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Abstract

Network traffic analysis is widely used to infer information from Internet traffic. This is

possible even if the traffic is encrypted. Previous work uses traffic characteristics, such as port

numbers, packet sizes, and frequency, without looking for more subtle patterns in the network

traffic. In this work, we use stochastic grammars, hidden Markov models (HMMs) and probabilistic

context-free grammars (PCFGs), as pattern recognition tools for traffic analysis.

HMMs are widely used for pattern recognition and detection. We use a HMM inference

approach. With inferred HMMs, we use confidence intervals (CI) to detect if a data sequence

matches the HMM. To compare HMMs, we define a normalized Markov metric. A statistical test

is used to determine model equivalence. Our metric systematically removes the least likely events

from both HMMs until the remaining models are statistically equivalent. This defines the distance

between models. We extend the use of HMMs to PCFGs, which have more expressive power. We

estimate PCFG production probabilities from data. A statistical test is used for detection.

We present three applications of HMM and PCFG detection to network traffic analysis.

First, we infer the presence of protocol tunneling through Tor (the onion router) anonymization

network. The Markov metric quantifies the similarity of network traffic HMMs in Tor to identify

the protocol. It also measures communication noise in Tor network.

We use HMMs to detect centralized botnet traffic. We infer HMMs from botnet traffic data

and detect botnet infections. Experimental results show that HMMs can accurately detect Zeus

botnet traffic.

To hide their locations better, newer botnets have P2P control structures. Hierarchical P2P

botnets contain recursive and hierarchical patterns. We use PCFGs to detect P2P botnet traffic.

Experimentation on real-world traffic data shows that PCFGs can accurately differentiate between

P2P botnet traffic and normal Internet traffic.
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Chapter 1

Introduction

With the development of networked and digital communications, more and more devices are

connected to the Internet, including computers, tablets and smartphones. As network communica-

tions become ubiquitous, increasingly confidential, sensitive and important information is traveling

through the Internet. Access to this information is valuable; particularly unauthorized access by

attackers. Analysis of network traffic data is important for both attackers and defenders.

In this work, we use pattern recognition and detection tools to extract useful information

from traffic data, especially when the content of the data is not available. We focus on two stochastic

grammars as our tools: hidden Markov models (HMMs), which are probabilistic regular grammars,

and probabilistic context-free grammars (PCFGs). Using approaches we developed for these two

stochastic grammars, we are able to infer the existence of protocols tunneled through the network,

measure noise in the traffic patterns and detect traffic generated by specific network processes. This

allows us to detect which protocols are used, even if the tunneled channel has been encrypted. This

approach does not require computationally expensive cryptanalysis.

1.1 Network Traffic Analysis

Network traffic is usually encrypted to ensure communications security. Previous detec-

tion approaches use reverse engineering and decryption to reveal the traffic contents [26] [86]. This

requires intensive manual mathematical analysis or brute-force attacks on the traffic data. Consid-

ering that simple web browsing may generate thousands of network packets, and breaking advanced

1



encryption algorithms requires hundreds of computers and weeks of time, cryptanalysis is practical

only for a few nation states for limited data volumes.

Network traffic analysis has become an active research topic. Song et al. infer user passwords

from inter-keystroke timings sent through SSH [83]. The approach in [98] differentiates between

camouflaging worm1 traffic and normal traffic using a spectrum-based scheme on the traffic data.

In [88], flow characteristics, such as bandwidth, packet timing, and burst duration, were examined

to find evidence of botnet command and control2 activity. Traffic timing analysis can reconstruct

end-to-end VOIP communication systems [53]. A passive DNS traffic analysis system for detecting

and tracking malicious flux networks is in [67].

In this work, we perform traffic timing analysis. Timing data can be easily obtained from

traffic data, no matter whether the traffic is encrypted or not. Inter-packet timings provide infor-

mation about the temporal properties of unknown underlying processes [59]. For example, some

network processes (e.g. email and cloud services) need to contact outside sources repeatedly, and

their timing patterns may have periodic components, while other processes (e.g. web browsing and

file transferring) may have low-latency communications. Inter-packet delays filter out constant net-

work latencies, and they are preserved across router hops during network transmissions [92]. Link

padding, which pads inter-packet timings into constant delays, is suggested to evade traffic timing

analysis. However, it will affect the performance of network processes and the work in [35, 36]

shows that it is still vulnerable to statistical analysis. Since automated network processes all have

timing profiles and encryption can not remove timing signatures from malicious processes, timing

analysis has a variety of applications, such as detecting botnet traffic [44], revealing VOIP systems

[20, 53], learning user’s password from SSH traffic timings [83], detecting languages typed through

SSH [19, 18], and breaking Tor anonymity [28].

Previous work [20, 44, 59, 92] used correlation of timing data for analysis and detection.

Unlike these works, we consider the communication patterns in inter-packet timings caused by

underlying network processes. We apply widely used pattern recognition tools, such as hidden

Markov models [70] and probabilistic context-free grammars [13, 64], for detecting patterns in traffic

timing data. In performing this work, a number of innovations of HMMs and PCFGs were needed.
1The camouflaging worm can intelligently manipulate its scan traffic over time. Therefore, it camouflages propa-

gation from worm detection systems based on analyzing the traffic generated by worms [98].
2A botnet is a network of comprised computers, which are controlled by command and control servers for malicious

purposes. Later sections will talk about botnets in details.

2



1.2 Stochastic Grammars

In recent years, syntactic pattern recognition methods are widely used for pattern classifica-

tion and detection. For example, hidden Markov models (HMMs) have success in gesture [61], speech

[70] and language [69, 84] recognition. In these applications, model parameters are inferred from

training data sets. The inferred models are then applied to new observation streams to determine if

the observed data is a representation of the constructed model [70, 22].

Traditionally, the Baum-Welch algorithm is used to infer the structure and parameters of

the HMM, given an initial model and a sequence of observations [70]. As a result, this algorithm

requires the a priori structural knowledge of the Markov process that produced the outputs. In

[78, 77, 80], an approach is developed that derives the HMM state structure and transition matrix

from available data without knowing the a priori structure of the HMM. However, this algorithm

needs a parameter. In our work, we use the extension in [76] to derive minimum entropy HMMs

with no a priori information. Using confidence intervals (CIs) of HMMs [22], we can detect whether

or not a sequence of data matches the model. Detailed description of this approach is in Chapter 3.

When several models are inferred from similar data sets, a metric is useful for determining

if one model is simply a different representation of the same process, or a representation of a very

different system. Therefore, we derived a metric space for comparing HMMs based on the system

statistics, instead of the model structure [57]. We use a statistical test to determine if two models

are equivalent within a given level of significance. In addition, we use data sampling insights to

systematically remove least likely events from both HMMs until the remaining models are statistically

equivalent. The largest probability of all removed events defines the distance between two models.

Chapter 3 provides an in-depth description of this metric space.

Despite these successes, HMMs may have difficulty detecting more complex patterns in

applications, such as language understanding, translation, and recursive pattern detection [17, 37,

56]. This is because HMMs are equivalent to probabilistic regular grammars, which the simplest class

in Chomsky Hierarchy of grammars [64]. It can only represent patterns in regular expressions, and

can not detect recursive patterns [64]. On the other hand, the next more expressive computation

grammar, context-free grammars (CFGs), have been developed to recognize and detect recursive

patterns. More detailed discussion about Chomsky Hierarchy and the extension of HMMs to CFGs

is provided in Chapter 2.

3



Probabilistic (stochastic) CFGs (PCFGs) are CFGs with each production rule augmented

by a probability3. PCFGs are usually used for real world pattern recognition problems, because they

can accommodate noise and pattern distortion, incorporate not only syntactic but also statistical

information in data, and distinguish more plausible results from less plausible ones [58, 72]. PCFGs

have been successfully applied to natural language processing [37, 58, 72], pattern analysis in RNA

and protein sequences [31, 89, 90], and network data modeling [39].

Therefore, we use PCFGs to detect recursive patterns that can not be detected by HMMs.

We estimate PCFG production probabilities using maximum-likelihood (ML) method from data

set [25, 24, 27]. Traditionally, the inside-outside algorithm is used for data classification purposes

[51, 52]. It finds the most likely PCFG that generates the data set, from several candidate PCFGs.

Therefore, it is only useful for choosing between PCFGs. In this work, we propose a simple statistical

method to solve detection problems: to determine whether or not a data set matches with a given

PCFG, or to determine if two data set are generated from the same source. This approach is

explained in detail in Chapter 3.

1.3 Applications

With these tools, we use traffic timing data to analyze three applications. The first appli-

cation is to learn data structures for detecting protocols tunneled through Tor (the onion router)

network. Tor is a commonly used anonymity tool on the Internet. From inter-packet timings of two

systems which are communicating through Tor based on given protocols, we attempt to infer HMMs.

However, the inferred HMM has a lot of noise events and the underlying system is difficult to discern.

Using a Markov metric that we developed, we can identify the underlying model. Also, the metric

measures the noise in the Tor communication. This application is interesting, since it considers

models extracted from a system that is intentionally trying to obfuscate its internal workings.

The second application is centralized botnet traffic detection using HMMs. A centralized

botnet is a collection of computers compromised by malware, and controlled by a centralized com-

mand and control (C&C) server for malicious purposes [44]. We focus on Zeus botnets (Zbots), one

of the largest centralized botnets. Inter-packet timings of the botnet traffic relate to botnet activity

characteristics (e.g. command and control processing time, idling time and contacting period), and

3PCFGs extend CFGs in the same way as HMMs extend regular grammars.
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communication patterns among bots are similar. Therefore we infer HMMs from botnet traffic tim-

ing data. The inferred HMM is then used to detect whether or not a new observed traffic is from a

botnet. Experiment results show that we can accurately detect botnet traffic.

Since centralized botnets (e.g. Zbot), can be detected using HMMs [54, 55]. And in cen-

tralized botnets, a bot communicates with the C&C sever only. Therefore, once one bot is detected,

the centralized C&C server can be found and intercepted. And if the sever is taken down, the whole

botnet is disabled. To make botnets more resilient, hierarchical botnets use peer-to-peer (P2P) tech-

niques [5, 56, 66]. In P2P botnets, there is no centralized server and bots communicate with each

other. Therefore their communications have recursive patterns. HMMs failed to detect hierarchical

botnet traffic, because they can not represent recursive patterns [56, 64]. To solve this problem,

we use PCFGs for P2P botnet traffic detection. With our PCFG approach, we detect the traffic

from Storm botnet, one of the early P2P botnets [43]. The result shows that we can adequately

distinguish the Storm botnet traffic from the normal traffic.

Our detection approach works with timing profiles, which exist in all automated network

processes. Remove timing profiles is difficult and would have significant performance implications.

Therefore it can be easily extended to detect traffic data from other network processes as well.

1.4 Organization

The remainder of this thesis is organized as follows:

• In Chapter 2, we introduce relevant background of this work, including probabilities, statistics,

definitions of hidden Markov models and probabilistic context-free grammars. We also provide

some background on Tor (the onion router) network and botnets.

• In Chapter 3, we introduce our pattern recognition approaches using stochastic grammars.

We explain how to infer HMMs from data sequences and how to detect new observation

sequence using confidence intervals (CIs) of HMMs. Markov metric is defined in this chapter.

Some examples are given to show its performance. We also compare our metric with another

commonly used distance measure for HMMs. Detection approach for PCFGs is then described,

with illustrative examples and comparison with existing algorithms.

• In Chapter 4, we describe three applications using these tools. The first is the analysis on
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Tor network data with Markov metric. We then use HMMs to detect real-world Zeus botnet

traffic. With PCFGs, we can differentiate P2P botnet traffic from normal traffic. We give

details about the experiment set-up and analysis of the results.

• We conclude this thesis with a summary of the achievements in Chapter 5. We also suggest

extensions for future work.
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Chapter 2

Background

This chapter provides background on our detection approaches. From observations, we

infer production rule probabilities. Our approaches use standard statistical tests. So we provide an

introduction to probability and statistics. We then define the stochastic grammars we use: hidden

Markov models and probabilistic context-free grammars. Background on the Tor anonymity tool

and botnets is also provided.

2.1 Probability and Statistics

This section provides some basic concepts from probability and statistics. Not all topics

will be covered and the reader is encouraged to refer to probability and statistics textbooks, such as

[72], [91] , [11] and [50], for a more detailed and thorough discussion on these concepts.

2.1.1 Probability

The formal definition of probability is as follows [72]:

Definition 1. There is a universal set of possible outcomes Ω and A ∈ Ω is called a event. P (A) is

the probability of the event A, with following axioms:

• 0 ≤ P (A) ≤ 1;

• P (Ω) = 1;

• If A1, A2, ... are disjoint events (Ai ∩Aj = ∅ for i 6= j), then P (
⋃∞
i=1Ai) =

∑∞
i=1 P (A).
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One might consider the probability of event A is the chance that A happens among all

possible outcomes Ω. In practice, we usually estimate the probability of A using Equation 2.1 [72].

P̂ (A) =
Number of times A occurs

Total number of all outcomes
(2.1)

If we use n to represent the total number of outcomes, then P (A) = limn→∞ P̂ (A).

A random variable X is a real number associated with a random experiment [72]. A discrete

random variable can take only a finite number (or a countably infinite number) of possible values

[72]. It is described by a probability distribution function p(x) [72], where:

1. P (X = x) = p(x) ≥ 0

2.
∑
x P (X = x) = 1

A continuous random variable can take any value on some interval [a, b], [72]. A probability

density function f(x) is used to describe a continuous random variable [72]:

1. f(x) ≥ 0

2. P [a ≤ X ≤ b] =
∫ b
a
f(x)dx

3.
∫ +∞
−∞ f(x)dx = 1

The Expectation and the Variance are two commonly used features of random variables.

The expectation E[X] is the expected value of a random variable X:

E[X] =
∑
x

xp(x) (2.2)

E[X] =
∫ +∞

−∞
xf(x)dx (2.3)

where Equation 2.2 is for discrete random variables and Equation 2.3 is for continuous random

variables [72]. The expectation is also called as mean µ.

The variance V ar(X) measures the variability of the random variable X [72]:

V ar(X) = σ2 = E[(X − E[X])2] = E[X2]− E[X]2 (2.4)
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The standard deviation is known as σ =
√
V ar(X) [72].

We introduce two continuous probability density distributions, the normal distribution and

χ2 distribution, which are used later in our detection approaches. The normal distribution, denoted

as N(µ, σ2), has the following probability density function [91]:

f(x) =
1√

2πσ2
e−

1
2 ( x−µσ )2 (2.5)

Its expectation is µ and variance is σ2. It has a symmetric bell-shaped curve, as shown in Figure

2.1. The standard normal distribution is a normal distribution with µ = 0 and σ2 = 1 [91].

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Figure 2.1: A normal distribution N(0, 1)

The cumulative distribution function for the normal distribution is [91]:

P [X ≤ b] =
1√

2πσ2

∫ b

−∞
e−

1
2 ( x−µσ )2dx (2.6)

It is the area under the curve for X ≤ b.

If Z1, Z2..., Zk are independent, standard normal random variables, the sum of their squares

X =
∑
Z2
i follows a χ2 distribution with k degrees of freedom (DOF) [91]. It is a right-skewed curve

with X ≥ 0, as shown in Figure 2.2.

A standard statistical table or calculation software (e.g. R, MATLAB) can be used to find

the cumulative distribution function for the χ2 distribution.
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Figure 2.2: A χ2 distribution with DOF=4

2.1.2 Statistics

In practice, since the whole population of the random variable is usually not available,

statistics are calculated from a subset selected from the whole population (sample) to estimate

the population parameters (mean, variance, etc.) [11]. Sample mean can be used to estimate the

population mean, using [11]:

X̄ =
1
n

n∑
i=1

Xi (2.7)

And to estimate the population variance, the sample variance is calculated using [11]:

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 (2.8)

These estimations are point estimates, which are usually not exactly equal to the population

parameters. Therefore, in some cases interval estimates with a level of confidence are preferable

[91]. A confidence interval (CI) is an interval estimate of a population parameter and indicates the

confidence of the estimate [91, 11].

For a population parameter θ, if P (θ̂L < θ < θ̂R) = 1 − α, interval (θ̂L, θ̂R) is then called

a (1 − α)100% confidence interval for θ [91]. It means that we are (1 − α)100% confident that the

true value of θ is in that interval [91]. The general form of a confidence interval (for symmetric

distributions) is:

Point estimate θ̂ ± Critical value× Estimated standard deviation (2.9)
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where the critical value is the percentile of the standardized value with (1−α)100% confidence [11].

Figure 2.3 shows the percentiles for the standard normal distribution.

Figure 2.3: Percentiles (±zα/2) for the standard normal distribution

Statistical hypothesis tests are usually used to make decisions based on statistics calculated

from data samples [11]. The null hypothesis H0 is the hypothesis of interest. A predefined significance

level α is required for the test. From the sample data, we calculate the appropriate test statistic.

Comparing this statistic with the critical value from standardized distribution with the significance

level α, we are able to make decisions to accept or reject the null hypothesis H0 [11]. Figure 2.4

shows an example of the χ2 test with the accept region and the critical value χ2
α,4 in a χ2 distribution

with 4 DOF.

Figure 2.4: The critical value for a χ2 test

A Type I error is an error that we reject null hypothesis H0 when H0 is true [91]. The

probability of a Type I error is the significance level of the test α, which means the test will produce

an α × 100% Type I error rate even when H0 is true [91]. We can see this in Figure 2.4 as well.
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Even if the calculated sample statistic follows a χ2 distribution, it still goes beyond the critical value

χ2
α,4 for α × 100% of the time (filled area under the curve). Therefore α should be set to a Type

I error rate that the test designer can tolerate [91]. A Type II error is an error that we accept the

null hypothesis H0 when H0 is false [91]. The probability of a Type II error is β. Table 2.1 shows

possible situations in statistical hypothesis tests [91].

Table 2.1: Statistical Hypothesis Testing Results
H0 is true H0 is false

Accept H0 Correct decision (1− α) Type II error (β)
Reject H0 Type I error (α) Correct decision (1− β)

2.1.3 ROC Curves

We develop our detection approaches for stochastic grammars based on statistical tests.

With some testing data, we can check the performance of our approaches. Table 2.2 shows all

possible results from detections, and it is also called a confusion matrix [23].

Table 2.2: Confusion Matrix
XXXXXXXXXXDetection

Actual
Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

To evaluate the performance of a detection approach, several measures are derived from the

confusion matrix. The true positive rate (TPR), calculated by TPR = TP/(TP + FN), evaluates

the ability of the detection approach to find the correct positive results among all positive data

[23]. The false positive rate (FPR), calculated by FPR = FP/(FP + TN), shows the ability of the

detection approach to distinguish the positive data from the negative data [23]. A good detection

approach generally means high TPR and low FPR. However, pursuing one goal usually sacrifices

the other. A receiver operating characteristic (ROC) curve is then used to evaluate the overall

performance of a detection approach while tuning some parameters in the detection [23]. It plots

the true positive rates vs. the false positive rates. An example of ROC curve is shown in Figure 2.5.

The optimal point (0,1) in the ROC plot represents 0% false positive rate and 100% true

positive rate, which is the ideal detection rate for all detection approaches [23]. In practice, the

detection ROC curve usually can not achieve this optimal point, and is similar to the curve in
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Figure 2.5: An example ROC curve

Figure 2.5. To considers the trade-off between TPR and FPR, we use the closest (in the Euclidean

metric) point to the optimal point (0,1) in the curve [22]. The corresponding TPR and FPR are the

best detection rates of the approach [22].

2.2 Hidden Markov Models

A Markov model is a tuple G = (V,E, P ) where V is a set of vertices of a model, E is a set

of directed edges between the vertices, and P is a probability matrix such that:

∑
vj∈V

p(vi, vj) = 1, ∀vi ∈ V (2.10)

A Markov model satisfies the Markov property, which means that the next state of the process

depends only on the current state. It is also known as “memoryless”.

A hidden Markov model (HMM) is a Markov model with output labels and assumes the

states are hidden [70]. A standard HMM has two sets of random processes, one governing state

transition and the other governing symbol outputs. In this paper, we use another representation

which has only a single random process: the state transitions. The output symbols are associated

with transitions. This representation is equivalent to the standard model [15]. It is possible to

create models satisfying our constraints from the classical representations [70, 15]. We use this

representation because it is simple yet does not lose any expressive power.
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This representation uses a tuple G = 〈A, V, E, P 〉, where A is a finite alphabet, V is a finite

set of nodes or states, E ⊆ V × A × V is a transition relation, and P : E → [0, 1] is a probability

function such that ∑
a∈A,vj∈V

p(vi, a, vj) = 1, ∀vi ∈ V (2.11)

The vertices of G are referred to as states and edges as transitions, where V is the state space of size

m. The m ×m transition probability matrix P can be constructed for G. Each element pi,j ∈ P

expresses the probability the process transitions to state vj once it is in state vi. A path through

G with label a = a1a2 · · · an is an ordered set of vertices (v1, v2, . . . , vn+1) such that for each pair

(vi, vj):

1. p(vi, vj) > 0; and

2. E(vi, vj) = ai.

We require E to be a deterministic relation such that for E(vi, vj) = a then E(vi, vk) 6= a for all

vi, vj , vk ∈ V . The probability that a certain symbol a will occur next is the probability pa of moving

to the next state using a transition associated with the symbol a. If no transition exists between

state vi and state vj , p(vi, vj) = 0 and E(vi, vj) is undefined. Figure 2.6 shows an example HMM.

Figure 2.6: An example HMM

We assume that transition probabilities are constant, i.e. each element p(vi, a, vj) does not

change over time. The asymptotic state probabilities (steady state probabilities) is the stationary

distribution of the HMM. For ergodic Markov processes, which do not have absorbing states (i.e.

has no outgoing transitions), the asymptotic state probabilities ~S = (s1, s2, .., sm)′ can be calculated
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from:  P ~S = ~S,∑m
i si = 1

(2.12)

The first equation is the definition of the stationary property. The second equation is the constraint of

the sum of all probabilities. Solving the equations for ~S, we can get the asymptotic state probabilities

of the HMM.

A series of successive symbols representing a path of transitions is called an observed out-

put sequence. An output sequence of length l can be generated from a HMM with the following

procedure:

i. Randomly choose an initial state vi = v0 based on asymptotic state probabilities,

ii. Using the probabilities of the outgoing transitions, select a transition pi,j to move to state vj

from state vi

iii. Record the label ai = E(vi, vj) associated with chosen transition pi,j

iv. Repeat steps ii and iii until l labels have been recorded

v. Record the sequence A = aiai+1ai+2 · · · ai+l−1

We note that if the model contains at least one absorbing state, it is possible for the model to be

unable to generate a sequence of length l. In this paper we restrict our discussion to ergodic Markov

processes, which always have non-trivial asymptotic state probabilities.

2.3 Probabilistic Context-Free Grammars

Although HMMs are widely used for pattern recognition and detection, they are the simplest

class (regular grammar) in the Chomsky Hierarchy of formal grammars [64]. In this section, we first

discuss grammars and the Chomsky Hierarchy.

A grammar is a tuple G = (N,Σ, R, S) where [13]:

1. N is a set of nonterminal symbols,

2. Σ is a set of terminal symbols,
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3. R is a set of production rules in the form of α → β, where α ∈ (N ∪ Σ)∗N(N ∪ Σ)∗ and

β ∈ (N ∪ Σ)∗ 1,

4. S is the start symbol, which is in N .

In this thesis, we use standard notation for grammars. As a convention, we use A,B, . . . to

denote nonterminal symbols, a, b, . . . to denote terminal symbols and α, β, . . . to denote strings in

(N ∪ Σ)∗.

The Chomsky Hierarchy, shown in Figure 2.7, defines four levels of grammars based on the

production rules used [64]. The simplest is the regular grammar, where production rules have the

format: A → a or A → aB, where A,B ∈ N and a ∈ Σ [64]. For a HMM, a state is equivalent

to a nonterminal, transition labels are terminals and transitions between states are production

rules, which always have format A → aB. A HMM is a probabilistic regular grammar because its

production rules (transitions) are associated with probabilities.

Figure 2.7: Chomsky Hierarchy

HMM can only represent patterns in regular expressions and can not detect recursive pat-

terns, such as anbn (This means a sequence with equal number (n) of a’s and b’s, i.e. aabb, aaabbb)

[13]. We need context-free grammars (CFGs) to recognize or detect recursive patterns. A CFG is

a grammar with production rules in the form of A → α, where A ∈ N and α ∈ (N ∪ Σ)∗ [64].

The right-hand side of a CFG production can be any combination of terminals and nonterminals.

Production rules of regular grammars also satisfy CFGs constraints, but productions of CFGs may

not satisfy regular grammar constraints. Therefore the set of regular grammars is a proper subset

of CFGs. CFGs represent a larger class of patterns than HMMs, including recursive patterns like

anbn.
1(N ∪ Σ)∗ means 0 or more combinations of terminals and/or nonterminals
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From the start symbol, a CFG can generate a tree using production rules until all the leaves

in the tree are terminals. Based on depth-first search, a tree corresponds to a sentence, which is a

sequence of terminals. T (G) is used to represent the set of trees that can be generated by G, and

L(G) is used to represent the set of sentences that can be generated by G. Figure 2.8 shows a simple

example of a CFG, a tree generated by the CFG and the corresponding sentence of the tree.

(a) CFG Example (b) Example Tree (c) Sentence

Figure 2.8: Example of CFG tree and sentence

A probabilistic context-free grammar (PCFG) is a CFG where each production rule is aug-

mented by a probability, which can be denoted as p(A → α). PCFGs extend CFGs in the same

way as HMMs extend regular grammars. A PCFG is proper if
∑
α p(A → α) = 1 is true for every

nonterminal A [27]. A PCFG is called consistent if no probability mass is lost in generating infinite

size trees or sentences, i.e. p(T (G)) = 1 [27]. The branching rate is used to describe the geometric

growth rate of the tree or sentence derivations [24, 60]. A branching rate that is larger than 1

may result in a tree or sentence with infinite size, making the PCFG inconsistent [24], which means

that this PCFG has non-zero probability of generating trees with infinite sizes. Since we limit our

approach to finite trees and finite sentences, we only consider PCFGs with branching rate less than

1, that are consistent.

PCFGs map language memberships to probability distributions. Noise and pattern distor-

tion can be modeled using low probabilities. Therefore, we concentrate more on detecting PCFG

production probabilities than determining language membership [51]. We assume production rules

are known and data sets are languages of the grammar in this paper.
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2.4 The Onion Router (Tor)

Tor [6] is one of the most popular anonymization systems in use today. Tor computers run

three types of services: relay, directory server, or client. Each computer can run one or more services.

Relays transfer data from clients to other relays, between two relays, or retrieve external resources

for a client. A list of available relays, commonly known as consensus, is published by pre-defined

directory servers on a TCP port where it can be downloaded by clients. Each data packet sent

through Tor is iteratively encrypted using the key of each successive relay of the circuit. The result

is similar in nature to an onion. As each relay in the circuit receives the onion packet, it will decrypt

and peel away a layer, forwarding on what remains. Figure 2.9 shows the packet transmission process

in Tor network. In this example, Alice sends packets to Bob through 3 Tor nodes. No intermediate

node knows both Alice and Bob, and anyone eavesdropping on the communications does not know

both ends either. In this way, Tor provides anonymity for both Alice and Bob. For more details of

the process, see [30].

Figure 2.9: Tor communications

Tor is designed to obfuscate communications patterns, however, since Tor is a low-latency

system that does not disrupt the timing of the packets as they propagate the network, the traffic

patterns, especially timings, are similar among different relay nodes, except for some jitter (noise).

Even though different relays use different encryption keys, their timing information is not changed

by encryption. Therefore we can attempt to identify the communication protocol tunneled through

Tor from observed inter-packet delays.
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2.5 Botnet

A botnet is a collection of computers compromised by malware, referred to as bots, and con-

trolled by a command and control (C&C) server for sending spam messages, performing distributed

denial of service attacks, stealing login credentials, or stealing personal information. Botnets are a

major threat to Internet security [96] [93].

2.5.1 Centralized Botnet

Botnet communication usually uses a star topology, where a single centralized C&C server

remotely controls all bots, as shown in Figure 2.10 [66]. After a computer is infected, it will auto-

matically announce itself to the C&C server and get instructions from it. The C&C channel is the

critical part of a centralized botnet, since it is the way a botherder (the hacker who controls the

botnet) directs the botnet. Furthermore, C&C communications among bots follow a well-defined

protocol. Detection of C&C communications is important for identifying and stopping the botnet.

Figure 2.10: Centralized botnet [66]

Many botnets in the wild use IRC or HTTP for C&C communication [44]. When control is

managed via IRC, the C&C server pushes commands to bots, so the C&C has instant control of the

bots. While for HTTP, the C&C update commands wait for bots to fetch them. Bots repeatedly

contact the C&C server to get commands, so the C&C has delayed control of the botnet. In both

cases, command and control of the botnet is centralized. Communications between bots and C&C

servers are usually encrypted, making it more resilient to analysis and detection.

Botnet traffic data has identifiable patterns in timings. Bots repeatedly communicate with

the C&C server to update their configurations or get new commands. Inter-packet timings relate

to command execution time, idling time, contact period and other botnet activities, and therefore
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are a consequence of botnet behaviors. Inter-packet timing data can be obtained easily by network

sniffing without reverse engineering malware binaries or encrypted packets, and different bots of

the same botnet will have similar communication patterns. For example, bots send similar activity

messages or execute the same command at a similar time intervals. Therefore, we deduce patterns

in inter-packet delays with stochastic grammars, and use them to detect similar botnet traffic.

2.5.2 P2P Botnet

For centralized botnets, if a bot agent is found and intercepted, the central C&C server can

be identified. Once the centralized C&C server is taken down, the whole botnet is disabled. To

avoid this, P2P technologies have been used to create hierarchical botnets [5], as shown in Figure

2.11 [66]. In a hierarchical botnet, bot agents send C&C instructions from their parent node to

children nodes that they infected. So most bots are not aware of the C&C server of the botnet and

detected bots are unlikely to reveal the C&C server [66].

Figure 2.11: P2P hierarchical botnet [66]

In a P2P botnet, since every node includes timing patterns of its neighbor (parent/children)

bots, different bots may have quite different communication patterns, because some bots may have

few neighbor bots while others may have a lot of neighbor bots. The communications also have

recursive patterns because of the hierarchical structure of the P2P botnet. However, their communi-

cations may have similar or equivalent probability distributions for malicious actions. For example,

if the botnet is performing DDoS attacks, a large portion of the bot’s traffic will be fast and repeated

packets, and these characteristics among bots are usually similar no matter how many neighbors

a bot may have. Based on these observations, we develop detection approaches with more expres-

sive power grammars (PCFGs) to detect P2P hierarchical botnet traffic patterns, because they can

represent hierarchical and recursive patterns.
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2.6 Summary

In this chapter, we gave essential background information for this thesis, including probabil-

ity definitions, statistical distributions (the normal distribution and χ2 distribution), basics about

statistical tests that are used for our detection approaches, and detection performance analysis using

ROC curves. We also introduced two stochastic grammars: hidden Markov models and probabilistic

context-free grammars. Finally, a brief discussion of the Tor network and botnets, which are used

in our applications, is provided. We also discuss motivations for these applications of stochastic

grammars, based on the underlying characteristics of these network processes.
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Chapter 3

Pattern Detection

In this chapter, we describe our pattern detection approaches using hidden Markov models

(HMMs) and probabilistic context-free grammars (PCFGs). Using previous work, we infer HMMs

from a sequence of data observations without a priori knowledge of the HMM structure and param-

eters. We then extend the confidence interval (CI) approach in [22] to detect whether or not a new

sequence matches the HMM. Using ROC (Receiver Operating Characteristic) curves, we can find

the optimal detection rate. Similar data sets can create models that represent the same system with

minor differences in probability or structure. It may, however, be difficult to tell if model differences

are minor or significant. To compare HMMs, we propose a normalized Markov metric. Instead

of concentrating on the structure of the HMMs, our metric is based on the system statistics that

the HMM represents. For PCFGs, we propose a simple statistical approach for pattern detection.

After estimating production probabilities from data sets, we design a χ2 test as a criteria for pattern

detection with a level of statistical significance. This chapter describes these approaches in detail

and some illustrative examples are used to show the performance of them.

3.1 Detection with HMMs

This section introduces our HMM inference and detection method. We infer HMMs from

data without a priori information [76]. A model confidence test is used to ensure enough data is used

[97]. With inferred HMMs, we extend the CI approach in [22] to detect new observation sequences.

The detection results are shown in ROC curves, which consider trade-off between true positive and
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false positive rates.

3.1.1 HMM Inference

HMM inference discovers the HMM structure and state transition probabilities from a se-

quence of output observations. Traditionally, the Baum-Welch algorithm is used to infer the state

transition matrix of a Markov chain and symbol output probabilities associated to the states of

the chain, given an initial model and a sequence of symbols (see [70]). As a result, this algorithm

requires the a priori structural knowledge of the Markov process that produced the outputs.

In [78, 77, 80, 79], an approach is developed that derives the HMM state structure and

transition matrix from available data without knowing the a priori structure of the HMM. Given a

sequence of symbolic data, it produces several sets of causal states which contain subsequences of

the data, and a transition structure of a HMM. This approach needs a parameter L, which is large

enough that the history sequence with length L is sufficient to indicate the state where the process

is in. With this assumption, the history sequence with length less than or equal to L are grouped

into different states, by comparing the conditional probability of the next symbol. This detailed

approach is provided in Appendix C.

In our work, we use an extension [76] to determine the parameter L and therefore derive

HMMs with no a priori information. We increase L, and infer a HMM for each L. A symbol-to-

state mapping is built to check if the HMM structure stabilizes. If the inferred HMM stabilizes, we

declare the model correct [76]. This occurs because with larger L, no additional statistical relevant

information will be gained by the original approach. This approach is described in Appendix C.

If an insufficient amount of observation data is used to generate the HMM, the model will

not be representative of the actual underlying process. We use a model confidence test to determine

if the observation data and constructed model fully express the underlying process with a given level

of statistical significance [97]. This approach calculates an lower bound on the number of samples

required. If the number of input samples is less than the bound, more data is required. New models

should be inferred with more data and still need to be checked for the confidence. This approach

allows us to remove the effect of noise data in the HMM inference. The HMM inference process is

shown in Figure 3.1.

We use a simple example to illustrate the process of HMM inference. This example data

set contains 2,000 symbols (symbolized traffic timing data captured in a local Zeus botnet). We
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Figure 3.1: HMM Inference Process

inferred HMMs from it and checked the model confidence. In Figure 3.2, we show inferred models

with different L and results from the model confidence test. After L = 3, the inferred HMM

stabilizes, further, the used data size is larger than the required size. Thus we get the statistical

significant HMM. This is shown in Figure 3.2.

(a) L = 2, required
samples:286

(b) L = 3, required
samples:372

(c) L = 4, required
samples:372

(d) L = 5, required
samples:372

Figure 3.2: Inferred HMMs from example Data

3.1.2 HMM Detection

Once the HMM is inferred from symbolized data and passes the model confidence test, it

can be used to detect botnet traffic. The traditional Viterbi Algorithm [70] finds the HMM that was

most likely to generate the data sequence by comparing probabilities generated by the HMMs. For

data streams, it is unclear what sample size to use with the Viterbi algorithm. Also as data volume

increases, the probability produced by the Viterbi algorithm decreases exponentially, and may suffer

floating point underflow [22]. To remedy this, the confidence intervals (CIs) approach was developed

[22]. With this approach, the certainty of detection increases with the number of samples and the
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floating point underflow issues of the Viterbi Algorithm eliminated [22]. We use the CI approach to

determine whether or not the observed network traffic matches the botnet HMM.

Given a sequence of symbolized traffic data and a HMM, the CI method in [22] traces the

data through the HMM and estimates the transition probabilities and confidence intervals. This

process maps the observation data into the HMM structure. It then determines the proportion

of original transition probabilities that fall into their respective estimated CIs. If this percentage

is greater than a threshold value, it accepts that the traffic data adequately matches the HMM.

In this paper, we take an alternative approach. Instead of estimating transition probabilities and

corresponding CIs, we calculate the state probabilities, which are the proportion of time the system

stays in a specific state, and their corresponding CIs. This estimation approach is described in

Algorithm 3.1.1.

Algorithm Description 3.1.1 – Estimate State Probabilities and CIs
Input: HMM G; A sequence of observations A with length N .

1. For every state vk in G, use vk as start state to estimate state probabilities:

(a) Initialize counters ci for each state vi in model G to zero.

(b) Starting at vk and follow the path defined by transitions (vi, vj) associated with each symbol
ai ∈ A in turn. Since the HMMs we used are deterministic, this path is unique.

i. If there is no transition associated with the corresponding symbol in A , stop considering
the path. It could not have been generated by G starting at state vk;

ii. Otherwise add one to counter ci for state vi;

iii. Estimate the probability of state vi as ŝi = ci
N

;

2. If it was found that no start state could have generated sequence A , then exit with no matching.

3. For state vk where all symbols in A are accepted by G using vk as a start state, calculate CIs for
estimated state probabilities using:

[si − Zα/2
√
si(1− si)/N, si + Zα/2

√
si(1− si)/N ] (3.1)

where si is the asymptotic (steady) state probability of state vi and Zα/2 is from the standard normal
or t distribution.

Once all state probabilities and CIs are estimated for the observation sequence, we determine

for each state vi whether or not ŝi is within the confidence interval in Equation 3. If it matches,

we accept the null hypothesis that ŝi = si with a probability of false positives equal to α. For the

whole HMM, we can then get the proportion of states whose estimated state probability ŝi matches

the corresponding confidence intervals. If an observation sequence is generated from the HMM, it

will follow the state transitions of the underlying stochastic process that the HMM represents, and

its state probabilities will converge to the asymptotic state probabilities if the sequence length is
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large enough. Therefore, more states will match their estimated CIs. Generally, a sequence that is

generated by the HMM will have a high proportion of matching probabilities, while a sequence that

is not an occurrence of the HMM will have a low proportion of matching probabilities. Similar to

the detection approach in [22], a threshold value can be set for this proportion of matching states,

to determine whether the observation sequence matches with the HMM.

In [22], receiver operating characteristic (ROC) curves are used to find the optimal threshold

value. By varying the threshold from 0% to 100% (0% threshold means we accept everything and

we will have a high false positive rate. 100% threshold means we reject everything and we will have

a low true positive rate), we progressively increase the criteria for acceptance. Using the ROC curve

drawn from detection statistics with different thresholds, we find the closest point to (0,1), which

represents 0% false positive rate and 100% true positive rate. This considers the trade-off between

true positive and false positive rates. Therefore, the corresponding threshold of that point is the

optimal threshold value.

Figure 3.3 gives an example of detection. After tracing a sequence of data through the

original HMM in Figure 3.3-(a), we get the resulting HMM in Figure 3.3-(b) with estimated transi-

tion, state probabilities, and confidence intervals. Since all steady state probabilities of the original

HMM fall into corresponding estimated CIs, the percentage of matching is 100%. By checking the

detection ROC curve in Figure 3.3-(c), we find the optimal point is (0.07, 0.95), and corresponding

threshold value for the percentage of matching state probabilities is 67%. Since 100% > 67%, we

declare this sequence data matches the original HMM.

(a) (b)
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Figure 3.3: HMM Detection: (a) Original HMM (steady state probabilities are shown next to states),
(b) CI HMM (confidence intervals are under steady state probabilities), (c) Detection ROC curve
(95% CI)
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3.2 Markov Metric

With HMM inference approaches, similar data sets can create models that represent the

same system with minor differences in probability or structure. It may, however, be difficult to tell if

model differences are minor or significant. Therefore, a metric is useful for determining if one model

is simply a different representation of the same process, a minor variation thereof, or a representation

of a very different system. A metric is a mathematical construct that describes the similarity (or

difference) between two models. For example, it is useful to know if two processes are the same

except for rare events (e.g., events occurring once in a century when measuring daily rainfall), since

we would typically consider them functionally equivalent. Eliminating duplicate models can reduce

system complexity by decreasing the number of models to analyze using observation data. Grouping

similar models can increase the number of samples available for model inference, leading to higher

fidelity system representations.

The problem we consider is determining if two models represent the same or related Markov

processes, or alternatively, if the processes they represent are similar. We solve this problem by

deriving a metric space for comparing Markov processes and their associated models. Our approach

works on Markov processes as long as a few assumptions are true: the processes must have a finite

state space, they must be ergodic so that non-trival asymptotic state probabilities exist, and the

transition probabilities must be stationary. These assumptions hold for the majority of hidden

Markov models used in practical applications.

Since a hidden Markov model is a probabilistic graph[70], [40], it is tempting to measure

model similarity by finding correspondences between states [71], like graph matching. This approach

would work if the structures are simple and similar. In practice, however, models inferred from real

data usually contain a large amount of noise, which could result in models with very different

structures. Furthermore, graph matching is often intractable and impractical for graphs with a

large number of vertices and edges [42].

Instead of using graph matching to determine if two HMMs are the same, we use statistical

sampling to measure the similarity of HMMs by leveraging the statistics of the stochastic processes

they represent. The same stochastic process can be represented by HMMs with very different

structures. For example, the models in Figure 3.4 represent the same stochastic process, even

though the two models shown have different structures. No matter which state the system is in,
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symbols A and B are equally likely to be generated. Graph matching algorithms will be unable to

find correspondence between the graph structures and may erroneously find that the two models are

not the same.

(a) (b)

Figure 3.4: Two distinct HMMs represent the same stochastic process.

We propose a novel metric space for Markov processes based on the system statistics, which

are determined by the stochastic process the HMM represents [57]. We use the χ2 test in our

comparisons to determine if models are equivalent within a given level of statistical significance.

Our reliance on statistical testing requires us to introduce the parameter α, which explicitly states

the degree of significance used for comparing distributions [63]. In addition, our metric uses data

sampling insights to systematically remove states and transitions from HMMs to find a structure close

to both models being compared, which expresses the elements of both models that are statistically

equivalent. This structure defines the distance between two models.

We provide the comparison between our approach and Kullback-Leibler divergence [48],

which is another widely used approach for measuring HMM similarity. Our approach is a true

metric, can always return an appropriate distance value, and provides a confidence measure on the

metric value.

3.2.1 HMM Equivalence

As shown in Figure 3.4, HMMs may represent the same underlying process with quite

different state structures and transition probability matrices. We define equivalence (G1 ≡ G2), as

G1 and G2 accepting the same symbol sequences with statistical significance α. To compare models

for statistical equivalence, we extend the confidence interval approach in [22] to use the χ2 test of

equivalence for sets of normal distributions as shown in Algorithm 3.2.1.
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Algorithm Description 3.2.1 – Hidden Markov Model Equivalence
Input: HMM G1, HMM G2, Sequence length N , Significance level α;
Main procedure:

1. Generate a sequence A of length N from G1;

2. For every state vk in G2, use vk as start state v0 to calculate associated transition probability estimates
p̂i,j for each transition in G2:

(a) Initialize counters ci for each state vi in model G2 and counters ci,j for each transition leaving
state vi to zero.

(b) Starting at v0 and follow the path defined by transitions (vi, vj) associated with each symbol
ai ∈ A in turn. Since the HMMs we used are deterministic, this path is unique.

i. If there is no transition associated with the corresponding symbol in A , stop considering
the path. It could not have been generated by G2 starting at state v0;

ii. Otherwise add one to counter ci for state vi and add one to counter ci,j for transition (vi, vj);

iii. Estimate the probability of transition (vi, vj) as p̂i,j =
ci,j
ci

;

3. If it was found that no start state could have generated sequence A , then exit with no equivalence.

4. For every state vk where all symbols in A are accepted by G2 using vk as a start state, construct
G2,k

′ using the estimated transition probabilities from Step 2(b)iii.

5. Compute the χ2 statistic χ2
R for comparing model G2 with models G2,k

′ using the method proposed
in [85], shown in the next part;

6. Determine the χ2
α statistic for the χ2 test with significance level of α and nt − ns degrees of freedom,

where nt is the number of transitions and ns is the number of states in G2. This can be done either
by using standard statistical tables [63] or calculating the value directly [68];

7. If χ2
R <= χ2

α for any G2,k
′, the χ2 test accepts with significance α the hypothesis that the probability

density functions in G2 are consistent with the probability density functions in that G2,k
′. Since G2,k

′

is calculated using a data trace from G1, this means that their statistics are consistent. Exit with
equivalence;

8. If χ2
R > χ2

α for all G2,k
′ then exit with no equivalence;

Statistic χ2
R calculation from [85]:

1. Construct a vector ~p =

p̂1,1 − p1,1

...
p̂i,j − pi,j

...

, where for each state i, we put |vi,j | − 1 probabilities in the

vector (|vi,j | is the number of transitions leaving state i). Therefore, there are a total of nt−ns entries
in vector ~p;

2. Construct the covariance matrix Σp for vector ~p. For each pair of entries

(
p̂i,j − pi,j
p̂i′,j′ − pi′,j′

)
in ~p, using

the following equation to get the corresponding entries in Σp:( pi,j(1−pi,j)/si δi,i′pi,j(δj,j′−pi,j′ )/si
δi,i′pi,j(δj,j′−pi,j′ )/si pi′,j′ (1−pi′,j′ )/si′

)
(3.2)

where δi,j = 1[i=j] is the Kronecker delta indicator. In this matrix, the covariance entries δi,i′pi,j(δj,j′−
pi,j′)/si = 0 for i 6= i′;

3. The statistic is χ2
R = N~pTΣ−1

p ~p.
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In Algorithm 3.2.1 we use HMM G1 to generate a string of data A , summarizing the

conditional probabilities of the model’s Markov process [76, 78]. Sequence A is then run through

HMM G2, where we use frequency counting to construct a set of estimates G2,k
′ of the transition

probabilities in G2 [22]. The standard χ2 test compares the distribution means to determine whether

or not the two sets of transition distributions (G2,k
′, G2) are equivalent with significance α [63, 68].

Since G2,k
′ simply maps conditional probabilities from G1 onto the structure of G2, this shows by

extension that G1 ≡ G2.

Remark 1. The computational complexity of this algorithm is O(Nns). The complexity of the χ2

test (O(nt−ns)) is negligible, since the sequence length N is usually much larger than (nt−ns). The

multiplicator ns in O(Nns) denotes that all states will be tried as a start state before the algorithm

finds the correct start state to accept the sequence.

Remark 2. The length of sequence A must be large enough to represent each transition probability

asymptotically with a normal distribution. We discuss how to determine sequence length in Section

3.2.5.

Remark 3. The work in [85] shows that ~p follows a normal distribution N(~0, Σp
N ). Therefore

the χ2 test we use is different from traditional χ2 test, which usually calculates the statistic using

χ2
R =

∑ns
i=1

∑|vi,j |−1
j=1

(cip̂i,j−cipi,j)2
cipi,j

. The traditional χ2 test considers the covariances between every

pair of probabilities in ~p, while in our case, the covariances between probabilities of transitions leaving

from different states is 0 (δi,i′pi,j(δj,j′ − pi,j′)/si = 0 when i 6= i′) [85]. Therefore we only need to

consider the covariances between probabilities of transitions leaving from the same state. This is

because of the Markovian property of HMMs.

Remark 4. For every state, probabilities of the outgoing transitions must sum to one, which removes

one degree of freedom for each state from the χ2 test. Therefore, the degrees of freedom for a model

is nt − ns.

Remark 5. Usually we use the HMM with more degrees of freedom (DOF) as G1 to generate the

sequence of data and test it using the model with fewer degrees of freedom. Each probability in the

smaller model will be inferred using a larger number of samples, so the observed probabilities should

be closer to the true value. Detailed discussion is in Section 3.2.5.

Remark 6. Statistical significance α is required, as in all statistical tests, to represent the likelihood

of Type I error that is acceptable. It means that we are willing to accept the null hypothesis (model
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equivalence) as long as the observed data has a probability of at least 1 − α. Refer to standard

statistical texts, such as [63] to choose an appropriate value for α.

3.2.2 Measuring Distance

When two models are not equivalent, the distance between them is determined by how much

their statistics differ with significance α1. To find this difference, we progressively remove the least

likely events from both systems, until the remaining Markov processes are equivalent according to

Algorithm 3.2.1. Note that this is fundamentally different from finding graph isomorphism or the

maximum common subgraph (MCS) problem from graph theory. Instead, this finds the largest

common sub-models of G1 and G2 that represent the same underlying process. In the rest of this

section, we discuss how to find the least likely events in HMMs. A threshold is then set to remove

events in the models until there is an equivalence.

To find the least likely events, we use joint probability calculation from [97]. Let event X

be the transition from state vi to state vj . The asymptotic probability of X is

P (X) = sipi,j (3.3)

where si is the asymptotic state probability for state vi ∈ V and pi,j is the probability of the outgoing

transition to state vj ∈ V . We use event probability P (X) as a threshold value Pth and events in

the model (process) with joint probability not greater than Pth are deleted.

The threshold value Pth then sets a minimum value, βi = Pth/si for each state with asymp-

totic state probability si. We then remove from each state vi the outgoing transitions with probability

pi,j not greater than βi. After removing these transitions from the model, we remove transient and

absorbing states from the new model, along with transitions going into or out of these states. Once

low probability transitions and states are removed, the model is renormalized. For each remaining

state, the probabilities of transitions leaving the state are rescaled to sum to 1. This process is

shown in Figure 3.5 using a simple model with threshold value Pth = 0.002. This example uses Pth

to remove events in one model. While comparing two models, Pth are used to prune events in both

models following the same process.

The absolute bounds on Pth are [0, 1], since it is a probability. If Pth is set to 1, all transitions

1Different α values will have different metric values. This is a side-effect of using a statistical approach.

31



(a) (b) (c) (d)

Figure 3.5: Process to remove transitions; (a) original model (asymptotic state probabilities are in
square brackets); (b) initial step with Pth = 0.002; (c) removal of absorbing states; (d) resulting
model with rescaled probabilities.

and states are removed. If Pth is set to 0, no states and transitions are removed from the models.

From Equation (3.3) we see that as Pth increases, the minimum outgoing transition probability βi

increases, causing more transitions and states to be removed from the models. In Section 3.2.6, we

discuss how to choose appropriate Pth values.

3.2.3 Metric Definition

We define our distance function d(·) to be the minimum value of Pth required to make

two models equivalent. Two null models are equivalent. From this definition, we show first that

d(G1, G2) is a metric. A metric is a function d : m×m → R, where m is a space (for us the space

is all HMMs), that fulfills the following conditions [94]:

• (Non-negativity) d(G1, G2) ≥ 0

• (Self-equivalence) d(G1, G1) = 0

• (Symmetry) d(G1, G2) = d(G2, G1)

• (Identity of indiscernibles) d(G1, G2) = 0 iff G1 ≡ G2

• (Triangle inequality) d(G1, G2) + d(G2, G3) ≥ d(G1, G3)

Proposition 3.2.1. d(G1, G2) = Pth, where Pth is the smallest threshold probability needed to make

G1 ≡ G2 according to Algorithm 3.2.1, is a metric.
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Proof. The proof for each property follows.

Non-negativity: d(·) is defined as a probability, which can never be less than zero.

Self-equivalence: Since V1 = V1 and P1 = P1, no transitions need to be removed in order

for G1 to accept sequences generated by itself. Zero is the minimum value for Pth that makes G1

and G1 equivalent.

Symmetry: By definition, d(·) is the minimum Pth needed to make the two models equiv-

alent. This unique value will be the same value no matter which model is named G1 or G2.

Identity of indiscernibles: If G1 ≡ G2, there is no need to remove transitions from either

model. The minimum Pth is 0, and d(G1, G2) = 0. Conversely, if d(G1, G2) = 0, by definition,

the value for Pth is 0, which means no transition needs to be removed to make these two models

equivalent. So G1 ≡ G2.

Triangle inequality: When d(G1, G2) = p1, all events with joint probability not greater

than p1 in both models are removed creating models G′1 and G′2, where G′1 ≡ G′2. At this point the

two models are statistically equivalent. By Algorithm 3.2.1, for G1 and G2, all joint events with

probability greater than p1, corresponding to G′1 and G′2 have equivalent statistics. Similarly when

d(G2, G3) = p2, we get G′′2 and G′′3 with G′′2 ≡ G′′3 . By Algorithm 3.2.1, for G2 and G3, all joint

events with probability greater than p2, corresponding to G′′2 and G′′3 have equivalent statistics.

Without loss of generality, assume p2 ≥ p1. Notice that the difference between G′2, G
′′
2 are

the events with joint probabilities in range [p1, p2] in G2. Since G′1 ≡ G′2 and G′′2 ≡ G′′3 , we can

remove events with joint probabilities in [p1, p2] in G1 to make G′′1 which is equivalent to G′′3 . This

makes the distance d(G1, G3) at most p2, which proves the triangle inequality d(G1, G3) ≤ p2 ≤

p1 + p2 = d(G1, G2) + d(G2, G3).

The distance function, d(G1, G2), therefore satisfies all the conditions for being a metric. In

Sections 3.2.4 and 3.2.9 we show how this metric can be used to compare HMMs.

3.2.4 Distance Calculation

In this section, we introduce the distance calculation algorithm using the Markov metric

from the previous section. We first discuss the sample size needed by the HMM equivalence test.

Then critical event probabilities are chosen as threshold values for distance calculation. At last, the

distance calculation approach is introduced to find the minimum threshold value that makes two
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HMMs equivalent.

3.2.5 Sample Size

Since Algorithm 3.2.1 uses the χ2 test, we need to ensure enough samples are used for

transition probabilities to adequately approximate normal distributions. Assume that a state is

entered ni times, then each outgoing transition can be represented with a binomial distribution

where the expected number of times that the state is exited on a transition is nipi,j , where pi,j ∈ P

is the probability of the outgoing transition. A binomial distribution may be represented with a

normal distribution if p ± 2
√
p(1− p)/n ∈ [0, 1], [72]. Therefore, the number of times ni the state

must be entered in order for all outgoing transitions to be represented by normal distributions is at

least

ni =
⌈

max
{

4pi,j
1− pi,j

,
4(1− pi,j)

pi,j

}⌉
∀j (3.4)

For a given state, ni is the product of the asymptotic state probability and the length of the

data sequence (ni = Nisi). We find the corresponding asymptotic state probability si in the model.

So the number of samples needed for the model is at least

N = max {Ni} = max
{⌈

ni
si

⌉}
,∀i (3.5)

Using sequences of length N or greater ensures that all transitions in the model can be

represented with normal distributions and transitions are taken enough times in the model for the

χ2 test to have a sufficient number of samples. More samples will provide a more accurate result.

This explains why we use the HMM with the fewest degrees of freedom to test the sequence: each

transition is taken more times giving a more accurate result.

3.2.6 Threshold Values

We use event probabilities as threshold values for removing transitions and states. The

probabilities of some events may not be significantly different, limiting our ability to reliably dif-

ferentiate between them. For models derived from observed data, these differences are likely to be

data sampling artifacts. When removing one event, events that are not significantly different should

also be removed. We use Equation 3.6 from [95] to determine if two probabilities are significantly
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different:

λ = log
(
q1(1− q2)
(1− q1)q2

)
(3.6)

where log is the natural logarithm, and q1, q2 are probabilities. According to [95], if |λ| < 0.41,

two probabilities can be accepted as equivalent, otherwise we reject the hypothesis and treat them

as distinct. Events whose probabilities do not differ significantly are grouped together. The largest

probability of each group is used for the Pth value. Algorithm 3.2.2 describes this procedure.

Algorithm Description 3.2.2 – Threshold Values
Input: HMM G1; HMM G2;

1. Calculate the joint probabilities P (X) of events in both models, sort them from high to low and store
them in an array q[i];

2. Push 1 and the highest event probability q[0] into a stack S;

3. Test q[i] from high to low:

(a) If q[i] is equivalent with the top probability in stack S by Equation 3.6, continue;

(b) Otherwise push q[i] into stack S;

(c) Increment i;

4. Push number 0 into stack S as the lowest value of Pth.

5. Return probabilities in stack S as critical values of Pth.

Note that Pth = 0 is used to test the equivalence of original models without removing any

transitions and states. Pth = 1 is used to prune all the events in both models.

3.2.7 Distance Calculation

From the metric definition, we find the minimum Pth that makes two models equivalent.

So Pth iterates from low to high and stops when two models are equivalent. This Pth value is the

distance between two models. Algorithm 3.2.3 describes the distance calculation for HMMs.

The computational complexity of this algorithm is O(Nnsnt), where O(Nns) is the com-

plexity to check model equivalence and nt is the number of transitions, since all transitions might

be removed to calculate the distance. In our implementation, 0 and 1 are always included in the Pth

value set, so an answer will always be returned upon exit. The minimum distance of 0 means that

two models are equivalent, and the maximum distance of 1 means that they are totally different.
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Algorithm Description 3.2.3 – Distance Calculation
Input: HMM G1; HMM G2; Statistical Significance α

1. Determine the threshold values Pth from event probabilities;

2. Iterate through Pth values from lowest to highest:

(a) Remove events whose probability is not greater than Pth from both models;

(b) Renormalize transition probabilities to get G′1 and G′2;

(c) If either G′1 or G′2 is a null model, continue to the next Pth value;

(d) Else determine the sequence length N from Equation 3.4 and 3.5 for G′1 and G′2;

(e) Use Algorithm 3.2.1 with α, N , G′1 and G′2 to determine if G′1 ≡ G′2;

(f) If there is an equivalence or the highest value is reached, exit; else, continue to the next Pth
value;

3. The value of Pth upon exit is the distance between G1 and G2.

3.2.8 Comparison to KLD

We note that our approach is similar to the Kullback-Leibler divergence (KLD) approach for

comparing HMMs [48], [81]. KLD measures the distance between two continuous probability density

functions (PDFs). Since HMMs have discrete PDFs, there is no closed form of KLD for compar-

ing HMMs [48]. A Monte-Carlo approximation is usually used to measure the entropy divergence

between two models (G1, G2) with a sequence of observations [48]:

D(G1, G2) =
1
T

[logP (OT |G1)− logP (OT |G2)] (3.7)

where OT is an observation sequence generated by G1 and T is the sequence length. This measure

is not symmetric, but can be made symmetric [70] as:

Ds(G1, G2) =
1
2

[D(G1, G2) +D(G2, G1)] (3.8)

Though this approach is widely used, it has several limitations. First, it does not satisfy

the properties of a metric, such as the triangle inequality [99]. Second, it only works when both

probabilities exist. A noise event in one model may cause the other model to reject the sequence,

resulting in a non-computable probability. As a result, KLD can not measure the distance between

some models even though they may be identical except for a small amount of noise. Third, the KLD

result depends on the sample size2. If the sample size is too large, the computational cost is high and
2Detailed discussion about the accuracy of Monte Carlo method can be found in [34]
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the calculated probabilities may suffer from floating point underflow. If the sample size is too small,

the result may be unstable [71] [99]. These limitations exist in variants of this approach, including

those in [81, 100, 99, 32]. However, our approach does not suffer from these problems. It provides

a normalized metric similar in spirit to the Levenshtein metric on strings [62]. By systematically

removing low probability events, at a certain point, we remove noise events and return an appropriate

value if the models are otherwise equivalent. Also we can automatically calculate the sample size

necessary for the statistical test. The χ2 test is more appropriate than KLD for comparing discrete

PDFs like those in a HMM. The test also determines the statistical confidence of the metric value.

Therefore our approach is more appropriate and effective for comparing HMMs.

3.2.9 Verification

In this section, we present an example to demonstrate the above approaches. To illustrate

the performance of the Markov metric, we calculate distances between different, similar, and equiv-

alent models. In all examples, we use α = 0.05. We compare the KLD results with our approach

to show that, in these cases, our approach outperforms KLD, because our metric always returns an

appropriate distance measure.

3.2.9.1 Illustrative Example

We show how to calculate the distance between models G1 and G2 in Figure 3.6. G1 has an

additional self-loop and different transition probabilities leaving state S2. The event probabilities

(by Equation 3.3) are shown as square brackets in the figure. The threshold values calculated using

Algorithm 3.2.2 are 0, 0.010, 0.020, 0.068, 0.100, 0.400 and 1.

S0
A(0.2)
 [0.093]

S1

B(0.8)
 [0.370]

B(0.8)
 [0.351]

S2

A(0.2)
 [0.088]

B(0.2)
 [0.020]

A(0.7)
 [0.068]

C(0.1)
 [0.010]

(a) G1

S0
A(0.2)
 [0.100]

S1

B(0.8)
 [0.400]

B(0.8)
 [0.333]

S2

A(0.2)
 [0.083]

B(0.8)
 [0.067]

A(0.2)
 [0.017]

(b) G2

Figure 3.6: Designed models to illustrate the algorithm. (Event probabilities are in square brackets)
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Intermediate results of Algorithm 3.2.3 are given in Table 3.1. Each row shows the result for

its respective Pth value. Columns marked with G′1 and G′2 are remaining models (shown in Figure

3.7) of G1 and G2 respectively after pruning events below Pth. N is the lower bound sample size

needed for equivalence test from Equation 3.5. Algorithm 3.2.1 results are the last column of the

table.

Table 3.1: Distance calculation results
Pth G′1 G′2 N Test result
0 G1 G2 369 not equivalent

0.010 G3 G2 204 not equivalent
0.020 G4 G5 122 not equivalent
0.068 G6 G6 30 equivalent
0.100 G7 G7 - equivalent
0.400 G8 G8 - equivalent

1 G8 G8 - equivalent

S0 A(0.2)

S 1

B(0.8) B(0.8)

S 2

A(0.2)

B(0.23)

A(0.78)

(a) G3

S0 A(0.2)

S 1

B(0.8)B(0.8)

S 2

A(0.2)A(1.0)

(b) G4

S0 A(0.2)

S1

B(0.8) B(0.8)

S2

A(0.2)

B(1.0)

(c) G5

S0 A(0.2)

S 1

B(0.8)B(1.0)

(d) G6

S0

S1

B(1.0)B(1.0)

(e) G7

S0

(f) G8

Figure 3.7: Remaining models for G1 and G2 in Figure 3.6 with different Pth values.

For Pth = 0, Algorithm 3.2.1 says the models differ. At Pth = 0.010, G1 transforms to model

G3 in Figure 3.7a and G2 remains the same. Algorithm 3.2.1 correctly rejects the equivalence even

though they have same structure due to the transition probabilities leaving state S2. Continuing

the threshold value tests, equivalence is reached when Pth = 0.068. At this point, G1 and G2 are

both reduced to model G6 in Figure 3.7d. Therefore the distance between G1 and G2 is 0.068.

The equivalent portion of G1 and G2 is model G6. Once the 0.068 threshold value is reached and

equivalence is shown, further threshold values will continue to hold equivalence. For illustrative

purposes the entire Pth set is provided in Table 3.1.

We next discuss the performance of the metric when applied to different, similar, and equiv-

alent HMMs, using the same procedures described above. Symmetric KLD measurement is also
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applied to each example for comparison. The observation sequences of length T = 1000 is used,

since larger T may cause floating point underflow.

3.2.9.2 Different models

S0 A(0.5)

S1

B(0.5)

S2

C(1.0)

B(0.1)

A(0.9)

(a) G9

S0 A(0.5)

S 1

B(0.25)

S 2

C(0.25)

A(0.02)

B(0.9)

C(0.08)

A(0.05)

B(0.15)

C(0.8)

(b) G10

S0

(c) Equiva-
lent model

Figure 3.8: Different models

We calculate the distance between two different models G9 and G10 in Figure 3.8 by Algo-

rithm 3.2.3. A cursory look at the models clearly shows that both the state structure and underlying

process are completely different. This is confirmed by Algorithm 3.2.3 showing equivalence only when

Pth = 1, which means that they are totally different models. The equivalent portion of the models

is a single state, shown in Figure 3.8c.

The KLD does not exist for G9 and G10, since each model can not accept the sequence

generated by the other model. So P (OTj |Gi) = 0 and D(Gi, Gj) =∞.

3.2.9.3 Similar models

Algorithm 3.2.3 is used to calculate the distance between G11, G12 and G13 in Figure

3.9. They have similar structures and are only different in the transitions around state S3. Event

probabilities of transitions leaving state S3 (where the differences are located) are in square brackets.

The results are in Table 3.2.

The difference between G11 and G12 is the transition δ(S3, S3) = A in model G12. After

removing this event, which has a joint probability of 0.022, G11 and G12 become equivalent. For

model G11 and G13, since the probabilities of transition δ(S3, S4) = B in G11 and transitions
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S0

S3

A(1.0)

S4

B(1.0)
 [0.091]

S1

A(0.01)

B(0.99) S2

A(1.0)

A(0.67)

S5

B(0.33)

A(1.0)

(a) G11

S0

S3

A(1.0)

A(0.2)
 [0.022]

S4

B(0.8)
 [0.089]

S1

A(0.01)

B(0.99) S2

A(1.0)

A(0.67)

S5

B(0.33)

A(1.0)

(b) G12

S0

S3

A(1.0)

A(0.5)
 [0.084]

S4

B(0.5)
 [0.084]

S1

A(0.01)

B(0.99) S2

A(1.0)

A(0.67)

S5

B(0.33)

A(1.0)

(c) G13

Figure 3.9: Similar models

Table 3.2: Results for similar models
Test pair Distance
G11 −G12 0.022
G11 −G13 0.091
G12 −G13 0.089

δ(S3, S3) = A and δ(S3, S4) = B in G13 are not significantly different, they are grouped and we use

the largest event probability (0.091) for Pth. G11 and G13 become equivalent after removing events

below 0.091, resulting in our distance value. This is larger than the distance between G11 and G12

since the difference in transition probabilities is larger. Following the same procedure, the distance

between models G12 and G13 is 0.089 since the differences between the models are two transition

probabilities. A smaller distance indicates that the models are more similar. With this example, we

also provide an illustration of the triangle inequality.

KLD is also calculated for these models. The results are in Table 3.3. Since G11 can not

accept the sequence generated by G12 due to the additional transition in S3, D(G12, G11) = ∞.

However, D(G11, G12) is small since G12 can match the sequence generated by G11 with a similar

probability. It is same for G11 and G13. Both cases clearly show that KLD can not measure the

distance for them, however, our approach solves this problem by progressively removing events to

a point where the remaining models are equivalent, and returns a reasonable distance value. This

shows a strong point of our approach in that it can measure the distance between all appropriate
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models, while maintaining the triangle inequality.

Table 3.3: KLD results for different models
Test pair D(Gi, Gj) D(Gj , Gi) Ds(Gi, Gj)

i = 11, j = 12 0.008 ∞ ∞
i = 11, j = 13 0.028 ∞ ∞
i = 12, j = 13 0.012 0.016 0.014

3.2.9.4 Equivalent models

HMMs in Figure 3.10 are statistically equivalent since for both models, every state has the

same probability of generating symbols A and B, and every state is equally likely to be visited. So

the distance between the models should be 0. If Algorithm 3.2.3 says the distance is not 0, we count

that as a false positive. We vary sample size N from 4 to 500 to see the effect of N in equivalence

test. For each N , we repeat the distance calculation 1000 times. The results are provided in Table

3.4.

(a) G14 (b) G15

Figure 3.10: Equivalent models.

Table 3.4: False positive rate out of 1000 times with different sample sizes
Sample size N 4 8 12 [16] 25 50 100 200 350 500

FP rate 0% 1.3% 2.4% 4.0% 4.4% 5.3% 5.5% 4.9% 4.8% 5.1%

The first row of Table 3.4 lists different sample sizes of N . N = 16 is the minimum sample

size needed for the normal distributions to be constructed and the equivalence test from Equation

3.5 to be valid. The second row shows the false positive rates with different N . For N ≥ 16, the

false positive rate converges to the statistical significance level α. We expect this because α is the

probability of incorrectly rejecting the null hypothesis in the statistical test and was previously set

to 0.05 for all tests. For N < 16, it results in fewer effective false positives. This occurs because
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the confidence interval size is too large to detect deviations when the sample size is too small for

normal distributions to be constructed. To get an accurate result, it is necessary to collect more

samples than the minimum sample size calculated by Equation 3.5. In this case, KLD can measure

the distance between them since each can match the sequence generated by the other.

From these examples, we can see that our metric is appropriate for comparing HMMs.

Compared to KLD, our metric is a true metric and always returns a valid distance value.

3.3 Detection With PCFGs

Since HMMs are probabilistic regular grammars, the simplest class in Chomsky Hierarchy

of grammars, they can only represent patterns in regular expressions, and can not detect recursive

patterns [64]. Therefore it is interesting to apply context-free grammars (CFG) to recognize and

detect recursive patterns when the stochastic pattern includes recursions.

Probabilistic (stochastic) CFGs (PCFGs) are CFGs where each production rule has an

associated a probability. They can accommodate noise and pattern distortion, incorporate not

only syntactic but also statistical information in data, and distinguish more plausible results from

less plausible ones [58, 72]. PCFGs have been successfully applied to natural language processing

[37, 58, 72], pattern analysis in RNA and protein sequences [31, 89, 90], and network data modeling

[39]. In this work, we use PCFGs for pattern detection. For PCFGs, the ability to accurately detect

rule probability is more important than to determine language membership.3 In this paper, we

assume production rules of the underlying system are known and data sets are languages of the

grammar. Also, we only consider finite data sets.

Previous research on PCFGs, [89, 14, 47], usually uses the inside-outside algorithm [51,

52], which is a generalization of the Viterbi Algorithm for HMMs [70], for parameter estimation

and data classification. For data classification purposes, the inside-outside algorithm finds the

PCFG that most likely generated the data set, from several candidate PCFGs. The inside-outside

algorithm is only useful for choosing between PCFGs. It can not detect if a data set fits a given

PCFG. Furthermore, with large sample sizes, the inside-outside algorithm suffers from floating point

underflow, similar to the Viterbi Algorithm [22]. It also has high computational complexity [58].

In this paper, we propose a simple statistical method for PCFGs to solve the following detection
3In fact, ill-formed strings can be modeled by production rules with extremely low probability. So the language

membership problems can still be transferred into detecting rule probability problem.
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problems:

1. Does an observed data set fit a given PCFG ?

2. Are two observed data sets generated by the same source PCFG ?

From data sets, we estimate production probabilities using a maximum-likelihood (ML)

method. For tree data sets, it is easy to count the frequencies of nonterminals and productions in

the tree. Production probability is estimated by relative frequency. We extend the ML estimation to

sentence data sets. With known production rules, we build a LALR parser for the grammar to parse

the sentence. While parsing, the frequency of use of each nonterminal and production is recorded.

The production probability then can be estimated from the relative frequency. The ML estimation

assigns proper and consistent PCFG distributions on finite data sets [25] [24].

With estimated PCFGs, we design a χ2 test for pattern detection. A χ2 test can be used

for goodness-of-fit test. With the χ2 test, we are able to tell if a data set matches a given PCFG, or

another data set. Statistical tests require the parameter δ4, which explicitly states the significance

for comparing distributions [63]. With larger sample sizes, the χ2 test has greater statistical power

and higher confidence on the result. We provide illustrative examples to show that our approach

has better detection rate than the inside-outside algorithm.

3.3.1 Production Probability Estimation

We estimate production probabilities from tree or sentence sets by Maximum Likelihood

(ML) estimation [25, 24, 27]. Other approaches, such as the Expectation Maximization and Mini-

mizing Cross Entropy (MCE) method5 give the equivalent estimator for production probabilities [27].

PCFGs estimated by ML method are proper and consistent [25, 24]. In this section, we introduce

the ML estimation for both tree sets and sentence sets.

3.3.2 Tree Sets

Given a finite trees set T , we use f(A→ α, t) to represent the frequency of the production

A→ α occurs in a tree t ∈ T . Similarly, f(A, t) represents the frequency of A occurs in t. The ML

4We use δ in stead of the usually used α because α is used to represented (N ∪ Σ)∗ in PCFGs.
5It minimizes the cross entropy (or relative entropy) between the tree distribution induced by tree set and the tree

distribution induced by the grammar.
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estimates production probabilities from a tree set by equation:

p̂(A→ α) =
∑
t∈T f(A→ α, t)∑

t∈T f(A, t)
(3.9)

It is the ratio between the number of occurrences of the production A→ α and the number

of occurrences of the nonterminal A in the tree set. So the ML estimation is also called relative

frequency estimation. It is easy to find that f(A, t) =
∑
α f(A→ α, t). So after finding frequencies

of all productions of a tree set, we can use Equation 3.9 to estimate a consistent PCFG.

3.3.3 Sentence Sets

For a sentences set S, we need a parser to parse the sentence to obtain the frequency of each

production that is used while generating the sentence. Given production rules, we construct a com-

mon and efficient parser, LALR (LookAhead-Left-to-Right) parser [13]. We choose LALR parsers

since their parsing table is considerably smaller than other LR parsing tables, and most common

syntactic structures can be expressed conveniently[13]. In the following section, we introduce the

derivation of a LALR parser from production rules and ML estimation for sentences.

3.3.3.1 LALR parsing table construction

A LALR parsing table is in a finite-state machine format. A LALR parsing table contains

an action table and a goto table. The action table is indexed by a parser state and a terminal,

including a special terminal $ that means the end of the sentence. There are 3 actions in the action

table: “shift”, “reduce” and “accept”. Shift, written “sn”, indicates the parser will “shift” to the

next input terminal and go to the next state “n”. Reduce, written as “rm”, indicates the parser will

“reduce” the production rule “m”. Accept, written as “acc”, means the parser “accept”s the input

sentence. The “goto” table is indexed by a parser state and a nonterminal. It shows the next state

the parser goes to after each reduce action is performed.

For most CFGs, there exists a straight forward but space-consuming LALR table construc-

tion method [13], described in Appendix B. There are also other approaches to construct LALR

parsing tables [13]. In general, LALR parsers are difficult for humans to construct [13]. So usually

a LALR parser generator is used to create the parser table automatically from a grammar. In this

paper, we use the beaver [1] to generate LALR parsers.
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Table 3.6 shows the LALR parsing table of the CFG example in Chapter 2, shown in Table

3.5 as well. In Table 3.6, “s#” means to shift to state #, and “r#”means reduce the #th production

of the CFG.

Table 3.5: CFG Example
Terminals a, b

Nonterminals S, C
Productions S → CC

C → aC
C → b

Table 3.6: LALR parsing table

STATE ACTION GOTO
a b $ S C

0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1
6 r2 r2 r2

3.3.3.2 Estimation by parsing

Once the LALR parsing table is constructed, we use the extended ML method for trees to

estimate production probabilities for sentences. Algorithm 3.3.1 describes this method.

Note that ni =
∑
j ni,j , therefore the estimated PCFG is proper. Table 3.7 gives a simple

example of the production probability estimation by parsing a sentence “bab”, which is generated

by the derivation of S ⇒ CC ⇒ bC ⇒ baC ⇒ bab.

For this example, p̂(C → aC) = n2,1
n2

= 1
3 , and p̂(C → b) = n2,2

n2
= 2

3 . In general, if we use

f(r(A→ α), s) to denotes the number of the reduce action of production A→ α used while parsing

the sentence s ∈ S, and use f(A, s) to denote the number of nonterminal A used in parsing, the ML

estimation for probability of production A→ α is:

p̂(A→ α) =
∑
s∈S f(r(A→ α), s)∑

s∈S f(r(A), s)
(3.10)

Since parsing is the process of reconstruction the tree structure from a sentence, ML esti-
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Algorithm Description 3.3.1 – Estimation by parsing
Input: An input sentence; an LALR parsing table;

1. Push state 0 into the state stack T , initialize the grammar symbol stack Y and start from the first
terminal in the input sentence;

2. Set a counter ni for ith nonterminal, say A, and a counter ni,j for jth production rule that starts with
A, say A→ α;

3. While parsing is not finished, find the action determined by the current state (top state in T ) with
the current input terminal of the input sentence from the action table:

(a) If the action is “shift x”, push the state x into T , push the current symbol into Y , and shift the
current input terminal forward to the next input terminal;

(b) If the action is “reduce A → α”, pop out k elements out of T and Y , where k is the number
of grammar symbols in α. Push A into Y . Increment ni,j and ni corresponding to A. After
reduction, find “GOTO x” action determined by the current state and the top nonterminal of
Y , and push the state x into T ;

(c) If the action is “accept”, finish parsing.

4. After parsing, ni records the frequency of A and ni,j records the frequency of production A→ α;

5. The estimated probability of production A→ α is p̂i,j =
ni,j
ni

.

Table 3.7: An example of estimation by parsing
Step T Y Input Action Counter Update
(0) 0 bab$ s4, (shift to state 4)
(1) 0 4 b ab$ r3, (reduce C → b) n2,2 = 1, n2 = 1
(2) 0 C ab$ s3
(3) 0 3 Ca b$ s4
(4) 0 3 4 Cab $ r3 (reduce C → b) n2,2 = 2, n2 = 2
(5) 0 3 CaC $ GOTO6
(6) 0 3 6 CaC $ r2 (reduce C → aC) n2,1 = 1, n2 = 3
(7) 0 CC $ GOTO2
(8) 0 2 CC $ GOTO5
(9) 0 2 5 CC $ r1 (reduce S → CC) n1,1 = 1, n1 = 1
(10) 0 S $ GOTO1
(11) 0 1 S $ accept

mation for a sentence set by parsing is equivalent with ML estimation for a tree set. Therefore, we

just consider tree sets in the following discussion without loss of generality.

3.3.4 PCFG Detection

In this section, statistics are used to detect recursive patterns. We use a χ2 test to detect

whether or not two data sets match (generated by the same source PCFG), and whether or not a

data set matches a PCFG (meaning the data set is generated by this PCFG). χ2 tests test whether

or not two probability distributions are equal [91, 101]. For a χ2 test, a statistical significance level δ
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is necessary, which defines the false positive rate the user can tolerate. It also provides a confidence

on the detection result. Refer to standard statistical texts, such as [63] to choose an appropriate

value for δ.

To match a tree set T and a known PCFG, we define the statistic:

χ2 =
∑
i

∑
j

(ni,j − nipi,j)2

nipi,j
(3.11)

where ni = f(A, T ), ni,j = f(A → α, T ) and pi,j is the probability of the same production A → α

in the known PCFG.

The degrees of freedom (DOF) of the test is |R|−|N |, where |R| is the number of production

rules and |N | the number of nonterminals. With statistical significance δ and the DOF, we find the

critical value χ2
δ in a standard statistics table. If χ2 < χ2

δ , we accept the hypothesis that T matches

with the PCFG with a significance level of δ, otherwise we reject the hypothesis.

To determine if tree set T1 and tree set T2 are equivalent, we use a different statistic:

χ2 =
∑
i

∑
j

(ni,j − nip̃i,j)2

nip̃i,j
+
∑
i

∑
j

(mi,j −mip̃i,j)2

mip̃i,j
(3.12)

where ni = f(A, T1) is the number of a nonterminal A in T1, ni,j = f(A→ α, T1) is the number of

production A → α in T1, mi = f(A, T2), mi,j = f(A → α, T2), and p̃i,j = ni,j+mi,j
ni+mi

. Similarly, if

χ2 < χ2
δ , we accept that they are equivalent, otherwise they are not equivalent.

3.3.5 Illustrative example

To show the PCFG detection approach, we give a simple example using the parentheses

matching CFG with 10 different sets of production probabilities, shown in Table 3.8. Since we only

consider finite trees, we choose production probabilities so that the branching rate of the PCFG is

less than 1. In this example, the branching rate6 is ρ = P [A → (A)] + 2P [A → AA]. So we vary

three production probabilities to satisfy the condition ρ < 1 and their sum to be 1.

From each of these ten PCFGs, we generate 50 sets, and each contains 30 sentences (around

100 to 400 terminals). We first test the equivalence between a set of sentences and a PCFG. If the

set is generated by the PCFG, and it is accept that they are equivalent, we count it as a true positive
6The calculation of branching rate refers to [24]
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Table 3.8: PCFGs for parentheses matching
Production rules PCFG1 PCFG2 PCFG3 PCFG4 PCFG5

A→ (A) 0.1 0.1 0.2 0.2 0.3
A→ AA 0.1 0.2 0.1 0.2 0.1
A→ () 0.8 0.7 0.7 0.6 0.6

Production rules PCFG6 PCFG7 PCFG8 PCFG9 PCFG10
A→ AA 0.3 0.4 0.4 0.5 0.5
A→ AA 0.2 0.1 0.2 0.1 0.2
A→ () 0.5 0.5 0.4 0.4 0.3

(TP). If the set is generated by a different PCFG, but it is detected as equivalent, we have a false

positive (FP). And we use δ = 0.05 as the significance level.

Table 3.9 shows the detection result. Our approach has low false positive rates and true

positive rates are close to the pre-defined TP rate 1−δ = 0.95. The receiver operating characteristic

(ROC) curve is used to evaluate the detection rate of our approach, since the ROC curve consider

both TP rate and FP rate. The last column in Table 3.9 shows the Euclidean distances between

each PCFG detection rate and the optimal point (0,1), where there is no false positives and 100%

true positives.

Table 3.9: χ2 detection between a data set and a PCFG
PCFGs TP rate FP rate Distance
PCFG1 0.96 0.16 0.165
PCFG2 0.94 0.21 0.218
PCFG3 0.98 0.27 0.274
PCFG4 0.94 0.29 0.303
PCFG5 0.96 0.28 0.283
PCFG6 0.92 0.22 0.238
PCFG7 0.90 0.18 0.206
PCFG8 0.98 0.12 0.122
PCFG9 0.92 0.08 0.112
PCFG10 0.92 0.03 0.085

We compare the performance of our approach with the inside-outside method based on the

same data sets. For each data set S, the algorithm calculates the probability P (S|Gi) that this

data set is generated by a PCFG Gi, by recursively multiplying the probability of each production

is used while parsing the data. After calculating P (S|Gi) for each Gi, it then selects the largest

probability P (S|Gi), and corresponding Gi is the PCFG that best fit the data set. For each data set,

this algorithm only returns one (and exactly one) matched PCFG, while for our approach, it may

find no model or more than one model that matches the data. This is also the difference between
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detection and classification.

Table 3.10: ML detection between a data set and a PCFG
PCFGs TP rate FP rate Distance
PCFG1 0.62 0.05 0.383
PCFG2 0.72 0.03 0.281
PCFG3 0.6 0.07 0.407
PCFG4 0.66 0.02 0.341
PCFG5 0.56 0.05 0.442
PCFG6 0.74 0.04 0.263
PCFG7 0.56 0.03 0.441
PCFG8 0.78 0.01 0.220
PCFG9 0.84 0.02 0.161
PCFG10 0.9 0.004 0.100

The detection result of the inside-outside algorithm is shown in Table 3.10. It has lower FP

rates, but TP rates are also much lower than our approach. Also, the distance between between the

detection point and (0,1) is larger, which means our approach have better performance in terms of

high TP rates as well as low FP rates.

The sample size is important in the test. If the sample size is too small, both detection

approaches may not be accurate. If the sample size is large, the χ2 detection will have lower FP rate

and higher confidence on the result; while for the inside-outside algorithm, it may suffer floating

point underflow. We repeat the detection process using data sets with more samples. For each

PCFG, we generate 50 data sets and each contains 50 sentences (around 200 to 1,500 terminals).

Similarly, we can get the detection result using both approaches.

Figure 3.11 shows the detection rates for our χ2 approach and the inside-outside (I-O)

algorithm with different sample sizes. It is clear that with larger sentence sets, false positive rates

of our approach get lower. By comparing the distance between the detection point to the optimal

point (0,1), our approach still outperforms the inside-outside algorithm. For data sets containing

more than 50 sentences, a lot of probabilities calculated by the inside-outside algorithm have floating

point underflow, and therefore this approach has worse detection rates. The χ2 approach, however,

maintains high TP rates and even lower FP rates.

From this example we can see that our approach has better detection rates than the inside-

outside algorithm. Our approach considers the number of data samples available, and increases

the confidence on the detection result by reducing FP rates with larger data samples, while the

inside-outside algorithm may encounter floating point underflow problems.
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(a) Each data set containing 30 sentences

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

χ2 Test
I−O Algorithm

(b) Each data set containing 50 sentences

Figure 3.11: Detection rate with different sample sizes.

Our approach can also detect if two data sets are generated from the same source PCFG.

This is an another advantage of our approach, because the inside-outside algorithm does not provide

the criteria for determining if two data sets are consistent in probability distributions. Using larger

data sets that we generated above, we show the performance of this detection approach. If two sets

are generated by different PCFGs, but it is detected as equivalent, we have a false positive. If two

sets are generated by a same PCFG, and it is accept that they are equivalent, we count it as a true

positive. The detection result is shown in Table 3.11. It has a similar performance as the detection

between a data set and a PCFG.

Table 3.11: Detection result between two data sets
Data source PCFG1 PCFG2 PCFG3 PCFG4 PCFG5

TP rate 0.9288 0.9624 0.9504 0.9744 0.9664
FP rate 0.2108 0.1896 0.3155 0.2838 0.3091

Data source PCFG6 PCFG7 PCFG8 PCFG9 PCFG10
TP rate 0.9632 0.9296 0.9728 0.9688 0.9528
FP rate 0.2516 0.2494 0.1491 0.1316 0.0439

Note in our detection examples, the FP rates are slightly high. This is because our test data

sets are generated from PCFGs with quite similar probability distributions. It is more difficult to

differentiate them when they are generated from subtly different processes. Generally more samples

are required for the χ2 test to distinguish two subtly different distributions.
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3.4 Summary

In this chapter, we give detailed description about our detection approaches using HMMs

and PCFGs. From a sequence of observations, we infer HMMs without a priori information. With

the inferred HMMs, we apply the extended confidence intervals approach to detect if a new observed

sequence matches the HMM.

To compare the similarity of HMMs, we propose a Markov metric. A statistical test is

used to check the equivalence between HMMs, which focuses on the stochastic processes the HMM

represents. With data sampling insights, we systematically remove states and transitions from

HMMs to find a structure close to both models being compared, which expresses the portion of

both models that are statistically equivalent. This structure then defines the distance between two

models. Illustrative examples show that our metric provides appropriate distance values for HMMs

and outperforms KLD method, because our metric is a true metric and always returns an appropriate

distance measure.

To detect recursive patterns, we use PCFGs. We estimate production probabilities from

observed data (both tree sets and sentences sets with the help of LALR parser) using a ML method.

To determine whether a new data set matches a given PCFG or another data set, we use χ2 tests for

detection. With some illustrative examples, we show the performance of our detection approaches.

Our approach can work on detection problems that the inside-outside algorithm can not solve, and

has better detection rates in terms of high true positive rates and low false positive rates.
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Chapter 4

Network Traffic Analysis

Using stochastic grammar detection approaches described in the previous chapter, we per-

form three applications exploiting traffic timing data. Since HMMs and PCFGs work with symbol-

ized data, we first introduce the symbolization method used to translate inter-packet timings into

symbols for learning stochastic grammars.

The first application is Tor (the onion router) network traffic analysis. We attempt to iden-

tify protocols (represented by HMMs) tunneled through Tor and break Tor’s anonymity. However,

noise in the Tor network obscures the underlying protocol. The Markov metric helps us identify the

correct protocol used in Tor. The metric also measures the noise in the network.

We then detect centralized botnet traffic using a HMM. In this application, we focus on

Zeus botnets (Zbots), one of the largest botnets. We infer HMMs from botnet traffic timing data

and use inferred HMMs to detect botnet communication traffic. Experiment results show that we

can adequately detect botnet traffic from normal traffic.

Centralized botnets, like Zbots, can be detected using HMMs [54, 55], and once one bot

is detected, the centralized C&C server can be found and intercepted. To avoid this, hierarchical

botnets use P2P techniques [5, 56, 66]. In the P2P botnet detection application, we first used HMMs

detection approach to detect the traffic timing data from simulated hierarchical botnet in Clemson

campus computer cloud (Palmetto cloud). The result shows that HMMs can not detect recursive

patterns in P2P botnet traffic timings. This is because HMMs can only represent regular expressions.

However, PCFGs can accurately detect the timing data of simulated hierarchical botnet, since these

patterns are recursive.
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Finally, we apply the PCFG detection approach to real-world traces of the Storm botnet

traffic, which is one of the known P2P botnets [43]. We estimate the production probabilities from

the Storm botnet traffic data and use the estimated PCFG for detection. The result shows that our

approach can adequately distinguish botnet traffic from normal background traffic.

Timing profiles exist in all automated network processes, and encryption does not change

traffic data timing. It is difficult to remove timing profiles without significant performance implica-

tions. Therefore, it is possible to extend these approaches to detect traffic data from other network

processes as well.

4.1 Symbolization

As discussed in Chapter 1, we focus on inter-packet timings of network traffic data. Timing

data can be easily obtained from traffic data, even when traffic is encrypted. Inter-packet timing

provides information about the temporal properties of unknown underlying processes [59]. Further-

more, inter-packet timings filter out constant network delays, and timing signatures are preserved

during network transmissions [92]. We use Tshark [7] to capture timings of packets. Inter-packet

delays are calculated by finding time differences between successive packets of interest. In other

words, ∆ti = ti − ti−1, where ti is the receiving time of packet i.

Since our stochastic grammars work with symbolized data, we convert inter-packet delays

into symbols. Similar delays are grouped together and replaced with a character. Different groups

of delays can be found by plotting the data histogram or using clustering algorithms (k-means,

self-organizing maps, etc). In this paper, we use local minima in the histogram of the delays to

determine the timing ranges for packets. Figure 4.1 shows an example histogram of inter-packet

delays. There are two distinct clusters so we use two symbols. More details about this approach

can be found in [19, 18, 28, 12, 41]. With symbolic data, we are able to use them for our detection

approaches using stochastic grammars.

4.2 TOR Network Traffic Analysis

In this section, we use HMM inference approach and Markov metric to analyze Tor network

[6] traffic. A server is configured to communicate with a client through Tor based on given protocols
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Figure 4.1: Histogram of inter-packet delays

(represented by HMMs). We attempt to infer HMMs from the traffic timing data. However, the

inferred HMM has a lot of noise events and the underlying system is difficult to discern. Using the

Markov metric, we identify the underlying model. Also, the Markov metric quantifies the noise in

the Tor communication.

4.2.1 Application Setup

We created a small, standalone test network to conduct experiments on Tor, in order to

not disturb the global Tor network on the Internet. The private Tor network consisted of sixteen

nodes. All ran Tor version 0.2.1.19, a stable version released in August 2009 [6]. Two desktops ran

CentOS 5, two other desktops ran Fedora Core 6, and twelve WebDT thin clients ran the lightweight

Debian-based Damn Small Linux [2]. The network was a combination of different systems on different

platforms, similar to the Internet.

Figure 4.2: Network layout.
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Figure 4.2 shows the network layout. The smaller icons on the left represent the thin clients.

Each thin client ran Tor with the client and relay services enabled. Three of the desktops ran Tor

with the client, relay, and directory server services enabled, and the last desktop ran Tor with just

the client service enabled. All systems were connected via a network switch.

After building this private Tor network, we set up one server and one client. The client

connected to the server through Tor and listened. The server sends packets based on a given HMM,

which represents the protocol it uses. Figure 4.3 is the HMM used by the server. We use HMMs

to represent network protocols because HMMs are finite state machines (FSMs), while network

protocols can usually be represented by FSMs.

Figure 4.3: HMM M1

To start, the server randomly selects a start state in the HMM, follows the transitions based

on the transition probabilities, goes to another state, and generates an output symbol. This process

is basically the same as generating a sequence from the HMM. Each output symbol is translated into

a inter-packet delay. For each symbol, the server waited the specific amount of time defined by the

symbol before sending the next packet to the client. Table 4.1 gives the symbol-delay translation

we use in this application for the HMM M1 in Figure 4.3.

Table 4.1: Symbol-delay translation table
Symbol Delay time

(in seconds)
A 0.2
B 0.4
C 0.1
Y 0.3
Z 0.5

We captured packet timings at the client with Tshark [7]. The timing difference ∆t was
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calculated by subtracting the receive time of the previous packet from the time of the current packet.

In a Tor connection, however, there are times when a circuit fails or changes, or a relay delays a

packet, causing extra latency. Among other factors, this introduces noise into the communication.

For symbolization, we used Table 4.2 as the delay-symbol lookup table by finding the local minima

in the histogram of the delays.

Table 4.2: Delay-Symbol lookup table
Delay time ranges Symbol

(in seconds)
[0.0, 0.2) C
[0.2, 0.3) A
[0.3, 0.4) Y
[0.4, 0.5) B
[0.5, 10.0) Z

After symbolization, we used the HMM inference algorithm [76] [78] to reconstruct the

HMM. Our entire approach of generating data on the server to receiving data and constructing a

new HMM on the client is shown in Figure 4.4. Additionally, in this figure, we show how server

symbol Y is mis-symbolized as B on the client due to noise causing a sudden increase in latency.

Figure 4.4: Application process.

Extra latency can cause inter-packet delays to be incorrectly symbolized. This introduces

noise, which obscures the underlying protocol. Our metric, however, concentrates on the statistically

significant portion of the inferred model and thus extracts the underlying protocol from the noise.

In Section 4.2.2, we also show that the metric provides a quantitative measure of the noise in the

Tor network.
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4.2.2 Experiment Result and Analysis

We captured 100,000 packets at the client and inferred HMM M2, shown in Figure 4.5.

Due to noise in the latency values, the underlying protocol is difficult to discern. Typically, noise

in the data can be mitigated by collecting more data until the underlying process overwhelms the

noise. We therefore collected 200,000 packets and inferred model M3, shown in Figure 4.6, which has

clearly increased in complexity due to a larger amount of noise. We confirm this by inferring a 79

state and 274 transition model from 1 million packets. Due to the high state and transition counts,

it is difficult to observe any similarities between the inferred models, and difficult to determine if

the correct model is inferred.

We then applied the metric approach to the inferred models. Setting the confidence α = 0.05,

the distance between M2 and M3 is 3.3× 10−4, a very high similarity value. The equivalent portion

of M2 and M3 is shown in Figure 4.7 as model M4. Tracing through the paths of the model, we see

that it is functionally equivalent to the original model M1. This means the underlying protocol is

actually encapsulated in the inferred models but obscured by the noise. The metric helps identify

the underlying protocol in the inferred models by removing statistically insignificant noise. KLD

measure does not work in this case, because both models can not accept the sequence generated by

the other.

The difference between the inferred model and the original model is due to the jitter of the

Tor network. The Markov metric quantifies the noise by measuring this difference into a distance

value. To verify it, we added artificial noise with different probabilities in the 200,000-packet data set

to infer new models and then calculated the distance between the inferred model and the original

model M1. The results are in Table 4.3. Each measured noise value is the mean of 100 runs,

and is close to the actual noise value. Actual noise values fall within the 95% confidence intervals

of the corresponding measured values. The results show that the metric provides an appropriate

quantitative measure for the noise in the system. In this application, the distance between model

M1 and M2 is 2.9× 10−4 by the metric, so the noise in the 100,000-packet data is 2.9× 10−4, which

means the noise occurs around every 3500 symbols. This measure is useful, since it can be used

to determine if enough data has been collected so that the inferred model is statistically significant

[75, 97]. Also, the amount of the noise relates to the detection rate of HMMs [22].

In this application, we inferred protocols tunneled through Tor network using HMM in-
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Figure 4.5: Reconstructed model M2 from 100,000 packets.

ference approach. The Markov metric identified the correct model from inferred model which is

obscured with a large amount of noise events. As a byproduct, the Markov metric also measures the

noise in the Tor communications, because it quantifies the noise event into a distance value.
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Figure 4.6: Reconstructed model M3 from 200,000 packets.
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Figure 4.7: Model M4 after pruning low probability events

Table 4.3: Noise measurement
Noise Frequency Actual Noise Value Measured Noise Value 95% Confidence Intervals

Every 100 symbols 1.0× 10−2 9.9× 10−3 [0, 5.8× 10−2]
Every 500 symbols 2.0× 10−3 4.6× 10−3 [0, 4.1× 10−2]
Every 1000 symbols 1.0× 10−3 2.0× 10−3 [0, 2.4× 10−2]
Every 3000 symbols 3.3× 10−4 6.8× 10−4 [0, 8.9× 10−3]

4.3 Centralized Botnet Traffic Detection

In this section, we use our HMM inference and detection approaches for centralized botnet

traffic detection. Some previous research works also used traffic analysis to detect traffic patterns in

botnet communications. BotSniffer [44], detects botnet traffic based on the observation that bots in a

botnet will have the same traffic activity in a certain time window. Yu et al.[98] detect camouflaging

worm traffic from normal traffic using a spectrum-based scheme on the traffic data. The approach in

[88] examines flow characteristics such as bandwidth, packet timing, and burst duration to extract

evidence of botnet C&C activity. A passive DNS traffic analysis system for detecting and tracking

malicious flux networks of a botnet is proposed in [67].

In this application, we also apply traffic timing analysis, because inter-packet timings of

botnets relate to botnet command and control processing time, idling time, contacting period and

other botnet activity characteristics. Previous works [44, 59, 92, 20] used correlation of timing data
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for analysis and detection. Unlike these works, we consider the underlying communication patterns

of traffic timings, since inter-packet timings relates to underlying botnet behaviors. We use hidden

Markov models (HMMs) [70] to detect patterns in timing data. Furthermore, network protocols

can usually be represented by finite state machines, which can be appropriately modeled by HMMs.

HMMs are heavily used in pattern recognition applications, such as gesture [61], script [82], and

language [69] [84] recognition, but little work has been done for botnet traffic detection.

Therefore, we use HMMs for automated network traffic analysis to detect C&C communi-

cations of centralized botnets. We focus on Zeus botnets (Zbots), one of the largest HTTP-based

botnets. After collecting packet timings of Zeus botnet C&C communication traffic, we calculate

timing differences between successive packets. Inter-packet delays are binned to translate them into

symbolic data streams. HMMs are then inferred from these streams of symbolic timing data, using

the HMM inference algorithm [76]. We also apply a model confidence test [75, 97] to check if the

inferred model is representative of the underlying process.

Once HMMs are inferred, they are used to detect the botnet communications traffic. Using

the HMMs confidence intervals approach [22], we detect whether or not a sequence of traffic data

is botnet traffic. Experimental results on traffic data collected on real-world botnets show that this

approach can dependably distinguish botnet traffic from normal traffic. We also compare our results

with the autocorrelation approach in [44], which detects botnet traffic based on spatial-temporal

correlation of timing data in a local network. While their work checks the periodicity of the traffic

data, our approach checks underlying behaviors of the botnet. We show our approach is more

accurate in detection.

4.3.1 Zeus Botnet

Zeus botnets, also known as Zbots, form a malicious network that uses key-logging and

screen-capture techniques to steal sensitive data such as usernames and passwords for online banking,

social networks and e-mail accounts. Zbots have existed at least since 2007, but have evolved rapidly

over time. Figure 4.8 shows a diagram of reported Zbot infections from Dec. 08 to Mar. 10 [4].

Various Zeus botnets are composed of millions of compromised computers (around 3.6 million in the

United States) [8]. 2,411 companies and organizations are said to have been affected by the criminal

operations [65] and millions of dollars are involved in cyber banking fraud using Zbots [33]. There

are malware packages readily available online for sale or to download for free. The package basically

61



contains a builder that can generate a bot binary, a template configuration file and Web server files

(PHP, SQL templates) for use as the command and control server. After the malwares are created,

they are usually spread out by spamming and web phishing. In fact, there is an entire black market

industry for selling, renting and managing Zbots, giving attackers great economic incentives[3].

Figure 4.8: Number of reported Zbot infections

4.3.2 Zbot Traffic

Every Zbot has a centralized C&C server and the communication between the C&C server

and bots uses HTTP. It is encrypted using RC4 and the key is specified by the botherder. Once a

computer is infected, it sends a “GET” command to the C&C server to get the configuration file.

The C&C server sends a “HTTP/200” with an “OK” code, and appends the encrypted configuration

file at the end of the packet. The bot then “POST”s sensitive data to the C&C server repeatedly,

following an interval specified in the configuration file. The C&C server replies each time with

a “HTTP/200 OK”. New commands may also be attached to the reply. Figure 4.9 shows the

communication between the bot and the C&C server. Bots of a Zbot perform similar communication

and malicious activity patterns through HTTP packets.

Figure 4.9: Botnet C&C communication
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We set up a standalone Zeus botnet to collect traffic data. With a Zbot version 1.2.4

package, we set up a C&C server and built a bot binary with the default configuration. Using this

bot binary, we infected two machines in the local network. So the local Zbot network consists one

C&C server and two bots. Figure 4.10-(a) shows the captured botnet traffic in our local Zbot, and

Figure 4.10-(b) shows the encrypted configuration appended at the end of a “HTTP/200 OK” reply.

(a) Zbot Communication (b) Encrypted con-
figuration

Figure 4.10: Zbot Traffic

Zbot traffic data has identifiable patterns. As shown in Figure 4.10-(a), bots repeatedly com-

municate with the C&C server to update their configurations or get new commands. Inter-packet

timings relate to command execution time, idling time, contact period and other botnet activities,

therefore are a consequence of botnet behaviors. Constant communication delays in the network can

be filtered out by using the time differences between successive packets. Sudden changes in communi-

cation delays may affect inter-packet timings, however, by checking model significance during HMM

inference we remove the influence of this noise [75, 97]. With enough data, randomness introduced

by intentional padding or the metamorphic code of the bot malware will converge to stationary

probability distributions1, which can be modeled by HMMs appropriately. Model significance also

ensures enough data is used to incorporate complete behaviors of bots [75, 97]. Inter-packet timing

data can be obtained easily by network sniffing without reverse engineering malware binaries or

encrypted packets, and different bots of the same botnet will have similar communication patterns.
1Assuming the code is not updated beyond its metamorphism.
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For example, bots send similar activity messages or execute the same command at a similar time

intervals. Based on these advantages, we use HMMs to deduce patterns in inter-packet delays, and

apply inferred models to detect similar botnet traffic.

4.3.3 Symbolization

We used Tshark [7] to capture packet timing. Since we consider the Zbot C&C channel, we

only captured HTTP packets. Inter-packet delays are calculated by finding time differences between

successive packets. After collecting traffic timings, we convert them into symbols. We find the

local minima in the histogram of the delays to determine different ranges. Figure 4.11 shows the

histogram of Zbot inter-packet delays. There are two distinct clusters so we use two symbols.

Figure 4.11: Histogram of inter-packet delays

4.3.4 Experiment

We used HMM approaches to detect Zbot traffic. The detection process is described in

Figure 4.12. From Zbot traffic timing data, we infer HMMs. Using the inferred HMM, we detect

whether or not a sequence of network traffic is from a Zbot based only on the timings in this traffic

sequence. A white list is used to filter out trusted network flows based on IP addresses. It eliminates

the number of network flows needed for detection and also reduces false alarms.

To get real-world Zbot traffic data, we downloaded Zbot binaries for different versions and

C&C servers in [10] to infected virtual Windows machines which were connected to the Internet

by either wireless or wired connection. We got a total of 15 different C&C botnet communications.

Timing data was then captured from these communications and 15,000 packet timings were obtained.

We split them into two sets: training data and testing data. From the training data, we inferred the
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Figure 4.12: Botnet traffic detection

HMM in Figure 4.13. This HMM is statistically significant according to the model confidence test

[97].

Figure 4.13: HMM of the wild Zbot

We got a portion of HTTP traffic data (only packet headers2) from Clemson University

campus network over a time span of 40 hours. It is separated into distinct flows and timing data

for each flow is symbolized respectively. Both real-world normal and testing botnet traffic data

were then sent to the botnet HMM for detection. There were 150 sequences of Zbot traffic and 150

sequences of normal traffic. Each sequence contains 50 symbolized inter-packet timings of a network

flow. If a Zbot traffic sequence was recognized as botnet traffic, we declared a true positive. If a

normal traffic sequence was recognized as a Zbot signature, we declared a false positive. Using the

confidence interval approach, we obtain the detection ROC curve in Figure 4.14-(a). Every square

dot represents the result of a different threshold value.
2This shows another advantage of timing analysis: by just capturing headers, it eliminates much of the network

adapter processing time and the detection can be performed in real-time.
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We find the optimal point is (0.947, 0.007) with an Euclidean distance of 0.053 to (0,1).

The corresponding optimal threshold can be any value in [0, 0.667], with an empirically determined

94.7% true positive rate and a 0.7% false positive rate. Thus we can dependably detect wild Zbot

traffic using the proper threshold value.
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(a) Zbot HMM Detection ROC curve (95% CI)
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(b) Autocorrelation Detection ROC curve

Figure 4.14: Detection ROC curves

We compared our detection result with the single client detection approach from [44]. They

applied autocorrelation analysis for a sequence of traffic from a single client to determine whether

or not this sequence was botnet traffic. This technique encodes the traffic in a time window into a

four-element vector: < OutPkt#, OutPktSize, InPkt#, InPktSize >, and uses the autocorrelation

of the encoded sequence to find repeating patterns. This approach essentially checks whether or not

a sequence of traffic is periodic. There are several drawbacks of this approach. First, it is hard to

determine the size of the time window, since inter-packet timings may vary from milliseconds to

several minutes. Inappropriate time windows may cause the encoded sequence to include incorrect

patterns. Secondly, network noise can disturb the periodic packet timings and thus make them

undetectable [44]. Also, some benign network services will generate periodic patterns, such as email,

social network and cloud service applications, which need to update with servers periodically [44].

So merely checking the periodicity will yield more false positives and fewer true positives. This is

confirmed by the detection ROC curve in Figure 4.14-(b), where the optimal detection result shown

is a 91.7% true positive rate and 19.8% false positive rate on the same data set.

Because our approach checks the underlying behaviors of the botnet, not the periodicity,

and the effect of network noise is removed during the process of data binning and model confidence

checking. Thus, our approach has a better detection rate than the autocorrelation analysis from
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[44]. For centralized botnets like Zbot, if a bot agent is found and intercepted, other bots can

also be detected using our HMM detection approach and the central C&C server can be identified.

Therefore, our approach provides a solution for detecting a centralized botnet.

4.4 P2P Botnet Traffic Detection

To avoid the single-point failure disadvantage of the centralized structure, hierarchical bot-

net uses P2P techniques [5, 9, 56, 66]. In this section, we attempt to apply stochastic grammars to

P2P hierarchical botnet traffic detection. We first construct hierarchical P2P botnets using Clemson

campus computer cloud (Palmetto cloud). Using the HMM detection approach, we find that HMMs

can not detect recursive patterns in simulated P2P botnet traffic timings. Therefore, we applied

PCFG detection approach. The experiment results show that PCFGs have accurate detection rates.

Next, we use our PCFG approach to detect real-world P2P botnet traffic. We get a trace

of traffic from Storm botnet, one of the early P2P botnets [43]. We use production rules that

explain the patterns in the Storm traffic. By parsing the traffic data, we estimate the production

probabilities and use the estimated PCFG to detect new sequences of network traffic timings. The

result shows that our approach can adequately distinguish the botnet traffic from the normal traffic.

4.4.1 Simulated Hierarchical Botnet

Hierarchical botnets are simulated using Clemson campus cloud computers. We use TCP

as C&C communications to make the communication in the hierarchical botnet reliable. A C&C

server is set up to control a tree-structured computer network, as shown in Figure 4.15. We use 40

nodes to construct a hierarchical botnet with 10 levels.

The C&C server sends out commands repeatedly. After receiving the command, every bot

executes it, by waiting for a certain amount of time (different delays for different malicious actions

are in Table 4.4), and replies back. Every node also passes the commands from its parent node

to its children nodes, and passes back children nodes’ responses. All forwarded messages are low-

latency and different messages use separate packets. This is important, because in this way, every

intermediate node can take control of sub-botnet (tree structure below it) and preserves timing

patterns of all nodes in its sub-botnet, not only its direct children nodes. This also mimics the

behaviors of a hierarchical botnet. Malicious actions and corresponding timing delays in Table 4.4
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Figure 4.15: Simulated Hierarchical Botnet

are chosen for illustration. Actual botnets may have different malicious behaviors and associated

timing delays.

Table 4.4: Delay time table
Malicious actions Delay time

(in seconds)
i (stealing identity) 5
s (sending spam) 10
m (installing malware) 15
d (performing DDoS attacks) 20

We simulate two hierarchical botnets based on PCFGs in Table 4.5. The first three produc-

tion rules represent the hierarchical structure of a botnet. The last four productions represent the

behaviors of bots in each botnet. Malicious actions follow the corresponding production probabil-

ities. These production rules and associated probabilities are used for illustration. Actual botnets

may have different structures and different probabilities. For example, P2P Zbots are mainly tar-

geted for identify theft, therefore, the production for this malicious action of P2P Zbot will have a

dominant high probability compared to other malicious actions.

After timing data is collected by Tshark [7], we use Table 4.6 to translate timing data into

terminals. Different ranges are found by plotting the histogram of the data. We collected 11 data

sets for each botnet and each data set contains several hundred packets.
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Table 4.5: Hierarchical Botnet PCFGs
Productions PCFG1 PCFG2
A→ (A) 0.3 0.4
A→ AA 0.3 0.2
A→ B 0.4 0.4
B → i 0.2 0.3
B → s 0.3 0.1
B → m 0.3 0.2
B → d 0.2 0.4

Table 4.6: Delay-Symbol lookup table
Delay time ranges Symbols
(in seconds)
[0.0, 2.0) (
[2.0, 4.0) )
[4.0, 7.0) i
[7.0, 13.0) s
[13.0, 17.0) m
[17.0, 25.0) d

4.4.2 Detection with HMMs

We first used 1000 symbolized inter-packet timings of simulated P2P botnet traffic to infer

HMMs. The model we inferred with L = 2 is in Figure 4.16-(a). According to the model confidence

test, this model is statistical significant. When we increase L = 3, we get the HMM in Figure

4.16-(b). However, the required samples for model significance is 4224, which means we need to

capture more data.

(a) L = 2 (b) L = 3

Figure 4.16: Models inferred with 3000 packets
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Usually, the model significance can be achieved by using more data. However, when we

repeat the process with 2000 packets, the required number of samples for the newly inferred model

increases to 8268 samples. Oddly, the required number of samples keeps increasing as we increase

the number of samples to infer the HMM, as shown in Figure 4.17. The steady increase suggests

we are not able to capture enough data to rebuild the significant model. Using the metric, we find

the distances between each pair of HMMs are 1, which means the differences between them are not

because of network noise and they are totally different models.
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Figure 4.17: Samples required (in log scale)

Therefore, we are forced to stop HMM inference and use the approximate model inferred with

L = 2. We then applied the confidence interval approach to detect 100 sequences of hierarchical

botnet traffic timings and 100 sequences of normal traffic timings. Each sequence contains 50

symbolized inter-packet timings. If a hierarchical botnet traffic sequence is recognized as botnet

traffic, we have a true positive. If a traffic sequence that is not generated by the hierarchical botnet,

but is recognized as is, we have a false positive. By varying the threshold values, we obtain the

detection ROC curve in Figure 4.18.

The ROC curve is around the diagonal line (the red dotted line in Figure 4.18), which means

that if we want a high true positive rate, the false positive rate is also high; if we want a low false

positive rate, the true positive rate is low as well. Therefore we are unable to get a good detection

rate (i.e. high true positive rate and low false positive rate) using the HMM approach.

This result shows that when the data contains hierarchical and recursive patterns, HMMs

are not appropriate models to use, because HMMs are stochastic regular grammars [13, 64], which

has finite state limitation and can only represent patterns in regular expressions.
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Figure 4.18: Botnet ROC curve (95% CI)

4.4.3 Detection with PCFGs

We build the LALR parser from production rules in Table 4.5, and parse the symbolized

sentences to estimate production probabilities for each data set. Using the χ2 test, we detected

whether two data sets are generated from the same source PCFG (meaning that they are generated

from the same hierarchical botnet). If two sets are generated by different PCFGs, but they are

detected as equivalent, we have a false positive. If two data sets are generated by a same PCFG,

and the χ2 test accepts that they are equivalent, we count it as a true positive. By testing each pair

of these 22 data sets, we get the detection result in Table 4.7. With a high true positive rate and

a low false positive rate, we can dependably detect hierarchical botnet traffic using our detection

approach.

Table 4.7: Botnet Detection Result
Data Set Source PCFG1 PCFG2
TP rate 96.7% 93.4%
FP rate 1.6% 1.6%

For hierarchical botnet traffic, every intermediate node includes timing patterns from its

sub-botnet. Therefore, its communications have recursive patterns similar to tree structures. Fur-

thermore, traffic timing patterns of different bots in the same hierarchical botnet are also different,

since traffic from different bots go through different numbers of levels, and thus have different traffic

timing patterns. Therefore, using HMMs to model hierarchical traffic patterns is not appropriate.

PCFGs can expressively recognize recursive timing patterns, by parsing the symbolized tim-
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ing data. The stochastic behaviors of the hierarchical botnet (i.e. infection rate, possible malicious

actions, etc.) can also be modeled by production probabilities. Compared to HMMs, PCFGs are

more appropriate to represent traffic patterns of hierarchical P2P botnet traffic.

4.4.4 Storm Botnet

The previous section illustrated the performance of the PCFG detection approach on the

traffic data of simulated hierarchical P2P botnets. In this section, we apply PCFG to detect real-

world P2P botnet traffic. We got a trace of traffic from Storm botnet [43], one of the known P2P

botnets. With our PCFG detection approach, we can appropriately differentiate Storm botnet traffic

from normal P2P traffic.

Storm botnet is one of the earliest botnets to use P2P techniques [43]. Storm is capable of

a variety of malicious activities, such as spamming, DDoS attacks and identity theft [29]. It was

estimated to include millions of infected computers in 2007 [49]. At one point, it accounted for 8%

of all malware on Windows systems [38].

The communication between bots in the Storm botnet is based on the Overnet protocol, a

P2P protocol that allows file sharing. The transient, “self-healing” features of the P2P network makes

the botnet more resilient to monitoring and takendown actions. After infection, a bot first contact a

list of static peers in the configuration file to join the network. After successful participation, it gets

updated files and tools from other bots and maintains a list of neighbour peers that it repeatedly

publicize with [87]. To secure the communication between bots, it encrypts the traffic [87].

In a Storm botnet, different bots may have quite different communication patterns, because

some bots may have few neighbour bots while others may have a lot of neighbour bots. However,

their communications may have similar or equivalent probability distributions for malicious actions.

For example, if the botnet is performing DDoS attacks, a large portion of the bot’s traffic will be

fast and repeated packets, and this portion among bots are usually similar no matter how many

neighbours a bot may have. Based on these observations, we develop productions that explains

Storm botnet traffic patterns. By parsing the training data (the collected traffic that are known

from a Storm botnet), we map the data into production probabilities. With the estimated PCFG,

we are able to detect whether or not a new observed traffic data set is from the Storm botnet based

on our detection approach.
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4.4.5 Traffic Timing Analysis

We also use inter-packet timing delays as traffic patterns for Storm botnet. For P2P botnets,

inter-packet timings relate to malicious action timings, publicizing periods and other botnet activity

characteristics. For example, while sending spam or performing DDoS attacks, the inter-packet

timings are small since bots are sending packets very fast. During normal time, the inter-packet

timings are large since the bot will publicize itself with a certain time period. Therefore, inter-packet

timings reflect the behaviors of a botnet.

In our application, since Storm traffic uses P2P, we are only interested in timings of UDP

packets. Similarly, we translate timing data into symbols (terminals), since the PCFG detection

works with sentences of terminals. Different groups of delays can be found by plotting the histogram

of the data and similar delays are grouped together and replaced with a terminal.

In this application, we get a real-world Storm traffic trace from [43], where there are 13 bots

in the set up. We extract P2P communication traffic for each bot and obtained 13 timing data sets,

each containing several thousand timing delays. Figure 4.19 shows the histogram of inter-packet

delays of a data set. There are three distinct clusters (short, medium, large delays), so we use three

terminals. Table 4.8 shows different ranges for timing delays and corresponding terminals.
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Figure 4.19: Storm botnet traffic timing histogram

Table 4.8: Delay-Terminal lookup table
Delay time ranges Terminals
(in seconds)
[0, 150) a
[150, 350) b
[350,∞) c
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4.4.6 Storm Botnet Traffic Detection

For Storm traffic, we use the productions in Table 4.9 to explain Storm botnet traffic pat-

terns. The first set of productions are used to represent recursive patterns in the traffic. The

second set of productions represent some typical communication patterns, such as continuous short

(or medium) delays, a short delay followed by a medium (or large) delay and etc. The last set of

productions are used to corporate all other patterns, in case some noise is introduced in the data.

With this CFG, we can build a LALR parser to parse the symbolized traffic data sets.

Table 4.9: CFG for Storm botnet traffic
Productions

A→ AA B → aa C → a
A→ B B → ab C → b
A→ C B → ac C → c

B → bb
B → cc

We use three of the Storm traffic data sets as the training data. The rest 10 data sets are

then used as test sets. After symbolization, we parse the training data sets to estimate a PCFG.

This maps the probability distribution from the data set to productions. The estimated PCFG is in

Table 4.10.

Table 4.10: Estimated PCFG from Storm botnet traffic
Productions

A→ AA 0.500 B → aa 0.499 C → a 0.001
A→ B 0.357 B → ab 0.259 C → b 0.682
A→ C 0.143 B → ac 0.073 C → c 0.317

B → bb 0.095
B → cc 0.072

To test the performance of our detection approach, a trace of real-world background normal

traffic are captured from Clemson University campus network with Tshark [7]. 10 nodes with most

UDP traffic are chosen and their timing data is extracted. So we got 10 timing data sets of normal

traffic, each containing several thousand packets.

Using the χ2 test, we detect whether a data set matches the estimated PCFG. If a data

set matches the PCFG, we conclude that this data set generated by the Storm botnet. For 10 test

sets of the Storm botnet traffic, the χ2 test accepted 5 data sets. The χ2 statistics of the 5 Storm

data sets that were rejected are 24.0, 18.3, 19.2, 20.4, 28.3, which are close to the critical value
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χ2
0.05,df=8 = 15.5. If we further investigate the estimated production probabilities from these data

sets, we find that they are actually very close to the PCFG in Table 4.10. One example is shown in

Table 4.11. Each probability differs by at most 0.03.

Table 4.11: Estimated probabilities of one data set that is not accepted
Productions

A→ AA 0.500 B → aa 0.495 C → a 0.004
A→ B 0.377 B → ab 0.246 C → b 0.683
A→ C 0.123 B → ac 0.070 C → c 0.313

B → bb 0.080
B → cc 0.101

However, for 10 normal traffic data sets, none are accepted as equivalent with the estimated

PCFG. The χ2 statistics of normal traffic data sets are much larger than those of Storm traffic data

sets, with a minimum value of 254.4 and a maximum value of 21203.8. Using the χ2 critical value as

a threshold and varying it, we plot the ROC curve for detection. The curve is shown in Figure 4.20.

It has optimal detection rate 100% TP rate and 0% FP rate, using any threshold value between 28.3

and 254.4. Therefore, by using ROC curves, we can dependably distinguish Storm botnet traffic

from normal background traffic.
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Figure 4.20: Storm botnet traffic detection ROC curve

Generally, with larger sample sizes, the χ2 test will give more accurate detection rates.

However, in this case, the Storm traffic inflates the χ2 test values when sample sizes are very

large, and thus erroneously reject data samples [74]. Network traffic are non-Gaussian, heavy-tailed

processes [21, 73, 45], which are not independent and identically distributed, therefore, the estimated

probability distributions are likely to not satisfy the assumptions of the χ2 test. Since the number of
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training data sets is large, it is also possible that the approach is over trained and does not generalize

appropriately. Another possible reason for the χ2 test rejecting 5 Storm traffic data sets is because

the production rules in Table 4.9 are estimated by the experimenter. The correct production rules

may be different. Using productions inferred directly from the data might be more appropriate.

However, the χ2 test results we present are still promising. Improving the TP rate of the χ2 test

and production inference from traffic data are left as future work.

4.5 Summary

In this chapter, we applied our stochastic grammar detection approaches to network traffic

analysis. We performed three application, Tor network traffic analysis, centralized botnet traffic

detection and P2P botnet traffic detection.

To analyze the traffic tunneled through Tor, we set up a private Tor network and a server

talks to a client through Tor based on a protocol represented by a HMM. From the timing data

collected at the client, we used HMM inference algorithm to infer the protocol. However, the noise

in the network obfuscates our inference process. We then apply the metric to the inferred models

and find the underlying protocol is actually encapsulated in the inferred models. Also, the Markov

metric quantifies the noise in the Tor communication. Our Markov metric is better than the KLD

measure, because our metric is a true metric and can always return a proper distance value.

We applied HMM approach to centralized botnet traffic detection. We used Zeus botnet

as an example. From inter-packet timings of Zbot C&C communications, we inferred HMMs and

used inferred HMMs to detect new botnet communication traffic. Experimental results show that

we can adequately detect botnet traffic from normal traffic. Our approach also outperforms the

autocorrelation approaches usually performed on the network timing data, because HMMs checks

the underlying system behaviors, not just the periodicity.

To detect more advanced hierarchical botnets, which use P2P techniques, we used PCFGs

for detection. Using traffic data from a simulated hierarchical botnet, we showed that HMMs are

not suited for detecting recursive patterns. With PCFG detection, we detected real-world network

traffic timing data from Storm botnet. The χ2 test results are promising, and performs better than

HMMs. But more future work is required. Using ROC curve analysis, we can accurately detect

Storm P2P botnet traffic.
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Chapter 5

Conclusions

In this chapter, we give a summary of our work and achievements. We also suggest some

possible future research utilizing the approaches proposed in this thesis.

5.1 Conclusion

In this thesis, we proposed pattern detection approaches with stochastic grammars for traffic

timing analysis. We developed inference and detection algorithms for hidden Markov models and

probabilistic context-free grammars. With these approaches, we inferred the protocols tunneled

through Tor, measured the noise in the Tor communication and detected traffic that are generated

from centralized and P2P botnets.

From a sequence of observations, we inferred the HMMs without any a priori information

about the structure and initial transition probabilities. A model confidence test was used to check

the significance of the inferred HMM. We extended the confidence interval approach for HMMs to

detect whether or not a new sequence of observations matches with a given HMM.

To compare the similarity of HMMs, we propose a normalized statistical metric space.

Our Markov metric compares HMM based on underlying system statistics, which is fundamentally

different from the graph isomorphism problem from graph theory. Using the χ2 test, we determine

the equivalence of two HMMs. If they are not equivalent, the Markov metric removes states and

transitions until the models are equivalent within a given statistical significance. This measures

the distance between two models. Compared to KLD, which is a widely used HMM similarity
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measurement, our approach is more practical and provides a true metric space.

HMMs are probabilistic state machines, which are the simplest models of computation.

Therefore we extended the detection approach to use PCFGs, which have more expressive power

in pattern representations. We proposed a simple statistical approach for PCFG detection. We

estimated production probabilities from either tree sets, or sentence sets with LALR parser. The χ2

test was used to determine whether a data set matches a given PCFG, or whether two data sets are

equivalent. From illustrative examples, our approach has better detection rates compared with the

previously used inside-outside algorithm.

Three applications demonstrated the performance of our detection approaches. In the Tor

traffic analysis, we used HMM inference approach to infer HMMs from a real-world application, and

used Markov metric to analyze inferred models. With the metric, we were able to identify a protocol

tunneled through Tor and distinguish it from statistically insignificant noise. Also with the metric,

we were able to measure the amount of noise in the Tor network.

Using HMM inference and detection approaches, we presented a centralized botnet traffic

detection application. We inferred HMMs from Zbot traffic timing data. The inferred HMM detects

botnet traffic using confidence intervals of the state probabilities. Experimental results on real-world

network traffic show that this approach appropriately differentiates botnet traffic from normal traffic,

and has a higher true positive rate and a lower false positive rate than the autocorrelation analysis.

Hierarchical P2P botnets have arisen to avoid the disadvantages of centralized botnets.

HMMs failed to detect recursive and structural patterns in P2P botnet traffic. We used PCFGs

to detect P2P botnet traffic. From traffic timing data of a real-world Storm botnet, we estimated

PCFGs, which maps probability distributions from traffic data into production probabilities. De-

tection results show that based on ROC curve analysis on χ2 statistics, we can appropriately differ-

entiate Storm botnet traffic from normal P2P traffic.

5.2 Future Research

In general, our detection approach works with timing profiles, which exist in all automated

network processes. Remove timing profiles is difficult and not practical. Therefore future works can

extend our detection approaches to detect other network processes, such as other malicious network

processes, or certain specific network protocols.
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The Markov metric is useful in behavior recognition and detection. Models that have similar

statistics can be recognized and grouped together to get a larger training sample. An interesting

future application based on this could be analyzing consumer behaviors. In [22], Brooks et.al con-

structed HMMs for purchase behaviors of different consumers from Netflix challenge data set [16].

Using the metric we proposed, it is possible to identify consumers who have similar purchase behav-

iors and improve the product recommendation systems.

For probabilistic context-free grammars, future research could learn production rules from

observations. Inferred productions may be more appropriate for representing underlying processes.

The detection rates may improve.

We could also create a metric space for PCFGs. Although it is undecidable if two context-

free grammars generate the same language [46], graph matching is also complex, future research

could adapt our Markov metric to determine if the statistics of two PCFGs are equivalent. This

could be useful for behavior recognition and pattern detection.
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Appendix B The Construction of LALR Parse Table

We introduce the process of generating a LALR parse table from [13]. We first need to

augment a CFG G to G′. If G is a CFG with start symbol S, then the augmented grammar G′ is G

with a new start symbol S′ and an additional production S′ → S. The augmented grammar G′ is

then used for this LALR parser construction method. Algorithm B.1 describes the construction of

a LALR table.

Algorithm Description B.1 – Construction of LALR table
Input: An augmented CFG G′.
Output: A LALR parsing table with functions ACTION and GOTO for CFG G′;

1. Construct C = {I0, I1, . . . , In}, the collection of sets of LR(1) items, using the approach in B.2;

2. Replace all sets having the same core items by their union;

3. Let C′ = {J0, J1, . . . , Jm} be the new collection. State i of the parser is generated from Ji:

(a) If [A→ α · aβ, b] is in Ji and GOTO(Ji, a) = Ij , then set ACTION[i, a] to “shift j”;

(b) If [A→ α·, a] is in Ji, A 6= S′ then set ACTION[i, a] to “reduce A→ α”;

(c) If [S′ → S·, $] is in Ji, where $ is the endmark, then set ACTION[i, $] to “accept”;

4. If Ji is in the union of one or more LR(1) sets, say Ji = I1 ∪ I2 ∪ . . ., then the core of GOTO(I1, A),
GOTO(I2, A), . . . are the same. Let Jj the union of all sets of items having the same core as
GOTO(I1, A), then GOTO(Ji, A) = Jj .

We discuss how to generate LR(1) items for CFGs using the way in [13]. An LR parser is

also in a finite state format. States represent sets of “items.” An item of a grammar is a production

with a dot in the right hand side. For example, the production A → XY Z yields the following

items:
A→ ·XY Z

A→ X · Y Z

A→ XY · Z

A→ XY Z·

(1)

where A is a nonterminal and X,Y, Z are grammar symbols. An item indicates how much of a

production has been parsed and what is expected.

To get LR(1) items, we use the FIRST and FOLLOW functions. The FIRST(α) function,

where α is string of grammar symbols, generates a set of nonterminals that begin strings derived from

α. So if a terminal a is in FIRST(α) set, there exists a derivation that α ∗⇒ aβ. The FOLLOW(A)

function, where A is a nonterminal, generates a set of nonterminals that appears immediately to the

right of A in some sentential form. So if a terminal a is in FOLLOW(A) set, there exists a derivation
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that S ∗⇒ αAaβ, for some α and β. Detailed algorithms to get FIRST(α) and FOLLOW(A) sets

are discussed in [13] .

An LR(1) item is [A→ α · β, a], where A → αβ is a production and a is a terminal in

FOLLOW(A). The 1 in LR(1) refers to the length of the second component, the lookahead of the

item. To construct collection LR(1) items, we use an augmented grammar. The following algorithm

is used to construct a collection of sets of LR(1) items.

Algorithm Description B.2 – Construction of LR(1) item sets C
CLOSURE:

• For each item [A→ α ·Bβ, a] in I:

– For each production B → γ in CFG G:

∗ For each terminal b in FIRST(βa):

· Add [B → ·γ, b] to set I;

• Return I when no more items are added to I.

GOTO(I,X):

• Initialize set J to be empty:

• For each item [A→ α ·Xβ, a] in I:

– Add item [A→ αX · β, a] in I;

• Return CLOSURE(J).

Item sets C:

• Initialize C to CLOSURE({[S′ → ·S, $]}), where $ is the endmark;

– For each set of items I in C:

∗ For each grammar symbol X:

· If GOTO(I,X) is not empty and not in C:

· Add GOTO(I,X) to C;

• Return C when no new sets of items are added to C.
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Appendix C HMM Inference Algorithms

Given a sequence y of output observations, the Causal State Splitting and Reconstruction

(CSSR) Algorithm [78, 77, 80] infers a set of causal states and a transition structure for a HMM that

provides a minimum entropy estimation of the true underlying process dynamics. This algorithm

requires an parameter L, which is large enough to indicate the current state based on the history

sequence with length L. The CSSR Algorithm is described as below:

Algorithm Description C.1 – CSSR Algorithm from [77] and [76]
Input: Observed sequence y; Alphabet A, Integer L;
Initialization:

1. Define state q0 and add λ (the empty string) to state q0. Set Q = {q0}.
2. Set N := 1.

Splitting (Repeat for each i ≤ L)

1. Set W = {x|∃q ∈ Q(x ∈ q∧ |x| = i− 1)}. The set of strings in states of the current model with length
equal to i− 1.

2. Let N be the number of states.

3. For each x ∈W , for each a ∈ A, if ax is a subsequence of y, then

(a) Estimate fax|y : A → [0, 1], the probability distribution over the next input symbol.

(b) Let fqj |y : A → [0, 1] be the joint state conditional probability distributions; that is, the prob-
ability given the system is in state qi, that the next symbol observed will be a. For each j,
compare fqj |y with fax|y using an appropriate statistical test with confidence level α. Add ax
to the state that has the most similar probability distribution as measured by the p-value of the
test. If all tests reject the null hypothesis that fqj |y and fax|y are the same, then create a new
state qN+1 and add ax to it. Set N := N + 1.

Reconstruction

1. Let N0 = 0.

2. Let N be the number of states.

3. Repeat while N0 6= N :

(a) For each i ∈ 1, . . . , N : Set k := 0. Let M be the number of sequences in state qi. Choose a
sequence x0 from state qi. Create state pik and add x0 to it. For all sequences xj (j > 0) in
state qi:

i. For each a ∈ A xja produces a sequence that is resident in another state qk. Let (xj , a, qk) ∈
δ.

ii. For l = 0, . . . , k, choose x from sequences within pik. If δ(xj , a) = δ(x, a) for all a ∈ A, then
add xj to pik. Otherwise, create a new state pik+1 and add xj to it. Set k := k + 1.

(b) Reset Q = {pik}; recompute the state conditional probabilities fq|y for q ∈ Q and assign transi-
tions using the δ functions defined above.

(c) Let N0 = N .

(d) Let N be the number of states.

4. The model of the system has state set Q and transition probability function computed from the δ
relations and state conditional probabilities.
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The zero knowledge HMM identification algorithm [76] extends the CSSR algorithm to find

the parameter L automatically. This algorithm is described as below:

Algorithm Description C.2 – Zero Knowledge HMM Identification Algorithm from [76]
Input: Observed sequence y; Alphabet A;
Initialization:

1. Set L = 1.

2. The set QL−1 = {q0} and GL−1 = 〈QL−1,A, δL−1, pL−1〉, where (q0, y, q0) ∈ δL−1 for all y ∈ A and
pL−1(q0, y, q0) is the proportion of times symbol y occurs in history y. (This is the ε-machine that
results when CSSR Algorithm is run with L = 0.)

3. Let the length of N = |y|.
Main Loop:

1. Let GL = 〈QL,A, δL, pL〉 be the ε-machine output of CSSR Algorithm with y, A and L;

2. For every state q0 ∈ QL, record the sequence of states qq0L = {q1, q2, . . . , qN} that occurs when δ̂L is

recursively applied with input y starting at state q. That is, q1 = δ̂L(q0, y1), q2 = δ̂L(q1, y2) etc. If
there is some i ≤ N for which qi =↑, then we discard sequence qq0L as undefined.

3. Each sequence qq0L defines a partial function fq0L : [N ]×A → QL. If qk is the kth element of sequence
qq0L , then fq0L (k, yk) = qk. That is, position k with symbol yk is associated to state qk. Let FL be the
set of functions fq0L defined in this way.

4. Compare the functions in FL to the elements of FL−1: We will use these sets to define a matching
problem whose optimal solution will be used to define a stopping criterion.

(a) Let I be a set of indices corresponding to elements of QL−1 and J be a set of indices corre-
sponding to elements of QL.

(b) Define binary variables xij (i ∈ I, j ∈ J ). We will declare xij = 1 if and only if state qi of QL−1

is matched with state qj of QL.

(c) Define the following coefficients:

rij =
∑

q0L∈QL,q0L−1∈QL−1

∣∣∣(fq0LL )−1(qi) ∩ (f
q0L−1
L−1 )−1(qj)

∣∣∣ .
(d) Solve the Matching Problem:

max
xij

mL =
∑
ij

rijxij , s.t.
∑
j

xij = 1 and xij ∈ {0, 1}

to obtain a matching between states in GL−1 and states in GL.

5. If |mL −mL−1| = 0, then stop. The current value of L is the correct value.
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