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ABSTRACT 
 
 

The first paper examines the properties of the realized volatilities of US Dollar / 

Canadian Dollar spot exchange rate covering a time span of about three years and then 

the deseasonalized volatilities are estimated and forecasted using a fractionally-integrated 

model. The key feature of the realized volatilities is that they are model-free and also 

approximately measurement-error-free. Usually a U-shaped pattern of the intraday 

volatilities should be observed due to opening-closure effects in the global market. I do 

not see a typical U-shaped pattern in the intraday volatilities for US Dollar / Canadian 

Dollar. The reasons are given in this paper. I use ARFIMAX model to estimate and 

forecast the deseasonalized volatilities and the results are promising. 

The second paper proposes a time series based trading strategy for “pairs trading”. 

Pairs trading is one of the oldest statistical arbitrage strategies and has been proved to be 

successful on Wall Street. Most academic studies on pairs trading focus on pair selection 

or optimal threshold comparison. This is the first paper to introduce time series 

methodology into research of pairs trading. The dynamics of the spread between two 

stocks in a pair are tested and examined.  A time series “dynamic threshold method” is 

proposed in this paper and the trading strategy based on this method improves the excess 

return of traditional naïve pairs trading model significantly. 
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MODELING AND FORECASTING THE REALIZED VOLATILITY OF US DOLLAR 

/ CANADIAN DOLLAR USING HIGH FREQUENCY DATA 

 

1.  Introduction 

Profit earning is the purpose of investors and they need to estimate the risk of the 

investment and make decisions with the respect to this estimation. Risk in financial 

market is closely connected to volatility and therefore volatility in financial markets has 

been one of the most studied topics. The role of volatility can be found in financial asset 

pricing, financial hedging, risk management and other related fields. However unlike 

price, volatility is unobservable and only its realization can be measured ex post. For 

example, volatility is the only variable that cannot be observed in the famous Black-

Sholes model. Therefore, reliably measuring and forecasting volatility is very important 

for both academic research and practical use.  

Volatility is defined as the standard deviation of the continuously compounded 

returns of a financial instrument with a specific time horizon and based on this definition 

the model-free unbiased measure of volatility is the square root of the sample variance of 

returns. For example, weekly volatility may be estimated using daily returns over a week 

and thus one can construct a time series of model-free variance estimates. When intraday 

returns are available, daily volatility can be estimated the same way.  

As an alternative, the model-free unbiased estimates of the ex post daily volatility 

can be proxied by daily squared returns.  Lopez (2001) used daily squared return which 

was calculated from daily closing price, to proxy daily volatility. This method was 

criticized by Andersen and Bollerslev (1998) and Christodoulakis and Satchel (1998).. 
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Both researches found that using squared returns as proxy of volatility will lead to low 

2R  and undermine the inference. 

The indirect way to measure volatility is to use implied volatility which can be 

generated from the market price of the option based on an option pricing model (i.e. the 

Black-Scholes model). In other words volatility is implied in the option price, given a 

particular option pricing model. The Black-Scholes option pricing model states that 

option price is a function of the pricing of the underlying asset, the risk free interest rate, 

the strike price, and volatility of the underlying asset in the defined period. This volatility 

can be calculated in the way of “reverse-engineering” from the price of the option given 

the option price is observable. Implied volatility is a forward-looking measure and it 

measures the volatility of the underlying asset from now until the option expires. It 

differs from historical volatility because the latter is calculated from known past prices of 

a security. The problem with implied volatility measured with Black-Scholes model is 

that most option pricing models assume that logarithmic stock returns follow normal 

distribution. At the same time more and more research shows that financial asset returns 

have fat tails (Engle (1982), Engle (2001), Poon and Granger (2003)).This weak 

assumption in the option pricing models makes the accuracy of implied volatility 

questionable (i.e. volatility smiles). 

Volatility measured based on square returns is called historical volatility and it 

uses the historical information to capture the main effect. Implied volatility is called 

option based forecast and it is calculated from option prices instead of historical 

information. These two methods are different in both assumptions and use of information. 
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Volatility analysis based on high frequency data is not a new topic.  Merton 

(1980) addressed that the variance over a fixed horizon can be estimated as the sum of 

squared realizations if the data are available at a sufficiently high sampling frequency. 

More recently, Anderson, Bollerslev, Diebold, and Labys (2001), found that higher data 

frequency can take care of the problems found in traditional historical volatility 

calculation and they introduced a new name for historical volatility calculated using high 

frequency data: realized volatility. The basic idea of realized volatility is that a reliable 

measure of the sample variance can be proxied by the summation of squared returns over 

the relevant horizon. When the data frequency approaches infinity, it is demonstrated that 

as the theory of quadratic variation proves, the realized volatilities are not only model-

free, but also measurement-error-free (ABDL (2001)). For this extreme case instead of 

saying that realized volatility is proxied, we say realized volatility is “observed”. In 

practice, although we cannot obtain infinite high frequency data, realized volatility still 

approaches the underlying integrated volatility when the data frequency is high enough. 

The approach used in this paper is to calculate realized volatility from the sample of high 

frequency returns.  

Motivated by the work of Anderson, Bollerslev, Diebold, and Labys (2001), 

hereafter ABDL, and ABDE (2000 and 2001), I examine the volatilities of US Dollar / 

Canadian Dollar, hereafter USD/CAD, spot exchange rate over a three-year period. I 

checked the properties of the realized volatilities for USD/CAD. Basic observations in 

this paper are consistent with previous studies. For example, the realized volatilities of 

USD/CAD are skewed and leptokurtic, but the logarithms of realized volatilities are 

approximately Gaussian. I also find long-memory effect in the realized volatilities, and a 
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fractionally-integrated long-memory model is used to estimate and forecast the realized 

volatilities.  

This paper differs from the literature discussed above in the following aspects. 

Most studies use arbitrarily chosen fifteen-minute or thirty-minute interval to generate 

realized volatilities. Because different assets in different financial markets may have 

different properties, an arbitrary interval cannot guarantee the best estimation. And the 

first objective of this study was to use a method called summation of cross 

multiplications (SCM) to select the optimal interval.  

The second objective was to consider the pattern of returns of USD/CAD and 

compare it to the U-shaped patterns (intraday periodicity) typically addressed in the 

opening-closure theories (see e.g. Foster and Viswanathan, 1990; Son, 1991; Brock and 

Kleidon, 1992). The plot of the average returns for USD/CAD does not show a typical U-

shaped pattern and no previous study has ever considered this problem to the best of my 

knowledge. In this paper I give an explanation for this unique phenomenon. 

Understanding the intraday periodicity can help us deseasonalize the realized volatilities 

and thus provide better forecasting. 

The third objective was to develop a forecasting mechanism that best fits 

properties of the data. In the study I find that there is long-memory process1 in the 

logarithmic realized volatilities according to fractional integration and cointegration test. 

Leverage effect2 is also detected based on regression analysis and scatter plots between 

return and realized volatilities. To capture all these properties I use a modified 

                                                 
1 A long-memory process is one in which the autocorrelation at a lag k decays at a rate slower than the 
usual rate of k-1. 
2 Leverage effect refers to a negative correlation between past returns and future volatility. 
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Autoregressive Fractionally Integrated Moving Average Model with Explanatory 

variables (ARFIMAX) model to estimate the realized volatilities.  

The rest of the paper is organized as follows: In section 2 I do a brief literature 

review on volatility measurement and estimation; in section 3 I discuss the computation 

of realized volatilities based on the optimal interval using high frequency USD/CAD 

data. Then the properties of returns and standardized returns, realized volatilities and 

logarithmic realized volatilities are studied; in section 4 I study the intraday seasonality 

of USD/CAD spot exchange rate. A deseasonalized series are generated for future 

estimation; and in section 5 I apply ARFIMAX model to estimate and forecast the 

deseasonalized volatilities I obtained in the previous section. Section 6 is the conclusions.    

 

2.  Conceptual Framework 

In finance, volatility refers to the standard deviation or variance of the return 

series. The discrete form of volatility is calculated as following (Poon and Granger, 

2003): 

2

1

2^
)(

1
1 ∑

=

−

−
−

=
N

t
t rr

N
σ                                                     (1) 

where N is the number of returns during the time period , 
−

r  is the sample mean of N 

returns and tr  is defined as 
1

1

−

−−

t

tt

p
pp

 and it is the specific return at time3 t. Stephen 

(1997) noted that since sample mean is not an accurate estimate of true mean when 

                                                 
3 Before the availability of high frequency intraday data, volatility is calculated based on daily returns. For 
example N equals 5 if we calculate weekly stock volatility and tr  is the return at day t.  
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sample size is small, variance calculated around zero instead of sample mean could 

increase volatility estimation accuracy.  

The continuous time analogy of discrete volatility is called integrated volatility. It 

measures the speed of the price change compared to a standard wiener process (Hull 

(2003)). The change of the price is decomposed as a standard wiener process with 

variance of σ  plus the drift across time: 

  dtdWdp tpt μσ += ,                                                     (2) 

or 

2

,

2 )(
tp

tt

dW
ddp μ

σ
−

=  

where tdp  is the continuous form of price changes, tpdW ,  is a standard wiener process, 

μ is the drift and dt  is the change of time. In (2), price is the only variable that can be 

observed at time t, and volatility is a latent variable that scales the stochastic process 

tpdW ,  continuously through time. 

With the availability of high frequency intraday data, let ,n tp  denote the price of 

an asset at time 0n ≥  at day t. n = 1,2,…,N , it is the number of observed prices in a day 

and N equals to 1440 if prices are recorded every minute. t=1,2,…,T and it is the number 

of active trading days in sample. Note that when n=1, tp  is simply daily price of the asset 

(normally recorded as the closing price). The continuously compounded returns with N 

observations per day is given by4,  

                                                 
4 The mathematical definition of a return is: 

1

1

−

−−

t

tt

p
pp

, most researchers use ( )ln()ln( 1−− tt pp ) for 

continuously compounded returns.  
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, , 1,ln( ) ln( )n t n t n tr p p −= −                                               (3) 

where tnr ,  is the n th continuously compounded return at day t. 

To make the notation simple, when n=1 I simply ignore the subscript n and 

1ln( ) ln( )t t tr p p −= −  where t= 2,…,T. In this case, tr  is the time series of daily returns, 

the following assumptions confirms to  

In (3): 

(a) E( ,n tr ) = 0 

(b) E( , ,n t m sr r ) = 0 for n m≠  and t s≠  

(c) E( 2 2
, ,n t m sr r ) < ∞  for n,m,s,t 

smr ,  is the m th continuously compounded return at day s where n m≠  and t s≠ . 

Assumption (3a) implies that the mean return is zero and this follows from the 

fact that the log prices, tpln , follow an i.i.d. random walk process without a drift shown 

as below, 

2
, 1, , , 1ln( ) ln( ) | ~ . . .(0, )n t n t n t n t t tp p where I i i dε ε σ− −= +        (4) 

 

Following (4), , , 1, ,ln( ) ln( )n t n t n t n tr p p ε−= − =  and thus, E )( ,tnr =E )( ,tnε =0. 

Assumption (3b) follows from the fact that ,n tε  are i.i.d. and from (a) which gives us 

E( , ,n t m sr r )=E( , ,n t m sε ε )= 0. Assumption (3c) states that the variances and co-variances of 

the squared returns exist and are finite. This follows from the fact that 

E( 2 2
, ,n t m sr r )=E( 2 2

, ,n t m sε ε )<∞  for n,m,s,t. 
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From (4), the continuously compounded daily return (Campbell, Lo, and 

Mackinlay, 1997) is given by, 

 ∑
=

=
N

n
tnt rr

1
,                                                            (5) 

and therefore the daily squared return is calculated as 

∑ ∑∑∑∑∑∑
= +=

−
== ===

+=+==
N

n

N

nm
tnmtn

N

n
tn

N

n

N

m
tmtn

N

n
tn

N

n
tnt rrrrrrrr

1 1
,,

1

2
,

1 1
,,

1

2
,

2

1
,

2 2)(               (6) 

In (6) the squared daily return can be decomposed into two components: the daily 

sample variance and twice the sum of N − 1 daily sample autocovariances (measurement 

error). Note that 2 2( ) ( )t t tVar r E rσ = =  since we have ( )tE r = 0 and assumption (3b). 

Under these conditions the sample variance of high-frequency returns is a valid estimator 

of the daily population variance 2σ  and this estimator is unbiased. According to Barndor-

Nielsen and Shephard (1999) and Karatzas and Shreve (1988), it 

follows 2

1

2lim σ=∑
=

∞→

N

n
nN rP by the theory of quadratic variation. Thus, the sum of the 

intra-daily squared returns is an unbiased and consistent estimator of the daily population 

variance. The measurement error in (6) can be made arbitrarily small by summing 

sufficiently many high-frequency squared returns if microstructure friction effects (such 

as bid-ask spreads, liquidity ratios, turnover, and asymmetric information) 5 are neglected. 

The sum of the intra-day squared returns is known as the realized volatility 2
th  (also 

called the realized variance by Barndorff-Nielsen and Shephard (2002)).  

                                                 
5 According to Zhou (1996), there are different sources of microstructure noises: For example, there is a 
fighting-screen effect. To keep their name on the Reuters screen, traders keep updating their quotes. The 
new update is often slightly different from the previous quotes even if the market level has not changed. 
Micro-activities are another contribution to the noise. Small typographical errors or delayed quotes are all 
sources of noises.   
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We can also get the estimated error, 

4 1
2 2 2

1 1
( ) ( 1)(1 2 )

N N

n n n
n n

N nE r K
N N
σσ ρ

−

= =

−
− = − +∑ ∑                               (7) 

In (7), nK  is the kurtosis of nr  and nρ  is the nth autocorrelation coefficient of 2
nr  

(Karatzas and Shreve, 1988). From (7) we can see that error will decrease when the 

frequency of the dataset increases (N increases). In theory if we want to get the best 

estimation of the volatilities, we need to use the highest dataset frequency and the 

smallest time interval. That means that given enough observations for a given trading 

day, the realized volatility can be computed and is a model-free estimate of the 

conditional variance which is usually generated in models like ARCH model. In the real 

world, extremely high frequency data may not be a good choice for research: firstly 

prices do not follow normal distribution when the data frequency is too high (i.e. the time 

interval is less than five minute), secondly Anderson, Bollerslev and Das (1998) found 

that because of microstructure friction effects in dataset, the volatility estimates based on 

the high frequency model-free method can be very noisy in practice The properties of the 

realized volatilities are discussed in ABDL (2001). In particular, the authors found that 

the realized volatility is a consistent estimator of the daily population variance 2
tσ . 

 

3.  Empirical Analysis 

3.1 Data 

My empirical analysis focuses on the spot exchange rates for the U.S. dollar and 

the Canadian dollar. The raw data consist of all one-minute interval prices for USD/CAD 

displayed on the ForeXite during the sample period, January 2, 2004 through April 24, 
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2007. There are 864 effective trading days (weekends are not included) and 1,223,644 

observations. In this paper, all returns are computed as the first difference in the regularly 

time-spaced (1 minute) log prices of the exchange rate index: 

)/ln(lnln 11 −− =−= ttttt ppppr . Because the exchange is open 24 hours, the first 

intraday return is the first difference between the log price at 00:01 am and the log price 

at 23:59 pm the day before. 

Figure 1 is generated using one-minute prices for January 02, 2007. From the 

figure we can see that prices fluctuated dramatically. This is due to microstructure effects 

(Andersen, Bollerslev and Das (1998)) in the dataset. Prices can be separated as a 

fundamental component and a microstructure noise component. The volatility of 

microstructure noise component increases as the data frequency increases.  According to 

(6), not only the frequency N but also the autocorrelation coefficient nρ  of the return 

series affects the estimated error. The fluctuation of prices means that the autocorrelation 

coefficient for the return series is negative and large in magnitude. In practice the 

estimated error maybe too large due to the significantly increased nρ  in a high frequency 

dataset. Therefore selection of the best estimation frequency should be based on the trade 

off between standard estimated error and error from microstructure friction effects in the 

dataset.  

Previous research (ABDL (2003)) suggests that the use of equally-spaced thirty-

minute returns strikes a satisfactory balance between the accuracy of the continuous-

record asymptotic underlying the construction of the realized volatility measures on one 

hand, and the confounding influences from market microstructure frictions on the other. 

Is this always the case? Does the thirty-minute interval fit all the situations? Some 
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scholars criticized this arbitrary selection and proposed different approaches to select the 

best interval. For example Andersen and Benzoni (2008) suggested using volatility 

signature plot to find the best interval that can assess the trade off. Huang and Tauchen 

(2005) suggested dealing with the problem using alternative QV estimators which is less 

sensitive to microstructure friction effects .  In this paper I create a new variable which is 

the sum of cross multiplications every N (here N denotes the number of intraday periods) 

observations. The formula is as follows,  

∑ ∑
−

= +=

=
1

1 1
)(*)(

N

n

N

nm
mrnrSCM                                              (8) 

In (8) we can see that there are N*(N-1) cross multiplications for each day. Then 

the summation of this N*(N-1) cross multiplications (SCM) will be calculated for each 

day using the datasets with different intervals (different N) and the dataset that gives the 

smallest mean of SCM will be the dataset with the “best” interval.  

I plot the means of SCM in Figure 2 with time intervals on the horizontal axis. 

From Figure 2 we can see that when I use one-minute returns, the mean of summation of 

cross multiplications is the highest. Then after a steep drop from -4.53901E-12 to -

2.63805E-06, the means start to be consistent from the point where the interval is ten-

minute. But when the interval is longer than eighteen-minute the means begin to increase 

slightly. This shows that thirty-minute interval used in previous researches (i.e. ABDL 

(2001)) is not the best frequency for this particular dataset. From this figure we can see 

that a time interval between the ten-minute and eighteen-minute is suitable for my 

estimation. In the remainder of the paper, I chose the return series with a fifteen-minute 

interval where the mean of the cross multiplication for the series is about -2.6002E-06. 
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3.2 Properties of exchange rate returns and realized volatilities 

Returns 

Table 1 shows the descriptive statistics of the returns for the exchange rate. The 

mean return for the exchange rate during the time span I studied is negative, -.0001672, 

which is very close to zero. The standard deviation of the returns is .0048404. From the 

Table 1 we can see that it has a positive estimate of skewness of .0585405 which 

indicates that the distribution of the returns is not symmetric and is actually slightly right-

skewed. The estimate of the sample kurtosis is above the normal value of 3 meaning that 

the distribution of the returns is leptokurtic. All above findings are consistent with those 

found in ABDE (2001).  

To test the joint significance of the first 20 auto-correlations of the returns, a 

standard Ljung-Box portmanteau test6 was performed and the results are shown in the 

right panel of Table 1. The reported p - value of the corresponding )20(Q  statistics is 

.0910 which indicates we barely fail to –at the 10% significance level- reject the null 

hypothesis of zero autocorrelation, suggesting a low persistence for the return series7. 

While the p - value of the )20(2Q  for the squared returns indicates a rejection of the null 

hypothesis that there is no serial correlation, which means that there is some volatility 

clustering effect in the returns. All the above results are consistent with the extensive 

literature documenting heavy tails and volatility clustering in asset returns, dating at least 

to Mandelbrot (1963) and Fama (1965). 

                                                 
6 Other tests for presence of autocorrelation are Durbin–Watson statistic (first order autocorrelation test) 
and Breusch–Godfrey test.  
7 According to ABDL (2002), under the null hypothesis of white noise, the reported Ljung-Box statistics are distributed 
as chi squared with twenty degrees of freedom. The five percent critical value is 31.4, and the one percent critical value 
is 37.6 
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Standardized returns are obtained by dividing the original returns with their 

corresponding realized standard deviation h8. In this paper they are expressed as:  

hrrstd /)( =                                                          (9) 

 where r is the original return and h is the realized standard deviation. 

The results of the descriptive statistics are shown in the lower panel of Table 1. 

The mean for the standardized returns are also negative -.0002832 which is close to the 

mean of the raw returns I found. And the standard deviation for the standardized returns 

is larger than that of the raw returns. Although the coefficient for the skewness is still 

positive, the value has been decreased and is closer to zero. The coefficient for the 

kurtosis of the standardized returns now has a value of 2.72022 which is closer to the 

normal value of 3 compared to 3.585104 of the raw returns. We can also see this from 

Figure 3 which shows kernel densities of the raw returns and standardized returns 

respectively. Both the table and the figure show that standardized returns are closer to 

normal compared to raw returns.  This finding is consistent with ABDE (2001) and 

ABDL (2001, 2003), who show both the stock returns and exchange rate returns 

standardized by their respective realized standard deviations are closer to normal and can 

be treated as approximately Gaussian.  

The results of the Ljung-Box test are also shown in the lower panel of Table 1. 

The value is 23.9372 and is not significant. As a result, I conclude that there is no or a 

very weak persistence in the standardized returns. As regards the test for autocorrelation 

in squared standardized returns, I find that the 2 (20)Q  statistics is 23.2346 and is not 

significant suggesting that we fail to reject the null hypothesis that there is no serial 

                                                 
8 Standardization is calculated by subtracting the center (usually the population mean) from the data and then dividing 
the difference by population standard deviation. In this research I standardize the returns to mean zero. 
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correlation. Because the 2 (20)Q  for standardized returns is only about half of that for 

raw returns, we know that the volatility clustering effect was reduced.  

 

Realized Volatilities 

Standardized returns were used to calculate realized volatility using equation (9). 

As we can see in Table 2, the mean of realized volatilities is .5268207. The sample 

skewness coefficient is positive meaning that the distribution of the realized volatilities is 

skewed to the right. This can be confirmed from Figure 4(a). From Table 2 we can see 

that the sample kurtosis coefficient is 5.38737 which is larger than the normal value of 3 

implying that the distribution is highly leptokurtic.  

The results for the logarithmic transformation of the realized volatilities are 

shown in the lower panel of Table 2. As we can see in the table, the skewness is -

.4933379 which reduced remarkably in magnitude compared to that of the original 

realized volatilities. Because -.4933379 is negative, we can see a relatively symmetric 

distribution with left skewness for the logarithmic realized volatilities in Figure 4(b). The 

kurtosis for the transformed realized volatilities is large and that means the distribution is 

also highly leptokurtic. This is confirmed from the Figure 4(b). To be consistent with 

previous studies, logarithmic realized volatilities are used in this paper since the 

logarithmic series is closer to normal and normality is going to be critical for later 

estimation9. 

Early study of the long-memory, or fractionally-integrated, effects in volatilities 

by Robinson (1991) and subsequent studies suggest the empirical relevance of long 
                                                 
9 The main disadvantage of taking log is to lose some useful information of the original dataset. I use 
logarithmic transformation in this paper because in ARFIMAX model, normality is an important 
assumption for the linear regression part. 
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memory in asset return volatilities. Other studies (see, for example, Renault, 1997; Comte 

and Renault, 1998; and Bollerslev and Mikkelsen, 1999) conclude that long-memory 

processes also help to explain anomalous features in options such as volatility smile even 

for long dated options.  

In the last column of Table 2 I report estimates of the degree of fractional 

integration, obtained using the Geweke and Porter-Hudak (1983) (GPH) log-periodogram 

regression estimator as formally developed by Robinson (1995). If the volatility is a long-

memory process it is neither stationary (I[0]) nor is it a unit root (I[1]) process; it is an 

(I[d]) process, with d10 (fractional integration parameter) a real number. The estimate of d 

is significantly greater than zero meaning there is a significant long-memory effect in the 

logarithmic volatilities and therefore we need appropriate model to catch this effect in 

future estimation and forecasting. 

 

Returns and Realized Volatilities 

It is interesting to check the relationship between returns and realized volatilities. 

Pagan and Schwert (1990) and Engle and Ng (1993), among others, have documented 

asymmetries in the relation between news and volatilities. Both papers concluded that 

good and bad news have different impact for future volatility. Most papers thereafter 

found that a lagged negative return tends to increase subsequent volatility by more than 

would a positive return of the same magnitude. This phenomenon is known as the 

‘leverage’ or ‘news’ effect. 

                                                 
10 The fractional integration parameter (d) is calculated based on the spectral regression method introduced by Geweke 
and Porter-Hudak (1983).  
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In Figure 5, I have two scatter plots addressing the relationship between lagged 

returns and realized volatilities. According to the p-values reported in the plots, both 

regressions have slope significantly different from zero. The non-zero coefficients mean 

that volatility increases for each unit increase in lagged return. More specifically, both 

plots suggest significant leverage effects: negative lagged returns yield different 

volatilities than lagged positive returns. The reason why lagged returns have effects on 

current volatilities is because it usually takes time for market participants to react to 

previous news. 

 

4.  Intraday Periodicity 

4.1 Intraday return periodicity 

The most important reason why I use high frequency data is that high frequency 

data contain more information than daily data and therefore I can have detailed 

information to study intraday phenomena which is critical in modeling and forecasting 

volatilities. Intraday seasonality, a highly persistent conditionally heteroskedastic 

volatility component, is one of the most important intraday phenomena which can be 

traced using high frequency data. A typical U-shaped pattern of intraday volatilities has 

been observed in several previous studies, including Baillie and Bollerslev (1991), 

Harvey and Huang (1991),  Dacorogna et al. (1993), Cornett et al.(1995), Bollerslev and 

Ghysels (1996) and others.  

Like in all previous studies, I found very strong intraday seasonality in my 

dataset. In Figure 611, the first graph shows the average returns over every fifteen-minute 

                                                 
11 The dataset we used in this paper is generated based on Greenwich Mean Time(GMT). In figure 5 we 
rescaled the data into EST time which is easy to analyze. 



 

 17

interval and it does not have a particular pattern during a trading day. The second graph 

in Figure 6 plots the absolute value of the average returns (absolute returns) over every 

fifteen-minute interval and it shows some particular pattern which may be important for 

further study. This is consistent with the observations of previous studies such as 

Andersen and Bollerslev (1997a) and (1997b) where absolute returns showed more 

information than raw returns. The third graph in Figure 6 plots the five-minute moving 

average of absolute returns over every fifteen-minute interval. This graph shows a clear 

heavy tailed M-shaped intraday seasonality of the volatilities. This observation is 

obviously not consistent with any of the previous studies where either a U-shaped or a 

double U-shaped pattern was observed.  

There are two possible reasons: first, most of the previous studies were about 

stock markets and the U-shaped or double U-shaped returns are due to the significant 

strategic interaction of traders around market openings and closures (see e.g. Foster and 

Viswanathan, 1990; Son, 1991; Brock and Kleidon, 1992). While foreign exchange 

market is a 24-hour market and there is no such significant opening or closure effects in 

the daily returns. Secondly, USD/CAD exchange rate market is a unique foreign 

exchange market due to the geographical locations of the traders. Not like other most 

widely traded currencies for which traders are located in Europe, Asia or North America, 

the traders for USD/CAD are mostly located in North America.  

Let us take a closer look at the graph of the returns. The volatilities start out at a 

relatively low level and climbs up at a relatively low speed until interval 32 (EST 

8:00AM). From interval 32, the volatility starts to take off corresponding to the opening 

of the North American market. The strong drop between interval 40 and 50 corresponds 
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to the closure of the European markets. The activity then picks up during the afternoon 

session of the North American market until interval 68 (EST 5:00PM). Then after the 

North American market is closed, the volatilities flats at a relatively low level in the rest 

of the day. Therefore my result is consistent with most of the previous studies although 

its “unique” looking.12  

 

4.2 Seasonal Adjustment 

Previous studies, including Hsieh (1989), Baillie and Bollerslev (1991), Poon and 

Granger (2003), among others, have suggested that ARCH/GARCH-related models can 

adequately characterize volatility persistence in daily exchange rate changes. However, it 

is also noted that classical ARCH/GARCH models without seasonality adjustment may 

not be able to successfully capture temporal persistence in the case of high-frequency 

returns, as argued in Andersen and Bollerslev (1997a) and Andersen and Bollerslev 

(1998) and Martens et al. (2002). Because standard parametric models of volatility are 

unable to capture temporal persistence and intraday seasonality jointly when applied to 

high-frequency return data, I need to perform seasonal adjustment before my estimation. 

Taylor and Xu (1997) proposed to use the appropriate average of the squared 

returns over all trading days. Let tnr ,  denote the nth intraday return on day t, and suppose 

we have T days and N intraday periods. Then we have the seasonal variance 2
nc  as 

follows 
                                                 
12 Daylight savings time is observed in Europe and North America, but not in East Asia. Andersen and 
Bollerslev (1994) analyzed this effect and concluded that it gives rise to a one hour difference in the peaks 
associated with the regular release of U.S. macroeconomic announcements at 08.30 a.m. corresponding to 
interval 162 for winter time and interval 150 for summer time. Another effect, day-of-the-week effect, was 
also studied by Ederington and Lee (1993) and Harvey and Huang (1991). Their conclusion is that 
macroeconomic announcement effects could have an impact on the average volatility in Friday morning 
trading in the U.S market.  
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Andersen and Bollerslev (1997a, 1998) used the logarithm of the squared returns 

to help estimate seasonal patterns. The assumption is that volatility is the combination of 

the seasonal volatility and the nonseasonal component. Based on their definition the 

seasonal variance estimate is given by 
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When we get the seasonal terms we can filter the returns using these terms based 

on the formula below, 
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After my estimation using the deseasonalized returns, we can then transform the 

deseasonalized volatility forecasts back to the forecast for the original returns by 

multiplying the volatility forecast by the appropriate seasonal term, tnc , . And this gives us 

a true return (versus the deseasonalized return in estimation step) with periodicity taken 

care of in the estimation step13.  

 

5.  Prediction 

                                                 
13 As mentioned previously, pervasive intraday periodicity in the return series has strong impact on the 
dynamic properties of high frequency volatility. The patterns in this dataset (Figure 6) are so distinctive 
there is a strong case for taking the periodicity into account before attempting to model the dynamics of 
volatility. 
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Below is the summary of my main findings of previous sections: (1) the 

distribution of realized volatilities is asymmetric and leptokurtic, while the distribution of 

the logarithmic realized volatilities is approximately Gaussian; (2) according to the GPH 

test there is long-memory process in the logarithmic realized volatilities; (3) leverage 

effect is detected based on regression analysis and scatter plots between return and 

realized volatilities; and (4) there is a strong intraday seasonality in the return series. 

Based on the above properties of the volatilities, I am going to use alternative ARFIMAX 

models to estimate and forecast the volatilities in this chapter. The estimation 

performance will also be evaluated in this chapter.  

 

5.1 ARFIMAX model 

Model 

Ebens (1999) proposed the ARFIMAX model and estimated the realized 

volatilities of Dow Jones Industrial Average (DJIA) portfolio using this model. His 

original model is as follow, 

tPtttP
d LIrIrhLL εθωωωφ ))(1()ln())(1()1( 12110

2 ++++=−− +
−

−
−        (13) 
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=∑ . Realized volatilities are denoted by 2
th , the indicator ( )I I− +  takes value 

of one when return 1 10( 0)t tr r− −< ≥  and is zero otherwise. This model was generated 

based on the classical ARMA (p, q) model where the ARMA coefficients are 0ω , 
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)( PLφ and )( PLθ . The new items in the model are a fractional integration parameter (d) to 

capture the slow hyperbolic decay in the sample autocorrelation function; lagged negative 

( 1ω ) and positive ( 2ω ) returns to capture the leverage effect in the distribution of 2ln( )th . 

In this paper, I use a modified ARFIMAX model which is given below, 

2
1 1 2 1(1 ) (1 ( ))(ln ) (1 ( ))d

p t t t p tL L h K k r I k r I Lφ θ ε− +
− −− − − − − = +             (14) 

Compare my revised model with the original ARFIMAX model we can see the 

difference between two models: in model (14) I do regression first and then estimate the 

fractional integrated moving average while in the original model they estimate the 

moving average first and then do the regression. The general form of my modified model 

can be written as, 

(1 ) (1 ( ))( ) (1 ( ))d
p p tL L y X Lφ β θ ε− − − = +                             (15) 

Ebens (1999) used conditional sum-of-squares maximum likelihood (SSML) 

estimator (advocated by Hosking 1984) to estimate the coefficients of the model. In this 

paper I use modified profile likelihood method (MPL) to estimate the model. An and 

Bloomfield (1993), and Doornik and Ooms (1999) proved, based on Monte Carlo 

simulation, that MPL will eliminate the negative bias commonly found in SSML. 

We have the likelihood function, 

2 ' 11 1log ( , , , , ) log(2 ) log | | log
2 2 2
TL d z zεφ θ β σ π −= − − ∑ − ∑            (16) 

where z y X β= − , ∑  is the auto covariance matrix of 1( ,..., ) 'Ty y y= . Because we know 

that auto correlation matrix ∑= 2

1

z

R
σ

, we can rewrite (16) into, 
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2 1
2

1 1log ( , , , ) log(2 ) log | | log ( ' )
2 2 2 2
T TL d R z R zε

ε

φ θ β π σ
σ

−= − − − −           (17) 

If we take the derivative of (17) with respect to 2
εσ , and let it equal to zero, then 

we have,  

1 11log ( , , , ) log(2 ) log | | log( ' )
2 2 2 2
T T TL d R T z R zφ θ β π − −= − − − −             (18) 

We can also take the derivative with respect toβ  and get, 

'^ ^
1 11log ( , , ) log(2 ) log | | log( )

2 2 2 2
T T TL d R T z R zφ θ π − −= − − − −              (19) 

And then we have the modified profile likelihood for ARFIMAX (p, d, q) as 

follows,  

'^ ^
1 11 1 2 1log ( , , ) (1 log(2 )) ( ) log | | log( ) log | ' |

2 2 2 2
T T kL d R T z R z X RX

T
φ θ π − −− −

= − + − − − −

where k is the degree of freedom.                                                                                   (20) 

Cheung and Diebold (1994) found that most of the errors in fractional-integrated 

estimation are from the mean. If the sample is not very large, we can use the average of 

the sample to replace the mean in the likelihood function and get a better estimation. 

Following this approach, we use the below modified model for estimation, 

^
2

1 1 2 1(1 ) (1 ( ))(ln ) (1 ( ))d
p t t t p tL L h k r I k r I Lφ μ θ ε− +

− −− − − − − = +                (21) 

where 
^
μ  is the average of 2ln th . 

Ebens (1999) only estimated the ARFIMAX model without autoregression term, 

or FIMAX model. I estimate model (21) using the likelihood function (20). ARFIMAX 

(1,d,1,X) is the full model where “1” is the first order autoregression term, “d” is the 
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fractional integration parameter, “1” is the first order moving average term, and “X” 

means there are exogenous variables in the model. 

And in this paper I estimate all the six alternative models and compare their 

performance. In the end I select the best model for my forecasting. The six alternative 

models are: ARFIMAX (0, d, 0),  ARFIMAX (1, d, 1),  ARFIMAX (0, d, 0, X),  

ARFIMAX (0, d, 1, X),  ARFIMAX (1, d, 0, X),  and ARFIMAX (1, d, 1, X).  The first 

model is a FI model, the second model is the well-known ARFIMA model and the other 

four models are the exhaustive possibilities with explanatory variables fixed in the model. 

In Table 3 we can see that all the fractional-integrated coefficients are significant 

with the minimum of .267062 and the maximum of.480377. The significant coefficients 

mean that there is strong long-memory effect in the volatilities. The leverage coefficients 

1k  and 2k  are both significant suggesting that there is strong leverage effect in the series. 

Above observations confirmed that ARFIMAX is a suitable model for my estimation.  

Comparing the results in Table 3 we can see that model (0, d, 0, X) has the lowest 

AIC value and outperforms all other five models. Model (0, d, 0, X) refers to an 

ARFIMAX model without autoregression term and moving average term.   

 

Forecasting 

In this section, I use the selected best model to forecast the volatilities in the next 

period. The forecasting method based on ARFIMAX (0, d, 0, X) is shown as below, 

tttt
d IrkIrkhL εμ =−−−− +

−
−

− )(ln()1( 1211

^
2                           (22) 
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let 
^
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and  

^
2

1 1 2 1 1 1 2 2 2 2ln ...t t t t t t th k r I k r I b b bμ π π π ε− +
− − − − −= + + − − − − +                 (23) 

We can forecast the volatilities in the next period based on (23). 

I divide the dataset into the “in-sample” estimation period and subsequent “out-

sample” forecasting period. The estimation period contains 763 observations15 and the 

forecasting period contains 100 observations. I use moving window to predict the 

volatility in the next period and show the predictions for the 100-day period in Figure 7. 

From Figure 7 we can see that ARFIMAX (0, d, 0, X) model did a good job in 

forecasting the future volatilities.  

Besides the graph, I use two methods to measure the performance of the 

forecasting quantitatively. The first is mean square error, 
^

21 (ln ln )t tMSE h h
T

= −∑ . The 

second method is to build a regression equation: 
^

ln lnt t th hα β ε= + + , if 
^

ln th  is the 

accurate forecasting of ln th , we should have 
^ ^

0, 1α β= =  and 2R  close to one. Table 4 

                                                 
15 Daily volatilities generated using high frequency data. Each observation represents one daily realized 
volatility. 
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confirmed my result from the graph. As we can see in the table 2R  is greater than .40, 

and we cannot reject the hypothesis of 
^ ^

0, 1α β= =  at 5% confidence level.  

 

6.  Conclusions 

This paper first examines the properties of the realized volatilities of USD/CAD 

spot exchange rate over a three-year period using high-frequency intraday observations 

from Forxite. Most findings are consistent with previous studies. For example, this paper 

shows that the distributions of the standardized returns and the logarithmic realized 

volatilities are both approximately Gaussian, which is consistent with ABDL (2001a, 

2001b). I find a unique heavy tailed M-shaped pattern for the average returns. This is 

because USD/CAD is rather a “locally” traded currency pair (mostly in North America) 

than a globally traded currency pair such as USD/JPY or USD/EURO. Although it has a 

unique look, the main pattern is still consistent with the theory. Using GPH test, I find a 

long-memory effect in the dataset. Because traditional ARCH models do not catch this 

effect, I use a fractionally-integrated model (ARFIMAX) to estimate the deseasonalized 

volatilities. This model catches the long-memory effect and the leverage effect in the 

dataset very well. The MSE is greater than .6 2$ and the 2R  is greater than 40% for the 

measurement regression.  
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Table 1 
 

Daily Return Distributions 

 

 
Mean Std.Dev Skewness Kurtosis )20(Q  )20(2Q  

Returns       

USD/CAD -.0001672 .0048404 .0585405 3.585104 28.8364 
p=.0910 

31.9799 * 
p= .0435 

Standardized Returns      

USD/CAD -.0002832 .0086389 .0350781 2.72022 23.9372 p= 

.2451 
23.2346 
p= .2774 

 
Notes: * Significant at the 5% level. The top panel refers to the distribution of daily returns, while the 
bottom panel refers to the distribution of daily returns standardized by realized volatility. The columns 
labeled )20(Q and )20(2Q contain Ljung-Box test statistics for up to twentieth order serial correlation in 
returns and squared returns, respectively.  
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Table 2 

Daily Realized Volatility Distributions 

 

 
Mean Std.Dev Skewness Kurtosis )20(Q  d 

Volatility       

USD/CAD .5268207 .1378672 .8128098 5.38737 2175.8402* 
p= .0329 

 

Logarithmic Volatility      

USD/CAD -.675083 .2659235 -.4933379 5.458519 2120.5968* 
p= .0304 

.713709* 

 
Notes: * Significant at the 5% level. The top panel refers to the distribution of realized volatility, while the 
bottom panel refers to the distribution of logarithmic realized volatility. The columns labeled )20(Q  
contain Ljung-Box test statistics for up to twentieth order serial correlation in returns and squared returns, 
respectively.  
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Table 3  

ARFIMAX Estimation 

Model AR d MA 1k  2k  AIC 

(0, d, 0)  .267062* 
(.02046) 

   1062.2 

(1, d, 1) .194936* 
(.07607) 

.480377* 
(.02549) 

-.560083* 
(.06973) 

  1028.4 

(0, d, 0, X)  .283165* 
(.01950) 

 -28.1522* 
(3.458) 

.528804* 
(.06453) 

952.11 

       
(0, d, 1, X)  .457085* 

.04075) 
-.363081 
(.06213) 

-29.1278* 
(3.547) 

.567329* 
(.06603) 

957.67 

(1, d, 0, X) -.218678 
(.04053) 

.368010* 
(.02715) 

 -29.0640* 
(3.514) 

.553262* 
(.06552) 

967.73 

(1, d, 1, X) .191648 
(.07933) 

.480109* 
(.02536) 

-.555242 
(.07379) 

-28.9258* 
(3.563) 

.570530* 
(.06625) 

954.77 

       
 
Notes: * Significant at the 5% level. Numbers in parenthesis are standard errors. Six alternative models are 
estimated and compared in this table. The last model is the model considering all the effects and it contains 
autoregression term, moving average term, and leverage effect term. Values of LLF and AIC  are reported.   
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Table 4  

Forecasting Measurement 

^
α  

^
β  2R  MSE 

 
-.6574 

[-2.5373, 1.3268] 

 
.90874 

[.69120, 1.1238] 

 
.4578 

 
.64517 

 
Notes: Numbers in brackets are the confidence intervals for the estimated coefficients. The coefficients 
mentioned in the second regression method are listed in the first three columns. MSE is reported in the last 
column.  
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Figure 1 

Five-minute Returns in Jan 02, 2007 
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Note: This figure is generated using the one-minute interval data in Jan 02, 2004. From the figure we can 
see that there are significant microstructure friction effects in the dataset.  
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Figure 2 
 

Plot of the Average SCM for Different Intervals 
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Note: Because dataset with too high frequency will have significant microstructure effects and the 
estimation with these microstructure effects will be noisy. Therefore before I estimate the model I need to 
either separate the microstructure effects from the dataset or select an interval which has a balance between 
high frequency and low microstructure. This figure shows the SCMs for different intervals. We can see 
from the figure that dataset with intervals between 10 and 20 has the lowest SCMs. In this paper, I use the 
dataset with fifteen-minute interval. 
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Figure 3(a) 
 

Kernel Estimates of the Density for Returns 
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Figure 3(b) 
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Notes: I show kernel estimates of the density of daily returns on the exchange rate of USD/CAD. The 
sample period extends from January 2, 2004 through April 24, 2007. The solid line in figure 3(a) is the 
estimated density of raw returns. The solid line in figure 3(b) is the estimated density of returns 
standardized using its constant sample mean and time-varying realized standard deviation. The dashed lines 
in both figures are normal densities for visual reference. 
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Figure 4(a) 
 

Kernel Estimates of the Density for Realized Volatilities 
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Figure 4(b) 
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Logarithmic Realized Volatilities 

 
Notes: I show kernel estimates of the density of daily realized USD/CAD volatility. The sample period 
extends from January 2, 2004 through April 24, 2007. The solid line in figure 4(a) is the estimated density 
of the realized standard deviation. The solid line in figure 4(b) is the estimated density of the logarithmic 
realized volatility. The dashed lines in both figure are normal densities for visual reference. 
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Figure 5 

 
Leverage Effect 
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The graphs display lagged returns against standard deviation (top panel), and logarithmic standard 
deviation (bottom panel). The lines are OLS regression lines which are based on the displayed variable and 
a constant term. The regression p-values for the significance of intercepts are given in top-right corner of 
the plots. 



 

 41

Figure 6 
 

Intraday Periodicity 
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MA(5) of the Average Absolute Returns 

 
Note: this figure plots the average returns from 0:00(EST) through 24:00(EST). We do not see a specific 
pattern in the first two graphs. However the third graph, the moving average of the absolute average 
returns, has a heavy tailed M-shaped pattern. See the main text for detail.  
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Figure 7 
 

Forecasting using ARFIMAX (0, d, 0, X) 
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A TIME SERIES MODEL FOR PAIRS TRADING 

 

1. Introduction 

Statistical arbitrage has been a hot topic in both academia and Wall Street since 

the introduction of computational finance in early 80’s. According to Prof. Andrew Lo, 

Statistical arbitrage "refers to highly technical short-term mean-reversion strategies 

involving large numbers of securities (hundreds to thousands, depending on the amount 

of risk capital), very short holding periods (measured in days to seconds), and substantial 

computational, trading, and IT infrastructure". “Pairs trading” is one of the statistical 

arbitrage strategies. This methodology was designed by a team of scientists from 

different areas (mathematics, computer sciences, physics, etc), which were brought 

together by the Wall Street quant Nunzio Tartaglia. The basic idea of pairs trading is to 

take advantage of market inefficiency: select a pair of stocks that move together in the 

history and trade them when they diverge by more than a pre-determined threshold. The 

idea is simple: if these two stocks move together in the history, they will converge back 

and the current disequilibrium (divergence) will be reset back to the equilibrium in the 

future. Profit will be made if this happens.  

There are several other reasons for its popularity. First, since it does not normally 

evoke frequent intraday trading, pairs trading can be cost-feasibly automated. Second, it 

does not require cash flow and financial ratio based valuation models, which are 

potentially subjected to huge error margins. In pairs trading, valuations are relative and 

the position is often near market neutral. Lastly, it has sufficient flexibility to 
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accommodate various investment styles such as pairs matched within sectors, size, 

index/non-index, growth and value, etc. 

Although widely used by hedge funds and investment banks, pairs trading still 

remains elusive since it has not drawn nearly as much academic attention as contrarian 

trading. The latter involves ranking stocks based on past returns, then short sell leaders 

and buy followers to profit from short term overreaction. If prices systematically 

overreact, this implies positive expected profits from contrarian trading.   

The academic research about pairs trading is still very young and most of the 

researches focus on three categories: naïve distance models introduced by Gatev et al 

(1999) and studied by Nath (2003) and Vidyamurthy (2004); cointegration models 

studied by Vidyamurthy (2004) and Herlemont (2006); and stochastic models by Elliot et 

al (2005), Do et al (2006) and Jurek and Yang (2006).  

In both the constant threshold method and cointegration method, the underlying 

assumption is that the mean price distance between two parts of a pair (further in this 

paper referred to as “spread” ) and the distribution of this distance are constant over time. 

Although this may be valid in a short period of time, it is a relatively weak assumption 

and it cannot guarantee the trading strategy to be optimized all the time. Although there is 

no such assumption in stochastic models, most of these models use Autoregressive (AR) 

process to predict the mean (spread in pairs trading) and the predictability of these 

processes has been criticized by Donelson and Maltz (1972),  Granger and Poon (2001), 

and Klüppelberg et al (2005). Therefore the trading performance based on the poor 

predictions is also questionable in stochastic pairs trading models. 
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This paper contributes to the literature by introducing a time series based trading 

strategy for pairs trading. This time series model forecasts the standard deviations of the 

spread series and uses the forecasted standard deviations as dynamic threshold values. 

This model removes the restriction of constant variance assumption in naïve distance 

models and adopts the GARCH model to overcome the low predictability of stochastic 

models. Another advantage of this time series model is that the background algorithm is 

simple and practical and this trading strategy can be easily embedded in most popular 

automatic trading platforms. 

The remainder of the article is organized as follows. Section 2 provides some 

background on pairs trading strategy. The next section reviews three existing pairs 

trading models/methods. The model section describes my methodology of constructing a 

dynamic pairs trading strategy. The empirical results and strategy assessment are 

described in the next section, and the last section provides conclusions and directions for 

future research. 

 

2. Background for Pairs Trading 

2.1 Relative pricing 

Asset pricing can be viewed in absolute and relative terms. Relative pricing 

means that the two assets that are close substitutes should be sold at same prices-it does 

not say what that price should be. In pairs trading, we use this relative concept since we 

are looking for the relative performances of the stocks without worrying about their 

absolute values. Therefore, pairs trading is a non-directional strategy in which the long 
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and short positions offset the underlying exposure to fluctuations in the fundamental 

values of the two assets.  

Relative distance16  is used in pairs screening and the basic idea behind this 

method is that relative price difference between two assets is a measurement of co-

movements between them. Gatev et al (1999) use sum of squared differences between 

two normalized prices series for pair screening. Prices are normalized because the 

original price series may have different means and the absolute distance is not 

comparable among series. 

 

2.2 Strategy 

The strategy is to implement long-short positions for the two stocks and make 

profit from the temporary misalignments. The starting assumption of this strategy is that 

stocks that have historically had the same trading patterns will do so in the future as well. 

If there is a deviation from the historical trend, this creates a trading opportunity, which 

can be exploited. Gains are earned when the price relationship is restored. More 

specifically, if the distance between two stocks’ normalized prices is greater than a pre-

set threshold value, the trader long the overvalued stock and short the undervalued stock. 

Under the previous assumption, when the two stocks converge, the trader closes the trade 

and makes profit. 

Fortunately the above characteristics can be caught and modeled by a mean-

reverting process: if the spread between two stock prices follows a mean-reverting 

process, the deviation of the spread from its long-run mean (i.e. zero) is a sign of 

                                                 
16 Based on Perlin (2007), using correlation criteria gives the similar result in pairs screening. 
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mispricing and long-short position should be executed and profit will be made when the 

spread reverts to its mean.  

A Dickey-Fuller test (Dickey and Fuller (1979)) can determine the stationarity of 

the spread B
t

A
t PP −  as follows: 

t
B

t
A

t
B

t
A

t PPPP εγμ +−+=−Δ −− )()( 11                                       (1) 

where A
tP  is the price of stock A at time t and B

tP  is the price of stock B at time t, and 

the null hypothesis is 0=γ , meaning the spread is not mean reverting. If the null 

hypothesis can be rejected on the 99% confidence level the spread of stock prices follows 

a weak stationary process and is therefore mean-reverting. According to Herlemont 

(2006) if the confidence level is relaxed, the pairs do not mean-revert good enough to 

generate satisfactory returns.  

 

3. Existing Pairs Trading Methods 

3.1 The constant threshold method 

This method is straight forward and it is used by a lot of investors due to its 

simplicity. Gatev et al (2006) use this method in their paper. In their paper they first 

select the pairs and then use a pre-specified threshold (two standard deviations) as the 

trigger of a trade. The trading position opens when spread between the total return indices 

of two securities diverges by “two historical standard deviations, as estimated during the 

pairs formation period”. When the spread is less than two standard deviations the investor 

closes the pairs trading. In their paper, they work with daily stock data over 1962-2002 

and the top pairs selected using the above simple rule generate annualized excess 
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returns17 of up to 11%. Nath (2003) applies pairs trading strategy to the entire universe of 

securities in the highly liquid secondary market for U.S. government debt and compares 

the performances of this simple strategy with four different open and close thresholds. 

This paper is unique compared to other pairs trading studies because the database used in 

this study is intraday data rather than  daily data and the whole dataset has 4.5 million 

trades and approximately 50 million quotes for 829 securities over 1994-2000. He 

concludes that a simple pairs trading strategy with 15th percentile as the open trigger and 

5th percentile as the close trigger is preferred for U.S treasury securities.  

Vidyamurthy (2004) calculate an optimal threshold in the case where the spread is 

Gaussian white noise series. His approach is as follows: based on a constant threshold 

method, the investor buys one unit of the spread whenever he observes that the spread has 

a value less than or equal to the negative of, the predetermined constant threshold ( Δ− ). 

Similarly, he sells one unit of the spread when he observes a value greater than or equal 

toΔ . Since the spread series are assumed to be Gaussian white noise, the probability that 

this series at any time point deviate by amount greater than or equal toΔ  is determined by 

the integral of the Gaussian process, equal to 1–N( Δ ), where N( Δ ) is the integral 

∫
Δ

∞−
dxxf )( . Assume the investor trades in T time steps and he can expect to have T 

instances greater than ∆. Similarly, the probability of the value being less than or equal to 

Δ−  is given by N( Δ− ). Since Gaussian series are symmetric we have N( Δ− ) = 1 – 

N(Δ ) and therefore the number of instances, we expect the value of the spread to be less 

than or equal to Δ−  is also T(1–N(Δ )). Thus, in a time span of T units the investor can 

expect to have bought and sold the spread an average of T times. And the profit on each 
                                                 
17 The definition of excess return in pairs trading is different from traditional definition (returns in excess of 
the risk-free rate). This will be explained in section 5. 
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round turn (buy and sell) is 2Δ . Profit in time period T is calculated using Profit = profit 

per trade × number of trades, and in this case it is 2))(1(2 Δ−Δ NT . The optimal threshold 

can be calculated based on maximizing this profit function. 

While it is hard to calculate the extreme value by taking the first derivative, profit 

plot is much easier and can give us an approximate result. For profit plot, see 

Vidyamurthy (2004). According to Vidyamurthy, the approximate threshold that 

maximized the above profit function is 0.75σ . 

Although the constant threshold method is straight forward and easy to use, there 

are several pitfalls in this method according to Jurek and Yang (2006). These risks are 

present in essentially all relative value trades and include the uncertainty about the timing 

at which the mispricing will be eliminated (After trade is open, when to close the trade is 

also important. The uncertainty of the timing to close the trade is usually called horizon 

risk) and the potential for the mispricing to diverge far from its mean prior to 

convergence (it is possible that the two stocks continue to diverge from each other after 

trade is open and this risk is usually called divergence risk). These two risks make this 

method very hard to be applied in practice. Another problem with this method is that it is 

non parametric and therefore it does not have any predicting power. 

 

3.2 The cointegration method 

Vidyamurthy (2004) introduced a cointegration approach for pairs trading using 

the co-integration theory proposed by Engle and Granger (1987). The cointegration 

theory says that each element of a vector of time series ix , first achieves stationarity after 

differencing, but a linear combination ix'α , is already stationary, the time series ix , are 
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said to be co-integrated with co-integrating vector α . The simplest case of cointegration 

is two time series that are both integrated of order 1, can be linearly combined to produce 

a new single time series that is integrated of order zero or stationary. 

Cointegrated time series can also be represented in Error Correction Model 

(ECM) in which the movement of current period is correlated with the correction of last 

period’s deviation from the equilibrium. According to Vidyamurthy (2004), the 

logarithmic stock prices are often assumed to be random walk and there is a good chance 

that they will be cointegrated. If that is the case, cointegration result can be used to 

determine how far the spread is away from its equilibrium and this can be used as a 

trigger for trading pairs. 

Vidyamurthy (2004) adopts Engle and Granger’s approach to test cointegration. 

This is conducted in two steps: first log price of stock A is regressed against log price of 

stock B: 

t
B

t
A

t PP εμγ +=− )log()log(                                         (2) 

 where γ  is the cointegration coefficient and the constant μ  captures some sense of 

“premium” of stock A over stock B.  

Second, the residual calculated from above equation is tested for stationarity using 

Augmented Dickey-Fuller test.  

Error Correction Model is a step toward determining how the variables are linked 

together after the cointegration test. If the residual is tested to be stationary with Engle 

and Granger’s approach, If cointegration is supported by (2), the parameters of an ECM 

can be estimated and give more information on how the variables are related. Herlemont 

(2006) gives the following estimation equations: 
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Note that in the first step if log price of stock B is regressed against log price of 

stock A (remember log price of stock A is regressed against log price of stock B in 

equation (2)), the residual test in the second step will be different and therefore the ECM 

will be different. Although this issue can be resolved by using the t-statistics from Engle 

and Yoo (1987), this model is complicated compared to other models. Another issue in 

this cointegration method is that if the bivariate series are not cointegrated, the 

“cointegrating regression” leads to spurious estimators (Lim and Martin, 1995) and make 

the mean reversion analysis unreliable. 

 

3.3 The stochastic method 

Stochastic pairs trading models study the level of mispricing and the strength or 

timing of mean-reverting process. And based on these, the investor determines the 

tradability of the spread and makes entry and exit decisions.  

Elliot et al (2005) proposed a stochastic method and tried to model the spread 

between two assets using an Ornstein-Uhlenbeck (OU) process.  

The spread is modeled as follows: 

dZdtSSkdS tt σ+−=
−

)(                                               (4)         

where tB is a risk free asset with a discount rate of r .  tS  is the spread following a  

mean-reverting process and 
−

S  is its long-run mean. tS  is known to converge to 
−

S  at a 
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speed of k . dZ is a standard Brownian motion in a predefined probability space. This 

equation simply says the next change in the spread is opposite in sign to the deviation of 

the spread from its long-term mean, with a magnitude that is proportional to the 

deviation. When 
−

> SSt , the investor shorts the spread asset (long the undervalued 

security and short the overvalued security) and invests the proceeds in the risk free asset. 

The strategy is reversed when 
−

< SSt .  

Compared to the constant threshold model, this stochastic model offers two major 

advantages. First, spread is modeled with an mean-reverting OU process, and this process 

is appropriate since it catches the horizon risk by modeling the uncertainty over the 

length of the time that will elapse before the process converges to its long-run mean and 

catches the divergence risk by modeling the variance distribution of the spread between 

its current value and its first reversion to the long-run mean. 

Second, it is parametric and the parameters can be estimated and be used to 

predict future values. The estimator is a maximum likelihood estimator and optimal in the 

sense of minimum mean square error (MMSE).   

The disadvantage of these stochastic models is that they have relatively low 

predictability in mean prediction. This is understandable since OU process is basically an 

autoregressive process and its simple form does not catch much information about the 

mean. And for this reason, the stochastic method is rarely used in practice. 

 

4. A New Pairs Trading Model: The Time Series Pairs Trading Model 

My approach is to introduce time series models in pairs trading and take 

advantage of the consistent predictability of variances in time series models. This 
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approach is conducted in three steps: first the optimal threshold is calculated based on the 

steady state where price distance and distribution of spread are constant. This optimal 

threshold yields the highest profit and is a function of the variance. Second, the time 

series characteristics of the spread (or return spread) are examined and an appropriate 

time series model is used to predict the future variances of the spread (or return spread). 

Third, a dynamic threshold, calculated based on the optimal threshold function and the 

predicted variance, is used as a dynamic trading trigger.  

 

4.1 Time Series Characteristics of the Spread 

Data and Pairs Selection 

My analysis focuses on the stocks traded in the United States. The raw dataset 

from The Center for Research in Security Prices (CRSP) consists of daily closing prices 

for 12,895 stocks traded in the major US stock exchanges during the sample period, 

January 1, 2000 through April 30, 2008. Using Getav et al’s screening method, I screen 

out all stocks with one or more days with no trade. This serves to identify relatively 

liquid stocks and facilitate pairs formation. The screened dataset consists of daily close 

prices for 3091 stocks. Each stock has 2093 observations. I use the first 1839 

observations as the initial training. The remaining 254 observations starting from April 

30, 2007 to April 30, 2008 represents the effective trading days in one year.  

As I mentioned in the previous section, all the prices are normalized since 

different stocks have different means and the absolute distance among them is 

meaningless in my research. After normalization, all the stocks are brought to the same 

mean and this permits formation of pairs.  
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The normalization is based on the following equation: 

i

ititN
it

PEP
P

σ
)(−

=                                                   (5) 

where N
itP  is the normalized price for stock i  at time t , )( itPE  is the expected value of 

that stock and it is the mean in this case and iσ  is the standard deviation of this stock.  

The next step is to choose, for each stock, a pair that has minimum absolute 

distance between the normalized prices. Again I use the approach introduced in Gate et al 

(1999) where a matching partner for each stock is chosen by finding the stock that 

minimizes the sum of squared deviations between the two normalized price series18.  

After the pairs selection, I study the performances of top 5 and top 20 pairs with 

the smallest historical distance measure.  

 

GARCH model 

Traditional econometric models assume a constant one-period forecast variance. 

To relax this implausible assumption, Engle (1982) developed a class of models called 

autoregressive conditional heteroscedasticity (ARCH). These are zero mean, serially 

uncorrelated processes with nonconstant variance conditional on the past.  In this paper, I 

use ARCH class model to model and forecast the nonconstant variance and use that to 

build a dynamic optimal threshold. 

A useful generalization of ARCH model is the GARCH parameterization 

introduced by Bollerslev (1986). This model is also a weighted average of past squared 

                                                 
18 The MatLab code for pairs selection was provided by Perlin on www.mathworks.com. 
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residuals, but it has declining weights that never go completely to zero. Below is the 

original GARCH model:  

ttt xy εβ +′=                                                      (6) 

                     ttt vh ⋅=ε                                                       (7) 

ptptqtqtt hhh −−−− ++++++= θθεαεαα LL 11
22

110                       (8) 

1)(,0)( == tt vDvE , 1,0,0,0);(0)(
110 <+≥≥>≠= ∑∑ ==

p

j j
q

i ijist stvvE θαθαα  

The above process is called GARCH(p,q) process. In the third equation  

)var( 1−= ttth ϕε 1−tϕ  it is the information before time t-1.  

Because GARCH(p,q) is an extension of ARCH model, it has all the 

characteristics of the original ARCH model. And because in GARCH model the 

conditional variance is not only the linear function of the square of the lagged residuals, it 

is also a linear function of the lagged conditional variances, GARCH model is more 

accurate than the original ARCH model and it is easier to calculate.  

The most widely used GARCH model is GARCH(1,1) model. The (1,1) in 

parentheses is a standard notation in which the first number refers to how many 

autoregressive lags, or ARCH terms, appear in the equation, while the second number 

refers to how many moving average lags are specified, which here is often called the 

number of GARCH terms. Sometimes models with more than one lag are needed to find 

good variance forecasts. GARCH(1,1) is the most widely used GARCH model because of 

its accuracy and simplicity. The GARCH(1,1) model looks like this: 

11
2

110 −− ++= ttt hh θεαα                                                 (9) 
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where 0α  is the constant, 1α  is the coefficient for first order ARCH effect 

(autoregressive lags), and 1θ  is the first order GARCH effect (moving average lags). 

According to the assumptions in equation (8), this model requires all the coefficients to 

be positive. 

 

GARCH Characteristics of the Spread 

In this part, I study the time series characteristics of the spread with GARCH(1,1) 

model using the first 1839 observations. In this part, I define a spread as the difference 

between the normalized prices of the two stocks: 

jtitijt NPNPSP −=                                                     (10) 

where ijtSP  is the spread between stock i and stock j at time t, itNP  is the normalized 

price for stock i at time t, and jtNP  is the normalized price for stock j at time t.  

The summary statistics for top 20 pairs are shown in Table 5. As expected, the 

average of the means of these top 20 pairs is 1.108E-10, which is close to zero. This is 

because all the spreads are mean-reverting19 and they fluctuate around their long-run 

mean of zero. From the daily standard deviation, the spread between AMB Property 

Corporation (AMB) and ProLogis (PLD) is the most volatile and the spread between 

Developers Diversified Realty Corp (DDR) and Macerich Co (MAC) is the least volatile. 

The mean skewness is 0.231356 with the maximum of 1.749457 and the minimum of -

0.5686995. Among all the pairs seven are negatively skewed and thirteen are positively 

skewed. The mean value of the kurtosis is 3.467160 with the maximum of 6.506454 and 

                                                 
19 According to the Dickey-Fuller test addressed in section 2.2, null hypothesis that the series is not mean-
reverting is rejected at 1% confidence level for all 20 pairs. 
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the minimum of 2.427899. Seven pairs have kurtosis greater than three, which is the 

normal value, and therefore these pairs show evidence of fat tails.  

The patterns of the spreads of top 4 pairs are plotted in Figure 8and Figure 9. 

Miller (1979) mentioned that the residuals of a fitted model seem to be autocorrelated. 

Therefore, it seems reasonable to consider the volatilities (or variabilities) of the spreads 

for these pairs. Since the means for all pairs are close to zero, we consider the 

autocorrelation function plot of ijtSP for each pair and these plots are shown in Figure 

4.1. It shows that there is a substantial dependence among spreads for each pair. 

Therefore it is appropriate to use GARCH model to model the residuals.  

The results of the GARCH (1,1) estimations are shown in Table 6. The three 

coefficients in the variance equation (9) for each pair are listed as 0α , 1α  and 1θ . All 

pairs have significant ARCH effect and GARCH effect except for the pair of Essex 

Property Trust and Boston Properties, and the pair of Essex Property Trust and BRE 

Properties. Notice that the coefficients for each pair sum up to a number less than one, 

which is required to have a mean reverting variance process. Since the sums for all pairs 

are very close to one, these processes only mean revert slowly.  

The estimation is conducted using the sample from January 01, 2000 to April 29, 

2007, which has 1839 observations. The conditional standard deviations20 th for the out 

of sample observations, which is from April 30, 2007 to April 30, 2008, are calculated 

recursively using the estimated variance equation. Figure 9 shows the time series plot for 

                                                 
20 Because standard deviation is used in constant threshold method and to keep consistent I use standard 
deviation instead of variance in my time series model. 
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the predicted conditional standard deviations of the out of sample observations for the top 

4 pairs.  

 

4.2 Dynamic Threshold Method 

Dynamic threshold method is a modification of the constant threshold method 

used in Gatev et al (2006), Nath (2003), Vidyamurthy (2004) and Perlin (2007). Recall in 

constant threshold method, the trading is triggered when the normalized prices diverge by 

more than 0.75, or 2 in Gatev et al, of the historical standard deviation of that pair. This 

threshold value is constant across the whole trading period since the historical standard 

deviation obtained during the pairs formation period does not vary. In dynamic threshold 

method, instead of using a constant standard deviation, I use the predicted standard 

deviations generated from GARCH model. Compared to a constant standard deviation, 

this predicted value calculated using the moving window21 can catch the evolution of the 

prices and make the trading strategy more dynamic. 

Recall in Section 4.2.3, for each trading day I calculate a particular conditional 

standard deviation based on the estimated GARCH model and previous information. The 

divergence of the pair prices in each day is thus compared with 0.75 of the predicted 

conditional standard deviation in that day. I open a position in that pair when the prices 

have diverged more than that particular threshold value. This particular trigger value is 

used during that trading interval until the prices have reverted and thus the position is 

closed. After the position is closed, 0.75 of the predicted dynamic standard deviations are 

again used as dynamic threshold values until the position open next time.  

                                                 
21 This window contains 1839 previous observations for each prediction. 
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The reason why I use a fixed threshold value instead of using the predicted 

dynamic threshold values after the trade is open and during the trading interval is 

nontrivial in my method. Pairs that open and converge during the trading interval will 

have cash flows. In constant threshold method, all the cash flows are guaranteed to be 

positive since the distance between the two stocks are guaranteed to be closer at the end 

of the trading interval than at the beginning of the interval. While in dynamic threshold 

method, if the next threshold value is larger than the previous one and it triggers the 

closing of the position, a negative cash flow is generated. Let us check one simple case to 

see the risk of using dynamic threshold values and this can be examined in details from 

Figure 10. In Figure 10 the position is opened at day one when the pair prices have 

diverged more than the threshold value on that day, which is calculated as 0.75 of the 

particular standard deviation in that day. On day two, I have a predicted standard 

deviation larger than that on day one, and the position is closed because the distance 

between the prices is less than 0.75 of this predicted standard deviation. In this case, a 

negative cash flow is generated and this is definitely an unattractive trading strategy for 

investors. Therefore, using a fixed threshold value during a trading interval will avoid 

this negative return problem and guarantee positive cash flows assuming they converge. 

 

5. Assessing Performances Based on Different Trading Strategies 

5.1 Excess Return Computation 

In practice, the return or profit is calculated in the following way: if the position 

opens and converges during the trading period, there is a positive cash flow and if this 

process repeats within the trading period there will be a series of positive cash flows; if 
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the position opens and never converges during the trading period, the position is closed at 

the end of the period no matter the return is positive or negative. Therefore during a 

particular trading period, there will be zero, one or more than one positive cash flows 

during the period and a positive or negative cash flow at the end of the period. Because 

the gains and losses of trading are computed over long-short positions of one dollar, the 

payoffs have the interpretation of excess returns. According to Perlin (2007), the general 

equation to calculate the excess return is as follows: 
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where itR  is the real return of stock i at time t, calculated by )/ln( )1( −tiit pp . SL
itI &  is a 

dummy variable that takes value -1 when stock i is the leader and a long position is 

created for it at time t, value 1 when stock i is a follower and a short position is created 

and 0 otherwise. itTc  is a dummy variable that takes value 1 if a transaction is made for 

asset i at time t and 0 otherwise. For each trading interval the transaction cost is only 

counted once since during the interval the stocks are held instead of traded by the 

investor. C is the transaction cost per transaction and it is calculated as a percentage of 

each trade (I use C=0.1% in this paper). T is the number of effective trading days and it 

equals 254 in this paper.  

After the returns for each stock are calculated, the total return for that pair is 

calculated by summing up the returns of the stocks that comprise the pair22. The excess 

returns are calculated based on the rule that all trades are executed at the end of the day 

when the threshold comparisons were conducted. 
                                                 
22 Equation (11) gives the general form of return computation. n is not limited to be two where the return 
for one pair is calculated. This general equation can be used to calculate the return for a portfolio where 
there are two or more pairs.   
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5.2 Optimal Threshold Function 

According to Vidyamurthy (2004), with the assumption that the spread follows 

Gaussian white noise process, the threshold that yields the highest profit is 0.75σ . 

Vidyamurthy also examines the case where the inventory is restricted to be one spread 

unit at each time. In pairs trading, inventory is defined as the average trade volume of the 

two stocks comprising the pair. Based on this restriction the investor buys one unit of the 

under priced stock and sells one unit of the over priced stock when the spread is more 

than the predetermined threshold. Vidyamurthy ran a simulation using 5,000 white noise 

realizations and concluded the result still hold with this restriction.  

Vidyamurthy proves, in theory, 0.75σ  is the threshold function that yields the 

highest profit, but he does not perform empirical analysis using real data in his book. In 

this paper, I compare the returns of my top pairs based on the thresholds of 0.75σ  and 

2 σ 23  respectively and the results are addressed in Table 7. Hypothesis testing for 

comparing the mean returns using two different threshold values are tested using paired t-

test. The results suggest that the mean returns using 0.75σ  are significantly higher than 

those using 2σ  for both top 5 pairs and top 20 pairs at 10% significance level. Therefore 

in this paper, I use 0.75σ  as the optimal threshold function in both traditional constant 

threshold method and my new dynamic threshold method. 

 

5.3 Trading Period 

                                                 
23 2σ  is widely used in most naïve pairs trading models such as Nath (2003), Herlemont (2006), Getav 
(2006) and Perlin (2007). 



 

 63

In this section, I compare the performance of dynamic versus constant threshold 

methods for top 5 and top 20 pairs. The trading period is one year (April 30, 2007 to 

April 30, 2008) and the first trading day is the day following the last day of pairs 

selection period. Figure 11 and 5.2 illustrate the pairs trading strategy for two stocks, 

Avalon Bay Communities and Boston Properties, in the three-month period starting from 

July 30, 2007 to October 30, 2007 based on constant threshold method and dynamic 

threshold method respectively.  

The top panel (panel A) in each figure shows the normalized prices of the two 

stocks with dividends reinvested. This pair is the 12th on the list of the top 20 pairs and 

we can see the co-movement of these two stocks is significant during this period. Panel B 

in Figure 11 shows the threshold value of the constant threshold method. This value is 

calculated as 0.75 of the historical standard deviation which is obtained during the pairs 

formation period. This value is constant over the whole trading period. Panel B in Figure 

12 shows the dynamic threshold values. These values are calculated using the GARCH 

model we discussed in Section 4.2.3 and the trading strategy is implemented based on the 

rule defined in Section 4.3. As we can see in this panel, after each position is opened, the 

threshold values are fixed at the level where the trade is first triggered in that trading 

interval. That is where those platforms24in that panel come from. The bottom panel (panel 

C) in each figure shows the trading positions during this trading period. The kinked lines 

indicate the opening and closing of the strategy on a daily basis.  

   

5.4 Strategy profits 

                                                 
24 Recall we do not see flats in figure 4.2, which shows the predicted standard deviation.  
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The excess returns for different trading methods are summarized in Table 8 and 

Table 9. Panel A in Table 8 shows the excess return distribution for top 5 and top 20 pairs 

using dynamic threshold method. The average annual excess return is 21.3% for top 5 

pairs and 7.8% for top 20 pairs25. Panel B shows the excess return distribution for top 5 

and top 20 pairs using constant threshold method. The average annual excess return is 

18.9% for top 5 pairs and 6.2% for top 20 pairs. These excess returns are large in 

economical and statistical sense, and suggest both pairs trading methods are profitable. 

Besides the average excess returns, Panel A and Panel B of Table 8 also provide 

information about the excess return distributions. And we can see that dynamic threshold 

method has smaller standard deviations for excess returns for top 5 pairs and top 20 pairs. 

Table 9 shows the returns for each pair using the two methods. In Panel C of 

Table 9, the relative performances for two methods are summarized. For top 5 pairs, four 

out of five pairs earned higher excess returns with dynamic threshold method than with 

constant threshold method. For top 20 pairs, thirteen out of twenty earned higher excess 

returns with dynamic threshold method. Hypothesis testing for comparing the mean 

returns of the two methods are tested using paired t-test. The results suggest that the mean 

returns for dynamic threshold method are significantly higher than those of the constant 

threshold method for both top 5 pairs and top 20 pairs at 10% significance level. 

 

6. Conclusions and Future Research 

This is the first paper to apply time series strategy in pairs trading. This new 

model combines the advantages of time series models and non-directional trading 

strategy. In traditional pairs trading model, people use constant threshold to trigger trade 
                                                 
25 Including the top 5 pairs.   
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and this value is subjective and constant over time. The major problem of this naïve 

model is that this subjective threshold cannot catch the dynamics of the spread between 

the pairs and therefore the trading performance is not optimized. In my model, the 

dynamics of the spread is caught by using non-constant thresholds which are calculated 

based on the most current information. Based on previous information the efficient and 

relatively accurate GARCH (1,1) model provides forecast of variation for the next trading 

period (next day in this paper) and this predicted variation is used to build dynamic 

thresholds. From the results we can see that this time series based strategy beats the naive 

constant threshold model and generates noticeable returns.  

I used GARCH(1,1) model in this paper and the result is promising. The next step 

may be an extension from GARCH (1,1) to GARCH (p,q). In my future research I am 

going to try other more advanced time series models. A further examination of whether 

more complicated time series models improve the performance is an important question 

for future research.  
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Table 5 
 

Summary Statistics for the Top 20 Pairs 
 

Spread Mean Std. Dev. Skewness Kurtosis Dickey 
Fuller 

FRT_SPG -1.63e-09 .0694932 .2984633 3.551998 -5.282* 

REG_SPG -7.70e-10 .0805957 -.2491325 2.646239 -5.371* 

MAC_REG 1.57e-09 .1015472 .223896 2.6248 -4.774* 

NPG_NPM 1.41e-09 .1809379 -.0799789 2.770183 -5.626* 

CMCSA_CMCSK -2.98e-10 .1679888 1.58133 4.410258 -5.031* 

AMB_PLD -2.48e-10 .1834878 .1044347 2.51975 -6.887* 

BXP_SLG 8.92e-10 .1170613 .1884893 2.427899 -3.872* 

TCO_FRT 1.28e-09 .1287253 .7682123 5.610813 -3.451* 

HIO_MHY 2.11e-09 .1352534 -.4002371 3.938504 -3.926* 

BTI_ITY -4.46e-11 .1743398 .1236597 2.508867 -5.097* 

ARE_AMB -2.53e-10 .1280959 .1127409 3.083197 -5.311* 

AVB_BXP -1.03e-09 .1317921 -.194347 2.651474 -3.789* 

IFN_IIF -3.89e-10 .1355652 1.078405 7.970653 -3.807* 

ADVNA_ADVNB 1.82e-09 .1516715 1.749457 6.506454 -8.314* 

ESS_BXP -2.16e-09 .1426923 -.4067968 2.779833 -4.049* 

BRE_ESS 2.84e-10 .1454214 .183783 2.47698 -4.644* 

VNO_ESS 1.28e-09 .1722305 .1626103 2.517043 -3.695* 

OFC_PSA -7.24e-11 .1509805 -.5686995 2.756176 -3.594* 

EWW_MXF -2.38e-09 .1640672 .0649009 2.778703 -3.525* 

DDR_MAC -5.55e-10 .0112027 -.1140754 2.813373 -4.073* 

Sample: January 01, 2000 to April 29, 2007.  * Significant at the 1% level. 
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Table 6 
 

GARCH (1,1) Estimation 
 

Spread  0α  1α  1θ  

FRT_SPG .0002439* 
(.0000344) 

.7605913* 
(.0957653) 

.1896429*  
(.0537789) 

REG_SPG .0002295* 
(.0000402) 

.843056* 
(.0957066) 

.1327086*  
(.0496894) 

MAC_REG .0001852* 
(.0000298) 

.8513523* 
(.0922808) 

.1463991 * 
(.0437996) 

NPG_NPM .0217849* 
(.0030357) 

.8392988* 
(.0991612) 

.0975894* 
(.0549154) 

CMCSA_CMCSK .0025467* 
(.0000354) 

.8672314* 
(.0892345) 

.1082528* 
(.0218926) 

AMB_PLD .0045346* 
(.0013414) 

.8467475* 
(.0335399) 

.1209234 * 
(.0234564) 

BXP_SLG .0001831* 
(.0000321) 

.8196053* 
(.0884272) 

.1839429* 
(.0580544) 

TCO_FRT .0002046* 
(.0000328) 

.8763524* 
(.1162951) 

.1318344* 
(.0605668) 

HIO_MHY .0002807* 
(.0000443) 

.4082794* 
(.0374364) 

.5995136* 
(.0215214) 

BTI_ITY .0001686* 
(.0000383) 

.6531321* 
(.0727173) 

.3609589* 
(.0286135) 

ARE_AMB .0003452* 
(.0000442) 

.8112249* 
(.0842958) 

.1860371* 
(.0310367) 

AVB_BXP .000159* 
(.0000261) 

.6968305* 
(.0929389) 

.3011946 * 
(.0390237) 

IFN_IIF .0000468* 
(8.91e-06) 

.5929086* 
(.0563305) 

.4330929* 
(.0256911) 

ADVNA_ADVNB .0000941* 
(.0000199) 

.6799341* 
(.090101) 

.3079337* 
(.0702249) 

ESS_BXP .0005581 * 
(.0000603) 

.9233612* 
(.1056652) 

.0548445 
(.0428582) 

BRE_ESS .0007262* 
(.0001042) 

.9593607* 
(.109084) 

.0262469 
(.0600046) 

VNO_ESS .0004903* 
(.0000607) 

.8774402* 
(.1163521) 

.1034875* 
(.0462367) 
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OFC_PSA .0002222* 
(.0000421) 

.7285743* 
(.0930678) 

.2756713* 
(.0428019) 

EWW_MXF .0001661* 
(.000037) 

.8216065* 
(.1074709) 

.195684* 
(.0562614) 

DDR_MAC .0001768* 
(.00003) 

.689994* 
(.0830771) 

.3050286 * 
(.0307522) 

Notes: * Significant at the 5% level. Numbers in parenthesis are standard errors. 0α  is the constant, 1α  is 

the coefficient for first order ARCH effect (autoregressive lags) for the spread series, and 1θ  is the first 
order GARCH effect (moving average lags) for the spread series. 
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Table 7 
 

Excess Returns with Different Threshold Functions 
 

Pairs Top 5 Top 20 

A. Excess return (with the threshold of 0.75 std)   

Excess return distribution   

   Mean .18945 .06234 

   Median .04121 .03955 

   

B. Excess return (with the threshold of 2 std)   

Excess return distribution   

   Mean .16235 .04903 

   Median .03621 .03016 

   

C. Relative performances   

Paired t-test .02769* .02566* 

 (.01786) (.01701) 

Summary statistics of the annually excess returns on pairs between April 30, 2007 and April 30, 2008 (254 
observations). I trade according to the rule that opens a position in a pair at the end of the day that 
normalized prices of the stocks in the pair diverge by 0.75 of the historical standard deviation (Panel A). 
The results in Panel B correspond to returns based on a threshold of 2 times of the historical standard 
deviation. All pairs are ranked according to least distance in historical price space. The ‘‘top n’’ portfolios 
include the n pairs with least distance measures. Top 20 pairs includes the top 5 pairs. Transaction 
costs are included. * Significant at the 10% level. Numbers in parenthesis are standard errors. 
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Table 8 
 

Excess Returns of Pairs Trading Strategies  
 

Pairs Top 5 Top 20 

A. Excess return distribution (Dynamic threshold method)   

Excess return distribution   

   Mean .21252 .07816 

   Median .12251 .07655 

   Standard deviation .25345 .17989 

   Skewness 1.54121 2.21231 

   Kurtosis 3.22342 9.84562 

   Minimum .06032 -.08097 

   Maximum .68752 .68752 

   

B. Excess return distribution (Constant threshold method, 0.75 std)   

Excess return distribution   

   Mean .18945 .06234 

   Median .04121 .03955 

   Standard deviation .27678 .17352 

   Skewness 1.42150 3.11006 

   Kurtosis 2.92342 11.23522 

   Minimum .01985 -.09345 

   Maximum .58852 .58852 

Summary statistics of the annually excess returns on pairs between April 30, 2007 and April 30, 2008 (254 
observations). I trade according to the rule that opens a position in a pair at the end of the day that 
normalized prices of the stocks in the pair diverge 2 times of the predicted standard deviation (Panel A). 
The results in Panel B correspond to a strategy that constant threshold used across the whole trading period. 
All pairs are ranked according to least distance in historical price space. The ‘‘top n’’ portfolios include the 
n pairs with least distance measures. Top 20 pairs includes the top 5 pairs. Transaction costs are 
included.  
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Table 9 
 

Excess Returns of Pairs Trading Strategies  
 

Pairs Retuns 

A. Excess returns (Dynamic threshold method)   

 
FRT_SPG 
REG_SPG 
MAC_REG 
NPG_NPM 
CMCSA_CMCSK 
AMB_PLD 
BXP_SLG 
TCO_FRT 
HIO_MHY 
BTI_ITY 
ARE_AMB 
AVB_BXP 
IFN_IIF 
ADVNA_ADVNB 
ESS_BXP 
BRE_ESS 
VNO_ESS 
OFC_PSA 
EWW_MXF 
DDR_MAC 

 
.68752 
.57634 
.34235 
.06032 
.11241 
.10126 
.06356 
.05678 
.05216 
.02865 
.02788 
.03979 
.01098 
.00986 
-.06329 
.01326 
-.08097 
.02012 
.00186 
-.02123  

   

B. Excess returns (Constant threshold method, 0.75 std)   

 
FRT_SPG 
REG_SPG 
MAC_REG 
NPG_NPM 
CMCSA_CMCSK 
AMB_PLD 
BXP_SLG 
TCO_FRT 
HIO_MHY 
BTI_ITY 
ARE_AMB 
AVB_BXP 
IFN_IIF 
ADVNA_ADVNB 
ESS_BXP 
BRE_ESS 
VNO_ESS 
OFC_PSA 
EWW_MXF 
DDR_MAC 

 
.58852 
.45022 
.40235 
.04987 
.08976 
.01985 
.04321 
.06235 
.03087 
.05080 
.01987 
.10211 
.01657 
.01021 
-.09345 
.00976 
-.01098 
.01987 
-.00186 
-.03865  
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C. Relative performances   

Dynamic threshold method beats constant threshold method 4/5 13/20 

Paired t-test .03032* .02056* 

 (.02001) (.01686) 

Summary statistics of the annually excess returns on pairs between April 30, 2007 and April 30, 2008 (254 
observations). I trade according to the rule that opens a position in a pair at the end of the day that 
normalized prices of the stocks in the pair diverge 2 times of the predicted standard deviation (Panel A). 
The results in Panel B correspond to a strategy that constant threshold used across the whole trading period. 
All pairs are ranked according to least distance in historical price space. The ‘‘top n’’ portfolios include the 
n pairs with least distance measures. Top 20 pairs includes the top 5 pairs. Transaction costs are 
included. * Significant at the 10% level. Numbers in parenthesis are standard errors. 
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Figure 8 
 

Autocorrelation Function Plots of the Spreads for the Top 4 Pairs  
-0

.5
0

0.
00

0.
50

1.
00

A
ut

oc
or

re
la

tio
ns

 o
f f

rt_
sp

g

0 10 20 30 40
Lag

Bartlett's formula for MA(q) 95% confidence bands

-0
.5

0
0.

00
0.

50
1.

00
A

ut
oc

or
re

la
tio

ns
 o

f r
eg

_s
pg

0 10 20 30 40
Lag

Bartlett's formula for MA(q) 95% confidence bands

-0
.5

0
0.

00
0.

50
1.

00
A

ut
oc

or
re

la
tio

ns
 o

f m
ac

_r
eg

0 10 20 30 40
Lag

Bartlett's formula for MA(q) 95% confidence bands

-0
.5

0
0.

00
0.

50
1.

00
A

ut
oc

or
re

la
tio

ns
 o

f n
pg

_n
pm

0 10 20 30 40
Lag

Bartlett's formula for MA(q) 95% confidence bands

 
 

Sample: January 01, 2000 to April 29, 2007. 
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Figure 9  
 

Predicted Conditional Standard Deviation for the Top 4 Pairs 
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Sample: April 30, 2007 to April 30, 2008.  
Estimation is conducted using the sample from January 01, 2000 to April 29, 2007, or the first 1839 
observations. The conditional standard deviation is predicted for the period April 30, 2007 to April 30, 
2008 (observation 1840 to observation 2093). 
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Figure 10  
 

Negative Cash Flow 
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 Figure 11 
 

Constant Threshold Method 
 
 

Sample: July 30, 2007 to October 30, 2007 



 

 79

Figure 12 
 

Dynamic Threshold Method 
 
 

Sample: July 30, 2007 to October 30, 2007 
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APPENDIX 
 

Tickers and company names 
 
 

Tickers Company names 

ADVNA Advanta Corp CLA 

ADVNB Advanta Corp 

AMB AMB Property Corp 

ARE Alexandria Real Estate Equities Inc. 

AVB Avalonbay Communities Inc. 

BRE BRE Properties Inc. 

BTI British American Tobacco plc 

BXP Boston Properties Inc. 

CMCSA Comcast Corp. 

CMCSK COMCAST CL A SPCL 

DDR Developers Diversified Realty Corp 

ESS Essex Property Trust Inc. 

EWW iShares MSCI Mexico Index 

FRT Federal Realty Investment Trust 

HIO Western Asset High Income Opportunity Fund Inc. 

IFN India Fund, Inc. 

IIF Morgan Stanley India Investment Fund, Inc. 

ITY Imperial Tobacco Group plc 

MAC Macerich Co. 

MHY Western Asset Managed High Income Fund Inc. 

MXF The Mexico Fund, Inc. 

NPG Nuveen Georgia Premium Income Municipal Fund 

NPM Nuveen Premium Income Municipal Fund 2 Inc. 

OFC Corporate Office Properties Trust Inc. 

PLD ProLogis 

PSA Public Storage 

REG Regency Centers Corporation 

SLG SL Green Realty Corp 

SPG Simon Property Group Inc. 

TCO Taubman Centers Inc. 

VNO Vornado Realty Trust 
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