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ABSTRACT 

 
Grassland habitats have essentially disappeared from the Piedmont.  This 

study was conducted to determine which site characteristics in remnant 

Piedmont prairie sites could be used as indicators of suitable sites.  Eight prairie 

remnant sites located in the Piedmont of North and South Carolina were 

evaluated based on soil series, slope, aspect, landform index, temperature, and 

precipitation.  Geographic Information System technology was used to create 

layers of these characteristics to predict potential restoration sites throughout the 

North and South Carolina Piedmont.  It was found that southern aspects, slopes 

generally less than 15%, upper slope positions, and occurrence on Enon (Fine, 

mixed, active, thermic Ultic Hapludalfs), Iredell (Fine, montmorillonitic, thermic, 

Oxyaquic Vertic Hapludalfs), Mecklenburg (Fine, mixed, active, thermic Ultic 

Hapludalfs), Wilkes (Loamy, mixed, active, thermic, shallow Typic Hapludalfs and 

Wynott (Fine, mixed, active, thermic Typic Hapludalfs) soil series were common 

to all sites.  All sites had been disturbed in some manner.  Analysis of soil 

chemical and physical properties showed no significant differences for C, N, and 

Zn among locations.  Significant site differences were found for P, K, Ca, Mg, B, 

Cu, Mn, Na, Zn, acidity, pH, buffer pH, C/N ratio, K base saturation, Ca base 

saturation, Mg base saturation, Na base saturation, total base saturation, CEC, 

and percent sand, silt, and clay. When soil nutrients were rated for growth 

sufficiency, N, P, and K were found deficient, and other nutrients were sufficient 

or greater.  Base saturation ranged from 29-70%, but averaged 52% for all sites.  
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Soil texture to a 15 cm depth was loamy with sand comprising the greatest 

volume (mean 45%), followed by silt (33%) then clay (21%).  Ordination of five 

prairie remnants indicated that the sites group based on moisture.  Winter 

bentgrass (Agrostis hyemalis (Walt.) B.S.P.), yellowfruit sedge (Carex annectens 

(Bickn.) Bickn.), scarlet Indian paintbrush (Castilleja coccinea (L.) Spreng.), 

spotted water hemlock (Cicuta maculata L.), chickasaw plum (Prunus angustifolia 

Marsh.), needletip blue-eyed grass (Sisyrinchium mucronatum Michx.), and 

spring lady's tresses (Spiranthes vernalis Engelm. & Gray) are preferential to the 

most mesic site.  Remaining locations were divided based on the occurrence of 

Indian hemp (Apocynum cannabinum L.).  One location contained this species 

while four did not.  Thirty-eight species did not show a preference to site with 

twenty-two having an association with prairies.  Qualification of landscape 

position, soil chemical and physical characteristics, and species occurrence will 

assist restorationists and land managers by aiding them in choosing better sites 

thus increasing restoration success.  Results may also give insight into whether 

present management and selection methods are suitable. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

Fire and soils shaped grasslands and their diverse species composition 

(Anderson 2006).  Grasses and forbs occurred in grasslands creating a diversity 

that provided food and cover for Native Americans and wildlife.  With the decline 

of grassland habitat vital habitat resources have declined as well (McCraken 

2005).  Eastern meadowlark (Sturnella magna), common barn owl (Tyto alba), 

Henslow’s sparrow (Ammodramus henslowii), and grasshopper sparrow 

(Ammodramus savannarum) all require grassland habitat for feeding, nesting and 

brood rearing (NRCS 1999).  Insects which are critical in the diets of newly 

hatched birds are commonly found in grasslands (Tscharntke and Greiler 1995).  

Other animals such as the white-tailed deer graze and bed in in these habitats 

along with small mammals and predators (Murphy et al. 1985; Philips et al. 

2004).  Grasslands also provide protection from erosion, filter rain water as it 

percolates through the soil profile, are a store house for medicinal plants, and 

have great aesthetic appeal through there flowering plants. Unfortunately, 

grasslands are disappearing throughout the areas where they were common and 

widespread (Nickens 2010).  This is especially true in the southeastern 

Piedmont, an area that once contained widespread prairies and savannas 

(Tompkins 2010). 

Today the southeastern Piedmont is noted for its expanses of hardwood 

and pine forests that seemingly stretch from horizon to horizon, but this was not 
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always the case.  As early as 1540, the Spanish explorer Hernando De Soto 

noted three or four open grasslands on his travels along the Catawba River 

(Barden 1997).  These were not the deep, black soil plains or prairies 

characteristic of the Midwest, but were widespread grasslands maintained by 

Native Americans through the use of fire. 

According to Barden (1997), between 1540 and 1750, early European 

explorers recorded seeing many plains on their travels through the Piedmont of 

North and South Carolina.  These openings were up to 40 km (25 miles) across.  

Juan Pardo, a Spanish explorer in 1567, reported “very large and good 

plains…clear land…beautiful plains” near Charlotte, North Carolina.  At a point 

north of Charlotte, German explorer John Lederer stated that, “The country here, 

by the industry of these Indians, is very open, and clear of wood.  He found 

forests on the land, yet where it was inhabited by Indians, it lay open in spacious 

plains”.  During the winter of 1701, John Lawson reported a dozen large 

savannas while traveling “about 20 miles (33 km) near a savanna..., the woods 

being newly burnt and on fire in many places” as he traveled from Charleston, 

South Carolina to Charlotte, North Carolina and on to Pamlico Sound on the 

North Carolina coast.  Mark Catesby during his travels through the interior of the 

Carolinas reported, “In February and March the inhabitants have a custom of 

burning the woods, which causes such a continual smoke, that not knowing the 

cause, it might be imagined to proceed from fog… an annual custom of the 

Indians in their huntings, of setting the woods on fire many miles in extent”.  
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These early reports suggest the existence of prairies in the Piedmont of North 

and South Carolina and their maintenance by Native Americans mainly through 

the use of fire. 

Native Americans used dormant season burning to clear land and improve 

habitat for hunting (Van Lear and Harlow 2000).  Lightning was most likely not 

the cause of all southeastern prairie burning since thunderstorms that bring 

lightning generally occur during the summer months, but prairie burning was 

generally observed during the dormant season (Van Lear and Waldrop 1989; 

Fowler and Konopik 2007).  Piedmont streams, rivers, lush vegetation, and moist 

valleys act as natural fire breaks confining burn off to relatively small areas.  For 

such large continuous tracts to burn, man must have been involved. 

When Europeans started settling the Piedmont in the mid -1700’s, they 

chose cleared areas first, but left untouched areas containing xeric soil conditions 

and a slowly permeable clay subsoil (Davis et al. 2002).  Settlement resulted in 

change or removal of much of the natural vegetation, a process which 

fragmented the landscape.  Fire suppression along with the fragmented 

landscape caused a decrease in fire frequency and intensity resulting in prairies 

becoming more densely forested.  Hence, the prairie became more forested until 

it virtually disappeared (Sparks et al. 1998).  Prairie loss in the Southeast is the 

result of landscape modifications, the most significant of which are the removal of 

fire from the landscape and widespread agriculture. 
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Today, remnants of these prairies are found in areas having certain 

edaphic conditions along unsprayed utility rights-of-way, less disturbed 

roadsides, dry forest edges, recently logged areas, and burned areas.  Only the 

presence of selected native understory species indicates the historical prairie 

condition (Wagner et al. 1998). 

Soil moisture plays an important role in maintaining prairies.  Piedmont 

prairie remnants inhabit sites having limited soil water availability in conjunction 

with relatively high evaporative demand during the growing season and 

disturbance to discourage invasion by tree and shrub species (Brye et al. 2004; 

Johnson and Schmidt 1998).  Hanson studied a prairie inclusion occurring in 

southeastern Nebraska within a deciduous climax forest on a steep south facing 

slope.  He found the main reason other vegetation did not invade this patch was 

low soil moisture caused by the evaporative power of exposure to wind and sun.  

Soil moisture often fell below the available point (Hanson 1922).  Soil and air 

temperature increases from edge to center of open patches with the increase 

being greater in larger openings (Phillips and Shure 1990).  Similar conditions 

occur in North and South Carolina especially during the summer creating an 

environment favorable to species that can tolerate low moisture conditions. 

Ultisol, the most widespread soil order in the Piedmont, occurs on older, 

stable landscapes that have been heavily leached and have low native fertility.  

Base saturation in these soils is less than 35%, and there are subsurface 

accumulations of red or yellowish clay resulting from the presence of iron oxides 
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(NRCS 2010).  Significant areas of Alfisols also occur in the Piedmont.  Piedmont 

prairies occur mainly on the Alfisol soil order (Juras 1997).  Alfisols are well 

developed moderately leached soils with a base saturation greater than 35% 

(NRCS 2010).  Subsurface accumulation of clay occurs in these soils and they 

have high native fertility (McDaniel 2006).  Both soils contain clay subsurface 

horizons that may dry out during the growing season causing droughty 

conditions.  Montmorillonite is the major clay in Alfisols and accounts for their 

high shrink-swell capacity.  When wet, this clay becomes impermeable possibly 

causing a perched water table, but develops wide cracks when dry.  Alfisols 

develop from mafic rock (metamorphosed igneous rock high in magnesium, iron, 

calcium and sodium) and tend to be basic.  Southern grasslands except balds 

and shale barrens tend to include Alfisols among the soil orders on which they 

occur (Juras 1997).   

Prairies in the Black Belt region of Alabama and Mississippi occur 

predominantly on Alfisols, Inceptisols and Vertisols that swell, shrink, and then 

crack when dry (Barone 2005).  Black Belt prairies occur on xeric, shallow soil 

locations which are unsuitable for plowing (Trager 2003).  In the Piedmont of 

Virginia and North Carolina, prairie remnants occur on sites containing mafic rock 

and having an impermeable layer of clay, but with sufficient rainfall (Leachy 

2003).  In contrast, Midwestern grasslands are found on soil orders Mollisols and 

Aridisols which are neutral to basic, fertile, and high in organic matter (Juras 

1997). 
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Piedmont prairie remnants often occur as glades (grassy openings within 

woodlands caused by edaphic conditions) scattered across the landscape (Davis 

et al. 2002).  They do not have the expanse of the Midwestern prairies nor are 

they uniform in species composition.  Glades contain grasses such as Indian 

grass (Sorghastrum nutans (L.) Nash), purpletop (Tridens flavus (L.) A.S. 

Hitchc.), broomsedge (Andropogon virginicus L.), gamagrass (Tripsacum 

dactyloides (L.) L.), and panic grasses (Panicum spp.).  Forbs include asters 

(Symphiotrichum spp.), goldenrods (Solidago spp.), beggars-lice (Desmodium 

spp.), bushclovers (Lespedeza spp.), and sunflowers (Helianthus spp.).  A study 

of six Piedmont prairie remnant sites in the North Carolina Piedmont found 277 

species from 163 genera in 58 families.  Families containing the greatest number 

of species were Asteraceae, Poaceae, and Fabaceae respectively (Davis et al. 

2002). 

Remnant sites also contain flora that is characteristic of the tallgrass 

prairie.  Some common tallgrass prairie species reported to occur on remnant 

sites include big bluestem (Andropogon gerardii Vitman), Indian grass 

(Sorghastrum nutans (L.) Nash), little bluestem (Schizachyrium scoparium 

(Michx.) Nash), pasture rose (Rosa carolina L.), goat’s rue (Tephrosia viriginiana 

(L.) Pers.), butterfly milkweed (Asclepias tuberosa L.), old-field goldenrod 

(Solidago nemoralis Ait.), showy goldenrod (Solidago speciosa Nutt.), flowering 

spurge (Euphorbia corollata L.), wild quinine (Parthenium integrifolium L), 
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rattlesnake master (Eryngium yuccifolium Michx.), and New Jersey tea 

(Ceanthus americanus L.) (Davis et al. 2002; Wagner et al. 1998). 

Interest in restoring prairies is increasing, whether to reestablish a diverse 

species environment or to recreate the function of the original ecosystem.  

Restoration could be as simple as applying herbicide to a site during spring then 

waiting for the vegetation to expire, followed by disking the area, then planting 

native prairie seeds collected locally, and maintaining control of invasive species 

through burning.  During the first growing season, mostly annuals and biennials 

fill the planting site, but after the second growing season native perennials 

become common.  Warm season (C4) grasses should be a significant portion of 

the vegetative cover by the third growing season (Camill et al. 2004). 

McRae and Barden (2002) found that herbicide in conjunction with burning 

is a method for stimulating prairie species reproduction without causing invasion 

by a high level of non-prairie species while restoring Mineral Springs Barrens in 

North Carolina.  They also showed that girdling invading woody competition in 

conjunction with fire also increased prairie species counts, although not to the 

same degree as herbicide applications and that more non-prairie species 

occurred in plots using this method.  In another North Carolina restoration at 

Temple Flat Rock, Nicholas (2005) began by mowing for woody species control 

and used herbicide to control invasive species before burning.  Biennial burns 

were applied to encourage prairie vegetation to fill the site. 
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When seeding is attempted, seeds collected from near (100 – 150 km) the 

planting site should be better adapted to local conditions and have better survival 

than non-local sources, thus recreating natural species diversity.  Additionally, 

non-local seeds are genetically different and tend to grow dissimilarly from local 

sources (Gustafson et al. 2005).  Also, genetic diversity does not seem to be 

related to population size.  Small prairie species populations have genetic 

diversity similar to that of much larger ones making collections from large 

populations unnecessary (Gustafson et al. 2005). 

Restored prairies do not normally exhibit the diversity found in a natural 

prairie.  Monitoring has been conducted primarily for species richness and not 

abundance, but low abundance levels can lead to local extinctions thus reducing 

species richness and diversity (Polley et al. 2005).  Results from Kansas and 

Illinois indicated diversity declines within 25 to 35 years of establishment without 

reaching the species rich stability of a natural prairie (Camill et al. 2004). 

Early restoration attempts have met with varying results suggesting a 

need for better site selection methods and/or cultural methods.  Choosing sites 

that are more conducive to prairie species growth and survival could greatly 

increase the chance of success, now and into the future, and reduce associated 

with maintaining a failing restoration. 

A technique for identifying which sites have the necessary characteristics 

for increased success is needed.  This dissertation attempts to give insight into 

new methods and considerations. 
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Site Descriptions 
 
 

After searching scholarly publications, conservation organizations’ 

websites, natural heritage programs, and general internet websites, eight sites 

were identified that contained prairie vegetation or indicative species.  Each site 

contains species such as Schweinitz’s sunflower (Helianthus schweinitzii Torrey 

& A.Gray) and Black-eyed Susan (Rudbeckia hirta L.) that are associated with 

prairies.  Sites occurred in areas of disturbance such as rights-of-way that 

retarded the encroachment of invading vegetation.  All locations, except one, are 

managed by conservation organizations for protection and restoration.  One site 

is located near Durham, North Carolina, and another is located near Rock Hill, 

South Carolina.  All other sites are located near Charlotte, North Carolina.  Three 

sites are located along rights-of-way, four are prairie remnants, and one is a 

mixed hardwood stand.  Soils at all locations are mafic with shrink swell ratings of 

moderate to very high.  Solum depths range 10 – 60 inches and surface texture 

is loam (sandy, sandy clay, silt, and clay). 

 

 

Mountain Island Dam Rare Plant Site 
 
 

Mountain Island is located along a power line right-of-way near Mountain 

Island Lake in Mecklenburg County, North Carolina, north of Charlotte.  

Schweinitz’s sunflower has been identified at this steep rolling location. 
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Figure 1.1:  An electrical utility right-of-way (top) and vegetation (bottom) at 

Mountain Island Dam Rare Plant Site. 
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Shuffletown Prairie 

 
Shuffletown is located in Mecklenburg County, North Carolina, north of 

Charlotte.  This site is very rocky containing boulder sized rock in some locations.  

Federally endangered species smooth purple coneflower (Echinacea laevigata 

(C.L. Boynt. & Beadle) S.F. Blake) and Schweinitz’s sunflower (Helianthus 

schweinitzii Torr. & A. Gray) occur here. 

 

 
Figure 1.2:  Shuffletown Prairie grasses in right-of-way  
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Figure 1.3:  Shuffletown Prairie rock outcrops. 
 
 
 

Rock Hill Blackjacks Heritage Preserve 
 

The Blackjacks Heritage Preserve is located in York County, South 

Carolina, in the town of Rock Hill.  A cable and an electrical utility right-of-way 

support a variety of prairie species.  This site and is a good example of a xeric 

hardpan forest and contains gabbro outcrop and upland wet depression 

community types.  
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 Figure 1.4:  Fall blooming plants along a buried cable right–of-way at the Rock 

Hill Blackjacks Heritage Preserve. 
 
 
 

 
Figure 1.5:  Fall blooming plants along an electrical utility right-of-way at the Rock 

Hill Blackjacks Heritage Preserve. 
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McCoy Road Sunflower Site 
 

McCoy Road is a prairie remnant located in Mecklenburg County, North 

Carolina, north of Charlotte.  This site is being managed by the Mecklenburg 

County Parks and Recreation Department to encourage growth of Schweinitz's 

sunflower (Helianthus schweinitzii Torr. & A. Gray), a federally endangered 

species.  A program of burning and woody vegetation removal has been 

instituted to encourage its occurrence. 

 

 
Figure 1.6:  Star tickseed (Coreopsis pubescens Elliot.) and oxeye daisy 

(Leucanthemum vulgare Lam.) blooming in the spring at McCoy 
Road Sunflower Site. 

 
 



15 

 
Figure 1.7:  Schweinitz’s sunflower (Helianthus schweinitzii Torr. & A. Gray) 

blooming during Fall at McCoy Road Sunflower Site. 
 
 
 

Mineral Springs Barren 
 

Mineral Springs is a prairie remnant that is located in Union County, North 

Carolina, near Waxhaw.  This site was used for agriculture in the past but was 

abandoned.  Encroachment by shortleaf pine (Pinus echinata Mill.), blackjack 

oak (Quercus marilandica Münchh.), and post oak (Quercus stellate Wangenh.) 

is being controlled through a burning program. 
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Figure 1.8:  Pine and hardwood encroachment at Mineral Springs Barren. 

 
 
 

 
Figure 1.9:  Pine and hardwood encroachment at Mineral Springs Barren. 
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Penny's Bend State Nature Preserve 
 

Penny’s Bend prairie is located in Durham County, North Carolina, 

northeast of the city of Durham.  This site is on a peninsula in a bend of the Eno 

River.  Eastern redcedar (Juniperus virginiana L.) occurs on the site while loblolly 

pine and mixed hardwoods surround the entire area.  The area appears to have 

been a pasture based on fencing along one side. 

 

 
Figure 1.10: Eastern redcedar (Juniperus virginiana L.) growing on Penny’s Bend 

State Nature Preserve’s prairie. 
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Figure 1.11:  Eastern redcedar (Juniperus virginiana L.) growing on Penny’s 

Bend State Nature Preserve’s prairie. 
 
 
 

Winget Road Sunflower Site 
 

 The Winget Road site is located in Mecklenburg County, North Carolina, 

south of Charlotte.  Recent construction of Winget Park Elementary School has 

damaged parts of this site.  Addition of sidewalks, drainage, and general 

construction procedures have reduced the size of the site and cut through it in 

several places.  Eastern redcedar (Juniperus virginiana L.) covers much of the 

site, but light enters from the sides.  Woody shrubs are encroaching especially 

through construction disturbances. 
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Figure 1.12:  Grasses, shrubs, and eastern redcedar dominate the Winget Road 

site. 
 

 
Figure 1.13:  Eastern redcedar covers the Winget Road site. 
 
 
 
 

Catawba Wildflower Glenn 

 Mixed oaks dominate this site located in Mecklenburg County, North 

Carolina, north of Charlotte.  Trees in the overstory are likely dying from the 

droughty conditions of the past five summers, allowing light to the forest floor 

encouraging the growth of herbaceous vegetation.  Slopes are steep ranging up 

to 30%. 
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Figure 1.14:  Grasses and herbaceous vegetation growing in openings created 

by dying overstory trees. 
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ABSTRACT 
 

As a result of recent land use, Piedmont prairie sites are often overgrown 

and difficult to identify.  This study was conducted to determine which site and 

climate characteristics among known prairie remnants may be useful for 

predicting suitable Piedmont prairie restoration sites.  Based on an extensive 

literature search, eight prairie and rare plant sites were identified in the Piedmont 

of North and South Carolina.  Soil series, slope, aspect, elevation, landform 

index, maximum annual temperature, and July precipitation were determined for 

each location.  Characteristics common among these sites were used in a 

Geographic information System (GIS) to create raster data layers containing 

each characteristic.  When these raster data layers were added using a raster 

calculator in ArcGIS, a rating of Piedmont prairie site suitability for North and 

South Carolina was produced.  Based on site characteristics, Piedmont prairie 

restoration is predicted to be more successful on sites having eastern to western 

aspects, slopes generally less than 15%, upper slope positions, and occurring on 

Enon, Iredell, Mecklenburg, Wilkes, and Wynott soil series.  Forty-eight randomly 

selected checkpoints selected from a ten km grid across the Piedmont of South 

and North Carolina found nine predicted restoration sites occurred in locations 

open enough to be prairie or grassland while all others occurred in forested 

locations.  Of fifteen prairie remnants used as an additional check, only one was 

predicted as prairie.  Soil series found at all check plot locations, except one, was 

different from that occurring on the eight sampled prairie sites. 
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INTRODUCTION 

 
The Southeastern Piedmont is noted for its extensive hardwood and pine 

forests; however, this was not always the case.  As early as 1540, the Spanish 

explorer Hernando De Soto noted three or four grasslands on his route along the 

Catawba River (Barden 1997).  These were not the deep, black soil grasslands 

characteristic of the Midwest but were grasslands kept open through the use of 

fire and often extending into the understory of surrounding woodlands.  Between 

1540 and 1750, other European explorers noted grasslands up to 40 km across 

during their travels in the Piedmont of North and South Carolina (Barden 1997).  

These early reports suggest the existence of prairies in the Piedmont of North 

and South Carolina and their maintenance by Native Americans, mainly through 

the use of fire.  Lightning may have started some of these fires; but most likely, it 

was not the entire cause of the prairie burning since thunder storms with lightning 

usually bring heavy downpours that retard fire spread.  Native Americans used 

dormant season burning for land clearing and habitat improvement for hunting 

since grasslands were important for their subsistence (Williams 2000; Brown 

2000). 

When Europeans settled the Piedmont in the mid 1700’s, they chose 

grasslands first.  Settlers often left areas containing dry soils with impermeable 

clay subsoil untouched (Davis 2002).  Settlement resulted in change or removal 

of much of the natural vegetation thereby fragmenting the landscape.  Fire 

suppression along with fragmented landscapes caused a decrease in fire 
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frequency and intensity allowing forests to encroach into prairies until they 

virtually disappeared (Sparks et al. 1998). 

Today, there are only remnants of these prairies existing in areas with 

certain edaphic conditions (Wagner et al. 1998).  Piedmont prairie remnants have 

been found along unsprayed utility rights-of-way, roadsides, dry forest edges, 

recently logged areas, and in recently burned areas that contain native 

understory species (Wagner et al. 1998).  We are continuing to lose prairie-like 

habitat to urbanization and other human activities.  However, interest in restoring 

prairies has increased in order to reestablish diverse plant species communities 

and to restore the original ecosystem function.  A method for screening sites 

based on their potential restoration success should ultimately increase overall 

success by reducing restoration attempts on unsuitable sites. 

Suitability analysis is a method for determining the most appropriate 

location for a land use.  It has been useful in defining land suitability/habitat for 

animal and plant species (Malczewski 2004), but has also been used to identify 

potential land use conflicts Car and Zwick (2005), locate suitable nuclear waste 

disposal/storage sites Huang et al. (2006), locate soil and water conservation 

structures Durbude (2004), and predicting future suitability Carey and Brown 

(1994).  An analysis may show which land use has the least impact or it may 

show the most and least appropriate sites for specific uses (Collins et al. 2001).  

Informed management decisions can be made by public and private officials 

based on these analyses as well as making sound policy decisions.   
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Prior to the early 1970’s, suitability analysis was performed manually by 

overlaying maps, but as more complex analyses needed to be performed, 

overlaying became impractical (Collins et al. 2001).  After this time, computer 

technology began to be employed with mapping software allowing a greater 

number of map layers to be handled (Lein 1990).  Using present day GIS 

software, many layers of mixed data types (vector and raster) can be utilized. 

The Food and Agricultural Organization (FAO) recommended use of a 

suitability rating system for classifying crop sites into classes ranging from highly 

suitable to not suitable based on climatic, terrain, and soil properties (Ahamed et 

al. 2000).  When this approach was tried on a portion of the Kalyanakere 

watershed located in Karnataka, a state in southwestern India, using eight soil 

parameters (base saturation, cation exchange capacity, pH, percent surface 

gravel, percent subsurface gravel, surface texture subsurface texture, and 

drainage) and one topographic parameter (percent slope) for three local crops 

finger millet, Eleusine coracana, paddy, Oryza sativa, and ground nut, Arachis 

hypogaea (Ahamed 2000).  Suitability analysis indicated the best crop choice 

was ground nut while the crop planted in greatest area was finger millet (Ahamed 

2000).  This information can be given to farmers and land managers so the best 

suited crops can be planted, increasing yields and profits. 

Habitat for a declining grassland bird was modeled by Lauver et al. (2002) 

on the Fort Riley Military Reservation located in northwestern Kansas.  The 

loggerhead shrike, Lanius ludovicianus, has been experiencing population 
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declines throughout its range.  Evidence indicates that these declines are related 

to loss of breeding habitat and winter ranges thought the precise cause is 

unknown (Lauver et al. 2002).  Habitat utilization characteristics of this species 

have been studied and are well documented (Lauver et al. 2002).  Using this 

information, it was determined that percent cover of potential grassland foraging 

habitat, percent cover of usable foraging habitat, and number of potential nesting 

trees were good predictor of habitat quality.  Using generally available GIS 

datasets (land cover and digital orthophoto quarter quadrangles), a suitability 

analysis was performed. Independent sightings of loggerhead shrike were used 

to evaluate the model’s validity.  High quality habitat was predicted to occur on 

46% (18,900 ha) of Fort Riley (Lauver et al. 2002). 

An advantage of suitability analysis using GIS technology is that large 

areas can be evaluated quickly and relatively efficiently.  Also, numerous types of 

inexpensive or no cost datasets are available.  Many can be downloaded on 

demand greatly reducing the effort needed to perform the analysis.  The methods 

and specific models created become portable when standard datasets are used 

giving the models a wider range of applicability.      

Ecological restoration is defined as, the process of assisting the recovery 

of an ecosystem that has been degraded, damaged, or destroyed (SER 2004).  

Restoration also implies to renew, replace, or bring back to health (Anderson 

1995).  Proposed restorations should be evaluated for feasibility during project 

planning as land use and land cover have a direct bearing on what may be 
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restored. Parts of the Piedmont have experienced such heavy erosion that it may 

not be possible to restore habitat that was once prevalent.  Landscapes with a 

greater percentage of natural land cover are more likely to support native 

vegetation than those under intense human land use pressure (Miller 2007).  

Many species tend to be absent in areas with greater than 70% habitat loss 

(Andren 1994).  Restoration goals must be chosen realistically with consideration 

for what can actually be accomplished.   

Habitat losses in the last 50 years are central to the need for restoration 

(Anderson 1995).  Increased urbanization and growing awareness of human 

caused environmental changes seem to spark a feeling of environmental 

destruction.  Other reasons for increased restoration interest may deal with 

reducing global warming through carbon sequestration, increasing habitat for 

endangered species, protecting water quality, increasing biodiversity, increasing 

natural beauty, or preserving cultural heritage.  People gain benefit from 

restorations and their interest in and support of conservation increases, 

particularly if they are personally involved in the restoration (Anderson 1995).  

Restoration guidelines are readily available in the form of videos and 

downloadable manuals providing needed information to anyone interested in 

attempting restoration on a small or large scale. 

Restoration of feltleaf willow, Salix alaxensis, on the North Slope of Alaska 

was attempted after habitat destruction caused by riparian gravel mining during 

construction of the Trans-Alaska Pipeline System (Densmore et al 1987).  
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Feltleaf willow is an important winter forage for moose, Alces alces.  A restoration 

program was instituted after pipeline construction was completed, but failed.  Not 

enough was known about willow habitat requirements for success.  Feltleaf 

willow establishes itself on gravel bars that have a shallow water table not in the 

silty sediment that remained.  All remaining gravel was submerged, not suitable 

for feltleaf willow establishment (Densmore et al 1987).  Other willow species 

could establish themselves in the silty bottom, but they were not important forage 

species for moose (Densmore et al 1987).  Restorationists must be aware of 

target species requirements to be successful.  

Kush et al. (2004) reported on longleaf pine restoration at the Flomaton 

Natural Area, Alabama.  A 25 ha virgin longleaf pine stand was becoming 

infested with hardwood sapling and seedlings preventing longleaf seedlings from 

establishing themselves.  Investigation of habitat conditions indicated that the 

only apparent change was 45 years of fire suppression (Kush et al. (2004).  

Hardwood encroachment was mechanically removed and a program of 

prescribed burning was instituted.  Longleaf seedling regeneration was 

reestablished and hardwoods were controlled Kush et al. (2004).   

Restoration occurred at Flomaton Natural Area Kush et al. (2004) because 

the site was not degraded beyond repair.  Research indicated the main 

component causing the change was the removal of fire, a problem that could be 

corrected.  The feltleaf willow restoration project failed because not enough 
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research was put into determining the species biology and habitat requirements 

could not be met by the degraded site. 

 
MATERIALS AND METHODS 

 
Study Area 

The study area (Figure 2.1) encompasses the central Piedmont in North 

Carolina from Charlotte to Durham, and the northeastern Piedmont in South 

Carolina near Rock Hill.  It covers the area within 35º - 36.5º north latitude and 78 

- 82º west longitude.  Topography is rolling with elevation ranging from 61 to 427 

m.  Precipitation is spread evenly throughout the year with the greatest monthly 

amount, 10 - 13 cm, occurring in July.  Daily high temperatures range from 10º C 

in January to 32º C in July while daily low temperatures range from -1º C in 

January to 21º C in July (Boyles et al. 2004).  The study area is primarily forested 

with oak-pine, oak-hickory, and pine plantations.  Non-forested portions are in 

cropland, pasture, and urban-manufacturing influence (Griffin et al. 2002).  

Specific study sites occurred in disturbed areas (rights-of-way, old fields, or old 

pasture). 

 
Sampling 

A literature search for references to prairie locations in the Southeastern 

Piedmont was conducted identifying twelve prairie and rare plant sites.  Of these, 

three were prairie restoration sites and are excluded from this analysis.  

Permission could not be obtained to sample another location leaving eight 
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sampling sites.  Soil series, elevation, slope, aspect, maximum annual 

temperature, July precipitation, and landform index were determined for each 

location.  Slope, aspect, and landform index were determined by direct 

measurement on site; elevation was determined from a digital elevation model 

(Table 2.1); soil series was determined from the Soil Survey Geographic 

Database 2.2 (SSURGO) (Table 2.1); and July precipitation and maximum 

annual temperature were determined from shapefiles obtained from the Natural 

Resources Conservation Service (Table 2.1). 

 
Laboratory Analysis 

July precipitation, maximum annual temperature, and elevation were 

found to be very similar throughout the local area and were excluded from the 

analysis (Table 2.2).  Soil series, elevation, slope, and aspect were used in the 

suitability analysis (Table 2.3).  ArcGIS 9.3.1 (ESRI, Redlands, CA) was used to 

perform all GIS analyses (Figure 2.2).  All layers were projected to the Universal 

Transverse Mercator (UTM), North American Datum 1983, zone 17 north, 

coordinate system by the ArcCatalog module of ArcGIS.  Measurement units 

were meters.  Spatial analyst, an ArcGIS module, was used to produce an aspect 

and slope layer using digital elevation model (DEM) data.  A landform index grid 

was produced using the landform.aml program written by Jeffrey Evans, 

downloaded from http://arcscripts.esri.com (2007).  SSURGO 2.2 data were 

downloaded as individual county datasets for the Piedmont region then combined 

and converted to a soil series grid or raster.  All layers were clipped using an 
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extracted Piedmont polygon from the level 3 ecoregion layer obtained from the 

United States Environmental Protection Agency (Table 2.1).  A new raster was 

created for each of the four characteristics.  Cells that contained the desired 

character state were assigned a value of 1.  The four rasters were added to 

produce a new raster containing a rating of each cell’s suitability with 4 being the 

maximum value (Taverna et al. 1999).  Cells that contained all the chosen 

characters were considered suitable. 

 
Error Checking 

A GIS layer containing only herbaceous cover was produced in an attempt 

to limit, as much as possible, scrutinizing locations that may not contain prairie-

like vegetation.  Otherwise, locations such as pavements, forests, lakes, streams, 

buildings, or barren ground could be examined.  A 10-km grid was laid across the 

Piedmont region within the herbaceous cover type.  Forty-eight grid points were 

selected by use of a random number generator.  The cell classified as prairie 

habitat closest to the grid point was examined on an aerial image to determine if 

it could actually be prairie not forest, agriculture or urban.  In addition, check plots 

were employed.  Check plots, prairie remnants located by Dr. William Stringer 

(unpublished data), were compared against the predicted locations.  Prairie 

remnant check plots were discovered previously based on species composition.  

Prairie species such as Sorghastrum nutans (L.) Nash, Lespedeza sp. Michx., 

and Silphium sp. L. occurred on these sites. 
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RESULTS AND DISCUSSION 

 
Temperature, precipitation, and elevation were very similar among all sites 

because of their proximity.  Hence, they were not used to discriminate between 

sites. 

Slopes ranged between 1 and 15%, except one area along a utility right-

of-way was 26% (Table 2.2).  Steeper slopes increase runoff rates possibly 

causing sites to be drier.  Dry or droughty site conditions favor prairies by 

reducing the vigor of invading vegetation (Changnon et. al. 2002). 

All sites, except one, had an exposure that ranged from eastern to 

western (Table 2.2).  McCoy Road Sunflower site had a northern aspect but 

contained an intermittent stream creating an eastern and western facing slope.  

More weight was given to the eastern and western aspects as a greater biomass 

occurred there.  Southern aspects tend to be drier due to longer hours of sun 

exposure while northern aspects tend to be more mesic due to fewer hours of 

sun exposure.  Southern aspects ranged from 135º to 270º while the Northern 

aspect was 10º.  Our results matches the findings of Smith (2008) in a study to 

analyze the site characteristics of Schweinitz’s sunflower, Helianthus schweinitzii, 

a species though to be an indicator of prairie habitat. The species occurred most 

commonly on southerly and southeasterly aspects. 

Landform index is a measure of landscape position (McNab 1993).  Eight 

slope measurements spaced 45º apart were taken from the center of each 

sampling location to the horizon.  A landform index value of 0.0 indicates the 
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current landscape position is level with the visible horizon.  When the index 

becomes negative, the current position is higher than the visible horizon 

indicating a more exposed location, while the converse is true for positive index 

values.  Landform index values for these plots ranged from -0.001 to 0.07 (Table 

2.2).  The positive value was rounded to 0.1 for use in the analysis.  It was felt 

that since the determinations were made in the center of each site, the full effect 

of the upper landscape was not being represented especially when dealing with 

very irregularly shaped sites.  In some instances a ridgeline that marked the 

greatest extent of the site was higher than the surrounding landscape.  This 

extent would not have been indicated by a measurement taken from the sites 

center.  To account for this -.1 was used in the analysis. 

Piedmont prairies include Alfisols in the soil orders on which they occur 

(Juras 1997).  These soils have clay layers that shrink and crack when dry, and 

swell when wet, keeping moisture from penetrating, sometimes causing a 

perched water table (Juras 1997).  Swollen clays can serve as a barrier to root 

penetration creating an artificially shallow soil rootzone.  Larger plant species 

could have difficulty anchoring themselves creating grassland, shrubland, 

savanna, or becoming inhabited by blackjack oak (Quercus marilandica Münchh) 

a species common on very dry sites.  Alfisols have been found to be fertile 

(McDaniel 2006).  All eight sampling sites contained Alfisols (Table 2.2).  Smith 

(2008) found Schweinitz’s sunflower occurred on Alfisols, Inceptisols, and 

Ultisols in North Carolina.  Ultisols, the predominant soil order occurring in the 
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Piedmont, are highly weathered and tend to be deficient in major plant nutrients 

(McDaniel 2006).  Kaolinite, the dominant clay mineral in Ultisols, has no shrink-

swell property. 

Approximately 137,382 hectares of potential restoration sites across the 

North and South Carolina Piedmont were predicted from the suitability analysis 

(Figure 2.3). However, Taecker (2007) predicted 1,069,406 hectares of prairie 

occurring in Anson, Cabarrus, Davidson Gaston, Mecklenburg, Randolph, 

Rowan, and Stanly counties North Carolina using Classification and Regression 

Tree (CART) and Maximum Entropy (Maxent) modeling.   Our sample size is 

small and located in a limited area; predictions are most reliable near the area 

sampled in the study.  Conditions could change as distance increases from the 

sampled area.  For instance, the soil series Wynott occurs in only five counties in 

North Carolina and one county in South Carolina.  Figure 2.4 shows potential 

sites in closer proximity to the sampling area.  South Carolina has a greater 

clustering of sites while North Carolina sites are more widely scattered and tend 

to contain fewer cells.  The distribution of soil series found at the sampling 

locations is more limited in the North Carolina Piedmont.  When an acceptable 

landform index was combined with locations containing the proper soil series, a 

greater number of acceptable sites resulted.  South Carolina had a greater 

density of locations with acceptable soil series and landform index values.  Slope 

and aspect occurrence do not appear to limit potential restoration site selection.  
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Taecker (2007) determined that soil is a good predictor of prairie habitat after 

modeling Piedmont prairie lands for restoration in North Carolina. 

Although precipitation was not used in the analysis, it was found that July 

precipitation drops from 21 cm along the Carolina coast to 10 cm in the area of 

Charlotte, NC, but ranged from 10 to 15 cm in the piedmont (Figure 2.5).  Near 

Charlotte, maximum annual temperature reaches a high of 32 to 33º C (Figure 

2.6).  High temperature along with low precipitation creates droughty conditions.  

This can be especially true on soils that have low available moisture holding 

capability.  Drought or long dry spells are necessary to sustain prairies 

(Changnon et al. 2002).  These conditions are likely to occur near Charlotte since 

low precipitation and high temperature occur there during summer and may help 

explain why there are a number of prairie remnants in this area.  In fact, five of 

the remnants and two of the restoration sites visited in this study are within 1.5 

km of the center of the 10 cm precipitation zone.  Fire, the other important 

element for prairie maintenance, has all but been eliminated.  However, 

anthropogenic vegetative disturbances at the study sites have taken its place. 

Error checking based on the 10,000 km grid found 9 cells occurring in 

locations that were open enough to be grassland or prairie (Figure 2.7).  All other 

locations occurred within forest stands.  Of the fifteen Stringer sites assessed for 

verification, only one fell in an area chosen by the analysis as a potential 

restoration site (Table 2.4).  Seven sites met all criteria except soil series; two 

sites met only the aspect and slope criteria; four met the slope and landform 



39 

index criteria; one met all requirements except aspect; and one site met all four 

criteria.  Soil was the most limiting factor; two plots met this requirement.  Only 

six check plots occurred in the area of South Carolina where the soil series from 

the original sampling locations were found.  However, all check plots occurred on 

sandy or silt loam soils indicating that soil surface texture may be more important 

than the specific soil series for Piedmont prairie occurrence.  These plots 

occurred most commonly on the Cecil (Fine, kaolinitic, thermic, Typic 

Kanhapludults) soil series.  Check plots were located on disturbed sites, 

generally, rights-of-way.  All check plots met the slope requirement and all except 

two meet the Landform index criteria.  Ten met the aspect requirement. 

 
CONCLUSIONS 

Large areas of potential sites for prairie restoration were determined by 

the suitability analysis throughout the North and South Carolina Piedmont.  Sites 

were found to occur on locations with eastern to western aspects; slopes less 

than 15%; slope positions greater than 80%; and soil series Enon, Iredell, 

Mecklenburg, Wilkes, and Wynott, all Alfisols.  Soil series and slope position had 

the greatest influence on occurrence.  Disturbance creates an earlier 

successional stage removing encroaching vegetation.  This was important as the 

study sites occurred at locations with recent (rights-of-way) or near past (old 

field) disturbances.  July precipitation, maximum annual temperature, and 

elevation were not useful predictors in the model as their values were consistent 

over the prairie and rare plant sites. 
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Predictions should be made close to sampling sites.  Therefore, analysis 

on a localized area may be more useful and meaningful in identifying suitable 

sites in a specific locale.  Local site characteristics associated with prairie habitat 

should be taken into account in selecting potentially suitable restoration sites.  If 

a soil series common to prairie sites does not occur in the local area then the 

necessary soil must be determined for the local area before site selections can 

be made.  Restoration success and cost savings could be realized by using this 

method for restoration site selection. 
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Figure 2.1.  Sampling and check plot locations. 
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Figure 2.3.  Potential Piedmont prairie restoration sites in the Piedmont of North 
and South Carolina. 
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Figure 2.4.  Potential Piedmont prairie restoration sites near Charlotte, North 
Carolina. 
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Figure 2.5.  Average July precipitation in North and South Carolina. 
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Figure 2.6.  Maximum annual temperature in North and South Carolina. 
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                              (a)                                                           (b) 

 

 

    

                              (c)                                                           (d) 

Figure 2.7.  Vegetation occurring at predicted prairie locations.  Black triangles 
and squares are predicted locations containing all prairie conditions. 
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Table 2.3.  Values used in the Piedmont prairie suitability analysis. 
 

Character Value 

Aspect 90 - 270 

Landform 
Index 

-0.1 – 0.1 

Slope < 27% 

Soil Series Enon, Iredell, Mecklenburg, Wilkes, and Wynott 
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Table 2.4.  Suitability analysis criteria met by Stringer check plots. 
 

Plot LFI Aspect Slope Soil Series 

1 X  X  

2 X X X  

3 X  X  

4 X X X  

5 X X X  

6 X X X  

7 X X   

8 X  X  

9 X X X X 

10 X X X  

11 X X X  

12 X  X X 

13  X X  

14 X X X  

15  X X  
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CHAPTER THREE 
 

Soil Chemical and Physical Properties of Selected Prairie Sites in 
the Piedmont of North and South Carolina 
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ABSTRACT:   Soil chemical and physical characteristics may affect Piedmont 

prairie restoration success.  The objective of this study was to describe soil 

chemical and physical characteristics of selected prairie remnant sites in the 

Piedmont of North and South Carolina.  Our approach was to compare soil 

characteristics among selected Piedmont prairie and rare plant sites.  Three    

2.5 cm diameter soil cores were taken to a depth of 15 cm at 20 locations within 

each of 5 prairie and 3 rare plant sites.  Concentrations of C, N, P, K, Ca, Mg, B, 

Cu, Mn, Na, and Zn were measured.  In addition, acidity, pH, buffer pH, C/N 

ratio, K base saturation, Ca base saturation, Mg base saturation, Na base 

saturation, total base saturation, CEC, and percent sand, silt and clay were 

determined.  Concentrations of C, N, and Zn were not significantly different 

among locations, whereas significant differences were found in all other 

characters.  Levels of C and N were low, mean 2.0 and 0.1% respectively, across 

all locations.  Total base saturation ranged from 29 to 70%, mean 52%.  When 

the elements were rated on their sufficiency for growth, N, P, and K were 

deficient; while, B, Ca, and Zn were sufficient, and Mg and Mn were high or 

excessive.  Sand comprised the largest fraction of soils in all locations except 

one, mean 45%; followed by silt, 33%; and clay, 21%.  Stepwise analysis created 

regression models containing Mg, Zn, C, CEC, sand, P, and Cu with R2 values of 

0.66, 0.72, 0.77, 0.83, 0.85, 0.86, and 0.88, respectively.  Piedmont prairie 

remnants occured on sandy/silty surface Alfisols that are low in macronutrient 

content, high in micronutrient content and very high in Mg and Mn content. 
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Index terms:  micronutrient, macronutrient, particle size, soil organic carbon, 

nutrient deficiency, soil organic matter, nitrogen, Magnesium, Manganese 
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INTRODUCTION 

 
The tallgrass prairies that covered the presettlement mid-western United 

States have all but disappeared.  Approximately 90% of the original area has 

been converted to agriculture (Polley et al. 2005) degrading the prairie and 

creating a loss of soil C and N (Camill et al. 2004).  In the Piedmont of North and 

South Carolina, prairies existed before European settlement as well (Brown 

2000).  These prairies were, primarily, the result of burning by Native Americans 

creating savanna-like areas that were floristically rich.  After settlement, prairie 

areas were converted to European style agriculture except those that were 

unsuitable (too rocky, etc.).  Widespread burning was removed from the 

ecosystem at this point, resulting in invasion of prairies by woody vegetation 

(Williams 2000).   

Loss of the prairie habitat has sparked a growing public interest in its 

restoration.  Awareness that prairie habitat was unique and necessary for 

species such as Schweinitz’s sunflower (Helianthus schweinitzii Torr. & A. Gray), 

smooth purple coneflower (Echinacea laevigata (C.L. Boynt. & Beadle) S.F. 

Blake), Georgia aster (Symphyotrichum georgianum (Alexander) G.L. Nesom ), 

Henslow’s sparrow (Ammodramus henslowii), prairie warbler (Dendroica 

discolor), and Northern bobwhite (Colinus virginianus) reinforced the incentive for 

restoration (Emanual 1994; Herket 1994; Matthews and Howard 1999; Cram et 

al. 2002; Beachy and Robinson 2008; Echols and Zomlefer 2010).  Plants 

thought to have been common in prairies occur along road sides, field edges, 
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and in utility rights-of-way (Wagner et al. 1998).  State and local governments 

along with public and private organizations have begun programs to locate prairie 

remnants and restore them.  Restoration usually involves removing invading 

vegetation through the use of fire, herbicides, and mechanical means, then 

enhancing current populations through the use of prescribed fire and planting.  

However, the use of soil fertilization and amendment has received little attention 

as a means of enhancing or inhibiting the establishment of species in a prairie 

restoration (Rothrock and Squires 2003).  Old farm fields tend to have high levels 

of nitrogen that cause high productivity in early restoration plantings resulting in 

lower diversity (Martin et al. 2005). 

Macronutrients nitrogen (N), phosphorus (P), and potassium (K) are used 

in greatest quantity by plants making them most likely to be deficient in soils.  

The macronutrients calcium (Ca), magnesium (Mg), and sulfur (S) are required in 

smaller quantities.  Quantifies that are usually available in soil.  Vertical 

distribution of macronutrients in the soil profile depends on vegetative demand 

with the most limiting nutrients occurring at the most shallow depths.  The 

distribution of nutrients in the soil profile from most shallow to deepest is P, K, 

Ca, Mg, and Na with P and K more concentrated in the upper 20 cm (Jobbagy 

and Jackson 2001). 

Micronutrients (boron (B), copper (Cu), chlorine (Cl), iron (Fe), manganese 

(Mn), molybdenum (Mo), and zinc (Zn) are needed in very small quantities but 

are essential for growth.  Soils generally contain sufficient amounts; however, 
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only a small portion of the total is available to plants.  Generally, concentrations 

decrease with increasing soil depth (Gupta et al. 2008).  Micronutrient deficiency 

will result in poor or reduced production; although, deficiencies are more 

common in locations having intense leaching associated with high precipitation 

(Gupta et al. 2008). 

Each nutrient has an effect on plant growth, but synergy can also occur or 

maybe a better explanation is the law of minimum.  This law states that growth is 

limited by a single resource at any one time, and the limiting resource must 

become sufficient before another resource can enhance plant growth (Rubio      

et al. 2003).  D’Antonio and Mack (2006) found the addition of P to a grassland in 

Hawaii Volcanoes National Park caused no increase in biomass production; but 

when N was added in conjunction with P, total biomass production was greater 

than N alone.  Similarly, in a secondary savanna in the interior branch of the 

Coastal Range of Venezuela, additions of N, P+K, and N+P+K gave 

aboveground biomass increases of 718, 490, and 949 g/m2 (Barger et al. 2002).  

N is the limiting factor in each of these situations. 

While investigating the literature, numerous publications were found that 

addressed macronutrients in prairies, especially N, P, and K (Riser et al. 1982; 

Rhoades et al.).  Likewise, soil organic matter (SOM) and its importance to N and 

soil organic carbon (SOC) were frequent topics (Jelinski et al. 2009; Constant et 

al. 2001).  Soil texture, bulk density, and parent material were discussed (Van 

Haveren 1983; Barshad 1946), but few addressed micronutrients especially in 
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conjunction with macronutrients.  The objective of this study is to characterize the 

amounts of macro and micronutrients as well as physical properties on 

documented prairie sites in the Piedmont of North and South Carolina.  

Furthermore, this information can be incorporated into a restoration program for 

better site selection thus increasing restoration success. 

 
MATERIALS AND METHODS 

Study Area 
 

The study area, Figure 3.1, encompasses five prairie (McCoy Road 

Sunflower Site (MR), Mineral Springs Barren (MS), Penney’s Bend Nature 

Preserve (PB), Rock Hill Blackjacks Heritage Preserve (RH), and Shuffletown 

Prairie (ST)) and three rare plant sites (Catawba Wildflower Glenn (CW), Mile 

Island Dam Rare Plant Site (MI), and Winget Road Sunflower Site (WR)) 

throughout the central Piedmont in North Carolina ranging from Charlotte to 

Durham and the northeastern Piedmont in South Carolina near Rock Hill.  It 

covers the area within 35º - 36.5º north latitude and 78º - 82º west longitude.  

Topography is rolling with elevation ranging from 61 to 427 m.  Precipitation is 

spread evenly throughout the year with the greatest monthly amount, 10 - 13 cm, 

occurring in July.  Daily high temperatures range from 10º C in January to 32º C 

in July.  Daily low temperatures range from -1º C in January to 21º C in July 

(Boyles et al. 2004).  The study area is primarily forested with oak-pine, oak-
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hickory, and pine plantations.  Other portions are in cropland, pasture, and 

urban-manufacturing influence (Griffin et al. 2002ab). 

 
Sampling 

 
Two transect lines were established parallel to the long axis of each prairie 

site from one end to the opposite end.  One transect was located to either side of 

the approximate site center.  Transects were divided into 10 equally spaced 

points based on the width of the site at the transect location.  At each point, three 

2.5 cm diameter soil cores were taken to a depth of 15 cm and the GPS location 

of each sampling point was recorded.  Transects ranged from 100 – 450 m, but 

300 m was the most common length. 

 
Laboratory Analysis 

 
All samples were air dried then sieved through a 2 mm mesh screen.  

Four composite samples were produced for each site by mixing soil cores of the 

first five sampling points into one composite sample, then mixing cores from the 

second five sampling points to form the second composite sample, continuing 

until all four composite samples were produced (Lloyd et al. 1983).  Samples 

were delivered to the Agricultural Service Laboratory, Clemson University, 

Clemson, South Carolina (http://www.clemson.edu/public/regulatory/ag_svc_lab/) 

for chemical analysis using the Mehlich 1 extraction procedure.  Levels for C, N, 

P, K, Ca, Mg, Na, Zn, acidity, buffer pH, pH, cation exchange capacity (CEC), K 
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base saturation, Mg base saturation, Na base saturation, and total base 

saturation were determined.  Additionally, a particle size analysis was performed 

at the Agricultural and Environmental Services Laboratories, University of 

Georgia, Athens, Georgia (http://aesl.ces.uga.edu/). 

 
Statistical analysis 

 
Data analyses were performed using SAS 9.2 software (SAS Institute Inc, 

Cary NC).  All data were tested for normality using the Univariate Procedure 

(α=0.05).  Square root transformations were applied to P, K, Na, Mg, Mn, Zn, 

CEC, Na base saturation, K base saturation, percent sand, percent silt, and 

percent clay for normalization.  An analysis of variance was performed on all 

variables using the General Linear Models Procedure (GLM) to test location 

effects (α =0.05).  Tukey's HSD (Honestly Significant Difference) test was used 

for means separation.  In order to determine which variables were most important 

in discriminating among the different locations, a stepwise regression was 

performed. 

 
RESULTS  

 
There were no significant differences in C, N, and Zn among locations 

(Table 1).  Soil C content ranged from 1.38 to 2.66% averaging 2.00% across all 

locations.  Nitrogen averaged 0.10% and ranged from 0.08 and 0.14%.  Zinc 

content was variable among locations ranging from 4.04 to 13.97 kg/ha.  
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Significant differences were found among locations for soil P, K, Ca, Mg, 

Na, B, Cu, and Mn (Table 3.1).  Mean P ranged from 4.53 to 16.01 kg/ha while 

mean K ranged between 50.74 to 277.91 kg/ha.  Mean Ca, Mg, and Na varied 

across locations, but were higher at locations containing Iredell and Mecklenburg 

soil series.  The other nutrients exhibited similar variability.  Boron, Cu, and Mn 

content was smallest in the locations where the Wilkes and Zion soil series 

occurred.  

Significant differences for soil pH, buffer pH, CEC, and acidity were found 

among locations.  Soil pH was typically acidic with only one location having a 

mean greater than 6.0.  Means for all other locations ranged between 4.80 and 

5.98.  Only two locations had mean values less than 5.0.  Buffer pH means 

ranged from 7.4 to 7.7 but were significantly different.  Cation exchange capacity 

means ranged from 6.5 to 11.7.  Only three locations had values greater than 

10.0 while three had values less than 7.0.  Two locations have values between 

7.0 and 10.0.  Acidity, the concentration of acidic ions in the soil, ranged from 2.8 

to 4.5 meq/100g. 

All locations except two had total base saturation greater than 35%, a 

defining characteristic of Alfisols.  The remaining locations had values of 28.5% 

and 33.8%.  Mean Ca base saturation ranged from 15.5 to 41.8% while Mean K 

base saturation ranged from 0.5 to 4.7%.  Mean Mg base saturation ranged from 

6.6 to 26.3%.  Mean Na base saturation ranged from 0.0 to 1.0% 
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Sand was the largest soil fraction at all locations except one where silt 

comprises the greater amount.  Across all locations the average sand content 

was 45.7%.  Silt content was as high as 65.2% at one location almost twice the 

next highest content of 35.0%, but overall the content averaged 38.7%.  Clay 

was a minor constituent of these soils averaging 21.1%.  Soil textures were 

sandy loam, sandy clay loam, clay loam, silt loam, and loam. 

In the Stepwise analysis, magnesium content proved to be the most 

important characteristic for separating among locations.  Other nutrients selected 

by the analysis in order of their contribution to the model include Zn, C, CEC, 

percent sand, P, and Cu.  Model R2 values were 0.66, 0.72, 0.77,0 .83, 0.85, 

0.86, and 0.88, respectively. 

 
DISCUSSION 

 
Nitrogen levels found by Tompkins et al. (2010a) at Suther Prairie, a 

piedmont prairie located in Cabarrus County North Carolina, were 0.2% at the 0 - 

10 cm depth, 0.1% at 11 - 20 cm, and 21 - 30 cm. This compares with the 0.1 - 

0.2% found at our sites.  Tompkins (2010c) also found nitrogen levels that 

ranged from 0.1% to 0.3% occurring on eight locations containing populations of 

big bluestem (Andropogon gerardii) a grass which occurs in the tallgrass prairie. 

Nitrogen has been shown to be the most important nutrient affecting the 

structure and function of grassland ecosystems and is usually the only nutrient 

that increases herbage quantity (Riser and Parton 1982).  Consequently, low N 
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availability leads to lower aboveground net primary productivity (ANPP) (Baer     

et al. 2003), but species diversity is maintained, and richness increases over time 

(Baer et al. 2004).  Additional biomass increases shading on desirable species 

resulting in poor growth or death.  Rhoades et al. (2004), found forest total N and 

the availability and production of plant available N was 25 to 50% lower in glades 

occurring in the Kentucky Knobs region.  Only species capable of surviving and 

growing in a reduced N soil would occur here.  Higher demanding species would 

not survive or would be out competed by adapted species.  Excessive N can lead 

to partial or total restoration failure.  Thus, a reduction of N should be of high 

priority in the restoration of grass-dominated communities (Aude 2004). 

Sites sampled for this study did not have appreciable amounts of litter on 

their soil surfaces; generally, the soil surface could be seen.  However, the 

average SOC for all locations was 2.03%.  This contrasts with 7.46% and 

10.27% at 0 - 10 cm reported for two prairie remnants located in Wisconsin 

(Jelinski and Kucharik 2009).  Prairie restoration sites ranging in age from 3 to 25 

years located in Illinois were found to have SOC values ranging from 3.66 to 

5.48% at 0-5 cm depth (Allison et al. 2005).  Jelinski and Kucharik (2009) also 

found SOC ranging from 4.05 to 7.02% at the 0 - 10 cm depth in four prairie 

restorations ranging from 2 - 45 years old while Tompkins et al. (2010a) found 

2.70% at Suther Prairie.  On big bluestem sites surveyed by Tompkins et al.  

(2010c), SOC ranged from 0.90 - 4.20%.  But, loblolly pine planted on old cotton 

fields located on the Calhoun Experimental Forest, Union County, South Carolina 
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has an average 0.54% SOC in the top 15 cm (Li et al. 2008).  Our samples 

contained 37 - 55% the SOC of prairie restorations, 20 - 27% as much SOC as 

remnant prairies Jelinski and Kucharik (2009) studied, and 51 – 99% the SOC as 

Suther Prairie, but contained 376% of that found in the loblolly pine stand Li 

(2008) examined.  A longer growing season in conjunction with a higher average 

temperature, as is typical of the Piedmont, reduces SOM (Helms 2000)  

Zinc, a micronutrient used by plants in physiological processes, is only 

required in small quantities (Pritchard and Fisher 1987).  Although there was no 

significant difference in Zn content among locations, the actual amounts varied 

from 4.04 to 13.97 kg/ha.  Higher concentrations, 11.32 and 13.97 kg/ha, 

occurred along utility rights-of-way.  Lower concentrations, 4.04 and 4.54 kg/ha, 

occurred at locations surrounded by hardwood forests, while the other locations 

appeared to have been old fields or pastures.  However, Suther Prairie contained 

2.98 kg/ha Zn in the 0 - 10 cm depth (Tompkins et al. 2010a) 74% of the smallest 

amount found in our samples.   

Phosphorus is required by plants in larger quantities, but its concentration 

in soil solution is usually very low (Pritchett and Fischer 1987).  Its content varied 

among locations.  Site WR contained the greatest amount at 16.07 kg/ha and 

had a cover of eastern redcedar (Juniperus virginiana) occurring on Iredell soil.  

This concentration was statistically different from all other sites except CW, a 

mixed oak (Quercus sp.) site, which had a content of 10.52 kg/ha.  There was not 

a significant difference between CW and the other locations. 
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Potassium is another nutrient required in large quantities.  Quantities 

found ranged from a high of 277.91 kg/ha at PB to 50.74 at MS.  The PB 

concentration was roughly twice the next higher concentration of 142.68 kg/ha at 

MI.  Perhaps this is the result of previous fertilization practices since PB appears 

to have been a pasture at one time.  Troy prairie, a Piedmont prairie located in 

Montgomery County, North Carolina,  contained 81.00 kg/ha K (Tompkins et al. 

2010b) while Suther Prairie contained 160.80 kg/ha ((Tompkins et al. 2010a).  

The calcium level at WR was highest of all locations at 2192.66 kg/ha.  

This amount is expected if the soil developed from gabbro which contains 

significant amounts of Ca.  In addition, this site contained eastern redcedar as 

the only canopy tree species.  This species has a high Ca content in its foliage 

and tends to cause soils to become neutral or slightly alkaline over time (Burns 

and Honkala 1990).  Higher soil calcium contents most likely aid this process.  It 

is likely the soils at ST, RH, MR, and PB developed from gabbro giving rise to 

their high Ca contents.  A similar high Ca content, 2041.40 kg/ha, was found at 

Suther Prairie (Tompkins 2010a) 

Copper is a micronutrient that is unlikely to be deficient except in organic 

or sandy soils (Prasad and Power 1997). Copper occurred in relatively small 

amounts at all locations when compared with other nutrients.  Higher 

concentrations tend to occur in the O horizon because of its affinity for organic 

matter (Li et al. 2008).  Li et al. (2008) found that the total amount contained in 

the O horizon was 0.56 kg/ha on the Calhoun Experimental Forest, Union 
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County, South Carolina.  This is less than the average 2.17 kg/ha we found, but 

our samples were to a depth of 15 cm and included more than just the O horizon. 

However, a greater concentration, 4.90 kg/ha, was found at Suther Prairie 

(Thompkins 2010a). 

Boron, in contrast to Cu, accumulates to a greater degree in plant biomass 

(Li et al. 2008).  Li found the total content in the O horizon was 0.81 kg/ha 

compared with an average 0.69 kg/ha across all our samples.  Contents ranged 

from 0.15 to 1.02 kg/ha.  However, Tompkins et al. (2010a) found 0.80 kg/ha at 

Suther Prairie. 

Magnesium content was greatest at ST, RH, and WR while CW was 

lowest.  CW contained only 20% as much Mg as ST, RH, and WR.  Manganese 

content was similar at MR, PB, RH, WR, and ST ranging from 80.99 to       

111.67 kg/ha.  However, MS had the smallest content, 24.08 kg/ha, but had the 

highest Na content of any location, 88.12 kg/ha.  This was 232% greater than the 

next highest, 37.91 kg/ha at ST.  The concentration at Suther Prairie was 717.10 

kg/ha (Tompkins 2010a).  Only ST contained a greater concentration 836.91 

mg/ha. 

Soil pH at MS, CW, MI, and MR was strongly acid (pH 4.80, 4.93, 5.33, 

and 5.50, respectively) as Tompkins et al. (2010b) found at Troy Prairie.  

Penney’s Bend, RH, and WR were medium acid (pH 5.98, 5.68, and 5.83, 

respectively), Suther Prairie was slightly acid (5.7) Tompkins et al. ( 2010a) while 

ST was slightly acid  6.13.  Typically, the more acidic the soil solution, the less 
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available nutrients are to plants.  Combining nutrients with other soil cations and 

anions forming insoluble compounds is pH dependent as is the breakdown of 

these compounds.  For example, nitrogen is available to plants as ammonium 

(NH4
+) and nitrate (NO3

-).  The conversion of ammonium to nitrate occurs rapidly 

near neutral pH (7); but in acid pH conditions, this conversion slows giving plants 

that can effectively use NH4
+ an advantage (Potassium Nitrate Association 

2011).   

Base saturation was greater than 35% at all locations except MS and CW 

indicating the soil is mafic.  However, MS does have a mafic soil, Wynott.  

Amounts of soil Ca and K were low compared to other locations giving a lower 

base saturation.  Base saturation at CW is the result of sampling through a Cecil 

inclusion which lowered the result.  The amount of iron and aluminum held on the 

exchange sites ranged from 30 to 45% at MR, PB, RH, ST, and WR.  Mountain 

Island had a 56% content while MR had 66% Fe and Al but, CW contained the 

greatest amount, 72%.  More than one half of the exchange sites (CEC) were 

taken up by these elements causing the site to become less fertile. 

Sand was the greatest soil fraction at all locations but RH, ST, and MS 

which contained less than 50%.  Mineral Springs contained only 20% sand but 

had 65% silt.  The other two locations, RH and ST, contained 40 and 36% sand 

respectively.  Smith (2008) found the sand content of soils at Schweinitz’s 

sunflower sites, a species associated with Piedmont prairie occurrence, 

averaged 49.1% while 45.7% was the average in our samples.   Silt ranged from 
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25 – 35% except MS and clay content ranged from 16 - 33%.  Smith (2008) 

found and average 32.6% silt and 19.0% clay at Schweinitz’s sunflower sites     

Soil texture is dependent upon particle size distribution and is an important 

determinant of drainage and aeration.  Drainage is facilitated by sand and its 

large pore space.  Finer textured clayey soils have a much greater water holding 

ability.  Aeration is better in sandy soils and promotes root growth.  Organic 

matter decomposes more rapidly in a sandy soil as a result of improved air 

supply.  Cation exchange capacity and pH buffering tend to increase with clay 

content.  However, erodibility increases with finer particle sizes, silt and clay.  

meaning the ideal soil has a mix of these particles, loam.  Loam soils have a mix 

of all the characters brought about by their particle size distribution, i.e. they drain 

well, have good aeration, hold moisture, and hold nutrients.  Soil textures found 

were loam (PB and RH), clay loam (ST), silt loam (MS), sandy loam (CW and 

WR) and sandy clay loam (MI and MR). 

The SAS stepwise procedure was performed to determine which 

characters are important in discriminating between locations.  Eight models were 

produced each with a greater R2.  Magnesium was the single variable model 

having a R2 of 0.66.  Additional variables added to the model along with R2 values 

included Zn (0.72), C (0.77), CEC (0.83), Mg was dropped from the model (0.83), 

sand (0.85), P (0.86), and Cu (0.88). 

Soil nutrient levels were variable from location to location and difficult to 

interpret and compare meaningfully.  Sufficiency for growth is a more 
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interpretable method of classifying and comparing sites.  A rating system 

obtained from the Clemson University Soil Testing Laboratory was used to 

classify nutrient levels as excessive, high, sufficient, medium, or low for optimal 

plant growth (Dr. Kathy Moore, personal communication).  A rating of excessive 

indicates the nutrient will adversely affect plant growth, while high indicates that 

growth may be affected.  A rating of sufficient indicates adequate nutrients to 

meet requirements; medium means there are enough nutrients for moderate 

growth, while low indicates insufficient nutrient level.  Table 3.2 shows that P was 

low at all locations.  Potassium was low at MS, RH, and WR; medium at CW, MI, 

MR and ST; and excessive at PB.  Micronutrients, Ca, B, Mg, Mn, and Zn were 

found at levels that were ideal or too great.  Magnesium was high at all locations 

while Mn was excessive at all but two locations, MI and MS.  Calcium was high at 

two locations sufficient at three and medium at three.  Excessive and high levels 

of a nutrient can aid prairie development.  Plants that can tolerate these levels 

establish themselves where others cannot survive.  Lower than adequate 

macronutrients reduce growth allowing plants requiring lower levels to establish 

themselves and occupy a site.  The NO3
- form of nitrogen is easily washed from 

soil solution resulting in a soil N reduction (Alfred 2012).  However, it has been 

shown that reduced nitrogen levels reduce the NPP of competing vegetation 

allowing prairie type species to establish themselves (Baer et al. 2003). 
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Figure 3.1.  Soil sampling locations of eight prairie and rare plant sites. 



85 

CHAPTER FOUR 

 
Ordination of Five Prairie Remnants in the Piedmont of 

North and South Carolina 
 
 
 

ABSTRACT 
 
 

 The varied mix of species occurring on potential Piedmont prairie sites 

makes determining whether they are prairie or not difficult.  The purpose of this 

study was to determine which species occurred at six different Piedmont Prairie 

remnant sites.  Published floristic data was used to ordinate six Piedmont prairie 

remnant and rare plant sites located in North and South Carolina.  Ordination by 

Non-Metric Multidimensional Scaling (NMS) separated the plots into xeric, mesic, 

and hydric types as defined by soil characteristics.  Two-way Indicator Species 

Analysis (TWINSPAN) indicated the hydric location had no species in common 

with any other location.  Remaining locations were separated on the presence of 

indianhemp (Apocynum cannabinum L.).  Thirty-eight species were found not to 

have a preference for site among intermediate and xeric sites.  Twenty-three of 

the thirty-eight species were associated with prairies.  A list of expected species 

can be created, but the determination may be more useful if segregated by site 

moisture regime (xeric, mesic, or hydric). 

 
Note: Not all sites used in this chapter are the same ones as in previous 
chapters. 
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INTRODUCTION 
 

Growing public awareness of land management practices used by Native 

Americans and awareness of vast savannas and prairies created by them has 

sparked a growing interest in preserving this vanishing part of our natural 

heritage.  Shortly after sighting the Virginia coast in 1607, colonists noticed large 

plumes of smoke coming from deep in the forest (Brown 2000).  Settlers did not 

realize that the end of this practice and environmental change were about to 

come.  Burning was stopped by barring the Indians from the (Williams 2000).  

Fire was feared by settlers as a very destructive and uncontrollable force.  Also, 

prairie lands were the first to be settled and placed in crop production.  This 

fragmented the land preventing fire from burning through prairies to retard woody 

and weedy vegetation.  The Georgia Piedmont was mostly deforested and in 

crop production by 1850; but between the mid-nineteenth and early twentieth 

century, farmlands were abandoned (Cowell 1993).  Abandoned farm fields were 

reclaimed by forests quickly reestablishing themselves on these disturbed soils.  

However, prairies did not reappear across the landscape as they once existed.  

Only small remnant patches existed in locations where edaphic conditions 

favored them (Wagner et al. 1998). 

Today, with growing interest by the populace in the environment and 

environmental issues, interest in restoring prairie remnants and stopping their 

possible loss is a great concern.  Plant species are expected to be lost from 

remnants because of habitat fragmentation alone (Leach and Givnish 1996), and 
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there is always the threat of development.  Identifying a remnant can be difficult 

as the mixture of species contained on the site may not be associated with a 

prairie.  This study’s goal is to determine which species found in six Piedmont 

prairie remnants occur without preference to site. 

 
 
 

MATERIALS AND METHODS 

 
Data 

 
 

Vegetative data collected by Davis et al. (2002) and Schmidt and Barnwell 

(2002) were used for this study.  Over a period of four years, Davis and his group 

used pedestrian surveys to record species occurring at six prairie locations 

(Figure 4.1) in North and South Carolina.  Special attention was given to species 

having an association with prairies as defined by Fernald (1950) and Radford et 

al. (1968).  Woodland, wetland, and non-native species were removed from the 

tally (Davis et al. 2002).  Schmidt and Barnwell (2002) conducted a floristic 

survey of the Rock Hill Blackjacks Heritage Preserve from spring 1996 to 

summer 2000.  The flora was classified as a member of one of six communities 

(bottomland forest, gabbro glade, montmorillonite forest/woodland, old field 

grassland/shrubland, old field woodland, or utility corridor grassland/shrubland).  

Species were further classified as exotic, prairie, outcrop, woody or herbaceous 

based on Packard and Mutel (1997) and Murdy and Carter (2000).  Herbaceous 
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species were either forbs or graminoid (Schmidt and Barnwell 2002).  Species 

were identified to subspecies making some species different from those recorded 

by Davis who typically recorded only to species.  In the cases where two species 

could be identified as being the same, they were coded identically for analytical 

purposes.  Otherwise, species were coded as individual species.  Moisture 

regime (hydric, mesic, or xeric) was determined from soil series information 

obtained from Web Soil Survey (http://websoilsurvey.nrcs.usda.gov/app/ 

HomePage.htm) 

Analysis 

 
Analysis begins by creating an ordination dataset in presence/absence (no 

abundance data were available) format from the data collected by Davis et al. 

(2002) and Schmidt and Barnwell (2002).  Detrended Correspondence Analysis 

(DCA) using the program Decorana, contained in PC-ORD (McCune and Metford 

2006), was performed on the data matrix to determine the number of ordination 

axes and for later comparison.  Bray-Curtis ordination using Bray-Curtis as the 

distance measure was conducted on the data matrix for comparison.  Non-metric 

Multidimensional Scaling (NMS) was run using the number of axes obtained from 

DCA and compared with output from DCA and Bray-Curtis as checks.  In order to 

identify associations of species at the different sites, Two-way Indicator Species 

Analysis (TWINSPAN) in PC-ORD 5 with cut levels set to 0 (presence-absence) 

was used (McCune and Mefford 2006). 
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RESULTS 

 
 

Ordination using DCA indicated that Suther Prairie (SP), the only hydric 

site, was very different from all other locations (Figure 4.1).  Mineral Springs (MS) 

was the most xeric of all locations followed by the Rock Hill Heritage Preserve-

Davis (RHD) and Rock Hill Heritage Preserve-Schmidt (RHS) sites.  Shuffletown 

Prairie (ST) and Gar Creek (GC) were the most mesic.  Bray-Curtis ordination 

produced similar results as DCA (Figure 4.2).  Suther Prairie was found to be 

very different from all other locations and was one of the end points for this 

ordination.  Gar Creek was the other end point.  A 1-dimensional ordination 

solution was produced by NMS while the other two methods produced 3-

dimensional solutions.  Suther Prairie was found to be very different from other 

locations (Figure 4.3).  Removing SP and rerunning the ordination resulted in a 

closer association of the remaining locations (Figure 4.4).  Locations occurring 

above 0.0 on axis 2 (MS, RHD, and RHS) were the more xeric sites.  Site RHS is 

not located near site RHD on the graph, but these are actually the same site with 

species identified by different individuals.  Davis et al. (2002) collected vegetative 

information for RHD while Schmidt and Barnwell (2002) collected RHS 

information.  After rerunning the ordination with RHS removed (Figure 4.5), the 

remaining sites clustered more closely together indicating similarity in vegetative 

composition. 
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TWINSPAN made two major divisions.  The first division groups five 

locations excluding SP.  Indian hemp (Apocynum cannabinum L) is the indicator 

species for sites GC, MS, RHS, RHD, and ST.  Species that were preferential to 

SP are winter bentgrass (Agrostis hyemalis (Walt.) B.S.P.), yellowfruit sedge 

(Carex annectens (Bickn.) Bickn.), scarlet Indian paintbrush (Castilleja coccinea 

(L.) Spreng.), spotted water hemlock (Cicuta maculata L.), chickasaw plum 

(Prunus angustifolia Marsh.), needletip blue-eyed grass (Sisyrinchium 

mucronatum Michx.), and spring lady's tresses (Spiranthes vernalis Engelm. & 

Gray).  These are all the species reported as occurring at site SP.  No non-

preferential species, species occurring in both groups, occurred at the first 

division.  Further division of the remaining five locations separated RHS from the 

group.  The occurrence of Indian hemp (Apocynum cannabinum L.) in RHS was 

used to separate it from the remaining four sites (GC, MS, RHD, and ST).  

Species were identified to the subspecies level at RHS with greater frequency 

causing it to break out differently, plus additional species were identified.  Non-

preferential species (Table 4.1) accounted for 38 of the total species; 23 were 

associated with prairies. 

 
DISCUSSION AND CONCLUSION 

 

Ordination of the prairie remnant sites has shown all are not identical.  

Suther Prairie is different from other sites because of its hydric nature.  Its 

location along the flood plain of Dutch Buffalo Creek provides moisture year 
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round (Tompkins 2010).  Species adapted to growing in constantly moist soil are 

more prevalent here than other locations.  However, species requiring less soil 

moisture would not grow well on a hydric site, if at all.  Management practices are 

important to help keep the site an open prairie.  A burning cycle of 2-3 years is 

practiced as well as using the site for haying (Tompkins et al. 2010).  Both 

practices keep woody species from taking over the site and making it a forest.  

Conversely, Mineral Springs Barrens is a very dry upland site containing post oak 

(Quercus stellata Wangenh.), blackjack oak (Quercus marilandica Münchh.), 

shortleaf pine (Pinus echinata Mill.), sparse herbs and sparse grass cover.  The 

soil is Wynott series which tends to be very wet or very dry depending on the 

time since the last precipitation (Davis et al. 2002).  Species composition is much 

different than Suther Prairie; only species that can survive droughty conditions 

are found here.  Trees are slowly occupying the site as well, but their progress is 

retarded by a lack of moisture in conjunction with prescribed burning conducted 

by The Nature Conservancy.  Shuffletown prairie is intermediate between Suther 

Prairie and Mineral Springs Barrens.  Medium to tall graminoids occur with 

various vines and herbs.  Woody invaders are not moisture deprived compared 

with Mineral Springs and could grow tall rapidly if allowed.  The other two sites 

examined for this study (GC and RH) are intermediate in moisture allowing them 

to contain more species and have greater productivity.  However, 38 species 

were found to be non-preferential among GC, MS, RHD, RHS, and ST with 23 of 

these species previously associated with prairies (Davis et al. 2002, Edgin and 
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Ebinger 2000, Leidolf and McDaniel 1998, Schmidt and Barnwell 2002, Tompkins 

et al. 2010).  Non-preferential species can be used to identify potential Piedmont 

prairie sites since they showed no preference for site other than not occurring on 

wet sites. 

All Piedmont prairies do not occur on the same site type, especially in 

terms of moisture.  Nor do they have the same mix of flora, but they do have a 

subset of flora that can be used to identify them.  Potential Piedmont prairie sites 

are being located without a method to quickly validate them.  By using the 

species that did not have a preference to a particular Piedmont prairie site type, a 

quick assessment can be made.  While the species determined in this study are 

most appropriate near Charlotte, North Carolina, local species lists can easily be 

developed saving time and effort.  Species determined here do not apply to one 

location, Suther Prairie.  Site conditions were different at that location creating a 

different species mix. 
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Figure 4.1.  Piedmont prairie ordination sites. 
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GC     Gar Creek 
MS     Mineral Springs 
RHD   Rock Hill Blackjacks Heritage Preserve (Davis) 
RHS   Rock Hill Blackjacks Heritage Preserve (Schmidt) 
SP      Suther Prairie 
ST      Shuffletown Prairie 
 
 
 
Figure 4.2.  Ordination of six Piedmont prairie sites in North and South Carolina 
using Detrended Correspondence Analysis (DCA). 
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Figure 4.3.  Ordination of six Piedmont prairie sites in North and South Carolina 
using the Bray-Curtis method. 
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Figure 4.4.  Ordination of six Piedmont prairie sites in North and South Carolina 
using Non-parametric Multidimensional Scaling (NMS). 
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Figure 4.5.  Non-parametric Multidimensional Scaling Ordination of Piedmont 
prairie locations in North and South Carolina.  Site SP has been removed. 
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GC     Gar Creek 
MS     Mineral Springs 
RHD   Rock Hill Blackjacks Heritage Preserve (Davis) 
ST      Shuffletown Prairie 
 
 
 
Figure 4.6.  Non-parametric Multidimensional Scaling Ordination of Piedmont 
prairie locations in North and South Carolina.  Sites SP and RHS have been 
removed. 
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SUMMARY CONCLUSIONS 
 

This study was undertaken to evaluate characteristics found on Piedmont 

prairie remnant sites in the hope that these findings would be used in Piedmont 

prairie restoration programs.  These habitats are used by eastern meadowlark 

(Sturnella magna), grasshopper sparrow (Ammodramus savannaru), Henslow’s 

sparrow (Ammodramus henslowii), field sparrow (Spizella pusilla) (Helzer and 

Jelinski 1999, Marx et al. 2008, Reinking 2006, Shochat et al. 2005), white-tailed 

deer (Odocoileus virginianus) (Pietz and Granfors 2000), fox (Vulpes sp.), 

Meadow Vole (Microtus pennsylvanicus), and the Common Green Darter (Anax 

junius) for shelter, feeding, and breeding.  Unique and specialized conditions for 

certain plant species are provided as well.   

Piedmont prairie sites were located on upper slope positions, on slopes    

< 15%, on eastern to western facing slopes, and on Alfisols.  Basically, locations 

that are more xeric than lower slope positions and subject to less competition 

were utilized.  Nitrogen levels lower than necessary for optimal plant growth 

benefits their reestablishment.  Additional amounts likely encourage excessive 

vegetative growth shading desired plants and possibly killing them.  Phosphorus 

increases growth, but has a synergistic effect when combined with N.  These 

nutrients in combination produce excessive growth shading desirable species in 

a restoration.  Invasive species utilize these nutrients better than the desired 

species out competing them as a result (Tyler et al. 2007).  Potassium caused 

the same reaction as N and P indicating that lower levels of these are beneficial; 
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micronutrient concentrations were usually higher than necessary but did not 

cause excessive growth or kill the prairie species. 

Prairie sites are actually different and contain many different plant species.  

Some plants are unique to a site, but others are common at many locations.  

Prairie sites occur on many site types ranging from wet to very dry, but all 

seemed to have been disturbed in some manner.  For example, some occur 

along rights-of-way where woody vegetation is not allowed to grow; there is 

haying and burning at Suther Prairie; and very xeric conditions at Mineral 

Springs.  When all these site, nutrient, and floral factors are combined, a picture 

of the best locations appears.  However, in this study, only seven locations 

around Charlotte, North Carolina, and one near Durham, NC were sampled to 

characterize the prairie types.  A good idea of Charlotte area prairie 

characteristics has been gathered, but away from this area different parameters 

may be important.  Sampling in the local area is imperative for successful prairie 

restorations. 
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APPENDIX A 

Sampling Site Identification 

 

Sample ID Site 

CW Catawba Wildflower Glen 

MI Mile Island Rare Plant Site 

MR McCoy Road Sunflower Site 

MS Mineral Springs Barren 

PB Penney’s Bend 

RH Rock Hill Heritage Preserve 

SP Shuffletown Prairie 

WR Winget Road Sunflower Site 
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APPENDIX B 

Particle Size Analysis Results 

 

Sample ID Soil Texture Sand Silt Clay 
  ----------------- % ----------------- 

CW1-5 Sandy Clay Loam 56.0 23.6 20.4 

CW11-15 Sandy Loam 60.0 25.6 14.4 

CW6-10 Sandy Loam 54.0 29.6 16.4 

CW16-20 Sandy Loam 66.0 21.6 12.4 

MI1-5 Loam 46.0 29.6 24.4 

MI11-15 Sandy Clay Loam 60.0 19.6 20.4 

MI6-10 Sandy Loam 56.0 25.6 18.4 

MI16-20 Sandy Loam 54.0 29.6 16.4 

MR1-5 Sandy Loam 62.0 23.6 14.4 

MR11-15 Loam 44.0 29.6 26.4 

MR6-10 Sandy Clay Loam 38.0 29.6 32.4 

MR16-20 Sandy Loam 54.0 27.6 18.4 

MS1-5 Silt Loam 18.0 65.6 16.4 

MS11-15 Silt Loam 22.0 65.6 12.4 

MS6-10 Silt Loam 20.0 67.6 12.4 

MS16-20 Silt Loam 20.0 62.0 18.0 

PB1-5 Loam 48.0 34.0 18.0 

PB11-15 Sandy Loam 56.0 32.0 12.0 

PB6-10 Loam 48.0 34.0 18.0 

PB16-20 Loam 48.0 32.0 20.0 

RH1-5 Loam 40.0 40.0 20.0 

RH11-15 Loam 44.0 34.0 22.0 

RH6-10 Clay Loam 34.0 30.0 36.0 

RH16-20 Loam 42.0 36.0 22.0 

ST1-5 Clay Loam 32.0 28.0 40.0 

ST11-15 Loam 38.0 36.0 26.0 

ST6-10 Clay Loam 30.0 30.0 40.0 

ST16-20 Loam 44.0 30.0 26.0 

WR1-5 Sandy Loam 56.0 26.0 18.0 

WR11-15 Sandy Clay Loam 56.0 22.0 22.0 

WR6-10 Loam 50.0 32.0 18.0 

WR16-20 Sandy Clay Loam 52.0 26.0 22.0 



108 

APPENDIX C 

Soil Carbon and Nitrogen Analysis 

Sample ID N  C  
 ----------- % ----------- 

CW1-5 0.90 2.32 

CW6-10 0.18 3.28 

CW11-15 0.12 2.35 

CW16-20 0.09 2.67 

MI1-5 0.12 2.05 

MI6-10 0.09 2.32 

MI11-15 0.18 3.28 
MI16-20 0.12 2.35 
MR1-5 0.09 2.67 
MR6-10 0.12 2.05 
MR11-15 0.14 1.86 
MR16-20 0.16 2.18 
MS1-5 0.12 1.93 
MS6-10 0.11 1.89 
MS11-15 0.10 1.66 
MS16-20 0.15 2.76 
PB1-5 0.18 3.02 
PB6-10 0.11 2.10 
PB11-15 0.06 1.56 
PB16-20 0.07 1.84 
RH1-5 0.07 1.62 
RH6-10 0.10 1.27 
RH11-15 0.12 1.51 
RH16-20 0.10 1.33 

ST1-5 0.15 2.56 

ST6-10 0.15 2.09 
ST11-15 0.16 2.23 
ST16-20 0.12 2.13 

WR1-5 0.11 1.41 

WR6-10 0.13 1.90 
WR11-15 0.12 1.86 
WR16-20 0.19 2.66 
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APPENDIX D 

Soil Chemical Analysis Results 

Sample ID Ca Mg P K Zn Mn Cu 

 ---------------------------------------- Kg/ha ------------------------------------ 

CW1-5 761.73 133.16 16.35 95.70 4.45 89.88 1.45 

CW6-10 1119.62 228.32 11.53 122.62 6.28 92.66 1.20 

CW11-15 540.92 127.78 5.88 120.16 2.02 52.24 1.08 

CW16-20 312.72 53.52 8.31 66.87 3.37 27.14 0.96 

M11-5 905.76 296.46 5.40 125.09 7.48 41.98 1.86 

M16-10 1010.78 238.85 6.23 171.71 7.20 35.91 1.12 

M111-15 698.74 137.86 5.73 140.33 19.63 38.11 1.21 

M116-20 738.30 178.78 4.78 133.61 10.96 34.97 1.74 

MR1-5 1659.98 284.58 10.06 149.63 7.91 118.47 1.95 

MR6-10 950.03 272.59 1.76 51.68 4.89 69.18 2.30 

MR11-15 1727.23 350.71 6.59 122.85 11.53 145.93 3.09 

MR16-20 2001.84 403.95 7.64 136.63 7.53 113.09 2.08 

MS1-5 518.39 300.95 3.77 52.39 10.52 13.78 1.00 

MS6-10 343.20 191.55 3.37 40.29 6.52 14.71 0.76 

MS11-15 409.67 179.90 6.80 44.87 8.51 26.82 1.06 

MS16-20 628.12 478.72 4.19 65.39 8.22 40.99 1.55 

PB1-5 1201.55 289.07 7.41 286.83 9.90 119.26 1.46 

PB6-10 1155.60 258.02 6.03 248.60 7.81 121.39 2.02 

PB11-15 1025.35 241.66 9.15 277.52 14.71 94.27 1.63 

PB16-20 1097.87 284.92 5.19 298.71 10.80 89.22 1.32 

RH1-5 1557.98 571.07 4.97 66.94 4.97 80.84 2.70 

RH6-10 1276.65 453.05 4.51 39.73 4.44 116.46 4.89 

RH11-15 1761.98 604.03 4.79 74.11 4.43 136.52 4.18 

RH16-20 2441.21 1104.37 3.89 61.60 4.33 94.84 4.00 

WR1-5 2619.43 484.88 26.95 79.80 5.19 86.70 2.09 

WR6-10 2333.61 585.53 15.27 65.68 4.27 86.56 1.89 

WR11-15 2176.69 697.39 15.36 71.30 4.90 98.44 1.99 

WR16-20 1640.92 740.21 6.73 58.43 9.86 81.96 2.04 

ST1-5 2263.00 1080.61 9.28 93.24 1.39 65.50 2.54 

ST6-10 2186.78 1027.03 2.40 82.98 2.58 71.66 2.36 

ST11-15 2195.75 479.72 9.88 105.54 34.67 100.42 5.00 

ST16-20 2050.03 760.27 4.79 86.70 17.23 86.38 4.90 
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APPENDIX D (CONTINUED) 

Soil Chemical Analysis Results (Continued) 

Sample ID B Na Soil pH Buffer pH CEC Acidity 

 ------- Kg/ha ------- ---------------- Meq/100g ---------------- 

CW1-5 0.52 12.25 5.10 7.40 7.10 4.80 

CW6-10 0.58 17.36 5.20 7.35 8.70 5.20 

CW11-15 0.28 20.18 4.80 7.30 7.50 5.60 

CW16-20 0.22 10.30 4.60 7.35 6.20 5.20 

M11-5 0.64 23.45 5.30 7.55 6.90 3.60 
M16-10 0.81 12.78 5.50 7.55 7.00 3.60 
M111-15 0.62 9.72 5.20 7.55 5.80 3.60 
M116-20 0.54 9.99 5.30 7.55 6.10 3.60 
MR1-5 1.07 9.57 5.70 7.55 8.60 3.60 
MR6-10 0.56 16.32 5.00 7.45 7.60 4.40 
MR11-15 1.12 13.92 5.50 7.50 9.30 4.00 
MR16-20 0.96 19.84 5.80 7.55 9.80 3.60 
MS1-5 0.12 114.44 4.90 7.40 7.40 4.80 
MS6-10 0.09 100.06 4.70 7.45 6.10 4.40 
MS11-15 0.16 48.64 4.70 7.45 6.10 4.40 
MS16-20 0.20 89.34 4.90 7.45 7.80 4.40 
PB1-5 0.86 9.08 6.00 7.65 6.90 2.80 
PB6-10 0.79 8.76 5.90 7.60 7.00 3.20 
PB11-15 0.76 7.74 6.10 7.70 5.90 2.40 
PB16-20 0.81 8.27 5.90 7.65 6.70 2.80 
RH1-5 0.60 42.29 5.70 7.50 9.80 4.00 
RH6-10 0.43 30.25 5.40 7.45 9.00 4.40 
RH11-15 0.86 31.31 5.70 7.45 10.70 4.40 
RH16-20 0.91 41.90 5.90 7.45 14.10 4.40 

WR1-5 1.28 22.17 6.20 7.55 11.40 3.60 

WR6-10 1.15 24.84 5.70 7.45 11.90 4.40 
WR11-15 0.97 25.95 5.90 7.45 12.00 4.40 
WR16-20 0.70 29.53 5.50 7.40 11.30 4.80 

ST1-5 0.45 55.24 6.50 7.65 12.10 2.80 

ST6-10 0.79 47.62 6.20 7.55 12.50 3.60 
ST11-15 1.24 17.60 6.00 7.55 10.40 3.60 
ST16-20 0.99 31.15 5.80 7.50 11.60 4.00 
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APPENDIX D (CONTINUED) 

Soil Chemical Analysis Results (Continued) 

 Base Saturation 

Sample ID Ca Mg K Na Total 

 -------------------- % ------------------- 

CW1-5 24 7 2 0 33 
CW6-10 29 10 2 0 40 
CW11-15 16 6 2 1 25 
CW16-20 11 3 1 0 16 
M11-5 29 16 2 1 48 
M16-10 32 13 3 0 48 
M111-15 27 9 3 0 39 
M116-20 27 11 2 0 41 
MR1-5 43 12 2 0 58 
MR6-10 28 13 1 0 42 
MR11-15 41 14 2 0 57 
MR16-20 46 15 2 0 63 
MS1-5 16 15 1 3 35 
MS6-10 13 12 1 3 28 
MS11-15 15 11 1 2 28 
MS16-20 18 23 1 2 44 
PB1-5 39 16 5 0 59 
PB6-10 37 14 4 0 55 
PB11-15 39 15 5 0 60 
PB16-20 37 16 5 0 58 
RH1-5 35 22 1 1 59 
RH6-10 32 19 0 1 51 
RH11-15 37 21 1 1 59 
RH16-20 39 29 0 1 69 
WR1-5 51 16 1 0 68 
WR6-10 44 18 1 0 63 
WR11-15 40 22 1 0 63 
WR16-20 32 24 1 1 58 
ST1-5 42 33 1 1 77 
ST6-10 39 31 1 1 71 
ST11-15 47 17 1 0 66 
ST16-20 39 24 1 1 65 
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