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Abstract

A large influx of experimental data has prompted the development of innovative

computational techniques for modeling and reverse engineering biological networks. While

finite dynamical systems, in particular Boolean networks, have gained attention as rele-

vant models of network dynamics, not all Boolean functions reflect the behaviors of real

biological systems. In this work, we focus on two classes of Boolean functions and study

their applicability as biologically relevant network models: the nested and partially nested

canalyzing functions.

We begin by analyzing the nested canalyzing functions (NCFs), which have been

proposed as gene regulatory network models due to their stability properties. We introduce

two biologically motivated measures of network stability, the average height and average

cycle length on a state space graph and show that, on average, networks comprised of NCFs

are more stable than general Boolean networks.

Next, we introduce the partially nested canalyzing functions (PNCFs), a general-

ization of the NCFs, and the nested canalyzing depth, which measures the extent to which

it retains a nested canalyzing structure. We characterize the structure of functions with

a given depth and compute the expected activities and sensitivities of the variables. This

analysis quantifies how canalyzation leads to higher stability in Boolean networks. We find

that functions become decreasingly sensitive to input perturbations as the canalyzing depth

increases, but exhibit rapidly diminishing returns in stability. Additionally, we show that

as depth increases, the dynamics of networks using these functions quickly approach the

critical regime, suggesting that real networks exhibit some degree of canalyzing depth, and
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that NCFs are not significantly better than PNCFs of sufficient depth for many applications

to biological networks.

Finally, we propose a method for the reverse engineering of networks of PNCFs using

techniques from computational algebra. Given discretized time series data, this method

finds a network model using PNCFs. Our ability to use these functions in reverse engineering

applications further establishes their relevance as biological network models.
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Chapter 1

Introduction

1.1 Discrete Network Models

An accumulation of biological data has prompted the development of new mathe-

matical techniques to process and organize such data. A central problem in systems biology

is the modeling and reverse engineering of gene regulatory networks to discover how genes

interact via their RNA and protein products to regulate each other, and to explore the

dynamics of such networks. Davidson et al. define gene regulatory networks (GRNs) as

“collections of genes and their products, together with the interactions between them that

collectively carry out cellular functions” [13]. GRNs give insight into causality relation-

ships in the genome [13]. Studying regulatory and transcription networks can lead to a

greater understanding of human health and can ultimately help fight disease [41]. While

ordinary differential equations have traditionally been used to model dynamical systems,

time-discrete finite dynamical systems have gained attention as prominent biochemical net-

work models. Several types of FDS models have been studied in this context, for instance,

Petri nets [21], Logical models [53], polynomial models [29, 40], and Boolean networks [2, 42].

Discrete models have been used for a variety of applications in addition to systems biol-

ogy, some of which include chaos [43], traffic simulations [47], task scheduling on parallel

computing systems [46], immunology [7], and control theory [5].
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Discrete models tend to be simpler and can be more intuitive than continuous mod-

els. Typically, there are no initial conditions or parameters to estimate, which is quite an

advantage over their continuous counterparts. Discrete models consider the effects of indi-

vidual components within the network, not just measuring the network as a whole, so it is

possible to observe how altering or perturbing a subset of the components can affect system

dynamics. Finally, as we shall see, some discrete models have convenient representations as

algebraic structures, allowing us to employ tools and algorithms from algebraic geometry

and computational algebra to construct appropriate network models, thus enabling us to

examine dynamical properties of the system.

1.2 Computational Algebra Basics

1.2.1 Ideals and Varieties

Ideals and varieties are essential structures in discrete modeling, especially for their

utility in reverse engineering. Here, we include several key definitions and properties, as

presented in [9].

Definition 1. Let F be a field and f1, . . . , fs ∈ F[x1, . . . , xn]. Then the set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Fn : fi(a1, . . . , an) = 0, 1 ≤ i ≤ n}

is the affine variety defined by f1, . . . , fs.

In other words, an affine variety defined by f1, . . . , fs can be thought of as the

common roots of f1, . . . , fs.

Example 1. The affine variety V(x
2

4 + y2 − 1) over R2 is given in Figure 1.1.

Several important relationships exist between ideals and affine varieties. For in-

stance, if V ⊂ Fn is an affine variety, then

I(V ) = {f ∈ F[x1, . . . , xn] : f(a1, . . . , an) = 0, ∀(a1, . . . , an) ∈ V }

2



Figure 1.1: V
(
x2

4 + y2 − 1
)

in Example 1

is an ideal, called the ideal of V . This ideal is simply the set of polynomials that vanish on

the points in V . On the other hand, if I ⊂ F[x1, . . . , xn] is an ideal, then

V(I) = {x ∈ Fn : f(x) = 0, ∀f ∈ I}

is an affine variety. An important relation between ideals and their associated varieties is

the Ideal-Variety Correspondence, a result of Hilbert’s well-known Nullstellensatz. For an

algebraically closed field F, this correspondence tells us that

1. For V ∈ Fn, V(I(V )) = V .

2. If F is algebraically closed and I is a radical ideal, then I(V(I)) = I.

In the case of Boolean networks, we will be working with polynomials over F2, which is not

algebraically closed. In Chapter 4, we will see ideals from polynomial rings over F2, the

algebraic closure of F2.

In Chapter 4, we will encounter a class of functions that form a so-called toric ideal.

A toric ideal may be thought of as the Zariski closure of the image of a monomial map. Toric

ideals and their corresponding varieties are well-studied structures in algebraic geometry

with computationally desirable properties. Further information on toric varieties and ideals

3



may be found in [10, 44]. Toric ideals are the binomial prime ideals [19]. Since prime ideals

are radical, the Ideal-Variety Correspondence tells us that varieties corresponding to a toric

ideals are also toric.

1.2.2 Gröbner Bases

Gröbner basis computation is a critical step in the reverse engineering algorithms

that we will encounter in Chapter 4. Here, we present several definitions and properties

associated with Gröbner bases which may be found in [9, 58]. A Gröbner basis is dependent

upon its so-called monomial ordering. Note that we can represent a monomial xα1
1 . . . xαnn

in F[x1, . . . , xn] by its exponents as α = (α1, . . . , αn) ∈ Nn. We can now formally define a

monomial ordering as follows.

Definition 2. A monomial ordering on F[x1, . . . , xn] is a relation < on Nn such that

1. < is a total ordering on Nn.

2. If α, β, γ ∈ Nn with α < β, then α+ β < α+ γ.

3. < is a well-ordering on Nn.

Example 2. One common monomial ordering is lexicographic order, which can be consid-

ered an alphabetical ordering. For example, under lexicographic order with x > y > z, we

have xyz > xz.

Definition 3. Let f =
∑

α∈Nn aαx
α ∈ F[x1, . . . , xn] be nonzero and < a monomial order.

Then

1. The multidegree of f is multideg(f) = max<{α ∈ Nn : aα 6= 0}.

2. The leading coefficient of f is LC(f) = amultideg(f) ∈ F

3. The leading monomial of f is LM(f) = xmultideg(f).

4. The leading term of f is LT(f) = LC(f) · LM(f).

4



Finally, for an ideal I ⊆ F[x1, . . . , xn], LT(I) is the set of leading terms of poly-

nomials in I, and 〈LT(I)〉 is the ideal generated by LT(I). We can now formally define a

Gröbner basis.

Definition 4. Let < be a monomial order and I ⊆ F[x1, . . . , xn] be nonzero. Then a subset

G = {g1, . . . , gt} is a Gröbner basis for I if 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.

The well-known Hilbert Basis Theorem tells us that this basis exists and is finitely

generated.

Example 3. Let I = 〈f1, f2〉 ∈ Q[x, y], with f1 = x and f2 = x2 + y. Using lexicographic

order with x > y, y = −x · f1 + 1 · f2, so y ∈ 〈LT(I)〉. However, y is divisible by neither x

nor x2, so y /∈ 〈LT(f1), LT(f2)〉. Therefore I is not a Gröbner basis for this ideal.

Even with a fixed monomial ordering, polynomial division is not unique, as it de-

pends on the order of the divisors.

Example 4. Let F = {f1 = y2 + 1, f2 = xy+ 1} ∈ Q[x, y] and f = 2xy2 + x− y. Using lex

order with x > y and the division algorithm for multivariate polynomials in [9], if we divide

by f1 and then f2, we obtain a remainder of −x− y; however, if we reverse the order of the

divisors, our remainder is x− 3y.

If we are dividing by a Gröbner basis, however, our remainder is unique regardless

of the order of the divisors. The normal form of a polynomial f ∈ F[x1, . . . , xn] with respect

to an ideal I ⊂ F[x1, . . . , xn] is the remainder when dividing f by G, where G is the Gröbner

basis for I. This normal form is unique up to monomial order, and f lies in I if and only if

the normal form for f is zero.

Gröbner basis computation is still an active area of research. The first algorithm for

doing so is known as Buchberger’s Algorithm, first introduced in 1965. While the worst-

case computational complexity for computing Gröbner bases is unknown, it is thought to

be exponential [45], although several speedups and special cases exist. For instance, an

application of the Buchberger-Möller algorithm yields a fairly efficient computation for a
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Gröbner basis of an ideal of points, a special case that we will encounter in Chapter 4 [1].

Newer Gröbner basis algorithms and speedups have been developed, as in [20, 22, 24], some

of which are used by current computer algebra systems.

In addition to their utility in discrete modeling, Gröbner bases have various appli-

cations in computational algebra. For instance, they are used to solve multivariate systems

of polynomial equations, to determine whether a polynomial belongs to a given ideal [9],

to determine whether or not two sets of polynomials give rise to the same ideal, and for

automatic theorem proving in geometry [58].

1.3 Boolean Networks

Definition 5. A finite dynamical system is a mapping

F = (f1, f2, . . . , fn) : Xn → Xn

where X is a finite set.

The elements of X are the possible states in which the components (nodes) of the

network can lie. The function fi(x1, . . . , xn) : Xn → X gives the dynamics of the ith

component, 1 ≤ i ≤ n, while the variables x1, . . . , xn represent the individual components.

For example, in a gene regulatory network model, the components are the individual genes

and the elements of X are the discretized gene expression levels. If X = F2 then the

functions fi are polynomials in F2 of degree at most one, which can be expressed as Boolean

functions. For gene regulatory networks modeled as Boolean networks, xi = 0 implies that

gene i is not expressed (OFF), while xi = 1 means that gene i is expressed (ON).

Boolean network models have two key elements, the wiring diagram and the state

space graph. The wiring diagram, otherwise referred to as the dependency graph, specifies

which components in the network influence each other. It is visualized as a digraph, where

each variable xi in the system is represented by a node, and an edge from xj to xi indicates

xj influences xi, that is, fi is a function of xj .
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Figure 1.2: Wiring Diagram for Example 5 [38]

Example 5. The wiring diagram for the network F = (f1, f2) is given in Figure 1.2, where

f1 = 1 + x1 + x2

f2 = x1x2.

For simplicity, we will consider networks in which every node in the wiring diagram

has the same number of inputs; however, in some cases, the in-degrees of the nodes may

be selected according to a probability distribution. For example, networks constructed ac-

cording to the power-law distribution, also known as scale-free networks, have been studied

extensively in this context, as in [36, 3].

The state space graph, also known as the phase space graph is a digraph that conveys

the dynamics of a finite dynamical system. The nodes of a state space graph are strings of

n bits, with each bit representing the Boolean state of its corresponding component. Note

that the state space graph for a network with n components has 2n nodes. An edge from

node x to node y indicates that F (x) = y, when f1, f2, . . . , fn. These functions f1, . . . , fn

are called state transition functions. We will consider finite dynamical systems with parallel

updating, in which all of the n state transition functions are evaluated in each time step.

When f1, . . . , fn are not updated simultaneously, the system is called an FDS with sequential

updating [46].

Throughout this work, we will typically let n denote the number of components in

the system. In Chapter 3, we will be working networks such that every component has a

fixed number of input variables, denoted by k.

7



Figure 1.3: State space graph for Example 6 [38]

Example 6. The state space graph for the network F = (f1, f2) in Example 5 is given in

Figure 1.3.

Since the state space is finite, each directed path terminates in a cycle, called a limit

cycle or an attractor cycle. If a limit cycle consists of a single node, it is called a fixed point.

Nodes that are not part of limit cycles are called transient states, and connected components

are referred to as basins of attraction [39]. Example 6 has two basins of attraction, one a

single fixed point, and another with one transient state and a limit cycle of size two. We

will consider deterministic Boolean networks, for which there is one state transition function

governing the dynamics of each component. Consequently, there is a unique path from

each node to its terminal limit cycle in the state space graph of a deterministic Boolean

network. In the case of probabilistic Boolean networks, multiple state transition functions

exist for each node. At each time step, the function used in the system update are selected

probabilistically from the designated possibilities. In this context, Boolean network can be

considered a Markov chain [54].

Of significant interest in determining the biological relevance of a class of Boolean

functions is to establish the stability of networks comprised of such functions. While many

characterizations of stability exist, we often say that a network is stable if it is insensitive

input perturbations, thus determining whether it lies in the frozen, chaotic, or critical phase.

Networks in the frozen phase are insensitive to small perturbations. The state spaces of

8



these networks are characterized by small limit cycles and fixed point cycles. Networks in the

chaotic phase typically have longer limit cycles in their state space graph, and perturbations

propagate throughout the network. The critical phase is the threshold between the frozen

and chaotic phases. It is thought to be the phase in which many biologically networks lie,

as they must be stable enough to resist environmental change, yet capable of undergoing

essential adaptations [4, 49, 50, 57]. We will explore alternative definitions of stability in

Chapter 2.

1.4 Modeling Considerations

While discrete models have advantages over their continuous counterparts in certain

situations, a few complications arise when using Boolean networks to model biological sys-

tems. For instance, gene regulatory network models built from continuous gene expression

data necessitate the development of data discretization methods, such as in [16]. While

discretization seemingly leads to a loss of information, reducing the system to two states

reflects the observed behavior of real gene networks [33, 2]. Also, using coarser modeling

techniques such as Boolean networks reduces the effects of noise in the data [55]. Hartemink

justifies the practice of discretization as follows [25].

Inside cells, biochemical reactions are at the lowest level discrete events in which indi-

vidual molecules and enzymes are brought together for oxidation, reduction, hydrol-

ysis, catalysis, etc. Given current measurement technology, however, it is impractical

to measure whole-genome expression levels at single-molecule resolution. For this

reason, large numbers of cells are pooled together and mRNA removed from the pop-

ulation as a whole. Consequently, the various species of mRNA are typically present

in sufficient abundance to be represented as continuous concentration values. Nev-

ertheless, reasoning about continuous concentration values can be problematic given

the number of degrees of freedom inherent in arbitrary continuous distributions. Be-

cause the amount of data available for reasoning about genetic regulatory networks is

9



comparatively limited, we need to reduce the dimensionality of the modeling.

Another prominent problem in the application of Boolean models is that of selecting

state transition functions whose behavior mimics real biological systems. Random Boolean

networks were initially introduced by Kauffman [33, 34] as gene network models. In this

setup, input variables are randomly selected for each node, (i.e., the wiring diagram is ran-

domly wired), and each component is assigned a random state transition function according

to a specified probability distribution. As not all Boolean functions exhibit biological be-

havior, specific biologically motivated classes of functions have since been introduced, with

the hope that restricting the model selection to such functions will result in networks with

more appropriate dynamic behaviors. For instance, the chain functions [23], the biologically

meaningful functions [52], and the nested canalyzing functions [35] have all been proposed

due to their biologically relevant properties.

In this work, we will focus on two particular classes of Boolean functions, the nested

canalyzing functions (NCFs), and a natural relaxation of NCFs, the partially nested can-

alyzing functions (PNCFs). In Chapter 2, we will discuss the NCFs in depth and explore

biologically relevant dynamic properties of the functions themselves, as well as networks

constructed using these functions. In Chapter 3, we will define the PNCFs and see how

varying the extent to which functions exhibit the nested canalyzing property affects network

dynamics. Finally, in Chapter 4, we will introduce a reverse engineering method for gene

regulatory networks that restricts the modeling space to PNCFs.
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Chapter 2

Biologically Meaningful Properties

of Nested Canalyzing Functions

2.1 Introduction

Canalyzing functions were introduced by Kauffman [33], which reflect the behavior

of biological systems described by Waddingdon [59]. Specifically, Waddington introduced

the term “canalization” to describe the ability of a genotype to yield the same phenotype

despite variations in the environment. Mathematically speaking, a function f(x1, . . . , xn)

is said to be canalyzing if there exists a variable xi, 1 ≤ i ≤ n and values a, b ∈ {0, 1}

such that f(x1, . . . , xi−1, a, xi+1, . . . , xn) = b regardless of the inputs to the other variables.

In [35], the authors introduce the nested canalyzing functions (NCFs), which specify how

to proceed if the canalyzing variable xi does not receive its canalyzing input a. Nested

canalyzing functions are defined as follows:

Definition 6. Let f(x1, . . . , xn) be a Boolean function. For σ ∈ Sn, f is a nested canalyzing

function in the variable order xσ(1), . . . , xσ(n) with canalyzing values a1, . . . , an and canalyzed

11



values b1, . . . , bn if it can be expressed in the form

f =



b1 xσ(1) = a1

b2 xσ(1) 6= a1, xσ(2) = a2

b3 xσ(1) 6= a1, xσ(2) 6= a2, xσ(3) = a3
...

...

bn xσ(1) 6= a1, . . . , xσ(n−1) 6= an−1, xσ(n) = an

¬bn xσ(1) 6= a1, . . . , xσ(n) 6= an

. (2.1)

Example 7. The function f(x1, x2, x3) = x2 ∨ (¬x1 ∧ x3) is an NCF with b = [1, 0, 0],

a = [1, 1, 0], and σ = [2, 1, 3]:

f(x1, x2, x3) =



1 x2 = 1

0 x2 = 0, x1 = 1

0 x2 = 0, x1 = 0, x3 = 0

1 x2 = 0, x1 = 0, x3 = 1.

Example 8. According to this definition, the Boolean function f(x1, . . . , xn) = 0 is not a

nested canalyzing function as the last condition in Equation 2.1 is not satisfied. Note that

constant functions are sometimes considered to be trivially canalzying, as in [43, 18].

In [36], Boolean networks constructed using nested canalyzing functions were shown

to be more stable than general Boolean networks in that they are less sensitive to pertur-

bations in the function inputs. In [35], the authors conclude that the dynamics of such

networks lie in the frozen phase, which is characterized by small limit cycles. While the

results of Peixoto [51] and in Chapter 3 indicate that some of these claims may be due to

a pararameterization of the functions, we still believe that these networks are more stable

on average than networks of general Boolean functions. Further results regarding stability

properties of canalyzing and nested canalyzing functions will be discussed in Chapter 3.

In [31], Jarrah et al. show that the nested canalyzing functions are precisely the
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so-called unate cascade functions. Unate cascade functions are the unique class of Boolean

functions that have the smallest average path lengths on their binary decision diagrams,

and therefore may be evaluated more quickly on average than any other class of Boolean

functions [6]. While the relationship between average path length and network stability

has not been determined, we believe that this property may be indicative of some type of

network stability for NCF systems.

Note that any Boolean function may be represented as a polynomial over F2 and vice

versa. In fact, the ring of Boolean functions in n variables is isomorphic to the polynomial

ring F2[x1, . . . , xn]/〈x2i − xi : 1 ≤ i ≤ n〉 [31]. In the following examples, some Boolean

functions may be presented in their polynomial form for simplicity.

2.2 Simulation Design

In order to compare the stability of networks comprised of nested canalyzing func-

tions with those of general Boolean networks, we performed simulations to compare proper-

ties of the state space graphs of each. We developed two measures for determining network

stability based on the state space graph, the average cycle length and the average height.

The average cycle length (ACL) is found by taking the sum over all cycles in the state space

of the number of nodes in each cycle, and dividing this by the number of cycles in the graph.

We believe that since networks of nested canalyzing functions are believed to lie in a more

stable regime, they should have smaller ACLs than networks comprised of general Boolean

functions.

Example 9. The state space graph for the general Boolean network F = (f1, f2, f3), where

f1 = x1x2 + x3 + x1x2x3

f2 = x1 + x3 + x2x3 + x1x2x3

f3 = 1 + x1 + x2 + x2x3 + x1x2x3
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Figure 2.1: State space graph for Example 9 [38]

is given in Figure 2.1. This graph shows a large cycle in the state space, which is not thought

to be typical for many biological systems.

The average height of a network measures the average number of discrete time steps

until a system converges. We say that the height of a node is the length of the path from

the node to a limit cycle, where nodes that are part of a limit cycle have height zero. The

average height is then the mean of the heights of all nodes in the state space graph. As

NCFs may be evaluated more quickly than any other class of Boolean functions, we believe

that networks of NCFs should converge more quickly than general Boolean networks and

should therefore have smaller average heights.

Example 10. The state space graph for the general Boolean network F = (f1, f2, f3), where

f1 = 1 + x1x2

14



Figure 2.2: State space graph for Example 10 [38]

f2 = 1 + x1 + x1x2 + x1x3 + x2x3

f3 = 1 + x1x2 + x3 + x1x2x3

is given in Figure 2.2. The long path in this graph gives rise to a large average height for

the network, which is not thought to indicate a stable system.

Example 11. The state space graph for the NCF network F = (f1, f2, f3), where

f1 = ¬x2 ∨ (¬x1 ∨ ¬x3)

f2 = x2 ∧ (¬x1 ∧ ¬x3)

f3 = x3 ∧ (x2 ∧ ¬x1)

is given in Figure 2.3. This system has both a small average cycle length and a small average

height, both of which are thought to be biologically relevant properties of NCF systems.

We used simulations to compare the average cycle lengths and average heights of
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Figure 2.3: State space graph for Example 11 [38]

NCF networks to those of random Boolean networks. Given the number of variables (n)

and the number of trials (t), we collected statistics about the dynamics of t random systems

of functions in n variables. We generated t systems for both the general Boolean and NCF

cases, and ran simulations in C++ for n = 3, 4, . . . , 10. For each trial, we generated a

system of n functions in n variables. We evaluated the functions at each possible state

to determine state space graph and stored the results. We then recovered the heights of

the nodes and the cycle lengths using one of a variety of standard graph algorithms, for

instance, a depth first search, and then computed the average cycle length and average

height for the entire network. After repeating this procedure for all t trials, we found the

mean and standard deviation for ACL and average height over all of the trials. As simply

finding the state space graph for a network is O(2n), the running time for our simulation

algorithm is exponential, requiring us to restrict t as n increases in the interest of time.

Obtaining properties of network dynamics without enumerating the entire state space is an

ongoing area of research, as in [8, 30].

The C++ header files, fncf.h and fpoly.h, for generating random nested canalyzing

functions and Boolean functions, respectively, are provided in Appendix A. Nested cana-

lyzing functions are represented by a vector of canalyzing inputs, a, a vector of canalzying

outputs, b, and a vector storing a permutation of the variables, σ. The vectors a and b are

determined by a random bit generator, while σ is found using the permute function also
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located in the file fncf.h. Note that if bi = bi−1, then interchanging σi and σi−1 results in a

different representation of the same function, thus leading to bias in our function selection.

Therefore, we use the check function to ensure that σ(i − 1) < σ(i) whenever bi = bi−1.

If this check fails for some i, then we generate new a and b vectors until they pass the

check. In practice, this check process does not noticeably impact the running time of the

algorithm. While we were unable to prove that this procedure gives us a uniform sampling

of the nested canalyzing functions, we were able to test it against known NCF counts and

properties [48], strongly indicating that our function generator is indeed random.

In the header file fpoly.h, Boolean functions are represented as polynomials via a

single vector, termvec, constructed using a random bit generator. This vector stores the

terms with coefficient one as integers. The binary representation of this integer corresponds

to the exponents on the variables for that term. For example, for n = 3, if termvec = [0, 2, 6],

then our function has three nonzero terms. The binary representation of 0, 000, gives the

term x03x
0
2x

0
1 = 1. The binary representation of 2, 010, gives x03x

1
2x

0
1 = x2. Finally the binary

representation of 6, 110, gives x13x
1
2x

0
1 = x3x2, so our function (represented as a polynomial

over F2) is 1 +x2 +x2x3. Note that for a Boolean function in n variables generated via this

procedure, each of the 2n possible terms is included in termvec with probability 1
2 . Hence,

each of the 22
n

possible Boolean functions is selected with probability
(
1
2

)2n
= 1

22n
, and so

our method is unbiased, assuming a truly random bit generator.

In [31], the authors provide a count for the number of NCFs in n variables. This

count is given by 2 · E(n), where

E(1) = 1, E(2) = 4,

and

E(n) =
n−1∑
r=2

(
n

r − 1

)
2r−1E(n− r + 1) + 2n.

Using this count, we determined that the probability Pn that a randomly generated Boolean
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n t Bool Mean NCF Mean Bool St Dev NCF St Dev

3 100000 1.9683 1.8003 1.0651 0.9313
4 100000 2.4866 1.9277 1.4934 1.0837
5 100000 3.1408 2.0787 1.9998 1.2386
6 100000 3.9897 2.2165 2.6721 1.3856
7 100000 5.1145 2.3525 3.4972 1.5410
8 10000 6.6044 2.4813 4.6545 1.6742
9 1000 8.6536 2.5685 6.2478 1.7138
10 100 10.8998 2.6231 6.9127 1.9040

Table 2.1: Simulation results: average cycle lengths

network is actually a NCF system is

Pn =

(
2E(n)

2(2n)

)n
.

Therefore, P3 ≈ 1.56 · 10−2, P4 ≈ 1.59 · 10−8, P5 ≈ 9.26 · 10−29, P6 ≈ 9.83 · 10−85, etc. Since

these probabilities rapidly approach zero, we did not check whether a randomly generated

Boolean network system is an NCF system during our simulations.

2.3 Results

The results of our simulations are summarized in the following tables and figures.

Table 2.1 records the means and standard deviations of the average cycle lengths for net-

works comprised of general Boolean functions and NCF networks. The mean average cycle

lengths for both the Boolean and NCF cases are plotted in Figure 2.4. Likewise, the

summary statistics for the heights of our networks are recorded in Table 2.2. Figure 2.5

compares the average network heights for networks in n = 3, 4, . . . , 10 variables.

Using these results, we performed hypothesis tests for each value of n to determine

whether the mean ACLs and heights for general Boolean networks are significantly greater

than for those of NCFs. For all cases except average heights where n = 3, the p-values for

these tests were less than 0.0001, indicating that our results are statistically significant.
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Figure 2.4: Average cycle lengths for Boolean functions and NCFs

n t Bool Mean NCF Mean Bool St Dev NCF St Dev

3 100000 1.1176 1.1225 0.6613 0.5653
4 100000 1.8503 1.6463 0.9823 0.6559
5 100000 2.8864 2.1236 1.4348 0.7694
6 100000 4.3610 2.5824 2.0850 0.8929
7 100000 6.4124 3.0180 2.9775 1.0206
8 10000 9.3551 3.4615 4.2908 1.1668
9 1000 13.3790 3.8806 6.0056 1.3515
10 100 18.8491 4.1838 9.1690 1.6476

Table 2.2: Simulation results: average heights
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Figure 2.5: Average heights for Boolean functions and NCFs

2.4 Conclusions

Based on our simulation results, we can conclude that the ACLs and average heights

for networks of general Boolean functions are significantly larger than those of NCF networks

in most of the cases we considered. These findings indicate that NCFs are more stable than

typical Boolean functions in the sense that they converge to smaller limit cycles and they

converge more quickly on average. Both of these findings seem to indicate that NCFs

possess special stability properties, making them appropriate models of biological systems.

The only case for which we did not see statistically significant results was the average

heights for n = 3. This result could be influenced by a number of factors. First of all, our

state space graph consists of only 23 = 8 states, so the graphs may be too small to detect

a significant difference in heights. Also, recall that P3, the probability that a randomly

generated network in three variables is an NCF network, is approximately 1.56 ·10−2. Since

NCF networks are much less rare for n = 3 than larger networks, the presence of NCF

systems by chance in our general Boolean trials is likely influencing our results.
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The study of other stability and state space graph properties could lead to further

discoveries regarding the dynamics of nested canalyzing functions. For instance, counting

the number of connected components or limit cycles in the state space graph could yield

significant results. Another gage of function utility may be through taking the maximums of

these measures instead of the averages. These observations, in conjunction with previously

discovered properties of nested canalyzing functions, indicate that NCFs are a promising

class of functions for the modeling of biological systems.
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Chapter 3

Nested Canalyzing Depth and

Network Stability

Submitted as a paper in 2011 with Elena Dimitrova and Matthew Macauley

3.1 Introduction

A large influx of biological data on the cellular level has necessitated the devel-

opment of innovative techniques for modeling the underlying networks that regulate cell

activities. Several discrete approaches have been proposed, such as Boolean networks [33],

logical models [53], and Petri nets [21]. In particular, Boolean networks have emerged as

popular models for gene regulatory networks [2, 42]. However, not all Boolean functions

accurately reflect the behavior of biological systems, and it is imperative to recognize classes

of functions with biologically relevant properties. One such notable class is the canalyzing

functions, introduced by Kauffman [33], whose behavior mirrors biological properties de-

scribed by Waddington [59]. The dynamics of Boolean networks constructed using these

functions are of great interest when determining their modeling potential. Random Boolean

networks constructed using such functions have been shown to be more stable than networks

using general Boolean functions, in the sense that they are insensitive to small perturba-
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tions [35]. Karlssona and Hörnquist [32] explore the relationship between the proportion of

canalyzing functions and network dynamics. In [35], the authors further expand the can-

alyzation concept and introduce the class of nested canalyzing functions (NCFs). In [36],

networks of NCFs are shown to exhibit stable dynamics. Also, Nikolajewa, et al. [48] divide

NCFs into equivalence classes based on their representation and show how the network

dynamics are influenced by choice of equivalence class.

Nested canalyzing functions have a very restrictive structure and become increas-

ingly sparse as the number of input variables increases [31]. Also, it is possible that not all

variables exhibit canalzying behavior. For instance, transcription factors in gene regulatory

networks likely display canalyzing behavior, while other proteins do not. Thus, situations

are certain to arise in which nested canalyzing functions do not fully capture the dynamics

of biological systems. For instance, the function in Example 13 cannot be represented as an

NCF regardless of the variable order. Hence, it is possible that NCFs may not fit a given

data set, and so a relaxation of the nested canalyzing function is necessary.

In this chapter, we further explore canalyzation by analyzing functions that retain a

partially nested canalyzing structure. We quantify the degree to which a function exhibits

this canalyzing structure by a quantity we call the nested canalyzing depth. Functions of

depth d generalize the nested canalyzing functions, because NCFs are the special case of

when d = k, where k is the number of Boolean variables. In Section 3.3, we demonstrate

notable properties of these partially nested canalyzing functions, and show that their rep-

resentation is unique. This leads to a theorem about the structure of functions of depth

d, which generalizes a result in [31] about NCFs. In Section 3.4, we compute the expected

activities and sensitivities of functions given their canalyzing depths, which are extensions

of results of Shmulevich and Kauffman [56] about activities and sensitivities of canalyzing

functions. We prove that as canalyzing depth increases, functions become less sensitive

to perturbations in the input; however, the marginal benefit incurred by adding further

canalyzing variables sharply decreases. As a result, functions of larger depth provide an

improvement in sensitivity over general canalyzing functions, but imposing a fully nested
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canalyzing structure provides little benefit over functions of sufficient canalyzing depth. Fi-

nally, in Section 3.5, we use Derrida plots to show that dynamics of networks constructed

using more structured functions rapidly approach the well-known critical regime, whereas

networks with functions of relatively few nested canalyzing variables remain in the chaotic

phase. This is in contrast to the findings of Kauffman et al. [36], but in agreement with re-

cent work of Peixoto [51], and it further supports the biological utility of certain canalyzing

functions.

3.2 Nested Canalyzing Depth

A Boolean function f(x) = f(x1, . . . , xk) is canalyzing if it has a variable xi for which

some input xi = ai implies f(x) = bi for some bi ∈ {0, 1}. In this case, xi is a canalyzing

variable, the input ai is its canalyzing value, and the output value bi when xi = ai is the

corresponding canalyzed value. Note that if f is constant, then every variable is trivially

canalyzing.

If a canalyzing variable xi does not receive its canalyzing input ai, then the output

is some function gi(x̂i), where x̂i = (x1, . . . , xi−1, xi+1, . . . , xk). If gi is constant, xi is called

a terminal canalyzing variable of f . Note that for each i 6= j, xj is then trivially canalyzing

in gi.

If gi is not constant, we ask whether it too is canalyzing. If so, there is a canalyzing

variable xj with canalyzing input aj , and when xj 6= aj , the output of f is a function

gij(x̂ij), which may or may not be canalyzing. Here, x̂ij denotes x with both xi and xj

omitted. Eventually, this process will terminate when the function g is either constant or

no longer canalyzing.

Definition 7. Let f(x1, . . . , xk) be a Boolean function. Suppose that for a permutation
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σ ∈ Sk, some d ∈ N, d > 0 and a Boolean function g(xσ(d+1), . . . , xσ(k)),

f =



b1 xσ(1) = a1

b2 xσ(1) 6= a1, xσ(2) = a2

b3 xσ(1) 6= a1, xσ(2) 6= a2, xσ(3) = a3
...

...

bd xσ(1) 6= a1, . . . , xσ(d−1) 6= ad−1, xσ(d) = ad

g xσ(1) 6= a1, . . . , xσ(d) 6= ad

(3.1)

where either xσ(d) is a terminal canalyzing variable (and hence g is constant), or g is non-

constant and none of the variables xσ(d+1), . . . , xσ(k) are canalyzing in g. Then f is said

to be a partially nested canalyzing function. The integer d is called the active canalyzing

depth of f , and the (full) nested canalyzing depth of f is d if g is non-constant, and k

otherwise. The sequence xσ(1), . . . , xσ(d) is called a canalyzing sequence for f .

If we speak of simply the “canalyzing depth” or “depth” of a function, we are

referring to the full nested canalyzing depth. In the next section, we will show that the

depth is well-defined, i.e., that it does not depend on the choice of σ ∈ Sk. The class

of nested canalyzing functions (NCFs) [31, 35] are precisely those with active depth k. A

constant function (all 2k entries in the truth table are the same) is not an NCF by the

classical definition, but changing a single value in the truth table suddenly makes it nested

canalyzing. In our set-up, both of these functions have full depth k. Note that constant

functions have active depth 0. For completeness, we will say that a non-canalyzing function

has canalyzing depth 0.

Canalyzing and nested canalyzing functions have been used in gene network models

because they possess biologically relevant features [59]. For example, in a gene regulatory

network, a collection of k genes that affect the expression level of a particular gene can

be modeled with a k-variable Boolean function. While it is believed that some of these

relationships are canalyzing (e.g., if A is expressed, then B is not expressed, regardless of
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the states of the other genes), it is unreasonable to expect that all relevant genes will act

in a nested canalyzing manner. Thus, when reverse engineering a biological network with

partial data, the rigid NCF structure is restrictive and likely inappropriate to model the

behavior of the system. Also, the number of NCFs becomes rapidly sparse in the number

of Boolean functions as k increases. For instance, the proportion of NCFs in 6 variables is

on the order of 10−15 [31]. Because of this sparsity, it is unlikely that a nested canalyzing

function fits a give data set. We will show why functions with less than full canalyzing

depth exhibit nearly identical key features as NCFs with regards to activities, sensitivities,

and stability, promoting their potential use in biological models.

Example 12. Let f(x1, x2, x3) = x2∨(¬x1∧x3). Then f is canalyzing in x2 with canalyzing

input a1 = 1 and canalyzed output b1 = 1. Moreover, f can be expressed as follows:

f(x1, x2, x3) =



1 if x2 = 1

0 if x2 6= 1, x1 = 1

0 if x2 6= 1, x1 6= 1, x3 = 0

1 if x2 6= 1, x1 6= 1, x3 6= 0

.

Thus, f has full and active depth 3, and so it is nested canalyzing in the variable order

σ = (2, 1, 3).

Example 13. Let f(x1, x2, x3, x4) = x2∧(¬x1(∧(x3 XOR x4))). Then x2 and x1 are nested

canalyzing variables with a1 = a2 = 1, b1 = 1, and b2 = 0. Also, g(x1, x4) = x1 XOR x4 is

not canalyzing in either variable, so f is a PNCF of depth 2.

3.3 Properties of Partially Nested Canalyzing Functions

Proposition 1. Let f(x) be a k-variable Boolean function. Then

(i) If xi = ai implies f(x) = bi, and xi 6= ai leaves gi(x̂i), then at least half of the truth

table values of f must be bi.
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(ii) If exactly half the truth table values of f are bi, then either xi is terminally canalyzing,

or f is a non-canalyzing function.

Proof. The statement in (i) follows because xi = ai for exactly half of the input values in

the truth table. The corresponding output value must bi for at least these inputs. To show

(ii), suppose that f is canalyzing, and xi = ai implies f(x) = bi. By (i), xi 6= ai implies

f(x) = ¬bi. Therefore, g(x̂i) is constant and xi is terminally canalyzing.

The canalyzing depth of a function can be computed in a divide-and-conquer manner

described in Algorithm 1. The algorithm scans the truth table for a canalyzing variable,

and upon finding one, removes the columns for which the canalyzing variable takes the

canalyzing input value. This is repeated until no more canalyzing variables are present or a

constant function remains. Proposition 1 and the structure of the truth table imply that if

there is a tie for b, then there is a terminally canalzying variable or there are no canalyzing

variables. Therefore, it is not necessary to test both b and ¬b as possible canalyzed values.

In the execution of the algorithm, we set a flag whenever a tie for canalyzed value arises.

Algorithm 1.

1. Set d = 0. For i = 1 . . . k − 1 :

(a) Set b = 0, flag = 0. Let ` be the number of ones in the truth table.

• If ` == 2k−i+1 return k. // Constant function remains

• If ` == 2k−i, set flag = 1. // Tie in output value

• If ` > 2k−i, b = 1.

(b) For remaining k − i+ 1 variables in truth table:

i. Let x be the number of input ones and y the number of input zeros that give

output b.

ii. • If x == 2k−i, the current variable is canalyzing with input 1 and output

b. Remove canalyzing rows and current variable from truth table and

break out of loop.
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• If y == 2k−i, the current variable is canalyzing with input 0 and output

b. Remove canalyzing rows and current variable from truth table and

break out of loop.

(c) If no variables were found to be canalyzing, return d; else d++.

(d) If flag == 1, return k. // Constant function remains

2. Return k.

Note that it takes exponential time simply to view the entire truth table of f ;

however, the algorithm is linear in the size of the table. Indeed, the ith step of Algorithm 1

takes (k − i) · 2k−i steps, and so the running time is

k∑
i=1

(k − i)2k−1 ≤ k · 2k
(

1 +
1

2
+

1

4
+ . . .

)
= O

(
k · 2k

)
.

We can use Algorithm 1 to show that our definition of canalyzing depth is well-defined.

First, we need a result about the struture of functions with a given canalyzing depth. This

is a generalization of a theorem in [31] on nested canalyzing functions.

Theorem 1. Let yi = xσ(i) + ai + bi, 1 ≤ i ≤ d and let

f(x1, . . . , xk) = y1♦1(y2♦2(. . . (yd♦dg(xσ(d+1), . . . , xσ(k))) . . .)), (3.2)

where

♦i =

 ∨ if bi = 1

∧ if bi = 0
,

ai, bi ∈ {0, 1} for 1 ≤ i ≤ d, and

(i) None of the variables xσ(d+1), . . . , xσ(k) are canalyzing in g, or

(ii) g is a constant function.
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Then f has canalyzing depth d, with canalyzing sequence xσ(1), . . . , xσ(d). These variables

have canalyzing values a1, . . . , ad and canalyzed values b1, . . . , bd. Furthermore, any function

of canalyzing depth d can be represented in this form.

The aforementioned result in [31] is the special case of Theorem 1 when f is nested

canalyzing. In this case,

f(x1, . . . , xk) = y1♦1(y2♦2(· · · (yk−1♦k−1yk) · · ·)).

Proposition 1 and our previous observations indicate that in case of a tie in potential can-

alyzed values, we cannot make a “wrong” choice for b in the execution of Algorithm 1.

Hence, to show that the depth is unique, it suffices to show that if there are multiple cana-

lyzing variables at a given iteration, the depth does not depend on our choice of canalyzing

variable.

Proposition 2. The nested canalyzing depth computed using Algorithm 1 yields a unique

answer.

This result follows from symmetry and structure of the truth table, as well as Propo-

sition 1. It is now easy to see that the nested canalyzing structure introduced in Equation 3.1

is well-defined since the remaining function g is unique.

3.4 Activities and Sensitivities

In this section we compute the expected activities and sensitivities of functions based

on their canalyzing depth, and in the next section we will tie these results to the stability of

Boolean networks based on the canalyzing depth of the individual functions. Let x ∈ {0, 1}k,

and write xj,i = (x1, . . . , xj−1, i, xj+1, . . . , xk) and let ⊕ be the XOR function. The partial

derivative of f(x1, . . . , xk) with respect to xj is

∂f(x)

∂xj
= f(xj,0)⊕ f(xj,1).
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The activity (or influence) of a variable xj in f is

αfj (x) =
1

2k

∑
x∈{0,1}k

∂f(x)

∂xj
(3.3)

and the sensitivity of f is defined by

sf (x) =

k∑
i=1

χ [f(x⊕ ei) 6= f(x)] ,

where ei is the ith unit vector and χ is an indicator function. The activity αfj quantifies how

often toggling the jth bit of x toggles the output of f , and the sensitivity sf (x) measures

the number of ways that toggling a bit of x toggles the output of f . The average sensitivity

of f is the expected value of sf (x) taken uniformly over all x ∈ {0, 1}k, i.e.,

sf = E
[
sf (x)

]
=

k∑
i=1

αfi . (3.4)

In [56], Shmulevich and Kauffman show that a random unbiased Boolean function

in k variables has average sensitivity k
2 . Also, they prove that for an unbiased canalyz-

ing function (i.e., depth at least 1) with canalyzing variable x1, the expected activities of

(x1, . . . , xk) are given by

E
[
αf
]

=

(
1

2
,
1

4
,
1

4
, . . . ,

1

4

)
, (3.5)

and hence the average sensitivity is sf = k+1
4 . The following theorem extends this to

functions of arbitrary canalyzing depth.

Theorem 2. Let f be a Boolean function in k variables with nested canalyzing depth at least

d. Renumbering the variables if necessary, assume that x1, . . . , xd is a canalyzing sequence.

Then, if we assume a uniform distribution on the function inputs, the expected activities of

the variables (x1, . . . , xk) are given by

E
[
αf
]

=

(
1

2
,
1

4
, . . . ,

1

2d
,

1

2d+1
, . . . ,

1

2d+1

)
. (3.6)
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Furthermore, the expected sensitivity of f is

E
[
sf
]

=
k − d
2d+1

+
d∑
i=1

1

2i
=
k − d
2d+1

+ 1− 1

2d
. (3.7)

Proof. Since we are assuming a uniform distribution on the function inputs, for any variable

xj , 1 ≤ j ≤ k, we can think of the activity of xj as the probability that changing the input

to the xj changes the function output. That is,

αfj (x) =
1

2k

∑
x∈{0,1}k

∂f(x)

∂xj

= P (f(x⊕ ej) 6= f(x)).

Now, if xj is a canalyzing variable, we know by Equation 3.1 that if at least one of

x1, . . . , xj−1 gets its canalyzing input, the input to xj cannot affect the function output

and this probability is 0. Hence, we have

αfj = P (f(x⊕ ej) 6= f(x))

= P (f(x⊕ ej) 6= f(x)|x1 6= a1, . . . , xj−1 6= aj−1)P (x1 6= a1, . . . , xj−1 6= aj−1).

Since each canalyzing variable receives its canalyzing input with probability 1
2 ,

P (x1 6= a1, . . . , xj−1 6= aj−1) =

(
1

2

)j−1
.

Also, since f is a random, unbiased function,

P (f(x⊕ ej) 6= f(x)|x1 6= a1, . . . , xj−1 6= aj−1) =
1

2
.

Therefore,

αfj =
1

2
· 1

2j−1
=

1

2j
.

Alternatively, if xj is a non-canalyzing variable, the input to xj is only relevant
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when none of the canalyzing variables x1, . . . xd get their canalyzing inputs. Using a similar

argument as above, we see that

αfj = P (f(x⊕ ej) 6= f(x))

= P (f(x⊕ ej) 6= f(x)|x1 6= a1, . . . , xd 6= ad)P (x1 6= a1, . . . , xd 6= ad)

=
1

2
· 1

2d

=
1

2d+1
.

Equation 3.7 now follows from Equation 3.4.

Note that an alternative proof for this theorem follows via induction on d, with Equation 3.5

as a base case, following an argument similar to that in [56].

By Theorem 2, the average sensitivity of a function decreases as the depth increases.

However, the differences in sensitivity become increasingly smaller, and are precisely

E[sfd ]− E[sfd+1 ] = 1− 1
2d

+ k−d
2d+1 − 1 + 1

2d+1 − k−d−1
2d+2

= k−d−1
2d+2 ≥ 0 , when k − d ≥ 1 .

Observe that this quantity rapidly goes to zero, and so each subsequent canalyzing variable

has a much smaller impact on the sensitivity. Thus, the difference in sensitivity between fully

nested canalyzing functions and partially nested canalyzing functions of sufficient depth is

very slight. For example, Tables 3.1 and 3.2 give the expected sensitivities for PNCFs with

k = 6 and k = 12, respectively.

Table 3.1: Expected sensitivities for PNCFs in 6 variables of various depths
d 0 1 2 3 4 5 6

E
[
sfd
]

3.0000 1.7500 1.2500 1.0625 1.0000 0.9844 0.9844
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Table 3.2: Expected sensitivities for PNCFs in 12 variables of various depths
d 0 2 4 6 8 10 12

E
[
sfd
]

6.0000 2.0000 1.1875 1.0313 1.0039 1.0000 0.9998

3.5 Stability and Criticality vs. Canalyzing Depth

Boolean networks created using classes of functions with a lower sensitivity have

been shown to be more dynamically ordered than those with a higher sensitivity [56]. This

stability is an important feature of biologically relevant functions, and so it is essential to

determining the utility of such functions as biological models. In order to quantify the

extent to which functions with larger depth (and hence smaller sensitivity) result in more

dynamically stable Boolean networks, we constructed random Boolean networks composed

of PNCFs of varying depth. We used the annealed approximation mean-field theory due

to [14] and Derrida curves to display the results. The curves are defined as follows. Let

x1(t) and x2(t) be two states in a random Boolean network, and define ρ(t) to be the

normalized Hamming distance, i.e., ρ(t) = 1
n · ||x

1(t)− x2(t)||1, where || · ||1 is the standard

`1 metric. The Derrida curve is a plot of ρ(t + 1) versus ρ(t) averaged uniformly over

different states and networks. If the curve for small values of ρ(t) lies below the line y = x,

then small perturbations are likely to die out, and the network is said to be in the frozen

phase. The phase spaces of frozen networks consist of many fixed points and small attractor

cycles. If the curve lies above the line y = x, then small perturbations generally propagate

throughout the network, and the network is said to be in the chaotic phase, characterized by

long attractor cycles. The boundary threshold between these two is the well-known critical

phase [18]. It has been recently suggested [4, 49, 50, 57] that many biological networks tend

to lie in the critical phase, as these systems must be stable enough to endure changes to

their environment, yet flexible enough to adapt when necessary.

We constructed ensembles of randomly wired networks with n = 100 nodes, each

with a randomly chosen Boolean function with k = 12 variables. We chose the individual

functions by sampling uniformly across the class of PNCFs of depth at least d, for d =

33



0, 2, 4, . . . , 12. We will refer to such a network as a depth-d network. To sample uniformly

across all PNCFs of depth at least d, we used a random number generator to select d nested

canalyzing variables, and a permutation σ of these variables. We then used a random

bit generator to select the canalyzing values a1, . . . , ad and canalyzed values b1, . . . bd. We

had a potential bias in our function selection arising from the fact that if �i = �i+1 (or

equivalently, bi = bi+1, as bi determines �i), then interchanging σ(i) with σ(i+ 1) does not

change the function. To eliminate this bias, we only allowed functions where σ(i−1) < σ(i)

whenever �i−1 = �i for i = 2, . . . , d − 1. Finally, we used a random bit generator to

determine the function in the remaining k− d variables. Our sampling method for creating

the random networks is similar to [56]. For each d, we created 25 random Boolean networks

using functions of said depth and sampled from each network. Since ρ(t+ 1) is determined

experimentally, we computed it as the sample mean, sampled over the depth-d random

networks for each depth. We also constructed Derrida curves using the sampling method

described in [34], which generated nearly identical results. The resulting Derrida curves are

shown in Figure 3.1.

The Derrida curves corresponding to networks constructed using functions of larger

depth show more orderly dynamics than those of smaller depth. This reaffirms the idea

in [56] that sensitivity of a function is an indicator of the dynamical stability of networks

constructed with these functions. The curves move closer together as the depth increases.

For example, the depth-2 networks are much more stable than the depth-0 networks, and

networks with functions of depth at least 4 are even more stable; however, the marginal

benefit of stability as depth increases drops off sharply – the Derrida curves are nearly iden-

tical for networks with functions of depth 4, 6, 8, 10, and 12. This matches our theoretical

results of Theorem 2 on expected activities and sensitivities and illustrates how the earlier

canalyzing variables have a much greater influence. It also suggests that there is little ben-

efit in imposing the full nested canalyzing structure in network models, as functions with

large enough canalyzing depth exhibit very similar stability results without the rigidity of

being fully nested canalyzing. Additionally, for small values of ρ(t), the curves quickly

34



Figure 3.1: Derrida curves for random Boolean networks with n = 100 nodes and k = 12
inputs per function.
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approach the line y = x from above, indicating that these networks rapidly move from the

chaotic phase toward the critical phase. This is contrary to the claim of [35] that networks

comprised of canalyzing functions are always in the frozen phase, but it is in alignment

with recent findings of [51] which also refute Kauffuman’s claim, accrediting his results to

his choice in parametrization.

3.6 Concluding Remarks

Canalyzing and nested canalyzing functions have been proposed as gene network

models because they exhibit biologically relevant properties. While it is reasonable to ex-

pect some Boolean models to have functions with some degree of nested canalyzation, fitting

biological data to fully nesting canalyzing functions can be at times artificial, and at other

times simply incorrect. Our analysis of the depth that a function retains a canalyzing struc-

ture elucidates the role of canalyzation in the dynamics of networks over these functions.

Our results on the structure of PNCFs generalize known results on NCFs, and our results

on the activities and sensitivities of variables in functions of a given depth generalize sim-

ilar theorems of simple canalyzing functions. Moreover, we saw that in random Boolean

networks, the stability increases with canalyzing depth. However, the marginal gain in sta-

bility drops off quickly, in that the stability of our networks with functions of depth at least

d = k
3 were nearly identical to those with full depth d = k. Additionally, just a few degrees

of canalyzation are necessary to drop the network into the critical regime, in which many

real networks are believed to exist. Together, this suggests that using NCFs in biological

models for stability reasons is not only at times rather contrived, but simply unnecessary.
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Chapter 4

Reverse Engineering with Partially

Nested Canalyzing Functions

4.1 Introduction

Modeling the dynamic behavior of biochemical networks has emerged as a fundamen-

tal problem in systems biology. Several discrete frameworks have been proposed as network

models, including Petri nets [21], Logical models [53], and Boolean networks [2, 42]. In

2004, Laubenbacher and Stigler introduced a revolutionary reverse engineering algorithm

for gene regulatory networks using tools and algorithms from computational algebra [40].

Given discretized gene expression data in a discrete time series, the algorithm finds all poly-

nomial dynamical systems satisfying a minimality criterion that fit the data. We will focus

on Boolean networks, which are a special case of these polynomial models.

One key deficiency of the Laubenbacher and Stigler algorithm is that any Boolean

function may be chosen to be a network model. In order to obtain a more biologically

relevant model, we would like to restrict our search to only include Boolean functions

whose behavior mimics real biological networks. To this end, Kauffman [33] introduced the

canalyzing functions due to their biologically relevant properties. For instance, Boolean

networks constructed from canalyzing functions are less sensitive to network perturbations
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than random Boolean networks [35, 56]. The nested canalyzing functions, an extension

of the canalyzing functions, were introduced in [35] and were shown to be more stable

than general Boolean functions in [36]. Also, in Chapter 2, we showed via simulation that

networks constructed using canalyzing functions are more stable than general Boolean net-

works in the sense that they converge more quickly and to smaller limit cycles on average.

Hinkelmann and Jarrah [27] designed an algorithm to reverse engineer gene regulatory net-

works using only nested canalyzing functions. In Chapter 3, we introduced a generalization

of the nested canalyzing functions, the partially nested canalyzing functions, characterized

by their depth, or degree to which they exhibit a nested canalyzing behavior. We showed

that as the depth increases, the activities of the variables decreases, as well as the expected

sensitivities of the functions. Also, when constructing networks restricted to PNCFs, the

Derrida curves for these networks approach the biologically relevant critical regime of dy-

namics. We observed diminishing returns as function depth increases, implying that fully

nested canalyzing functions, whose structure is more rigid than PNCFs, are not necessary

to achieve desirable stability properties. In this chapter, we will introduce a method for

reverse engineering gene regulatory networks using partially nested canalyzing functions.

4.2 Reverse Engineering Algorithms

A polynomial dynamical system (PDS) is a map

F = (f1, . . . , fn) : Fn → Fn,

where F is a finite field, typically Fp, n is the number of nodes (genes) in the network, and

each fi is a polynomial in n variables of degree at most p− 1. We will focus on the Boolean

case where p = 2. Given a time series of r data points s1, . . . , sr ∈ Fn2 , our goal is to find

biologically relevant Boolean networks such that

F (si) = (f1(si), . . . , fn(si)) = si+1, 1 ≤ i ≤ r − 1. (4.1)
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4.2.1 Laubenbacher-Stigler Algorithm

In [40], the authors introduce a reverse engineering algorithm for gene networks using

polynomial dynamical systems. Given a time series of data s1, . . . , sr ∈ Fn, their algorithm

finds all polynomials f1, . . . , fn ∈ F[x1, . . . , xn] such that (4.1) holds. The algorithm consists

of three steps:

1. Find an interpolating polynomial f0i ∈ F[x1, . . . , xn], for each i, 1 ≤ i ≤ n.

2. Compute the ideal I of functions that vanish on the data.

3. Reduce f0i with respect to I to obtain fi for i = 1, . . . , n.

The interpolating polynomial in Step 1 is analogous to a particular solution and may be

computed using one of several common methods. The authors present a method based on

the Chinese Remainder Theorem, which they utilize in their applications.

Note that if two interpolating polynomials, say fi and gi, exist for some node i, then

fi(sj) = gi(sj) = sj+1 for 1 ≤ j ≤ r − 1. This means that the difference between these

functions is 0 on the data. Therefore, to find all functions that fit the data, we must find

the set of vanishing polynomials on the data, which may be found by computing the ideal

of points. Observe that for a data point si = {si1, . . . , sin}, the ideal Ii of polynomials that

vanish on si is as follows

Ii = 〈x1 − si1, . . . , xn − sin〉.

Now, the ideal of points I of all functions that vanish on the data is

I =
r⋂
i=1

Ii.

We now have all interpolating functions for each node i, which may be expressed as f0i +

I. Recall that f0i is analogous to a particular solution, so I may be thought of as the

homogeneous solutions.
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Finally, each f0i is reduced with respect to I to obtain fi. This is done by computing

a Gröbner basis for I and then finding the normal form for f0i with respect to the Gröbner

basis. As a result, we can write f0i = fi + g for g ∈ I. The authors give two advantages

for this method. First, the output does not depend on our selection of an interpolating

polynomial in Step 1, as any two interpolating polynomials will have the same reduction

modulo I. Second, fi is minimal with respect to I, and since g vanishes on the data, the

state transition function for node i is simply fi.

The authors state that the complexity of the algorithm is

O
(
n2r2

)
+O

(
(r3 + r)(log p)2 + r2n2

)
+O

(
n(r − 1)2cr+r−1

)
,

where n is the number of nodes in the network, r is the number of data points in the time

series, p is the order of the field, and c is a constant. The first expression is the time it

takes to compute interpolating polynomials for all n nodes. The second expression gives the

computation time for computing the Gröbner basis for I. In general, the worst-case running

time for a Gröbner basis computation is thought to be exponential; however, since I is an

ideal of points, this can be reduced using methods described in [1]. The final expression,

which is the bottleneck in the algorithm, is the complexity of reducing all n interpolating

polynomials modulo I, and is exponential in the number of data points.

This algorithm has two notable drawbacks. First, the Gröbner basis is dependent

on the choice of monomial ordering, which results in multiple possible solutions. To remedy

this problem, a Gröbner fan method has been proposed that finds the most likely model

among different monomial orderings [15]. Another considerable disadvantage with this

method is that any function in F[x1, . . . , xn] fitting the data may be selected as a network

model. We would like to restrict the model space to only include functions whose behavior

reflects that of real biological systems. For instance, as the nested canalzying functions

seem to exhibit biologically relevant properties, restricting our search to only include NCFs

would potentially lead to more realistic network models. In the following sections, we will
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explore reverse engineering methods that only include nested and partially nested canalyzing

functions due to their biologically significant stability properties.

4.2.2 NCF Algorithm

Canalyzing functions were introduced by Kauffman [33], which reflect the behavior

of biological systems described by Waddingdon [59]. Specifically, Waddington introduced

the term “canalization” to describe the ability of a genotype to yield the same phenotype

despite variations in the environment. Mathematically speaking, a function f(x1, . . . , xn)

is said to be canalyzing if there exists a variable xi, 1 ≤ i ≤ n and values a, b ∈ {0, 1}

such that f(x1, . . . , xi−1, a, xi+1, . . . , xn) = b regardless of the inputs to the other variables.

In [35], the authors introduce the nested canalyzing functions (NCFs), which specify how to

proceed if the canalyzing variable xi does not receive its canalyzing input a. The definition

and examples of nested canalyzing functions are found in Chapter 2.

We now introduce a characterization of NCFs introduced in [31] that gives rise

to a reverse engineering algorithm. The ring of Boolean functions has been shown to be

isomorphic to the ring R = F2[x1, . . . , xn]/〈x2i : 1 ≤ i ≤ n〉. Also, given a fixed ordering of

the monomials in this ring, any element in R may be expressed as a point in F2n
2 as follows

∑
S⊆[n]

cS
∏
i∈S

xi ↔ (c∅, . . . , c[n]),

where [n] = {1, 2, . . . , n} and the cS values correspond to the monomial coefficients. Now,

the representation of the nested canalyzing functions as an algebraic variety follows from

the subsequent results of [31].

Definition 8. Let σ ∈ Sn and for elements i and j of [n], define <σ by σ(i) <σ σ(j) if and

only if i < j. For S ⊆ n, let rσS be the maximum element of S with respect to σ. Then the

completion of S with respect to σ is given by [rσS ] = {σ(1), . . . , σ(rσS)}.

Theorem 3. Let f ∈ R and σ ∈ Sn. Then f is a nested canalyzing function with respect
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to σ if and only if c[n] = 1 and for any S ⊆ [n],

cS = c[rσS ]
∏

σ(i)∈[rσS ]\S

c[n]\{σ(i)}.

Now, for a fixed permutation σ ∈ Sn, the variety of all nested canalyzing functions

with respect to σ is

V ncf
σ = {(c∅, . . . , c[n]) ∈ F2n

2 : c[n] = 1, cS = c[rσS ]
∏

σ(i)∈[rσS ]\S

c[n]\{σ(i)}, for S ⊆ [n]}.

Jarrah et al. also show that the variety of nested canalyzing functions in n variables is

V ncf =
⋃
σ

V ncf
σ [31].

In [28], the authors show that ideal I
(
V ncf
σ

)
in the ring F2[{cS : S ⊆ [n]}] given by

I
(
V ncf
σ

)
= 〈c[n] = 1, cS = c[rσS ]

∏
σ(i)∈[rσS ]\S

c[n]\{σ(i)} : S ⊆ [n]〉

is a toric ideal. In addition, the ideal of the variety V ncf is

I
(
V ncf

)
=
⋂
σ

I
(
V ncf
σ

)
[28].

Based on these results, Hinkelmann and Jarrah propose the following reverse en-

gineering algorithm using NCFs [27]. Given time series data and a wiring diagram, the

algorithm finds all nested canalzying functions that fit the data. If the wiring diagram is

unknown, algorithms exist for building one from data itself. In general, finding a wiring

diagram that is minimal in the sense that it excludes redundant input variables is NP-

hard [37]; however, these computations are more manageable in practice due to the sparsity

of most biological networks [29]. A method for finding all minimal wiring diagrams that is

independent of the selection of monomial ordering is presented in [29].
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Based on the ideal of points, the authors construct an ideal ID of interpolating

polynomials for the data set D. Then the points in V(ID) are the models f + I that

fit the data, as in [40]. Further details on the construction of ID may be found in [27].

They compute a Gröbner basis G for ID and concatenate the generators of G with those

of I
(
V ncf

)
. Finally, they compute the primary decomposition of G+ I

(
V ncf

)
to acquire

the result. While the authors do not explicitly state the complexity of the algorithm, the

bottlenecks appear to be the Gröbner basis computation and the primary decomposition.

4.3 PNCF Algorithm

4.3.1 Partially Nested Canalyzing Functions

While the nested canalyzing functions are excellent candidates for modeling biolog-

ical networks due to their desirable stability properties and convenient ideal representation,

situations are certain to arise in which not all genes behave in a nested canalyzing fashion

or an NCF simply does not fit the data. For example, consider the sample data in Table 4.1.

The expression level of the x4 output depends on those of x1, x2, and x3. Observe that

x1 is canalyzing with canalyzing input 1 and canalyzed output 0. When this variable does

not receive its canalyzing input, the remaining data in x2 and x3 is not canalyzing in either

variable, thus violating the conditions for an NCF. In this case, it would be necessary to fit

a PNCF to the data. Therefore it is imperative to consider a relaxation of the nested cana-

Table 4.1: Sample data that is inconsistent with an NCF
x1 x2 x3 x4 output

1 0 0 0
0 0 1 1
0 0 0 0
0 1 1 0
1 1 0 1
0 1 0 0

lyzing functions, called the partially nested canalyzing functions (PNCFs) whenever the full

nested canalyzing conditions do not hold. Recall from Chapter 3 the following definition
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and examples of PNCFs.

Definition 9. Let f(x1, . . . , xn) be a Boolean function. Suppose that for a permutation

σ ∈ Sn, some d ∈ N, d > 0 and a Boolean function g(xσ(d+1), . . . , xσ(n)),

f =



b1 xσ(1) = a1

b2 xσ(1) 6= a1, xσ(2) = a2

b3 xσ(1) 6= a1, xσ(2) 6= a2, xσ(3) = a3
...

...

bd xσ(1) 6= a1, . . . , xσ(d−1) 6= ad−1, xσ(d) = ad

g xσ(1) 6= a1, . . . , xσ(d) 6= ad

(4.2)

where either xσ(d) is a terminal canalyzing variable (and hence g is constant), or g is non-

constant and none of the variables xσ(d+1), . . . , xσ(n) are canalyzing in g. Then f is said

to be a partially nested canalyzing function. The integer d is called the active canalyzing

depth of f , and the (full) nested canalyzing depth of f is d if g is non-constant, and k

otherwise. The sequence xσ(1), . . . , xσ(d) is called a canalyzing sequence for f .

Example 14. Let f(x1, x2, x3) = x2∨(¬x1∧x3). Then f is canalyzing in x2 with canalyzing

input a1 = 1 and canalyzed output b1 = 1. Moreover, f can be expressed as follows:

f(x1, x2, x3) =



1 if x2 = 1

0 if x2 6= 1, x1 = 1

0 if x2 6= 1, x1 6= 1, x3 = 0

1 if x2 6= 1, x1 6= 1, x3 6= 0

.

Thus, f has full and active depth 3, and so it is nested canalyzing in the variable order

σ = (2, 1, 3).

Example 15. Let f(x1, x2, x3, x4) = x2∧(¬x1(∧(x3 XOR x4))). Then x2 and x1 are nested

canalyzing variables with a1 = a2 = 1, b1 = 1, and b2 = 0. Also, g(x1, x4) = x1 XOR x4 is

not canalyzing in either variable, so f is a PNCF of depth 2.

44



In Chapter 3, we also introduced the following theorem, which is an extension of

a result of [31]. This representation will give us some intuition when devising a reverse

engineering algorithm for PNCFs.

Theorem 4. Let yi = xσ(i) + ai + bi, 1 ≤ i ≤ d and let

f(x1, . . . , xn) = y1♦1(y2♦2(. . . (yd♦dg(xσ(d+1), . . . , xσ(n))) . . .)), (4.3)

where

♦i =

 ∨ if bi = 1

∧ if bi = 0
,

ai, bi ∈ {0, 1} for 1 ≤ i ≤ d, and

(i) None of the variables xσ(d+1), . . . , xσ(n) are canalyzing in g, or

(ii) g is a constant function.

Then f has canalyzing depth d, with canalyzing sequence xσ(1), . . . , xσ(d). These variables

have canalyzing values a1, . . . , ad and canalyzed values b1, . . . , bd. Furthermore, any function

of canalyzing depth d can be represented in this form.

4.3.2 Algorithm Description

Using the NCF algorithm in [27] and the ideal of points method described in [40], we

have devised an algorithm for the reverse engineering of networks using PNCFs. As input,

we require a minimal wiring diagram, a discretized time series of network data, D, and the

a list L of nested canalyzing inputs for each variable. This list may be found through prior

knowledge of the system, or by restrictions in the data. If multiple possibilities exist, then

the algorithm may be run multiple times using the different sets of canalyzing variables to

obtain more possible solutions.

We begin by constructing a reduced wiring diagram. To do so, for each node in

the wiring diagram, we remove all inputs not in L, the non-canalyzing inputs. Based on
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this reduced wiring diagram, we partition the data points in our time series as follows.

By the minimality of our wiring diagram, removing any inputs from our diagram, in this

case the non-canalyzing variables, should result in inconsistencies in our data. If removing

these variables does not result in inconsistencies, then our function only depends on the

canalzying variables, thus violating our minimality assumption. Therefore, we partition

D into points DL that are consistent with the canalyzing variables and therefore may be

described using the variables in L, and the points D \ DL that are inconsistent with the

canalyzing variables, and therefore must be a function of the non-canalyzing variables.

Example 16. Suppose in Table 4.2, our canalyzing variables are x1 and x2. Note that

if we remove x3 and x4 from the wiring diagram, our network is inconsistent as the input

(x1, x2) = (0, 0) gives both 0 and 1 as output. Therefore, these data points must be explained

by the non-canalzying variables x3 and x4, and are therefore included in the partition D\DL.

Table 4.2: Sample time series data for Example 16
x1 x2 x3 x4 output

0 0 0 0 0
0 0 0 1 1

We then run the Hinkelmann and Jarrah algorithm on the partition DL to obtain

an ideal I of NCFs that interpolate the points that can be explained by the canalyzing

variables. Finally, we run the Laubenbacher and Stigler algorithm on the partition D \DL

to obtain an ideal J that interpolates the remaining data points. Based on Theorem 4, a

PNCF model that fits the data will be of the form f♦dg where f ∈ I and g ∈ J . Note that

this list is not exhaustive, as we must specify the canalyzing variables as input. Alternative

models may be found by varying these canalyzing variables as well as the function depth.

A summary of our algorithm is as follows.

Algorithm 2. Given minimal wiring diagram W , list Li of canalyzing for each variable xi,

discretized time series data D,

For each variable xi:

46



1. Eliminate inputs in W not included in Li to obtain reduced wiring diagram Wr

2. Using Wr, partition D into DLi and D \DLi

3. Run Hinkelmann-Jarrah algorithm on DLi and Wr and obtain all NCFs that fit this

partition of the data, I

4. Run Laubenbacher-Stigler algorithm on D \ DLi and obtain all functions that fit the

remaining data, J

5. PNCF interpolating polynomial is of the form fi = f♦dg, where f ∈ I, g ∈ J

The bottlenecks for this algorithm are finding the minimal wiring diagram if it is

unknown, and running the Hinkelmann-Jarrah and Laubenbacher-Stigler algorithms on the

partitioned data. The stability properties of partially nested canalyzing functions and our

ability to reverse engineer networks using this class of functions establishes and confirms

their utility as biological network models.
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Chapter 5

Conclusions and Discussion

5.1 Significance of Results

In this work, we have discussed two classes of Boolean functions with biologically

significant properties that make them excellent candidates for the modeling of biological

networks. In Chapter 2, we studied the nested canalyzing functions and their stability

properties. We introduced two measures for analyzing network stability, the average height,

which measures the average number of time steps until the system converges, and the

average cycle length, which measures the length of the average limit cycle. We found that,

on average, the nested canalyzing functions produced more stable networks with regard to

these two measures than the general Boolean case in almost every case we considered. Our

statistical analysis confirmed that our results are statistically significant.

In Chapter 3, we defined a new class of functions, the partially nested canalyzing

functions, and analyzed their stability. The PNCFs are a necessary relaxation of the NCFs,

as an NCF may not always fit the data, or may not reflect the experimentally observed

behavior of the system under consideration. The PNCFs are characterized by their depth,

which measures the extent to which the functions obtain the nested canalyzing structure.

We introduced some properties of PNCFs and proved that the function depth is unique,

regardless of the variable order. We were able to determine the activities of the variables
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of partially nested canalyzing functions of depth at least d. We used this count to derive

an expression for the expected sensitivities of PNCFs and found that increasing function

depth decreases the expected sensitivity. Moreover, we found that the differences in ex-

pected sensitivities of functions of depth d and those of depth d+ 1 rapidly approach zero,

so enforcing the rigid NCF structure is simply unnecessary. This observation is consistent

with our intuition, as the first canalyzing variables are more influential on the function out-

put. We applied PNCFs of varying depths to random Boolean networks and found similar

patterns in the Derrida curves. As the depth increased, the functions rapidly approached

the critical regime of stability, which is thought to be where many biological systems lie.

Finally, in Chapter 4, we introduced a method for the reverse engineering of biolog-

ical networks using partially nested canalyzing functions. Given a minimal wiring diagram,

a discretized time course of network data, and a list of nested canalyzing inputs for each

variable, we designed an algorithm to produce PNCF models that interpolate the data.

5.2 Future Work

The application of nested and partially nested canalyzing functions to biological

networks is a blossoming field, so there is still much work to be done in this area of research.

Our work in Chapter 2 motivates us to continue exploring other measures of stability

for NCFs. Perhaps studying the number of fixed points or the number of connected compo-

nents in the network could lead to interesting NCF properties. Alternative measures, such

as the maximum cycle length or height could also yield significant results. We could explore

how changing the function depth affects the network stability according to these measures.

Ultimately, the development of concrete formulas or expressions for these measures, similar

to the expected sensitivities formula, would be desirable.

In Chapter 3, we could explore how varying the distribution on the inputs in the

wiring diagram affects the stability of our networks. In all of our Derrida plots, we used a

constant number of inputs per function. In the future, we could impose a uniform, power
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law, or exponential distribution on the inputs and observe the effects on stability. We

could also apply these distributions to our methods in Chapter 2. In addition, the results

in this chapter were based on two key assumptions. For the nested canalyzing portion of

the function in x1, . . . , xd, we assumed that all NCFs can occur with equal probability.

In [35, 36], the authors select NCFs for their random networks according to a probability

distribution. This distinction could perhaps explain the discrepancies between their stability

results and those in Chapter 3. While they claim that networks constructed using NCFs

are always stable, our Derrida plots indicate that these networks in fact lie in the critical

regime. Second, we assumed that the remaining function in xd+1, . . . , xk was unbiased, i.e.

that the probability p of a value of 1 in the truth table was 0.5. The dynamics of biased

networks are discussed, for example, in [14]. In the future, studying the effects of varying

the probability distributions on the selection of NCFs and the bias of the remaining function

could lead to a more complete understanding of function dynamics.

In Chapter 4, the most important area of future study is reducing the algorithm

inputs. We would like to build the network from the time series data without requiring

prior knowledge of the canalyzing variables. Ideally, we would like to be able to generate

all PNCFs of a given depth that fit the data without having to rerun the algorithm using

each combination of canalyzing variables.

There are many extensions of this work that are applicable to all of the ideas that

we have discussed. For instance, in [12, 11], the authors provide a definition of nested

canalyzing functions over general fields. We could extend this definition to include partially

nested canalyzing functions and explore the stability properties of NCFs and PNCFs in

this broader framework. We could study the ideal of NCFs over a general field and develop

reverse engineering algorithms for this case. Another interesting direction of study is that

of binary decision diagrams. While the connection between unate cascade functions and

nested canalyzing functions has been established, no implications regarding this result have

been confirmed. For instance, does average path length on a binary decision diagram imply

function stability? How does relaxing the nested canalyzing condition (i.e. to PNCFs)
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affect the binary decision diagram? Are there alternative relaxations of NCFs that are

more meaningful in terms of their binary decision diagrams? Also, all of our results were

based on deterministic Boolean networks with parallel updating schemes. Certainly these

methods could be applied to probabilistic Boolean networks and/or sequential dynamical

systems.

While we have provided a basis for the study of NCFs and PNCFs as Boolean net-

work models, there are still many directions to explore. We hope that the results presented

in this work are a source of motivation for continuing the application and study of these

promising classes of functions.
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Appendix A Header Files for NCF Simulations

A.1 NCF Class

The header file (fncf.h) for nested canalyzing functions used the in simulations for

Chapter 2 is as follows.

#ifndef FNCF H

#define FNCF H

#include<vector>

#include<iostream>

#include<c s t d l i b>

using namespace std ;

class f n c f {

public :

// Constructor ; input : number o f v a r i a b l e s

f n c f ( int n){

numvars = n ;

// F i l l s in sigma

for ( int i =0; i<numvars ; i++) sigma . push back ( i ) ;

while (1){

// Creates random permutat ion sigma

permute ( ) ;

/∗ F i l l s in a and b vec tor s , which s t o r e c a n a l y z i n g

i n p u t s and o u t p u t s ∗/

for ( int i =0; i<numvars ; i ++){
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a . push back ( rand ()%2) ;

b . push back ( rand ()%2) ;

}

/∗Check f u n c t i o n e l i m i n a t e s b i a s in f u n c t i o n g e n e r a t i o n ;

i f check f a i l s , we s t a r t over ∗/

i f ( check ( ) ) return ;

else {

a . r e s i z e ( 0 ) ;

b . r e s i z e ( 0 ) ;

}

}

}

/∗V e r i f i e s t h a t sigma (n−1)<sigma (n) when b (n−1)=b (n) to

e l i m i n a t e b i a s in f u n c t i o n g e n e r a t i o n ∗/

int check ( ){

int hold = numvars−2;

i f ( sigma [ numvars−1] < sigma [ numvars−2]) return 0 ;

while ( hold >= 1){

i f ( ( b [ hold]==b [ hold −1]) && ( sigma [ hold ]< sigma [ hold −1])){

return 0 ;

}

hold−−;

}

return 1 ;

}

// Generates a random permutat ion o f the v a r i a b l e s
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void permute ( ){

for ( int j=numvars−1; j>=0; j−−){

swap ( sigma [ j ] , sigma [ rand ()%( j + 1 ) ] ) ;

}

}

/∗Eva lua tes the f u n c t i o n ; input : i n t e g e r r e p r e s e n t a t i o n o f

p o i n t a t which f u n c t i o n i s to be e v a l u a t e d ∗/

int n c f e v a l ( int x ){

int ans , t , index = numvars−1;

ans = ( x >> sigma [ index ] ) & 1 ;

ans = ( ans + a [ index ] + b [ index ] ) & 1 ;

index−−;

while ( index >= 0){

t = ( x >> sigma [ index ] ) & 1 ;

t = ( t + a [ index ] + b [ index ] ) & 1 ;

i f (b [ index ] ) ans |= t ;

else ans &= t ;

index−−;

}

return ans ;

}

/∗Prin t s the f u n c t i o n ; t a k e s i n t e g e r input as index f o r

s t a t e t r a n s i t i o n f u n c t i o n in an FDS∗/

void p r i n t f n ( int i t e r ){

int index = 0 ;

cout << ’ f ’ << i t e r << ” = ( ” ;
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while ( index < numvars ){

i f ( ( a [ index ]+b [ index ])%2) {

cout << ” (˜ x” << sigma [ index ]+1 << ’ ) ’ ;

}

else cout << ’ x ’<< sigma [ index ]+1;

i f ( index < numvars−1){

i f (b [ index ] ) cout << ”+(” ;

else cout << ” ∗( ” ;

}

index++;

}

for ( int i =0; i<numvars ; i++) cout << ’ ) ’ ;

cout << endl ;

}

private :

/∗ S t o r e s number o f v a r i a b l e s , permutat ion o f the v a r i a b l e s ,

c a n a l y z i n g i n p u t s and o u t p u t s ∗/

int numvars ;

vector<int> sigma , a , b ;

} ;

#endif

A.2 Boolean Function Class

The header file (fpoly.h) for Boolean functions used in the simulations for Chapter 2

is as follows. Functions are represented as polynomials over F2.

#ifndef FPOLY H
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#define FPOLY H

#include<vector>

#include<iostream>

#include<c s t d l i b>

using namespace std ;

class f p o l y {

public :

// Constructor ; input : number o f v a r i a b l e s

f p o l y ( int n){

numvars = n ;

int maxterms = (1<<n ) ;

for ( int i =0; i<maxterms ; i ++){

i f ( rand ()%2) termvec . push back ( i ) ;

}

}

/∗Eva lua tes the f u n c t i o n ; input : i n t e g e r r e p r e s e n t a t i o n o f

p o i n t a t which f u n c t i o n i s to be e v a l u a t e d ∗/

int po lyeva l ( int x ){

int ans = 0 ;

for ( int i =0; i< termvec . s i z e ( ) ; i ++){

i f ( ( termvec [ i ]&x ) == termvec [ i ] ) ans++;

}

return ( ans &1);

}
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/∗Prin t s the f u n c t i o n ; t a k e s i n t e g e r input to p r i n t

as a s t a t e t r a n s i t i o n f u n c t i o n in an FDS∗/

void p r i n t f n ( int i t e r ){

int f l a g = 0 ;

cout << ’ f ’ << i t e r << ” = ” ;

for ( int i =0; i<termvec . s i z e ( ) ; i ++){

i f ( f l a g++>0) cout << ” + ” ;

// Constant term

i f ( termvec [ i ] == 0){

cout << ”1” ;

continue ;

}

// Pr in t s each term

int hold = termvec [ i ] , f l a g 1 = 0 ;

for ( int j =0; j<numvars ; j++){

i f ( hold &1){

i f ( f l a g 1++>0) cout << ’ ∗ ’ ;

cout << ”x” << j +1;

}

hold >>=1;

}

}

cout << endl ;

}

private :

/∗ S t o r e s the number o f v a r i a b l e s and the terms with
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c o e f f i c i e n t 1∗/

int numvars ;

vector<int> termvec ;

} ;

#endif
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Appendix B Header File for PNCF Simulations

The header file (ald.h) for partially nested canalyzing functions of depth at least d

used to create the Derrida plots in Chapter 3 is as follows. Boolean functions are represented

by their truth tables, which are stored as integer maps. While this construction is not as

efficient as possible storage-wise, it allows for very efficient function evaluation, which is

important in our simulations. Boolean networks are stored using a vector of ald’s for

the state transition functions and a matrix of integers for the wiring diagram. For each

node in the network, its index in the ald vector gives its state transition function, and its

corresponding row in the matrix stores its inputs in the wiring diagram.

#ifndef ALD H

#define ALD H

#include<map>

#include<vector>

#include<iostream>

#include<c s t d l i b>

#include<ctime>

using namespace std ;

typedef map<int , int> intmap ;

typedef intmap : : i t e r a t o r mapitr ;

class a ld {

public :

// Constructor ; input : number o f v a r i a b l e s and depth

a ld ( int n , int d){
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numvars = n ;

depth = d ;

int expn = (1<<numvars ) ;

i f ( depth > n | | depth < 0 | | depth == n−1){

c e r r << ” Improper value o f d” << endl ;

return ;

}

else i f ( depth == 0){

for ( int i =0; i<expn ; i ++){

t a b l e [ i ] = rand ()%2;

}

}

else {

while (1){

// Pick d nes ted c a n a l y z i n g v a r i a b l e s

for ( int i =0; i<numvars ; i++) sigma . push back ( i ) ;

permute ( ) ;

for ( int i=numvars−1; i>depth−1; i−−){

// notsigma s t o r e s noncana lyz ing v a r i a b l e s

notsigma . push back ( sigma . back ( ) ) ;

sigma . pop back ( ) ;

}

// S e l e c t c a n a l y z i n g input / output v a l u e s

for ( int i =0; i<depth ; i ++){

a . push back ( rand ()%2) ;

b . push back ( rand ()%2) ;

}

/∗Check f u n c t i o n e l i m i n a t e s b i a s ; i f check f a i l s , we
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s t a r t over ∗/

i f ( check ( ) ) break ;

else {

a . c l e a r ( ) ;

b . c l e a r ( ) ;

sigma . c l e a r ( ) ;

notsigma . c l e a r ( ) ;

}

}

// Creates ”empty” t r u t h t a b l e

for ( int j =0; j<(1<<numvars ) ; j++) ta b l e [ j ] = −1;

// F i l l s in t r u t h t a b l e

f i l l t a b l e ( ) ;

}

}

/∗V e r i f i e s t h a t sigma (n−1)<sigma (n) when b (n−1)=b (n) to

e l i m i n a t e b i a s in f u n c t i o n g e n e r a t i o n ∗/

int check ( ){

i f ( depth < 3) return 1 ;

int hold = depth−2;

i f ( sigma [ depth−1] < sigma [ depth −2]) return 0 ;

while ( hold >= 1){

i f ( ( b [ hold]==b [ hold −1]) && ( sigma [ hold ]< sigma [ hold −1])){

return 0 ;

}

hold−−;

}
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return 1 ;

}

// Permutes the v a r i a b l e s

void permute ( ){

for ( int j=numvars−1; j>=0; j−−){

swap ( sigma [ j ] , sigma [ rand ()%( j + 1 ) ] ) ;

}

}

// F i l l s in t r u t h t a b l e output v a l u e s

void f i l l t a b l e ( ) {

int t s i z e = t a b l e . s i z e ( ) ;

// F i l l s in c a n a l y z i n g t r u t h t a b l e output v a l u e s

for ( int i =0; i<depth ; i ++){

mapitr t t i t r ;

for ( t t i t r = t a b l e . begin ( ) ; t t i t r != t a b l e . end ( ) ; t t i t r ++){

i f ( ( (∗ t t i t r ) . second == −1) &&

( ( ( t t i t r −> f i r s t )>>sigma [ i ] )&1) == a [ i ] ) {

t t i t r −>second = b [ i ] ;

}

}

}

// F i l l s in remaining t r u t h t a b l e v a l u e s

for ( int i =0; i<t s i z e ; i ++){

i f ( t a b l e [ i ] == −1) t a b l e [ i ] = rand ()%2;

}

}
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// Pr in t s t r u t h t a b l e

void p r i n t a l d ( ){

mapitr p i t r ;

for ( p i t r = t ab l e . begin ( ) ; p i t r != t ab l e . end ( ) ; p i t r ++){

/∗ f o r ( i n t i=numvars−1; i>=0; i−−){

cout << ( ( ( p i t r−> f i r s t )>> i )&1);

}∗/

cout << p i t r−>second << ’ ’ ;

}

cout << endl ;

}

private :

// S t o r e s number o f v a r i a b l e s , f u n c t i o n depth

int numvars , depth ;

// S t o r e s the t r u t h t a b l e

intmap t a b l e ;

/∗ S t o r e s permutat ion o f c a n a l y z i n g v a r i a b l e s , c a n a l y z i n g

i n p u t s and outputs , and noncana lyz ing v a r i a b l e s ∗/

vector<int> sigma , a , b , notsigma ;

} ;

#endif
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Appendix C Code for Creating Derrida Plots

The C++ code for creating the Derrida Plots in Chapter 3 is included. Inputs are

k, or number of inputs per function, d, the depth of each function, and t, the number of

trials. This code creates 25 random Boolean networks, each with 100 nodes and k inputs per

node, and uses functions of depth at least d. For each network, it selects t points. For each

point, it finds a random permutation of the point, stores the normalized Hamming distance

p(t) between the points, evaluates the points, and stores the normalized Hamming distance

p(t+ 1) between the evaluated points. It then computes the mean and standard deviation

for each value of p(t) over all points and networks. We created alternative versions of this

code using different methods described in the literature and obtained analogous results.

#include<c s t d l i b>

#include<map>

#include<iostream>

#include<vector>

#include<c s td io>

#include<cmath>

#include<fstream>

#include” ald . h”

using namespace std ;

typedef map<int , int> intmap ;

typedef vector<vector<int> > matrix ;

typedef vector<int> i n tv e c ;

typedef vector<vector<f loat> > f l m a t r i x ;

typedef vector<intmap> mapvec ;

typedef map<int , int > : : i t e r a t o r mapitr ;
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typedef vector<f loat> f l v e c ;

void f i l l v a r s ( matrix &, int , int ) ;

void permute ( i n tve c &, int , int stop = 0 ) ;

void f i l l f u n s ( mapvec &, int , int , int ) ;

void f i l l c o u n t s ( f l m a t r i x &, f l m a t r i x &, matrix ,

mapvec , int , int , int ) ;

void pr in t ( f l m a t r i x &, f l v e c &, int , o f s t ream &);

int hamming( intvec , intvec , int ) ;

void po in t s ( i n tv e c &, in tve c &, int ) ;

i n tv e c eva luate ( matrix &, mapvec &, i n tve c &, int , int ) ;

int main ( int argc , char ∗∗ argv ){

srand ( time ( 0 ) ) ;

i f ( argc < 3){

c e r r << ”Usage : k d t ” << endl ;

return −1;

}

/∗k = number o f i n p u t s per funct ion ,

d = depth o f each funct ion ,

n = number o f v a r i a b l e s in RBN,

t = number o f t r i a l s ,

net = number o f networks to genera te

∗/

int k , d , n=100 , t , net =25;

s s c a n f ( argv [ 1 ] , ”%d” , &k ) ;

s s c a n f ( argv [ 2 ] , ”%d” , &d ) ;

s s c a n f ( argv [ 3 ] , ”%d” , &t ) ;
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char b u f f e r [ 2 5 6 ] ;

s p r i n t f ( bu f f e r , ” kauffman %d . txt ” , d ) ;

o f s tream o u t f i l e ( b u f f e r ) ;

o u t f i l e << ”x = [ ” ;

for ( int i =0; i<=n ; i ++){

o u t f i l e << i ∗ ( 1 . 0 ) / n << ’ ’ ;

}

o u t f i l e << ” ] ; ” << endl ;

// Input v a r i a b l e s f o r each f u n c t i o n

o u t f i l e << ” Derr ida curve f o r ” << n << ” v a r i a b l e s ; ” ;

o u t f i l e << k << ” inputs per v a r i a b l e ; ” ;

o u t f i l e << ” f u n c t i o n s o f depth ” << d << endl ;

f l m a t r i x counts (n+1);

f l m a t r i x va lue s (n+1);

f l v e c stdev (n+1);

// Index i s p ( t )∗n ( non−normal ized Hamming d i s t a n c e )

// counts [ i ] [ 0 ] i s sum o f p ( t +1)∗n f o r p ( t )∗n = i

// counts [ i ] [ 1 ] i s number o f t r i a l s f o r which p ( t )∗n = i

for ( int i =0; i<=n ; i ++){

counts [ i ] . r e s i z e ( 2 ) ;

counts [ i ] [ 0 ] = counts [ i ] [ 1 ] = 0 ;

va lue s [ i ] . r e s i z e ( 0 ) ;

s tdev [ i ] = 0 ;

}

// Creates and c o l l e c t s data on net networks

for ( int g=0; g<net ; g++){

// S t o r e s the input v a r i a b l e s f o r each node
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matrix inva r s (n ) ;

//Randomly f i l l s the input v a r i a b l e s

f i l l v a r s ( invars , n , k ) ;

// S t o r e s s t a t e t r a n s i t i o n f u n c t i o n s f o r each node

mapvec f u n c t i o n s (n ) ;

/∗Randomly f i l l s the s t a t e t r a n s i t i o n f u n c t i o n s us ing

a l d c l a s s ∗/

f i l l f u n s ( func t i ons , n , k , d ) ;

// C o l l e c t s data on the network

f i l l c o u n t s ( counts , values , invars , funct i ons , n , k , t ) ;

}

//Computes sample means f o r each v a l u e o f p ( t )

for ( int i =1; i<=n ; i ++){

counts [ i ] [ 0 ] /= counts [ i ] [ 1 ] ;

}

//Computes sample s tandard d e v i a t i o n s f o r each v a l u e o f p ( t )

for ( int l =0; l<=n ; l ++){

f loat sigma = 0 ;

for ( int j =0; j<va lue s [ l ] . s i z e ( ) ; j++){

sigma += pow( va lues [ l ] [ j ] − counts [ l ] [ 0 ] , 2 ) ;

}

stdev [ l ] = s q r t ( sigma /( counts [ l ] [ 1 ] − 1 ) ) ;

}

pr in t ( counts , stdev , n , o u t f i l e ) ;

return 0 ;

}
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/∗Randomly a s s i g n s the input v a r i a b l e s f o r each node ;

each node has k i n p u t s ∗/

void f i l l v a r s ( matrix &invars , int n , int k ){

stat ic i n tv e c temp ;

i f ( temp . empty ( ) ){

for ( int i =0; i<n ; i++) temp . push back ( i ) ;

permute ( temp , n ) ;

}

//Each node g e t s k i n p u t s

for ( int j =0; j<n ; j++){

permute ( temp , n , n−k ) ;

for ( int l =0; l<k ; l++) inva r s [ j ] . push back ( temp [ n−l −1 ] ) ;

}

}

// Permutes a v e c t o r o f i n t e g e r s

void permute ( i n tve c &temp , int n , int stop ){

for ( int j=n−1; j>=stop ; j−−){

swap ( temp [ j ] , temp [ rand ()%( j + 1 ) ] ) ;

}

}

//Randomly a s s i g n s s t a t e t r a n s i t i o n f u n c t i o n to each node

void f i l l f u n s ( mapvec &funct i ons , int n , int k , int d){

for ( int i =0; i<n ; i ++){

a ld temp (k , d ) ;

f u n c t i o n s [ i ] = ( temp . t a b l e ) ;

}
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}

// Picks a random p o i n t x1 and p e r t u r b s i t to o b t a i n x2

void po in t s ( i n tv e c &x1 , i n tve c &x2 , int n){

x1 . c l e a r ( ) ;

x2 . c l e a r ( ) ;

for ( int i =0; i<n ; i ++){

// S e l e c t s a random p o i n t x1

x1 . push back ( rand ()%2) ;

x2 . push back ( x1 [ i ] ) ;

}

// S e l e c t s number o f b i t s o f x1 to f l i p

int b f l i p s = ( rand()%n)+1;

// S e l e c t s which b i t s o f x1 to f l i p

i n tv e c temp ;

for ( int m=0; m<n ; m++) temp . push back (m) ;

permute ( temp , n ) ;

/∗ F l i p s the s e l e c t e d b i t s and s t o r e s the p e r t u r b e d

p o i n t as x2∗/

for ( int j =0; j<b f l i p s ; j ++){

x2 [ temp [ j ] ] = ( x1 [ temp [ j ] ]+1)%2;

}

}

void f i l l c o u n t s ( f l m a t r i x &counts , f l m a t r i x &values , matrix invars ,

mapvec funct i ons , int n , int k , int t ){

//Two p o i n t s used to c a l c u l a t e p ( t ) and p ( t +1)

i n tv e c x1 , x2 ;
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for ( int t r i a l = 0 ; t r i a l <t ; t r i a l ++){

//Randomly s e l e c t s p o i n t x1 and p e r t u r b a t i o n x2

po in t s ( x1 , x2 , n ) ;

//Computes and s t o r e s Hamming d i s t a n c e between x1 and x2

f loat rhot = hamming( x1 , x2 , n ) ;

counts [ rhot ] [ 1 ] += 1 ;

// Eva luate x1 , x2 us ing s t a t e t r a n s i t i o n f u n c t i o n s

i n tv e c x1e = eva luate ( invars , func t i ons , x1 , n , k ) ;

i n tve c x2e = eva luate ( invars , func t i ons , x2 , n , k ) ;

//Computes Hamming d i s t a n c e between e v a l u a t e d p o i n t s

f loat rhot1 = hamming( x1e , x2e , n ) ;

// S t o r e s normal ized Hamming d i s t a n c e

counts [ rhot ] [ 0 ] += rhot1 /n ;

va lue s [ rhot ] . push back ( rhot1 /n ) ;

}

}

//Computes Hammning d i s t a n c e between p o i n t s vec1 and vec2

int hamming( in tve c vec1 , i n tv e c vec2 , int n){

int ans = 0 ;

for ( int i =0; i<n ; i ++){

ans += ( vec1 [ i ] + vec2 [ i ] )%2;

}

return ans ;

}

// Pr in t s mean normal ized Hamming d i s t a n c e s and standard d e v i a t i o n s
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void pr in t ( f l m a t r i x &counts , f l v e c &stdev , int n ,

o fstream &o u t f i l e ){

o u t f i l e << ”y = [ ” ;

for ( int j =0; j<=n ; j ++){

// Normalized Hamming d i s t a n c e s

o u t f i l e << counts [ j ] [ 0 ] << ’ ’ ;

}

o u t f i l e << ” ] ; ” << endl ;

o u t f i l e << ” stdev = [ ” ;

for ( int j =0; j<=n ; j ++){

o u t f i l e << stdev [ j ] << ’ ’ ;

}

o u t f i l e << ” ] ; ” << endl ;

}

// Eva lua tes Boolean network at a p o i n t p

i n tv e c eva luate ( matrix &invars , mapvec &funct i ons ,

i n tve c &p , int n , int k ){

i n tv e c ans (n ) ;

for ( int l =0; l<n ; l ++){

int pnt = 0 ;

for ( int r =0; r<k ; r++){

pnt |= (p [ i nva r s [ l ] [ r ]])<< r ;

}

ans [ l ] = f u n c t i o n s [ l ] [ pnt ] ;

}

return ans ;

}
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