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ABSTRACT 

Dow and Rosen’s work in 1965 formed an intellectual framework for 

compressive strength of unidirectional composites.  Compressive strength was 

explained in terms of micro-buckling, in which filaments are beams on an elastic 

foundation.  They made simplifying assumptions, with a two dimensional 

idealization and linearized material properties. This study builds on their model, 

recognizing that the shear mode of instability drives unidirectional compressive 

strength. As a necessary corollary, the predictive methods developed in this 

study emphasize correct representation of composite shear stiffness. Non-linear 

effects related to matrix material properties, fiber misalignment, three 

dimensional representation, and thermal prestrains are taken into account. 

Four work streams comprise this study: first, development of a closed form 

analytical model; second, empirical methods development and model validation; 

third, creation and validation of a unit cell finite element model; and fourth, a 

patent application that leverages knowledge gained from the first three work 

streams.  

The analytical model characterizes the non-linearity of the matrix both with 

respect to shear and compressive loading. This improvement on existing 

analyses clearly shows why fiber modulus affects composite shear instability. 

Accounting for fiber misalignment in the model and experimental characterization 

of the fiber misalignment continuum are important contributions of this study.   



iii 

 

A simple method of compressive strength measurement of a small 

diameter monofilament glass-resin composite is developed. Sample definition 

and preparation are original, and necessary technologies are easily assessable 

to other researchers in this field.  This study shows that glass fiber composites 

have the potential for high compressive strength. This potential is reached with 

excellent fiber alignment and suitable matrix characteristics, and results are 

consistent with model predictions. 

The unit cell three dimensional finite element model introduces a boundary 

condition that only allows compressive and shear deformation, thus recognizing 

the actual deformation mechanism of a compressed unidirectional composite.  A 

new approach for representing the resin matrix is employed, giving improved 

correlation to empirical measurements noted in the literature. A method of 

accounting for realistic composite imperfections is introduced. 

The patent application work was fed by results from the first three areas. A 

new engineering structure is created in which buckling is beneficial. Post buckled 

behavior favorably affects other structural components in an overload situation. 

The first three work streams form a coherent unit and are mutually 

supportive.  The analytical model predictions are corroborated by the 

experimental measurements. Finite element model predictions are consistent 

with the analytical model predictions. 
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DEDICATION 

Technology is created by combining the laws of science with the laws of 
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CHAPTER ONE 

PREFACE 

Study scope 

A composite material consists of at least two constituent materials with 

material properties that are typically significantly different. These constituent 

materials remain discernibly separate yet bonded together in the finished 

composite product.  The individual constituents may have dimensions that are 

microscopic or macroscopic in scale. The engineering goal of a composite 

material is the creation of a new material that has one or more particular 

properties (density, stiffness, strength, or price) superior to that attainable with a 

single homogenous material. 

The field of composite materials dates from antiquity. One ancient piece of 

literature that describes a composite material is the book of Exodus in the Bible.   

Reference is made to Hebrew slaves making bricks reinforced with straw, and 

then being forced to make bricks without straw.1 The straw served as a 

fabrication aid, facilitating brick bonding and molding. Ancient Egyptian art 

depicts this process. 

Modern composites began to come of age in the second half of the 20th 

century as carbon, glass, and Kevlar fibers entered commercial aviation and 

automotive markets.  Rapid improvement in material properties and 

manufacturing techniques was achieved in this time period.  For example, the 
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tensile stiffness of graphite fibers was 150 GPa when they entered the market in 

the early 1980s, and had reached 500+ GPa in the early 1990s.2 Progress 

continues, pushed in part by the need for lower cost, lower mass structures in 

transportation industries. 

This study applies to a small segment of the world of composites.  Two 

composite families are investigated, with the particular research goal being 

comprehension and optimization of compression properties. Then, a practical 

study goal is addressed; the use of a specific composite as an element in a novel 

engineering structure. 

The two general composite families studied are as follows: 

 Continuous Fiber Unidirectional Laminate Classic Composite 

In this study, “classic composite” defines the matrix material as having an 

elastic modulus 1/10th to 1/100th that of the fiber.  Common matrix materials 

include thermoset and thermoplastic resins.  Only thermoset resins are 

considered here, yet the principles developed apply to thermoplastic matrix 

materials also. 

This study considers only continuous high performance fibers, which 

implies the use of high modulus and strength fibers such as boron, glass, and 

carbon.  The most common employ of these materials is in laminate construction, 

in which thin layers (lamina) of unidirectional fiber are impregnated in a matrix 

material. This is known as “prepreg.”  A unidirectional laminate consists of 

multiple lamina of identical fiber direction. Bonding of lamina involves the 
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pressurized cure of the resin using an autoclave molding process3.  Ideally, this 

geometry gives a transversally isotropic cross-section.  In reality, a very thin layer 

of isotropic resin exists between each individual lamina. 

 Pultruded Monofilament Classic Composite 

”Monofilament” in this context is a reinforcement which has a monolithic 

cross section, with a transverse cross section on the order of 1 mm2.  It is 

manufactured in a continuous process, during which the fibers are under tension. 

Fibers pass though a resin bath and then through a die that defines the cross 

section shape. Resin polymerization occurs in-line immediately afterwards.4   

A monofilament is neither a cord nor a cable.  A cable consists of several 

isotropic cross-sections (with diameters on the order of 0.2 mm) having a twisted 

structure. Cables are often made of metallic materials. A cord consists of a large 

number of twisted fibers of small diameter (on the order of microns). Cords are 

made from organic compounds, such as polyester, aramid, and nylon.   

A pultruded composite may have the same constituents as a laminate 

composite; i.e., the same fiber, fiber volume fraction, and matrix material.  

However, it may have different mechanical properties due to: (a) improved fiber 

alignment of the pultrusion process, and (b) the absence of interlaminar effects. 

This study addresses these effects as they relate to compressive strength. 

This research was in part sponsored by Michelin Tire Corporation. 

Appropriately, the study has an applied research goal – the use of a classical 

composite as reinforcement in a large-deformation elastomeric structure. 



4 

 

Pneumatic tires, conveyor belts, and automotive V-belts are examples of 

engineering structures having cords, cables, and/or monofilaments as 

reinforcements, with elastomeric matrix materials.  Comprehension of composite 

compressive properties gained in this research was used to create a patent 

application involving the use of a classical composite in an engineering structure. 

A real-world design challenge was addressed, with solutions developed. 

Organization of this Dissertation 

This dissertation consists of theoretical and experimental study of 

compressive strength of unidirectional classical composites, and the use of a 

classical composite in an elastomeric engineering structure. Chapter 2 provides a 

literature review of classical composite constituents and compressive behavior. 

Chapters 3 through 5 represent three independent manuscripts formatted for 

publication in scientific journals.  While some redundancy of material was 

necessary, these chapters generally fit together as follows:  Chapter 3 relates 

primarily to closed-form theory development and implementation in a 

mathematical model; Chapter 4 serves as a further confirmation of Chapter 3 by 

comparing experimental data to theory predictions; and Chapter 5 uses insights 

from Chapter 3 to develop micromechanical finite element modeling procedures. 

Finally, Chapter 6 contains general information pertaining to a patent application 

filed by Michelin Tire Corporation.  As the patent had not published at the date of 

defense of this dissertation, the author was not authorized to disclose detailed 
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information.  However, the spirit of the application and its relevance to knowledge 

gained in Chapters 3 - 5 are shown. 

References 

                                                 
1 The Bible. Exodus 5 :6-18. 

2 Grandidier, J-C, Ferron, G., Potier-Ferry, M. (1992). Microbucking and Strength in Long 
Fiber Composites: Theory and Experiments. International Journal of Solids and 
Structures, Vol 29, No. 14, pp 1753-1761. 

3Daniel, I.M., Ishai, O. (2006). Engineering Mechanics of Composite Materials, 2nd Ed., 
Oxford University Press, Inc., New York, pp. 35-39. 

4 Meyer, R. (1985). Handbook of Pultrusion Technology. Chapman and Hall, New York. 
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CHAPTER TWO 

CLASSICAL COMPOSITE CHARACTERISTICS 

Classical composites are well described in technical papers and in 

standard composite textbooks1 as are constituent materials and current 

fabrication techniques.2 3 4 There is no value in any broad treatise of these 

subjects.  Rather, the goal of this section is to examine crucial characteristics of a 

classical composite as they relate to compression behavior.  

Reinforcement Characteristics 

Morphology of aramid and carbon fibers are broadly discussed in the 

literature and in composite handbooks5 6.  Particularly, aramid fiber molecular 

structure is identified as a culprit for observed poor compression behavior, with 

its high anisotropy and low shear stiffness and strength identified as fundamental 

to the observed poor compression performance.7   

Carbon fiber morphology is also covered8 with the degree of anisotropy 

correlated to extensional modulus. While having less orientation than aramid, 

carbon fiber exhibits a type of layering, similar to the layering of an onion skin.  

Different layers can also have differing degrees of axial orientation.  This 

anisotropy can play a negative role in compression. 

Conversely, glass fiber morphology sees little discussion in the literature. 

Glass fiber morphology discussion really must begin with a discussion of the 

chemistry of glass itself.  The following overview was compiled from on-line 

sources.9 10   



7 

 

Many solids have a crystalline structure on microscopic scales.  The 

molecules are arranged in a regular lattice, as in Figure 2.1a.  As the solid is 

heated the molecules vibrate about their position in the lattice until, at the melting 

point, the crystal breaks down and the materials begin to flow on a molecular 

level.  There is a sharp distinction between the solid and the liquid state that is 

separated by a first order phase transition, i.e. a discontinuous change in the 

properties of the material such as density.  

A liquid has viscosity, a measure of its resistance to flow.  As a liquid is 

cooled its viscosity normally increases, but viscosity also has a tendency to 

prevent crystallisation.  Usually when a liquid is cooled to below its melting point, 

crystals form and it solidifies; but sometimes the liquid can become supercooled 

and remain liquid below its melting point because there are no nucleation sites to 

initiate the crystallisation.  If the viscosity rises enough as it is cooled further, the 

liquid may never crystallise.  The viscosity rises rapidly and continuously, leading 

eventually to an amorphous solid.  The molecules then have a disordered 

a  Molecular arrangement in a crystal b  Molecular arrangement in a glass 

Figure 2.1: Molecular arrangement in crystals and glasses 
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arrangement, but sufficient cohesion to maintain some rigidity.  In this state it is 

often called an amorphous solid or glass, with a molecular structure as shown in 

Figure 2.1b. 

Glass could theoretically be considered a supercooled liquid because 

there is no first order phase transition as it cools.  Yet, there is a second order 

transition between the supercooled liquid state and the glass state, so a 

distinction can be drawn.  The transition is not as dramatic as the phase change 

that takes you from liquid to crystalline solids.  There is no discontinuous change 

of density and no latent heat of fusion.  The transition can be detected as a 

marked change in the thermal expansion and heat capacity of the material. 

The situation at the level of molecular physics can be summarised by 

saying that there are three main types of molecular arrangement: 

1. crystalline solids:   molecules are ordered in a regular lattice  

2. fluids:      molecules are disordered and are not rigidly bound.  

3. glasses:    molecules are disordered but are rigidly bound.  

The above morphological framework of understanding materials is 

extremely valuable in understanding macroscopic material properties. “Solids, 

liquids and gases” are really only ideal behaviours characterised by properties 

such as compressibility, viscosity, elasticity, strength and hardness.  Real 

materials don't always behave according to such ideals.   

Glass (rather, SiO2) is one case in point. There is no clear answer to the 

question "Is glass solid or liquid?"  In terms of molecular dynamics and 
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thermodynamics it is possible to justify various different views that it is a highly 

viscous liquid, an amorphous solid (falling in category 3 above), or simply 

that glass is another state of matter that is neither liquid nor solid.  

The fact that glass does have the amorphous structure of Figure 2.1b 

results in significant molecular mobility. This mobility comes from the fact that 

glass has a very high viscosity and yet simultaneously has the ability to create 

molecular bonding. Fundamentally, glass should be capable of both high tensile 

and high compressive strains.  

Glass fiber has elongation to break of between 4.5% to 5.5%, while 

carbon fibers vary from 1.5% to 1.8%.  Boron fiber has elongation to break of 

about 0.9%.  In terms of ultimate tensile strength, glass, boron, and carbon are 

roughly equivalent.  The differences in elongation to break thus relate to 

differences in modulus.11  Conversely, glass composite compressive strength has 

been measured to be significantly lower than that of both boron and carbon.  This 

result is inconsistent with tensile results, and is also inconsistent with what is 

known about the morphology of glass itself. 

Matrix Characteristics 

Matrix material properties and choice criteria, such as modulus, ultimate 

elongation to break, and thermal characteristics, are covered extensively in the 

literature, in handbooks, and now in on-line sources.  There is no need for in-

depth treatment of this readily available data.  However, the resins most 
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commonly used for classic composites will be considered, and properties that 

might impact compression behavior will be noted. 

Epoxy resins are used extensively in composite materials, and are the 

most versatile of the commercially available matrix materials.12 Epoxy resins 

have a broad range of physical properties, mechanical capabilities, and 

processing conditions. Although polyester and vinyl ester resins cost less, they 

provide somewhat inferior material properties. For example, the strain to break of 

a typical polyester resin is around 3%; a vinyl ester resin is around 4.5%, and 

epoxy resins can have as high as a 7% elongation to break.13 In addition to 

reduced toughness, polyester and vinyl ester resins also have somewhat lower 

adhesive properties and micro-cracking resistance. 

In general, for optimal composite performance, the mechanical properties 

of the resin should be chosen relative to the mechanical properties of the fiber. 

Resin tensile elongation to break should be at least as high as that of the 

reinforcement, although there are special cases in which the fibers provide 

stiffness only and will not see high ultimate stress levels. As an example, the high 

elongation to break of glass fiber can be fully exploited only with a suitable resin. 

Thus, glass fiber composites benefit more from a matrix material having a high 

elongation to break than would carbon or boron fiber composites. 

Resin property influence on unidirectional continuous fiber composite 

compression characteristics is less obvious.  However, as will be introduced in 

the next section and discussed in detail in Chapters 3 – 5, resin properties are 
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first order for compressive strength. Resin shear modulus, elongation to break, 

and uniaxial stress vs. strain non-linearity each play significant roles.  The impact 

of each of these matrix material parameters depends on variables associated 

with the fiber, such as volume fraction, alignment, modulus, and strength. 

Composite Compression Characteristics 

Improved tensile behavior is the hallmark added value for much of the 

composite world. Indeed for many engineering structures, such as pressure 

vessels, loadings are predominately tensile. In this context, it is generally 

recognized that compression behavior and comprehension has tended to lag 

behind the advances in tensile performance.14 

Handbook values for compression modulus and strength are generally 

lower that those reported for tension.15 16 17 18 What reasons are given in the 

literature for this observed performance? In 1965, pioneering work by Rosen et 

al.19 idealized fibers as columns, held together by the shear stiffness of the 

matrix. Applying stability equations developed by Timoshenko20, Rosen 

suggested a shear-induced microbuckling as the fundamental cause for 

degraded compressive modulus.   Composite in-plane shear modulus was 

identified as the primary driver for compressive strength. 

Rosen’s theoretical result, however, overpredicted compressive strength. 

Since that time, researchers have advanced several explanations. More current 

references in the literature point to the role that small imperfections, such as fiber 

misalignment, play in the formation of kink bands21  and microbuckling22 23. Still 
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other references apply a combination of theory and curve-fitting to experimental 

data to predict compressive strength24, while at least one composites textbook 

attributes the higher compressive strength of boron to higher fiber bending 

stiffness25.   

Complementary to Rosen, yet another theory applies measured fiber 

misalignment and measured in-plane composite shear stiffness to the prediction 

of compressive strength26.  While quite simple in implementation, the theory has 

given good results when fiber misalignments are large and uniform. 27 

Finally, a recent paper has looked at this problem from another 

perspective, proposing a three-phase model to explain observed compression 

strength values for boron, carbon and glass composites.28  The study assumed 

that a thin region of resin (denoted as “Interphase”) around the fibers has a lower 

modulus. If this region were to have a thickness of around 0.1 micrometers and a 

modulus that was 1/25th of the matrix modulus, the theoretical buckling stress 

would more closely match experimental results from the literature.  Boron 

composite compressive strength (1.4 GPa), carbon (1.2 GPa) and glass (0.6 

GPa) are somewhat better matched with this theory. 

A straightforward mechanical consideration argues against this 

explanation, however.  Composites using large diameter fibers, such as boron 

(100 micrometers), would have a much lower volume fraction of the proposed 

low modulus interphase than would a glass fiber composite (10 micrometers).  

This would lead to a much lower in-plane shear modulus for the glass composite.  
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This is not the case: glass and boron composites have roughly equal in-plane 

shear moduli yet very different compressive strength.  The successful theory 

must explain both these facts simultaneously.  

In summary, the literature indicates that composites generally do not 

perform as well in compression as in tension.  Glass fiber composites in 

particular have low measured compressive strength.  Disparate explanations are 

offered in the literature, including fiber misalignment, in-plane shear modulus 

nonlinearity, fiber bending stiffness, and a fiber/matrix of lower modulus.  A 

detailed review of these explanations in presented in Chapter 3. 

It seems there is a gap in comprehension of the compression behavior of 

classical composites, particularly for glass-resin composites.  This is seen at a 

morphological level, which suggests that higher compression performance than 

that reported in the literature is possible. This lack of comprehension perhaps 

comes from a variety of areas, proposed as follows: 

 Focus of composite optimization is often on tension, not compression. 

 Glass fiber is considered lower-tech.  It has lower performance in stiffness per 

unit mass than other more recent fibers.  Emphasis has not been placed on 

understanding its compression behavior because there is less market need. 

 Matrix elastic strain limit may be poorly chosen relative to the high elongation 

capability of glass fiber – with potential detriment in tension and compression. 
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 Resin properties may not be homogeneous, as noted in the three-phase 

model. However, large differences in interphase and matrix moduli are 

unlikely, as was earlier discussed. 
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CHAPTER THREE 

CRITICAL COMPRESSIVE STRESS FOR CONTINUOUS FIBER 

UNIDIRECTIONAL COMPOSITES  

Introduction 

Since Rosen and Dow1 proposed unidirectional composite microbuckling 

in 1965, researchers have searched for a comprehensive method by which to 

estimate compressive strength of unidirectional composites.  Noting that Rosen 

and Dow’s model over-estimated compressive strength, other models have been 

proposed that: assume highly localized microbuckling of fibers2, fiber/matrix bond 

failure3, or initial fiber waviness deduced from kink band geometry4.  These 

models are generally semi-empirical and require testing of actual composites in 

order to determine key parameters required by the predictive analytical model. 

More recently, Daniel5 developed a model relating the in-plane tangent 

composite shear modulus, G12 , to composite critical stress.  The model 

accounted for filament misalignment, and was applied successfully by Cho, et 

al.6 to composites having known large misalignment.  For this case, G12 was 

shown to decrease with increasing compressive stress, which is the correct trend 

based on measured strength.  However, for the case of perfect alignment, their 

model simplifies to that of Dow and Rosen, as their original equation for the 

lowest energy buckling state is an idealized 2D expression for G12 at zero shear 

strain. 
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Dharan et al.7 recently proposed a low-modulus interphase layer between 

the fiber and the matrix as an alternative explanation for lower measured strength 

values.  Using an energy-minimization approach, the critical stress was derived 

assuming a thin, low modulus interphase.  The final equation for critical stress is 

an idealized 2D expression for G12, assuming an interphase.  In this respect, it is 

equivalent to Rosen and Dow’s development.  Yet, empirical data show that the 

first order 2D approximation for G12 is already an under prediction, even when no 

interphase is assumed8.  The proposed low modulus interphase, which correctly 

lowers the predicted value of compressive strength, incorrectly further lowers 

G12.  The problem to be solved is both the under prediction of initial G12 and the 

over prediction of compressive strength. 

The current study addresses this apparent contradiction by extending the 

method of Daniel and co-workers.  Starting from basic composite constituent 

properties and geometry, an analytical model is presented that calculates G12 as 

a function of increasing compressive stress.  It is shown that when the magnitude 

of G12 equals that of the compressive stress, lateral instability occurs, and the 

compressive strength is reached. 

Unit cell static analysis 

The proposed model approaches the problem of longitudinal compressive 

strength of a unidirectional composite from a simple static equilibrium analysis.  

With Rosen’s assumptions for the shear mode, one has a composite with a 

compressive modulus (E1) that is high compared to the in-plane shear modulus 
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(G12).  Rosen further assumed that in-plane shear strain ) did not vary in the 

direction transverse to the loading (x2) and that the buckled wavelength was 

large.  This enforces a pure shear deformation. Referring to Figure 3.1, the static 

equilibrium of an associated 2D unit cell of homogeneous properties is shown for 

the condition at which instability occurs. 

Summing moments around Point O:      

Noting that shear stress  = G and, for small angles y / L =  

The unit cell approach can easily be applied to an idealized 2D bi-material 

composite composed of a fiber and matrix. A static summation of moments can 

be shown to result in Equation (3): 

 

L 

W 

cr y 



G12 , E1 

O 





Figure 3.1: Shear instability for a general orthotropic material 

G12  = in-plane shear modulus 
E1   = compressive modulus  
w = unit cell width 
L     = unit cell height 

   = in-plane shear stress 

cr   = critical compressive stress 
y    = arbitrary lateral displacement 

    = in-plane shear angle 

1 

2 
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This is Rosen and Dow’s original result, using their assumptions of very 

large fiber shear stiffness and very large fiber buckled wavelength.  It is also a 2D 

idealization of Equation (2).  Resistance to shear instability is supplied by the 

matrix; the fiber serves only as a matrix stress multiplier, and fiber bending 

stiffness is completely neglected. 

The unit cell approach is easily applied to multiple layers of matrix 

materials each having different modulus.  Multiple matrix layers can be 

represented as a homogeneous material having an equivalent shear modulus.  

The equivalent modulus is calculated by the rule of mixtures.  For two matrix 

materials of thickness ti and tm, with shear modulus Gi and Gm: 

Equation (4) can be shown to be equivalent to that obtained by Dharan, 

who used an energy minimization approach similar to Rosen’s original 

development to analyze interphase effects. The added utility of the unit cell 

analysis is that it underscores the direct relationship between G12 and critical 

compressive stress. Accordingly, the ensuing model development focuses on 

determining G12, and how composite constituents and the compressive loading 

event interact to continuously modify G12 until the point of lateral instability is 

reached. 
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Combined Stress Model 

Equation (2) is the general governing equation for shear mode instability. 

Of great importance, as Daniel noted, the composite shear modulus, G12 is not a 

constant due to matrix nonlinearity. The shear modulus of the matrix, Gm, is a 

function of the matrix stress state. Accordingly, the combined stress model 

calculates matrix stress and tangent modulus as a function of applied composite 

compressive stress 1. Figure 3.2 provides a schematic overview of this process. 

The heart of the flowchart in Figure 3.2 is the calculation of matrix stress 

and the ensuing calculation of composite G12 as a function of applied composite 

compressive stress 1. The ensuing development focuses on establishing the 

stress state of the matrix, and then estimating the tangent modulus of the matrix.  

From the tangent matrix modulus and other composite constituent properties, the 

expression for composite G12 will be defined. 

 

Matrix Data 
Tensile Stress vs. 

Strain 

CTE, T 

Fiber Data 
Extension Modulus 

Shear Modulus 
Volume Fraction 

CTE, T 
Misalignment 

Increment 
Compressive 

Stress 1 

Calculate Matrix 
Stress and Strain 

 Compressive, Shear, 
and Von Mises 

Calculate Moduli 
 Tangent Matrix Em 
Tangent Matrix Gm 

Composite G12 

Figure 3.2: Combined Stress Model Flowchart 

G12 = 1= cr 
terminate 

Calculate 
matrix 

residual strain 



21 

 

m = matrix compressive stress in fiber 
          direction. This is an imposed strain 
          due to fiber compression. 

m = matrix shear stress. This is an  
        imposed stress due to fiber misalignment 
        and imposed compressive stress. 

Figure 3.3: Matrix stress state for imposed compressive stress 

m 1m 

Matrix Stress State as function of applied compressive stress 1 

For a unidirectional laminate under an imposed compressive stress, the 

matrix stress state can be approximated by plane stress, as shown in Figure 3.3. 

The stress component subscript “m” refers to the stress in the matrix as opposed 

to the applied stresses on the composite. 

Matrix shear stress m 

In Rosen’s original development, fibers were considered perfectly aligned.  

When alignment imperfection is added, shear stress is induced as a first order 

effect. As shown by Daniel, et al. (2006), misalignment   with respect to the 

loading direction induces shear stress     as a function of composite 

compressive stress    and in-plane shear stiffness G12.  For small angles: 

where     is the additional fiber rotation cause by the shear stress, which 

is calculated from Equation (6): 
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Using the step – stress approach of the Combined Stress Model, 

Equations (5) and (6) are employed to calculate     and    as functions of 

applied compressive stress,   .   

Equation (6) requires G12, which is nonlinear due to matrix nonlinearity. To 

relate G12 to matrix shear modulus, Gm, the relationship between the matrix and 

composite stress state is needed. As employed in a similar problem by Cho, et 

al. (2007), the matrix shear stress    relates to composite shear stress      as 

follows: 

With matrix    known, the corresponding tangent shear modulus, Gm, can 

be found from testing of the neat resin.  Given Gm, composite G12 can be 

approximated using the well-known Halpin-Tsai equation.  Assuming a round 

filament cross section: 

Equations (7) and (8) thus limit necessary inputs to fiber and resin 

constituent properties. 
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Matrix compressive stress     

Matrix compressive stress in the fiber direction results from residual 

thermal strain and from mechanical strain due to compressive loading. These two 

strains will be separately considered, then combined and transformed into the 

associated stress. 

Thermal residual strain 

Matrix residual strain is a complex phenomenon, depending strongly on 

manufacturing processes.9 10 The primary driver for thermal residual strain is the 

mismatch between fiber and matrix coefficients of thermal expansion (CTE), with 

the fiber generally having a lower CTE than the matrix. The stress-free state is 

generally assumed at an elevated cure temperature. At room temperature, the 

matrix develops a longitudinal tensile stress and the fiber a compressive stress, 

which are dependent on complex processes that occur during cooling. This study 

addresses the first order analysis by accounting for thermal effects using the 

simple linear result given below, for which the longitudinal matrix thermal residual 

strain   1mt is approximated as11: 

where subscripts c, m, and f denote the CTE of the composite, matrix, and 

fiber, respectively. 
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Compressive strain 

The longitudinal compressive stress results in a matrix compressive strain 

      This is approximated by Equation (10): 

The term      is typically large compared to      since Ef >> Em.  Thus, 

even for the case of a tangent matrix modulus Em approaching zero, the normal 

strain in the matrix,     , is bounded. The compressive stress imposes a 

bounded compressive strain. 

Conversely, composite shear stress     is imposed, per Equation (5), 

which results in an imposed matrix shear stress, per Equation (7).  For the case 

of Gm approaching zero, G12 also approaches zero.  Additional fiber rotation 

becomes unbounded, per Equation (6), resulting in an unbounded imposed shear 

stress. One interpretation of this is shear instability. 

Superposition of thermal and compressive effects 

 The compressive strain adds to the initial thermal residual strain.  

Integration of modulus over strain provides the matrix stress: 

 

 
where Em is tangent matrix modulus for the specific matrix stress state. 
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Matrix tangent modulus given    and     

For small strains, it will be assumed that matrix nonlinearity for a 

combined stress state can be quantified by using the von Mises stress in a 

uniaxial test. With known    and    , the von Mises matrix stress is given by:  

From test data, the matrix uniaxial stress,  vs. uniaxial strain,  , is 

known: 

The inverse of Equation (13) calculates stress as a function of strain: 

Equation (12) gives the matrix von Mises stress for the combined loading 

event of Figure (3); Equation (14) gives the equivalent uniaxial strain at constant 

deviatoric stress; Equation (13) calculates the tangent modulus at this uniaxial 

strain. 

Given the matrix uniaxial modulus, the shear modulus at small 

deformations is: 
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Equations (5) through (15) can be solved using a step load numerical 

procedure, as schematized in Figure 2.  Evolution of G12 with respect to 1 is the 

final result, with shear instability at 1 = G12. Complete details are provided in 

Appendix A.  An example showing the employ of each equation in calculation of 

the salient variables is also given. 

Validation test case 

Matrix stress-strain character and fiber alignment data are necessary 

inputs for the proposed model. Studies in the literature generally do not include 

such data from actual composites for which compressive strength was 

measured. Therefore, to test model performance, a glass/resin unidirectional 

composite was constructed using standard methodologies.  Specific attention 

was given to characterization of the matrix modulus and the fiber alignment. 

Basic constituents consisted of: 

 Vinyl ester resin Atlac 590. Initial tensile modulus Em = 3.5 GPa.  

Ultimate t = 90 MPa,  CTE = 3 x 10-5  

 Owens Corning Advantex Glass fiber.  Ef = 78 GPa, Gf  = 30.5 GPa,  

CTE = 5 x 10-6 

 Vf = 0.50 

Construction and Characterization 

Pre-preg construction followed the standard procedure of winding the 

single end roving filament around a 300 x 300 mm steel frame, then applying the 

uncured resin.  After partial cure under laboratory light and ambient temperature, 

the pre-preg was cut from the frame, then cut to 250 x 75 mm strips.   Each 



27 

 

individual laminate layer was 0.22 mm thick.  Twelve layers were combined in a 

mold of 250 x 75 mm dimensions.  The mold was placed in a press, and cured at 

180 C, under 2 bar pressure, for 60 minutes. Five unidirectional laminate 

samples of 140 x 12.5 x 2.64 mm were then cut from this plaque, as necessary 

for ASTM D6641 protocol. 

Additional test samples were constructed from the same plaque, and then 

machined for microscopic analyses. A representative cross section is shown in 

Figure 3.4. 

 

While individual pre-preg layers are discernable, the interlaminar distance 

is only around 20 m thick. The section approximates a transversally isotropic 

material, with G13 = G12.  However, the presence of any interlaminar thickness 

serves to reduce G13; thus, calculated values of G12, and associated compressive 

strength calculations based on G12 will likely be upper bound estimates. 

Figure 3.4:   Validation case cross section 

0.22 mm  
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FEA of 3 point beam test to determine matrix extensional modulus characteristics 

Samples of neat resin Atlac 590 were tested in ASTM D790.  Specimen 

dimensions are 30 mm length, 10 mm width, and 1.35 mm thick. Measured 

center deflection at sample failure was above 5 mm.  This was not small 

compared to the beam length of 30 mm. 

Accordingly, Abaqus 6.10 was used with the Nlgeom flag set to “1”, thus 

updating the stiffness matrix to account for geometry changes. Plane stress 

quadratic elements without reduced integration (CPS8) were used. The material 

law was Abaqus’ standard hyperelastic formulation using Marlow strain energy 

potential.  Model geometry was a 2D plane stress representation. 

With Marlow strain energy potential for hyperelastic materials, the option 

permitting uniaxial test data was used.  By iteration, the uniaxial stress vs. strain 

relation was found such that the FEA prediction matched the measured beam 

center deflection vs. load.  The final modulus curve is shown in Figure 3.5a, while 

the measured vs. predicted center beam deflection is shown in Figure 3.5b. The 

initial modulus at zero strain was 3.5 GPa, which matched the publicly available 

data sheet. The FEA prediction for the maximum tensile stress was 90.5 MPa at 

4% strain. This compared favorably to datasheet information of 90 MPa for 

tensile strength at 4% strain. 

With this data, Equations (13) and (14) can be established via a simple 

polynomial fit.  The only additional unknown necessary for Equation (5) is initial 
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filament misalignment.  All other necessary information is contained in the 

composite consituents. 

Misalignment characterization 

Filament misalignment is of 1st order importance, as shown by Daniel 

(2006), Budiansky (1983), Frost12, and others.  To measure this, an individual 

pre-preg layer was fully cured and microscopically analyzed for filament 

misalignment. This is a conservative condition for misalignment, as the molding 

process results in additional slight filament disturbances and therefore 

misalignment. Figure 3.6 shows a microscopic image of filament alignment.  Grid 

spacing is 100 m.  The entire image represents a section of approximately 0.5 x 

0.5 mm. 

 

 

          a                                                    b 

Figure 3.5:   Atlac 590 modulus and 3-point beam 

 load vs. deflection 
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To measure misalignment, the sample orientation was first aligned with 

the microscopic grid.  Imaging software permitted angle measurement of 

individual filaments relative to the grid orientation.  A positive orientation was 

defined as counterclockwise from vertical. Four such measurements are shown 

in Figure 6. Twelve such segments of 0.5 x 0.5 mm were analyzed, with a total of 

492 filament misalignments individually measured. 

Only filaments that were clearly visible for a vertical distance of at least 

300 m were considered. This was not arbitrary for two reasons.  First, 

theoretically, a glass filament of 15 m diameter and 300 m length has a length 

to width ratio of 20:1.  Filament bending stiffness becomes negligible, and the 

Figure 3.6:   Validation test case pre-preg misalignment 

Individual filament 
measured to have 
1.1 d misalignment 

100  
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conditions for Figure 3.1 and Equation (2) are satisfied. This necessary condition 

becomes compromised at shorter filament lengths.  Second, comparatively few 

filaments were clearly identifiable over a length greater than 500 m; thus, 

limiting measurements to filaments that were visible over greater lengths would 

have greatly reduced the sample size. 

Alignment data were treated in the following steps: 

1. Individual filament misalignment angles were measured. 

2. Misalignment average was calculated as -0.096 degrees 

3. Average misalignment was subtracted from each measure, giving a 

corrected average=0. 

4. Absolute values of corrected filament misalignments from (3) were 

taken. 

5. Histogram of step 4 was calculated. 

6. Polynomial fit of step 5 was calculated, using cumulative Vf as function 

of misalignment. 

Step 3 enforced zero macroscopic compression-shear coupling, while 

Step (4) completely allowed microscopic induced matrix shear, per Equation (5). 

The rationale for this was that few crossed filaments of positive and negative 

misalignment were observed; the general case was that filaments with like 

misalignment signs were grouped together. Absolute values of measured 

filament misalignment from Step 4 are shown in Figure 3.7. 
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This distribution can be expressed as cumulative volume fraction vs. 

measured misalignment.  A 4th order polynomial provides a mathematical 

representation, as shown in Figure 3.8. 

As indicated, Figure 3.8 shows that 87% of filaments have a misalignment 

of 1.4 deg or less, while 13% have a misalignment of 1.4 deg. or greater. 

Figure 3.7:   Pre-preg individual filament misalignments 

Figure 3.8:   Cumulative volume fraction vs. filament misalignment 

87% of filaments have 1.4 degree or 
lower misalignment 
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With alignment known, the next step was calculating compressive strength 

as a function of homogeneous misalignment. Given test case constituents and 

matrix characteristics, the Combined Stress Model calculated strength as a 

function of misalignment, as presented in Figure 3.9. 

Composite tensile strength has been modeled as multiple elements in 

tension, in which filament imperfections result in some filaments breaking at a 

lower stress than others.13 Compressive strength can be treated similarly, where 

the imperfection is due to misalignment.  For small misalignment angles, stiffness 

remains constant; thus, the composite can be modeled as many parallel 

columns, each having the same modulus, yet different strength. A simple 

example using 4 parallel columns is shown in Figure 3.10. 

y = -1.3721x4 + 1.1646x3 + 107.69x2 - 626.31x + 1373.5
R² = 0.9997
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Figure 3.9:   Compressive strength vs. homogeneous misalignment 
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Strength calculation of the composite column is straightforward, yet 

requires clarity in the definition of cross section areas.  The applied stress is 

calculated relative to the initial total area of the composite column. As the column 

is loaded, individual columns progressively fail, as their compressive strength, c, 

is reached. This causes the intact section area to decrease. The actual stress 

supported by the intact section is assumed to correspond to a uniform 

redistribution of the load. Knowing the strength distribution within the composite 

column, Table 3.1 shows how to calculate the strength of the composite column.  

As shown in Table 3.1, the stress is highest when Columns 1 and 2 have 

failed and Column 3 is at the point of failure, with 1 = 500 MPa. 
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Figure 3.10:  A compressed composite column consisting of 4 parallel columns of 

identical modulus and section area, but different compressive strengths 
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 Column  1 Column 2 Column 3 Column 4 

Compressive Stress 

c at failure (MPa) 

200  500  1000  1500  

Intact Section 1.0 0.75 0.50 0.25 

Applied stress1 on 
composite column 

(MPa)  

200 x1.0 
=200 

500x0.75 
=375 

1000x0.50 
=500 

1500x0.25
=375 

 
 

 

 

The approach presented in Figure 3.10 and Table 3.1 can be used for the 

test case continuum by multiplication of the curve fits from Figures 3.8 and 3.9. 

The result is the applied stress at which the most poorly aligned sections of the 

intact section fail.  Compressive strength of the test case is the maximum applied 

stress obtained, as shown in Figure 3.11. 
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Table 3.1:   Compressive strength calculation for composite column 

shown in Figure 3.10.  

Figure 3.11:   Misalignment histogram (F(x)), compressive strength at 

homogeneous misalignment (G(x)), and test case applied stress  

(F x G) at which highest misalignments in intact section fail 
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Figure 3.11 is best understood by considering the compressive loading 

event. As the test case composite is loaded in compression (solid line, from right 

to left) imposed matrix shear stress increases most rapidly adjacent to fibers 

having a large misalignment.  Local failure occurs, and the remaining intact 

section carries higher stress.  This is perfectly analogous to the simple case of 

Figure 3.10, except that the compressive strength continuum is now taken into 

account.  

Regions of poorest alignment locally fail as additional load is applied. For 

the test case, this continues until applied  = -645 MPa.  With 25% of the section 

having already failed, the actual stress on the intact section is -860 MPa.  This 

stress is incrementally higher than the critical stress at the most poorly aligned 

areas of the remaining section. Thus, at -645 MPa, the remaining 75% of the 

cross section abruptly fails. 

Anecdotally, this concept is supported by audible cracking or popping 

sounds that preceded compression sample failure.  It is reasonable to suppose 

that these sounds were local matrix / fiber failures in areas of higher 

misalignment.  The literature also indirectly supports this, as glass and carbon 

fiber composites have compressive moduli that decrease prior to failure. 14 

Because the fibers have linear moduli and carry the compressive stress, 

nonlinearity in composite modulus could be explained by a progressive loss of 

cross-section integrity. 
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Compressive Strength Measurement 

Five validation test case samples were tested in ASTM D6641. The results 

gave a compressive strength of 565 MPa ± 49 MPa.  The failure was in the 1-2 

and the 1-3 directions for these samples, with some interlaminar failure noted. 

The model prediction of 645 MPa is 14% higher, which could be considered quite 

good.  The Combined Stress model could be expected to give higher strength 

estimates, as it assumes no interlaminar effects. Also, this value of compressive 

stress was consistent with literature values, suggesting that prototyping 

methodology and quality were consistent with historical practice. From the 

literature, compressive strength values for similar glass-resin composites range 

from 590 MPa to 630 MPa. 

G12 vs.  

Test case results are more meaningful when seen in the context of the 

Combined Stress Model step stress operation of Figure 3.2 This is most easily 

represented in a graphical sense by plotting the matrix stress and G12 as 

functions of applied compressive stress.  One complicating factor is that the test 

case consisted of a continuum of fiber misalignments. 

However, there exists a homogeneous misalignment which gives the 

same compressive strength as the continuum of misalignments.  For the test 

case, this “equivalent misalignment” is about 1.5 degrees.  Figure 3.12 shows the 

matrix stress state and G12 as functions of applied compressive stress at this 

equivalent misalignment. 
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Figure 3.12 shows:  

 Matrix shear stress, m , increases slightly faster than linearly, 

becoming unbounded just after the point of instability.  This is due to 

fiber rotation and matrix nonlinearly. 

 Matrix longitudinal stress m , begins slightly positive, due to thermal 

prestress.  It decreases slower than linearly as a compressive strain is 

imposed. Matrix modulus decreases with deformation; under imposed 

strain, stress varies with modulus. 
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 Matrix von Mises stress, vmm , becomes dominated by the shear 

stress at higher deformation.  It becomes unbounded just after the 

point of instability. 

 A high initial composite G12 of 3400 MPa is calculated, yet a 

compressive strength below 700 MPa.  The combination of matrix 

nonlinearity and fiber misalignment push the matrix von Mises stress to 

88 MPa at a compressive stress of 645 MPa.  The matrix tangent 

modulus rapidly decreases at this point, which results in an abrupt drop 

in G12.  Instability results. 

These results and trends are the result of (a) the operation of Equations 

(5) through (15), (b) composite constituent properties, and (c) test case 

misalignment measurement. 

Parameter sensitivity 

Using stress vs. strain behavior measured for Atlac 590, thermal 

prestress, filament modulus, and filament misalignment effects were mapped.  

For these comparisons, the misalignment can be considered equal to the 

equivalent misalignment, as previously defined. 
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The impact of matrix residual strain was modeled for two levels of fiber 

modulus, as a function of fiber misalignment.  Volume fraction was held constant 

at Vf = 0.50. An upper bound for the value of thermal residual strain was 

calculated using a reasonable limit case. Given a T = 155 C and CTEm =3 x10-5, 

the maximum matrix tensile prestrain is obtained by assuming an infinitely stiff 

fiber with CTE = 0.  This gives a matrix prestrain slightly less than 0.50%.  This 

was compared to a residual strain of zero for glass fiber (Ef = 80 GPa) and 

carbon fiber (Ef = 220 GPa).  Results are shown in Figure 3.13 as a function of 

equivalent misalignment 

Thermal prestrain provides a moderate beneficial effect, particularly for the 

case of highly aligned fibers.  For Ef = 220 GPa at misalignment = 0.25 deg, the 

compressive strength increased by 200 MPa. Better alignment results in less 

induced shear stress; thus, the longitudinal matrix stress is a more significant 
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component of the von Mises stress. A tensile residual strain reduces matrix 

compressive stress for a given compressive load, thereby increasing the tangent 

shear modulus. As misalignment increases, shear stress becomes dominant and 

residual strain becomes less significant. 

While not studied here, matrix characteristics could play a larger role in 

the sensitivity of residual strain on compressive strength.  For example, a high 

modulus, low ultimate strain matrix would benefit even more from a residual 

tensile strain. This is especially when used in the context of highly aligned, high 

modulus fibers, where even small tensile residual strains would be favorable. 

To map the effect of filament modulus, thermal prestrain was set equal to 

zero, as this varies widely depending on production methodology. For 

consistency, filament shear stiffness was held constant at 20 GPa, which is an 

approximate average of glass and carbon fiber shear stiffness. Compressive 

modulus was assumed equal to tensile modulus. Equivalent fiber misalignment 

was held constant at 1.0 degrees. With these values used as inputs, changes in 

compressive strength for various filament moduli were mapped as a function of 

volume fraction, as shown in Figure 3.14. 
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A fiber modulus of 80 GPa corresponds to Advantex glass filament, while 

400 GPa is that of boron fiber.  The model predicted large increases in 

compressive strength at low Vf with increasing Ef, with progressively less 

increase as Vf increased.  Stiffer fibers result in lower matrix compressive stress.  

At Vf = 0.3, a glass composite would have a matrix compressive stress of 77 

MPa and a compressive strength of 610 MPa.  A boron composite would have a 

matrix compressive stress of 29 MPa and a compressive strength of 1160 MPa.   

As volume fraction increases, the effect of induced shear becomes more 

pronounced, due to the stress concentration factor    of Equation (7).  

Conversely, compressive stress becomes proportionately less pronounced with 

increasing volume fraction due to the increased compressive stiffness of the 

composite. At iso fiber alignment, the advantage of a very stiff reinforcement 

becomes less at high volume fraction. 
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Fiber stiffness is not directly present in the combined stress model.  

Rather, the effect of fiber stiffness on the matrix stress state, and thus tangent 

modulus, drives the model prediction.  For this reason, a stiffer fiber results in 

higher composite compressive stiffness. 

The effect of fiber misalignment at constant fiber modulus was also 

mapped as a function of volume fraction, as shown in Figure 3.15. 

At low Vf, fiber misalignment is predicted to reduce compressive strength 

less than at higher Vf. The reason for this is that    is lower for low Vf, and the 

matrix stress is dominated by compression.  At higher Vf, matrix compressive 

stress is reduced because of the increase in composite compressive stiffness.  

Matrix stress is thus dominated by induced shear, which increases with 

increasing misalignment. 
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One important observation regarding Figure 3.15 is that increasing Vf 

gives diminishing returns for compressive strength.  Except for the case of 

perfect alignment, there is an optimum Vf, and further increases result in little 

improvement, or even a decline in compressive strength.  This is counter-

intuitive, yet relates to the cumulative effect of Equations (5) through (15), as G12 

is calculated as a function of 1.  Matrix shear drives the problem at high volume 

fraction, even for relatively small fiber misalignments of 0.4 degree. 

Comparison with literature values 

Direct comparison with literature values is challenging since matrix stress 

vs. strain is generally not provided.  Matrix data is usually limited to initial 

extensional or shear modulus. Furthermore, fiber alignment measurements 

similar to what was done for the test case in this study are not provided.  To 

compare model results with literature values, the following actions were taken: 

 The measured stress vs. strain character of vinyl ester resin Atlac 590 was 

used, and scaled according to the initial modulus.  This resin has an initial 

modulus of 3500 MPa (shear modulus = 1250 MPa).  Thus, for comparison to 

a composite having a matrix modulus of 4000 MPa, the stress was scaled up 

by 14% for each strain value. 

 Equivalent misalignment for the Advantex glass fiber test case = 1.5 degrees.  

Stiffer filaments should have better alignment.  The following comparisons 

assume carbon fiber and boron fiber are more highly aligned.  Assumed 

misalignment values are given. 
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 For each case, the sensitivity of misalignment magnitude is shown by 

providing compressive strength estimates for more than one misalignment. 

 Matrix residual strain is held constant at 0.35%.  This is an average value for 

glass composites similar to the test case, for volume fractions of 0.3 to 0.65. 

Figure 3.16 shows model predictions compared to historical values for E-

glass composites over a range of Vf.  Results are favorable in magnitude and 

trend. Both historical data and model predictions suggest an optimum Vf for 

highest compression strength. For polyester resin, this occurs around Vf = 0.50, 

while for epoxy resin the optimum is perhaps 0.65.  This is reasonable, as epoxy 

resins will generally have a higher ultimate strength and higher tangent modulus 

when highly stressed.  Precise data regarding resin modulus and misalignment 

could significantly improve model prediction, yet it performs reasonably even with 

the approximate input data. 
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Figure 3.17 shows predicted and literature results for carbon fiber 

composites.  Compared to glass, carbon composites have over twice the 

compressive strength.  This is predicted by the combined stress model, even 

though the prediction is based on the stress state and modulus of the matrix.  As 

with glass composites, there is apparently an optimum Vf for compressive 

strength.  Empirically, this value is around Vf = 0.60 for both T300/5208 and 

AS4/3501-6. With misalignment between 0.5 and 0.8 degrees, the model predicts 

this optimum Vf.  
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 Boron fiber composite predictions and literature values are shown in 

Figure 3.18 over a wide range of Vf for two resin moduli. Boron, which has a 

modulus of Ef = 400,000 MPa, obtained measured compressive strength values 

that were high even for moderate Vf levels.  The combined stress model 

predicted both the trend and magnitude of compressive strength over the range 

of Vf for both modulus levels.  Again, the model did not rely at all on fiber bending 

stiffness, but only matrix stress as a function of fiber modulus and alignment. 

Finally, Figure 3.19 compares predictions and historical values for three 

specific composites having large differences in fiber modulus.  Resin modulus 

and volume fraction are similar for each case, as noted. The analysis assumes 

that fiber alignment improves with increasing fiber stiffness, as also noted.  

Thermal prestrain was held constant at 0.35%. For each case, the combined 
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stress model slightly over predicted the compressive strength by 2 – 15%.  The 

trend of increasing compressive strength with increasing fiber modulus is very 

well predicted.  

Discussion 

A new model should offer new compelling explanations for observed 

phenomena. In a limited fashion, the combined stress model offers an original 

rationale for the difference in compressive strength of boron, carbon, and glass 

fiber composites.  The literature recognizes that boron composites offer the 

highest compressive strength, while glass is the lowest; yet explanations 

generally center on the compressive strength of the reinforcement itself, or of the 

size of the elementary filament and therefore the filament bending stiffness.  This 

study suggests Rosen’s original treatise is essentially correct for the shear mode; 

Figure 3.19: Model results and measurements for 3 levels of 

 fiber stiffness. 
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i.e., neither filament bending nor compressive stiffness plays a direct role. 

Rather, a stiff reinforcement results in less matrix compressive stress and thus 

higher tangent matrix shear modulus for a given compressive stress.  Higher 

tangent matrix modulus and higher matrix ultimate stress and elongation emerge 

as delineating factors. This is complementary to, not inconsistent with, Rosen’s 

development. 

According to the study here, the diameter of boron fiber (100 m) 

compared to glass (10 m) does not play a direct role in compressive strength.  

Indeed, at equal volume fraction the initial G12 stiffness of boron and glass fiber 

composites are comparable, whereas the compressive strength of the boron 

composite is 250% higher15. There are two potential reasons that give boron an 

advantage.  First, the much higher boron compressive stiffness greatly reduces 

matrix compressive stress, as mentioned above.  Second, the larger filament 

diameter and modulus greatly increase filament bending stiffness, which 

potentially improves alignment.  Alignment is a first order effect, as this induces 

matrix shear strain, with even local misalignments of 0.5 degrees having a 

profound impact on compressive strength.  Again, it is the stress state of the 

matrix which truly governs the compressive performance, yet reinforcement 

modulus and geometry play a vital role in determining matrix solicitation under 

compression. 

Small misalignments also add another dimension to the problem:  the 

matrix stress state has a stress imposed component.  Thus, modeling the matrix 
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as an elastic-plastic material becomes problematic.  With decreasing G12, 

Equations (5) and (6) suggest fiber rotation    becomes large; accordingly, the 

current model results in rapidly increasing imposed shear stress as fibers rotate 

and matrix shear modulus decreases. Shear instability results. 

Finally, models generally contain simplifying assumptions. As developed 

in this study, one of the assumptions of the combined stress model is that matrix 

nonlinearity can be characterized by the equivalent Von Mises stress.  This study 

characterized the matrix with a bending solicitation, which contained tension, 

shear, and compression.  This is different from pure compression, and 

inaccuracies could occur for some types of matrix materials under certain 

combined stress loadings.  For example, for the case of perfect alignment the 

matrix stress is pure compression, yet some matrix materials have an ultimate 

compressive strength that is higher than the ultimate tensile strength.  For these 

cases, the approach used in this paper would perhaps over estimate the modulus 

loss for a given compressive stress. The model performance is conditioned by 

the accuracy of the algorithm used to predict tangent modulus for a given stress 

state. 

Conclusion 

1. The stress vs. strain behavior of the resin is non-linear.  When a composite is 

compressed, the resin is subject to compressive stress and shear strain.  G12 

is a function of matrix modulus; thus, G12 decreases as a function of 

compressive stress. 
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2. A model has been developed that calculates composite G12 as a function of 

compressive stress for a unidirectional composite having a given fiber 

misalignment.  Thermal residual stress is included. Matrix stress is calculated 

as a function of compressive stress, along with the associated drop in tangent 

modulus.   

3. A method of measuring and characterizing the fiber misalignment continuum 

was developed. 

4. A method for calculating the compressive strength of a composite having a 

fiber misalignment continuum was developed. Model predictions agreed well 

with test data for a specific test case. 

5. Model predictions agreed well with historical data from the literature, in both 

magnitude and trend.  A range of fiber properties, matrix properties, and 

volume fractions were investigated. 

6. Model predictions indicate a very high sensitivity of compressive strength to 

fiber alignment. 

7. The model suggests that observed differences in compressive strength of 

composites having boron, carbon, or glass reinforcement come from the 

combined stress state of the resin.  Fiber modulus intervenes as it affects 

matrix stress and therefore matrix tangent modulus.  

8. The combined stress model preserves initial G12, while suggesting that 

compressive strength is indeed driven by G12, as it decreases with increasing 

compressive stress. 
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CHAPTER FOUR 

THEORETICAL AND EXPERIMENTAL COMPRESSIVE STRENGTH OF A 

GLASS-RESIN PULTRUDED COMPOSITE 

Introduction 

Prediction and measurement of unidirectional composite longitudinal 

compressive strength has been actively studied for almost 50 years.  In 1965 

Rosen, et al.1 were the first to propose microbuckling as a failure mechanism of a 

unidirectional composite. There have been many contributions in the ensuing 

years, the most notable addressing fiber misalignment and matrix nonlinearities.  

Argon2 first added initial fiber misalignment to explain kinking. Budiansky3 

proposed a model that unified Argon and Rosen models, with Budiansky and 

Fleck4 adding elastic-perfectly plastic matrix assumption effects. Daniel, et al.5 

proposed a straightforward method to integrate initial fiber misalignment with 

measured composite in-plane shear modulus G12. The approach accounted for 

matrix nonlinearity and misalignment.  These studies all showed that initial fiber 

misalignment plays a dominate role in compressive strength. 

The study presented in Chapter 3 proposed the Combined Stress Model 

to estimate the compressive strength of unidirectional continuous fiber 

composites.  The approach incorporated a fiber misalignment continuum, matrix 

nonlinearity, thermal prestress, fiber elastic properties, and fiber volume fraction.  

The study used one validation case having a fiber volume fraction of 0.50, for 

which the fiber misalignment continuum was measured, and from which 
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compression test samples were prototyped.  Good agreement was achieved 

between the model estimate for compressive strength (645 MPa) and ASTM 

D6641 measurements (565 +/-49 MPa). 

Chapter 3 also supplied variable sensitivity plots.  Hypothetically, the 

model suggested that a glass-resin composite of identical constituents as the test 

case, but perfect fiber alignment, would have a compressive strength of 1.3 GPa. 

This is much higher than values reported in the literature for unidirectional glass-

resin compressive strength,6  This prediction for a volume fraction of 0.50 is 

about two times higher than any literature value of which the authors are aware. 

This study addresses this theoretical prediction by executing the following 

steps: 

1. Prototyping a continuously protruded glass-resin monofilament using the 

same constituents as the test case presented in Chapter 3. 

2. Measuring the fiber misalignment continuum within the monofilament 

3. Estimating the monofilament compressive strength with the Combined Stress 

Model from Chapter 3. 

4. Developing a test methodology for measuring monofilament compressive 

strength. 

5. Measuring monofilament compressive strength. 

6. Comparing and discussing model predictions and experimental results. 

The study also provides electron microscope images of failed 

monofilament samples, which sheds light on the failure mechanism. 
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Monofilament prototyping 

A monofilament, continuously pultruded glass/resin composite was 

prototyped and supplied by Michelin Tire Corporation. While details of the 

pultrusion process were not available, the constituents were identical to the 

laminate composite test case used in Chapter 3, which are: 

 Avantex Owens Corning glass fiber, 16m diameter 

 Atlac 590 vinyl ester resin 

By density measurements, the composite was determined to have a fiber 

volume fraction of 0.50, average diameter of 1.04 diameter, and cross sectional 

area of 0.849 mm2. The resin was polymerized immediately after it was applied to 

the glass fiber, at a temperature of approximately 180 degrees Celsius. 

Fiber misalignment continuum measurement 

To measure fiber misalignment in the pultruded monofilament, a razor was 

used to split the filament in half.  An electron microscope image of the transverse 

cross section is shown in Figure 4.1a.  Several fibers were obviously perturbed 

by the action of cutting the monofilament, as indicated in the figure.  

Misalignment of the other fibers was measured using the same protocol 

presented in Chapter 3. A total of 5 images, with 90 individual fiber 

measurements, were used to determine the misalignment continuum.  The result 

is shown in Figure 4.1b. 

Also shown in Figure 4.1b are misalignment measurements taken from a 

continuously pultruded carbon fiber rod7.  In this study, fiber alignments were 
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measured via an automated image analysis procedure.  The data was reported 

at a low resolution of 0.2 deg; nevertheless, there is good agreement between 

these results and measurements taken in the present study.  Both 

measurements show very small misalignments for continuously pultruded 

composites, with similar profiles for the misalignment volume fraction 

relationship. 

For continuous pultrusion, approximately 90% of the cross section had a 

misalignment of 0.25 degrees or less, while for the prepreg laminate, 90% of the 

cross section had a misalignment of 1.5 degrees or less. These two cases thus 

represent a large change in one independent variable, as shown in Figure 4.2 

 

 

 

Figure 4.1:  Monofilament fiber alignment (a), cumulative volume fraction vs. 

fiber misalignment, and cumulative volume fraction vs. fiber misalignment 

from Creighton (2000) for continuously pultruded carbon fiber rod (b) 

Fibers not 
considered 

a b 
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Fiber misalignment imposes an in-plane shear stress during longitudinal 

compression of a unidirectional composite, which interacts with matrix 

nonlinearity, as noted by Daniel, et al. (2006), and verified experimentally by 

Cho, et al. 8  The induced in-plane shear stress, 12, relates to the compressive 

stress, 1, and the initial misalignment,  . For the assumption of small angles, 

this relationship is defined as given in Equation (1): 

This gives rise to additional fiber rotation, , occurs, as shown in 

Equation (2). 
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Figure 4.2:   Prepreg laminate and pultruded monofilament cumulative 

volume fraction vs. filament misalignment 
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The two fiber continuums of Figure 4.2 will result in very different levels of 

12, which in turn results in a matrix shear stress of even higher value.  The 

literature notes that this imposed matrix stress plays an important role in 

compressive strength, due to matrix nonlinearity; thus, these two composites 

should behave much differently in compression.  

Combined Stress Model calculation 

The Combined Stress Model from Chapter 3 was used to calculate test 

composite compressive strength as a function of homogeneous misalignment.   

This relationship, reproduced in Figure 4.3, is identical for the laminate test case 

used in Chapter 3 and the continuously pultrided monofilament considerd in the 

present study. 

Figure 4.3:   Compressive strength vs. homogeneous misalignment for 

test case from Chapter 3 and the pultruded monofilament 
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For these calculations, the composite constituent material characteristics 

were approximated as defined below: 

 Vinyl ester resin Atlac 590.  
o Initial tensile modulus Em = 3.5 GPa.  

o Ultimatet = 90 MPa 
o Stress-strain nonlinearity from measurement and FEA analysis 
o CTE = 3 x 10-5  

 Owens Corning Advantex Glass fiber.   
o Ef = 78 GPa 
o Gf  = 30.5 GPa 
o CTE = 5 x 10-6 
o Vf = 0.50 
o Cure temperature = 180 C, ambient test temperature = 23 C. 

 
The continuously pultruded monofilament used these constituents, volume 

fraction, and cure temperature as well. 
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Figure 4.3 presented the compressive strength for uniform misalignment. 

Calculation of the compressive strength of a composite having a misalignment 

continuum involves multiplication of the polynomial describing the misalignment 

cumulative histogram (Figure 4.1b) with the polynomial describing compressive 

strength vs. homogeneous misalignment (Figure 4.3).  This operation is shown in 

Figure 4.4 for the pultruded monofilament composite.  

For the pultruded composite, a compressive strength of 1155 MPa is 

predicted.  At this stress, only 1 to 2% of the cross section has already failed.  

98% of the cross section abruptly fails at this critical stress. 

There exists homogeneous misalignment which gives the same 

compressive strength as a misalignment continuum.  For the laminate composite, 

this is about 1.5 degrees. With the simplification of a homogeneous 
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Figure 4.4:   Monofilament composite:  misalignment histogram (F(x)), 

compressive strength at homogeneous misalignment (G(x)), and applied stress 

(F x G) at which highest misalignments in intact section fail 



61 

 

misalignment, the matrix stress state and the composite G12 can be represented 

as functions of applied compressive stress.  This is shown for the laminate 

composite from the test case from Chapter 3 in Figure 4.5. 

The equivalent misalignment for the pultruded composite is 0.36 deg.  For 

this case, the matrix stresses and composite G12 are shown as functions of 

compressive stress in Figure 4.6. 

The results of Figure 4.5 show that the laminate composite G12 equals the 

applied compressive stress at 645 MPa.  In Figure 4.6, this occurs for the 

pultruded composite at 1155 MPa.  The overwhelming difference between the 

two cases is the induced matrix shear stress.  For the laminate case, the matrix 

shear stress is 45 MPa at the point of shear instability.  For the pultruded case – 

at a compressive stress that is 78% higher – this is only 20 MPa.  This higher 
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induced shear results in a much faster increase in matrix von Mises stress for the 

laminate case compared to the pultruded case.  The result is that the tangent 

matrix modulus, and thus the tangent G12, begins to rapidly decrease at a much 

lower compressive stress for the laminate composite.  

Compressive strength test development 

Unidirectional compressive strength testing has seen significant evolution 

over the past several decades.9  Wegner, et al.10 provided an overview of 

compression testing methods and results, and then validated a new method 

which became ASTM-D6641.  This method applies the compressive stress to the 
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composite sample via shear and direct compression.  Applying a large portion of 

the load via shear on the specimen side faces prevents premature failure due to 

high localized compressive stresses on the ends. 

Creighton, et al. (2000) developed a novel method of loading a composite 

rod in compression that used an approach similar to ASTM D6641. A loading 

support system was designed that included 30 mm long cylindrical holes of 

slightly larger diameter than the rod specimen.  The specimen was adhered with 

epoxy inside these holes, and end plates were attached.  The rod was thus 

loaded in compression and shear. Various free span lengths were tested. 

This study used a method similar to that of Creighton. Compression 

samples were constructed by adhering the pultruded 1.0 mm diameter 

monofilament into 6 mm diameter aluminum cylinders that had been drilled with 

1.4 mm diameter shaft. This sample was inserted into a test rig that mated to an 

Instron 5500R machine. Sample and test rig geometry are shown in Figure 4.7. 

32 mm 

32 mm 
30 mm 

1.0 +/- 0.15 mm diameter 
glass/resin monofilament 

6.0 mm diameter 
aluminum cylinders 
 

50 mm 

Figure 4.7: Compression sample and test rig construction 

6 mm 

L 
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Figure 4.8: Instron machine, test rig, and compression sample 

A photograph of the test rig with a compression sample inserted is shown 

in Figure 4.8. Load frame alignment was estimated to be within 0.02 mm.  

Shimming the bottom fixture gave a slight improvement. The load frame slid with 

minimal friction up and down the aluminum cylinders of each test specimen. 

The pultrusion method resulted in constant cross-section area. This was 

controlled as a result of the constant fabrication speed and fixed die cross-

section. However, slight torsions due to fiber unwind resulted in dimensional 

variation after resin polymerization. The cross section varied from circular to 

elliptical, with differences between major and minor axes of up to 0.25 mm.  

Additionally, when the filament was cut to length, a small amount of fraying 

occurred.  For these reasons, the internal cylinder diameter was 1.4 mm.   
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Figure 4.9: Monofilament samples, aluminum cylinders, epoxy, and 

digital ruler used in sample construction 

Materials used in sample prototyping are shown in Figure 4.9. 

 

 

Three different free span lengths, L, were prototyped: 2, 3 and 4 mm.  The 

reason for this experimentation related to buckling load calculation. The Euler 

column buckling formula can be modified to include shear deformation. 

Engesser’s formula for critical buckling load provides one approximation, as 

given in Equation (3)11: 

where Peuler is the Euler critical buckling load, G = column shear modulus, 

A = column cross section area. Assuming a circular cross section, E = 40 GPa,  

G = 3.3 GPa, and engineering effective free span length = 0.65L, buckling loads 

and stresses are shown in Table 4.1. 
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Table 4.1: Buckling load and stress for four different free span lengths 

Free Span (mm) Buckling load, N Buckling stress, MPa 

2 1692 1990 

3 1131 1331 

4 773 909 

5 549 646 

Since the Combined Stress Model predicted a critical stress of 1155 MPa, 

a free span length of less than 4 mm was needed.  However, with the longer 

span of 4 mm, an alignment error would be less penalizing.  On the other hand, 

the values for buckling stress in Table 4.1 may be liberal, as Figure 4.6 indicates 

that G decreases with increasing compressive stress.  

Test alignment variations were related to at least three parameters: (1) the 

alignment of the test load frame and fixtures; (2) the precision with which the 1.4 

mm shaft was drilled in the cylinder center; and (3) monofilament centering in the 

shaft. Alignment errors due to (1) were considered very small. Variations from (2) 

were also quite small, as a lathe-mounted drill was used to drill the shaft in the 

center of commercially obtained aluminum bar stock.  However, (3) could result 

in alignment variations of as much as +/-17 m. Monofilament dimensions varied, 

as previously noted, and the cylinder shaft was 35 m larger than the average 

monofilament diameter.     

For small gauge lengths, alignment error becomes more significant.  At 4 

mm, a 17 m error would give a misalignment of only 0.25 degrees.  At 2 mm, 

the error grows to 0.5 degrees.  This error is exacerbated because the 
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Figure 4.10: Pultruded monofilament stress vs. displacement for 4 

samples of 4 mm free span lengths 

compressive force further reduces gauge length. For all of these reasons, three 

spans were prototyped: 2, 3, and 4 mm.  Longer spans reduce misalignment 

effects, while shorter spans inhibit Euler buckling. 

Compressive strength test results 

Four 4 mm span samples were tested. Displacement vs. stress is shown 

in Figure 4.10. The average stress at failure was 0.692 GPa.  While three 

samples were grouped around a compressive failure stress of 0.6 GPa, one 

sample achieved 0.93 GPa, which was consistent with the results of Table 4.1.  

Small differences in sample preparation and alignment certainly could play a role, 

as sample geometries were small and forces were high. 
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Figure 4.11: Pultruded monofilament stress vs. displacement for 4 
samples of 3 mm free span lengths 

Figure 4.12: Pultruded monofilament stress vs. displacement for 4 
samples of 2 mm free span lengths 

Four 3 mm span samples gave compressive strength measures shown in 

Figure 4.11. 

Four 2 mm span samples gave compressive strength measures shown in 

Figure 4.12. 
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Table 4.2: Buckling load and stress for three different free span lengths 

Table 4.3: Compressive strength measurement and Combined Stress Model 
prediction for laminate and pultruded samples 

Significant variations in results were noted as a function of span length, as 

compiled in Table 4.2.  

Compressive span 
length (mm) 

Compressive stress at 
failure (GPa) 

Highest value of any 
sample (GPa) 

2 0.635 +/-0.073 0.714 

3 1.102 +/-0.108 1.216 

4 0.692 +/-0.180 0.931 

Both average failure stress and maximum failure stress was maximized 

using the 3 mm free span length. It is theorized that the longer span penalized 

compressive strength due to columnar buckling, while alignment imperfections 

penalized the shorter span. For this particular test apparatus, protocol, and 

monofilament dimensions, the 3 mm span was therefore taken to most accurately 

represent the true compressive strength of this particular pultruded composite. 

Table 4.3 compares the laminate composite from Chapter 3 and the 

monofilament 3 mm span results to predictions from the Combined Stress Model.  

 Model 
Prediction 

Test Result 
Average 

Model / test 
result 

Laminate composite 0.645 GPa 0.565 GPa +14.1% 

Pultruded composite 
        L = 3 mm 

1.155 GPa 1.102 GPa +5% 

For the laminate composite, the model overpredicted compressive stress 

by about 14%. For the pultruded composite, the model overpredicted 
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compressive stress by only 5%.  For both model and measurement results, the 

pultruded composite outperformed the laminate composite by almost a factor of 

2. Taking into account the reasons why the level of theoretical strength is difficult 

to achieve, the results of Table 4.3 are excellent. For example, interlaminar 

effects could degrade the compressive strength of the laminate composite, and 

this is not considered in the combined stress model. Furthermore, this failure 

mechanism is more likely to be significant in the laminate composite. 

Using a scanning electron microscope, two 3 mm test specimens from the 

pultruded composite were analyzed.  Two images are shown in Figure 4.13.  The 

first specimen (4.13a) achieved a compressive strength of 0.955 GPa. The 

second specimen (4.13b) had a compressive strength of 1.17 GPa.  A very 

distinctive 45 degree failure plane is evident across the majority of the section in 

(4.13a) and across the entire section in (4.13b). This indicated sudden failure in 

pure shear, suggesting that the sample preparation and test protocol successfully 

eliminated Euler buckling in the 3 mm sample. 

While SEM images are not available from the laminate composite after 

ASTM D6641 testing, a close-up photo of the failed region is shown in Figure 

4.14. Four 45 degree failure lines can be seen. However, there are obvious signs 

of some interlaminar failure and splitting.  As previously noted, this is not taken 

into account by the Combined Stress Model. 
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Figure 4.13: SEM images from two failed 3 mm pultruded composite.  

Measured compressive strength was 0.995 GPa (13a) and 1.17 GPa (13b) 

a b 

Figure 4.14: Laminate composite specimen after ASTM D6641 testing. 
Measured compressive strength was 0.56 MPa 
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Figure 4.15: Compressive strength of glass-resin composites from Lo (1992), 
Chapter 3 test case, current study pultruded composite, and Combined Stress 

Model prediction for the case of perfect alignment 

Compressive strength values of the putruded Avantex/vinyl ester 3 mm 

span monofilament are much higher than those reported in the literature, as far 

as the authors have been able to determine. This is shown in Figure 4.15, as well 

as the laminate composite from Chapter 3.  Combined Stress Model predictions 

of Avantex/vinyl ester composite with perfect alignment are also provided.  The 

pultruded composite empirical result approaches the theoretical maximum. 

Discussion 

The literature often associates unidirectional compressive strength with 

fiber characteristics.  These include fiber bending stiffness12, a low-modulus 

interphase between fiber and matrix that varies in importance relative to fiber 

size13, size effect on collimation14, and fiber anisotropy.15 16  This study shows 
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that an isotropic, amorphous, relatively low modulus, and small diameter glass 

fiber composite is capable of high compressive strength.  

The study provides two different validation aspects to the Combined 

Stress Model. First, the model correctly predicted the magnitude of gain in 

compressive strength of a glass/resin composite when fiber alignment was 

improved. Second, the model posits that compressive failure occurs via matrix 

shear instability, with the obvious caveat pertaining to highly anisotropic fibers 

that have poor shear strength, such as aramid. Microscopic images of the failed 

pultruded sample show a shear failure, not a buckling failure. This was the case, 

even though the glass fibers had a compressive strain of about 2.8% at the 

compressive load of 1.1 GPa. Indeed, the pure shear failure suggests that matrix 

shear strength was the weak link, not glass compressive strength. 

Theoretical developments and experimental validations can be particularly 

valuable when they inform practical engineering considerations.  This study 

quantifies gains in one important performance – compressive strength – to 

measureable, quantifiable variables linked to process. Reducing fiber 

misalignment and interlaminar thickness necessitate process improvements, 

which require capital investment.  Gains in performance can be quantified, and 

cost-benefit analyses can be performed. 

Finally, this study highlights the difficulties associated with unidirectional 

compressive strength testing. With this particular unidirectional pultruded 

monofilament, test span differences of 1mm were shown to have a major impact 
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on measured results. Through experimentation across a range of reasonable 

values, a particular free span length was found that gave measured compressive 

strengths that approached a theoretical maximum. 

Conclusions 

1. A test method has been developed that permits accurate compressive 

strength testing of a 1 mm diameter monofilament glass/resin pultruded 

composite. 

2. This pultruded glass/resin composite was measured to have very low fiber 

misalignments, with 90% of the cross section having misalignments lower 

than 0.25 degrees. 

3. Using a 3 mm free span, or length to diameter ratio of 3, compressive 

strength of this pultruded glass/resin composite was measured at 1.10 GPa. 

4. The Combined Stress Model successfully predicted the large difference in 

compressive strength of this pultruded composite vs. an equivalent laminate 

composite on an absolute scale.  The relative difference compared to a 

laminate composite having the same constituent materials was also well 

predicted. 

5. The pultruded monofilament failed in what appears to be pure shear. 

6. These results supply additional validation of the Combined Stress Model 

proposed in Chapter 3. 
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CHAPTER FIVE 

FINITE ELEMENT MODELING OF UNIDIRECTIONAL COMPOSITE 

COMPRESSIVE STRENGTH 

Introduction 

Unidirectional composite compressive strength is recognized to be less 

than tensile strength.  Many theories have been advanced to explain this, 

beginning with Rosen and Dow1 in 1965.  This work advanced the idea of fiber 

microbuckling as a compressive failure mechanism.  The ensuing 45 years have 

seen many studies that refine and supplant Rosen and Dow’s original treatise, 

with fiber alignment2 3, matrix nonlinearity4, and matrix modulus gradients5 being 

proposed as deleterious elements that reduce strength in composites. 

A number of studies have applied finite element analysis to investigate 

composite compressive behavior.  Compressive instability and compressive 

modulus have been modeled with FEA in a variety of methods.  Wisnom6 used a 

2D approach to predict compressive strength that relied on test measurement of 

actual composites for shear and transverse stiffness, yet showed the influence of 

boundary conditions on compressive strength.  Lee and Waas7 discretized fiber 

and matrix in 2D modeling, predicting a splitting failure mode for glass 

composites.  Yerramalli and Waas8 developed a 3D approach for compressive 

analysis and suggested that fiber size could influence compressive strength.  

Garnich and Karami9 used a 3D unit cell approach to predict compressive 

stiffness of composites having fiber waviness. 
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The current study starts with a two-dimensional analysis of Rosen’s 

development, making use of a 2D unit cell FE model that gives the same results 

as Rosen. A key point is the recognition of the kinematics associated with 

deforming a continuous fiber unidirectional composite in compression, resulting 

in the implementation of appropriate boundary conditions. In successive fashion, 

modeling complexities corresponding to physical realities are added, including an 

improved method of modeling the nonlinear compressive behavior of the matrix. 

Finally, a 3D unit cell FE model is presented that is comprehensive in nature.  

Straightforward examples are provided that show the capability to quantify effects 

of many factors linked to changes in compressive strength: fiber alignment, 

uniformity of fiber spacing, fiber cross-section shape, fiber modulus, and matrix 

nonlinearities. Comparison to experimental results from the literature is provided.  

This FE modeling verifies several of Rosen’s assumptions, such as the 

appropriateness of ignoring fiber bending stiffness.  Using ABAQUS perturbation 

analysis, this study shows that the in-phase shear mode is indeed the dominant 

mode for compressive instability.  Higher modes are series assemblages of the 

shear mode, with inconsequential change in bifurcation eigenvalues. 

Thermally induced matrix prestress can influence compressive behavior.  

For common matrix and fiber properties, thermal prestress can have a low to 

moderately beneficial impact on compressive strength10; yet, this depends greatly 

on manufacturing methods. While FEA can certainly model thermal effects, they 

are not considered in this study. 
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Finite Element Modeling Methodology 

Unit Cell Boundary Conditions 

Imposing a shear deformation 

Chapter 3 showed that a composite unit cell could be analyzed using a 

simple statics approach, taking into account the imposed deformation field. This 

is easily extended to a 2D fiber / matrix unit cell, as shown in Figure 5.1. 

Employing Rosen’s assumptions of a long buckled wavelength and very 

high fiber shear stiffness, Rosen’s original result of Equation (1) can be 

reproduced via summation of moments: 

Gf Gm 

c

Gf >> Gm   Ef >> Em  “f” = fiber, “m” = matrix 

Ef Em 

Deforms like 
this 








tm tf 
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Figure 5.1: Shear instability for idealized 2D composite 
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The kinematics presented in Figure 5.1 and the resulting expression of 

Equation (1) are central to understanding the compressive behavior of 

composites.  Taken together, they state that: 

a) At the micro level, a unidirectional composite deforms only in shear.  In Euler 

beam theory, shear stiffness is high compared to bending stiffness; thus, 

deformation is in bending alone.  The physics of the problem at hand are 

exactly the opposite; i.e.: 

 

 

For an infinite foundation width, noting that composite E in the fiber direction 

is driven by fiber and in-plane G is driven by matrix stiffness, and noting that 

moment of inertia varies as width cubed and area varies as width, Equation 

(2) is true from inspection. 

b) The composite in-plane shear stiffness equals the compressive strength. As 

noted in Chapter 3, Equation (1) is a 2D idealization; the general form is: 

 

 

Equations (2) and (3) inform physical understanding and modeling 

approach.  It is understood that pertinent deformation will occur in shear, and 

composite shear stiffness is fundamentally important.  Modeling must only allow 

shear deformation and it must accurately model shear stiffness. 

                                                        (   

  

  
                                                       (   
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It follows that a unit cell finite element boundary conditions should be 

consistent with the deformation field shown in Figure 5.1. To accomplish this, the 

following objectives should be met: 

a) Individual fibers must freely rotate on the top and bottom boundaries. 

This agrees with observations made by Cho, et al. 11. 

b) The left and right unit cell sides must be tied together such that it 

approximates an infinite domain that deforms only in shear and 

compression at the micro level. Figure 5.2 shows a method by which 

this can be achieved, with discretization of fiber and matrix.  

These boundary conditions allow the deformation modes on the unit cell 

as shown in Figure 5.3.  In Figure 5.3a, which depicts pure static compression, 

left and right face nodes are tied in X.  This enables the Poisson effect.  Figure 

Bottom left corners of fiber 
elements are fixed in x, free in y. 
This frees the fibers to rotate in 
the X-Y plane. 

NL NR 

F
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r 

NL = node on left face 
NR = corresponding node on right face 
NL dx = NR dx for static compression 

and bifurcation due to x 
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Figure 5.2: Boundary conditions for fiber rotation and unit cell shear 
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5.3b shows that this boundary condition also allows simple shear, which can be 

combined with compressive deformation, as shown in the illustration.  Horizontal 

sections remain horizontal, and the unit cell is only free to compress and shear.  

There is no bending deformation because, as demanded by Equation (2), 

bending stiffness is very large compared to shear stiffness. 

While more complicated, 3D discretization and appropriate boundary 

conditions are analogous. 

Use of Saint Venant’s principle 

Figures 5.1 and 5.2 conveniently depict the compressive stress, x, as 

being applied only on the reinforcement.  For the most common unidirectional 

composites, the reinforcement is at least 20 times stiffer than the matrix, and this 

is a reasonable approximation.  However, it is not rigorously correct; moreover, 

x 

x 

y 

NL NR 

a: compression:  left face and 
right face nodes tied in X, 
permitting Poisson effect. 

b: shear:  left face and right face 
nodes are tied in X, permitting shear, 
not bending. 

NL NR 

x 

y 

x 

Figure 5.3: Deformation mode imposed by left and right face B.C. 
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the next section will reveal the importance of matrix nonlinearity, which depends 

on the matrix deformation state.  For this reason, boundary condition effects were 

carefully studied. 

When modeling composites, other researchers have faced this problem. 

Francescato, et al12 modeled the torsional behavior of composite beams using 

FEA, with uncertainty in the appropriate support boundary conditions.  In 

comparing results to closed form solutions, they found several boundary 

condition specifications that gave global response similar to the Saint Venant 

solution for beams that were suitably slender.  Alpdogan, et al13 studied 

transitional effects of joined composite beams. They noted that transitional 

effects decayed to the Saint Venant solution at about z/a = 2, where z = axial 

distance from the joint and a = beam thickness. 

Most similarly to the present study, Wongsto, et al.14 addressed the effects 

of randomly spaced fibers within the cross-section of a unidirectional composite. 

They separately discretized fiber and matrix in a micromechanical modeling 

approach. With randomly spaced fibers, the boundary condition is neither stress 

nor displacement controlled. Their goal was to determine the necessary distance 

between an incorrectly prescribed boundary condition and a representative 

volume element (RVE), in order for the RVE to behave as though the boundary 

condition was correct.  As per the Saint Venant principle, the stipulation was that 

the incorrect boundary conditions be statically equivalent to those in the exact 

system. They found that boundary condition effects became negligible at a 
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distance of twice the center-to-center fiber spacing away from the boundary. For 

the most common glass and carbon fiber composites, this gives a distance on 

the order of 30 to 40 m.  

To study boundary condition effects, the model shown in Figure 5.4 was 

used. A 2D unit cell was defined having Vf = 0.50, and matrix and fiber of 10 m 

thickness. The matrix was placed in the unit cell center, the fiber was split into 

two halves, and left/right symmetry was imposed.  The bottom face was fixed in 

X, and free to slide in Y.  Figure 5.4a defines boundary stresses and material 

moduli for 4 study cases, and Figure 5.4b shows model geometry.  

Case 1 is homogeneous for both stress and modulus. With a modulus of 

40 GPa and applied stress of 1.0 GPa, the engineering strain in X equals -0.025. 
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               F      M       EF      EM 

               (GPa)   (GPa)   (GPa)   (GPa) 

 
Case 1   1.0      1.0    40.0   40.0 
 
Case 2   2.0      0.0    40.0   40.0 
 
Case 3 1.925  0.075  77.0   3.0 
 
Case 4   2.0      0.0    77.0   3.0 
 
 

Fiber / Matrix / Fiber 

F M F 

 a  b 

Figure 5.4: FEA model used to study boundary condition effects: Model 
parameters (a) and model geometry (b) 
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Abaqus reports Green-Lagrange strain, which equals -0.0246. Case 2 represents 

a most severe case for boundary condition error.  EF and EM are equal, yet all the 

stress is applied to the fiber.  Case 3 has material properties that approximate 

those of a glass-resin composite.  The moduli are defined such that the 

composite stiffness in X is identical to that of Cases 1 and 2.  The strain results of 

Case 3 should be identical to Case 1, as the applied pressures are scaled 

according to the moduli.  Case 4 has the loading condition proposed in Figures 1 

and 2, and is a linear modulus approximation of a glass-resin composite. 

The matrix strain in X is shown in Figure 5.5 for Cases 1 and 2. Case 1, 

with homogeneous material and applied stress, has constant X strain of -0.0246, 
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Figure 5.5: FEA results for Cases 1 and 2: matrix X strain as function of 
distance from boundary condition 
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which agrees with theory. Matrix compressive strain reaches the homogeneous 

value at a distance of 26 m from the applied stress.  

Results for Cases 3 and 4 are shown in Figure 5.6.  Case 3 gave identical 

matrix strain results as Case 1, as expected.  Case 4 obtained the same value of 

compressive strain at a distance of 35 m from the top surface.  

The results of this simple study agreed with the findings of Wongsto, et al. 

(2005).  At a distance of around 2 times the center-to-center fiber distance, the 

matrix strain and stress state match the far-field value, provided the Saint Venant 

condition of static equivalence is met. Therefore, in this study, stresses will be 

applied only on the fiber cross sections.  Model length will be large compared to 

fiber diameter, such that these boundary effects are negligible  
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Matrix Material Law 

The literature acknowledges the importance of the nonlinearity of the 

matrix when modeling compressive strength of unidirectional composites. When 

FEA has been applied to this problem, a common material law has been the von 

Mises plasticity model with isotropic hardening.  This law, usually employed for 

non-ferrous metals, is implemented in several commercial codes, including 

ABAQUS.  An elastic uniaxial modulus and Poisson’s ratio are entered, as well 

as multiple uniaxial yield stresses. A plastic strain corresponding to each yield 

stress is given, thereby enabling a fit to uniaxial nonlinear behavior. This classical 

plasticity approach was taken by Xu et al.15, Lee, et al. (1999), and Yerramalli, et 

al. (2004) in micromechanical modeling of composites of polymeric resins and 

fibers.  This approach gave very good matrix uniaxial performance, by definition.  

Lee, et al. (1999) also verified that the approach gave reasonable agreement to 

experimental measures for loading in pure shear. 

In a unidirectional composite having very high fiber stiffness, such as 

carbon or boron, along with moderate to high fiber volume fraction, there is very 

little strain in the fiber direction.  Therefore, the matrix experiences relatively little 

compressive strain. However, with low fiber volume fraction, or a lower modulus 

fiber, such as glass, fiber compressive strain can be significant.  For these cases, 

it is vital to correctly model the shear stiffness of the matrix under combined 

compressive and shear loading. This is especially true if parametric modeling 
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comparisons are made, by which the effects of fiber modulus, alignment, and 

volume fraction on compressive strength are estimated. 

Studies providing empirical measurements of resin shear modulus as a 

function of compressive stress are quite limited, as far as the authors have been 

able to determine. One paper by Liang et al.16 reported effects of superimposing 

compression on shear for an epoxy resin sample.  The load vs. displacement 

slope decreased as shear increased.  However, stress and strain information 

was not provided. Most germane to the current study, Hayashi17 specifically 

addressed the evolution of shear modulus under compression for Epikote 828, 

which is an epoxy resin. Using a novel test specimen and fixture, initial shear 

stiffness was measured at increasing levels of compressive stress.  Normalizing 

matrix shear modulus, Gm, by the stress-free initial shear modulus G0, he found 

the shear modulus evolution of four samples as reproduced in Figure 5.7.  
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Figure 5.7 shows a drop in shear modulus of 15 to 25% at a compressive 

stress of 60 MPa.  To put this in the context of a unidirectional composite, 

consider an E-glass- resin composite with Vf = 0.50. The fiber axis modulus is 

about 38 GPa.  A compressive strength of 700 MPa – a reasonable value from 

the literature - would result in fiber (and matrix) compressive strain of around 

1.9%.  With an initial Young’s modulus of 3.23 GPa, Epikote 828 develops a 

stress of 60 MPa at 1.9% strain.  Thus, the results of Figure 5.7 are quite 

pertinent in understanding and modeling compressive strength. 

Using plastic deformation with isotropic hardening, the two elastic 

constants, E and , explicitly define the elastic shear modulus, G, per Equation 

(4). E and G are thus directly related because is a constant. 

However, polymers are viscoelastic in nature, with significant loss angle 

and creep at room temperatures.18 19 More significant for the current study, 

Poisson’s ratio is not a constant.  O’Brien, et al.20 showed that creep and 

Poisson’s ratio were related for an epoxy. Under constant stress, Poisson’s ratio 

increased, approaching 0.50 for long creep times. Usual Poisson’s ratio values 

reported for polymeric resins vary from 0.30 to 0.40. 

  
 

        
                                              (   
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Maksimov et al. 21 measured Poisson’s ratio as a function of compressive 

stress for a vinyl ester resin. Poisson’s ratio was found to vary significantly under 

compressive stress. Their results were reported in a graphical form, which is 

reproduced in Figure 5.8. Poisson’s ratio was found to linearly increase with 

increasing compressive stress, until the compressive strength of 125 MPa was 

approached.  At this point, Poisson’s ratio rapidly increased to 0.50, representing 

an incompressible state. With reference to Equation (4), such an evolution in 

Poisson’s ratio would decrease shear modulus with compressive stress, even for 

a constant Young’s modulus.  From this perspective, Maksimov, et al. (2005) 

offers a partial explanation to the empirical results reported by Hayashi (1985). 
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ABAQUS offers the ability to add user defined fields to material laws.  With 

this feature, one can define multiple paired values of Young’s modulus and 

Poisson’s ratio, enforcing values relative to the defined field.  If this field is the 

von Mises stress, the elastic constants can be assigned as a function of this one 

positive, scalar quantity. Figure 5.9 shows how the material properties can be 

implemented into ABAQUS using the measured uniaxial stress vs. strain of 

Epikote 828 supplied by Hayashi (1985), and Poisson’s ratio evolution of Figure 

5.8. Poisson’s ratio evolution is scaled to account for differences in resin ultimate 

compressive strength from Hayashi (100 MPa) and Maksimov (125 MPa). 

Uniaxial stress is the von Mises stress, making implementation straightforward.  
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In the Elastic material card, one therefore has “N” lines of material 

constants. Any number of points can be used. A user defined subroutine in 

Fortran 77 returns von Mises stress, as defined in Equation (5). The user 

subroutine and material constants EN and N at each N for Epikote 828 are 

given in Appendix B, along with further ABAQUS implementation details. 

Using this characterization of Epicote 828, a linear plane stress one 

element model (CPS4) was solicited in simple shear. Element response was 

compared to the response achieved from the elasto-plastic assumption with 

isotropic hardening.  Results for pure shear solicitation are shown in Figure 5.10.   
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Also provided is the result for classical plastic deformation theory, as 

employed by Lee, et al. (1999) for comparisons between ABAQUS and closed 

form solutions.  The results of Figure 5.10 show that ABAQUS matches classical 

plastic deformation theory for simple shear.  When implemented in ABAQUS, the 

proposed model gives shear stress vs. shear strain response that is very similar, 

with a 1 to 2% reduction in shear stress at larger shear angles. 

Next, the one element ABAQUS model was solicited in combined 

compressive and shear loadings using the assumption of plastic isotropic 

hardening and using the proposed model.  The shear modulus at zero shear 

strain was predicted as a function of compressive stress, thus modeling data 

from Hayashi (1985), as shown in Figure 5.11.  Sample No. 1 from Figure 5.7, 

which was quite different from the other samples, was not included. 

Figure 5.11: Shear modulus vs. compressive stress for Epikote 828. 
Measurements from Hayashi (1985), predicted by ABAQUS with proposed 

model, and ABAQUS with plastic isotropic hardening 
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With plastic isotropic hardening, no shear softening with compressive 

stress occurred.  Using the proposed model, the element response closely 

tracked the experimental results.  At 60 MPa, the initial shear modulus had 

decreased by 14%, while at 80 MPa, a 22% reduction was predicted.  This was 

due to the increase in Poisson’s ratio as well as the moderate reductions in 

secant uniaxial modulus as the resin ultimate strength was approached. 

The relative importance of Poisson’s ratio change to secant modulus 

change will vary depending on the non-linear character of the matrix.  For this 

particular epoxy resin, 55% of the drop in shear modulus at 80 MPa was due to 

uniaxial softening, while 45% was due to the increase in Poisson’s ratio. 

This reduction in shear modulus with increasing compressive stress is 

fundamentally important for modeling shear instability.  That G12 is directly 

related to matrix shear modulus, Gm, is well-known, and is shown in the widely 

used Halpin-Tsai equation for composite G12. This is given in Equation (6) with 

the assumption of round reinforcement fibers.  

Taken with Equation (3) and Figure 10, it is apparent that compressive 

strength is a function of matrix compressive stress.  This aspect of constituent 

modeling must be adequately modeled, or strength predictions may be in error. 

Using this approach for matrix characterization, and the boundary 

condition specification presented in the prior section, 2D and 3D unit cell 
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ABAQUS finite element modeling was used to study parametric effects 

associated with fiber reinforcement. 

2D and 3D FEA Modeling Results 

This FEA study first models the problem Rosen considered and compares 

results to his prediction.  Then, modeling technology is incrementally improved. 

Successive results are used to enhance understanding of the physics involved 

and model parameter sensitivities. 

2D Unit Cell 

Using plane stress quadratic elements (CPS8), an FE model of a 2D 

idealized composite was created. Boundary conditions of Figure 5.2 were used; 

other model geometric data is provided in Figure 5.12a.  The appropriateness of 

model dimensions is discussed in the following points: 

 Fiber element width = 10 m. This is an approximate value for both glass and 

carbon fiber. Boron fiber diameter is about 100 m. 

 Model length = 2000 m = 2 mm.  Fiber length to width ratio = 200. Fiber 

bending stiffness is thus negligible.  This physical situation exists when the 

free span in compression is of the order of 1 mm or higher for glass and 

carbon composites, and on the order of 10 mm for boron.  The commonly 

used ASTM D6641 compression test free span is 12.7 mm; thus, the model 

dimensions here are appropriate for carbon, glass, and boron fibers. 

 Model width = 20 m.  Effective width is infinity due to the boundary condition.  
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2D bifurcation analysis 

With the material law approach previously defined, using Epikote 828, 

boundary conditions of Figure 2, glass fiber E = 73 GPa, =0.20, and Vf = 0.5, a 

linear bifurcation analysis was done with the 2D undeformed geometry.  Mode 

shapes and eigenvalues are given in Figures 5.12b – d.  

 

 

 

 

With the matrix G0 = 1.18 GPa and Vf = 0.50, Equation (1) gives c = 2.36 

GPa. The FEA prediction was 2.28 GPa, giving an agreement of 97% with 

Rosen’s equation. However, Rosen assumed infinite shear stiffness fibers.  With 

properties used here, Gf = 30.0 GPa, which is high, but not infinite. Using the rule 

of mixtures for materials in parallel, the idealized 2D G12 = 2.28 MPa. Thus, with 

2000  

(a) undeformed            (b) Mode 1              (c) Mode 2                 (d) Mode 3 
                                     2.280 GPa             2.282 GPa                  2.286 GPa 

         Figure 5.12: Undeformed and buckled geometries and eigenvalues 

                   for 2D model, E-glass and epoxy resin,CPS8 elements 

vf = 0.5 
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respect to Equation (3), the FEA accuracy = 100%.  This FEA verification step 

may seem trivial.  However, the authors have not found it in the literature. With 

this step, the boundary conditions previously discussed are validated. 

An Euler column is a bending problem, whereas compression of a 

unidirectional composite is a shear problem.  Figures 5.12b – d contain negligible 

bending stress; each mode is a shear mode, with higher modes being 

assemblages of the first mode. Associated eigenvalues are essentially identical. 

Plane sections do not remain plane; rather, horizontal sections remain horizontal. 

Figure 5.12 showed that shear modulus decreases with compressive 

stress.  This assures that composite shear stiffness will decrease relative to 

bending stiffness as compressive stress is added. It is therefore certain that the 

lowest eigenvalues for almost any unidirectional composite of moderate to high 

volume fraction will correspond to the shear mode of Figure 5.12b. 

2D Riks analysis 

ABAQUS offers multiple avenues for instability analysis.  With the RIKS 

method, a step-load approach can be employed, in which load is incrementally 

added and the deformed geometry calculated for each load. The maximum load 

is achieved at the bifurcation load.  Fiber alignment and modulus effects were 

modeled using this approach. 

As shown by Cho et al. (2007), filament misalignment results in an 

imposed shear stress.  This shear stress combines with matrix compressive 
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stress, as detailed in Chapter 3, which further increases matrix von Mises stress 

and thus matrix shear stiffness.  

Assuming small angles, modeling fiber misalignment is simple, as the 

shear deformation mode is essentially linear. Rather than creating an 

imperfection that corresponds to a certain mode, the applied pressure can be 

simply represented as surface tractions in X and Y, as shown in Figure 5.13. The 

undeformed geometry thus remains identical for all cases. 

Using this loading method, model response to changes in fiber stiffness 

and misalignment was studied.  Two levels of fiber extension modulus 

corresponding to boron (Ef = 400 GPa) and E-glass (Ef = 73 GPa) were studied 

across a range of misalignment levels. Results are shown in Figure 5.14. 

Px  = -P cos  

Py  = -Psin  

fiber misalignment 

For small :  

         cos

         sin 

  
  

      
 

Fiber 

Figure 5.13: Applied load to simulate fiber misalignment  while using 
undeformed mesh 
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The 2D FEA model predicted the boron-reinforced composite compressive 

strength to be almost 2.0 GPa at a misalignment of 0.20 degrees. This value 

decreased to around 0.8 GPa with a misalignment of 2 degrees.  Changing only 

the fiber modulus from 400 to 73 GPa, compressive strength fell to 1.4 GPa at 

0.2 degrees, and to 0.75 GPa at a misalignment of 2 degrees. 

As misalignment increases, the problem becomes dominated by induced 

shear stress, with relatively low compressive stress.  For good alignment, the 

problem is driven by the degree of matrix compressive stress, which decreases 

shear modulus.  Thus, boron and glass behave similarly for high misalignment, 

yet differently at low misalignment.  In fact, the boron composite approaches 2.3 

GPa at perfect alignment, which is Rosen’s prediction, because the fiber strain is 
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small.  The glass composite does not approach Rosen’s prediction, because the 

glass fibers do strain, which results in matrix compressive stress. Rosen did not 

allow for reduction in matrix shear modulus as a function of compressive stress. 

Boron composites with Vf = 0.50 and a matrix initial G0 = 1.2 GPa have 

compressive strength of around 1450 MPa.  Glass composites with Vf = 0.50 and 

a matrix initial G0 = 1.2 GPa have compressive strength of around 650 MPa.22  

This simple FEA 2D linear element model suggests the improvement with boron 

is related to its greater compressive stiffness.  This reduces matrix stress and 

preserves Gm/G0.  It is not directly due to the increased diameter of boron fiber.  

Increased fiber diameter could impact compressive strength if it resulted in better 

fiber alignment during composite manufacturing.  This would be an indirect effect, 

however, and not directly related to fiber mechanical properties. 

3D Unit Cell 

2D idealization of the fiber/matrix composite yields Equation (1) as an 

estimate for c. Equation (3) defines this as equal to G12. It is well known that this 

under predicts measured G12 of unidirectional composites, as can be readily 

seen from the Halpin Tsai estimate of in-plane G12 given in Equation (6).  For this 

reason, Rosen’s original estimate is actually an underprediction of idealized 

compressive strength.  3D model discretization is necessary to more fully 

understand the phenomena at work. 
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3D meshing and boundary conditions 

3D unit cell definition parallels the 2D unit cell definition. As shown in 

Figure 5.15, the 3D unit cell retains the left-right boundary treatment, thus 

imposing the shear mode.  In ABAQUS, this was accomplished by constraint 

equations that tied each left side node to the corresponding right side node. Also 

retained from 2D is the treatment on the bottom face.  Fibers are constrained 

such that the bottom face can rotate around the 2 axis, but not translate in the 1 

direction.  A plane stress condition is created in the 2 direction by fixing the rear 

1-3 face, with the front face unconstrained.   

Figure 5.15: 3D unit cell definition, showing global dimensions and boundary 

conditions and meshing for square and round fibers 
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The 3D model has a length of 500 m, compared to 2000 m used for the 

2D model. This reduction is justified by the results of the 2D analysis, which 

verified that all modes are essentially the shear mode, and therefore length has 

little effect on the results. The 3D model uses 20 node quadratic elements, 

C3D20, thus giving capability to predict matrix stress variations in the 2-3 plane.  

The boundary stresses are applied in the same manner as for the 2D model.  

3D bifurcation analyses 

Using a square cable array, with Vf = 0.5, both round and square fiber 

cross sections were analyzed with a linear bifurcation on the undeformed 

geometries.  E-glass / epoxy properties were identical to those in 2D analyses.  

The deformed geometries and calculated eigenvalues for the first three modes 

are given in Figure 5.16. Multiple unit cells are shown together, thus illustrating 

the continuous nature of the deformation field. 

Figure 5.16: 1st mode deformed geometries for square and round fibers, E-glass 

fibers with Epikote 828 resin, Vf = 0.5 

Round fiber: Mode1: 3.73 MPa 
Mode 2: 3.75 MPa, Mode 3: 3.79 MPa 

Square fiber: Mode 1: 3.66 MPa 
Mode 2: 3.67 MPa, Mode 3: 3.71 MPa 
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Figure 5.16 shows the non-homogeneous nature of matrix deformation.  

The shear strain is high between cables in the 1-3 plane, yet small between 

cables in the 1-2 plane.  While this is of little importance for this linear bifurcation 

analysis, it will affect matrix stress in compressive and shear loading. For this 

linear analysis, there is little change between square and round fiber sections.  

The 1st, 2nd, and 3rd eigenvalues were nearly identical, paralleling what was seen 

in 2D analyses. This result also validates the reduction in model length.  Even 

higher order modes gave negligible bending contribution to the eigenvalues. 

Using the Halpin Tsai relation of Equation (6), with Gm = 1.18 GPa, and Gf 

= 30 GPa, the composite G12 = 3.21 GPa. Keeping in mind that G12 = Gc, the 

FEA prediction is therefore about 16% stiffer than the Halpin Tsai prediction. 

However, Halpin Tsai tends to underpredict G12 of actual composites. For 

composites having fibers of large shear stiffness and Vf = 0.5, measured 

normalized G12 / G0 values vary from 3.4 to 4.323.  Therefore, the FEA predictions 

fall at the low end of measured values while being slightly higher than Halpin-

Tsai predictions. 

This linear bifurcation analysis thus serves to validate the boundary 

conditions for the 3D unit cell.  The predictions generally agree with other theory 

that predicts in-plane composite shear stiffness.  It also gives a true theoretical 

maximum of compressive strength.  While the 2D idealization gave 2.36 GPa, the 

3D unit cell resulted in shear instability at 3.75 GPa.  This is about a 50% 

increase, which is the difference between Equations (1) and (6) at Vf = 0.50. 
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3D Riks analyses 

Bifurcation analysis of the stress-free model established that G12 

estimates were reasonable. However, as shown with 2D modeling, actual critical 

stress calculation involves modeling the evolution of matrix shear modulus as 

compressive stress is applied.  To extend this to 3D modeling, the RIKS method 

was employed in a manner similar to that described for the 2D case.  

Using the square fiber idealization with square fiber array, 2D and 3D 

results were compared for boron and E-glass composites using Vf = 0.50. Results 

are shown in Figure 5.17.  

The effect of moving to 3D was quite different for boron and E-glass.  This 

is because almost all the matrix shear modulus loss of a boron composite comes 

from misalignment-induced shear.  Because the 3D G12 (Equation 6) is much 
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Figure 5.17: 2D and 3D predicted compressive strength for boron and E-glass 
composites with Epikote 828, Vf = 0.5, using square fiber cross section with 

square array for 3D idealization 
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higher than the 2D idealization (Equation 1) the 3D boron model has much higher 

compressive strength at low misalignment.  The boron 3D model tends towards a 

compressive strength of 3.75 GPa for perfect alignment.  Such is not the case for 

the E-glass 3D model, as the matrix looses shear modulus even at perfect 

alignment, due to axial shortening of the fibers.  Matrix compressive stress 

results, and shear modulus drops.  As with 2D, the problem is driven by induced 

shear at high misalignment, for which Boron and E-glass behave similarly. 

Two fiber geometries were compared.  A round cross section using a 

square array was modeled, and a square cross section with paired fiber array. 

Round and square cross section results are provided in Figure 5.18.  
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assuming square and round fiber cross sections with E-glass and Epikote 828, 

Vf = 0.5  
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Round E-
glass fiber 
Vf = 0.5 
1 deg initial 
misaligment 

m = 35 MPa 

Round and square fibers behave similarly for very low misalignment.  This 

is to be expected, judging from the results of the bifurcation analysis previously 

presented.  With increasing misalignment, the round fibers are more heavily 

penalized.  The physical reason for this is best understood by postprocessing of 

3D shear stress results.  Figure 5.19 shows the in-plane shear stress for square 

and round E-glass composites with a 1 deg. misalignment, at a compressive 

stress of 850 MPa. At equal Vf, a round fiber in a square array results in a smaller  

in-plane distance between fibers than a square fiber in a square array. The result 

is increased matrix shear stress for a given level of compressive stress.  When 

misalignments become large, this effect begins to be significant. 

 

  

Square E-
glass fiber 
Vf = 0.5 
1 deg initial 
misaligment 

m = 28 MPa 

Figure 5.19: 1-3 stress for square and round fibers, 1=850 MPa,  

misalignment = 1 deg, Vf = 0.5 

1 = 850 MPa 
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Finally, the effect of nonhomogeneous fiber spacing was studied by 

considering fiber pairing.  Results are shown in Figure 5.20a. Fibers were paired 

in the 3 direction, as shown in Figure 5.20b.  For small misalignment, the cases 

are identical; for larger misalignment, the paired case looses compressive 

strength.  

 

The results are similar to those noted for the comparison between square and 

round fiber cross sections.  The physical reason for the trends is similar as well:  

fiber pairing results in higher non-homogeneity of the matrix shear stress at a 

given compressive stress.  This higher stress results in a lower shear modulus, 

due to matrix non-linearity, which in turn increases fiber rotation.  Increased fiber 

rotation increases in-plane shear stress for a given compressive stress, which 
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further reduces matrix shear modulus. 3D shear stress results are shown in 

Figure 5.21 for these two models at 750 MPa compressive stress, with 2 degrees 

of initial misalignment. 

 

Physical realities of imperfect fiber spacing and round instead of square 

cross sections tend to reduce compressive strength predictions.  Superimposing 

the effects of these physical realities, a glass fiber composite with a misalignment 

of 1.5 degrees is predicted to have a compressive strength of around 750 MPa.  

1.5 degrees was the equivalent misalignment reported in Chapter 3 for a 

standard laminate glass-resin composite having Vf = 0.50.  Literature values for 

compressive strength for such composites are around 550 to 650 MPa.  

However, other physical realities, such as interlaminar effects, were not 

accounted for in this model.  These effects could be integrated using this unit cell 

approach, and accuracy could be further improved. 

1 = 750 MPa 
 

Paired  
glass fibers 
Vf = 0.5 
2 deg initial 
misaligment 

m = 40 MPa 

Homogeneous  
glass fibers 
Vf = 0.5 
2 deg initial 
misaligment 

m = 37 MPa 

Figure 5.21: 1-3 stress for homogeneous and paired square fiber, 1=750 MPa, 

misalignment = 1 deg, Vf = 0.5 
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Discussion 

Finite element analysis is a powerful tool.  Yet, it should be viewed as only 

a tool, not as a substitute for engineering judgment and insight.  While this study 

focused on the application of FEA to a specific problem, great care was taken to 

first correlate the modeling approach to a simple case for which the answer was 

known.  Complexities were incrementally added, and the FEA results were 

examined and understood at each step. 

As a result, the physics of the problem are better understood. The results 

underline the centrality of matrix shear modulus in compressive strength of 

unidirectional composites.  Indeed, all the variables studied here were shown to 

impact compressive strength only to the extent that matrix shear modulus – and 

thus composite shear modulus - was affected.   

While not addressed in this study, other failure criteria and modeling 

complexities could be considered.  In addition to calculating shear instability 

stress, fracturing of the matrix at some threshold stress could be modeled. Unit 

cell definition that included other types of imperfections, such as voids, matrix 

modulus gradients, or interply thickness, could be considered. These would all be 

functions of particular processes used in composite construction. 

Conclusions 

1. 2D and 3D unit cell micro-mechanical finite element models have been 

developed that predict compressive strength of a unidirectional composite. 
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2. The 2D modeling approach gives exact agreement to Rosen’s original 

equation when his assumptions are modeled. 

3. 2D and 3D boundary conditions have been developed that impose a pure 

shear deformation on the unit cell, yet allow free in-plane fiber rotation. 

4. The second and third bifurcation modes are shown to be equivalent to the first 

shear mode. 

5. A key innovation regarding matrix material modeling has been developed.  

Variation of Poisson’s ratio with compressive stress is included.  This results 

in a reduction in matrix shear modulus with compressive stress.  As matrix 

shear modulus is fundamental to this problem, this is a key innovation. 

6. A parameter sensitivity study was performed that showed how and why fiber 

misalignment, modulus, cross section geometry, and pairing affected 

composite compressive stress. Any factor that resulted in greater matrix 

compressive strain or higher matrix stress concentration in in-plane shear 

tended to reduce compressive strength. 
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CHAPTER SIX 

PATENT APPLICATION OVERVIEW 

This chapter shares parts of a patent application filed by Michelin Tire 

Corporation that is based on this work.  As of the writing of this dissertation, the 

application had not yet published.  Thus, specific solutions and associated claims 

have been omitted.  Michelin has graciously agreed to allow the general 

approach and aim of this patent application to be made public. 

Problem Statement and Idea for Solution 

Non pneumatic tires carry load via structural means.  By necessity, 

compressive stresses result.  Precedent exists in other industries (i.e., aviation) 

for design of benign buckling behavior, such that compressive members buckle 

without yielding. Structural integrity is maintained even in the post-buckling 

regime, with no permanent damage sustained by the structure. 

In the Michelin TweelTM Tire a circumferential beam develops contact 

patch stress via a shear layer encapsulated by two high stiffness membranes1.  

During deflection, one member develops tensile stresses and the opposing layer 

develops compressive stresses.  For very high deflection, two phenomena occur: 

 First, as the compressive member becomes highly stressed in compression, it 

is prone to buckling.  Practically, of course, this member is composed of 

elongate filaments – i.e., very thin columns.  When buckling occurs, inter-
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filament shear stresses are quite large, and local shear failure of the matrix 

(rubber or polyurethane, for example) can occur. 

 Second, the contact patch becomes long, forcing the shear layer to develop 

excessive shear strain.  Failure can occur in the shear layer. 

We can add “intelligence” in the design by creating a membrane that has a lower 

buckling stress yet develops acceptable post-buckled material strains in the 

shear layer, the inter-filament areas, and in the filament itself. 

Accomplishing this design goal consists of four steps: 

 Developing and validating finite element modeling procedures. 

 Representation of the beam structure of the TweelTM Tire in a 2D model. 

 3D modeling of many design possibilities for intelligent membrane buckling. 

 Rank improved membrane performance gains in the 2D beam model, choose 

best practices, and base patent application on these results. 

FEA Development and Validation 

In 1965 Rosen et al.2 first proposed microbuckling as an explanation for 

the observed rather low values of compressive strength of unidirectional 

composites. His work was based on stability equations developed by 

Timoshenko3.  Rosens’s result is well-known to those familiar with compressive 

behavior of composites: the now well-known extensional and shear deformation 

modes of a composite under compression, shown in Figure 6.1. 
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For moderately high filament volume fractions (Vf > 0.4), the lowest energy 

mode is the shear mode. Rosen’s critical composite stress is: 

                                                         
  

    
 

    

  
 
  

 
                                               (1) 

where Gm = resin modulus              Ef    = fiber modulus 

                       Vf = fiber volume fraction     L/m = buckled fiber wavelength 

Rosen then introduces a simplifying assumption:   L/m (buckled 

wavelength) is large compared to h (fiber diameter), thus, the second term of 

equation 1 can be dropped.  The shear mode critical stress simplifies to: 

                                                                       
  

    
                                                        (2) 

This analytical solution was used as a check for FEA modeling accuracy 

for in-plane buckling.  Using Abaqus 6.9 in-plane critical compressive stress was 

modeled for a plane stress 2D geometry. 

  

Figure 6.1: Extension and shear modes in composite buckling,  
Rosen (1965) 
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Mimicking Rosen’s assumptions, the FEA model geometry shown in 

Figure 6.2 was used to model critical compressive stress. Model specifics are 

provided below: 

 Filament diameter = 1 mm, length = 1600 mm.  Thus, length >> height.  

Filament bending stiffness can be neglected. 

 

 Filament modulus = 40,000 MPa 

 

 Matrix modulus = 40 MPa, Poisson’s ratio = 0.50, thus matrix shear 

modulus = 13.3 GPa 

 

 Filament volume fraction = 0.5.  For an aspect ratio of 1, and given 

material properties above, EI/L2 >> GA.  

Using quadratic isoparametric elements, a linear perturbation buckling 

analysis was performed.  The first three mode shapes are shown in Figure 6.3, 

along with the first three eigenvalues, which correspond to the critical 

160 mm 

160 mm 

Element width = 1 mm 

Compressive Stress 

Figure 6.2: 2D Plane stress model for composite buckling 
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compressive stress.  It should be noted that modes 2 and 3 are actually 

assemblages of the 1st mode, which is a shear instability mode. 

 

From Equation (2), the critical stress = 27.6 MPa, for an agreement of 

97.5% compared to the first mode. This showed that Abaqus 6.9 was well 

capable of predicting in-plane buckling behavior of unidirectional composites. 

To judge the ability to model out of plane buckling, a sandwich beam was 

constructed, with material properties and geometries shown in Figure 6.4.  It was 

tested in a standard 4 point bending test on an Instron 5500R machine. This 

composite beam was asymmetrically designed such that the neutral fiber 

occurred close to the 30 mm wide composite plaque.  The beam was then 

oriented in the 4 point fixture such that the 7 mm wide plaque was solicited in 

compression.   

The 7 mm wide plaque failed at a calculated compressive stress = 420 

MPa.  The failed area is shown in Figure 6.5.  The length of the delaminated area 

Mode 1  
Critical Stress = 26.9 MPa 

Mode 2  
Critical Stress = 26.9 MPa 

Mode 2  
Critical Stress = 26.9 MPa 

Figure 6.3: Critical stress and mode shapes 
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was approximately 20 mm.  The failure was due to a buckling event of a beam on 

an elastic foundation.   

 

 

 

 

Figure 6.5: Failed area in glass-resin plaque.  
Failure compressive stress = 420 MPa 

Figure 6.4: Sandwich beam design to validate out of plane buckling 
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The solution to this problem has been solved analytically,4 with the 

general governing equation originally given by Timoshenko, et al. (1961) in 

Equation (3). 

                                                                 

  
 

   

                                                                                                     

Where  L   = number of half sine waves to give lowest buckling load 
                       Eb = plaque modulus 
                       I    = plaque moment of inertia 
                       k   = foundation modulus 
 

These variables are shown in Figure 6.6 for a beam with a plaque on the 

top surface and a foundation modulus of k. 

This test geometry resulted in a state of pure moment for a length of 80 

mm.  For this length, the flexural stress was thus constant.  If this value is used 

for specimen length, and a half-sine distance of 20 mm is assumed, Equation (3) 

gives: 

 Pc = 1773 N 

 Stress = Pc / (0.7 x 7 mm2) = 362 MPa, thus good agreement to 
experiment. 
 

Next, a simplified 3D ABAQUS model was constructed to establish FEA 

accuracy for this out-of-plane buckling behavior. Quadratic elements with 

Figure 6.6: Beam design showing variables for Equation (3) 

k 

Eb , I  P 

L 
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reduced integration were used. Material properties of the glass composite were 

considered linear and isotropic (E = 40,000 MPa, Poisson’s ratio = 0.3).  The 

polyurethane was also considered Hookean and linear (E = 40 MPa, Poisson’s 

ratio = 0.45).  A simple linear perturbation buckling analysis was performed.  

Model geometry with the first mode deformation is shown in Figure 6.7.  The 

buckling stress for the first mode = 380 MPa, which agreed well with both closed 

form and empirical results.  The sinusoidal buckled wave period matched the 

delaminated region of the sandwich beam – approximately 20 mm for ½ period. 

These two examples validate Abaqus 6.9 for computation of in-plane and 

out of plane buckling behavior of high modulus elements in an elastomeric matrix 

Shear beam mechanics 

The Michelin TweelTM Tire contact region is schematically shown at in 

Figure 6.8. The gray portion is the shear layer, which is bounded by membranes 

which have high circumferential stiffness. When this curved beam – known as a 

“shear beam” –deforms to a flat surface, three important stress fields occur: 

Figure 6.7: First eigenmode of beam with top plaque, c = 380 MPa. 
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 Contact pressure acts on the lower surface.   

 The shear layer develops shear stress, which increases with X.  If the contact 

length is relatively small compared to the radius R2, and if the shear layer 

modulus is constant, then both the shear stress and shear strain increase 

linearly with X. 

 The two high stiffness membranes develop stress.  The bottom membrane 

develops compressive stress and the top member develops tensile stress. 

An analogous structure will be used for this development.  Instead of 

bending a curved beam onto a flat surface, a straight beam will be deformed onto 

a curved surface.  This is a slightly easier problem to analyze, yet the physics of 

the two problems are identical.  In the case of bending a straight beam onto a 

cylinder, the radius of the cylinder becomes analogous to the radius of the tire. 

Figure 6.8: Length of a shear beam deformed to a flat surface.  Top and bottom 
reinforcement layers are essentially inextensible; the material between the 
reinforcement must shear to accommodate the difference in reinforcement 

layer lengths, Rhyne et al. (2006) 
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An Abaqus 6.9 model was constructed using this approach. Quadratic, 

isoparametric elements without reduced integration were used to mesh a straight 

beam. The undeformed beam dimensions and properties were: 

 Shear layer thickness – 11 mm,  G = 12 MPa 

 Top and bottom membranes – 0.4 mm, E = 400,000 MPa 

 Beam length = 150 mm 

 Cylinder radius = 300 mm 

The value for G represents a typical thermoset polyurethane elastomer, 

such as Vibrathane B-836.  The E for the membrane is twice that of steel.  It was 

set that high in order to illustrate the effect of high inextensibility. 

The results in Figure 6.9 show the deformed geometry created by applying 

a force near the right hand side. The beam bends into contact with the cylinder.  

The color scale represents the level of shear strain in the shear layer.  

Shear strain for this case is shown in Figure 6.10.  The curve is linear until 

near the point at which the beam leaves contact with the cylinder.  In the linear 

region the shear strain varies as x / R.  Thus, at x = 40 mm, the shear strain is 

0.13.  The maximum shear strain is around 0.26, at an X value of 95 mm.  

Figure 6.9: Deformed geometry and shear strain of shear beam, deformed 
around a cylinder with radius = 300 mm 
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A thermoset elastomer such as B-836 can withstand repeated strain 

cycles up to a shear strain of 0.15, without permanent deformation.  However, 

shear strains above 0.15 can result in permanent, plastic deformation.  Thus, for 

this shear beam, a contact patch length of 90+ mm represents a severe, 

overloaded condition.  

The predicted contact pressure for this case is shown in Figure 6.11.  As 

disclosed in previous non-pneumatic tire patents5, the ground contact pressure 

will approximately be that of Equation 4. 

                                                       
  

 
                                                                                                         

where G = shear modulus of shear layer 
 h = shear layer thickness 
 R = radius to outer membrane 
 

For this case, using values for G, h, and R previously given:  P = 0.44 

MPa.  This value is almost attained near the beginning of contact, at x = 90 mm.  

Figure 6.10: Shear layer shear strain vs. X for near-inextensible 
reinforcements 
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The contact pressure then slightly decreases as x=0 is approached.  The reason 

for this is that, even with very stiff membranes, some strain occurs. 

Figure 6.12 shows the compressive strain in the bottom membrane as a 

function of x. The strain reaches -0.0027 at the contact center.  While small, this 

strain is not negligible.  If the membranes were in fact “inextensible” this strain 

would be zero, the contact pressure would be very close to 0.44 MPa, and the 

shear strain would be even higher at the edge of contact. 

Figure 6.11: Contact pressure vs. X for near-inextensible reinforcement 

Figure 6.12: Compressive strain vs. X for bottom reinforcement 
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While efficient, very stiff reinforcement result in high shear in the shear 

layer, especially as contact patch length becomes large.    An ideal reinforcement 

would have: 

 High initial modulus up to a normal operating condition – i.e., efficient for 

normal use 

 Low modulus at higher deflection; thus, less resulting shear in the shear layer 

 Capacity for operation at high strains without plastic deformation; thus, return 

to normal operation after an overload or impact event. 

Known materials do not have this character.  

Intelligent buckling 

The associated patent application disclosed several innovative structures 

aimed at creating a reinforcement layer that buckled at a designed compressive 

stress.  Further, the maximum stresses inside the reinforcement after buckling 

was within the elastic limits of a particular glass-resin epoxy material. These 

structures could not be disclosed at the date this dissertation was submitted.  

However, the stress vs. strain character of several structures is shared, as well 

as the method by which this data was generated. 
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The base model, Model A, represents a current practice.  The 

reinforcement layer consists of round, equally spaced filaments of diameter = 1 

mm, at a pace = 1.5 mm. The reinforcement has a Young’s modulus of 40,000 

MPa.  Model A is shown in Figure 6.13.  

Using the standard linear buckling bifurcation analysis available in Abaqus 

6.9, Model A was analyzed.  Model length = 80 mm in X was used as this is the 

length over which the compressive stress maintains a relatively constant, high 

value. The pertinent buckling mode for Model A is shown in Figure 6.14. This  

analysis was done for many different reinforcement designs. 

a                                                           b 

Figure 6.13: Model A geometry and boundary conditions 

Fixed boundary 

Shear layer thickness 

Compressive stress 
applied to membrane 

80 mm = length of high, relatively 

constant compressive stress 

Figure 6.14: Model A geometry after bifurcation at 340 MPa 
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Next, the Riks method included in Abaqus 6.9 was used to model post 

buckling behavior.  This post buckling methodology involves introducing an 

imperfection into a model.  This imperfection is generally associated with a 

particular buckling mode of interest.  The Riks procedure then incrementally adds 

a force or a stress, deforming the structure in a prescribed direction until some 

criterion is reached. 

For this case, an imperfection corresponding to the mode previously 

calculated was added.  The maximum imperfection was 0.5 mm, with all other 

node displacements scaled accordingly.  The load was a compressive stress in X 

applied to the reinforcement. The Riks procedure then returned X displacement 

as a function of applied stress. Stress vs. strain results are given in Figure 6.15 

for 5 reinforcement solutions, all of identical cross-section area. 

Figure 6.15: Compressive stress vs. strain for reference Model A, 
and 5 study solutions 
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Pre buckling stress, each model had the same modulus.  Models A 

through E buckled, then exhibited very different effective compressive moduli.  

The buckling stress for Model F was so high that it is practically considered that 

this cable orientation will not buckle. 

This information is also shown in Table 6.1. 

Model Pre-buckle 
modulus 

Critical 
buckling 
stress 

Post buckle 
effective 
modulus 

Percent modulus 
reduction compared 

to A 

A 40, 000 MPa 340 MPa 32,300 0% 

B 40, 000  272 21,300 34% 

C 40,000 277 13,070 59% 

D 40,000 203 8,990 72% 

E 40,000 177 7,320 77% 

F 40,000 448 n/a 0% 

Thus, at iso reinforcement, the compressive behavior is drastically 

modified.  Compared to Model A, Model F increased the critical buckling stress 

by 32%.  Compared to Model A, models C through E showed reductions in 

effective moduli and/or reductions in critical buckling stress 

This compressive behavior has a beneficial effect on shear strain. To 

demonstrate this, the same 2D beam model was used, as discussed in the first 

section.  Stress vs. strain characteristics for Model A and Model E, shown in 

Figure 15, were used. The models were identical in extension modulus (40,000 

MPA) and differed only in the compressive regime. 

Shear strain vs. X is shown for models A and E in Figure 6.16.  Because 

of the bimodulus behavior of model E, the shear strain is reduced – instead of the 

Table 6.1: Buckling stress and effective post-buckle modulus 
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shear layer straining, the membrane has buckled and the effective compressive 

modulus has been greatly reduced.  

Model A shear strain maximum is 22% higher than Model E maximum 

shear strain – 0.16 vs. 0.13. 

Polyurethanes in the family of Vibrathane B-836 can exhibit permanent 

deformation and greatly reduced fatigue life at shear strains above 0.15.  Thus, a 

controlled buckling behavior of the reinforcement of the Michelin TweelTM is a 

possible improvement on this design. This solution is especially advantageous, 

as no compromises were made for normal operation, during which no buckling 

would occur. 

 

 

 

Figure 6.16: Shear strain vs. X for Models A and E 
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CHAPTER SEVEN 

CONCLUSIONS AND RESEARCH OPPORTUNITIES 

Summary 

From a global perspective, this dissertation supports and builds on the 

1965 pioneering research of Dow and Rosen.  This is not evident at first glance, 

as one main thrust of these current studies was to harmonize theoretical 

predictions and experimental data of the compressive strength of continuous 

fiber unidirectional composites. Yet, these studies absolutely support two major 

premises of Dow and Rosen, as follows: first, that shear instability is the 

deformation mode governing unidirectional composite compressive strength; and 

second, that the composite in-plane shear modulus is first order in determining 

the resistance to shear instability. 

These studies add several disparate effects that influence composite in-

plane shear modulus, thereby refining the model proposed by Dow and Rosen.  

These include matrix non-linearity, fiber misalignment, combined shear and 

compressive matrix stresses, thermal prestress, and a more accurate 

representation of the relationship between matrix shear modulus and composite 

in-plane shear modulus. Fundamentally, however, shear instability is still taken 

as occurring when the compressive stress equals the in-plane composite shear 

modulus. This is unchanged from Rosen and Dow’s original development. 
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Specific Contributions 

Combined Stress Model 

The Combined Stress Model combines all known first order effects in 

computation of compressive strength of a continuous fiber unidirectional 

composite. Key innovations contained in the model include: 

 Use of tangent matrix uniaxial modulus to calculate tangent in-plane 

composite shear modulus. 

 Combination of matrix shear and compressive stresses to calculate matrix 

von Mises stress. Including matrix compressive stress is a key element, as 

increases in fiber modulus decrease matrix von Mises stress. 

 Use of matrix von Mises stress to calculate matrix tangent uniaxial modulus, 

given matrix shear and compressive stresses. 

 Addition of thermal effects to calculate initial matrix stress state. 

 Use of step-stress methodology to calculate in-plane composite shear 

modulus as a function of applied compressive stress. 

Accounting for Fiber Misalignment Continuum 

The Combined Stress Model calculates compressive strength for a given 

composite as a function of uniform fiber misalignment.  Then, measurement of 

the fiber misalignment as a cumulative volume fraction permits compressive 

strength calculation of a particular composite.   
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Compressive Strength of a Glass-resin Composite 

Experimental procedures were developed that permitted accurate 

compressive strength measurement of a glass-resin pultruded composite.  The 

compressive strength was measured to be 1.102 GPa, which was an average of 

4 samples.  This value corroborated the Combined Stress Model predictions, and 

represented a value of almost twice that noted in the literature for glass-resin 

composites of equivalent volume fraction.  Glass composites are therefore shown 

to have the potential for very high compressive strength, provided fiber alignment 

is very good and the matrix has suitable mechanical properties. 

FEA Unit Cell Boundary Conditions 

The unit cell approach to compressive strength modeling greatly reduced 

model complexity and size, while enforcing the required deformation mode of 

pure shear.  Boundary conditions applied to fiber elements permitted fiber 

rotation, while permitting fiber compression. 

FEA Matrix Modeling 

A straightforward approach for better representation of the matrix 

mechanical behavior was developed. Experimental studies show that the matrix 

shear modulus decreases with compressive stress.  By accounting for evolutions 

in Poisson’s ratio and secant matrix uniaxial modulus, the proposed method 

matches this experimentally observed behavior.  As matrix shear modulus is first 

order for composite compressive strength, this is an important advancement. 
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Research Opportunities 

At least four future research directions are suggested from the results of 

these studies: 

 Fatigue properties of laminate vs. pultruded composites.   

When a unidirectional composite is solicited in compression, fiber 

misalignments induce matrix shear stress.  Thus, more highly aligned 

composites should have improved fatigue.  This would particularly be true in 

flex fatigue, during which the outer fiber cycles under compression and 

tension stress. A highly aligned pultruded composite should have a much 

better flex fatigue than a more poorly aligned laminate composite of similar 

constituents. Fatigue testing of the neat resin would supply data necessary to 

model fatigue difference as a function of fiber misalignment, and results could 

be compared to experimental measurement. 

 Sub-limit composite damage as function of misalignment 

The pultruded composite in this study was measured and predicted to fracture 

abruptly and completely under pure compression. Conversely, a significant 

percentage of the laminate composite was predicted to fail prior to complete 

cross section failure.  This process could be verified experimentally by loading 

a laminate composite to an elevated, yet sub-limit compressive stress, then 

measuring the uniaxial modulus.  The drop in uniaxial modulus could be 

calculated from the predicted loss in intact cross-sectional area, and 

compared to that predicted from the method developed Chapter 3.  
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 More complex finite element unit cell considerations 

In Chapter 5, the effects of fiber spacing uniformity and fiber cross section 

shape were studied.  A simple square fiber array was used, with constant 

volume fraction and homogeneous misalignment. Considerations could be 

expanded to include fiber volume fraction variations, fiber alignment 

differences within the unit cell, and the interlaminar thickness effects.  

 Additional measurements of laminate composite misalignment 

continuums 

Chapter 3 developed a method for accounting for a fiber misalignment 

continuum, and successfully applied it to one glass-resin laminate composite.  

Measurement of the misalignment continuum of boron and carbon 

composites would be valuable, as this study hypothesized that higher fiber 

stiffness could improve fiber alignment.  If so, then the excellent compressive 

stiffness of boron fiber composites would be further understood. 
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Appendix A 

Combined Stress Model 

The algorithm uses a step stress approach in which the compressive 

stress is incrementally applied. Variables used are as follows: 

  = matrix uniaxial stress from tensile test 
   = matrix uniaxial strain from tensile test 

  = composite longitudinal stress 

                  = composite longitudinal step stress 

m                   = matrix longitudinal stress 

      = matrix longitudinal thermal residual strain  
     = matrix longitudinal strain 

      = change in matrix longitudinal strain from step stress 1  

m  = matrix in-plane shear stress 

vmm   = matrix Von Mises stress 

      = matrix uniaxial strain corresponding tovmm 
Em  = matrix tangent extension modulus 
Gm  = matrix tangent shear modulus 

  = matrix Poisson’s ratio 
Ef  = linear filament extensional modulus 
Gf  = linear filament shear modulus 
G12  = composite in-plane shear modulus 

12  = composite in-plane shear stress 

    = initial in-plane filament misalignment 
    = additional filament rotation due to shear stress 
CTEm  = matrix coefficient of thermal expansion 
CTEf  = fiber coefficient of thermal expansion 

T  = temperature difference between composite cure and  
                        ambient 
 

Using the variables defined above, the following equations are equivalent 

to those given in the main paper, yet formulated for the step-stress algorithm 

used in the Combined Stress Model. 
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At I = 1,2,3 …, given 1: 

 

 

 

 

 

Example Calculation from Combined Stress Algorithm 

A step stress increment of 1 MPa gave good performance in this study. 

For easier data manipulation, this example uses a step stress increment of 25 

MPa.  A misalignment of 1.5 degrees is used, similar to the test case composite. 

All units are SI. 
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Matrix and fiber information: 

 Ef = 80,000 MPa;  Vf=0.50, Gf=30,000 MPa,  Vm=0.50,  m=0.40 

 T = 155 C, CTEm = 3 x 10-5, CTEf = 5 x 10-6 

 (A.1)      = -1,097,200   3 + 12,449   2 + 3500   

 (A.2)    Em  = -3,290,000   2 + 24,900   + 3493 

 (A.3)         = 7.3e-11


5 – 1.4e-8 4 + 9.8e-7 3 – 2.7e-5 2 +5.2e-4  

i = 0: Initial values with 1 = 0: 

  
   

=1.5 deg = 0.0263 radians 

 (A.7)   Em(o) = 3494 MPa 

 (A.8)           
   

  0.037 

 (A.10) 1m(0) = vmm = 13.0 MPa 

 (A.4)   Gm(0)   = 1248 MPa        

 (A.5)   G12(0)  = 3374 MPa 

 i = 11 = 25 MPa 

  A.11)12(1)  = 25 x 0.0263 = 0.656 MPa 

 (A.12)    = 1.92E-04 

 (A.13)       =  +  = 0.0264 

 (A.14)                          
 = 0.661 MPa 

 (A.15)    m(1)   = 1.463 MPa 

 (A.16)           = -0.0006 

 (A.17)         = 0.0031 

 (A.18)         = 11.0 MPa 

  (A.6)     vmm(1) = 9 MPa 

 (A.3)              = 0.0036 

 (A.2)     Em(1) = 3540 MPa 

 (A.4)     Gm(1) = 1264 MPa 

 (A.5)     G12(1) = 3413 MPa 

Etc, until 1 > G12.     Program output follows: 
 

 

 



141 

 

 

 = 25 MPa 

 

MPa 

MPa 

 
rad 

 
rad 


MPa 

m 

MPa 
  1m 1m 

MPa 
vmm   vmm Em 

MPa 
Gm 

MPa 
G12 

MPa 

0 0.000 
0.0E+0

0 
0.026 0.00 0.000 0.0037 13.04 13.04 0.0037 3494 1248 3374 

25 0.656 1.9E-04 0.026 0.66 1.463 0.0031 10.95 11.24 0.0036 3540 1264 3414 

50 0.661 1.9E-04 0.026 1.32 2.933 0.0025 8.83 10.19 0.0034 3540 1264 3414 

75 0.666 1.9E-04 0.026 1.99 4.416 0.0019 6.71 10.17 0.0034 3540 1264 3414 

100 0.670 1.9E-04 0.027 2.67 5.910 0.0013 4.59 11.22 0.0036 3540 1264 3414 

125 0.675 1.9E-04 0.027 3.35 7.414 0.0007 2.47 13.08 0.0040 3540 1264 3414 

150 0.680 1.9E-04 0.027 4.04 8.930 0.0001 0.35 15.47 0.0045 3538 1264 3413 

175 0.685 2.0E-04 0.027 4.73 10.45 -0.0004 -1.76 18.20 0.0051 3534 1262 3410 

200 0.690 2.0E-04 0.027 5.42 11.99 -0.0010 -3.88 21.14 0.0058 3527 1260 3403 

225 0.695 2.0E-04 0.028 6.12 13.54 -0.0016 -5.99 24.22 0.0065 3516 1256 3393 

250 0.700 2.0E-04 0.028 6.83 15.11 -0.0022 -8.10 27.40 0.0074 3497 1249 3377 

275 0.706 2.0E-04 0.028 7.54 16.69 -0.0028 -10.1 30.66 0.0084 3470 1239 3354 

300 0.711 2.1E-04 0.028 8.26 18.29 -0.0034 -12.2 33.98 0.0095 3434 1226 3322 

325 0.716 2.1E-04 0.028 8.98 19.91 -0.0040 -14.3 37.35 0.0106 3385 1209 3279 

350 0.722 2.2E-04 0.029 9.71 21.56 -0.0046 -16.3 40.77 0.0119 3326 1188 3227 

375 0.727 2.2E-04 0.029 10.4 23.22 -0.0052 -18.3 44.22 0.0131 3256 1163 3165 

400 0.733 2.3E-04 0.029 11.1 24.92 -0.0058 -20.3 47.71 0.0143 3177 1135 3096 

425 0.738 2.3E-04 0.029 11.9 26.64 -0.0064 -22.2 51.22 0.0154 3094 1105 3022 

450 0.744 2.4E-04 0.030 12.6 28.39 -0.0070 -24.0 54.75 0.0165 3008 1074 2945 

475 0.751 2.5E-04 0.030 13.4 30.16 -0.0076 -25.8 58.31 0.0175 2922 1043 2868 

500 0.757 2.6E-04 0.030 14.2 31.96 -0.0082 -27.6 61.88 0.0184 2835 1013 2789 

525 0.764 2.7E-04 0.030 14.9 33.78 -0.0088 -29.3 65.47 0.0193 2745 980 2707 

550 0.770 2.8E-04 0.031 15.7 35.63 -0.0095 -31.0 69.08 0.0203 2642 943 2613 

575 0.778 2.9E-04 0.031 16.5 37.52 -0.0101 -32.6 72.73 0.0215 2510 896 2493 

600 0.785 3.1E-04 0.031 17.3 39.48 -0.0107 -34.1 76.44 0.0230 2322 829 2318 

625 0.793 3.4E-04 0.032 18.1 41.55 -0.0113 -35.5 80.28 0.0253 2023 722 2038 

650 0.801 3.9E-04 0.032 18.9 43.81 -0.0119 -36.7 84.34 0.0287 1500 536 1535 

675 0.811 5.2E-04 0.033 19.7 46.49 -0.0125 -37.7 88.92 0.0344 449 160 474 

 

 

Termination, because1 = 675 MPa > G12 = 474 MPa. cr  is between 650 and 
675 MPa. Accuracy and precision are improved with a smaller step size of 1 
MPa. 
 

Table A.1: Combined Stress Model Output for Test Case, with 1 = 25 MPa. 
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Appendix B 

ABAQUS Boundary Conditions and Material Law 

Boundary Conditions 

ABAQUS 6.10 supports tied node constraints. Node equations can be 

used that tie nodes based on individual degrees of freedom. In CAE node 

equation constraints can be imposed on individual nodes, surfaces, or on node 

sets.  If imposed by surfaces, all surface nodes on the first surface are tied 

together with all surface nodes on the second surface.  If imposed by node sets, 

individual nodes must be chosen in a specific order to accomplish the needs of 

the left-right boundary condition needed for this study.  This is tedious in 3D in 

CAE.  Finally, the node set cards must be specified as “unsorted;” otherwise, the 

constraints will be equally imposed on all nodes simultaneously. 

In this study, this problem was solved by taking the following steps: 

 Using node visualization in CAE, the nodes on the left face were copied down 

by hand, starting at the top back corner of the geometry, proceeding forward, 

then dropping down to the next node row, etc. This is shown in Figure B.1. 

 Corresponding Nodes on the right face were written in the identical fashion. 

 Node set cards were added to the ABAQUS data file. 

 Constraint equation card was added to the ABAQUS data file. 
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Node set cards and constraint equations used in ABAQUS are as follows: 

 Node set cards 

*Nset, nset=left, instance=Part-1-1, unsorted 
30,470,29,509,111,515,10,250,12, 
472,471,508,248,247, etc. 
*Nset, nset=right, instance=Part-1-1, unsorted 
24,408,21,374,83,378,14,255,13, 
407,375,376,258,257, etc. 
 

 Constraint equations 

** Constraint: Constraint-3 
*Equation 
2 
left, 3, 1. 
right, 3, -1. 

 
This single constraint equation then imposes the constraint independently 

for corresponding nodes in the left and right node set definition.  The 

corresponding model geometry with node numbers is shown in Figure B.1. 

 

Figure B.1: Unit cell node definition corresponding to node sets 

RIGHT: Node list 

defined exactly like 

LEFT 

LEFT: Node list starts 

at back, goes forward, 

then descends to next 

row. 

RIGHT 

LEFT 
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Material modeling 

User subroutine 

ABAQUS 6.10 requires a compiled dynamic linked library (standardU.dll) file to 

be placed in the working directory, or in a directory included in the environment 

path. The Fortran 77 source code that calculates the von Mises stress and 

returns it to ABAQUS to be used in the matrix material law is given in Table B.1. 

This file is compiled and then used to generate the dll file. 

 

subroutine usdfld(field,statev,pnewdt,direct,t,celent,time,dtime, 
     1 cmname,orname,nfield,nstatv,noel,npt,layer,kspt,kstep,kinc, 
     2 ndi,nshr,coord,jmac,jmtyp,matlayo,laccflg) 
 
       include 'aba_param.inc' 
 
      character*80 cmname,orname 
      character*3  flgray(15) 
      dimension field(nfield),statev(nstatv),direct(3,3),t(3,3),time(2), 
     * coord(*),jmac(*),jmtyp(*) 
      dimension array(15),jarray(15) 
 
 c Get stress from previous increment 
      call getvrm('S',array,jarray,flgray,jrcd, 
     $     jmac, jmtyp, matlayo, laccflg) 
      temp1 = (array(1) - array(2))**2 
      temp2 = (array(2) - array(3))**2  
      temp3 = (array(1) - array(3))**2 
      temp4 = 6*( array(4)**2  + array(5)**2 + array(6)**2) 
      temp5 = temp1 + temp2 + temp3 + temp4  
      field(1) = sqrt(temp5 /2.0) 
 
      return 
      end 

Table B.1: Fortran 77 code used to calculate matrix von Mises stress and 

return it to ABAQUS for matrix material law 
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Matrix material law 

The ABAQUS elastic material card is used for the matrix material 

behavior, along with a user defined field. The values used for Epikote 828 are 

shown in Table B.2.  The first column is the tangent uniaxial modulus; the second 

column is Poisson’s ratio, and the third column is the von Mises stress at which 

the corresponding modulus and Poisson’s ratio are enforced. 

*Material, name=matrix 
*Elastic, dependencies=1 
    3.18,       0.3, ,        0. 
    3.18,    0.3048, ,     0.004 
    3.18,    0.3096, ,     0.008 
    3.18,   0.31908, ,    0.0159 
    3.15,    0.3378, ,    0.0315 
    3.12,   0.35616, ,    0.0468 
    3.05,   0.36588, ,    0.0549 
    3.01,  0.372181, ,  0.060151 
    2.97,  0.378406, ,  0.065338 
    2.93,     0.387, ,  0.070252 
   2.88,     0.395, ,  0.074802 
   2.82,     0.405, ,  0.078897 
   2.75,     0.413, ,  0.082537 
   2.68,    0.4225, ,  0.085722 
   2.59,     0.433, ,  0.088179 
   2.50,      0.44, ,   0.09009 
   2.42,     0.448, ,  0.091819 
   2.33,     0.455, ,  0.093366 
   2.26,     0.462, ,  0.094822 
   2.19,      0.47, ,  0.096187 
   2.12,     0.478, ,  0.097461 
   2.06,     0.491, ,  0.098644 
   1.99,       0.5, ,   0.099554 
*user Defined Field 

 

Table B.2: ABAQUS material card used for Epikote 828 mechanical 

behavior definition 
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