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Abstract

The goal of this research is to enable a robotic system to manipulate clothing

and other highly non-rigid objects using an RGBD sensor. The focus of this thesis

is to define and test various algorithms / models that are used to solve parts of the

laundry process (i.e. handling, classifying, sorting, unfolding, and folding).

First, a system is presented for automatically extracting and classifying items

in a pile of laundry. Using only visual sensors, the robot identifies and extracts items

sequentially from the pile. When an item is removed and isolated, a model is captured

of the shape and appearance of the object, which is then compared against a dataset

of known items. The contributions of this part of the laundry process are a novel

method for extracting articles of clothing from a pile of laundry, a novel method of

classifying clothing using interactive perception, and a multi-layer approach termed

L-M-H, more specifically L-C-S-H for clothing classification. This thesis describes

two different approaches to classify clothing into categories. The first approach relies

upon silhouettes, edges, and other low-level image measurements of the articles of

clothing. Experiments from the first approach demonstrate the ability of the system

to efficiently classify and label into one of six categories (pants, shorts, short-sleeve

shirt, long-sleeve shirt, socks, or underwear). These results show that, on average,

classification rates using robot interaction are 59% higher than those that do not use

interaction. The second approach relies upon color, texture, shape, and edge infor-
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mation from 2D and 3D data within a local and global perspective. The multi-layer

approach compartmentalizes the problem into a high (H) layer, multiple mid-level

(characteristics(C), selection masks(S)) layers, and a low (L) layer. This approach

produces “local” solutions to solve the global classification problem. Experiments

demonstrate the ability of the system to efficiently classify each article of clothing

into one of seven categories (pants, shorts, shirts, socks, dresses, cloths, or jackets).

The results presented in this paper show that, on average, the classification rates

improve by +27.47% for three categories, +17.90% for four categories, and +10.35%

for seven categories over the baseline system, using support vector machines.

Second, an algorithm is presented for automatically unfolding a piece of cloth-

ing. A piece of cloth is pulled in different directions at various points of the cloth in

order to flatten the cloth. The features of the cloth are extracted and calculated to

determine a valid location and orientation in which to interact with it. The features

include the peak region, corner locations, and continuity / discontinuity of the cloth.

In this thesis, a two-stage algorithm is presented, introducing a novel solution to the

unfolding / flattening problem using interactive perception. Simulations using 3D

simulation software, and experiments with robot hardware demonstrate the ability

of the algorithm to flatten pieces of laundry using different starting configurations.

These results show that, at most, the algorithm flattens out a piece of cloth from

11.1% to 95.6% of the canonical configuration.

Third, an energy minimization algorithm is presented that is designed to es-

timate the configuration of a deformable object. This approach utilizes an RGBD

image to calculate feature correspondence (using SURF features), depth values, and

boundary locations. Input from a Kinect sensor is used to segment the deformable

surface from the background using an alpha-beta swap algorithm. Using this seg-

mentation, the system creates an initial mesh model without prior information of
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the surface geometry, and it reinitializes the configuration of the mesh model after

a loss of input data. This approach is able to handle in-plane rotation, out-of-plane

rotation, and varying changes in translation and scale. Results display the proposed

algorithm over a dataset consisting of seven shirts, two pairs of shorts, two posters,

and a pair of pants. The current approach is compared using a simulated shirt model

in order to calculate the mean square error of the distance from the vertices on the

mesh model to the ground truth, provided by the simulation model.
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Chapter 1

Introduction

1.1 Motivation

The process of classifying, sorting, and manipulating items is a daily routine

for many individuals at home and at work. Daily chores around the house and at work

require some type of sorting process. We sort items by which group does it belong

to, what space does it occupy, what type of material is it made of, what temperature

is it, what shape is it, who it belongs to, what type of color is it, how do you use

it, etc.. The items that are classified, sorted, and manipulated range from rigid to

semi-rigid to non-rigid to highly non-rigid objects (e.g. recycleables, mail, food, and

clothing). Below are a few examples of commercial robotics and residential situations

for classifying, sorting, and manipulating.

Industrial robotic systems Recycling bins are placed in commercial settings or

public areas for the purpose of reducing the amount of trash that goes to the local

landfill. Organizations like Osaka University, IDEC, Mitsubishi Electric Engineering,

and ZenRobotics have been developing robotic systems designed to sort and extract
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recyclable items from construction and residential trash. The United States Postal

Service sorts around 563 million pieces of mail a day [98]. Automated mail sorting

machines have been in use, by the United States Postal Service, since the late 1950’s,

e.g. the Transorma. Several companies like National Presort Inc (NPI) and the United

States Postal Service (USPS) specialize in automated sorting machines (i.e. Crossfire

and AFSM100, respectively) to handle the large amount of mail and parcels on a

daily basis. Large food distribution centers handle large quantities of food products a

year (e.g. Peperami distributes over 110 million sticks of salami a year 1). Previously,

the food was handled by individuals with a conveyor belt and now robots have been

introduced into the process to increase productivity. ABB and Adept designed 3-axis

(ABB FlexPicker IRB360) and 4-axis (Adept Quattro s650H) robots for use within

a clean room and a meat / poultry processing plant. Companies, like Peperami and

Honeytop, have integrated the 3-axis robot into the handling and sorting of food

(i.e. salami and pancakes, respectively) onto a pre-designed conveyor belt. Millers

textile services, HSHS Shared Services, and UniFirst Laundry utilize large robotic

machines that group piles of laundry to wash, dry, and fold. The wash / dry process

is streamlined by using conveyor belts to carry washed linens to the dryers. Currently,

the folding process is achieved by a human attaching two corners of the linen to a

machine and the machine completes the folding process.

Domestic robotic systems Many domestic robotic systems are divided into groups

that are categorized into outdoor tasks and indoor chores. Some of the outdoor tasks

that robots are being applied to involve lawn mowing (e.g. Friendly Robotics Robo-

Mower and Husqvarna Automower), pool cleaning (e.g. Weda B480 robotic commer-

cial pool cleaner), and gutter cleaning (e.g. iRobot Looj). Another task that can be

1http://www.peperami.com/
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labeled as outdoor or indoor is window cleaning. The Windoro WCR-I001 window

cleaning robot is capable of cleaning single and double pane windows. The more pop-

ular domestic robots, iRobot’s Roomba and Samsung’s Navibot, handle vacuuming

carpets and cleaning floors. A smaller robotic system used for animal care is the

Litter Robot 2 and Catgenie, created by Petnovations, designed to clean litter boxes.

Domestic robot assistants developed by Tokyo University’s IRT and Toyota’s HSR are

capable of simple tasks involving picking up dropped objects, retreiving objects from

a table, and placing laundry into the washing machine. Korea Institute of Science

and Technology developed Mahru-Z and Mahru-M in order to provide help around

the house. The Mahru robots are able to place food in a basket and carry it to the

owner, also turn on other appliances like a microwave, washing machine, and toast-

ers. Lastly, contributions towards laundry handling [41, 114, 87, 53, 54, 56, 35, 57],

laundry classifying [56, 104, 111, 48, 71, 55, 17], folding clothes [70, 67, 66], and

unfolding clothes [105] by robotic systems have been researched for over a decade.

These robotic solutions to laundry applications will be discussed in detail later in the

thesis. Handling, classifying, folding, and unfolding research is conducted by several

dual arm manipulators by Willow Garage’s PR2 and Kawada Industries’ HRP-2 /

HRP-4.

1.2 Focus of thesis

One of the areas in robotics that is gaining momentum is focused on classify-

ing, sorting, and manipulating highly non-rigid objects, e.g. clothing / laundry. The

process of “doing the laundry” consists of several steps: handling, washing, drying,

separating / isolating, classifying, unfolding / flattening, folding, and putting cloth-

ing away into a predetermined drawer or storage unit. Figure 1.1 illustrates a high

3



level overview of the laundry process. The focus of this thesis is to explore three

parts of the laundry process: classifying, unfolding / flattening, and folding. The

classifying part of the laundry process involves taking features and characteristics

from the separated / isolated article of clothing and categorizing the item as a shirt,

pair of pants, shorts, etc, discussed in section 1.3. The unfolding / flattening part of

the process involves removing any creases, folds, and crinkles so that the known item

can be properly folded and stored, discussed in section 1.4. The folding part of the

laundry process involves determining possible grasp points to manipulate it and fold

it into a desired configuration / pose, discussed in section 1.5. The following sections

describe the challenges of classifying, unfolding / flattening, and estimating the pose

/ configuration of an article of clothing for folding.

1.3 Challenge of classifying laundry

The general clothing classification problem is for a robotic system to properly

and accurately sort a pile of laundry into specified, predefined groups (e.g., for loading

the laundry into a washer, or after the drying process has completed). Laundry can

be classified / sorted by category, age, gender, color (i.e. whites, colors, darks), season

of use, or by individual. The specific problem addressed in this thesis is classifying

each article of clothing into a specified category (e.g. shirts, pants, shorts, jackets,

cloths, socks, dresses) using physical characteristics and selection masks to assist the

process.

Other areas, along with classification, make up the process of “doing the laun-

dry”, mentioned in section 1.2. Figure 1.1 gives a flow chart of the various areas like

classifying [56, 104, 48, 71, 55, 17, 35, 113, 89, 88, 64, 102, 110, 111], matching socks

[66], and separating / isolating [57, 104, 47, 48, 71].
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Figure 1.1: Overview of the laundry process, adapted from [47]. GREEN areas
represent parts of the process that have already been explored in previous work,
while the RED area represents the part of the process that is the focus of this thesis.
The boxes labeled separating / isolating a piece of clothing and classification are
discussed in section 1.3 and Chapter 3, the box labeled unfolding / flattening clothing
is discussed in section 1.4 and Chapter 4, and the box labeled folding clothing is
discussed in section 1.5 and Chapter 5.
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In contrast to previous work, the method in this thesis operates on an unorga-

nized, unflattened piece of laundry for the purpose of sorting each individual article.

The dataset of clothing that is used in this thesis consists of individual articles placed

on a table by a single robotic manipulator. Previous clothing classification papers

[56, 48, 71, 55, 17] used the ability of dual manipulators to freely hang each piece of

laundry at two calculated grasp points to fully reveal the overall shape and outline of

each article of clothing.

In this thesis, a new approach is presented based on characteristics (which was

inspired by [58]), a histogram for each article, and low-level image calculations for

automatically classifying / sorting laundry into groups. The focus of this thesis is to

demonstrate that the framework of a multi-layer classification strategy will improve

overall results. Each layer of the approach can be modified to include any type of

learning strategy (e.g. SVM, k-NN, neural networks, Bayesian classifier, etc). In this

thesis, this approach is limited to one learning strategy since this is not the focus.

This new approach is comprised of a multi-layer classification strategy consisting of

SVM [12] and bag-of-words model [101], similar to [80], that utilizes characteristics

and selection masks to bridge together each calculated low level feature to the correct

category for each article of clothing.

The proposed method can be seen as a particular application of the paradigm

of interactive perception, also known as manipulation-guided sensing, in which the

manipulation is used to guide the sensing in order to gather information not obtainable

through passive sensing alone [50, 51, 30, 103, 112, 106]. The clothing that is used in

this paper is actively interacted with in order to gain more information about each

article. In other words, deliberate actions change the state of the world in a way that

simplifies perception and consequently future interactions.
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1.4 Challenge of unfolding laundry

Unfolding laundry is a common household chore that is a difficult problem

to automate. Several researchers have worked in the past on unfolding / flattening

[105, 17], and folding [66] clothes, which is a later step in the laundry process (see

Figure 1.1).

Folding, in particular, is receiving significant attention as of late [64, 70, 67, 66].

Various researchers are developing folding algorithms and machines at the lower end

of the laundry process (i.e. folding clothing). Keio University’s “Foldy” mobile robot

has demonstrated the ability to fold a shirt based on high-level user input.2 Similar

research at other universities aimed at folding manipulation is making progress on

folding T-shirts [70, 67] 3, towels [64], pants / shirts [66], and origami [2]. Others have

developed cardboard machines to fold T-shirts.4 These existing systems are invariably

dependent on a starting point of having the items identified and laid out flat in a

standard configuration prior to manipulation. Cusumano-Towner et al. [17] aimed

at solving the unfolding/flattening problem, that is, to flatten a piece of crumpled

clothing by implementing a disambiguation phase and a reconfiguration phase. In this

thesis, algorithms, simulations, and experiments with robot hardware are presented,

introducing a novel solution to the unfolding/flattening problem. In this thesis, a

model / algorithm is designed to unfold / flatten clothes after they are labeled as a

shirt, shorts, etc. through isolation and classification as in [104]. Figure 1.2 shows

the robot system that was used in testing this approach.

2http://inventorspot.com/articles/laundryfolding robot learns job 34327
3http://www.cs.dartmouth.edu/˜robotics/movies/mpb-movie-09-shirt-folding.mov
4http://www.metacafe.com/watch/1165247/clothes folding machine
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Figure 1.2: The robot system used for flattening a piece of clothing, in this case a
washcloth: One PUMA manipulator and one Logitech Quickcam 4000.

1.5 Challenge of estimating the pose of laundry

Pose estimation of non-rigid objects is designed to provide a 3D representation

of the article to be applied to object manipulation by calculating the location of

grasp points. Laundry manipulation can be applied to washing, drying, folding, and

storing clothing. Figure 1.1 gives a flow chart of the various areas like handling

[41, 114, 87, 53, 54, 56, 35, 57] and folding a T-shirt [70, 67]. Generally, modeling

and handling of deformable objects is applied to either augmented reality or cloth

manipulation. One way to determine grasp locations on clothing is to first estimate

the current configuration of the article of clothing. The estimated model can provide

location and orientation information for particular areas of clothing. For instance,

the waist line on a pair of pants, or the collar on a shirt, or the corners of a towel are

common locations for humans to grasp laundry. Previous researchers use monocular

image sequences [99, 91, 100] to estimate the configuration of non-rigid objects or to

calculate the non-rigid structure from motion [24, 97].

In this thesis, a new approach is proposed to provide a model that maps to a

deformable object with a low mean squared error using an RGBD sensor. The RGBD
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sensor provides a 3D view of the object for each frame without the need for 3D estima-

tion using image sequences. Portions of this work appear in [107, 109, 108]. Various

implementations are run on a simulated shirt, with ground truth data, to calculate

quantitative results by measuring the distance error between the proposed model and

the simulated model. The combined approach utilizes feature correspondences using

SURF feature descriptors, 3D depth information, and boundary information that can

model textured and textureless objects. This thesis focuses on the perception of the

system instead of the manipulation of deformable objects. The results shown in the

following chapters will demonstrate the effectiveness of the new approaches described

in this thesis.
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Chapter 2

Previous work

2.1 Clothing classification

There has been previous work in robot laundry which relates to the research

in this thesis. Kaneko et al. [48] focused on a strategy to isolate and classify clothing.

The work in [48] is an extension of the authors pioneering work in [47]. In these

papers, the authors categorize what steps and tasks are needed for laundry (isolate,

unfold, classify, fold, and put away clothes), as in Figure 1.1. The authors classify

each object into one of three groups (shirt, pants, or towel) by deforming the article

of clothing. The process of deforming the object aims to find hemlines as grasp points

and the grasp points can not be closer than a predefined threshold. Once the object

is held at two grasp points, then the shape of the object is broken up into different

regions and the values of the different regions are used to calculate feature values.

Each of the feature values are compared against threshold values. If the features are

above or below the thresholds, then the object is classified as a shirt, pant, or towel

based on a decision tree. The results achieved a 90% classification rate.

Osawa et al. [71] uses two manipulators to pick up / separate a piece of cloth,
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and classify it. The process began by picking up a piece of cloth from a side table

and isolating it by holding it with one manipulator. A single camera is used to pick

up / isolate the item and another single camera to locate grasp points while it is

being held. While the item is currently being held by the first manipulator, the

second manipulator targets the lowest point of the cloth as a second grasp point. The

approach assumes that the lowest point is a corner of the article of clothing. This

process of grabbing the lowest point of the object occurs two more times. The idea

of grasping the lowest point tries to spread the article of clothing by the longest two

corner points. A 2D outline model is created for each article of clothing which maps

out every corner (concave and convex). Also, templates are created to compare each

article of clothing after two grasp iterations. The templates are created by using the

2D outline model and determining what corner point is furthest from the current

grasp point. The templates are also put through this process two more times to

replicate what the 2D model will look like for comparison to the actual clothing.

The article of clothing that is held by both robots is captured by the 2nd camera

and converted into a binary image using background subtraction. This binary image

is then compared with the binary template to classify the article of clothing. The

approach was tested with eight different categories (male short sleeve shirt, women

/ child short sleeve shirt, long sleeve shirts, trousers, underwear shorts, bras, towels,

and handkerchiefs).

Kita et al. [56] extend their original work [53] of determining the state of

clothing. The work in [56] provides a three step process to successfully find a grasp

point that the humanoid robot can grab: (1) clothing state estimation (previous work

[53]); (2) calculation of the theoretically optimal position and orientation of the hand

for the next action; (3) modification of position and orientation, based on the robots

limitations, so the action can be executed. The 3D model is used by calculating the
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orientation of the shirt model at the grasp point. The 3D model gives three vectors

around the grasp point and the vectors are used in the calculation of the orientation.

The authors tested their results of six scenarios and were successful on five. One

scenario failed at predicting the correct clothing state, four scenarios were successful

but had to use step (3) for completion, and the last scenario was successful without

using step (3).

The results in [55] are another extension to Kita et al.’s previous work [53].

The purpose is to accurately determine the shape / configuration of a piece of clothing

based on the observed 3D data and the simulated 3D model. Each of the clothing

states are compared against the 3D observed data based on the length of the clothing

as a first step. Each of the shape states within a threshold value are selected to use in

the next step of the process. Then, a correlation function is applied to the 2D plane of

the observed data and simulated data to calculate which shape state model is closest

to the observed data. The experimental results show that 22 out of 27 attempts were

correctly classified as the correct shape state.

Kaneko et al. [47] focus on isolating the clothing after it has been washed and

dried. The entire system consisted of four CCD cameras (front, overhead, right, left

view) and one robotic arm, but only one camera was used (overhead view). The image

was segmented by using Ohlander’s region segmentation method (color segmentation)

[69]. Then the region was found by finding the largest area and marking that region

to be extracted. Finally, the surface geometry was used to determine the grasp point.

In a follow-up paper [48], the authors revisit the same steps and tasks that are needed

for laundry (isolate, unfold, classify, fold, and put away clothes) by including the task

of classification. Two manipulators are used to deform the object multiple times

until the shape is recognizable by the system. Finally, the object is classified into

one of three groups (shirt, pants, or towel). The process of deforming the object
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is to find hemlines as grasp points, making sure not to keep the grasp points close

together. If hemlines cannot be found, then the lowest part of the object is considered

to be the next grasp point. Once the object is held at two grasp points, then the

shape of the object is broken up into different regions and the values of the different

regions are used to calculate feature values. Each of the feature values are measured

against threshold values. Depending on whether the features are above or below the

thresholds, then the object is classified as a shirt, pant, or towel based on a decision

tree. Shadows (where parts of the object stick out or hang over another part) and

convex areas are used to locate possible hemlines.

Cusumano-Towner et al. [17] present an extension of Osawa et al. [71] and

Kita et al. [55] combined. The authors identified a clothing article by matching

together silhouettes of the article to pre-computed simulated articles of clothing. The

silhouettes of each iteration were placed into a Hidden Markov Model (HMM) to

determine how well the silhouettes of the current article match against the simulated

models of all categories of clothing. The authors placed the article on a table by

sliding the clothing along the edge of the table to maintain the configuration while

it was hanging in the air. The authors grasped two locations on the cloth during

each iteration. The planning algorithm that determines where the next set of grasp

points are located was computed by using a directed grasp-ability graph that locates

all possible grasp points that can allow the system to reach. The authors tested their

approach on seven articles of clothing of the end-to-end approach and were successful

with 20 out of 30 trials.

The work in this thesis differs from previous papers [48] [71] [56] [55] [17] in

that a single manipulator is used and the results do not depend on hanging clothing

in the air by two grasp points. This approach is independent of the type of clothing

or how many manipulators are used to collect the data. This work also differs from
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that of [56] [55] [17] in that predefined shape models are not used. Instead, novel

characteristic features are used that describe each category of clothing. The char-

acteristic features are not predefined, but calculated through training the algorithm

with a priori collected clothing data.

This section of the thesis, described in Chapter 3, extends the problem of

previous work [110, 111] by expanding the mid-level layer with more characteristics

and incorporating more categories in the high layer. The database of clothing is

increased, from previous work, from 117 articles to over 200 articles of various size,

color, and type. The algorithm is compared to how well it improves over a baseline

system of SVMs, one per category, to classify a pile of laundry into three, four, and

seven groups.

2.2 Unfolding clothing

Gibbons et al. [35] describes a method to visually find grasp locations for

clothing in a randomly positioned pile by filtering out folds. Kobayashi et al. [57]

use three manipulators, a recognition board, two 3D hand vision sensors, and a 3D

overview vision sensor to place a towel in a folding machine. The system of Osawa et

al. [70] defines a way to fold clothes lying on a table starting from a hanging position

using two manipulators.

Gibbons et al. [35] describes a method to visually find grasp locations for

clothing in a randomly positioned pile. The idea is to look for edges on the clothing

and filter out folds. The robot that is used was remotely controlled and the user

provided the grasping regions. The grasping region was then studied to determine

where and how the object is grasped. A 30x30 pixel window was placed at the center

of the region and rotated every 15 degrees to be used as a filter. Those 13 filters
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were trained on two scenes and tested on nine scenes. Each filter used four categories

to determine what a good grasp point would be and what the orientation would be

for the gripper. The categories are intensity, color, texture, and depth. The results

showed that depth was the most successful. The nine scenes to be tested provided

117 matches of graspable locations, of which 27% of them were correct.

Kobayashi et al. [57] use two manipulators, a pulling up hand, a recognition

board, two 3D hand vision sensors, and a 3D overview vision sensor. The pulling

up hand is used as a 3rd manipulator. The 3rd manipulator is placed to the side of

both manipulators with a function of only moving up and down with a single gripper

attached. The 3D hand vision sensors and 3D overview vision sensor consists of a

stereo camera pair along with a texture light to project a textured pattern on areas

that do not have discernible textures. The hand sensors are rotated inward toward the

center of the stereo pair to handle purely close range detection. The overall process

consists of six steps: (1) Highest point pick up - extract towel on top of pile located

on the recognition board; (2) Pick up the end of towel - robot detects an end point of

the towel; (3) Passing the towel to the picking up hand - robot passes towel to pulling

up hand so that both of the manipulators are free to look for corners; (4) grasping

the 1st corner - locate lowest corner of towel and grasp it; (5) Grasping the 2nd corner

- first robot spreads towel out and 2nd manipulator searches for next lowest corner;

(6) Setting the towel to the next line - by grasping two corners of the towel, the towel

is spread out and placed in the cleaning / folding machine. For the vision aspect, the

overhead stereo pair are used solely to locate the towel on top of the pile. After the

towel is placed on the pulling up hand, each hand stereo pair uses a texture light to

accurately determine the depth of the hanging towel and provide a 2.5D depth map

of the towel. The depth map is used to isolate the towel and find the lowest hanging

corner using corner detection. The corner is found by detecting all contours along
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the edge of the towel. When points along the edge move in a 90 degree angle, then a

corner is detected.

The system of Osawa et al. [70] defines a way to fold clothes lying on a table

starting from a hanging position. Each piece of clothing is held by two manipulators

(one on each side and at the top of the clothing). The piece of cloth is then placed

on the table and folded by using two external tools not connected to the robot. The

external tools consist of (1) a rotating table with a third of the table able to fold

inward, that folds a piece of cloth onto itself, and (2) a flattening tool which consists

of a flat table used as a dead weight to get rid of wrinkles. The two manipulators

were directly used by translating and rotating the cloth while on the rotating table.

The system has a single overhead camera that monitors the status of the cloth lying

on the table. The vision system contains models of each of the clothes. Each model

describes where and in what order to fold the clothing. The experiments are tested on

4 different types of clothing; (1) towel, (2) short sleeve shirt, (3) pants, and (4) trunks.

The results for each type of clothing are as follows: towel (100%), short sleeve shirt

(95%), pants (80%), and trunks (90%). The results are calculated by determining

how many clothes, out of 20, were folded correctly within a threshold. The threshold

is calculated by comparing the actual folded cloth to a folded model of the cloth.

This thesis differs from the previous papers [35] [57] [70] in that a single ma-

nipulator is used to unfold a piece of clothing. This section of the thesis, described

in Chapter 4, also describes a novel unfolding algorithm designed to flatten a cloth

using a two-phase approach. This algorithm utilizes visual cues in order to calculate

grasp points and the motion in which the manipulator pulls or pushes the article of

clothing.
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2.3 Pose estimation

Emerging research on non-rigid objects includes motion planning algorithms

for deformable linear objects (DLOs) like ropes, cables, and sutures [86, 68]; Prob-

abilistic RoadMap (PRM) planners for a flexible surface patch [45] or deformable

object [4]; learning approaches to sense and model deformable surfaces [31, 54, 46];

and fabric manipulation for textile applications [6, 32, 75]. In particular, the problem

of automating laundry has been receiving attention recently because of the increasing

availability of calibrated two-handed robots like the PR2. Researchers have demon-

strated systems for grasping clothes [35, 113], and tracing edges [88, 64]. Despite

the progress in manipulating non-rigid objects, none of this research addresses the

problem of estimating the 3D geometry of a non-rigid object.

Two recent research projects have independently aimed at the goal of non-rigid

3D geometry estimation. Bersch et al. [5] use fiducial markers printed on a T-shirt.

An augmented reality toolkit is used to detect markers, and stereo imagery is used to

automatically generate a 3D triangular mesh. When the article of clothing is picked

up, the grasp point is inferred from the distances from the end effector to the visible

markers which then leads to a succeedful grasp point in a two-handed robotic system.

Similarly, Elbrechter et al. [22] print specially designed fiducial markers on both sides

of a piece of paper. Multi-view stereo vision is used to estimate the 3D positions of

the markers which are then sent to a physics-based modeling engine. In addition to

using two computers to control the two hands, three computers are used for data

acquisition and processing.

Other related works that estimate the pose of a non-rigid object, a person,

or both use a triangular mesh to determine the non-rigid structure from motion

(NRSfM). Researchers that estimate the pose of a non-rigid object use multiview
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3D warps [10], quadratic deformation models [25, 24], global cost function [29, 28],

Laplacian formulation [72], local deformation models [99, 91, 100], and affine motion

estimation [15]. The approaches used to estimate the pose of person are adaptive

metric registration [9], articulated structure [26], non-linear kernel model [38, 39], low-

rank shape model [73], trajectory reconstruction [76, 77], and energy based multiple

model fitting [83]. The models that are used to estimate the pose of a non-rigid

object and person are trajectory space [1], smooth time-trajectories [37], non-linear

optimization [60, 61], alternating least-squares [74], and locally-rigid motion [97].

These works utilize the movement of features within a video sequence to pro-

vide the data used to create a triangular mesh that is overlaid on top of the object or

person. Not all of the authors use a connected mesh to estimate the configuration of

the object, instead Taylor et al. [97] provide a triangle mesh soup that is overlaid on

top of the non-rigid object (e.g. a newspaper). Fayad et al. [24] capture locally rigid

patches of an object and combine them together to provide a global pose estimation.

In contrast with NRSfM, the goal of this approach is to register the 3D non-rigid

model with the incoming RGBD sequence, similar to the 2D-3D registration of Del

Bue and colleagues [10, 9].

The work in this thesis differs from NRSfM in that the depth of the scene is

calculated using a single frame while other authors calculate the depth of the scene

using a video sequence. This approach uses mesh configurations from previous frames

to estimate the current pose of the object. Unlike [5] [22], this approach does not use

fiducial markers to track the current pose of the object and it is capable of handling

non-rigid objects without texture.

In an effort to develop a system capable of handling real, unmodified objects,

this work aims to remove the need for fiducial markers. This section of the thesis,

described in Chapter 5, is inspired by, and based upon, the research of Pilet et al.
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[78] which formulates the problem of 2D mesh estimation as energy minimization. In

related work, Salzmann et al. [93, 92] describe an approach that operates in 3D but

requires the restricted assumption of rigid triangles in order to reduce the dimension-

ality. Salzmann et al. [94] present a method for learning local deformation models for

textured and textureless objects. The approach in this thesis extends this research

by finding locally deformable 3D triangular meshes without fiducial markers whether

intensity edges are present around the boundary of the object or not.
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Chapter 3

Classifying clothing

3.1 Classification overview

The laundry classifying system involves two parts: isolating items from a pile

of laundry and classifying isolated items. These two parts are described in detail in

this chapter. The classification part of this chapter is broken up into two scenarios:

classify in a hanging position and classify in a lying position. Each scenario used

two different techniques / approaches on two different sets of data. The “hanging

position” approach uses a small dataset, while the “lying position” approach uses a

large dataset.

3.2 Isolation of clothing

To isolate an item from a pile of laundry, an overhead image is first segmented,

and the closest foreground segment (measured using stereo disparity) is selected.

Chamfering is used to determine the grasp point which is then used to extract the

item from the pile in an fully automatic way using interactive perception. An overview
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of the process is shown in Figure 3.1.

3.2.1 Graph-based segmentation

The first step is to segment the overhead image into different regions. Felzenswalb

and Huttenlocher’s graph-based segmentation algorithm [27] is used because of its

straightforward implementation, effective results, and efficient computation. This al-

gorithm uses a variation of Kruskal’s minimum-spanning-tree algorithm to iteratively

cluster pixels in decreasing order of their similarity in appearance. An adaptive esti-

mate of the internal similarity of the clusters is used to determine whether to continue

clustering. Figure 3.2 shows the results of graph-based segmentation on an example

320 × 240 RGB color image taken in our lab using the default value for the scale

parameter (k = 500). As can be seen, the segmentation provides a reasonable rep-

resentation of the layout of the items in the pile. From this result, the foreground

regions are determined to be those that do not touch the boundary of the image.

3.2.2 Stereo matching

Since the goal is to remove a single piece of clothing without disturbing the

remaining items in the pile, the next step in the process is to determine which item

is on top of the pile. While there are many monocular image cues that can provide

a hint as to which object is on top, such as the size of the object, its concavity,

T-junctions, and so forth, I rely upon stereo matching due to its efficiency, ease of

implementation, and robustness. Stereo matching is the process in visual perception

leading to the sensation of depth from two slightly different projections of an envi-

ronment [96]. With rectified cameras, the difference in image coordinates between

two corresponding points (the horizontal disparity) is inversely proportional to the
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Figure 3.1: Overview of my system for vision-guided extraction of items from a pile
of laundry.
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Figure 3.2: Left: An image taken by one of the overhead cameras in our setup.
Right: The results of applying the graph-based segmentation algorithm. Despite
the over-segmentation, the results provide a sufficient representation for grasping an
article of clothing.

distance from the camera to the point. An 11 × 11 window-based sum-of-absolute

differences (SAD) stereo algorithm is implemented for its computational efficiency,

utilizing MMX/SSE2 SIMD operations and a running sum sliding window to increase

the speed of computation.

Due to misalignment of the cameras, reflections in the scene (non-Lambertian

surfaces), and occlusion, the resulting disparity image is noisy. To reduce the effects

of this noise, a left-right consistency check [33] is employed to retain only those dispar-

ities that are consistent in both directions, see Figure 3.3. Photometric inconsistency

between the cameras is handled by converting to grayscale, followed by adjusting the

gain of one image to match the other. After computing the disparities in this manner,

the relative height of each segmented region is determined by the average disparity of

all the pixels in the region. Among the foreground regions exceeding a minimum size

(0.04% of the image), the one with the largest average disparity is then estimated as

the item on top of the pile.
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Figure 3.3: Top: A stereo pair of images taken by the overhead cameras in our setup,
showing the large amount of photometric inconsistency. Bottom: The disparity
image obtained by SAD matching with the left-right disparity check (left), and the
result after masking with the foreground and removing small regions (right).
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Figure 3.4: Left: The binary region associated with an article of clothing (orange
shirt), with the grasp point (red dot) computed as the location that maximizes the
chamfer distance. Right: The chamfer distance of each interior point to the clothing
boundary.

3.2.3 Determining the grasp point

Once the top item is determined, the next step is to determine the grasp

point of the item. The approach of Saxena et al. [95] is not used due to the use of

non-rigid and irregularly shaped objects. Instead, the 2D grasp point is calculated

as the geometric center of the object, defined as the location whose distance to the

region boundary is maximum. This point, which can be computed efficiently using

chamfering [7], is much more reliable than the centroid of the region, particularly when

the region contains concavities which is not uncommon in the scenarios considered

herein. Figure 3.4 shows an example of the grasp point found by the maximum

chamfer distance for an article of clothing. Note that only one grasp point is found

due to the limitation of using a single robotic manipulator.

3.2.4 Extracting the item

Once the grasp point is found, the robot arm is moved over the pile of laundry

so that the end effector is positioned above the grasp point. The arm then engages
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in a procedure that we refer to as bobbing. The arm is lowered to just above the

estimated height of the item, then end effector is closed, the arm is raised and moved

to the side. During this process the presence of the arm occludes the scene, making

the images of the overhead cameras uninformative. Therefore, after completion of the

process, the images before and after are compared to determine whether the desired

item is extracted from the pile. Simple frame differencing with a threshold is used to

make this decision. If it is determined that no item is extracted, then the procedure

is repeated, this time with the end effector reaching down further. The process is

repeated successively at increasing distances until either the item is removed or the

end effector reaches the minimum height above the table (to avoid collision). If all

attempts are unsuccessful, then the robot arm is returned to the “home” position,

and the entire process begins again; in my experiments the robot is always successful

using, for the most part, no more than two bobbing procedures. The entire procedure

for extracting a single item is repeated until no more objects remain in the pile, which

is determined via a threshold on the minimum size of the foreground regions in the

segmented image (0.5% of the image).

Note that this bobbing procedure is a form of interactive perception. Because

our sensors are not accurate enough to precisely compute the distance to the object,

and because our gripper is not guaranteed to be oriented in the correct direction, it is

virtually impossible to ensure success on the very first try. Moreover, the particular

robot I used is not equipped with a force sensor, thereby increasing the difficulty

of sensing the environment. To overcome this limitation in sensing, an interactive

sensing (yet fully automatic) approach is adopted in which repeated interactions with

the environment are used to simplify the problem of sensing.

26



3.3 Classification of clothing

3.3.1 Classification in a hanging position

The dataset that is used, in this section, consists of five short-sleeved shirts,

five pants, five shorts, five long-sleeved shirts, five socks, and five underwear. Once

the article is grasped and ready for classification, the arm lifts and swings to the side

so that the article hangs freely without touching the table or ground. This open area

is monitored by a third side-facing camera that captures both a “frontal view” and a

“side view” image of the article, using the robot to rotate 90 degrees about the vertical

axis between images. These two views are subtracted from a background image to

obtain two binary silhouettes of the clothing. Figure 3.5 illustrates an example of the

two views of an isolated article of clothing along with its binary silhouettes. Note

that the terms “frontal” and “side” are arbitrary designations, since the robot grasps

each object somewhat at random. What is important is that these two silhouttes

represent the object’s shape from two orthogonal directions (and, by symmetry, from

the other two orthogonal directions by a mirror flip).

Features are extracted from the frontal and side images of the article of clothing

in order to compare with other previously labeled images of clothing. Let IQ be one of

these two query images (either frontal or side), and let ID be an image in the dataset.

These images are compared using four different features to yield a match score:

Φ(IQ , ID) =
N

∑

i=1

wi ·
1

mi

fi(IQ , ID), (3.1)

where N = 4 is the number of features, wi ∈ {0, 1} , and the features are given by

• f1(IQ , ID) = | aQ − aD |, the absolute difference in area between the two sil-

houettes, where aQ is the number of pixels in the query binary silhouette, and
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Figure 3.5: The front (top) and side (bottom) views of an isolated article of clothing
to be classified (orange shirt). In each case, the original image is shown on the left,
while the binary silhouette is shown on the right.
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similarly for aD ;

• f2(IQ , ID) = | eQ − eD |, the absolute difference in eccentricity between the two

silhouettes, where 0 ≤ eQ ≤ 1 is the eccentricity of the query binary silhouette,

and similarly for eD ;

• f3(IQ , ID) = H (BEQ ,BED), the Hausdorff distance between the Canny edges

[11] of the two binary silhouettes;

• f4(IQ , ID) = H (CEQ ,CED), the Hausdorff distance between the Canny edges

[11] of the original grayscale images.

To ensure proper weighting, each value mi is the 95th percentile of fi among all the

images in the dataset (robust maximum).

Although color information would be a helpful cue for identifying particular

items of clothing, it is not used in this work because color varies so widely within

clothing categories. After calculating the match scores, the nearest neighbor algo-

rithm (1-NN) is used to assign a category to the article of clothing. The 1-NN algo-

rithm finds the category associated with the silhouette in the dataset whose match

score to the test silhouette is minimum.

As will be seen in the experimental results, the accuracy of the above proce-

dure is rather poor. This is due to the impoverished sensing that occurs when an

article of clothing hangs freely from a single grasp point. To overcome this limitation,

interactive perception is used. The process of capturing front and side views of an

item is repeated ten times. In each iteration, the robot drops the item on the table,

and the item is extracted again in a manner similar to that described above. The

randomness of the dropping results in a new grasp point that, in general, bears little

relationship to previous grasp points. These multiple grasp points provide the system
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with multiple front and side views of the article of clothing, thereby greatly increasing

the chance of accurately classification.

3.3.2 Classification in a lying position

The proposed algorithm is called L-M-H, more specifically L-C-S-H, for Low

Level - Characteristics - Selection Mask - High Level. Low level refers to the features

that are calculated from the images of each article using a Kinect sensor (e.g. 2D

shape, 2D color, 2D texture, 2D edges, and 3D shape). Characteristics refers to the

attributes that are found on generic articles of clothing (e.g. pockets, collars, hems,

etc). Selection mask refers to a vector that describes what characteristics are most

useful for each category (e.g. collars and buttons are most useful for classifying shirts).

Characteristics and selection masks are considered to be mid-level layers that connect

the low level features to high level categories. High level refers to the categories that

are to be classified (e.g. shirts, socks, dresses). Figure 3.6 illustrates the path of the

L-C-S-H process. The L-C-S-H algorithm is described in detail in later sections.

3.3.2.1 Background on algorithmic models with a mid-level layer

Latent semantic analysis The latent semantic analysis (LSA) [18] is another

model similar to Bag of Words (BoW) [90], in the sense that it attempts to find the

relationship between two variables, terms within a document and the type of docu-

ment, by producing a “concept” space that relates the two variables. The “concept”

space is comprised of latent semantic variables, hence the name, that relate observ-

able data, like documents and terms, to each other. LSA uses matrix and vector

operations along with singular value decomposition (SVD) to calculate the “concept”

space. After producing the concept space, terms and documents can be compared
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Figure 3.6: The L-C-S-H hierarchy with categories at the High level, binary vectors
at the Selection levels, attributes at the Characteristic level, and features at the Low
level.

with the same dimensionality and vector space using cosine similarity, see equation

3.2. If the cosine value is equal to zero, then the document (d) and the term (t) have

no relationship. Otherwise, the higher the cosine value is to 1, the higher probability

that the term is contained within the document.

cos θ =
d · t

‖d‖ ‖t‖
(3.2)

The first step of LSA is the same of BoW. The image is broken-up into patches

and we convert each image patch into a feature vector with meaningful data. Each

image patch is then considered to be a term, or word, that is counted within the image,

or document. Next, all of the patches are placed within a dataset and k-means [63]

is computed on the dataset to determine the vector locations of the unique patches.

The unique patches are then considered to be the codewords within the codebook and

all of the patches within the image are grouped according to the closest relationship

to one of the unique patches. The difference in algorithms between BoW and LSA
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begins after this step.

The occurrences of each unique patch within each image, in the training set,

are calculated and placed within a matrix, X , see equation (3.3). The element in

location (i , j ) within X is number of times patch i occurs in image j . Equations (3.4-

3.5) represent a row vector and column vector of matrix X . A row vector consists

of the relationship of patch i to all N images. The column vector consists of the

relationship of the image j to all M patches. Any representation can be used for the

element value within the co-occurrence matrix, but, most commonly, the frequency

of occurrences is used. A connection, in vector space, between LSA and BoW would

be the j th column vector in the X matrix is the exact same vector as the total sum

of the wi vectors for the j th document.

X =













x1,1 · · · x1,n

...
. . .

...

xm,1 · · · xm,n













(3.3)

tT
i =

[

xi ,1 · · · xi ,n

]

(3.4)

dj =













x1,j

...

xm,j













(3.5)

Next, the decomposition of matrix X is needed to find the relationships of each

patch with each image using L concepts. For this step, singular value decomposition

(SVD) is used to calculate the singular values and left and right singular vectors of

the matrix, see equation 3.6. Matrix U contains the left singular vectors that are

used to create the transformed tT
i , named ˆtT

i , which gives the occurrence of patch
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i in each of the l concepts. Matrix V T contains the right singular vectors that are

used to create the transformed dj , named d̂j , which gives the relation of image j in

each of the l concepts.

X U Σ VT












x1,1 · · · x1,n
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...

xm,1 · · · xm,n
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0 · · · σl
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[ v1 ]

...

[ vl ]













(3.6)

One of the important parts of this process is to decide how many concepts,

singular values, will be used in transformation matrices. The k largest singular values

are chosen to represent the relation between each patch to each image. The final

matrix will be Xk=UkΣkV
T
k . In order to compare patches or images in concept space,

they must first be transformed by vector operations and then compared using cosine

similarity. The transformation equations are as follows: ˆtT
i =tT

i VkΣ
−1
k or t̂i=Σ−1

k Vk ti

to transform a query patch into a k ×1 vector and d̂j=Σ−1
k U T

k dj to transform a query

image into a k × 1 vector.

Probabilistic latent semantic analysis The probabilistic latent semantic analy-

sis (pLSA) [42] [43], also called aspect model [44], is an extension of LSA that utilizes

a joint probability model to map the relationship of words to documents using latent

variables (“concepts”), z ∈ Z = {z1, . . . , zk}. The two models use the conditional

probability between the words, “concepts”, and documents as well as the indepen-

dent probability of “concepts” and documents, depending on the symmetry of the

model.

Equations (3.7-3.8) display the probabilities that are used in each model along
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with the formulas used for each model. One shortcoming from using the asymmetric

model is the cardinality of “concepts” could become a bottleneck between the words

and documents. If the number of words and the number of documents are greater

the number of “concepts”, then the mapping between the two observable variables

will be underfitted, a common problem when determining the number of nodes in the

hidden layer for artificial neural networks [14] [23] [34] [59].

P(d ,w) = P(d)P(w | d),P(w | d) =
∑

z∈Z

P(w | z )P(z | d) (3.7)

P(d ,w) =
∑

z∈Z

P(z )P(d | z )P(w | z ) (3.8)

Model fitting with EM In order to calculate the maximum likelihood estimator

for the “concepts” model, the Expectation Maximization (EM) algorithm [19] is used.

Expectation maximization is an iterative method for finding estimates where the

model depends on latent variables, “concepts”. The E step is calculated and shown

in equation 3.9. The M step is calculated and shown in equations 3.10-3.12.

P(z | d ,w) =
P(z )P(d | z )P(w | z )

∑

z ′∈Z P(z ′)P(d | z ′)P(w | z ′)
(3.9)

P(w | z ) ∝
∑

d∈D

n(d ,w)P(z | d ,w) (3.10)

P(d | z ) ∝
∑

w∈W

n(d ,w)P(z | d ,w) (3.11)

P(z ) ∝
∑

d∈D

∑

w∈W

n(d ,w)P(z | d ,w) (3.12)

The EM algorithm iterates through the E and M step until the multivariate

probabilities come to a convergence. The initial conditional probabilites that connect
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each word to each “concept” and each document to each “concept” are randomly

chosen. The M step is highly dependent on the occurrence matrix described in the

previous section. The n(d ,w) variable is the number of instances that word w and

document d occur over the training set. This algorithm is commonly chosen for

categorizations when the latent variables (“concepts”) are unobserved.

3.3.2.2 Clothing dataset in a lying position

The dataset that is used in this section, consists of over 200 articles of clothing

in over 1000 total configurations. The entire dataset is separated into seven categories

and more than three dozen subcategories. Each article of clothing is collected from

real laundry hampers to better capture actual items encountered in the real world.

Each one is laid flat on a table in a canonical position and dropped on the table

in a crumpled position from four random grasp points for a total of five instances

per article. Figure 3.7 illustrates seven instances of clothing for each of the seven

categories that are used.

The dataset contains 2D color images, depth images, and 3D point clouds

that are captured using a Kinect sensor. For this thesis, the different types of items,

such as shirts, cloths, pants, shorts, dresses, socks, and jackets that will be utilized

might be encountered by a domestic robot involved in automating household laundry

tasks. The articles of laundry are captured in this manner to test the possibility

of developing a system capable to classifying clothes lying on the floor. Figure 3.8

illustrates an example of a single color image, a single depth image, and a single point

cloud for one article.
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Figure 3.7: From Left to Right: Seven examples of clothing for each of the seven
categories. From top to bottom: shirts, cloths, pants, shorts, dresses, socks, and
jackets.

Shirts (85) Cloth (30) Pants (25) Shorts (25)
Dress (10) Socks (22) Jacket (5)

Table 3.1: List of seven unique categories and the number of articles for each category.
The number of articles contained in each category is indicated in parantheses.
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Figure 3.8: Data to be used in my approach. From left to right: Color image, depth
image, and a point cloud of a t-shirt.

3.3.2.3 Low level features

The L component of the L-C-S-H approach uses the low level features to

estimate if the article does or does not have a particular characteristic. The low level

features that are used in this approach consist of Color Histogram (CH), Histogram

of Line Lengths (HLL), Table Point Feature Histogram (TPFH), boundary, Scale-

Invariant Feature Transform (SIFT), and Fast Point Feature Histogram (FPFH).

Each low level feature will be described in detail in further subsections. The low

level features that are chosen for each article of clothing are used to determine /

classify characteristics, shown in Table 3.2. Nine out of the 27 characteristics can

be calculated from shape information, seven out of 27 can be calculated from color

information, five out of 27 can be calculated from texture information, and ten out

of 27 can be calculated from edge information. The dataset that is used consisted of

five instances of each article, see section 3.3.2.2. In order to combine the low level

features of all five instances into a single value or histogram, each value is calculated by

averaging each individual value along with its neighbors, in the case of the histogram.

Equation (3.13) is the computation used to combine all five instances of each article.

Cj =
1

N

N
∑

j=1

vj +
1

2
(vj−1 + vj+1) (3.13)
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where Cj is the averaged score of the histograms, in position j , N is the number of

instances of each article (N = 5 is used in this thesis), vj is the current value within

the histogram along with vj−1 and vj+1 to be the immediate neighbors to the left and

right of the current value, respectively.

For the part of the algorithm that converts from low level to characteristics,

the low level features, described in the following subsections, are compared to the

various characteristics. Since the characteristics are binary values, libSVM [12] is

used to solve the two-class problem. Each low level feature is used to determine if

the characteristic is in class 1 or 2. Class 1 contains positive instances and class 2

contains negative instances.

For an article of clothing, an RGB image and a raw depth map is captured,

from which a 3D point cloud is derived. Background subtraction is performed on

the RGB image to yield an image of only the object. The background subtraction

is performed using graph-based segmentation [27], see section 3.2.1 for a description

and see Figure 3.9 for an example of the segmentation applied to the current dataset.

Once the object is isolated within the image, multiple features are calculated from

the RGB image and the 3D point cloud. These features, which are discussed in later

sections, capture 2D shape, 2D color, 2D texture, 2D edges, and 3D shape for both

global and local regions of the object.

3.3.3 Global features

3.3.3.1 Color Histogram (CH)

A CH is a representation of the distribution of the colors in a region of an

image, derived by counting the number of pixels with a given set of color values.

CH are chosen in this work because they are invariant to translation and rotation
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Figure 3.9: Left: An image taken by the overhead camera in my setup. Middle:

The results of applying the graph-based segmentation algorithm to locate the fore-
ground. Right: The binary image represents the location of the foreground object.
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about the viewing axis, and for most objects they remain stable despite changes in

viewing direction, scale, and 3D rotation. CH is used to distinguish, for example,

between lights and darks, as well as denim. The CH of each object is computed, in

HSV color space. The HSV color space is computed by converting the RGB space

to hue, saturation, and value. Equations (3.14)-(3.18) display the equations needed

to compute the hue of a pixel. In the case of C=0, the first bin in the hue color

channel is incremented to keep track of all undefined instances. Equations (3.19)-

(3.20) display the equations needed to compute the value and saturations of a pixel,

respectively. 15 bins are used for hue color channel and 10 bins for the saturation and

value color channels, leading to 35 total bins. The hue ranges from 0 → 360 degrees,

the saturation and the value both range from 0.0 → 1.0. Figure 3.10 illustrates the

difference in an article of clothing with light colored and dark colored fabric.

M = max (R,G ,B) (3.14)

m = min(R,G ,B) (3.15)

C = M − m (3.16)

H ′ =



































undefined, if C=0

G−B
C

mod 6, if M=R

B−R
C

+ 2, if M=G

R−G
C

+ 4, if M=B

(3.17)

H = 60oxH ′ (3.18)

V = max (R,G ,B) (3.19)

S =
C

V
(3.20)
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Figure 3.10: Resulting histograms of light (top) and dark (bottom) colored clothing.
Each plot (left) shows the histogram of the HSV color space, which consists of three
parts: hue (blue), saturation (red), and value (green). For each characteristic, the 6
examples (right) used to compute the histogram are shown.
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3.3.3.2 Histogram of line lengths (HLL)

The histogram of line lengths (HLL) is a novel feature that is introduced to

help distinquish between stripes, patterns, plaid, etc. For this, the object image

is used as before (after background subtraction) to compute the Canny edges [11],

then eroded with a 3x3 structuring element of ones to remove effects of the object

boundary. Then the length of each Canny edge is computed using Kimura et al.

[52] method. The Kimura et al. method uses diagonal movement (Nd) and isothetic

movement (No) to accurately calculate the length of a pixelated edge within an image,

see equation (3.21). Diagonal movements (Nd) refer to moving from the center pixel

to one of the four corners within a 3x3 window and isothetic movements (No) refer to

moving directly left, right, up, or down, see Figure 3.11. These pixel lengths are used

to compute a histogram of 20 bins that range from 0 pixels to 1000 pixels, so each

bin captures lengths within 50 pixels. Lengths greater than 1000 get mapped down

to the last bin. Figure 3.12 illustrates the difference in an article of clothing with no

texture, with stripes, and with plaid.

L = [N 2
d + (Nd + No/2)2]1/2 + No/2 (3.21)

3.3.3.3 Table point feature histogram (TPFH)

The TPFH consists of a 263 dimension array of float values that result from

three 45 value subdivisions, that are calculated from extended Fast Point Feature

Histograms (eFPFH), and 128 value subdivision for table angle information. This

feature is a variant on the Viewpoint Feature Histogram (VFH) [85]. The eFPFH

values are calculated by taking the difference of the estimated normals of each point

within the objects pointcloud and the estimated normal of the objects pointcloud
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Figure 3.11: Example illustration of diagonal movements and isothetic movements
within a 3x3 window. The red arrows refer to diagonal movements and green arrows
refer to isothetic movements.

center point. The estimated normals of each point and the center point are calculated

by projecting them on the XY ,YZ , and XZ plane. The differences between the two

normals are labeled β, θ, and φ. These three values, ranging from −90 → +90 degrees

(4 degrees each bin), are placed within bins in the three 45 value histograms of the

eFPFH. Figure 3.13 illustrates the graphical representation of the normals and how

they are calculated. The 128 value table histogram is computed by finding the angle,

α, between each normal vector and the translated central table vector for each point.

The central table vector is translated to the same point as the normal that is currently

being computed. Figure 3.13 illustrates the difference in direction for each vector. In

TPFH, the eFPFH component is a translation, rotation, and scale invariant, while

the table component is only a scale invariant, 3D representation of the local shape.

Figure 3.14 illustrates an example of how the TPFH values are visually different in

two separate categories.
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Figure 3.12: Resulting histograms of an article of clothing with no texture (top),
with stripes (middle), and with plaid (bottom). Each row contains the original image
(left), the image after using Canny edge detector (middle), and the histogram of line
lengths (right).
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Figure 3.13: Graphical representation of the two components of TPFH. Top: eFPFH
component with β, θ, and φ shown. V , W , and U represent the coordinates of the
point C (centroid), with respect to the normal of C and the position of C and P1.
N1 is the normal of point P1. Bottom: Table component with α shown. TP is the
centroid of the table, while NT is the normal of the table. Ni is the normal of point
Pi and P1 → P7 are arbitrary points in the cloud surrounding point C .
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Figure 3.14: Example of the visual differences in global shape information between
two different categories, namely shirts (top) and pants (bottom). Each row contains
the average histogram of the TPFH (left) and 6 examples of each category used to
calculate the average histogram (right). Shirts have a relatively lower # of instances
in the first and third peak than pants. This example shows why the TPFH feature is
useful in classifying clothing.
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Figure 3.15: Left: Article segmented from background. Middle: The binary
boundary of the article. Right: The boundary of the article along with the lines
connecting the centroid to the boundary, whose distances are used in the feature
vector. The green line represents the major axis found by PCA.

3.3.3.4 Boundary

The boundary feature captures 2D shape information by storing the Euclidean

distances from the centroid of each article to the boundary. First, the centroid of each

binary image is calculated containing the object (after foreground / background seg-

mentation). Then, starting at the angle of the major axis found by principle compo-

nents analysis, 16 angles that range from 0 to 360 (i.e., 0, 22.5, 45, 67.5, . . . , 315, 337.5)

are calculated around the object. For each angle, the distance from the centroid to

the furthest boundary pixel is measured, see Figure 3.15.

3.3.4 Local features

3.3.4.1 Scale Invariant Feature Transform (SIFT)

The Scale Invariant Feature Transform, SIFT [62], descriptor is used to gather

useful 2D local texture information. The SIFT descriptor locates points on the arti-

cle (after foreground / background segmentation) that provide local extremum when

convolved with a Gaussian function. These points are then used to calculate a his-

togram of gradients (HoG) from the neighboring pixels. The descriptor consists of a
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Figure 3.16: Resulting SIFT features overlayed on the image. The arrows represent
the orientation and scale (magnitude) of each SIFT descriptor.

128 value feature vector that is scale and rotation invariant. Figure 3.16 illustrates

the SIFT feature points found on an article. After all of the feature points are found

on an article, the SIFT descriptors are placed within a Bag-of-Words model [101],

described in detail in section 3.3.4.3, to calculate 100 codewords. These codewords

provide each article with a 100 element feature vector that represents the local texture

information.

3.3.4.2 Fast Point Feature Histogram (FPFH)

The Fast Point Feature Histogram, FPFH [84], descriptor is used to gather

local 3D shape information. The FPFH descriptor utilizes the 3D point cloud and

foreground / background segmentation for each article and segments the article points

from the background points of the point cloud. For each 3D point, a simple point fea-

ture histogram (SPFH) is calculated by taking the difference of the normals between

the current point and its k neighboring points with a radius r . Figure 3.17 illustrates

an example of a 3D point along with its neighbors. The radius is precomputed for

each point cloud to best capture local shape information. Once all of the SPFHs are
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Figure 3.17: Left: Example of the SPFH of a single point. An area of radius r
encircles 5 neighboring points for this example. Right: An example of the FPFH of
the current point along with surrounding SPFHs used in the reweighting scheme. Each
neighboring SPFH is color coded to represent the surrounding connections within the
various regions.

computed, the FPFH descriptor of each point is found by adding the SPFH of that

point along with a weighted sum of the k neighbors, see equation (3.22). FPFH is

a histogram of 33 values, i.e. three sets of 11 bins for the three different orthogonal

planes of XY ,YZ , andXZ .

FPFH (p) = SPFH (p) +
1

k

k
∑

i=1

wiSPFH (i) (3.22)

3.3.4.3 Bag of words model

The bag of words (BoW) [90] model is originally implemented for natural lan-

guage processing (NLP) [13] using a vector space model, but more commonly used in

computer vision applications [79]. The goal of this model is to identify documents by

categorizing them based on the words within the document, while the ordering of the

words is ignored. Each document is broken up based on which words are used in the

document and the number of occurrences that each word appeared in the document.
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This model is extended to the computer vision field for object categorization. The

model uses the same underlying process for categorization, but the words are now

patches within an image. These patches are chosen based on the type of categoriza-

tion that is being implemented. For example, a 200 × 200 image can be broken into

100 equally sized 20×20 patches across the image. A patch within an image is similar

to a word within a document.

Image feature extraction In order to transform each patch into a single entity,

a feature descriptor is chosen to represent each patch within the image. The feature

descriptor can range from color values, texture gradients, edge locations, or a his-

togram. A well-known robust feature descriptor histogram is Scale-invariant feature

transform (SIFT) [62]. SIFT converts an image patch into a 128-dimensional vector.

This vector can be considered to be a word representation within a document.

Clustering unique patches into “codewords” The next step is to determine

how many unique patches, “codewords”, are in the image. Several of the vectors,

representing each patch, may have similar aspects or values and can be considered

to be the same patch. “Codewords” are analogous to topics within a latent variable

model, described in later sections. The goal is to group like-patches together to

calculate unique patch locations within the vector space. Clustering is used to find

groups of patches and calculate vector means to represent unique patch locations.

A common clustering method that is used for this calculation is k-means clustering

[63]. The value chosen for k determines the number of “codewords” that map image

patches to image categories.

Figure 3.18 illustrates a simple example of an image broken-up into various

patches. V unique patch groups are extracted from the various image patches to
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Figure 3.18: Bag-of-words model example to illustrate the grouping of patches within
an image.

create V “codewords”, wi as i = 1 . . .V , (V = 4 in the case of Figure 3.18). These

V “codewords” make up the “codebook”, which is a collection of all “codewords”

within the training set {w1,w2, · · · ,wV }. The “codebook” consists of V “codewords”

that are Vx1 vectors. The i th vector is represented by (V -1) 0’s and a 1 in the i th

position, wi = 1 and wj = 0 for i 6= j .

Converting “codeword” information into vector space After the “codebook”

is completed, each image in the dataset, both training and testing, is converted to a

matrix W , which consists of N vectors to represent the N patches with the image.

In the case of Figure 3.18, the “codebook” will comprise of four “codewords”, w1 =
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and the resulting representation
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of the image will be W = {w2, w4, w2, w1, w1, w2, w4, w2, w2, w3, w1, w3, w4, w1, w4,

w3}, as the rows of the image are concatenated together.

Finally, a classifier is chosen to test and compare the model. Simple classifiers,

like näıve Bayes [82] and support vector machines (SVM) [12], are commonly used to

group an image with N patches into one of several categories. In the case of a näıve

Bayes classifier, a categorization decision would consist of the maximum total product

of the probability of each category, p(c), and the probabilities of each “codeword”

(wi) appearing within each particular category, p(wi | c), see equation 3.23.

c∗ = arg max
c

p(c)
N
∏

i=1

p(wi | c) (3.23)

3.3.4.4 Final input feature vector

Once the features are computed, the global features are concatenated to create

a histogram of 35 + 20 + 263 + 16 = 334 values. For local features, SIFT and FPFH

are calculated separately through the bag-of-words model to get two 100-element

histograms of codewords. Being concatenated, this yields 200 values for the local

features. Then being concatenated with global features yields 534 values, which are

then fed to the multiple one-versus-all SVMs. Each of the local and global level

features are scaled from 0 → 100 before concatenation to allow for equal weighting

among each type of feature.

3.3.5 Mid-level layers

3.3.5.1 Characteristics

The C component of the L-C-S-H approach uses the characteristics found

on everyday clothing that is best suited for each category. A binary vector of 27
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values are used that correspond to each characteristic used to learn what attributes

are needed to separate the differences between shirts, pants, dresses, etc. The 27

characteristics that are chosen are shown in Table 3.2, along with the number of

instances and definition of each characteristic in the dataset. The training procedure

used for classifying characteristics is the 5-fold cross validation (CV) [20], which is

described in section 3.6. Figure 3.19 illustrates the percentage of how much each

characteristic is used per category.

3.3.5.2 Selection Mask

The S component of the L-C-S-H approach uses the characteristics to deter-

mine which subset is best suited for each category. The selection masks are stored

as a binary value; 0 or FALSE, means that the category does not need that partic-

ular characteristic, 1 or TRUE, means that the category does need that particular

characteristic.

Then, the process determines which characteristics have a higher importance

and which have a lower importance for each category. Therefore, one characteristic is

zeroed out at a time and viewed the resulting percentage over the rest of the character-

istics. The percentage is determined by comparing the characteristic vector for each

article against mean vectors for each category, which are calculated in section 3.3.6.

If the current percentage is higher or equal to the previously calculated percentage,

then that particular characteristic is zeroed out for the following iteration(s).

The next iteration repeated the same process of zeroing out one characteristic

at a time along with having the previously chosen characteristics zeroed out. Af-

ter permanently zeroing out several features, the resulting classification percentage

began to increase to a peak. Then the peak began to decrease after the remaining

characteristics are zeroed out. Next, a binary vector is created for each category that
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Collar (21) the part of a garment that fastens around or frames the neck

Front Pockets (39) pockets on the front of any garment

Back Pockets (26) pockets on the back of any garment

Side Pockets (8) pockets on the side of any garment

Elastic Band (32) any sort of stretchy band, mainly around the waist

Front Zipper (28) zippers on the front of any garment

Top buttons (30) button on the top of any garment, like polo shirts or pants

Belt loops (25) loops around the waist for a belt

Top brackets (10) brackets on the top of any garment, like pants

Graphic pictures (47) any types of pictures or logos on a garment

Graphic texts (7) any type of text or word on a garment

Dark Colored (70) clothing that is darker in color, close to black

Colored (94) any clothing with color that is not whites or darks

White Colored (38) any clothing that is totally white

V-neck (7) neckline protrudes down the chest and to a point

Denim (13) a rugged cotton twill textile

Plaid (5) a pattern consisting of crossed horizontal and vertical bands

Striped (11) a pattern consisting of horizontal or vertical bands

Patterns (18) any repetitious design that doesn’t fall under plaid or striped

Round neck (73) neckline that encircle the neck in a curved shape

Ankle hem (30) a hem located in the ankle region

Thigh hem (28) a hem located in the thigh region

Inseam (52) the seam that binds the length of the inner trouser leg

Shin hem (15) a hem located in the shin region

Wrist hem (26) a hem located in the wrist region

Shoulder hem (15) a hem located in the shoulder region

Bicep hem (59) a hem located in the bicep region

Table 3.2: List of 27 unique characteristics, their definitions, and the number of
instances for each characteristic that are chosen to differentiate categories of clothing.
The number of articles containing each characteristic is indicated in parantheses.

54



Collar

Front Pockets

Back Pockets

Side Pockets

Front Zipper

Top buttons

Top brackets

Graphic pictures

Graphic texts

Darks

Colors

Whites

Denim

Plaid

Striped

Patterns

Ankle hem

Thigh hem

Shin hem

Wrist hem

Shoulder hem

Bicep hem

Round neck

V−neck

Inseam

Belt loops

Elastic Band

 

Shirt
Cloth

Pants

Shorts

Relationship of Characteristics to Categories

Dress

Socks

Jacket

 0

5

10

15

20

25

30

35

40

45

50

Figure 3.19: A graphical representation of the percentage of characteristics that are
contained within each category. The color scheme changes from red to purple as the
percentage increases. Light red colors represent small percentages. Dark purple colors
represent high precentages. Blank areas represent a percentage of zero.
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contained a 1, or TRUE, if the characteristic yielded a higher classification percentage

and a 0, or FALSE, if the characteristic yielded a lower classification percentage.

3.3.6 High level categories

The H component of the L-C-S-H approach uses the characteristic vectors

that correspond to the articles within the training set to average the binary vectors of

each category together to create a mean vector, as a descriptor, for each category. In

other words, all shirts have averaged their characteristic vectors together, all dresses

have averaged their characteristic vectors, and so on to create seven unique mean vec-

tors, one for each category. Then the selection mask is multiplied by the characteristic

vector to zero out any characteristics with a low classification percentage.

3.4 Extraction / isolation experiment

Figure 3.20 shows the results of the system after different steps of the extrac-

tion and isolation procedure. The system removes items from a pile of laundry one at

a time by identifying a grasp point in the closest region, then deploying the robotic

arm to that location, bobbing for the item, and moving the item to another part of

the workspace. Once the item is extracted and isolated, the system interacts with

it by rotating about a vertical axis in order to gain both front and side views of the

item using the side-facing camera. Two 2D silhouettes of the item are created for

each grasp point; by repeating this process ten times, 20 silhouettes are obtained for

each item (ten front views and ten side views). The procedure successfully removed

all items from the pile one at a time.
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Figure 3.20: Three example experiments of the extraction and isolation process. From
top to bottom: The image taken by one of the downward-facing stereo cameras, the
result of graph-based segmentation, the object found along with its grasp point (red
dot), the image taken by the side-facing camera, and the binary silhouettes of the
front and side views of the isolated object for one of the 10 grasping instances. Time
flows from left to right, showing the progress as each individual article of clothing is
removed from the pile and examined for classification.
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Test Name w1 w2 w3 w4

Area 1 0 0 0
Eccentricity 0 1 0 0
Binary Edges 0 0 1 0
Canny Edges 0 0 0 1
Combo A 1 1 0 0
Combo B 1 1 0 1
Combo C 0 1 0 1
Combo D 1 0 0 1

Table 3.3: The weights used for eight different tests conducted for the “lying ap-
proach”.

3.5 Classification experiment in a hanging position

With six categories, five items per category, and 20 images per item, the

dataset collected by the extraction / isolation procedure consists of 600 images. This

dataset is labeled in a supervised learning manner so that the corresponding category

of each image is known. Eight tests are used to compare the training and test images,

see Table 3.3.

I conducted two experiments: leave-one-out classification and train-and-test

classification. In leave-one-out classification, each of the 600 images is compared with

the remaining 599 images in the dataset. If the nearest neighbor among these 599

is in the same category as the image, then the classification is considered a success,

otherwise a failure. Results for all 100 images for each category are combined to yield

a classification rate for that category, and the procedure is repeated for all eight tests

in Table 3.3. The results, shown in Figure 3.21, reveal that most categories are either

classified, on average, well (near or above 50%) or poorly (near or below 30%), with

the best results achieved by the Combo A and Combo B tests.

In train-and-test classification, three articles of clothing from each category

are selected for the training set and the remaining two articles are used for the test
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Figure 3.21: Leave-one-out classification results for all six categories using eight dif-
ferent tests.

set. Therefore, each image is compared with the 360 images in the training set,

and the category of the nearest neighbor among these images is compared with the

category of the image to determine success or failure. Results for all 40 test images

for each category are combined to yield a classification rate for that category, and the

procedure is repeated for all eight tests in Table 3.3. The results, shown in Figure 3.22,

show results that are significantly worse than those of the leave-one-out experiment,

due to the reduced amount of data used for training. We should emphasize that

classifying an unknown article of clothing (hanging from a single, arbitrary grasp

point) from a single image is extremely difficult even for a human viewer.

3.5.1 Interaction vs. Non-interaction

One of the goals of this work is to determine the usefulness of interactive

perception in a clothing classification context. The process of interacting with each
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Figure 3.22: Train-and-test classification results for all six categories using eight
different tests.

article of clothing provided the system with multiple views using various grasp lo-

cations, allowing the system to collect 20 total images of each object. Therefore, in

the next experiment I compared features from all 20 images of each object with the

remaining images in the dataset. The procedure is as follows:

1. The query article of clothing is compared with all articles in the dataset, and

the category of the closest matching article is considered to be the category of

the query article.

2. Two articles are compared by examining the 400 match scores between their

pairs of images (20 images per article).

3. For each of the 20 images of the query article, the 1-NN among the other 20

images is found; these 20 match scores are then added to yield the distance

between the two articles.
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Figure 3.23: Classification results for all 30 objects using all 20 images for comparison.

This procedure corresponds to a manipulator picking up and dropping an object

multiple times to get multiple views of it in order to better classify it. The results,

shown in Figure 3.23, are indeed significantly higher than those obtained without

interactive perception. In fact, Combo A achieved 100% classification on all categories

using this method.

For comparison, the classification rates for all categories for the four different

combination tests are shown in Figure 3.24, illustrating the difference between using

a single view versus using all 20 views of an object. For Combo A, the average

classification rate using a single image is 62.83%, while the average classification rate

using all 20 images is 100%. These results show that, on average, classification rates

using robot interaction are 59% higher than those that do not use interaction.
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Figure 3.24: Classification results for all 30 objects using all 20 images for comparison
using the combination tests.
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3.6 Classification experiment in a lying position

The proposed L-C-S-H approach is applied to a laundry scenario to test its

ability to perform practical classification. In the following experiments, the entire

dataset consisted of 85 shirts, 30 cloths, 25 pants, 25 shorts, 10 dresses, 22 socks,

and five jackets. The dataset is labeled using a supervised learning approach so that

the corresponding category of each image is known. An approach is provided that

illustrates the use of having mid-level characteristics (attributes) in grouping clothing

categories that are difficult to classify. First, the baseline approach that uses SVMs,

with a radial basis function kernel, is considered to directly classify each category

without the use of mid-level characteristics. Then, the characteristics are introduced

as an alternate mapping from low level features to high level categories.

3.6.1 Cross Validation for Clothing Classification

Each experiment is conducted using the 5-fold cross validation (CV) [20] to

completely test each stage of the algorithm. 80% of each characteristic / category is

used for training and 20% for testing, with each train and test set being mutually

exclusive for each validation. To better describe the separation, 80% of the dataset is

used that had a 1, or TRUE, for that characteristic / category and 80% of the dataset

that had a 0, or FALSE, for that characteristic / category to make the training set, the

rest of the dataset went to the test set. The dataset is organized into five equally-sized

groups that share the same amount of characteristics and same amount of categories.

The resulting values from each SVM ranges from −1 → +1, with a deciding threshold

of 0. For these experiments, five instances of each article are used to describe the

feature vector. The approach with four, three, two, and one instance for each article

is also tested. The results find that using five instances provides a higher overall true
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positive rate.

3.6.2 Baseline approach without mid-level layers

This experiment demonstrates the baseline approach using the low level fea-

tures to classify each article of clothing correctly with support vector machines (SVM).

Various aspects of the SVM approach are considered to better understand how the

articles are categorized. This experiment uses local, global, and a combined set of low

level features as input for each SVM that is used to classify for a particular article.

Since there are seven categories to choose from, then seven SVMs are trained in order

to provide a probability value for each input vector from the test set. For this type of

multi-class classification, I chose the One-Versus-All (OVA) approach for each SVM,

which uses a single SVM to compare each class with all other classes combined. Pre-

vious researchers [36, 65, 81, 21] suggest that for sparse data sets, the OVA approach

provides better results over the Max-Wins-Voting (MWV) approach, which uses a

single SVM for each pair of classes resulting in a voting scheme. Results are shown

in Table 3.4 and 3.5.

3.6.3 Testing approach with characteristics (L-C-H)

For this experiment with L-C-H, 5-fold CV is used to test this stage of the

algorithm, as in the previous experiments. The goal of this experiment is to determine

the increase of overall performance with the addition of characteristics. Results are

shown in Table 3.6 and 3.7. The training set still consists of the ground truth charac-

teristics to compute the mean vectors for each category. The intermediary results of

classifying the characteristics using local and global features range from 16% → 96%,

with an average of 63%.
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Local Features

Shirt Dress Socks
Shirt 98.82 1.18 0.00
Dress 100.00 0.00 0.00
Socks 0.00 13.64 86.36

Average TPR = 61.73%

Global Features

Shirt Dress Socks
Shirt 57.65 2.35 40.00
Dress 60.00 0.00 40.00
Socks 36.36 18.18 45.45

Average TPR = 34.37%

Local and Global Features

Shirt Dress Socks
Shirt 40.00 0.00 60.00
Dress 40.00 0.00 60.00
Socks 18.18 27.27 54.55

Average TPR = 31.52%

Table 3.4: Results of baseline system using SVM for three categories. TPR stands
for True Positive Rate.
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Local Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 98.82 0.00 1.18 0.00 0.00 0.00 0.00
Cloth 63.33 0.00 20.00 10.00 0.00 6.67 0.00
Pants 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Shorts 96.00 0.00 4.00 0.00 0.00 0.00 0.00
Dress 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Socks 0.00 0.00 0.00 13.64 0.00 86.36 0.00

Jacket 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Average TPR = 26.46%

Global Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 48.24 0.00 1.18 10.59 0.00 40.00 0.00
Cloth 13.33 50.00 3.33 23.33 0.00 10.00 0.00
Pants 28.00 0.00 0.00 16.00 0.00 56.00 0.00
Shorts 44.00 0.00 4.00 16.00 0.00 36.00 0.00
Dress 40.00 0.00 0.00 20.00 0.00 40.00 0.00
Socks 18.18 9.09 0.00 27.27 0.00 45.45 0.00

Jacket 60.00 0.00 0.00 20.00 0.00 20.00 0.00
Average TPR = 22.81%

Local and Global Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 1.18 0.00 4.71 34.12 0.00 60.00 0.00
Cloth 0.00 0.00 13.33 43.33 0.00 43.33 0.00
Pants 0.00 0.00 8.00 32.00 0.00 60.00 0.00
Shorts 0.00 0.00 8.00 32.00 0.00 60.00 0.00
Dress 0.00 0.00 0.00 40.00 0.00 60.00 0.00
Socks 0.00 0.00 4.55 45.45 0.00 50.00 0.00

Jacket 0.00 0.00 0.00 40.00 0.00 60.00 0.00
Average TPR = 13.03%

Table 3.5: Results of baseline system using SVM to classify objects within seven
categories.
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Local Features

Shirt Dress Socks
Shirt 41.18 58.82 0.00
Dress 40.00 60.00 0.00
Socks 0.00 90.91 9.09

Average TPR = 36.76%

Global Features

Shirt Dress Socks
Shirt 15.29 84.71 0.00
Dress 40.00 60.00 0.00
Socks 13.64 86.36 0.00

Average TPR = 25.10%

Local and Global Features

Shirt Dress Socks
Shirt 21.18 78.82 0.00
Dress 20.00 80.00 0.00
Socks 36.36 63.64 0.00

Average TPR = 33.73%

Table 3.6: Results of L-C-H proposed system for three categories.
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Local Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 41.18 0.00 0.00 0.00 58.82 0.00 0.00
Cloth 23.33 0.00 6.67 0.00 70.00 0.00 0.00
Pants 44.00 0.00 0.00 0.00 56.00 0.00 0.00
Shorts 36.00 0.00 0.00 0.00 64.00 0.00 0.00
Dress 40.00 0.00 0.00 0.00 60.00 0.00 0.00
Socks 0.00 0.00 54.55 13.64 31.82 0.00 0.00

Jacket 20.00 0.00 0.00 0.00 80.00 0.00 0.00
Average TPR = 14.45%

Global Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 14.12 0.00 4.71 0.00 80.00 0.00 1.18
Cloth 16.67 0.00 6.67 13.33 63.33 0.00 0.00
Pants 20.00 0.00 4.00 0.00 76.00 0.00 0.00
Shorts 28.00 0.00 4.00 4.00 64.00 0.00 0.00
Dress 40.00 0.00 0.00 0.00 60.00 0.00 0.00
Socks 13.64 0.00 0.00 0.00 86.36 0.00 0.00

Jacket 20.00 0.00 0.00 0.00 80.00 0.00 0.00
Average TPR = 11.73%

Local and Global Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 21.18 0.00 0.00 0.00 78.82 0.00 0.00
Cloth 10.00 0.00 0.00 0.00 90.00 0.00 0.00
Pants 24.00 0.00 0.00 0.00 76.00 0.00 0.00
Shorts 28.00 0.00 0.00 0.00 72.00 0.00 0.00
Dress 20.00 0.00 0.00 0.00 80.00 0.00 0.00
Socks 36.36 0.00 0.00 4.55 59.09 0.00 0.00

Jacket 20.00 0.00 0.00 0.00 80.00 0.00 0.00
Average TPR = 14.45%

Table 3.7: Results of L-C-H proposed system to classify clothing using seven cate-
gories.
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3.6.4 L-C-H vs. L-C-S-H

For this experiment with L-C-S-H, 5-fold CV is used to test this stage of

the algorithm, as in the previous experiments. The goal of this experiment is to

determine the increase of overall performance with the addition of a selection mask

between the characteristics and the high level categories. The training set still consists

of the ground truth characteristics to compute the mean vectors for each category.

Each category demonstrates an increase in percentage until a threshold is reached.

Each threshold varies based on the low level features used and what category is being

tested. At that time, the percentage then eventually decreases to 0% after reaching

the threshold.

Figure 3.25 illustrates the resulting TPR (True Positive Rate) as the charac-

teristic with the lowest percentage is removed at each iteration, using local and global

features. Each category demonstrates an increase in percentage until a threshold is

reached. This threshold is decided to coincide with the least amount of remaining

characteristics that produce the highest TPR. At that time, the percentage then

eventually decreases to 0% when the rest of the characteristics are zeroed out. So,

zeroing out a subset of negatively important characteristics improve the overall TPR.

Characteristic values for the mean category vector in the training set are the only

values that are zeroed out. The training vectors go through this process to better

describe how each category is characterized, while the testing vectors are not changed

and compared to how close they are to each mean vector.
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Local Features

Shirt Dress Socks
Shirt 95.80 4.20 0.00
Dress 13.32 86.65 0.02
Socks 0.60 11.67 87.72

Average TPR = 90.06%

Global Features

Shirt Dress Socks
Shirt 90.41 9.51 0.08
Dress 2.80 96.95 0.25
Socks 30.45 69.55 0.00

Average TPR = 62.45%

Local and Global Features

Shirt Dress Socks
Shirt 58.64 40.64 0.72
Dress 4.32 95.67 0.02
Socks 37.10 44.66 18.24

Average TPR = 57.52%

Table 3.8: Results of L-C-S-H proposed system for three categories.
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Local Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 95.80 0.00 0.00 0.00 4.20 0.00 0.00
Cloth 28.08 0.00 0.00 0.00 69.45 2.48 0.00
Pants 53.33 0.00 0.00 0.00 46.67 0.00 0.00
Shorts 47.53 0.00 0.00 0.00 52.47 0.00 0.00
Dress 13.32 0.00 0.00 0.00 86.65 0.02 0.00
Socks 0.60 0.01 0.00 0.00 11.67 87.72 0.00

Jacket 33.81 0.00 0.00 0.00 66.19 0.00 0.00
Average TPR = 38.60%

Global Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 90.41 0.00 0.00 0.00 9.51 0.08 0.00
Cloth 23.04 0.00 0.00 0.00 76.90 0.06 0.00
Pants 37.04 0.00 0.00 0.00 62.94 0.02 0.00
Shorts 36.93 0.00 0.00 0.00 63.00 0.07 0.00
Dress 2.80 0.00 0.00 0.00 96.95 0.25 0.00
Socks 30.45 0.00 0.00 0.00 69.55 0.00 0.00

Jacket 23.36 0.00 0.00 0.00 76.64 0.00 0.00
Average TPR = 26.77%

Local and Global Features

Shirt Cloth Pants Shorts Dress Socks Jacket
Shirt 65.79 0.00 0.00 0.89 31.49 0.04 1.79
Cloth 18.67 0.00 3.72 4.43 67.42 0.01 5.75
Pants 36.00 0.00 1.93 0.52 45.53 0.00 16.02
Shorts 32.94 0.00 1.72 2.24 45.62 0.05 17.43
Dress 5.48 0.00 0.00 0.07 93.80 0.00 0.65
Socks 37.54 0.00 1.26 3.17 50.06 0.00 7.97

Jacket 17.39 0.00 0.00 0.03 50.37 0.02 32.20
Average TPR = 27.99%

Table 3.9: Results of L-C-S-H proposed system for seven categories.
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Figure 3.25: Characteristic Selection Process for L-C-S-H within three categories:
Results of removing a single redundant characteristic at each iteration. Starting from
removing no characteristics and finishing with removing all characteristics.
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Chapter 4

Unfolding clothing

4.1 Unfolding overview

The overall goal of this chapter is to define a two-phase algorithm that de-

scribes how to unfold laundry into a flat canonical position. In the first phase, initial

wrinkles and/or folds are removed without using any depth information (and hence

can be accomplished with a single overhead camera). The second phase implements

the proposed model, explained below, to remove more difficult folds using depth in-

formation. Each component of the model will be explained in further detail below.

The corners of the article are used as initial locations for possible grasp points. Cor-

ners are used based on an assumption that if the corners are lying flat on the table

in opposite orientation and/or are evenly spaced apart, then the article is closer to

the canonical (desired) position. The idea behind obtaining a goal orientation/form

is to remove all peaks (i.e. topologically high areas) and decrease the vertical size

iteratively into a uniform layout. Several factors are considered to characterize a

method in flattening an article of clothing (e.g. peak ridges, continuity of a surface,

and corner locations).
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Figure 4.1: Process of the first phase to unfolding / flattening laundry. Each step
of the process is numbered along with the orientation that is used to transform one
configuration into another. In each step, the outer edge of the piece of clothing is
grasped and pulled away from the center of the object. This is an illustrative example
only.

4.2 First phase of the unfolding algorithm

The purpose of the first phase of flattening a piece of clothing is to remove

any minor wrinkles and/or folds. This phase provides a better configuration for the

second phase to start with instead of the initial configuration. In the first phase,

the robot moves around the cloth counter-clockwise, pulling at individual corners

every d degrees (d is set to be 45). The cloth is grasped at the edge of the clothing

(determined by foreground / background segmentation) and pulled away from the

centroid. Figure 4.1 illustrates the process of the first phase, which consists of the

first eight steps of the algorithm.
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4.3 Second phase of the unfolding algorithm

The second phase of flattening a piece of clothing uses depth information to

locate possible folds in the cloth, and to find grasp points and directions to enable

the folds to be removed. Each iteration of this phase involves six steps, which are

described in the following subsections.

4.3.1 Step One: Peak ridge

The peak ridge is a binary map computed from the depth image as follows:

PR(x , y) =











1, if E (x , y) ≥ 0.9 maxx ′,y ′ E (x ′, y ′)

0, otherwise
, (4.1)

where E (x , y) is the value of the depth image for pixel (x , y), and maxx ′,y ′ E (x ′, y ′) is

the maximum value in the depth image, which is called the peak. In the depth image,

larger (brighter) points are farther from the table, so the peak is the highest point

above the table. This equation locates the area(s) containing pixels whose depth is

within 10% of the peak. The area that matches this criterion and also includes the

maximum value is the peak ridge. The function computes an (xC , yC ) point (centroid)

and the orientation θmaj/θmin(major/minor vectors) of the peak ridge. Figure 4.2

illustrates the original depth image of the object and the binary mask of the peak

ridge of the object.

4.3.2 Step Two: Corner locations

To detect corners along the edge of the cloth, the Harris corner detector [40]

is applied to the binary image that results from thresholding the depth image so that

points on the table are zero while points on the cloth are one. The corner locations
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Figure 4.2: Depth image (left) and peak ridge (right) of an unfolded washcloth. In
the depth image, brighter points are closer to the sensor (higher above the table).
The peak ridge contains points within 10% of, and contiguous with, the peak.

are then the locations of these Harris corners, so that CL(x , y) = 1 if a Harris corner is

found at location (x , y), and 0 otherwise. The procedure finds locations of all detected

corners and returns the locations in terms of position (xN , yN ) and orientation θN of

the corner. Some corners will be located on the peak ridge, while others will be

located in the other non-peak regions, see Figure 4.3.

4.3.3 Step Three: Discontinuity function

Discontinuities in the depth image are stored in a binary array computed as

follows:

DC (x , y) =











1, if B3×3(x , y)
⋂

B5×5 = 1

0, otherwise
, (4.2)

where B3×3(x , y) tests for sharp increases / decreases in values of the depth image,

B5×5(x , y) tests for sharp increases / decreases in the slope of the depth image, and
⋂

is the logical and operator. More specifically, B3×3(x , y) = 1 if max(| E (x +1, y)−

E (x − 1, y) |, | E (x , y + 1) − E (x , y − 1) |) > th, where th = 5 is a threshold, and 0
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Figure 4.3: Left: Corner locations of the object, indicated by green circles, found
by applying the Harris detector to the binary image that segments the cloth from the
background table. In this case there are five corners. Note that, where the cloth is
flat, the depth image blends into the background in the figure. Right: The same
corners distinguished by whether they are connected with the peak region (green),
or outside the peak region (red). In this case three of the five corners are connected
with the peak region.

otherwise. B3×3(x , y) looks for large changes in the depth image using the 4-neighbors

of the pixel in the surrounding 3 × 3 window. Similarly, B5×5(x , y) = 1 if, in either

the up / down or left / right direction, the slopes of the depth image along successive

columns / rows are either in different directions or vary by an amount more than th.

Therefore, B5×5(x , y) looks for large changes in the slope of the depth image using the

5 × 5 neighborhood of the pixel. Figure 4.4 illustrates the results of equation (4.2).

4.3.4 Step Four: Continuity check of the peak ridge

The continuity check combines the peak ridge with the discontinuity function.

The value CP(x , y) = 1 if (x , y) is contiguous with the peak ridge as determined

by the discontinuity function, and 0 otherwise. To compute this function, a floodfill

procedure is applied to the peak ridge image, successively incorporating adjacent
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Figure 4.4: Locations of discontinuity (white points) on the object before (left) and
after (right) removing steep slopes. The left image displays B3×3, while the right
image displays DC (x , y).

pixels whose value in the discontinuity function is 0. When a discontinuity pixel is

found whose value is 1, it is not included in the region. Figure 4.5 shows the result

of this procedure.

4.3.5 Step Five: Continuity check for all peak corner loca-

tions

The continuity check on all peak corner locations determines which corners

are connected to the peak region:

CC (x , y) = CL(x , y)
⋂

CP(x , y). (4.3)

This equation returns a subset of CL(x , y) that contains the locations of corners. The

remaining subset, F (x , y) = CL(x , y)
⋂

CC (x , y), where the overline indicates binary

complement, contains the locations of corners known to be located on a different

region than the one containing the peak ridge. Such corners are likely on a different
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Figure 4.5: Left: Different regions of the object found by applying connected com-
ponents after finding discontinuities. Right: The region connected to the peak ridge.

fold of the cloth. Figure 4.3 shows the former corners (for which CC (x , y) = 1) as red

circles, while the latter corners (which are located on a different fold from the peak

ridge) are shown as green circles.

4.3.6 Step Six: Cloth Model Grasp Point and Direction

The former computations are used to determine a grasp point for the cloth as

follows. All of the points for which CC (x , y) = 1 are candidate grasp points, and the

final grasp point is selected arbitrarily from among these candidates. For the direction

in which to pull the cloth, there are two possibilities. First, if | {(x , y) : CC (x , y) = 1}

| = | {(x , y) : CL(x , y) = 1} |, that is, all of the detected corners are on the peak

region surface, then the cloth is pulled away from the centroid of the cloth. Otherwise,

the cloth is assumed to contain a fold, and therefore it is pulled toward the centroid

in an attempt to flatten the fold. The entire six-step procedure is repeated until the

cloth does not change shape.
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4.4 Unfolding experiments on pieces of clothing

4.4.1 Differences Between Pulling in Different Directions

Figure 4.6 illustrates the initial cloth configuration, IC , along with the eight

different configurations that result from pulling the cloth from a single (xG , yG) co-

ordinate in eight different orientations, θG . The eight different orientations proceed

from 0 to 315 degrees in a counter-clockwise direction at 45-degrees intervals, i.e., the

sequence of angles is 0, 45, 90, 135, 180, 225, 270, 315, in degrees. The convention that

0 degrees points toward the bottom of the image is adopted.

Figure 4.7 displays the difference values from the initial configuration to the

eight different configurations, in terms of pixel values. The lower the difference value,

the more in common the two configurations share in terms of shape. As can be seen

from Figure 4.7, the 4th and 5th configurations are significantly different from the

initial configuration, in terms of shape. This plot illustrates how much the cloth

configurations can change from pulling on a single point.

In Figure 4.7, the reason the low and high orientations are correlated to the

initial configuration is because those orientations are pulling the point away from the

centroid of the cloth. The middle orientations (i.e., 135 and 180) have a very different

shape due to the fact that they are pulling the point over the centroid and therefore

completely change the configuration / topology of the cloth.

4.4.2 Experimental Test for First Phase of Unfolding Algo-

rithm

This experiment tested the first phase of the proposed algorithm and mon-

itored the process from eight iterations of pulling the cloth from point (xG , yG) in
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Depth Image

Cloth Model
Orientation θG IC 0 45 90 135

Depth Image

Cloth Model
Orientation θG IC 180 225 270 315

Figure 4.6: From Left to Right, Top to Bottom: The depth image of the initial
configuration, IC , with the grasp point (xG , yG) coordinate marked with a red dot;
and the eight different configurations resulting from pulling the cloth from the initial
configuration in eight different orientations, θG , using the same (xG , yG) coordinate.
Pulling in the direction opposite the centroid of the object tends to improve flattening
(e.g., θG = 0).
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Difference graph of 8 different orientations from initial configuration

Figure 4.7: Difference graph of the eight different configurations of Figure 4.6 to
the initial configuration in the same figure, measured as a difference between binary
images (with 1 indicating foreground and 0 indicating background).

orientation θG starting with the same initial configuration, IC , as in section 4.4.1.

Figure 4.8 illustrates the configurations throughout the entire process. As can be

seen from Figure 4.8, the models continually change the configuration in a manner

that flattens and unfolds larger areas of the cloth as the iterations increase. Eventu-

ally, the cloth is mostly flattened into a more recognizable shape in the final iteration.

The following equation describes how the percentage of flatness is calculated:

PCFlat =

∑

(x ,y) E (x , y) < µ
∑

(x ,y) E (x , y)
, (4.4)

where E (x , y) is the value of the depth image, and µ(= 20) is a threshold indicating

the maximum depth image value for which the cloth is considered to be lying flat on

the table. The overall goal of the next step in the unfolding process is to increase the
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Depth Image

Cloth Model
PCFlat(%) 11.08 17.60 16.30 8.16

Depth Image

Cloth Model
PCFlat(%) 33.78 44.12 41.47 68.31 83.51

Figure 4.8: Experimental test for first phase of unfolding algorithm for one initial
configuration (folded cloth, see section 4.4.3). From Left to Right: Eight successive
configurations resulting from pulling the initial configuration into eight successive
orientations, θG , from eight different grasp points, (xG , yG), using the first phase of
the proposed algorithm. Pulling in directions opposite the centroid causes the object
to be nearly flattened.

flatness toward 100%.

4.4.3 Taxonomy of Possible Starting Configurations

Figure 4.9 displays the initial and final configurations of three different starting

configurations after the eight steps of the first phase of the proposed algorithm. The

dropped cloth is created by dropping the cloth onto the table from a predefined

height, the folded cloth is created by sliding the article across the corner of the table

and allowing it to fold on top of itself, and the placed cloth is slowly placed on

the table from the same position as the dropped cloth. For the most part, all of

the final configurations contain a large amount of the cloth to be unfolded and/or
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Configuration PCFlat(%)
Cloth Initial Final Initial Final

Dropped 4.8 18.1

Folded 11.1 83.5

Placed 30.6 56.2

Figure 4.9: Various initial and final configurations along with the percentage of cloth
that is unfolded / flattened using the first phase of the proposed algorithm. The
initial configuration is obtained by dropping the cloth (top), folding the cloth across
a table edge (middle), and placing the cloth by lowering it to the table (bottom). In
all cases the algorithm increases the flattening percentage of the object. The final
configurations are a result of the first phase only.

flattened. Figure 4.9 also displays the percentage of cloth that is unfolded/flattened

in the initial and final configurations. As observed in Figure 4.9, the difference in

percentage between the initial and final position is always higher.

4.4.4 Experiment using Both Phases of Unfolding Algorithm

This experiment tested the proposed algorithm in determining if this approach

would completely flatten a piece of clothing. The test used the first and second phase

of the algorithm to grasp the cloth at various locations, (xG , yG), and move the cloth

at various orientations, θG , until the cloth obtained a flattened percentage greater

than 95%. Figure 4.10 illustrates the configurations at selected iterations of the
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Iteration 1 7 13 19

Depth Image

Cloth Model
PCFlat(%) 3.21 22.61 45.27 72.32
Iteration 25 31 37 43 49

Depth Image

Cloth Model
PCFlat(%) 46.36 4.54 23.93 0.01 95.57

Figure 4.10: Flattened cloth test for one initial configuration (folded cloth, see section
4.4.3). From Left to Right, Top to Bottom: Nine different configurations resulting
from pulling the initial cloth 49 times in successive orientations and grasp points,
using the second phase of the proposed algorithm. The nine configurations shown
are selected by hand to be representative of the 49. The final iteration resulted in
flattening the cloth with a PCFlat value over 95%.

entire algorithm. The percentages of flatness range from 0.01% → 95.6%. Figure

4.11 shows the percentage of flatness against all iterations of the algorithm.

4.4.5 Unfolding Experiment using PUMA 500

The goal of this experiment is to test the performance of my algorithm in a real

world environment using a PUMA 500 manipulator. Figure 4.12 displays the results

of using the peak region on an actual cloth to determine which corner position (xG , yG)

to select and in which orientation θG to pull the object. I used a Logitech QuickCam

4000 for an overhead view to capture the configuration of the cloth. After running
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Figure 4.11: Plot of the percentage of flatness against all iterations of the algorithm.

the image through my approach, the system calculated an output that is transmitted

to the robot for extraction. Figure 4.13 shows an example of the movements of the

robot after the location and orientation are found.
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Peak Region

Actual Cloth
Orientation θG IC 0 45 90 135

Peak Region

Actual Cloth
Orientation θG IC 180 225 270 315

Figure 4.12: Actual cloth test for one initial configuration. From Left to Right,
Top to Bottom: The initial configuration and eight different configurations resulting
from pulling the initial cloth into 8 different orientations, θG , using 8 different grasp
points, (xG , yG) successively, using the first phase of the proposed algorithm (since
depth information is not available).
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Figure 4.13: The various steps of the PUMA manipulator pulling the cloth in a
specified orientation, θG . From Left to Right, Top to Bottom: the manipulator
grasps the cloth on the table, picks the cloth up to a predefined height, pulls the
cloth in a precalculated orientation, and drops the cloth back onto the table.
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Chapter 5

Pose estimation

5.1 Pose estimation overview

For this chapter, an article of clothing is modeled as a one-sided 3D triangu-

lated mesh. Let V = (v1, . . . , vn) be the n vertices of a 3D triangulated mesh, where

vi = (xi , yi , zi) contains the 3D coordinates of the ith vertex. The state vector V

captures the shape of the mesh at any given time, where we have omitted the time

index to simplify the notation.

The goal of this research of this thesis is to find the most likely mesh V ∗ in

each frame, by finding the shape that minimizes the energy of the system:

V ∗ = arg min Ψ(V ). (5.1)
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5.2 Energy function

The energy functional is defined as the sum of four terms:

Ψ(V ) = ΨS (V ) + λC ΨC (V ) + λD ΨD(V ) + λB ΨB(V ), (5.2)

where ΨS (V ) is a smoothness term that captures the internal energy of the mesh,

ΨC (V ) is a data term that seeks to ensure that corresponding points are located near

each other, ΨD(V ) measures the difference in depth between the mesh vertices and

the input, and ΨB(V ) is the boundary term that regulates the mesh vertices located

on the boundary of the object. The weighting parameters λC , λD , and λB govern the

relative importance of the terms.

Each of the energy terms is useful in different scenarios. Figure 5.1 illustrates

the contribution of each energy term for a toy example of a horizontal slice of vertices

from the mesh.

5.2.1 Energy term - Smoothness

Let V̂ = (v̂1, . . . , v̂n), where v̂i = (x̂i , ŷi , ẑi), be a hexagonal grid of equilateral

triangles that is created from the first image of the video sequence. We will refer to

V̂ as the canonical mesh. Except for the boundaries, each vertex in the canonical

mesh has, when projected orthogonally onto the z = 0 plane, three pairs of collinear

adjacent points passing through it, similar to [78]. Let E be the set of all vertex

index triplets such that (i , j , k) ∈ E means that v̂i , v̂j , and v̂k form two connected,

equidistant, and collinear edges in the projected canonical mesh, see Figure 5.2.

Since the projected canonical mesh is formed from equilateral triangles (i.e.
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Figure 5.1: Each of the energy terms contributes to improving the fit between the
mesh and the object. Left: Front view of an example mesh, containing regular vertices
(red dots), boundary vertices (blue dots), and vertices near image texture (green
dots). Right: Top view of mesh. From top to bottom, the smoothness term ensures
low derivatives in the mesh, the data term pulls the mesh toward the correspondences
(green dots), the depth term moves vertices along the sensor viewing direction, and
the boundary term introduces lateral forces to increase the fit at the boundaries (blue
dots).

Figure 5.2: This figure illustrates an example of a hexagonally connected vertex,
where vertices (1, 2, 3, 4, 5, 6, 7) ∈ V . Vertex 4 has three pairs of collinear edges:
{(1, 4, 7), (2, 4, 6), (3, 4, 5)} ∈ E .
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equidistant edges), the following is derived:

v̂i − v̂j = v̂j − v̂k ∀(i , j , k) ∈ E , (5.3)

assuming that the initial configuration is fronto parallel. Therefore, in the deformed

mesh V , this will approximately hold:

vi − 2vj + vk ≈ 0, ∀(i , j , k) ∈ E (5.4)

which leads to the following smoothness term:

ΨS (V ) =
1

2

∑

(i ,j ,k)∈E

(xi − 2xj + xk)
2

+(yi − 2yj + yk)
2

+(zi − 2zj + zk)
2. (5.5)

Let

X = [ x1 x2 · · · xn ]T (5.6)

Y = [ y1 y2 · · · yn ]T (5.7)

Z = [ z1 z2 · · · zn ]T (5.8)

be vectors containing the x , y , and z coordinates, respectively, of the deformed mesh.

Extending the work in [78] to 3D, the above equation can be rewritten in matrix form

as

ΨS (V ) =
1

2
(KcolX )TKcolX
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+
1

2
(KcolY )TKcolY

+
1

2
(KcolZ )TKcolZ , (5.9)

where Kcol is an ncol × n matrix, where ncol is the number of collinear triplets, and

ncol ≈ 3n, where the boundaries cause the approximation. The elements of the matrix

Kcol contain the value 0, 1, or −2 depending upon the relationships within each triplet

(i , j , k) ∈ E . Each row of Kcol corresponds to a triplet within the triangle mesh, and

each element in the row has a value of zero except for the three locations of i , j , k

which contain 1, −2, and 1, respectively. Each column of Kcol corresponds to a vertex

within the mesh and has nonzero elements for the triplets containing the vertex.

The above expression can be simplified as follows:

ΨS (V ) =
1

2
(X TKX + Y TKY + ZTKZ ), (5.10)

where K = KT
colKcol is an n × n constant matrix capturing the collinear and adjacent

vertices in the canonical mesh using E .

5.2.2 Energy term - Correspondence

The correspondence term uses the Speeded Up Robust Feature (SURF) de-

scriptor, discussed in section 5.2.2.2, from the input data of the current RGBD image

to compare a possibly deformed mesh V with the canonical mesh V̂ using barycentric

coordinates.

5.2.2.1 Barycentric coordinates

Suppose a point p = (x , y , z ) in the canonical RGBD image that happens to

lie within the triangle defined by vertices v̂i , v̂j , and v̂k , as illustrated in Figure 5.3.
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Figure 5.3: Example of barycentric coordinates. The point ĉi is in one of the equi-
lateral triangles in the canonical mesh (left) that retains its relative position within
the triangle as the triangle is deformed (right).

The barycentric coordinates of p are defined as the triplet (βi , βj , βk) such that p =

βi v̂i + βj v̂j + βk v̂k and βi + βj + βk = 1. Given p, the barycentric coordinates are

computed by solving the system of equations

[

x̂i − x̂k x̂j − x̂k

ŷi − ŷk ŷj − ŷk

][

βi

βj

]

=

[

x − x̂k

y − x̂k

]

(5.11)

for βi and βj , then setting βk = 1 − βi − βj . If p lies within the triangle, then the

barycentric coordinates will lie within 0 and 1, inclusive, 0 ≤ βi , βj , βk ≤ 1; and the

z equation will also be satisfied: (ẑi − ẑk)βi + (ẑj − ẑk)βj = z − ẑk .

Now suppose that the mesh has deformed from V̂ to V . If the relative position

of p in the triangle remains fixed, then the transformation can be defined as:

TV (p) = βivi + βj vj + βkvk , (5.12)

where vi , vj , and vk are the 3D coordinates of the deformed mesh vertices that make

up the triangle in which p lies. TV (p) yields the 3D coordinates of p when the mesh
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is described by V .

5.2.2.2 SURF descriptors and putative matching

In order to capture correspondences between consecutive frames, the Speeded

Up Robust Feature (SURF) detector and descriptor [3] is used. SURF is a fast and

robust feature selector that is invariant to scale and rotation, providing interest lo-

cations throughout the image. SURF detects features throughout the image, but a

simple foreground / background segmentation procedure using depth values, see sec-

tion 5.4.1, is used to remove SURF features on the background, leaving only features

on the triangular mesh.

Putative matching of the SURF descriptors is used to establish sparse cor-

respondence between successive images in the video. For each pair of descriptors,

the Euclidean distance is computed, and the minimum is selected as the proper fea-

ture match. Only the top fifty percent are chosen based on the minimum Euclidean

distances of the feature descriptors. To improve robustness, feature matching is con-

strained to lie within a given threshold of a location of the feature in the previous

frame of the sequence, assuming that the motion is small in consecutive frames.

5.2.2.3 Correspondences

Let C = {(ĉi , ci)}
m
i=1 be the set of m correspondences between the canonical

image and the input image. A specific correspondence (ĉi , ci) indicates that the 3D

point ĉi in the canonical image matches the 3D point ci in the input image, where

ĉi = (x̂ci , ŷci , ẑci) and ci = (xci , yci , zci) for i = 1, . . . ,m. The data term is the sum of

the squared Euclidean distances between the input point coordinates (SURF features)
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and their corresponding canonical coordinates (barycentric coordinates):

ΨC (V ) =
1

2

∑

(ĉi ,ci )∈C

‖ ci − TV (ĉi) ‖
2 . (5.13)

5.2.3 Energy term - Depth

The depth term measures the difference between the z coordinate of each 3D

vertex in the current mesh and the measured depth value. That is, it measures the

distance along the ray passing through the 3D vertex to the current depth image

obtained by the RGBD sensor:

ΨD(V ) =
1

2

n
∑

i=1

|d(xi , yi) − zi |
2 , (5.14)

where d(xi , yi) is the value of the depth image evaluated at the position (xi , yi), while

zi is the depth of the vertex at that same position. This term is designed to ensure

that the mesh fits the data along with z axis even in textureless areas where no

correspondences can be found.

5.2.4 Energy term - Boundary

Every boundary vertex is expected to remain near the boundary of the ob-

ject even as it undergoes non-rigid deformations. Figure 5.4 illustrates the need for

the boundary term in textureless areas. To deal with this situation, the boundary

term minimizes the distances between boundary vertices and the 3D boundary points

within the image, as determined by the foreground / background segmentation pro-
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cedure (described in section 5.4.1):

ΨB(V ) =
1

2

∑

vi∈B

(gd(vi) − vi)
2 +

1

2

∑

gi∈G

(gi − vd(gi))
2, (5.15)

where vi is the boundary vertex, gd(vi) is the nearest boundary point to the vertex

vi in the current image d , gi is the boundary point, vd(gi) is the nearest vertex point

to the boundary gi in the current image d , B is the set of boundary vertices, and G

is the set of boundary points. This term introduces two lateral forces on the vertices

to ensure the mesh fits the data when the object’s motion has components parallel

to the image plane, as illustrated in Figure 5.5. Figure 5.6 displays an example of a

situation when the extended boundary term provides a better mesh representation of

the non-rigid object.

5.3 Energy minimization process

The goal is to locate the mesh that best explains the data while adhering

to the smoothness constraint, described in section 5.2.1. To find the configuration

of minimum energy, the partial derivative of the energy function is computed with

respect to the vectors X , Y , and Z , and set the result to zero:

∂Ψ(V )

∂X
=

∂ΨS (V )

∂X
+ λC

∂ΨC (V )

∂X

+ λD

∂ΨD(V )

∂X
+ λB

∂ΨB(V )

∂X
(5.16)

∂Ψ(V )

∂Y
=

∂ΨS (V )

∂Y
+ λC

∂ΨC (V )

∂Y

+ λD

∂ΨD(V )

∂Y
+ λB

∂ΨB(V )

∂Y
(5.17)

∂Ψ(V )

∂Z
=

∂ΨS (V )

∂Z
+ λC

∂ΨC (V )

∂Z
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Figure 5.4: An example illustrating the need for the boundary term. Top: As a
vertical object is increasingly slanted over time (from left to right), the vertices deviate
from their true location, due to the limitation of the depth term to induce only forces
parallel to the viewing direction (indicated by horizontal light blue arrows). Bottom:
With the boundary term imposing lateral forces, the mesh vertices remain in their
proper locations.
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frame
i

frame
i + 1

Old Boundary Term New Boundary Term

Figure 5.5: Left: Original implementation of boundary term from [107]. Red dots
represent mesh vertices, green curve represents contour of object, and blue arrows
represent the closest contour pixel for each mesh vertex. Right: Extended implemen-
tation of boundary term. Blue arrows represent closest contour centroid to each mesh
vertex. The centroid of contour pixels is calculated from each purple group.

+ λD

∂ΨD(V )

∂Z
+ λB

∂ΨB(V )

∂Z
(5.18)

The partial derivatives for smoothness are straightforward:

∂ΨS (V )

∂X
= KX (5.19)

∂ΨS (V )

∂Y
= KY (5.20)

∂ΨS (V )

∂Z
= KZ . (5.21)

Rewriting the barycentric transformation using an n × 1 vector B whose ele-

ments are βi , βj , and βk in the appropriate slots but zeros everywhere else:

TV (p) = VB , (5.22)
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Figure 5.6: Left: Resulting mesh estimation with boundary term in [107]. Right:
Resulting mesh estimation with extended boundary term.
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the partial derivatives for the correspondence term are as follows:

∂ΨC (V )

∂X
= −

∑

(ĉi ,ci )∈C

(

xci − X TB
)

B (5.23)

∂ΨC (V )

∂Y
= −

∑

(ĉi ,ci )∈C

(

yci − Y TB
)

B (5.24)

∂ΨC (V )

∂Z
= −

∑

(ĉi ,ci )∈C

(

zci − ZTB
)

B (5.25)

The partial derivative of the depth term is similar to that of the correspondence

term. Rewriting zi using an n × 1 vector Fi containing a one in the ith slot but zeros

everywhere else:

zi = ZTFi , (5.26)

yields

∂ΨD(V )

∂Z
=

n
∑

i=1

(d(xi , yi) − ZTFi)Fi , (5.27)

Similarly, the partial derivatives of the boundary term require rewriting vi

using the vector Fi :

vi = V TFi , (5.28)

leading to

∂ΨB(V )

∂X
= −

∑

vi∈B

(gd(vi) − X TFi)Fi

−
∑

gi∈G

(gi − X TFi)Fi (5.29)

∂ΨB(V )

∂Y
= −

∑

vi∈B

(gd(vi) − Y TFi)Fi

−
∑

gi∈G

(gi − Y TFi)Fi (5.30)
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∂ΨB(V )

∂Z
= −

∑

vi∈B

(gd(vi) − ZTFi)Fi

−
∑

gi∈G

(gi − ZTFi)Fi , (5.31)

In order to calculate the minimal solution, the semi-implicit scheme used by

Kass et al. [49] is employed. The smoothness term is treated implicitly, while the

correspondence, depth, and boundary terms are treated explicitly. Letting Vt repre-

sent the mesh at iteration t and Vt−1 represent the mesh at the previous iteration

t − 1, the resulting equations are:

α(Xt − Xt−1) + KXt (5.32)

− λC

∑

(ĉi ,ci )∈C

(

xci − X T
t−1B

)

B

− λB

∑

vi∈B

(gd(vi) − X TFi)Fi

− λB

∑

gi∈G

(gi − X TFi)Fi = 0

α(Yt − Yt−1) + KYt (5.33)

− λC

∑

(ĉi ,ci )∈C

(

yci − Y T
t−1B

)

B

− λB

∑

vi∈B

(gd(vi) − Y TFi)Fi

− λB

∑

gi∈G

(gi − Y TFi)Fi = 0

α(Zt − Zt−1) + KZt (5.34)

− λC

∑

(ĉi ,ci )∈C

(

zci − ZT
t−1B

)

B

− λD

n
∑

i=1

(d(xi , yi) − ZTFi)Fi

− λB

∑

vi∈B

(gd(vi) − ZTFi)Fi
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− λB

∑

gi∈G

(gi − ZTFi)Fi = 0,

where α (> 0) is the adaptation rate that will move the triangle mesh with every

iteration of the energy minimization process. This will allow the mesh to slowly

position itself over the object until completion. The amount chosen for the movement

rate depends on how fast the mesh model converges and how accurate the model is

to the tracked locations before a minimum is found.

Rearranging terms leads to

(K + αI )Xt = αXt−1 (5.35)

+ λC

∑

(ĉi ,ci )∈C

(

xci − X T
t−1B

)

B

+ λB

∑

vi∈B

(gd(vi) − X T
t−1Fi)Fi

+ λB

∑

gi∈G

(gi − X T
t−1Fi)Fi

(K + αI )Yt = αYt−1 (5.36)

+ λC

∑

(ĉi ,ci )∈C

(

yci − Y T
t−1B

)

B

+ λB

∑

vi∈B

(gd(vi) − Y T
t−1Fi)Fi

+ λB

∑

gi∈G

(gi − Y T
t−1Fi)Fi

(K + αI )Zt = αZt−1 (5.37)

+ λC

∑

(ĉi ,ci )∈C

(

zci − ZT
t−1B

)

B

+ λD

n
∑

i=1

(d(xi , yi) − ZT
t−1Fi)Fi

+ λB

∑

vi∈B

(gd(vi) − ZT
t−1Fi)Fi
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+ λB

∑

gi∈G

(gi − ZT
t−1Fi)Fi

Solving this equation for the unknowns Xt , Yt , and Zt yields the desired result as an

iterative sparse linear system.

5.4 Segmentation and initialization

When creating an initial mesh, the segmented object from the first input image

is used. If data is lost during the minimization process and the configuration of the

object cannot be calculated, then the 3D mesh is reinitialized and continue the energy

minimization. The segmentation, initialization, and reinitialization is now described

in detail.

5.4.1 Segmentation and contour extraction using graph cuts

The approach to contour extraction is formulated as a min-cut / max-flow

(graph cut) problem [8]. This problem is solved by using the alpha-beta swap. The

depth and color information is used to provide the foreground / background segmen-

tation. The graph cuts framework comprises of a set of nodes combined by weighted

links (n-links). Each node is also connected to a source and a sink with weighted

links (t-links). The graph cuts algorithm calculates the binary segmentation within

the framework so that a subset of the nodes are connected to the source and the

remaining nodes are connected to the sink. The binary segmentation requires that a

subset of the n-links and t-links will need to be removed / cut. Since the input images

use humans to interact with the objects, a skin detector [16] is needed to segment

out a human’s arms and hands from the scene. The skin detector used in this thesis

is trained on 1000 images with hand-labeled skin and non-skin pixels.
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The following equations describe the weights placed on the t-links to the source,

(5.38), and the sink, (5.39).

wsource =











e

(

−(di−µd )2

σ
2
t

)

, if not skin

e

(

−(d∞−µd )2

σ
2
t

)

, if skin

(5.38)

wsink = 1 − wsource (5.39)

where di is the current depth pixel, µd is the average depth value in the image, σt

is the deviation at which the object moves within the depth image, and d∞ is the

highest depth value captured by the sensor.

The next equation describes the weight placed on the k neighboring n-links.

wk = e

(

−(di−di+k )2

σ
2
n

+
−(Ii−Ii+k )2

σ
2
c

)

(5.40)

where Ii is the current color pixel, di+k and Ii+k are the k-th neighboring pixels, σn

and σc are the deviations of neighboring pixels in the depth image and color image,

respectively. Figure 5.7 illustrates an example of a shirt segmentation using the graph

cuts algorithm and the skin detector.

5.4.2 Mesh Model Generator

The initial mesh is created using the binary mask (described in section 5.4.1)

of the first image in the video sequence using a mesh model generator (MMG). The

MMG assumes that the initial configuration of the object is approximately fronto-

parallel. The MMG automatically creates a triangular mesh by overlaying a grid of

triangles on top of the initial configuration. All triangles that do not contain more

than 10% of the object are omitted from the mesh model. The triangles that are not
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Figure 5.7: Left: Color image within a shirt sequence. Right: Segmentation of shirt
from background while using the skin detector. White pixels represent foreground
(shirt), black pixels represent background, and red pixels represent skin.

omitted make up the initial mesh, see Figure 5.8.

5.4.3 Reinitialization

When a large of amount of input data is lost, the algorithm halts momentarily

and begins the reinitialization process. This process is designed to recover the con-

figuration of the object after the transition of having one hand release the garment

(after which gravity collapses it) then grasp it again and pull it so that the face gar-

ment is again visible. The reinitialization process attempts to calculate the current

orientation of the object by matching a 3D model to the current input data. The

3D model is found by calculating the average canonical configuration of each object

similar to the current object. A 3D plane is then calculated, using a least squares

approach, to fit the 3D input data. The equation used to describe the plane is then

used to determine the amount of rotation needed about the X, Y, and Z axis. The

3D model is then mapped to the input data and is used to create a new triangular

mesh by applying the MMG, see section 5.4.2, to the model.

The reason behind using a known model, in this procedure, is to predefine
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Figure 5.8: Left: Mesh model overlayed on top of object’s mask before omitting any
triangles. Right: Resulting mesh model after omitting triangles with less than 10%
of object.

Figure 5.9: Left: 3D model for reinitializing a shirt sequence. Right: 3D model for
reinitializing a shorts sequence.

areas of each object (e.g. collars, sleeves, belt loop, etc) that are lost. This process

will allow for the mesh to be recreated, using the 3D model, and known areas relabeled

before rotating the mesh about the X, Y, and Z axis. For example, if a particular

grasp point or area of concentration is lost due to a loss in input data, then this

process will allow for the algorithm to relocate that point or area. Once the new mesh

model is created, the energy minimization algorithm continues again to estimate the

configuration of the object. Figure 5.9 displays two examples of the 3D models used

for reinitialization.
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5.5 Pose estimation experiments of non-rigid ob-

jects

RGBD video sequences are captured of seven shirts, one pair of pants, two

shorts and two posters to test the proposed method’s ability to handle different non-

rigid objects in a variety of scenarios (e.g. change in translation / scale; in-plane and

out-of-plane rotation). The contributions made by the novel depth and boundary

energy terms are verified to the accuracy of the estimated object configuration. For

the experiments, the weights are set according to λC = 1.3, λB = 0.8, and λD = 0.6.

Further results of the system can be seen in the online video. 1

5.5.1 Illustrating the contribution of the depth term

Figure 5.10 compares the algorithm with and without the depth term, but

with the smoothness and correspondence term in both cases. The depth term causes

the triangular mesh model to adhere to the object along the z -axis perpendicular to

the image plane. As shown in the figure, the resulting 3D meshes, more accurately,

capture the current configuration of the object when the depth term is included. The

improvement is especially noticeable in untextured areas.

5.5.2 Illustrating the contribution of the boundary term

Figure 5.11 compares the algorithm with and without the boundary term,

using the smoothness, correspondence and depth term in both cases. The boundary

term introduces lateral forces to cause the mesh to adhere to the object in areas near

the contour of the object. The improvement resulting from the boundary term is

1http://www.youtube.com/watch?v=1Y4EdZu1pwo
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Side View

Top View

Raw Data Without Depth With Depth

Figure 5.10: The depth term improves results significantly. From left to right: the in-
put point cloud, the estimated mesh without using the depth term, and the estimated
mesh using the depth term.
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clear from the figure. Note also the subtle error along the top edge of the object,

where the depth term alone raises the top corners (making it appear as though the

top middle is sagging), as described in Figure 5.4.

5.5.3 Estimating the pose of different articles of clothing

In this experiment, the algorithm is tested on various image sequences involv-

ing seven shirts, one pair of pants, and two pairs of shorts. I create various changes

in translation, scale, and rotation on each article of clothing to show how well the

algorithm performs. Figures 5.12 and 5.13 display each image sequence with the re-

sulting mesh output. Some of the meshes, in Figures 5.12 and 5.13, are blue and some

are red, the reason being that the color of each mesh is selected to be of an opposing

color, so that the color of the object is easily viewed.

5.5.4 Estimating the pose of posters

In this experiment, the algorithm is tested on another group of non-rigid ob-

jects, e.g. posters. This experiment tests my approach on semi-rigid poster board

with out-of-plane oscillations. Figure 5.14 displays the results of two poster sequences.

5.5.5 Reinitializing a mesh after in-plane rotation

When the object is rotated in-plane and is momentarily held by just one arm,

most of the information is lost in the image because the object is crumpled together.

This loss of information requires a reinitialization phase whenever the object is re-

grasped by a second arm. Figure 5.15 illustrates three examples of in-plane rotation

and how they result with and without the reinitialization process.
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Raw Data {ΨS , ΨC} {ΨS , ΨC , ΨD} All

Figure 5.11: The improvement resulting from the various terms. From left to right:
texture mapped point cloud of RGBD input data, the mesh resulting from only the
smoothness and correspondence terms, the mesh from all but the boundary term, and
the mesh resulting from all the terms. From top to bottom: top view, front view,
and side view with 45o pan.
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Frame 1 Frame 40 Frame 80 Frame 120 Frame 160

Figure 5.12: From left to right: Five images selected from image sequences involving
clothing. From top to bottom: Orange shirt moving out-of-plane, orange shirt moving
in-plane, white shirt used in [107], blue shirt moving in-plane and out-of-plane, black
shirt changing scale, blue shirt translating from side to side, and green shirt moving
in-plane. Some instances of each sequence do not have meshes due to a loss of data.
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Frame 1 Frame 40 Frame 80 Frame 120 Frame 160

Figure 5.13: From left to right: Five images selected from image sequences involv-
ing clothing. From top to bottom: Pair of pants moving out-of-plane, checkered
shorts moving out-of-plane, and gray shorts moving in-plane. Some instances of each
sequence do not have meshes due to a loss of data.

Frame 1 Frame 40 Frame 80 Frame 120 Frame 160

Figure 5.14: From left to right: Five images selected from image sequences involving
posters. From top to bottom: White poster used in [107] and poster with various
colored regions. Each poster moves out-of-plane of the camera.
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Frame i Frame i + 20 Frame i + 20 Frame i + 20
(w/o reinit) (w/ reinit) Model Contour vs.

Actual Contour

Figure 5.15: From left to right: Image before in-plane rotation, image after in-plane
rotation without reinitializing, image after in-plane rotation with reinitializing, and
3D model contour rotated to reinitialize (red outline is 3D model contour, green
outline is actual contour). From top to bottom: Orange shirt (i = 98), green shirt
(i = 128), and gray shorts (i = 114).
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MSE (pixels2) ΨS + ΨD+ ΨS + ΨD+ ΨS + ΨD+
ΨC ΨB ΨC + ΨB

All Vertices 6.46 6.25 6.23
Boundary Vertices 6.75 6.19 5.93
Percentage Viewed 87.85 87.85 87.85

Table 5.1: Calculated mean squared error (MSE in pixels2) by measuring the distance
from actual points in the simulated point cloud to the mesh vertices. The results
compare various implementations that are designed to isolate particular energy terms.
While qualitatively it is difficult to see the difference in approaches (see Figure 5.16),
we can quantitatively measure the increase in performance by lowering the MSE.

5.5.6 Quantitative results using a simulated model

This experiment is designed to compare the pose estimation mesh against

a simulated shirt model with ground truth data. Various implementations of the

algorithm are compared to determine which techniques improve the results of esti-

mating the pose of an article of clothing. The different implementations involve the

current approach using smoothness and depth terms, along with isolating the (1)

correspondence term, the (2) boundary term, and (3) combining the correspondence

and boundary term. It is not possible to compare our approach with other datasets

since our algorithm depends on 3D image data instead of monocular video sequences

[99, 91, 100]. Table 5.1 displays the mean squared error (MSE in pixels2) that is

calculated between the mesh vertices and the ground truth data points. Figure 5.16

illustrates six images from the current implementation, since the results of the other

implementations look quite similar.

These results show that the approach derived in this thesis provides a small

MSE when comparing the distances from all vertices and boundary vertices to the

ground truth. While the first variation of the approach, in Table 5.1, provides a

unique energy term of feature correspondence and the second variation of the ap-
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Frame 1 Frame 63 Frame 95 Frame 138 Frame 165

Figure 5.16: From left to right: Six images selected from an image sequence involving
a simulated shirt. Only one sequence is shown because the output mesh from each of
the implementations are very similar when overlaid on top of the object.

proach provides a unique energy term of extended boundary, the approach derived

in this thesis combines these energy terms to improve the pose estimation of highly

deformable objects (e.g. shirts, pants, shorts, posters).
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Chapter 6

Conclusion

6.1 Clothing classification

Two novel methods to classifying clothing are proposed: (1) L-M-H, more

specifically L-S-C-H, in which mid-level layers (i.e. physical characteristics and se-

lection masks) are used to classify categories of clothing and (2) multiple interactions.

The proposed systems use datasets of 2D color images and 3D point clouds of cloth-

ing captured from a Kinect sensor and a Logitech webcam. The thesis is focused

on determining how well these new approaches improve classification over a baseline

system. The datasets of clothing that are used in these experiments contain articles of

clothing whose configurations are difficult to determine their corresponding category.

The overall improvement of these new approaches illustrate the critical im-

portance of middle level information and physical interation. The addition of middle

level features, termed characteristics and selection masks for this problem, enabled

the classification process to improve, on average, by +27.47% for three categories,

+17.90% for four categories, and +10.35% for seven categories, see Table 6.1. In-

creasing the number of categories, increases the number of characteristics for the
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algorithm to classify. With the increase in complexity, the average true positive rate

decreases due to the difficulty of the problem. The addition of multiple interactions

enabled the classification process to improve, on average, by 59% for six different

categories.

Using these approaches could improve other types of classification / identifi-

cation problems such as object recognition, object identification, person recognition,

etc. The use of middle level features could range from one or more layers. This

approach does not have to be limited to using only two layers of features (e.g. char-

acteristics and selection masks). The notion of adding more features in between the

low and high level may increase the percentage rate. Layers of filters, that could

be used to distinquish between categories, could include separating adult clothing

from child clothing or male clothing from female clothing. The use of multiple in-

teractions could also apply to each article of clothing being held by more than one

manipulator to provide different types of feature information. If articles of clothing

are held by dual manipulators, then a more detailed shape descriptor could be used

for classification.

Future extensions of these approaches include classification of sub-categories

(e.g. types of shirts, types of dresses), age, gender, and the season of each article

of clothing. The L-C-S-H experiments are used on a subset of characteristics that

are useful for each category. Probably the amount of characteristics that are used

in the mid-level layer correspond to the resulting classification percentages. The

interactive perception experiments are used on a small dataset and can be studied

further by applying this approach to a larger dataset of hanging articles of clothing.

These approaches could be applied to separating clothing into three groups of darks,

colors, and whites before the laundry is placed into the washing machine. These novel

approaches can apply to grouping and labeling other rigid and non-rigid items beyond
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Baseline

# of Local Global Local
categories + Global

3 61.73 34.37 31.52
4 46.3 38.28 19.22
7 26.46 22.81 13.03

L-C-S-H

# of Local Global Local
categories + Global

3 90.06 62.45 57.52
4 67.54 46.84 43.13
7 38.60 26.77 27.99

Increase from Baseline to L-C-S-H

# of Local Global Local
categories + Global

3 +28.33 +28.08 +26.00
4 +21.24 +8.56 +23.91
7 +12.14 +3.96 +14.96

Table 6.1: Overview of results for varying numbers of categories: (A) 3, (B) 4, and
(C) 7. Group (A) consists of shirts, socks, and dresses. Group (B) consists of group
(A) plus cloths. Group (C) consists of group (B) plus pants, shorts, and jackets.
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clothing.

6.2 Unfolding clothing

An approach to interactive perception is proposed in which a piece of cloth is

flattened into a canonical position by pulling at various locations of the cloth. The

algorithm is shown to provide an initial step in the process of unfolding / flattening

a piece of laundry by using features of the cloth. The features used in this thesis

are a handful of possible cues that could be used in the future to flatten a piece of

laundry in fewer iterations. Other features that are considered, but not used, are a

prior physical model of the cloth, the relationship between each corner and edge, and

the physical features of the texture and material of the cloth.

Though this is a first step, future research in this novel approach of interactive

perception would be directed towards using other types of laundry (i.e. shirts, pants,

etc). Another direction could be to handle parts of clothing that are folded inside

out, like the arm of a shirt or a leg on a pair of pants. I believe that these areas are

fruitful extensions for future research.

6.3 Pose estimation

A new and novel algorithm that estimates the 3D configuration of a deformable

object through an RGBD video sequence using feature point correspondence, depth,

and boundary information is presented and demonstrated. This information is com-

puted into energy terms that are used in a nonlinear energy function using a semi-

implicit scheme. The proposed approach is quantitatively compared against various

implementations of an energy function using a 3D simulation of a t-shirt. Combining
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energy terms from various implementations are shown to lower the mean squared

error of the distance from mesh model points to ground truth points.

This approach is applied to various types of textured and textureless de-

formable objects to demonstrate the robustness of the algorithm. This approach

is shown that it can be applied to a number of scenarios. For instance, service robots

manipulate clothing when sorting, folding, and storing clothing in a laundry scenario.

Also, an industrial robotic platform (e.g. textile environment or paper mill) handles

different types of clothing and paper material on a day to day basis.

In the future, this research can be extended to handle a two-sided 3D triangular

mesh that covers both the front and back of the object. This two-sided mesh would

be applied to folding clothing in a service robot environment. Another step is to

integrate this algorithm into a robotic system that can grasp and handle textured or

textureless non-rigid objects in an unstructured environment.

121



Appendices

122



Appendix A

Vision Algorithms in this Thesis

The approaches discussed in this thesis are shown below in the form of algo-

rithms. Each section will contain one or more algorithms that represent one of the

previous chapters.

A.1 Classifying Clothing

For each approach used during the clothing classification part of this thesis,

articles of clothing were isolated and visual data was captured for each one. Two

separate approaches were used on clothing that was hanging and clothing that lying

on the floor. The two algorithms in Figures A.1, A.2 and A.3 explain how each

approach was performed.

A.2 Unfolding Clothing

For the approach used during the cloth unfolding part of this thesis, a simu-

lated cloth was visually captured with an overhead camera. Each image is analyzed to
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Algorithm: Classification for Hanging Clothes

Input: Front and side image of segmented clothing
Output: Estimated category of clothing

1. Feature values: For each segmented image

(a) Calculate area of binary silhoutte for each image

(b) Calculate Canny edges for each colored image and each binary silhoutte

2. Match score: For each combination of query image and dataset image

(a) Calculate the match score between the front image feature values and j th

dataset image feature values

(b) Calculate the match score between the side image feature values and j th

dataset image feature values

3. Locate minimum score: For one article of clothing

(a) Search through the match score matrix of size n × 2 for the smallest value

(b) Define query category the same as the dataset category with the smallest
value

Figure A.1: Clothing classification algorithm for the hanging position described in
detail in Chapter 3
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Algorithm: Classification for Lying Clothes - Training

Input: 2D color image and 3D point cloud of all segmented clothing in training set
Output: SVM model; Selection masks and mean vectors for each category

1. Create feature vector: For each segmented image

(a) Calculate color histogram of clothing within HSV space (CH)

(b) Calculate histogram of line lengths (HLL)

(c) Calculate table point feature histogram (TPFH)

(d) Calculate boundary information

(e) Calculate fast point feature histogram (FPFH)

(f) Calculate scale invariant feature transform (SIFT)

(g) Combine FPFH and SIFT into a Bag-of-Words model

(h) Create a final feature vector by combining CH, HLL, TPFH, boundary
and Bag-of-Words model

2. Train SVM for characteristics: For each segmented image in the training set

(a) Insert final feature vector into SVM of a particular characteristic

(b) Assign 0 or 1 based on if article of clothing contains that particular char-
acteristic

(c) Repeat first two steps for all characteristics

(d) Run SVM for all characteristics to obtain SVM model information

3. Train K-means for categories: For each segmented image in the training set

(a) Calculate a binary vector for article of clothing consisting of 0’s and 1’s

(b) Average all binary characteristic vectors for each category

4. Calculate selection mask for categories: For each segmented image in the train-
ing set

(a) See description in detail at Algorithm 1

Figure A.2: Clothing classification algorithm for the lying position, training stage,
described in detail in Chapter 3
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Input: Characteristic vector for w th category (CCw)
Output: Selection mask for w th category (SMw)

SMw=226 − 1;
RMw=227 − 1;

foreach Articlei ∈ Categoryw do
NCw = (CCw x SMw) ∩ RM ;
if Result(NCw) ≥ Result(CCw) then

RMw = RMw ∩ 227 − 2i − 1;
end
SMw = SMw >> 1;

end
Algorithm 1: The process of C-S to determine the final selection mask for
each category. CCw , NCw , SMw , and RMw are binary vectors that represent if
a characteristic is used (1) or removed (0), out of the 27 listed in Table 3.2, for
each category. >> stands for a bit shift in the binary vector. Result(.) calculates
the resulting classification percentage after running the new selection mask on the
training set.

Algorithm: Classification for Lying Clothes - Testing

Input: 2D color image and 3D point cloud of all segmented clothing in test set; SVM
model; Selection masks and mean vectors for each category
Output: Estimated category of clothing for all articles of clothing in test set

1. Test SVM for characteristics: For each segmented image in the testing set

(a) Insert final feature vector into SVM model of each characteristic

(b) Take results of each characteristic SVM model and create output vector of
binary values

2. Test K-means for categories: For each segmented image in the testing set

(a) Take output vector of binary values (from previous step) and calculate
nearest neighbor to each category mean vector

(b) Category of nearest neighbor is determined to be category of segmented
image

Figure A.3: Clothing classification algorithm for the lying position, testing stage,
described in detail in Chapter 3
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accurately locate a grasp point and move the cloth around on a table. The algorithm

in Figure A.4 explains how the approach was performed.

A.3 Pose Estimation

For the approach used during the pose estimation part of this thesis, a non-

rigid object was visually captured with a RGB-D sensor from a front-parallel position.

Each image and point cloud is analyzed to accurately model the current configuration

of the object as it moves through a video sequence. The algorithm in Figure A.5

explains how the approach was performed.
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Algorithm: Unfolding a piece of cloth on a table

Input: Depth image of segmented cloth
Output: Grasp point and movement orientation

1. First phase of unfolding: For each segmented image

(a) Locate all corner positions on cloth

(b) Set d from 0 to 315 degrees, increasing by steps of 45 degrees:

i. Find point on cloth that is d degrees from centroid

ii. Calculate closest corner to previously found point

iii. Grasp corner and move object outward from the centroid at d degrees

2. Second phase of unfolding: For each segmented image

(a) Capture featured regions of the cloth: For each segmented image

i. Calculate peak ridge of object using depth image

ii. Calculate corner locations along border

iii. Find all continuous regions along the object

iv. Find intersection of continous regions and peak region

v. Find all corner locations on continuous peak region (CC () = 1)

(b) Determine grasp point and orientation: For each segmented image

i. Randomly choose a single corner location from CC

ii. Grasp corner

iii. Movement and orientation is decided on whether all of the corner
locations are located on the peak region

iv. If so, then pull away from centroid

v. If not, then pull over the centroid

Figure A.4: Cloth unfolding algorithm described in detail in Chapter 4
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Algorithm: Estimating the pose of a non-rigid object

Input: 2D color image and 3D point cloud of segmented non-rigid object
Output: Estimated model of 3D pose of non-rigid object

1. Initialize mesh model for each segmented non-rigid object

2. Capture feature information: For each segmented non-rigid object

(a) Find SURF feature correspondence from previous image in sequence

(b) Calculate boundary location of segmented object

(c) Calculate depth information from point cloud

3. Calculate energy equation using feature information for each segmented non-
rigid object

4. Minimize energy terms: For each segmented non-rigid object

(a) Differentiate energy equation and solve for 0

(b) Use semi-implicit scheme to calculate the new mesh model coordinates

(c) Iterate process until converge or MAX iterations is reached

5. Update 3D coordinates of mesh model for each segmented non-rigid object

Figure A.5: Pose estimation algorithm for non-rigid objects described in detail in
Chapter 5
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