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ABSTRACT 

An increasing reliance on complex numerical simulations for high consequence 

decision making is the motivation for experiment-based validation and uncertainty 

quantification to assess, and when needed, to improve the predictive capabilities of 

numerical models. Uncertainties and biases in model predictions can be reduced by 

taking two distinct actions: (i) increasing the number of experiments in the model 

calibration process, and/or (ii) improving the physics sophistication of the numerical 

model. Therefore, decision makers must select between further code development and 

experimentation while allocating the finite amount of available resources. This 

dissertation presents a novel framework to assist in this selection between 

experimentation and code development for model validation strictly from the perspective 

of predictive capability. The reduction and convergence of discrepancy bias between 

model prediction and observation, computed using a suitable convergence metric, play a 

key role in the conceptual formulation of the framework. The proposed framework is 

demonstrated using two non-trivial case study applications on the Preston-Tonks-Wallace 

(PTW) code, which is a continuum-based plasticity approach to modeling metals, and the 

ViscoPlastic Self-Consistent (VPSC) code which is a mesoscopic plasticity approach to 

modeling crystalline materials. Results show that the developed resource allocation 

framework is effective and efficient in path selection (i.e. experimentation and/or code 

development) resulting in a reduction in both model uncertainties and discrepancy bias. 
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The framework developed herein goes beyond path selection in the validation of 

numerical models by providing a methodology for the prioritization of optimal 

experimental settings and an algorithm for prioritization of code development.  

If the path selection algorithm selects the experimental path, optimal selection of 

the settings at which these physical experiments are conducted as well as the sequence of 

these experiments is vital to maximize the gain in predictive capability of a model. The 

Batch Sequential Design (BSD) is a methodology utilized in this work to achieve the goal 

of selecting the optimal experimental settings. A new BSD selection criterion, Coverage 

Augmented Expected Improvement for Predictive Stability (C-EIPS), is developed to 

minimize the maximum reduction in the model discrepancy bias and coverage of the 

experiments within the domain of applicability. The functional form of the new criterion, 

C-EIPS, is demonstrated to outperform its predecessor, the EIPS criterion, and the 

distance-based criterion when discrepancy bias is high and coverage is low, while 

exhibiting a comparable performance to the distance-based criterion in efficiently 

maximizing the predictive capability of the VPSC model as discrepancy decreases and 

coverage increases.  

If the path selection algorithm selects the code development path, the developed 

framework provides an algorithm for the prioritization of code development efforts. In 

coupled systems, the predictive accuracy of the simulation hinges on the accuracy of 

individual constituent models. Potential improvement in the predictive accuracy of the 

simulation that can be gained through improving a constituent model depends not only on 

the relative importance, but also on the inherent uncertainty and inaccuracy of that 
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particular constituent. As such, a unique and quantitative code prioritization index (CPI) 

is proposed to accomplish the task of prioritizing code development efforts, and its 

application is demonstrated on a case study of a steel frame with semi-rigid connections. 

Findings show that the CPI is effective in identifying the most critical constituent of the 

coupled system, whose improvement leads to the highest overall enhancement of the 

predictive capability of the coupled model. 
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CHAPTER 1: INTRODUCTION 

1.1. Motivation 

 With advances in computer technology, the traditional design-build-test strategy 

for the certification of complex engineering systems is being replaced with physics-based 

complex numerical models. Such models can greatly reduce the reliance on and need for 

extensive experimental campaigns; however, one must bear in mind that these models are 

only approximations of reality and their predictions contain a level of inaccuracy and 

imprecision. Applying such models in high-consequence decision making, especially in 

scientific and engineering fields involving the safety and security of human life, requires 

a rigorous assessment of the deficiencies of the model through efforts collectively 

referred to as experimental-based model validation. Many questions arise during 

experimental-based model validation, including but not limited to: Are sufficient quality 

and quantity of experiments being collected? Are the engineering or science principles 

modeled with sufficient detail? With many vital questions to be answered, it is crucial to 

have a systematic, formal experimental-based model validation framework. 

 A framework for experimental-based model validation must not only apply 

rigorous methods for quantifying the model inaccuracies and imprecisions, but also 

provide decision makers with a tool for determining what actions to take when the model 

accuracy or precision is found insufficient. Two obvious paths available to the decision 
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maker are: (i) conducting additional experiments and (ii) improving the model (or code
1
) 

itself; while the selection of one path over the other is less obvious. Faced with time, 

budget, and model performance requirements, decision makers need tools to choose the 

most efficient path toward model validation. Thus, a model validation framework 

incorporating such decision making tools is essential for the science and engineering 

community. The focus of this study is to provide such a framework. 

1.2. Background Overview 

Over the past several decades, many studies have been devoted to the verification 

and validation of numerical models. To gain a full understanding of these previous 

research efforts in the pertinent literature, a consistent definition of the terms validation 

and verification is necessary. The Department of Defense (DoD) defines validation as 

“the process of determining the degree to which a model is an accurate representation of 

the real-world from the perspective of the intended uses of the model” while verification 

is defined as “the process of determining that a model implementation accurately 

represents the developer’s conceptual description and specifications” (DoD, 2007). Balci 

et al. (1998) provides a similar definition where validation “is substantiating that the 

model, within its domain of applicability, behaves with satisfactory accuracy consistent 

with modeling and simulation objectives” and verification is “substantiating that the 

model is transformed from one form into another, as intended, with sufficient accuracy.” 

                                                

1 Herein codes are defined as the mathematical algorithms developed to compute physical quantities and 

phenomena. Models incorporate codes for particular applications (material, geometry, etc.). When referring 

to improving the physics sophistication of the numerical model, the terms model and code will be used 

interchangeably as model development and code development can be used as a means of physics 

sophistication. 
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Balci summarizes these terms in stating: “Model verification deals with building the 

model right, and model validation deals with building the right model” (Balci et al., 

1998).   

It is also necessary to accompany definitions of validation and verification with a 

formal definition for the accuracy and precision. The accuracy of a model represents the 

fundamental inability to reproduce reality due to missing physics principles, idealizations, 

or unsuitable assumptions. A direct comparison of model predictions to experimental 

results can quantify these inaccuracies and is defined herein as model form error (or 

systematic bias). If one can conduct an infinite number of experiments, the model form 

error would be known throughout the entire domain of applicability; however, given 

resource limitations, an independent estimate of model form error throughout the domain 

of applicability, referred to herein as the discrepancy bias, must be evaluated. 

The assessment of predictive ability must go beyond deterministic approaches that 

measure accuracy but fail to account for imprecisions of the model predictions. In many 

science and engineering problems, the imprecisions stem from aspects of the model that 

are not known with absolute certainty including, but not limited to, material property 

variability, geometric or material property parameter values, statistical limitations in 

estimating parameter values, predictions related to time (past or future), and human error 

(Bulleit, 2008). Such model imprecisions are herein referred to as model uncertainties. 

Uncertainty quantification is the process by which the effect that these imprecisions have 

on model predictions is quantified (Hemez, 2007). In fact, the National Aeronautics and 

Space Administration (NASA), in response to a lack of uncertainty quantification and 
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risk assessment in the Columbia accident in 2003, created a model validation and 

verification framework that includes rigorous uncertainty quantification in the 

development of the Uncertainty Structure (Green, 2008).  

Many such frameworks have been developed in academic institutions (Leye et al., 

2009; Jung, 2011; Sargent, 2010; Bayarri et al., 2007; Sornette et al., 2007; Jiang and 

Mahadevan, 2007), industry (Balci et al., 2002), National Laboratories (Oberkampf et al., 

2007; Unal et al., 2011), and NASA (Green et al., 2008). Frameworks such as the 

Uncertainty Structure developed at NASA (Green et al., 2008) or the Predictive 

Capability Maturity Model from Sandia National Laboratories (Oberkampf et al., 2007) 

seek to assess the overall predictive capability of a modeling and simulation campaign 

through the use of qualitative, expert-judgment based ranking systems that include 

assessment of model verification, validation, and uncertainty quantification. Balci et al. 

(1998) has developed an online credibility assessment tool to improve the communication 

and overall effectiveness of such qualitative approaches. General high-level approaches 

to assessing model validity against experimental data (see for instance Leye et al., 2009 

and Sargent, 2010) include sensitivity analysis, experimentation, and a qualitative or 

quantitative comparison of model predictions to experimental observations; however, in 

these mainly qualitative high-level approaches, the rigorous, quantitative assessment 

metrics for model validation and uncertainty quantification are not explicitly provided.  

To provide such rigorous and quantitative assessments, Jung (2011), Bayarri et al. 

(2007), Jiang and Mahadevan (2007), and Unal et al. (2011) provide model validation 

frameworks with similar general structures including: initial modeling efforts, 
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experimentation, model calibration, assessment against an evaluation criterion, and a 

decision of whether or not the model is fit for use in its intended domain of applicability.  

Model calibration is the process by which uncertainties in model input parameters 

can be reduced by inferring improved estimates of these input parameters through a 

comparison of model predictions to experimental data. Model calibration can be 

conducted in such a way that model uncertainties can be integrally quantified through the 

use of Bayesian calibration techniques (Kennedy and O’Hagan, 2000) as implemented in 

Unal et al. (2011) and Bayarri et al. (2007) or the intrinsically random maximum 

likelihood principal as employed in Jung (2011). Additionally, within the frameworks 

provided in Unal et al. (2011) and Bayarri et al. (2007), the Bayesian calibration 

approach can account not only for model uncertainties but can also integrally account for 

both experimental uncertainties and model accuracy in the training of a discrepancy bias 

surrogate model. This treatment allows for a more rigorous and systematic separation and 

quantification of model accuracy and precision.  

During model calibration, Evaluation and Assessment Criterion (also known as 

validation metrics) can take on many forms depending on the goals and needs of the 

project. For example, Jung (2011) directly compares calibrated model output to 

experimental measurements using statistical approaches such as confidence intervals and 

hypothesis testing. In Bayarri et al. (2007) discrepancy bias-corrected model predictions 

under uncertainty are compared to experimental measurements also accounting for 

experimental uncertainty. A forecasting metric developed in Atamturktur et al. (2011) 

seeks to assess not only the model form error at known experimental locations but also 
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assesses the disagreement between the estimated discrepancy bias at untested settings and 

the true model form error. Moving beyond validation metrics solely based on model 

accuracy, the validation metric used in Sornette et al. (2007) combines a measure of 

uncertain model predictions to experimental measurements in addition to a novelty term 

incorporating how well experimentation has covered the domain of applicability. Another 

metric, the Predictive Maturity Index (PMI), quantitatively combines model accuracy, 

coverage of the domain of applicability by experimentation, model robustness, and model 

complexity to provide a comprehensive validation metric for use in the model validation 

process (Hemez et al., 2010; Stull et al., 2011).  

1.3. Dissertation overview 

Frameworks mentioned in the previous section include a step for the decision of 

whether or not the model is fit for use in its intended domain of applicability. Although 

these earlier frameworks acknowledge the paths to improvement, i.e. (i) collecting 

additional experimental data and/or (ii) improving the mathematical description of 

underlying physics principles of the model, none provide a quantitative strategy for 

choosing the appropriate path.  This dissertation addresses this need for such a decision 

making algorithm.  

Furthermore, if the experimentation path is selected, the validation experiments 

must be conducted at optimal settings. The study of optimal experimental design provides 

metrics and algorithms suitable for making such selections. One such experimental 

design methodology is Batch Sequential Design (BSD) (Williams et al., 2011; 

Atamturktur et al., 2012). BSD optimizes the experimental settings for a budget-driven, 
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user-chosen batch size and number of batches. This approach operates on the trained 

discrepancy bias model and uses a modified Federov exchange algorithm to exchange 

candidate design settings for optimal settings that maximize/minimize the design 

criterion. In published literature, design criterion utilized in BSD operate directly on a 

measure of the model accuracy and neglect additional aspects important to model 

validation such as the overall coverage of the domain of applicability by experiments, an 

attribute emphasized in the validation metric PMI by Hemez et al. 2011. Therefore, this 

dissertation develops a tool for prioritization of experiments taking into account not only 

the effects of discrepancy bias but also coverage of the domain of applicability. 

In a similar fashion, if the physics sophistication path is chosen, the model 

constituents of a coupled numerical system that most effectively reduce model form error 

should be chosen for improvement. Qualitative ranking systems such as the Phenomenon 

Identification and Ranking Table (Boyack, 1989) used in the nuclear engineering field 

and quantitative approaches to optimize software fault detection (Korel, 2009) and 

parallel processing of finite element codes (Zeyao and Lianxiang, 2004) have been 

developed in their respective fields. However, a quantitative ranking system for selecting 

the optimal constituent for code development has not been addressed in the literature. In 

response to this need, this dissertation develops a code prioritization metric for ranking 

constituents of models based upon an analysis of each constituent’s importance, 

uncertainty, and estimated initial inaccuracy.  

In summary, the goal of this dissertation is to utilize and expand on previously 

developed model validation frameworks to provide a more comprehensive framework 



8 

 

and its associated validation metrics that incorporate and directly addresses model 

uncertainties, experimental uncertainties, and model inaccuracies. This validation 

framework also provides a path selection algorithm for choosing either an augmented 

experimental campaign or code development to improve the modeling and simulation 

campaign, an algorithm for selecting optimal experimental design settings, and a metric 

for determining the most efficient code prioritization efforts. 

1.4. Main Dissertation Contributions 

 This dissertation contributes to the knowledge in the model validation field in 

three distinct ways. First, the main contribution of this dissertation is to extend the 

validation framework proposed by Unal et al. (2011) for the licensing of nuclear reactors 

into a generally applicable validation framework that can be used for 

certification/licensing in many technology areas including defense, energy and 

environment, risk assessment, national security, and basic and applied engineering and 

science projects. The proposed framework includes a path selection algorithm for 

choosing whether to conduct additional experiments or improve the physics of the model 

that is not provided previously in the literature. This algorithm uses convergence rate 

metrics applied to the model accuracy (measured through the discrepancy bias) and 

model uncertainty (measured through an entropy-based information gain metric) to select 

the most effective path and is demonstrated in three case studies: a conceptual 

mathematical example, the Preston-Tonks-Wallace (PTW) material model for plasticity 

of metals, and the viscoplastic self-consistent (VPSC) material model.  



9 

 

 Second, this dissertation inserts BSD into the developed model validation 

framework to be used when the experimentation path is chosen. Furthermore, a new 

optimization criterion, C-EIPS, is developed that seeks to select experimental settings 

based not only on the discrepancy bias but also on the coverage of the domain of 

applicability. The C-EIPS combines a measure of the expected improvement in the 

trained discrepancy bias with a computation of the overall coverage of the domain of 

applicability; then, the BSD algorithm optimizes C-EIPS for potential candidate points 

for the next batch of experimental settings in the domain. This new criterion 

(implemented in its functional form) is shown to more efficiently improve PMI when 

compared to its predecessor.  

Finally, to address the need for resource allocation in code development, this 

dissertation develops a novel metric for the most effective ranking of model constituents 

for code development of coupled numerical systems and incorporates the metric in the 

developed model validation framework. This metric, the Code Prioritization Index (CPI), 

quantitatively assesses code constituents’ importance, uncertainty, and estimated model 

form error and subsequently ranks constituents accordingly. The importance and 

uncertainty components of the CPI metric can be assessed using sensitivity analysis and 

uncertainty assessment techniques available in literature; however, the analysis of 

estimated model form error (referred to as error analysis (EA) herein) of CPI is 

specifically developed in this dissertation to assess the estimated initial inaccuracy of 

model constituents of coupled systems. The CPI metric is demonstrated using a steel 

frame with semi-rigid connections in which model constituents are identified as the semi-
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rigid beam-to-column connections. Model predictions are compared against 

experimentally collected static deflections and natural frequencies. The CPI metric 

requires obtaining model predictions with perturbed input parameters, and as such, as 

input parameters are perturbed the order of simulated vibratory modes of the steel frame 

changes (also known as mode-swapping). Therefore, a mode-pairing algorithm is 

developed to automate the process of matching mode shapes with corresponding natural 

frequencies. Each constituent’s sensitivity, uncertainty, and error analysis are then 

evaluated, and the CPI is computed. The CPI chosen ranking of model constituents is 

compared against all other possible combinations of code development and shown to 

provide the most efficient reduction in model form error. These three major contributions 

are summarized and depicted in the model validation flow chart (Figure 1.1). Through the 

development and application of each contribution on real-life, non-trivial case studies, the 

following chapters demonstrate the unique contributions of this dissertation to the model 

validation community. 

1.5. Dissertation Organization 

 This dissertation
2
 begins with a description of the model validation framework 

and the incorporation of the path selection algorithm. Chapter 2 concludes by 

demonstrating the path selection algorithm for a case where experimentation and code 

development are considered equally demanding on resources on both a conceptual 

mathematical model and the PTW model for plastic deformation of metals. This chapter 

                                                

2
 Chapters 2-5 in this dissertation serve as stand-alone journal publications, and as such, some level of 

conceptual overlap is unavoidable. 
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is currently under review for publication. Chapter 3 then extends the use of the 

framework to a case where experimentation is considered much less demanding on 

resources than code development. This chapter also analyzes the convergence of both 

model form error at known experimental settings and the information gain metric as 

demonstrated on the VPSC model. The content of Chapter 3 is currently under review. 

Next, the optimization of experimental settings is incorporated into the model validation 

framework through the use of the BSD algorithm. Chapter 4 also includes a full 

description of the PMI metric and the demonstration of the effectiveness of the newly 

developed BSD criterion, C-EIPS, on the VPSC model. Chapter 4 is currently under 

review as a journal publication. The final integral component of the validation 

framework, the CPI metric, is derived in Chapter 5. This chapter discusses the 

foundations of the CPI metric and coupled numerical models and demonstrates the 

developed CPI metric on a steel frame with semi-rigid connections. This chapter has been 

submitted for publication and is currently under review. Finally, conclusions, limitations 

and scope of the current research, and necessary future work are presented in Chapter 6.  
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Figure 1.1: General Model Validation Framework 
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CHAPTER 2:  PREDICTIVE CAPABILITY OF NUMERICAL MODELS: BENEFITS 

OF AUGMENTING EXPERIMENTAL CAMPAIGNS AND IMPROVING PHYSICS 

SOPHISTICATION 

2.1. Introduction 

In predictive modeling, the primary purpose of constructing a model is to reduce 

the number of experiments necessary to gain an understanding of the physical 

phenomenon of interest, while the purpose of experiments is to ensure the precision of 

the model parameters and accuracy of model form. As Kennedy and O’Hagan (2000) 

stresses, model predictions are plagued with systematic bias, referred to herein as model 

form error. The origin of model form error is the inevitable inexactness and 

incompleteness of the model caused by missing physics principles, overly crude 

idealizations, and unsuitable assumptions. Examples of such inexactness and 

incompleteness include oversimplification of lower length scale phenomena in a higher 

length scale simulation model, or approximate representation of first principle physics 

with a purely non-physical calibration parameter. Note that such causes of incomplete 

and inaccurate physics may also lead to missing input parameters. The inherent 

inaccuracy of a model could be reduced if a more complete physics
3
 description to 

capture the true response of the phenomenon of interest is incorporated. An improved 

physics description would reduce the need for experiments to infer the model form error. 

On the other hand, improving physics sophistication may naturally translate to specifying 

                                                

3 Herein, the term physics is used to describe physical laws of the system in question, while the term 

physics sophistication indicates the extent to which those laws are known and incorporated in the model. 
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additional physics parameters, which in turn may lead to the need for an increase in 

experiments to learn about the additional uncertain and influential parameters. These 

parameters are herein referred to as calibration parameters. As seen, code development to 

improve physics sophistication (relates to accuracy) and experiments to reduce 

parametric uncertainty of a model (relates to precision) are intertwined, and must 

therefore be treated as such.  

In a hypothetical scenario, let us assume one could conduct a sufficiently large 

number of experiments to learn about the imprecisely known, influential model 

parameters. Then, one could reasonably envision reducing the parametric uncertainty 

down to the level of uncontrolled, natural variability (i.e. irreducible or aleatory 

uncertainty). In this scenario, the disagreement between model predictions and 

experiments can be explained primarily by the systematic bias of the model (Draper, 

1995). Therefore, as new experimental information becomes available, the disagreement 

between simulation predictions and physical measurements can be expected to converge 

to a consistent level of systematic bias (δC). This constitutes the first hypothesis, which is 

illustrated in Figure 2.1 for an averaged, univariate systematic bias.  
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Figure 2.1: The hypotheses: experimental campaign will lead to stabilization of discrepancy, and improving 

physics will reduce the stabilized discrepancy. 

Such a statement applies vis-à-vis to the degree of sophistication of models 

implemented in simulation codes, which constitutes the second hypothesis ‒ also 

illustrated in Figure 2.1. As new first-principle-physics are progressively implemented in 

a simulation code, the assumptions would gradually be replaced with first principle 

physics and the code would reproduce reality with improved fidelity (δS). Such 

improvement can be expected to be asymptotic if the first-principle-physics are 

implemented in an order based on both their influence (i.e., sensitivity) and 

incompleteness, formulated for instance by a Parameter Identification and Ranking Table 

(PIRT) inventory (Wilson and Boyack, 1998; Diamond, 2006) or the CPI metric 

proposed later in this dissertation. Note that, improving physics sophistication may 

naturally introduce new uncertain input parameters to the simulation model, and thus 

require a larger number of experiments to learn about the increased number of 
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parameters, as indicated by the larger number of experiments needed for the convergence 

of the sophisticated model in Figure 2.1. Also note that, for a low number of available 

experiments, the lack of knowledge due to the increased number of parameters (i.e. 

reducible or epistemic uncertainty) may contaminate the empirically estimated 

discrepancy bias of the more sophisticated model, which may in turn appear to be higher 

than that of the crude model. 

The focus herein is on highly complex numerical models for high consequence 

decision making, development of which may take several years (even decades) and many 

iterations. Furthermore, it is envisioned that projects involving such models will contain 

both experimental and model development components. This chapter claims that 

selection of an optimal route during the model development process, further 

experimentation or code development, can be achieved by evaluating the convergence of 

the systematic bias. If sufficient experimental data is available such that the systematic 

bias has converged throughout the domain of applicability, the epistemic portion of 

parameter uncertainty (reducible uncertainty) can be considered mitigated (remaining 

uncertainty in this case would be aleatory and thus, irreducible). A converged systematic 

bias that is sufficiently low for the application of interest demonstrates the predictive 

capability of the model. On the other hand, systematic bias that fails to converge or that 

converges to a value that is too high for the application of interest necessitates a more 

complete physics description. Based on these seemingly simple principles, this chapter 

casts the problem of resource allocation into an algorithmic framework. The proposed 
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algorithm utilizes a metric for the convergence of the systematic bias in the optimal path 

selection that consists of a combination of experimental campaign and code development.    

First, a purely mathematical proof-of-concept exercise is demonstrated to 

establish the aforementioned concepts. An arbitrary function representing “truth” is 

compared to its degraded variants representing incomplete and inexact simulation models 

with various levels of “theoretical knowledge.” Systematic biases between the truth 

function (i.e., experiments) and degraded functions (i.e., simulation models) are 

calculated and are shown to converge as the number of experimental data points is 

increased; additionally, the corresponding systematic bias is shown to decrease as the 

sophistication of the simulation model is improved. Furthermore, the inability to know 

the “truth” is discussed by illustrating the difference between true systematic bias (also 

known as model form error) and the estimated systematic bias (also known as 

discrepancy). The proposed path selection algorithm is then applied to this proof-of-

concept example. Second, the conceptual discussion is extended to the non-linear 

Preston-Tonks-Wallace (PTW) material model of plastic deformation (Preston et al., 

2003). Physical experiments performed on samples of Tantalum metal, measuring the 

stress-strain behavior as a function of various settings of temperature and strain-rate, are 

available. A statistical inference procedure is applied to infer the posterior distribution of 

seven coefficients of the PTW model such that its predictions better match the measured 

stress-strain curves over the domain of interest. Two variants of the PTW model are 

investigated, including a low-fidelity version and the original PTW model. The 

systematic bias of the two models, as well as their convergence rate as the number of 
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available experiments increases, is analyzed. The PTW model informed with an increased 

number of experiments is observed to have reduced random uncertainty, while the model 

with improved theoretical knowledge, i.e. the original PTW model, is observed to have 

reduced systematic bias. Finally, the proposed resource allocation algorithm is further 

demonstrated using the two variants of the PTW model. 

2.2. Parameter Calibration and Bias Correction 

Herein, the focus lies on the imprecision in the model input parameters, and 

inaccuracy due to inadequate and incomplete physics; however, note that there are 

several other sources of uncertainty and error that a model developer faces
4
. It is a routine 

application, that uncertain and influential
5
 model parameters are calibrated against 

experiments to reduce the uncertainty in the models predictions. These parameters, which 

are known to the model developer while their precise values or distributions are 

unknown, are referred to as calibration parameters. The systematic bias, on the other 

hand, represents the incomplete or inadequate physics principles and parameters; thus it 

is either unknown or insufficiently known to the model developer and is referred to as 

model form error. It is less common to see the treatment of model form error as a bias 

                                                

4 Additional sources are numerical uncertainty caused by truncation errors, discretization errors, and round-

off errors, and experimental uncertainty in the observations acquired to inform the numerical models. Note 

that experimental and numerical uncertainties play a similar role in that each adds uncertainty to one side of 
Equation (2.1) during test-analysis correlation. Moreover, one can also consider emulator uncertainty in 

cases where a fast-running interpolator (emulator or a surrogate model) is needed to replace a 

computationally demanding code.  
5 Calibration of insensitive parameters results in inefficient use of resources and therefore, influential input 

parameters must first be determined through a sensitivity analysis. 
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integrated into the validation process; however, Higdon et al. (2008), Rebba et al. (2006), 

and Roy and Oberkampf (2011) provide examples of such treatments.    

A model calibration procedure solely focusing on the calibration of input 

parameters, and thus overlooking the presence of model form error, is prone to 

converging to a mathematically viable but physically incorrect solution (Kennedy and 

O’Hagan, 2000; Draper, 1995), i.e. model parameters may converge to values other than 

their true values to counteract the presence of model form error. What is more, if model 

form error is not accounted for during calibration, determining the residual difference 

between the experiments and calibrated model would portray an incorrect picture –often 

overly optimistic– regarding the model’s predictive capability (Kennedy and O’Hagan, 

2000). The inference procedures must therefore be conceived to simultaneously address 

calibration of imprecise parameters and bias correction of inaccurate physics principles. 

For this purpose, this study utilizes an equality initially proposed by Kennedy and 

O’Hagan (2000) and later implemented in a fully Bayesian context by Higdon et al. 

(2008a). The aim is to reduce the random uncertainty of the model parameters and 

simultaneously correct for the systematic bias. The method relies on the following 

relations:  

( ) ( ) ( )y x x x    (2.1) 

( ) ( , ) ( )x x x      (2.2) 

where the pair (x, θ) denotes model input and η(x, θ) denotes the model output.  Model 

input and output can be scalar or multi-dimensional. The symbol x refers to inputs that 

define the domain of applicability (parameters that can be controlled during experimental 
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testing); while θ denotes calibration parameters (parameters that cannot be controlled 

during experimental testing). In the application to the PTW model (discussed later in 

Section 2.5), input variable x refers to the pair of control variables (temperature; strain 

rate), while θ refers to seven material-dependent coefficients. Measurements
6
 are denoted 

by the symbol y(x) in Equation (2.1) and are defined as the summation of the truth, ζ(x), 

and experimental error, (x). Note that experimental errors affect the model accuracy and 

precision indirectly through Equation (2.1). In Equation (2.2), the truth is further defined 

as the summation of model simulations η(x, θ) and model form error, ψ(x). When the 

systematic bias of the model is known (i.e. model form error), the model predictions can 

be corrected and the truth can be obtained by directly substituting Equation (2.2) in (2.1). 

In reality, however, the model form error is unknown and it must be replaced with an 

‘error model’ estimate, i.e. discrepancy bias, (x), resulting in a best-estimate of the 

observation:  

ˆ( ) ( , ) ( ) ( )y x x x x       (2.3) 

Note that the error model, herein referred to as discrepancy bias, is evaluated 

independently. Equation (2.3) defines the best estimate of observations, ŷ(x), over the 

domain of applicability as the sum of model predictions, discrepancy, and experimental 

error. The theory behind Equations (2.1)-(2.3) comes from Kennedy and O’Hagan (2000) 

and applications can be found in Higdon et al. (2008a) and (2008b).    

                                                

6 The terms “measurements,” “data,” and “dataset,” likewise, refer to physical measurements or 

observations collected by performing experiments. 
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2.3. Convergence of Discrepancy 

It is envisioned that the model is executed to predict at varying operational and 

environmental conditions that define the application domain. The systematic bias of the 

model will naturally be non-uniform throughout this application domain. Therefore, the 

empirically defined discrepancy bias should convergence to a non-uniform ‘functional 

form’ as new experiments become available. If the true discrepancy or its best estimate is 

known, convergence can be quantified by a standard distance-based metric whereby the 

convergence is checked point-wise between the estimated and the true discrepancy (or the 

best-estimate discrepancy). Alternatively, one could treat convergence in an average 

sense whereby the area between the true and estimated discrepancy curves provide the 

‘error’. Both aforementioned approaches measure convergence to the true functional 

form of discrepancy based on an error calculation; convergence is considered to be 

reached when the acceptable error level is achieved.  

When the true functional form of discrepancy is not known a priori, these 

approaches can still be utilized whereby the relative distance or error measure is 

computed between the estimated functional forms of current and the preceding 

discrepancies. These values can then be tracked until there is no significant change 

between two successive pairs of discrepancies, i.e., until the functional form of 

discrepancy stabilizes. While tracking the stabilization of discrepancy typically, the mean 

of the discrepancy normalized with respect to the mean of the predictions is often used. In 

this chapter, discrepancy is presented by its normalized mean plotted against the number 

of experiments or physics improvement, as shown in Figure 2.2. Next, the convergence 
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can be characterized by calculating the difference between the current and previous data 

points (Figure 2.2) until three consecutive points exhibit stabilization.  

 

Figure 2.2: The convergence rate can be calculated as the distance between the origin and the centroid of 

the area under the curve. 

To quantify the convergence rate of the discrepancy bias, the metric of Saxena et 

al. (2010) proposed for comparison of prognostic algorithms is implemented. This metric 

is defined as the distance between the origin and the centroid of the area under the curve 

formed by a chosen prediction metric (i.e. discrepancy in this application). For the 

prognostic application, the rate of convergence is defined in real time, but for the 

purposes of this chapter the metric is defined in terms of the number of experiments and 

level of physics sophistications. The rate of convergence is then expressed as: 

2 2
C ( )M c P cx y    (2.4) 
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where P  represents experiments (E) or codes (C) and the subscript P denotes their value 

at the origin, (P, 0).  The centroid is given by: 
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 (2.5) 

It is plausible that for two given curves the initial discrepancy values do not 

coincide, hindering the direct comparison of convergence characteristic of the addition of 

new experiments with that of improving physics. Therefore, note that the calculation of 

CM values is normalized such that discrepancy in Equation (2.5) is divided by the 

corresponding maximum discrepancy. While comparing the convergence rate of multiple 

curves, curves with a smaller CM value indicate faster convergence (Figure 2.2). Note that 

the rate of convergence should be considered in light of accuracy or precision of the 

models. The discrepancy at convergence is assumed to be zero, which can only be 

reached by a perfect model. However, the discrepancy bias of each model eventually 

converges to its unique discrepancy value (which represents the respective model 

incompleteness and inexactness).  

Note that the convergence rate metric can be used to track convergence by 

computing the metric at each experiment or physics improvement until the change in 

metric values is insignificant. The CM metric for convergence rate assumes that 

convergence will eventually be achieved as either physics sophistication is improved or 

more experiments are added. This assumption calls for further discussion on convergence 

characteristics of discrepancy bias. 
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Convergence of discrepancy as the number of experiments increases is intuitive 

and has been demonstrated in Hemez (2007) and Hegenderfer et al. (2012). However, 

such convergence presents a path-dependency, i.e. the settings of experiments as well as 

the sequence in which these experiments are conducted influence the rate of convergence. 

This is demonstrated to be especially true for data-poor situations in Atamturktur et al. 

(2011). However, for data-rich scenarios the path dependency diminishes (Atamturktur et 

al., 2011). To assure monotonic convergence of discrepancy bias, one can employ 

sequential calibration techniques, which accelerate the convergence of discrepancy bias 

through the selection of optimal experimental settings whereby discrepancy convergence 

can be achieved by using the least possible number of experiments. Batch Sequential 

Design (Loeppky et al., 2010; Williams et al., 2011) is one recently proposed efficient 

approach for the selection of experiments. Other sequential, non-sequential approaches 

(Davis and Prieditis, 1999) and hybrid approaches (Crombecq et al., 2009) can also be 

implemented to assure monotonic and rapid convergence of the discrepancy function as 

the number of experiments increases.  

While the concept of diminishing returns is intuitive for experiments, the same 

cannot be said for physics sophistication. Nonetheless, a theoretical breakthrough 

development in the modeling strategy, which improves the accuracy of the model 

significantly, can defy the asymptotic convergence expectation. While surprise findings 

can be expected in theoretical development, the discussion is limited to cases where the 

model is built based on a systematic inventory of “known” physics principles, such as 

those provided by the Phenomena Identification and Ranking Table (PIRT). PIRT, 
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originated as part of the U.S. Nuclear Reactor Commissions’ Code Scaling, Applicability 

and Uncertainty (CSAU) evaluation procedure (Boyack, 1989), is a qualitative approach 

to effectively gather information from experts on the phenomena and processes of 

interest, and ranking their importance in a systematic fashion with proper documentation 

(Wilson and Boyack, 1998).  It has been used primarily in nuclear engineering and safety 

(Diamond, 2006; Olivier and Nowlen, 2008; Tregoning et al, 2009).  The relevant 

phenomena are categorized and ranked based on importance (determined through 

sensitivity analysis) and knowledge level (determined through uncertainty quantification). 

In Chapter 5 of this dissertation the fundamental concepts of PIRT are quantified and 

amended for the case of coupled numerical models through the developed CPI metric. It 

is herein claimed that a modeling effort that strictly follows the sequence as ranked by 

PIRT or CPI (in partitioned analysis of coupled models) would include the physics 

principles prioritized by reduced importance. Such a model can be argued to converge 

asymptotically as the physics sophistication increases. 

2.4. Proof-of-Concept: Experimentation versus Code Development 

This section provides a proof-of-concept illustration of the trade-off between 

allocating resources for new experimental campaigns versus further code development. 

First, a simple mathematical function is adapted to represent the “truth.” Next, two 

simpler variants of this truth function are generated to mimic the incomplete and inexact 

nature of numerical models. The truth function is executed to generate five (synthetic) 

experiments at five different control parameter settings.   
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The first numerical model, 1( , )y x  , is a crude representation of truth. This model 

includes a single term in the function and a single calibration variable θ1 that is allowed 

to vary between -1 and 1 with a uniform probability distribution. An ensemble of model 

predictions obtained by varying θ1 is compared to the experiments in Figure 2.3 (Left). 

Note that 1( , )y x   is unable to reproduce the experiments because its mathematical 

equation is missing essential terms. The discrepancy associated with 1( , )y x  , 1( )x , 

depicted in Figure 2.4, illustrates the need for a series of additional terms to be added to 

the function of the crude numerical model.  

 

Figure 2.3: (Left) Ensemble of very crude model predictions 1( , )y x   and test data. (Right) Ensemble of 

more sophisticated model predictions 2 ( , )y x   and test data. 

The second prediction curve, 2 ( , )y x  , represents a more sophisticated model, 

and includes one of the additional terms of the “truth” function that is absent from the 

first model, 1( , )y x  . As a result, this more sophisticated model, 2 ( , )y x  , includes two 

calibration variables θ1 and θ2. The newly introduced model input, θ2, is also allowed to 

vary between -1 and 1 with uniform probability.  Figure 2.3 (Right) presents the 

ensemble of model predictions generated by varying the two input parameters, θ1 and θ2. 
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One can see that the implementation of a new calibration parameter into 2 ( , )y x   

increases the dispersion of the predictions in the ensemble. The mean standard deviation 

of 1( , )y x   is 0.295 and of 2 ( , )y x   is 0.596.  This increase in standard deviation 

indicates an increase in uncertainty due to the addition of a new uncertain parameter, θ2. 

However, in comparing the predictions of the two models (see Figure 2.4), one can also 

see that the mean of the second model prediction more closely tracks the experiments. 

The discrepancy herein is calculated as the mean of the absolute value between the 

“truth” and the simulation normalized as a percent of the mean of the “truth”.  The 

discrepancy of the first model prediction, 1( )x , is 11.40% of the mean “truth” while the 

corresponding discrepancy of the second model prediction, 2 ( )x , is equal to 5.86% of 

the mean “truth” (Figure 2.4).  As seen in Figure 2.4, the discrepancy of the second 

model, 2 ( , )y x  , is less than that of  1( , )y x  . This illustrates the second hypothesis that 

as more physics sophistication is added to the model, the discrepancy bias reduces.  

 

Figure 2.4: Comparison of simulations, “truth function”, and associated discrepancy terms. 
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In the controlled proof-of-concept example herein, the truth function is known 

and thus, the “true” discrepancy biases for both 1( , )y x   and 2 ( , )y x   are known, i.e. 

model form error can be plotted in Figure 2.4. In reality, the truth is unknown, and 

therefore the true values of discrepancy are only known at the discrete values of the finite 

number of available experiments. However, simulation models are routinely executed to 

predict at settings where experiments are unavailable. Therefore, the discrepancy bias 

must be estimated at these untested settings. Such estimation can be obtained by training 

an ‘error model’ (i.e., an emulator) exploiting the “true” discrepancy values available for 

a finite number of experiments
7
, to represent the discrepancy bias throughout the entire 

domain of applicability. With a finite number of available experiments, many different 

discrepancy emulators can be trained, however. In Figure 2.5 (Left), for instance, a 

plausible discrepancy bias estimate is constructed using a cubic interpolation (the dotted 

line). The fidelity of this estimated discrepancy to the true discrepancy can be improved 

by increasing the number of available experiments  In Figure 2.5 (Right), the number of 

experimental data points is increased from five to 15, which yields a discrepancy 

estimation closer to the true discrepancy bias. The percent error between the estimated 

discrepancy and the true discrepancy that is 65.5% for Data Set 1, is reduced to 24.3% for 

Data Set 2 (Figure 2.5 (Right)).  As seen, as more experimental data is added to the 

analysis, the estimated discrepancy bias converges to the true functional form of 

discrepancy throughout the entire domain. However, if the discrepancy bias has 

                                                

7 The experimental uncertainty is neglected in this discussion. Note that the true values of discrepancy are 

still unknown at the experimental settings due to the presence of experimental uncertainty. 
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converged and the resulting discrepancy remains unacceptably high, the only route left 

for improvement would be through improving the physics sophistication of the model.  

 

Figure 2.5: (Left) Comparison of estimated discrepancy term and true discrepancy term. (Right) 

Comparison of “True” discrepancy and estimated discrepancies. 

As seen, there is a trade-off between improving physics and increasing the 

number of experiments. This is of course of great interest for decision makers while 

allocating a finite amount of available resources. The results of both routes are shown in 

Figure 2.6 for a total of five simulations of increasingly improved physics with 

incrementally increased experiments (from two-14). Figure 2.6 summarizes both 

hypotheses discussed in the previous section. Once discrepancy convergence is achieved, 

no further reduction in discrepancy is obtained through additional experimentation; 

therefore, physics sophistication is required to further reduce the discrepancy bias. 

However, more sophisticated models may naturally need more experiments for the 

discrepancy to converge.  
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Figure 2.6: Proof-of-concept: relationship between number of experiments, physics sophistication, and 

discrepancy. 

The CM metric can be used to compare the convergence rate of multiple curves; 

however, since the main interest is in the rate of convergence to the converged  

discrepancy of each curve respectively, cy  in Equation (2.4) and i  in Equation (2.5) are 

replaced by ( )c fy   and ( )i f  , respectively, where f denotes the ultimate value 

of the discrepancy for each model such that the convergence metric is calculated based 

upon the unique characteristics of each curve respectively. f  is assumed to be the value 

of discrepancy at the final experiment (at the 14
th

 experiment) for each physics 

sophistication curve. In Figure 2.6, the fastest convergence as the number of experiments 

is increased (CM=1.21), is obtained for the crudest model (see Table 2.1 for the 

convergence rates of five models with increasing sophistication) and the convergence rate 
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slows as physics sophistication is increased. However, note that the crudest model has the 

highest discrepancy bias remaining after convergence. 

Table 2.1: Values of convergence rate metric for experiments and physics sophistication 

Level of Physics Improvement 1 2 3 4 5 

CM 1.21 1.35 1.37 2.28 2.38 

 

Of course, the point made in Figure 2.6 is not to show that with the benefit of 

hindsight, the decision maker can determine the optimal route to reach predictively 

mature models. Rather, Figure 2.6 aims to illustrate that there exists an optimal decision 

for resource allocation between theoretical advancement and empirical training of the 

numerical model. This optimal decision depends on various interrelated factors related to 

the existing accuracy, and precision of the model, and the quality and quantity of 

available experiments. To seek a path that optimally combines physics improvements and 

experimental campaign, it is proposed to exploit the previously introduced rate of 

convergence metric. Note that since the final converged discrepancy in real applications 

is unknown, the CM values are calculated according to Equation (2.4). An algorithm can 

be devised to carry out the experiment-code selection process based on the previous 

conceptual discussions as follows:   

1. Initialize indices i and j for the experiment (E) and code (C): i=2 and j=2, and flag 

for path selected: pflag=0. 

2. Compute discrepancy, ,i j
 
at i

th
 experiment and j

th
 code. 
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3. If (pflag=0), compute convergence rate metrics, (C )E
M i  and (C )C

M j , respectively.  

Else if (pflag=1), compute convergence rate metric, (C )E
M i  for i

th
 

experiment; 

Else, compute convergence rate metric, (C )C
M j for j

th
 code. 

4. Select the path, i.e. further experimentation or further code development 

a. At initial step, i.e, i=2,j=2, and pflag=0 

If (C )E
M i < (C )C

M j , choose further experimentation, and set pflag=1 

Else, choose further code development, and set pflag=2 

b. If (pflag=1), previously on experimentation path 

If | ,i j - ( 1),i j  |<= β ,i j  (tolerance value of 0.1 is used) and (C )E
M i <

(C )C
M j , choose further experimentation again, and set pflag=1 

Else, choose further code development, and set pflag=2 

c. If (pflag=2), previously on code development path 

If | ,i j < ,( 1)i j  | <= β ,i j  and (C )C
M j < (C )E

M i , choose further code 

development again, and set pflag=2 

ELSE, choose further experimentation, and set pflag=1 

5. Update indices: If (pflag=1), i=i+1; Else, j=j+1  

6. If either of the limit (maximum number of iterations allowed based on the budget) 

on experiment or code development is reached, proceed with the other by default  

7. Termination conditions: 
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a. If k ≤  (acceptable discrepancy value), check three consecutive points   

If (pflag=1), k=(i,j), (i-1, j), (i-2,j); Converged, Exit 

Else if (pflag=2), k=(i,j), (i, j-1), (i,j-2); Converged, Exit 

b. If iteration = limit of experiments + limit of code, Exit 

8. Repeat Steps 2 to 7 

To demonstrate the use of the proposed path selection algorithm, it is applied to 

the proof-of-concept example, assuming that at least one code refinement and one 

additional experiment are available (therefore, the algorithm starts from i=2 and j=2). 

Two different applications are considered, each with different accuracy requirements; for 

the high consequence application with high accuracy demands, the acceptable 

discrepancy value is set to 5% and for the low consequence application with lower 

accuracy demands, the acceptable discrepancy value is set to 10%.  

As shown in Figure 2.7, for the high consequence application, with the proposed 

selection procedure, the process for the development of an empirically trained, physics-

based numerical model goes from point A to L (shown with their respective discrepancy 

and its corresponding convergence rate, CM, values (boxed)). It takes five levels of 

physics improvement and eight experiments to reach the acceptable discrepancy, and the 

algorithm concludes once three consecutive points remain below the acceptable value 

(i.e. 10 experiments). The black arrows represent the accepted paths while the gray 

arrows are the rejected paths.  At point A, the CM values in the physics sophistication 

path that is obtained using two levels of physics improvement at the second experiment is 

1.11 while the CM values for the experiment path at the second experiment with second 
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level of physics improvement is 1.15. This indicates that at A the convergence of 

discrepancy in the physics improvement path is faster than in the experiment direction; 

thus the physics path is selected.  However, this leads to increase in discrepancy (from 

18.55 to 20.41) going from A to B due to increases number of uncertain model 

parameters as more sophisticated model is used indicating the need for more experiments. 

Furthermore, the CM value also increases from A to B (from 1.11 to 1.64). Note that a 

similar pattern is also observed in steps C to D, and F to G.  As shown in step 4 of the 

algorithm, the reduction in discrepancy is considered in addition to the rate of 

convergence, and since this increase in discrepancy is greater than the set threshold, for 

the next step from B to C the algorithm chooses the experiment path. The algorithm 

proceeds as such until the acceptable level of discrepancy is achieved. As seen in Figure 

2.7, for the low consequence application, the desired accuracy can be obtained at step C, 

where the discrepancy value falls below 10%; however, to assure convergence, the 

algorithm continues until three consecutive discrepancies under 10% are realized (point F 

– much sooner than for the high consequence case which terminates at point L).  
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Figure 2.7: Path of optimal combination of physics sophistication and experimental campaign with the 

corresponding discrepancy values at each step. 

2.5. PTW Model: Background and Model Calibration 

In this section, the Preston-Tonks-Wallace (PTW) model of plastic deformation 

documented in Preston et al. (2003) is briefly introduced. It is applied to the prediction of 

stress-strain curves for light-weight, high-strength Tantalum (Ta) metal. A degraded 

variant of the original PTW equations is also evaluated to observe the increase in 

discrepancy as physics sophistication is degraded
8
. These analyses are demonstrative 

applications of the hypothesis presented herein in the context of an experiment-based 

model validation framework where code development and experimentation are 

considered equally costly as shown in Figure 2.8. 

                                                

8 The approach taken here, i.e. degrading the physics sophistication of a numerical model, is in the sense 

opposite of improving the physics of a code, which in some cases can take years to complete.  
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Figure 2.8: Experiment-based model validation framework 

2.5.1.  The Preston-Tonks-Wallace (PTW) model of strength and plastic deformation 

The PTW model of strength and plasticity describes strain-stress curves obtained 

at various regimes of strain rate and temperature. It models the plastic flow of metals and 

is suitable to simulate the material response to fast transients such as those from 

explosive loading or high velocity impacts. The main equations of the PTW model from 

Preston et al. (2003) are: 
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where   denotes stress,   represents strain,   denotes the atomic vibration frequency, 

and symbols S  and Y  denote the dimensionless work hardening saturation stress and 

yield stress, respectively. Control parameters that define the two-dimensional domain of 

applicability are the strain rate ( ) and temperature (T) of Equations (2.6)-(2.9). Symbols 

θ, κ, γ, 0s , s , 0y  and y  are seven dimensionless calibration variables that depend on 

the material analyzed. 

Table 2.2: Definition of variants of the PTW model analyzed 

Identifier Description Error Function Used 

Variant 0 It is the original PTW model with “erf” 

function. 

2

0

2
x

te dt



  

Variant 1 The “erf” function is replaced with 

piecewise linear approximation. 

2 2 2
, ;1  , x x x
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In addition to the original PTW model of Equation (2.6), a degraded variant of the 

PTW model is analyzed to monitor the changes in the discrepancy as the physics 

implemented to describe the behavior of the material is artificially degraded. The 

characteristics of this degraded variant of the PTW model are defined in Table 2.2. In the 

original PTW model, the “erf” function is utilized in the formulation of work hardening 

saturation stress and yield stress in the thermal activation regime in Preston et al. (2003).  

This function is chosen because it depicts evidence seen in experimental data (Preston et 

al., 2003).  The second version, labeled Variant 1, is an implementation where the “erf” 

function is replaced by a piecewise linear function. This implementation is expected to 

perform less accurately than the original model. The difference between the two error 

functions is shown in Figure 2.9. Compared to Variant 1, the original PTW model 

supplies a model with “improved” physics sophistication. 

 

Figure 2.9: Error functions used in the two variants of the PTW model. 
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2.5.2.  PTW model for high-strength Tantalum (Ta) metal  

The application considered is the material model for the Ta metal over a range of 

temperatures and strain rates likely to be encountered in an application of interest that 

could, for example, be the numerical simulation of the mechanical and thermal responses 

of fuel rods subjected to irradiation in a nuclear reactor. Hopkinson bar experiments are 

performed on Ta samples to collect the stress-strain curves shown in Figure 2.10. The 

pairs (T; dε/dt) of control parameters that define the Hopkinson bar tests are listed in 

Table 2.3. Figure 2.10 illustrates the range of stain and stress values that the material 

model is expected to reproduce over the domain of applicability. Measurement error is 

modeled as a Gaussian distribution with a zero mean and 2.5% variance.  

Table 2.3: Definition of settings for experiments performed on Ta samples 

Data Set ni Strain (max) Temperature (K) Strain Rate (s
-1

) 

1 32 0.9757 298 0.001 

2 31 0.2218 1073 3900 

3 10 0.1057 298 0.1 

4 29 0.2433 298 1300 

5 27 0.1737 673 2600 

6 13 0.1735 77 0.001 
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Figure 2.10: Strain-stress curves measured from Hopkinson bar tests for the Ta metal. 

The nominal values for the seven ancillary variables (θ, κ, γ, 0s , s , 0y  and y ) 

of the PTW model are given in Table 2.4, together with lower and upper bounds within 

which they are reported to vary for the Ta metal (Fugate et al, 2006). These parameters 

are initially assumed to vary uniformly between minimum and maximum values. Ideally, 

one could calibrate these variables to improve the goodness-of-fit between stress-strain 

curves predicted by the PTW model and those that are measured. Attempting, however, 

to find a unique set of values that reproduce the entirety of the measurements is difficult 

because of intrinsic grain size and texture variability of the metal. Also, performing 

Hopkinson bar tests at various regimes of temperature and strain rate exercise different-

enough effects that it is unrealistic to envision that all could be represented by a unique 

set of model input variables. Thus, the calibration parameters must be treated as random 

variables.  
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Table 2.4: Definition of calibration variables of the PTW model for the Ta metal 

 Description Minimum Maximum Nominal 

θ Initial strain hardening rate 8.37 × 10
-4

 0.0276 0.01 

κ Temperature dependence of thermal 

activation energy 

0.399 1.078 0.6 

-ln(γ) Strain rate dependence of thermal 

activation energy 

7.20 15.508 12.3 

0y  Minimum yield stress (at T = 0 
o
K) 0.00653 0.0128 0.00925 

y  Maximum yield stress (at T  melting) 7.05 × 10
-4

 0.00214 0.00123 

0s  Minimum saturation stress (at T = 0 
o
K) 0.00803 0.0344 0.0122 

s  Maximum saturation stress (at T  

melting) 

0.00144 0.00452 0.00375 

 

Therefore, through implementing Bayesian inference, the joint probability 

distribution of calibration variables is sought such that model predictions are statistically 

consistent with measurements over the two-dimensional domain of applicability. This 

approach also infers from the comparison between predictions and measurements a 

statistical error model of the discrepancy term δ(x). The joint probability distribution is 

explored with a Markov chain Monte-Carlo (MCMC) random walk that is based on a 

simple but effective principle: predictions that better match the measurements originate 



45 

 

from combinations of calibration variables that tend to be visited more frequently by the 

random walk (Metropolis et al., 1953; Hastings, 1970). After performing a sufficient 

number of iterations, selected to be 20,000, the statistics of calibration variables visited 

are computed to estimate the (initially unknown) joint probability distribution of the 

uncertain input parameters of the PTW model.  

2.5.3. Definition of the analysis  

The MCMC exploration of the posterior probability distribution of calibration 

variables (θ, κ, γ, 0s , s , 0y  and y ), and estimation of the discrepancy term δ(x), is 

repeated for the two variants of the PTW model (see Table 2.2) and different 

combinations of physical measurements (see Table 2.3). The combinations of physical 

tests used in each case are defined in Table 2.5. 

Table 2.5: Definition of the four sets of Hopkinson bar experiments analyzed 

Case List of Experiments 

1 1, 2, 3 

2 1, 2, 3, 4 

3 1, 2, 3, 4, 5 

4 1, 2, 3, 4, 5, 6 

 

Four separate cases with varying number of experiments are defined to assess the 

effect that increasing the number of experiments has on the predictive maturity of the 

PTW model. On the other hand, the analysis of the two variants of the PTW model 

enables us to study the effect of implementing improved physics sophistication. The 
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working hypothesis is that the discrepancy will be sensitive to both increasing the number 

of physical tests available for analysis and improving the physics of the model. This 

hypothesis and further discussion on the effects of increased numbers of experiments 

versus improved physics sophistication are provided in the following section.   

2.6. PTW Model: Findings and Discussion  

For the discussion herein, Variant 1 is treated as the less sophisticated “starting” 

point for the PTW analysis. The discrepancy of Variant 1 is first analyzed for 

convergence and fidelity-to-data. The discrepancy of the original and “more 

sophisticated” PTW model, Variant 0, is then considered to assess the reduction in model 

form error with more sophisticated physics.  

Figure 2.11 shows the discrepancy as a percentage of the mean stress of the model 

prediction throughout the tested domain for both models plotted against an increasing 

number of experiments. As seen in Figure 2.11, the discrepancy of Variant 1 starts at 

approximately 18% and converges to approximately 3.5% after the fifth experiment is 

added. The first hypothesis illustrates that the convergence of discrepancy indicates that 

sufficient experimental data has been utilized to mitigate uncertainty in the discrepancy 

estimate. Therefore, a further reduction in discrepancy is achieved through the physics 

sophistication of the original PTW model, Variant 0. Figure 2.11 shows the normalized 

discrepancy of the original PTW model starts at 10%, and reduces to approximately 2.7% 

when the fifth experiment is added. As seen in Figure 2.11, the discrepancy of the 

original PTW model converges to a lower level than Variant 1. This illustrates the second 
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hypothesis, that as the physics sophistication of a model is increased, the discrepancy 

reduces.  

 

Figure 2.11: Discrepancy convergence with number of experiments for PTW model and Variant 1. 

The values of the rate of convergence metric of the discrepancy bias for the 

original PTW model and the Variant 1 are CM=3.10 and CM=2.97, respectively when all 

six experiments are considered for each variant separately. Thus the discrepancy of 

Variant 1 converges faster than the original PTW model with respect to number of 

experiments.  

Next, the proposed algorithm for path selection between experiments and physics 

improvement discussed in Section 2.3 is applied to the PTW model.  The results are 

shown in Figure 2.12. A CM = 0.94 is obtained for the original PTW model calibrated and 

bias corrected with four experiments (from three to four experiments). For the physics 

sophistication path, a CM = 1.13 is obtained as the physics of the model is improved 

(from Variant 1 to the original PTW model) both of which are calibrated and bias 

corrected using four experiments. Based on the CM values, the algorithm suggests path A 
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to B in the experimental direction to achieve reduction and convergence of discrepancy. 

From point B, the algorithm suggests improvement of the model.  However, for the 

purposes of this illustration, note that the discrepancy value is already significantly low at 

point B (2.53%).  Therefore, the analyst may choose to conduct additional experiments to 

ensure converged discrepancy predictions.  

 

Figure 2.12: Path selection of physics improvement and experiments for PTW model and Variant 1 with the 

corresponding discrepancy and convergence rate, CM, (shown in boxes) values at each step. 

2.7. Conclusion 

A crude model with few parameters is typically inaccurate (perhaps precise due to 

the low number of uncertain parameters); thus experiments would be needed to infer the 

systematic bias of the model predictions. On the other hand, a very sophisticated model 

with many parameters might be imprecise (perhaps accurate due to the sophistication of 

the physics in the model); thus experiments would be needed to learn about the uncertain 

and influential parameters. As seen, while exploiting experiments to inform numerical 

models, the inaccuracy of the model form and imprecision of model parameters are 

interrelated.  
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In this chapter, improvement of predictive simulations by (i) mitigating the 

inaccuracies due to incomplete physics in the model and (ii) uncertainties of the input 

parameters is investigated.  This is achieved by improving the physic sophistication of the 

model and/or increasing the experimental campaign and is efficiently executed through a 

framework that considers the relative benefits of the two in terms of the overall cost-

effectiveness of resource allocations. Time and cost effectiveness is of course the main 

driving force in decisions pertaining to resource allocations.  The improvement of the 

predictive capability can be determined by considering the discrepancy bias (representing 

the systematic disagreement between experimental measurements and numerical 

simulations). Two hypotheses are developed: first, a progressive reduction in input 

parameter uncertainty as the number of experiments is increased is claimed. Therefore, 

due to the reduction in input parameter uncertainty, discrepancy is expected to converge 

to the model form error as the number of experiments is increased. Once discrepancy has 

converged, the second hypothesis claims that when the physics sophistication of a model 

increases, the discrepancy should reduce.  

These hypotheses are first illustrated using a purely mathematical exercise. The 

rate of convergence metric is used to compare the convergence as physic sophistication is 

improved and as the number of experiments is increased in this example. Next, a practical 

application of these concepts is presented on the non-linear Preston-Tonks-Wallace 

strength model applied to Hopkinson bar experiments performed on the Tantalum metal. 

Although the present chapter does not provide a formal proof, aforementioned 

applications confirm that the discrepancy for models that are of an acceptable level of 
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physics sophistication converges as the number of experiments is increased. It is also 

shown that the discrepancy is reduced when the physics sophistication of the model is 

improved.  

The results presented herein suggest that this stabilization concept can be useful to 

claim completion of a calibration process, deliver model predictions with quantified 

uncertainty and bias, and provide insight into the predictive maturity of a simulation 

model. These results open the door for further study, as the concepts presented herein are 

generally applicable and are not solely limited to the studies presented.   

In the examples considered here, initial stages of code development and 

calibration are considered where the analysts start with no or very little experimental data 

and limited number of codes.  While this might be true in some cases, in industry or 

national laboratories where there is a long history of use of simulation-based predictions, 

rich data collection of experiments as well as multiple versions of codes that have been 

developed over the years are often available. For these cases, algorithms such as the one 

proposed here can be employed for the case study of determining the optimal 

combination of experimental campaign and code development.  Such studies using past 

information can benefit decision making for future steps of model development.   

In this chapter, an algorithm is proposed for selection of the path that leads to the 

optimal combination of physics improvement and experimental campaign, considering 

only the reduction and convergence of discrepancy.  Note that for the results presented 

herein, it is assumed that the cost of an experimental campaign and code development are 

the same, which is hardly the case in practice. Therefore, another important factor to be 
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considered is the cost of code development and experimentation. However, incorporation 

of the cost factor in the algorithm in a systematic manner is not a trivial matter. Namely, 

the decision cannot be made solely on cost since it would drive the path only in one 

direction. However, convergence in discrepancy can be most effectively achieved by 

considering both directions, i.e. experimental campaign and physics improvement. 

Therefore, the optimization problem becomes multi-objective requiring compromise 

between the two driving factors of cost and discrepancy. In future studies, cost factors 

must be incorporated to make the algorithm more suitable to practical applications.   

The convergence of discrepancy indicates a reduction in parameter uncertainty; 

however, in future studies, an entropy-based information gain metric can be developed to 

quantify this reduction in uncertainty. As with a physics model that is too crude, an 

insufficient experimental campaign can yield discrepancy that fails to converge and is not 

suitable for quantifying the predictive capability of the model.  To expedite the 

convergence of discrepancy, an experiment campaign can be optimized through the 

selection of optimal design settings. This way, monotonic convergence can be ensured 

with the least possible number of experiments.  For the improvement of a simulation 

model, a PIRT must be carefully constructed or CPI computed to guide what aspects of 

the code need further enhancement, and identify the influential parameters.   

Additional topics that this work does not yet address and will be pursued in future 

work, is the understanding of the extent to which these concepts can be applied to the 

verification, validation and uncertainty quantification of multi-space, multi-physics 

simulation models.  
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CHAPTER 3: FRAMEWORK FOR EXPERIMENT-BASED VALIDATION AND 

UNCERTAINTY QUANTIFICATION OF NUMERICAL MODELS OF COMPLEX 

SYSTEMS: APPLICATION TO VPSC CODE FOR METALS 

3.1. Introduction 

Numerical models
9
 are approximate representations of real-world phenomena and 

thus, simulations invariably suffer from a degree of inaccuracy and imprecision, which 

can be attributed to a variety of sources, including: (i) incomplete modeling of physics 

and/or engineering principles, (ii) imprecisely known model parameters, and (iii) 

numerical uncertainties incurred while solving the mathematical equations.  

Incomplete modeling of physics and/or engineering principles, the first factor, 

refers to the physical phenomena that are either completely unforeseen or that are known, 

but too complex to incorporate in the model. This inevitable inexactness and 

incompleteness results in the systematic bias in predictions, also known as model form 

error. Though imprecise model parameters, the second factor, can be identified by the 

analyst, their precise values (or distributions) are unknown. These imprecise model 

parameters are main contributors to the uncertainty in predictions. Numerical 

uncertainties, the third factor, can be treated by rigorous mathematical analysis of code 

and solution verification studies, which assures that the equations within the code are 

being solved correctly (Oberkampf et al., 2003).  An exact numerical model with 

                                                

9Herein, the following distinctions are made for the terms code, model, and simulation. Codes are the 

mathematical algorithms developed to compute physical quantities and phenomena. Models incorporate 

codes for particular applications (material, geometry, etc.). Simulations constitute the execution of models 

for particular boundary conditions. 
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precisely known parameters will still yield inaccurate solutions if the mathematical 

equations are solved incorrectly (Christie et al., 2005). Hence, verification activities that 

confront numerical uncertainties must be completed prior to validation activities that 

confront parameter uncertainty and systematic bias (Thacker et al., 2004). Numerical 

model verification is considered to be completed prior to validation and thus will be 

excluded from the scope of the present chapter. 

The ultimate objective of an experiment-based validation is then to reduce the 

parameter uncertainty and systematic bias in model predictions. This reduction is possible 

by allocating resources to either (i) experimentation to increase the number of physical 

observations used in the model validation process or (ii) code development to improve the 

manner in which physics and/or engineering principles are defined. Of course, the 

relative benefits of these two approaches, further experimentation versus further code 

development, vary depending upon available experimental measurements and the existing 

predictive capability of the numerical model. Therefore, considering the finite resources, 

effectively choosing one approach over the other becomes an issue of efficient allocation 

of available resources.  

By focusing on the relative benefits of each approach strictly from the perspective 

of predictive capability, the authors propose a resource allocation framework that aids in 

the selection between further experimentation and code development. The proposed 

framework extends the work by Unal et al. (2004) for certification of nuclear fuels by 

incorporating a resource allocation decision node.  Figure 3.1 illustrates the proposed 
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framework, in which the validation process begins with an initial numerical model
10

 and 

a first set of available physical measurements.  

 

Figure 3.1: Predictive capability framework. 

This initial model is imprecise due to parameter uncertainties and inaccurate due 

to systematic bias and thus must be calibrated against experimental data. Such calibration 

is possible using a variety of back-calculation techniques. In this study, a statistical 

                                                

10Hereafter, the term “model” is used to mean both codes and numerical models.  
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inference procedure (Kennedy and O’Hagan, 2001; Higdon et al., 2008a; 2008b) is used 

to infer these imprecise model parameters. This calibration procedure conditions the 

probability distributions of input parameters to the experimental evidence resulting in a 

refined posterior probability distribution of these parameters. Thus, as more physical 

measurements become available, the uncertainties in the input parameter values are 

reduced resulting in a reduction in prediction uncertainty. In the present study, this 

reduction in prediction uncertainty is traced by quantifying the information gained using 

an entropy-based metric.  

As approximations of reality, numerical models have a fundamental inability to 

reproduce the reality that cannot be remedied by calibrating the input parameters. This 

fundamental inability results in a systematic bias in prediction that’s determination is 

closely tied with the calibrated parameter values. Thus, in this study, resolution of 

parameter uncertainty and systematic bias is treated in a simultaneous and intertwined 

manner. Expanding the experimental campaign by conducting new experiments can 

reduce parameter uncertainty and produce a more refined estimate of systematic bias. On 

the other hand, an improvement in the description of physics and/or engineering 

principles can lead to a reduction in the systematic bias.  

At the decision node in the framework, the decision maker must assess the 

predictive capability of the numerical model by evaluating the stabilization (or 

convergence) of the systematic bias and the information gain metric throughout the 

domain of applicability. As the absence of stabilization indicates that the parameter 

uncertainty has not yet been fully mitigated, systematic bias in the model predictions is 
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not yet properly defined. In this case, resources must be allocated for experimentation to 

better infer the parameter values and systematic bias. In some cases, poorly predicting 

models may fail to exhibit convergence in systematic bias and information gain even 

after a significant number of experiments are conducted; therefore, at this point in the 

framework, a measure of how well the current experiments cover the domain of 

applicability (referred to as coverage) is compared to a case-specific coverage limit. As 

long as the coverage limit has not been exceeded, resources are allocated for 

experimentation. However, if the coverage limit is exceeded, resources are to be allocated 

for code development.  

If stabilization is observed, however, then the parameter uncertainty can be 

expected to be adequately reduced
11

, and the inferred systematic bias can be considered 

to be a proper representation of the incompleteness and inexactness of the model, i.e. 

model form error. In this case, as further experimentation would only marginally reduce 

the systematic bias, allocating resources to experiments cannot be justified. The decision 

maker must then evaluate if the remaining systematic bias is at an acceptably low level
12

 

for the application of interest. The model is considered valid for the particular application 

if the systematic bias is acceptably low. On the other hand, if the systematic bias is too 

high, the physics and/or engineering principles in the model need improvement. It is 

                                                

11With statement comes a caveat, only the epistemic component of the parameter uncertainty that is due to 

lack of knowledge can be mitigated, and therefore, the parameter uncertainty can only be reduced to the 
levels of aleatory uncertainty. Of course, if all the uncertain and sensitive parameters are not incorporated 

in the uncertainty quantification, then there will always be a remaining uncertainty due to the parameters 

that are not accounted for. Therefore, one cannot estimate the incompleteness of the model in a 

deterministic manner. 
12What constitutes “acceptably low level” depends on the particular problem being solved. 
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important to note that a more sophisticated model may have larger numbers of uncertain 

parameters and may require a more extensive experimental campaign to mitigate 

parameter uncertainty. The framework in Figure 3.1 therefore loops through the 

aforementioned steps until the systematic bias and information gain have converged to 

the acceptable levels. 

The application of this proposed framework is demonstrated on the viscoplastic 

self-consistent (VPSC) material code for modeling the plastic deformation of polycrystals 

as described in Section 3.2. The experimental data utilized in the calibration process is 

described in Section 3.3. The methods used for calibrating model parameters, computing 

the systematic bias, and calculating information gain are discussed in Section 3.4. Results 

and discussions are presented in Section 3.5. Concluding remarks, limitations of this 

framework, and the necessary future work and are provided in Section 3.6. 

3.2. VPSC Model 

Lebensohn and Tomé developed a viscoplastic self-consistent (VPSC) material 

model for modeling the plastic deformation of polycrystals (Lebensohn et al., 1993). A 

polycrystal is modeled by a set of single crystals (grains) with initial crystallographic 

orientations that represent the initial texture of the aggregate and evolve during plastic 

deformation.  In turn, each grain is treated as an ellipsoidal inclusion with anisotropic 

viscoplastic properties, deforming in a homogenous equivalent medium that has the a 

priori unknown average properties of the aggregate. This leads to a relation between the 

strain-rate and stress in each individual grain with the global stress and strain-rate of the 

aggregate through localization equations. The viscoplastic deformation of the crystals 
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occurs by dislocation motion and therefore can be modeled in terms of constitutive 

relations between the deviatoric stress and strain-rate tensors. Viscoplastic deformation 

will occur when a slip system activates and dislocations move under an applied stress. 

The final deformation is obtained in the VPSC formulation through imposing a 

macroscopic strain-rate during each incremental deformation step. The strain-rate and 

stress from each previous step is used as the starting values for the next step. Stress-strain 

curves and texture development constitute the typical output of a VPSC calculation. Here, 

two versions of the VPSC formulation are utilized: the original glide-only (G) model, 

used for predictions of plasticity of polycrystals; and the climb-and-glide (C&G) version, 

with improved physics for the prediction of polycrystal response under creep 

conditions
13

.  

3.2.1.  Glide VPSC 

In the G version of the VPSC code, a Schmid-type constitutive behavior is used to 

describe the dislocation motion in the constituent single-crystals (Lebensohn et al., 1993). 

As such, dislocations lie and move within the slip plane and are activated by shear 

stresses, their motion can only accommodate simple shear deformation on this plane. 

Glide activity in several slip planes is able to accommodate arbitrary deformation applied 

to the crystal. The constitutive equation at the single crystal level is expressed as: 

                                                

13
Prior to performing validation on the VPSC model, verification is conducted (Recall, in Section 3.1 it is 

stressed that verifying the numerical accuracy of the mathematical codes must be addressed prior to 

validation endeavors). In (Lebensohn et al., 2004), the VPSC model is verified and numerical errors are 

quantified by comparison with “exact” full-field formulations. 
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                                                                             (3.1) 

where  is the stress applied to the crystal and   is the strain-rate, accommodated by 

glide; m
s
 and 

s

o  are the Schmid tensor and the critical resolved shear stress associated 

with glide in the system(s), respectively, The stress exponent, ng, represents the inverse of 

rate-sensitivity for glide activity, and o  denotes a normalization factor. The single 

crystal equation for strain-rate is summed over all active slip systems, Ns. 

3.2.2. Climb-and-Glide VPSC 

Lebensohn et al.’s (2010) more sophisticated constitutive model for aggregates of 

single crystals deforming by climb and glide is an improvement to the original VPSC 

approach that considers deformations by glide only. At temperatures below 50 percent of 

the melting temperature, glide-controlled creep dominates; however, when higher 

temperatures are present, local non-equilibrium concentrations of point defects 

interacting with dislocations allow for dislocations to climb in addition to glide. 

Dislocation climb becomes very relevant in high-temperature plasticity and irradiation 

creep. The direction of dislocation motion is determined by the velocity vector made up 

of two components: the glide velocity (lies in glide plane) and the climb velocity (normal 

to the glide plane). The glide component depends upon the shear stress component acting 

on the glide plane while the climb component depends on the full stress tensor. The 

extension of Equation (3.1) to the C&G case is expressed as:  
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where sc  and 
s

o  are, respectively, the climb tensor and a critical stress associated with 

climb in the system(s) and nc is the stress exponent associated with climb. In comparing 

Equations (3.1) and (3.2), it is evident that the additional physics of the C&G model 

result in an increased number of parameters over the G model.  

It is important to note that ng and 
s

o  (glide stress exponent and critical resolved 

shear stress associated with glide) are temperature, strain-rate, and microstructure-

dependent (Lebensohn et al., 2010). Likewise, nc and 
s

o  (climb stress exponent and 

critical stress associated with climb) are dependent of the same variables. This latter 

dependency however, is much more complex due to not only the dynamics and 

interactions of dislocations but also the interactions between point defects and 

dislocations.  Additional versions of the code, including an improved the C&G model 

(Lebensohn et al., 2011) and an atomistic scale coupled model, are currently being 

developed and will be added to future analysis. 

3.3. Application of the VPSC Code to 5182 Aluminum Alloy 

Experiments performed on 5182 aluminum samples with an initial (001) ("cube") 

texture, deformed in compression are reported in Stout et al. (1998a; 1998b). Stress-strain 

curves and final textures (in terms of inverse pole figures) are measured for various 

temperatures (from 22°C to ~550°C) and strain-rates (1 s
-1

 and 10
-3

 s
-1

). The experiments 

are performed until the specimens reached a true strain of 0.6. Final textures are available 
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for seven of the 11 stress-strain curves shown in Figure 3.2. In this study, the stress 

corresponding to the maximum measured strain of 0.6 and the intensities of the textures 

corresponding to the (001) and (101) corners of the inverse pole figure are used for 

validation of the VPSC model. Note that although a complete, quantitative description of 

crystallographic textures requires, in general, a large number of parameters (e.g. weights 

associated with a partition of a 3-D orientation space), the final compression textures of 

the 5182 Al samples can be characterized by, at most, two components with associated 

intensities, corresponding to a retained (001) "cube" texture and/or a (101) "compression" 

texture. These chosen features offer a low-dimensional yet highly informative metric for 

validation as shown by the information gain metric presented later in Section 3.5.  

 

Figure 3.2: 5182 Al stress-strain curves. 

3.3.1. Experimental observations 

Table 3.1 lists the experimental settings and measured stress and texture features 

for the experimental campaign performed to explore the domain of applicability defined 

by temperature and strain-rate. The initial results of the study in Stout et al. (1998a) show 

typical stress-strain behavior, in which yielding is followed by strain-hardening at low 
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temperatures. At higher temperatures however, very little work-hardening and lower 

yield stresses are observed. Additionally, for yield stresses below 50 MPa, negative work 

hardening occurs with a clear upper/lower yield point; while for stresses above 50 MPa, a 

yield point is not observable (Stout et al., 1998a). Textures at elevated temperatures are 

likewise inconsistent with standard glide-only deformation textures, while textures at 

lower temperatures develop a (101) fiber texture, typical of unixial compression applied 

to a fcc polycrystal. Experiments run at 500°C and 550°C with a strain-rate of  10
-3 

s
-1

 

displayed a (001) cube component (generally thought of as a recrystallization texture not 

a deformation texture) and almost no (101) deformation component. For 400°C, 500°C, 

and 550°C with 1 s
-1

 strain-rate experiments both (001) and (101) textures are observed 

(Stout et al., 1998b). To explain the difference in the combination of textures, Stout et al. 

(1998b) assume a sharp decrease in rate sensitivity as strain-rate increases.  

Table 3.1: Experimental results for 5182 Al 

Experiment 
Temperature 

(C
°
) 

Strain-Rate    

(s
-1

) 

Stress (MPa) 

@ Strain=0.6 

Texture 

Intensity (001) 

Texture 
Intensity 

(101) 

A 200 10
-3 

226.2 1.00-1.41 4.00-6.00 

B 300 10
-3

 91.4 0.58-0.71 4.00-6.00 

C 400 10
-3

 30.6 NA NA 

D 500 10
-3

 14.9 4.00-6.00 2.00-2.83 

E 200 1 280.0 NA NA 

F 300 1 193.7 NA NA 

G 400 1 121.3 1.41-2.00 4.00-6.00 

H 500 1 65.5 2.00-2.83 0.00-0.58 

I 550 1 43.0 2.83-4.00 0.58-0.71 

J 350 10
-3

 50.0 2.00-2.83 2.83-4.00 

K 550 10
-3

 7.0 NA NA 
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3.3.2. Prior work 

Utilizing the VPSC model to make texture predictions on the 5182 aluminum data 

reported by Stout et al. (1998b), Lebensohn et al. (2010) observes that the (001) “cube” 

component at high temperatures and low strain-rates are due to an increase in climb 

activity at those external settings. Seven different VPSC simulations of texture evolution 

are computed through the analysis of various glide-only and climb-and-glide scenarios, 

an analysis of which shows that an increase in rate-sensitivity contributes to prevalence 

of the (001) cube component. The texture simulated using an equal climb-to-glide 

activity ratio most accurately predicts the experimental texture for the 400°C and 10
-3

 s
-1

 

experimental case, however. As proposed in Lebensohn et al. (2010), the final retained 

(001) “cube” component is achieved by means of an increase in climb activity, which can 

be explained by the fact that climb mechanism accommodates plastic deformation 

applied to a single crystal involving a reduced plastic spin (crystal rotation) as compared 

with glide (see Lebensohn et al. (2010) for details). Note that hereafter, the response 

features of interest (stress at the maximum measured strain of 0.6, (001) “cube” texture, 

and (101) “compression” texture) will be referred to as: maximum stress, texture 001, and 

texture 101, respectively. 

3.4. Calibration against Experimental Data 

During experiments conducted on 5182 aluminum alloy, temperature and strain-

rate are controlled (also known as control parameters). The upper and lower bounds of 

these control parameters, given in Table 3.2, define the domain of applicability, within 

which the VPSC model will be executed. The VPSC model studied herein however, 
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omits temperature-dependency. Therefore, the stress exponents and critical stresses are 

considered as proxies for temperature to describe the mechanical response at large strains 

for various temperatures (Lebensohn et al., 2010) (see Section 3.4.1).  

As this study is concerned with the ability of the VPSC model to predict the 

saturation stress, the critical stresses are treated as uncertain model parameters (recall 

Equation 3.2). Note that the initial strain-hardening is not of interest and thus, the critical 

stresses are assumed constant throughout the deformation. In addition to these critical 

stresses, the stress exponents described in Equations (3.1) and (3.2) are identified as 

highly uncertain parameters. Thus, the two parameters of interest for the G model are 

then the glide stress exponent, ng, and the initial critical resolved shear stress for glide,  

s

o . For the C&G model, in addition to the two parameters corresponding to the glide 

mechanism, the parameters of interest also include two more parameters, the climb stress 

exponent, nc, and critical stress associated with climb, 
s

o . The plausible ranges for these 

variables are determined by expert opinion and are listed in Table 3.2. 

Table 3.2: Control and uncertain model parameter values 

 Parameter Minimum Maximum 

Control 

Parameters 

Temperature (C
°
) 180 570 

Strain-Rate (s
-1

) 0.0005 1.05 

Uncertain 

Model 

Parameters 

ng 1 5 

s

o (MPa) 1.2 1343.4 

nc 1 5 

s

o (MPa) 1.2 6045.4 
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3.4.1. Correlation function  

The dependency of the uncertain model parameters (the stress exponent(s), n, and 

initial critical shear stress(es) for glide and/or climb, generically referred to as ) upon the 

control parameters (temperature and strain-rate) makes it implausible to search for a 

single set of parameter values for the stress exponent and critical stress that will yield 

satisfactory agreement between the predictions and experiments throughout the domain 

of applicability. Rather, exploiting the available experimental data, a correlation function 

is constructed to represent the dependency of the stress exponent and critical stress on 

control parameters. Using a nonlinear constrained optimization algorithm (Powell, 1978; 

Waltz et al., 2006), the least-square objective function given in Equation (3.3) is 

minimized for the experimental settings given in Table I.  Note that for the C&G model 

four variables are considered for optimization while only two variables are needed for the 

G model. The optimized values of stress exponents and critical stresses are obtained via 

the objective function given by: 

2 22
(001) (001) (101) (101)

exp exp

(001) (101)

exp exp

sim simsim exp

optim

exp

x
    

  

      
      

     
     

                                 (3.3) 

where σexp represents the stress at the maximum measured strain (strain = 0.6), and σsim 

represents the corresponding predicted stress. In Equation (3.3), 
(001)

exp
 
and 

(001)

sim denote 

the measured and predicted texture 001 intensities, respectively, and 
(101)

exp and 
(101)

sim

represent the texture 101 intensities. Note that for each experimental setting given in 

Table I, the 
(001)

exp and 
(101)

exp values are given as ranges to incorporate the experimental 
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uncertainty, and thus constraints are imposed on the second and third terms in Equation 

(3.3) as follows:  
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(3.6) 

In Equations (3.4)-(3.6), the superscript Tx denotes the texture 001 or 101 and the 

subscripts “U” and “L” denote the upper and lower bound of the given ranges for texture 

data in Table I. Because increased stress leads to an increase in glide at the expense of 

climb, a constraint that nc < ng for the entire domain is imposed. The optimized, 

deterministic point estimates for the uncertain model parameters for the G and C&G 

model are plotted in Figures 3.3 and 3.4, respectively. 
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Figure 3.3: Optimized point estimates for rate sensitivity (ng) (top) and critical stress (τ0) (bottom) for the G 

model. 

 

Figure 3.4: Optimized point estimates for rate sensitivities (ng and nc) (top) and critical stresses (τ0 and σ0) 

(bottom) for the C&G model. 
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It can be seen from Figures 3.3 and 3.4 that the optimized stress exponent, n, 

values concentrate around 3.5 without exhibiting a clear dependency on the temperature 

or strain-rate. Therefore, the parameters ng and nc are considered to be independent of 

temperature and strain-rate. Furthermore, the optimization process indicates that bounds 

for the n parameters can be restricted further (see the gray band on Figures 3.3 and 3.4) 

from the originally proposed range given by expert judgment in Table 3.2. The further 

constrained ranges for the n parameters are listed in Tables 3.3 and 3.4. 

On the other hand, the optimized critical stress,  , values in Figures 3.3 and 3.4 

exhibit an exponential relationship with temperature and a linear relationship with strain-

rate. Therefore, suitable correlation functions for the critical stresses require an 

exponential fit along the temperature domain and a linear correlation along the strain-rate 

domain, which can be expressed as: 

   

 
1 1

2 1

dT bT

bT
ce ae

ae
   


 

  
 


                                                                            (3.7) 

where   is the strain-rate and T is the temperature. The variables a and c are the leading 

intercept coefficients for the exponential fit for critical stress for a strain-rate of 1 0.001   

and 2 1  ,  respectively. Likewise, b and d are the decay rate coefficients for the 

exponential fit. The computed values for the coefficients, shown in Tables 3.3 and 3.4 for 

the two models, are used as calibration parameters (i.e. uncertain parameters for which 

posterior distributions will be inferred during the calibration process) in place of critical 

stresses.  
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The stress exponents as well as the variables for the exponential fit are accepted 

as the parameters to be calibrated resulting in a total of five calibration parameters for the 

G model and ten for the C&G model as listed in Tables 3.3 and 3.4. To account for 

uncertainties in the experiments, the values of the correlation function coefficients are 

allowed to vary from their optimized fits. The variance of the coefficients a and c is set to 

 25%, and the variance of coefficients b and d is set to 20%. These ranges, given in 

Tables 3.3 and 3.4, are selected such that all the available experimental data is 

encompassed by the family of functions created with varying coefficients.  

Table 3.3: Calibration parameters for the G model 

Parameter 
Optimized/Mean 

Value 
Min Max 

ag 4577.1 3432.8 5721.4 

bg -0.01 -0.008 -0.012 

cg 372.48 279.36 465.60 

dg -0.005 -0.004 -0.006 

ng 3.5 2.5 4.5 
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Table 3.4: Calibration parameters for the C&G model 

Parameter 
Optimized/Mean 

Value 
Min Max 

ag 2970.2 2227.65 3712.75 

bg -0.008 -0.0064 -0.0096 

cg 281.7 211.275 352.125 

dg -0.004 -0.0032 -0.0048 

ng 3.5 2.5 4.5 

ac 24727 18545.25 30908.75 

bc -0.012 -0.0096 -0.0144 

cc 1595.2 1196.4 1994 

dc -0.008 -0.0064 -0.0096 

nc 3.5 2.5 4.5 

 

3.4.2. Model calibration  

For the calibration of the imprecise parameters of the VPSC model, a statistical 

inference approach is implemented. In particular, a multivariate generalization (Higdon et 

al., 2008a; 2008b) of the Bayesian calibration method proposed by Kennedy and 

O’Hagan (2001) is used, in which experimental data are combined with the model 

predictions to carry out statistical inference while considering the inadequacy of the 

model. In this framework (Kennedy and O’Hagan, 2001; Higdon et al., 2008a; 2008b), 

the experimental observation, y(x), is given by: 

( ) ( , ) ( ) ( )  y x η x θ δ x ε x                                                                                              (3.8) 

in which ( , )η x θ  denotes the model predictions, ( )δ x  represents the estimated systematic 

bias between reality and the predictions, and ( )ε x denotes the experimental error. Here, x 
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represents settings at which observations are made (i.e. control parameters), and θ  

denotes the best values for the calibration parameters t.  

For many practical problems, numerical models are complex and computationally 

demanding and thus only a limited number of runs are possible. To mitigate this problem, 

an inexpensive surrogate (also known as emulator) can be trained to substitute for the 

numerical model to obtain predictions at untried settings. Here, a Gaussian process (GP) 

emulator is used to represent the numerical model predictions, ( , )η x t , which is specified 

by a mean function, ( , ) x t , and a covariance function defined by Higdon et al. (2008a) 

as: 

   
2

'2 44

,1 1

1
Cov(( , ), ( ', ')) ( )

k kx tk k

x

t xp px x

k k p kk k 



 




 
  x t x t                                       (3.9) 

where   
and the k  

vector are the so-called hyper-parameters for the GP emulator of 

the model predictions which control the marginal precision of ( , )η x t
 and the 

dependence strength in the components of the x and t directions, respectively; px and pt 

are the number of control and calibration parameters, respectively. Similarly, for the 

estimated systematic bias ( )δ x , a GP emulator is employed with a zero mean function 

and a covariance function defined by Higdon et al. (2008a) as: 

 
2

4

1

1
Cov(( , '))

x k k
p x x

kk 









 x x                                                                                   (3.10) 

where   
and k  

are hyper-parameters for the GP emulator estimating systematic bias 

which control the marginal precision of ( )δ x
 and the dependence strength in the 
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components of the x direction, respectively. The hyper-parameters ensure a smooth and 

differentiable form for both  ( , )η x t  and ( )δ x . 

In the Bayesian calibration framework, the true but unknown values of the 

calibration parameters, θ , are inferred exploiting the availability of the experimental 

data. Existing knowledge of calibration parameters as well as the hyper-parameters of the 

GP emulators can be incorporated through prior distributions, which are then updated to 

obtain the joint posterior distributions based on the experimental data. The posterior 

distribution conditioned on experimental data is given by: 

( , , , , , | )   

( | , , , , , , ) ( ) ( ) ( ) ( ) ( ) ( )yL

   

       

    

                

θ ρ ρ D

D θ ρ ρ θ ρ ρ
                 

(3.11) 

where D is the joint vector of experimental data and numerical model outputs, ( | , )L D θ

is the likelihood function, y  is the observation covariance matrix, and ( )   is the prior 

distributions (for detailed discussion see Higdon et al. (2008a)).    

A Markov chain Monte Carlo (MCMC) algorithm, specifically Metropolis-

Hasting algorithm, is used to explore the posterior distributions for both the calibration 

parameters and the aforementioned hyper-parameters. During the MCMC random walk, 

calibration parameter values that generate predictions with greater fidelity to the 

experimental data over the domain of applicability are accepted based on the established 

acceptance criterion for the likelihood function. Upon obtaining the posterior distribution 

for the calibration parameters and hyper-parameters of the GP models, predictions 

*( , )η x θ  and the systematic bias 
*( )δ x can be estimated at untested input settings, 

*
x , 

using the GP emulators.  
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Herein, a 140-run Latin-hypercube (LHS) design is used to construct the GP 

emulators for the model predictions and systematic bias for the G model, while a 240-run 

LHS design is used for the C&G model. For the calibration parameters, a uniform prior 

distribution is assumed between the ranges given in Tables 3.3 and 3.4. 10,000 MCMC 

iterations are used to estimate the posterior distribution of the calibration parameters. 

Exercising the GP emulators, predictions are obtained for 500 linearly spaced samples 

from the posterior distributions of the calibration parameters and GP hyper-parameters. 

To compare the calibrated model predictions against experimental data, predictions, 

( , )η x θ , are generated at experimental settings shown in Table 3.1.  

The relative disagreement between predictions and experimental results, i.e. 

systematic bias, is hypothesized to converge as the number of the experiments used in the 

calibration process increases. However, the systematic bias is herein treated as a scalar 

representative value by computing the difference between the average of the sampled 

model predictions and the experimental observation; it is not a direct quantification of the 

reduction in prediction uncertainty. Therefore, the information gain metric described in 

the next section is proposed to quantify the reduction in prediction uncertainty. 

3.4.3. Information gain 

As the information gain is equal to the amount of uncertainty removed, entropy, 

defined as a measure of uncertainty, is equivalent to the amount of information (Shannon, 

1948).  Herein, an information gain metric based on Shannon entropy (Shannon, 1948) is 

utilized to quantify the prediction uncertainty as additional experiments become available 
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to condition the posterior distributions. For a discrete random variable, Z, with a 

probability mass function, p(z), the entropy is expressed as: 

  ( ) log ( )
z Z

H Z p z p z


                                                                                             (3.12) 

where the logarithm to base 2 is used to measure entropy in bits. Here Z represents the 

calibrated model predictions at respective experimental settings (recall Table 3.1), as 

increasing numbers of experiments are used in the calibration process. The information 

gain metric, expressed in percentage, is then calculated using the following relationship: 

expt(i)
Info-Gain(i)(%) *100

ref

ref

H H

H

 
   
 

                                                                       (3.13) 

where refH is the entropy calculated for the model predictions obtained with the prior 

distributions of the calibration parameters. expt(i)H
 
is the entropy of the calibrated model 

predictions, in which i number of experiments are used in the calibration process.  

While the information gain metric is an excellent tool for quantifying the 

reduction in uncertainty of the model predictions, it does not make any assertions about 

the systematic bias associated with a particular model and should not be used to assess 

the accuracy of one model over another. Therefore, both the convergence of systematic 

bias and information gain must be evaluated while discerning the necessity of additional 

experiments or further code development.  

3.5. Results and Discussion 

This section demonstrates the application of the proposed framework and 

provides a discussion on the computed systematic bias and information gain as the two 
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versions (G and C&G) of the VPSC model are calibrated using one through 11 available 

experiments in the sequence shown in Table 3.5. The calibrated VPSC models are 

executed to predict maximum stress and texture 001 and 101 intensities at different 

experimental settings.  

Table 3.5: Experimental cases (see Table I for the experimental settings) 

Case Experiments 

1 A 

2 A,B 

3 A,B,J 

4 A,B,J,D 

5 A,B,J,D,G 

6 A,B,J,D,G,H 

7 A,B,J,D,G,H,I 

8 A,B,J,D,G,H,I,C 

9 A,B,J,D,G,H,I,C,K 

10 A,B,J,D,G,H,I,C,K,E 

11 A,B,J,D,G,H,I,C,K,E,F 

 

3.5.1. G model 

Figure 3.5 shows a reduction in uncertainty in the calibration parameters where all 

11 experiments are used in the calibration process of the G model compared to the case 

where only one experiment is used (with the exception of dg
14

). Figure 3.6 shows a box 

plot of the three predicted features, where the horizontal lines represent the bounds of the 

                                                

14It is important to note that the posterior distributions of insensitive parameters may not narrow as more 

experimental data is added. If a parameter has little effect (i.e., low sensitivity) relative to other parameters 

on the output of interest, many alternative values for this parameter could be accepted during the calibration 

process. 



79 

 

experiments at settings D and I (recall Table 3.1). Overall, reduction in uncertainty in 

model predictions is observed as the number of experiments increases. Note that the 

predictions at the other nine experimental settings also show similar trends. Figure 3.6 

illustrates that systematic bias decreases and ultimately converges as the number of 

experiments used in the analysis increases. As evident from Figures 3.6(c-f), a level of 

systematic bias remains between predictions and experiments. 

 

Figure 3.5: Posterior distribution for the G model (Left: one Experiment, Right: 11 Experiments). 

The systematic bias first is normalized as a percentage of the experimental 

observation throughout the domain of applicability and then averaged to obtain the 

mean
15

. Figures 3.7-3.9 depict the mean systematic bias for the maximum stress, texture 

001, and texture 101 predictions at each experimental setting, as a function of the number 

of experiments used in the calibration process. For the maximum stress output, little 

convergent behavior is evident; while for the texture outputs, upon addition of the fourth 

                                                

15
For each experimental setting, the systematic bias is obtained as a distribution, which is averaged to 

reduce the dimensionality to a scalar value. 
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experiment, the systematic bias of the textures for all prediction settings converges as 

shown in Figures 3.8 and 3.9.  

The information gain is computed for the model predictions at settings where 

experiments are available (Table 3.5). For brevity, however, Figure 3.10 shows the 

information gain plots for the maximum stress, texture 001, and texture 101 predictions at 

settings D and I, respectively. Remaining experimental settings show similar trends as the 

model calibration proceeds consecutively through these 11 experiments. For stress 

predictions, the information gain monotonically increases and ultimately converges. 

Slight fluctuations are expected given the stochastic nature of the approach adopted in the 

study. However, for the texture predictions, a convergent behavior is not observed, 

indicating the G model’s inability to reproduce experimental texture data at certain 

regions in the domain of applicability.  
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Figure 3.6: Prediction statistics for the G model (Left: Experiment I, Right: Experiment D). 
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Figure 3.7: Maximum stress systematic bias for each experiment (Left: G model, Right: C&G model). 

 

Figure 3.8: Texture 001 systematic bias for each experiment (Left: G model, Right: C&G model). 

 

Figure 3.9: Texture 101 systematic bias for each experiment (Left: G model, Right: C&G model). 
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In Figure 3.10, even though the information gain metric for both texture outputs 

approaches 100% for some cases, Figures 3.8 and 3.9 depict a systematic bias well in 

excess of 100% for the texture predictions at settings D and I  indicating that uncertainty 

reduction does not guarantee that the model is making accurate predictions. In fact, 

Figure 3.9 reveals a systematic bias for texture 101 over 400% for setting I, and as high 

as 1000% for setting H. For purposes of illustration, the G model’s systematic bias is 

deemed unacceptably high. Since further reduction in parameter uncertainty through 

conducting more experiments is not feasible, the rigor in which the physics principles are 

modeled must be improved, which leads to the use of C&G model as it will be discussed 

below. 

 

Figure 3.10: Model predictions at Experiment D and Experiment I: Information gain from experiments used 

for calibration (G model). 
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3.5.2. C&G model 

Figure 3.11 illustrates the uncertainty reduction in the calibration parameters as 

the number of experiments used for the C&G model calibration is increased through each 

of the 11 experiments. In Figure 3.12, box plots of the outputs for the experiment settings 

D and I are shown with the reduction of prediction uncertainty clearly seen. Additionally, 

the reduction of systematic bias in the more sophisticated model is evident from a 

comparison of Figures 3.6 and 3.12; significantly lower values of systematic bias for the 

texture outputs are obtained for the C&G model than its G counterpart. The trends, seen 

Figure 3.12, are also observed for the remaining experimental settings. 

Figure 3.7 shows that the systematic bias for the maximum stress converges at the 

tenth experiment for all settings. The systematic biases of the texture outputs converge 

after the addition of the seventh experiment as shown in Figures 3.8 and 3.9. Recall that 

convergence is achieved with only four experiments for the G model. This is expected, of 

course, since models with a higher number of parameters necessitate a greater number of 

experiments to achieve convergence. As the C&G model has twice as many calibration 

parameters as the G model (see Tables 3.3 and 3.4), more experimental data is required to 

reduce the parameter uncertainty for the systematic bias to converge.  
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Figure 3.11: Posterior distribution for the C&G model (Left: one Experiment, Right: 11 Experiments). 

Figure 3.13 shows information gain for experimental settings D and I.  Overall, 

information gain increases (with only minor fluctuations) as the number of experiments is 

increased and converges after a sufficient number of experiments are used in the 

calibration process. The specific level of information gain at which convergence is 

achieved varies based upon the predicted outputs and the control settings. For instance, 

the information gain for the maximum stress and texture 001 predictions at experimental 

setting D are approximately 30% and 43%, respectively while for I the values are 

approximately 40% and 59%, respectively.  
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Figure 3.12: Prediction statistics for the C&G model (Left: Experiment I, Right: Experiment D). 
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purposes of simulation, the model may be considered validated. If additional reduction in 

systematic bias is required, however, a further physics sophistication of the model should 

be considered.  

 

Figure 3.13: Model predictions at Experiment D and Experiment I: Information gain from experiments used 

for calibration (C&G model). 

3.5.3. Comparison of the G and C&G models 

Figure 3.14 illustrates the systematic bias, averaged for each feature over each of 

the experimental settings (from Figures 3.7-3.9).  Here, the reduction and ultimate 

convergence of this averaged systematic bias is observed. Furthermore, Figure 3.14 

indicates that the improved physics description, i.e. the C&G model, converges to a lower 

systematic bias in all three outputs when compared to the G model, confirming that the 

addition of physics principles in the model reduces systematic bias. Due to a larger 

number of calibration parameters, however, the C&G model requires increased 

experiments to reach convergence. For resource allocation problems, therefore, the cost 
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of additional experimentation for more sophisticated models must be evaluated against 

the potential reduction in systematic bias. 

 

Figure 3.14: Mean systematic bias for each model output computed over each experimental setting from 

Figures 3.7-3.9. 
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The DIC is computed as shown in Equations (3.14)-(3.16).  
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( ) ( ) ( ) ( )( ) 2log[ ( | )] 2log[ ( )]j j j j

jD f y g y   
                                                           

(3.15) 

( )( ) 2j

j jDIC D p                                                                                                    (3.16) 

In Equation (3.14),
( ) ( )( | )j jf y   represents the probability density function for the 
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of emulator parameters, and 
( ) ( )j y  estimates ( )j  based upon the experimental data y 

(Williams et al., 2011). In Equation (3.15), 
( )2log[ ( )]jg y  is a standardizing term 

dependent on the observed data. Finally, in Equation (3.16), the DIC is computed for the 

case where jp represents jp  when 
( ) ( )j y is equal to the posterior mean ( )j . When 

comparing two models, a smaller value for DIC indicates a more preferable model 

(Williams et al., 2011). As the DIC is used for comparison purposes only, the actual DIC 

values are only relevant relative to another model.  

In Figure 3.15, DIC values are plotted against the number of experiments. The 

DIC of the C&G model converges to a smaller value than that of the G model indicating 

that the lower systematic bias of the C&G model outweighs the penalty of having a larger 

number of parameters. Though the C&G model is preferable over the G model in this 

instance, it is important to note that until the fourth experiment, the G model has a lower 

DIC value. This observation again confirms that more complex models require larger 

numbers of experiments to achieve maturity in their predictive capabilities. 

 

Figure 3.15: DIC comparison of the G and C&G models. 
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3.6. Conclusions  

In this chapter, a framework to guide the allocation of resources for the validation 

of numerical models is demonstrated. Improvement in the predictive capabilities of a 

numerical model can be achieved through the reduction of parameter uncertainty and 

systematic bias. The parameter uncertainty can be reduced through calibration of model 

parameters against experimental data. An increase in the number of experiments used in 

the model calibration results in a decrease in parameter uncertainty; this is indicated by 

the convergence of the systematic bias and the information gain to a stable level 

throughout the domain. Upon convergence of systematic bias and information gain, 

parameter uncertainty cannot be reduced further. In this case, improvements to predictive 

capabilities is only possible by reducing systematic bias, which can be achieved only by 

improving the physics and/or engineering principles of the given model. 

The proposed framework is demonstrated on a non-trivial application of the 

VPSC code to predict stress and texture behavior of 5182 aluminum alloy. The 

availability of two versions of the VPSC code, G and C&G models, presents an ideal 

opportunity to demonstrate the fundamental concepts presented herein. In this example, 

the systematic bias of the texture predictions of the G model converges as more 

experimental data is utilized in the calibration process. The analysis of the systematic bias 

and information gain show that parameter uncertainty cannot be further reduced. As the 

resulting converged systematic bias for the G model is deemed unacceptably high, the 

C&G model, with a more sophisticated physics than its G counterpart, is used for 

predictions. Again, the convergence of the systematic bias and information gain of the 
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C&G model is observed. Finally, though the converged systematic bias of the more 

sophisticated C&G model is smaller than the G model for texture predictions, this bias is 

possible only when calibrated with a higher number of experiments. The results from this 

case study of the proposed framework provide a science-based, quantifiable, and 

defendable rationale for allocating resources between coding and experimentation to 

reduce both parameter uncertainty and systematic bias.  

While this work demonstrates the proposed framework for improving the 

predictive capability of numerical models, certain limitations constrain its effectiveness. 

Specifically, this framework operates under the assumption that (i) neither resources nor 

statute can prohibit further experimentation, (ii) that the analyst can improve the code 

through first-principle knowledge of the missing physics laws; (iii) that the a priori 

values of calibration parameters of the code do not change within the domain of 

applicability, and (iv) that numerical uncertainty is considered sufficiently small 

(verification activities are successfully completed a priori). A numerical model violating 

one of these assumptions would require a modification to the framework and provides 

additional areas topics for further study.  
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CHAPTER 4: A SELECTION CRITERION BASED ON EXPLORATION-

EXPLOITATION APPROACH FOR BATCH SEQUENTIAL DESIGN 

4.1. Introduction 

Numerical models are increasingly relied upon to make predictions about 

engineering systems in lieu of physical experiments. Such models can greatly reduce the 

reliance on extensive experimental campaigns. However, the need for experiments cannot 

be entirely eliminated, since experiments are vital to ensure the validity of model 

predictions. As numerical models are executed at different settings within the operational 

domain of the engineering system being represented, experiments are needed to validate 

model predictions at different settings within this domain of interest. 

Improvement in the predictive capability of a model can be accomplished through 

a reduction in two principal quantities: (i) the fundamental inability of the model to 

reproduce experiments, model form error, and (ii) the uncertainties associated with 

model predictions. By calibrating the model against physical experiments, an empirically 

trained approximation of model form error (referred to herein as discrepancy bias) can be 

obtained and the model uncertainties can be reduced. As the available experimental data 

increases, this empirical discrepancy bias is expected to converge to a consistent and 

systematic level, and the model uncertainties are expected to continually reduce with 

diminishing returns. However, the convergence of the discrepancy bias and the reduction 

in model uncertainty both exhibit path dependency; i.e. the rates at which the discrepancy 

converges and the uncertainties reduce are dependent upon both the control settings of 

the physical experiments (i.e. settings in the domain of interest the experiments are 
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conducted) as well as the sequence in which those experiments are conducted. Therefore, 

the settings and the sequence of the experiments are vitally important for experiment-

based validation. 

Section 4.2 overviews techniques developed to exploit this path dependency, 

broadly known as optimal experimental design. One particular methodology (described in 

further detail in Section 4.3), the Batch Sequential Design (BSD), is particularly useful 

for the optimal design of validation experiments. BSD, proposed by Loeppky et al. 

(2010) for design of computer experiments and extended by Williams et al. (2011) and 

Atamturktur et al. (2012) for physical experiments, allows for experiments to be selected 

in groups, or batches, rather than single experiment optimizations available in the 

literature. The objective of the BSD methodology is to select the optimal settings for 

experiments to be conducted within each batch such that the discrepancy (treated with an 

empirically trained Gaussian Process Emulator (GPM)) is trained as effectively as 

possible with the fewest number of experiments. 

The selection of optimal experiments through BSD can be completed using 

various forms of selection criteria. In Atamturktur et al. (2012), for instance, eight 

different BSD selection criteria, including entropy-based and distance-based criteria are 

implemented and compared against each other. Atamturktur et al. (2012) compared the 

selected criteria using a novel metric, the predictive maturity index (Hemez et al., 2010) 

(reviewed in Section 4.4), that incorporates not only the model discrepancy, but also how 

well the selected experiments cover the domain of applicability (i.e. coverage). In the 
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established literature, BSD operates solely on the discrepancy bias and neglects the 

coverage for the given problem. 

This chapter describes improvements to the BSD algorithm, in particular to a 

BSD selection criteria, Coverage Augmented Expected Improvement for Predictive 

Stability (C-EIPS), such that the effect of both coverage and discrepancy are considered, 

resulting in the most efficient improvement in the predictive maturity of the model. As 

such, C-EIPS both explores the entirety of the domain of applicability by including the 

effect of coverage and exploits areas within the domain that exhibit high variability in the 

empirically trained model form error by also operating on the discrepancy bias. This new 

selection criterion, developed in Section 4.5 of this chapter, is demonstrated on a multi-

variate problem, the Visco Plastic Self-Consistent (VPSC) code for modeling the 

plasticity of metals (reviewed in Section 4.6). Section 4.7 demonstrates, through the 

application of the VPSC code, that the functional form of the newly developed BSD 

criterion, C-EIPS, results in an efficient use of experimental resources. The performance 

of C-EIPS is compared against the two most effective criteria reported in Atamturktur et 

al. (2012) for a series of cases with varying levels of predefined model form error. 

Finally, conclusions are drawn in Section 4.8. 

4.2. Review of Optimal Experimental Design 

This section focuses on research endeavors that specifically use experimental 

design as a tool to improve the predictive maturity of a specific numerical model. One 

such class of experimental design stems from the replacement of computationally 

burdensome high-fidelity numerical models with fast-running statistical emulators as has 
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been widely used in the scientific computing community (Crombecq et al., 2009; Jin et 

al., 2005; Allen et al., 2003; Crary 2002). While training these emulators, it is 

advantageous to determine the optimal selection of settings for new computer 

experiments such that information gain and predictive accuracy are maximized. This 

intelligent selection approach is the main purpose of optimal experimental design. 

According to Dawid and Sebastiani (1999), the optimal experimental design falls into 

two categories: criterion-based design and decision-based design.   

In the criterion-based design, the goal is to fulfill a particular optimality criterion 

to benefit the most from limited experiments, which is typically achieved through an 

optimization procedure. Some popular optimization criteria in this class of optimal 

experimental design include minimizing the average variance of parameter estimates (A-

optimality), maximizing information (D-optimality), and minimizing the maximum 

variance in predictions (G-Optimality) (Dawid and Sebastiani, 1999; Thompson et al., 

2010).  

Based upon the principles of Bayesian decision theory, decision-based design is 

generally known as Bayesian experimental design in the literature. Lindley (1972) is 

credited for providing a unified theory in Bayesian experimental design. This approach 

allows for the incorporation of prior knowledge and uncertainties of imprecisely known 

quantities and uses a utility function considering the purpose and costs of the 

experiments; the optimal design seeks to maximize the expected utility function. Specific 

applications in the literature utilize different utility functions based upon the intended 

application. Examples include information gain based utility functions (Huan and 
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Marzouk, 2011a, 2011b; Terejanu et al., 2012; Sebastiani and Wynn, 1996) and utility 

functions based on the minimization of uncertainty (Davis and Prieditis, 1999). 

Sequential design entails developing and applying optimal experimental design 

strategies to enhance the selection process of future experiments (Chernoff, 1959; Blot 

and Metter, 1973; Williams et al., 2000; Dror and Steinberg, 2008; Crombecq et al., 

2009). Unlike a one-step experimental approach that requires predetermined settings at 

which experiments are conducted, sequential design allows updating and improving 

future experiments with the aid of the data already collected. Jiang and Mahadevan 

(2006) present one such study relevant to the model validation community. Their 

approach specifically seeks an optimum design of validation experiments through the 

implementation of a Bayesian cross-entropy methodology and a simulated annealing 

algorithm. These designs have adaptive ability on the basis of the characteristics of 

application and experimental space so as to reduce the number of experiments necessary. 

However, as many experiments are usually conducted during a single experimental 

campaign, it is advantageous to select multiple experiments at once (i.e., in batches). 

BSD can accomplish this by selecting a batch of experiments with a user-defined size.  

BSD is appealing because of its efficiency and cost-effectiveness. Moreover, 

many of the optimization criteria mentioned earlier can be utilized in BSD. Applications 

of different BSD approaches include solving nonlinear problems using an asymptotic 

variance of the maximum likelihood-estimator as the design criterion (Muller and 

Poscher, 1989) and the use of Bayesian D-optimality criterion (to achieve computational 

efficiency) coupled with K-mean clustering algorithm to augment initial designs in 
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solving generalized linear models (Dror and Steinberg, 2008). Also, in the Bayesian 

context, two batch sequential strategies have been recently proposed with different 

motivations: Loeppky et al. (2010) used distance-based criteria to select new experiments 

to accelerate the maturity of an emulator, while to achieve predictive maturity of the 

calibrated model, Williams et al. (2011) used several selection criteria including 

integrated and maximum mean square error, maximum entropy, and two expected 

improvement criteria.  While the work of Loeppky et al. (2010) focuses more on 

computer experiments, Williams et al. (2011) extend their efforts to the optimal design of 

physical experiments. An application and evaluation of the BSD criteria presented in 

Williams et al. (2011) is provided in Atamturktur et al. (2012). A further discussion of 

these three studies is provided in the next section. 

4.3. Batch Sequential Design 

Loeppky et al. (2010) employs batch sequential methods strictly for the training 

of the fast-running surrogate models (also known as emulators, meta-models or response 

surface models) to replace the computationally expensive physics codes. Specifically, the 

focus is on improving the training of GPM with a given number of available computer 

runs, which only partially describes the response surface of the given source code. As 

such, the motivation behind using BSD in Loeppky et al. (2010) is to select the optimal 

settings for computer experiments such that the residual errors between the actual model 

predictions and the GPM are minimized. In doing so, four BSD selection criteria 

including integrated mean square error, entropy, weighted distance, and distance criteria 
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are implemented. The distance criteria are observed to perform well for low dimensional 

problems.  

 Williams et al. (2011) extends the concepts applied in Loeppky et al. (2010) to 

select physical experiments and thus, to improve the training of a discrepancy GPM. 

Through this approach, the physical experiments are conducted in batches to be used in 

the calibration of the numerical models. A GPM is useful as a reliable statistical 

estimation only if it is trained properly with sufficient data. As seen in Figure 4.1, the 

variance of a GPM increases in regions away from the experimental settings. It is also 

intuitive that the trained GPM for discrepancy will be a better representation of the “true” 

model form error if more experiments become available. Figure 4.1 (left) demonstrates 

that with only two experiments, the mean GPM for discrepancy is a straight line and the 

variance is quite high. With three experiments however, the mean GPM better represents 

the true residual difference between model predictions and experimental observations, i.e. 

model form error, and the variance is significantly reduced simply because the maximum 

distance between two experiments decreased. This dependency on the number of 

experiments (and the distance between experiments) demonstrates the importance of 

selecting the settings for optimal experiments.  
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Figure 4.1: Training of Discrepancy GPM with Experiments 

Given an initial set of experimental data and a numerical model, the BSD 

algorithm selects the optimum set of additional experiments based upon a given 

optimization criterion. Once the proposed new set of experiments become available, the 

model calibration process is repeated. Through model calibration, the uncertainties in 

model parameters are reduced, the estimated discrepancy bias is refined, and the BSD 

algorithm is executed to determine the next batch of optimal experimental settings (see 

Figure 4.2). The number of experiments for inclusion in the batch is naturally problem 

specific, and can be as low as one experiment per batch.  

A modified Fedorov exchange algorithm is used to select the optimal 

experimental settings (design points) (Fedorov, 1972; Cook and Nachtsheim, 1980).  In 

this algorithm, the starting values for the batch design points are generated using quasi-

random designs such as Sobol Sequence, Scrambled Net Sobol Sequence, etc. or a 

uniform distribution. The criterion is then stringently optimized with respect to each new 

design point (while fixing the other design points in the batch) in turn, until negligible 

improvement in the criterion value is observed. The initial design points in the batch are 
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then replaced (exchanged) by the optimized points. The optimal design points selected 

for this batch are then augmented to the initial design (or previous batch).  Each of the 

original design points are considered for exchange with a candidate point. Thus, the 

algorithm involves a search over all possible pairs of candidate and design points.  

 

Figure 4.2: Selection of Optimal Experiments 

Atamturktur et al. (2012) utilizes the BSD approach in Williams et al. (2011) to 

augment experiments for the VPSC code applied to creep strain rate in FCC steel. Several 

BSD criteria are investigated and assessed by the Predictive Maturity Index (PMI) (as 
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described in Section 4.4). The criteria employed by Atamturktur et al. (2012) to select 

optimal experimental settings include:  

 Expected improvement for predictive stability criterion (EIPS): evaluates the 

Kullback-Leibler distance between the current and proposed future distributions 

of the discrepancy, by selecting design points that maximize the minimum 

information gain. 

 Mean-square error-based criterion (MSE): selects design points based upon 

minimizing functions defining the posterior discrepancy variance. 

 Maximum entropy criterion (ENT): selects future designs points by maximizing 

the determinant of the correlation matrix defined by relating the predicted 

discrepancy at the new design settings and the currently available data.  

 Distance-based criterion: utilizes the measures such as Euclidean (EDIST) and 

Mahalonobis (MDIST) distances to minimize the maximum correlation between 

the predicted discrepancy values and the existing design.  

Figure 4.3 compares the PMI metric for BSD selected and user-selected (Latin-

hypercube (LHS) design in this figure) batches of experiments, where the more efficient 

convergence of the BSD-selected batches over sample user-selected batches is evident. In 

Atamturktur et al. (2012), the EIPS and EDIST criteria are found most effective for 

improving PMI. 
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Figure 4.3: BSD vs. User Selected PMI Stabilization (reprinted with permission from Atamturktur et al., 

2012) 

4.4. Predictive Maturity Index (PMI) 

The goal of a predictive capability metric entails assessing the ability of a model 

to make reliable predictions throughout a set domain of applicability, within which the 

models are intended to be used in a predictive manner. Recently many institutions have 

led efforts to develop metrics for predictive capability of complex numerical models (e.g. 

Harmon et al, 2005; Zang, 2008; NASA, 2007; Oberkampf et al., 2007; Sornette et al., 

2006, 2007; Hemez et al., 2010).  For a more detailed review of the literature on 

predictive capability metrics, see Hemez et al. (2010).  

As documented in Hemez et al. (2010), very few investigations venture from a 

heavy reliance on qualitative expert judgment, or with the exception of Sornette et al. 

(2006) and Hemez et al. (2010), model accuracy alone. Furthermore, the existing 

methods used to measure predictive capability attempt to quantify the quality of the 

validation activities applied on a simulation model, and not necessarily the quality of the 

solutions of the simulation model. Therefore, these aforementioned approaches operate 
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on the unwarranted assumption that increased thoroughness in validation activities 

directly improves predictive capability of the model solutions. Moreover, these 

approaches are subjective in nature and could lead to different conclusions by different 

experts.  

To supply a consistent evaluation approach, Hemez et al. (2010) proposed a novel 

concept based upon the stabilization of the systematic discrepancy bias between 

numerical predictions and physical measurements to assess the maturity of simulation 

models. In contrast to other earlier efforts, the Predictive Maturity Index (PMI) approach 

of Hemez et al. (2010) is quantitative, objective and repeatable. The PMI metric is based 

on several additional attributes that move beyond model accuracy: (i) a measure of 

discrepancy between physical observations and numerical predictions, (ii) a measure of 

complexity of the model, and (iii) a measure of the extent to which physical experiments 

used for calibration cover the domain of applicability. The original PMI metric of Hemez 

et al. (2010) has recently been modified by Stull et al. (2011) to include a refined 

definition of coverage, an additional model robustness term, and a modified functional 

implementation. These modifications are made to improve asymptotic properties of the 

PMI metric. Herein, PMI is implemented in its most recent form. The individual 

components and functional form of PMI are described briefly below. For a more rigorous 

description of each component see Hemez et al. (2010) and Stull et al. (2011). 

4.4.1. Coverage of the Domain of Applicability: 

Coverage of the domain of applicability refers to how well the experiments 

explore the domain of applicability. In Hemez et al. (2010) coverage is defined as the 
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ratio of the multi-dimensional volume encompassed by the convex hull surrounding the 

physical experiments to the multi-dimensional volume that defines the domain of 

applicability. However, in Stull et al. (2011), coverage is measured by taking the ratio of 

the sum of weighted experimental design points to the multi-dimensional volume that 

defines the domain of applicability. The weights for each experimental design point with 

respect to each control parameter are expressed as a percentage of the design domain that 

an individual experiment covers. While providing flexibility, these values are case and 

project specific and should be thoughtfully determined based upon expert judgment. In 

Stull et al. (2011) coverage is formulated as: 

,1
Volume( )

Volume( )

M
E ii

c
V

 






  (4.1) 

where ,E i  represents the convex hull around the i
th

 experiment, V  represents the 

convex hull of the entire domain of applicability, and M is the total number of 

experiments. Figure 4.4 demonstrates how this definition of coverage provides a better 

representation of the intent of the coverage parameter: to assess how well the physical 

experiments explore the domain of applicability. 
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Figure 4.4: Coverage definition in Hemez et al. 2010 and Stull et al. 2011 

4.4.2. Complexity of a Model or Numerical Simulation: 

In Hemez et al. (2010) and Stull et al. (2011), the complexity attribute is 

determined by the number of knobs of the model. Knobs refer to the number of 

calibration parameters or uncertain parameters that cannot be controlled during testing 

and may be “calibrated” to experimental data. This choice is guided by the principle that, 

in general, more sophisticated models possess larger numbers of calibration parameters. 

However, a model with a larger number of calibration parameters is prone to over-fitting 

which can result in inaccurately estimated parameter values and unrealistically high 

confidence in the model. The number of calibration knobs is denoted by the symbol NK 

and is normalized by a reference number of knobs NR. 
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4.4.3. Level of Accuracy of Model Predictions (Discrepancy): 

The ability of a model to accurately reproduce the phenomena of interest can 

conveniently be defined through the discrepancy of the model. This discrepancy 

represents the empirically trained error between model predictions and experimental data 

that cannot be rectified through model calibration. Typically, discrepancy, S , is 

normalized as a percentage of the response feature of interest, ysim, as shown in Equation 

(4.2).  

( )
S

sim

P

y


    (4.2) 

where ( )P is the functional representation of discrepancy throughout the domain of 

applicability, P, and ||.|| is an application specific norm.  

4.4.4. Robustness 

The robustness, , for a given model is defined as the maximum amount of 

uncertainty allowed in the calibration parameters such that the maximum discrepancy 

realized (worst-case performance) from such uncertainty does not exceed a set 

discrepancy limit. As defined in Stull et al. (2011), the robustness term integrated into 

PMI operates on an info-gap uncertainty model of the calibration parameters (Ben-Haim, 

2006), and the robustness for a single experiment is defined as: 

max
( )

( )maxˆ max k k

kk

X U

R X R





   
 

  (4.3) 

where R(X
k
) represents the difference between the model prediction and experiment k, 

Rmax is the set maximum allowable discrepancy, and U
k
() is the set of calibration 
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parameters as defined by the info-gap model. The term for robustness used in PMI is 

given in Equation (4.4).  

max( ; )S P R    (4.4) 

4.4.5. Predictive Maturity Index (PMI) Metric: 

The PMI metric defined in Stull et al. (2011) depends upon coverage, C , number 

of knobs, KN , discrepancy, S , and robustness, S . Its values are, without loss of 

generality, bounded in the interval 0 ≤ PMI ≤ 1 for intuitive interpretation. PMI = 0 

means that the model has no predictive maturity. PMI = 1 implies, on the other hand, 

perfect predictive maturity over the entire domain of applicability. Clearly, these two 

cases are asymptotes that cannot be reached with a finite number of physical experiments. 

Stull et al. (2011) proposes the following PMI metric that verifies the above-stated 

properties: 
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Table 4.1: PMI Term Definitions (Stull et al., 2011) 

Term Definition 
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where 1 , 2 , 3  and 4  are strictly positive, user-defined coefficients to weight the 

effects of the four attributes of maturity and i terms are defined in Table 4.1. In Hemez 

et al. (2010) and Stull et al. (2011), several mathematical and asymptotic properties of 

predictive maturity are proposed that constrain the definition of the metric. In general, 

those limits are stated as: (i) as 0, 1,S C S     , PMI approaches 1, and (ii) as 

1, 0, , 0S C K SN       PMI approaches 0.  

4.5. Coverage Augmented Expected Improvement for Predictive Stability (C-EIPS) 

In Williams et al. (2011) and Atamturktur et al. (2012), optimization criteria 

solely operate on the empirically trained discrepancy model with the intention of 

reducing the variance of the GPM trained to represent the discrepancy bias as illustrated 

in Figure 4.1.  Herein, a new criterion, Coverage Augmented Expected Improvement for 
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Predictive Stability (C-EIPS) is proposed which considers not only the reduction in the 

variance of the discrepancy but also the coverage of the domain of applicability.   

 

Figure 4.5: Potential Error in Discrepancy Estimation 

In BSD, the importance of discrepancy as a measure of the model’s accuracy, 

discussed at length in Williams et al. (2011) and Atamturktur et al. (2012), is clear. The 

importance of considering coverage, however, is demonstrated in Figure 4.5. 

Specifically, if all experiments are selected in one region of the domain of applicability, 

the potential inaccuracies in different regions of the domain may remain hidden. As such, 

estimates of discrepancy (both interpolative and extrapolative) may have significant 

residual error as shown by the dashed line for extrapolative prediction in Figure 4.5. By 

selecting experiments that better explore the domain of applicability, the discrepancy 

prediction can be better defined throughout the domain.  

Maximizing PMI requires maximizing the coverage realized when adding a 

potential new design point. Since the total coverage can be computed directly for any 

new potential set of candidate design points, the coverage component in C-EIPS remains 

identical to its use in PMI as defined by Equation (4.1). On the other hand, in order to 

maximize PMI, the discrepancy of the model calibrated with an experimental campaign 
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that includes the potential batch of experiments must be minimized. However, the 

discrepancy estimate over the domain of applicability cannot be directly computed a 

priori to the availability of this new batch of experiments. Therefore, approaches similar 

to those used in Williams et al. (2011) and Atamturktur et al. (2012) that seek to 

minimize the variance of the discrepancy GPM must be utilized. By searching for 

potential design settings with the highest variance in the discrepancy GPM, it is possible 

to accomplish the greatest reduction in the variance of the overall model discrepancy. 

Therefore, the following criterion is considered for C-EIPS: 

  1 2;C cC EIPS x
        (4.6) 

where c  is the coverage as defined in Section 4.4, and   represents a term utilized to 

capture discrepancy in terms of potential reduction in the variance of the discrepancy 

GPM. Herein, for  , a normalized EIPS criterion (described in Williams et al. (2011)) is 

used. In Equation (4.6) 1  and 2  represent user defined weighting coefficients such that 

more or less emphasis can be placed on either component depending on the application of 

interest. 

 As defined in the derivation of PMI, this value must be normalized such that the 

value of   is scaled between 0 and 1. To determine the normalization factor, prior to 

determining the first batch of experiments, the EIPS criterion values are computed for a 

given set of initial experimental data and randomly selected initial candidate point 

settings. This process is repeated a user-selected number of times, and the maximum 

EIPS criterion value is kept over all repeats. As the uncertainty in the discrepancy will 
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reduce as more experiments are added to the analysis, this maximum selected EIPS 

criterion value will serve as the normalization term for all   computations as shown in 

Equation (4.7): 

norm

EIPS

EIPS
    (4.7) 

where EIPS represents the computed EIPS criterion value for the given batch and 

candidate point and EIPSnorm represents the maximum initially selected EIPS criterion 

reference value.  

4.6. VPSC Application 

In this section, the performance of the proposed C-EIPS criterion is assessed 

against two additional criteria, EDIST and EIPS, using the PMI metric. Herein, the C-

EIPS criterion is applied to the climb and glide (C&G) version of the VPSC model 

derived in Lebensohn et al. (2010) for simulated 5182 Aluminum alloy experimental data 

measuring both the stress/strain response and textural evolution under varying strain rates 

and temperatures. A thorough description of the VPSC code is available in Lebensohn et 

al. (1993 and 2010).  

The VPSC code for the application of interest has 12 uncertain parameters, which 

are calibrated against actual physical experiments on the 5182 Aluminum alloy in 

Hegenderfer et al. (2012). The posterior mean values for each of the calibration 

parameters, documented in Hegenderfer et al. (2012), are considered the “true” parameter 

values herein and used to generate the synthetic experimental data. On the other hand, the 

(intentionally) imprecise and inexact computer model that needs to be calibrated is 
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executed with ‘uncertain’ parameter values. The true parameter values used to generate 

the synthetic experiments along with the ranges defined in the calibration are listed in 

Table 4.2, along with the domain of applicability defined by the control parameters, strain 

rate and temperature. The response features of interest are the stress at the maximum 

measured strain of 0.6 and the textural intensities at the 001 and 101 poles.  

A Bayesian inference calibration process is utilized in this study to 

simultaneously calibrate uncertain model parameters and train the discrepancy bias. First, 

the following relations describe the relationship between model predictions and 

observations:  

( ) ( ) ( )obsy x x x     (4.8) 

( ) ( , ) ( )simx y x x      (4.9) 

where x and  represent control and the true values of the calibration parameters 

respectively, and experimental observations, obsy , are a sum of the truth, (x), and 

experimental error, (x). Truth is further defined in Equation 4.9 as the sum of model 

predictions, ( , )simy x  , and model form error, ( )x . 

ˆ( ) ( , ) ( ) ( )simy x y x x x       (4.10) 

It follows in Equation (4.10), that the best estimate of truth, ˆ( )y x , is the sum of 

calibrated model predictions, ( , )simy x  , the estimated discrepancy bias between truth 

and predictions, (x), and experimental error, (x) (Kennedy and O’Hagan, 2001). 

Herein, ( , )simy x   represents a trained GPM to serve as fast-running surrogate for the 
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VPSC predictions from which posterior distributions for the calibration parameters,  , 

are inferred using Bayesian calibration. Similarly, the estimated discrepancy bias, ( )x , 

is simultaneously trained as a GPM to represent the true model incompleteness, ( )x  

(see Higdon et al. (2008) for formulation details). Herein, posterior distributions are 

explored by a Markov chain Monte Carlo (MCMC) algorithm.  

Two GPM emulators, one for model predictions and one for discrepancy, are 

trained using a 300-run LHS design. Uniform prior distributions for the calibration 

parameters are assumed according to the bounds given in Table 2 and 10,000 MCMC 

iterations are used to estimate the posterior distribution of the calibration parameters. For 

this study, model predictions are made using 500 linearly spaced samples of the posterior 

distributions of the calibration parameters.  

A calibration process that exploits the BSD selected experiments should 

successfully retrieve the “true” parameter values (used to generate the synthetic 

experiments) with minimal number of experiments. The performance of the C-EIPS is 

assessed by comparing its final PMI values against those obtained using the two best 

performing criteria from Atamturktur et al. (2012), EIPS and EDIST. As this application 

is multivariate, the functional forms of the EIPS and EDIST criteria are utilized. The 

performance of the C-EIPS criterion is then checked under both absence and presence of 

an artificially imposed model form error.  
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Table 4.2: Calibration Parameters for C&G Model 

 Parameter 
Posterior 

Mean 
Min Max 

Control 

Parameters 

Temperature (C
°
) n/a 200 550 

Strain Rate (s
-1

) n/a 0.001 1.00 

Calibration 

Parameters 

ng 3.7683 2.5000 4.5000 

ag 3.2375 2.5000 4.5000 

bg 3094.6447 2939.9124 3249.3769 

cg -0.0083 -0.0086 -0.0081 

dg 278.6182 264.6873 292.5491 

nc -0.0040 -0.0042 -0.0039 

ac 26529.0665 25202.6132 27855.5198 

bc -0.0119 -0.0122 -0.0115 

cc 1600.4681 1520.4447 1680.4915 

dc -0.0079 -0.0081 -0.0076 

 

4.7. Results and Discussion 

The BSD algorithm is run for the three aforementioned criteria: C-EIPS, EIPS, 

and EDIST for six different specifications of model form error (listed in Table 4.3). For 

the C-EIPS criterion the   values are set to 1 and 2 respectively, and the weight applied 

to each experiment for the coverage computation is set to 25% for each axis in the 

domain of applicability. For each criterion and in each case, two different sets of three 

initial experiments are used to initiate BSD (Table 4.4). The BSD algorithm is executed 

for each case until a total of ten batches with two experiments in each batch are selected. 
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The standard deviation of experimental error is set to 5% of the mean experimental 

observation for each feature. The artificially imposed model form error from Case 4 is 

shown as a representative example in Figure 4.6. The imposed model form error is 

assumed to be in a Gaussian form in both the strain rate ( ) and temperature (T) axis. 

Table 4.3 shows the maximum amplitude, A, and standard deviation, , as a percentage 

of the feature value for each case.  

For each case and after each batch, the model output and discrepancy bias 

predictions are obtained. Predictions are obtained at 81 hold-out experiments which 

uniformly cover the domain of applicability (forming a nine-by-nine grid). Since the 

hold-out experiments represent the truth, this simulated study permits a direct comparison 

of both the model predictions to truth and the predicted discrepancy bias to the true 

model form error. Similar to the forecasting error term introduced in Atamturktur et al. 

(2011), this study seeks to determine not only the estimated discrepancy but also the 

residual differences between that estimate and the true model form error. This residual 

difference in addition to the residual differences between calibrated model predictions 

and truth is referred to herein as absolute error and is described below.  

( ) ( ( ) ( )) ( , )y simx x x y x                                                                                   (4.11) 

( ) ( ) ( )x x x                                                                                                       (4.12) 

( ) ( ) ( )yx x x                                                                                                       (4.13) 

The absolute error defined herein, is influenced by: (i) the residual error between 

the calibrated simulations, ( , )simy x  , and the simulation predictions with the true values 
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of the calibration parameters, ( , ) ( ( ) ( ))simy x x x    , (Equation 4.11); and (ii) the 

residual error between the true model form error, ( )x , and the estimated discrepancy, 

( )x  (Equation 4.12). Therefore, absolute error, (x), is defined in Equation (4.13) as the 

sum of ( )y x  and ( )x . This calculation of absolute error allows for a true assessment 

of both the calibration of model parameters in the model predictions and the training of 

the discrepancy bias, while avoiding potential compensating effects realized when the 

direct sum of the discrepancy and predictions are compared to truth. Although this 

analysis may not be possible in real-world applications, it is necessary in this controlled 

study to properly assess the effectiveness of the proposed BSD criterion.  Insights from 

the results of this simulation-based study will allow an effective and meaningful 

comparison of the proposed BSD criterion, C-EIPS, with the existing established criteria.  

 

Figure 4.6: Model form error for stress calculations as a function of strain rate and temperature (Case 4). 
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Table 4.3: BSD Cases 

Case 

Feature 

Stress Text001 Text101 

T Axis   Axis T Axis   Axis T Axis   Axis 

A 

(%) 

 

(%) 

A 

(%) 

 

(%) 

A 

(%) 

 

(%) 

A 

(%) 

 

(%) 

A 

(%) 

 

(%) 

A 

(%) 

 

(%) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 35 10 0 0 30 10 30 10 

2 65 20 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 40 15 

4 35 10 0 0 0 0 0 0 0 0 0 0 

5 -40 10 -40 18 65 20 0 0 0 0 0 0 

 

Table 4.4: Initial Experimental Settings 

 Experiment Temperature (˚C) Strain-Rate (s
-1

) 

Set 1 

1 277.7 0.216 

2 238.9 0.002 

3 355.4 1.000 

Set 2 

1 316.7 0.022 

2 511.1 0.001 

3 472.2 0.216 

 

For each of the three predicted features (stress at the maximum measured strain of 

0.6 and the textural intensities at the 001 and 101 poles), normalized absolute error is 

computed for the mean model predictions and discrepancy biases. These error 
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calculations are then averaged over all three features to obtain a single value to represent 

the discrepancy for the PMI metric. 

The PMI metric is computed according to Equation (4.5) for each criterion after 

each batch using  values of 3, 0, 0.5, and 0, corresponding to coverage, complexity, 

discrepancy and robustness attributes, respectively (values are chosen within the 

recommended ranges provided in Stull et al. (2011)). Note that these choices of γ values 

put a higher weight on the coverage term than the discrepancy term, which requires high 

coverage in early batches for PMI to be maximized (these results are compared to 

alternative choices of γ values later in this discussion).  

The coverage is computed in each case using the procedure described in Section 

4.4. The resulting PMI values are plotted against the number of batches for each criterion 

in Figure 4.7. For brevity, only the results from Set 1 of the initial experimental settings 

are shown; however, note that the general trends and results shown are consistent with 

the results from Set 2 of the initial experimental settings. With the exception of Case 2, 

Figure 4.7 shows that in each case, the C-EIPS and EDIST criteria outperform the EIPS 

criterion. In Case 2, the C-EIPS and EIPS criteria perform very similarly and both 

outperform the EDIST criterion. Figure 4.7 also shows that the C-EIPS criterion 

outperforms EDIST through the first two batches in all cases and outperforms EDIST 

through the first five batches in a majority of the cases. Furthermore, for Set 1, over the 

first five batches of Cases 0-5 the PMI value for C-EIPS is on average 13.4% higher than 

EIPS and 4.8% higher than EDIST. For the remaining batches (6-10) the C-EIPS 

criterion outperforms the EIPS criterion by an average of 11.2% and is marginally 
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outperformed by EDIST by an average of 1.0%. Similarly for Set 2, the PMI value for C-

EIPS is on average 7.3% higher than EIPS and 9.4% higher than EDIST over the first 

five batches. For the remaining batches (6-10) the C-EIPS criterion outperforms the EIPS 

criterion by an average of 7.1% and is marginally outperformed by EDIST by an average 

of 1.6%. 

To investigate the behavior of the C-EIPS criterion for varying γ values, the 

previous analysis is completed for the case in which the γ values of 1 and 2 are chosen for 

the coverage and discrepancy terms, respectively. Unlike the first set of γ values, this 

case clearly puts more weight on the discrepancy term in the PMI calculation. However, 

the resulting trends are similar to the first analysis. For Set 1, over the first five batches, 

C-EIPS outperforms EDIST and EIPS by an average PMI of 3.3% and 9.2% respectively. 

In the remaining batches, C-EIPS outperforms EIPS by 14.1% while it is outperformed 

by EDIST by 3.2%. Set 2 shows similar results. While the trends among the performance 

of the criteria are similar for both sets of γ values, one noticeable difference is the larger 

residual difference between EDIST and C-EIPS in the later batches. This difference 

surfaces from the increased coverage required to maximize the hyperbolic tangent 

function (see Table 4.1) when a smaller γ value is used, especially when coverage is high; 

therefore, the criterion exhibiting higher coverage in the later batches, EDIST, will have a 

better performance than other criteria when the γ value associated with coverage is low. 

These results indicate that when the selection of future experimental setting is 

most crucial (i.e. when discrepancy is high, coverage is low, and henceforth PMI is low) 

the C-EIPS criterion is the most efficient criterion for improving PMI. Furthermore, the 
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EDIST criterion only marginally outperforms the C-EIPS criterion when PMI is above 

86% and at least four batches (11 experiments in this case) are collected (this trend is 

magnified when lower 1  values are utilized), which in many applications may 

correspond to an already acceptable level of discrepancy and coverage. Nonetheless, if 

very high PMI and coverage values are desired, the EDIST criterion should be considered 

for the latter batches. 
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Figure 4.7: PMI vs. Batch Number for six different discrepancy cases for initial experimental set 1. 

In Figure 4.8, the coverage at each batch is plotted against the computed absolute 

error for Set 1 of the initial experimental settings (similar trends are evident in Set 2). The 
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optimal criterion would result in the highest coverage and lowest absolute error with the 

least possible number of experiments. Figure 4.8 shows that with the exception of Cases 

0 and 1, the C-EIPS results in the lowest final absolute error; the EDIST criterion results 

in the highest final coverage value, however. Each case shows a consistent reduction in 

absolute error and increase in coverage for each criterion (with the exception of Case 3). 

Note that for a majority of the cases, as confirmed in Figure 4.7, the C-EIPS criterion 

provides lower absolute error and higher coverage than the other criteria when coverage 

is relatively low and discrepancy is relatively high; however, in the later stages of the 

validation campaign, as discrepancy becomes small and coverage large, the EDIST 

criterion provides higher coverage than the other criteria, and in some cases, lower 

absolute error.  
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Figure 4.8: Coverage vs. Absolute Error for initial experimental set 1 
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4.8. Conclusions 

In this chapter, a new optimal experiment selection criterion, C-EIPS, to be used 

in the BSD algorithm, is developed, the purpose of which is to efficiently improve the 

PMI of the numerical model. The C-EIPS is a metric that is comprised of both a coverage 

and discrepancy component. The coverage is directly computed for each potential design 

candidate and the discrepancy term is a normalized EIPS criterion, an effective criterion 

in minimizing the variance of the trained discrepancy GPM. The effectiveness of the C-

EIPS is compared against the EIPS and EDIST criteria through a simulated case study 

using the climb and glide version of the VPSC code. The results of six different cases 

with varying degrees of imposed model form error for two different sets of initial 

experimental settings show that the C-EIPS is more effective than other criteria in the 

first half of the batches. This indicates that when optimal selection of experimental 

settings is most crucial for a model validation campaign (when PMI is low), the C-EIPS 

criterion is the most effective criterion. In the latter batches, as the PMI increases 

(approximately 86% or greater) the EDIST criterion performs equally well or marginally 

better than C-EIPS. In future studies, to improve the performance of the C-EIPS criterion 

in later batches, an adaptive weighting methodology can be considered. Additionally, 

further application of the proposed criterion to additional numerical models is necessary 

to provide additional confidence in the BSD methodology and criterion. 
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CHAPTER 5: PRIORITIZATION OF CODE DEVELOPMENT EFFORTS IN 

PARTITIONED ANALYSIS 

5.1. Introduction 

Numerical simulation has become a viable tool for investigating complex physical 

systems and processes that are encountered in many civil engineering disciplines, 

especially when solely experiment-based, empirical studies are infeasible. While 

numerical models offer versatility in simulating various operational conditions or design 

scenarios, they can only provide an approximation of reality, and thus, there is a need to 

check the validity of model solutions against experimental observations. Numerical 

models therefore come with the burden of quantifying the uncertainties and biases in 

model predictions through tasks that fall under the broad concept of model validation.  

To guide the model validation efforts, many frameworks, such as those presented 

in Unal et al. (2011), Jung (2011), Bayarri et al. (2007), and Jiang and Mahadevan 

(2007), and this dissertation have been developed to rigorously and quantitatively assess 

model biases and uncertainties (Figure 5.1). Each of these frameworks demonstrates that 

model validation efforts can be improved through either additional experimentation or 

further code development. If additional experimentation is necessary, the efficient and 

optimal selection of experimental settings can be achieved through algorithms such as 

those presented in Jiang and Mahadevan (2007) and Williams et al. (2011). However, if 

code development is selected as the next step in model validation, the particular 

elemental components of the numerical model requiring more sophisticated modeling of 

physics or engineering principles remains unknown. Naturally, unlimited time and 
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resources would render the prioritization of such code development efforts irrelevant. 

However, given the inevitable limitations in resources, major model deficiencies must be 

pinpointed and code development efforts must be focused to achieve the greatest 

reduction in model uncertainty and bias. The scientific problem of code prioritization has 

been studied to optimize software fault detection (Korel, 2009) and parallel processing of 

finite element computer codes (Zeyao and Lianxiang, 2004); however, quantitative 

approaches for code prioritization of complex numerical models are lacking in the 

published literature. 

Such need becomes especially amplified for complex, heterogonous systems that 

are driven by the interaction of functionally distinct but strongly coupled constituents 

commonly tackled by partitioned analysis procedures. The focus herein is therefore on 

models that are comprised of multiple, isolated, components (or substructures), herein 

referred to as constituents. These constituents interact to form a collective system, herein 

referred to as a coupled model. Such focus is relevant since many numerical models in 

civil and infrastructure engineering are indeed coupled models that are an amalgam of 

multiple constituents or systems of constituents; see for instance, the published literature 

on soil-structure interaction (Provenzano, 2003; Qian and Zhang, 1993), fluid-structure 

interaction (Kutay and Aydilek, 2009; Caracoglia et al., 2009), human-structure 

interaction (Macdonald, 2009; Wang et al., 2011), and the broad field of sub-structuring, 

which essentially focuses on structure-structure interaction. While aiming to improve the 

predictive accuracy of such coupled simulation models, one obvious question arises: to 



135 

 

achieve the greatest reduction in model uncertainty and bias, which constituent must be 

given the highest priority for further code development?  

 

Figure 5.1: Generic simulation model validation framework. 

This chapter presents a code prioritization approach for coupled numerical models 

through the use and extension of a well-established ranking system, in which code 

development efforts are guided to effectively improve the predictive capability of the 

coupled model. A novel, quantitative code prioritization index is proposed and 

demonstrated using a proof-of-concept example, in which the structural system consists 

of a two-story steel frame built in the laboratory with semi-rigid connections. An initial, 

simplified finite element (FE) model is developed for the frame system using beam 

elements, where the beam-to-column connections can be modeled as either fixed or 

pinned connections, neither of which are representative of reality. One approach 

commonly utilized in the literature entails adding fictitious ‘knobs’ (empirical or arbitrary 
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parameters used in place of detailed physics modeling) to represent these inherently semi-

rigid connections. This initial FE model can then be improved by refining the definition 

of these knobs, such as through the development of high-fidelity three-dimensional, 

nonlinear FE models (constituents). Three possible constituent connection models are 

identified to be coupled to the initial simplified frame FE model. These three constituents 

are ranked using the proposed Code Prioritization Index (CPI) that combines knowledge 

level, importance, and error contribution. The frame model is then improved 

incrementally by coupling the three high fidelity connection models in the sequence 

selected by CPI, and the resulting improvement in predictive accuracy of the coupled 

model is quantified.   

The chapter is organized as follows: Section 5.2 overviews the pertinent literature 

on coupling algorithms and ranking procedures that are used as the foundation for the 

code prioritization index described in Section 5.3. Section 5.4 introduces the case study 

application, in which the predictions of the initially inexact FE model of the steel frame 

are compared against experimentally obtained static and dynamic characteristics. In 

Section 5.5, the code prioritization index is deployed to rank model constituents, which 

are developed, verified and validated in Section 5.6. The coupling procedure used to 

integrate the constituent models to the frame model is described in Section 5.7. Section 

5.8 presents a comparison of the initial FE model as well as its improved variants against 

experimental data. Finally in Section 5.9, concluding remarks are made, limitations of the 

proposed approach are summarized and the future direction is overviewed.  
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5.2. Background 

5.2.1. Phenomenon Identification and Ranking Table  

Originally proposed as part of the U.S. Nuclear Reactor Commission’s (NRC) 

Code Scaling, Applicability and Uncertainty (CSAU) evaluation procedure (Boyack et 

al., 1989), the Phenomenon Identification and Ranking Table (PIRT) is currently being 

used by the U.S. NRC at the start of new programs to rank constituent phenomena from 

the perspective of resource allocation (ARRIA, 2003; Olivier and Nowlen, 2008; 

Tregoning et al., 2009). The purpose of PIRT is to effectively gather expert opinion about 

the importance and knowledge level of a set of phenomena (Diamond, 2006). The PIRT 

process, typically completed by a committee of multi-disciplinary experts, provides a 

systematic, structured, and hierarchical methodology to rank phenomena of interest for 

resource allocation problems (Boyack, 2009). The two major scoring components of 

PIRT, (i) the importance of a phenomena and (ii) the level of current knowledge, 

constitute the particular phenomena’s sensitivity or impact on the evaluation metric and 

the current lack of knowledge about the phenomena (and/or parameters associated with 

that phenomena), respectively. Although historically PIRT has mainly been used in the 

nuclear reactor and safety fields, the general and high-level approach to the PIRT process 

makes it highly adaptable to many different areas of science and engineering.  

5.2.2. Partitioned Analysis Procedures  

In partitioned analysis procedures, constituent models are viewed as discrete 

entities with data transferred at the interface between the individual constituent codes 

through coupling algorithms (Rugonyi and Bathe, 2001). This type of analysis most often 
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results in an iterative procedure involving prediction, substitution, and organization 

techniques (Felippa et al, 2001; Larson et al., 2005; Larson, 2009). The advantage of the 

partitioned approach stems from the ability to exploit independent modeling strategies 

developed in different domains (Leiva et al., 2010) in addition to time and space 

discretization that is most appropriate for each constituent (Kassiotis et al., 2011; Joosten 

et al., 2009). This flexibility obtains solutions for highly complex coupled problems 

while making efficient use of well-established codes and expert knowledge in various 

fields (Ibrahimbegovi  et al., 2004). Furthermore, the ability to solve complex problems 

through integrated parallelization on multiple sets of processors can make the partitioned 

approach particularly efficient (Park and Felippa, 1983). 

Coupling is most commonly classified according to the nature of the mutually 

dependent parameters. In weak coupling (also known as loose or explicit coupling), the 

state of the constituents does not mutually interact with each other’s inputs or outputs 

(Matthies and Steindorf, 2002a; Wang et al., 2004). In partitioned analysis, if the state of 

the constituents are affected by model outputs, the coupling interface is referred to as 

strong coupling (also known as tight or implicit coupling) (Matthies and Steindorf, 2003; 

Zhang and Hisada, 2004). In strong coupling, the repeated execution of constituent 

models to achieve self-consistent state solutions becomes necessary (Ramanath, 2011). 

Input parameters in strong coupling problems are defined as either dependent or 

independent. The dependent input parameters are functions of the output of another 

constituent; therefore, the coupling algorithm must evaluate and substitute these 

parameters as input for the appropriate constituent. Finding the correct values for these 
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dependent variables is the main question to be solved in strong coupling problems. 

Various strong coupling algorithms are proposed in the literature (Figure 2a-d): the 

Block-Jacobi method (Matthies et al., 2006; Fernandez and Moubachir, 2005), the Block 

Gauss-Siedel method (Joosten et al., 2009; Matthies et al., 2006), gradient-based Newton-

like methods (Heil, 2004; Matthies and Steindorf, 2002b; Matthies and Steindorf, 2003; 

Fernandez and Moubachir, 2005), and optimization-based methods (Farajpour and 

Atamturktur, 2012). 

Note that in partitioned analysis, quantification, propagation, and mitigation of 

uncertainties in input parameters play an important role for the complete validation of 

coupled models (Avramova and Ivanov, 2010), which is currently an active research area.  

The focus of this chapter however, is exclusively on improved sophistication of 

constituent models to reduce the systematic bias in coupled models predictions; therefore, 

uncertain input parameters are treated as deterministic best estimates. 

 

Figure 5.2: Coupling algorithms: (a) Block-Jacobi, (b) Block Gauss-Seidel, (c) Block Newton, and (d) 

Optimization-based Coupling. 
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5.3. Code Prioritization Index 

The PIRT, overviewed in Section 5.2.1, supplies an inherently qualitative and 

subjective evaluation of a system that is driven by the interaction of coupled constituent 

phenomena. As such, this section details the transformation of PIRT into a quantitative 

approach through the Code Prioritization Index (CPI). Following an approach similar to 

Hemez et al. (2010), CPI is formulated considering the three factors that determine the 

importance a constituent has on the overall predictive accuracy of a coupled simulation: 

(i) the sensitivity of the coupled system behavior to the constituent output, (ii) the 

estimated biases in the constituent output and (iii) the estimated uncertainties in the 

constituent. CPI, therefore, takes the following form: 

i i ii SA EA UACPI     (5.1) 

where iSA , iEA , iUA
 

respectively represent the importance (Sensitivity Analysis), 

estimated error (Error Analysis), and current level of knowledge (Uncertainty Analysis) 

for a given constituent i, in an appropriately chosen norm,
 

.  

Sensitivity Analysis: The SA term is defined as the measure of the variability in 

the model output due to unit variability in a given constituent. This term can be quantified 

using various established screening, local or global sensitivity analysis techniques; 

however, for complex problems that are nonlinear in nature and that involve a large 

number of input parameters of varying uncertainty, global sensitivity analysis techniques 

should be preferred (Cukier et al. 1973). The global sensitivity analysis inherently takes 

the range and shape of the probability distributions of input parameters into account. 

Moreover, in global sensitivity analysis techniques, such as the analysis of variance 
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(ANOVA) (Moaveni et al., (2009); Frey and Patil, 2002), the sensitivity estimates for 

each parameter are computed in the presence of uncertainty of all other factors of interest; 

thus taking the possible correlations and dependencies between input parameters into 

consideration. 

Error Analysis: The EA term is a representative estimate of a constituent’s error 

contribution to the total error of the system in comparison to the experimental evidence. 

This term can be quantified using various metrics including model form error estimates 

for separate effect experiments as defined in Higdon et al. (2008), Oberkampf and Barone 

(2006), Rebba et al. (2006) and Atamturktur et al. (2011).  

In the present study, for a given constituent, EA is defined as a measure of the 

constituent ‘correction’ necessary such that error in the coupled model predictions is 

minimized (given a set of uncertainty attributed to other constituents) as shown in 

Equations (5.2)-(5.3):  

{ : , }( ) t
j jjP P P     (5.2) 

 0 0

1

1
min

n

j

j

P PEA P
n 

   (5.3) 

where n is the number of experiments; 0P represents the nominal value for the fictitious 

knob; jP is the selected parameter value for the constituent at the j
th
 experiment; ( , )j P   

is the discrepancy of the constituent at the j
th

 experiment defined as a function of 

collective parameters of the constituents, and;  is the uncertainty assigned to all other 
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uncertain parameters.
t
j  is the discrepancy threshold value at the j

th
 experiment for the 

constituent of interest, which is derived in Equations (5.4)-(5.7). 

An absolute minimum discrepancy exists if Equations (5.4)-(5.5) given below are 

both satisfied.  

( ) ( )

k k r
j j

k k r
j jP P
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j jP P

 


 






 


 (5.5) 

where   is the limiting slope as indicated in Figure 5.3 and r represents the number of 

runs over which the slope is computed (see Figure 5.3); k is the index number of 

computer runs corresponding to the minimum discrepancy over all simulation runs, and 

k
j is the minimum computed discrepancy across all simulation runs. In this case, the 

threshold value for discrepancy is selected according to Equation (5.6); otherwise, a 

converged minimum discrepancy exists and the threshold value for discrepancy is 

calculated according to Equation (5.7); 

t k
j j   (5.6) 

 t kS k
j jj j      (5.7) 

where  represents a percentage of the total allowable reduction discrepancy to limit 

excessive changes in the nominal value of the knob (see Figure 5.3) and 
S
j  represents 

the maximum computed discrepancy across all simulation runs.  
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Figure 5.3: Computation of jP : Absolute Minimum Discrepancy: Equation (5.6) (Top) and Converged 

Minimum Discrepancy: Equation (5.7) (Bottom). 

The EA term in Equation (5.3) seeks to determine the necessary deviation from 

the initial parameter value over all available experiments such that the relative difference 

between model predictions and experimental results (referred to herein as discrepancy) is 

minimized. To achieve this minimization, the numerical model parameters of interest are 

sampled within a plausible range defined for parameter of interest, P , and a set 

percentage variability, , for all other parameters, thus accounting for potential cross-

correlations between parameters through the  variability term. Computer runs can be 
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generated using various sampling designs that thoroughly explore possible values for P  

in an efficient manner. The EA value realized from Equation (5.3) is represented as a 

percentage of the initially assumed parameter value, 0P . Therefore, higher EA values 

indicate a greater estimated error for the parameter of interest.
 

The values of r, γ and β (from Equations (5.4)-(5.7)) are assigned according to the 

specific application of interest. If discrepancy throughout the investigated domain is 

constant (the calculated slope is below the limiting value of γ) or if the discrepancy 

behavior is divergent for any specific experiment j, then a meaningful and confident 

evaluation of jP  is difficult. Thus, if the given experiment is not sensitive to parameter 

P , a selection of jP  would be unfounded; therefore, the contribution from such 

experiments is excluded from the analysis.  

Note that if model calibration of constituents is completed prior to the utilization 

of the CPI metric, the calibrated parameter values for the parameters would be used as the 

initial values for the EA analysis. When such calibration activities are not available a 

priori, the proposed method gives the best possible guidance by directing the focus of the 

decision makers and code developers to the constituent that is responsible for the 

inaccuracies of the coupled model prediction. The inaccuracies in the selected constituent 

may originate from either the incompleteness of the modeled physics or engineering 

principles or the imprecision in the model parameters. 

Uncertainty Analysis: The UA term can be quantified for a particular model 

constituent according to experimental test results or qualitative expert opinion. Herein, 

however, the current level of knowledge, i.e. uncertainty analysis, for each constituent 
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will be treated as a binary number, where zero represents a phenomenon for which the 

knowledge level is mature and where one represents a phenomenon that is not yet well 

known. In effect, as recommended in the PIRT construction process, the UA term 

restricts code prioritization efforts only to poorly or partially understood phenomena.  

Therefore, the CPI term is maximized when SA, EA, and UA are all high. Herein, 

a type of norm for each of the CPI terms is chosen such that each term is scaled to a 

maximum of one over all possible constituents; therefore, CPI values are, without loss of 

generality, bounded between zero and one, and higher CPI terms are considered as higher 

priority. 

5.4. Overview of the Case Study Application  

5.4.1. Case Study Structure: Laboratory Specimen   

The prototype structure is a two story single bay steel frame shown in Figure 5.4, 

in which all members of the frame are made of mild steel. The connections are secured 

with two bolts on each side, and all bolts are torqued to 9.0 Newton meters.  The 

geometric dimensions of the test frame are given in Table 5.1.  
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Table 5.1: Geometric properties of the laboratory frame structure. 

Steel Frame Member Geometric Properties 

Member Length (cm) 
Cross-Section 

Type 

Cross-Section 

Dimensions (cm) 

Columns 63.5 Angle 5.08 x 5.08 x 0.32 

Beam 124.46 Flat 5.08 x 0.32 

Base Connecting 

Tabs 
5.08 Angle 5.08 x 5.08 x 0.32 

Column Base Plates 1.27 Flat 15.24 x 15.24 

Frame Base 1.27 Flat 121.92 x 243.84 

Bolt Properties 

Bolt Type Bolt Diameter (cm) 

Grade 5 0.66 cm 

 

 

Figure 5.4: Frame structure built in the laboratory (Left) and frame connections (Right): Top connection 

(Top), Middle connection (Middle), Base connection (Bottom). 
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5.4.2. Initial Numerical Model 

The baseline finite element (FE) model for the frame (henceforth referred to as 

Model #1) is created in ANSYS v.13.0 using BEAM188 elements as shown in Figure 5.5. 

These are two-noded six-degree-of-freedom linear elements that consider the cross-

section and orientation of the member (ANSYS, 2011). An isotropic linear elastic 

constitutive model is used with Young’s modulus specified as 200 GPa (29,000 ksi) and 

Poisson’s ratio as 0.33, which are typical values for mild structural steel. Similar to the 

approach used by Zapico et al. (2008), geometric offsets are considered when modeling 

the beam-to-column connections (also known as modeling to centroid). The two-bolt 

connections of the frame are expected to exhibit semi-rigid behavior with unknown 

stiffness characteristics.  

In the literature, such semi-rigid connections are often approximated as either 

fixed or pinned depending upon the number of bolts, the bolt pattern, and expert 

judgment (Lee and Moon, 2002; Galv o et al., 2010). Therefore, an initial numerical 

model (Model #1) is built with similar approximations commonly implemented in 

practice. For Model #1, to determine a suitable connection type, either fixed or pinned 

connection, model predictions are compared against experimentally obtained static and 

dynamic response. In the fixed model, all connections are assumed to be fixed. However, 

for stability, in the pinned model the rotational degrees of freedom at the base 

connections as well as the top and middle level torsional degrees of freedom are fixed, 

while all remaining rotational degrees of freedom at the top and middle levels are pinned. 

After the selection of a suitable connection type, Model #1 will ultimately be used as a 
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reference while determining the improvement gained in predictive accuracy by refining 

the way in which beam-to-column connections are represented in the FE model.  

 

Figure 5.5: Baseline FE model (Model #1) for the frame structure. 

5.4.3. Experimental Campaign  

Static Testing: Static testing is conducted using a cable and pulley system 

designed to apply a point load in the horizontal direction as shown in Figure 5.6. Federal 

C8IS Dial Deflection indicators are positioned at the locations shown in Figure 5.6 to 

measure horizontal deflection. Six separate static tests are conducted using point loads 

with increased amplitude and applied at a different location on the structure as shown in 

Figure 5.6, while displacements are measured at four points (L1-L4) along a single 

column for Tests 1-3 and two points (L5-L6) on the beams for Tests 4-6. The 

displacement results for the static tests, shown in Figure 5.7, are compared to both the 

pinned and fixed connection FE models in Table 5.2. The static tests are completed at 
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force levels where the material has not yielded, i.e. it is still in the elastic regime as is 

demonstrated in the linear response shown in Figure 5.7. 

 

 

Figure 5.6: Static experiment set-up: Cable and pulley system (Left), Measurement locations (Right). 

  

 

Figure 5.7: Static test comparison between two alternative FE models (pinned connections and fixed 

connections) and experimental data. 
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Modal Testing: Model 4507B Brüel and Kjær (B&K) unidirectional 

accelerometers are distributed to 88 locations, 6 inches apart throughout all beams and 

columns (see Figure 5.4), and a Model 8207 B&K modal impact hammer is used to 

excite the structure. Each hammer strike is repeated five times to reduce degrading effects 

of noise through averaging. Using Reflex software from B&K, natural frequencies (see 

Table 5.3) and mode shapes (see Figure 5.8) are extracted from the experimental data. 

The rational fraction polynomial parameter estimation technique (Richardson and 

Formenti, 1982) is implemented to generate stability diagrams for mode selection. The 

first three global modes of the structure are identified as shown in Figure 5.8 and listed in 

Table 5.3. As a means of verifying the orthagonality of the experimentally collected 

modes, the modal assurance criterion (MAC) (Allemang, 2003) is calculated (Table 4). 

The low off-diagonal terms in Table 5.4 demonstrate the linear independence of each of 

the experimentally determined modes. 

 

Figure 5.8: Mode shapes: Experimental testing (Top), and FE model predictions (Bottom). 

Mode 1 Mode 2 Mode 3 
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5.4.4. Test-Analysis Correlation 

Tables 5.2 and 5.3 show that the baseline model with fixed connections 

underestimates the deformations and overestimates the natural frequencies, while the 

baseline model with pinned connections overestimates the deformations and 

underestimates the natural frequencies. As seen, neither the fixed nor the pinned 

connections are suitable to represent the connections of the frame of interest. However, 

the FE model with fixed connections more accurately predicts the static tests with a 

46.1% lower average error than the FE model with pinned connections. Also, the FE 

model with fixed connections predicts the values of the natural frequencies in the correct 

order of modes, while pin connections yield an incorrect mode sequence.  

Although the FE model with fixed connections yields a closer agreement to 

experiments and has been selected as the connection type to be used in Model #1, it still 

has an approximately 20% average error for natural frequencies and 45% average error 

over all static tests, necessitating further improvement of the model sophistication. 

Table 5.2: Comparison of baseline models and experimental data for static tests. 

Test 1 2 3 4 5 6 Mean 

Fixed FE Average 

Error (%) 
44.4 84.8 55.6 46.8 24.3 18.9 45.8 

 
Pinned FE 

Average Error 

(%) 

32.8 196.5 76.7 18.8 100.5 126.3 91.9 
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Table 5.3: Natural frequencies from experimental testing and baseline models. 

Mode Description 

Test: 

Frequency 
(Hz) 

Fixed FE 

Frequency 
(Hz) 

Error (%) 

Pinned FE 

Frequency 
(Hz) 

Error (%) 

1 Sway  23.09 27.97 21.13 16.30 29.41 

2 Bending 29.58 33.21 12.27 14.01 52.64 

3 Torsion 37.04 47.56 28.40 25.96 29.91 

 

Table 5.4: MAC of experimentally collected modes. 

Mode 1 2 3 

1 1 0.003 0.002 

2 0.003 1 0.001 

3 0.002 0.001 1 

 

5.5. Identification and Prioritization of Constituents  

The structure of interest is comprised of two main constituents: the steel members 

and the connections. Though the material behavior of mild steel is widely studied, the 

bolted semi-rigid steel connections between beam and column are highly uncertain and 

are of great interest in the design and analysis communities. Lee and Moon (2002) and 

Eurocode 3 (1993) provide provisions for approximate analysis of semi-rigid steel 

connections; however, many assumptions are made while establishing these provisions, 

such as small deformation in the connection, negligible deformation in the beam and 

column compared to the deformation in the connection, and negligible slip deformation.  

Several investigators acknowledged and demonstrated that traditional 

assumptions of connections being either fixed or pinned can lead to significant errors in 

the analysis of static (Lee and Moon, 2002) and dynamic response (da Silva et al., 2008; 
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Galv o et al., 2010; T rker et al., 2009), design and sizing of members (Lee and Moon, 

2002) as well as design against progressive collapse (Liu et al., 2010). The findings 

obtained in Section 5.4 of this study also support these earlier studies that neither the 

fixed nor the pinned connections are acceptable to represent the two-bolt connection used 

in the steel frame studied herein. Therefore, while demonstrating the application of the 

proposed CPI metric, the present study demonstrates mitigation of potential errors 

originating from the incomplete and inexact modeling of the semi-rigid steel connections 

through a rigorous modeling approach, where connections are parameterized and treated 

as constituents.  

Similar to da Silva et al. (2008), three linear, rotational springs are added at each 

connection of the initial FE model (Model #1), which are used to capture rotations of the 

connection in all three directions. The springs are modeled using linear, COMBIN14 

(spring-damper) elements (ANSYS, 2011). As the spring constants tend to zero, the 

connection behaves as a pin, and as the spring constants tend to infinite the connection 

becomes fixed. The stiffness of the bolted connections utilized in the frame structure 

however, lie somewhere between these two extremes with unknown spring constants. 

Also note that though this linear representation of semi-rigid springs supplies an 

improvement beyond a fixed or pinned connection, it fails to incorporate nonlinear 

effects.  

The FE model can be further improved by developing three-dimensional, 

nonlinear FE models of the connections that account for friction between the members 

and pretension in the bolts (as it will be discussed in Section 5.6). These high-fidelity, 
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nonlinear FE models of connections must be developed separately for top, middle and 

base connection; however, the limitations on project resources may inhibit model 

development of all three connections. Thus, to efficiently utilize the available resources, 

one must prioritize among these three possible constituent models to achieve the highest 

improvement in predictive capability. Such prioritization is achieved herein using the 

linear FE models of the constituent along with the CPI metric introduced in Section 5.3. 

The CPI requires a sensitivity analysis, and error estimate analysis, which are discussed 

in the following sections.  

5.5.1. Sensitivity Analysis 

Herein, a global effect sensitivity analysis, ANOVA, is utilized. The selection of 

the plausible ranges, within which spring constants may vary, is critical in ANOVA; 

therefore, plausible ranges are determined by varying individual spring constants from 

free to an almost fixed condition one at a time, while the remaining spring constants are 

left constant at their nominal values. See for instance Figure 5.9, where the resulting 

natural frequencies are plotted as the strong axis bending stiffness constants for top level 

beams is varied. As one spring constant is varied, the natural frequencies vary between an 

upper bound (corresponding to a fixed connection) and a lower bound (corresponding to 

a pinned connection) in an asymptotic manner. Appropriate ranges for each spring 

constant can then be selected to ensure a semi-rigid behavior. As demonstrated in Figure 

5.9, for the strong axis bending stiffness constant at the top level, the range is chosen to 

be 1.1x10
1
 –1.1x10

6 
newton meters as indicated with dashed lines.  
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Figure 5.9: Sensitivity of natural frequencies to strong axis bending stiffness constant at top the level. 

After selecting the ranges for each stiffness constant, the sensitivities of natural 

frequencies and lateral displacements to the spring constants are analyzed through 

ANOVA. As seen in Figure 5.9, the analytically computed modes can swap their order 

when the stiffness constant is varied. For proper implementation of ANOVA on natural 

frequencies, a mode-pairing algorithm is developed, which operates on the spatial 

properties of each mode to properly reorder swapped modes according to a reference 

mode sequence. Table 5.5 lists the relative contribution of the stiffness constants to the 

overall variability in the predicted features, where the normalized sensitivities are 

summed for each connection level. Results indicate that the most sensitive constituents to 

model output are the middle, base, and top connections, respectively. The torsional 

stiffness constants are insensitive to the predicted features for all connection levels and 

thus, are not included in further discussion and are held at nominal (i.e. fixed) values. 
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Table 5.5: Sensitivity analysis with normalized R2 (%) values for each parameter.  

 
  Natural Frequency 

Max Horizontal 

Displacement 
  

 

 
Parameter Number and 

Description of Stiffness 

Mode 

1 

Mode 

2 

Mode 

3 

 
Beam

Top 

 
Beam

Mid 

 
Coln. 

 Total 

B
as

e 1 Rotational (strong axis) 47.7 36.9 65.3 18.1 7.3 37.2 212.3 
212.3 

2 Torsional  0.00 0.00 0.00 0.00 0.00 0.00 0.01 

M
id

d
le

 3 Rotational (strong axis) 33.2 51.8 23.1 17.1 5.9 35.2 166.3 

251.6 4 Rotational (weak axis) 2.2 0.02 0.17 0.08 82.8 0.00 85.3 

5 Torsional 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T
o

p
 

6 Rotational (strong axis) 12.0 11.1 11.2 13.4 4.0 27.6 79.2 

136.1 7 Rotational (weak axis) 4.9 0.30 0.32 51.3 0.02 0.00 56.9 

8 Torsional  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

5.5.2. Error Analysis 

The parameter of interest, P (see Table 5.5 for parameter numbers and 

corresponding constituents), is allowed to vary from 1.1x10
1
 -1.1x10

10
 newton meters;  

is chosen to be equal to 10%, γ is set to 0.5, n is 4, and  is chosen to be equal to 20%. 

One hundred scenarios are generated through Latin-Hypercube design (LHS). Figure 5.10 

plots discrepancy as a function of spring constant for Parameter 1 for Static Tests 1 and 3, 

where the discrepancy is computed as a percentage of the experimental value for each 

experiment. The plot shows the initial parameter value and algorithm chosen parameter 

values for each experiment respectively.  
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Figure 5.10: Discrepancy vs. Parameter 1 and selected parameter values for Static Tests 1 and 3. 

In Figure 5.10, 0P  represents the nominal value for the knob, which in this case is 

the stiffness constant of the base connection; and 1P  and 3P  represent the selected values, 

jP ,  that minimize the discrepancy of Model #1 against Static Tests 1 and 3, respectively, 

according to Equations (5.4)-(5.7). 1P  shows a case where an absolute minimum 

discrepancy exists. Here, the selected parameter value, 1P , is the parameter value at the 

computed minimum discrepancy.  3P  shows a case, where the discrepancy converges to a 

minimum. Here, the selected parameter value, 3P , is selected with a  value of 20%, i.e. 

at the point where the discrepancy is 20% of the total possible reduction in discrepancy.  

Table 5.6 lists the EA term computed as a percentage of the nominal value, 0P , 

according to Equations (5.2)-(5.3). For this application the discrepancy tends to vary on a 

logarithmic scale for parameter values. Therefore, the percentages computed in Equation 
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(5.3) are modified to represent log based percentages. In Table 5.5, the EA terms are 

averaged for each connection. Results indicate that the largest error is associated with the 

top, middle, and base connections, respectively. 

Table 5.6: Error analysis of the three constituent models. 

Constituent Description of Stiffness EA(%) Average Constituent EA 

Base Rotational (strong axis) 49.8 49.8 

Middle 
Rotational (strong axis) 51.2 

59.1 
Rotational (weak axis) 66.9 

Top 
Rotational (strong axis) 54.0 

61.9 
Rotational (weak axis) 69.8 

 

5.5.3. CPI Calculation  

The CPI values of the three connections models, calculated according to Equation 

(5.1), are listed in Table 5.7. Since the knowledge level for each connection stiffness is 

low (i.e. constituents are highly uncertain), the UA terms for each connection are set to 

one. The SA and EA terms are normalized such that the highest value in each respective 

category is one. This normalization bounds all three terms in the CPI calculation between 

zero and one.  

Table 5.7: CPI for the three constituent models. 

Constituent ||SA|| ||EA|| ||UA|| CPI 

Base Connection 0.84 0.80 1.00 0.68 

Middle Connection 1.00 0.95 1.00 0.95 

Top Connection 0.54 1.00 1.00 0.54 
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Table 5.7 prioritizes the three constituents in the following order of importance: 

middle, base, and top suggesting that the available resources should be devoted to obtain 

an improved representation of the middle connection first and the base connection next. 

Accordingly, three FE models with gradually improved representation of connections are 

developed in three successive phases: first, the initial frame FE model (Model #1) is 

coupled with only the middle connection model resulting in Model #2. Second, the base 

connection model is added to Model #2 to obtain Model #3. Finally, Model #4 is 

constructed by adding the top connection model to Model #3.  

5.6. Development, Verification, and Validation of Constituents  

5.6.1. Constituent Model Development 

The connection models are developed as three-dimensional non-linear FE models 

in ANSYS v. 13.0. As suggested by Kim et al. (2007), Bursi and Jaspart (1997a, 1997b, 

and 1998), and Selamet and Garlock (2010), both the members of the connections and the 

bolts are modeled using three-dimensional solid finite elements (as opposed to simplified 

bolt models such as the coupled bolt model, spider bolt model, and no-bolt models as 

discussed in Kim et al. (2007)). SOLID187, a ten-noded tetrahedral element with 

quadratic displacement interpolation is used to model steel members and bolts. Effects of 

friction, represented using contact and target elements available in ANSYS v.13.0, 

CONTA174 and TARGET170, are modeled at all interfaces including: beam to column, 

bolt to column/beam, and bolt hole to bolt shank. The coefficient of friction is assumed 

for a Class A surface and set to 0.35 (AISC, 2008). The mesh size for all elements is 

selected through a mesh refinement study to assure that the numerical discretization is 



160 

 

sufficiently fine to properly capture the deformation and stress concentration in critical 

regions.  Figure 5.11 presents the FE models for all three connections. 

 

Figure 5.11: FE connection models: Top (Left), Middle (Middle), and Base (Right). 

As suggested by Citipitioglu et al. (2002), Kim et al. (2007) and Pirmoz et al. 

(2008, 2010), pretensioning of the bolts is included in the model. However, as opposed to 

using temperature or initial displacement methods commonly found in the literature, 

pretension elements available in ANSYS v.13.0, PRETS179, that directly apply a 

pretensioning force to the bolt volumes are implemented. This pretensioning force is 

determined by converting the torque applied on the bolts using Equation (5.8) (Fastenal, 

2005).  

PT

T
F

Kd
  (5.8) 

where FPT is the pretensioning force, T is the applied torque, K is the dimensionless nut 

factor, and d is the nominal bolt diameter. The recommended K for zinc-plated fasteners 

is 0.17-0.22 (Fastenal, 2005).  

The beam and column material model is defined as a multilinear isotropic 

hardening model using the von Mises yield criterion and the typical stress-strain 
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relationship shown in Figure 5.12 (Hibbeler, 2008). The bolts are modeled similarly 

except a bilinear model is utilized (Fastenal, 2005) (Figure 5.12).  

 

Figure 5.12: Material models for bolts and steel frame members. 

5.6.2. Constituent Model Test-Analysis Correlations 

To ensure that the constituent FE models exhibit sufficient fidelity, the model 

predictions are checked against experimental measurements. Since the nonlinear features 

of the contact elements and pretensioning effects are not considered in modal analysis of 

the FE models (ANSYS only considers initial contact state), the clamping effects of the 

pretensioning are modeled by gluing a conical section formed through the beam and 

column between the bolt heads and nuts as described in Kim et al. (2007). Modal analysis 

is also conducted with scaled laboratory models of the connections supported with fixed 

boundaries (Figure 5.13), results of which are summarized in Figures 5.14-5.15 and Table 

5.8.   
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Figure 5.13: Connection test specimens: Top connection (Left), Middle connection (Middle) and Base 

connection (Right). 

The errors between the constituent FE model predictions and the experimental 

measurements of the first three natural frequencies range from a 10.9% average error for 

the middle connection to an average error of less than 7.8% for the top connection (Table 

5.8). To validate the accuracy of the mode shapes predicted by the FE model, the MAC 

(used in Section 5.4.3 to check the orthagonality of the experimental modes) is calculated 

for each connection. In this case, the experimental mode shape vectors are calculated 

against the FE predicted mode shape vectors. The results shown in Tables 5.9-

5.11demonstrate that with an average diagonal term value of 0.67, 0.80, and 0.88 for the 

base, middle, and top connection modes respectively, the FE model predicted mode shape 

vectors are highly correlated to the experimental mode shape vectors and are an accurate 

representation of the experimentally collected modes. The accuracy shown in the 

dynamic testing provides sufficient evidence for the proper modeling of mass and 

stiffness distribution of the connections. Therefore, with an average error of less than 9% 

for the natural frequencies and an average diagonal MAC value of 0.77 across all modes 

of all models, the connection models are determined to be useful for making improved 

estimates of connection stiffness.  
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Figure 5.14: Mode Shapes (Experimental on left, FE on right): Top connection (a), Middle connection (b). 
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Figure 5.15: Mode Shapes (Experimental on left, FE on right): Base connection. 

Table 5.8: Connection test-analysis correlation for connection models. 

 
Mode Freqexp (Hz) Freqsim (Hz) % Error 

B
as

e 

1 473.4 425.6 10.1 

2 2043.6 2003.0 2.0 

3 2636.1 2295.4 12.9 

4 3005.4 2744.7 8.7 

M
id

d
le

 1 142.9 126.6 11.4 

2 157.0 135.1 13.9 

3 685.6 635.6 7.3 

T
o

p
 1 79.7 75.1 5.8 

2 143.3 124.68 13.0 

3 459.0 438.4 4.5 

 

 

 

 

Mode 1 Mode 2 

Mode 3 Mode 4 
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Table 5.9: MAC analysis for Base connection. 

  FE Model 

 Mode 1 2 3 4 

Experiment 

1 0.576 0.000 0.008 0.000 

2 0.008 0.783 0.010 0.019 

3 0.017 0.037 0.576 0.000 

4 0.000 0.054 0.000 0.764 

 

Table 5.10: MAC analysis for Middle connection. 

  FE Model 

 Mode 1 2 3 

Experiment 

1 0.870 0.004 0.030 

2 0.000 0.662 0.011 
3 0.005 0.000 0.880 

 

Table 5.11: MAC analysis for Top connection. 

  FE Model 

 Mode 1 2 3 

Experiment 

1 0.985 0.000 0.007 

2 0.045 0.908 0.002 

3 0.029 0.004 0.750 

 

5.7. Coupling of Constituent Models  

The coupling of the constituent connection models with the frame model is 

completed in two phases: the first step is an initial investment in computing the moment-

rotation curves of the connections, and second step is coupling the trained moment-

rotation curves with the frame model. The goal of the first phase is to determine the 

appropriate stiffness of the connections over a range of possible loading conditions; thus, 

in this phase, the deformations of columns in the frame must be taken into account. 
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Determining the connection stiffness solely from the connection FE model with assumed 

boundary conditions would be invalid (note that this approach in literature, would be 

considered as weak (or loose) coupling). Therefore, a strong (or tight) coupling approach 

is taken and implemented using a Block Gauss-Siedel algorithm (Figure 5.2).   

As shown in Figure 5.16, the moment-rotation curves are developed by first 

inducing a global loading condition on the frame FE model at the midpoint of the beam 

for top and middle constituents and 1/8 point from the bottom of the column for the base 

constituent. The force, gF , is applied in the direction that critically affects the stiffness of 

each specific connection. The rotational stiffness constants are held at nominal (i.e. fixed) 

values, 0P . Next, displacements and rotations at the points where the connection models 

are cut-off, gBC , and the moment at the connection, gM , are calculated by the frame FE 

model and passed to the coupling interface. The displacements and rotations at the cut-off 

points of the beams and columns are entered as inputs for the connection FE model, 

which in turn is executed to calculate the corresponding rotation at the connection, g . 

Similar to approaches by Bursi and Jaspart (1997a; 1997b) and Pirmoz et al. (2008), the 

rotation of the connection is computed by taking the relative difference between the 

rotation of the column and the rotation of the beam as expressed in Equation (5.9).  

beam columng     (5.9) 

The calculated rotation is then passed to the interface. The stiffness constant,
h
gP , at 

iteration h for load gF
 
is computed from the ratio of the computed moment to rotation, 

and then compared to the stiffness constant computed in the previous iteration, h-1. The 
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algorithm is terminated if the change in the computed stiffness constant between the last 

two iterations is less than a set threshold value (set to be 0.005 herein). Otherwise, the 

new stiffness constant is passed back to the frame model and the process is iterated until 

convergence is achieved.  

 

Figure 5.16: Coupled process: (a) schematic representation, and (b) numerical algorithm.  

The above-described process is repeated for increasing loads, gF , to develop the 

moment-rotation curves, which are shown in Figure 5.17 for all rotational springs of 

interest. Note that for rotations less than 0.00017 radians, the moment/rotation data points 

for both the Top and Middle connection vertical bending (Top-Rxz and Middle-Rxz) are 
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inconsistent with the linear portion of the respective moment-rotation curves potentially 

due to the numerical round-off errors. Thus, these data points are removed from the 

curves for the analysis that follows. 

 

Figure 5.17: Moment-rotation curves.   

In the second phase of the coupling process, the moment-rotation curves are 

directly incorporated into the frame FE model as nonlinear moment-rotation relationships 

using the nonlinear spring elements COMBIN39 available in ANSYS v.13.0.  

The coupled solution is obtained for three variants of the frame FE model with 

increasing sophistication (Model #2-Model #4). The predictions of these models along 

with the initial FE model (Model #1) are compared against the static and modal 

experimental data as discussed in the next section.  

5.8. Results and Validation 

All four variants of FE models are compared directly to modal and static 

experimental data. The disagreement between model predictions and experiments 

(referred to herein as discrepancy) is determined for each test as a percentage of the 
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experimental measurements (Tables 5.12 and 5.13). Figure 5.18 compares the force-

displacement plots of Static Test 1 for Model #4 and Model #1 to experimental data.  

 

Figure 5.18: Static test comparison: Model #1 vs. Model #4.  

The computed discrepancy for each of the four models is compared for modal and 

static tests as shown in Tables 5.12 and 5.13. As the physics sophistication of the model 

increases from Model #1 to Model #4, the discrepancy between model predictions and 

experimental results decrease for nearly all predicted features, with the exception of 

Mode 2, which is underestimated by Model #4 approximately the same amount it is 

overestimated by Model #1. 

Table 5.12: Comparison of natural frequencies (Model #1-Model #4). 

Mode 
Exp. 
(Hz) 

Model 
#1 (Hz) 

Disc. 
(%) 

Model 
#2 (Hz) 

Disc. 
(%) 

Model 
#3 (Hz) 

Disc. 
(%) 

Model 
#4 (Hz) 

Disc. 
(%) 

1 23.09 27.97 21.13 26.50 14.78 26.26 13.73 25.30 9.56 

2 29.58 33.21 12.27 28.55 3.48 28.38 4.06 27.11 8.35 

3 37.04 47.56 28.40 42.70 15.29 41.65 12.45 38.47 3.86 
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Likewise, for the static case, the discrepancy between model predictions and 

experiments in general decreases as the model sophistication is increased. For instance, 

the discrepancy is significantly reduced by approximately 75% as the model 

sophistication is increased from Model #1 to Model #4 for Test 1. On average over all six 

static tests, Model #4 yields an agreement with a 29.59% discrepancy.  

Table 5.13: Comparison of static displacements (Model #1-Model #4). 

Test 
Model #1: Mean 

Disc.(%) 

Model #2: Mean 

Disc.(%) 

Model #3: Mean 

Disc.(%) 

Model #4: Mean 

Disc.(%) 

1 44.42 33.12 18.91 11.08 

2 84.83 89.00 79.68 73.73 

3 55.60 52.57 48.74 46.29 

4 46.75 37.35 25.37 18.05 

5 24.26 19.39 17.42 16.43 

6 18.93 13.98 12.75 11.96 

 

Recall that in Section 5.3, the three connections models are ranked using the CPI 

metric to determine the order to prioritize development of the connection FE models. In 

Tables 5.12 and 5.13, the gain in predictive accuracy on average is 6.41% from Model #1 

to Model #2, 5.11% from Model #2 to Model #3, and 3.74% from Model #3 to Model #4 

(Figure 5.19). These results indicating that the most information is gained by adding the 

middle connection model, then the bottom connection, and finally the top connection, are 

consistent with the code prioritization findings from CPI in Section 5.5.3. 

To further validate the effectiveness of the CPI, all possible sequences of model 

development are investigated. Table 5.14 shows the average reduction in discrepancy for 

each incremental model development over all possible cases for the order, in which 
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constituents (B–bottom connection, M–middle connection, and T–top connection) are 

improved through the coupling of a nonlinear FE connection model. The CPI selected 

path (highlighted in Table 5.14) is the only path that yields a monotonic increase in 

model accuracy; and thus, this path most efficiently improves the FE model. Therefore, in 

this application, the model accuracy is shown to be improved as physics sophistication is 

increased, and a prioritization effort (CPI) is demonstrated to be effective in prioritizing 

constituents of a coupled model.  

 

Figure 5.19: Relative change in discrepancy with respect to physics sophistication. 
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Table 5.14: Comparison of discrepancy reduction for varying model increment cases. 

 Average Reduction in Mean Discrepancy (%) 

Case Constituent Order Model #1 to Model #2 Model #2 to Model #3 Model #3 to Model #4 

M-B-T 6.41 5.11 3.74 

M-T-B 6.41 3.08 5.77 

B-M-T 3.47 8.04 3.74 

B-T-M 3.47 3.27 8.51 

T-M-B 3.05 6.44 5.77 

T-B-M 3.05 3.70 8.51 

5.9. Concluding Remarks 

Complex physical phenomena are amenable to decomposition in various forms 

depending upon the specific analysis or design objectives. Such decomposition into 

constituents can be steered by considerations regarding the physical, functional, or 

computational nature of the problem. While the inherent inaccuracy of the numerical 

models used for simulations of complex coupled systems is acknowledged, the biases and 

uncertainties in model predictions can be reduced through further improvement of the 

simulation models, and rigorous verification, validation and uncertainty quantification 

activities. There exists a need to prioritize these improvements such that resources are 

allocated to the model constituents that most effectively reduce model biases and 

uncertainties. 

In this chapter, an index for code prioritization efforts of such complex numerical 

models, Code Prioritization Index (CPI) is developed for coupled numerical systems 

based upon fundamentals guiding the well-estabilished PIRT ranking procedure. The CPI 

goes beyond the qualitative ranking system instituted in PIRT and supplies a quantitative 

assessment of the knowledge (uncertainty) and importance level (sensitivity) of a 



173 

 

constituent phenomenon. Moreover, CPI incorporates an error analysis term (initial 

error). Through the combination and normalization of the three ranking categories 

(uncertainty, sensitivity, and initial error), the CPI represents a quantitative and 

defendable metric for ranking code prioritization efforts such that the largest reduction in 

model error can be achieved using minimal resources. The fundamental concept 

presented herein and its associated metrics requires an ability to parameterize the 

constituent models. Therefore, the study presented herein is most amenable for 

partitioned analysis procedures. 

The CPI metric is demonstrated on a two-story steel frame with semi-rigid bolted 

connections. Predictions from an initial FE model (Model #1) of the steel frame indicate 

a high disagreement with experimental results. Deficiencies in the model are identified in 

the fixed beam-to-column connection assumptions. The stiffness of the three possible 

connection configurations (top, middle, and bottom) are treated as model constituents, 

and through the use of linear rotational springs implemented in the numerical model, 

these constituents are prioritized using the CPI metric. Next, high-fidelity, three-

dimensional, nonlinear FE models of the connections are built for coupling with Model 

#1 in the order of their ranking as identified by CPI. Ultimately, through this coupling, 

Model #2 through Model #4 are obtained.  

A comparison of modal and static test data to model predictions shows that as the 

physics of the model improve (from Model #1 to Model #4) the discrepancy reduces for 

nearly all test cases. Furthermore, the relative improvement from one sophistication to the 

next decreases as the model progresses from Model #1 to Model #4 indicting that the 
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prioritization effort properly identified the order in which the constituent models should 

be improved. 

While this chapter shows the importance and usefulness of the proposed CPI 

metric, further work in the implementation and quantification of the uncertainty term is 

being considered. Additionally, the CPI metric proposed in this present chapter is just one 

of many metrics that can be developed to incorporate all three terms, and investigations 

into the format, possible interactions among terms, and additional case studies is 

necessary. Also, as each component in CPI represents a specific facet of the model that 

may be more or less important to a specific project or research endeavor, user-defined 

weighting terms can be considered for each of the three components respectively. 

However, future research is necessary to develop guidelines regarding the possible values 

(or ranges of values) for such weighting factors. 

Additionally, while the connections used in the case study herein are not typical 

of traditional, large steel structures; they serve to demonstrate not only the validity of the 

CPI metric but also the potential for using the coupling methodology presented herein on 

full-scale semi-rigid connections. Although the experimental campaign in the proof of 

concept application in this study is demonstrated in the linear/elastic regime, the 

proposed metric makes no assumptions that limit its application to such a regime. The 

proposed metric is versatile and generally applicable for any stable, non-chaotic 

responses (linear, nonlinear, elastic, inelastic, etc.). For newly developed semi-rigid 

connection types, the moment-rotation curves predicted through the coupled finite 
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element model could prove to be vital in providing a better understanding of semi-rigid 

connections and a reducing the need for extensive laboratory testing. 
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CHAPTER 6: CONCLUSIONS 

6.1. Summary of Research Program: 

Advancements in science and technology in the past decades have led scientists 

and engineers to develop and use numerical models to predict for increasingly complex 

physical systems. However, for these models to be useful in design and analysis, the 

uncertainties in their predictions must be identified, quantified, and reduced as much as 

possible. This process is known as experiment-based model validation. During the model 

experiment-based validation process, one must assess not only if the predictions are 

within an acceptable accuracy and have a sufficient precision, but also if the experiments 

being used to validate the model are sufficient both in terms of quality and quantity. An 

appropriately developed model validation framework can address these needs through a 

quantitative and systematic approach. Many model validation frameworks are available 

in literature, but they seldom provide decision makers with the tools to not only 

determine the suitability of a model for an intended use, but to also guide decision makers 

in allocating resources in three distinct areas: (i) if the model is not considered 

sufficiently accurate or precise for the given application, should additional experiments 

be conducted or should the model itself be improved though implementation of additional 

mathematical and/or physical principals of the model; (ii) if more experiments are to be 

conducted, at what settings in the domain of applicability should experiments be 

conducted to efficiently improve the predictive capability of the model; and (iii) if model 

physics sophistication is necessary, which model constituent(s) should be improved such 

that the greatest increase in model accuracy is realized at a least possible cost. The 
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framework developed in this dissertation provides methodologies for each of the above 

questions as an integral part of an experiment-based model validation framework. 

For a given numerical model and a current set of experimental data, the 

framework developed herein (see Figure 1.1) utilizes a Bayesian inference based back 

calculation technique that exploits a Markov chain Monte-Carlo (MCMC) random walk 

to infer probability distributions of unknown model parameters (model uncertainty) and 

an independent estimate of the residual difference between model predictions and 

experimental data, i.e., the discrepancy bias. Once the model uncertainty and accuracy 

are quantified, a validation metric is employed to assess whether or not the model is 

suitable for use in its intended domain of applicability. If the validation metric is 

satisfied, then the model validation process ends; however, if the validation metric is not 

satisfied the framework implements a path selection algorithm. This path selection 

algorithm analyzes the convergence rate of the discrepancy bias along two axes: the 

number of experiments and the number of model physics sophistications. The path 

selection algorithm chooses the path, which yields the highest convergence rate 

indicating that either additional experiments should be conducted or the physics 

sophistication of the model should be improved. Of course, this algorithm can be adjusted 

to account for more or less weight being put on either axis, as is demonstrated for the 

case where experimentation is considered less costly than code development and hence 

the algorithm continues to select the experimentation path until no further gains in either 

precision or accuracy are realized. 
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After the choice in path is made, either additional experiments are to be collect or 

the model is to be improved. However, instead of arbitrarily selecting experimental 

settings or code constituents, the framework herein provides methodologies for selecting 

either the optimal experimental settings through the use of Batch Sequential Design 

(BSD) or the most effective model constituents for code development of coupled 

numerical models through the use of the Code Prioritization Index (CPI).  

The BSD methodology is proven in literature to be an effective tool for selecting 

batches (as small as one or as large as needed) of physical experimental settings such that 

a provided optimization criterion is met. Recall, that at this stage in the validation 

framework, it is necessary to improve the empirical estimation of the model’s 

discrepancy bias and reduce model uncertainty throughout the domain of applicability; 

therefore, in this study, a new optimization criterion, C-EIPS, is developed such that the 

goal of the BSD is to select experiments that will not only reduce the uncertainty in the 

discrepancy bias but also adequately cover the domain of applicability. Experiments are 

then conducted at the BSD selected experimental settings and the validation process 

repeats.  

If, however, the physics sophistication path is selected, this framework 

implements the CPI metric for ranking the model constituents of a coupled numerical 

model according to the potential reduction in the model form error throughout the domain 

of applicability. This metric is based upon three principal quantities: sensitivity of model 

predictions to variability in the constituent, the estimated initial error of the constituent, 

and the uncertainty of the constituent. Each component listed above can be numerically 
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calculated using metrics available in literature or those provided in this dissertation. The 

computed CPI values for each constituent are ranked such that model constituents 

receiving a higher CPI are considered higher priority for improvement. After the selected 

constituents are improved and a new. more sophisticated numerical model becomes 

available, the main loop in validation framework repeats.  

The framework described above is demonstrated within this dissertation using a 

variety of non-trivial, real-life case studies. These studies include the stress, strain, and 

texture response of metals (that are used as cladding materials in the nuclear reactors) 

exposed to high temperatures and strain rates as well as static deflection and vibration 

responses of a steel frame. The types of models utilized in these studies include 

continuum-based phenomenological models and mesoscopic models to consider 

microstructural behaviors. While the proposed validation framework is demonstrated on a 

few specific case studies in this dissertation, its generality allows its application across all 

science and engineering fields.  

6.2. Major Findings of the Presented Research: 

The previously summarized research campaign has resulted in the following 

findings: 

Findings from the development and application of the general framework, its algorithm 

and associated metrics (Chapters 2 and 3): 

 As hypothesized, the case studies presented in this dissertation show that more 

sophisticated models may have higher uncertainty and require additional 

experiments to realize convergence of the systematic bias and entropy-based 
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information gain metric. This finding is realized during the model calibration 

phase of the framework presented herein, and can be utilized to help determine 

the sufficient number of experiments. 

 In the case study applications, it is shown that as additional experiments are 

introduced into the calibration process, both the information gain and systematic 

bias of all response features of interest of the more sophisticated model converge 

to a consistent systematic level while the convergence trend is shown to not occur 

for some of the response features of the less sophisticated model.  

 With both case study applications and conceptual examples herein, the systematic 

bias is shown to reduce as the physics sophistication of the model is improved. 

However, it is important to note that this may only become evident once sufficient 

experimental data becomes available such that the discrepancy bias has 

converged. 

 The discrepancy based convergence algorithm (computed using the CM value) 

calculated along the prior experiments or prior code development paths is 

demonstrated to be an effective tool for selecting the next step in the model 

validation process (experimentation or code development) as demonstrated in a 

conceptual mathematical model and the PTW model. 

 As hypothesized, for a suitable
16

 numerical model parameter uncertainty is 

mitigated through additional experiments. This mitigation is shown through the 

                                                

16
 Model’s with extremely high model form error (i.e. poor predictors of specific phenomena) do not 

necessarily demonstrate this trend. 
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increase and eventual convergence of the information gain metric as well as a 

narrowing of the posterior distributions of the calibration parameters. It is also 

shown that for a numerical model that is very poor at predicting one or more of 

the features of interest parameter uncertainty may not be mitigated. 

 As hypothesized, model form error is reduced through increased physics/code 

development as demonstrated in each case study presented herein. 

 An approach to treat imprecise input parameters that are dependent upon the 

control parameters is developed. These imprecise input parameters are 

functionally trained such that the trained-function coefficients are independent of 

the control parameters that define the domain of applicability. These coefficients 

are then treated as the calibration parameters of the numerical model and are 

successfully calibrated. 

 The validated, more sophisticated models are shown to have significantly more 

accurate predictions when compared to their predecessors.  

 The proposed framework is demonstrated on both the VPSC and PTW models to 

be an effective decision making tool for use in the validation of numerical models. 

Moreover, the developed framework is shown to provide reliable metrics for 

choosing whether additional experiments and/or code development are necessary 

when a reduction in model form error and/or model uncertainty is needed.  

Findings from the development of a new algorithm for prioritization of experiments 

and its application to the VPSC model (Chapter 4): 
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 BSD can be utilized as an effective tool for selecting the experimental settings at 

which new experiments should be conducted. As demonstrated in the case study, 

BSD selects experimental settings that efficiently increase the PMI of the 

numerical model. 

 The C-EIPS criterion, developed herein for use with BSD and based upon both 

the discrepancy bias and the coverage of the domain of applicability, is shown to 

effectively increase predictive maturity, measured through PMI, and outperform 

its predecessor EIPS in a simulated case study using the VPSC code. 

 A negative correlation is shown between absolute error and coverage until either 

full coverage or a zero absolute error is realized in which case the slope of the 

trend line becomes zero. This correlation provides further evidence that as more 

experimental data becomes available (resulting in increased coverage) the 

discrepancy bias of a suitable model reduces and converges. 

Findings from the development of a new algorithm and metric for code prioritization 

and application to the steel frame finite element model (Chapter 5): 

 The herein developed error analysis, EA, term for investigating the initially 

estimated error of a constituent of a coupled numerical model, is shown through 

the steel frame case study to be an accurate predictor of the degree/magnitude of 

the constituents’ initial error. 

 The quantitative CPI metric is capable of effectively ranking the most important 

model constituents for consideration in model validation campaigns as 

demonstrated on the semi-rigid steel frame case study. When compared to all 
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other possible combinations of the order in which model constituents could be 

improved, the CPI chosen order provided not only the most efficient reduction in 

model form error, but was also the only order that resulted in a monotonic 

decrease in model form error.  

 To alleviate the widely-known ‘mode swapping’ phenomena, a mode reordering 

algorithm is developed to properly order mode shapes for comparison in 

sensitivity analysis. This algorithm uses a weighted metric combining many mode 

shape comparison tools (general shape, coordinates of global max/min, 

coordinates of local max/min) and modes are shown to be successfully reordered 

for proper sensitivity analysis. 

 A strongly coupled numerical model, coupling a frame model with nonlinear 

rotational springs at connections and a nonlinear connection finite element model 

is used to infer the moment-rotation curves of each connection in the prototype 

steel frame. Predictions made using the computed moment-rotation curves 

provide significantly improved correlation with both vibration and static test 

results over those that are obtained with initially estimated connection stiffness 

values. 

6.3. Limitations, Remaining Issues, and Recommendations for Future Work: 

Limitation/Assumptions: 

While the model validation framework developed herein is designed to be a 

generally applicable framework for use in simulation-based science and engineering 

fields, limitations and assumptions are present. The following assumptions are made in 
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the development of framework: (i) conducting further experiments is not prohibited by 

either resources or statute (e.g. insufficient funding for additional experiments or the 

prohibited testing of nuclear devices), (ii) there is known additional first-principal 

knowledge of missing physical laws that could be used to improve the numerical model 

(e.g. quantum physics models are lacking accuracy however, no additional first-principal 

knowledge currently exists), (iii) the numerical model has undergone the necessary 

verification such that numerical errors/uncertainties are sufficiently small, and (iv) at 

least two experiments and physics sophistications of the code are available such that the 

path selection algorithm can be properly implemented. A numerical model violating one 

or more of these assumptions would require a modification to the framework in its 

current form.  

Some notable limitations faced during case study applications should be 

mentioned. First, both the BSD criterion and the model calibration procedure utilized 

herein rely on training Gaussian Process Models as surrogate models for the discrepancy 

bias and numerical model respectively. The underlying assumption with GPM’s is that 

the input/output relationship being trained is smoothly varying and non-chaotic. 

Therefore, if the physical process being modeled produces chaotic or discontinuous 

output within the domain of applicability then the GPM surrogate model needs to be 

replaced with a model that can better handle such circumstances. Second, a best estimate 

of uniform prior distributions for calibration parameters are chosen throughout this study; 

as the Bayesian inference methodology is dependent on these prior distributions, it 

becomes paramount to assume the most informed prior distributions possible for the 
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given numerical model and parameters. Finally, the CPI metric developed herein, 

assumes that the coupled numerical model being analyzed can be subdivided into 

constituents whose important parameters can be sampled independently of other 

constituents such that global output sensitivity to constituent input and initial error 

analysis can be conducted.   

Suggestions for Future Work: 

The framework developed herein with subsidiary components, BSD and CPI are 

novel, complete, and of immediate use to the science and engineering community; 

however, as with many research endeavors, many exciting and necessary areas of further 

research exist to further refine and solidify these tools.  

The framework presented herein, can be extended to include a cost factor 

associated with experiments and/or code development respectively. This cost factor 

serves as a weight on the computed convergence rate metric such that the relative cost 

weighs the path selection. An extreme example of this type of weighting, where 

experiments are considered considerably less costly than code development, is evident in 

the VPSC case study in Chapter 3. Furthermore, as technology continues to advance, 

codes are being coupled across multiple physical states and scales; as such, the 

framework provide herein can be extended to account for multi-physics, multi-scale 

simulation models analyzing additional issues such as interface discrepancy, 

quantification of errors and uncertainties propagated through code constituents and across 

scales. The framework developed herein can also be improved by expanding to include 
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quantifiable model verification activities to create an integral, scientific, and quantifiable 

verification and validation framework.  

The remaining recommendations for future work focuses on the CPI metric. 

While the CPI metric is shown to be effective in the case studies presented in this 

dissertation, this metric is newly developed and should be implemented in many case 

studies from various fields to identify possible areas for improvement. Some such 

possibilities include investigating the interaction of the three terms used in the CPI and 

incorporating weighting terms on each component such that the metric may be adapted 

for specific uses across many fields.  

In closing, the framework and associated algorithms, metrics, and methodologies 

presented herein provide a step forward in the model validation and uncertainty 

quantification communities for use not only in the fields demonstrated in the case studies 

presented in this dissertation, but also other forefront topics in civil  engineering such as 

fluid-structure interaction, soil-structure interaction, and advanced design and analysis 

software as well as research topics across many other science and engineering disciplines. 

The assumptions, limitations, and recommendations discussed herein provide a 

springboard for the continued study and advancement of experiment-based model 

validation strategies.  
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