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Abstract

The field of meta-materials engineering has largely expanded mechanical design pos-

sibilities over the last two decades; some notable design advances include the systematic

engineering of negative Poisson’s ratio materials and functionally graded materials, materi-

als designed for optimal electronic and thermo-mechanical performances, and the design of

materials under uncertainty. With these innovations, the systematic engineering of materi-

als for design-specific uses is becoming more common in industrial and military uses. The

motivation for this body of research is the design of the shear beam for a non-pneumatic

wheel. Previously, a design optimization of a finite element model of the non-pneumatic

wheel was completed, where a linear elastic material was simulated in the shear beam to

reduce hysteretic energy losses. As part of the optimization, a set of optimal orthotropic

material properties and other geometric properties were identified for the shear beam. Given

that no such natural linear elastic material exists, a meta-material can be engineered that

meets these properties using the aforementioned tools. However, manufacturing constraints

prevent the use of standard homogenization analysis and optimization tools in the engineer-

ing of the shear beam due to limitations in the accuracy of the homogenization process for

thin materials.

In this research, the more general volume averaging analysis is shown to be an

accurate tool for meta-material analysis for engineering thin-layered materials. Given an

accurate analysis method, several optimization formulations are proposed, and optimality

conditions are derived to determine the most mathematically feasible and numerically reli-

able formulation for topology optimization of a material design problem using a continuous
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material interpolation over the design domain. This formulation is implemented to engi-

neer meta-materials for problems using the volume averaging analysis, which includes the

use of variable linking and the derivation of first-order design sensitivities to increase com-

putational efficiency. Inspired by honeycomb materials, a new method of discretizing the

material design domain into unit cells with non-simple connectivity is proposed as a way of

increasing the solution space of the topology optimization problem. Finally, these methods

are used in the meta-material design process to identify several candidate meta-material

geometries from a polycarbonate base material for the shear layer of the non-pneumatic

wheel; notable geometries include an ‘x’-like geometry, a bent column-like geometry iden-

tified previously as a bristle, and, remarkably, an auxetic honeycomb geometry. This is

the first reported result demonstrating the auxetic honeycomb geometry to be a minimum

weight structure in shear loading where a general topology optimization method was used.
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Chapter 1

Introduction

1.1 Overview of Meta-Materials Design by Topology Opti-

mization

Topology optimization, a field of structural optimization, has become a useful tool

in recent years with the increase in usage of optimization in design. Topology optimization

is concerned with the optimal distribution of material in an object that will be subjected

to an external excitation (mechanical, electric, magnetic, etc.) to have a desired response.

Topology optimization in the mechanical field is commonly divided into several sub-

fields, including, but not limited to minimum compliance (stiffness design) topology opti-

mization, compliant (flexibility design) topology optimization, and design of meta-materials

(targeting desired design properties). Figure 1.1 depicts the minimum compliance design

of a control arm subjected to several independent loads [1]. A finite element solver is used

as to analyze the stresses and strains on the control arm, which iterates with the topology

optimization program to determine the optimal distribution of material for the final design.

Figure 1.2 depicts a two-dimensional model of a half of a compliant gripper designed

using compliant topology optimization [2]. Here the structure is purposely built to deform

in a flexible manner to meet some target displacement given a set of specified input loads

and boundary conditions.

1



Figure 1.1: A control arm (right) developed using Altair Optistruct from the input finite
element design (left). [1]

Figure 1.2: The optimal distribution of material for half of a compliant gripper designed
using compliant topology optimization (right), given the design domain subject to loading
and boundary conditions (left). [2]

The subfield of meta-material optimization is concerned with local optimization of a

material to have mechanical (or other properties) required by a global design. Typically, the

global material is part of a larger assembly, and this larger assembly has one or more design

goals (i.e., maximum displacement, constraints on a traction profile, minimum energy loss)

to be achieved. The global design is optimized with a homogeneous material in place of

the meta-material, and the material properties are treated as optimization design variables

of the global optimization. These optimal properties are then passed to a meta-material

optimization method that will determine the optimal material distribution to achieve the

desired material properties via topology optimization. This process is depicted in Figure 1.3.

Meta-material topology optimization has been the most actively researched of the aforemen-

tioned subfields in recent years, as the design methodology has been used in the design of

lightweight composites and periodic structures. The analytical workhorse of meta-material

optimization, asymptotic (or inverse) homogenization, is built from a mathematical theory

that requires global scaling and local sizing constraints be met. In particular, the unit cell

(UC), which is the fundamental building block of a periodic material, must be much smaller
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Figure 1.3: System optimization to meta-material optimization loop. [3]

than the scaling lengths of the material comprised of the UC structure. Currently, this as-

sumption inherently limits meta-material optimization methods to those design problems

that meet the assumptions of homogenization theory, while there is a knowledge gap for

those meta-material problems that do not meet the limiting criteria.

This research focuses on extending the meta-material topology algorithm to ma-

terials that do not meet the constraining assumptions of asymptotic homogenization. In

particular, the design of meta-materials for use in layered composites serves as good exam-

ple. By also stretching and shrinking the aspect ratios of the periodic cells constituting the

meta-material composites, basic homogenization assumptions are violated [4], [5]. However,

a less traditional, but theoretically simpler, analytical method based on averaging properties

of heterogeneous materials places no constraining assumptions on the meta-material design.

This methodology has the disadvantage of being much more computationally expensive than

homogenization, but it has been shown to be accurate in cases in which homogenization is

inaccurate. By comparing asymptotic homogenization results to this averaging analysis, the

fidelity of asymptotic homogenization outside of its assumptions can be directly evaluated.

In validating any multi-level optimization method, the consistency of the global

and local must also be evaluated: the performance of the global design, not the stand-alone
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meta-material, is the chief concern of the design engineer [6]. Given this, the homogenization

and averaging analyses can be evaluated to see which methods lead to meta-materials that

perform as expected when placed in global assemblies. The demonstrated achievement

or failure to achieve global design goals of these meta-material analyses are viewed as the

primary evidence substantiating or disproving the validity of a particular method for specific

design uses.

Given analytical methods with fidelity both inside and outside of asymptotic homog-

enization limits, several other important questions about analysis and optimization can be

asked. Questions about the periodicity and connectivity of the individual cells constituting

the meta-material lattice arise from considering different regular structures that appear in

nature. For example, it is not obvious that structures with different connectivity can be an-

alyzed using the same analytical methods. Also, a careful review of the literature indicates

a difficulty in obtaining multiple meta-material properties via multi-criteria topology opti-

mization methods; however, it is not unexpected to have a meta-material design problem

highly sensitive to more than one meta-material property.

1.2 Motivation

The original wheel for the passenger car was invented at a time when rough roads

and road obstacles were a norm. This meant a wheel had to be able to roll over larger

obstacles (e.g., large stones) while providing adequate comfort for passengers. However,

now that smoother roads are a norm, energy losses due to the resistance in rolling (collec-

tive cyclic losses of a loaded wheel) have become a more important design consideration.

The motivating case for this body of research, the non-pneumatic wheel has two major

advantages over its pneumatic counterparts: the elimination of tire inflation issues in daily

operation equates to less energy loss due to under-inflation of the wheel, and eliminating the

pneumatic aspect allows decoupling of key performance characteristics, possibly increasing

the available design space for the wheel [7].
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Figure 1.4: The major components of the non-pneumatic wheel. A rigid hub has been
chosen since the publication of the preliminary design depicted here. The geometric design
of the shear beam is the primary motivation for this research. [7]

1.2.1 The Non-Pneumatic Wheel Concept

The non-pneumatic wheel (Figure 1.4) presents a difficult optimization problem:

design a shear beam that is capable of transmitting torque from inner radius to outer

radius that will deform under cyclic loading to minimize total energy loss while maintaining

an acceptable pressure distribution at the contact patch between the ground surface and

the wheel. When an elastomeric material is used in the shear beam, approximately 50% of

the energy input into driving the non-pneumatic wheel is lost internally as the shear beam

deforms while passing through the contact patch (Figure 1.5). This energy loss is primarily

a result of the hysteretic loss of the elastomer in cyclic loading [8], [9]. One way to reduce

this rolling resistance is to use a linear elastic material in the shear beam in place of the

elastomer. The theoretical hysteric energy losses in the shear beam, depicted in Figure 1.6,

are reduced to zero by using the elastic material over the elastomeric material [9].

While it is clear that using a linear elastic material in the shear beam would re-

duce the rolling resistance of the non-pneumatic wheel, what is not clear is whether the

performance characteristics of the viscoelastic shear beam can be met using a linear elastic

material. The Ashby material selection chart (Figure 1.7) gives a more realistic depiction

of material choices that can be made to meet the design needs [10]. The loss coefficient η
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Figure 1.5: (Left) Non-pneumatic wheel model in deflection. (Right) Portion of continuous
shear beam at contact patch. The solid gray portion is the beam under no loading, while
the dashed lines show the contact portion under deflection. [7]

Figure 1.6: (Left) Theoretical, hysteretic stress-strain curve of an elastomeric material. The
energy loss is the area between the two lines. (Right) Theoretical, hysteretic stress-strain
curve of a linear elastic material. There is no theoretical energy loss. [11]

is plotted against the Young’s modulus E for different classes of materials. An elastomeric

material such as the one used initially in the shear beam has a very low Young’s modulus

but also a high loss coefficient. A linear elastic material (such as metals and some polymers)

has a loss coefficient one to two orders of magnitude lower than elastomers.

However, the Young’s moduli for these materials are two to three orders of magnitude

too large to meet the elastomer values. Given that the polymer and metal properties shown

in this chart are for homogeneous materials, it is reasonable to expect that, by designing a

non-homogeneous meta-material out of a metal or polymer using topology optimization, the

Young’s moduli and shear modulus of the meta-material can be reduced the several orders

of magnitude necessary to meet design needs without a large compromise in loss coefficient.
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Figure 1.7: Ashby material selection chart depicting loss coefficient versus Young’s modulus.
[10] The meta-material design goal for the non-pneumatic wheel is the area shown within
the box.

One example of a non-homogeneous shear beam termed the bristle geometry is shown

in (Figure 1.8). Lowe et al. [12] show that a shear beam containing material continuously

throughout exhibits a greater energy loss than a shear beam with bristle geometry. While

this design is not necessarily the optimal design, the authors show the benefit in reduction

of energy loss in the beam for non-continuous material geometries.

1.2.2 Global Optimization Model and Results

Thyagaraja [11] and Thyagaraja et al. [13] present the two-dimensional, global finite

element analysis (FEA) and optimization model for the non-pneumatic wheel (Figure 1.9).

The non-pneumatic wheel undergoes a static, linear deflection in which the central hub is

displaced by a specified distance. In the shear beam, a homogenous, linear, orthotropic

material is modeled as a substitute for the meta-material shear beam. The global model is

optimized by minimizing the difference between a targeted shear strain of the shear beam
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Figure 1.8: Shear beam model with a bristle geometry. [12]

and the maximum shear strain subject to contact pressure and material constraints. This

is done because the goal is to replace the elastomeric shear beam, which has a high loss

coefficient but also large shear strain before yield, with a polymer or metallic shear beam

of equivalent maximum shear strain and much lower loss coefficient. The contact pressure

and material constraints are included to account for ride comfort, road noise and road wear

requirements.

Design variables of the optimization include the material parameters of the or-

thotropic shear beam material, material properties of inner and outer inextensible mem-

branes, the in-plane thickness of the shear beam slThk and the thicknesses of the inner and

outer inextensible membranes iiemThk and oiemThk, as indicated in Figure 1.9.

The in-plane, orthotropic material properties (which can be found in composites

materials texts [14], [15]) of the homogenous shear beam follow the constitutive relation


σ22

σ33

σ23

 =


Q22 Q23 0

Q23 Q33 0

0 0 Q66



ε22

ε33

ε23

 (1.1)

where σij represent the tensile and shear stresses, respectively, εij represents the tensile

and shear strains, and Qij are the components of the linear constitutive tensor. (Tensor
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Figure 1.9: Non-pneumatic wheel parameters and design variables for global analysis and
optimization. [11]

symmetries have been assumed in the Eq. 1.1.) The components Qij have the form

Q22 =
E22

1− ν23ν32
(1.2)

Q33 =
E33

1− ν23ν32
(1.3)

Q23 =
ν32E22

1− ν23ν32
=

ν23E33

1− ν23ν32
(1.4)

Q66 = G23 (1.5)

Only the in-plane Young’s moduli E22 and E33 shear modulus G23 and Poisson’s ratios ν23

and ν32 are considered in the two-dimensional optimization model.

Results from the optimization of the non-pneumatic wheel are shown in Figure 1.10

[11]. The results indicate that there are an infinite number of optimal solutions. A curve was

fit to the optimal solutions to show how the shear beam thickness and the shear modulus of

the shear beam can be changed. Given the set of optimal designs along with the additional
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Figure 1.10: Set of optimal designs resulting from optimization of non-pneumatic wheel.
[11]

information that the non-pneumatic wheel model is most sensitive to changes in the shear

modulus of the shear layer (for more detail, see [11]), a meta-material design can be targeted

by selecting a shear beam thickness and targeting the corresponding shear modulus using

one of the meta-material topology design processes described in the previous section (Figure

1.3).

1.3 Hypotheses and Research Questions

The current body of literature demonstrates the utility of the asymptotic homog-

enization analysis and subsequent optimization in the design of meta-materials. However,

relatively little work has been done on understanding the modeling and convergence prop-

erties for meta-materials that do not satisfy either the homogenization scaling or repre-

sentative volume element (RVE) limits. (A representative volume for a material is defined

as an amount of volume required for the properties analysis to accurately represent the

properties of the entire material. The limit in which enough material is analyzed to obtain

a representative volume is called the RVE limit. For periodic materials, this limit may
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Figure 1.11: Example of a meta-material that violates the homogenization limit in the
vertical direction (and likely the horizontal direction).

be reached by one or a collection of UCs.) These meta-materials remain candidates for

meta-material design. For example, it is possible a set of meta-material properties may be

achievable in the homogenization scaling limit in theory, but the scale of the UC will not be

physically manufacturable. For thin layers of material, as is the case of the shear beam in

the non-pneumatic wheel, it may still be possible to obtain the desired material properties

with one or a few layers of UCs and have a much easier-to-manufacture UC geometry. These

materials clearly violate the homogenization scaling limit in one dimension, and whether or

not they reach the RVE limit is unknown.

An example of a meta-material domain in which the homogenization limit is not

met is shown in Figure 1.11. In this material, the scaling in the vertical direction and the

height of the UC clearly violate the small parameter expansion of homogenization theory.

In the horizontal direction, at six UCs long, the meta-material may or may not achieve the

RVE and homogenization limits. However, even if there is an infinite number of cells in the

horizontal direction, the homogenized parameters involving the vertical dimension, namely

EH33 and GH23, should not necessarily be expected to be numerically accurate.

It is also possible that the material design targets for the meta-material optimization

fall outside the range of feasibility for known materials in square UC domains. The single,

small-parameter expansion of homogenization is also violated in this case, so extending

meta-material analytical methods to non-square, rectangular UCs opens up the range of

design possibilities. However, it is unclear the effect this has on the accuracy of homogenized

parameters. Figure 1.12 depicts a simple parametrization of a non-square UC.

To date, no literature has been found that investigates the idea of non-simple con-

nectivity of UCs (see Figure 1.13). The general notion of topology of an object is rooted
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Figure 1.12: Non-square unit cell. The unit cell depicted violates the single small-parameter
expansion of homogenization theory.

in domain connectivity. Topology optimization does, by definition, change the topological

geometry of a material structure by introducing holes in the material in a way that benefits

the design goal. Thus, it is suggestive that the topological connectivity of the design domain

may directly affect the final design topology.

The primary benefit in investigating different topological connectivity is that it

opens up the same capabilities to design a broader class of meta-materials without neces-

sarily complicating the analytical methods used. For example, see the works in Diaz and

Bénard [16] and more clearly in Lipperman et al. [17] in which honeycomb meta-materials

were designed by changing angles of unit cells (Figure 1.14). The square cells have the

benefit of having much simpler analysis and optimization without the added complication

of more parameters, and they are already well-investigated in meta-material analysis meth-

ods. The square-cell method is also the only one reported across both ground structure

and continuum material interpolation schemes. Honeycomb structures, whose UCs can be
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Figure 1.13: (Left) Simply-connected topology. Corners nodes are jointly shared a single
adjoining edge. (Right) A topology in which the unit cells are not simply connected. The
bottom layer joins to the top layer in a way in which each edge contacts two others.

Figure 1.14: (Left) Non-simply connected, square UC lattice (black lines) that leads to
the honeycomb meta-material design (green). (Right) Simply-connected, parallelogram UC
lattice that leads to the same honeycomb meta-material design.

given only by parallelogram or non-simply connected lattices, have been investigated as

candidates for meta-material geometries in the non-pneumatic wheel [18]. Using this non-

simple connectivity in the meta-materials design process could also open up the topological

possibilities of optimal solutions.

In the discussion of meta-material topology optimization on the UC, upon closely

reviewing the literature, single criteria optimization methods (i.e., those targeting a single

meta-material property value), are widely reported. The two geometries, or their superpo-

sitions, shown in Figure 1.15 were reported by Zhang et al. [19] to be optimal topological

designs when extremizing Young’s moduli or shear moduli. The ’+’ design in Figure 1.15

is optimal when designing on one of the two Young’s moduli E∗22 or E∗33, as this geometry
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Figure 1.15: Optimal topologies, or theirs superpositions, when optimizing on Young’s
moduli (left) or shear modulus (right), as reported in Zhang et al. [19]

minimizes the shear stresses in the internal beams, leaving primarily compressive stresses.

Similarly, when designing only on the shear modulus G∗23, the ’x’ design is optimal. Internal

studies on topology optimization of meta-materials using asymptotic homogenization and

composites analysis methods confirm these findings.

1.3.1 Primary Hypotheses

The primary hypothesis is that the asymptotic homogenization process, while accu-

rate when the limiting theoretical assumptions are met, is not accurate for meta-material

design below some scaling limit of the global meta-material. Asymptotic homogenization is

derived from a single, small-parameter expansion that assumes the length-scale of the UC

that makes up the meta-material is much smaller than the length scale of the meta-material

itself. When this relative length scaling is not achieved, asymptotic homogenization may

not produce accurate meta-material moduli. In the meta-material design process, this may

lead to an inconsistent link between global and local meta-material properties, resulting in

a design that does not perform as intended in the global system.

The asymptotic homogenization process is not accurate for meta-material design

when poorly-scaled unit cells are utilized. Because only a single parameter is used in the

asymptotic expansion, very long or very wide UCs may also create inaccuracies in the

homogenization analysis and the subsequent application to meta-material design.

The volume averaging analysis is capable of producing accurate meta-material moduli

for some situations in which asymptotic homogenization cannot. Volume averaging analyses

have no limiting assumptions of UC scaling with the global meta-material. While RVE limits
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may still apply, thin-layered meta-materials (e.g., the shear beam of the non-pnuematic

wheel) can be designed provided enough UCs are included along the length of the layer.

1.3.2 Secondary Hypotheses

Given an accurate meta-material analysis method using volume averaging, a topol-

ogy optimization method can be devised to design meta-materials in a manner similar to

that of asymptotic homogenization. Functionally, asymptotic homogenization and volume

averaging both produce meta-material moduli. Thus, the topology optimization process for

homogenization can be employed using the volume averaging method provided that element

sensitivities can be derived.

Either analysis and optimization method can be extended to non-simply connected

UC lattices. The motivation to do so is to simplify the analysis of honeycomb structures

using rectangular, non-simply connected UCs (as opposed to a more complicated analy-

sis employed by parallelogram-shaped UCs), and, perhaps, produce different structures in

topology optimization with a broader range of achievable meta-material moduli.

1.3.3 Research Questions

The research hypotheses are quantified by the following questions to be answered in

this body of work:

1. Are there applications in which homogenization theory is not capable of predicting

accurate meta-material moduli? If so, can the volume averaging method be used?

2. Can a well-posed meta-material topology optimization problem be constructed to

target meta-material properties?

3. Is it possible to topology optimize with respect to the parameters of the volume

averaging model?

• Can a single unit cell be optimized in tension and in shear?
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• Can multiple unit cells be optimized in tension and in shear?

4. How does unit cell connectivity affect the physical modeling methods (asymptotic

homogenization and volume averaging) presented?

5. Can the non-pneumatic wheel assembly design problem be solved using the volume

averaging method with topology optimization?

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows.

Chapter 2 provides an overview of the pertinent literature, including meta-materials anal-

ysis methods and topology optimization of materials.

Chapter 3 demonstrates the limits of asymptotic homogenization in the design thin-

layered materials and materials containing poorly-scaled rectangular unit cells. The

volume averaging analysis is also tested under the same conditions, and a simple de-

sign problem is posed to demonstrate accuracies and inaccuracies for each of the two

analysis methods.

Chapter 4 addresses the optimality conditions of several meta-material optimization prob-

lems.

Chapter 5 provides optimization setup, element sensitivities and results for optimization

of single and multiple cell problems analyzed using volume averaging.

Chapter 6 addresses the question of unit cell connectness through the analysis of honey-

comb structures, and the same design problem in Chapter 2 is used to demonstrate

accurate and inaccurate methods. Then the optimization methods for volume aver-

aging proposed in Chapter 4 are extended to the design of materials with non-simple

periodicity.
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Chapter 7 describes the solutions of the design of the meta-material optimization of the

non-pneumatic wheel.

Chapter 8 provides concluding remarks and the suggested direction of future work.
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Chapter 2

Literature Review

To create a successful computational design method using optimization, an accurate

analysis of the problem must be used to determine the design variables, design constraints

and objective function. After the problem is formulated, a method must be used to update

the design variables. In this chapter, a literature review of the prevalent meta-material

analysis methods is presented. Then, a review of the relevant literature about topology

optimization is given, with the scope of the review being placed on methods used to solve

the meta-material design problem.

2.1 Meta-Materials Analysis

The design of meta-materials in a systematic manner requires decoupling the global

design problem from the meta-material problem, as shown in Figure 1.3. The meta-material

is discretized into unit cells (UCs), the basic building blocks that contain the simplest and

smallest possible structures that can be repeated to generate the entire meta-material. In

the UC discretization process, the periodicity of the meta-material is defined, typically a

priori. Then an appropriate meta-material analysis is applied to the system to determine

effective meta-material properties EMij . These properties are passed to the optimizer for

design variable updating to determine the UC topology. A key aspect is that the meta-
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material perform as predicted in the global assembly. While it is not obvious, equality of

the meta-material properties EMij and those of the homogeneous material E∗ij substituted

in the global level does not necessarily guarantee proper performance of the meta-material

in the assembly. These issues, as understood from the literature, are addressed below.

2.1.1 Discretization Into Unit Cells and Establishing Periodicity

In meta-material design, the domain is discretized into a set of periodic UCs (Fig-

ure 2.1), with the same geometry being repeated in every UC. But the choice of how the

UCs connect, their shape and their size relative to the global scale of the material dictate

the choice of analysis to be applied.

The shape and connectivity are described by the periodicity of a lattice on which the

UCs lie. Hassani and Hinton [5] discuss the idea of periodicity in the meta-material design

problem: a material with position vector z = (z1, z2, z3) is Y-periodic if, for all material

characteristics described by function F ,

F (z +NY ) = F (z) (2.1)

where

N =


n1 0 0

0 n2 0

0 0 n3

 (2.2)

and ni are integers. Y = {Y1, Y2, Y3} is some vector that contains the periodicity of the

structure, and F is any scalar, vector or tensor function of vector z (see Figure 2.2). Using

the constitutive law for a linear elastic material

σi = Eijεj (2.3)

in the linear meta-material optimization scheme, the material properties Eij , by virtue of
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Figure 2.1: (Left) Depiction of UCs with square, simply-connected periodicity. (Right) A
meta-material structure with the periodicity depicted on the left.

Figure 2.2: Material structure with global material coordinates z on the left, discretized
into ground structure cells to be optimized with base cell coordinates Y on the right. [20]

periodicity of the lattice, are Y -periodic if

Eij(z +NY ) = Eij(z) (2.4)

The periodicity vector Y directly depends on the choice of the UC geometry and the

orientation of one UC with respect to the surrounding UCs comprising the meta-material

structure. The design domains described in the original works by Sigmund [20], [21] are

composed of simply-connected, square UCs (as shown in Figure 2.1). (By simple connec-

tivity, each edge is juxtaposed with only one edge of a different UC.) Bénard and Diaz

[22] assert that choosing a UC geometry directly limits the set of achievable meta-material
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Figure 2.3: Three different monohedral, periodic tilings of a planar space. Each prototile is
made out of tiles of the same color. For example, in (a), each prototile is constructed from
four square tiles. [22]

designs, and they provide a systematic, mathematical framework with which to describe

the engineering design problem. The authors first define a tiling as a countable family of

closed sets that covers a plane without gaps of overlaps. They only consider monohedral,

periodic tilings, those tilings that consist of a single prototile repeated by translation only

throughout the plane (Figure 2.3):

T = P + n1y1 + n2y2 (2.5)

where P is the prototile, ni are integers, and yi are the tiling vectors that describe the

translation of the prototile.

A lattice is defined as a collection of translates of a single point p ∈ P , where P is

used to create the periodic tiling T . Mathematically, lattice L is written

Lp(p, y1, y2) = {q : q = p+ n1y1 + n2y2} (2.6)

Then the area formed by the lattice vectors yi form a fundamental domain F associated
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Figure 2.4: Lattice points (circles) associated with a periodic, monohedral tiling, tiling
vectors and corresponding fundamental domains F. Note that, though domain S is periodic,
it does not form a fundamental domain because lattice points contained within domain S
are not used in domain tiling. (No tiling vectors connect the lattice points contained within
S. [16]

with lattice Lp. A fundamental domain is defined as any parallelogram with corners on the

lattice Lp(p, y1, y2) that tiles the plane with tiling vectors v1 and v2 and generates a lattice

Lp(p, v1, v2) equal to Lp(p, y1, y2). Note that more than one fundamental domain may exist

for a lattice. Figure 2.4 shows a lattice for a monohedral, periodic tiling with lattice points

(circles), tiling vectors, and associated tiling vectors and fundamental domains.

In a later work, Diaz and Bénard [16] show that periodic homogenization on a

generic tiling can be replaced by an equivalent problem using simple parallelograms, the

fundamental domains, as UCs, making the homogenization problem more computationally

efficient. The authors point out that this, in turn, increases the efficiency of obtaining

possible solutions of meta-material geometries that can only be reached by considering

non-rectangular UCs.

Systematic meta-material design processes by topology optimization have become

much more advanced by loosening constraints from the basic optimization problem. (For

example, see the work of Paulino et al. [23].) In Figure 2.1, the design domain is discretized

into a set of simply-connected, square UCs (the discretization process is independent of the

local optimization objective function). In the paper by Diaz and Bénard [16], the equality
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constraints on the side lengths and internal angles are lifted. This opened up the ability to

formulate a meta-material design problem in which honeycomb designs could be obtained,

as reported briefly in the original work by Diaz and Bénard [16] by directly targeting

material properties subject to material volume constraints. Lipperman et al. [17] obtained

honeycomb geometries by maximizing material strength (minimizing the maximum local

von Mises stress) subject to material volume constraints.

2.1.2 Asymptotic Homogenization

Many different material design problems have been solved using the asymptotic ho-

mogenization approach, including elastic design of structures with extremal properties [24],

[25], multi-material problems [26], [27], [28], functionally graded materials [23], piezoelectric

problems [29], [30], [31], electromagnetic composites [32], and multidisciplinary problems

involving elasticity and permeability [33], [34] and fluid permeability and structure [35].

Asymptotic homogenization approaches have also been developed for multiload scenarios

[36] and for robust design under manufacturing uncertainty [37], [38], [6]. Another method

directly utilizing the strain energy function [19] has been developed since Sigmund’s original

publications.

Hassani and Hinton offer a thorough review of homogenization theory, implementa-

tion, and topology optimization using homogenization [5], [39], [40]. The key assumption

for material homogenization is that the individual dimensions of the UC are very small

when compared to the dimensions of the overall domain of the global material for which the

homogenized material properties are desired. Given this assumption, the governing physical

equations of the UC are expanded in terms of a small parameter, and periodicity constraints

are enforced on the UC to achieve equivalent displacements on the boundaries of the UC.

When these periodicity constraints are enforced directly on the boundaries of the UC, it is

called a representative unit cell (RUC).

The implementation of the material homogenization procedure requires solving three

problems that simulate three different modes of deformation, two in uniaxial tension and

23



one in shear, subject to the necessary periodicity constraints. Due to the complicated

microstructures that are often present in UCs, these problems are typically solved using

FEA. In this case, the stiffness matrix K that contains the linear material properties for

the square UC is assembled, and the equations

fi = BTdi (2.7)

are used to obtain the load vectors applied to each of three FEAs, denoted by subscript i.

Here, B is the strain-displacement matrix, and the vectors di are those obtained by applying

unit strains

ε0
1 = {1 0 0}T , ε0

1 = {0 1 0}T , ε0
3 = {0 0 1}T (2.8)

to the UC according to

di = Dε0
i (2.9)

D is the material elasticity matrix relating material stress and strain of the base material

(where the stress and strain matrices have been converted to vectors in the traditional

manner by taking advantage of the tensor symmetries). Thus, the di is simply the i-th

column of the material linear constitutive matrix D.

Given the loads fi from Eq. 2.7 and the assembled stiffness matrix K, the solutions

displacement fields of the FEAs, Φi, are found using the finite element equation

KΦi = fi (2.10)

subject to periodicity constraints

χi(y1, y2) = χi(y1 + L, y2) = χi(y1, y2 +W ) = χi(y1 + L, y2 +W ) (2.11)

(where χi ⊆ Φi denotes the boundary displacements). The enforcement of periodicity

constraints (Eqs. 2.11) distinguishes the RUC from the UC (no periodicity constraints
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Figure 2.5: Homogenization analysis examples. The top figure is the meta-material found
in [18], and the bottom figures are the displaced meta-materials with von Mises stresses
represented by different the variance in shading. From left to right are the EH22, EH33 and
GH23 analyses.

enforced). Finally, the homogenized meta-material properties EHij are given by integrating

over the RUC with domain Y = LW , where L and W are the individual lengths of the

RUC:

EHij =
1
Y

∫
Y

(
Dij − dTi ε0

i (Φi)
)
dY (2.12)

An example meta-material geometry taken from Bendsøe and Kikuchi [41] is shown

in Figure 2.5, along with results of the homogenization analysis for the three meta-material

properties EH22, EH33 and GH23, which are the two Young’s moduli and the shear modulus of

the meta-material. The arrows do not represent physical boundary conditions, but they,

instead, depict directions in which the homogenization analysis is applied. This example

serves as a validation point for homogenization analysis code.

2.1.3 Volume Averaging Analysis

The volume averaging analysis method uses the average strain and average stress

theorems to integrate over the UC with domain Y = LW :

ε̄i =
1
Y

∫
Y
εidY (2.13)
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σ̄i =
1
Y

∫
Y
σidY (2.14)

respectively. By simulating modes of deformation, two in tension and one in shear, on the

boundaries of the UC and determining the average strains ε̄i and average stresses σ̄i, the

effective meta-material parameters E∗ij can be determined as a solution of

σ̄i = E∗ij ε̄i (2.15)

Like homogenization analysis, the composites analysis problem has also been exten-

sively studied. Hollister and Kikuchi [42] were the first to report a comparison between

these two analytical methods. Through FEA, the authors quantitatively investigated the

convergence of the direct analyses to homogenization by comparing estimates of the local

strain energy densities for each method. They concluded that homogenization theory was

preferable over composite analysis methods due to a knowledge gap at that time about

uniqueness of stress and strain in boundary condition application. This work was followed

up by Pecullan et al. [43]; here, the authors investigated the effects of using homogeneous

displacement versus homogeneous traction boundary conditions for composites analysis.

They concluded that, for material domains with lower volume fraction (ratio of material

volume to total unit cell volume), traction boundary conditions were more accurate for

predicting meta-material properties, whereas displacement boundary conditions were more

accurate for high volume fraction material domains. Further numerical studies were per-

formed to see the effect that differing types of boundary conditions has on predicted effective

moduli for heterogeneous materials [44], [45].

These issues were clarified by careful consideration of the distinguishing character-

istics of the UC, the RUC and a representative volume element (RVE). Pindera et al. [46]

describe in detail the difference between these. A RUC is obtained by applying unit strains

of Eqs. 2.8 in the FEA scheme subject to periodic boundary conditions from Eqs. 2.11 to

a UC, whereas the RVE idea is derived from consequences of modeling using traction or
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displacement boundary conditions.

To understand the meaning of the RVE, consider a system modeled using either

homogeneous strain or homogeneous stress boundary conditions; then Eqs. 2.13 and 2.14

will produce prescribed average strains ε0
i or prescribed average stresses σ0

i , respectively.

The average strain energy of the system using the averaging theorems is

Ue =
1
2
σ̄ε̄ (2.16)

An RVE is defined as the necessary representative volume such that the strain energy of

the system is equivalent whether displacement or traction boundary conditions are applied,

or
1
2
σ̄iε̄i =

1
2
σ0
i ε̄i =

1
2
σ̄iε

0
i (2.17)

Clearly, for a homogeneous material, this is always true. For a non-homogeneous material,

one that satisfies Eq. 2.17 is called statistically homogeneous when the total volume aver-

aged over becomes large enough to satisfy the RVE requirement. In the case of periodic

meta-materials analysis, this corresponds to choosing a volume to include a large enough

number of UCs to satisfy Eq. 2.17.

For fiber-composites materials (with orthotropic material properties), Drago and

Pindera [47] show that the predicted effective moduli of the composites, the components

of the tensor from the linear constitutive law relating average stress and average strain,

do not necessarily coincide with each other or with those predictions given by asymptotic

homogenization analysis: different effective moduli for displacement boundary conditions

EUij and traction boundary conditions ETij are obtained. However, the individual components

of these tensors satisfy Eq. ?? in the limit that enough UCs are included such that the

scale of UCs within the RVE become small enough to meet the scaling assumptions of the

asymptotic homogenization theory, and the individual components of EUij and ETij converge

to EHij .

Given the convergence to homogenization analysis, the body of work in [46] and [47]
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also serves to clarify the proper boundary conditions needed on the unit cell for composites

analysis (using either the traction or displacement method). Depictions of a single unit

cell in tensile and shear deformation using displacement boundary conditions are shown

in Figure 2.7, while depictions of a single unit cell in tensile and shear deformation using

traction boundary conditions are shown in Figure 2.8.

The convergence of the two analytical methods in the RVE limit is nicely depicted in

a representative example from Drago and Pindera [47]. The meta-material shear modulus is

evaluated using the displacement and traction boundary conditions in Table 2.1 and Table

2.2 (yielding GU23 and GT23, respectively), as well as the more widely-reported homogenization

analysis described in the previous section (yielding GH23). To do this, the analytical methods

are applied as intended: on a single cell for homogenization, and on a grid of NxN cells using

the volume averaging methods (N is a positive integer). The total analysis domain volume

is held constant in the composites analysis case, and the sizes of the UCs are reduced to fit

into the domain at every step (Figure 2.9). According to homogenization theory, enough

UCs must be included in the design domain to achieve the scaling limit at which the small-

parameter expansion is applicable. And according to Eq. 2.17, the RVE limit is obtained

when the moduli obtained by the displacement and traction boundary conditions coincide.

In Figure 2.10, for the particular design example, the composite shear moduli converge

asymptotically to the homogenized shear modulus. The authors demonstrate that, when

homogenization scaling limits are applicable, the RVE limit is simultaneously obtained;

however, the two are ideas not necessarily equivalent.

2.2 Topology Optimization

While topology optimization (TO) subfields are all intended for very different pur-

poses, they share a common set of numerical methodologies. It is the choice of a particular

physical analysis, not numerical methodology, that separates the different subfields. Yin

and Ananthasuresh [48] provide a good overview of the development of a TO algorithm by
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Table 2.1: Displacement Boundary Conditions for Volume Averaging Analysis [47]

Transverse Normal Loading - EU22 (EU33 is similar)

S1 u2(z2,−h) = ε0
22z2 u3(z2,−h) = −ε0

33h
S2 u2(h, z3) = ε0

22h u3(h, z3) = ε0
33z3

S3 u2(z2, h) = ε0
22z2 u3(z2, h) = ε0

33h
S4 u2(−h, z3) = −ε0

22h u3(−h, z3) = ε0
33z3

z2-axis u2(0, z3) = 0 σ23(0, z3) = 0
z3-axis u3(z2, 0) = 0 σ23(z2, 0) = 0

The average strain ε0
33 is determined subject to the integral constraint

σ̄33 = 0 on S1 and S3.

Transverse Shear Loading - GU23

S1 u2(z2,−h) = −ε0
23h u3(z2,−h) = ε0

23z2

S2 u2(h, z3) = ε0
23z3 u3(h, z3) = ε0

23h
S3 u2(z2, h) = ε0

23h u3(z2, h) = ε0
23z2

S4 u2(−h, z3) = ε0
23z3 u3(−h, z3) = −ε0

23h

z2-axis u3(0, z3) = 0 σ22(0, z3) = 0
z3-axis u2(z2, 0) = 0 σ33(z2, 0) = 0

Table 2.2: Traction Boundary Conditions for Volume Averaging Analysis [47]

Transverse Normal Loading - ET22 (ET33 is similar)

S1 σ22(z2,−h) = 0 σ33(z2,−h) = 0
S2 σ22(h, z3) = σ0

22 σ33(h, z3) = 0
S3 σ22(z2, h) = 0 σ33(z2, h) = 0
S4 σ22(−h, z3) = −σ0

22 σ33(−h, z3) = 0
z2-axis u2(0, z3) = 0 σ23(0, z3) = 0
z3-axis u3(z2, 0) = 0 σ23(z2, 0) = 0

Transverse Shear Loading - GT23

S1 σ23(z2,−h) = −σ0
23 σ33(z2,−h) = 0

S2 σ23(h, z3) = σ0
23 σ22(h, z3) = 0

S3 σ23(z2, h) = σ0
23 σ33(z2, h) = 0

S4 σ23(−h, z3) = −σ0
23 σ22(−h, z3) = 0

z2-axis u3(0, z3) = 0 σ22(0, z3) = 0
z3-axis u2(z2, 0) = 0 σ33(z2, 0) = 0
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Figure 2.6: Unit cell parameters for the volume averaging analysis given in Table 2.1 and
Table 2.2.

Figure 2.7: Unit cell of a meta-material under homogeneous displacement tension (left) and
shear (right) boundary conditions as listed in Table 2.1. The material of circular inclusion
has ten times the Young’s modulus of the matrix surrounding it. [47]

breaking it into four distinct parts: designing a well-posed objective function, determin-

ing and implementing an appropriate material interpolation function, applying appropriate

constraints to the problem for efficient analysis, and choosing an efficient optimization al-

gorithm to produce the most valid results. A discussion of each issue follows.

2.2.1 Choosing an Appropriate Objective Function

In TO of elastic structures, the primary concern of the designer is to minimize

the chance of failure of the structure given a specified set design loading or displacement
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Figure 2.8: Unit cell of a meta-material under homogeneous traction tension (left) and shear
(right) boundary conditions as listed in Table 2.2. The material of circular inclusion has
ten times the Young’s modulus of the matrix surrounding it. [47]

Figure 2.9: (Left) Single unit cell (NxN analysis with N = 1). (Right) 6x6 unit cell analysis
(NxN analysis with N = 6). The two analytical volumes are the same. [47]

boundary conditions. From material failure theory, the most commonly-used and often most

accurate theory of failure is the maximum-distortion-energy theory, developed initially by

Huber and refined independently by von Mises and Hencky [49]. This theory posits that it

is the distortion energy, and specifically not the hydrostatic energy, that dictates the failure

of an elastic material under deformation. This distortion energy is quantified by the elastic

strain energy density ue:

ue =
∑
i

1
2
σiεi (2.18)
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Figure 2.10: NxN unit cell analysis for shear moduli of cell depicted in Figure 2.9 as analyzed
by Drago and Pindera [47]. The traction and displacement moduli (denoted by ’T’ and ’U’
superscripts) are divided by the homogeneous modulus for the single cell (denoted by ’H’
superscript).

where σi and εi are the principal stresses and strains on a piece of material in principal

direction i, respectively [49]. Given this, it makes physical sense to choose an objective

function that somehow encapsulates the strain energy Ue (total strain energy of the system)

if optimal performance from failure is desired. Employing Hooke’s law for linear elastic

materials, the total strain energy can be found by summing the strain energy density over

the total material volume Y:

Ue =
1
2

∫
Y
εiEijεjdY (2.19)

where Eij is the constitutive tensor relating stress and strain in Hooke’s Law.

For TO of lightweight structures for optimal performance from failure, the most

common physical function used in research and commercial software packages is the com-

pliance. The minimum compliance formulation is found in a number of sources, including

Bendsøe and Sigmund [50] and Eschenauer and Olhoff [51]. The external loading Lex on a
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structure, given in terms of body forces f and tractions t, is given by

Lex =
∫
Y

f · udY +
∫

Γt

t · udΓt (2.20)

Γt is the boundary of the design domain on which tractions are applied, and u is the linear

material displacement field. By minimizing Lex, the strain energy of the design domain is

also minimized by virtue of the equilibrium requirement that the external loading is equal

to twice the internal strain energy:

Lex = 2Ue (2.21)

(The minimum compliance formulation is sometimes referred to as the minimum strain

energy formulation, due to the equilibrium condition given in Eq. 2.21). At equilibrium,

the compliance C is defined as the work done by the loads on the structure against the

internal displacements of the structure [51]:

C := Lex (2.22)

Thus, the minimum compliance problem, for TO is commonly written

min
v

C(v)

s.t. C(v) = 2Ue(u,v)
(2.23)

where u and v represent the set of admissible equilibrium displacement fields. Because the

continuum problem is very difficult to solve with the exception of only very simple examples,

FEA is applied to discretize the equations of Problem 2.23:

min
x

C(x)

s.t. K(x)u =f

V (x) ≤ V0

(2.24)

33



K(x) is the stiffness matrix, C is the compliance function and x is the vector of finite-element

densities that serve as optimization variables. (The finite-element meshing, called material

interpolation when discussed in the context of topology optimization, is a non-trivial matter;

it is discussed in more detail in section 2.2.2.) This formulation is particularly convenient, as

the constraint equation in Problem 2.24 is that used by the finite element solver to determine

displacements u at equilibrium (for elastic materials exhibiting linear deformation). Thus,

system equilibrium is implicitly enforced in the FEA of the problem; it is stated in Problem

2.24 only as a mathematical formality.

The other constraint enforced in Problem 2.24 is an engineering constraint on the

material volume V , directly enforcing the engineering desire to use less material. Other than

bounds on the optimization variables x, most often, this constraint is the only explicitly

enforced constraint in TO. The total volume is a simple constraint to enforce, as V is easily

parameterized by element density. (Depending on the choice of material interpolation,

this constraint takes the form of structural weight instead of material volume when beam

elements are used; the effective implementation of the constraint is the same.) It is common

for the volume constraint to be active upon successful termination of the optimization

routine, implying the choice volume constraint bound V0 is crucial. While this effect is

seen throughout the literature, it is not an important talking point, as this constraint can

be tuned to the designer’s purpose without loss of fidelity in the physical modeling or

optimization.

While both TO and compliant topology optimization (CTO) utilize some form of

the compliance objective directly, meta-material optimization (MMO) requires a particular

material property E∗ij be achieved by the system (the subscripts denote the components of

the effective linear material constitutive tensor). While strain energy (or compliance) is not

minimized in MMO, an optimal value is achieved as part of optimization. This can be seen

by rewriting Eq. 2.19 in terms of the meta-material property EMij .

Ue =
1
2
ε̄iE

M
ij ε̄j (2.25)
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(The meta-material property is essentially just some sort of volume average or homogenized

value, obtained from applying some type of averaged strain ε̄i or corresponding averaged

stress σ̄i to the system. These methods are a key piece of this body of research, and will be

discussed in a proceeding section.) Then, the target property is obtained by constraining

the difference between the meta-material property EMij and the target property in an opti-

mization method or by directly minimizing this difference. For example, the optimization

can be formulated

min
x

V (x)

s.t. K(x)u =f

E∗ij − EMij =0

(2.26)

In Problem 2.26, the material volume is minimized, while the material property to be

achieved is constrained ([20], [21] and sources therein). Currently, the only meta-material

optimization procedure reported in the literature uses asymptotic homogenization analy-

sis to compute meta-material properties and corresponding design variable sensitivities for

targeting meta-material properties (as given in Problem 2.26) or extremizing a particu-

lar meta-material property (by making the meta-material property the objective function

subject to the volume fraction constraint).

2.2.2 Material Interpolation Schemes

Three types of material interpolation schemes for single-material optimization are

commonly found in the literature: homogenization, penalization methods, and ground struc-

ture. The first two interpolation schemes listed are continuum material approaches.

The ultimate goal of the continuum approaches, realized through finite element

modeling (most often with 4-node, square, shell elements), is to achieve a 1-0, or ”black-

and-white”, value for the density of each finite element, corresponding to the presence or

absence of material in that element. However, the numerical implementation of a strictly
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1-0 integer interpolation leads to optimal designs that are dependent on the discretization,

making the 1-0 interpolation ill-posed in the sense that finer microstructures appear with

the inclusion of more finite elements in the analysis. By instead continuously approximating

the 1-0 space by admitting intermediate densities, this dependency may be eliminated [52].

(Bendsøe and Sigmund [52] offer a more thorough review of the difficulties of 1-0 topology

optimization.)

The older of the two continuum approaches, homogenization, was first implemented

numerically by Bendsøe and Kikuchi [41]. In this scheme, the microstructure of an elastic

material (isotropic, orthotropic, or otherwise) is averaged over for each finite element, re-

sulting, for example, in three geometric parameters in two dimensions (Figure 2.11). The

density xe ∈ (0, 1] of the finite element and the elasticity tensor of the material are pa-

rameterized by α, β, density control variables and θ, an orientation variable. These then

serve as variables for the topology optimization problem. (For a more detailed discussion of

homogenization see Bendsøe [53] and sources therein.) A finite element is then filled with

material if the density of the element is greater than a certain value, usually 0.3.

Figure 2.11: Schematic of the asymptotic homogenization process. The microstructure of
a unit cell (corresponds to a finite element) is parameterized by geometric variables α, β,
and θ. [2]

Although homogenization has commonly been used for the design of stiff structures,

it has been used less frequently in the past decade, replaced by the most popular of the
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continuum approaches, Solid Isotropic Material with Penalization (SIMP) interpolation

scheme. This scheme was built to push toward a more 1-0 density distribution by penalizing

intermediate material densities according to

xe → xse (2.27)

where xe denotes the density of material in element e, and s > 1 is a parameter that pushes

material densities toward one or zero. This method was first proposed as the power law

method by Bendsøe [54], and it was first numerically implemented by Rozvany et al. [55].

The Young’s modulus for element e is interpolated as

Ee = xseE0 (2.28)

(E0 is the Young’s modulus of the material chosen for manufacturing.) The penalization

parameter s is usually chosen as 3 based on experience [28], as it needs to be large enough to

penalize intermediate densities to obtain a distribution of material close to a 1-0 distribution.

The topology optimization software Optistruct built by Altair Engineering, Inc. utilizes

the SIMP interpolation model [1]. A depiction of the effect of penalization on the element

density using the SIMP model as given in Eq. 2.28 is show in Figure 2.12.

Because of its wide-spread use in TO, the convergence of the SIMP method in

optimization has gained some attention. Rietz proved that, assuming a discrete 1-0 solution

exists for the TO Problem 2.24, the SIMP method also has a discrete solution for finite values

of the penalization parameter s, assuming the derivatives with respect to element densities

∂C/∂xe of the objective function are bounded [56]. In a paper by Martinez [57], these

limiting assumptions were shown to be weaker than reported by Rietz. Martinez proved

that, given a sufficiently large value of the penalization parameter s, any solution to the

SIMP problem approaches the solution to the discrete 1-0 problem. Further, the solution

to the SIMP problem can be rounded to a discrete 1-0 problem solution if the penalization

parameter s is finite.
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The SIMP method has been extended beyond single material, linear elastic prob-

lems. Bendsøe and Sigmund [52] extended the SIMP approach to include multiple elas-

tic, isotropic materials. Pederson et al. [58] used SIMP to create optimal solutions for

large-displacement compliant mechanisms. A SIMP-like material interpolation that uses

highly-peaked continuous functions (series that converge to delta functions) was developed

by Yin and Ananthasuresh [48], and was easily extended to multiple materials. Bruns [59]

developed SINH, a method that utilizes the hyperbolic sine function to penalize interme-

diate densities. Stolpe and Svanberg [60] created an interpolation similar to SIMP that

eliminates the discontinuity of the derivative of the density at xe = 0 .

Figure 2.12: Element density versus normalized SIMP-interpolated Young’s modulus. s =
3 (the solid line) is the generally preferred penalization factor, based off of experience and
literature review.

The simplest of the three common approaches, ground structure interpolation, uti-

lizes a set of beams to connect nodes throughout a structure (Figure 2.13). Each beam is

parameterized by a set of material properties and cross-section. The cross-sections of the

beams are then used as optimization variables to obtain a specified objective.
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Figure 2.13: Ground structure topology design problem (left), starting point (center), and
optimum (right). [61]

2.2.3 Constraining the Topology Optimization Problem

There is a standard set of constraints applied in a finite-element TO algorithm. As

previously mentioned, standard equilibrium constraints are imposed implicitly in the system

analysis, and a constraint on the lower bound of the density of each finite element is imposed

to maintain non-singularity of the stiffness matrix [28]. The other traditional constraints

are grouped into those with physical meaning and those used to eliminate numerical issues

associated with the finite element discretization.

The most frequently used physical constraint in TO is the volume fraction V0 that

can serve as a lower or upper bound to the allowed physical volume in the overall problem

(e.g., Problems 2.24 and 2.26). When using the ground structure interpolation, the volume

constraint is often written in terms of either a weight constraint on the structure [21] or a

constraint on volume [61]. It is the driver of the optimization Problem 2.24, as minimum

compliance without the constraint corresponds to a fully-filled domain; however, enforcing

the volume constraint requires a reduction of allowed material while achieving minimum

compliance. (The volume fraction can be used as an objective function, as done in Problem

2.26. Here, in meta-material topology optimization, the difference between meta-material

property and the targeted property can be used as a constraint.)

Three common numerical problems exist in TO methods that utilize finite element

modeling: checkerboard patterns that correspond to an artificially high stiffness but are

39



Figure 2.14: Example of a checkerboard pattern solution for a cantilever beam topology
optimization problem. Elements in areas in which less material is needed ”checkerboard”
out, reducing overall stiffness of the structure in a way that is not physically meaningful
due to connection only at the hinges of the elements. [64]

Figure 2.15: Example of a one-node connected hinge that can occur as a result of topology
optimization. [62]

not physically realizable in a mechanism, one-node connected hinges that occur due to

similar reasons as checkerboard patterns, and mesh-dependency of solution algorithms.

Checkerboard patterns (Figure 2.14) and one-node connected hinges (Figure 2.15) are well-

understood, resulting from modeling with elements of low order, in particular 4-node quadri-

lateral elements [62], [63], [64]. Mesh-dependency, or non-convergence of solutions with mesh

refinement, is a result of finite element modeling as well. Convergent solutions should result

in better-defined boundaries between material phases from one element to the next, but

often finer microstructure appears as a result of mesh-refinement [28].

Several successful methods to solve these problems have been devised [62], [65], [66].

The heuristic algorithm proposed by Sigmund [67], [28] eliminates checkerboards, hinging

and mesh-dependency issues by employing a filter in the algorithm that substitutes elements

sensitivities for a single element with a weighted sum of all elements in a local radius. The
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simple and efficient algorithm produces the same results as more costly algorithms built

by other authors and is the preferred method. In these works, Sigmund also asserts this

filtering technique also eliminates some local minima in the design parametrization, making

optimization by gradient-based methods more reliable.

More recently, Gibert and Fadel [68] have shown that modeling with Voronoi (6-node

hexagonal) elements inherently eliminates checkerboard designs and one-node hinges when

applied to design for minimum compliance of a cantilever and Messerschmitt-Blkow-Blohm

(MBB) beam without a need for any filtering algorithm. Similar, hexagonal Wachspress ele-

ments were shown to eliminate checkerboard problems for structural topology optimization

problems [69]. However, these algorithms require using quadrilateral and triangular ele-

ments on the boundaries of design domains, complicating the finite element analysis setup

[69]; additionally, the choice of finite element orientation in the domain discretization is not

unique, introducing ambiguity into the discretization process and geometric bias into the

optimization [70].

2.2.4 Optimization Routines

Because the TO problem presents hundreds to thousands of design variables (at

least one for each finite element, regardless of the choice of interpolation), obtaining a

solution to the optimization problem is difficult by nature. In addition, by simply assuming

that stiffness is linearly dependent on design variables, Rozvany [71] notes that most TO

problems are non-convex, and for those that are not, implementing standard interpolation

schemes leads to non-convexity of the optimization problem. The addition of constraints

and other design parameters only serve to increase the complexity of the TO design problem.

However, Rozvany additionally notes that most engineering design problems are non-convex,

due to the complexity of real-world design engineering. A detailed discussion of numerical

issues in topology optimization is discussed in the review article by Sigmund and Petersson

[66]. In this article, the authors attribute the existence of local minima due to the numerical

complexity and inherent non-convexity of the problem, as well as the relative flatness of the
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compliance objective function. Thus, this complexity must be met with robust and reliable

optimization routines.

One way in which the problem is commonly solved for continuum structures is by

using gradient-based methods. Gradient-based methods are more-frequently used because

closed-form sensitivity equations are typically simple to derive and incur relatively little

computational cost (when compared to the cost of non-deterministic solution algorithms

or other zero-order methods). The use of closed-form first-order variable sensitivities (over

finite difference methods) to approximate the TO problem has proved crucial, given the

large number of design variables used. For example, Sigmund [28] used sequential linear

programming (SLP) to solve the problem by calculating design sensitivities to create a linear

approximation. The method of moving asymptotes (MMA), developed by Svanberg [72] for

structural optimization problems, has also been used to determine the optimal design of

large-displacement mechanisms that has been approximated using the adjoint method to

determine design sensitivities [58]. Luo et al. [73] also utilized MMA [72] to solve the

CTO problem with a large number of constraints. In meta-material optimization, MMA

has been used in conjunction with adjoint sensitivity analysis [74], and optimality criteria

(OC) methods have been used in the optimization of beam-interpolated meta-materials

[21] and SIMP-interpolated continuum meta-materials [40]. Non-deterministic algorithms

have been used less commonly in the optimization of continuum structures. However, these

algorithms have proven useful in optimization of ground structures. A couple examples

include the use of Non-dominated Sorting in Genetic Algorithms (NSGA) to design truss-

like large-displacement mechanisms [75] and and an evolutionary optimization technique to

design compliant mechanisms with complex-shaped beam elements [76].

Given the inability to prove convergence to an optimum when using evolutionary al-

gorithms, some controversy surrounds the choice of these algorithms in structural topology

optimization. Rozvany [71] recently addressed this issue by comparing the SIMP interpola-

tion, which is solved using deterministic methods, and evolutionary structural optimization

(ESO), which is solved using non-deterministic methods. In this paper, Rozvany points
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out that deterministic methods utilizing SIMP interpolations have been verified to numeri-

cally converge to mathematically proven solutions in topology optimization, and it is useful

for a wide range of problems. On the other hand, he states that, “ESO is presently fully

heuristic, computationally rather inefficient, methodologically lacking rationality, occasion-

ally unreliable, with highly chaotic convergence curves. Unlike the quantitative verification

of SIMP, ESO has only been ’verified’ by vague visual comparisons with Michell topolo-

gies.” It is clear that he is a critic of the ESO method, but he brings forward the inability of

non-deterministic methods to guarantee optimal solutions while having such a large compu-

tational cost, especially in the already costly TO methods. Rozvany’s criticism is supported

by the fact that the vast majority of the TO methods and examples in the literature utilize

some sort of gradient-based optimization rather than non-deterministic or other zero-order

methods. The wide success of gradient-based topology optimization supports its continued

use.
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Chapter 3

Analytical Issues in

Meta-Materials Analysis

It is possible for a set of optimal material properties needed by a global design to exist

in which a feasible meta-material design cannot be found within manufacturing constraint

limits. A good example of this is the design of a non-pneumatic wheel, in which the vertical

thickness of the wheel is of the same order of length as the global design, and the microscopic

scaling assumption of asymptotic homogenization is no longer met. Composites made of a

single or only a few layers of UCs also present the same issue. The scaling assumption of

asymptotic homogenization may be relaxed to find meta-material geometries that satisfy

global design targets, but weakening these scaling assumptions may have consequences on

the accuracy of the asymptotic homogenization analysis and subsequent designs, an error

which then propagates upon integration of the meta-material component into the global

design.

The volume averaging analysis, which was reviewed in Ch. 2 and is described in

detail by Drago and Pindera [47] and Pindera et al. [46], offers an alternative to homog-

enization. Because the averaging analysis is derived from a more general mathematical

principle, there are no scaling assumptions placed on the analysis domain, which is a key

difference from the scaling assumptions placed on the domain of asymptotic homogeniza-
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tion. This makes the averaging analysis a candidate for meta-material design for systems in

which these scaling assumptions cannot be met due to realistic manufacturing constraints.

In this chapter, the importance of considering these scaling effects is shown by

comparing effective meta-material moduli obtained for the same material geometries using

the two different analyses. Multi-cell analysis results are presented as part of this discussion

to demonstrate the convergence of the average strain/average stress method to asymptotic

homogenization results. Then the homogenization restriction is lifted in two separate ways:

first, single UC meta-material properties are analyzed for large aspect ratio rectangular cells

(in which the width to length ratios W/L are different from one), and, second, by analyzing

the properties of a single-layer composite material. The restriction of a well-scaled UC is

lifted in single-layer materials as well by considering layers consisting of highly rectangular

cells. Then, the two analysis methods, homogenization and volume averaging, are applied

to a simple, two-level design of a meta-material in shear problem in which a displacement

is targeted at a global level while a meta-material property is targeted at the lower level to

satisfy the top-level design goal.

3.1 Comparison of Homogenization and Volume Averaging

The MATLAB computing language was used to implement the asymptotic homog-

enization analysis as described in the review papers by Hassani and Hinton [5],[39],[40],

while the averaging analysis was implemented using MATLAB as described by Drago and

Pindera [47]. The periodicity boundary conditions of homogenization were enforced using

the constraint transformation method, while the boundary conditions of the volume aver-

aging analysis were enforced using the method of Lagrange multipliers. (These methods

are described in detail in Cook et al. [77]) Two different methods were implemented based

on the compromise of simplicity of implementation, computational speed and necessity of

setting zero and non-zero displacement constraints on individual nodes.

The two analysis methods were used to analyze the meta-material properties EMij
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in their intended manners: the analysis volume used for homogenization was a single

RUC, while for the averaging analysis, the collection of UCs were averaged over. A two-

dimensional isotropic base material with Young’s modulus E = 30 GPa and Poisson’s ratio

ν = 0.30 (under plane stress conditions) was modeled using four-node shell elements, as is

commonly used in topology optimization. (The local material properties, i.e., those of the

base material, may be isotropic, but for the non-homogeneous meta-material, the material

properties will be, at best, orthotropic.) The codes were validated using the 20x20 element

square domain with a rectangular hole found in [41] coinciding with or converging in the

RVE limit to the homogenized meta-material properties. The codes were also validated us-

ing homogeneous orthotropic material properties. An ‘x’ topology and a ‘+’ topology were

chosen as geometries to be used throughout the comparisons of the analyses. As discussed

briefly in Chapter 1, these topologies are known periodic solutions to maximize shear and

uniaxial stiffness in the design of composite structures [19].

3.1.1 NxN Unit Cell Analysis

In order to illustrate the NxN -cell convergence of the effective material properties

resulting from these two geometries, UCs with 20x20 finite elements discretizations were

chosen. For the both ‘x’ and ‘+’ geometries, the homogenized meta-material properties were

determined. Next, the NxN analysis domains were constructed from both geometries with

values of N from 1 to 8 (see Figure 3.2). For each value of N , the meta-material properties

of the geometries were found using the displacement-based boundary conditions of the

averaging analysis. This process was repeated for different thicknesses of bars constituting

the meta-material from the minimum amount allowed by discretization to homogeneously-

filled meta-material.

Plots comparing the meta-material properties are shown in Figures 3.3 and 3.4 for

the ‘x’ geometries and Figures 3.5 and 3.6 for the ‘+’ geometries. (Only the EU22 Young’s

moduli were reported, as each solution is xy-symmetric, making the EU33 moduli identical

to the EU22 moduli.) In these plots, the ratio of the meta-material modulus found using
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Figure 3.1: Three modes of deformation used in volume averaging and homogenization.

Figure 3.2: (Top) NxN analysis domains where, from left to right, N = 1, N = 3 and N =
5, respectively. All domains have the same total volume for averaging purposes. (Bottom)
Example of domains filled with ‘x’ geometry.

composites methods to that of the homogenized meta-material modulus is plotted as a

function of number of unit cells contained in the domain length, N . In each case, the

homogenization approximation becomes increasingly appropriate with increasing N . Also,

as the thicknesses of bars constituting the meta-material are increased, the geometries

approach an isotropic material.

An interesting effect is noted in the distinct differences in these ratios for a single

geometry. For the ‘x’ geometry, the shear moduli ratios rapidly converge to unity with

increasing N , while the Young’s moduli ratios demonstrate a very slow convergence (as

seen by the scaling of the y-axes). A similar effect is seen for the ‘+’ geometry in that

the Young’s moduli ratios rapidly converge to unity with increasing N , while the shear

moduli ratios demonstrate a much slower convergence rate. This indicates that the design
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Figure 3.3: NxN analysis of meta-material Young’s moduli EU22 and EH22 for the ‘x’ geometry.

Figure 3.4: NxN analysis of meta-material shear moduli GU23 and GH23 for the ‘x’ geometry.

topology itself plays a key role in achieving the RVE limit. Thus, for global designs in which

achievable solutions are below the RVE limit, i.e., small values of N , topology optimization

by homogenization analysis may not be the best tool for determining an accurately-designed

meta-material geometry. However, this same set of results stands as evidence that, in the

RVE limit, homogenization is an accurate tool for meta-material analysis.

To investigate the mesh size effect in the NxN UC analysis, a single cell convergence

test was completed for one of the ‘x’ designs and for one of the ‘+’ designs. The discretization

of the UC was increased sequentially along the length, while the overall widths of the

constituting bars of the geometries were held constant (within discretization limits). The
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Figure 3.5: NxN analysis of meta-material Young’s moduli EU22 and EH22 for the ‘+’ geom-
etry.

Figure 3.6: NxN analysis of meta-material shear moduli GU23 and GH23 for the ‘+’ geometry.

homogenization and averaging analyses were run on each of the single UC problems over the

different discretizations. (The UC was discretized from 10x10 finite elements to 40x40 finite

elements, and the single-cell meta-material moduli were obtained.) Results comparing the

ratios of averaged to homogenized moduli as a function of mesh size are shown in Figures

3.7 and 3.8.

In the case of the ‘x’ geometry, as the mesh size is reduced, the ratio of the averaged

to homogenized moduli remains roughly constant, demonstrating that mesh size has little

effect for that particular geometry. In the case of the ‘+’ geometry, the same can be said
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Figure 3.7: Finite element convergence analysis of ‘x’ geometry from 10x10 to 40x40 ele-
ments discretization.

Figure 3.8: Finite element convergence analysis of ‘+’ geometry from 10x10 to 40x40 ele-
ments discretization.

about the effect of mesh size on the Young’s moduli. However, the total fluctuation in the

shear moduli ratio is roughly 0.8. By referring back to Figure 3.6, for this particular problem

the ratio of shear moduli for the 20x20 discretization is roughly 2.2. The discretization error

can only account for 36% of the disparity between models, demonstrating that the mesh size

can only be held partially responsible for the inconsistency in homogenized and averaged

moduli for these particular examples. Instead, the previously mentioned inaccuracies in the

physical assumptions of modeling are attributable.
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Figure 3.9: Similar unit cell geometries with different W/L scaling ratios.

3.1.2 Single, Rectangular Unit Cell Analysis

To demonstrate that homogenization analysis is no longer accurate under condi-

tions that UC width to length ratios W/L are no longer unity, a set of analyses was com-

pleted comparing meta-material properties derived from both homogenization and compos-

ites analysis methods with the changing scale of W/L of the UC. In these numerical tests,

the length L of the UC remained unchanged while the width W was varied between L and

3L, meaning the total UC volume was varied between L2 and 3L2 (see Figure 3.9).

As W was increased, more finite elements were added to the domain such that a

single finite element contained the same amount of physical volume to eliminate variance

of discretization errors attributable to element volume effects. Again, both the ‘x’ and

‘+’ geometries were tested, with the number of thicknesses of the each design’s bars held

constant (within discretization limits) as the domain was made larger in width, W .

Results depicting the ratios of averaged to homogenized moduli as a function of

domain width to length ratio are shown for the ‘x’ topology in Figures 3.10 and 3.11 and

for the ‘+’ topology in Figure 37. (Bars of different thicknesses were used to investigate

the effect the volume fraction on meta-material properties. Also, a discretization error is
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Figure 3.10: Meta-material properties as a function of W/L for single cell thin ‘x’ geometry.

Figure 3.11: Meta-material properties as a function of W/L for single cell thick ‘x’ geometry.

present in the ‘x’ geometry results in which elements are not smoothly added as the UC

is stretched from W/L equal 1 to W/L equal to 3. This is most clearly visible in the non-

smooth behavior of the ratio of material properties for the thinner-barred ‘x’ geometry,

top-left plot of Figure 36.)

From these single-cell results, it is clear that asymptotic homogenization theory and

the composites averaging analysis do not predict the same meta-material moduli of a single

cell in all cases. Even though the physical assumption is that homogenization is inaccurate,

it cannot be assumed that the inaccuracy is with homogenization alone. This must be

verified by looking at the homogeneous orthotropic materials with the homogenized moduli
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Figure 3.12: Meta-material properties as a function of W/L for single cell thin ‘+’ geometry.

Figure 3.13: Meta-material properties as a function ofW/L for single cell thick ‘+’ geometry.

and averaged moduli values in a global model and comparing with the action of global model

with the meta-material geometry. (Recalling the meta-material design procedure depicted

in Figure 1.3, the meta-material is simulated as a homogenous orthotropic material during

global optimization, but effective moduli are predicted at the meta-material design level.

By inputting the geometry into the global-level simulation and comparing the effect of the

model with the geometry to the effect of the global models with the homogenized moduli

and averaged moduli, respectively, the accuracy of each of the models with respect to the

global finite element problem can be evaluated. This is addressed in a latter section.)

However, several important observations should be noted. First, the relative con-
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stancy of meta-material property ratios in Figures 3.10, 3.11 and 3.12 demonstrates a lack

of dependence on the W/L ratios in those three cases, but in 3.13 there is a nearly linear

dependence of the shear modulus on W/L. Also, in the case of the ‘x’ geometry, increasing

the size of the bar thicknesses increases model agreement, but the same cannot be said for

the ‘+’ geometry. As is the case for NxN analysis of the previous section, for ‘x’ geometries,

the Young’s moduli do not coincide and the shear moduli do, and the shear moduli do not

coincide for the ‘+’ geometry while the Young’s moduli do. As the width to length ratio

is increased, the moduli undergo different trends. For example, the shear moduli remain

relatively stable in the thin-barred ‘+’ geometry, while the shear moduli undergo a nearly-

linear increase for the thick-barred ‘+’ geometry. However, no equivalent trend is noted for

the ‘x’ geometries.

The question about the noise in the Young’s moduli of Figures 3.10 and 3.11 can

be explained by the increasing discretization of the UC at each W/L step. The algorithm

used to build the ‘x’ geometries draws a line from corner to corner of the UC, and then

a Euclidean distance metric is used to choose elements to fill. As W/L is increased, a

fluctuation of fewer and more cells within this inclusion distance. In these cases, while

fluctuations about a constant value are apparent, the constant trend is of true physical

note.

3.1.3 Single Layer Analysis

While Sec. 3.1.1 illustrated the different predictions of material properties using

the two methods for square domains, these effects are also seen on single-layer domains. In

this section, this divergence is explored on the extreme case of a single layer of unit cells.

A single layer clearly violates the scaling assumption of homogenization theory. Again the

comparison between the homogenized and averaging method can be analyzed by using both

methods to compute material properties on a single layer of composite material.

In theory, the RVE limit could be reached by the averaging analysis while not nec-

essarily requiring convergence to homogenized properties for a single layer, as the global
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Figure 3.14: Single-layer materials with different W/L scaling ratios.

material scaling required by homogenization is violated. In addition, meta-material prop-

erties can be analyzed for non-square cells, but the relative scaling of the UC to the overall

material changes in the process, possibly changing the accuracy of the meta-material prop-

erty prediction when using homogenization or volume averaging. To test these hypotheses,

homogenized properties for the same two ‘+’ and ‘x’ geometries were analyzed using a 20x20

element discretization for the UC with W/L fraction of one and a 20x100 discretization with

W/L fraction of five (Figure 3.14). Then, the corresponding Nx1 UC layers were analyzed

using the averaging method in a manner similar to the NxN analyses. N was increased

from one to fifteen incrementally in the same direction as the length L of the UC. Results

for the ‘x’ geometry are shown in Figures 3.15 and 3.16, while typical results for the ‘+’

geometry are shown in Figures 3.17 and 3.18.

Again, the dependence of meta-material properties on design geometry is evident,

as in all other cases. However, for the ‘x’ geometry, EU22 does not converge to EH22, and the

differences between these two values increases as W/L increases. In addition, convergence

of GU23 is GH23 no longer achieved when W/L is increased. For the ‘+’ geometry, similar

effects are noted in the convergence properties of GU23 and GH23. Two distinct effects are
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Figure 3.15: Comparative results for meta-material properties of a single layer of UCs for
the ‘x’ geometry with W/L of the UC equal to one.

Figure 3.16: Comparative results for meta-material properties of a single layer of UCs for
the ‘x’ geometry with W/L of the UC equal to five.

potentially at work here. For those layers with UCs with W/L equal to one, the global

scaling assumption of homogenization is violated in one dimension, so there is no reason,

even once the RVE limit has been achieved, to expect the averaging analysis to necessarily

converge with the homogenization analysis. When W/L is increased to five, the single-

parameter expansion of homogenization becomes invalid as well, amplifying the error of the

homogenization analysis. While the homogenization analysis that uses a single-parameter

expansion leads to what appear to be incorrect meta-material moduli, it is possible that a

homogenization analysis obtained from a two-parameter expansion would produce correct
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Figure 3.17: Comparative results for meta-material properties of a single layer of UCs for
the ‘+’ geometry with W/L of the UC equal to one.

Figure 3.18: Comparative results for meta-material properties of a single layer of UCs for
the ‘+’ geometry with W/L of the UC equal to five.

meta-material moduli.

Given these three different examples, the NxN analysis, the scaled UC analysis and

the single-layer analysis, it is clear there are situations in which the two analytical models

do not converge. However, what is not clear is which of the two methods, if either, is the

numerically accurate method. The following section addresses this question with a simple

meta-material design example.
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Figure 3.19: Loading conditions for simple shear design examples. The bottom nodes of
each material are completely constrained, and the top nodes are constrained to displace
only in the horizontal direction. A horizontal force Fx is placed on the top nodes, and the
horizontal displacement dG of the top is found as a result of the FEA.

3.2 Design Examples

Typically, the meta-material design process requires simulating the meta-material

as part of the global design as a homogeneous orthotropic material with the properties

given by the meta-material analysis, EMij . However, if the analysis is inaccurate due to

the violation of the scaling assumption, the meta-material may not perform in the manner

intended when placed in the global design.

To demonstrate this point, three FEA problems were created in which materials

were loaded in simple shear under traction boundary conditions, and displacements of the

top edge were determined. First, the meta-material properties EMij of a geometry were found

using homogenization and averaging analyses. Then the material displacement dG for the

loading conditions of the global problem (as given in Figure 3.19) with the meta-material

geometry was found, and the same boundary conditions were applied to a homogeneous,

orthotropic material with meta-material properties EMij to produce displacement dM . This

process, depicted in Figure 3.20, was completed using both the homogenization analysis

and the composites averaging analysis. This was repeated for two different cases: one in

which a square meta-material of constant volume was built out of NxN cells, just as in

Sec. 3.1.1, and one in which the single-layer meta-material was built out of Nx1 unit cells
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Figure 3.20: Depiction of the accuracy analysis of the meta-material design process in
which the global displacement of the meta-material geometry was compared with that of
the global displacement of the homogeneous, orthotropic material with properties E∗ij using
homogenization H or composites averaging U analyses.

with unit cell scaling W/L equal to one and W/L equal to five as in Sec. 3.1.3. (The

same UC discretizations were used in each case.) For the NxN , square meta-material, the

relative errors of dH and dU from dG are plotted as a function of N in Figures 3.21 and

3.22. Similarly, the relative errors are shown for the Nx1 single-layer meta-material as a

function of N in Figures 3.23, 3.24, 3.25 and 3.26. The results shown in Figures 3.21 and

3.22 for the NxN materials demonstrate a few important points. First, there is a design

dependence on the convergence of the meta-materials properties to those approximated

when below the RVE limit. However, in the RVE limit, the homogeneous, orthotropic

material displacements appear to converge, albeit slowly in the case of the ‘+’ geometry,

to those of the geometry displacements. For the single-layer materials (Figures 3.23, 3.24,

3.25 and 3.26), the results not only depict a strong convergence dependence on the meta-

material design, but the displacements using the homogenized coefficients are inaccurate for

all cases but one. For those geometries in which the displacements dH are not consistent
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Figure 3.21: Relative errors of material displacements for square materials consisting of
NxN unit cells ‘x’ geometry.

Figure 3.22: Relative errors of material displacements for square materials consisting of
NxN unit cells ‘+’ geometry.

with geometry displacements dG, the relative errors range between approximately 20% and

170%. However, in every case, the displacements predicted by the averaging analysis dU

agree with the geometry displacements dG as the number of UCs in the meta-material layer

is increased significantly. Also to note is an increase in relative error of convergence for

this example when the W/L ratio is increased from one to five. The one case in which

these designs are accurate is likely to be so because the same geometry that is optimal for

pure shear (the ‘x’ geometry) is also local optimum in simple shear (the particular design

example). However, the incorrect convergence in the other cases demonstrates the results
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Figure 3.23: Relative errors of single-layer material displacements for ‘x’ geometry with
W/L equal to one.

Figure 3.24: Relative errors of single-layer material displacements for ‘x’ geometry with
W/L equal to five.

are sensitive to the topology and other geometry effects. In the case of the NxN and single-

layered analyses, for this design example, the composite averaging analysis is accurate, while

homogenization analysis is only accurate when the assumptions of homogenization are met.

One key point not to be overlooked from these results is that it appears that the

RVE limit must be reached in every case in order for the global design parameters to be in

agreement with the meta-material parameters. This negates the use of either homogeniza-

tion or averaging analyses (as given here) as accurate methods when modeling below the

RVE limit.

61



Figure 3.25: Relative errors of single-layer material displacements for ‘+’ geometry with
W/L equal to one.

Figure 3.26: Relative errors of single-layer material displacements for ‘+’ geometry with
W/L equal to five.

3.3 Summary

This chapter serves to clarify several important issues in the analysis of meta-

materials for use in larger design assemblies. There are many cases in which the assumptions

of asymptotic homogenization theory are not met. Given the results from these design ex-

amples, two different cases in which homogenization is inaccurate have been identified:

• when the small-parameter expansion is not valid

– when the UC width to length ratio W/L is much larger than one such that the
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unit cell is highly rectangular

– when the material scaling is such that the small-parameter expansion is no longer

valid (i.e., single-layer materials).

• when too few cells are used too achieve the RVE limit (material design problems that

include only a few UCs due to manufacturing constraints)

In the first case, volume averaging provides a better estimate of meta-material properties for

use in the design optimization problem, while in the second case, neither analysis provides

accurate meta-material moduli. However, when using a very small number of unit cells,

other modeling methods that do not rely on meta-material parameters may be used. These

methods that rely on only basic finite element modeling are outside the scope of meta-

materials analysis and design and this body of research.

The scaling assumptions of homogenization are violated by creating single-layer com-

posite meta-materials. By doing so, it becomes clear that the averaging analysis can predict

with much greater fidelity the correct meta-material properties than the homogenization

analysis that may be used in a homogeneous, orthotropic material in the global design.

Also, loosening the square UC constraint to have non-unity W/L ratios opens up a wider

range of design possibilities by adding another design parameter to the process to broaden

the range of manufacturable meta-materials. (For example, longer, but not thinner, beams

in shear result in a lower meta-material shear modulus without necessarily compromising

manufacturability or yield properties.)

The strong dependence of these global convergence properties on meta-material

design supports the need for topology optimization of the meta-material UC using the av-

eraging analysis for those problems in which homogenization analysis is inaccurate, as the

strength of a meta-material geometry is dependent on the placement, shape and size of

voids introduced into the material. Without an accurate analytical tool, the meta-material

will not necessarily perform as desired within the global assembly. However, below the

RVE limit, there is not necessarily a gain in modeling fidelity by using the more computa-
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tionally expensive averaging analysis over homogenization. While averaged meta-material

properties EUij may not converge rapidly to the homogenized properties EHij , for the par-

ticular design of the square meta-material in simple shear, the displacements predicted

by both homogenization and averaging converge to those of the geometry displacements.

This supports the previous results of Drago and Pindera [47] and Pindera et al. [46] that

homogenization analysis remains the most efficient method of meta-material analysis and

optimization above the RVE limit for those meta-materials that meet the homogenization

scaling assumptions.

The following chapters address the optimization tools needed for meta-material anal-

ysis in general, as well as the specifics of meta-material optimization using the volume aver-

aging analysis. (As discussed in Chapter 2, optimization using asymptotic homogenization

is well-studied for a number of design problems.)
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Chapter 4

Optimality Conditions For

Meta-Materials Topology Design

Problems

In the design of meta-materials, two different types of design goals are typically

used to target a property: a minimum amount of material used (weight or volume fraction)

can be sought subject to satisfying the meta-material property E∗k required (at a system

level), or the 2-norm distance between the system requirement E∗k and the meta-material

property Ek can be minimized subject to weight or volume constraints. (Here, subscript

k ∈ {22, 33, 23} has been used instead of ij to simplify the notation.) The former method

has been used with inverse homogenization analysis in the design of materials for specified

linear elastic properties [20], [21], [78]. The latter method was described for linear elastic

properties [40], [19], [79] and for thermal properties [80], and it was extended to the design

of structures subject to multiple meta-material goals (stiffness and conduction) [81].

These methods seem similar in their basic approach, but there are subtle differences

that can lead to difficulties in the implementation of the optimization methods when using

continuous interpolations of the design space (e.g., solid isotropic microstructure with pe-
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nalization, SIMP [54], [55]). For example, by targeting a desired material property while

constraining the volume fraction, the design space can be limited such that the desired

material property may no longer be feasible. Alternatively, when minimizing the volume

fraction while constraining the difference between the desired property E∗k and current

property Ek, mathematical and numerical problems in the optimality conditions may arise,

resulting in solutions that do not reach the targets or solutions are not suitable for material

design. While the first example is common to all multicriteria optimization problems, the

second example is specific to only those topology optimization problems that use continuous

approximations to interpolate the design space. An argument could be made that using

evolutionary algorithms could offer a solution to both of these problems, as they use 1-0

(inclusion-exclusion) methods to determine the finite elements to be included in an opti-

mal structure (see, for example, Ling and Steven [82], Edwards et al. [83]). However, as

pointed out in the review paper of Rozvany [71], these methods are computationally costly

and non-deterministic in nature. Instead, it is common to implement SIMP or SIMP-like

approximation methods that interpolate the density of each finite element on the continu-

ous interval [0,1]: issues surrounding optimization and convergence of solutions are better

understood, and deterministic algorithms can be used to easily solve a large number of

topology optimization problems ([50], [52] and sources therein).

The purpose of this chapter is to examine the appropriate optimality conditions,

either the Karush-Kuhn-Tucker (KKT) conditions or the more general Fritz-John (FJ)

conditions, for the design of meta-materials with desired properties. First, the optimality

conditions are stated for a general optimization problem, and the conditions are analyzed

for three different optimization problems used to target multiple meta-material properties,

and formulations are identified as either well-posed or ill-posed; in particular, the feasibility

of 1-0 solutions at theoretical optimality when using continuous approximation methods is

determined. Examples demonstrating these points using asymptotic homogenization with

SIMP interpolation to determine the linear elastic properties of meta-materials (see, e.g.,

Hassani and Hinton [39] for a discussion of these techniques) are given and discussed in the
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context of the different optimization formulations presented. Finally, a brief discussion of

the utility of each of the optimization formulations summarizes the chapter.

4.1 Considered Optimization Problems

There are two functions of the density design variables x (used to parameterize

n finite elements of the design domain) in the topology optimization of meta-materials.

The meta-material property Ek(x) is obtained from some type of homogenization or other

computational analysis, and the volume fraction V (x) is defined as

V (x) =
1
n

n∑
j=1

xj (4.1)

The gradient of the volume fraction is given by

∇V (x) =
1
n
u (4.2)

where u = (1, 1, ..., 1)T is a vector of ones with length n.

Let E∗k denote the kth material design target desired for the meta-material design.

Three different topology optimization formulations are considered. In the first problem, a

minimum volume is desired subject to a linear constraint on k meta-material properties:

min
x

V (x) (4.3)

s.t. hk(x) = Ek(x)− E∗k = 0 for k ∈ {1, 2, ..., r}

g1
i (xi) = xi − 1 ≤ 0,∀i ∈ {1, 2, ..., n}

g2
i (xi) = −xi ≤ 0,∀i ∈ {1, 2, ..., n}

A constraint-relaxed version of Problem 4.3 is considered by changing the r linear equality
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constraints into r quadratic inequality constraints:

min
x

V (x) (4.4)

s.t. g1
i (xi) = xi − 1 ≤ 0,∀i ∈ {1, 2..., n}

g2
i (xi) = −xi ≤ 0,∀i ∈ {1, 2, ..., n}

g3
k(x) = (Ek(x)− E∗k)2 − δk ≤ 0 for k ∈ {1, 2, ..., r}

where δk is en engineering tolerance for material objective k. The final problem considered is

the formulation in which the quadratic difference between objective and target is minimized

subject to volume fraction constraints:

min
x

r∑
k=1

wk(Ek(x)− E∗k)2 (4.5)

s.t. g1
i (xi) = xi − 1 ≤ 0, ∀i ∈ {1, 2, ..., n}

g2
i (xi) = −xi ≤ 0, ∀i ∈ {1, 2, ..., n}

g3
U (x) = V (x)− VU ≤ 0

g4
L(x) = VL − V (x) ≤ 0

In these problems, constraints g1
i and g2

i are those boundary constraints on design variables

xi that become necessary when interpolating the design variables on the continuous interval

[0,1]. In the next the section, the optimality conditions for each of these problems are

derived and discussed in detail without regard to a specific engineering application beyond

meta-material design or material interpolation method.

4.2 Optimality Conditions

The optimality conditions considered are those conditions that must necessarily hold

for a point to be a local optimum of an optimization problem. The Karush-Kuhn-Tucker

(KKT) equations are those that express the mathematically necessary conditions for a
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constrained optimization problem at optimal point x∗. (See, for example, Bertsekas [84],

Horst et al. [85], or Bazaraa et al. [86].) These conditions only apply if x∗ is a regular point,

meaning that the gradients of the equality constraints and the active inequality constraints

are linearly independent at x∗. In each of the considered problems, it is assumed that point

x∗ is a regular point, unless otherwise stated, and the KKT conditions are considered.

When x∗ is shown to be no-longer regular, the weaker Fritz-John (FJ) necessary conditions

are considered.

4.2.1 Minimizing Volume With Linear Material Constraints

The KKT conditions for Problem (4.3) consist of the stationarity condition

∇V (x∗)T +
∑
k

µk∇(Ek(x∗)− E∗k)T +
∑
i

λUi ∇(x∗i − 1)T +
∑
i

λLi ∇(−x∗i )T = 0̄ (4.6)

primal feasibility

hk(x∗) = 0, g1
i (x
∗
i − 1) ≤ 0, g2

i (x
∗
i ) ≤ 0, ∀i ∈ 1, 2, ..., n (4.7)

dual feasibility

λUi ≥ 0, λLi ≥ 0, ∀i ∈ 1, 2, ..., n (4.8)

and complementary slackness

λUi (x∗i − 1) = 0, λLi (−x∗i ) = 0, ∀i ∈ 1, 2, ..., n (4.9)

Here, µk denotes the Lagrange multipliers associated with material equality constraint hk,

and there are up to n non-zero Lagrange multipliers λUi and λLi for the bounds on design

variables xi.
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Using Eq. (4.2), the stationarity condition Eq. (4.6) can be written as

1
n
u +

∑
k

µk(∇Ek(x∗))T + RUλU + RLλL = 0̄ (4.10)

where

RU = [êT1U , ê
T
2U , ...ê

T
pU ],RL = [êT1L, ê

T
2L, ...ê

T
qL], (4.11)

are matrices containing unit vectors ê = (0, 0, ..., 1..., 0) for only the p and q active upper

and lower boundary constraints. Here, µ = (µ1, µ2, ..., µr)T , and λU = (λU1 , λ
U
2 , ..., λ

U
p )T

and λL = (−λL1 ,−λL2 , ...,−λLq )T are vectors of the Lagrange multipliers for only the active

constraints. (The minus sign introduced by the gradient of active lower bounds has been

included in the vector λL.) By writing ∇E = [∇ET1 , ∇ET2 , ..., ∇ETr ], λ = ((λU )T , (λL)T )T

and R = [RU RL], Eq. (4.10) can be written as the system of linear equations

−n[∇E R]

µ
λ

 = u (4.12)

At optimality, the p columns of RU are all linearly independent, as are the q columns

of RL, and span(RU )
⋂
span(RL) =Ø. Given Eq. (4.12), and assuming all material

constraints hk have been met, there are three different cases to consider at optimality.

Case 1 r + p + q < n: In this case, there are more rows than columns in linear system

4.12. The rows of [∇E R] can be rearranged such that

−n

∇EN 0

∇EA I


µ
λ

 = u =

uN
uA

 (4.13)

where A and N denote those design variables that are or are not on the boundaries, respec-

tively, 0 is a matrix of zeros and I is the identity matrix, uTN is a vector of ones with length

n− p− q and uTA is a vector of ones with length p+ q.
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Let l and m denote the subscripts for design variables with and without active

boundary constraints, respectively. Equation m from system 4.13 for the set of design

variables not on a boundary is written

r∑
k=1

∂Ek
∂xm

µk = − 1
n

(4.14)

while equation l from system 4.13 for the set of design variables on a boundary is written

r∑
k=1

∂Ek
∂xl

µk ± λU,Ll = − 1
n

(4.15)

(The term ±λU,Ll is positive if the upper boundary constraint is active and negative if the

lower boundary constraint is active.) Since conditions (4.8) must be satisfied, by labeling

subscript l = a for active lower boundary constraints and l = b for active upper boundary

constraints, rearranging Eq. (4.15) gives

r∑
k=1

∂Ek
∂xa

µk ≤ −
1
n

(4.16)

r∑
k=1

∂Ek
∂xb

µk ≥ −
1
n

(4.17)

Combining Eqs. (4.14), (4.16) and (4.17)

r∑
k=1

∂Ek
∂xa

µk ≤
r∑

k=1

∂Ek
∂xm

µk ≤
r∑

k=1

∂Ek
∂xb

µk, ∀a 6= b 6= m (4.18)

Thus, the KKT conditions are satisfied for system (4.13) provided that Eq. (4.18) holds.

Case 2 r+p+ q = n: In this case, the matrix [∇E R] is square, det(∇E R) 6= 0, and the

optimal point x∗ is regular. Therefore, there exists a unique solution to Eq. (4.12). The

KKT conditions hold if Eq. (4.18) is satisfied.

If det(∇E R) = 0, the matrix [∇E R] contains linearly dependent columns. The
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regularity assumption at point x∗ is no longer valid, and the FJ conditions must be con-

sidered. In this case, the stationarity equation of the FJ conditions will have a vanishing

multiplier in front of the gradient of the objective, reducing the condition to

∑
k

µk∇(Ek(x∗)− E∗k)T +
∑
i

λUi ∇(x∗i − 1)T +
∑
i

λLi ∇(−x∗i )T = 0̄ (4.19)

where

(µ, λ) 6= 0̄ (4.20)

The dual feasibility conditions Eq. (4.8) still apply, and, because the constraints are all

differentiable, the slackness conditions Eq. (4.9) still hold. Using the same previously

defined terms, the stationarity requirement Eq. (4.19) can be written

[∇E R]

µ
λ

 = 0̄ (4.21)

The linear dependence of the columns of [∇E R] implies there are an infinite number of

solutions to system (4.21). A similar argument to Case 1 can be made for the inactive and

active constraints to give
r∑

k=1

∂Ek
∂xm

µk = 0 (4.22)

r∑
k=1

∂Ek
∂xa

µk ≤ 0 (4.23)

r∑
k=1

∂Ek
∂xb

µk ≥ 0 (4.24)

which, once again, produces the result

r∑
k=1

∂Ek
∂xa

µk ≤
r∑

k=1

∂Ek
∂xm

µk ≤
r∑

k=1

∂Ek
∂xb

µk, ∀a 6= b 6= m (4.25)
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Thus, the FJ conditions are satisfied provided that Eqs. (4.20), (4.21) and (4.25) hold.

Case 3 r + p + q > n: There are, at most, n independent columns in matrix [∇E R].

Matrix [∇E R] again contains linearly dependent columns, and the FJ conditions must

be considered instead. The same argument as in Case 2 can be made, where Eqs. (4.20),

(4.21) and (4.25) must apply for the FJ conditions to hold. Given that Cases 1, 2 and 3

satisfy either the KKT conditions or the weaker FJ conditions at optimal point x∗, and

provided that all material properties E∗k can be achieved at optimality, there always exists

an optimal solution to Problem (4.3).

4.2.2 Minimizing Volume With Quadratic Material Constraints

The KKT conditions for Problem (4.4) include the stationarity condition

∇V (x∗)T +
∑
k

λk∇((Ek(x∗)− E∗k)2 − δk)T

+
∑
i

λUi ∇(x∗i − 1)T +
∑
i

λLi ∇(−x∗i )T = 0̄ (4.26)

primal feasibility

g1
i (x
∗
i − 1) ≤ 0, g2

i (x
∗
i ) ≤ 0, ∀i ∈ 1, 2, ..., n, g3

k(x
∗) ≤ 0, ∀k ∈ 1, 2, ..., r (4.27)

dual feasibility

λUi ≥ 0, λLi ≥ 0, ∀i ∈ 1, 2, ..., n, λk ≥ 0, ∀k ∈ 1, 2, ..., r (4.28)

and complementary slackness

λUi (x∗i − 1) = 0, λLi (−x∗i ) = 0, ∀i ∈ 1, 2, ..., n

λk((Ek(x∗)− E∗k)2 − δk) = 0, ∀k ∈ 1, 2, ..., r (4.29)
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λk denotes the Lagrange multiplier for the material inequality constraints g3
k, and λUi and

λLi denote the Lagrange multipliers for the bounds on the design variables xi, where there

are up to n active boundary constraints. The stationarity condition 4.26 can be written

in a manner similar to Eq. (4.10) for the linearly constrained problem by using the same

definitions for RU , RL, λU and λL:

1
n
u +

∑
k

2λk(Ek(x∗)− E∗k)∇Ek(x∗)T + RUλU + RLλL = 0̄ (4.30)

In Eq. (4.30), the matrix of gradients ∇E takes the form

∇E = [2(Ek(x∗)− E∗k)∇E1, ..., 2(EMr (x∗)− E∗r )∇Er] (4.31)

If all material constraints g3
k are active at optimality, the primal feasibility conditions (4.27)

can be written

(Ek(x∗)− E∗k) = ±
√
δk ∀k ∈ 1, 2, ..., r (4.32)

if all constraints on the material properties have been met. Thus, the matrix of gradients

in Eq. (4.31) has the form

∇E = [±2
√
δ1∇E1, ±2

√
δ2∇E2, ..., ±2

√
δr∇Er] (4.33)

By writing λ = (λ1, λ2, ..., λr)T , λC = ((λU )T , ( λL)T )T and R = [RU RL], Eq. (4.30) can

be written

−n[∇E R]

 λ
λC

 = u (4.34)

First, assume δk = 0 for all k. The gradient matrix ∇E vanishes, and x∗ is no longer

regular. The FJ conditions must be considered, and they read

∑
k

λk∇((Ek(x∗)− E∗k)2 − δk)T +
∑
i

λUi ∇(x∗i − 1)T +
∑
i

λLi ∇(−x∗i )T = 0̄ (4.35)
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(λ, λC) 6= 0̄ (4.36)

woth δk = 0. Additionally, the primal feasibility, dual feasibility and slackness conditions,

Eqs. (4.27), (4.28) and (4.29) still apply. Given Eq. (4.35), it is clear that, similar to

Problem (4.3), the FJ conditions simply introduce a zero vector onto the right hand side

the linear system:

[0 R]

 λ
λC

 = 0̄ (4.37)

Dividing through by −n and rearranging the terms with active and inactive boundary

constraints, system (4.37) is written

0 0

0 I


 λ
λC

 = 0̄ (4.38)

The top equations in system (4.38) imply λk are free for all values of k, while the equations

in the bottom of system (4.38) imply λU,Ll = 0 for all active constraints l. Thus, in this case,

there exists an infinite number of solutions to system (4.38) with degenerate constraints on

the design variables. Though these solutions satisfy the FJ necessary conditions, Eqs. (4.27)

- (4.29) and Eqs. (4.35) and (4.36), the degeneracy of all of the boundary constraints has

implications on the convergence of the design variables to a 1-0 solution.

Now assume there is at least one δk 6= 0. There are three cases to consider.

Case 1 r + p + q < n: This case is similar to the same case as that for Problem (4.3),

but now the equations for design variables with inactive boundary constraints lead to the

conditions

2
r∑

k=1

±
√
δk
∂Ek
∂xm

λk = − 1
n

(4.39)
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while for those equations with design variables on upper and lower boundary constraints,

2
r∑

k=1

±
√
δk
∂Ek
∂xa

λk ≤ −
1
n

(4.40)

2
r∑

k=1

±
√
δk
∂Ek
∂xb

λk ≥ −
1
n

(4.41)

Combining Eqs. (4.39) - (4.41) yields

r∑
k=1

±
√
δk
∂Ek
∂xa

λk ≤
r∑

k=1

±
√
δk
∂Ek
∂xm

λk ≤
r∑

k=1

±
√
δk
∂Ek
∂xb

λk, ∀m 6= a 6= b (4.42)

Thus, if there exists a δk 6= 0, system (4.34) has a solution, and the KKT conditions hold

provided that Eq. (4.42) is satisfied.

Case 2 r + p + q = n: Again, in this case, the matrix [∇E R] is square. Since there is

a δk 6= 0 for at least one k, similar to Problem (4.3), there exists a unique solution to Eq.

(4.34) provided det(∇E R) 6= 0. If Eq. (4.42) is satisfied, the KKT conditions hold.

If det(∇E R) = 0, the regularity assumption at point x∗ is no longer valid, and the

FJ conditions must be considered. Eqs. (4.35) and (4.36) apply, where Eq. (4.35) can be

written as the linear system

[∇E R]

 λ
λC

 = 0̄ (4.43)

A similar argument to Case 1 for Problem (4.4) is made to give

r∑
k=1

±
√
δk
∂Ek
∂xm

λk = 0 (4.44)

r∑
k=1

±
√
δk
∂Ek
∂xa

λk ≤ 0 (4.45)
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r∑
k=1

±
√
δk
∂Ek
∂xb

λk ≥ 0 (4.46)

Combining Eqs. (4.44), (4.45) and (4.46) results in the condition

r∑
k=1

±
√
δk
∂Ek
∂xa

λk ≤
r∑

k=1

±
√
δk
∂Ek
∂xm

λk ≤
r∑

k=1

±
√
δk
∂Ek
∂xb

λk, ∀m 6= a 6= b (4.47)

The vanishing determinant of matrix [∇E R] implies an infinite number of solutions to

system (4.43) exists. Provided that Eqs. (4.36) and (4.47) are satisfied, the FJ conditions

hold at optimal point x∗.

Case 3 r + p + q > n: Again, there are, at most, n independent columns, and the FJ

conditions must be considered. The same logic as Case 2 applies, where system (4.43) has

an infinite number of solutions. Provided that Eqs. (4.36) and (4.47) are satisfied, the FJ

conditions hold.

Thus, for Problem (4.4), an optimal solution exists for δk 6= 0. If δk = 0 for all k,

the optimal solution of Problem (4.4) satisfies the optimality conditions. However, all of

the constraints on the design variable boundaries are degenerate, where all of the Lagrange

multipliers are zero. The consequences on the application of this formulation to design

engineering are presented in Section 4.4.

4.2.3 Minimizing the Material Objective with Volume Constraints

The KKT conditions for Problem (4.5) include the stationarity condition

∑
k

wk∇((Ek(x∗)−E∗k)2)T±λU,LV ∇V (x∗)T +
∑
i

λUi ∇(x∗i−1)T +
∑
i

λLi ∇(−x∗i )T = 0̄ (4.48)

primal feasibility

g1
i (x
∗
i − 1) ≤ 0, g2

i (x
∗
i ) ≤ 0, ∀i ∈ 1, 2, ..., n, g3

U (x∗) ≤ 0, g4
L(x∗) ≤ 0, ∀k ∈ 1, 2, ..., r (4.49)
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dual feasibility

λUi ≥ 0, λLi ≥ 0, ∀i ∈ 1, 2, ..., n, λU,LV ≥ 0 (4.50)

and complementary slackness

λUi (x∗i − 1) = 0, λLi (−x∗i ) = 0, ∀i ∈ 1, 2, ..., n, λU,LV V (x∗) = 0 (4.51)

Here, λU,LV is the Lagrange multiplier for the active upper (U) or lower (L) volume constraint;

either one volume constraint or neither may be active, but not both simultaneously. By

using the same definitions for RU , RL, λU and λL as previously employed, the stationarity

condition, Eq. (4.48), can be written

[u
n

RU RL
]

λU,LV

λU

λL

 = −
r∑

k=1

2wk(Ek(x∗)− E∗k)∇Ek(x∗) (4.52)

For system (4.52), if a volume constraint is active, there are two cases to consider, while

there is only one case to consider if neither volume constraint is active:

Case 1 p + q < n with active volume constraint: By rearranging the rows of matrix[
u
n RU RL

]
and multiplying by n, Eq. (4.52) for this case is written

uN 0

uA nI



λU,LV

λU

λL

 = −n
r∑

k=1

2wk(Ek(x∗)− E∗k)∇Ek(x∗) (4.53)

where uN and uA denote vectors of ones for inactive and active boundary constraints,

respectively. If all material objectives are met, Ek(x∗)−E∗k = 0, and the right hand side of
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Eq. (4.53) vanishes. The linear system reads

uN 0

uA nI



λU,LV

λU

λL

 = 0̄ (4.54)

Any equation from the top part of the constraint matrix in system (4.54)

λU,LV = 0 (4.55)

while the equations for the active constraints are

λU,LV ± λU,Ll = 0, ∀l ∈ 1, 2, ..., p+ q (4.56)

Combining Eqs. (4.55) and (4.56) yields

λU,Ll = 0, ∀l ∈ 1, 2, ..., p+ q (4.57)

This implies, at optimality, system (4.52) has a trivial solution, as all Lagrange multipliers

vanish. However, the KKT conditions are satisfied.

If only t material objectives are met (1 ≤ t < r), then Eq. (4.53) becomes

uN 0

uA nI



λU,LV

λU

λL

 = −n
t∑

k=1

2wk(Ek(x∗)− E∗k)∇Ek(x∗) (4.58)

The mth row in the upper portion of this linear system reads

λU,LV = −n
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xm

(4.59)
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while the lth row in the lower portion reads

λU,LV ± nλU,Ll = −n
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xl

(4.60)

Combining Eqs. (4.59) and (4.60) and rearranging gives

±λU,Ll = −
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xl
−

t∑
k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xm

, l 6= m (4.61)

The dual feasibility conditions (4.50) require

−
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xm

≥ 0, ∀m (4.62)

t∑
k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xa

≥ −
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xm

, ∀m 6= a (4.63)

and

t∑
k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xb

≤ −
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xm

, ∀m 6= b (4.64)

where subscripts a and b denote variables on active lower and upper boundaries, as before.

Combining Eqs. (4.63) and (4.64) gives

t∑
k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xb

≤ −
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xm

≤
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xa

, ∀m 6= a 6= b (4.65)

Thus, is this case that t material constraints are not satisfied, system (4.58) has a solution

provided that Eqs. (4.62) and (4.65) hold.
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Case 2 p + q = n with active volume constraint: In this case, system (4.52) takes the

form

[uA nI]


λU,LV

λU

λL

 = −n
r∑

k=1

2wk(Ek(x∗)− E∗k)∇Ek(x∗) (4.66)

There are n + 1 columns and n rows in matrix [uA nI]. The columns of this matrix are

linearly dependent, and the FJ conditions must be applied. The stationarity condition reads

±λU,LV ∇V (x∗)T +
∑
i

λUi ∇(x∗i − 1)T +
∑
i

λLi ∇(−x∗i )T = 0̄ (4.67)

where

(λU,LV , λ) 6= 0̄ (4.68)

Additionally, primal feasibility, dual feasibility and complementary slackness, Eqs. (4.49),

(4.50) and (4.51) still apply. Eq. (4.67) can be written

[uAnI]


λU,LV

λU

λL

 = 0̄ (4.69)

An equation from system (4.69) reads

λU,LV ± nλU,Ll = 0 (4.70)

Dual feasibility requires Lagrange multipliers λU,LV and λU,Ll be non-negative. Thus, the

only solution to Eq. (4.70) is (λU,LV , λ) = 0̄, contradicting Eq. (4.68), and the FJ conditions

for this case do not hold.
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Case 3 Neither volume constraint is active: Here, the Lagrange multiplier λU,LV vanishes,

and Eq. (4.52) takes the form

 0

nI


λU
λL

 = −n
r∑

k=1

2wk(Ek(x∗)− E∗k)∇Ek(x∗) (4.71)

where λU and λL are vectors of Lagrange multipliers for the active boundary constraints. If

all r material requirements are met, the right hand side of Eq. (4.71) vanishes, and the only

solution is λU,Ll = 0 for all l, so that a trivial solution to linear system (4.71) is obtained.

However, if only t material requirements are not met (1 ≤ t < r), the right hand side of Eq.

(4.71) no longer vanishes, and an equation from this system reads

±nλU,Ll = −n
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xl

(4.72)

The dual feasibility conditions (4.50) require in this case

t∑
k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xb

≤ 0 ≤
t∑

k=1

2wk(Ek(x∗)− E∗k)
∂Ek
∂xb

, ∀a 6= b (4.73)

Here, system (4.71) has a non-trivial solution, and the KKT conditions hold provided that

Eq. (4.73) is satisfied.

Thus, for Problem (4.5), all of the formulations in which a volume constraint is

active have only trivial solutions for the Lagrange multipliers of the linear systems associated

with the stationarity conditions of the KKT conditions, implying all of the constraints are

degenerate. The same is true when a volume constraint is not active and all of the material

requirements are met. However, when one or more of the material requirements for this

case is not met, it is possible to find a feasible, non-trivial, optimal solution x∗.
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Figure 4.1: Initial point used for optimization.

4.3 Design Examples Using Homogenization

Given the mathematical analyses of these three problems, a few design examples are

used to demonstrate the mathematical and design capabilities of each optimization method

to target only a single meta-material property. To do this, asymptotic homogenization was

used to analyze either the Young’s modulus EH22(x) or the shear modulus GH23(x) of the

material. The same design domain discretizations (20x20 square, shell elements) and ter-

mination parameters (1000 function evaluations, 200 iterations, material modulus tolerance

equal to 10−3 and volume fraction tolerance equal to 10−4) were used. At this discretiza-

tion, there were 400 design variables. The linear equality constrained Problem (3) has no

additional parameters, while the quadratic constrained Problem (4.4) has been optimized

with both zero and non-zero values for δ, and different ranges of volume fraction boundaries

were used for the volume fraction constrained Problem (4.5).

The initial point used for all optimizations, a material with a square hole, is shown

in Figure 4.1. A linear, elastic material with Young’s modulus E0 = 30 GPa and Poisson’s

ratio ν = 0.30 under a plane stress condition was used for the finite element analysis. For

the optimization, the SIMP interpolation with penalization exponent s = 3 such that the

effective Young’s modulus Ei of element i was given by

Ei = E0x
s
i (4.74)

A mesh filter, similar to that reported by Sigmund [28] was used to eliminate numeri-
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Figure 4.2: Visual results for optimizations targeting different Young’s moduli E∗22. Nu-
merical results are given in Table 4.1.

cal problems common to topology optimization of continuous design domains, including

checkerboard solutions and one-node connected hinges. (See Sigmund and Petersson [66]

and sources therein for a discussion of these issues.) The results for optimization of the

Young’s modulus are given in Figure 4.2 and in Table 4.1, while results for optimization

of the shear modulus are given in Figure 4.3 and Table 4.2. For optimization using Prob-

lem (4.4), δ = 0 and δ = 0.1 were chosen, while for optimization using Problem (4.5), the

feasible volume fractions were constrained such that either V ∈ (0,0.5] or V ∈ [0.5,1]. The

number of active constraints on the finite elements is listed as a numerical verification of

SIMP convergence of the final solution. The numerical results in Tables 4.1 and 4.2 share

several common results. First, the linearly constrained optimization method, Problem (4.3),

84



Table 4.1: Numerical Results For Optimizations Targeting E∗22

Linear (Problem 4.3)

E∗22 [GPa] EH22 [GPa] V Iterations Func. Eval. Active Constraints

3 3.001 0.256 85 452 172
9 9.001 0.336 60 194 314
15 14.999 0.552 109 290 378
21 21.001 0.718 72 214 302

Quadratic, δ = 0 (Problem 4.4)

E∗22 [GPa] EH22 [GPa] V Iterations Func. Eval. Active Constraints

3 1.892† 0.209 234 1001 183
9 8.708† 0.315 248 1001 161
15 15.001 0.542 229 747 309
21 20.980† 0.721 207 1001 331

Quadratic, δ = 0.1 (Problem 4.4)

E∗22 [GPa] EH22 [GPa] V Iterations Func. Eval. Active Constraints

3 2.645 0.151 175 1001 192
9 8.688 0.319 86 199 260
15 14.637† 0.515 144 1001 113
21 20.487† 0.710 114 1001 148

Volume Constrained, 0 < V ≤ 0.5 (Problem 4.5)

E∗22 [GPa] EH22 [GPa] V Iterations Func. Eval. Active Constraints

3 0.000‡ 0.005 2 3 392
9 0.000‡ 0.014 2 3 394
15 12.704‡ 0.743 3 34 36
21 19.664‡ 0.863 2 29 36

Volume Constrained, 0.5 ≤ V ≤ 1.0 (Problem 4.5)

E∗22 [GPa] EH22 [GPa] V Iterations Func. Eval. Active Constraints

3 0.000‡ 0.005 2 3 392
9 0.000‡ 0.014 2 3 384
15 0.000‡ 0.036 2 3 352
21 0.000‡ 0.163 2 3 272

†Optimization terminated early by exceeding allowed number of function evaluations.
‡Optimization terminated early due to inability to find a feasible solution.
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Table 4.2: Numerical Results For Optimizations Targeting E∗22

Linear (Problem 4.3)

G∗23 [GPa] GH23 [GPa] V Iterations Func. Eval. Active Constraints

1 1.001 0.420 36 144 14
4 4.000 0.546 122 380 177
5 5.000 0.650 109 418 187
7 7.001 0.813 72 418 272

Quadratic, δ = 0 (Problem 4.4)

G∗23 [GPa] GH23 [GPa] V Iterations Func. Eval. Active Constraints

1 0.944† 0.348 194 1001 26
4 4.001 0.652 66 238 38
5 4.999 0.718 51 211 40
7 6.952† 0.824 114 1001 233

Quadratic, δ = 0.1 (Problem 4.4)

G∗23 [GPa] GH23 [GPa] V Iterations Func. Eval. Active Constraints

1 0.684 0.308 132 750 40
4 3.680† 0.561 167 1001 92
5 4.674† 0.627 140 1001 106
7 6.678† 0.786 139 1001 236

Volume Constrained, 0 < V ≤ 0.5 (Problem 4.5)

G∗23 [GPa] GH23 [GPa] V Iterations Func. Eval. Active Constraints

1 0.000‡ 0.269 2 3 192
4 0.173‡ 0.467 3 28 44
5 1.665‡ 0.500 176 542 164
7 1.561‡ 0.500 344 1001 0

Volume Constrained, 0.5 ≤ V ≤ 1.0 (Problem 4.5)
G∗23 [GPa] GH23 [GPa] V Iterations Func. Eval. Active Constraints

1 0.000‡ 0.269 2 3 192
4 2.945‡ 0.720 3 31 36
5 4.282‡ 0.783 3 30 36
7 6.931‡ 0.882 3 23 36

†Optimization terminated early by exceeding allowed number of function evaluations.
‡Optimization terminated early due to inability to find a feasible solution.
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Figure 4.3: Visual results for optimizations targeting different Young’s moduli G∗23. Nu-
merical results are given in Table 4.2.

was successful in achieving the desired moduli E∗22 and G∗23, numerically, with the fewest

number of algorithm iterations and function evaluations. The optimizations with quadratic

constraints on the material moduli had mixed results, where the use of the engineering

tolerance δ in Problem (4.4) resulted in a larger range of allowable moduli upon successful

termination of the optimization algorithm; many of the optimizations terminated prema-

turely, reaching the maximum allowed number of function evaluations when using quadratic

material constraints for both zero and non-zero δ. None of the volume constrained opti-

mizations achieved the desired moduli, as the optimization algorithm was unable to reach

a feasible point. By comparing the G∗23 = 1 GPa or E∗22 = 3 GPa optimization attempts

for the volume constrained method with volume fraction constrained to be less than 0.5
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with the linearly constrained attempts with similar targets, it is clear that feasible, local

optima existed for the volume constrained attempts. Similar results are true by looking

at the larger moduli optimization attempts. Finally, In each of the optimization attempts,

there are fewer active boundary constraints than total number of design variables. The

visual results presented in Figures 4.2 and 4.3 support the numerical results. For the opti-

mizations targeting E∗22 with linear material constraints and quadratic material constraints

with non-zero δ, each of the solutions are bar-like geometries with few intermediate densi-

ties, whereas δ = 0 optimizations resulted in somewhat blurry solutions with intermediate

densities (best demonstrated in the E∗22 = 3 GPa case). The G∗23 optimizations showed

similar convergence, or lack thereof, for these three optimization methods. In the volume

constrained solutions, the solutions lack a distinguishable geometry, being at a numerical

lower bound of the optimization, or they have not moved in an appreciable way from the

initial point.

4.4 Discussion

The results of the mathematical evaluation of the optimality conditions are summa-

rized in Table 4.3. From these results, it is clear that, when attempting to target a number

of material properties in a meta-material design problem, a problem formulation using lin-

ear constraints as in Problem (4.3) can be used. For a topology optimization problem that

utilizes any continuous material interpolation method, achieving a 1-0 solution implies that

all of the design variables are on one boundary or another. It is shown here that there are

infinitely many solutions to the problem due to the existence of an underdetermined linear

system at optimality. However, with the need to use some filtering method to eliminate

checkerboard solutions, the number of design variables is typically greater than the number

of active boundary and material property constraints. This is because the mesh-filtering

scheme introduces a common situation in which intermediate design densities are obtained.

This case was shown to lead to the overdetermined system of linear equations in Section
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4.2.1. The design examples presented in Section 4.3 support these conclusions, since all

of the optimization attempts were numerically successful, but only one was not visually

well-resolved.

Table 4.3: Summary of Mathematical Analysis of Optimality Conditions

Problem 3 Conditions Satisfied

r + p+ q < n KKT
r + p+ q = n KKTa, FJb

r + p+ q > n FJ

Problem 4 Conditions Satisfied

δk = 0 ∀k Neither
∃k such that δk 6= 0, r + p+ q < n KKT
∃k such that δk 6= 0, r + p+ q = n KKTa, FJb

∃k such that δk 6= 0, r + p+ q > n FJ

Problem 5 Conditions Satisfied

p + q < n, active volume constraint, all
material requirements met

KKT†

p + q < n, active volume constraint, one
or more material requirements not met

KKT

p+ q = n, active volume constraint Neither
Neither volume constraint active, all ma-
terial requirements met

KKT†

Neither volume constraint active, one or
more material requirements not met

KKT

†Boundary constraints are degenerate. a Non-zero determinant of constraint matrix.
b Zero determinant of constraint matrix .

In the case of the constraint-relaxed Problem (4.4) using quadratic constraints on the

material properties, the problem formulation was shown to admit only the trivial solution

for the Lagrange multipliers for the exact design of material properties in meta-material

topology design (δk = 0 ∀k). Vanishing Lagrange multipliers using quadratic constraints

are noted elsewhere; in particular, Alexandrov and Lewis note the use of quadratic equality

constraints in collaborative optimization of systems results in vanishing Lagrange multipliers

do not exist at optimality [87]. In Problem (4.4), the zero Lagrange multipliers associated

with boundary constraints imply that all of these constraints are degenerate at optimality;
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the constraints could be removed from the optimization problem and the same point would

be obtained as optimal. This is an issue because, while the material requirements will

be met, the notion that every one of these boundary constraints on the design variables

does not affect the quality of the solution is obviously contrary to the purpose of topology

optimization for which 1-0 solutions are desired. These conclusions are demonstrated with

the design examples given in Section 4.3, as the optimizations where δ = 0 resulted in

geometries that had many intermediate densities in the design domain. These solutions are

not suitable for material design.

However, when a non-zero value for δk in Problem (4.4) was chosen, the optimiza-

tion problem was shown to be theoretically well-posed, and the visual results in Section

4.3 display well-resolved geometries similar to the linearly constrained examples. These

methods could be used to target one set of material properties exactly subject to achieving

a property within specified tolerances δk or to design of meta-materials under uncertainty

(see Seepersaad et al. [38]).

Finally, when using the material targets as objectives and constraining volume frac-

tions as in Problem (4.5), only solutions in which the boundary constraints are degenerate

were shown to exist when all of the material requirements are met, and in the rare case that

all boundary constraints on the design variables are met, the problem is mathematically

ill-posed. Again, the degeneracy asserts that the design variable constraints do not take an

important role in the topology optimization method, which is contrary to the desirability

of a 1-0 solution at optimality. Design examples given in Section 4 support this conclu-

sion, because none of the optimizations were successful, despite the existence of feasible,

SIMP-convergent geometries. When one or more material requirements is not achieved, the

KKT conditions were shown to hold at an optimal point with non-trivial solutions for the

Lagrange multipliers.

Comparing each of the three problems for targeting a single material property, only

Problem (4.3) and Problem (4.4) with non-zero δ were shown to be theoretically and numer-

ically well-posed. Additionally, the numerical results suggest that implementing Problem
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(4.3) may be more numerically efficient than implementing Problem (4.4), but further test-

ing is required. When using these problems to target multiple material properties, Problem

(4.3) and Problem (4.4) with non-zero δ were shown to be well-posed problems when all

material constraints are met, whereas Problem (4.5) was only well-posed when one or more

material constraints was explicitly not met in the optimization. These results suggest that

Problems (4.3) and (4.4) are more viable optimization formulations for topology design.

4.5 Summary

The optimality conditions are derived for three meta-material topology optimiza-

tion problems: two targeting meta-material properties using linear equality or quadratic

inequality constraints, respectively, while minimizing a volume function, and one minimiz-

ing the differences between material targets and material properties in the objective while

constraining the allowed volume fraction. Based on the analysis presented here, the for-

mulation using linear constraints is recommended because it is mathematically well-posed

and offers the desired 1-0 solutions for topology design. Surprisingly, this formulation is not

prevalent in the literature. On the other hand, the other formulations that are widely-used

are not always well-posed, and they admit solutions that do not achieve 1-0 convergence.

Future insights may be provided by considering the physical material properties represented

by the function E(x).
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Chapter 5

Topology Optimization Using

Volume Averaging

In Chapter 3, it was demonstrated that the volume averaging analysis is accurate for

analyzing single-layer material properties, while asymptotic homogenization is not. Then, in

Chapter 4, the KKT and FJ optimality conditions for three different meta-material topology

optimization problems where meta-material properties are targeted were analyzed. Given

these, a topology optimization method using the volume averaging analysis can be built.

In this chapter, a topology optimization routine for the volume averaging analysis is

described. The SIMP interpolation is used to parameterize the design space with variables

xi. Design sensitivities (first order derivatives with respect to the design variables) are

obtained for all of the constraints. This includes calculating the derivatives of the volume

fraction V (x) and the meta-material properties EU22(x), EU33(x) and GU23(x) with respect to

the design variables, written as ∂V
∂xi

, ∂E
U
22

∂xi
, ∂E

U
33

∂xi
and ∂GU

23
∂xi

, respectively, are derived. The effect

of initial points is investigated briefly next, and then results are given for the optimization

programs, written using the described parametrization, analysis and sensitivities.
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5.1 Optimization Methods

Given the mathematical analysis of the optimality conditions in Chapter 4, the

optimization method in which a minimum volume is desired subject to a linear equality

constraint, Problem 4.3, was chosen. For the targeted optimization of EUk using the volume

averaging analysis (where EUk is EU22, EU33 or GU23), this problem is written

min
x

V (x) (5.1)

s.t. hk = EUk (x)− E∗k = 0 for k ∈ {22, 33, 23}

g2
i = xi − 1 ≤ 0, ∀i ∈ {1, 2, ..., n}

g3
i = −xi ≤ 0, ∀i ∈ {1, 2, ..., n}

With a well-posed optimization problem (the optimality conditions can be achieved),

a deterministic optimization algorithm can be applied to obtain an optimum solution. As

discussed in Chapter 2, approximation methods (SLP, SQP and MMA) are commonly

used to solve a topology optimization problem. MATLAB’s optimization toolbox provides

an implementation of the SQP algorithm through the fmincon() function [88]. At every

iteration of the algorithm, the SQP algorithm computes a local quadratic approximation of

the objective function and local linear approximations of the constraints through the use

of Taylor expansions, but to do this, derivatives of these functions must be obtained [89].

Finite difference methods can be used to calculate these derivatives numerically, but they

are very inefficient for problems with large numbers of design variables. Instead, closed-form

expressions for the derivatives of the analysis functions with respect to the design variables,

called design sensitivities, are typically provided to significantly increase the computational

efficiency of the optimization algorithm. In this work, the design sensitivities for Problem

5.1 are derived first for a single unit cell, and then they are extended to the design of

multiple unit cells by using variable linking techniques between unit cells.
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5.1.1 Single Unit Cell Design Sensitivities

There are three types of functions for which design sensitivities are needed: one

for the volume fraction V (x), one for the meta-material constraint hk, and those for the

design variable bounds gi. The sensitivities for the design variable bounds gi are trivial and

calculated within MATLAB’s optimization toolbox. For the volume fraction sensitivity,

recall

V (x) =
1
n

n∑
j=1

xj (5.2)

which, for a continuously interpolated topology optimization problem, sensitivities are given

by

∇V (x) =
1
n
u (5.3)

where u = (1, 1, ..., 1)T is a vector of ones with length n.

The design sensitivities for the linear constraint function h(x) for a single unit cell

hk(x) = EUk (x)− E∗k (5.4)

are not as simple to calculate. The derivative of Eq. 5.4 with respect to design variable xl

is
∂hk(x)
∂xl

=
∂EUk (x)
∂xl

(5.5)

From Chapter 2, recall that the compliance C of the structure can be given as a function of

strains εk, meta-material property EUk and unit cell volume Y (when only in a single mode

of deformation) as

C = εkE
U
k εkY (5.6)

Applying the meta-material linear constitutive relation Eq. 2.15, equilibrium requirements

Eqs. 2.21 and 2.22, and strain energy equivalence requirement for an RVE Eq. 2.17 (note,
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this assumes the analysis volume is an RVE), Eq. 5.6 can be written as

EUk =
C

Y (ε̄k)
2 (5.7)

where the bar denotes the strain was prescribed as a (constant) parameter of the FEA.

Thus, the sensitivity of material property EUk with respect to design variable xl (and also

constraint hk via Eq. 5.5) is given as a factor of the derivative of the compliance function,

or
∂EUk
∂xl

=
1

Y (ε̄k)
2

∂C

∂xl
(5.8)

Similarly, if the stress is prescribed as a constant parameter of the FEA, the meta-material

property can be written

ETk =
(σ̄k)

2 Y

C
(5.9)

The derivative with respect to design variable is

∂ETk
∂xl

= −(σ̄k)
2 Y

C2

∂C

∂xl
(5.10)

This particular formulation is convenient because sensitivity equations in classic minimum

compliance topology optimization are written in terms of the compliance function, and

simple extension of those methods can be utilized.

To calculate the design sensitivities with respect to the compliance when displace-

ment boundary conditions are used, recall the compliance function can be written in terms

of loads f and displacements u

C = uTf (5.11)

where both the loads and displacements are found through the FEA. Eq. 5.11 is written

in terms of free and constrained nodes, denoted by subscripts F and C, respectively. With

displacement boundary conditions, there are no forces are applied to any nodes in the finite

element model. (Recall from Chapter 2 that, in the case of the Young’s modulus EU22
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Figure 5.1: Depiction of periodicity and variable linking for optimization.

simulation, for the upper and lower boundaries displacements u2 are directly prescribed

and displacements u3 are applied such that the average normal stresses σ̄33 on these two

boundaries are zero, while the displacements u2 and u3 are directly prescribed for the nodes

on the left and right boundaries; the simulation for EU33 is similar. In the case of the shear

modulus GU23 simulation, the boundary displacements u2 and u3 are all prescribed. See

Figure 5.1.) Thus,

C =
[
uT

F uT
C

]  0

fC

 = uT
CfC (5.12)

the derivative of the compliance with respect to the design variables is written

∂C

∂xl
=
∂uT

C

∂xl
fC + uT

C

∂fC
∂xl

= uT
C

∂fC
∂xl

(5.13)

In Eq. 5.13, the first term vanishes because the displacements of the constrained nodes do

not change with respect to a change in design variables, as only displacement boundary

constraints are used:
∂uT

C

∂xl
= 0 (5.14)

The derivatives of the forces with respect to the design variables for the constrained nodes
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are found by writing the finite element equation

K(x)u = f (5.15)

in terms of constrained and free nodes:KFF KFC

KCF KCC


uF

uC

 =

 0

fC

 (5.16)

The first line of Eq. 5.16 is

KCFuF + KCCuC = fC (5.17)

the derivative of which, utilizing Eq. 5.14, gives

∂fC
∂xl

=
∂KCF

∂xl
uF + KCF

∂uF

∂xl
+
∂KCC

∂xl
uC (5.18)

The second line of the matrix equation is used to write the relation

uF = −K−1
FFKFCuC (5.19)

which implies
∂uF

∂xl
= −

∂K−1
FF

∂xl
KFCuC −K−1

FF

∂KFC

∂xl
uC (5.20)

By applying the matrix relation

∂A−1

∂xl
= A−1∂A

∂xl
A−1 (5.21)

Eq. 5.20 becomes

∂uF

∂xl
= −K−1

FF

∂KFF

∂xl
K−1

FFKFCuC −K−1
FF

∂KFC

∂xl
uC (5.22)
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which, utilizing Eq. 5.19, is written

∂uF

∂xl
= K−1

FF

∂KFF

∂xl
uF −K−1

FF

∂KFC

∂xl
uC (5.23)

Define He as the elemental stiffness matrix for element e, and define HCC
e, HFC

e,

HCF
e and HFF

e as the corresponding elemental stiffness matrices split according to the

constrained and free nodes, extracted from He. The matrix He has the dimensions of the

global stiffness matrix K such that the assembly of the global stiffness matrix is given by a

sum of the elemental stiffness matrices according to the finite element assembly process:

K =
∑
e

He (5.24)

Using the SIMP interpolation with SIMP exponent s, a component of any of HCC
e is

written

HCC
e = HCC,0x

s
e (5.25)

Thus,

KCC =
∑
e

HCC,0x
s
e (5.26)

and the derivative is given by

∂KCC

∂xl
=
∑
e

HCC,0
∂xse
∂xl

=
∑
e

HCC,0sx
s−1
e δle = HCC,0x

s
l

s

xl
= Hl

CC

s

xl
(5.27)

(The first order derivatives of the global stiffness matrices with respect to design variable

xl follow a similar calculation.) With this result, Eq. 5.23 is written

∂uF

∂xl
= K−1

FF

(
Hl

FFuF −Hl
FCuC

) s

xl
(5.28)

which is then inserted into Eq. 5.18 to give

∂fC
∂xl

= Hl
CF

s

xl
uF + KCFK−1

FF

(
Hl

FFuF −Hl
FCuC

) s

xl
+ Hl

CC

s

xl
uC (5.29)
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Factoring like terms and expressing Eq. 5.29 as a matrix equation gives

∂fC
∂x1

=
s

xl

[
Hl

CF −KCFK−1
FFHl

FF | −KCFK−1
FFHl

FC + Hl
CC

]uF

uC

 (5.30)

Using Eq. 5.30, Eq. 5.13 is written

∂C

∂xl
=

s

xl

[
uT

CHl
CF − uT

CKCFK−1
FFHl

FF | − uT
CKCFK−1

FFHl
FC + uT

CHl
CC

]uF

uC

 (5.31)

By using Eq. 5.19, the central two terms of Eq. 5.31 are simplified to yield

∂C

∂xl
=

s

xl

[
uT

CHl
CF + uT

FHl
FF | uT

FHl
FC + uT

CHl
CC

]uF

uC

 (5.32)

which is further simplified to

∂C

∂xl
=

s

xl

[
uT

F uT
C

] Hl
FF Hl

FC

Hl
CF Hl

CC


uF

uC

 (5.33)

By recombining the matrices and using the definition of the compliance, Eq. 5.33 is written

∂C

∂xl
=

s

xl
uT

l Hlul =
s

xl
uT

l fl =
s

xl
Cl (5.34)

By inserting the result from Eq. 5.34 into Eq. 5.8 and then into Eq. 5.5, the sensitivities

for the material constraint is written

∂h(x)
∂xl

=
∂EUk (x)
∂xl

=
1

Y (ε̄k)
2

s

xl
Cl (5.35)

Design problems in which traction boundary conditions are used is more common in

topology optimization, and the derivative of the compliance with respect to design variable
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xl is found readily in the literature [90], [91], [92], [93]:

∂C

∂xl
= − s

xl
Cl (5.36)

Note, Eq. 5.36 is the same as Eq. 5.34, less a difference in sign. Given Eqs. 5.36, 5.10 and

Eq. 5.5, the derivative of the material constraint with respect to the design variable xl is

∂h(x)
∂xl

=
(σ̄k)

2 Y

C2

s

xl
Cl (5.37)

5.1.2 Multiple Unit Cell Design Sensitivities

When designing multiple unit cells using volume averaging, because of the periodic

nature of the structure, variables can be linked in the optimization problem. Figure 5.2

depicts a four unit cell geometry in which the corresponding elements from each unit cell

have the same value for the design density, xe. Given the equivalence of element densities

Figure 5.2: Depiction of periodicity and variable linking for optimization.

from one unit cell to the next periodically, the optimization problem can be reduced from

a problem with nxN variables (where n is the number of finite elements in a unit cell and

N is the number of unit cells in the design domain) to a problem with n variables. This

implies the volume fraction and volume fraction sensitivities are the same as given in Eqs.

5.2 and 5.3, respectively.
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The material constraint and sensitivities can be derived by following a derivation

similar to that found in Qiu et al. [93]. When displacement boundary conditions are used,

the derivative of the constraint given in Eq. 5.4 reads

∂hk(x)
∂xl

=
∂EUk
∂xl

=
1

Y (ε̄k)
2

∂C
∂xl

(5.38)

where C is the compliance of the N unit cells of the meta-material, and

C = UTF =
N∑
j=1

Cj (5.39)

Here, F and U are the global load and displacement vectors, composed of the force and load

vectors of the individual unit cells. From Eq. 5.39, the derivative with respect to element

density xl is given by
∂C
∂xl

=
∂(UTF)
∂xl

=
N∑
j=1

∂Cj

∂xl
(5.40)

Using Eq. 5.34, and factoring by recognizing that each unit cell shares in common the same

element density for element l but not compliance, Eq. 5.40 is written

∂C
∂xl

=
s

xl

N∑
j=1

Cjl (5.41)

Finally, using this result in Eq. 5.38 gives

∂hk(x)
∂xl

=
1

Y (ε̄k)
2

s

xl

N∑
j=1

Cjl (5.42)

Thus, the element sensitivities for the optimization of multiple cells are given as a simple

sum of compliances of the individual elements across the N unit cells. These sensitivities

were validated using a finite differences MATLAB code, similar to the single cell sensitivities.

The derivation of the sensitivities when traction boundary conditions are used is
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similar:
∂hk(x)
∂xl

=
(σ̄k)

2 Y

C2

s

xl

N∑
j=1

Cjl (5.43)

5.2 Optimization Parameters and Results

The multiple cell optimization code was implemented using MATLAB’s SQP solver

through the fmincon() function with the design sensitivities derived in the preceding section.

Because the design sensitivities are derived for materials that meet the RVE requirement,

it is only necessary to apply one set of boundary conditions, as the other set of boundary

conditions will produce the same set of moduli (as demonstrated by Drago and Pindera [47]

and verified in Chapter 3). Given this, displacement boundary conditions were used in the

FEA for implementation with the topology optimization code. An isotropic base material

with Young’s modulus E = 30 GPa and Poisson’s ratio ν = 0.3 was used with a plane stress

condition on the finite elements such that the two-dimensional linear constitutive matrix D

is given by

D =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (5.44)

5.2.1 Initial Point Study

Because initial points can play a key role in optimization problems, different initial

design domains were used (Figure 5.3). These points are the single-cell representation of

the multi-cell optimization problem. Four different points were selected: a fully-filled design

domain, the ‘x’ and ‘+’ geometries, and a filled domain with a centered, square hole. The

fully-filled point is the simplest initial point and is commonly used in minimum compliance

TO, the ‘x’ and ‘+’ geometries represent local topological minima of the shear and tension

material design problems, and the square hole point is adapted from the original papers on

the homogenization problem ([41], [4]).

Each of these initial points were used for optimization of a 3x3 unit cell design
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Figure 5.3: Initial points used for topology optimization of materials. A is a fully-filled
design domain, B and C are the ‘x’ and ‘+’ geometries, and D is a material with a square
hole in the middle.

domain to target E22 = 3 or 15 GPa, E33 = 3 or 15 GPa, or G23 = 2 or 6 GPa. As a

termination parameter, the required constraint satisfaction tolerance and objective tolerance

were set to 10−4 GPa and 10−4, respectively. In the event that the optimizer could not

achieve a local minimum, the algorithm was set to terminate early after 200 iterations or

after 1000 function evaluations.

Numerical results are shown in Table 5.1 and visual results are shown in Figures

5.4-5.9. From the numerical results, by recalling that the minimum volume fraction was

sought by the optimization, it is clear that initial point A, the fully-filled point, is the worst

performing of the four points. As for the optimizations using the other three initial points,

it is not clear that one point outperformed another based off of the volume fraction or

constraint satisfaction that the target modulus E∗k is equal to the achieved modulus EUk at

optimality.

The visual optimization results demonstrate a few important points. First, optimiza-

tion from a uniform point using the volume averaging model leads to a uniform solution.

This is because, in a single mode of deformation, the stress gradient at every iteration is

constant across the elements. This, in turn, makes the compliance and, thus, the element

sensitivities with respect to the material constraint, constant. The optimizer is unable to

differentiate from one element to the next, leaving the uniform solution to be the only pos-

sible solution. The elements all have the same intermediate density, making the solution

non-SIMP convergent. (Recall that SIMP convergence requires the solutions be primarily a
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Table 5.1: Numerical Results For Optimization Using Different Initial Design Points

Initial Point E∗22 [GPa] EU22 [GPa] V Comp. Time [s] Iter. Func. Eval.

A 3 3.000 0.464 33.9 6 11
B 3 3.001 0.153 1015.3 94 360
C 3 2.943 0.221 2619.4 142 1001
D 3 3.090 0.181 2503.1 137 1001
A 15 15.000 0.794 22.2 4 7
B 15 14.979 0.592 2533.2 146 1001
C 15 14.986 0.614 2521.5 137 1001
D 15 0.000 0.054 156.8 9 62

Initial Point E∗33 [GPa] EU33 [GPa] V Comp. Time [s] Iter. Func. Eval.

A 3 3.000 0.464 33.6 6 11
B 3 2.995 0.161 2888.1 155 1001
C 3 2.999 0.232 2171.8 137 825
D 3 3.034 0.174 2469.3 128 1001
A 15 15.000 0.794 21.8 4 7
B 15 14.839 0.579 2504.1 167 1001
C 15 15.000 0.715 1119.6 68 453
D 15 14.961 0.647 2532.4 144 1001

Initial Point G∗23 [GPa] GU23 [GPa] V Comp. Time [s] Iter. Func. Eval.

A 2 2.000 0.558 26.8 5 9
B 2 1.964 0.441 2206.2 179 1001
C 2 1.999 0.334 820.1 56 371
D 2 1.987 0.429 2214.1 176 1001
A 6 6.000 0.804 20.35 4 7
B 6 6.000 0.806 202.1 27 87
C 6 0.000 0.040 97.0 11 89
D 6 6.001 0.739 507.4 63 225
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Figure 5.4: Target Modulus E∗22 = 3 GPa

Figure 5.5: Target Modulus E∗22 = 15 GPa

Figure 5.6: Target Modulus E∗33 = 3 GPa

Figure 5.7: Target Modulus E∗33 = 15 GPa
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Figure 5.8: Target Modulus G∗23 = 2 GPa

Figure 5.9: Target Modulus G∗23 = 6 GPa

1-0 solution, representing the presence or absence of material, respectively.) However, the

material constraint is reached in every case, providing partial validation of the optimization

method. In the other cases, solutions that are SIMP convergent are those from initial points

B and D in Figures 5.4 and 5.6, the solution from initial point C in Figure 5.8, and the

solution from initial point D in Figure 5.9.

The optimization results from the attempts to achieve EU22 = 15 GPa demonstrate

an interesting, but commonplace, result. In the three cases in which the initial points B,

C and D were used, none of the optimizations were successful. Optimization efforts from

points B and C terminated before reaching optimality, while the optimization from initial

point D jumped almost immediately to a boundary of the optimization and was unable to

satisfy the material constraint, terminating the optimization early. These result from either

the initial point being outside the feasible design space, or from the lack of an optimal,

SIMP-convergent solution for the optimization problem. These are typical problems in

material design by TO, as well as in TO in general. The former issue can be solved by
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choosing a different initial point within the feasible domain (if one exists), while the latter

issue can usually be solved by optimizing with a finer finite element mesh. Finer domain

discretization and subsequent optimization has been done here, but is not presented in this

work for brevity. It is clear that there is a continuously thicker solution that will solve

the optimization problem to achieve a continuously varied material constraint on EU22, but

domain discretization with finite elements effectively discretizes the solution space to only

discrete values.

Given these results, two major conclusions can be drawn. First, optimization from

a uniform starting point using the volume averaging model will not generally result in a

SIMP convergent solution. A large number of elements must be tuned to intermediate or

minimum density as an initial point. Second, by using different initial points, different

SIMP convergent solutions with different topologies that achieve the material constraints

can be found. This demonstrates the existence of different local minima for the material

TO problem using the volume averaging model. However, this is no different from any other

TO problem that uses a material interpolation scheme. This issue was discussed briefly in

the context of the literature review in Chapter 2.

5.2.2 Optimization of a Single Layer of Cells

As was discussed in Chapter 3, the volume averaging and homogenization models

both agree when the assumptions of homogenization are met. However, these assumptions

are not met for the design of a single layer of UCs. For these materials, the volume averaging

model was shown to be the more accurate of the two models. Given this, the focus of the

optimization in this chapter using the volume averaging method is for design of single layer

materials.

Three sets of optimization problems were solved by simulating a single layer with

12 square UCs with individual 20x20 finite element discretizations. In each set, different

meta-material moduli E∗k were targeted for a single mode of deformation (horizontal tension,

vertical tension, and transverse shear) using the methods presented in the Section 5.1. The
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same termination parameters and base material were used as in the initial point study from

Section 5.2.1. The initial point with a square hole (D from Figure 5.3) was used. Some

numerical results and corresponding visual results are shown in Table 5.2 and Figures 5.10,

5.11 and 5.12. Complete results are reported in Appendix B.

Table 5.2: Numerical Results For Optimization of a Single Layer Material with 12x1 UCs

Def. Mode E∗k [GPa] EUk [GPa] V Comp. Time [s] Iter. Func. Eval.

E22 3 3.001 0.229 1547.9 98 318
E22 9 9.001 0.347 1329.1 101 318
E22 21 21.001 0.726 1078.9 58 257
E33 3 3.001 0.151 1225.9 98 293
E33 9 9.000 0.343 2352.1 158 563
E33 21 20.999 0.738 561.2 41 137
G23 2 2.001 0.416 719.5 61 188
G23 4 3.996 0.562 3853.6 126 1001
G23 5 5.001 0.664 666.1 55 174

From these results, it is clear that the optimization is capable of achieving a large

range of target moduli for each individually targeted mode of deformation. Additionally,

the topological geometries that were found were shown to be optimal periodic topologies for

design of composite structures in uniaxial tension and shear stiffness [19]. For the results

presented in Table 5.2, eight of the nine optimization attempts resulted in termination

by reaching the desired tolerances in objective and constraints, while only one terminated

before reaching desired tolerances. In this case, the value G∗23 = 4 GPa was desired, but the

optimization terminated after reaching 1001 function evaluations. However, the optimizer

was just outside the desired tolerance of being with 0.001 GPa of the desired shear modulus.

It is possible that the optimization problem could be solved within the desired tolerances

by rediscretizing the design domain with a finer mesh of finite elements. It appears from

the visual results that the SIMP convergence was achieved in all of these cases, with very

few intermediate densities present in the solutions.

There were cases in which the optimizer was not able to achieve a convergent so-

lution. These results, which are reported in Appendix B with the all of the optimization
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Figure 5.10: Results for the optimization of a single material layer (12x1 UCs) with target
moduli E∗22 = 3 GPa, 9 GPa and 21 GPa, from left to right. Numerical results are given
in Table 5.2.

Figure 5.11: Results for the optimization of a single material layer (12x1 UCs) with target
moduli E∗33 = 3 GPa, 9 GPa and 21 GPa, from left to right. Numerical results are given
in Table 5.2.

Figure 5.12: Results for the optimization of a single material layer (12x1 UCs) with target
moduli G∗23 = 2 GPa, 4 GPa and 5 GPa, from left to right. Numerical results are given in
Table 5.2.

results, should be easily solved by rediscretizing the design domain or beginning the opti-

mization from a different starting point. It is also important to note that optimization by

homogenization exhibits the same issues. Visual and numerical results using the standard

homogenization method with the same optimization parameters are given in Appendix B
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for comparison. From those results, especially when targeting a shear modulus, optimiza-

tion using volume averaging appears to be as or more reliable than optimization using

homogenization.

5.3 Summary

In this chapter, a topology optimization algorithm that utilizes the volume averaging

analysis was presented. First-order design sensitivities were derived so that an efficient,

gradient-based method could be used to solve the optimization problem. These methods

were applied to single-objective optimization problems in both modes of tension and in

shear. The effects of initial points on achieving both convergent and SIMP-convergent

solutions were shown to be non-negligible. Single-layer solutions were successfully achieved

for a wide range of optimization targets; for unsuccessful attempts, remeshing of the design

domain should lead to successfully achieving the desired target. With this, the optimization

algorithm using volume averaging can be applied to the design of periodic materials with a

simple periodic structure of UCs.
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Chapter 6

Non-Simple Connectivity In

Meta-Materials Analysis and

Optimization

In Chapter 3, asymptotic homogenization techniques were shown to be inaccurate in

the design of single layer or thin meta-materials, while the more general volume averaging

analysis was shown to provide accurate meta-material parameters when applied to these

designs. Then, in Chapter 5, a topology optimization method was presented in which the

volume averaging method could be used to design meta-materials in a manner similar to

the topology optimization techniques used with the asymptotic homogenization analysis. In

both of these chapters, only simply-connected periodic materials were considered. However,

as shown in Chapter 1, arrays of non-simply connected UCs can be used to generate periodic

material structures like the conventional honeycomb.

This chapter explores the same issues presented in Chapters 3 and 5 for materials

with non-simple connectivity. First, a brief theoretical framework is laid for each analysis

method with the displaced periodicity. Next, the accuracies of asymptotic homogenization

and volume averaging are explored for thin-layered materials in the context of honeycomb
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Figure 6.1: Honeycomb structure with simple periodicity made of parallelogram-shaped
UCs.

Figure 6.2: Honeycomb structure with non-simple connectivity made of rectangular UCs.

structures. As an additional validation technique, the meta-material properties predicted

by these analysis methods are compared against those given by well-established, closed-

form equations that predict meta-material properties for thin-walled honeycomb materials.

Then, the topology optimization techniques presented in Chapter 5 are extended to the

design of non-simply connected structures.

6.1 Mathematical Framework for Analysis

As discussed briefly in Section 1.3, two different periodicities could be used to gen-

erate a honeycomb: a simple periodicity with parallelogram-shaped UCs (Figure 6.1) or a

non-simply connected structure with rectangular UCs (Figure 6.2).

The design of structures with simple periodicities using parallelograms has been

investigated previously [22], [16]. The implementation of the parallelogram method requires

that finite element equations and boundary conditions be changed to accommodate for

the non-square geometry, as the original formulation was derived for square UCs. (The

equations for homogenization of non-square, parallelogram UCs have since been derived

by Diaz and Bénard [16]. For the averaging method, displacement and traction boundary

conditions for the mechanical properties analyses of unidirectional fiber composites with

square and hexagonal-shaped UCs were given by Li [94].) As was shown in Chapter 3, care
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should be taken to ensure the width to length ratio remains well scaled, W/L ≈ 1, for the

homogenization equations to necessarily maintain their accuracy. Additionally, non-square

finite elements must be used to discretize the design domain, which can complicate the

setup of the finite element problem and bias the optimization solution (see Section 2.2.2 of

the literature review in Chapter 2).

To derive what changes in the FEA are necessary when non-simply connected ge-

ometries are analyzed, first recall from Section 2.1.1 of the literature review the definition

of a periodic function: a material with position vector z = {z1, z2, z3} is Y-periodic if, for

all material characteristics described by function F ,

F (z +NY ) = F (z) (6.1)

where

N =


n1 0 0

0 n2 0

0 0 n3

 (6.2)

and ni are integers. Y = {Y1, Y2, Y3} is some vector that contains the periodicity of the

structure, and F is any scalar, vector or tensor function of vector z. For the two-dimensional,

simply-connected materials considered in Chapters 3 and 5, the displacement fields Φi

(where i ∈ 22, 33, 23 denotes the three meta-material analyses necessary to obtain meta-

material properties) satisfy

Φi(y1, y2) = Φi(y1 + L, y2) = Φi(y1, y2 +W ) = Φi(y1 + L, y2 +W ) (6.3)

(See Figure 6.3.) In this case, the periodicity vector has the form Y = (L,W )T . Meanwhile,

for the non-simple periodicity depicted in Fig. 6.3, the second layer of unit cells is displaced

by b in the y2 direction such that the material displacements satisfy

Φi(y2, y3) = Φi(y2 + L, y3) = Φi(y2 + b, y3 +W ) = Φi(y2 + L+ b, y3 +W ) (6.4)
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Figure 6.3: (Left) Simply-connected topology. (Right) A topology in which the unit cells
are not simply connected.

In the application of asymptotic homogenization theory to finite elements, three

finite element equations

KΦi = fi (6.5)

(in two-dimensions) must be solved subject to some periodicity constraints. Hassani and

Hinton [39] provide a straight-forward discussion of the derivation of these constraints. Up

to Eq. 6.5, the derivation is general and requires no consideration of periodicity. However,

the integral equations these finite element equations are derived from require that they are

solved on the domain of the unit cell (with local coordinates zi), which includes the domain

boundaries. Because the displacement fields in the unit cell must be periodic throughout,

when the periodicity of the unit cell is non-simple, the displacement field on the boundary

of the unit cell χi ⊆ Φi must satisfy

χi(0, z3) = χi(L, z3), 0 ≤ z3 ≤W

χi(z2, 0) = χi(z2 + b,W ), 0 ≤ z2 ≤ L− b (6.6)

χi(z2, 0) = χi(z2 − (L− b),W ), L− b ≤ z2 ≤ L

These are the displacements that must be enforced through the finite element method,

either directly or through numerical methods like the Lagrange multiplier or penalty meth-

ods. For a unit cell in the non-simply connected structure analyzed using homogenization

with periodic boundary conditions given in Eq. 6.6, an example of linked nodes is depicted
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Figure 6.4: Enforcement of periodic boundary conditions for homogenization when ana-
lyzing using non-simply connected structures. (The coordinates zi indicate the analysis
domain is the UC only.)

in Fig. 6.4.

Figure 6.5: Three modes of deformation used in volume averaging.

The volume averaging method is derived from a simpler set of principles. In this

method, only the average strain and average stress theorems are utilized to integrate over a

number of unit cells in the analysis domain Y with meta-material coordinates (y2, y3). By

simulating three modes of deformation in two dimensions, two in tension and one in shear

(Fig. 6.5), on the boundaries of the analysis domain and determining the average strains ε̄i

using

ε̄i =
1
Y

∫
Y
εidY (6.7)
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Figure 6.6: Example analysis domain of a two-layer material analyzed using the volume
averaging method.

and and average stresses σ̄i using

σ̄i =
1
Y

∫
Y
σidY (6.8)

the effective meta-material parameters EUij can be determined as a solution of

σ̄i = EUij ε̄i (6.9)

When using the volume averaging method, for a two-layer system with the same periodicity

given in Eq. 6.4, the second layer of the analysis volume will contain two half-cells, one on

either end (Fig. 6.6). In particular, no changes to the boundary conditions or basic analysis

method are required.

These equations demonstrate the design of structures with non-simple connectivity

using rectangular unit cells requires few changes in the analytical methods: the homogeniza-

tion analysis only requires the proper linking of periodic boundary conditions on the cor-

responding edges of the unit cells, while the volume averaging analysis requires no changes

in boundary conditions, as a portion of the structure (beyond a single unit cell) is ana-

lyzed. The simplicity of these methods, combined with the preservation of the use of square

finite elements for topology optimization, makes these methods attractive possibilities for

meta-material design.
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6.2 Comparison of Homogenization and Volume Averaging

for Non-Simply Connected Structures

Given a simple implementation of the analyses for non-simply periodic materials,

the accuracies of these methods must next be demonstrated. Here, a set of honeycomb

structures was analyzed using the same methods presented in Chapter 3. Homogenization

codes were used as described above to analyze meta-material properties for a single UC,

and the volume averaging analysis was used to analyze meta-material properties for NxN

systems of UCs and for 12xN layers of UCs. Two different thicknesses of honeycombs were

chosen, one with thin members and one with much thicker members. 20x20 finite element

discretizations for the UC were used.

Results from the NxN UC analyses are shown in Figures 6.7 and 6.8, while results

for the 12xN layer analyses are shown in Figures 6.9 and 6.10. For the NxN analyses, it is

clear that the volume averaging method agrees with homogenization for the analysis of all

three elastic material properties as a larger number of UCs are included, despite the shifted

periodicity. By looking at the 12xN layer analyses, it becomes clear that the non-simply

connected structure affects the accuracy of some material properties in a more pronounced

way than it does for other properties, as the two models do not agree as well in their

estimations of the EM22 Young’s moduli as they do with the other two moduli, EM33 and GM23 .

This result is consistent with the irregular periodicity of the UCs, as the second layer is

shifted with respect to the first layer in the y2 coordinate direction.

Given similar model convergence between homogenization and volume averaging for

simply and non-simply connected structures (see Section 3.1 from Chapter 3), the same

design comparison studies were used as those in Section 3.2. Non-simply connected meta-

materials with both NxN and 12xN cell layouts were simulated under simple shear loading

conditions (see Figure 3.19). The same two UCs with thin and thick members as those

used to verify moduli comparison studies were used to generate NxN honeycomb materials

and 12xN layered materials to evaluate the accuracies of the two analysis methods in the
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meta-material design process.

The results of the design comparison analyses for the thin-member honeycomb ge-

ometries are shown in Figures 6.11 and 6.12, while the results for the thick-member geome-

tries are shown in Figures 6.13 and 6.14. For the NxN materials, the two models appear to

converge to a relative error below 10% for the thick honeycomb and a relative error below

5% for the thin honeycomb when 8x8 UCs are used in the meta-material design problem.

As for the materials with layers of honeycombs, for the thick honeycomb the relative error

of the displacement using the averaging method remains below 2% for any number of layers

included in the meta-material; the relative error using homogenization is above 15% for a

Figure 6.7: NxN analysis for meta-material moduli of thin honeycomb geometry.

Figure 6.8: NxN analysis for meta-material moduli of thick honeycomb geometry.
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Figure 6.9: 12xN layer analysis for meta-material moduli of thin honeycomb geometry.

Figure 6.10: 12xN layer analysis for meta-material moduli of thick honeycomb geometry.

single layer, reaching errors around 5% upon the inclusion of three of more layers of UCs to

the material. For the thin honeycomb, similar conclusion can be drawn, with the relative

error using the averaging method remaining below 5% in all cases, and the homogenization

method requires three or more layers to achieve relative errors below 5%.

Collectively, these results demonstrate similar model convergence as those given in

Section 3.1 of Chapter 3. Thus, it makes sense to utilize lattices of rectangular UCs with

non-simple connectivity for the design of meta-materials using the volume averaging or

homogenization techniques.
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Figure 6.11: Relative errors of material displacements consisting of NxN unit cells with thin
honeycomb geometry.

Figure 6.12: Relative errors of material displacements consisting of NxN unit cells with
thick honeycomb geometry.

6.3 Comparison of Meta-Material Properties to Analytical

Formulae

As an additional validation of the non-simply connected code, the meta-material

properties of honeycomb structures were compared with benchmark formulae derived by

Gibson et al. [95] and discussed more extensively in Gibson and Ashby [96]. The in-plane,

linear elastic formulae were derived from standard beam theory (see, for example, Hibbeler

[49]) considering only flexure, neglecting axial and shear effects. The E22, E33 and G23
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Figure 6.13: Relative errors of material displacements consisting of 12xN layers of unit cells
with thin honeycomb geometry.

Figure 6.14: Relative errors of material displacements consisting of 12xN layers of unit cells
with thick honeycomb geometry.

moduli are estimated using parameters h, t, l, and θ (see Figure 6.15) and base material

with Young’s modulus Es.

E22 = Es
t3

l3
cos θ

(h/l + sin θ) sin2 θ
(6.10)

E33 = Es
t3

l3
(h/l + sin θ)

cos3 θ
(6.11)
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Figure 6.15: Parameters for analytical equations predicting the in-plane meta-material mod-
uli of honeycomb structures as given by Gibson et. al [95].

G23 = Es
t3

l3
(h/l + sin θ)

(h/l)2(2h/l + 1) cos θ
(6.12)

These formulae have been validated experimentally and refined for more design-specific and

analysis-accuracy needs [97], [98], [99], [100].

The meta-material moduli predicted for different honeycomb structures using these

analytical formulae were compared with those predicted by both homogenization and vol-

ume averaging analyses using the non-simply connected geometry described in the previous

section. Honeycomb structures with varied angles θ and varied thicknesses t were analyzed

to investigate the similarities and differences between the closed-form analysis and the nu-

merical methods. 20x20 finite element discretizations of the honeycomb structures were

used for the numerical methods, where an 8x8 lattice of UCs was used for volume averaging

and a single cell for homogenization. A Young’s modulus Es = 30 GPa was chosen for the

base material. The parameters used in Eqs. (6.10), (6.11) and (6.12) are given in Table 6.1.

Plots displaying the meta-material moduli as a function of member thickness t for

structure 3 are shown in Figures 6.16, 6.17 and 6.18. (Full results are given in Appendix

C.) All three plots display similar trends. First, it is clear that the homogenization and

volume averaging models are in strong agreement, as an 8x8 UC volume has been utilized

for the volume averaging analysis. However, the analytical honeycomb formulae only agree

with the numerical models for those geometries with smaller member thicknesses; the 2 mm
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Figure 6.16: Plot of analytical and numerical EM22 moduli as a function of member thickness
in honeycombs.

Figure 6.17: Plot of analytical and numerical EM33 moduli as a function of member thickness
in honeycombs.

Figure 6.18: Plot of analytical and numerical GM23 moduli as a function of member thickness
in honeycombs.
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Table 6.1: Parameters Used For the Analytical Comparison of Honeycombs in the Equations
Given by Gibson et. al [95]

Structure θ [rad] l [mm] h [mm] Range of thickness t [mm]

1 0 10.00 19.5 2.00-14.00
2 0.3367 10.59 16.50 2.00-14.00
3 0.6107 12.21 13.00 2.00-14.00
4 0.8330 14.87 9.00 2.00-14.00
5 0.9505 17.20 6.00 2.00-14.00
6 1.107 22.36 0.00 2.00-14.00

and 4 mm geometries are in agreement, and divergence of the numerical models from the

analytical model begins around 6 mm. As the UCs become more fully filled, the numerical

models demonstrate a converging trend, whereas the analytical formulae do not.

The answer to the question as to which models are more accurate is apparent. As

these plots are functions of thickness, this makes sense, as all of the analytical formulae are

cubic in thickness t, and in the limit that t→∞, EAk →∞ in each case. Additionally, the

maximum meta-material Young’s modulus must be less than the material Young’s modulus,

EMk ≤ Es for k = 22, 33, and the corresponding maximum shear modulus is bounded by the

relation G23 ≤ Es
2(1+νs) , where νs is the Poisson ratio of the base material. The analytical

formulae clearly violate these bounds (30 GPa) for E22 and E33 at larger values of t while

the numerical models do not; using the worst-case Poisson ratio νs = 0, the maximum

meta-material shear modulus is 15 GPa, which is violated by the analytical formula but not

by the numerical models. However, the honeycomb models, derived from elementary beam

theory, are known to decrease in accuracy rapidly for t
l ≥

1
4 [95].

Given the numerical model (homogenization and volume averaging) agreement for

thin membered honeycombs with analytical honeycomb calculations that have been val-

idated experimentally, the agreement between homogenization and volume averaging in

the asymptotic (small parameter expansion) homogenization limit (demonstrated in Sec-

tion 6.2), and the satisfaction of upper bounds on meta-material moduli for the numerical

models, it can be concluded that the use of non-simple, periodicity lattices is an accurate

124



alternative to discretize the global design domain into UCs. With accurate analysis methods

in place, the optimization methods introduced in Chapter 5 can be extended to the design

of non-simply connected materials.

6.4 Topology Optimization of Non-Simply Connected Struc-

tures

The topology optimization problem

min
x

V (x) (6.13)

s.t. hk(x) = EMk (x)− E∗k = 0 for k ∈ {1, 2, ..., r}

g1
i (xi) = xi − 1 ≤ 0, ∀i ∈ {1, 2, ..., n}

g2
i (xi) = −xi ≤ 0,∀i ∈ {1, 2, ..., n}

was implemented in MATLAB using the homogenization and volume averaging analyses

presented in Sections 6.2 and 6.3. Two-dimensional, four-node, linear-elastic, isotropic,

plane-stress elements with with Young’s modulus E = 30 GPa and Poisson’s ratio ν = 0.3

were again used for the FEA of a single UC using homogenization and a 12x2 grid of UCs

for the volume averaging analysis. 20x20 element discretizations were used for each UC. A

number of target moduli were used to target EM22 , EM33 and GM23 using both homogenization

and volume averaging methods.

Numerical and visual results for optimization with homogenization are given in

Table 6.2 and Figure 6.19. By looking at the numerical results, it appears that the lower-

valued modulus targets (which result in thin-members geometries) perform better than the

higher-valued targets. For example, for the two optimization runs with targets E∗22 = 6

and 9 GPa, the optimizations terminated in numerically convergent solutions, achieving the

desired moduli. However, the optimization run with target E∗22 = 18 GPa terminated early,

stopped by reaching the maximum number of 1000 function evaluations. (The E33 and
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Table 6.2: Numerical Results For Optimization of a Non-Simply Periodic Structure Using
Homogenization

Def. Mode E∗k [GPa] EHk [GPa] V Comp. Time [s] Iter. Func. Eval.

E22 6 5.999 0.223 392.4 102 259
E22 9 9.000 0.350 310.0 124 418
E22 18 2.844 0.452 2643.3 95 1001
E33 6 6.000 0.246 475.1 127 375
E33 9 9.000 0.347 668.0 158 563
E33 18 17.979 0.715 500.9 148 1001
G23 1 0.999 0.332 201.8 82 227
G23 2 2.001 0.411 196.7 79 199
G23 6 5.993 0.777 554.2 107 1001

G23 optimization runs resulted in similar convergence behaviors.) The visual results also

display similar issues: the thinner-barred geometries are or are close to SIMP convergent,

while the higher targets either did not achieve their target modulus or did not reach SIMP

convergent solutions at all.

Table 6.3: Numerical Results For Optimization of a 12x2 Non-Simply Periodic Structure
Using Volume Averaging

Def. Mode E∗k [GPa] EUk [GPa] V Comp. Time [s] Iter. Func. Eval.

E22 6 6.001 0.227 5153.6 144 432
E22 9 8.993 0.340 13337.0 194 1001
E22 18 17.999 0.627 4002.4 92 327
E33 6 5.999 0.243 5428.6 130 398
E33 9 8.999 0.349 7569.7 175 635
E33 18 8.534 0.716 6971.3 46 277
G23 1 1.001 0.320 2418.5 73 203
G23 2 2.000 0.455 7482.2 154 627
G23 6 5.999 0.830 2788.1 48 247

The numerical and visual results for the optimization of the 12x2 non-simply peri-

odic structure using volume averaging are shown in Table 6.3 and Figure 6.20. The numer-

ical results show similar issues to that of the homogenization optimization: the optimizer

has more success at finding lower-modulus materials with correspondingly thinner-member
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Figure 6.19: Results for the optimization of a non-simply periodic structure using homoge-
nization with target moduli E∗22 = 6 GPa, 9 GPa and 18 GPa from top left to top right,
with target moduli E∗33 = 6 GPa, 9 GPa and 18 GPa from center left to center right, and
with target moduli G∗23 = 1 GPa, 2 GPa and 6 GPa from bottom left to bottom right.
Numerical results are given in Table 6.2.

geometries. The E∗33 optimizations with targets 6 and 9 GPa were successful, but the op-

timizer became trapped in a local minimum for the 18 GPa target, unable to achieve the

target modulus. Also, similar to the homogenization optimization, the visual results show

that SIMP convergence was easier to attain in thinner geometries. One more interesting

effect occurred in the optimization targeting G∗23 = 2 GPa. The non-simple connectivity

of the structure appears to have pushed the optimizer to break the 22-symmetry and 33-

symmetry of the optimization problem. Convergent solutions for most problems, regardless

of the periodicity of the UCs, have maintained at least one plane of symmetry, but this is

a rare example where both symmetries have been broken for a convergent solution.
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Figure 6.20: Results for the optimization of a non-simply periodic 12x2 UC structure using
volume averaging with target moduli E∗22 = 6 GPa, 9 GPa and 18 GPa from top left to
top right, with target moduli E∗33 = 6 GPa, 9 GPa and 18 GPa from center left to center
right, and with target moduli G∗23 = 1 GPa, 2 GPa and 6 GPa from bottom left to bottom
right. Numerical results are given in Table 6.3.

Full results for both analysis and optimization methods are reported in Appendix

C. On the whole, a comparison of the two methods when a non-simply connected structure

is used appears similar to that of the simple periodic structures. In particular, the homoge-

nization analysis and optimization method is faster than volume averaging. However, both

methods produce numerically and SIMP-convergent geometries for a large number of prob-

lems. For those optimization problems that are unable to converge, remeshing of the design

domain to a larger number of elements will generally produce convergent results. Thus,

for those problems in which homogenization is accurate, that particular method should be

employed, while the volume averaging method should be employed for those cases in which
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homogenization assumptions are not met.

6.5 Summary

In this chapter, a method was presented for the analysis of honeycomb and other

structures that can be divided into non-simply connected lattices of rectangular UCs. A

mathematical and physical basis for the correct the boundary conditions for each method

was provided, and then analyses were shown to demonstrate the same trends as lattices with

simple connectivity: both methods are accurate when the homogenization limit is met, but

only the volume averaging method is accurate for materials using single layers. Numerical

validations of the analyses were presented next using well-established equations that predict

the meta-material properties of thin-membered honeycombs. Finally, topology optimization

problems were using these analyses were shown to produce topologically and numerically

useful results for large set of test problems. Given mathematical, physical and numerical

validation, these methods can be used to design structures with non-simple connectivity.
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Chapter 7

Meta-Material Design of the Shear

Beam of a Non-Pneumatic Wheel

In this chapter, the topology design of the shear beam for the non-pneumatic wheel

is presented using the methods presented in the preceding chapters of this work. First, the

design parametrization from the top to the bottom level of the meta-material process and

the corresponding feasible design space are described for the shear beam. The optimization

setup and results are described for the design of the shear beam using different base materials

and unit cell parameterizations in terms numbers of layers and connectivity. Finally, a

discussion and summary of the results of the design study are given.

7.1 Design Study Parametrization

The method used to design the shear beam of the non-pneumatic wheel is a two-

level process (Fig. 7.2). The top level (system-level) analysis optimization of the wheel is

presented in the conference paper by Thyagaraja et al. [13]. The goal of the system-level

optimization, with the design variables DV given in Table 7.1, was to identify one or a set

of optimal designs in which the elastomeric shear beam is designed with a linear elastic

material. Then, the hysteretic energy loss in the material of the shear beam undergone
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Figure 7.1: Depiction of non-pneumatic wheel optimization variables. F is an applied force
to the central hub that displaces downward with displacement z. The contact pressure CP
profile with the ground is used in the inequality constraints gi.

during the cyclic loading and unloading of the beam during tire rotation will be reduced or

eliminated altogether. This optimization problem is written as

min
DV

(γ∗SL −max(γSL)) (7.1)

s.t. g1 = CP − 414 kPa ≤ 0,

g2 = 207 kPa− CP ≤ 0,

g3 = max(CP )− 448 kPa ≤ 0

DV ∈ Ω

where γSL is the shear strain of the shear layer, and the constraints on the average and

maximum contact pressure CP are required for vehicle performance and road wear purposes.

The design variables and constraint parameters are shown in Figure 7.1. A large target shear

strain γ∗SL, 10%, is desired to closely mimic the large deformation capabilities of elastomers.

First, a sensitivity analysis of the non-pneumatic wheel model was completed,

demonstrating that the shear layer thickness slThk and shear modulus G23 were the most

influential design variables for the system optimization. Because the finite element model

131



Figure 7.2: Two-level optimization process used for meta-material design of the shear beam
of the non-pneumatic wheel.

used to simulate the wheel is large and computational costly to solve for the static loading,

a neural networks approach was used to generate a meta-model, and the non-dominated

sorting genetic algorithm (NSGA-II) was used to optimize on the model. The solutions of

the optimization of the orthotropic shear layer were found to lie on the hyperbolic curve

G23 · slThk = 67 MPa ·mm (7.2)

within the bounds of shear layer thickness 5mm ≤ slThk ≤ 12mm and corresponding shear

modulus 5.5 MPa ≤ G23 ≤ 14 MPa (Fig. 7.3).
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Table 7.1: Design variables and bounds used in the non-pneumatic wheel optimization [13]

Design Variable Lower Bd. Upper Bd.

shear layer thickness 4 mm 12 mm
inner inext. membrane thickness 0.1 mm 1 mm
outer inext. membrane thickness 0.1 mm 1 mm

shear layer Young’s modulus 1 MPa 750 MPa
shear layer Young’s modulus 1 MPa 750 MPa

shear layer shear modulus 3 MPa 20 MPa
shear layer Poisson’s ratio -0.99 0.99

Figure 7.3: Set of optimal solutions potentially targeted for the design of the meta-material
shear layer.

7.2 Topology Optimization of the Shear Layer

Given the results of the system optimization, the meta-material (bottom-level)

topology optimization was attempted using three different elastic base materials: poly-

carbonate (PC) with Young’s modulus E = 2.7 GPa and Poisson’s ratio ν = 0.42, mild

steel with E = 210 GPa and ν = 0.29, and aluminum 7075-T6 with E = 70 GPa and ν =

0.33. For different values of the shear layer thickness slThk, the shear modulus G∗23 to be

targeted was computed using Eqn. 7.2.

The physical dimensions of the shear layer, being very small (5-12 mm in thickness),
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Figure 7.4: Meta-material tie requirements for the non-pneumatic wheel design. The tie
exists only if the displacements zm and zh are equal.

place a realistic manufacturing constraint on any meta-material designed for the shear layer.

This constraint allows the inclusion of only one or a few layers of unit cells. In Chapter 3, it

was shown that the homogenization process for analyzing unit cells for single layer materials

is not accurate when incorporated into the global design process. However, by using the

volume averaging method to analyze meta-material properties, the integrity of the meta-

material design process is maintained, as properties analyzed with the averaging method are

accurate at the global design level. This means that the system at the top level behaves in

the same way when simulated using the homogeneous material with assigned meta-material

properties and the actual meta-material structure (Fig. 7.4). For example, a load F is

applied to the central hub of the wheel with the meta-material shear beam, resulting in

hub displacement zm. When the meta-material is substituted with a homogeneous material

with the same material properties as the meta-material, the central hub, subjected to load

F, should experience the same displacement, zh = zm. Failure in this tie between the levels

would invalidate the overall meta-material design process.

Optimization using the volume averaging analysis as described in Chapter 5 was

utilized. The solid isotropic microstructure with penalization (SIMP) method was used to
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interpolate the material onto the finite elements of the design domain [52], and a mesh-

filter, commonly used to prevent numerical issues such as checkerboarding and one-node

connected hinges was implemented. Given to the discussion in Chapter 4, the optimization

problem was formulated as

min
x

V (x) (7.3)

s.t. h(x) = GU23(x)−G∗23 = 0

xsi ∈ [xmin, 1], for i = 1, 2..., n

where V ∈ [0, 1] is the volume fraction of the unit cell, GU23 is the shear modulus of the

material given by the volume averaging analysis, G∗23 is the target shear modulus, s is the

SIMP exponent, xi is design variable i, and n is the number of elements in the unit cell.

7.2.1 Design Using Simple Connectivity

The design process of the wheel using simple connectivity proceeded along the fol-

lowing path and is reported here in this order. First, topology optimization using the three

base materials was completed using low-resolution (30x30 elements) discretizations for the

unit cell with a varied number of layers of unit cells. The goal of this was to obtain a set

of designs that achieve or come close to achieving SIMP convergence while attaining the

target shear modulus G∗23, as well as to identify those base materials that are not capable of

doing so. Then, for those designs that were successful, a high-resolution (40x40 elements)

refinement of the design optimization problem was attempted from four different initial

design points, and satisfactory, convergent designs were identified.

7.2.1.1 Optimizations Using a Low-Resolution (30x30 elements) Mesh

For the 30x30 discretizations of the unit cell, design domains with 12 unit cells along

the length of the shear layer and either one or two layers along the thickness slThk were

optimized on using each of the three previously mentioned base materials. Plane stress
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Table 7.2: Low-resolution optimization results

slThk [mm] base material layers GU23 [GPa] V

5 PC 1 13.38†,‡ 0.146
5 PC 2 13.40‡ 0.157
6 PC 1 11.17 0.141
6 PC 2 11.17 0.149
7 PC 1 9.57 0.190
7 PC 2 9.57‡ 0.150
8 PC 1 8.38 0.181
8 PC 2 8.38 0.153
9 PC 1 7.44 0.136
9 PC 2 7.44 0.123
10 PC 1 6.67†,‡ 0.117
10 PC 2 6.70 0.130
11 PC 1 6.09 0.117
11 PC 2 6.09‡ 0.159
12 PC 1 5.58‡ 0.115
12 PC 2 5.58 0.112
7 AL 1 9.57 0.067
8 AL 1 8.38 0.043
8 AL 2 8.34† 0.060
9 AL 2 7.44 0.052
11 AL 1 6.09 0.039

†Optimization terminated early by exceeding allowed number of function evaluations.
‡Material depicted in Table 7.3.

elements with thickness equal to 200 mm (the in-plane thickness of the non-pneumatic

wheel model) were used. A SIMP exponent s = 3 was used to generate the low-resolution

designs. The termination parameters used for the optimization were an objective tolerance

equal to 10−4 on the volume fraction and a constraint tolerance equal to 10−3 MPa on

the shear modulus. Early termination parameters of 200 algorithm iterations and 1000

function evaluations were also given. The optimizations for which feasible designs, those

that appeared to generate resolved geometries while obtaining the goal modulus G∗23, are

reported in Table 7.2, while several of these materials designs are depicted in Table 7.3.

No convergent solutions were obtained from the optimization attempts using mild
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Table 7.3: Selected visual results for optimizations using 30x30 unit cell discretizations

GU23 [MPa] Single-Layer Polycarbonate (PC) Material

13.38

11.17

6.67

5.58

GU23 [MPa] Two-Layer Polycarbonate (PC) Material

7.44

6.09

GU23 [MPa] Single-Layer Aluminum 7075-T6

8.34

6.09

Six unit cells are shown in the horizontal direction for each material.

steel. Additionally, only a few of the optimization attempts using aluminum 7075-T6 were

successful in achieving the desired shear moduli. The shear moduli of both mild steel and the

aluminum alloy are three to four orders of magnitude higher than the target moduli required

for the shear layer design. However, the majority of the optimization attempts using PC

as a base material resulted in shear moduli with or very near the target moduli; PC has a

shear modulus two to three orders of magnitude larger than the target shear moduli. From

these results, it became apparent that there is a realistic upper bound for base materials

that can be used in this design process. While metals were one of the original groups of

materials hypothesized to satisfy the design requirements of the meta-material shear layer,

they were eliminated by this low-resolution optimization study. However, polymers, PC in

particular, appear to achieve these design requirements.

As for the optimization process itself, the existence of an upper bound on materials
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Figure 7.5: Initial points used for the high-resolution design of the meta-material shear
layer.

serves to provide validation of the numerical accuracy of the method, requiring realistic

materials to be used to achieve a feasible meta-material solution. The figures in Table 7.3

also provided some guidance on the engineering process and tuning of the optimizer for

the high-resolution optimizations. Simple ‘x’ or diamond structures appear in the majority

of the feasible solutions, indicating this geometry is local topological minimum for design

in shear. This is consistent with the optimal solutions of other materials optimized in

shear using homogenization methods (e.g., those found in Zhang et al. [19]), validating

the topological design methods used. However, with the exception of the two top-most

geometries in Table 7.3, the finite element densities of the solutions of the included elements

are not very close to 1; many are in the range (0.3,0.6). This results in blurry visual solutions,

as well as a loss of fidelity in the numerical results. This issue would have to be corrected

in further optimization studies to produce numerically accurate results.

7.2.1.2 Optimizations Using a High-Resolution (40x40 elements) Mesh

For the the high-resolution optimization attempts, 40x40 element discretizations

of the unit cell were used. As single-layer optimizations appeared to produce the best

results (aside from the aforementioned SIMP-convergence issue), optimization attempts
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Figure 7.6: Simply connected meta-materials generated from initial point A.
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Figure 7.7: Simply connected meta-materials generated from initial point B.
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Figure 7.8: Simply connected meta-materials generated from initial point C.
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Figure 7.9: Simply connected meta-materials generated from initial point D.
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using the high-resolution mesh were restricted to single-layer materials with 10 unit cells

in the analysis domain. Only PC was used as a base material for the high-resolution

studies. The same termination parameters as those used in the low-resolution optimizations

were used here. To attempt to solve the SIMP-convergence issue, the SIMP exponent was

increased to s = 4. Because of the dependence of the topology optimization algorithm on

the initial point, and because a number of feasible solutions were desired, four different

initial points (Fig. 7.5) were used for each of these optimizations. (Recall from Chapter 2

that the topology optimization problem has many local minima with non-unique solutions;

by choosing different initial points, the optimizer may converge on a different minimum of

the problem.)

The resulting materials are depicted in Figs. 7.6 to 7.9. The first thing to notice

is variety of topologies, in general and within one group of initial points. For example, for

those materials generated from initial point A, the microstructure generated withGU23 = 13.4

MPa is similar to the diamond structures generated in many of the low-resolution designs,

while the microstructures with GU23 = 11.17 MPa and 5.58 MPa are very similar. There

are also some microstructures that did not generate feasible microstructures by either not

achieving SIMP convergence (e.g., the GU23 = 6.70 MPa geometry from initial point A) or

lacking connectivity (e.g., the GU23 = 8.37 MPa geometry from initial point B).

More importantly, many of these geometries resulted in SIMP-convergent, feasible

microstructures while achieving the target moduli. These are presumed to be due to the use

of higher-resolution meshes and the utilization of the larger SIMP exponent. These results

are displayed on the curve generated from Eqn. 7.2 in Fig. 7.10.

7.2.2 Design Using Non-Simple Connectivity

The topological design of a non-simply connected shear layer using the volume

averaging analysis, described in Chapter 6, was used to generate material designs for the

shear layer. Because the mild steel and aluminum materials were ruled out as potential base

materials in Section 7.2.1, PC was used as a base material for the 40x40 discretizations of
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Figure 7.10: Feasible design results from high-resolution optimization study. The dashed
line indicates the optimal results, Eq. 7.2, from the top-level optimization of the wheel, and
the letters on the plot indicate which initial point(s) was used to generate a meta-material
design at that point.

the UCs comprising the material. For the shifted connectivity to be effective, at least two

layers of UCs had to be considered. However, manufacturing limits should limit the utility

of the code to only two to three layers at most, where the 12 mm shear band contains

layers 4 mm in thickness with three layers, while the 5 mm shear band contains layers 2.5

mm in thickness. For these reasons, problems with two layers of UCs with horizontal offset

L/2 were considered. The same shear layer thicknesses and starting points used in the

high-resolution studies presented in Section 7.2.1 were used here.

The results from these high-resolution optimizations are displayed in Figures 7.11 to

7.14. A number of optimizations either did not generate a geometry or did not generate a

well-resolved, SIMP-convergent geometry. Additionally, some well-resolved results are not

feasible, as they do no connect the lower and upper portions of the design domain; these

include the 13.40 MPa and 6.70 MPa geometries from initial point A, the 8.37 MPa and

7.44 MPa geometries from initial point D, and the not fully-resolved results in the 11.70

MPa and 5.58 MPa results from initial point C.

More importantly, there are two classes of convergent results that emerged from
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Figure 7.11: Non-simply connected meta-materials generated from initial point A.
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Figure 7.12: Non-simply connected meta-materials generated from initial point B.
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Figure 7.13: Non-simply connected meta-materials generated from initial point C.
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Figure 7.14: Non-simply connected meta-materials generated from initial point D.
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Figure 7.15: Unit cell from the auxetic honeycomb structure with GU23 = 9.57 MPa.

these optimizations. First, a bristle-like structure (at varying angles with respect to vertical)

that are displayed in the 5.58 MPa result from initial point A, the 13.40 MPa, 8.43 MPa

and 6.70 MPa results from initial point B, and the 13.40 MPA and 6.70 MPa results from

initial point C. Geometries of this type were previously investigated by Lowe et al. [12], as

was discussed in the motivation for this research of Chapter 1. This class of geometry was

shown to be a bit too simplistic, displaying buckling as the bristles passed from one side of

the contact patch through to the other during cyclic loading of the wheel. This buckling

was associated with failure of the geometry.

The other class that emerged was an auxetic honeycomb structure, best displayed in

the 9.57 MPa result from initial point A, the 9.57 MPa and 5.58 MPa result from initial point

B, and the 8.38 MPa result from initial point C. The UC of the 9.57 MPa geometry from

initial point B is shown in Figure 7.15. The UC displays one very interesting characteristic:

the top of the UC is not connected to the bottom of the UC with a structural member;

instead, there are two independent, three-member structures in two corners of the UC.

Interestingly, the periodicity and connectivity of the global structure permits this to be the

case. The auxetic honeycomb has been studied extensively as a potential geometry for use

in the shear layer of the wheel.

The feasible results using the high-resolution mesh for the study presented using
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Figure 7.16: Feasible design results from high-resolution optimization study using non-
simple connectivity. The dashed line indicates the optimal results, Eq. 7.2, from the top-
level optimization of the wheel, and the letters on the plot indicate which initial point(s)
was used to generate a meta-material design at that point.

two-layers of UCs are summarized in Figure 7.16.

7.3 Discussion

While an argument could be made that simultaneous optimization of the shear

layer microstructure and the shear band itself within the global finite element model of

the wheel, two complications would arise when attempting this all-at-once approach. First,

implementing a topology optimization routine directly into the global optimization problem

is computationally costly. The large computational cost of the system analysis of the wheel

using a homogeneous orthotropic material necessitated using an approximation with neural

networks to generate a meta-model. If a topology optimization routine were to be directly

integrated, a much finer mesh than the one used for the shear layer material in the global

model would have to be included. Second, a genetic algorithm was used to determine the set

of optimal solutions when using the meta-model, while topology optimization methods that

utilize continuous material interpolation methods are typically better suited for use with

deterministic algorithms, especially when closed-form design sensitivities are given. This is
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the case here. (While a genetic algorithm was employed, a gradient based algorithm could

have been used for the global optimization problem.) Both of these issues are alleviated by

decoupling the design process as presented, allowing for the use of an optimization algorithm

on each level. This placed the burden of meta-material design on the more appropriate

platform of topology optimization without confounding factors from the global model.

From these numerical and visual results given here, it can be seen that the method

used for topology optimization that utilizes the volume averaging analysis for single or few-

layered materials is capable of generating materials with prescribed linear elastic properties.

A number of feasible designs were produced with the target shear moduli and shear layer

thickness required by the top-level optimization of the shear layer. The next steps of

the design process are selection of a meta-material geometry and implementation into the

finite element model of the non-pneumatic wheel to investigate global convergence of the

meta-material design process (as depicted in Figure 7.4) and failure properties of the meta-

material via the von Mises or other failure criteria. Additionally, experimental validation

of elastic and failure properties of those geometries selected for the shear layer should be

completed.

These geometries were designed to be optimal in a shear loading, subject to no

constraints on other material properties (e.g., the meta-material Young’s modulus). As the

design sensitivities needed for the topology optimization are functions of the compliance

of the structure (see Chapter 5), by optimizing on the structure in shear, a geometry was

produced such that the compliance of the structure in shear was also considered. Though

the compliance was not necessarily at a minimum at optimality, the structures produced,

especially those with an ‘x’-like geometry, are certain to have better compliance properties

in shear than other structures. The repeated appearance of these ‘x’-like geometries as local

minima of the optimization problems suggests this true. Additionally, these ‘x’ geometries

are already known to be an optimal structure for materials deformed in shear when using

simple connectivity [19].

The optimizations that resulted in a bristle design lend some credibility to the idea
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that a simple design is preferable. The use of single-members to connect the top of the

design domain to the bottom is simple to manufacture, while providing the desired shear

moduli for the design domain. However, these members were found to demonstrate buckling

in the contact patch, eliminating them from the set of feasible designs for the shear layer.

The auxetic honeycomb geometries obtained purely as a result of optimization of a

material in shear by seeking minimum volume subject to a linear constraint on the meta-

material shear modulus are remarkable. These geometries have been studied extensively,

known for their negative Poisson’s ratio and relatively low shear moduli when compared

to that of the base material [18]. Further, Ju et al. [18] investigated the geometry for use

in high-shear flexure, achieving approximately 15% effective shear strain prior to material

failure when using the PC base material. The contact pressure of the wheel when using

honeycomb geometries, including the auxetic structure, in the shear was investigated by Ju

et al. [101]; the wheel with the auxetic honeycomb shear layers were shown to have lower

maximum contact pressures when compared to the non-auxetic honeycomb shear bands.

7.4 Summary

The two-level design process described in the former chapters of this work was used

for the meta-material design of the shear layer for the wheel. In the work by Thyagaraja et

al. [11], the shear layer thickness and shear modulus were identified as the most sensitive

parameters to the global design; the optimal set of designs was identified in the top-level

optimization to lie on a hyperbolic curve that is a function of these two parameters. In

this chapter, the bottom-level optimization consisted of designing meta-material geometries

which lie on this curve using topology optimization. Because the thickness of the shear

layer was very small, design using asymptotic homogenization analysis was not feasible, as

realistic manufacturing constraints required inclusion of only one or a couple layers of unit

cells in the shear layer. With more unit cells in this thickness, the internal microstructure

of the unit cell would almost certainly not be manufacturable in a cost-effective manner
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with current technology. Instead, the topology optimization method utilizing the volume

averaging analysis was implemented.

A two-step process was used in the topology design of the meta-material microstruc-

tures. First, a low-resolution mesh was used to select feasible base materials, as well to

identify optimization parameters (i.e., number of layers, meta-material tolerance, volume

fraction tolerance, SIMP penalization, and other topology optimization parameters) that

could be better tuned to produce convergent and usable results. In this process, a shear

layer thickness was chosen, and the target shear layer modulus was identified using the

optimal relationship curve produced in the top-level optimization. Then, a high-resolution

mesh was used with different initial points to design a number of different structures, from

which nine were identified as potential design candidates for use in the non-pneumatic wheel

when using simply-connected UC structures. Additionally, the non-simply connected UC

structures were used to generate a set of meta-materials, including the auxetic honeycomb.

The final step of this process, which is outside the scope of this work, is to complete further

modeling with these candidate geometries in the global model of the wheel for validation of

the models, as well as numerical testing for mechanical elastic and failure properties.
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Chapter 8

Concluding Remarks

The research questions posed at the beginning of this work were

1. Are there applications in which homogenization theory is not capable of predicting

accurate meta-material moduli? If so, can the volume averaging method be used?

2. Can a well-posed meta-material topology optimization problem be constructed to

target meta-material properties?

3. Is it possible to topology optimize with respect to the parameters of the volume

averaging model?

• Can a single unit cell be optimized in tension and in shear?

• Can multiple unit cells be optimized in tension and in shear?

4. How does unit cell connectivity affect the physical modeling methods (asymptotic

homogenization and volume averaging) presented?

5. Can the non-pneumatic wheel assembly design problem be solved using the volume

averaging method with topology optimization?

Each of these questions is addressed below.
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Item 1

Homogenization theory and volume averaging are known to predict similar values for meta-

material properties in many cases. Homogenization theory, being based off a small param-

eter expansion, was shown to be accurate for the prediction of meta-material properties as

long as that unit cell is small enough, relative to the global length scaling of the material,

to justify its use. However, when this scaling assumption is not met, which is true of single

and few-layered materials in particular, the two theories diverge. To demonstrate which

theory, if either, is accurate, a simple design problem was posed to demonstrate accuracy

or inaccuracy of these methods to predict meta-material properties within the two-level

process. These conclusions of this analysis are listed below.

• Below the representative volume limit, neither homogenization nor volume averaging

are accurate for representing meta-material properties within the context of material

design.

• Beyond the representative volume limit, for materials in which the small-parameter

scaling assumption of homogenization is met, both analysis methods predict similar

meta-material properties and are accurate for material design.

• Beyond the representative volume limit, for those problems in which the small-parameter

assumption of homogenization is not met in one or more dimensions (e.g., materials

with only one or a few layers of unit cells, or materials with UCs that have a poorly

scaled aspect ratio), volume averaging is accurate for material design, while homoge-

nization is not.

Item 2

In Chapter 4, the Karush-Kuhn-Tucker and Fritz-John optimality conditions were derived

for three different meta-material topology optimization problems using continuous material

interpolation schemes. The problem seeking a minimum volume subject to a set of linear

constraints on the material requirements was demonstrated to be mathematically well-posed
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in every case, while other commonly used methods reported in the literature demonstrated

mathematical and numerical issues at optimality.

Item 3

The results from the optimization of a materials in tension and in shear, as well as the

results from the optimization of the wheel demonstrate that it is possible to optimize on

the volume averaging model. This conclusion required addressing several issues.

• In Chapter 5, design sensitivities for a single unit cell were derived for design problems

in tension and in shear. Topology optimization using the single unit cell model was

not done due to the inaccuracy of the volume averaging model in the meta-material

design process when using a single unit cell, as the RVE limit is not achieved in the

single unit cell case. (This derivation was intended as a path to the derivation of

design sensitivities for multiple unit cells.)

• The design sensitivities derived for a single unit cell were simply extended to the

design of multiple unit cells using volume averaging, and optimization of materials in

both tension and in shear was demonstrated in Chapter 5.

Item 4

The analysis and optimization of materials using non-simply connected unit cell structures

was shown to be an accurate and feasible method for meta-material design in Chapter 6.

Using such a connectivity requires no changes in the volume averaging analysis, and it

requires only a small change in the periodic boundary conditions of the homogenization

analysis. Additionally, in Chapter 7, the method was shown to increase the feasible design

space by admitting a larger class of geometries, most remarkable of which is the auxetic

honeycomb, as a result of minimizing the volume fraction of the material subject to linear

constraints on the shear modulus.

Item 5

The methods presented in this work were used to design meta-materials for the shear layer of

the non-pneumatic wheel. Notable geometries include the ‘x’ geometry, the bristle geometry
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and the auxetic honeycomb geometry.

8.1 Contributions

The list of contributions to the engineering community in this work includes

• A clarification of the accuracies and inaccuracies of the components used in the meta-

material design process.

• A clarification of the tie between the system-level optimization and meta-material

topology optimization (consistency of the two-level meta-material design approach).

• The first in-depth derivation of optimality conditions for common meta-material op-

timization problems described in the literature.

• The first justification of the use of the volume averaging analysis in meta-material

optimization, including first-order design sensitivities and numerical examples.

• A potentially simpler alternative to using non-rectangular unit cells with simple con-

nectivity for meta-materials design by instead using non-simply connected, rectangular

unit cells to represent the design domain.

• A number of feasible geometries suitable for use in the shear layer of the non-pneumatic

wheel, subject to further validation of the model geometries for failure and fatigue

properties.

• The first description of an auxetic honeycomb structure as being a minimal volume

or weight structure optimal in shear deformation.

8.2 Discussion

The models and methods presented in this work were designed to be as general as

possible while satisfying the needs of the design of the shear layer for the non-pneumatic
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wheel. The meta-material analysis methods used have had no limiting assumptions placed

on them in terms of physical applicability other than those expressed, and the optimization

methods employed, namely topology optimization using continuously interpolated materials

with SIMP penalization, are known to offer a more general class of solutions than those

offered by non-continuous interpolation methods. These methods are among the simplest

methods found in the literature used to analyze and solve meta-material design problems

while maintaining wide applicability due to the general nature of the methods employed.

The models used to analyze materials can require the use of large amounts of compu-

tational resources to solve a single problem. This is primarily due to the need to solve large

finite element problems at every iteration of the optimization. In this research, Clemson

University’s high performance computing (HPC) cluster, the Palmetto Cluster, was utilized

to solve these large FEA problems, as well as the subsequent optimization problems. How-

ever, the system level models for which the meta-materials are designed for use in often

require large computational resources to solve. (This is the case in this research, where the

the global wheel model was also solved using the Palmetto Cluster.) Thus, these resources

are typically already available to the designer.

The state of the art in meta-material design had previously left several open ques-

tions in both the analysis and design optimization of meta-materials in the context of a

larger assembly. As such, this work has aimed at clarifying some of these issues, as well

as providing a description of an example in which this process was used to design a meta-

material for use in a larger assembly.

8.3 Future Work

Though the methods employed were general in nature, there are several areas in

which this research could be furthered to benefit the material design optimization field.
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8.3.1 Analysis and Optimization of Geometrically and Physically Non-

Linear Materials

Homogenization theories are generally derived using a small parameter expansion

to simplify the analysis domains of materials to a single unit cell. This includes the analysis

of both geometrically non-linear (large displacement) and physically non-linear materials.

Expanding the ideas presented here to materials other than linear elastic materials includes

verifying the inaccuracy of homogenization and accuracy of another analysis method in

these cases, as well as updating of the optimization methods used for design.

8.3.2 Multicriteria Design of Meta-Materials

In Chapter 4, the optimization problems posed were all multicriteria problems,

requiring multiple material requirements be met at optimality. This chapter demonstrated

the feasibility, or lack thereof, of each formulation to achieve a well-resolved (i.e., SIMP

convergent) result at optimality while achieving multiple material requirements. However,

the examples presented only demonstrated the single criteria, single objective cases of the

formulations posed. The targeted design of multiple material properties simultaneously,

for example both EM22 and GM23 , requires both material properties to be simultaneously

feasible. The Hashin-Shtrikman bounds provide limits on the ranges of achievable meta-

material moduli as a function of volume fraction of the material (see, for example, [102]).

As such, they limit the ranges of simultaneously obtainable moduli. Questions remain as

to the utility of different optimization formulations to target one material property while

constraining another within a range, simultaneously.

8.3.3 Inclusion of Failure Properties

In all of the materials designed as a result of this work, failure properties were

never considered directly in topology optimization. Instead, they are left for validation in

the global model as a post-processing effort. The optimization methods presented directly

address the stresses introduced as a result of particular mode of deformation, and optimiza-
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tion should, in theory, provide a locally minimum strain energy design while meeting the

design criteria. However, as von Mises stresses, buckling stresses or other criteria are never

directly considered, these geometries could suffer failure from large strains placed on the

meta-material geometries. Addressing these failure criteria on a unit cell level in the con-

text of the meta-material design process remain an open question. Solving these seemingly

obvious issues are at the forefront of meta-material design and are sure to revolutionize the

field of material design, in general.
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Appendix A Comparison of Homogenization and Volume Av-

eraging Analysis Methods

Below are numerical results for the analyses described and plotted in Chapter 3.

Comparison of Homogenized and Averaged Moduli for 8x8 Unit Cells for the ‘x’ Geometry

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 1.171 1.171 1.002 0.281
0.10 1.105 1.105 1.003 0.441
0.15 1.041 1.041 1.004 0.700
0.20 1.024 1.024 1.005 0.800
0.25 1.005 1.005 1.004 0.940
0.30 1.002 1.002 1.002 0.980
0.35 1.000 1.000 1.000 1.000

Comparison of Homogenized and Averaged Moduli for 8x8 Unit Cells for the ‘+’ Geometry

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 1.004 1.004 1.412 0.191
0.10 1.006 1.006 1.421 0.361
0.15 1.008 1.008 1.307 0.510
0.20 1.012 1.012 1.212 0.640
0.25 1.014 1.014 1.136 0.750
0.30 1.014 1.014 1.078 0.840
0.35 1.011 1.011 1.038 0.910
0.40 1.006 1.006 1.015 0.960
0.45 1.001 1.001 1.003 0.990
0.50 1.000 1.000 1.000 1.000
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Comparison of Homogenized and Averaged Moduli With Increasing Finite Element Dis-
cretization for the ‘x’ Geometry

Discretization (num. elements by num. elements) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

10 1.113 1.113 3.057
15 1.080 1.080 3.222
20 1.093 1.093 3.165
25 1.101 1.101 2.726
30 1.088 1.088 3.202
35 1.079 1.079 3.593
40 1.086 1.086 3.221

Maximum Fluctuation 0.035 0.035 0.867
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Comparison of Homogenized and Averaged Moduli With Increasing Finite Element Dis-
cretization for the ‘+’ Geometry

Discretization (num. elements by num. elements) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

10 1.237 1.237 1.070
15 1.170 1.170 1.054
20 1.189 1.189 1.042
25 1.162 1.162 1.038
30 1.177 1.177 1.034
35 1.223 1.223 1.030
40 1.172 1.172 1.029

Maximum Fluctuation 0.075 0.075 0.411
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Comparison of Homogenized and Averaged Moduli for Single, Rectangular Unit Cells for
the ‘x’ Geometry

W/L = 1

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 2.366 2.366 1.029 0.281
0.10 1.840 1.840 1.032 0.441
0.15 1.329 1.329 1.038 0.700
0.20 1.189 1.189 1.042 0.800
0.25 1.044 1.044 1.037 0.940
0.30 1.014 1.014 1.023 0.980
0.35 1.000 1.000 1.000 1.000

W/L = 2

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 2.164 1.175 1.068 0.191
0.10 1.933 1.137 1.071 0.361
0.15 1.487 1.098 1.102 0.580
0.20 1.283 1.027 1.108 0.700
0.25 1.180 1.010 1.110 0.800
0.30 1.120 1.013 1.100 0.880
0.35 1.041 1.013 1.040 0.960

W/L = 3

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 1.803 0.803 1.092 0.221
0.10 1.909 0.968 1.131 0.387
0.15 1.494 0.936 1.163 0.534
0.20 1.217 0.930 1.188 0.660
0.25 1.109 0.957 1.212 0.767
0.30 1.086 0.985 1.202 0.853
0.35 1.067 1.005 1.108 0.940
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Comparison of Homogenized and Averaged Moduli for Single, Rectangular Unit Cells for
the ‘+’ Geometry

W/L = 1

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 1.037 1.037 5.360 0.191
0.10 1.051 1.051 6.219 0.361
0.15 1.067 1.067 4.652 0.510
0.20 1.093 1.093 3.165 0.640
0.25 1.115 1.115 2.167 0.750
0.30 1.113 1.113 1.584 0.840
0.35 1.085 1.085 1.265 0.910
0.40 1.046 1.046 1.099 0.960
0.45 1.013 1.013 1.020 0.990
0.50 1.000 1.000 1.000 1.000

W/L = 2

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 1.037 1.019 3.571 0.146
0.10 1.053 1.029 6.373 0.281
0.15 1.072 1.041 6.128 0.406
0.20 1.093 1.060 5.028 0.520
0.25 1.116 1.079 3.914 0.625
0.30 1.143 1.087 3.009 0.720
0.35 1.176 1.083 2.333 0.805
0.40 1.210 1.070 1.846 0.880
0.45 1.237 1.053 1.495 0.945
0.50 1.000 1.000 1.000 1.000

W/L = 3

Bar Thickness (fraction of L) EU
22

EH
22

EU
33

EH
33

GU
23

GH
23

Volume Fraction

0.05 1.037 1.014 2.696 0.131
0.10 1.054 1.021 5.810 0.254
0.15 1.074 1.032 6.533 0.371
0.20 1.097 1.048 5.930 0.481
0.25 1.122 1.065 5.008 0.584
0.30 1.149 1.076 4.124 0.680
0.35 1.176 1.079 3.371 0.770
0.40 1.201 1.075 2.750 0.853
0.45 1.223 1.067 2.223 0.930
0.50 1.000 1.000 1.000 1.000
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Design Example Results For 8x8 Unit Cells With ‘x’ Geometry

dG [cm] dU [cm] dH [cm] Rel. Error Using EUij Rel. Error Using EHij

0.227 0.228 0.231 -0.005 -0.018

Design Example Results For 8x8 Unit Cells With ‘+’ Geometry

dG [cm] dU [cm] dH [cm] Rel. Error Using EUij Rel. Error Using EHij

1.383 1.149 1.467 0.169 -0.061

Design Example Results For 15x1 Unit Cell Layer With ‘x’ Geometry

W/L dG [cm] dU [cm] dH [cm] Rel. Error Using EUij Rel. Error Using EHij

1 0.067 0.068 0.069 -0.018 -0.036
5 1.934 1.942 2.295 -0.004 -0.187

Design Example Results For 15x1 Unit Cell Layer With ‘+’ Geometry

W/L dG [cm] dU [cm] dH [cm] Rel. Error Using EUij Rel. Error Using EHij

1 0.250 0.235 0.670 0.058 -1.720
5 15.304 14.200 42.162 0.072 -1.755

167



Appendix B Single Layer Optimization Results

Below are complete numerical and visual results for the optimization problems presented

in Section 5.2.2 of Chapter 5.

Numerical Results For Optimization of E22 in a Single Layer Material using Homogenization
and Volume Averaging of a 12x1 UC layer

Model E∗22 [GPa] EU22 [GPa] V Comp. Time [s] Iter. Func. Eval.

Vol. Aver. 3 3.001 0.229 1547.9 98 318
Homog. 3 3.000 0.201 343.0 130 869

Vol. Aver. 6 6.040 0.250 4135.4 188 1001
Homog. 6 6.000 0.278 333.0 174 785

Vol. Aver. 9 9.001 0.347 1329.1 101 318
Homog. 9 9.001 0.364 309.8 194 680

Vol. Aver. 12 11.800 0.636 4164.7 215 1001
Homog. 12 11.990 0.423 408.0 154 1001

Vol. Aver. 15 14.908 0.722 4362.3 112 1001
Homog. 15 14.999 0.523 139.4 92 281

Vol. Aver. 18 18.000 0.727 11731.9 70 225
Homog. 18 0.000 0.041 33.5 13 76

Vol. Aver. 21 21.001 0.726 1078.9 58 257
Homog. 21 21.000 0.721 72.3 53 158

Vol. Aver. 24 0.000 0.003 28.9 3 5
Homog. 24 0.000 0.004 3.89 3 5

Vol. Aver. 27 26.999 0.963 224.6 10 53
Homog. 27 27.001 0.929 360.4 109 1001

Vol. Aver. 30 30.000 1.000 188.3 15 43
Homog. 30 30.000 1.000 14.4 12 23
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Numerical Results For Optimization of E33 in a Single Layer Material using Homogenization
and Volume Averaging of a 12x1 UC layer

Model E∗33 [GPa] EU33 [GPa] V Comp. Time [s] Iter. Func. Eval.

Vol. Aver. 3 3.001 0.151 1225.9 98 293
Homog. 3 3.001 0.231 110.2 72 253

Vol. Aver. 6 6.000 0.241 1702.8 142 404
Homog. 6 6.003 0.262 424.8 164 1001

Vol. Aver. 9 9.000 0.343 2352.1 158 563
Homog. 9 9.003 0.362 386.2 155 1001

Vol. Aver. 12 11.951 0.435 3966.1 134 1001
Homog. 12 12.002 0.441 414.5 183 1001

Vol. Aver. 15 14.999 0.723 603.8 19 148
Homog. 15 0.000 0.035 30.0 11 69

Vol. Aver. 18 18.001 0.803 3006.4 91 736
Homog. 18 0.000 0.073 42.2 15 96

Vol. Aver. 21 20.999 0.738 561.2 41 137
Homog. 21 21.000 0.737 11.3 64 261

Vol. Aver. 24 0.000 0.003 27.9 3 5
Homog. 24 0.000 0.004 3.9 3 5

Vol. Aver. 27 26.999 0.963 222.8 10 53
Homog. 27 27.002 0.929 360.0 109 1001

Vol. Aver. 30 30.000 1.000 187.1 15 43
Homog. 30 30.000 1.000 14.6 12 23

169



Numerical Results For Optimization of G23 in a Single Layer Material using Homogenization
and Volume Averaging of a 12x1 UC layer

Model G∗23 [GPa] GU23 [GPa] V Comp. Time [s] Iter. Func. Eval.

Vol. Aver. 1 1.003 0.328 3696.8 101 1001
Homog. 1 0.999 0.427 24.7 15 51

Vol. Aver. 2 2.001 0.416 719.5 61 188
Homog. 2 2.002 0.485 368.1 133 1001

Vol. Aver. 3 2.999 0.700 177.2 5 45
Homog. 3 3.001 0.641 35.2 14 89

Vol. Aver. 4 3.996 0.562 3853.6 126 1001
Homog. 4 4.001 0.551 145.9 107 319

Vol. Aver. 5 5.001 0.664 666.1 55 174
Homog. 5 54.994 0.717 359.7 85 1001

Vol. Aver. 6 6.003 0.727 3763.9 118 1001
Homog. 6 6.001 0.769 51.1 36 114

Vol. Aver. 7 6.999 0.870 158.1 4 40
Homog. 7 6.999 0.811 152.8 70 382

Vol. Aver. 8 8.003 0.871 3763.6 116 1001
Homog. 8 0.000 0.003 3.9 3 5

Vol. Aver. 9 8.345 0.937 3686.4 73 1001
Homog. 9 9.000 0.920 31.2 24 61

Vol. Aver. 10 10.000 0.954 411.9 29 108
Homog. 10 9.999 0.953 66.4 36 156
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of E22

in a Single Layer Material

171



Visual Results Comparing Homogenization and Volume Averaging For Optimization of E22

in a Single Layer Material
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of E33

in a Single Layer Material
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of E33

in a Single Layer Material
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of G23

in a Single Layer Material
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of G23

in a Single Layer Material
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Appendix C Non-Simple Connectivity Analysis Comparisons

Below are complete visual results for the comparison of numerical analysis methods (homog-

enization and volume averaging) to analytical equations predicting meta-material properties

of honeycomb geometries; a subset of these results are presented in Section 6.3 of 6.

Parameters Used For the Analytical Comparison of Honeycombs in the Equations Given by
Gibson et. al [95]

Structure θ [rad] l [mm] h [mm] Range of thickness t [mm]

1 0 10.00 19.5 2.00-14.00
2 0.3367 10.59 16.50 2.00-14.00
3 0.6107 12.21 13.00 2.00-14.00
4 0.8330 14.87 9.00 2.00-14.00
5 0.9505 17.20 6.00 2.00-14.00
6 1.107 22.36 0.00 2.00-14.00
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Plot of analytical and numerical EM22 moduli as a function of member thickness in honey-
combs for structure 1.

Plot of analytical and numerical EM33 moduli as a function of member thickness in honey-
combs for structure 1.

Plot of analytical and numerical GM23 moduli as a function of member thickness in honey-
combs for structure 1.
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Plot of analytical and numerical EM22 moduli as a function of member thickness in honey-
combs for structure 2.

Plot of analytical and numerical EM33 moduli as a function of member thickness in honey-
combs for structure 2.

Plot of analytical and numerical GM23 moduli as a function of member thickness in honey-
combs for structure 2.
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Plot of analytical and numerical EM22 moduli as a function of member thickness in honey-
combs for structure 3.

Plot of analytical and numerical EM33 moduli as a function of member thickness in honey-
combs for structure 3.

Plot of analytical and numerical GM23 moduli as a function of member thickness in honey-
combs for structure 3.
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Plot of analytical and numerical EM22 moduli as a function of member thickness in honey-
combs for structure 4.

Plot of analytical and numerical EM33 moduli as a function of member thickness in honey-
combs for structure 4.

Plot of analytical and numerical GM23 moduli as a function of member thickness in honey-
combs for structure 4.
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Plot of analytical and numerical EM22 moduli as a function of member thickness in honey-
combs for structure 5.

Plot of analytical and numerical EM33 moduli as a function of member thickness in honey-
combs for structure 5.

Plot of analytical and numerical GM23 moduli as a function of member thickness in honey-
combs for structure 5.

183



Plot of analytical and numerical EM22 moduli as a function of member thickness in honey-
combs for structure 6.

Plot of analytical and numerical EM33 moduli as a function of member thickness in honey-
combs for structure 6.

Plot of analytical and numerical GM23 moduli as a function of member thickness in honey-
combs for structure 6.
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Appendix D Non-Simple Connectivity Optimization Results

Below are complete numerical and visual results for the optimization problems presented

in Section 6.4 of Chapter 6.

Numerical Results For Optimization of E22 in a Two-Layer Material using Homogenization
and Volume Averaging of a 12x2 UC layer

Model E∗22 [GPa] EU22 [GPa] V Comp. Time [s] Iter. Func. Eval.

Vol. Aver. 3 3.001 0.130 13162.8 166 1001
Homog. 3 3.000 0.130 806.2 231 935

Vol. Aver. 6 6.001 0.227 5153.6 144 432
Homog. 6 5.999 0.223 392.4 102 259

Vol. Aver. 9 8.993 0.340 13337.0 194 1001
Homog. 9 9.000 0.350 310.0 124 418

Vol. Aver. 12 11.992 0.425 13182.5 181 1001
Homog. 12 9.249 0.554 1119.1 102 1001

Vol. Aver. 15 0.000 0.021 3668.6 21 205
Homog. 15 14.968 0.686 1111.6 160 1001

Vol. Aver. 18 17.999 0.627 4022.4 92 327
Homog. 18 2.844 0.452 2643.3 95 1001

Vol. Aver. 21 20.994 0.736 15188.8 133 1001
Homog. 21 20.977 0.776 692.7 133 1001

Vol. Aver. 24 24.001 0.884 10714.4 138 673
Homog. 24 4.582 0.566 2445.9 82 1001

Vol. Aver. 27 27.001 0.961 515.1 15 29
Homog. 27 27.002 0.942 438.3 139 1001

Vol. Aver. 30 30.000 1.000 453.8 12 23
Homog. 30 30.000 1.000 58.1 12 23
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Numerical Results For Optimization of E33 in a Two-Layer Material using Homogenization
and Volume Averaging of a 12x2 UC layer

Model E∗33 [GPa] EU33 [GPa] V Comp. Time [s] Iter. Func. Eval.

Vol. Aver. 3 3.005 0.203 12679.4 128 1001
Homog. 3 3.005 0.167 912.8 264 1001

Vol. Aver. 6 5.999 0.243 5428.6 130 398
Homog. 6 6.000 0.246 475.1 127 375

Vol. Aver. 9 8.999 0.349 7569.7 175 635
Homog. 9 9.000 0.374 668.0 201 563

Vol. Aver. 12 11.997 0.531 16026.7 203 1001
Homog. 12 11.984 0.534 636.5 265 1001

Vol. Aver. 15 14.874 0.773 15549.1 127 1001
Homog. 15 15.000 0.646 426.6 150 723

Vol. Aver. 18 8.534 0.716 6971.3 46 277
Homog. 18 17.979 0.715 500.9 148 1001

Vol. Aver. 21 17.415 0.797 18561.7 155 1001
Homog. 21 20.921 0.781 726.2 133 1001

Vol. Aver. 24 8.701 0.672 20357.2 87 1001
Homog. 24 2.0497 0.429 1559.4 108 1001

Vol. Aver. 27 26.999 0.950 2946.2 63 181
Homog. 27 27.001 0.966 48.0 8 19

Vol. Aver. 30 30.000 1.000 992.5 24 61
Homog. 30 30.000 1.000 74.0 12 23
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Numerical Results For Optimization of G23 in a Two-Layer Material using Homogenization
and Volume Averaging of a 12x2 UC layer

Model G∗23 [GPa] GU23 [GPa] V Comp. Time [s] Iter. Func. Eval.

Vol. Aver. 1 1.001 0.320 2418.5 73 203
Homog. 1 0.999 0.332 201.8 82 227

Vol. Aver. 2 2.000 0.455 7842.2 154 627
Homog. 2 2.001 0.411 196.7 79 199

Vol. Aver. 3 2.992 0.589 11104.4 153 1001
Homog. 3 2.999 0.572 94.1 59 191

Vol. Aver. 4 0.000 0.053 1908.0 16 156
Homog. 4 4.001 0.585 232.2 102 367

Vol. Aver. 5 2.632 0.613 12299.3 103 1001
Homog. 5 4.999 0.716 125.5 64 229

Vol. Aver. 6 5.999 0.830 2788.1 48 247
Homog. 6 5.993 0.777 554.2 107 1001

Vol. Aver. 7 6.990 0.893 10507.2 122 1001
Homog. 7 6.999 0.873 7.6 2 15

Vol. Aver. 8 8.000 0.926 2331.7 45 194
Homog. 8 7.904 0.866 695.5 95 1001

Vol. Aver. 9 8.996 0.964 10668.1 88 1001
Homog. 9 8.999 0.918 102.6 46 189

Vol. Aver. 10 10.000 1.000 300.2 11 21
Homog. 10 9.999 0.965 42.3 8 17

188



Visual Results Comparing Homogenization and Volume Averaging For Optimization of E22

in a Material With Non-Simple Periodicity
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of E22

in a Material With Non-Simple Periodicity
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of E33

in a Material With Non-Simple Periodicity
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of E33

in a Material With Non-Simple Periodicity
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of G23

in a Material With Non-Simple Periodicity
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Visual Results Comparing Homogenization and Volume Averaging For Optimization of G23

in a Material With Non-Simple Periodicity
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