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ABSTRACT

Embryo cryopreservation is an integral part of assisted reproduction bécause
allows for future use of these embryos. Cryopreservation occurs when there are
supernumerary embryos or when an embryo transfer cannot be performed.

There are two main methods to cryopreserve embryos. The most recent is
vitrification, which uses high concentrations of cryoprotectants, a shataoimool and
avoids ice crystals. The “gold standard” is the slow-cool method, whichawges |
concentrations of cryoprotectants, a long time to cool embryos and produces leddracel
ice crystals.

Prior to introducing vitrification as part of the human cryopreservation regime
is important that vitrification be evaluated through a research protocol using a
mammalian embryo model. In this research, we used the two-cell, mobsgmenodel
to develop a closed system for vitrification, observe the toxicity of vitriinatolutions,
and compare blastocyst rates, pup rates and DNA damage between the iaitrifindt
slow-cool method.

Two commercially available devices were used to vitrify embryos. Botlocetevi
were studied as an open-system and a closed-system using two-cell afnelergbuse
embryos. These devices and systems produced similar blastocyst rateselllmwouse
embryos were used for subsequent studies due to the increased potential to observe a
detrimental effect with the earlier cell stage.

A toxicity study demonstrated that two-cell mouse embryos, aftexingmg in

vitrification solution for 32 minutes, produced fewer blastocysts than did two-cellemous



embryos that were removed from the vitrification solution at earlier teevials (1, 2,
4, 8 and 16 minutes). However, when surviving blastocysts were transferred to
recipients, they produced pups.

Comparison studies between the vitrification and slow-cool method demonstrated
that there were no significant differences in blastocyst rate, pup ratecentagye of
normal embryos (not demonstrating DNA damage).

In conclusion, a closed system was developed to vitrify two-cell mouse embryos
The toxicity of vitrification solutions were observed and the comparison ofcatiidn
and slow-cool methods using blastocyst rate, pup rate and DNA damage as datermina

showed that both methods were similar.
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CHAPTER ONE

INTRODUCTION

Embryo cryopreservation is an integral part of assisted reproduction becaus
allows for future use of these embryos. Cryopreservation occurs when there are
supernumerary embryos or when an embryo transfer cannot be performed.

There are two main methods to cryopreserve embryos. The first method, and
most recent, is vitrification which uses high concentrations of cryoprotectestiert
time to cool and avoids ice crystals. The second method, the slow-cool method is the
“gold standard” and uses low concentrations of cryoprotectants, a lengthtyp tshoevly
cool embryos and produces extracellular ice crystals.

Prior to introducing vitrification as part of the human cryopreservation regime, it
is important that vitrification be evaluated through a research protocol using a
mammalian embryo model. In this research, we used the two-cell, mouse eroligio m
to develop a closed system for vitrification, observe the toxicity of vitriboagblutions,
and compare blastocyst rates, pup rates and DNA damage between thetiaitrifind
slow-cool method. The mouse model was used because this laboratory currently uses
two-cell mouse embryos as a model for quality control studies. First,laamyitstudy,
it is important to understand what research has already been performed.

The published vitrification research described here includes differenes@ew
stages of embryos, live births, devices, open and closed systems and liquid nitrogen
contamination. The technique of slow-cooling and its drawbacks then will be édcuss

along with cryopreservation solutions and comparison studies of vitrification and slow-



cooled procedures. The information will conclude with the importance of genetic studies

using cryopreserved embryos.

VITRIFICATION

Vitrification is a process by which cells can be frozen in such a way tlass
like or vitrified state is obtained. The process eliminates the formatiotratellular ice
crystals which can damage organelles within the cell. While vitidicaechnology has
been in existence for over two decades (Rall and Fahy, 1985), the technology only
recently started to replace the slow-cooled “gold standard” that has beéstemes
since 1972 (Whittingham et al.).

Multi-cell embryos from many different species have been vitrifiddviohg the
first successful vitrification of mouse embryos (Rall and Fahy, 1985). Thesespe
include cattle (Vajta et al., 1997), humans (Mukaida et al., 1998), hamsters (Lane et al
1999a), horses (Oberstein et al., 2001), goats (Begin et al., 2003), rats (Han et al., 2003)
and Mongolian gerbils (Mochida et al., 2005). Vitrification of blastocysts has been
reported for sheep (Martinez and Matkovic, 1998b), cattle (Park et al., 1999), @unee (L
et al., 1999b), humans (Yokota et al., 2001), monkeys (Yeoman et al., 2001), rabbits
(Lopez-Bejar and Lopez-Gatius, 2002), pigs (Misumi et al., 2003), buffalos (Neglia e
2003), European polecats (Piltti et al., 2004) and domestic cats (Tsujioka et al., 2008).

Not only has vitrification of embryos from multiple species been reported, but for
many animal species there have been reports of implantation and live birttestitted

from vitrified embryos. A study by Uechi et al. (1999) demonstrated implantation of



vitrified two-cell mouse embryos. Misumi et al. (2003) demonstrated thahheadfiets
could be produced from vitrified blastocysts.

Successful vitrification of embryos followed by live births also has been egport
for humans. Yokota et al. (2001) demonstrated the successful vitrification of human
embryos with the birth of a baby. Mukaida et al. (2003) reported a 37% clinical
pregnancy rate with the transfer of vitrified blastocysts. At the tmedport was
published, 23 healthy babies had been born (18 deliveries) while 37 pregnancies were
ongoing.

A number of different ways to vitrify mammalian embryos have been reported
including open-pulled straw (Vajta et al. 1997), grid (Park et al., 1999), hemi-straw
(Vanderzwalmen et al., 2000), cryoloop (Lane et al., 1999a; Yeoman et al., 2001),
flexipet-denuding pipet (Liebermann et al., 2002b), solid-surface microdropn(Beal.,
2003), Stripper Tip® (Walker et al., 2004) and the Cryotop (Kuwayama et al., 2005;
Kuwayama, 2007). Each device has its unique way to contain the embryos prior to being
vitrified in liquid nitrogen.

Open-pulled straws were first described by Vajta et al. (1997) in which they
heated French mini-straws (IMV, L’Aigle, France) and manually pulledtitasvs until
the inner diameter (0.8 mm) was approximately half its original size (h)7 Embryos
were drawn into the straws by capillary action and then straws were gdohieto
liquid nitrogen. Vajta et al. (1998) vitrified bovine embryos (n=763) from Day laio D
7 after fertilizationin vitro (Day 0) and compared them to control (nonfrozen) embryos

(n=719). They demonstrated there were no significant differences in blastiegs



between vitrified embryos and control embryos from Day 3 to Day 7; however, there
were significant differences demonstrated on Day 1 and Day 2 indicatirgpthae
embryo stages may be more susceptible to cryoinjury than others.

Park et al. (1999) used electron microscope grids to vitrify bovine blastocysts.
These researchers loaded 8-10 embryos onto the grid and plunged the grid into liquid
nitrogen. Blastocysts were thawed and observed 24 and 48 hours later. Embryos that
were vitrified (87.8% [79/90]) had survival rates (those that reexpanded or hatctlied) tha
were significantly lower at 24 hours than control (nonfrozen) embryos (100% [90/90]).

Vanderzwalmen et al. (2000) developed the hemi-straw for use with
supernumerary embryos. The tip of the hemi-straw has a trough in which appebxima
0.3 pL of medium with the embryos are transferred prior to being submerged into liquid
nitrogen. Once in liquid nitrogen, the hemi-straw was inserted into a largerfer
storage (Vanderzwalmen et al., 2000; Vanderzwalmen et al., 2003). Vanderzwalmen et
al. (2000) vitrified 16 human blastocysts; once the embryos were thawed, 88% expanded
and 44% hatched.

Cryoloops were adapted from protein crystallography, but were modified to
vitrify hamster embryos (Lane et al., 1999a), mouse embryos (Lane et al., 1999b) and
monkey blastocysts (Yeoman et al., 2001). The nylon loop was attached to the top of a
cryovial and the loop was dipped in vitrification solution. Embryos were pipetted onto
the solution film that was created within the nylon loop and plunged into liquid nitrogen.
The top of the cryovial was screwed into the bottom portion of the vial under liquid

nitrogen. Hamster two-cell embryos were vitrified using the cryoloop aadtkawed



and transferred (Lane et al., 1999a). Of the 72 blastocysts transferreigientec39
implanted (54%) which was significantly lower than the controls (nonfrozen; 85%
[34/40]).

Vitrification of embryos with the use of the flexipet denuding pipet was first
reported by Liebermann et al. (2002b). Approximately 2 pL of vitrification media
containing embryos were loaded into the pipet by capillary action and the pipet was
submerged into liquid nitrogen. Once in the liquid nitrogen, the pipet was placed in a
cryostraw. These researchers used this method to vitrify 1 pronucleus (PN)Mr{dr3 P
more) abnormally-fertilized human embryos (n=217). After thawing, 190 (88%)
survived and 147 (77%) cleaved, which was not significantly different than controls that
cleaved (85% [115/136]).

Solid-surface microdrop vitrification utilized a liquid nitrogen-cooledae
(Begin et al., 2003). A drop of vitrification solution containing embryos was dropped
onto the cooled surface and droplets were placed into cryovials using nitrogen-cooled
forceps. Begin et al. (2003) demonstrated that goat embryos vitrifie@ Isplid-surface
microdrop method had a low percentage of embryo survival after thawing with no
embryos developing to the morula or blastocyst stage. This is in contrast to a study
performed by Bagis et al. (2005) that demonstrated that mouse pronuclear embryos
vitrified by the solid-surface microdrop method not only had blastocyst development
(results varied from 32-62%) but also produced live-births (30% [34/113]).

Walker et al. (2004) used the Stripper Tip® from MidAtlantic Diagnostics

(Marlton, NJ) to vitrify mouse embryos. Embryos were loaded into the tip using the



Stripper® device and then the tip was removed from the device and submerged into
super-cooled nitrogen or liquid nitrogen. The tip was placed into a Cryo Bio System
High Security Straw (CBS; Cryo Bio Systems, IMV Technologies GroWgle,

France) and the CBS straw heat sealed. Morulas and blastocysts thatnfieckin the
Stripper Tip® using super-cooled nitrogen had 81.8% (90/110) survival (continued to
develop), while those vitrified using liquid nitrogen had 90.7% (97/107) survival. Both
groups were significantly different from the controls (99% [103/104]) whicle wet
exposed to cryopreservation solutions or vitrification.

The Cryotop consisted of a plastic holder with a thin film strip (0.4 mm wide, 20
mm long and 0.1 mm thick; Kuwayama, 2007). The embryos were placed onto the strip
with just enough vitrification solution to cover the embryos. The device was submerged
into liquid nitrogen and the cap was pulled over the strip to help protect it during storage.
Kuwayama et al. (2005) used this device to vitrify human four-cell embryos and
blastocysts. After thawing, the four-cell embryos produced a 98% (879/897) suateval
and a 27% (136/504) pregnancy/transfer rate whereas blastocysts produced a 93%
(82/88) survival rate and a 51% (42/82) pregnancy/transfer rate.

Each of these devices described above are known as an open system of
vitrification. The open system allows exposure of the embryos to liquid nitrogen. This
would allow for potential contamination by the liquid nitrogen with such disease as
hepatitis (Tedder et al., 1995). Such contamination occurred when Hepatitis B
contaminated a liquid nitrogen storage tank. The contamination was from leakage of a

cryopreservation bag that contained bone marrow from a Hepatitis B postiemt pad



resulted in other patients contracting Hepatitis B after receaimgiogous bone marrow
transfusions.

Bielanski et al. (2000) demonstrated that embryos in open vials or straws tested
positive for bovine viral diarrhea virus and bovine herpesvirus-1 when stored in dewar
flasks containing cell culture suspensions of the viruses. In contrast, sedexhdia
straws tested negative.

Not only can liquid nitrogen be contaminated with diseases, but it can also be
contaminated with bacteria and fungus. Fountain et al. (1997) indicated that bacteria and
fungi can contaminate liquid nitrogen freezers and fungi can be found in the vapor phase
of liquid nitrogen. Bielanski et al. (2003) also noted that bacterial contamination was
demonstrated in liquid nitrogen as well as thawed semen and embryos; however, these
authors noted that some of the bacterial contamination may have been due to laboratory
processing.

To date, there have not been any reports of any disease transmission due to
embryo cryopreservation technologies (Vajta et al., 2007); however, thatethe st
possibility of liquid nitrogen contamination. A closed system of vitrificatiooh
lessen the contamination risk.

Chen et al. (2001) reported a type of closed system that used boluses of media on
either side of the medium which contained the embryos; however, upon thawing, these
boluses would most likely merge with the one containing the embryos and thus

contaminate the specimen.



Lopez-Bejar and Lopez-Gatius (2002) reported using a sealed version of the
open-pulled straw. They heated and pulled a standard IMV straw and used the portion
that contained the cotton plug. They loaded the straw with medium and rabbit embryos
and then sealed the opposite end using polyvinyl-alcohol sealing powder. Live-birth
rates for vitrified blastocysts transferred into recipient does yleédde/% (123/238),
which was not significantly different from live-birth rates from fresh tolagsts (58.5%
[131/224]).

Isachenko et al. (2005a) vitrified pronuclear mouse embryos in open-pulled
straws (OPS). The OPS were placed into larger straws that were &ledte® one end
then hermetically closed by a metal ball on the opposite end. Using thisrstsenaw
technique, a blastocyst rate of 23% was observed. Isachenko et al. (2005b) also used the
same straw-in-straw technique to vitrify human pronuclear embryos. Thgamwbere
placed in OPS that were hermetically closed on both ends and plunged into liquid
nitrogen. When the embryos were thawed and cultured, they produced a blastocyst rate
of 14%.

The CryoTip® (Irvine Scientific, Irvine, CA) was a straw-like device thias
heat-sealed after loading with a minimal amount of vitrification soluhiehdontained
the embryos (Kuwayama, 2005). The CryoTip® was compared to the Cryotop; the
blastocyst survival, pregnancies and deliveries, were not different betwdarothe
devices.

The closed system of vitrification may prevent contamination from liquidgen

during the storage phase; however, contamination may arise when removindptifesem



from the straw. Maertens et al. (2004) used ionomeric resin straws fogdttapatitis
C, contaminated semen. Although no cross-contamination was detected from sealing or
storing, the heating wire used to open the straw was observed to have contamination.
This type of contamination could occur with any straw-system that is opetied wi
nonsterile, reusable device. When having to open a straw-system, the usézadsteri
scissors would reduce or eliminate contamination. This would hold true whether the
system is used for vitrification or for a slow-cooled procedure.

In conclusion, embryos from different species have been vitrified using a
multitude of devices, which are either a closed-system or an open-systdosed c
system of vitrification is preferred over the open system to prevent @tenti

contamination from liquid nitrogen.

SLOW-COOLED

Successful slow-cooled freezing methods have been in existence since 1972
(Whittingham et a). The slow-cooled method of cryopreservation requires that a
mammalian embryo be passed through a series of dehydrating solutionpltdcgs ¢he
water in the cell with a cryoprotectant. The embryo is placed inside anfjeessel
(e.g. straw, vial), which is placed inside a freezing chamber. Once inside, tHgecham
slowly cooled to a point a few degrees below 0°C. Ice crystals are mamaaibed
(seeding) to the cryoprotectant to prevent super cooling (spontaneous formation of
extracellular and intracellular ice crystals) and then cooled to an appedengberature

prior to plunging into liquid nitrogen.



Seeding is a process in which ice crystals are induced. Usually the seeding
process is performed by first placing forceps into liquid nitrogen and then plaeing t
forceps on the outside of the vessel juxtaposed to the meniscus of the cryaptotect
(inside the straw). The forceps should be some distance from the actual emiwyos. T
area in which the forceps are placed, displays ice crystals. This inducti@encoystals
allows an area of extracellular ice formation that will continue to form alhgnevent
spontaneous ice crystallization (both extracellular and intracelltdeajldition, these
induced ice crystals will allow further dehydration of the embryo andallaiv for a
slow release of latent heat (Shaw et al., 2000).

The slow-cooling technique utilizes a programmable freezer that usesk liqui
nitrogen or a liquid bath to slowly cool the chamber of the freezer. Liquid nitrogen
freezers can slowly cool the embryos to -180°C, whereas the liquid bath fre@aeis
-40°C or -80°C.

The slow-cooling technique of cryopreserving embryos has its drawbacks when
compared to vitrification. Some of these drawbacks include cost, time and tgliabili
Mechanical freezers required to slow-cool specimens are expensive. péisexioes
not include the yearly maintenance fee or charges for repairs that magdezin
Vitrification of embryos does not have this cost associated with it since endygyos
plunged directly into liquid nitrogen without the aid of a mechanical freezer.

The time that is needed to run the slow-cool cycle is approximately 2 to 3 hours
depending on the stage of the embryo being frozen; this does not include the time to

move embryos though freezing solutions or loading the embryos into straws. The only

10



time associated to vitrify embryos is the time to move the embryos though the
vitrification media, load the embryos into/oran apparatus and to plunge the apparatus
into liquid nitrogen. The total time for such events is 5 to 10 minutes.

The mechanical freezer produces different post-thaw blastocyst development i
the mouse, depending on the position in the freeze chamber (Boone et al., 2004). This
study also demonstrates that the freezer positions have a significantigrdiffe
temperature during freezing. There are no variations in temperature daettameal
equipment when the vitrification apparatus, which contains the freezing solution and the
embryos, is plunged into liquid nitrogen.

In conclusion, the slow-cooled cryopreservation method induces ice crystals in
the cryoprotectant solution to avoid intracellular ice crystals. It useslaameal freezer
that requires an extended time to slowly cool the embryos, has the expense of
maintenance fees and repairs, and produces variable temperatures thrasghout

chamber.

COMPONENTS OF CRYOPRESERVATION SOLUTIONS

Cryoprotectants can be toxic to embryos (Shaw et al., 2000). Although
vitrification and slow-cooled procedures use cryoprotectants, vitrificatses them at
higher concentrations, thus creating an increase in osmolarity (~6000 no@grared
with ~2500 mOsm for slow-cooled). There are two types of cryoprotectants:gtergme
which include glycerol, ethylene glycol and dimethyl sulphoxide (DMSQO) and non-

permeating, which include saccharides, protein and polymers (Lieberinain2603).

11



The components of the cryopreservation solutions are often combined. In 1985,
Rall and Fahy used DMSO, acetamide, propylene glycol and ethylene iglygcol
modified Dulbecco’s saline. Ali and Shelton (1993) used ethylene glycol, glycerol a
sucrose to vitrify mouse embryos. Bovine embryos were vitrified in ethglgnel,
DMSO and Tissue Culture Medium with HEPES supplemented with calf serum é¢ajta
al., 1998); and human oocytes were vitrified in ethylene glycol and sucrose in @udbec
phosphate-buffered saline supplemented with human serum albumin (Kuleshova et al.,
1999). Also in 1999, Lane et al. (1999b) reported vitrification of human and mouse
blastocysts using DMSO, ethylene glycol and sucrose in HEPES-bu@&r@dnedium.

Solutions can also include cryoprotectants such as Ficoll or polyethyleé glyc
In 1999, Park et al., reported vitrification of bovine blastocysts using ethylene glycol,
Ficoll, sucrose and serum in Dulbecco’s phosphate buffered saline. Monkey blastocyst
were vitrified in DMSO, ethylene glycol, Ficoll and sucrose in HEPESebedf TALP
containing serum (Yeoman et al., 2001). Misumi et al. (2003) vitrified pig morulae and
early blastocysts in ethylene glycol, sucrose and polyethylene ghybt2 medium.

There have been multiple studies published on the effects of some of the
vitrification components. When vitrification was performed with an ethylereobly
based media and a propylene glycol plus glycerol media, bovine embryos that were
vitrified with the ethylene glycol based media had higher development (56.4% vs)33.3%
and hatching rates (35.4% vs. 13.3%; Martinez et al., 1998a). A study by Titterington et
al. (1995) determined that glycerol above a concentration of 50% (v/v) was toxgbto ei

cell mouse embryos.
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Ethylene glycol has a low toxic effect on mouse embryos (Emiliari, &090;
Liebermann et al., 2002a). It also has a rapid diffusion and equilibration intolthe cel
through the zona pellucida and cell membrane (Emiliani et al., 2000). Emiliani et al.
(2000) noted that mouse zygotes frozen with propanediol produced a higher survival rate
and blastocyst rate when compared with ethylene glycol; however, thegtealthat
ethylene glycol was a good cryoprotectant when four-cell mouse embeyesrazen.

Other researchers also have demonstrated favorable outcomes using ethylene
glycol. For example, Shaw et al. (1995) notes that pronuclear and four-cell mouse
embryos can be slow-frozen using ethylene glycol without a significasbfaambryos.
Hotamisligil et al. (1996) vitrified mouse oocytes in a range of 4 M to 8 M etayle
glycol supplemented with 0.5 M sucrose. They observed that murine oocytes vitrified i
concentrations of ethylene glycol up to 6 M supplemented with 0.5 M sucrose obtained
membrane integrity and microfilamentous structure, and noted that there wamalm
toxic effect on fertilization and development.

Use of the cryoprotectant DMSO in vitrification solutions has had mixed
outcomes. Bovine morula and blastocysts vitrified in 25% v/v ethylene glycol, 25% v/v
DMSO in PBS supplemented with pyruvate, glucose and serum have high survaval rate
(73 to 90%; Ishimori et al., 1993). Liebermann et al. (2002a) noted that vitrification of
pronuclear stage human embryos with ethylene glycol and DMSO was a goadtale
to vitrification with 1,2-propanediol and DMSO. Trounson et al. (1988) observed
blastocyst rates of 60% and 84% when eight-cell mouse embryos were ultyefiazielh

with a 2 M and 3.5 M DMSO solution. In contrast, vitrification of eight-cell mouse
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embryos with a DMSO based solution had low blastocyst rates (53%). As the
concentration was increased from 30 to 40% DMSO, even lower survival (blastocyst)
rates (0-33%) were observed (Mukaida et al., 1998).

Macromolecules can also be used in vitrification medium. In vitriboathedia,
macromoleculekelp stabilize the glycoprotein structure of the zona pellucida
(Titterington et al., 1995). This, in turn, reduces osmotic stress and preventefadctur
the zona pellucida. When polyvinylpyrroidone (PVP) in the form of Percoll or human
serum albumin (HSA) was added to the vitrification solution, there was a sighifica
reduction P = 0.01) in zona damage (Titterington et al., 1995). These authors also noted
that Percoll in the vitrification media produced a reduct®s 0.01) in zona damage
when compared to HSA.

Ficoll or Dextran can be used as a macromolecule and may be less detrimental
than PVP. Kuleshova et al. (2001) were able to culture two-cell mouse embriyes to t
blastocyst stage at a rate of 100% when embryos were exposed up to 15 miantes i
ethylene glycol based vitrification media, which contained Ficoll or BextkKuleshova
et al. (2001) also froze two-cell mouse embryos after being exposed toatitrific
solution supplemented with PVP for 15 minutes. This produced a 0% blastocyst rate;
however, when the PVP was dialyzed, the blastocyst rate increased to 77 and 83%.

When antifreeze glycoproteins were used as cryoprotectants, mixed vestat
demonstrated. Antifreeze glycoproteins reduce ice growth and recrgdgiati¢zO’Neil
et al., 1998). When O’Neil et al. (1998) added antifreeze glycoproteins to a 6 M DMSO

vitrification solution to mouse oocytes, a low in-vitro fertilization rate (53%g)
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blastocyst rate (20%) were observed; however, when the vitrification mediucoolasl
on ice before oocytes were exposed to the medium, a higta¢ro fertilization rate
(94%) and blastocyst rate (66%) were observed. When antifreeze proteinslaesidca
ethylene glycol and propanediol slow-freeze solutions, survival of pronuclear mouse
embryos was significantly reduced (Shaw et al., 1995), possibly due to maalificht
ice crystal growth patterns.

Sucrose is widely used for cryopreservation of oocytes and embryos because it
reduces the amount of cryoprotectant needed by acting as an osmotic buffer aimg reduc
osmotic shock (Liebermann et al., 2003). Bagis et al. (2004) vitrified pronuclear mouse
embryos in a solution containing equal amounts of DMSO and propylene glycol. The
authors also added either sucrose, trehalose or raffinose. It wasidetetimat raffinose
was more efficient for cryprotection than sucrose or trehalose. Furtlegrsongrose was
less efficient if there was a very short equilibration time. Kuleshova dt98I9)
observed the effect of different sugars in vitrification solution. Their ddiaedted
monosaccharides were more favorable because of their low toxicity andltigyrto
form a glass-like substance at a lower concentration.

In conclusion, vitrification has been used for mice, cattle, monkeys, migs a
humans, most of which has been performed at the oocyte, early-embryo or blastocyst
stage. As indicated above, there are many types of vitrificationquoesethat can be
used; some of which have conflicting results. Consistent results need to beadbiev

establish a vitrification standard. Until then, researchers will continuadg\&rious
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protocols to improve vitrification with the hopes that it can be used as the uhiversa

standard.

COMPARISON STUDIES OF VITRIFICATION AND SLOW-COOLED

The comparison of vitrification and slow-cooled freezing has been studied since
1995 when Van Wagtendonk-De Leeuw and co-workers (1995) studied cattle morulae
and blastocysts. They determined that Day-7 cattle morulae and blastazetsusing
either the vitrification or slow-cooled method produced similar pregnhatey.rd he
researchers then refined their study and again compared vitrification avad-eoslled
method in a field trial (Van Wagtendonk-de Leeuw et al. 1997). They again
demonstrated that pregnancy rates for vitrified and slow-cooled embryesvelar
(44.5% versus 45.1%, respectively).

There have been other articles published that compare a vitrification prot@dure
a slow-cooled procedure. Moussa et al. (2005) compared slow-cooled and Open-Pulled
Straw (OPS) vitrification. They indicated that when equine embryos werenflusing
either technique, there was no significant difference in the percentagadof de
blastomeres per embryo or the percentage of cells entering S-phase dfdtpeee
Stehlik et al. (2005) froze Day-5 human blastocysts using a slow-cooled or a vidrifica
method. This study indicated that vitrification produced a 100% (41/41) blastocyst
survival rate and a 50% (10/20) pregnancy rate whereas slow-frozen blastaysin

83.1% (59/71) survival rate and a 16.7% (4/24) pregnancy rate.
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Naik et al. (2005) compared two types of vitrification methods (open-pulled
French mini straws [OP3Jnd French mini straws) and a slow-cool method using
morula-stage rabbit embryos. The OPS demonstrated better resultséont idastocyst
rate (71% [44/62]) and produced a higher percentage of offspring per number of embryos
transferred (29% [7/24]) than the other two methods.

Martinez and Matkovic (1998b) studied different solutions for vitrification and
slow-cooling. Although vitrification and slow-cooling were not statistycabmpared;
the results demonstrated that when sheep morulae and blastocysts vesrei$ing
either method, embryo development, hatching, pregnancy and weaning had higher
percentages with slow-cooling (75.4%, 52,8%, 51.3% and 47.3%, respectively) than with
vitrification (54.0%, 30.0%, 40.0% and 38.4%, respectively).

Other species have been used to compare vitrification and slow-cooled methods to
cryopreserve embryos with varying degrees of success. When two-cell miuye®
were vitrified or slow-cooled and then thawed, cultured and transferred tcerdaipce,
vitrified embryos (10.2%) had a significantly low& <€ 0.05) implantation rate than the
slow-cooled mouse embryos (22.1%; Uechi et al. 1999). In contrast to this study,
researchers using horse embryos found that vitrification using the cryol@pShad
similar grades and percent of live cells when compared to slow-cooled methods
(Obserstein et al. 2001). In studies performed with rabbit morulae, OPS atitoific
demonstrated a higher percent of blastocysts (71%) and a higher percent of finagffs
(29%) than those that were frozen with a programmable freezer (55% versus 19%,

respectively; Naik et al. 2005).
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In 2005, Stehlik et al. demonstrated that Day-5 and Day-6 human blastocysts that
underwent vitrification had a higher survival rate, pregnancy rate and intpantate
than those that were slow cooled. Similar results were obtained by Al-Hasdni
(2007) that demonstrated a significantly higher pregnancy rate wilficetion (36.9%)
than with slow-cooling (10.2%); thus, the researchers discontinued their slow-cooling
method.

Studies that compare the vitrification to the slow-cooled method have not only
been performed with embryos, but they have also been performed with oocytes. Men et
al. (1997) cryopreserved mouse oocytes using both freezing methods. Upon thawing the
oocytes, these researchers perforimmedltro fertilization and observed two-cell embryo
development. Oocytes that were vitrified had a survival rate of 55% (355/647) stherea
slow-cooled oocytes yield a 66% (210/316) survival rate; these valuesatere
significantly different P > 0.05). Fertilization of oocytes after being frozen/thawed were
74% (155/210) for vitrification and 72% (258/355) for slow-cooled.

In 2005, Valojerdi and Salehnia reported 80% (162/203) of mouse oocytes
survived vitrification and 85% of mouse oocytes (250/294) survived slow-cooling.
Although the survival rate was not significantly different between the twoitiggez
methods, there was a significant differenee(0.001) in the number of two-cell
embryos produced aftam vitro fertilization. Eighty-five percent (138/162) of the
oocytes (138/162) that developed to two-cell embryos were exposed toatitifigvhile
only 1.2% (3/250) of the oocytes exposed to the slow-cool method produced two-cell

embryos. Valojerdi and Salehnia (2005) continued their study past the two-gell sta
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Vitrification produced a blastocyst rate of 27% (44/162) whereas the slowdcoole
procedure did not produce any blastocysts (0/250).

In conclusion, due to conflicting data, further studies are needed to detdrmine
vitrification is a safe alternative to slow-cooling for cryopreseovadf supernumerary

embryos.

IMPORTANCE FOR GENETIC STUDIES

Similar to intracytoplasmic sperm injection (ICSI), the rapid adoption of new
assisted reproduction technologies like vitrification, raises concerns &ledang-term
consequences on offspring generated from such technology. When ICSI was first
introduced (Palermo et al., 1992), it was a way that an Assisted Reproductive ®gghnol
Center could give hope to couples that had male motility problems. The procedure was
quickly used by centers without fully understanding the consequences. Scamstists
now questioning if the procedure is indeed safe. Recently, there have been lstudies t
link ICSI with diseases such as Beckwith-Wiedeman Syndrome (Edwards andylud
2003; Debaun et al., 2003) and Angelman Syndrome (Edwards and Ludwig, 2003;
Orstavik et al., 2003) as well as imprinting defects (Cox et al., 2002). This same hast
observed with ICSI should not be taken with vitrification.

Several laboratories have described the use of vitrification procedures and their
ability to produce viable oocytes, embryos and produce live-births from these embryos
however, genotypic damage should also be studied due to aneuploid zygotes and

malformed fetuses that can arise from vitrification (Kola et al., 1988)onrtrast,
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Yokota et al. (2001) demonstrated vitrification of human embryos with birth of a child
with no known anomalies and a normal karyotype. Takahashi et al. (2005) used a
guestionnaire to perform a retrospective analysis which determined that2/149%) (of
cases from vitrified blastocysts and 2% (4/205) of cases from fresh blastaogéer

had congenital birth defects.

Vitrification studies should not only evaluate if embryos can survive the process
and produce live-births, but also include studies that evaluate potential alterétien a
genetic level. Such information may help predict the future of offspring produiced us
this potentially improved method of preserving oocytes and embryos.

One method that may give some insight into DNA damage due to vitrification is
the Comet Assay. The Comet Assay detects single- and double-stranded €K& br
This assay has been used to detect DNA damage in hamster (Takahash9é0g|
cattle (Takahashi et al., 2000) and mouse (Fabian et al., 2003) embryos. Takahashi et al
(1999) observed DNA damage to hamster embryos by light exposure or oxidasge stre
These researchers were able to detect DNA damage in one-cell and twokrgband
determine there was more DNA damagenimitro cultured embryos than there was in
those embryos that were developedivo. Takahashi et al. (2000) also used the Comet
Assay to demonstrate that bovine embryos that were cultukéio at a 20% oxygen
concentration had an increase in DNA damage when compared to those ¢oltitred
at 5% oxygen. Fabian et al. (2003) studied apoptosis in mouse embryos by inducing

apoptosis and analyzing embryos using DNA staining and the Comet Assay.
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A pitfall of the Comet Assay is that it cannot discriminate in the typeNoA D
damage present. Therefore, if there is damage to individual blastomeres, degeatra
polar bodies or degeneration of individual blastomeres, it will be observed as a cbmet tai
Since the occurrence of degeneration of polar bodies occurs in all embryos, emtiryos w
normal DNA may show some type of comet tail. Those embryos with induced damage
will normally display a longer tail length, indicative of more DNA damage. Atingrto
Chan et al. (2001), the Comet Assay still needs to be refined to produce “optimal
sensitivity.” Although there are some pitfalls to using the Comet Asseaf igjive an
indication of the presence of damage at the genetic level.

In conclusion, genetic studies are important to perform due to concerns about long-
term consequences of offspring. Although the Comet Assay has some pitfigis, ot

researchers have demonstrated that it can be used to detect DNA damaggas.em

CHAPTER SUMMARY AND RESEARCH OVERVIEW

Vitrification has been around for over two decades and there are maitiefacil
using this method to cryopreserve embryos. Some facilities are using thsysgEn
method which has the potential for contamination of embryos from liquid nitrogen.
Some facilities are using a closed-system method which has beconablavail
commercially within the past couple of years. Our studies with a closersg$
vitrification started in 2003 at which time commercial vitrification devisese not

readily available. Some of the concerns with vitrification are liquid nitrogen
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contamination, the toxicity of the cryoprotectants, conflicting data fremarehers when
comparing vitrification to the slow-cooled method and genetic damage.

The following chapters will describe research that we have perfornegl thei
two-cell mouse embryo model. The second chapter will discuss vitrificating tygp
devices, two different stages of development and the open and closed system.dThe thir
chapter will discuss time that embryos can remain in vitrification isolutithout
altering blastocyst rate and live birth rate. In addition, comparisons of DNAgaamik
be made between embryos exposed to vitrification solutions for different intefvals
time. For embryos that are damaged by the lengthy stay in vitrificatiomosgltte
study will determine if the embryos can still produce live-births. The fohdbter will
compare the vitrification and slow-cooled method on the basis of blasto&yahchpup
rate. The fifth chapter will compare DNA damage between vitrified and cboled
two-cell mouse embryos cultured to the blastocyst stage. The sixth chaptetlial
compare DNA damage as determined by the Comet Assay; in this study, emitiripes
cultured to the eight-cell stage.

The outcome of these studies will help to determine if vitrification caacepghe
slow-cool method of freezing embryos. If the vitrification method provides comparabl
results to that of the “gold standard” slow-cool method, then it offers the potential t
eliminate the cost, time and reliability associated with the mechareealdr used to

slow-cool embryos.
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CHAPTER TWO
A COMPARISON BETWEEN AN OPEN AND CLOSED SYSTEM OF

VITRIFICATION

INTRODUCTION

Vitrification is a process by which cells can be frozen in such a way thass
like or vitrified state is obtained. Vitrification eliminates the formatiomafcellular
ice crystals. Vitrification of mouse embryos was first reported in 198% &dRdlFahy,

1985). Since then, this technique has been extended to vitrification of early-ogtbem
in cattle (Vajta et al., 1997) and humans (Mukaida et al., 1998) as well as d&stocy
cattle (Park et al., 1999), mice (Lane et al., 1999b), humans (Yokota et al., 2001),
monkeys (Yeoman et al., 2001) and pigs (Misumi et al., 2003).

Not only has vitrification of embryos from multiple species been reported, but for
many animal species there are reports of implantation and live births. Abstlbchi
et al. (1999) demonstrated a decrease in the implantation rate of vitrifiedltwteose
embryos when compared to the standard slow-freeze or fresh cultured emhhgs of
same cell stage and species. Misumi et al. (2003) demonstrated that he&tsycpigd
be produced from vitrified blastocysts.

Live births are also reported for humans. Yokota et al. (2001) demonstrated the
successful vitrification of human embryos with the birth of a baby with no known
anomalies and a normal karyotype. Mukaida et al. (2003) reported a 37% clinical
pregnancy rate with the transfer of vitrified blastocysts. At the tmedport was

published, 23 healthy babies had been born (18 deliveries), while 37 pregnancies were
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ongoing. Takahashi et al. (2005) used a questionnaire to perform a retrospective analys
which determined that 1.4% (2/147) of cases from vitrified blastocysts and 2% (4/205) of
cases from fresh blastocyst transfer had congenital birth defects. Althmugrevious
studies have demonstrated live births, due to the infancy of the technique, no long-term
follow-up studies are available.

A number of different ways to vitrify embryos have been reported including open-
pulled straws (Vajta et al., 1997), grid (Park et al., 1999), hemi-straw (Varalerew et
al., 2000), cryoloop (Yeoman et al., 2001) and Cryotop (Kuwayama et al., 2007). None
of these systems are a closed system, thus they allow for exposure of etmlicuod
nitrogen that can harbor hepatitis (Tedder et al., 1995) and possibly other infectious
diseases. Chen et. al. (2001) reported a type of closed system using bolusea ohmedi
either side of the medium containing the embryos; however, upon thawing, these boluses
would most likely merge with the one containing the embryos and thus contaminate the
specimen. The CryoTip (Irvine Scientific, Irvine, California) is a device, that after
loading with a minimal amount of vitrification solution containing the embryos, can be
sealed (Kuwayama, 2007). When the Cry&Yiwas compared with the Cryotop for
blastocyst survival, pregnancies and deliveries, there was no difference observed
(Kuwayama, 2005).

In 2003 our laboratory set out to develop a closed system of vitrification using
items that could be purchased commercially. The first device used wagpeSTip®
(MidAtlantic Diagnostics Inc., Marlton, New Jersey) in which mouse embrygos w

surrounded by 1.0 pL of vitrification solution and then both ends of the tip were sealed
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using a heat sealer (Figure 2.1). The second device used was the nozzle fromia Cryo B
Systems (CBS; L’Aigle, France) Straw in which 1.0 pL of vitrifioatsolution

containing mouse embryos were drawn into the nozzle (Figure 2.1). The noziewas
heat sealed on both ends. We compared the Stripp@ralid the CBS nozzle as open

and closed systems using two- and eight-cell mouse embryos (Figure 2.2).
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Figure 2.1. Vitrification devices.

The top device is the aspiration nozzle with pipet tip and the bottom device is ppeStri
Tip® with needle. Both devices are attached to a 1 mL syringe.
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A.

Figure 2.2. Mouse Embryos.
A) Two-Cell Mouse Embryos. B) Eight-Cell Mouse Embryos.
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MATERIALS AND METHODS

Male and female mice (B6C3F1) were purchased from Jackson Laborata@nes (B
Harbor, Maine). This strain of mice was chosen because it is the strain that our
laboratory uses for the mouse toxicity assay and because we have had goadl survi
results when the embryos were slow-cooled and thawed. All mice were handled
according to an Institutional Animal Care and Use Committee protocol for thecpr
Once the female mice were ready to be bred, they were injected with pregarant
serum gonadotrophin on Day 1, and then injected with human chorionic gonadotrophin
and mated on Day 3. On Day 5, the female mice were euthanized, the oviducts removed
and embryos were retrieved at the two-cell stage.

Vitrification of 794 embryos occurred at the two-cell stage or the emlwrgos
cultured overnight to the eight-cell stage and then vitrified. Two-cell gind-eell
mouse embryos were exposed to a medium consisting of Dulbecco’s Phosphat@l Buffere
Saline without calcium and magnesium (DPBS; In Vitro Care, San Diegq,/G®
ethylene glycol (Sigma, St. Louis, MO) and 7.5% dimethyl sulfoxide (DMS@ma) for
3.5 minutes. The embryos then were transferred to a vitrification solution consisting of
DPBS with 15% ethylene glycol and 15% DMSO (Boone and Tucker 2003, personnel
communications). Embryos were placed in one of four systems (opamilS@ripper
Tip®, closed-150 pum Stripper Tip®, open-CBS nozzle or closed-CBS nozzle) and
plunged into liquid nitrogen for storage.

After at least three days of storage, thawing of the embryos occurreghbying

the device from liquid nitrogen and exposing it to air. The area within the straw
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containing the embryos was thawed quickly by rubbing the straw between the thumb and
index finger for 2-3 seconds. Embryos then were expelled from the systerotecbdad
moved through a series of four solutions at 37°C. The first solution consisted of DPBS
with 1 M sucrose and 20% Synthetic Serum Substitute (SSS; Irvine Scientifia,/Sant

CA). The second solution consisted of DPBS with 0.5 M sucrose and 10% SSS. The
third solution consisted of DPBS with 0.25 M sucrose and 5% SSS and the fourth
solution consisted of DPBS with 0.125 M sucrose and 2.5% SSS (Testart et al., 1986).
The time of embryo exposure to each of the four solutions was 2 minutes, 3 minutes, 5
minutes and 5 minutes, respectively. Following thawing, embryos were cultured and
assessed for development.

Culturing of embryos occurred in 50 pL drops of Human Tubal Fluid (Irvine
Scientific, Santa Ana, CA) overlaid with oil for 48 or 72 hours. Blastocyst rates the
were observed (Figure 2.3). Eight trials were performed. Chi-squareesalgee
performed to determine which system, cell stage and device combinataedyilee

most favorable blastocyst rate.

RESULTS

Overall, the eight-cell stage embryos vitrified in either the Stripge® Br CBS
nozzle provided a higher blastocyst rate than did two-cell stage embrybsdvitrithe
same manner (84% [337/399] vs. 61% [243/395;0.001; Table 2.1). The open
system did not differ from the closed system (76% [291/384] vs. 70% [289F%0];

0.09). No differences in blastocyst rate were detected between devigese(SIij® or
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CBS nozzle) within systems (open or closéd: 0.05) with the exception of the two-cell
open-system Stripper Tip® vs. CBS nozzle (74% [73/98] vs. 53% [487341]).002;

Table 2.1).
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Figure 2.3. Mouse Blastocysts.
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Table 2.1. Two-Cell vs. Eight-Cell Mouse Embryos, Stripper Tip vs. CBS Blozzl
Cryopreservation of two- and eight-cell mouse embryos (n=395 and 399, respgatively

either an open- or closed-Stripper ®ipr an open- or closed-CBS nozzle. Numbers
above columns represent percent blastocysts.

Two-Cell vs Eight-Cell Mouse Embryos

% 100 o1 86 83
> . 74 7
& 40 WEight-Cell
L 20
0 L} L} ) )
Open Tip Closed Tip Open Closed
Nozzle Nozzle
Stripper Tip vs CBS Nozzle
)
2 91
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g ] ™ s
2 ] 59 60
f—.; 60 - 53 O Stripper Tip
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32



DISCUSSION

This study describes a closed system that can be used successfully to vitrify
mouse embryos, thus minimizing the potential for exposure to contaminants that may be
found in liquid nitrogen. Results indicate that there is no significant differance i
blastocyst rates between the open and closed systems with the exception ofablé two
open system. Although the open system produces a slightly higher blastagyst rat
overall, it was not significantly different; therefore, the authors haeeteel the closed
system for future studies to prevent embryo contamination from liquid nitrogen.

In 2004, Walker et al. used the Stripper®ito vitrify murine morulae and early
hatching blastocysts and observed a 90.1% survival and continued development rate.
This is the only other author known to use the Strippe®Tdp a device to vitrify
embryos; although, Liebermann et al. (2002b) used a similar device, theeflexi
denuding pipette, to vitrify human 1 pronucleus (PN) and 3PN embryos. The authors
then thawed and cultured the vitrified embryos. There was no significant idécire
blastocyst formation between the 1PN, 3PN and control embryos. Since this time, other
closed-vitrification devices have been discussed in the literature.

Information on the commercially available Cryo™pvas published in 2005 by
Kuwayama et al. This group vitrified human blastocysts that produced a 93% survival
rate after thawing. (Embryos were considered to have survived if theyydid@a
“normal response to osmotic changes during the dilution process”.) Although Walker
al. (2004) and Kuwayama et al. (2005) had high survival rates for vitrified embrggs, th

were using embryos of a more advanced cell stage than were used in our study. In ou
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study, the eight-cell mouse embryos had a higher blastocyst developrag¢haratlid

the two-cell mouse embryos, indicating that more developed embryos survived
vitrification and thawing better than less developed embryos. Cseh et al. (1997)
demonstrated mouse embryos frozen at the two-cell, four- to eight-cell, noaddy
blastocyst, and expanding and expanded blastocyst stages developed in culture after
being thawed at the rate of 51% (43/84), 47% (44/94), 80% (56/70) and 17% (10/59)
respectively. Although these researchers determined that the twod&dlua- to eight-

cell group were not differenP(> .05), the morula and early blastocyst group was higher
(P < .05).

The vitrification system we used does have some drawbacks. One is that we did
not have precise control of the thawing temperature since we thawed indhd gien
finished the process by rolling the straw between the fingers. Othercatioh systems
use a water bath, which could easily be incorporated into the thawing protocol to control
the thawing temperature. Another drawback, which is common for any stram sigste
the need for the operator to practice with the device to be successful; thsstalsoaf
our heat-sealed, closed system of vitrification. Embryos can easily beyeeisifrthe
operator does not pull a complete bolus of medium into the device. The bolus will split if
the operator pulls the medium too quickly and thus provide embryos with the potential to
stick to the sides of the Stripper Tip®.

Since 2003, many authors have published reports describing various devices and

systems to vitrify embryos. Our laboratory was able to successfullyatribryos
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using two types of closed systems which provide the advantage of alleviatingysonce

regarding possible liquid nitrogen contamination of embryos.
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CHAPTER THREE
THE EFFECT OF TIME IN VITRIFICATION SOLUTION ON EMBRYO

DEVELOPMENT, BIRTH RATE AND DNA DAMAGE

INTRODUCTION

Vitrification is a process by which cells can be frozen in such a way thass
like or vitrified state is obtained. This process eliminates the formationratatiular
ice crystals which can damage organelles within the cell. Vitidicaif mouse embryos
was first reported in 1985 (Rall and Fahy). Since then, this technique has beeedxte
to early-cell embryos in cattle (Vajta et al., 1997) and humans (Mukaida et al.,ak998)
well as blastocysts for cattle (Park et al., 1999), mice (Lane et al., 1999bh)sruma
(Yokota et al., 2001), monkeys (Yeoman et al., 2001) and pigs (Misumi et al., 2003).

One concern regarding vitrification is the exposure of the embryos to high-
osmolarity cryoprotectants because of the detrimental effedtealia been observed.
Rall (1987) determined that embryos remaining in vitrification solution containing
dimethyl sulfoxide, acetamide and propylene glycol at 4°C for 10 to 15 minutes were
able to survive, but none were able to survive after remaining in the same solution for 30
minutes. Exposure of Day-4 mouse embryos to glycerol, dimethyl sulfoxide orgmepyl
glycol for 20 minutes, was shown to be toxic (Ali and Shelton, 2007).

To avoid embryo exposure to high concentrations of toxic cryoprotectants for
extended periods, vitrification protocols generally require that embryosirémihie
vitrification solution for only 1 to 2 minutes (Lieberman et al., 2002b; Kuwayama et al.,

2005). This can be difficult, especially since some vitrification devices havdersize
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learning curve before the technique is mastered. Even with practice, om®thieyable
to quickly pick up embryos and vitrify within the time required; therefore, detammini
the length of time that embryos can safely reside in vitrification solutiompsrtant.

One way to determine the toxicity of a vitrification solution is to anaéynbryos
using the Comet Assay to detect DNA damage following exposure to these imigtcos
solutions. This assay was first performed by Ostling and Johanson (1984) to observe
murine lymphoma cells and later modified by Singh et al. (1988) to observe “single-
stranded DNA breaks and alkali-labile sites.” The premise for the CossalAs that
damaged DNA strands will migrate out of a cell during electrophoresisatedte tail
segment of the comet (the longer the tail, the more damage present);sybadzanaged
DNA will remain in the cell creating the head of the comet. This assaydeasused to
detect DNA damage in bovine oocytes (Chung et al., 2007) as well as hamkédra@ra
et al., 1999), bovine (Takahashi et al., 2000) and mouse (Fabian et al., 2003) embryos.
Stowinska et al. (2008) and Kalthur et al. (2008) used the Comet Assay to analyze DNA
damage in cryopreserved sperm. To our knowledge, our study is the first to use the
Comet Assay to detect DNA damage in cryopreserved mouse embryos.

The objectives of this study are 1) to determine the length of time in \atradic
solution to observe a reduction in blastocyst rate; 2) to determine the effece affti
exposure in vitrification solution on blastocyst rate and pup rate; and 3) to detehai
blastocyst rate and percentage of embryos demonstrating DNA damage duadedxte

exposure in vitrification solution.
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MATERIALS AND METHODS

Male and female mice (B6C3F1) were purchased from Jackson LabordBanies (
Harbor, ME). This strain of mice was chosen because it has demonstrated good survival
results when the embryos were slow-cooled and thawed. All mice were handled
according to an Institutional Animal Care and Use Committee protocol for thecpr
Once acclimated, the female mice were injected with pregnant nmane genadotrophin
on Day 1, and then injected with human chorionic gonadotrophin and mated on Day 3.
On Day 5, the female mice were euthanized, the oviducts removed and embryos were
retrieved at the two-cell stage. The same procedure to collect twoeredbrembryos

was used in each of the three experiments.

Experiment 1 Determine the length of time in vitrification solution to observe a
reduction in blastocyst rate.

The first experiment consisted of three trials. Trial 1 had two-cell mouseyesn
remaining in vitrification solution for 1, 2, 4 or 8 minutes. Trial 2 had embryos
remaining in vitrification solution for 1, 2, 4, 8, 16 or 32 minutes. Trial 3 had embryos
remaining in vitrification solution for 1 or 32 minutes. For all trials, two-celuse
embryos were exposed to a medium consisting of Dulbecco’s Phosphate Buffared Sali
without calcium and magnesium (DPBS; In Vitro Care, San Diego, CA), 7.5%eé&hyl
glycol (Sigma, St. Louis, MO) and 7.5% dimethyl sulfoxide (DMSO; Sigma3} for
minutes. The embryos then were transferred to a vitrification solution consisting

DPBS with 15% ethylene glycol and 15% DMSO (Boone and Tucker, personal
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communication). Both media were at 4°C immediately prior to use and remaioedat r
temperature thereatfter.

After remaining in vitrification solution for the specified amount of time, the
embryos were collected and moved through a series of four thawing solutions at 37°C.
The first solution consisted of DPBS with 1 M sucrose (Sigma) and 20% Syntletio S
Substitute (SSS; Irvine Scientific, Santa Ana, CA). The second solution consisted of
DPBS with 0.5 M sucrose and 10% SSS. The third solution consisted of DPBS with 0.25
M sucrose and 5% SSS and the fourth solution consisted of DPBS with 0.125 M sucrose
and 2.5% SSS. The amount of time that the embryos remained in each solution was 2
minutes, 3 minutes, 5 minutes and 5 minutes, respectively.

Embryos then were placed into 50 pL drops of Human Tubal Fluid (HTF; Irvine
Scientific) overlaid with washed mineral oil and cultured in an incubator at 36.7ThC wi

5% CQand air. After 72 hours, blastocyst rates were determined.

Experiment 2 Determine the effect of vitrification solution on blastocyst rate and pup
rate when embryos remain in vitrification solution for 32 minutes.

This experiment used the same media and methods as described for Experiment 1.
The difference was that all embryos remained in vitrification solution for 82tes
prior to their exposure to the thawing solutions. Also, this experiment used control
embryos which were collected and placed into HTF without being exposed to any
vitrification or thawing solutions. After culturing for 72 hours, the blastocystwats

determined for the controls and 32-minute exposure embryos.
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Cultured embryos were divided into three groups. The first group was control
blastocysts. The second group consisted of early and expanded blastocysts from the 32
minute exposure group, and the third group consisted of four-cell to morula-stage
embryos from the 32-minute exposure group. Embryos from all three groups were

transferred into designated recipient mice.

Experiment 3 Determine the blastocyst rate and percentage of embryos demogstrati
DNA damage due to vitrifying embryos that remain in vitrification solution for 32
minutes.

Similar to Experiment 1, embryos were exposed to the vitrification solution;
however, for this experiment they remained in vitrification solution for eitheintitenor
32 minutes. The embryos then were placed 10 at a time into @1 S@ripper Tips®
(MidAtlantic Diagnostics Inc., Marlton, NJ), which were sealed at both endg asCryo
Bio Systems SYMS Sealing System (Cryo Bio Systems, L'Aigle, Ejand/ithin 1
minute of transferring the embryos into the 15% ethylene glycol and 15% DMSO
vitrification solution, the sealed Stripper Tips® were placed vertically igfobdet on an
aluminum cane, which resided in 4 liters of liquid nitrogen in a Styrofoam container. A
second goblet was inverted and attached to the top of the cane to secure the Strippe
Tips® within the goblet. The canes were covered with cardboard sleeves afedredns
to a storage tank containing liquid nitrogen.

To thaw the vitrified embryos, Stripper Tips® were removed from liquid retrog

and exposed to air. The area within the Stripper Tip® containing the embryos was
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thawed quickly by rubbing this location between the thumb and index finger for 2 to 3
seconds. Both ends of the Stripper Tip® were cut off and the embryos wereexpell
from the device with the aid of a 0.1 mL bolus of media using a 25 gauge neachedtt
to a 1 mL syringe. The embryos were collected and moved through the sas@keri
four thawing solutions at 37°C described for Experiment 1.

Once thawed, embryos from the 1-minute and 32-minute exposure groups were
placed into designated 50 pL drops of Human Tubal Fluid (HTF; Irvine Scienafita S
Ana, CA) overlaid with washed mineral oil and cultured in an incubator at 36.7°C with
5% CQand air. On the same days that the embryos were thawed, fresh two-cell mouse
embryos were collected for controls (cultured in HTF) and for positive coiitudtsired
in HTF with 1% hydrogen peroxide to induce DNA damage). Controls and positive
controls embryos were cultured in the same environment as described abové&.2 After
hours, blastocyst rates for controls, positive controls, 1-minute and 32-minute exposure
groups were determined. Chi-square analyses were performed on the btastiecipr
each group.

Once blastocyst rates were determined, the Comet Assay Kit (Trevigen®,
Gaithersburg, MD) was used to evaluate the four groups of embryos (controlsgpositi
controls, 1-minute exposure and 32-minute exposure) for the presence of clamet tai
Manufacturer's recommendations to perform the assay were optimized foborattay.
Embryos were placed into 75 pL of melted agarose. The melted agarose containing t
embryos then was placed on a Comet Assay slide. The slide was held at 4°C in the dark

for 30 minutes and then placed into a 4°C lysis solution for 1 hour. After this incubation,
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the slide was placed into an alkaline solution at 4°C for 30 minutes. This was followed
by two 5 minute rinses of the slide with Tris-Borate-EDTA (Fisher StigrRittsburg,
PA).

Electrophoresis was performed for 20 minutes at 20 volts and 300 amps. The
slide was rinsed in alcohol for 5 minutes, allowed to dry and then placed into a
desiccator. At the time of analysis, 50 uL of SYBR® Green | was addkd shde and
the slide was then observed using fluorescence microscopy with a flunrescei
isothiocyanate filter.

Each embryo was observed and an image was captured using Slide Book
Software (Intelligent Imaging Innovation, Inc., Denver, Colorado). All embnages
were printed and examined for the presence or absence of a comet tatjuia-
analyses were performed on the percentage of observed comet tail$dor athbryo

groups.

RESULTS

Experiment 1 The first trial produced a 100% (10/10) blastocyst rate for eaitte df-,

2- and 8-minute exposure time (in vitrification solution) groups. The 4-minute exposure
time group produced a 78% (7/9) blastocyst rate. The second trial produced a 100%
blastocyst rate for the 1 (n=9), 2 (n=8), 4 (n=10) and 8 (n=10) minute exposure time
groups. The 16-minute exposure time group produced a 95% (19/20) blastocyst rate and

the 32-minute exposure time group produced a 44% (8/18) blastocyst rate. Theathird t
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produced 100% (22/22) blastocyst rate for the 1-minute exposure time group and a 72%

(38/53) blastocyst rate for the 32-minute exposure time group.

Experiment 2 The blastocyst rate was significantly different (P < 0.001) between the
control embryos (95% [61/64]) and the 32-minute exposure time embryos (76%
[193/255]). After the embryos were split into three groups (control, 32-minute blsistocy
stage and 32-minute multi-cell and morula stage) and transferred to retepiahds,

there was no significant differend@ € 0.3) in pup rates between the control embryos
(31% [15/48]) and the second group of embryos, which included early and expanded
blastocysts (42% [20/48]). However, there was a significant differéhe@(05) in pup
rates between the second group and third group of embryos, which included foar-cell t
morula group (2% [1/48]). There was also a significant differeRee(.05) in pup rates

between the control embryos and the third group of embryos.

Experiment 3 There was no significant differende£ 0.316) between the blastocyst

rates for the 1-minute (57% [69/120]) and 32-minute (51% [68/133]) exposure groups of
vitrified and thawed embryos. In addition, the percentage of embryos that pdesent
comet tails for the controls, positive controls, 1-minute exposure and 32-minute exposure
group was 21% (28/134), 41% (25/61), 14% (14/100) and 61% (52/85) respectively. The
1-minute exposure group was not significantly different than the control geoup (

0.174) but was significantly different from the 32-minute exposure g®upd.001) and
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the positive controls{ < 0.001). The 32-minute exposure group was significantly

different from the control groupg?(< 0.001) and the positive control group= 0.016).
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Figure 3.1. Mouse blastocyst with some DNA damage (as indicated by the sn&tll com
tail).

Figure 3.2 Mouse blastocyst with a large amount of DNA damage (as indigatiee
large comet tail).
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DISCUSSION

Experiment 1 explored the amount of time (1, 2, 4, 8, 16 or 32 minutes) an
embryo could be exposed to vitrification solution before a reduction in blastatgst r
was observed. For this study, the blastocyst rate was considered redused ileiss
than or equal to 80%. (A blastocyst rate of 80% is considered normal development for
two-cell mouse embryos cultured in our laboratory.) In this experiment embeyes w
not vitrified, but were instead exposed to vitrification and thawing solutions and the
cultured to the blastocyst stage. In Trial 1 a reduced blastocystastebserved for the
4-minute exposure group (78%) but not for the 8-minute exposure group (100%). In
Trial 2, a slight decrease in blastocyst rate was observed for the 1& mxpasure
group (95%), but only the 32-minute exposure group demonstrated the defined reduction
in blastocyst rate (44%). In Trial 3, a decrease was observed at the 32-mpusierex
group (72%). The reduction in blastocyst rate observed at 32 minutes determined the
extended time in vitrification solution for Experiment 2 and 3.

Rall (1987) determined that eight-cell mouse embryos remaining incatidn
solution containing dimethyl sulfoxide, acetamide and propylene glycol at 4D tor
15 minutes were able to survive, but none were able to survive after remaining in the
same solution for 30 minutes. Our study demonstrated a decrease in blaate@tsB2
minutes; however, 72% of the embryos in Trial 3 were able to develop.

Ali and Shelton (2007) demonstrated exposure of Day-4 mouse embryos to
glycerol, dimethyl sulfoxide or propylene glycol for 20 minutes to be toxas{btyst

rate of 27.3% [12/44]). In our study the 16-minute exposure group was able to produce a
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95% blastocyst rate. Although we did not observe blastocyst rates for timesiéfive

to 20 minutes, we demonstrated that 44% (Trial 2) and 72% (Trial 3) of embryos exposed
to vitrification solution for 32 minutes were able to develop. This is a higher
developmental ran than either Rall (1987) and Ali and Shelton (2007) observed,

indicating that vitrification solutions may not be as toxic as once thought.

Experiment 2 demonstrated that the blastocyst rate for the 32-minute exposure
group was 76% (193/255) which was significantly differéh&(0.001) than the control
group (95% [61/64]) indicating that the extended time in vitrification solution irgaibit
blastocyst growth. Although we determined in Experiment 1 the blastocysbr&@-f
minute exposure embryos was 44%, we had a higher blastocyst rate in Erp&rime
(76%). The difference in blastocyst rates could be the result of the low number of
embryos (n=18) used in Experiment 1.

In Experiment 2, the number of embryos used in the 32-minute exposure group
was four times the amount of embryos used in the control group (255 vs. 64). In order to
transfer 16 embryos to each designated recipient mouse (8 to each oviduct), wiemeede
ensure there would be adequate numbers of embryos available for transfeisecbtite
group (32-minute blastocyst group), and third group (32-minute multi-cell to morula
stage group). There was no significant differenBes Q.3) between the pup rates for the
controls (31% [15/48]) and the second group (42% [20/48]), indicating that those
embryos that remained in vitrification solution for 32 minutes and produced bldstocys

could produce pups at the same rate as embryos that were not exposed toiettrificat
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solution. In contrast, those embryos that remained in vitrification solution forr@emsi
but were unable to produce blastocysts (32-minute multi-cell to morula stage \geyap)
unable to produce pups (2% [1/48]) similar to the controls (31% [15748]).05).

Experiment 3 demonstrated that although there was no difference in blastocyst
rates between the 1-minute and 32-minute exposure group in blastocyst rage, the
minute exposure group embryos had significantly more DNA damage as idett g
the Comet Assay. A pitfall of the Comet Assay is its inability to spelegyexact type of
DNA damage. If there is damage to individual blastomeres, degeneration o,
or degeneration of polar bodies, the Comet Assay cannot delineate theseaifferen
Even though the Comet Assay does not pin-point the origin of the DNA damage, it can
provide useful information as to the extent of the damage present by the length of the
comet tail.

In summary, exposure of mouse embryos to vitrification solution for 32 minutes
does cause a decrease in blastocyst rate compared to embryos that gressat tex
vitrification solution. However, if the embryos grow to the early or expandetbbjas
stage and are transferred into recipients, these embryos can producetpegsiate rate
as those that are not exposed to vitrification solution despite the higher ratéof D

damage demonstrated by the 32-minute exposed embryos.
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CHAPTER FOUR
BLASTOCYST RATE AND LIVE BIRTHS FROM VITRIFICATION AND

SLOW-COOLED TWO-CELL MOUSE EMBRYOS

INTRODUCTION

Successful slow-cooled freezing methods have been in existence since 1972
(Whittingham et al.) and are considered the “gold standard” for cryopneg&mbryos
by many cryobiologists. This technique requires that a mammalian embryedeel pa
through a series of dehydrating solutions that replaces the water in thélteall w
cryoprotectant. The embryo is placed inside a freezing vessel (e.g.\saqpand
placed inside a freezing chamber. Once inside, the chamber is slowly cooled,rbaa poi
few degrees below 0°C. Ice crystals are manually induced (seeding) into the
cryoprotectant to prevent super cooling and then the freezing vessel is cooled to an
appropriate temperature (-30°C or loweripor to plunging into liquid nitrogen.

Vitrification is a process by which cells can be frozen in such a way tass
like or vitrified state is obtained. Vitrification uses viscosity which elebés the
formation of intracellular ice crystals. While vitrification technologg baen in
existence for over two decades (Rall and Fahy, 1985), the technology has only begun to
replace the slow-cooled method in the last decade. Vitrification was #dtusnice
embryos (Rall and Fahy, 1985), but has been extended to early-cell embryds in catt
(Vajta et al., 1997) and humans (Mukaida et al., 1998) as well as blastocysiiléor c
(Park et al., 1999), mice (Lane et al., 1999b), monkeys (Yeoman et al., 2001), humans

(Yokota et al., 2001) and pigs (Misumi et al., 2003).
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A number of different devices have been used to vitrify embryos including open-
pulled straws (Vajta et al., 1997), grid (Park et al., 1999), hemi-straw (Vavaleren et
al., 2000), cryoloop (Yeoman et al., 2001) and Cryotop (Kuwayama et al., 2005). Since
none of these systems are a closed system, they allow for potential contanviaation
liquid nitrogen with such disease as hepatitis (Tedder et al., 1995) or human
immunodeficiency virus-1 (Benifla et al., 2000). Chen et al. (2001) reported a type of
closed system that uses boluses of media on either side of the embryo-containing
medium; however, upon thawing, these boluses could merge with the one containing the
embryos resulting in contamination of the specimen. Today, there are aleal-se
closed-system devices available commercially to prevent this potemi@mination;
these devices include the Cryo®iglrvine Scientific, Irvine, California) and the High
Security Vitrification Kit (Cryo Bio System, L’Aigle, France)

The slow-cooling technique of cryopreserving embryos has drawbacks eampar
to vitrification. Some of the drawbacks include cost, time and reliability. The
mechanical freezer used to slow-cool specimens is costly and this cost doetudet i
the yearly maintenance fee of the freezer or repairs that may bedneédiification
does not incur these costs since embryos are plunged directly into liquid nitrogen,
eliminating the need for a mechanical freezer.

The time needed to run the slow-cool cycle is approximately 2 to 3 hours,
depending upon the stage of the embryo being frozen and the freezing protocol used;
furthermore, this does not include the time to move embryos though freezing solutions or

to load the embryos into straws. The time required to vitrify embryos is commssly le
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than 15 minutes. This includes the time to move the embryos though the vitrification
media, load the embryos into/onto a device and plunge the device into liquid nitrogen.
Since most human vitrification protocols do not put more than two embryos per straw,
the time it will take to vitrify the embryos is dependent upon the number of strdwes t
frozen.

The mechanical freezer produces varying post-thaw blastocyst developrtieant i
mouse, depending on the position of the embryos in the freezing chamber (Boone et al.,
2004). This study also demonstrated that different freezer positions havearghyfi
different temperatures during the freezing process. These variatitamaperature due
to the mechanical freezer do not occur in vitrification because embryoseuotydi
moved into liquid nitrogen.

One problem with cryoprotectants is that they can be toxic to embryos (Shaw et
al., 2000). Although both slow-cooled and vitrification procedures use cryoprotectants,
vitrification uses them at a higher concentration, thus creating an iaéreasmolarity
(~6000 mOsm compared to ~2500 mOsm for slow-cooled). In most vitrification
protocols, embryos have a short exposure time to the vitrification media prior to being
vitrified (Lieberman et al., 2002b; Kuwayama et al., 2005). When two-cell mouse
embryos were exposed to vitrification solution for 32 minutes then cultured to the
blastocyst stage and transferred to recipient mice, there was not eaigrdffference
(P =0.3) in pup rate (42% [20/48]) when compared to those not exposed to vitrification

solution (31% [15/48]); however, there was a significant decréaseé(001) in
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blastocyst rate (76% [193/255] vs. 95% [61/64] respectively; Graves-Herrahg et
2005).

A number of studies have been published that compare slow-cooled procedures to
vitrification procedures. Moussa et al. (2005) indicated that when equine embrgos we
frozen using slow-cooled or Open-Pulled Straw (OPS) vitrification, thesenwa
significant difference in the percentage of dead blastomeres per embriibk &tal.

(2005) froze Day-5 human blastocysts using a slow-cooled or a vitrificatidrochet

This study indicated that vitrification produced a 100% (41/41) blastocyst surateal r
and produced a 50% (10/20) pregnancy rate per embryo transfer whereas slow-frozen
blastocysts produced an 83.1% (59/71) survival rate and produced a 16.7% (4/24)
pregnancy rate per embryo transfer.

Naik et al. (2005) used morula-stage rabbit embryos and compared two types of
vitrification apparatuses (open-pulled French mini straws [OPS] and Fn@ncktraws)
and slow-cooled freezing. The OPS demonstrated the highest percentagmoystias
rates (71% [44/62]) and produced the highest percentage of offspring per number of
embryos transferred (29% [7/24]) when compared to the embryos frozen in the mini
straw method (blastocyst rate 48% [10/21]; offspring rate 4% [1/24]) or thecslolv-
method (blastocyst rate 55% [17/31]; offspring rate 19% [5/27]).

While laboratories have had success with open-system vitrification prosgedure
there is potential exposure to viruses that are harbored in the liquid nitrogen. To prevent
this potential, the purpose of this study was to use closed-system vitrification to 1)

compare vitrification to a slow-cooled method using two-cell mouse embryos; 2)
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compare the pup rate from embryos frozen/thawed via vitrification and sloeecool
methods; and 3) compare weights from pups produced via both methods at 30, 60, and 90

days following birth.

MATERIALS AND METHODS

Male and female mice (B6C3F1) were purchased from Jackson LabordBanies (
Harbor, Maine). This strain of mice was chosen because it is the strain that our
laboratory uses for the mouse toxicity assay and because we have had gwad sur
results when the embryos were slow-cooled and thawed. All mice were handled
according to an Institutional Animal Care and Use Committee protocol for thecpr
Once the female mice were ready to be bred, they were injected with miretara
serum gonadotrophin on Day 1, and then injected with human chorionic gonadotrophin
and mated on Day 3. On Day 5, the female mice were euthanized, the oviducts removed

and embryos were retrieved at the two-cell stage.

Vitrification

Two-cell mouse embryos were exposed to a medium consisting of Dulbecco’s
Phosphate Buffered Saline without calcium and magnesium (DPBS; In Viteo £
Diego, California), 7.5% ethylene glycol (Sigma, St. Louis, Missouri) and di&téthyl
sulfoxide (DMSO; Sigma) for 3.5 minutes. The embryos were transferred to a
vitrification solution consisting of DPBS with 15% ethylene glycol and 15% DMSO

(Boone and Tucker, personal communications). Both media were at 4°C immediately
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prior to use. Embryos were placed, ten at a time, into audb8tripper Tip®
(MidAtlantic Diagnostics Inc., Marlton, New Jersey) identified with armiotcolored
tape containing the date and number of embryos. The Stripp®r Wigs then sealed at
both ends using a Cryo Bio System SYMS Sealing System (Cryo Bio Systeiglel,’A
France). Within one minute of transferring the embryos into the 15% ethyieot and
15% DMSO, the sealed Stripper ®was placed vertically into a goblet on an
aluminum cane residing in 4 liters of liquid nitrogen in a Styrofoam container. Another
goblet then was inverted and attached near the top of the cane to secure theT3d®pe
within the goblets. The cane was covered with a cardboard sleeve and trdriefarre
storage tank containing liquid nitrogen.

To thaw vitrified embryos, Stripper Tigswere removed from liquid nitrogen
and quickly thawed by rubbing this location between the thumb and index finger for 2-3
seconds. Both ends of the Stripper Tip® were cut off and the embryos wereexpell
from the device with the aid of a 0.1 mL bolus of media using a 25 gauge neachedtt
to a 1 mL syringe. The embryos were collected and moved through a series of four
solutions at 37°C. The first solution consisted of DPBS with 1 M sucrose and 20%
synthetic serum substitute (SSS [Irvine Scienific, Santa Ana, Califpriiae second
solution consisted of DPBS with 0.5 M sucrose and 10% SSS. The third solution
consisted of DPBS with 0.25 M sucrose and 5% SSS and the fourth solution consisted of
DPBS with 0.125 M sucrose and 2.5% SSS. The amount of time that the embryos
remained in each solution was 2 minutes, 3 minutes, 5 minutes and 5 minutes,

respectively.
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Slow-Cooled Procedure

Two-cell mouse embryos were rinsed in Solution A for 15 to 20 seconds at room
temperature (23°C). Solution A consisted of Dulbecco’s Phosphate Buffer Solution
(PBS; Sigma) plus 20% human donor serum (tested negative for Hepatitis Bfisi€pa
HIV, HTLV1/2 and Rapid Plasma Reagin). Next, embryos were moved into a second
rinse of Solution A for 15 to 20 seconds.

Embryos then were moved into room-temperaturé@2Jolution B that consisted
of Solution A plus 1.5 M propanediol (PROH). After 15 minutes, embryos were moved
into room-temperature Solution C, which consisted of Solution B plus 0.1 M sucrose
(Testart et al., 1986). While in Solution C, ten embryos were placed into a 0.5 mL Cryo
Bio System (CBS) straw, which was heat-sealed using the Cryo Bimm&yStéMS
Sealing System. After a total of 15 minutes exposure to Solution C, the stramiognta
the embryos was placed into a Kryo 10 Series Il Planer Freezer (Sunbuhaoes,
Middlesex, United Kingdom) and the freezing protocol was initiated. Settingisefor
freezing protocol were as follows: Start temperature of 23fiCandecrease to -7°C at a
rate of -2°C per minute; hold for 15 minutes; -T6G30°C at a rate of -0.3°C per minute;
hold for 10 minutes; -3 to -180C at a rate of -5 per minute; hold for 10 minutes; and
plunge into liquid nitrogen. Manual seeding wagrened 5 minutes after the -7.0°C hold
had begun. Following the freeze, straws were reahdnom the programmable freezer and
placed into a storage tank containing liquid nignog

To thaw slow-cooled embryos, a straw was removed from liquid nitrogen and

placed on the counter at room temperature for 40 seconds; thawing was completed b
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rolling the straw between the fingers. Once thawing was complete, thiereatehe
straw was dried and both ends were cut. Embryos were expelled from the straw by
attaching a 1 mL syringe to one end of the straw and pushing the medium out with a
bolus of air.

Embryos were moved through four solutions of decreasing osmolality (Thawing
Solutions A, B, C and D) at 5-minute intervals. Solutions A, B, and C were held at room
temperature, while Solution D was held atG7 Thawing Solution A consisted of PBS,

1.0 M PROH, 0.2 M sucrose and 20% human donor serum. Thawing Solution B
consisted of PBS, 0.5 M PROH, 0.2 M sucrose and 20% human donor serum. Thawing
Solution C contained PBS, 0.2 M sucrose and 20% human donor serum and Thawing

Solution D contained PBS and 20% human donor serum.

Post-Thaw Procedures

Embryos frozen, using either cryopreservation method, were thawed over a period
of four trials. Once thawed, embryos were placed in 50 pL drops of Human Tubal Fluid
(HTF; Irvine Scientific, Santa Ana, California) overlaid with washedarahoil and
cultured in an incubator with a 36.7°C, 5% £&@d air atmosphere. After 72 hours,
blastocyst rates for both methods were determined.

For three of the trials, blastocyst transfers were performed. The expanded
blastocysts for both cryopreservation methods were collected and placegparatese
tubes containing 0.5 mL of HTF supplemented with 10% SSS to prepare for embryo

transfer.
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Recipient CD1 female mice were mated with vasectomized males and checked for
plugs. Blastocysts were transferred 48 hours later to two recipient geoatefor each
method) for each of the three trials. Blastocysts were transferghd aéia time, into
each uterine horn for a total of sixteen blastocysts per recipient. Recgyaales were
observed 17 days later for pups. Pups were observed for physical anomalies, weaned and

separated by gender on day 25. All pups were weighed on days 30, 60 and 90 after birth.

Statistical Information

Thirty-two straws (sixteen vitrification straws and sixteen stooled straws)
were thawed over a period of four trials. For each trial, a randomized set stfaws
from each method was thawed. Statistics were performed by chi-squblastocyst
rate comparison and pup rate comparison between the vitrification and the slot/-coole
method. Student’s t-test was performed for comparison of pup weights (by gender)

the vitrification and the slow-cooled method.

RESULTS

The overall blastocyst rate for the vitrification method was 52% (69/132) versus
58% (92/158) for the slow-cooled method. The overall percentage of pups born for the
vitrification method was 31% (15/48) versus 29% (14/48) for the slow-cooled method.
Neither the blastocyst rate nor pup rate was significantly diffeRentQ.05) when the

two cryopreservation methods were compared.
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Fifteen pups (five males, nine females, and one male that did not survive after
birth) developed from vitrified embryos, while fourteen pups (two males, 11 feraalkts
one unknown [cannibalized after birth]) developed from slow-cooled embryos. There
was not a significant differenc® ¢ 0.05) in gender in the vitrified group; however, the
gender was significantly differen® (< 0.05) in the slow-cooled group. The average
weight of the males from slow-cooled embryos was 23.6g, 34.0g, and 41.6g, respectively
on days 30, 60 and 90, whereas the average weight of the males from vitrified embryos
was 23.5g, 34.1g, and 40.2g, respectively on the same days. Female pup average weights
from slow-cooled embryos were 19.4g, 24.99, and 28.7g, respectively on the three weigh
dates, whereas female pup average weight from vitrified embryos were 19.3gaPdl. 19
28.3g, respectively. There were no significant differences between freezingds P
> 0.3) when comparing males on each day weighed and females on each day weighed.
One pup that originated from a vitrified embryo had hydroencephalitis, which is

sometimes observed in mouse colonies.

DISCUSSION

This study indicated that, for cryopreserved mouse embryos, there is no
significant difference in blastocyst rate or pup rate between the clostirsy
vitrification and the slow-cooled cryopreservation method. Although one pup in the
vitrified group demonstrated a physical abnormality, this is sometimesselisa
normal mouse colonies. Furthermore, there was no significant differencecbetve

weights of the offspring following weaning. In contrast, blastocyst denedap
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observed by Uechi et al. (1999) indicated a significant difference betwei@inatityn

(22.3%) and slowly frozen-thawed method (32.8%) for two-cell mouse embryos. These
researchers also observed a significant difference in implantatiorircateblastocysts
derived from vitrified-thawed (10.2%) two-cell embryos and slowly frozentda

(22.1%) two-cell embryos.

In contrast to Uechi and coworkers (1999), Walker et al. (2004) demonstrated that
when two-cell mouse embryos were frozen, thawed and cultured to the blasto®st stag
blastocyst development for programmable rate freezing (80.6%) wascsigtiif lower
than vitrification (90.7%). In the Walker (2004) study, vitrification occurred Isy fir
plunging a Stripper Tip® into liquid nitrogen and then later sealing the device inside a
CBS straw. Our study is similar to Walker et al. (2004) in that we also dttlee
Stripper Tip® and compared a vitrification method to a slow-cooled method; however,
our study does not expose embryos to potential contaminates from liquid nitrogen.
Furthermore, our study compared live birth rates (not just implantation rates) and pos
weaning weights of pups produced from blastocyst transfers.

Simultaneous to our research, others started using modified sealed systems wi
vitrification. Kumasako et al. (2005) reported a human pregnancy after atinficof
zygotes using 0.25 mL plastic straws (IMV, France) that were heat sealeddnd he
liquid nitrogen vapor prior to plunging. Not only have these closed systems produced
live births, but successful live births with open-vitrification systems have bee
demonstrated in pigs (Misumi et al., 2003) and humans (Yokota et al., 2001; Mukaida et

al., 2003; Takahashi et al., 2005).
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Kuwayama et al. (2005) vitrified human four-cell embryos with a Cryotop
(Kitazato Co., Fujinomiya, Japan) in which embryos were placed in a small volume of
medium and then placed on a polypropylene strip. The strip was subsequently
submerged into liquid nitrogen. A 90% embryo survival rate and a 45% live birth per
transfer rate were obtained using this method. These authors also succeisshaitl
human blastocysts (93% survival) with the Crya®ifirvine Scientific) method, which
is a heat-sealed closed system. The Cry®Tnpethod produced a 48% delivery per
transfer rate.

Many vitrification methods such as the cryoloop, grid, hemi-straw and open-
pulled straws allow embryos to come in contact with potentially contamingted |
nitrogen. In contrast, we have successfully vitrified embryos in a heat-sdatat|-c
system, which prevents liquid nitrogen from contaminating the embryos. Furtheasore
evidence that our system works, we have produced offspring (although the number of
transfers per group were low, we would have had to produce over 8,000 offspring to have
a statistical power of 0.8) from vitrified and slow-cooled two-cell mouse eralay well
as observed post-weaning pup weights. The combination of blastocyst rate, live births
and observation of post-weaning body weight has not been demonstrated in other studies.

In the vitrification and slow-cooled methods, there were more females born than
males. Although there is not an explanation for this outcome, Perez-Cresp@@d%a)
demonstrated that male mouse embryos are more vulnerable to stresses#han f
embryos. These researchers demonstrated that female embryos canlsatstress

better than male embryos in bathvivo andin vitro conditions. They also suggest that
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female embryos can survive better than male embryos under oxidativecsetridg®ons

which can be caused by a variety of stresses. Since cryopreservation isa fhraice

causes stress to the embryo (upregulation of stress-related genes [Bbehkls

2006]), this may be one reason for the increase in the number of females observed in our
study.

One drawback of a straw system is the need for the operator to practiceewith t
device in order to be successful; this is true of our heat-sealed, closed system of
vitrification. Embryos can easily be destroyed if the operator does not pullgetem
bolus of medium into the device. If the operator pulls the bolus of medium too quickly,
the bolus will split and embryos may potentially stick to the sides of the Strigmer Ti
Although a long learning curve may be necessary for some vitrification dethé®was
not observed for this vitrification device. When three embryologists in our labprator
were instructed on how to use the device, they were able to successfully widrify a
retrieve all embryos by the third use of the device (results not published).

Another drawback of this vitrification system is that we do not have a well-
controlled temperature thawing step for vitrification. Commercially puethas
vitrification systems use a water bath, which we could incorporate into thenthaw
protocol to control the thawing temperature.

Since our study demonstrated that there were no significant differences in
blastocyst rate, pup rate or phenotypic characteristics of the pups produced frem slow
cooled versus vitrified embryos, we plan to further investigate the potentictisedfe

vitrification on genotypic damage via the Comet Assay. The impetus for this st i
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aneuploid zygotes and malformed fetuses can arise from vitrification (KdlaE2&8).
If the subsequent study indicates that vitrification does not cause genetigejdinea
technique allows the scientist an additional, less time-consuming, method of
cryopreserving embryos. The variation associated with mechanicafsg@oone et
al., 2004) would be eliminated and the final outcome would be a more cost-effective
system to freeze embryos.

In summary, vitrification yielded similar results as the more labensive, slow-
cool method for cryopreserving mouse embryos, as measured by blastocyst rates, pup

rates and post weaning weights.
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CHAPTER FIVE
DNA DAMAGE IN VITRIFIED AND SLOW-COOLED

TWO-CELL MOUSE EMBRYOS

INTRODUCTION

Vitrification is a process by which cells can be frozen in such a way thass
like or vitrified state is obtained. By using viscosity, vitrification elinésathe
formation of intracellular ice crystals. The use of vitrification of mousbrgos was
first reported in 1985 (Rall and Fahy, 1985). Since then, this technigque has been
extended to early-cell embryos in cattle (Vajta et al., 1997) and humans (Mukaida e
1998) as well as blastocysts from cattle (Park et al., 1999), mice (Laneléoab),
monkeys (Yeoman et al., 2001), humans (Yokota et al., 2001) and pigs (Misumi et al.,
2003).

The use of vitrification for embryo cryopreservation has sparked a debate
regarding the merits of using open- versus closed-vitrification sgst@pen systems
used to vitrify embryos include open-pulled straws (Vajta et al. 1997), grid (Palrk et
1999), hemi-straw (Vanderzwalmen et al., 2000) and the cryoloop (Yeoman et al., 2001).
All of these open systems allow for potential contamination from liquid nitrogen tlyat ma
harbor infectious diseases such as hepatitis (Tedder et al., 1995).

Many different types of closed-vitrification systems have been i&se@ér Chen
et al. (2001) reported a type of closed system that uses boluses of media ondeitbier si
the embryo-containing medium; however, upon thawing, these boluses could merge with

the one containing the embryos resulting in contamination of the specimen. Today, heat-
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sealed, closed-system devices exist to prevent this potential contamindtese T
devices include the CryoTd (Irvine Scientific, Irvine, California) and the High Security
Vitrification Kit (Cryo Bio System, L’Aigle, France).

Vitrification has quickly become a preferred method of embryo cryopresamvati
in human Assisted Reproductive Technology laboratories. Several laborhtorées
described the use of vitrification procedures and their ability to produce viablesocy
and embryos, and have reported live-births from vitrified embryos; howeven the t
report of aneuploid zygotes and malformed fetuses that can arise fromatitifi¢Kola
et al., 1988), studies of possible genotypic embryo damage due to vitrification should be
undertaken.

One assay designed to detect DNA damage is the Comet Assay. akis/ass
first performed by Ostling and Johanson (1984) to observe murine lymphoma cells and
later modified by Singh et al. (1988) to observe “single-stranded DNA breaktkahd a
labile sites.” The premise for the Comet Assay is that damaged DNAlswall
migrate out of a cell during electrophoresis to create the tail segmeet airtiet,
whereas, undamaged DNA will remain in the cell creating the head of the. carhist
assay has been used to detect DNA damage in bovine oocytes (Chung et al., 2007) as
well as hamster (Takahashi et al., 1999), bovine (Takahashi et al., 2000) and mouse
(Fabian et al., 2003) embryos.

The objectives of this study are to determine: 1) the blastocyst rate foetivo

mouse embryos frozen via a vitrification or a slow-cooled method and 2) determine
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whether either of these two freezing methods causes DNA damage (as thidyctie

presence of a comet tail).

MATERIALS AND METHODS

Male and female mice (B6C3F1) were purchased from Jackson LabordBanies (
Harbor, ME). This strain of mice was chosen because it is the strain that oatdapor
uses for mouse embryo-toxicity assays and we have had good survival resalthevhe
embryos were slow-cooled and thawed. All mice were handled according to an
Institutional Animal Care and Use Committee protocol for this project. Oncerttad
mice were acclimated, they were injected with pregnant mare serumogapdin on
Day 1, and then injected with human chorionic gonadotrophin and mated on Day 3. On
Day 5, the female mice were euthanized, the oviducts removed, and embryos were
retrieved at the two-cell stage.

Two-cell mouse embryos were used for this two-part study. Part | dutdhe s
observed the blastocyst rate of two-cell mouse embryos that were frozentheth ei

vitrification or slow-cooling.

Vitrification Procedure

Two-cell mouse embryos were exposed for 3.5 minutes to a medium consisting of
Dulbecco’s Phosphate Buffered Saline without calcium and magnesium (DPBi8pin V
Care, San Diego, CA), 7.5% ethylene glycol (Sigma, St. Louis, MO) and 7.5% gimeth

sulfoxide (DMSO; Sigma). The embryos then were transferred to a viioficsolution
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consisting of DPBS with 15% ethylene glycol and 15% DMSO (Boone and Tucker 2003,
personal communications). Both media were at 4°C immediately prior to udsydsm

were placed 10 at a time into a 14 Stripper Tip® (MidAtlantic Diagnostics Inc.,

Marlton, NJ) which then was sealed at both ends using a Cryo Bio Systems SYMS
Sealing System (Cryo Bio Systems, L'Aigle, France). Within 1 mintiteansferring

the embryos into the 15% ethylene glycol and 15% DMSO, the sealed Stripper Tip® was
placed vertically into a goblet on an aluminum cane which resided in 4 liters of liquid
nitrogen in a Styrofoam container. Another goblet then was inverted and attaahed ne
the top of the cane to secure the Stripper Tip® within the goblets. The cane wasl cover
with a cardboard sleeve and transferred to a storage tank containing liquid nitrogen.

To thaw vitrified embryos, Stripper Tips® were removed from liquid nitrogen and
exposed to air. The area within the Stripper Tip® which contained the embryos was
thawed quickly by rubbing this location between the thumb and index finger for 2 to 3
seconds. Both ends of the Stripper Tip® were cut off and the embryos weredexpelle
from the device with the aid of a bolus of 0.1 mL of media using a 25 gauge needle
attached to a 1 mL syringe. The embryos were collected and moved through a series of
four thawing solutions at 37°C. The first solution consisted of DPBS with 1 M sucrose
(Sigma) and 20% Synthetic Serum Substitute (SSS; Irvine Scientific, Saat&LA).

The second solution consisted of DPBS with 0.5 M sucrose and 10% SSS. The third
solution consisted of DPBS with 0.25 M sucrose and 5% SSS and the fourth solution

consisted of DPBS with 0.125 M sucrose and 2.5% SSS. The amount of time that the
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embryos remained in each solution was 2 minutes, 3 minutes, 5 minutes and 5 minutes,

respectively.

Slow-Cooled Procedure

Two-cell mouse embryos were exposed for 15 to 20 seconds to room temperature
(23°C) Solution A which contained Dulbecco’s Phosphate Buffer Solution (PBS, Sigma)
with 20% human donor serum. Next, embryos were moved into a second rinse of
Solution A for 15 to 20 seconds. Embryos then were moved into room temperature
Solution B consisting of Solution A plus 1.5 M propanediol (PROH, Sigma). After 15
minutes, embryos were moved into room-temperature Solution C, which consisted of
Solution B and 0.1 M sucrose (Testart et al., 1986). While in Solution C, ten embryos
were placed into a Cryo Bio System (CBS) straw which was heat-sealgdhusiCBS
SYMS Sealing System.

After a total of 15 minutes of exposure to Solution C, straws containing the embryos
were placed into a Kryo 10 Series Il Planer Freezer (Sunbury-on-Thanuzte $4ix,

United Kingdom) and the freezing protocol was initiated. Settings for therfgeez
protocol were as follows: Start temperature of 23°C with eedse to -7°C at a rate of
-2°C per minute; hold for 15 minutes; -7°C to -3GfiGa rate of -0.3°C per minute; hold for
10 minutes; -38C to -180C at a rate of -5@ per minute; hold for 10 minutes; and plunge
into liquid nitrogen. Manual seeding was perforrbedinutes after the -7.0°C hold had
begun. At the conclusion of the freezing protosthws were removed from the

programmable freezer and placed into a storagecamtining liquid nitrogen.
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To thaw slow-cooled embryos, straws were removed from liquid nitrogen and
placed on a counter at room temperature for 40 seconds. Thawing then was completed by
rolling the straw between the fingers. Once thawing was complete, thiereatehe
straw was dried and both ends were cut off. Embryos were expelled from théstra
attaching a 1 mL syringe to one end of the straw and pushing the medium out with a
bolus of air. The embryos were moved through four solutions of decreasing osmolality
(Thawing Solutions A, B, C and D) at 5-minute intervals. Solutions A, B, and C were
held at room temperature, while Solution D was held at 37°C. Thawing Solution A
consisted of PBS, 1.0 M PROH, 0.2 M sucrose and 20% donor serum. Thawing Solution
B consisted of PBS, 0.5 M PROH, 0.2 M sucrose and 20% donor serum. Thawing
Solution C contained of PBS, 0.2 M sucrose and 20% donor serum. Thawing Solution D

contained PBS and 20% donor serum.

Culturing Procedure

Once thawed, embryos cryopreserved using either method (vitrificatitmwner s
cooled), were placed into 50 pL drops of Human Tubal Fluid (HTF; Irvine Scientific,
Santa Ana, CA) overlaid with washed mineral oil and cultured in an incubator at 36.7°C
with 5% CQand air. In addition, controls (cultured in HTF) and positive controls
(cultured in HTF with 1% hydrogen peroxide), also were cultured in the same
environment as described above. After 72 hours, blastocyst rates for controlge posit
controls and both freezing methods were determined. Chi-square analyses were

performed on the blastocyst rate for each group.
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Comet Assay

Part Il of the study used the Comet Assay Kit (Trevigen®, Gaithersburg, MD) to
evaluate the four groups of embryos (controls, positive controls, vitrified, sloweool
for comet tails. Manufacturer's recommendations to perform the assay have bee
optimized for our laboratory. Embryos were placed in 75 pL of melted agarose. The
melted agarose containing the embryos then was placed on a Comet Assayltsdide
slide was held at 4°C in the dark for 30 minutes and placed into a 4°C lysis solution for 1
hour. After this incubation, the slide was placed into an alkaline solution at 4°C for 30
minutes. This was followed by two 5 minute rinses of the slide with Tris-BoRI&AE
(Fisher Scientific, Pittsburg, PA).

Electrophoresis was performed for 20 minutes at 20 volts and 300 amps. The
slide was rinsed in alcohol for 5 minutes, allowed to dry and placed into a desigsator
the time of analysis, 50 pL of SYBR® Green | was added to the slide and observed using
fluorescence microscopy with a fluorescein isothiocyanate filter.

Measurements were taken for the length of each embryo’s comet tail lidmg S
Book Software (Intelligent Imaging Innovation, Inc., Denver, Colorado). In order to
distinguish normal comet tails from abnormal comet tails, a confidence inteasal
created for the controls. The upper bound limit for the confidence interval wassused a
boundary for undamaged embryos. Any tail length less than or equal to the upper bound
limit was considered normal, whereas any tail length that was greatahthapper
bound limit was considered abnormal. Chi-square analyses were performed on

percentage of normal tail lengths for all embryo groups.
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RESULTS

For Part | (observation of blastocyst rates), controls produced a blastaeysit ra
100% (97/97) which was significantly differeft € 0.001) from the positive controls
(66% [71/108)), vitrified (66% [64/97]) and slow-cooled (66% [66/100]) groups. The
positive controls, vitrified and slow-cooled groups were not significantly diftefP >
0.9) from each other.

For Part I, the Comet Assay was performed and measurements kesréaathe
length of each embryo’s comet tail. The controls were analyzed and the upper bound
limit of the 95% confidence interval was determined to be 46 um; therefore, any tail
length longer than this was considered abnormal. There was no signifiéargrdié in
the percent of normal tail lengthB € 0.08) between controls (78% [67/86]) and positive
controls (64% [34/53]). There was a significant differerte 0.02) in the percentage
of normal tail lengths between the control and vitrified (56% [26/46]) groups. There wa
also a significant differenc®( 0.05) between the control and the slow-cooled (40%
[17/42]) groups. There was a significant differeree=(0.02) between the positive
control group and the slow-cooled group, but no differeRce @.54) between the
positive control group and the vitrified group. There was no significant differénee (
0.14) in the percentage of normal tail lengths between the vitrified and slovetcoole

groups.
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Figure 5.1. Observation of blastocysts for a comet tail.

A) Control blastocyst with no comet tail. B) Positive control blastocyst with ctaihe
present. C) Blastocyst that was vitrified at the two-cell stage withl €omet tail. D)
Blastocyst that was slow-cooled at the two-cell stage with smalltdarhe
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DISCUSSION

Vitrification has been used since 1985 (Rall and Fahy, 1985). Since that time
researchers have performed vitrification using open systems (Yeomar2804l Park
et al., 1999; Vajta et al., 1997) and closed systems (Kuwayama, 2007). A drawback of
the open systems is the possibility of liquid nitrogen contamination of embryos (Tedder
et al., 1995); therefore, a closed system is preferred. Although severatdaiesrhave
used vitrification procedures and are able to produce viable oocytes, embd/tgea
births from these embryos, genotypic damage should be a concern due to reports of
aneuploid zygotes and malformed fetuses that can arise from vitrified enfplaset
al., 1988).

As in the case of intracytoplasmic sperm injection (ICSI), the rapid adoption of
new Assisted Reproduction Technologies (ART), such as vitrification raysesrts
about the long-term consequences on offspring generated from such technologies. The
earliest reported use of ICSI in a human ART facility occurred in 1992 (Raletral.).
The technique was then rapidly implemented in ART facilities world-wide vtili, lif
any, preliminary animal testing. Scientists are now questioning if theguoe is indeed
safe. The ICSI procedure has been associated with an increased incidemgrentihg
defects (Cox et al., 2002), Beckwith-Wiedeman Syndrome (DeBaun et al., 2003) and
Angelman Syndrome (Orstavik et al., 2003).

For many years, slow-freezing with a mechanical freezer has berltiséry
standard for embryo cryopreservation. This time-tested technique is not wighout i

drawbacks. These drawbacks include high expense, laboratory personnel time and
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reduction of embryo development due to temperature differences within thedree
chamber. The initial cost of a mechanical freezer to slow-cool specimexyessive,
and does not include the yearly maintenance fees and unanticipated repairs.eThe tim
necessary to process embryos through a slow-freeze cycle is appebxintat 3 hours
depending on the embryo stage. This time does not include the time spent moving
embryos though freezing solutions or loading the embryos into straws. These additiona
steps also increase the risk of damage to the embryos. Vitrification #flevembryos to
be moved through the vitrification media, into a freezing device and then plungedydirectl
into liquid nitrogen without the aid of a mechanical freezer. This reduces the amount of
time necessary for a vitrification cycle to 5 to 10 minutes; this includegrieéd move
the embryos through vitrification solutions.

Boone et al. (2004) reported that the location of embryos within a freezing
chamber alters future developmental rates. These researchersaisereid that
different positions within a freezing chamber demonstrated significarffibyeht
temperatures during cooling. Vitrification eliminates variations in teatper due to
mechanical equipment as embryos are moved from the cryoprotectant meditiy dire
into liquid nitrogen.

We compared the blastocyst rate for two-cell mouse embryos cryopkssiug
a vitrification method and a slow-cooled method and compared DNA damage caused by
both freezing methods using the Comet Assay. There were no significant déferenc
observed in either the blastocyst rate or in the percentage of normal tdislengt

(indicating DNA damage) between vitrified and slow-cooled two-cell mouse esibry
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We did not observe a significant difference between the controls and positive controls
when the Comet Assay was performed; however, an increased level of hydrogen
peroxide, for the positive controls, may be needed to demonstrate a significenendi.

A significant difference observed between the controls and both freezihgdset
suggests that freezing causes DNA damage regardless of the cryopi@s@nadocol

used.

A pitfall of the Comet Assay is the task of distinguishing damage to chdili
blastomeres, degeneration of blastomeres, or degeneration of polar bodieshalhof w
will be observed as a comet tail; therefore, the Comet Assay does nohahatei where
the DNA damage is present. Although other researchers have used the Comet Assay t
detect DNA damage in embryos (Takahashi et al., 1999; Takahashi et al., 2000;efabia
al., 2003), we have not found other literature that describes the use of thisoassay f
detection of DNA damage in cryopreserved mouse embryos. Stowinska et al. (2008) and
Kalthur et al. (2008) have used the Comet Assay to analyze DNA damage in
cryopreserved sperm.

In summary, we found no significant difference between the vitrification and
slow-cooled methods when the blastocyst rates of frozen/thawed mouse embyg/os we
compared. We also demonstrate that the vitrification and slow-cooled methods have a
significantly lower percentage of normal embryos when compared to control eraryos
assessed by the Comet Assay; however, neither freezing method is supbeamthet

in the production of normal embryos. With the reduction in cost, reduction in time for
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laboratory personnel and absence of mechanical equipment, vitrification appeas t

better choice for freezing mammalian embryos.
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CHAPTER SIX
COMPARISON OF DNA DAMAGE BETWEEN VITRIFIED AND

SLOW-COOLED MOUSE EMBRYOS

INTRODUCTION

Vitrification has been in existence since 1985 (Rall and Fahy) and is cyrrentl
being used to cryopreserve human embryos (Liebermann et al., 2002a; Vanderzwalmen
et al., 2003; Kuwayama et al., 2005). A previous study performed by this laboratory
determined that there was no significant differete 0.9) between vitrification and
slow-cooled methods when blastocyst rates were compared (66%; 64/97, 66%; 66/100,
respectively), nor was either method superior in the production of normal emb8gos (
[26/46], 40% [17/42], respectivelf, = 0.14) when analyzed by the Comet Assay
(Trevigen®; Graves-Herring and Boone, 2007). In contrast to this previous study, this
study will culture thawed two-cell embryos to the eight-cell stage aalyze DNA
damage with the use of the Comet Assay.

This laboratory currently uses mouse embryos that are cultug8d4roxygen
concentration. This oxygen tension reduces the number of embryos that develop to the
blastocyst stage and the number of cells present in the blastocyst whenembtogio
oxygen concentration (Karagenc et al., 2004; Bavister 2004). Takahashi et al. (1999)
observed a longer mean comet tail length (indicative of more DNA damage)eén catt
embryos cultured to the blastocyst stage under 20% oxygen concentratitemgidl-

149.9 um) than 5% oxygen concentration (tail length - 43.3um).
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The objective of this study is to determine if there is more DNA damagedcause
by freezing with the vitrification method or the slow-cooled method. This is a
randomized, prospective, pilot study with two-cell mouse embryos cultured taglite ei

cell stage.

MATERIALS AND METHODS

Male and female mice (B6C3F1) were purchased from Jackson Laborata@nes (B
Harbor, ME). This strain of mice was chosen because it is the strain thabanatday
uses for the mouse embryo-toxicity assay and we have had good survivalwasulthie
embryos were slow-cooled and thawed. All mice were handled according to an
Institutional Animal Care and Use Committee protocol for this project. Ondertisde
mice were acclimated, they were injected with pregnant mare serumogapdin on
Day 1, and then injected with human chorionic gonadotrophin and mated on Day 3. On
Day 5, the female mice were euthanized, the oviducts removed, and embryos were

retrieved at the two-cell stage.

Vitrification Procedure

Two-cell mouse embryos were exposed to a medium consisting of Dulbecco’s
Phosphate Buffered Saline without calcium and magnesium (DPBS; In VitrpS2ere
Diego, CA), 7.5% ethylene glycol (Sigma, St. Louis, MO) and 7.5% dimethyl sulfoxide
(DMSO; Sigma) for 3.5 minutes. The embryos then were transferred to igafitoif

solution consisting of DPBS with 15% ethylene glycol and 15% DMSO (Boone and
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Tucker 2003, personal communications). Both media were at 4°C immediatelyprior t
use. Embryos were placed 10 at a time into ayib(btripper Tip® (MidAtlantic
Diagnostics Inc., Marlton, NJ) which then was sealed at both ends using a Cryo Bio
Systems SYMS Sealing System (Cryo Bio Systems, L'Aigle, Ejan@/ithin 1 minute

of transferring the embryos into the 15% ethylene glycol and 15% DMSO, tled seal
Stripper Tip® was placed vertically into a goblet on an aluminum cane whichdaside
liters of liquid nitrogen in a Styrofoam container. Another goblet then was éaventd
attached near the top of the cane to secure the Stripper Tip® within the gobletan&he
was covered with a cardboard sleeve and transferred to a storage tank coritaiiting |
nitrogen.

To thaw vitrified embryos, Stripper Tips® were removed from liquid nitrogen and
exposed to air. The area within the Stripper Tip® which contained the embryos was
thawed quickly by rubbing this location between the thumb and index finger for 2 to 3
seconds. Both ends of the Stripper Tip® were cut off and the embryos wereexpell
from the device with the aid of a bolus of 0.1 mL of media using a 25 gauge needle
attached to a 1 mL syringe. The embryos were collected and moved through a series of
four thawing solutions at 37°C. The first solution consisted of DPBS with 1 M sucrose
(Sigma) and 20% Synthetic Serum Substitute (SSS; Irvine Scientific, Saat&LA).

The second solution consisted of DPBS with 0.5 M sucrose and 10% SSS. The third
solution consisted of DPBS with 0.25 M sucrose and 5% SSS and the fourth solution

consisted of DPBS with 0.125 M sucrose and 2.5% SSS. The amount of time that the
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embryos remained in each solution was 2 minutes, 3 minutes, 5 minutes and 5 minutes,

respectively.

Slow-Cooled Procedure

Two-cell mouse embryos were exposed for 15 to 20 seconds to room temperature
(23°C) Solution A which contained Dulbecco’s Phosphate Buffer Solution (PBS, Sigma)
with 20% human donor serum. Next, embryos were moved into a second rinse of
Solution A for 15 to 20 seconds. Embryos then were moved into room temperature
Solution B consisting of Solution A plus 1.5 M propanediol (PROH, Sigma). After 15
minutes, embryos were moved into room-temperature Solution C, which consisted of
Solution B and 0.1 M sucrose (Testart et al., 1986). While in Solution C, ten embryos
were placed into a Cryo Bio System (CBS) straw which was heat-sealgdhusiCBS
SYMS Sealing System.

After a total of 15 minutes of exposure to Solution C, straws containing the embryos
were placed into a Kryo 10 Series Il Planer Freezer (Sunbury-on-Thanuzte $4ix,

United Kingdom) and the freezing protocol was initiated. Settings for therfgeez
protocol were as follows: Start temperature of 23°C with eedse to -7°C at a rate of
-2°C per minute; hold for 15 minutes; -7°C to -3GfiGa rate of -0.3°C per minute; hold for
10 minutes; -38C to -180C at a rate of -5@ per minute; hold for 10 minutes; and plunge
into liquid nitrogen. Manual seeding was perforrbedinutes after the -7.0°C hold had
begun. At the conclusion of the freezing protosthws were removed from the

programmable freezer and placed into a storagecamtining liquid nitrogen.

79



To thaw slow-cooled embryos, straws were removed from liquid nitrogen and
placed on a counter at room temperature for 40 seconds. Thawing then was completed by
rolling the straw between the fingers. Once thawing was complete, thiereatehe
straw was dried and both ends were cut off. Embryos were expelled from théstra
attaching a 1 mL syringe to one end of the straw and pushing the medium out with a
bolus of air. The embryos were moved through four solutions of decreasing osmolality
(Thawing Solutions A, B, C and D) at 5-minute intervals. Solutions A, B and C were
held at room temperature, while Solution D was held at 37°C. Thawing Solution A
consisted of PBS, 1.0 M PROH, 0.2 M sucrose and 20% donor serum. Thawing Solution
B consisted of PBS, 0.5 M PROH, 0.2 M sucrose and 20% donor serum. Thawing
Solution C contained of PBS, 0.2 M sucrose and 20% donor serum. Thawing Solution D

contained PBS and 20% donor serum.

Culturing Procedure

Once thawed, embryos cryopreserved using either method (vitrificatioover sl
cooled), were placed into 50 pL drops of Human Tubal Fluid (HTF; Irvine Scientific,
Santa Ana, CA) overlaid with washed mineral oil and cultured in an incubator at 36.7°C
with 5% CQ and air for 24 hours.

This study had three controls. The first control embryos were cultured in HTF
(HTF control) for 24 hours, the second control embryos were cultured in HTF for 24
hours and then exposed to UV light (HTF/UV positive controls), and the third control

embryos were embryos collected from females at the eight-cell ($tagle controls).
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Comet Assay

Part Il of the study used the Comet Assay Kit (Trevigen®, Gaithersburg, MD) to
evaluate the four groups of embryos (controls, positive controls, vitrified, sloweool
for comet tails. Manufacturer's recommendations to perform the assay have bee
optimized for our laboratory. Embryos were placed in 75 pL of melted agarose. The
melted agarose containing the embryos then was placed on a Comet Assayltsdide
slide was held at 4°C in the dark for 30 minutes and placed into a 4°C lysis solution for 1
hour. After this incubator, the slide was placed into an alkaline solution at 4°C for 30
minutes. This was followed by two 5 minute rinses of the slide with Tris-BoRI&AE
(Fisher Scientific, Pittsburg, PA).

Electrophoresis was performed for 20 minutes at 20 volts and 300 amps. The
slide was rinsed in alcohol for 5 minutes, allowed to dry and placed into a desigsator
the time of analysis, 50 pL of SYBR® Greewds added to the slide and observed using
fluorescence microscopy with a fluorescein isothiocyanate filter.

All five groups (vitrification, slow-cooled, and three control groups) of embryos
were exposed to the Comet Assay (Trevigen®) and evaluated for comet tails
Measurements were taken for the length of each embryo’s comet tail Lidm@&ok
Software (Intelligent Imaging Innovation, Inc., Denver, Colorado). In order to
distinguish normal comet tails from abnormal comet tails, a confidence inteasal
created for the controls. The upper bound limit for the confidence interval wassused a
boundary for undamaged embryos. The upper bound limit of the 95% CI for the controls

was determined to be 119 um; therefore, any tail length longer than 119 um was
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considered abnormal. Chi-square analyses were performed on percentage ofallormal

lengths for all embryo groups.
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Figure 6.1. Fresh eight-cell mouse embryo with no cometman\o cultured).

Figure 6.2. HTF control eight-cell mouse embryo with a large comeirtaikio
cultured from two-cell stage).
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Figure 6.3. Eight-cell mouse embryo with large comet tail (vitrifiesvatdell stage,
thawed, and cultureieh vitro).

Figure 6.4. Eight-cell mouse embryo with no comet tail (slow-cooled at tiivetage,
thawed, and cultureieh vitro).
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RESULTS

When each group was compared to another, the only significant differences
observed were when the fresh controls (90% [37/41]) were compared to HTF controls
(56% [30/54];P < 0.001), HTF/UV positive controls (59% [33/56]:< 0.001), vitrified

(53% [31/58];P < 0.001) and slow-cooled (59% [19/3#]= 0.002) groups.

DISCUSSION

This study determined that there is no significant difference in DNA damag
between vitrified and slow-cooled two-cell mouse embryos when they angresgrved
at the two-cell stage then thawed and cultured to the eight-cell stage. Haiveve
significant difference observed in fresh embryos compared to all other groups is
concerning because there appears to be DNA damage caused by culturing.embryos

This observed damage could be due to elevated oxygen tension as reported by
Takahashi et al. (1999). These researchers observed more DNA damage in embryos
cultured under 20% oxygen concentration than those under 5% oxygen concentration. A
20% oxygen tension has also been shown to reduce the number of embryos that develop
to the blastocyst stage and the number of cells present in the blastocyst wharedoim
5% oxygen concentration (Karagenc et al., 2004; Bavister 2004). Bavister (2004)
indicated that the 20% oxygen concentration does not affect the trophectoderm, but does
damage the inner cellular mass.

A pitfall of the Comet Assay is the lack of ability to distinguish amongadgamo

individual blastomeres, degeneration of blastomeres, or degeneration of polar bodies, all
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of which will be observed as a comet tail; therefore, the Comet Assay does neatdeli
location. Although other researchers have used the Comet Assay to detect Dagedam

in embryos (Takahashi et al., 1999; Takahashi et al., 2000; Fabian et al., 2003), we have
not found another researcher who has used this assay for detection of DNA damage in
cryopreserved mouse embryos. Stowinska et al. (2008) and Kalthur et al. (2008) have
used the Comet Assay to analyze DNA damage in cryopreserved sperm.

The outcome of this research warrants further investigation to detefmine i
culturing mammalian embryos under a lower oxygen concentration would be @@nefic
However, we have determined through this study and our previous study (Graveg-Herrin
and Boone, 2007) that neither the vitrification nor slow-cooled method is superior to

cryopreserve mouse embryos.
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CHAPTER SEVEN

DISCUSSION

Vitrification has recently started to replace the commonly used slowetoole
method to cryopreserve mammalian embryos. The two methods to vitrify emleyos ar
the open system and the closed system. The open-system method has the potential f
contamination of embryos from liquid nitrogen whereas the closed-systdmdne
reduces this risk. Closed systems have become a commercial producthéthast few
years (Kuwayama 2005); however, when our research started in 2003, commercial
vitrification devices were not readily available.

This research focused on concerns with vitrification. These concerns included
using a closed system of vitrification, toxicity of the cryoprotectants, aosgn of
blastocyst rates and pup rates with vitrification and the slow-cooled method, and genet
damage with either freezing method. We tested the hypothesis that the two
cryopreservation methods were not significantly different when comptréngbove
criteria, and we could replace the slow-cooled method of freezing with tHieaiton

method.

Development of a Closed System for Vitrification

The first study (Chapter 2) developed a closed system of vitidiic&bm items
purchased commercially. This study also vitrified two- and eight-calis& embryos to

determine which stage to use for subsequent studies.
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Overall, the eight-cell stage (84% [337/399]) provided a higher blastocy¢Prate
< 0.001) than the two-cell stage (61% [243/395]). The open system (76% [291/384]) did
not differ P > 0.09) from the closed system (70% [289/410]). The Stripper Tip® did not
differ from the CBS nozzle within systems (open or clogee0.05) with the exception
of the two-cell open-system Stripper Tip® vs. CBS nozzle (74% [73/98] vs. 53% [48/91];
P = 0.002).

Using these data, the device, system and cell stage were determined for
subsequent studies. The Stripper Tip® produced a slightly higher blastocyst rate
(although not significant) when cell stage and system were compared, andpper Str
Tip® was an easier device to manipulate; therefore, it was used in subsequest studie
Although the open systems produced a slightly higher blastocyst rate than tke close
system, we elected to use the closed system to avoid potential embryo exposure
contaminates from liquid nitrogen. The eight-cell stage produced a goksdrcyst rate
than the two-cell stage. However, the two-cell stage was used for subse¢gdiest s
because embryos at an early stage have more of a potential to demonstrgee dama

The developmental stage in which an embryo is frozen may be a determinant in
the viability of the embryo after it has been thawed. Cseh et al. (1997) indicatddethat
morula to early blastocyst stage was the best stage to freeze in mice tdhe tlearease
in development rates in the early and late stage embryos was not due to toxicity or
osmotic shock. In contrast to the report by Cseh et al. (1997), Emiliani et al. (2000)
slow-cooled mouse zygotes, four-cell embryos and blastocysts, and indicatedtha

cell embryos were the best stage to freeze mouse embryos.
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The same year our research was presented (Graves et al., 2004), Walker et al
(2004) published a study demonstrating the Stripper Tip® as a device to vitrify mouse
morula and early hatching blastocysts. These researchers first submertgthtbe
liquid nitrogen and then secured the tip by sealing it in a CBS High Sectraty. SThis
study yielded a 90.7% (97/107) survival rate after thawing.

Overall, our study determined that two-cell mouse embryos would be vitrified in
the Stripper Tip® for the remaining studies. This study also determined tlzdbskd

system of vitrification is similar to the open system of vitrification.

Time in Vitrification Solution

The second study (Chapter 3) determined the length of time embryos needed to
remain in vitrification solution to have a decrease in blastocyst rate. Incagldvie used
the determined time to study the effects on blastocyst rate, pup rate, and Didgeda

The experimentalme embryos needed to remain in vitrification solution to cause
a decrease in blastocyst rate was 32 minutes. This time then was used in the second par
of the study to observe blastocyst rate and pup rate, and used in the third part of the study
to observe DNA damage in vitrified embryos.

When embryos remained in vitrification solution for 32 minutes and were
compared to embryos that were not exposed to cryoprotectants, there wakcarsigni
difference P < 0.001) in blastocyst rate (76% [193/255] vs. 95% [61/64], respectively).
When embryos remained in vitrification solution for 32 minutes and were cultured to the

blastocyst stage and then transferred to recipient mice, these emlogosaar pups
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(42% [20/48]) at the same rate as those embryos that were not exposed tatiaitrifica
solution, but were cultured to the blastocyst stage and transferred to recimer81%
[15/48]). Embryos exposed to vitrification solution for 32 minutes, but did not reach
blastocyst stage when cultured, also were transferred to recipient imés2 &@mbryos

did not produce pups (2% [1/48]) at the same Rk (.05) as the blastocyst stage group
or the controls. This indicated that exposure to vitrification solution for 32 minutes
caused a decrease in blastocyst rate compared to embryos that were not exposed t
vitrification solution, demonstrating the high osmolarity vitrification solution
compromised the embryos. However, if the embryos developed to the early or expanded
blastocyst stage and were transferred, these embryos produced pups at tlagesasne r
those that were not exposed to vitrification solution.

When blastocysts were exposed to a 20% ethylene glycol solution for 20 or 40
minutes, there was no significant difference in survival rate (Valdez et al., 1998urbut
research observed a decrease in blastocyst rate when two-cell mougesendre
exposed for 32 minutes. The difference between the two studies may be due to the
different cell stages that were used.

Kasai et al. (1990) observed that when mouse morulae were exposed to
vitrification solution composed of 40% ethylene glycol and 30% Ficoll for 5, 10, 15 or 20
minutes, embryos did not survive if they remained in vitrification solution for 15 minutes
or longer. With the addition of sucrose, morulae were able to survive a 20 minute
exposure but the survival rate was low (20% [10/50]). When these researchers used 40%

ethylene glycol, 30% Ficoll and 0.5 M sucrose to vitrify embryos after 2, 5 orritesi
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exposure time to the solution, the 10 minute exposure (77% [43/56]) demonstrated a
significant reduction® < 0.001) in blastocyst development when compared to the 2
minute (98% [97/99]) and 5 minute (97% [103/106]) exposure time.

In contrast to Kasai et al. (1990) that observed a low survival rate at 20 minutes,
Cseh et al. (1997) observed 92% (46/50) development of two-cell mouse embryos
following exposure to 3 M ethylene glycol and 0.25 M sucrose for 20 minutes without
freezing. However, embryos that were rapidly frozen after being expos$iee solution
had fewer embryos to develop to the blastocyst stage (51% [43/84]).

The use of combinations of different cryoprotectants in vitrification solutian
have caused different toxicity exposure times. For example, Kasai et al. (b3@dyed
toxicity at 15 minutes with ethylene glycol, while Valdez et al. (1992) did n@rebs
toxicity even though embryos remained in vitrification solution for 40 minutes.

Not only did Kasai et al. (1990) alter the time in vitrification solution, these
researchers also altered the concentration of ethylene glycol. Thesehmesgused
mouse embryos at the morula stage and exposed them to ethylene glycol in
concentrations at 30, 40 and 50% without freezing, and determined the developmental
rate at 98% (48/49), 84% (42/50) and 0% (0/50), respectively.

Although we were unable to find another researcher that used 7.5% ethylene
glycol and 7.5% DMSO as a holding solution and 15% ethylene glycol and 15% DMSO
as a vitrification solution, we were able to find researchers that usddretigjycol and
DMSO close to these concentrations. Kong et al. (2000) used 10% ethylene glycol and

10% DMSO as a holding medium and 16.5% ethylene glycol and 16.5% DMSO as a
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vitrification medium. These researchers demonstrated that vitrified rbtastecysts
produced a 93.5% (58/62) reexpansion rate and 88.7% (55/62) hatched rate. Lane et al.
(1999b) demonstrated that mouse blastocysts vitrified with 20% ethylene gigc20%o
DMSO produced 100% (160/160) reexpansion rate and a 95.5% hatched rate.

Overall, in each of the studies described above, different concentrations of
ethylene glycol with a combination of other cryoprotectants were uskdaaious results
were observed; therefore, unless a researcher is using the exact ciomaimekt

concentration of cryoprotectants, accurate comparisons cannot be made.

Blastocyst Rate and Pup Rate Comparison of Vitrification and the-Stmied Method

The third study (Chapter 4) was performed to compare a vitrification method to a
slow-cooled method using blastocyst rates and pup rates as determinants. Targhts
pups produced via both methods were observed at 30, 60 and 90 days following birth.

When comparing the vitrification method to the slow-cooled method of
cryopreservation, there were no significant differenBes (.05) in blastocyst rate (52%
[69/132] vs. 58% [92/158]) nor in pup rate (31% [15/48] vs. 29% [14/48] respectively).
No significant differenced(> 0.3) were observed for the three weights (30, 60 and 90
days) when comparing female pups produced from the various treatment groufas. Simi
findings were found for the weights of the male pups for the three weigh periods.

Our blastocyst rate results were similar to findings by Dinnyels @&995) in
which eight-cell mouse embryos were cryopreserved by a vitrificatistoarcooled

method. They demonstrated that there was no significant differences in ldastocy
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development after freeze/thawing using a vitrification or slow-cooled methoel. T
findings by Dinnyes et al. (1995) and our research were different than Uath{1€199)
which indicated that the slow-cooled method was superior to the vitrification mettiod an
in contrast to Walker et al. (2004) which indicated blastocyst rate in the witiofic

method was superior to the slow-cooled method. These differences between the
researchers may be due to the combination of cryoprotectants used and the sell stage

used at the time of cryopreservation.

Comparison of Vitrification and the Slow-Cooled Method Using the Comet Assay

The fourth study (Chapter 5) was performed to determine if there was DNA
damage (as indicated by the presence of a comet tail) caused by fredizitiee
vitrification or slow-cooled method. The blastocyst rate was also deternoingudst
study.

There were no significant differencés X 0.9) in blastocyst rate between the
vitrified (66% [64/97]) and slow-cooled (66% [66/100]) groups nor between the
percentage of normal tail lengti £ 0.14) in the vitrified (56% [26/46]) and slow-
cooled (40% [17/42]) groups. Both cryopreservation methods produced blastocyst rates
much lower P < 0.001) than the control embryos (no exposure to cryoprotectants or
freezing methods; 100% [97/97]), and both cryopreservation methods also had a lower
percentage of normal embryos (those without DNA damage) than controls (78% )67/86]

The fifth study (Chapter 6) was similar to the fourth study (Chapter 5) ichwhi

vitrified and slow-cooled mouse embryos were analyzed for DNA damage; howeve
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embryos were only cultured to the eight-cell stage prior to analysis. Fresbl€@@d%

[37/41]) were significantly differentq(< 0.002) than the HTF controls (56% [30/54]),

HTF/UV positive controls (59% [33/56]), vitrified (53% [31/58]) and slow-cooled groups
(59% [19/32]). These results warrant further investigation to deterntaéufing using

20% oxygen concentration causes more damage to embryos than those cultured using 5%
oxygen concentration.

These studies were similar to a study by Coutinho et al. (2007) that observed
morula and blastocysts that were vitrified or slow cooled then thawed and assessed f
viability and morphological changes due to necrosis or apoptosis injuries. These
researchers demonstrated that both freezing methods resulted in injuries a&ridftéa
embryos (69.7%) had a higher percentage of dead cells when compared to the slow-
cooled embryos (48.4%). They also determined that the slow-cooled methodinjurie
were more apoptotic and the vitrification method injuries were more necrotic in
morphological analyses indicating vitrification causes reduced viability.

Overall, the fourth and fifth studies indicate that both the vitrification method and
the slow-cooled method cause DNA damage. However, there were no significant
differences when comparing the percentage of normal blastocysts prdduegter

cryopreservation method.

Drawbacks in the Research

A drawback to using the Stripper Tip® as a device in which to vitrify embryos is

the fact that it is a straw system. The straw system presents problemsete
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operator must practice with the device for the procedure to be successful. Enaloryos c
easily be destroyed if the operator does not pull a complete bolus of medium into the
device or if the operator pulls the bolus of medium too quickly and the bolus splits, thus
providing the potential for the embryos to stick to the sides of the straw.

The thawing method of the Stripper Tip® used in this research does not utilize a
controlled thawing temperature. In order for this step to be controlled, ibismneended
that the tip be removed from liquid nitrogen and remain at room temperature for 1 second
to allow the liquid nitrogen that is trapped in the tip to evaporate to prevent possible
explosion of the tip when it is submerged in a 37°C waterbath for 3 seconds. A
waterbath will control the temperature of thawing and is recommended by others
(Kuwayama et al., 2005).

The Comet Assay used in the fourth (Chapter 5) and fifth (Chapter 6) studies are
indiscriminate on the type of DNA present or how large DNA fragments arefdhe,
damage to individual blastomeres, degeneration of blastomeres, or degenenaoian of
bodies, will be observed as a comet tail. Because the Comet Assay doeBiétect
damage, it is a good starting point to determine if DNA damage is present. Hoiveve
should be used with another method to determine if the damage is apoptotic or necrotic.

Another drawback with the analysis of the Comet Assay performed in our
laboratory is it's subjective. While measuring of the comet tail was pegtbbyn
computer, the actual observation of the tail length was prone to human error. To avoid
this subjective analysis, there are analyzers (Comet Assay |V peecestruments,

UK; AutoComet, TriTek Corporation, Sumerduck, VA) that observe each comet tail and
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determine if that damage is normal or abnormal. This makes the analysis les8\subj

Our laboratory did not have access to this program at the time of the analysis.

Length of Storage Time

Mozdarani and Moradi (2007) demonstrated that eight-cell mouse embryos that
were not frozen, frozen for 24 hours, 1 week, 2 weeks, 1 month, 3 months or 6 months
had decreased viability as storage length increased. The embryos that weyzemot fr
had 98.3% viability (n=60), whereas those that were vitrified then stored for 24 hours had
90.1% viability (n=354). This is in contrast to those that were vitrified andstoeed
for 6 months which had 15.8% viability (n=355). These researchers demonstrated that as
storage time increased, the number of normal embryos (those without chromosome
abnormalities) also decreased, which may be due to ice crystal formation.

Although the length of storage time was not directly studied with our research, it
did not seem to have an effect when embryos were frozen for approximately Tgear
vitrification and slow-cooled studies used two-cell mouse embryos that weenfover
a period of one month. The study that observed blastocyst and pup rate used embryos
that were thawed one week to one month later and produced a blastocyst rate from
vitrified embryos of 52% (69/132). The study that observed blastocyst rate andiutilize
the Comet Assay used embryos that were thawed approximately 14 to 15 months later
and produced a 66% (71/108) blastocyst rate from vitrified embryos.

Eum et al. (2008) reported that four-cell mouse embryos that were vitrified or

slow-cooled then thawed after storage in liquid nitrogen or in liquid nitrogen vapor for 1
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week, 1 month or 6 months produced a high survival rate (90% or greater, n=123 to 131
per group). This high survival rate was observed regardless of method, storage type or
time interval.

Our research demonstrated that we are able to produce a closed system of
vitrification that is similar to the standard slow-cooled method. We demoiaisthaiie
vitrification solutions are not as toxic as once believed and vitrification is xjtla
slow-cooled method for cryopreserving embryos. Because we have denteohistaa
both systems are comparable, we elected to use vitrification in our Assigtext Retive
Technology Laboratory at Greenville Hospital System. The vitrificatiethod will

reduce time needed for cryopreservation and eliminate the contrateetteezer.

FUTURE STUDIES

The TUNEL Assay

According to Chan et al. (2001), the Comet Assay still needs to be refined to
produce “optimal sensitivity”; therefore, the analysis should be confirmed usitiges
type of DNA fragmentation assay. One such assay is the terminal del@otityt
transferase mediated digoxigenin nick end labeling (TUNEL) Assay. Thé&LWAYsay
detects DNA damage by labeling double-stranded and single-stranded D&kA i¢h
fluorescein dUTP. The TUNEL Assay was used by Levy et al. (1998) to study
chromosomal breakdown of arrested-development embryos and frozen-thawedsembry

from humans.
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Bovine embryos have been observed for DNA damage using the TUNEL Assay.
Park et al. (2006) used the TUNEL Assay to compare the amount of DNA fragimentati
in bovine blastocysts that were vitrified and thawed to those that were not frozen. Those
that were vitrified indicated significantly more damage than those thatneéfeozen.
Marquez-Alvarado et al. (2004) also observed a significantly higher number of TUNEL
positive cells in bovine embryos that were cryopreserved and thawed, when compared to
those that were not frozen.

We hypothesize that the TUNEL Assay can be used to detect DNA damage in
two-cell mouse embryos cryopreserved, thawed and cultured to the blastaggdh\st

either the vitrification or slow-cooled method.

Calcein-AM and Ethidium Homodimer Assay

A concern with cryopreservation of embryos is their viability after thawingil W
et al. (1996) used calcein-AM and ethidium homodimer to observe cell viability ith 1-ce
to 4-cell mouse embryos. Calcein-AM labels live cells whereas ethidumodimer-1
labels dead cells. We hypothesize that calcein-AM and ethidium homodimer-1 can be
used to detect the viability of individual blastomeres in two-cell mouse embryos

cryopreserved using vitrification or slow-cooled methods.

Annexin V Labeling and Propidium lodide Labeling

Vitrification causes more necrotic injuries to embryos than the slow-dtoole

method, while the slow-cooled method causes more apoptotic injuries than tibrfica

98



(Coutinho et al. 2007). When a cell starts to undergo apoptosis, there are changes in the
membrane. One of these changes is phosphatidylserine, which moves from the inner
membrane to the outer membrane. Since the membrane should remain intact in cells
undergoing apoptosis, Annexin V should be labeled on the outer membrane and
propidium iodide should be excluded. If the cell is undergoing necrosis,
phosphatidylserine will be labeled on the inner membrane and propidium iodide will

label the nucleus (Hardy, 1999). We hypothesize that with the use of Annexin Vidabel
and propidium iodide labeling, investigators should be able to determine those embryos

which undergo apoptosis and those which undergo necrosis.

Vitrification of Oocytes

The vitrification of oocytes may be a more favorable procedure than embryo
vitrification due to legal and moral issues. Oocyte cryopreservation provitieseecfor
a fertile future for a female that may undergo chemotherapy, radioyh@raprgery, all
of which could results in the destruction of ovarian function (O’Neil et al., 1998; Chen et
al., 2003). Since some patients may want to cryopreserve their oocytes instesd of t
embryos, future studies should include vitrification of oocytes to offer this seovice
patients.

Vitrification of oocytes in livestock and endangered animals would also be useful.
This would allow the preservation of genetics for a female that hasdedhat can be

passed down to future generations.
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Mouse oocytes have been successfully vitrified. Park et al. (2001) vitrified mouse
oocytes of which 73.8% (59/80) survived after thawing and 47.5% (28/59) fertilized.
Valojerdi et al. (2005) vitrified and thawed mouse oocytes and demonstrated that 80%
(162/203) of the oocytes survived and 91.4% (148/162) were able to fertilize.

Future studies on vitrification of mouse oocytes should be similar to Park et al.
(2001) and Valojerdi et al. (2005). Mouse oocytes should be vitrified and thawed then
fertilized. These fertilized oocytes should be cultured to determine if #regroduce
blastocysts and the blastocyst transferred to fertile females to eimautieet process will
result in live offspring. Futhermore, these offspring should be allowed to matalhat
to ensure that normal reproductive patterns have not been altered.

We hypothesize that the vitrification method we have used to successfufly vit
two-cell mouse embryos can be used to successfully vitrify mouse oocytesucthsss
of vitrifying mouse oocytes would then lead to vitrification of human oocytes.

In conclusion, we were able to use a device to vitrify mouse embryos in a closed
system and determine that vitrification is similar to the slow-cool metimgever, more
research should occur that includes the TUNEL Assay, viability assay, Annexssay A

and vitrification of oocytes.
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Appendix A

Vitrification Procedure Solutions

Table A.1. Holding and Vitrification Solution

Components Holding Solution Vitrification Solution
Synthetic Serum 6 mL 6 mL
Ethylene Glycol 2.25 mL 4.5 mL

Dimethyl Sulfoxide 2.25 mL 4.5 mL
Dulbecco’s Phosphate 19.5 mL 15 mL
Buffered Saline without
Calcium or Magnesium

Holding Solution and Vitrification Solution are prepared at least one day prior to
cryopreservation procedure. Osmolarity and pH are performed on each solution.
Solutions are aliquoted into sterile tubes and stored in the refrigerator (4AG)sant

Solutions expire 4 weeks after preparation date.

Table A.2. Warming Solutions

Components Warming Warming Warming Warming
Solution 1 Solution 2 Solution 3 Solution 4
Synthetic Serum 10 mL None None None
Sucrose 17.1¢g None None None
Dulbecco’s 40 mL 20 mL 20 mL 20 mL
Phosphate

Buffered Saline
without Calcium
and Magnesium

Miscellaneous None 20 mL 20 mL 20 mL
Warming Warming Warming
Solution 1 Solution 2 Solution 3

Warming Solutions are prepared at least one day prior to thawing procedure.af@gmol

and pH are performed on each solution. Solutions are aliquoted into sterile tubes and
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stored in the refrigerator (4°C). A tube of each solution is placed in an incubator at

36.7°C and warmed overnight.

Table A.3. pH and Osmolarity Ranges

pH Osmolarity
Holding Solution 7.44-7.62 3184-3488
Vitrification Solution 7.56-7.72 6076-6934
Warming Solution 1 7.02-7.34 1474-1904
Warming Solution 2 7.06-7.34 737-788
Warming Solution 3 7.11-7.39 487-568
Warming Solution 4 7.20-7.47 382-422
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Appendix B

Slow-Cooled Procedure Solutions

Table B.1. Freezing Solutions

Components Solution A Solution B Solution C
PBS + 20% DS | Solution A +1.5M| SolutonB+ 0.1 M
PROH Sucrose
Sucrose None None 0.171¢g
Phosphate Buffered 12 mL None None
Saline (PBS)
Propanediol (PROH) None 1.14 mL None
Donor Serum (DS) 3 mL None None
Miscellaneous None 8.86 mL Solution A 5 mL Solution B

Solutions are prepared at least one day prior to cryopreservation procedurpiemd ex
weeks after preparation date. Solutions are sterile filtered and aliquatetienke tubes

and stored in the refrigerator (4°C) until use. Solutions expire 4 weeks afterapipar

date.

Table B.2. Thawing Solutions

Components Thawing Thawing Thawing Thawing
Solution A Solution B Solution C Solution D
1.0 M PROH +| 0.5 M PROH + 0.2 M PBS + 20% DS
0.2 M Sucrose + 0.2 M Sucrose + Sucrose +
20% DS 20% DS 20% DS
Dulbecco’s 3.7mL 3.85 mL 4.0 mL 4.0 mL
Phosphate
Buffered Saline
Donor Serum 1.0mL 1.0 mL 1.0 mL 1.0mL
Propanediol 0.3 mL 0.15 mL None None
Sucrose 0.342 g 0.342 g 0.342 g 0.342 g
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Solutions are prepared at least one day prior to thawing procedure and expire 4 weeks

after preparation date. Solutions are aliquoted into sterile tubes and stored in the

refrigerator (4°C) until use.

Table B.3. pH and Osmolarity Ranges

pH Osmolarity
Solution A 7.37-7.90 280-304
Solution B 7.37-7.90 2022-2541
Solution C 7.37-7.90 2101-2745
Thawing Solution A 7.34-7.89 1539-1756
Thawing Solution B 7.34-7.89 978-1165
Thawing Solution C 7.34-7.89 486-529
Thawing Solution D 7.34-7.89 278-314
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Appendix C

Comet Assay Procedure

The Comet Assay is purchased as a kit by Trevigen®. The kit contains Lysis
Solution, Comet LMAgarose, CometSlide™, 200mM EDTA and SYBR® Green 1
containing DMSO. Other reagents that must be purchased include Phosphate Buffered
Saline without Calcium and Magnesium, Sodium Hydroxide Pellets, 10X TrigeBora
EDTA (TBE) Buffer, ethanol, Tris-EDTA (TE) Buffer and deionized wate

Prior to performing the Comet Assay, some reagents must be preparedws. foll
Lysis Solution should be refrigerated at 4°C or placed on ice. LMAgarose should be
melted by placing the bottle in a 90-100°C water bath until liquid, then dividing into
smaller containers such as Eppendorf 1.0 mL tubes. This will avoid continuous melting
and solidifying of the bottle of LMAgarose. The smaller tubes of LMAgarosehemn
be used as needed. Once LMAgarose is melted, the tubes should be placed in a water
bath at 37°C to allow LMAgarose to cool.

The Alkaline Solution is prepared with 49.75 mL deionized water, 0.6 g Sodium
Hydroxide Pellets, and 250 pL of 200mM EDTA. The 10X TBE Buffer is diluted to 1X
for a rinse solution and electrophoresis by diluting 50 mL 10X TBE Buffer with 450 mL

of deionized water. Once all reagents are prepared, the Comet Assay is gerform

Steps to perform the Comet Assay.

1. Ensure Lysis Solution has been chilled for at least 20 minutes at 4°C or on ice.
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. Ensure LMAgarose has been melted and has remained in 37°C water bath for at
least 20 minutes.

. Place 1-2 mL of PBS into a Falcon 3001 dish at room temperature. Prepare
enough dishes for each group of embryos to be observed.

. Observe embryos for development and record information. Embryos are then
placed into a designated Falcon 3001 dish with PBS.

. Remove a tube of LMAgarose from the water bath. Pick up embryos using a
Stripper Tip® with a minimum amount of PBS. Place into LMAgarose.

. Using a pipettor with plastic tip, transfer LMAgarose containing embryas t
sample area on the Comet Slide.

. Repeat steps 5 and 6 until all embryo groups have been placed in LMAgarose.
Each Comet Slide has two sample areas.

. Place slide(s) into refrigerator (4°C) for 30 minutes.

. Place slide(s) into Lysis Solution for 1 hour. Remove slide(s) from Lysisi@olut

and blot edge of slide on cloth to remove excess solution.

10.Place slide(s) into Alkaline Solution for 30 minutes. Remove slide(s) from

Alkaline Solution and blot edge of slide on cloth to remove excess solution.

11.Place slide(s) into TBE for 5 minutes. Remove slide(s) and place into a second

TBE for 5 minutes.

12.Transfer slide(s) to electrophoresis unit. Fill unit with enough TBE until shde(

are just covered. Assemble unit and perform electrophoresis at 20V, 300mA for

20 minutes.
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13.Turn off unit and remove slide(s). Blot edge of slide(s) on cloth to remove excess
TBE.

14.Place slide(s) into 70% ethanol for 5 minutes.

15.Remove slide(s) from ethanol and allow to air dry. Slides can be observed after
air drying or can be stored at room temperature with desiccant.

16. Prior to analysis of comet tails, prepare SYBR® Green dilution by mixing 1 pL of
SYBR® Green with 5 mL of TE. The dilution can be stored in the dark at 4°C for
4 weeks.

17.Place 50 pL of SYBR® Green dilution onto each area of dried LMAgarose.

18.Use a microscope with Fluorescein Isothiocyanate Filter to view coriset tai
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Appendix D

Data Tables
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Table D.1. Time in Vitrification Solution. Determination of time in vitrificat solution

to cause a decrease in blastocyst rate. Embryos were collected at tedl stage and

in trial 1 embryos remained in vitrification solution for 1, 2, 4 or 8 minutes; trial 2
embryos remained in vitrification solution for 1, 2, 4, 8, 16 or 32 minutes; trial 3 embryos
remained in vitrification solution for 1 or 32 minutes. Embryos in all trials wdtared

to the blastocyst stage.
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100
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20+
104
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Blastocysts

OControl
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193/255°

Table D.2. Time in Vitrification Solution Blastocyst Rate. Control embryas wet
exposed to vitrification solutions, and 32-minute embryos remained in vitrification
solution for 32 minutes prior to culturing to the blastocyst stage.

b pifferent superscripts indicate statistical differerfee<(0.05).
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Table D.3. Time in Vitrification Solution Pup Rates. The control group was not exposed
to vitrification solutions, cultured to the blastocyst stage and transferredipoent

female mice. The 32-minute good and 32-minute bad group remained in vitrification
solution for 32 minutes prior to culture, divided into two groups; those at the blastocyst
stage (32-minute good) and those that were at the multi-cell or morgéa(8&minute

poor), were transferred into recipient female mice.

b Different superscripts indicate statistical differeriee<(0.05).
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Blastocyst Rate Blastocysts
Demonstrating
Comets

Table D.4. Time in Vitrification Solution Blastocyst Rate and Blastodystaonstrating
Comets. Blastocyst rate was observed for two-cell embryos that rehmavigrification
solution for 1 minute or 32 minutes. Controls were not exposed to vitrification solution,
while positive controls were cultured with 1% hydrogen peroxide to induce DNA
damage.

abepifferent superscripts in groupings indicate statistical differeRce @.05).
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D.5. Blastocyst Rates from Vitrified and Slow-Cooled Mouse Embryos. Two-cel
mouse embryos cryopreserved using either method and cultured to the blashgeyst st
& Similar superscripts indicate no statistical differerize 0.05).
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D.6. Pup Rate from Vitrified and Slow-Cooled Mouse Embryos. Two-cell mouse
embryos cryopreserved using either method, cultured to the blastocyst stage and
transferred into recipient mice.

& Similar superscripts indicate no statistical differerize 0.05).

115



45 41.6

Grams O30 days

W60 days
104 E90 days

Vitrification Slow- Vitrification Slow-
(Males) Cooled (Females) Cooled
(Males) (Females)

D.7. Pup Weights from Vitrified and Slow-Cool Mouse Embryos. Two-cell mouse
embryos cryopreserved using either method, cultured to the blastocyst stage and
transferred into recipient mice. Pups were weighed at 30, 60 and 90 days. &tatistic
comparisons between freezing methods for each gender, compared each day, weighe
indicated no statistical difference® ¥ 0.3).
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D.8. DNA Damage Study Blastocyst Rates from Vitrified, Slow-Cooled, Gloatd

Positive Control Mouse Embryos.

P Different superscripts indicate statistical differeriee(0.05).
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D.9. DNA Damage Study Percentage of Normal Blastocysts Produced ftofiei
Slow-Cooled, Control and Positive Control Mouse Embryos.
abepifferent superscripts indicate statistical differeree<(0.05).

118



90+

80

704 59 5g
Percent 07 OFresh Controls
Normal gg- OHTF Controls
8 cells B HTF/UV Controls

40- @ Vitrification

30- OSlow-Cooled

20

10-

O_

D.10. Comparison of DNA Damage Study Percentage of Normal Eight-Cell Mouse
Embryos. Fresh control embryos were collected from mice at the eigbtage;

Human Tubal Fluid (HTF) control embryos were collected at the two-cgk stad
cultured in HTF overnight; HTF/UV control embryos were collected at thecelicstage
and cultured in HTF overnight then exposed to UV light; Vitrified and Slow-Cooled
embryos were collected at the two-cell stage, cryopreserved theectlaad cultured
overnight.

b pifferent superscripts indicate statistical differerfee<(0.05).
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