, Gordon Davies, John Impagliazzo, Reza Kamali,
Richard LeBlanc, Barry Lunt, Andrew McGettrick, Robert Sloan, and Heikki Topi. Com-
puting Curricula 2005: the overview report. The Association for Computing Machinery, The
Association for Information Systems, and The Computer Society, September 2005.

[190] Stewart Shapiro. Foundations without Foundationalism: A Case for Second-order Logic.
Clarendon Press, Oxford, 1991.

[191] Michael Shayer and Philip Adey. Towards a Science of Science Teaching: Cognitive develop-
ment and curriculum demand. Richard Clay Ltd, London, 1981.

207

[192] Angela B. Shiflet. Computer science with the sciences: An emphasis in computational science.
inroads - The SIGCSE Bulletin, 34(4):40–43, December 2002.

[193] B. F. Skinner. The shame of american education. American Psychologist, 39(9):947–954,
September 1984.

[194] John F. Sowa. Schemata, chapter 2.4, pages 42–51. Addison-Wesley Publishing Co., Inc, 1983.

[195] John F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley Publishing Co., Inc, 1984.

[196] Robert J. Sternberg. Beyond IQ : a triarchic theory of human intelligence. Cambridge Uni-
versity Press, Cambridge, MA, 1985.

[197] Robert J. Sternberg. Intelligence Applied: Understanding and Increasing Your Intellectual
Skills. Harcourt Brace Jovanovich, Inc., 1986.

[198] Robert J. Sternberg. The Triarchic Mind: A New Theory of Human Intellegence. Penguin
Books USA Inc., New York, NY, 1989.

[199] Robert J. Sternberg. Thinking and Problem Solving. Academic Press., San Diego, 1994.

[200] Robert J. Sternberg and Janet E. Davidson. The psychology of problem solving. Cambridge
University Press, Cambridge, UK; New York, 2003.

[201] Robert J. Sternberg and Peter A. Frensch. Complex problem solving: principles and mecha-
nisms. L. Erlbaum Associates, Hillsdale, N.J., 1991.

[202] Robert J. Sternberg and Elena L. Grigorenko. The psychology of abilities, competencies, and
expertise. Cambridge University Press, Cambridge, UK; New York, 2003.

[203] Robert J. Sternberg and Joseph A. Horvath. Tacit knowledge in professional practice: re-
searcher and practitioner perspectives. L. Erlbaum Associates, Mahwah, N.J., 1999.

[204] Robert J. Sternberg and Edward E. Smith. The Psychology of human thought. Cambridge
University Press, Cambridge; New York, 1988.

[205] Matthias Steup. The Analysis of Knowledge. Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/knowledge-analysis/, January 2006.

[206] D. Stevenson and J. Parham. Problem based and case based methods in computer science.
Creative College Teaching Journal, 2006.

[207] D. E. Stevenson. computer science as problem solving discipline. private communication,
January 2008.

[208] S. Stevenson. Problem solving principles and free-writing techniques in a computer science
class. In ACMSE’03, 41st ACM Southeast Regional Conference, Savannah, Georgia, March
2003.

[209] Angel Syang and Nell B. Dale. Computerized adaptive testing in computer science: assessing
student programming abilities. In SIGCSE ’93: Proceedings of the twenty-fourth SIGCSE
technical symposium on Computer science education, pages 53–56, New York, NY, USA, 1993.
ACM Press.

[210] J. Tartar and J. P. Penny. Undergraduate education in computing science some immediate
problems. In SIGCSE ’72: Proceedings of the second SIGCSE technical symposium on Educa-
tion in computer science, pages 1–7, New York, NY, USA, 1972. ACM Press.

208

[211] Esther Thelen and Linda B. Smith. A Dynamic Systems Approach to the Development of
Cognition and Action. MIT Press, Cambridge, MA, 1994.

[212] Kenneth Tobin and William Capie. Development and validation of a group test of logical
thinking. Educational and Psychological Measurement, 41(2):4l3–424, 1981.

[213] Kenneth Tobin and William Capie. The test of logical thinking. Technical report, Journal of
Science and Mathematics Education in S.E. Asia., 1984.

[214] David E. Trowbridge and Lillian C. McDermott. Investigation of student understanding of the
concept of velocity in one dimension. American Journal of Physics, 48(12), December 1980.

[215] David E. Trowbridge and Lillian C. McDermott. Investigation of student understanding of the
concept of acceleration in one dimension. American Journal of Physics, 49(3), March 1981.

[216] Philip E. Vernon. The measurement of abilities. University of London Press, London, 1972.

[217] L. S. Vygotsky. Mind in society: the development of higher psychological processes. Harvard
University Press, Cambridge, MA, 1978.

[218] L. S. Vygotsky. The Genesis of Higher Mental Functions, pages 158–170. M. E. Sharpe,
Armonk, NY, October 1981.

[219] Lev Vygotsky. Thought and language. MIT Press, Cambridge, MA, 1986.

[220] R. T. White. chapter 2, pages 70–75. Oxford, Pergamon, 1997.

[221] Wikipedia. Immanuel Kant. Wikimedia Foundation, Inc.,
http://en.wikipedia.org/wiki/Immanuel Kant, August 2007.

[222] Wikipedia. Schema (Kant). Wikimedia Foundation, Inc.,
http://en.wikipedia.org/wiki/Schema %28Kant%29, June 2007.

[223] Wikipedia. Schema (Psychology). Wikimedia Foundation, Inc.,
http://en.wikipedia.org/wiki/Schema %28psychology%29, July 2007.

[224] Stanley Wileman, John Konvalina, and Larry J. Stephens. Factors influencing success in
beginning computer science courses. Journal of Educational Research, 74(4):223–226, March-
April 1981.

[225] Cecile Yehezkel, Mordechai Ben-Ari, and Tommy Dreyfus. Computer architecture and mental
models. SIGCSE 2005, pages 101–105, 2005.

[226] Caroline E. Zsambok, Lee Roy Beach, and Gary Klein. A LITERATURE REVIEW OF AN-
ALYTICAL AND NATURALISTIC DECISION MAKING. Klein Associates Inc., December
1992.

209

	Clemson University
	TigerPrints
	12-2009

	A Cognitive Model for Problem Solving in Computer Science
	Jennifer Parham
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Past Research in Problem Solving
	Knowledge
	Metacognition
	Memory
	Reasoning
	Education

	Details of Proposed Model
	Flow Between Metacognition and Data
	Schemata Functionality
	External Sources
	Hypothesis

	Research Design and Methods
	Participants
	The Pilot Study
	The Research Study
	Transcription of the Data
	Analysis of a Transcript

	Results and Discussion
	A Taxonomy of Mental Processes
	The Existence of Metacognition and Schemata
	The Relationship Between Metacognition and Schemata
	Cognitive Behavior by Participant
	Knowledge Represented by Participants
	Correlation With Problem-Solving Performance

	Conclusions
	Broader Impact
	Future Research
	Research Questions

	Appendices
	Demographics sheet #1
	Demographics sheet #2
	IRB Informational Letter
	Problem and Goals/Schemata - Version 1
	Problem and Goals/Schemata - Version 2
	Subject 6 Morae Produced .CSV Data (First 10 minutes)
	Participant 6 Level 1 Verbal Transcript and Coding
	Final Coding Document
	Version 1 of The Coding Document
	Version 2 of The Coding Document
	Version 3 of The Coding Document
	Version 4 of The Coding Document
	Version 5 of The Coding Document
	Version 6 of The Coding Document
	Participant 6 Level 2 Problem Behavior Graph
	Participant 6 Level 3 Model Results
	Raw Observations & Off-line Interviews with 11 Participants

	Bibliography

