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ABSTRACT 

 

 

In this research, we propose metaheuristics for solving two p-hub median 

problems.  The first p-hub median problem, which is NP-hard, is the uncapacitated single 

p-hub median problem (USApHMP).  In this problem, metaheuristics such as genetic 

algorithms, simulated annealing and tabu search, are applied in different types of 

representations. Caching is also applied to speed up computational time of the algorithms.  

The results clearly demonstrate that tabu search with a permutation solution 

representation, augmented with caching is the highest performing method, both in terms 

of solution quality and computational time among these algorithms for the USApHMP.  

We also investigate the performance of hybrid metaheuristics, formed by path-relinking 

augmentation of the three base algorithms (genetic algorithms, simulated annealing and 

tabu search).  The results indicate that hybridrization with path-relinking improvees the 

performance of base algorithms except tabu search  since a good base metaheuristic does 

not require path-relinking.  For the second p-hub median problem, the NP-hard 

uncapacitated multiple p-hub median problem (UMApHMP), we proposed Multiple TS.   

We identify multiple nodes using the convex hull and methods derived from the tabu 

search for the USApMHP.  We find optimal allocations using the Single Reallocation 

Exchange procedure, developed for the USApHMP.  The results show that implementing 

tabu search with a geometric interpretation allows nearly all optimal solutions to be 

found. 
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CHAPTER ONE 

 

INTRODUCTION 
 

 1. Introduction  

One of the many versions of network problems involves reducing the number of arcs 

along which flows can be made, from allowing all pair-wise flows in a fully connected network 

to allowing flows between only a subset of nodes. Flows from different cities, for example, such 

as packages, mail, or passengers, are collected at hubs, transferred between hubs along hub links 

in order to economically consolidate flows on the same route, and distributed to their 

destinations.  Hub location is the name of the problem concerned with determining which nodes 

in a network are designated as hubs (facility location) and which non-hub nodes are connected to 

which hubs (allocation).  In a p-hub problem, hubs are fully interconnected and the total number 

of hubs is fixed at p.  Flow between an origin and a destination move from the origin to a hub 

node, possibly to a second hub node along a hub link, and then to the destination node. In a 

single allocation hub problem, each non-hub node must be allocated to only one hub node.  In 

multiple allocation hub problems, each non-hub node may be allocated to more than one hub, 

depending on to which node the flows are destined.  Hub location has been used in several 

applications, including for the geography and design of facility locations, transportation, airport, 

postal delivery, trucking industry, freight, distribution, telecommunication, and digital data 

transmission networks. 

The frequency of generating solutions to these problems depends on the application.  In 

an airline hub location problem, the costs to change the hub airport to be another airport are high. 

Therefore, the airport network is designed in long term planning due to high installation cost.   

In a telecommunication hub and computer network problem, we have the other extreme. 
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The system may require upgrades in the medium term due to rapid changing of technology and 

hardware lifecycle.  In addition, the network is frequently redesigned because of increasing 

capacity or number of client computers in the system.  In a humanitarian crisis, the most 

important goal is to provide humanitarian aid to the victims of natural disaster as soon as 

possible. Therefore, in uncertain situations in natural disasters such as earthquakes, tsunami, and 

typhoons, it is necessary to update frequently to evacuate victims.  Moreover, redesigning hub 

network is also of concern after a natural disaster to deliver food, medical care, energy and water 

supplies.  

 

1.1 Real world Data Sets 

Real world data sets for hub location consist of different data sets known  as the CAB, 

AP, and Turkish data sets. The Civil Aeronautics Board data set (CAB) is based on airline 

passenger traffic in the United States in 1970, with n = 10, 20, and 25 cities. The CAB data set 

was firstly introduced by O‘Kelly (1987).  The Australian Postal data set (AP) is derived from 

postal delivery network of Australian Postal. Each node represents a postal district and a hub 

represents a mail sorting center.  Ernst (1996) first introduced the AP data set.  The data set 

contains up to 200 nodes.  The Turkish network data set was first introduced by Tan and Kara 

(2007). The data represents cargo delivery system between 81 cities in Turkey. 

In practical applications, a single allocation network is appropriate to simplify customer 

service when a large amount of flows is involved such as in the postal delivery or trucking 

industries.  Flows are collected to sorting centers and are then conveyed along the same 

allocation link from demand node to hub.  The single allocation model is also suitable for 
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environments with high set-up costs for arcs such as optical fibers in large-scale data 

communication networks, or for topology construction in peer to peer systems (Steffen, 2007). 

Multiple allocation is used to minimize transportation costs in distribution networks when 

a variety of allocation arcs are worthwhile.  In fact, many transportation networks utilize the 

multiple allocation model.  For example, many airways provide airline routes through several 

airline hubs to allow passengers to choose their flights based on their preferences, price, or time 

constraints.  If a flexible allocation network is desired, the multiple allocation model results in 

lower total transportation costs than does the single allocation model.   

 

1.2 Capacitated and Uncapacitated Hub Locations 

Hub location problems are categorized as either capacitated and uncapacitated.  The 

capacitated hub problem involves with capacity constraint on the amount of flow through hub.  

On the other hand, there are no capacity restrictions for the uncapacitated hub problem. The 

capacity constraint is not be considered on the hub.  Both capacitated and uncapacitated hub 

location problems may involve with installation cost. 

While the hub location problem that has received the most attention from researchers so 

far is the single allocation p-hub median problem (Campbell & Ernst, 2002), this dissertation will 

focus on metaheuristics for solving uncapacitated p-hub median problems with both single and 

multiple allocations. The following sections further describe the related work and orient the 

reader to remaining chapters in the dissertation. 
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 2. Literature Review and Background 

2.1 Definitions and Introduction to the Hub Location Model 

A network consists of a set of points and a set of lines that connect pairs of points, and 

nodes are the points in the network.   An arc is a link between a pair of nodes, and a path is a 

sequence of arcs connecting node i to node j that makes flow from node i to node j along the path 

feasible. 

A fully connected network is a network in which each of the nodes is connected to each 

other as shown in Figure 1. The main disadvantage of this type of network from the point of 

view of transporting flows between origin-destination pairs is that the number of arcs increases 

quadratically with the number of nodes, as the number of arcs is N (N-1) for a network with N 

nodes. 

 

                

Figure 1.1 A Fully Connected Network    Figure 1.2 Hub and Spoke Network 

 

Hubs are facilities that act as transshipment points in distribution systems to concentrate 

flows from different origins and then move them to the same destination.  A hub and spoke 

network consists of one hub as the transshipment point and a set of spokes connecting to the non-

hub nodes (see Figure 1.2).  In hub-and-spoke networks, one node is assigned as the hub that 

connects all of the other nodes, and the number of paths is 2(N-1). The main advantages of hub-
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and-spoke networks is that the transportation costs are significantly less when using this type of 

network than when using a fully connected network because  a smaller number of routes is 

required.  (O‘Kelly, 1986a).  

 

                     Source: Bridget (2008) 

Figure 1.3 Typical Hub Location Network 

 

A hub-and-spoke network can have multiple hubs.  In this case, a hub arc or hub link is a 

link for transferring flow between hubs. Flows along hub links have reduced transportation costs 

because of increased consolidation. The reduced transportation costs are accounted for by a 

discount factor which sets the transportation costs along the hub links to be a percentage of the 

costs if those arcs were not hub links. In a typical hub location network, each origin-destination 

path consists of three components: collection from an origin to the first hub, possibly transfer 

between hubs along the hub links, and distribution from the last hub to the final destination as 

shown in Figure 1.3. Note that hubs may also serve as origins or destinations.  
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Research aspects of the hub location problem  

The phrase ―hub location‖ is used in many ways throughout the literature.  Here, we 

review the two major types of hub location problems that motivate this dissertation: single and p-

hub median problems.  Researchers have approached hub location problems with two major 

techniques: exact methods (mostly based in mathematical programming), and approximation 

methods (generally using heuristic or metaheuristic methods).  A heuristic is a set of rules in an 

algorithm that is used to find a good solution that limits the search for solutions. In more 

complex problems, metaheuristics are largely focused on solving hard optimization problems.  

Metaheuristics are approximate algorithms that guide the search process, but are not guaranteed 

to find an optimal solution in a bounded time.  Many hub location problems are complex and 

consume computational time.  Providing increasingly more robust methods, metaheuristics are 

mathematical optimization methods that have provided powerful solutions to the difficulties 

associated with real-world problems.  Next, we review 4 models and selected heuristics in the 

literature related to this dissertation. 

 

2.2 The single hub location model  

The objective function of the single hub location model is to minimize the total cost to 

connect all nodes through a single hub while satisfying all the flows required between origin-

destination pairs.  Total flow costs are minimized when a single hub location model is applied 

(O‘Kelly, 1986a). 
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Problem 1: Single hub location model 

Inputs 

Cij   is the unit flow cost on arc (i, j)   

Oi   is the total flow out of node i  

Di   is the total flow into node i  

N    is the number of nodes 

, 1,...,i j N   

Decision variables  

Xj    = 1 if j is a hub 

       = 0 otherwise 

Yij   = 1 if node i is connected to a hub located at node j 

       = 0 if not 

 

Min  
i j

iiijji DOYC )(  

s.t. 1j

j

X               (1) 

0ij jY X                   ,i j                (2) 

0,1jX      j                (3) 

0,1ijY     ,i j               (4) 

        

Constraint (1) ensures that we locate one hub. Constraint set (2) states that node i will be 

connected to hub j only when j is assigned to be a hub. Constraint sets (3) and (4) are standard 

integer restrictions.  
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2.3 The p-hub median model  

The hub location problems that have received the most attention from researchers so far 

are p-hub median problems. There are two types of models for hub networks, which are 

categorized by the way the nodes are allocated to hubs.  In a single allocation network model, 

every node is routed through only one hub as show in Figure 1.4. In a multiple allocation 

network model, each node can receive and send flows through more than one hub as seen in 

Figure 1.5.  

 

Figure 1.4 Single Allocation p-hub Median Network 

 

 

 

Figure 1.5 Multiple Allocation p-Hub Median Network 
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When the discount factor, which reduces the unit costs on hub arcs, is low, hub-to-hub 

transportation increases, and hubs are spread out further (O‘Kelly, 1986a). The p–hub median 

model locates exactly p hubs in a network and allocates non-hub nodes to hubs to minimize the 

total travel cost.  The p–hub median model is useful for real world situations such as 

transportation network, airline network, facility, and distribution center locations.   

 

2.3.1 Uncapacitated single allocation p-hub median formulation 

Skorin-Kapov (1996) proposed a mixed integer formulation to solve the uncapacitated 

single allocation p-hub median problem (known as USApHMP). 

  

Problem 2: Single allocation p-hub median model by Skorin-Kapov (1996) 

Additional notation 

Wij    is the flow from node i to node j 

      is the discount factor  

p      is the number of hubs 

 

Decision Variables 

Xijkm is the fraction of flow from node i to node j that is routed via hubs at locations k and m (see 

Figure 1.3) 

Xik    is 1 if origin i is allocated to hub k 

            0 otherwise 

Xkk    is 1 if k is a hub 

            0 otherwise 
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Min     
i j k m

kmmjikijkmij CCCXW )(   

 

s.t.   
k

ikX 1      i            (5) 

 
k

kk pX                 (6) 

0 kkik XX      ki,            (7) 

 
m

ikijkm XX     kji ,,           (8) 

 
k

jmijkm XX     mji ,,           (9) 

0ijkmX      mkji ,,,         (10) 

0,1ikX        ki,               (11) 

0,1kkX       k               (12) 

 

The objective consists of three components: the cost of collecting from origin i to hub k, 

the cost of distributing from the hub k to destination j, and the cost of transferring between two 

hubs.  Constraint set (5) requires a node to be allocated to one hub while constraint (6) specifies 

the number of hubs to be opened.  Constraint set (7) ensures that k is a hub before a node can be 

allocated to the hub.  Constraint sets (8) and (9) ensure that the flow from the origin to the 

destination will not be routed via hubs k and m unless origin i is assigned to hub k and 

destination j is assigned to hub m.  Finally, constraint sets (10), (11) and (12) define the sign and 

integer restrictions.   
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Ernst and Krishnamoorthy (1996) proposed an integer programming formulation to solve 

USApHMP which requires fewer variables and constraints.  The authors use different discount 

factors for flows from nodes to hubs and hubs to nodes in the objective function. 

 

Problem 3:  Single allocation p-hub median model by Ernst (1996) 

The new notation is shown below. 

χ     is the discount factor for collection (node to hub) 

δ     is the discount factor for distribution (hub to node) 

 

Decision variables 

ikX   1 if node i is allocated to a hub located at node k 

         0 otherwise 

i

kmY   is the total amount of flow emanating from node i that is routed between hubs k and m.  

 

Minimize   
i k l

i

kmkmiiikik YCDOXC  )(  

s.t.  
k

ikX 1       i           (5) 

 
k

kk pX                 (6) 

0 kkik XX                 ki,           (7) 

 
j

jkijiki

m

i

mk

m

i

km XWXOYY    ki,         (13) 

0i

kmY        mki ,,        (14) 

0,1ikX          ki,              (15) 
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Constraint sets (5) to (7) are the same as in Problem 2.  The only change is the flow 

balance constraint set (13) which states that the flow balances for flow commodity i at node k 

where demand and supply at the node is determined by the arc Xik.   

 

2.3.2 Heuristics for USApHMP 

O‘Kelly (1987) proposed two heuristics to find the number of hubs to be selected for 

USApHMP based on the Skorin-Kapov model (Problem 2) .  In HEUR1, each node is assigned 

to the nearest hub. In HEUR2, O‘Kelly evaluated all possible ways to allocate non-hub nodes to 

their nearest and second nearest hubs.  HEUR2 evaluates all of the 2N P possible ways of 

assigning the non-hub nodes to the nearest and second nearest hubs.  O‘Kelly found that the 

runing time of HEUR2 increases corresponding to the number of nodes and found that HEUR1 

performs well in term of cost.  Further, O‘Kelly found that when the discount increases ( 

small), the difference between the objectives of both heuristics get smaller.  

Klincewicz (1991) developed an exchange heuristic for USApHMP based on local 

improvement by considering both single and double exchange procedures.  This exchange 

heuristic exchanges hub locations based on a measure of local improvement.  This is compared 

with the heuristics proposed by O‘Kelly (1987).  The exchange heuristic is superior in terms of 

computational time and a small between best solution found by the heuristic and the optimal 

solution. 

Klincewicz (1992) presented a tabu search and a greedy randomized search procedure 

(GRASP) heuristic; in both of these heuristics, the demand nodes are allocated to their nearest 

hubs.  The tabu search performed better in CPU time while GRASP reached optimal solutions 



13 

 

more frequently.  Klincewicz (1991, 1992) used the CAB (Civil Aeronautics Board) data set,  

based on the airline passenger interactions evaluated by the Civil Aeronautics Board, and a larger 

problem size with 52 demand points and up to 10 hubs to measure the performance of the 

heuristics. 

Skorin-Kapov (1994) developed a tabu search heuristic, TABUHUB, and compared the 

heuristic with HEUR1, HEUR2 and the tabu search developed by Klincewicz (1992).  The 

results were better, but the CPU times were longer.  Ernst and Krishnamoorthy (1996) developed 

a simulated annealing heuristic and compared it with the tabu search presented by Skorin-Kapov 

(1994), which showed that their simulated annealing heuristic is comparable for both computer 

time and solution quality. 

Chen (2007) developed a hybrid heuristic based on the simulated annealing method and 

the tabu list for a large sized problem with 100 and 200 nodes in the AP (Australian Post) data 

set by comparing it with the genetic algorithms and the simulated annealing. This heuristic 

outperformed the genetic algorithms and the simulated annealing in CPU time and solution 

quality.    

Perez et al. (2004) proposed a path-relinking algorithm for the USApHMP.  The 

representation of the path-relinking consists of two parts in one array.  The path-relinking was 

run on the AP data set up to 100 nodes and compared with TABUHUB.  The authors found that 

the path-relinking performs better than TABUHUB both computational times and quality of 

solutions. 

Kratica et al. (2007) developed GAs in two representations, GAHUB1 and GAHUB2, to 

solve the USApHMP based on the CAB and the AP data set.  In the selection procedure, fine 

grained tournament was used for both representations.  Caching was used in the evaluation 
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function to improve running time.  The authors found that GAHUB2 reached all best known 

solutions. 

 

2.3.2 Multiple allocation p-hub median problems 

Recall that in the uncapacitated multiple allocation p-hub median problem (UMApHMP), 

the flow from a node may be routed through different hub nodes, depending on the destination 

node.  

 

Problem 4: UMApHMP by Campbell (1992) 

This model uses notation and decision variables previously introduced in Problem 2. 

 

Min     
i j k m

kmmjikijkmij CCCXW )(   

 

s.t.   
k

kk pX                 (6) 

1
k m

ijkmX     ji,                     (16) 

 
m

kkijkm XX     mkji ,,,         (17) 

 
k

mmijkm XX     mkji ,,,         (18) 

            0ijkmX      mkji ,,,         (10) 

0,1kkX       k               (12) 
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The objective is to minimize the transportation cost of the network which is the same as 

in problem 2.  Constraint set (6) is the same as in the problem 2. Constraint set (16) ensures that 

the flow between every origin – destination (i,j) is routed through some hubs.  Constraint sets 

(17) and (18) ensure that the flow from the origin to the destination is only routed by locations 

that are hubs.  The sign restrictions are shown in constraint sets (10) and (12). 

 

Problem 5:  UMApHMP by Ernst (1998) 

Ernst‗s 1998 formulation for the UMApHMP was introduced as an improved alternative 

to Campbell‘s 1988 model and retains the idea of three different discount factors as used in 

Problem 2 (Ernst 1996).  The model requires fewer variables than Campbell (1998).  

 

Decision variables 

ikZ   the flow from node i to hub k 

i

ljX   the flow from node i through hub l to node j  

kH   1 if node k is a hub   

         0 otherwise 

i

klY   is the total amount of flow from node i that is routed between hubs k and l.  

Minimize  i i

ik ik kl kl lj lj

i k k l l j

C Z C Y C X  
 

  
 

     

s.t. k

k

H p              (19) 

ik i

k

Z O       i        (20) 
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i

lj ij

l

X W                 ji,        (21) 

0i i i

kl kj kl ik

l j l

Y X Y Z         ki,        (22) 

ik i kZ O H        ki,                  (23) 

i

lj j i

i

X D H       ,l j                  (24) 

0,1kH          ki,             (25) 

, , 0i i

kl lj ikY X Z        , , ,i j k l       (26) 

 

Constraint (19) represents the number of hubs to be assigned.  Constraints set (20) – (22) 

represent the flow balance for node i.  Constraint set (20) ensures that total flow emanating from 

node i routed by every hub k is equal to total amount of flow originating at node i.  Constraint set 

(21) ensures that total flow from node i flowing from every hub l to node j is equal to flow 

between node i and j.  Constraint set (22) states that the flow balances for node i to node j must 

be routed via a feasible path.  Constraint set (23) states that flow from node i flows through hub k 

only if node i is allocated to hub k. Constraint set (24) states that total flow from node i flowing 

from every hub l to node j only if node j is allocated to hub l.  The sign restrictions are shown in 

constraint sets (25) and (26). 

 

2.3.3 Heuristics for UMApHMP 

Some research using metaheuristics to solve the UMApHMP has been performed.  

Stanimirovic (2008) proposed a genetic algorithm with binary representation to solve the 

UMApHMP. The methods are evaluated using the CAB and the AP data with up to 200 nodes. 
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The author also implemented caching to reduce the computational time in the evaluation 

function. For example, for a problem with 50 nodes and 4 hubs, the optimal solution has been 

found within  0.885 sec and for a problem with 200 nodes and 3 hubs, the optimal solution has 

been  found within 174.9 sec.   

Kang (2008) implemented the ant colony optimization model for solving the UMApHMP 

on the CAB and the AP data set. The author proposed and evaluated different multiple allocation 

methods: nearest hub and all pair shortest path. From the result, the combination policy, 

combining nearest hub and all pair shortest path, is the most effective allocation method to solve 

larger instances in reasonable computational time. For example, for a problem with 50 nodes and 

4 hubs, nearly a optimal solution has been found within 143.48 sec and for a problem with 200 

nodes and 3 hubs, a nearly optimal solution has been found within 3636.64 sec.   

Marija (2010) proposed an evolutionary algorithm with permutation representation to 

solve the UMApHMP on the AP data set. From the results, the optimal solutions are almost 

found for every problem instances and some new best solutions for problem sizes of 200 nodes 

are found. For example, for a problem with 50 nodes and 4 hubs, the optimal solution has been 

found within 0.551 sec and for a problem with 200 nodes and 3 hubs, the optimal solution has 

been found within 73.947 sec.   

In this dissertation, Multiple TS is proposed to solve the UMApHMP on the AP data set.  

We identify multiple nodes using the Convex Hull and Single Node Exchange. We use Single 

Reallocation Exchange procedures to find optimal allocations.  For example, for a problem with 

50 nodes and 4 hubs, the optimal solution has been found within 526.25 sec and for a problem 

with 200 nodes and 3 hubs, the optimal solution has been found within 5322.46 sec.   
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2.4 Work for other related network problems  

Campbell and Ernst (2005a) presented four models to locate hub arcs as links between 

hubs. Their evaluation used the Civil Aeronautics Board (CAB) data, based on air passenger 

traffic in the United States, with n = 10, 20, and 25 cities. Then, the costs from four models were 

compared.  The cost per unit flow for collection and distribution on the access arcs was set to 

1.0. The cost per unit flow for transfer on a bridge arc, an arc connected between two hubs 

without a reduced unit flow cost, was 1.0. For transfer on hub arcs, five different levels of the 

discount factor were considered: = 0.2, 0.4, 0.6, 0.8, and 1.0.  The cost results suggest that 

strong economies (smaller) and fully connected hub arcs with fewer hubs and more hub arcs 

are better than unconnected hub arcs with more hubs and fewer hub arcs.  With weak economies 

of scale (large), then many hubs with less well-connected hub arcs are preferable. 

Hatice and Sibel (2008) proposed an integer programming model for incomplete hub 

networks and proposed a tabu-based heuristic algorithm to solve a realistically sized problem in a 

Turkish network.  The incomplete hub network only connects necessary terminals in the hub 

network to decrease the investment cost.  In contrast, in a complete hub network every hub pair 

is interconnected with a hub link.  The tabu-based heuristic constructs feasible solutions for the 

hub-covering problem with tight time bounds.  Three different allocation strategies are used in 

constructing feasible solutions.  The heuristic algorithm was tested on the CAB data set for 10, 

15 and 20 nodes and the Turkish network was tested with 81 nodes.  The performance of the 

heuristic was compared with CPLEX on the CAB data set.  The heuristic obtained good solutions 

with less CPU time than CPLEX. 
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3. Research Problem 

The dissertation focuses on hybrid metaheuristics for large-sized problems (100 – 200 or 

more nodes) for various p-hub median models.  Although metaheuristics have been widely 

examined for hub locations, hybrid metaheuristics for large-sized problems has not been 

analyzed in depth. In general, as the size of the problem increases, the quality of the 

metaheuristics solution decreases.   

Based on the previous literatures, research has shown that pure metaheuristics do not run 

as fast as hybrid heuristics.  This research develops metaheuristics for several large p- hub 

median problems that generate good solutions. 

 

4. Research Overview 

The objective of this research is to design metaheuristics to generate high quality 

solution.  To outline this work, there will be three chapters in this dissertation, consisting of the 

following topics. 

1. Comparison of different types of metaheuristics for the uncapacitated single 

allocation p-hub median model. 

2. Comparison of different types of hybrid metaheuristics for the uncapacitated 

single allocation p-hub median model. 

3. Development of metaheuristics for the uncapacitated multiple allocation p-hub 

median model. 
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CHAPTER TWO 

 

METAHEURISTICS FOR THE USApHMP 

 

1. Introduction 

The uncapacitated single allocation p-hub median problem (USApHMP) belongs to the class of 

NP-hard problems (O‘Kelly, 1987).  In the first section of this chapter, A Mathematical 

Programming Language (AMPL) and Optimization Programming Language (OPL) are used to 

illustrate the limitations of current formulations for USApHMP on small to large instances.  

To investigate the difficulty of solving USApHMP on large data sets, exact optimization 

tools are applied.  Ernst (1996) suggests that when the problem includes more than 100 nodes, 

his formulation (Problem 3 in Chapter 1) is too large to be solved optimally; however, 

metaheuristic methods may produce reliable results in reasonable computational times. Ernst 

(1996) introduced the Australian Postal (AP) data set as a real world hub location data set.  The 

entire set contains 200 nodes, but subsets with 10, 20, 40, 50, and 100 nodes can be generated.  

In order to provide justification for the application of metaheuristics, we evaluate the 

computational effort required by CPLEX 11.2 with AMPL and OPL5.2 on an Intel Core Duo 

1.66 GHz with 1 GB RAM to solve the Ernst 1996 formulation in Table 2.1.  

 For USApHMP, computational time increased enormously as the number of nodes 

increased.  When the number of nodes is more than 120, AMPL ran out of memory.  Two 

strategies exist for resolving this problem: developing more effective math programming 

formulations or heuristic / metaheuristic approaches.  We focus on the metaheuristic approach in 

this dissertation. 
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Table 2.1 Results from Ernst‘s formulation for USApHMP (Problem 3) 

      

  Number of Nodes P Obj AMPL time(s) OPL time(s) 

10 2 167493 0.0625 0.053 

  3 136008 0.1875 0.28 

  4 112396 0.23438 0.51 

  5 91105.4 0.17188 0.5 

20 2 172817 0.40625 2.17 

  3 151533 1.0625 4.09 

  4 135625 1.73438 3.51 

  5 123120 2.15625 6.29 

50 2 178484 39.0156 621 

  3 158570 42.9375 342 

  4 143378 49.6875 960 

60 2 179920 64.42 - 

  5 132850 297.484 - 

  10 102940 475.562 - 

80 2 180182 172.016 - 

  4 145810 977.984 - 

100 2 180224 1217 - 

  4 145897 3693.22 - 

 

2. Metaheuristics 

Optimization software, such as AMPL, can solve USApHMP for instances based on the 

AP data set up to 100 nodes. Therefore, we anticipate that metaheuristics can be applied to solve 

problems in a reasonable time, especially when the size of problems is large. Genetic algorithms, 

tabu search, and simulated annealing are the specific metaheuristics applied in the dissertation.  

We first describe the elements that are common to all the metaheuristics examined in this 

dissertation.  In this chapter we focus on USApHMP while Chapter 4 is concerned with 

UMApHMP.  
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2.1 Representation  

The solution representation is the data structure that the metahueristic operates upon. It 

can be a direct representation or some sort of indirect representation. A variety of representations 

are possible for USApHMP and will be described with the help of the following seven node, 

three hub solution. In this example, nodes 3, 4 and 7 are hubs.  Nodes 1, 2, and 3 are allocated to 

node 3; nodes 4 and 6 are allocated to node 4; and nodes 5 and 7 are allocated to 7 as shown in 

Figure 2.1. 

 

Figure 2.1: Solution Represented 

 For example, a permutation representation of 4334477 denotes that nodes 3, 4, and 7 are 

hubs with the non-hub nodes 1, 2, 5, and 6 being connected to hubs 4, 3, 4, and 7, respectively. 

In another representation structure (Topcuoglu, 2005), two sets of arrays are designed separately: 

the first set expresses the location as a binary array (0011001): bits 3, 4 and 7 are one; the second 

set represents allocation (4334477).  In a third alternative, two parts of the array are combined in 

one chromosome (Vladimir, 2009).  The first bit identifies the hubs as a binary array (0011001), 

while the second bit specifies which hub is used (first, second, etc) for each node; the first hub is 

hub 3, and the next hubs are hub 4 and 7, respectively.  The combined representation is shown as 

02|01|11|12|02|03|13|.  In a fourth alternative, a two-part combination was proposed in a different 

structure. The first bit represents the location as a binary, and the second bit expresses hub 
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priority or distance as proposed in GAHUB2 (Josef, 2007).   For example, the first section 

denotes opened hub (0,0,1,1,0,0,1)  and the second section indicates assignment (0,0,0,0,0,0,0,0).  

The representation is 00|00|11|10|00|00|10|. 

In considering which representation to use, important factors of the representations 

should be considered, such as the simplicity of modifying the solution, the steps needed for 

arrangement, and the reasonability of adjusting the hub allocation.  To study the effects of 

different representations on algorithm efficiency, two well-known representations are 

investigated. 

 

2.1.1. Permutation representation   

The permutation representation consists of two parts in arrays: the hub part and the 

allocation part. The hubs are shown as a partial permutation of the n nodes having length p.  The 

allocation part has one element for each node in the network indicating the hub to which the 

node is allocated.  For the example solution, the representation is  347|3334747. The first part of 

the array indicates that 3, 4, and 7 are the set of hubs, with nodes 1, 2, and 3 served by the hub at 

node 3, etc.   

 

2.1.2. Binary representation    

The binary representation we consider has two parts, each of which has an element for 

each node in the network.  The first part, called the location part, determines the hub nodes in the 

network, and the second part, called the allocation part, represents a set of hubs to which the non-

hub nodes are allocated.  We call a set of nodes allocated to the same hub a ―cluster‖.  In the 

location part, the value 1 indicates a node is a hub node, while the value 0 indicates the node is 
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not a hub node.  The allocation part represents the connections of the nodes to the hubs in the 

cluster.  In the allocation part, the representation structure is identified as a cluster.  The same 

cluster is defined as the set of nodes allocated to the same hub.   

In the example solution, the location part is 0011001.  The allocation part is 0001212.  

The first cluster, represented by value 0, consists of nodes 1, 2, and 3, which are assigned to node 

3. In an alternative expression, nodes 1, 2, and 3 of the allocation array represent cluster 0 

(served by the hub at node 3). The second cluster, represented by value 1, consists of nodes 4 and 

6, assigned to hub 2, which is node 4.  Finally, the last cluster, represented by value 2, indicates 

node 5 and 7 are assigned to hub 3, which is node 7.  Consequently, the solution is represented 

by the array 0011001|0001212. 

 

2.2 Generating initial feasible solutions   

To prevent infeasibility of the initial solutions generated, random keys are applied to 

encode the solutions.  The random key is selected from a uniform distribution in the interval 

[0,1). To decode the solutions, the random keys are sorted into ascending order and the first p 

nodes are selected as the hubs.   

For example:   n = 7, p = 4 

Table 2.2 Decoding random keys 

Order before sorting 1 2 3 4 5 6 7 

Random key       0.25 0.52 0.32 0.08 0.94 0.16 0.03 

Sorted random key 0.03 0.08 0.16 0.25 0.32 0.52 0.94 

Order after sorting   7 4 6 1 3 2 5 

 

Decode as hub set:  7, 4, 6, 1 
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  In both representations we use random keys to encode hub sets to avoid generating and 

repairing infeasible initial solutions. The Mersenne Twister algorithm is utilized to generate 

uniform random numbers. 

 

2.3 Reallocation Procedure 

Once a hub set is known, it is possible to consider allocating each non-hub node to each 

hub.  We implement an iterative heuristic method to find good allocations of non-hub nodes to 

hubs given an initial solution, called the Reallocation Procedure. In the Reallocation Procedure, 

each non-hub node changes its allocation to each of the different hubs and the resulting objective 

function is computed.    Each of the (n-p)(p-1) neighbors or possible new solutions are created 

for each iteration.  The best solution from the iteration is chosen as the current solution for the 

next iteration. This process is continued until no further improved solution can be generated.  

Let P be the set of hubs and P‘ be the set of non-hub nodes.  Let h(i) be the hub allocated 

to node i and the n-tuple h be the allocation for all n nodes. A new allocation for a single hub is 

indicated by   'h i  and a new allocation for all n nodes is indicated by 'h . The Reallocation 

Procedure is described as follows: 

z = objective for the solution P and h 

done = FALSE 

while done = FALSE 

 done = TRUE 

For 'i P ,  

  For   \j P h i  
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     'h i = j 

   'z  = objective for the solution P and 'h  

   if 'z <z, then h = 'h , z = 'z , and done = FALSE 

  end for 

end for 

end while 

report h 

 

Numerical example: 

Assume P= {3, 4, 7} and h={7, 4, 3, 4, 7, 4, 7, 7,7, 7}.  There are (n-p)(p-1) = 14 

neighbors. Two iterations of the Reallocation Procedure are shown below, with the new hub 

allocations for the non-hub nodes underlined the hub nodes bolded. 

Iteration 1 

           

Resultant Objective 

(current or better) 

H 7 4 3 4 7 4 7 7 7 7 163341 

 

3 4 3 4 7 4 7 7 7 7 

 

 

4 4 3 4 7 4 7 7 7 7 

 

 

7 7 3 4 7 4 7 7 7 7 

 

 

7 3 3 4 7 4 7 7 7 7 

 

 

7 4 3 4 3 4 7 7 7 7 147205* 

 

7 4 3 4 4 4 7 7 7 7 

 

 

7 4 3 4 7 7 7 7 7 7 

 

 

7 4 3 4 7 3 7 7 7 7 

 

 

7 4 3 4 7 4 7 3 7 7 

 

 

7 4 3 4 7 4 7 4 7 7 

 

 

7 4 3 4 7 4 7 7 3 7 

  7 4 3 4 7 4 7 7 4 7 

 

 

7 4 3 4 7 4 7 7 7 3 

 

 

7 4 3 4 7 4 7 7 7 4 
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Iteration 1 results in a new hub allocation being defined as h={7, 4, 3, 4, 7, 4, 7, 7 ,7 ,7} with a 

new objective value z=147205. 

Iteration 2 

           

Resultant Objective 

(current or better) 

H 7 4 3 4 3 4 7 7 7 7 147205 

 

3 4 3 4 3 4 7 7 7 7 136671* 

 

4 4 3 4 3 4 7 7 7 7 

 

 

7 7 3 4 3 4 7 7 7 7 

 

 

7 3 3 4 3 4 7 7 7 7 

 

 

7 4 3 4 7 4 7 7 7 7 

 

 

7 4 3 4 4 4 7 7 7 7 

 

 

7 4 3 4 3 7 7 7 7 7 

 

 

7 4 3 4 3 3 7 7 7 7 

 

 

7 4 3 4 3 4 7 3 7 7 

 

 

7 4 3 4 3 4 7 4 7 7 

 

 

7 4 3 4 3 4 7 7 3 7 

 

 

7 4 3 4 3 4 7 7 4 7 

 

 

7 4 3 4 3 4 7 7 7 3 

 

 

7 4 3 4 3 4 7 7 7 4 

  

Iteration 2 results in a new hub allocation being defined as h={3, 4, 3, 4, 7, 4, 7, 7 ,7 ,7} with a 

new objective value z=136671. This procedure is repeated until no improved hub allocation is 

found. 

  

3. Genetic algorithms     

Genetic algorithms (GAs), which were first proposed by Holland (1975), are a powerful 

type of algorithm for optimization that imitates natural selection and crossover to produce highly 

fit offspring.  Genetic algorithms are based on genetic processes to combine the best properties 

of the parent entities.   
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GAs perform by first generating initial populations depending on their representation 

structures, and then selecting the chromosomes of the next generation based on their fitness; 

namely, high fitness chromosomes have a higher chance of surviving and reproducing.  

Crossover occurs by recombining a portion of a pair of parents to produce offspring, while 

mutation is applied to individual chromosomes after crossover to avoid entrapment in local 

optima.   Mutation is performed by randomly altering a portion of the chromosome to generate 

new chromosomes with a small probability.   Figure 2.2 illustrates the GA procedure in this 

research with details provided in the following sections.   

The GA for USApHMP begins by randomly creating the initial population by randomly 

generating a hub set for each chromosome.  Once the hub sets have been defined, every node in 

the network is allocated to its nearest hub.  Then, the Reallocation Procedure is applied to 

reassign each non-hub node to a single hub.   
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Figure 2.2 Genetic algorithm procedure 

 

3.1 Selection 

The population for the next generation is created by selecting parents to crossover, 

followed by crossover and mutation operations.  We utilize elite reproduction, in which the top 

5% parent solutions are kept in the next generation to ensure the current best solution will not be 

GA Procedure 

  Generate initial population;      

  Allocate each node to the nearest hub in each chromosome; 

  Evaluate the fitness of each chromosome; 

  Perform Reallocation Procedure for each chromosome 

  While (stopping criterion is not achieved)  do 

                   Elite Reproduction 5% of Population;                     

       Selection; 

                      40% from Elite parents; 

     60% of randomly selected parents; 

        Crossover 95% of Population; 

               Cut and splice crossover for Binary representation; 

                           Single Point Crossover for Permutation representation;  

        Mutation 20% of Population  

          Swap (hub, non-hub node)    

                    Choose the BestHubSet; 

             Perform Reallocation Procedure for each chromosome ; 

                    Insert offsprings into the new generation 
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lost. The next step involves choosing a high fitness top 5% parent with a probability 0.4 to mate 

with another parent that is randomly selected with a probability 0.6 to generate high fitness 

offspring. . 

 

3.2 Crossover 

Due to the different structures of each chromosome for each representation, two types of 

crossovers are applied in each representation: the cut and splice crossover for the binary 

representation and the single point crossover for the permutation representation.  We only 

perform crossover on the hub section and use a reallocation scheme to fill the allocation section. 

 

3.2.1 Cut and splice crossover for binary GA 

In the USApHMP problem, the number of hubs is fixed. After crossover is implemented, 

the number of hubs must remain the same. The cut and splice crossover is used for the binary 

representation to address this concern.   

We arbitrarily designate one chromosome as Parent 1 and the other as Parent 2. Cut and 

splice crossover begins by selecting the cut point of parent 1 deterministically at the position c1 

just after half of the number of hubs are detected. Then, the remaining hubs of parent 2 at the 

position c1+1 are used to produce child 1 until p hubs are filled in child 1 as shown in Figure 2.3.  

Therefore, extra hubs are prevented in cut and splice crossover.  However, if the number of hubs 

from position c1+1 to n in parent 2 is less than p in the network,   the remaining hubs are selected 

randomly from the non-hub nodes.  Then, select the cut point of parent 2 at the position c2 and 

repeat the same procedure as parent 1.  
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The following example illustrates the Cut and splice crossover. 

Example  p = 4 

 

Figure 2.3 Cut and splice crossover for a binary GA 

 

In this example, p=4 so c1 is set to be position 4.  Child 1 therefore keeps the first 4 

values from parent 1.  The rest of Child 1 is taken from Parent 2, but only the first three values 

are taken from Parent 2 after c1, as 4 hubs are determined by that point. 

 

3.2.2 Single point crossover for the permutation representation GA 

In the permutation representation, we implement a traditional single point crossover.  A 

single point is randomly selected along the hub section. The offspring are generated by 

combining the left and the right parts of the parents as shown in Figure 2.4.  If the number of 

hubs of the offspring is not equal to p, it is discarded and another attempt is made. 
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Figure 2.4 Single point crossover for the permutation representation 

 

3.3 Mutation 

After crossover, a mutation is applied to explore the search space more fully.  

Chromosomes are randomly selected with the probability 20% of the population and mutated by 

swapping one randomly selected non-hub node with a randomly selected hub nodes.  

 

4. Simulated Annealing  

Simulated annealing (SA) is a probabilistic hill climbing algorithm and was developed by 

Metropolis in 1953 to simulate the annealing process in metals. SA has been widely 

implemented for combinatorial optimization problems.  SA operates by accepting moves to 

improved solutions while allowing non-improving moves with some probability to avoid local 

minima.  In each move, the acceptance probability is examined when deciding whether or not to 

accept the non-improving solution.  If the new objective value is better than the current 

objective, the new solution will automatically be accepted.  However, if the objective value is 

worse than the current objective function value, some decision parameters, such as the current 

temperature, the cooling schedule, and the magnitude of the objective difference, are considered 
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to allow moving. According to the Metropolis criterion, the new solution is accepted if a random 

number, r, generated from uniform distribution [0,1] is no larger than the acceptance probability. 

Figure 2.5 illustrates the SA procedure in this research with details provided in the following 

sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Simulated annealing procedure 

Procedure Simulated Annealing 

   begin  

        Initial solution creation s0; 

            Set initial temperature T0 and cooling rate ; 

        SingleHubExchange; 

        SelectBestHubSet; 

     While (stopping criterion is not achieved) do 

                   generate random number r unif(0,1) 

If (r > 0.40),  

                                then MoveSameCluster; 

                        Else  MoveDifferentCluster; 

Perform Reallocation Procedure; 

               If  f(s) <  f(s0),  

                                then accept solution; 

               Else generate random number r unif(0,1); 

                         If    
i

sfsf

T
er

))0()(( 

 ,  

                                then accept solution;
 

             Update temperature  i1i T  T     

     End while                      
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4.1 SingleHubExchange 

The initial solution is generated by choosing a hub set from the set of nodes where the 

highest amount of flow occurs. Next, SingleHubExchange is performed by replacing one of the 

current hubs with a non-hub node; there are (n-p)p possible hub sets.  Then, non-hub nodes in 

each hub set are allocated to the closest hub.  Next, evaluate (n-p)p solutions and select the best 

objective value  or the best hub set from SingleHubExchange to perform the reallocation.  For 

example, n =5, p = 2. The first two nodes having highest amount of flow are node 3 and 5.  The 

number of solutions is 6.  The possible hub sets are (1,5) , (2,5), (4,5), (3,1), (3,2),and (3,4).   

 

4.2 Neighborhood definitions 

The neighbors are defined based on the hub sets.  Recall the concept of a cluster: a set of 

non-hubs nodes allocated to the same hub. To generate a new hub set in the neighborhood, 

transitions are defined in two ways:   

(1) MoveSameCluster: Change the location of the hub to be a different node in the same 

cluster.   

(2) MoveDifferentCluster: Replace one of the current hubs with a non-hub node from 

another cluster. 

 We determine which type of neighbor to generate based on a random number, selecting 

MoveSameCluster with 40% probability and MoveDifferentCluster with 60% probability.  
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4.3 SA: temperature and schedule 

The acceptance probability to move into a non-improving solution is 

1



i

E

T
e where ΔE is the difference between current and new objective value.  The 

temperature Ti in iteration i is reduced by a cooling schedule of  = 0.97, as shown in Figure 2.5 

(Jeng, 2008).  The initial temperature is 2000, based on initial empirical results.  

            Following Osman (1993), when the same solutions appear in 2np iterations, reheating is 

used to avoid local optima.   The reheated initial temperature is set to be max(Tr-1, Tincumbent), 

where r = 1,…,4.    

 

5. Tabu Search 

Tabu search (TS) is a heuristic methodology that was originally proposed by Fred Glover 

in 1986.  By using a memory structure, tabu search can forbid revisiting previously visited 

solutions, and it accepts non-improving solution to avoid local optima. The decision factors of 

tabu search are defined by neighborhood structure and memory structure.  In tabu search 

implementation, recently visited solutions are recorded as a list in short-term memory to prevent 

cycling in the same local optimum.  In long-term memory, the frequency of the hub set solutions 

obtained is also considered to generate a new initial solution and to differentiate it from the 

visited solutions.  In USApHMP, TabuHub was developed to solve the problem for the CAB 

data set (Skorin, 1994).  We implement a different tabu search methodology based on efficient 

processes consisting of single location exchange for hub and the assignment reallocation for 

allocation part.  Figure 2.6 illustrates the TS procedure in this research with details provided in 

the following sections. 
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Figure 2.6 Tabu search algorithm 

 

Neighborhood definitions   

For neighborhood of TS, SingleHubExchange is performed and the best objective value 

or the best hub set is selected; this is the same as SA. 

 

Procedure Tabu search 

begin 

   Generate initial hub set 

   SingleHubExchange; 

   Shortest allocation; 

   SelectBestHubSet; 

               While (stopping criterion is not achieved) do 

         Repeat 

  Reallocation; 

  SelectBestAllocation; 

  UpdateTabuList; 

  Update the current solution; 

  end; 

 until(stopping criteria); 

   End While; 

 End 
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5.1 Tabu List Representation 

The tabu list is based on the elements of movement from the current solution to its 

selected neighbor, which will be recorded in the tabu list to prevent cycling. Due to 

neighborhood structures consisting of location and allocation parts, the location and allocation 

lists are created separately (Skorin, 96). In the location part, when a hub is replaced with a non- 

hub node.  The recently deleted hub will be recorded in the tabu list to forbid the same hub being 

selected during the tabu tenure length.  For the allocation part, after the reallocation is performed, 

the best reallocation of non-hub node n with hub h is determined.  The tabu list for the allocation 

part is composed of the pair (h, n ).  To diversify the initial hub set, long-term memory is applied 

when the number of iterations is equal to the long-term memory length, after which the initial 

hub set is regenerated.  Selecting the new initial hub set is based on the proportion of the amount 

of flow divided by the frequency of the nodes designated as hubs. 

 

5.2 Stopping criteria 

In tabu search, the algorithm will stop when no new incumbent has been identified for at 

least a fixed number of consecutive iterations. 

 

5.3 Difference between TabuHub and Tabu search 

In tabu search for USApHMP, the single location exchange and reallocation procedure as 

first introduced in TabuHub were applied to find the best hub set and the best allocation of the 

hub network.  In contrast with TabuHub, we find the best reallocations after each hub set has 

been produced from single location exchange. For the reallocation process, we consider only the 

allocation part as input.   First, the reallocation process is only used for the best hub set from the 
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single location exchange procedure while the reallocation procedure of TabuHub is called after 

every hub set is generated, and second, tabu search only applies in the last stage after the best 

hub set is generated.  The reallocation process will continue until no further improved solution is 

found.   

Tables 2.3 and 2.4 illustrate the difference between TabuHub and this tabu search. In 

Table 2.3, the different set of hubs, (n-p)p neighbors, are generated by the single location 

exchange procedure and every non-hub node is aloocated to its nearest hub. The possible 

representations are shown in the single location exchange column. Then, the best hub set is 

chosen.   

 

Numerical example:  10 nodes and 3 hubs.  Assume the initial hub set is 3, 7, and 8. 

       Table 2.3 Set of neighborhoods generated from TABUHUB   

 

Single Loc Exchange 

         Hub set  

  

Shortest Allocation Results 

  

Possible Reallocation 

Neighborhoods 

(n-p)(p-1) 

1 7 8 1   8   7   8   1   1   7   8  7  7 14 

2 7 8 2   2   8   7   2   8   2   8  7  7 14 

. 7 8 . 14 

. 7 8 . 14 

10 7 8 7  7  10   8   7  10  7  8  7  10 14 

3 1 8 1  8   3   1   1   3   3   8  8  8 14 

3 2 8 3  2   3   3   2   3   3   8  8  8 14 

3 . 8 . 14 

3 . 8 . 14 

3 10 8 3  3  3   8   8  10  8  8  8  10 14 

3 7 1 1  3   3   7   1   3   7   7  7  7 14 

3 7 2 2  2   3   7   3   3   7   7  7  7 14 

3 7 4 7  4   3   4   7   4   7   7  7  7 14 

3 7 . . 14 

3 7 . . 14 

3 7 10 7  7  3   3   7  10  7  7  7  10 14 
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Next, reallocation for each  potential hubset is performed.  In each iteration, the number of 

neighbors generated from TabuHub is (n-p)p * (n-p)(p-1) as numerical example in table 2.3. On 

the other hand, tabu search only performs the reallocation procedures on the best hubsets.  The 

number of neighbors generated from the Tabu search algorithm is (n-p)p + 2 (n-p)(p-1) as 

illustrated in the numerical example in table 2.4. 

 

Table 2.4 Number of neighborhoods generated from Tabu search algorithm   

Single Loc 

Exchange Shortest Allocation 

Reallocation I 

(neighborhoods) 

Reallocation II 

(neighborhoods) 

Hub set Representation 

1 7 8 1   8   7   8   1   1   7   8  7  7     

2 7 8 2   2   8   7   2   8   2   8  7  7     

. 7 8 .     

. 7 8 .     

10 7 8 7  7  10   8   7  10  7  8  7  10    

3 1 8 1  8   3   1   1   3   3   8  8  8 

choose the best 

hub   

3 2 8 3  2   3   3   2   3   3   8  8  8 set to reallocate 14 

3 . 8 . 14    

3 . 8 .     

3 10 8 3  3  3   8   8  10  8  8  8  10     

3 7 1 1  3   3   7   1   3   7   7  7  7     

3 7 2 2  2   3   7   3   3   7   7  7  7     

3 7 4 7  4   3   4   7   4   7   7  7  7     

3 7 . .     

3 7 10 7  7  3   3   7  10  7  7  7  10     

 

5.6 Stopping criteria 

To measure the quality of solution and control the computational time, two types of 

stopping criteria are combined:  percent of gap and number of evaluations. First, the algorithm 

will be stopped when the gap is less than the setting value.  The gap is defined as the percent 
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above the optimal solution, when it is known, or the best known solution when the optimal 

solution is not known.  

100*)1
)  ( 

(% 
SolOptimalorBestKnown

Incumbent
Gap  

The setting value is 0.5 %,  Second, the number of objective function evaluations is used 

as a stopping criterion if the gap is outside the setting value.  For small problems (n ≤ 50), we 

allow up to 1,000 iterations while we allow up to 2,000 iterations for large problems  

(n ≥ 100). These values were chosen to allow the running times to be reasonable. 

 

5.7 Number of replications 

From the central limit theorem, the sample means are normally distributed when the 

sample size approached infinity and accepted approximation when n ≤ 30.  Therefore, the 

number of replications is 30.  We set the population size as 100 in the genetic algorithm, 

 

6. Caching  

Due to the complexity in computing an objective evaluation, caching is applied to speed 

up the algorithms and reduce some repetitive computations.  Caching is a technique intended to 

improve the running time of an algorithm by calling the objective value in the caching list to 

avoid repeatedly calling the objective evaluation function.  In this work, the cache size is based 

on the number of hubs and the number of nodes in each problem, and is set as 2*np, based on 

empirical experience.  To call the objective from the repeatedly generated solution, the caching 

list consists of two sections: a representation of the hub set and an objective list.     
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            In the caching process, hub set solutions are converted to hub codes, keeping them and 

their objective values in the caching list.  To represent each hub set, the encoding solutions of the 

hub sets that will become the hub codes are based on   100log
1




i
ihubi

 

  where i  is the hub node. For example, for hub set (3  5  6), we compute the hub code as follows 

852.421006log
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1
5log
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3log
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Figure 2.7 Caching procedure 

   

The hub codes and objective values are stored in a data structure called a red-black tree.  

When a hub set is generated, its hub code is generated. If its hub code is not found in the caching 

list, the evaluate function is called to calculate the objective value and to store the items into the 

Caching procedure, 

      If the objective is found in the caching list,  

             then objective value  =  Call (hub code); 

     else 

            Call Evaluate objective function; 

Add ( hub code, objective value); 

    If cache list is full   

             then Remove (the oldest hub code, objective value)        

 end if 

     end if    
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caching list in the red-black tree.  Whenever the caching list is full, the oldest entry of the list is 

replaced by a new hub set and the objective value.  

 

Table 2.5 Updating the cache list 

 

 

In order to update the cache list, the oldest position of the hub set (3 5 6) and the 

objective at the oldest position in the list are replaced with a new hub set and the objective value.   

The computational time of an algorithm may be sped up by caching.  To search and retrieve 

objective values in caching, the operation time such as creating, storing, and searching in the 

caching list must be fast when compared with directly computing an objective function.  

Accordingly, the efficiency of caching procedures depends on the data structure.  The objective 

values are stored in the caching list using the red-black tree (see in Appendix) as a data structure 

of the caching list to guarantee that each access time is within O(log(n)).  

 

7. Computational Experiments 

To evaluate the computational results of GA, SA, and TS, we use many sizes of the AP 

data set.  Each node represents a post district in the Australian postal system.  The data set 
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contains 200 nodes, with smaller problems created by selecting subsets of those 200 nodes. For 

each problem size, the number of hubs is equal to 5, 10, 15, or 20 hubs.  Experimentations with 

each type of metaheuristic consist of four versions: permutation, permutation with caching, 

binary, and binary with caching.  Each algorithm is run 30 times with independent random 

number streams except TS which has no randomness.  Nearly all algorithms obtain optimal 

solutions for small problems (10, 20, 40, and 50 nodes).  For large problems (100 and 200 

nodes), TS finds nearly optimal solutions for every  problem except the problems with 200 nodes 

and 20 hubs.  The computational results of SA, GA, and TS are shown in table 2.6, 2.7 and 2.8 

respectively.  In each table, the best known solution is shown.  They are from Ernst (1996), with 

the exception of those marked with an asterisk, which are from Kratica (2007).    
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Table 2.6 Results of the SA (Averages over 30 replications) 

      Permutation  SA Permutation  SA Binary  SA Binary SA 

n p Best known 

no caching with  caching no caching with caching 

%gap stdGap time(s) stdTime %gap stdGap time(s) stdTime %gap stdGap time(s) stdTime %gap stdGap time(s) stdTime 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 151533.08 0.00 0.00 0.03 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 

  4 135624.88 0.00 0.00 0.04 0.04 0.00 0.00 0.03 0.01 0.00 0.00 0.04 0.01 0.00 0.00 0.02 0.10 

40 2 177471.67 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 

  3 158830.54 0.00 0.00 0.23 0.14 0.00 0.00 0.16 0.10 0.00 0.00 0.24 0.09 0.00 0.00 0.17 0.10 

  4 143968.88 0.00 0.00 0.29 0.32 0.00 0.00 0.30 0.01 0.00 0.00 0.35 0.12 0.00 0.00 0.32 0.30 

50 2 178484.29 0.03 0.04 2.50 0.00 0.03 0.06 2.09 0.01 0.04 0.06 2.78 0.01 0.04 0.05 2.26 0.06 

  3 158569.93 0.00 0.00 0.55 0.00 0.00 0.00 0.47 0.06 0.00 0.00 0.59 0.00 0.03 0.02 0.51 0.00 

  4 143378.05 0.01 0.06 1.68 0.02 0.00 0.00 1.14 0.12 0.03 0.01 1.25 0.05 0.01 0.03 1.14 0.01 

100 5 136929.44 0.00 0.01 123.43 0.63 0.00 0.00 112.85 3.50 0.02 0.01 137.00 0.77 0.00 0.00 115.62 3.08 

  10 106469.57 2.87 1.01 206.10 1.20 1.80 1.13 202.44 1.06 2.60 0.82 230.48 1.02 2.62 1.42 187.82 1.27 

  15 90534.00 J 4.65 1.54 120.66 1.05 4.46 1.36 113.82 1,54 5.71 0.94 172.53 1.52 4.73 0.87 114.62 1.36 

  20 80270.10 J 6.96 1.39 122.29 4.63 6.30 0.63 115.00 3.33 6.60 2.19 310.60 1.60 6.42 1.22 285.90 1.62 

200 5 140175.65J 0.29 0.12 486.73 2.97 0.20 0.15 455.82 4.23 0.31 0.12 538.85 3.52 0.23 0.08 462.58 3.04 

  10 110147.66J 1.46 1.39 458.77 4.62 2.02 1.08 446.69 4.72 5.05 1.33 506.06 3.72 3.37 0.85 447.66 6.29 

  15 94496.406J 4.22 2.35 462.38 6.18 5.43 1.77 434.96 6.83 3.27 2.01 492.95 8.62 3.87 2.33 439.00 7.01 

  20 85129.3J 4.54 2.38 480.64 7.43 4.37 2.19 457.57 10.95 6.05 2.26 535.05 12.16 6.34 2.35 470.88 7.67 

*J. Kratica (2007) 
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Table 2.7 Results of the GA (Averages over 30 replications) 

      Permutation  GA Permutation  GA Binary  GA Binary GA 

n p Best known 

no caching with  caching no caching with caching 

%gap stdGap time(s) stdTime %gap stdGap time(s) stdTime %gap stdGap time(s) stdTime %gap stdGap time(s) stdTime 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 151533.08 0.00 0.00 3.06 0.01 0.00 0.00 1.39 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.02 0.01 

  4 135624.88 0.00 0.00 9.35 0.01 0.00 0.00 3.32 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.03 0.01 

40 2 177471.67 0.00 0.00 12.24 0.03 0.00 0.00 5.34 0.01 0.00 0.00 0.16 0.00 0.00 0.00 0.02 0.00 

  3 158830.54 0.00 0.00 15.06 0.08 0.00 0.00 6.59 0.06 0.00 0.00 0.42 0.02 0.00 0.00 0.02 0.00 

  4 143968.88 0.00 0.00 22.33 0.34 0.00 0.00 12.68 0.04 0.00 0.00 1.65 0.08 0.00 0.00 0.08 0.01 

50 2 178484.29 0.00 0.00 22.64 0.52 0.00 0.00 15.45 0.16 0.00 0.00 0.55 0.03 0.00 0.00 0.35 0.02 

  3 158569.93 0.05 0.00 28.26 0.78 0.01 0.00 23.23 0.84 0.00 0.00 0.84 0.07 0.00 0.00 0.71 0.01 

  4 143378.05 0.31 0.04 51.26 0.63 0.02 0.00 40.83 0.95 0.00 0.00 12.06 0.18 0.00 0.03 4.73 0.02 

100 5 136929.44 1.69 1.08 441.18 0.44 1.46 0.82 392.04 0.95 0.01 0.00 429.91 1.05 0.18 0.02 426.75 2.89 

  10 106469.57 7.61 1.47 461.83 1.21 7.57 1.38 412.16 2.10 1.07 0.34 433.19 1.49 0.89 0.32 430.52 2.25 

  15 90534.00 J 9.98 2.28 484.55 1.63 11.36 2.47 431.93 2.17 0.63 0.30 438.08 2.46 1.42 0.44 435.68 3.23 

  20 80270.10 J 10.83 3.03 512.33 1.98 12.73 2.72 453.87 2.23 0.85 0.38 444.09 3.06 1.26 0.50 439.32 3.4 

200 5 140175.65J 0.91 0.78 1731.55 2.16 2.13 0.94 1472.85 2.57 0.33 0.17 1700.03 20.84 0.44 0.12 1688.35 22.9 

  10 110147.66J 7.96 2..27 1767.44 2.24 8.50 2.60 1704.59 3.08 0.55 0.24 1733.64 12.46 1.52 0.66 1708.50 8.51 

  15 94496.406J 12.59 1.60 1813.35 1.28 12.61 1.93 1651.08 3.16 1.58 0.76 1732.49 7.96 1.55 0.74 1713.68 6.91 

  20 85129.3J 14.16 2.09 1880.37 2.23 14.57 2.15 1695.28 2.21 1.96 1.26 1740.69 8.37 1.64 1.23 1688.35 9.18 

*J. Kratica (2007)  
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Table 2.8 Results of the TS (Averages over 30 replications)    

N P 

Best 

known 

Permutation TS Permutation TS Binary TS Binary TS 

 no caching with caching no caching with caching 

%gap time(s) %gap time(s) %gap time(s) %gap time(s) 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 

 
3 151533.08 0.00 0.03 0.00 0.02 0.00 0.11 0.00 0.02 

 
4 135624.88 0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.02 

40 2 177471.67 0.00 0.08 0.00 0.02 0.00 0.05 0.00 0.02 

 
3 158830.54 0.00 0.14 0.00 0.05 0.00 0.08 0.00 0.05 

 
4 143968.88 0.00 0.16 0.00 0.08 0.00 0.11 0.00 0.08 

50 2 178484.29 0.00 0.20 0.00 0.13 0.00 0.11 0.00 0.27 

 
3 158569.93 0.00 0.30 0.00 0.20 0.00 0.23 0.00 0.16 

 
4 143378.05 0.00 1.11 0.00 0.56 0.00 1.09 0.00 0.72 

100 5 136929.44 0.00 0.94 0.00 0.81 0.00 1.99 0.00 1.02 

 
10 106469.57 0.00 22.67 0.00 19.40 0.00 45.50 0.00 20.12 

 
15 90534.00 

J
 0.00 27.29 0.00 23.98 0.00 53.34 0.00 24.15 

 
20 80270.10 

J
 0.00 10.63 0.00 9.74 0.00 68.82 0.00 9.84 

200 5 140175.65
J
 0.00 94.86 0.00 56.87 0.00 116.23 0.00 57.45 

 
10 110147.66

J
 0.00 299.47 0.00 254.23 0.00 381.57 0.00 243.05 

 
15 94496.406

J
 0.00 273.08 0.00 219.25 0.00 328.21 0.00 222.25 

 
20 85129.3

J
 0.23 323.46 0.23 258.42 0.23 405.21 0.23 260.93 

*J. Kratica (2007) 
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8. Analysis 

To evaluate the impact of caching on computational time and quality of each algorithm, 

we consider the use of statistical methods. If normality assumption are not satisfied, and 

computational results of algorithms are continuous variables, then Wilcoxon Signed Rank test is 

used.  Wilcoxan signed rank test are tested in section 8.1 and 8.2.  The results from each 

algorithm in the same representation are compared to investigate the effect of caching and type 

of representation in tables 2.10 and 2.11.  Gap and computational time of GA, SA, and TS are 

shown in figure 2.8 and 2.9 respectively. 

 

 

Figure 2.8 Gap of GA, SA, and TS 
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Figure 2.9 Computational time of GA, SA, and TS 

 

8.1 Evaluating the impact of caching on running time 

If the quality of solutions is similar, caching should only be used if the running time is no 

longer with caching.  To investigate the impact of using caching on running time, the Wilcoxon 

signed rank test is applied for comparisons on computational time between no caching (nC) and 

caching version (C) for each algorithm.  We illustrate the Wilcoxon signed rank test comparing 

the running time of the non-caching and caching binary GA in table 2.9.   

  

Table 2.9 Wilcoxon signed rank test for the time of binary GA with (C) and without caching 

(nC)  

    Binary  GA     Signed 

n P 

 nC 

time(s) 

  C 

time(s) abs diff Rank   Rank 

10 2 0 0 0.00 - - 

10 3 0 0 0.00 - - 

10 4 0 0 0.00 - - 
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Table 2.9 (continued).  Wilcoxon signed rank test for the time of binary GA with (C) and without 

caching (nC)  

    Binary  GA     Signed 

n P 

 nC 

time(s) 

  C 

time(s) abs diff Rank   Rank 

20 2 0 0 0.00 - - 

20 4 0.03 0.03 0.00 - - 

20 3 0.03 0.02 0.01 1 1 

50 3 0.84 0.71 0.13 2 2 

40 2 0.16 0.02 0.14 3 3 

50 2 0.55 0.35 0.20 4 4 

40 3 0.42 0.02 0.40 5 5 

40 4 1.65 0.08 1.57 6 6 

100 15 438.08 435.68 2.40 7 7 

100 10 433.19 430.52 2.67 8 8 

100 5 429.91 426.75 3.16 9 9 

100 20 444.09 439.32 4.77 10 10 

50 4 12.06 4.73 7.33 11 11 

200 5 1700.03 1688.35 11.68 12 12 

200 15 1732.49 1713.68 18.81 13 13 

200 10 1733.64 1708.5 25.14 14 14 

200 20 1740.69 1688.35 52.34 15 15 

 

Hypothesis 

H0:  means of the times of binary GA with and without caching are the same 

H1:  means of the times of binary GA without caching are more than that from binary GA with 

caching  

 

In this example, we have Ntest = 15 different running times over the set of N=20 

experimental results.  The sum of the ranks W = 120.  To compute the value of the test statistic 

with  = 0.05, we use the following formula. 
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In this case W > W1- , so we reject H0, and conclude that  the means of the times from binary 

GA with no caching solutions are more than that from binary GA with caching solutions.  

The Wilcoxon signed rank test is also applied for time comparisons between the caching 

and non-caching versions of all algorithms, as shown in table 2.10.  We find that implementing 

caching implementation in each algorithm can speedup running time significantly. 

 

Table 2.10 Time comparisons between no caching and caching algorithm for each algorithm 

 

 

 

 

 

 

8.2 Evaluating metaheuristics performance 

To evaluate performance of each algorithm, the percentage of gaps obtained from GA 

and SA in each representation with and without caching are analyzed by Wilcoxon signed rank 

test and are displayed as statistical results in table 2.11.  TS gaps are the same due to the fact that 

it has no randomness. 

 

 

 

 

 N Ntest 

Wilcoxon 

statistic W 1-α Comparison 

GA time BGA – BCGA 20 15 120 58.1* 

 
pGA – pCGA 20 16 136 61.9* 

SA time BSA – BCSA 20 15 120 58.1* 

 
pSA – pCSA 20 15 118.5 58.1* 

TS time BTS – BCTS 20 16 129 61.9* 

 
pTS – pCTS 20 17 153 69.71* 
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Table 2.11    % Gap comparisons  

  

Comparison N Ntest Wilcoxon statistic W 1-α 

  BCGA - BGA   20 8 16 23.56 

GA  gap  pCGA - pGA  20 10 27 32.37 

  pGA - BCGA  20 10  55 32.37* 

  BSA – BCSA 20 10 28  32.37 

SA gap pSA – pCSA 20 8 23 23.56 

  pSA- BSA  20 10  18 32.37 

*Significantly different 

 

Table 2.12 Time comparisons  

  

Comparison N Ntest Wilcoxon statistic W 1-α 

  pGA – pCGA 20 16 136 61.9*  

GA time  BGA - BCGA   20 15  120 58.1* 

  pCGA  - BCGA  20 16 4  61.9    

  BSA – BCSA 20 15 120 58.1* 

SA time  pSA – pCSA 20 15 118.5 58.1* 

  BCSA – pCSA 20 13 77.5 47.22* 

  BTS – BCTS 20 16 129 61.9* 

TS time  pTS – pCTS 20 17 153 69.71* 

  BCTS – pCTS 20 11 54 37.12* 

*Significantly different 

 

Table 2.13 Winner comparisons 

  

Comparison N N test Wilcoxon statistic W 1-α 

Gap PCSA - BCGA   20 9 40 27.86*  

 

BCGA - PCTS   20 8 36 23.56* 

Time PCSA - BCGA   20 15 13 58.1 

  PCSA - PCTS   20 13 89 47.22* 

*Significantly different 
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8.3 Discussion 

Based on Table 2.11, we see that there is not a statistically significant difference in 

performance between the binary GAs with and without caching.  Since there is a statistically 

significant difference in running time between the binary GAs with and without caching, with 

the binary caching GA being faster (as shown in Table 2.12), we prefer the binary caching GA. 

In the permutation GA analysis, there is not a statistically significant difference between 

the performance of the permutation GAs with and without caching.  Since there is a statistically 

significant difference in running time between the binary SAs with and without caching, the 

permutation GA with caching is faster, we prefer the permutation caching GA.   

When comparing the binary caching GA and the permutation GA without caching based 

on performance, we find the binary caching GA performs better.  However, there is not a 

statistically significant difference in running time between the binary caching and the 

permutation caching GAs.  Therefore, we conclude that the recommended GA is the binary 

caching GA. 

Based on Table 2.11, we see that there is not a statistically significant difference in 

performance between the binary SAs with and without caching.  Since there is a statistically 

significant difference in running time between the binary SAs with and without caching, with the 

binary caching SA being faster (as shown in Table 2.12), we prefer the binary caching SA.   

In the permutation SA analysis, we find the same results: there is not a statistically 

significant difference between the performance of the permutation SAs with and without caching 

while there is a statistically significant difference in the running times, with the permutation 

caching SA being faster.  Therefore, we prefer the permutation caching SA 
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When comparing the binary caching SA and the permutation caching SA based on 

performance, we find no statistically significant difference.  However, there is a statistically 

significant difference in running time between the binary caching SA and the permutation 

caching SA.  Therefore, we conclude that the recommended SA is the permutation caching SA. 

Since the TS has no randomness, there is no difference between the performance of the 

permutation TSs with and without caching while there is a statistically significant difference in 

the running times, with the permutation caching TS being faster.  Therefore, we prefer the 

permutation caching TS 

In the binary TS analysis, there is no difference between the performance of the binary 

TSs with and without caching. However, there is a statistically significant difference in running 

time between the binary TSs with and without caching, with the binary caching TS being faster 

(as shown in Table 2.12), we prefer the binary caching TS.   

When comparing the binary caching TS and the permutation caching TS based on 

computational time, we find statistically significant difference in the running times between the 

binary caching TS and the permutation caching TS, with the permutation caching TS being 

faster, we prefer the permutation caching TS.   

 Now, we compare the recommended GA, SA and TS versions to each other. When 

comparing the binary caching GA and the permutation caching SA based on performance, we 

find the binary caching GA performs better. 

Based on Table 2.13, there are statistically significant differences between the running 

times of the binary caching GA and the permutation caching SA: the permutation SA with 

caching is faster but   the binary caching GA performs better, we prefer the binary caching GA.   
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There is a statistically significant difference between the running time of the permutation 

caching TS with and the binary caching GA, we find the   permutation caching TS being faster.  

In the performance analysis, we find there is a statistically significant difference between the 

performance of the permutation caching TS and the binary caching GA, with the permutation 

caching TS performs better.  Therefore, we conclude that the recommended algorithm is the 

permutation caching TS. 

 

Comparative performance of TABUHUB and tabu search   

Based on computational results of TABUHUB (Skorin. 1994 and Perez, 2004), the 

results clearly demonstrate that TS performs better than TABUHUB both solution quality and 

computational times.   In addition, TS is capable to solve larger scale AP instances up to 200 

nodes. 

 

9. Conclusions 

 GA, SA, and TS were proposed to solve the USApHMP problem.  The results show that 

caching greatly affects the computational time of GA, SA, and TS.  Consequently, TS 

performance is competitive among other algorithms in terms of computational time and solution 

quality.  We hypothesize a few reasons why TS outperforms the other algorithms.  First, TS has 

strength in its deterministic scheme, which focuses on necessary stages by using adaptive 

memory to avoid local optima and long-term memory to expand the search space.  Second, the 

single exchange location method is effective because it considers the initial hub set based on the 

amount of flow to find the optimal location of hubs in a short time.  Accordingly, all TS 

algorithms reach smaller gaps in shorter periods of time compared with GAs and SAs.  GA has 
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gains in its ability to both randomly search to explore more space and to hill climb to select 

highly fit individuals to create the next generation.  Therefore, GA can produce good quality 

solutions in a reasonable time as well. However, the representation as binary structures provide 

more diversity of solutions from the crossover procedure than from those developed from 

permutation, so the percentage of gaps of binary GA are smaller than that of permutation.  There 

are some advantages for SA implementation, as well.  First, SA allows non-improving moves via 

probabilistic acceptance to avoid local optimum. Second, the structure of SA is based on 

simplification and modification, so it only needs a few decision parameters compared to GA and 

TS.  In these problems, the reheating procedure is applied to improve the quality of the solution 

when the instant temperature is low and SA converges to local optimal. For small problems, SA 

reaches optimality very fast; however, in large-sized problems, SA tends to be restricted in terms 

of search space.     

In USApHMP, to choose p hubs from n nodes, the number of possible hub sets is equal to 

!)!(

!

ppn

n


.  After one hub set is obtained, (n-p)(p-1) possible solutions are generated along with 

reallocation procedure.  In this case, we speculate that the caching technique is effective because 

the sub-problem is an assignment problem. 
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CHAPTER THREE 

 

PATH RELINKING FOR HUB LOCATION 

 

1. Introduction 

Basic metaheuristics for USApHMP perform very effectively in some cases.  In general, 

when the size of the problem is small (10, 20, 40, and 50 nodes), many metaheuristics perform 

competitively.  However, when the size of the problem is larger (more than 100 nodes), the 

quality of the solutions tends to be decreased.  Therefore, hybrid metaheuristics are introduced to 

increase the effectiveness of the algorithms.  Path-relinking metaheuristics are implemented with 

GA, SA and TS algorithms as hybrid algorithms.  In this chapter, Path Relinking metaheuristics 

are applied to investigate large instances of USApHMP to generate high quality of solutions in a 

reasonable computational time. 

 

2. Path Relinking approach 

Path Relinking (PR) was introduced by Glover in 1996 to better explore a specified space 

to intensify and diversify the solution space (Glover and Laguna,1997). The boundary of the 

search space is defined by two solutions: the initial solution and guiding solution (or reference 

set). In general, the path moves from one of the solutions, generates a neighborhood, and 

gradually selects solutions from the neighborhood toward to another solution.   PR has been  

applied to solve complex optimization problems.  Juan and Elena (2006) investigated the 

capacitated p-median problem, and implemented PR to enhance the performance of scatter 

search.   Perez et al. (2004) adapted PR to solve large instance problems in the USApHMP.  

They found that their algorithm efficiently performs up to 100 nodes.  The same authors also 

implemented PR as a hybrid algorithm based on neighborhood of variable neighborhood search 
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which are shaking, local search and neighborhood exchange. The algorithm is applied to solve 

the USApHMP up to 200 nodes (Perez et al., 2007).   

 

 

                                                         Figure 3.1 Path Relinking 

  

3. Path Relinking approach for USApHMP 

Path Relinking performs on a reference set that consists of the initial solution and guiding 

solutions to identify the solution space.  Important factors to design effective PR method include 

choosing the initial and guiding solutions and generating neighborhood structure. 

  

3.1 Choosing the initial and guiding solutions 

Several considerations to select the reference set are discussed in the literature 

(Ghamlouche et al., 2004).  First, the generating reference set should consist of the local optima 

derived from construction algorithms to share common characteristics with the optimal solution. 

Second, good solutions have characteristics that should be retained while allowing diversified 

solution in relation to the reference set.  Finally, diversification and intensification is ensured by 

starting with a good quality solution from base algorithms and moving to a diversified solution.  

In PR implementation, the guiding solution is chosen from the best solution obtained from the 
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base algorithm to intensify the attractive solution and the initial solution is selected from a local 

optimal solution derived from a base algorithm.    

 

3.2 Generating neighborhood structure 

            PR begins with a local optimal solution derived from local search and designated as the 

initial solution, which is then converted to the best solution found from local search or the 

guiding solution.  The neighborhood structure is based on position-based path relinking, which 

moves the index of the initial solution corresponding to the position in the target solution.  The 

tunneling is built by gradually converting the initial solution into the guiding solution and 

backward moving from the guiding solution into the initial solution to explore more solutions in 

the search space. 

 

Figure 3.2 Path Relinking for USApHMP 

 

            In this research, we consider two neighbors for each solution: change the ith hub to a 

random non-hub node and change the ith hub to the ith hub in the reference solution.  This 

procedure is continually repeated toward the guiding solution.  Later, the path gradually moves 

backward from the guiding solution to be the initial solution to explore new solutions in the same 
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path that share common characteristics with the optimal solution, by reversing the roles of the 

initial and guiding solutions 

 

3.4 Numerical example 

            To illustrate, the initial solution is (14, 28, 32, 35) and the guiding solution is (33, 34, 35, 

38). 

 

initial solution 14 28 32 35 

 

  33 34 38 35 

                      

  14 28 32 34             

                      

  14 28 32 35             

                      

  14 28 33 35             

                      

  14 28 38 35             

                      

  14 33 38 35             

                      

  14 34 38 35             

                      

  12 34 38 35             

                      

guiding solution 33 34 38 35 

    

    

 

Figure 3.3 Numerical example of Path relinking for hub location 

 

The process begins with inserting the single random hub 34 in the 4
th

 position, the last 

position of the current solution. The current solution is (14, 28, 32, 34).  Next, insert hub 35, the 

last hub from the last position of the guiding solution, into the current solution.  Now, the current 

solution is (14, 28, 32, 35).  Then, the index of the position of the hub to be replaced is shifted 
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and investigated in the same pattern, insert random single hub 33 to generate one neighborhood 

(14, 28, 33, 35) and insert the hub 38 of the same position in the guiding solution. Then, the 

current solution is (14, 28, 38, 35).  This procedure is repeated until the neighborhood includes 

the guiding solution. 

 

 

guiding solution 33 34 38 35 

  

14 28 32 35 

           

 

33 34 30 32 

      

           

 

33 34 32 35 

      

           

 

33 39 42 35 

      

           

 

33 28 32 35 

      

           

 

33 17 32 35 

      

           

 

33 28 32 35 

      

           

 
10 28 32 35 

      

           Initial solution 14 28 32 35 

       

Figure 3.4 Numerical example of Path relinking for hub location (continue) 

 

After the path moves through the tunneling, backward moving is consequently operated as 

shown in Figure 3.4, starting with the guiding solution (33, 34, 38, 35), the neighborhood moves 

are applied in reverse until the neighborhood includes the initial solution (14, 28, 32, 35). 
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Figure 3.5 PR-local search algorithms for USApHMP procedure 

 

Procedure Path Relinking-local search Algorithm 

    Begin   

               Build the reference set, R   

                  While (iterations < Max_ iter) do 

                       Randomly select local optimal solution Xj, 

                       R = RU Xj; 

               Identify the initial solution, S0 ; 

               Identify the guiding solution, Sg ; 

        While(R ≥ 1) do 

    for  i = 1 to N  do 

         Generate neighborhood, Si , with position-based PR; 

                             Shortest allocation;                       

                             Reallocation; 

                             If Z(Si ) < Z(S* ), 

                             Then   S* = Si;  

                       If   Δ(Si, Sg) = 0, 

           Then generate neighborhood, Sgi ,to move backward; 

           If   Δ(Sgi, S0) = 0, Then update reference set; 

                Until(R = Ø)    

         End 
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The path relinking procedure is shown in Figure 3.4.  The algorithm starts with performing the 

local search algorithm iteration to obtain local optimal solution.  Then, it identifies the initial 

solution, Si and the guiding solution, Sg, from the best solution.  Later, it performs position-based 

path relinking by generating elements in the neighborhood by sharing one of hubs of the target 

solution and inserting a single random hub.  After the new hub set is generated, a non-hub node 

is connected to the nearest hub and evaluated.  To reduce computational time, the reallocation 

function is only used when the objective value of the new hub set is within 5% of the current 

incumbent.  Finally, the algorithm moves along the path toward to the guiding solution, and then 

moves backward to the original initial solution. 

 

 

4. Computational experiment 

 

In this section, we implement GAPR, SAPR, and TSPR to evaluate the performance of 

PR on each base algorithm. The problems are composed of 10, 20, 40, 50, 100, and 200 nodes 

based on AP data set.  Each type of hybrid algorithm consists of four versions: permutation, 

permutation with caching, binary, and binary with caching.  The path relinking hybrid algorithm 

enhance the quality of solution of almost all algorithms except TSPR.  However, the qualities of 

solutions derived from path relinking are dependent on the quality of each construction 

algorithm.  In addition, the improving percentage of gaps by implementing the path relinking is 

not completely high because characteristic of problem, USApHMP, is necessary to find every 

hub matches up to the hub set.  The computational results of permutation and binary GA, 

permutation and binary SA, and permutation and binary TS are shown in table 3.1-3.6 

respectively.  Each algorithm was applied to each data set 30 times, and the averages are shown.    

 



63 

 

 

Table 3.1 Results of the Binary GAPR (Averages over 30 replications) 

 

N P 

Best 

known 

Binary GA Binary GAPR Binary GA Binary GAPR 

no caching no caching with caching with caching 

%gap time(s) %gap time(s) %gap time(s) %gap time(s) 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 151533.08 0.00 0.03 0.00 0.01 0.00 0.02 0.00 0.01 

  4 135624.88 0.00 0.03 0.00 0.01 0.00 0.03 0.00 0.00 

40 2 177471.67 0.00 0.16 0.00 0.14 0.00 0.02 0.00 0.04 

  3 158830.54 0.00 0.42 0.00 1.07 0.00 0.02 0.00 0.04 

  4 143968.88 0.00 1.65 0.00 2.37 0.00 0.08 0.00 1.52 

50 2 178484.29 0.00 0.55 0.00 1.56 0.00 0.35 0.00 1.34 

  3 158569.93 0.00 0.84 0.00 2.44 0.00 0.71 0.00 1.45 

  4 143378.05 0.00 12.06 0.51 21.63 0.00 4.73 0.00 22.01 

100 5 136929.44 0.01 429.91 0.16 437.22 0.18 426.75 0.15 214.03 

  10 106469.57 1.07 433.19 0.08 360.82 0.89 430.52 0.41 353.42 

  15 90534.00 
J
 0.63 438.08 0.73 584.39 1.42 435.68 0.84 573.72 

  20 80270.10 
J
 0.85 444.09 0.84 535.35 1.26 439.32 1.05 527.50 

200 5 140175.65
J
 0.33 1700.03 0.28 2182.70 0.44 1688.35 0.64 2044.20 

  10 110147.66
J
 0.55 1733.64 0.81 2203.08 1.52 1708.50 1.57 2159.04 

  15 94496.406
J
 1.58 1732.49 1.52 2264.63 1.55 1713.68 1.48 2223.90 

  20 85129.3
J
 1.96 1740.69 1.92 2887.06 1.64 1688.35 1.92 2714.56 

*J. Kratica (2007) 
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Table 3.2 Results of the Permutation GAPR (Averages over 30 replications) 

 

N P 

Best 

known 

Permutation GA 

Permutation 

GAPR Permutation GA 

Permutation 

GAPR 

 no caching  no caching with caching with caching 

%gap time(s) %gap time(s) %gap time(s) %gap time(s) 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 151533.08 0.00 3.06 0.00 3.32 0.00 1.39 0.00 3.19 

  4 135624.88 0.00 9.35 0.00 10.05 0.00 3.32 0.00 7.04 

40 2 177471.67 0.00 12.24 0.00 14.05 0.00 5.34 0.00 10.25 

  3 158830.54 0.00 15.06 0.00 16.24 0.00 6.59 0.00 14.21 

  4 143968.88 0.00 22.33 0.00 20.70 0.00 12.68 0.00 21.78 

50 2 178484.29 0.00 22.64 0.00 23.90 0.00 15.45 0.45 15.80 

  3 158569.93 0.05 28.26 0.05 32.57 0.01 23.23 0.46 30.79 

  4 143378.05 0.31 51.26 0.52 63.52 0.02 40.83 1.40 46.94 

100 5 136929.44 1.69 441.18 1.63 472.31 2.29 377.38 2.42 374.07 

  10 106469.57 7.61 461.83 7.28 482.72 7.57 412.16 6.43 324.33 

  15 90534.00 
J
 9.98 484.55 6.66 517.19 11.36 431.93 9.73 342.69 

  20 80270.10 
J
 10.83 512.33 10.83 572.54 12.73 453.87 11.65 482.14 

200 5 140175.65
J
 0.91 1731.55 1.24 1865.31 2.13 1472.85 2.63 1706.63 

  10 110147.66
J
 7.96 1767.44 5.74 2157.53 8.50 1704.59 8.52 2104.96 

  15 94496.406
J
 10.36 1813.35 9.98 2298.26 12.61 1651.08 11.07 2164.24 

  20 85129.3
J
 14.16 1880.37 12.39 2916.00 14.57 1695.28 14.45 2723.28 

*J. Kratica (2007) 
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Table 3.3 Results of the Binary SAPR (Averages over 30 replications)  

 

   

Binary SA Binary SAPR Binary SA Binary SAPR 

N P 

Best 

known 

no caching no caching with caching with caching 

%gap time(s) %gap time(s) %gap time(s) %gap time(s) 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

3 151533.08 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 

 

4 135624.88 0.00 0.04 0.00 0.03 0.00 0.02 0.00 0.02 

40 2 177471.67 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.02 

 

3 158830.54 0.00 0.24 0.00 0.18 0.00 0.17 0.00 0.06 

 

4 143968.88 0.00 0.35 0.00 0.44 0.00 0.32 0.00 0.36 

50 2 178484.29 0.04 2.78 0.05 3.81 0.04 2.26 0.00 2.63 

 

3 158569.93 0.00 0.59 0.00 5.32 0.03 0.51 0.03 3.24 

 

4 143378.05 0.03 1.25 0.01 1.40 0.01 1.14 0.01 1.31 

100 5 136929.44 0.02 137.00 0.00 128.93 0.00 115.62 0.00 111.42 

 

10 106469.57 2.60 230.48 2.56 240.61 2.62 187.82 1.87 213.56 

 

15 90534.00 
J
 5.71 172.53 3.23 183.59 4.73 114.62 3.12 139.63 

 

20 80270.10 
J
 6.60 310.60 4.81 412.54 6.42 285.90 5.93 247.39 

200 5 140175.65
J
 0.31 538.85 0.16 872.89 0.23 462.58 0.23 765.78 

 

10 110147.66
J
 5.05 506.06 3.39 1865.53 3.37 447.66 2.73 1273.24 

 

15 94496.406
J
 3.27 492.95 3.20 1822.57 3.87 439.00 3.28 1075.33 

  20 85129.30
J
 6.05 535.05 4.58 2153.42 6.34 470.88 4.89 1286.47 

*J. Kratica (2007) 
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Table 3.4 Results of the Permutation SAPR (Averages over 30 replications) 

 

      Permutation  SA Permutation  SAPR Permutation SA 

Permutation 

SAPR 

N P 

Best 

known 

no caching no caching with caching with caching 

%gap time(s) %gap time(s) %gap time(s) %gap time(s) 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 151533.08 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.01 

  4 135624.88 0.00 0.04 0.00 0.02 0.00 0.03 0.00 0.02 

40 2 177471.67 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 

  3 158830.54 0.00 0.23 0.00 0.12 0.00 0.16 0.00 0.05 

  4 143968.88 0.00 0.29 0.00 0.48 0.00 0.30 0.00 0.36 

50 2 178484.29 0.03 2.50 0.00 3.44 0.03 2.09 0.00 2.74 

  3 158569.93 0.00 0.55 0.00 0.62 0.00 0.47 0.00 0.34 

  4 143378.05 0.01 1.68 0.00 2.63 0.00 1.14 0.00 2.30 

100 5 136929.44 0.00 123.43 0.00 124.30 0.00 112.85 0.00 113.49 

  10 106469.57 2.87 206.10 2.36 214.50 1.80 202.44 1.78 211.56 

  15 90534.00 
J
 4.65 120.66 3.23 142.34 4.46 113.82 3.08 140.92 

  20 80270.10 
J
 6.96 122.29 4.75 202.53 6.30 115.00 4.26 200.65 

200 5 140175.65
J
 0.29 486.73 0.24 687.87 0.20 455.82 0.16 573.92 

  10 110147.66
J
 1.46 458.77 1.44 1344.28 2.02 446.69 2.02 1562.14 

  15 94496.406
J
 4.22 462.38 3.65 1208.62 5.43 434.96 3.04 1266.43 

  20 85129.3
J
 4.54 480.64 4.21 1945.77 4.37 457.57 4.30 1646.08 

*J. Kratica (2007) 
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Table 3.5  Results of the Binary TSPR (Averages over 30 replications) 

 

N P 

Best 

known 

Binary TS Binary TSPR Binary TS Binary TSPR 

no caching no caching with caching with caching 

%gap time(s) %gap time(s) %gap time(s) %gap time(s) 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 

  3 151533.08 0.00 0.11 0.00 0.10 0.00 0.02 0.00 0.00 

  4 135624.88 0.00 0.02 0.00 0.10 0.00 0.02 0.00 0.00 

40 2 177471.67 0.00 0.05 0.00 0.10 0.00 0.02 0.00 0.06 

  3 158830.54 0.00 0.08 0.00 0.10 0.00 0.05 0.00 0.10 

  4 143968.88 0.00 0.11 0.00 0.40 0.00 0.08 0.00 0.10 

50 2 178484.29 0.00 0.11 0.00 0.40 0.00 0.27 0.00 0.40 

  3 158569.93 0.00 0.23 0.00 0.42 0.00 0.16 0.00 0.39 

  4 143378.05 0.00 1.09 0.00 1.36 0.00 0.72 0.00 0.94 

100 5 136929.44 0.00 1.99 0.00 2.48 0.00 1.02 0.00 1.16 

  10 106469.57 0.00 45.50 0.00 49.53 0.00 20.12 0.00 20.19 

  15 90534.00 
J
 0.00 53.34 0.00 54.22 0.00 24.15 0.00 25.41 

  20 80270.10 
J
 0.00 68.82 0.00 70.42 0.00 9.84 0.00 12.38 

200 5 140175.65
J
 0.00 116.23 0.00 118.56 0.00 57.45 0.00 58.66 

  10 110147.66
J
 0.00 381.57 0.00 383.54 0.00 243.05 0.00 274.26 

  15 94496.406
J
 0.00 328.21 0.00 329.40 0.00 222.25 0.00 223.48 

  20 85129.3
J
 0.23 405.21 0.23 427.26 0.23 260.93 0.23 304.33 

*J. Kratica (2007) 
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Table 3.6 Results of the permutation TSPR (Averages over 30 replications) 

 

N P 

Best 

known 

Permutation TS 

Permutation 

PRTS Permutation TS 

Permutation 

PRTS 

 no caching  no caching with caching with caching 

%gap time(s) %gap time(s) %gap time(s) %gap time(s) 

10 2 167493.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3 136008.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  4 112396.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 2 172816.69 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00 

  3 151533.08 0.00 0.03 0.00 0.06 0.00 0.02 0.00 0.06 

  4 135624.88 0.00 0.03 0.00 0.06 0.00 0.02 0.00 0.06 

40 2 177471.67 0.00 0.08 0.00 0.10 0.00 0.02 0.00 0.10 

  3 158830.54 0.00 0.14 0.00 0.20 0.00 0.05 0.00 0.10 

  4 143968.88 0.00 0.16 0.00 0.20 0.00 0.08 0.00 0.10 

50 2 178484.29 0.00 0.20 0.00 0.24 0.00 0.13 0.00 0.14 

  3 158569.93 0.00 0.30 0.00 0.32 0.00 0.20 0.00 0.25 

  4 143378.05 0.00 1.11 0.00 1.27 0.00 0.56 0.00 0.69 

100 5 136929.44 0.00 0.94 0.00 1.02 0.00 0.81 0.00 1.87 

  10 106469.57 0.00 22.67 0.00 22.80 0.00 19.40 0.00 20.53 

  15 90534.00 
J
 0.00 27.29 0.00 28.57 0.00 23.98 0.00 24.37 

  20 80270.10 
J
 0.00 10.63 0.00 12.05 0.00 9.74 0.00 10.63 

200 5 140175.65
J
 0.00 94.86 0.00 97.24 0.00 56.87 0.00 58.50 

  10 110147.66
J
 0.00 299.47 0.00 302.90 0.00 254.23 0.00 254.92 

  15 94496.406
J
 0.00 273.08 0.00 289.96 0.00 219.25 0.00 220.47 

  20 85129.3
J
 0.23 323.46 0.23 438.41 0.23 258.42 0.23 272.45 

*J. Kratica (2007) 



8. Analysis 

 

To evaluate the impact of path relinking on quality of each algorithm and running 

time, Wilcoxan signed rank test are tested in section 8.1. The gaps from SAPR and 

GAPR in two representations are shown in figure 3.6 - 3.7. The results from comparing 

percentage of gap and computational time are shown in table 3.7. 

 

Figure 3.6 Gap of SAPR 

 

 

Figure 3.7 Gap of GAPR 
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8.1 Evaluating metaheuristics performance 

To evaluate performance of each algorithm, the percentages of gaps obtained 

from GAPR and SAPR, in each representation with and without caching are analyzed by 

Wilcoxan signed rank test and are displayed as statistical results in table 3.7.  The 

methodology is the same as in the previous chapter. 

 

 Table 3.7 Time and performance comparisons 

  

N Ntest 

Wilcoxon 

statistic W 1-α Comparisons 

  BGAPR - BCGAPR 20 15 116 58.1*   

GAPR time  pGAPR - pCGAPR 20 16 134 61.9* 

  pCGAPR  - BCGAPR  20 16 60 61.9  

  BCGAPR – BGAPR 20 8 26 23.56* 

GAPR  gap  pCGAPR - pGAPR   20 11 61 37.11* 

  pGAPR – BGAPR 20 10 55 32.37* 

  BSAPR – BCSAPR 20 14 105 58.1* 

SAPR time  pSAPR – pCSAPR 20 13 69 47.22* 

  BCSAPR – pCSAPR 20 13 37 47.22 

   BSAPR -BCSAPR  20 9 22 27.85 

SAPR gap  pSAPR – pCSAPR 20 7 20.5 23.56 

   BCSAPR - pCSAPR   20 9 45 27.85* 

  BTSPR – BCTSPR 20 15 120 58.1* 

TSPR time  pTSPR – pCTSPR 20 14 98 52.56* 

  BCTSPR – pCTSPR 20 14 82 52.56* 

TS gaps are the same due to the same procedure. 

*Significantly difference  

8.2 Discussion 

  In the permutation GAPR analysis, there are statistically significant differences 

between the performance and running times of the binary GAPRs with and without 
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caching: the binary GAPR with caching is faster (as shown in table 3.7) but the binary 

GAPR without caching performs faster.   

In the binary GAPR analysis, we see that there is a statistically significant 

difference in performance between the permutation GAPRs with and without caching.  

The permutation GAPR without caching performs better, while the permutation caching 

GAPR performs faster.  We prefer the permutation GAPR without caching. 

When comparing the binary caching GAPR and the permutation GAPR without 

caching based on performance, we find the binary GAPR without caching performs 

better. 

Based on table 3.7, we see that there is no a statistically significant difference in 

performance between the binary SAPRs with and without caching.  Since there is a 

statistically significant difference in running time between the binary SAPRs with and 

without caching, with the binary caching SA being faster , we prefer the binary caching 

SAPR.   

In the permutation SAPR analysis, we find the same results: there is not a 

statistically significant difference between the performance of the permutation SAPRs 

with and without caching while there is a statistically significant difference in the running 

times, with the permutation caching SAPR being faster.  Therefore, we prefer the 

permutation caching SAPR. 

When comparing the binary caching SAPR and the permutation caching SAPR 

based on performance, we find the permutation caching SAPR performs better.  

Therefore, we conclude that the recommended SAPR is the permutation caching SAPR. 
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In the TSPRs analysis, there is no difference among the performance of the 

TSPRs with and without caching.   While optimal solutions are already found in all 

problems of the TSs except for the 200 nodes 20 hubs problem, the TSPRs do not find the 

best known solution. 

However, there is a statistically significant difference in running time between the 

binary TSPRs with and without caching, with the binary caching TSPR being faster (as 

shown in Table 3.7), we prefer the binary caching TSPR.   

In the permutation TSPR analysis, we find the same results: there is a statistically 

significant difference in the running times, with the permutation caching TSPR being 

faster.  Therefore, we prefer the permutation caching TSPR. 

When comparing the binary caching TSPR and the permutation caching TSPR 

based on running time, there is a statistically significant difference, with the permutation 

caching TSPR being faster.  Therefore, we conclude that the recommended TSPR is the 

permutation caching TSPR. 

 

Table 3.8 The recommended algorithms comparisons 

  

N N test Wilcoxon statistic W 1-α Comparisons 

time BGAPR - pCSAPR 20 15 115 58.1* 

  pCSAPR - pCTSPR 20 16 125.5 61.9* 

gap pCSAPR -BGAPR 20 9 39 27.85* 

  BGAPR - pCTSPR 20 9 45 27.85* 

*Significantly difference  
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In table 3.8, we compare the recommended GAPR, SAPR and TSPR versions to 

each other. When comparing the binary GAPR without caching and the permutation 

caching SAPR based on performance, we find the binary GAPR caching performs better.  

There is a statistically significant difference between the running time of the binary 

GAPR without caching and the permutation caching SAPR, we find the permutation 

caching SAPR being faster.   

Based on table 3.8, there are statistically significant differences between the 

running times of the permutation caching SAPR and the permutation caching TSPR, we 

prefer the permutation caching TSPR.   

When comparing the binary GAPR without caching and the permutation caching 

TSPR based on performance, we find statistically significant difference in the 

performance between the binary GAPR without caching and the permutation caching 

TSPR.  Therefore, we conclude that the recommended PR is the permutation caching 

TSPR. 

 

9. Conclusion 

In this research, Path Relinking is implemented with the four types of 

representations: permutation, permutation with caching, binary, and binary with caching.  

The computations are based on the AP data set.  Since PR is based on a random 

approach, the percentages of gaps are not directly related to the initial solution 

construction algorithm.  In addition, selecting good quality shortest network for 

reallocation can affect to computational time.  However, computational times from PR 



74 

 

based on caching algorithms are faster than algorithms without caching.  In summary, 

using Path Relinking to hybridize heuristics can improve the quality of solutions around 

their construction algorithms.  Random methods are not well suited for problem where 

lots of hub sets have to match up due to high interaction between elements.    
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CHAPTER FOUR 

 

METAHEURISTICS FOR THE UMApHMP 

 

1. Introduction 

In large transportation networks, many cities function as origins and destinations. 

For example, establishing and operating several airport hubs leads to more efficient 

performance, reduced travelling time and costs. In large airline networks many flights 

route from a city to different hub airports depending on passenger destination. In this 

case, the uncapacitated multiple allocation p-hub median location model is suitable to 

minimize total transportation. The problem of allocating non-hub node to hubs is NP-

hard as is the p-hub median problem (Kyra, 1999). The multiple allocation p-hub median 

problem is concerned with locating hubs and allocating non-hub nodes to hub nodes.  

Non-hub nodes are allowed to be allocated to more than one hub depending on the 

destination of the flows originating at that node. We call non-hub nodes which are 

allocated to more than one hub the multiple nodes.     

 

2. Metaheuristics 

Since UMApHMP belongs to the class of NP-hard problems, at some point, exact 

optimization methods will have difficulty solving certain instances.  The optimization 

software, AMPL, can solve the UMApHMP instances based on the AP data set up to 30 

nodes.  

Ernst (1998) formulated an ILP for UMApHMP, resulting in the run times displayed in 

table 4.1 for the same computational environment. These problems require more memory 
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than USApHMP.  For the 20-node problem, UMApHMP begins to consume two to three 

times the amount of computational time of USApHMP as shown in table 4.1. 

Additionally, when the number of nodes is larger than 40, AMPL reported that too much 

memory was used. 

             Table 4.1 Result from mathematic programming for UMApHMP 

 

n p Obj 

AMPL 

time(s) 

10 2 163603.9436 0.1875 

  4 107354.7300 0.3906 

20 2 168599.7873 3.2967 

  4 131665.4302 11.2800 

30 2 170906.7072 9.1875 

  4 138035.9339 41.2031 

40 2 too much memory  used 

   4 too much memory  used 

 50 2 too much memory  used 

  

 

We attempt to solve the UMApHMP using the formulation by Ernst in 1998 

implemented in CPLEX 11.2 with AMPL on an Intel Core Duo 1.66 GHz with 1 GB RAM.  

The run times are displayed in table 4.1.  For 20 nodes problem, UMApHMP consumes 

2-3 times of computational time of USApHMP.  Additionally, when the number of nodes 

is more than 30, AMPL reported too much memory used.  Therefore, a metaheuristic is 

proposed to solve the problem especially when size of problem is large up to 200 nodes.     

In chapter 2 and chapter 3, we have investigated the USApHMP with metaheuristics and 

hybrid metaheuristics. Based on the computational experiment in section 7 of chapter 2, 

we found that the most effective algorithm for the USApHMP is the permutation tabu 
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search. Due to the complexity of the UMApHMP, very little research about 

metaheuristics for the UMApHMP is available . Therefore, in chapter 4 we will extend 

the permutation tabu search to solve the UMApHMP.   

   

2.1 Solution representation   

A two dimensional array is used to represent the  solution.  The size of the array is 

equal to nn 2 .  The two dimensional array expresses the path of each O-D pair.  The 

row represents the origin node and the column identifies the destination node.  Recall that 

in the UMApHMP, flow originates at a node i, passes through hubs k and possibly l, and 

then arrives at its destination j.  The intermediate hubs of for O-D pairs represented by 

the row and column combination i and j are represented in column k and l respectively. 

For example, consider a problem with n = 10, p = 3 in Figure 4.1.  The route of 

flows from origin node 2 to destination node 6 is 2-3-8-6.  Therefore, 3 appears in 

column k of origin node 2 and 8 is in column l of destination node 6. If a flow only passes 

through one hub, that hub is recorded in both columns k and l, such as in the case of the 

flow from node 1 to 2; the path is 1-3-3-2, or 1-3-2.    
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Figure 4.1 Solution representation for the UMApHMP 

The tabu search procedure is shown in Figure 4.2.  
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Figure 4.2 Tabu Search for the UMApHMP  procedure 

The algorithm starts with receiving the best hubs from the tabu search for the 

USApHMP and generating the initial set of multiple nodes from convex hull. Then, it 

identifies the initial solution.  Later, perform the Single Node Exchange procedure to find 

Procedure Tabu Search for the UMApHMP   

         Single Location Exchange  

       Generate multiple nodes 

      Create Convex Hull 

      Recognize the position of each hub in convex hull 

      Create straight lines to divide zone of each hub 

      Calculate distance from each node to its middle arc 

                  Set priorities of multiple nodes   

      Single Node Exchange 

           Allocate multiple nodes to the shortest origin hub 

           Evaluate  

      Choose the best set of multiple nodes  

      Single Reallocate destination hubs 

      Update tabu list  

      Update priorities of multiple nodes   

 End 
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the best set of multiple nodes.  Next, perform the shortest allocation for origin hub of 

multiple nodes (Kmj).  Then, perform Single Reallocation for destination hubs of multiple 

nodes to determine the optimally multiple allocation network. 

 

2.2 Generate initial multiple nodes 

Multiple nodes are mostly aligned between two hubs in a network.  Therefore, a 

convex hull is created to help sort the priorities of multiple nodes.  Multiple nodes are 

selected from priorities of candidate multiple nodes or distance of each candidate 

multiple node in descending order.  The distance of candidate multiple nodes is derived 

from the distance between the location of node and the middle line of its area in the 

convex hull.  Let m be the number of multiple nodes that a problem may have.  Number 

of multiple nodes, m, is defined by tuning.    A numerical example for n = 10 p= 3, m = 4 

is shown in figure 4.3. 

Numerical Example for n = 10 p= 3, m = 4 

 

Figure 4.3 generating initial multiple nodes from convex hull 
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2.3 Convex Hull  

The convex hull, the smallest enveloping polygon of p hubs, is implemented to 

determine nodes that align between hubs. In this research, the initial input of the convex 

hull is a set of p hubs.  The procedure to generate multiple nodes from convex hull as 

displayed in Figure 4.4, is below.  

 

 

Figure 4.4 Convex hull 

Firstly, create a convex hull for which some/all of p hubs are chosen to be 

boundary hubs.  Use the position of the boundary hubs in the convex hull to create arcs 

from hub to hub in clockwise order.  Next, create the straight lines from the middle point 

of the hull to the middle of arcs and calculate distance from node to its middle arc.  Set 

priorities of multiple nodes (dMj) corresponding to their distances in ascending order.  

Finally, choose multiple nodes to construct multiple allocation networks from their 
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priorities.  Note that it is possible that fewer than p hubs are used to create the convex 

hull. 

 

2.4 Single Node Exchange procedure 

To seek the best set of multiple nodes for the solution, the Single Node Exchange 

procedure is implemented by changing exactly one node in each solution.  Therefore, the 

neighborhoods consist of )]1([  mpnm  solutions.  For n = 10, p = 3 and m = 4, the 

neighborhood has 16 solutions.  Then, the shortest allocation procedure is applied to find 

the best origin hubs of each O-D pair by fixing destination hub corresponding to the 

initial solution derived from the USApHMP.  Next, evaluate and choose the best 

solutions to be the initial solution of the next iteration.  These steps are repeatedly 

continued until no further improvement. 

 

Table 4.2   Single Node Exchange procedure to seek the best set of multiple node   
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For Tabu list, the deleted node from each iteration will be recorded in the tabu list. In this 

numerical example, 2 and 4 are kept in the list for iteration 1 and 2, respectively.  

 

2.5 Single Reallocation Hub for multiple nodes 

Multiple allocation has flexibility that allows multiple nodes connect to more than 

one hub node for minimizing transportation cost.  After a set of multiple nodes is 

obtained, Single Reallocation Hub for multiple nodes is applied to find a good allocation. 

To reallocate the destination hub over a list of potential hubs indicated by l1 to lp, the 

transportation cost of flow from i to j is defined below.  

),...,,,min( 321 jlpkijlkijlkijlki CostCostCostCost   

where ni , mj .   

We have applied Single Reallocation Hub for multiple nodes to keep the lowest 

transportation cost. There are p potential destination hubs for a path.  Therefore, number 

of possible solutions is nmp  .    

 

2.6 Long term memory 

In order to obtain diversified solutions, long term memory is applied to be a 

criterion to update a new starting solution.  After multiple nodes are selected, the 

distances will be penalized by doubling their values, so that different sets of multiple 

nodes will be selected, as displayed in table 4.3.  
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Table 4.3 Numerical example: distance of selected multiple nodes.   

 

For example, multiple nodes 4, 2, 9, and 5 are selected in iteration 0.  Their 

distances are multiplied by two, as shown in the row for iteration 1.  The same steps are 

repeated.  For example, assume the long term memory length is 3.  When the current 

iteration is equal to the setting long term memory, a new starting solution is generated by 

updating priorities of candidate multiple nodes as shown in table 4.4.   

 

Table 4.4 Numerical example: updating priorities of candidate multiple nodes.   

 

Priorities of candidate multiple nodes are updated based on their distance in ascending 

order. 

 

3. Computational environment   

The algorithms are coded in C Programming language.  The computation is 

performed in the high throughput computing pool of Clemson‘s Palmetto cluster in Linux 

environment.   
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4. Stopping criteria 

This procedure will stop when no new incumbent has been found for at least a 

fixed number of consecutive iterations.  In addition, the TS will be stopped when the gap 

is less than a preset value.   

100*)1
)  ( 

(% 
SolOptimalorBestKnown

Incumbent
Gap  

The preset value is approximately 0.5% of the difference between the incumbent and the 

optimal or best known solution.       

 

5. Computational Experiments  

 

To evaluate the computational results of TS for the UMApHMP, many sizes of 

the AP data set have been used.  The data set contains 200 nodes, with smaller problems 

created by selecting subsets of those 200 nodes. For each problem size, the number of 

hubs is equal to 2, 3, 4, or 5 hubs.  Nearly all algorithms obtain optimal solutions for 

small problems (10, 20, 40, and 50 nodes).  Note that each problem is only solved once, 

since the proposed tabu search has no randomness.  The gap and computational time of 

MultipleTS are displayed in figure 4.5 and 4.6. 
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Figure 4.5 Gap of MultipleTS 

 

 

Figure 4.6 Computational time of MultipleTS 
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 Table 4.5 Computational results  

n p Optimal 

Best found by 

TS Gap (%) Time (s) 

10 2 163603.94 163603.94 0.0000 0.35 

 

3 131581.79 131581.79 0.0000 0.41 

 

4 107354.73 107354.73 0.0000 0.48 

20 2 168599.79 168599.79 0.0000 0.34 

 

3 148048.30 148048.30 0.0000 0.54 

 

4 131665.43 131665.43 0.0000 3.34 

40 2 173415.96 173415.96 0.0000 28.63 

 

3 155458.61 155458.61 0.0000 33.90 

 

4 140682.74 140682.74 0.0000 43.64 

50 2 174390.03 174390.03 0.0000 86.44 

 

3 156014.72 156016.60 0.0001 120.30 

 

4 141153.38 141153.38 0.0000 526.25 

100 2 176245.38 176268.02 0.0100 4303.02 

 

3 157869.93 158008.37 0.0870 5136.20 

 

4 143004.31 144056.79 0.7300 4886.83 

 

5 133482.57 134777.99 0.9700 6135.96 

200 2 178094.99 178364.00 0.1500 4452.50 

 

3 159725.11 161207.20 0.9200 5322.46 

 

For large problems, 100 and 200 nodes, TS finds nearly optimal solutions for 

every size of problems.  The computational results of TS algorithm are shown in table 

4.5.  In comparison with the benchmark techniques Ant Colony Algorithm proposed by 

Kang, 2008 and the evolutionary based approach proposed by Marija, 2010, we find our 

tabu search performs better than Ant Colony Algorithm in quality of solution.  Up to 

now, the most effective metaheuristic is the evolutionary based approach.   

A few reasons that tabu search perform effectively is described now.  First, Tabu 

search has strength in its deterministic process to avoid revisiting the same set of multiple 
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nodes and long term memory to diversify solutions.  Second, the heuristic methods are 

suitable for complex algorithm to focus on only necessary stages.  It considers the 

multiple nodes based on the ascending distance from convex hull to find the optimal 

multiple allocation network. 

 

6. Conclusion 

In this chapter, we proposed the MultipleTS for the UMApHMP.  The algorithm 

has been developed from the permutation tabu search for the USApHMP obtained from 

Chapter 2 by using the heuristic method to find optimal allocation part.  The heuristic 

methods are defining multiple nodes from convex hull, Single Node Exchange to find 

best set of multiple nodes and Single Reallocate Exchange to find the best allocation of 

the network. The AP data set up to 200 nodes was used in the computational experiment.  

From the computational results,  the MultipleTS is capable for solving small sized of 

problems and provide good solutions for large size of problems. 
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CHAPTER FIVE 

 

CONCLUSION AND FUTURE WORK 

  

5.1 Conclusion 

This dissertation has addressed two variants of the p-hub median problem: the 

uncapacitated single allocation (USApHMP) and the uncapacitated multiple allocation 

(UMApHMP) versions.  We first considered the USApHMP and then the UMApHMP, 

based on the results of the USApHMP.  

In Chapter 2, we learned that USApHMP is NP-hard, and so  developed three 

metaheuristics, namely GA, TS, SA, for the USApHMP for two types of solution 

representations. Each algorithm was implemented with  caching and without caching. 

The results distinctly show that caching can speed up running times of all algorithms.  

The performance of TS with the permutation representation is highest among other 

algorithms.  The deterministic procedures of TS such as single location exchange to find 

good hub sets and reallocation to find best allocation are applied to find optimal solution.   

The strategy of finding the best hub set first and allocating non-hub nodes to the correct 

hub afterwards appears to contribute to the performance.  For small size instances (10, 

20, 40, and 50 nodes), TS achieved optimal solutions in very short times.  For large 

problem sizes (100-200 nodes), TS found nearly optimal solutions.    
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In Chapter 3, we investigate how path-relinking may impact the performance of 

various base metaheuristics.  Path-relinking is implemented with GA, SA and TS 

algorithms as hybrid algorithms, GAPR, SAPR, and TSPR. Each type of hybrid 

algorithm consists of four versions: permutation, permutation with caching, binary, and 

binary with caching. The path relinking algorithm enhances the performance of almost all 

algorithms except TSPR  A good base metaheuristic does not require PR.  

  In Chapter 4, we proposed Multiple TS for solving the UMApHMP based on the 

results for USApHMP in Chapters 2 and 3.  The UMApHMP allow flexibility to allocate 

non-hub node more than one hub which results in lower transportation cost than the 

USApHMP.  Given a set of hubs, we identify multiple nodes (those nodes that receive 

flows or send flows to multiple hubs) using the Convex Hull, Single Node Exchange and 

Single Reallocation Exchange procedures.  For small problems (10, 20, 40, and 50 

nodes), TS finds nearly all optimal solutions. TS finds nearly optimal solutions for every 

large problem (100 and 200 nodes). Using a USApHMP initial solution combine with the 

geometric interpretation of the problem can provide good results.   

 

5.2 Future research 

Future work can focus on either problem-specific extensions or methodological 

extension.  The future work on the pHMP could investigate the capacitated versions,  

include fixed cost to open hubs and route, or the use of  incomplete hub networks (in 

which the hubs are not complete connected).  Additionally, larger real world situations 

could be investigated such as distribution network, optical fiber network, communication 
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network, and relief centers.  For example, in an evacuation situation, a network may 

connect up to 1000 homes. Thus, data sets and algorithms for extremely large number of 

nodes could be developed. 

The conclusions drawn on the use of PR in hybridizing GA, SA and TS should be 

tested on other problem types as well.  This can begin with the variants of the pHMP 

discussed above and continue with network and non-network problems. By investigating 

the performance of PR when combined with other base heuristics, we can learn about the 

strengths and weaknesses of the base heuristics, and thereby strengthen them.  
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Appendix A 

Red-black tree 

The binary search tree is among the most well-known data structure for searching, 

deleting, and inserting .  The binary search tree stores sorted data.  The basic structure of 

the binary search tree consists of a parent node, a right child node, and a left child node.  

The data arrangement structure in the binary search tree is in ascending order from left to 

right.  In other words, the data in the left side is always less than the data in the right side.  

To search a node in the tree, it is compared with the left and the right nodes in the tree 

and is traced down a path on the tree until the bottom of the tree is reached.  Therefore, 

the performance of the binary search tree depends on its height.  If the data structure is 

arranged randomly, inserting a new node into the tree tends to keep the tree balanced, 

which results in a fast operation time.  In contrast, if the data structure is arranged 

linearly, accessing the data sequentially is the worst case, or O(n) time.          

 

                                              

  Figure 1 The worst case O(n) time                     Figure 2  The best case O(log(n)) time 
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A red-black tree is a self-balanced tree that keeps the binary search tree balanced.    All 

operations in the red-black tree, such as search, insertion, and deletion, are guaranteed in 

O(log(n)) time. 

 

 

Figure 3 Red-black tree 

 

To maintain a balanced binary search tree, these properties are necessary: 

1.  A node in the tree is either red or black. 

2.  The root is black 

3.  If a node is red, then its parent is black 

4. Every path has the same number of black nodes 

To insert a new node, it has to be red. When one of the characteristics of the red-black 

tree is violated, such as a double-red violation, the violated node is colored to be black. 

Or, if the value of a left node is more than that of a right node, either the left or right node 

rotates to maintain the characteristics of the red-black tree. 
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