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Abstract

With the emergence of Free/Libre and Open Source Software as a significant force that is 

reshaping the software industry, it becomes more important to reassess conventionally 

held wisdom about software development. Recent literature on the FLOSS development 

process suggests that our previously held knowledge about software development might 

be obsolete. We specifically highlight the tension between the views embodied by the 

Linus’ Law and Brooks’ Law.

Linus’ Law was forwarded by Eric Raymond and suggests that the FLOSS develop-

ment process benefits greatly from large numbers of developers. Brooks’ Law, which is 

part of currently held wisdom on software development, suggests that adding developers 

is detrimental to the progress of software projects. Raymond explains that the distributed 

nature of the FLOSS development process and the capacity of source code to convey rich 

information between developers are the main causes of the obsolescence Brooks’ Law in 

the FLOSS development context.

By performing two separate studies, we show how both views of software develop-

ment can be complementary. Using the lens of Transaction Cost Theory (TCT) in the first 

study, we identify the characteristics of the development knowledge as being the main 

factors constraining new members from contributing source code to FLOSS development 

projects. We also conceptualize of these knowledge characteristics as being analogous to 

what Brooks’ described as the ramp-up effect. We forward the argument, and offer em-
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pirical validation, that managing these characteristics of knowledge would result in an 

increase the number of contributors to a FLOSS projects.

The second study is concerned with the impact if having these new members added to 

the development team in a FLOSS project. Using the lens of Organizational Information 

Processing Theory (OIPT), we forward the argument, and offer empirical validation, that 

more contributors can be detrimental to progress if the committers of a FLOSS project 

are overwhelmed. Our findings also suggest that large development teams are indeed pos-

sible in FLOSS, however, they must be supported by proper source code design and 

community structures.
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 Chapter 1

Introduction

Free/Libre and Open Source Software (FLOSS) refers to software that has its source code 

made available for users to examine, use, and modify (Raymond, 2001; AlMarzouq et al., 

2005). As a result of making the source code accessible, users may participate in the de-

velopment of the product by uncovering and fixing bugs and security holes or implement-

ing new features (Raymond, 2001). User participation in development is thought to in-

crease the quality of the software; as Eric Raymond put it, "Given enough eyeballs, all 

bugs are shallow" (Raymond, 2001, p.30). In addition, having more users would put the 

software in different operating conditions that could expose hidden bugs in the imple-

mentation, which can then be fixed by any user willing to put forth the effort to do so 

(Raymond, 2001; Liu and Iyer, 2007).

While the improved quality is the most tangible benefit of the FLOSS development 

model, there seems to be a broader impact of this model, which is reshaping the dynamics 

of competition in the software industry (Economides and Katsamakas, 2006; Bonaccorsi 

et al., 2006). Take for example the recent move by Sun to release Java as FLOSS and lev-

erage the FLOSS development model1, or Microsoft’s foray into FLOSS development 

with the establishment of the codeplex.com website for incubating FLOSS projects and 

1

1 See http://www.openjdk.org

http://www.openjdk.org
http://www.openjdk.org


providing tools for users and developers to collaborate2. In addition, the 2007 develop-

ment report by the Linux Foundation suggests that over 11% of the changes made to the 

Linux Kernel source code were sponsored by some of the biggest companies in the soft-

ware and technology industries, such as Intel, IBM, HP, Red Hat, Cisco, and Google 

(Kroah-Hartman et al., 2008). 

These moves by for-profit organizations seem at odds with the traditional way these 

entities operate in the software industry. On one hand, we see bitter competitors cooperat-

ing on the development of the Linux Kernel and other FLOSS projects. On the other 

hand, we see organizations that have built their business on selling software licenses, re-

leasing the software as FLOSS and relinquishing all of the profit that could potentially 

come from selling copies of the software (AlMarzouq et al., 2005). These two observa-

tions suggest that there is a fundamental shift happening in the software and technology 

industries, which we observe to be highly related to FLOSS.

The relationship between FLOSS and the shift in the software industry was high-

lighted by Tim O’Reilly’s description of FLOSS as a "commoditizing" force. According 

to O’Reilly, what FLOSS is doing to the software industry is exactly what the PC did to 

the super computer industry (Schwartz et al., 2009). As a result of the FLOSS commodi-

tizing force, established business models for selling software licenses are no longer as 

profitable, and new profitable business models are emerging that rely on commoditized 

software.

2

2 See http://www.codeplex.com



For example, Riehle (2007) observed that software licensing was a significant cost 

component to companies offering turn-key solutions, such as IBM. FLOSS would allow 

such companies to eliminate the cost associated with software licensing and take in a big-

ger profit, while reducing the cost to the customer at the same time. Furthermore, one 

could attribute the recent emergence of network and "cloud" services to this commoditiz-

ing force of FLOSS (Schwartz et al., 2009). These services deliver computing resources 

to customers, which are built on commoditized hardware and software layers, through the 

Internet. By shielding the customer from the complexities of managing a computing in-

frastructure, the companies that offer cloud and network services create value for the cus-

tomer and earn profit for themselves. In addition, these companies create value from the 

ease with which such services can be scaled up or down based on customer needs. With-

out the commoditized hardware and software layers, such infrastructures would have 

been expensive to create (Schwartz et al., 2009). As a result, profitability shifted from es-

tablished business models of licensing infrastructure management software to service 

models that offered complete infrastructure solutions.

Thus far, we have described what we believe is a fundamental shift in the software 

industry resulting from the FLOSS movement. This highlights the importance of under-

standing FLOSS for both academics and practitioners alike. What we have not explained 

yet is how FLOSS brought about that change. To understand this how this change came 

about, we first need to give a brief introduction to the concepts and history surrounding 

FLOSS.
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1  FLOSS: A Primer3

The origins of FLOSS date back to the computing industry in the 1950s. Back then, all 

software was free and all source code was accessible since the value of software had yet 

to be recognized. During the 1960s, the Department of Defense built ARPAnet, which 

connected researchers and engineers and lead to the establishment of the initial informal 

guidelines for distributed software development (Raymond, 2000a), which can be viewed 

as the early incarnation of FLOSS. The situation with software changed when IBM un-

bundled software from hardware, which lead to the recognition software’s value. This 

newly found value lead to the establishment of a marketplace for software in the 1970s; 

more importantly, the newly found value encouraged the safe-guarding of source code as 

a means of protecting trade secrets, which was detrimental to the early version of FLOSS 

development (Glass, 2004).

Dissatisfied with the state of software development, Richard Stallman, a participant of 

MIT’s Artificial Intelligence lab, established the Free Software Foundation (FSF). The 

goal of the organization was to promote the development and use of free software. The 

idea behind free software is that users are guaranteed the rights to freely use, distribute, 

and modify the software. The foundation contributed to the effort to develop free soft-

ware solutions to many networking and software problems, such as Apache and Linux, 

which later powered the growth of the Internet.  The Internet and free software’s role in 

4

3 Adapted from our tutorial in CAIS (AlMarzouq et al., 2005)



its development further added to the success of the free software movement (Raymond, 

2000a).

The success of free software, especially that coming from the distributed and open de-

velopment model, inspired Eric Raymond to write his seminal piece The Cathedral and 

The Bazaar. His work played a key role in justifying the decision of Netscapeâ™’s CEO, 

Jim Barksdale, to release the source code for Netscape Navigator in 1998. What followed 

was the recognition of the importance of marketing the free-software movement to ensure 

its long-term survival. This recognition eventually led to the term "Open Source" being 

coined as a less ambiguous term than "Free" and without the negative connotations in the 

business world. The Open Source Initiative (OSI) was then established to promote the 

ideals of Open Source to the business world (Raymond, 2000b).

The Open Source movement recognized the value of making source code accessible as 

a means to create higher quality software and was more pragmatic than the FSF in recog-

nizing that the interests of the business world has to be met. Richard Stallman did not 

think the term Open Source conveyed the ideals of the FSF: that users had the right to 

freely modify, use, and redistribute the software (Raymond, 2000b). Therefore, the FSF 

and the OSI are two initiatives that promoted the same software development principles 

but differed in term of their ultimate goals (AlMarzouq et al., 2005).

One of the duties that both the FSF and OSI perform was the approval of FLOSS li-

censes that adhered to their ideals. Even today, the license is what distinguishes a soft-

ware as being FLOSS (AlMarzouq et al., 2005). While the overall premise of every li-

cense must adhere to the principles of giving users the ability to use, modify, copy, and 
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redistribute software as they see fit, some licenses go beyond that principle by preventing 

the software’s code from being mixed with proprietary source code and/or preventing the 

privatization of the source code (Stewart et al., 2006).

The software, however, is not the only valuable component of FLOSS. The commu-

nity that builds such software is equally valuable. A FLOSS community consists of all of 

the users and developers of the software who are dispersed over time and space. Commu-

nity members interact over the Internet and contribute source code, requirements, support 

for other members, and bug reports (Raymond, 2001; Scacchi, 2002). A community be-

gins when a developer provides a proof-of-concept implementation of a software that 

members can collaboratively work on improving. As the software improve in features and 

quality, it initiates a self-enforcing growth cycle and attracts more users, and developers 

that contribute further to its development (Raymond, 2001). Most community members 

only contribute temporarily until their needs are satisfied, and only a small fraction of the 

members stay indefinitely with the community (Shah, 2006). Therefore, the survival of a 

FLOSS community will depend on its ability to continually attract new contributors to 

the development process.

1.1  The FLOSS Development Process

One could argue that the way in which the software development process changed with 

the emergence of FLOSS is the main reason why FLOSS became a significant force that 

changed the software industry. With traditional software development methods, an or-

ganization would assume all of the risks associated with software development and, 

6



therefore, reap the rewards when the software is successful. The traditional software de-

velopment method would start with requirements analysis to determine what features to 

incorporate into the software that will be built. Developers are then employed to imple-

ment and test the software. Finally, the organization building the software would continue 

to maintain the software after it has been released. The organization would assume the 

risks associated with failure in all of these steps in the development process, ranging from 

misspecification of the requirements and budget estimates to poor implementation and 

design. Because of the high risks associated with software development, it comes as no 

surprise that the majority of software projects fail (Brooks, 1975). Given these high risks, 

the rewards from the projects that do succeed result in the most profitable organizations 

in free-market history.

The FLOSS development process did away with much of the risks associated with the 

traditional software development process, mostly by doing away with deadlines and by 

distributing the risk amongst a larger group of stakeholders (i.e., contributors) and allow-

ing them to pool their resources (Raymond, 2001). The availability of the source code 

allows users to modify the software for their own use, which leads to the discovery of 

hidden bugs, since these unique use cases often trigger unusual execution paths in the 

source code. 

The increased number of eyes looking at the source code also reduces the likelihood 

that bugs will go undetected for a long time and increases the chances that someone will 

write a good fix from which all members will benefit (Raymond, 2001). The result of this 

collaborative behavior in the community is a reduction in the risks associated with im-

7



plementation, which results in higher quality software. In addition, the users are a source 

of ideas and inspiration for the developers. Since FLOSS community requirements are 

not set in stone like in traditional software-development settings, users can work on im-

plementing the features that they would like to see, resulting in software that is continu-

ally improving in both its functionality and quality. We highlight further differences be-

tween traditional software and FLOSS development processes in Table 1.1.

Table 1.1: Comparison of conventional and FLOSS development process

 Development Process Conventional FLOSS

Membership (Raymond, 
2001) Limited to project team

Open to any user of the 
software

Deadlines (Raymond, 2001)
Negotiate with customers 
and enforceable contracts

Release early and often 
and no enforceable dead-
lines

Roles (Crowston et al., 
2005)

Defined by project man-
ager

Self-selection based on 
need and interest

Leadership (Scozzi, 2008)
Explicit with role of pro-
ject manager

Implicit and difficult to 
identify at times

Commitment of resources 
(van Wendel De Joode, 

2004)

Developers are committed 
prior to engaging in de-
velopment effort

Patches are contributed 
after work is completed 
by a developer, no re-
quirement for commit-
ment prior to engaging 
with a problem.

Requirements gathering 
(Scacchi, 2002)

Requirements made ex-
plicit.

Features emerge from 
community discourse
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2  The Obsolescence of Conventional Software Development 

Wisdom

Based on our description of the FLOSS development process, we find that the benefits of 

FLOSS are a result of a greater number of participants in the development process. As 

more developers pool their resources, the less costly the development will be for any one 

developer and the more the risk of failure will be distributed. The discovery of bugs and 

the number of features suggested or implemented will also depend on the number of users 

and developers involved in the development process. Eric Raymond eloquently summa-

rized the strength of FLOSS in what he dubbed, the Linus’ Law: "Given enough eyeballs, 

all bugs are shallow" (p.19 Raymond, 2001)

The Linus’ Law forwarded by Raymond seems to be at odds with conventional soft-

ware engineering wisdom drawn from Brooks’ Law. Brooks’ Law can be summarized as 

"Adding developers to a late project only makes it later" (p. 25 Brooks, 1975). What 

Brooks’ Law suggests, is that adding developers to an ongoing project is detrimental to 

its progress (Brooks, 1975). Brooks (1975) attributes the detrimental effect of adding de-

velopers to a software project to what he refers to as the ramp-up effect and to the com-

munication effort required in large software development teams. We offer a pictorial 

summary of Brooks’ Law in Figure 1.1.
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Figure 1.1: Pictorial depiction of Brooks’ Law.

The ramp-up effect refers to the training effort required to get new members up to 

speed, such that they become productive team members. The duty of training these new 

members will fall on productive incumbent members. As a result, the productivity of 

these incumbent members will decrease, as they are distracted from working on the pro-

ject (Brooks, 1975).

Furthermore, adding more people to a project will increase the number of communica-

tion channels that any developer needs to maintain in order to ensure the functional integ-

rity of the software project (Brooks, 1975). Two developers will be required to expend 

less effort communicating about their work to one another than 20 members would. Each 

developer of the 20-member group will need to communicate to all of the other 19 mem-

bers, which takes a significant portion of the members’ time and hurts overall team pro-

ductivity. 

10



Raymond (2001) went as far as declaring Brooks’ Law obsolete in the FLOSS context. 

He attributes the differences of the FLOSS development process in addition to the ability 

to use source code as a communication medium, a fact that Brooks (1975) overlooked, as 

being the main reasons why Brooks’ Law no longer applies. For example, the release-

early/release-often mentality employed in FLOSS implies that contributions from exter-

nal contributors are incremental in nature. Provided that the source code is solid and the 

patch is well written, patches can be easily comprehended and incorporated into the main 

code base with minimal effort. As such, new contributors will not place a significant 

learning or communication burden on the current development team in a FLOSS commu-

nity.

3  The Research Question

While Raymond’s (2001) arguments) are compelling and have even found empirical sup-

port (e.g. Koch, 2004; Schweik et  al., 2008), we believe that recent changes in the 

FLOSS movement (Fitzgerald, 2006) warrant a revisit to the conflict between Raymond’s 

and Brooks’ views.

FLOSS has had a surge in interest in recent years and has been increasingly adopted 

by for-profit organizations (Fitzgerald, 2006), which invalidates the view that FLOSS 

contributors are mostly hobbyists (Shah, 2006; Raymond, 2001). The 2007 report by the 

Linux Software Foundation found that the majority of contributors to the Linux Kernel 

were employed by the largest organizations in the software and hardware markets 

(Kroah-Hartman et al., 2008). Furthermore, researchers observed that some of the most 

11



successful projects are able to maintain super-linear growth of the source code (Herraiz 

et al., 2006). Therefore, it is possible that the assumptions held by Raymond (2001) might 

differ from the current realities of FLOSS development efforts.

Indeed, researchers have begun to question many of Raymond’s (2001) assumptions 

and descriptions. For example, not all FLOSS communities observed a distributed 

bazaar-like development model, as the majority of FLOSS communities are highly cen-

tralized (Krishnamurthy, 2002; Crowston et al., 2005). In addition, not all communities 

seem to follow the release-early/release-often mentality (Krishnamurthy, 2002; Herraiz 

et al., 2006). More recently, there has even been work suggesting that Brooks’ Law might 

not be obsolete after all (Capiluppi and Adams, 2009). Therefore, it seems like there is 

mounting evidence that we still do not have a complete understanding of the FLOSS de-

velopment process in its more recent reincarnation.

The goal of this work is to resolve the paradox in our understanding of the software 

development process in the FLOSS context. Conventional wisdom points to the detrimen-

tal effect of team size in a software development team, while Eric Raymond’s description 

of the FLOSS development process and recent empirical work suggests that size is bene-

ficial. What is at stake here is the sustainability of the FLOSS development process and 

the livelihood of FLOSS communities. Failure to understand the implications of Brooks’ 

Law in the FLOSS context might result in dysfunctional development processes. There-

fore, with this work, we will attempt to answer the following research question: "Is 

Brooks’ Law obsolete in the context of FLOSS development?"

12



To address this general research question, we need to take into consideration the dif-

ferences between the conventional and FLOSS development processes (see Table 1.1). 

There are a number of differences between the two processes that require us to reexamine 

the assumptions behind Brook’s Law before we declare it obsolete or not: namely, the 

voluntary nature of participation in FLOSS and the absence of enforceable deadlines in 

FLOSS development. We will also attempt to address issues that have been ignored by 

literature examining Brooks’ Law in the FLOSS context: mainly, the nature and effect of 

the ramp-up effect (Raymond, 2001; Koch, 2004; Schweik et al., 2008; Capiluppi and 

Adams, 2009). As such, we will perform two separate studies that address the main as-

pects of Brooks’ Law. The first will be concerned with the nature of the ramp-up effect 

and how it impacts a FLOSS community. The second will directly address the tension 

between Brooks’ and Raymond’s views with regards to the effect of greater numbers in 

FLOSS development communities. 

Answering our research question will be of practical and theoretical importance. We 

have highlighted the role FLOSS plays in enabling new service-based business models, 

such as cloud computing services. Understanding the nature of the FLOSS development 

process will be important to any company that seeks to build a business model that relies 

on FLOSS, as these companies will have to engage the FLOSS community in order to 

effectively build their services. Knowing how the FLOSS development process works 

allows such companies to participate in the most effective manner. This understanding of 

the FLOSS development process will be equally important to FLOSS community manag-

ers, as this understanding would empower them to shape the development process more 
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effectively and make it more efficient in order to utilize the time offered by contributing 

volunteers contributing in the most beneficial way possible.

There are also important theoretical implications to this work, such as understanding 

the boundary conditions of Brooks’ Law and consolidating two important but conflicting 

views of the dynamics of the FLOSS development process. Furthermore, our work will 

lead us to understand the nature and implications of the ramp-up effects in FLOSS com-

munities more fully. Finally, the results of this work will allow us to understand the fac-

tors that contribute to the increased performance of the software development process.

3.1  The Studies

To address our general research question, we will perform two separate studies that ad-

dress different aspects of Brooks’ Law and how it might apply to the FLOSS develop-

ment context (see Figure 1.2 for an overview of the studies). The first of these studies will 

be concerned with the nature of the ramp-up effect and its impact on FLOSS communi-

ties. The second study is concerned with the impact of developer numbers on the per-

formance of FLOSS communities. 
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Figure 1.2: Position of studies with respect to Brooks’ Law

3.1.1  Study 1

According to Brooks (1975), the ramp-up effect will reduce the productivity of a software 

development team because current members are responsible for training new members 

that join the development team after it has begun. In FLOSS development, current devel-

opers are under no obligation to train any new members, so how can we conceptualize of 

the ramp-up effect? 

We conceptualize the ramp-up effect in this study as knowledge barriers that incum-

bent members of conventional software development teams help new members overcome 

through training (Attewell, 1992). While it is possible for current developers in a FLOSS 
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to also help new contributors, they are under no obligation to do so, especially since the 

source code can convey all of the knowledge required to become a developer (Raymond, 

2001). Therefore, assuming that the source code is the main knowledge source for new 

contributors, the ramp-up effect could vary from community to community based on the 

characteristics of the source code.

With this conceptualization of the ramp-up effect, we view source code design as a 

kind of resistor to the participation of new contributors. When the resistance is high, po-

tential contributors are required to expend considerable effort to acquire the necessary 

knowledge to become contributors. Since most contributors are volunteers, having a high 

level of resistance from the source code (i.e., knowledge barrier) would result in fewer 

new contributors for projects relative to projects with less resistance. As such, we ask 

"what are the factors that lead to greater numbers of new contributors in a FLOSS com-

munity?"

To answer this question, we conceptualize FLOSS communities as being competitive 

actors in what we refer to as the FLOSS marketplace. In this FLOSS marketplace, com-

munities compete to gain contributions from developers in order to sustain their devel-

opment activity. We also conceptualize the act of contribution as a transaction that is 

completed once a source code contribution is fully incorporated into the community code 

base. Using the insights from Transaction Cost Theory (TCT) (Coase, 1937; Williamson, 

1975), we identify the characteristics of the underlying development knowledge as the 

main factors that increase the costs of contribution (i.e., increased knowledge barriers). 

Specifically, we argue that FLOSS communities could increase the numbers of new con-
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tributors if they could manage the codifiability, completeness, and diversity of their un-

derlying development knowledge.

3.1.2  Study 2

In this study, we directly address the tension between Brooks’ view and Raymond’s view 

on developer numbers in FLOSS development teams. According to Brooks (1975), a high 

number of developers is detrimental to the progress of a software development team be-

cause of the effort required to maintain open communication channels by any one devel-

oper with the other members of the team. With more communication channels, the effort 

becomes significant and can distract the developer from his/her main development work, 

thereby, reducing the overall productivity of the team.

Raymond (2001), on the other hand, views larger numbers as beneficial for FLOSS 

development teams because the result is higher quality software and more productive 

communities. He argues against the need for significant communication efforts in FLOSS 

teams because the source code itself could be a rich communication medium.

In this study, we identify what we refer to as the committal structure of the FLOSS 

community and suggest that it is a potential bottleneck for the FLOSS development proc-

ess (Goldratt and Cox, 1994). The committal structure represents the way in which com-

mittal activities are performed (i.e., how patches are integrated into the code base). This 

study differs from the first study in that it focuses on the efforts shouldered by the com-

mitters during committal activities and how it might impact the performance of the com-

munity. In the first study, we focus on the effort shouldered by potential contributors up to 
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the act of committal and how that process may impact the contributors’ decision to go 

through with the process. Therefore, we identify the main research question for this study 

as "Is there a relationship between the organization of committal activities and develop-

ment performance in a FLOSS community, and upon what factors will it be contingent 

upon?"

To address this question, we conceptualize FLOSS communities as information-

processing systems in which the information-processing task is the act of committal. Us-

ing insights from Organizational Information Processing Theory (OIPT) (Galbraith, 

1973), we argue that the performance of FLOSS communities is contingent upon the ca-

pacity of the committal structure to process information and the information-processing 

requirements of the committal task. Using this conceptualization, we also reach an under-

standing of how performance can be viewed for FLOSS communities in which deadlines 

are not relevant. We identify task routineness, contributor uncertainty, and task interde-

pendence as the main sources of uncertainty that increase the information-processing re-

quirements of a FLOSS development community and, therefore, the performance of the 

community.

4  Literature Review

4.1  Study 1

We summarize the literature pertaining to why developers join FLOSS development ef-

forts in Table 1.2. What the table makes apparent is the following: 
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•	

 All of the literature in the table focuses on motivational factors as opposed to fac-

tors that might cause resistance to participation with the exception of the study by 

Midha (2008), which lacks an overarching theoretical modlel and might be consid-

ered exploratory in nature. 

•	

 Most of the literature focuses on individual characteristics with the exception of 

Baldwin and Clark (2006), which is purely theoretical; MacCormack et al., (2006), 

which is a case study with limited external validity; and Midha (2008), which lacks 

a strong theoretical foundation. 

•	

 Empirical studies in the table have limited generalizability because of the research 

approach (i.e., case study) or use sourceforge.net samples that can no longer be 

considered be representative of the FLOSS population (Paul, 2009b, 2009a). 

•	

 The tools used in studies that examine the structure of the code are somewhat com-

plicated and do not offer the means to feasibly compare the designs of multiple 

code bases (e.g., MacCormack et al., 2006) 

In our effort to address our first study’s research question, we hope to also address the 

gaps that we have highlighted in Table 1.2. Specifically, we will give a resistance- (i.e., 

cost) based explanation as to why developers contribute to FLOSS projects. Our work 

will also be of an empirical nature, focusing the project as the main unit of analysis. We 

will utilize a method proposed by Newman (2006a) to examine the structures of networks 

as a means to examine, assess, and compare the designs of FLOSS code bases and em-

pirically test the idea of structures of participation (Baldwin and Clark, 2006). Finally, we 
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will test our model using archival data, which we expect to result in findings with greater 

external validity than the previously conducted empirical studies on FLOSS participation.

Table 1.2: FLOSS studies related to new member participation

Study Type LoA Relevant Findings

 (Lerner and Tirole, 2002) Theoretical Individual
Motivation was derived from indirect signaling about 
quality, with the payoff to come in higher career earn-
ings.

(Hars and Ou, 2001) Empirical - Survey of 81 FLOSS 
participants Individual Individual motivations to contribute to FLOSS can be 

classified into intrinsic and extrinsic categories.

(Ye and Kishida, 2003)
Theoretical - Based on learning 
theory of legitimate peripheral 
participation

Individual
FLOSS contributors are motivated by learning, which 
is enabled by the availability and modularity of the 
source code.

(Lakhani and von Hippel, 2003) Empirical - Survey and archival 
data of 336 Apache participants Individual Mundain but necessary tasks are performed by par-

ticipants for their own learning benefit.

(von Krogh et al., 2003)
Inductive Theory - Interviews 
and archival data from Freenet 
project

Individual Individuals gain committal privileges through techni-
cal and constant contributions.

(Hann et al., 2004) Empirical - Survey of 122 con-
tributors to three Apache projectsIndividual

Use value, recreational value, and potential career 
impact were found to be the main motivators for par-
ticipation in the sample.

(Roberts et al., 2006) Empirical - Survey and Archival 
data of 288 Apache contributors. Individual Intrinsic and extrinsic motivations for participation are 

related and have an impact on individual performance.

(MacCormack et al., 2006)
Exploratory study - Comparison 
of Linux and Mozilla code struc-
ture

FLOSS 
Project

FLOSS project development is enabled by code struc-
tures that enable participation (i.e., modular).

(Baldwin and Clark, 2006) Theoretical - Modeling FLOSS 
project

Modularity and option value of modules encourage 
participation.

(Shah, 2006) Inductive theory - Two commu-
nities from sourceforge.net Individual

Need is the biggest driver of participation, most con-
tributors leave the community then. A small subset 
continues with the community and contribution be-
comes more of a hobby.

(Midha, 2008)
Empirical - Archival data from 
450 C/C++ based 
sourceforge.net projects

FLOSS 
project

Change in aggregate McCabe’s cyclomatic complex-
ity measure was found to be related to the number of 
new committers.

4.2  Study 2

While the empirical work on the performance of FLOSS communities is more diverse 

than participation, we notice that the notions of performance and goals are also diverse 
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and are usually referred to as success. We summarize the main studies that we examined 

for this study in Table 1.3, which highlights the following gaps in the FLOSS perform-

ance literature: 

•	

 With the exception of Capiluppi and Adams (2009), all of the studies seem to sup-

port the obsolescence of Brooks’ Law directly or indirectly. 

•	

 There is no treatment of the relationship between the structure of the source code 

and the development structure in the listed studies. 

•	

 Studies taking a social-network-analysis approach make the assumption that per-

formance is a result of some of the communication patterns observed in the com-

munication structure. However, there are a number coexisting structures present in 

a FLOSS community, such as the development and communication structures 

(Mockus et al., 2002). No clear theoretical underpinning is given as to why per-

formance is caused by the structures examined in these studies. 

With this study, we hope to find the answer to the main research question and, in the 

process, address the highlighted limitations in the current literature. We hope to specifi-

cally address the tension between Brooks’ view and Raymond’s view of FLOSS devel-

opment and explain why there are conflicting results in the literature. We will reach that 

result by using the insights from Organizational Information Processing Theory (OIPT) 

(Galbraith, 1973) in order to understand the relationship between the structure of soft-

ware and the development structure and how their fit could relate to performance. More 

importantly, we identify the committal structure, consisting of committers, as the main 
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development bottleneck that could limit performance (Goldratt and Cox, 1994). With this 

theory-driven approach, we hope to avoid the main concerns that have caused doubt 

about the internal validity of many prior studies on FLOSS performance.

 Table 1.3: FLOSS studies related to development productivity

Study Type LoA Relevant Findings

 (Mockus et al., 2002)

Case Study - Apache web server 
and Mozilla Browser communi-
ties with follow-up quantitative 
study on Mozilla archival data

Multiple

FLOSS communities use different coordination 
mechanisms depending on the size of the devel-
opment team. In addition, the relative size of the 
core developer group to other groups in the 
FLOSS community will have different implica-
tions on the productivity and sustainability of the 
community in addition to the software quality.

(von Krogh et al., 2003)
Inductive Theory - Interviews 
and archival data from Freenet 
project

Individual
Committers specialize in a specific component 
when they are first granted committal privileges 
due to contribution barriers.

(Sagers, 2004) Empirical - Survey and archival 
data from 38 FLOSS projects FLOSS project

Using network governance theory, success was 
found to be related to social mechanisms of 
coordination and safeguarding. These mecha-
nisms are restricted in terms of access to the 
source code, collective sanctions, and the reputa-
tion of developers. Success was measured as 
self-reported performance of the project, age of 
the project, and ratio of open issues (i.e., bug 
report and feature requests) to the total number 
of issues.

(Long and Yuan, 2005)
Empirical - Archival data of 300 
FLOSS projects hosted on 
sourceforge.net

FLOSS Project Success, in terms of number of downloads, is 
closely related to core developer advocacy.

(Daniel et al., 2006) Empirical - Archival data of 78 
FLOSS projects hosted on FLOSS Project

The user and developer groups in a FLOSS pro-
ject enhance the absorptive capacity of a FLOSS 
project through two salient capabilities: knowl-
edge transfer and knowledge acquisition. FLOSS 
project with higher absorptive capacities were 
found to perform better in terms of closed tickets 
and lines of code added.

(Grewal et al., 2006)
Empirical - Archival data of 108 
FLOSS projects 
onsourceforge.net

FLOSS Project

The embeddeness of a network (i.e., how inter-
connected a project is to other projects through 
its members) is more closely related to technical 
success than commercial success. Technical 
success was measured as the number of commits, 
while commercial success as the number of 
downloads.

(Liu and Iyer, 2007)
Empirical - Archival data of 200 
FLOSS projects hosted on 
sourceforge.net

FLOSS Project

The software design and communication struc-
ture of the developers will be related to success 
in terms of the quality of the developed software 
and the velocity of the development.
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(Singh, 2007)
Empirical - Archival data of 
2013 FLOSS projects hosted on 
sourceforge.net

FLOSS Project

Small world properties (i.e., dense clustering and 
short average patch of communication between 
developers) are found to be positively related to 
productivity in terms of number of commits.

(Tan et al., 2007)
Empirical - Archival data of 
5191 FLOSS projects hosted on 
sourceforge.net

FLOSS Project

Direct and indirect ties, in addition to communi-
cation network cohesion, were all found to be 
positively related to the productivity of the 
FLOSS community as measured by number of 
commits.

(Wu et al., 2007)
Empirical - Archival data of 59 
FLOSS projects hosted on 
sourceforge.net 

FLOSS project

Project characteristics (e.g.., license and com-
plexity) and communication patterns (i.e., cen-
trality and density) are related to the performance 
of the FLOSS project.

(Midha, 2008)
Empirical - Archival data from 
450 C/C++ based 
sourceforge.net projects 

FLOSS project
Change in aggregate McCabe’s cyclomatic com-
plexity measure was found to be related to the 
number of bugs and the time to fix bugs.

(Capiluppi and Adams, 2009) Empirical - Archival data from 
KDE project repository Individual

The average number of communication channels 
generally decreases with increased numbers of 
contributors but increases significantly after a 
certain threshold number of concurrent develop-
ers was reached.

5  Results and Implications

Following the call of Koch (2004) to perform empirical research with more external va-

lidity, we empirically test our research models using data that we believe is more repre-

sentative of the FLOSS population than prior studies. While prior studies relied mainly 

on data collected from sourceforge.net, which hosts FLOSS projects (e.g., Stewart et al., 

2006, 2006; Koch, 2004; Liu and Iyer, 2007; Midha, 2008), we selected our sample from 

ohloh.net, which lists FLOSS projects regardless where or how they are hosted.

We believe our sample to be more representative given the recent decline of 

sourceforge.net as the leading hosting website for FLOSS projects (Paul, 2009b, 2009a). 

In addition, we found that only 22% of the top projects listed on ohloh.net (ordered by 

popularity) to be hosted on sourceforge.net.
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Using archival data from the source code repositories of 234 FLOSS projects, we 

collect quarterly observations for the relevant variables in both of our studies between the 

years 2007 and 2009 for a total of 1823 observations. Given the longitudinal nature of our 

observations and variations in the number of observations per project, we used mixed 

model analysis (Cohen et al., 2003) to fit our statistical model and make inferences about 

our observations. We summarize the main findings and implications of the results in the 

following sections.

5.1  Study 1

The importance of our first study stems from the conceptualization of the ramp-up effect 

in the FLOSS context and how it relates to the sustainability of a FLOSS community and 

the relationship between new-member participation and the sustainability of the devel-

opment effort in a FLOSS community. Using Transaction Cost Theory (TCT) (Coase, 

1937; Williamson, 1975), we identify knowledge codifiability, knowledge completeness, 

and knowledge diversity as the main dimensions of the underlying development knowl-

edge that relates to the numbers of new contributors.
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Table 1.4: Summary of Study 1’s main findings

Finding Impact

FLOSS marketplace conceptuali-
zation. •	

 Delineate the differences between the software and the FLOSS 

marketplaces. 
•	

 Application of theories related to market competition to under-

stand key aspects of FLOSS. 

Knowledge codifiability is posi-
tively related to an increase in the 
number of new contributors.

•	

 While source code is a codified form of knowledge, there are also 
tacit assumptions that can be made explicit in code documenta-
tion. 

•	

 Importance of good code documentation. 

Knowledge completeness is posi-
tively related to an increase in the 
number of new contributors.

•	

 While software development is an inherently uncertain task, this 
uncertainty tends to vary between FLOSS projects. 

•	

 Highly modularized projects reduce the uncertainty inherent in 
the software development task and could result in greater partici-
pation in FLOSS. 

Knowledge diversity is nega-
tively related to an increase in the 
number of new contributors.

•	

 Amount and relatedness of knowledge are two distinct dimen-
sions of knowledge diversity with their own unique impact on 
participation. 

•	

 Projects with highly diverse underlying knowledge might become 
more manageable if broken down into smaller FLOSS projects. 

The impact of knowledge codifi-
ability and diversity on the num-
bers of new contributors follows 
a diminishing returns pattern.

•	

 FLOSS communities need to play a balancing act in terms of how 
much of the code base should be documented and must always 
keep the documentation up to date. 

•	

 FLOSS communities need to be clear on the goals of their pro-
jects and be able to say no to the inclusion of certain features such 
that their projects can remain manageable. 

Application of the leading eigen-
vector and modularity measure 
(Newman, 2006a) to understand 
the structure of source code.

•	

 Objective measure of modularity that is programming-language-
agnostic. 

•	

 Software engineering tool that could assist in assessing code reor-
ganization efforts. 
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The findings from the first study have some important theoretical implications. In 

developing our theory, we framed the relationship between developers and FLOSS com-

munities as that of a marketplace in which the ramp-up effect is seen as a knowledge bar-

rier and a source of transaction cost. This framing opens up the possibility of studying 

FLOSS communities in light of strategic organizational theories to understand how 

communities can be more competitive in the marketplace. In addition, our work gives us 

a better understanding of the relationship between the characteristics of development-

related knowledge and the number of new contributors joining the development effort in 

a FLOSS community. 

Finally, we contribute by introducing a novel measure of modularity suggested by 

Newman (2006b), which will be important to understand the effects of code organization 

more fully. The empirical results in this study suggest that there is validity to this method. 

What is unique about this measure is that it is language-agnostic, as it relies mostly on the 

dependencies between source code files to estimate modularity. Such a property would 

make the measure not only useful for larger groups of developers using different pro-

gramming languages but also for theorists who wish to get at the heart of the concept of 

modularity without being influenced by programming–language-specific constructs.

Our findings also have some important practical implications for FLOSS commu-

nity organizers. The findings suggest that communities that manage the ramp-up effect by 

reducing contribution costs will be able to attract more contributors and increase their 

chances sustaining their development effort for a longer period of time. Such costs are 
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manageable if the FLOSS community dedicates effort to tasks that are usually considered 

mundane, unexciting, and likely to attract the least interest from contributors, such as 

documentation and code reorganization. However, the results also suggest that there is a 

limit to managing such costs given the tendency of a source code to grow in complexity 

(Lehman and Belady, 1985)In addition, the modularity measure has the potential to be 

used as a tool by developers to understand the effect of their code reorganization efforts 

and whether such efforts actually improve the code structure or not.

5.2  Study 2

For the second study, we directly addressed the tension between Brooks’ and Raymond’s 

views of software development. Based on Information Processing Theory (Galbraith, 

1973) and the assumption that committers are boundedly rational (Simon, 1955), we 

identify the committal structure as the performance bottleneck in a FLOSS community. 

We summarize the main findings and their implications in Table 1.5

Our findings have important theoretical implications for research on FLOSS pro-

ductivity and community organization. We suggest that no committal structure is a supe-

rior choice; rather, it is the communities’ conditions that should dictate which structure to 

employ. We identify task routineness, contributor uncertainty, and task interdependence 

as the main factors that influence a community’s decision to choose the optimal commit-

tal structure.
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Table 1.5: Summary of Study 2’s main findings

Finding Impact

FLOSS communities perform-
ing simple tasks perform bet-
ter.

•	

 Importance of good source code design to simplify develop-
ment. 

•	

 Contributors should work closer to the community and make 
small incremental changes rather than work in isolation and 
accumulate their patches into a single patch that is hard to 
incorporate. 

Centralized committal struc-
tures are a better fit for routine 
tasks.

•	

 The committal structure should match the needs of the com-
munity. 

•	

 There is no single superior structure. 

Decentralized committal 
structures are a better fit under 
high contributor uncertainty.

•	

 Decentralized committal structures are necessary if commu-
nity involvement is valued. 

•	

 Brooks’ Law is not obsolete, but the committal structure has 
to be overwhelmed for it to become obvious. 

Task interdependence in-
creases information-
processing requirements on a 
FLOSS community and re-
duces performance.

•	

 Importance of modularizing the source code and its effect on 
the performance of a FLOSS community. 

•	

 Further validation of the Newman (2006a) modularity meas-
ure. 

Decentralized committal 
structures are a better fit under 
conditions of low task inter-
dependence.

•	

 Decentralized committal structures are enabled by proper 
code design. 

•	

 Centralized committal structures might be the only way to 
continue to maintain and develop tightly coupled code bases. 

•	

 Brooks’ and Raymond’s views are complementary. Raymond 
explains how FLOSS development is conducted under condi-
tions of fit, while Brooks’ views become apparent under con-
dition of lack of fit. 
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The findings also suggest that FLOSS development teams are no different from 

any other development team and that that our understanding of managing FLOSS com-

munities could benefit greatly from the organizational body of knowledge. Using OIPT, 

we elaborate on the concept of fit to for a community to achieve superior performance. 

Fit requires that the committal structure, as the source of information-processing capacity, 

should match the requirements of the development task. With lack of fit, a FLOSS com-

munity could either work on improving their information-processing capacity through the 

use of development tools and a more decentralized committal structure, or they could re-

duce their information-processing needs through code reorganization efforts.

Finally, and most importantly, the findings suggest that the views of Brooks’ and 

Raymond are not mutually exclusive; rather they suggest that having more contributors is 

indeed beneficial to the performance of FLOSS communities under the condition that the 

community achieves a fit between its committal structure and the information-processing 

requirements of the committal task. When there is a lack of fit, communities start to expe-

rience a degradation in performance or have no performance gains as the number of con-

tributors increases.

The findings also have important practical implications ,as they provide a better 

understanding for community organizers in terms of how to put less burdens on commit-

ters by properly organizing them. This, in turn, reduces the risk of losing them after a 

short time of service. Furthermore, these results give for-profit organizations an under-

standing of the similarities between FLOSS development teams and traditional software 

development teams, thereby leveraging their current knowledge base to improve the de-
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velopment performance of FLOSS communities further, especially since deadlines are a 

great concern for many of the for-profit organizations involved with FLOSS.

6  Conclusion

The two studies we conducted combine to give a detailed picture of the tension between 

Brooks’ and Raymond’s views of software development. In the first study, we forward a 

conceptualization of the ramp-up effect as knowledge barriers that impact the sustainabil-

ity, and potentially performance, of FLOSS communities by limiting the number of new 

contributors that join the development effort. The second study complements this under-

standing by directly exploring the interplay between a community’s structure and the 

source code’s structure and how it impacts the community’s overall performance. We also 

explain, in this last study, how performance in FLOSS communities should be conceptu-

alized relative to other communities due to the irrelevance of deadlines in the FLOSS 

context.

Based on these two studies, we conclude that Brooks’ and Raymond’s’ views are 

not at odds but actually complement one another. We found that Raymond’s views hold 

when the committal structure is not overwhelmed. In such conditions, the community can 

handle an increase in the numbers of contributors and could actually benefit from their 

contributions and increase performance. However, in conditions of lack of fit in which the 

committal structure is overwhelmed, greater numbers could be detrimental to the per-

formance of the community, as committers have to make a tradeoff between their own 

development work and committing the work of others. It is in such conditions that 
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Brooks’ view becomes prevalent in FLOSS. As such, we attribute the conflicting results 

in research to the differing contexts and assumptions in these studies.
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Abstract

A great deal of the Free/Libre and Open Source Software (FLOSS) literature inappropri-

ately assumes that the reasons FLOSS community members make source code contribu-

tions are the same. The literature cites several reasons that members contribute, including 

satisfying one’s own needs, demonstrating one’s ability to potential employers, and gain-

ing peer recognition; however, much of this literature does not take into account the dif-

ferences between new and experienced contributors. We argue that these two groups of 

contributors are faced with different cost components related to contributing and that a 

FLOSS community’s ability to nurture new contributors will be important for its long-

term survival. To understand why new contributors participate, we distinguish between 

the software and FLOSS marketplaces and present the conditions that could influence ra-

tional profit-maximizing actors’ decisions not to contribute to a FLOSS project. With this 

framing, we develop a model based on Transaction Cost Theory that sheds light on how 

FLOSS communities can effectively convert users of the software into members that con-

tribute to its development. Based on this model, we conclude that the knowledge charac-

teristics required to make a contribution are the main impediment for first-time contribu-

tors. We argue that improving software design is the most effective way for FLOSS 

communities to encourage new contributors to participate in the development effort, as it 

reduces the burden on potential contributors to acquire the knowledge necessary to make 
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source code contributions. We discuss the process by which we will test this model and 

our use of a novel approach to measuring software modularity. Finally, we conclude with 

a discussion of the implications and limitations of our study.
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1  Introduction

Free, Libre, and Open Source Software (FLOSS) is licensed to enable users to redistrib-

ute and modify it freely (Raymond, 2001). As a result, users can easily obtain a copy of 

the code base and participate in development efforts by contributing their modifications 

to various FLOSS projects. These projects rely on such voluntary contributions for their 

continued development and growth (Lee and Cole, 2003).

Because users can obtain FLOSS at no cost, some individuals simply use these pro-

grams without contributing to their development. Known as the free-rider problem, this 

occurs when individuals take advantage of common-pool goods without taking action to 

support the community that develops them (von Hippel and von Krogh, 2003; O’Mahony, 

2003; English and Schweik, 2007). Should free-riding behavior become prevalent, the 

long-term survival of FLOSS communities would be seriously endangered. Therefore, to 

understand FLOSS sustainability, it is extremely important to understand the factors that 

lead individuals to voluntarily contribute source code.

Individual contributions to FLOSS communities take many forms. Some contributors 

report bugs or suggest features, while others write code to improve the software (Mockus 

et  al., 2002). In this study, we are primarily interested in code writers, as the FLOSS 

products would have not been produced without their efforts.

According to Shah (2006), code writers can be classified into two groups: contributors 

and committers. Contributors are those individuals considered external to the main devel-
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opment efforts in the community and occasionally contribute patches of code. Commit-

ters are members that have the necessary privileges to approve and incorporate patches 

into a community code base. In addition, the committers perform the largest share of de-

velopment and are, therefore, considered part of the FLOSS community’s core develop-

ment team (Crowston and Howison, 2005).

Although contributors and committers differ in terms of their level of involvement and 

the frequency of their contributions, the literature on FLOSS participation does not offer 

any clear, theory-driven distinctions between these types of participants in FLOSS com-

munities. Within the FLOSS literature, there is an implicit assumption that all participants 

contribute to FLOSS communities for the same primary reasons. For example, the litera-

ture suggests that gaining social status motivates individual developers to participate in 

code development rather than simply free-ride (Raymond, 2001; Lakhani and Wolf, 

2007). Alternately, individual participants may contribute to demonstrate their software-

development abilities to potential employers (Lerner and Tirole, 2002; Roberts et  al., 

2006). Some would also suggest that individual developers contribute source code simply 

to satisfy their personal interests (Raymond, 2001).

What the FLOSS motivational literature overlooks is a barrier that impacts any new 

participant in any ongoing software development effort known as the ramp-up effect 

(Brooks, 1975). The ramp-up effect refers to the training and knowledge that new partici-

pants in a software development effort need to acquire before they can contribute any-

thing useful to the development effort (Brooks, 1975). Why the literature has overlooked 

such an effect could possibly be attributed explained by Raymond’s (2001) suggestion 
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that Brooks’ law, which forwarded the idea of the ramp-up effect, has become obsolete in 

the context of FLOSS development. The rationale behind this conclusion is the distrib-

uted nature of development in FLOSS communities in which the source code itself is 

considered a medium for communication, thus resulting in the need for fewer interactions 

between developers. However, should the ramp-up effect really exist, the failure of 

FLOSS communities to take it into account could have a detrimental effect on their long 

term sustainability.

To show why these detrimental effects are probable, consider the role the committers 

play in a FLOSS community. Committers are considered the main drivers of progress in a 

FLOSS community because they shoulder the majority of the development effort (Shah, 

2006; Crowston and Howison, 2005; Mockus et al., 2002). Committers, however, are not 

guaranteed to remain with a community indefinitely. Many committers have been found 

to leave after only four months of service with a FLOSS community, only to be replaced 

by the promotion of contributors that have proven their dedication to and experience 

within the community (Shah, 2006; Riehle, 2007). Therefore, FLOSS communities need 

to encourage new contributors to join development efforts in order to ensure that the 

ranks of the committers are replenished and that their FLOSS communities’ progress con-

tinues.

Managing the number of contributors is not an easy task because software code base 

becomes more complex as it evolves over time (Lehman et al., 1997). As a result, com-

mitters and/or contributors are required to maintain a strong familiarity with the code if 

they wish to continue making changes to it (Lehman et al., 1997). The increased com-
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plexity of the code base also results in an increase of the ramp-up effect, making it more 

difficult for new contributors to familiarize themselves with the intricacies of the code 

design, thus resulting in a decline in the number of new contributors over time. 

We argue in this work that the magnitude of the ramp-up effect that prevents new con-

tributors from making an initial contribution is determined by the characteristics of the 

development knowledge that contributors must obtain before making an effective contri-

bution. Therefore, the ramp-up effect can be viewed as a knowledge barrier (Attewell, 

1992) that contributors must transcend before making a useful contribution. While there 

is empirical support for complexity’s negative impact as a knowledge barrier on the pro-

motion of new committers (Midha, 2008), its effect on new contributors is not under-

stood. The value of this work comes from understanding how these knowledge barriers 

impact the numbers of new contributors from whom committers are promoted (Riehle, 

2007). Furthermore, we provide with this work empirical support for the idea that source 

code structure could encourage participation (Baldwin and Clark, 2006; MacCormack 

et al., 2006).

New contributors, in particular, will have more difficulty dealing with the growing 

knowledge barriers associated with software evolution as compared to seasoned contribu-

tors or committers, suggesting that the numbers of new contributors could dwindle 

throughout a FLOSS community’s existence as a result of increased development com-

plexity. For this reason, we take a particular interest in new contributors and try to de-

velop a distinction between contributors and committers. More formally, our research 

question is "What are the factors that lead to greater numbers of new contributors to a 
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FLOSS community?" We believe that the answer to this question is important because of 

the role contributors play in sustaining the development effort of FLOSS communities. In 

addition, the answer highlights the importance of making a distinction between the types 

of participants in FLOSS communities when building theories of participation.

To answer our research question, we first introduce our conception of the FLOSS 

marketplace and explain how knowledge acquisition, assimilation, and use are important 

activities performed by contributors. Next, we explain the costs associated with participa-

tion from the contributor’s perspective. Then, we shift our focus to the FLOSS commu-

nity and utilize Transaction Cost Theory (Williamson, 1975) to understand the 

community-level factors that increase an individual contributor’s contribution costs, such 

as the modularity of the code base and the level of documentation. We then formalize our 

theoretical model and suggest the means by which we can empirically test this model. 

Finally, we discuss the potential implications and limitations of this work. 

2  Theoretical Framework

The goal of our work is to explain how FLOSS communities can increase their number of 

contributors regardless of the contributors’ motivations. To that end, we first explain how 

the interaction between a FLOSS community and its contributors can be viewed as a 

market transaction in which contributors make a source code contribution to the commu-

nity. We refer to this market transaction as the contribution transaction, which will be dis-

cussed in more detail in Sec. 2.2.3. 
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Assuming that contributors are rational value-maximizing actors, we argue that reduc-

ing the costs associated with contribution transactions should increase the number of us-

ers that see code contribution as a rational choice, thereby increasing the number of con-

tributors in the community. Furthermore, we make two additional assumptions that set the 

boundary conditions for our theory. First, we assume that the users of the FLOSS soft-

ware have some understanding of computer programming and can write patches; there-

fore, the learning cost for the programming language is not significant enough to prevent 

a user from contributing. Secondly, we assume that the code base of the FLOSS project is 

still in active development and has room to grow and create value for its users. A mature 

project that no one sees a need to further enhance is highly unlikely to attract any new 

contributors and will not undergo active development.

2.1  The Markets

Markets coordinate the flow of goods and services between two adjacent steps in a value 

chain. Markets also facilitate the exchange of goods and services between individuals or 

firms external to one another where the terms of the exchange are determined by market 

forces. In this latter situation, buyers scan the market for alternatives before making a de-

cision on which terms to go with (Malone et al., 1987). For example, FLOSS developers 

would assess the technical superiority of a software package before using it and, subse-

quently, contributing to it to ensure that the software package will continue to serve their 

future needs (e.g. Ramm, 2008). Such behavior suggests that developers have preferences 

and choose which FLOSS communities they contribute to, which serves as a demand 
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force in the FLOSS marketplace. Therefore, for FLOSS communities to gain contribu-

tors, they have to improve their software and technical offerings, creating the competitive 

and supply forces needed to designate the exchange between developers and FLOSS 

communities as a marketplace. We will discuss this designation in more detail in 

Sec. 2.2.1.2.

Markets also allow transacting parties to maintain their rights to self govern (i.e., work 

for themselves) (Conner and Prahalad, 1996). We view the flow of source code contribu-

tions between developers and FLOSS communities to be coordinated under a market-type 

structure. In this FLOSS marketplace, each actor retains the right to self-govern, and the 

supply and demand forces determine what and who is involved in an exchange, as we 

shall make clear in Sec. 2.2.1.2.

The FLOSS marketplace and software marketplace are related in that FLOSS commu-

nities are participants in both. The two marketplaces can be conceptualized as two adja-

cent links in the FLOSS value chain in which source code patches that are accumulated 

by the FLOSS communities in the FLOSS marketplace are integrated into a coherent 

software system that has value in the software marketplace (see Figure  2.1). FLOSS 

communities use the FLOSS value chain as an alternative to the proprietary software 

value chain, which is used by software companies competing with FLOSS communities 

in the software market. The proprietary value chain differs from the FLOSS value chain 

in that software companies have hierarchical-like control over developers through em-

ployment contracts (Conner and Prahalad, 1996). FLOSS communities, on the other 

hand, use the market mechanism of the FLOSS marketplace to solicit source code contri-
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butions from contributors to maintain the development of the software that is sold/

exchanged in the software marketplace. 

 Figure 2.1: The FLOSS value chain

The differences between the software and FLOSS marketplaces, mainly the currency (See 

Table  2.1), allow us to conceptualize FLOSS communities as sellers in both market-

places. The FLOSS community is the seller in both markets since they receive currency 

for their offerings in either marketplace. In the software marketplace, the user1  (the 

buyer) engages in a market transaction with a FLOSS community (the seller) when he/

she chooses to download and use its software offering, since the software is made avail-
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able for free. In the FLOSS marketplace, however, the developer (the a buyer) engages in 

a market transaction when he/she offers a patch to obtain the community benefits offered 

by a FLOSS community (the seller) and that patch is accepted.

Table 2.1: The FLOSS value chain

Software Marketplace FLOSS Marketplace

Sellers
FLOSS communities, 
software vendors, IT so-
lution vendors

FLOSS communities.

Sellers’ Goals
Maximize profit, in-
crease market share of 
product

Maximize patch contributions and qual-
ity.

Buyers Software users, hardware 
manufacturers or vendors

Individual developers contributing their 
own free time or organizations that do-
nate the work time of the developers it 
employs.

Buyers’ Goals
Create the highest qual-
ity product for the lowest 
price

Maximize benefit from FLOSS commu-
nity by having patches accepted beyond 
satisfying immediate software needs. 
Benefits include recognition (Lerner and 
Tirole, 2002; Roberts et al., 2006) and 
community development assistance 
(Raymond, 2001; Dahlander and Mag-
nusson, 2005).

Currency Cash for software Patches for community benefits.

Market 
Forces Exam-
ple

Similar software offer-
ings by different sellers 
that differ in price and 
quality.

Different FLOSS communities offering 
solutions to similar problems that differ 
in their technical superiority and associ-
ated community benefits.

 

2.1.1  The software marketplace
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The software marketplace is considered a marketplace because of the market forces that 

exist within it (i.e., supply and demand). Demand is generated by users who seek to ob-

tain software that can maximize their returns; that is, users will choose software that 

meets their feature and quality requirements for the minimum expense. To meet this de-

mand, sellers compete to offer different software choices in order to win as many of users 

as possible. To remain in business, a seller’s goal is to maximize profit from selling soft-

ware to users by either minimizing the cost of producing the software and thus improve 

their price offering or by improving their offerings2 but demanding higher prices. Sellers 

can afford to remain in this market as long as the income they make covers the expenses 

associated with developing the software and competing in this marketplace. This model 

describes the proprietary value chain depicted in Figure 2.1, which is employed by for-

profit organizations, such as software development companies. These companies pay the 

salaries of the developers they contract from the proceeds of the software sales as part of 

competing in the software marketplace.

FLOSS communities are amongst the competitors for software development compa-

nies in the software marketplace. The way FLOSS communities sustain, or fund, their 

development activities as part of their value chain differs than that of the software devel-

opment companies. While FLOSS communities compete for a larger user base, just like 

any other seller in the software marketplace, they do so as a means of attracting contribu-

tors to fund their development instead of selling software, which highlights the impor-

tance for FLOSS communities to be competitive in the software marketplace. Since any-
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one can obtain the software produced by FLOSS communities freely without contributing 

to the development efforts , we argue that the act of contribution follows a different dy-

namic than the one described in the software marketplace, which relies on the fact that 

users derive benefits from software usage. This is why we describe the act of contribution 

in the context of what we refer to as the FLOSS marketplace.

2.1.2  The FLOSS Marketplace

The FLOSS marketplace is considered such due to the existence of supply and demand 

forces. The sellers in this marketplace are FLOSS communities that supply benefits to 

contributors associated with community participation, such as peer recognition (Lakhani 

and Wolf, 2007), development assistance (Dahlander and Magnusson, 2005), and better 

employment opportunities (Roberts et al., 2006; Lerner and Tirole, 2002). The develop-

ers3  are the buyers in this marketplace, and they will have varying perceptions of value 

based on the benefits offered by the FLOSS communities. Assuming that developers are 

value-maximizing actors, they will choose to contribute to communities that offer them 

the highest returns. The fact that developers have choices regarding which community 

they can participate with suggests that communities will have to compete with each other 

by offering greater benefits in order to become the primary choice of the majority of de-

velopers. Communities that are able to attract the greatest number of developers—who 

will eventually become contributors—will have a better chance of sustaining their devel-
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opment efforts. Therefore, the sustainability of a FLOSS community’s development effort 

will be closely associated with its ability to compete in the FLOSS marketplace.

There are numerous behaviors that can be observed in FLOSS communities that sug-

gest the existence of competition in the FLOSS marketplace. We observed that there are 

numerous software packages that provide solutions for the exact same problem. For ex-

ample, Ruby on Rails, Django, Zope, Pylons, and Grails are all FLOSS web frameworks 

that can be used to build web applications. Web frameworks are by no means the only 

example of competing implementations; the trend continues with almost all software 

categories, including databases, operating systems, and ERP systems, to name a few4 . 

Based on this observation, we conclude that FLOSS communities are not purely coopera-

tive in nature or else we would have observed only a single solution for each problem. 

Furthermore, we observed that communities actively promote their software. As part of 

this active promotion, members frequently compare their own community’s product to 

those of other communities (e.g. Ramm, 2008) or even list comparisons on the commu-

nity websites5. Finally, we observed that FLOSS communities often imitate software fea-

tures and development processes employed by other FLOSS communities that users and 

potential contributors might have expressed an interest in. These imitations include, for 
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instance, the compliance with the WSGI6  protocol by most Python-based web frame-

works, which is perceived to make both development and deployment of web applica-

tions easier. The recent move by Wine, Mozilla, and OpenJDK to distributed revision 

control systems (e.g., Git and Mercurial) instead of centralized systems (e.g., CVS and 

Subversion) serves as another example of imitation amongst FLOSS communities that 

serve to improve the development process and appease contributors. We view these ac-

tions by communities as a means to gain a competitive advantage or competitive parity in 

both the software and FLOSS marketplace,s which can be seen as evidence supporting 

the existence of competitive forces in these marketplaces (Mata et al., 1995).

These observations of the competitive behavior in FLOSS communities might not be 

sufficient to demonstrate the competition in this marketplace. Therefore, to argue for the 

existence of this competition more effectively, we need to observe that contributors, as 

buyers, are willing to change their preferences should FLOSS communities improve their 

offerings. Furthermore, we need to observe that communities do indeed benefit from im-

proving their competitive position by offering greater benefits to developers, which might 

include improved product offerings. As it happens, both observations can be made in the 

FLOSS marketplace. Empirical evidence shows that users and developers show a prefer-

ence and willingness to migrate between FLOSS projects (Oh and Jeon, 2007), which 

means that FLOSS communities are able to influence the decisions of users and develop-

ers to be part of their community.
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Furthermore, communities stand to gain much in terms of contributions should a high-

profile developer choose to use the software and make significant contributions to im-

prove its appeal to other users and developers. In such a case, it is likely that more con-

tributors would join the development effort of the community. For example, Guido van 

Rossum, the inventor of the Python language, mentioned in an interview that the Django 

web framework is the most Pythonic amongst the Python web frameworks (Laporte and 

DiBona, 2006). Django was incorporated as part of the Google app engine project that 

van Rossum was working on, which eventually led to his development contributions to 

the Django project. Ever since, the number of contributors, and even users for that matter, 

continued to increase for the Django project7. Based on these observations in FLOSS 

communities, we conclude that it is safe to assume that competitive behavior exists in the 

FLOSS marketplace and that communities stand to gain from being more competitive.

2.2  Sustainability of a FLOSS Community

Based on the FLOSS marketplace framing (See Sec. 2.2.1), we can assume that the com-

petitive forces will drive FLOSS communities to improve their offerings to gain more 

contributions. The offerings can be in the form of a better solution to a technical problem 

or benefits associated with a community model of software development. The contribu-

tions received by the community would result in the improvement of the software system 

and would start a self re-enforcing cycle that results in the FLOSS community being 

more competitive, thereby attracting more contributions.
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While contributions could come from a number of sources when a FLOSS community 

is highly competitive in the FLOSS marketplace, we are specifically interested in the 

community’s ability to obtain contributions from new sources (i.e., new contributors). It 

is common knowledge that the development efforts in FLOSS communities is mostly 

shouldered by relatively few individuals who repeatedly contribute source code patches; 

these individuals are also known as the core developers and include both committers and 

frequent contributors (Krishnamurthy, 2002; Mockus et al., 2002; Crowston and Howi-

son, 2005). These core developers do not usually contribute to a FLOSS community in-

definitely, and there generally comes a time when they stop contributing altogether (Shah, 

2006), assuming of course that there is room for the project to grow and that the decline 

in participation is not due to maturity8. 

Therefore, to ensure that the development effort is sustained within a FLOSS commu-

nity, the community needs to take actions to promote the participation of new contribu-

tors, thus replenishing the ranks of the lost core developers (Riehle, 2007). Should new 

contributors cease to join a FLOSS community, there will come a time when the ranks of 

the core developers will dwindle, thus impacting the community’s ability to progress with 

development. Therefore, we define the sustainability of a FLOSS community as the 

community’s propensity to maintain its development effort over time by effectively con-

verting users into developers. 

2.2.1  User Conversion Strategies
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Assuming that the users are rational value-maximizing actors, FLOSS communities could 

increase the number of users who provide contributions by making it more rewarding for 

them to do so. When a good, such as a FLOSS product, is made available for public con-

sumption (Weimer and Vining, 2004), a user has a choice between using the software 

without incurring any cost related to development or using the software while contribut-

ing to its development. Both options allow the actor to benefit from the software, but the 

rational value-maximizing approach would be to use the software without incurring any 

contribution costs, which is known as free-riding. Since FLOSS users often exhibit free-

riding behavior (Bonaccorsi and Rossi, 2005; O’Mahony, 2003; von Hippel and von 

Krogh, 2003), we believe it is reasonable to assume that users, in addition to developers 

who are a subset thereof, are value-maximizing rational actors.

Of the strategies that FLOSS communities can adopt to increase returns for develop-

ers, we focus on cost reduction strategies because they have the potential to increase re-

turns for potential participants regardless of their motivations. Attempts to increase the 

value of the software might improve a FLOSS community’s chance of success in the 

software marketplace, thereby increasing its user base. However, having a large user base 

does not guarantee an increase in contributors. As rational value-maximizing actors, users 

need to perceive the value of contributing to be higher than free-riding. As such, reducing 

the cost of contribution would increase the returns from contribution relative to free-

riding, thereby making the option to participate more attractive to a greater number of 

users. Assuming that the returns developers get from participation vary as a result of both 

varying cost and value perceptions, we expect the number of contributors in a FLOSS 
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community to increase as the cost of contribution is reduced. The idea behind this expec-

tation is that reducing contribution costs will increase the returns from contributing for all 

of the developers relative to other rational options.

Arguing that a cost reduction strategy is effective in attracting new contributors does 

not imply that benefits of value increasing strategies are ineffective. Indeed, literature fo-

cusing on FLOSS participation and motivation suggests that individuals have motivations 

that differ in nature (e.g., Raymond, 2001;Lerner and Tirole, 2002; Roberts et al., 2006; 

Lakhani and Wolf, 2007). While value increasing strategies could be effective at targeting 

specific groups of potential contributors (cf. Lakhani and Wolf, 2007), we are simply 

making the argument that cost reduction strategies are more effective in that they impact 

all potential contributor groups regardless of their motivation. The way in which value 

perceptions are distributed in a community will have an impact however on how many 

contributors join the development effort when the cost is reduced. For example, due to 

the nature of different FLOSS communities, there might be a greater number of potential 

contributors who are close to the borderline of contributing than another community. As 

such, when both communities reduce the cost to contribute for a similar amount, the 

number of new contributors might differ.

Given this relationship between value and cost in rational value maximizing decision 

making and the differing nature of value (i.e., motivation), we find our selves in need of 

making a simplifying assumption of the nature of the variability in value between differ-

ent FLOSS communities. We make the assumption that this variability is relatively nar-

row in range. A result of this assumption is that, as we shall explain, the antecedents to 
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cost will have a uniform, or relatively similar, impact on participation across communi-

ties. Violating this assumption will result in our inability to detect an independent effect 

for cost, as cost reduction will result in few or no added contributors for communities 

with a large variability in value perceptions. We will revisit this assumption when dis-

cussing the methods used to test our proposed model.

2.2.2  Cost Reduction Strategy

Reducing the cost of contribution involves reducing the cost of development tasks. 

Software development tasks are considered to be highly complex and knowledge inten-

sive. This means that in order for developers to make initial contributions, they first need 

to overcome the knowledge barriers of the development process (Fichman and Kemerer, 

1997). These knowledge barriers are a significant source of cost that exist because the 

requisite knowledge required for development is immobile in nature and, therefore, costly 

to transfer (Attewell, 1992; Choudhury and Sampler, 1997). These barriers are found to 

be closely related to the complexity of the software and grow as the software matures; as 

a result, developers will find it easier to join a software development project earlier rather 

than later in its life cycle (Lehman et al., 1997). Within the FLOSS context, these knowl-

edge barriers include understanding how the source code is organized, how it is compiled, 

and how modifications can be made to it. As these knowledge barriers increase over time, 

new developers will find it increasingly difficult to perform these tasks, and as a result, 

the project will lose future replacements for current team members. Therefore, managing 
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development knowledge barriers and keeping them low will be very important to ensure 

the continued supply of new contributors and the sustainability of the FLOSS project.

Since contributors in the FLOSS marketplace benefit in their own way from the ex-

change of source code for community benefits (Raymond, 2001; Lerner and Tirole, 2002; 

Shah, 2006; Krogh and Hippel, 2006; Lakhani and Wolf, 2007) and FLOSS communities 

also benefit from the contributed code, we conclude that this exchange is an economic 

transaction that can be viewed in light of transaction cost theory (TCT). We refer to this 

transaction as the contribution transaction and to the knowledge barriers as the main 

source of contribution costs, which are viewed as transaction costs9. A community’s abil-

ity to manage these transaction costs will increase the number of developers who prefer 

the contribution arrangement and will, therefore, increase the number of new contributors 

to the community. We leverage the insights from TCT to gain a better understanding of 

the main sources of transaction costs and how these costs affect the number of contribu-

tors in a FLOSS community. To accomplish this goal, we first need to explain the steps 

that comprise a contribution transaction. 

2.3  The Contribution Transaction

To understand the costs associated with contributions, we first need to review the steps 

that a developer goes through to complete a contribution transaction (See Figure  2.2) 

(Raymond, 2001; Shah, 2006; Mockus et al., 2002; Lee and Cole, 2003). A contribution 

transaction is completed in the FLOSS marketplace when a developer contributes a 
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source code patch to a community and the community accepts it as part of its code base. 

Contribution is a process that occurs over time and includes costs that are predominantly 

associated with obtaining the requisite knowledge to make a contribution. Since we al-

ready assume that the returns developers perceive vary, our theory takes into account the 

difference in developers’ programming abilities, which might affect developers’ contribu-

tion costs and, therefore, their perceived net returns. Throughout the contribution process, 

the developer will incur different types of costs when going through the different contri-

bution steps. We group the steps that comprise a contribution transaction into two stages 

based on the major cost components (See Figure 2.2 and Table 2.2): learning and coordi-

nation. Also, it should be noted that these costs are mostly knowledge based (Kogut and 

Zander, 1996).

 Figure 2.2: The contribution transaction
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Table 2.2: Contribution costs incurred by FLOSS developers

Learning Stage Coordination Stage

Description

This is the stage in which a use-
ful modification is made to the 
author’s private copy of the 
community code base. The 
author could benefit from this 
modification even though it is 
not yet integrated into the com-
munity code base.

This stage involves integrating the 
modification made in the initial 
stage into the community code 
base. Completion of this stage sig-
nals the completion of the contribu-
tion transaction and community 
benefits bestowed on the contribu-
tor.

Steps in 
Figure 2.2 1,2, & 3 4, 5, & 6

Required by Anyone making a private or pub-
lic change to the code base

Anyone contributing a patch to the 
community code base

Recurrence

Required to obtain requisite de-
velopment knowledge before a 
contribution can be made to a 
FLOSS project that is considered 
new to the developer making the 
contribution. Incremental effort 
is expended afterwards for the 
developer to understand changes 
made by others.

With every contribution to resolve 
any conflict.

 

During the learning stage of contribution, the contributor works in isolation from the 

community to obtain a modified version of the code base and to implement enhancements 

that satisfy his/her own needs. Of course, communication could occur between different 

members of the core development team within the FLOSS community; however, we are 

interested in the behavior of potential contributors who have yet to be assimilated into the 

community. As a result, it is safe to assume that potential contributors have yet to under-
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stand the community norms or know to whom exactly they need to speak; thus, they are 

likely to work in isolation. Nevertheless, communicating with other community members 

during this stage might serve to lower the learning costs. The end product of this initial 

stage is a usable, enhanced version of the software (Shah, 2006; Ven and Mannaert, 2008) 

that might create technical conflict if merged with the community code base. However, 

since the developer of these changes is able to benefit from the software, there is no re-

quirement for him/her to coordinate with the community. For this reason, we assume that 

the cost to coordinate with other developers is not relevant in this stage.

 Even a proficient programmer will be faced with difficulty during the learning phase 

of contribution. While such individuals may have general programming knowledge, de-

veloping knowledge about a specific code base can be very challenging and time consum-

ing (Brooks, 1975; Lehman et al., 1997). Before developers can modify a code base, they 

need to acquire and assimilate knowledge that is specific to the FLOSS community’s 

code base, which is generally highly immobile in nature (cf. Cohen and Levinthal, 1990; 

Attewell, 1992; Choudhury and Sampler, 1997). An example of such knowledge would 

be the detailed programming techniques used throughout a specific code base (Fichman 

and Kemerer, 1997). Understanding the unique data structures and assumptions about a 

community’s access conditions is another form of source-code-specific knowledge that is 

important, yet difficult, to acquire. If developers take such knowledge lightly, the soft-

ware is put in an undesirable state, especially if uninformed changes are made to the code 

base (Goetz et al., 2006). In addition, how the source code is organized into different files 

and how these files are brought together to work as a coherent system (Baldwin and 
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Clark, 2006) is also very important requisite knowledge needed by any developer who 

wishes to make changes to a code base. Developers incur cost by performing tasks neces-

sary to acquire this requisite knowledge, which involves reading the source code and 

documentation or communicating with knowledgeable individuals. 

The tasks necessary to gain knowledge in the learning stage can be viewed as knowl-

edge barriers that any developer needs to overcome when attempting to make a first con-

tribution to a FLOSS project. Once the requisite knowledge is obtained, the developer 

can reuse it for subsequent contributions to the same project. Such knowledge cannot be 

considered non-recurring, since a developer might be required to reacquire such knowl-

edge if enough time is spent away from the project. Given enough time, the general lay-

out of the source code and all of the assumptions embedded in the code will change, mak-

ing it difficult for the developer to contribute (Lehman et al., 1997).

The costs of the coordination stage differ from the earlier stage because the contribu-

tor is no longer working in isolation but interacts with other contributors and committers. 

The costs associated with the later steps involve coordinating the efforts of contributors 

working concurrently on the community code base (Malone and Crowston, 1994; Crow-

ston, 1997). Because committers need to approve and incorporate patches into the code 

base, their capacity to process information might limit the number of patches accepted by 

a community and, as a result, limit the number of contributors that complete a contribu-

tion transaction. For this study, we are interested in the costs incurred by contributors 

rather than the cost incurred by the community through the committers. As a result, we 
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will not focus on the committers in our theorizing or control for their effects in our meth-

ods10.

When working simultaneously on the same code base, developers might introduce or 

remove source code sections that carry assumptions with them that are poorly understood 

by other contributors or violate patches offered by new contributors (Collins-Sussman 

et al., 2004; Goetz et al., 2006). For example, consider if developer A contributes a patch 

that adds a code section that depends on the value of an earlier variable. Developer A 

makes the assumption that this value will remain constant at the time of execution. De-

veloper B contributes a patch that modifies the value of the variable on which developer 

A’s code depends, thereby violating the assumption developer A made and putting the 

software in an unstable state that might prove costly to fix. Another possibility is that de-

veloper B’s patch would remove the variable on which developer A’s code depends, 

thereby breaking the software altogether (See Table 2.3 for example). We refer to such 

problems introduced by mis-coordination as technical conflict, or simply conflict for 

short.

Table 2.3: Example of a technical conflict between developers A and B

Original Code Developer A Developer B

int x = getSomeValue()
if(x == CERTAIN_VALUE){
  /* do some work on x */
  //new value of x
  return x;
}

int x = getSomeValue()
if(x == CERTAIN_VALUE){
  /* do some work on x */
  
  StoreValueInDatabase(x);
  //new value of x
  return x; 
}

int radius = getSomeValue()
if(radius == CERTAIN_VALUE){
  /* do some work on radius 
*/
  //Which variable name
  //do we use?
  return newValue; 
}
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Since technical conflict results from mis-coordination, resolving it is a matter of en-

suring that both developers share the same knowledge (i.e., assumptions) about their con-

tributions. This involves initiating communication between the developers (Collins-

Sussman et  al., 2004; Malone and Crowston, 1994; Crowston, 1997) or reading the 

source code and documentation incorporated within the contributed patch. As with the 

initial stage, the costs in the later stage are also based on knowledge transfer and acquisi-

tion. Therefore, what stands between any developer and his/her participation in a FLOSS 

community are the coordination costs required to overcome knowledge barriers (Attew-

ell, 1992; Conner and Prahalad, 1996). As such, the main costs associated with contribu-

tion are those incurred by the developer to acquire the requisite source code knowledge 

and the cost of coordination with others to reconcile the technical conflicts that occur 

when making a contribution to a FLOSS community.

TCT (Coase, 1937; Williamson, 1975) enhances our understanding of how 

knowledge-related costs influence a FLOSS community’s ability to attract contributors. 

TCT posits that rational transacting parties will choose the most efficient exchange ar-

rangement (i.e., market vs. hierarchy) to complete their transactions. Inefficiency is born 

out of transaction costs that increase the overall cost of the transaction. From a FLOSS 

developer’s perspective, the choice to participate in the FLOSS marketplace by means of 

a contribution transaction signals that this is the most efficient choice for that individual. 

That is, the cost to contribute a patch, including acquiring the requisite knowledge to do 

so, offers a higher return for that particular developer than any other available options.
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According to TCT, transaction costs are necessary for conducting an economic ex-

change but have no direct bearing on the production costs of the goods or services ex-

changed (Williamson, 1975). For a software developer, the production costs include the 

planning necessary to develop a solution and the time spent writing the code. These costs 

are associated with the direct effort involved in the software production that will result in 

a usable product. In software development, such costs are usually considered sunk since 

there is no marginal cost to reproduce another copy of the product (Baldwin and Clark, 

2006). Transaction costs are considered to be any additional costs beyond the production 

costs that are required to sell a software product to a customer (Williamson, 1975). In the 

case of the FLOSS marketplace, these would include the additional costs for preparing a 

patch for a specific FLOSS community (i.e., learning and coordination), which would be 

different if the same software was developed in a different context (e.g., within a software 

company or a different FLOSS community).

For example, if a software developer creates a database system, all of the effort that 

went into the creation of the standalone database product is considered a production cost. 

Any additional effort to adapt this product to embed it into a customer product or to con-

figure it for a customer are additional costs required in order to sell the product to a par-

ticular consumer. Since such configuration costs are incurred every time the product is 

sold to a new customer, they must be incurred before completing each of the sale transac-

tions to the customers, hence the term transaction costs. Similarly, in the FLOSS market-

place context, a software developer can develop a software feature as a standalone prod-

uct, which would be the production cost of that feature. What is key here is that no spe-
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cific adaptations are made to accommodate the requirements of a specific FLOSS project. 

If the developer wants to incorporate his/her feature into a specific FLOSS community 

code base, then the developer is first required to obtain the knowledge specific to the ex-

isting FLOSS community code base (i.e., learning cost) before the developed feature can 

integrated with that specific code base. This knowledge is considered above and beyond 

the requirements of production and is, therefore, considered a transaction cost. If the de-

veloper wanted to incorporate the same feature into a different FLOSS community, then 

he/she is again required to learn the knowledge specific to the new community’s code 

base and once more create a specific patch for it. Therefore, transaction costs are born 

from the effort expended by the developer during the learning stage of the contribution 

transaction.

In addition to acquiring the requisite code-base-specific knowledge, a developer can 

incur additional transaction costs from the need to coordinate efforts with other develop-

ers working simultaneously on the same code base. When a developer starts working on 

modifying a code base, other developers would have already committed numerous 

changes to it. These changes might affect the work of the developer and lead to a techni-

cal conflict, but the only way to know if and how a conflict can be resolved requires the 

developer to acquire knowledge that is specific to the changes made by other developers. 

There are numerous ways to coordinate the efforts of these developers. For example, they 

could communicate during development and exchange knowledge that would allow them 

to create compatible patches and avoid conflicts. However, since no one can be certain 

who is working on the code base at any one time, the most practical way to coordinate 
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efforts in FLOSS communities is to rely on a revision control system. A revision control 

system identifies the most obvious conflict related to an individual overwriting the work 

of others, and based on the system’s findings, the developers can communicate to con-

solidate the differences in their work (Collins-Sussman et  al., 2004). Other conflicts 

might not be as easy to discover and may manifest themselves as unpredictable behaviors 

in the software system (i.e., bugs). The effort expended by the FLOSS developers to read 

through others’ work and to communicate with one another to resolve technical conflicts 

is another source of transaction costs that also involves the transfer of immobile knowl-

edge between different developers.

After showing that the learning and coordination costs can be viewed as transaction 

costs related to contribution transactions, we can use TCT to understand the sources of 

these costs. According to TCT, transaction costs exist for two reasons: bounded rational-

ity and opportunism. Of these, we argue that only bounded rationality will be relevant in 

the FLOSS marketplace context. Bounded rationality implies that the participants in the 

marketplace have a limited ability to process information (Simon, 1955) and that transac-

tion costs arise from the efforts made by the participants in seeking, acquiring, and proc-

essing information that is necessary for the completion of a transaction (Williamson, 

1975). In the case of the FLOSS marketplace, transaction costs arise from the cost in-

curred by the developer to seek, acquire, assimilate, and use the knowledge that is unique 

to a FLOSS community’s code base, which involves information processing and commu-

nication (Turner and Makhija, 2006; Choudhury and Sampler, 1997). Therefore, develop-

ers will be limited in their ability to read source code or documentation, to seek and so-
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cialize with knowledgeable individuals, and to coordinate development efforts with other 

developers. Developers who lack sufficient time or the capacity to incur the cost of such 

activities will not be able to participate in a FLOSS project. Therefore, a FLOSS commu-

nity could reduce transaction costs if actions are taken to reduce the need for, or the cost 

associated with, the aforementioned information-processing activities performed by de-

velopers.

According to TCT, the other reason transaction costs exist is due to opportunism. Op-

portunism implies that there will be participants in the marketplace who will exploit any 

opportunity that is presented to them to gain higher returns, even if doing so is against the 

interest of others. This suggests that some market participants will avoid fulfilling con-

tract obligations if they can do so without facing negative consequences. Transaction 

costs are incurred when either party involved in the transaction expend effort to monitor 

and prevent opportunistic behavior by the other party. For opportunism to be relevant to 

our current study, it must impact the transaction costs incurred by the contributors.

 2.3.1  Opportunism in FLOSS

Academic literature on FLOSS identified two forms of opportunistic behavior: free-riding 

and commercial appropriation (von Hippel and von Krogh, 2003; O’Mahony, 2003). 

Free-riding is the act of using the software without contributing to its development, while 

commercial appropriation is the act of profiting from the software without compensating 

the developers for their effort. With regards to free-riding, developers choose to partici-

pate in a FLOSS community knowing beforehand what the FLOSS license entails; 
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namely, that FLOSS-licensed software does not place any restriction on usage, even if 

users choose to free-ride. Furthermore, free-riding behavior does not have any significant 

negative impact on either the community or its contributors because the software is a 

digital good and its value does not decrease nor do its costs increase with additional us-

age (von Hippel and von Krogh, 2003). 

As for commercial appropriation, the General Public License (GPL) was drafted spe-

cifically to prevent such behavior (O’Mahony, 2003). When an entity appropriates the 

effort of developers, a license violation occurs. Such violations, when addressed, are usu-

ally dealt with by the non-profit organization that oversees the interest of the community 

(O’Mahony, 2003). Hence, individual developers do not shoulder any of the burdens that 

could potentially deter them from contributing. In other words, we do not expect the cost 

associated with monitoring and preventing opportunistic behavior to have any significant 

impact on the decision or ability of FLOSS users to participate in the development effort. 

Appropriation might be a bigger issue when deciding to release a software package 

under a FLOSS license because a for-profit organization stands to lose all of its future 

income from directly selling the software (West, 2007). However, appropriation might be 

less of a concern for any organization considering contributing to an ongoing FLOSS ef-

fort by providing bug fixes and incremental feature enhancements. The cost of such ac-

tivities would be a negligible because the total development effort would be distributed 

amongst the community members. More importantly, the Open Source movement, as rep-

resented by the Open Source Initiative, approves of licenses that permit appropriation. 

Permissive licenses, as they have come to be known, entice commercial participation be-
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cause they tie the success of the commercial entity with the success of the FLOSS com-

munity (AlMarzouq et al., 2005). Empirical evidence suggests that FLOSS communities 

that use permissive licenses (i.e., licenses other than the GPL) have increased contribu-

tions and sponsorship from for-profit organizations (Stewart et al., 2006).

We are not trying to argue that opportunism does not exist in the FLOSS context; on 

the contrary, the need for FLOSS licenses and the existence of non-profit organizations to 

look after the best interests of FLOSS communities suggests that it exists (von Hippel and 

von Krogh, 2003; O’Mahony, 2003). What we are arguing, however, is that opportunism 

will not be a significant force on a user’s decision to make a source code contribution to 

an already established and active FLOSS project. In support of our argument, consider 

the main factor that gives rise to opportunism-based transaction costs, namely asset 

specificity (Williamson, 1975; Clemons and Hitt, 2004). When a transacting party makes 

an investment that is valuable only as part of a specific transaction, the other transacting 

party is the only entity that would be able to take advantage of the situation. As a result, 

transaction costs arise from the need to monitor and prevent transacting parties from tak-

ing advantage of one another.

In the FLOSS marketplace context, when a developer makes a contribution, the com-

munity has no way of forcibly (i.e. control) extracting any benefits from a contributor be-

yond what the contributor offers willingly. More importantly, when the software is li-

censed as FLOSS, a contributor is guaranteed to benefit from the software in the future; 

therefore, no entity can hold any contributor hostage to his work by threatening to pre-

vent him/her from benefiting from the software. Should such a situation occur, the con-
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tributor could simply fork11  the source code or switch to another project. Finally, the par-

ties involved in the contribution transaction (i.e., the FLOSS community and the con-

tributor) have congruent goals, which mitigates the need to monitor opportunistic behav-

ior (Ouchi, 1980; Clemons et al., 1993). The goals of the community and the contributor 

are congruent because the community relies on contributions, and the contributor, as a 

user, would like to see the software improved and maintained. This symbiotic relationship 

enables both parties to benefit from the act of contribution. Therefore, we conclude that 

opportunism-based transaction costs are not significant in the FLOSS marketplace con-

text.

Although opportunism is not relevant to understanding users’ contributions to FLOSS, 

it does not mean that TCT is inappropriate for understanding contributions in the FLOSS 

marketplace, as transaction costs can and do exist in the absence of opportunism (Conner 

and Prahalad, 1996). According to Clemons et al. (1993), coordination costs and transac-

tion risks are the two main dimensions of transaction costs. Coordination costs are costs 

born out of the bounded rationality condition, and transaction risks are costs associated 

with mitigating the opportunistic behavior of the other party in an exchange. Therefore, 

transaction costs in the FLOSS marketplace are purely coordination costs, which Clem-

ons et  al. (1993) define in the most liberal form to encompass all costs born out of 

bounded rationality. In our case, these costs include those related to acquiring the requi-
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site development knowledge and coordination with other developers. This idea is consis-

tent with our view that the costs associated with a contribution transaction are knowledge 

based, requiring information-processing efforts on behalf of the developers. We will clar-

ify the details of TCT further in the subsequent section as we identify the causes of trans-

action costs in the FLOSS context. Thus far, we have explained how contribution transac-

tion costs are mostly knowledge and coordination based (Kogut and Zander, 1996). As a 

result, it will be important to understand the characteristics of knowledge that are related 

to the effort expended by individuals to learn and coordinate (Grant, 1996b).

2.4  Community-Level Antecedents to Cost

After establishing that transaction costs in the FLOSS marketplace are knowledge based 

and born out of bounded rationality, it becomes important to understand the characteris-

tics of the requisite development knowledge and how it might impact the cost of contri-

bution. Doing so allows us to understand how a community could manage source-code-

related knowledge in order to minimize the transaction costs incurred by its developers. 

We follow the classification proposed by Turner and Makhija (2006), which is based on 

an extensive review of knowledge management literature. This classification states that 

the main observable dimensions of knowledge are codifiability, completeness, and diver-

sity. We also work under the assumption that the source code that resides in a FLOSS 

community is an explicit form of the knowledge required for development and that the 

characteristics of this knowledge can be observed from the source code. In the following 

section, we will use TCT to explain how the dimensions of knowledge relate to transac-
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tion costs, and we will identify the salient community-level characteristics that could im-

pact developer-level transaction costs (See Figure 2.3 and Table 2.4 for an overview).

Figure 2.3: Overview of research model
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Table 2.4: Overview of theoretical constructs

Construct Definition

Sustainability of FLOSS 
Community

The ability of the FLOSS community to continue to main-
tain the development effort over time by effectively convert-
ing users to developers.

Knowledge Codifiability The extent to which the development-related source code 
knowledge is articulated, unambiguous, and observable.

Knowledge Complete-
ness

The degree to which the available knowledge for the soft-
ware development task is entirely sufficient to predict the 
behavior of the software system after modification.

Knowledge Diversity: 
Amount

The number of distinct knowledge domains from which the 
requisite development knowledge to contribute to a FLOSS 
community draws.

Knowledge Diversity: 
Relatedness

The extent to which the different knowledge domains from 
which the requisite development knowledge of a FLOSS 
community draws are related.

 

2.4.1  Sustainability

Sustainability, the endogenous variable of this study, is defined as a FLOSS community’s 

ability to continue to maintain the development effort over time by effectively converting 

users to developers. As explained in Sec. 2.2.2, we expect that FLOSS communities with 

low contribution transaction costs will observe greater numbers of new contributors as 

compared to communities with high transaction costs. We attribute this tendency to a 

greater proportion of potential contributors that see contribution as a rational choice rela-

tive to free-riding. Since the complexity of software and contribution transaction costs are 

expected to increase over time (Lehman et al., 1997), we argue that communities are able 

to increase the number of new contributors over time if they are able to maintain low, or 
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lower, contribution transaction costs. We summarize how the main constructs impact the 

components of contribution costs (i.e., learning and coordination costs) in Table 2.5.

Table 2.5: Antecedents to coordination costs

Construct Learning Cost Coordination Cost

Knowledge 
Codifiability

Reduce effort in comprehending 
the source code by making explicit 
knowledge that is important to 
comprehend the source code.

Knowledge 
Completeness

Incomplete knowledge (i.e., uncer-
tain) is a result of the dynamic na-
ture of the code base and will re-
quire contributors to expend addi-
tional effort at time of committal 
to comprehend changes made 
since that last source code check-
out was performed.

When committing to a dynamic 
code base, a contributor might 
break the work of others that has 
already been committed and will 
require coordination with these 
community members to resolve 
any incompatibilities with the con-
tributed patch.

Knowledge 
Diversity: 
Amount

To work on an isolated program-
ming unit of the code base (i.e., 
module), a contributor needs to at 
least understand how this module 
interacts with other modules in the 
code base. The effort to acquire 
such knowledge grows with the 
number of modules in the code 
base.

Knowledge 
Diversity: Re-

latedness

Comprehending larger modules 
that result from highly related 
knowledge will require greater ef-
fort from contributor.

Working on larger modules that 
result from highly related knowl-
edge is likely to result in the need 
of one or more developers to work 
on the same modules and result in 
technical conflict.

2.4.2  Knowledge Codifiability

Knowledge codifiability refers to the extent to which knowledge can be articulated into 

indisputable, unambiguous, and observable information (Kogut and Zander, 1992). 
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Highly codifiable knowledge is referred to as explicit knowledge (Zander and Kogut, 

1995; Turner and Makhija, 2006) and can be transferred easily between individuals with-

out losing meaning (Grant, 1996b, 1996a). Non-codifiable knowledge, referred to as tacit 

knowledge (Turner and Makhija, 2006), is more difficult to transfer between individuals, 

as it is difficult to articulate and requires extensive communication amongst individuals 

before it can be transferred between them (Alavi and Leidner, 2001).

 An important aspect of any FLOSS code base is the amount of documentation that 

resides within it. These comments are a codified form of the tacit knowledge that resides 

in the minds of the developers. Such knowledge could include assumptions about vari-

able access rules that source code might not clearly convey. Since such knowledge is only 

useful for a specific project, it is considered asset specific, meaning that it is of no value 

outside that specific project (Williamson, 1975). 

Maintaining source-code-related knowledge in a tacit form (i.e., in the minds of de-

velopers) would make the transfer of such knowledge expensive (Zander and Kogut, 

1995; Grant, 1996a). This type of specificity is referred to as human-asset specificity be-

cause the knowledge is specific to the individual who obtains it (Williamson, 1975; Ma-

lone et al., 1987). Communicating such knowledge requires significant investments from 

developers, which could involve time and effort searching for and socializing with other 

community developers to share and acquire the requisite development knowledge. Since 

the knowledge obtained is specific to the FLOSS project, most of it will be useless for 

developers in other projects, which would make it difficult for many developers to justify 
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expending the effort to obtain this specific knowledge when the effort needed to acquire it 

is significant.

When a FLOSS community expends the effort and codifies this knowledge by embed-

ding it as comments within the code base, the knowledge becomes easier to communi-

cate. It is no longer specific to certain individuals; rather, any individual has the ability to 

obtain it simply by reading the documentation. Knowledge in its explicit form as docu-

mentation12 becomes easily searchable and transferrable. Even though this knowledge is 

still specific to the FLOSS code base, it is now less human specific and much easier to 

obtain and comprehend by more developers than when it was in a tacit form. This, in 

turn, reduces the amount of transaction costs incurred by developers wanting to obtain 

this knowledge. Therefore, we conclude that communities that expend greater efforts in 

documenting the code base will reduce transaction costs related to contribution, thereby 

gaining a greater number of new contributors over time. As such,

H 1 The extent to which source-code-related knowledge for a FLOSS community is codi-

fied will be positively related to the sustainability of that community. 

2.4.3  Knowledge Completeness

Knowledge completeness is defined as whether the available knowledge for decision 

making or task completion is entirely sufficient (Turner and Makhija, 2006). It is consid-

ered the mirror image (i.e. opposite) of knowledge uncertainty, which is defined as the 

unpredictability in the knowledge that is a result of its dynamic nature (Turner and Ma-
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khija, 2006). The outcome of any task in which the individual performing the task pos-

sesses complete knowledge about it becomes predictable. For example, a manufacturing 

worker that is required to tighten a specific screw on a product need only know how to 

use a screwdriver and which screw to work on. This task is simple and requires limited 

knowledge to perform, which makes it easy for the worker to know everything there is 

about tightening that specific screw for that specific task. The worker will always know 

what happens when the screw is tightened, which makes the outcome of the task highly 

predictable.

On the other hand, when the knowledge available to an individual performing a task is 

not complete, the outcome of the task becomes unpredictable. Knowledge associated with 

software development tasks are considered incomplete because developed software usu-

ally behaves unpredictably. While the developer might have honestly attempted to de-

velop software to meet certain specifications, the nature of software development intro-

duces many uncertainties that might break the software that the developer may not have 

accounted for. For example, a developer might produce software that works perfectly in 

the development environment and on a specific hardware configuration. However, once 

this software is released commercially, the developer may start receiving complaints from 

customers that the software does not work on their particular hardware configurations. 

Although the developer might know how to deal with such problems once they arise, at 

the time of software development, the developer did not think that the customers’ hard-

ware configurations would matter. Thus, the developers’ knowledge was incomplete, and 

the outcome of the task was unpredictable.
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In the FLOSS marketplace context, the developers are boundedly rational and have no 

way of knowing what any other developer is doing until a conflict arises. As described in 

Sec. 2.2.3, contributors who have not absorbed the norms of the community are not able 

to communicate or coordinate development activities as effectively with other members. 

This uncertainty gives rise to technical conflicts (e.g., developers overwrite the work of 

one another) that need to be resolved before a patch can be fully committed to the code 

base (Collins-Sussman et al., 2004). Therefore, developers who do not possess the com-

plete knowledge that allows them to finish their development task with certainty will be 

required to expend additional effort in examining the contribution logs to understand 

what other developers have done and to communicate with them to resolve any technical 

conflicts. This leads us to conclude that there is a transaction cost associated with every 

contribution transaction due to a lack of complete knowledge, which requires a developer 

to expend extra effort before a patch can be fully committed.

According to TCT, uncertainty is a primary cause of transaction costs (Williamson, 

1975). In the absence of opportunism, unforeseen changes in the environment that are 

born out of uncertainty can lead to honest disagreement between transacting parties who 

are boundedly rational since each of them would possess incomplete, but different, 

knowledge. The effort expended from the two parties to acquire more complete knowl-

edge in order to reach an agreement is the main source of transaction cost (Conner and 

Prahalad, 1996). Similarly, technical conflict in a FLOSS community could occur be-

tween two developers when they do not have complete knowledge about what each de-

veloper is doing. Therefore, to reduce the transaction costs incurred by developers from 
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the occurrence of technical conflicts, a FLOSS community should design its code base 

such that the outcomes of development tasks are more predictable, thereby reducing the 

chance of technical conflicts.

Designing the code base to be modular is one approach to reducing the uncertainty 

associated with developing a code base and to reducing technical conflict (Baldwin and 

Clark, 2000; Tiwana, 2008). A software system is said to exhibit modularity if its parts 

can be developed independently of one another but still work well together as a whole 

(Baldwin and Clark, 2006). This approach entails limited dependency between parts (i.e., 

loose coupling) and a high level of dependency between the components that comprise a 

single part (i.e., cohesion) (MacCormack et al., 2006). 

Making changes to modular code bases is inherently less certain because side effects 

are usually isolated to the modified module (Baldwin and Clark, 2000; Jackson, 2006). In 

addition, modular code bases reduce the cognitive burden on developers, since develop-

ers will not be required to comprehend the complexities of implementation of modules 

that are not relevant to their needs (Jackson, 2006; Darcy et al., 2005). Finally, modular-

ity allows different developers to work in parallel on different modules and be able to 

easily integrate their work together with out the need to know what other developers are 

working on (Baldwin and Clark, 2000; Sanchez and Mahoney, 1996; Tiwana, 2008). 

Modular structures bring about these benefits by maximizingwithin modules and depend-

encies between modules (Darcy et al., 2005; MacCormack et al., 2006). 

What is critical to obtain the benefits of modularity is that the structure of the code 

base (i.e. dependencies) needs to remain consistent. With a stable structure developers 
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can work on specific modules knowing that if they do not change the way in which the 

module interacts with other modules, their modifications will continue to work once inte-

grated with the main code base (Darcy et al., 2005). Such stability is said to convey more 

complete knowledge to developers because the developer can be certain that his/her work 

will continue to work after changes are completed. Stability in the FLOSS context would 

mean that by the time a contributor prepares his/her patch, it is likely that no additional 

effort is needed to integrate the patch to the community code base. As such, the source 

code is said to convey complete development knowledge when it is checked out by the 

contributor.

On the other hand, if the code base of a FLOSS community was highly dynamic, then 

the community code base is likely to mutate significantly in the from the time a copy of 

the code base is checked out by a contributor to the time a patch is submitted for commit-

tal. To integrate such a patch, the contributor is required to exert extra effort to compre-

hend what changes were made to the community code base and how to modify the patch 

to work with such changes. Such code base is said to convey highly uncertain knowledge 

(i.e., incomplete) when it is checked out by the contributor (Turner and Makhija, 2006). 

Therefore,

H 2 The extent to which source-code-related knowledge for a FLOSS community is com-

plete will be positively related to the sustainability of that community. 

2.4.4  Knowledge Diversity
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Knowledge diversity is defined as the amount and relatedness of the knowledge required 

to complete a software development task that is equivalent in functionality to what cur-

rently resides in the FLOSS community (Turner and Makhija, 2006). According to Turner 

and Makhija (2006), diverse knowledge overlaps with the notion of complex knowledge 

as described by Zander and Kogut (1995) but goes further to incorporate the notion of 

relatedness. Knowledge amount refers to the number of distinct knowledge domains from 

which knowledge draws, whereas relatedness refers to how difficult it is to decompose 

knowledge into independent parts. Knowledge that is highly related resides entirely in the 

mind of a single individual, while the parts of highly unrelated knowledge could be dis-

persed over the minds of numerous individuals (Galunic and Rodan, 1998). Turner and 

Makhija (2006) argue that the notions of relatedness and amount are highly interrelated 

and difficult to separate because knowledge drawing from a larger body of knowledge is 

also likely to be unrelated. Nevertheless, we believe that each dimension of knowledge 

diversity (i.e., amount and relatedness) will have its own unique impact on the cost to 

contribute to a FLOSS community as we shall explain in the next section. Therefore, we 

will discuss the impact of the dimensions of knowledge diversity on the sustainability of 

a FLOSS community independently.

Knowledge Amount

We define knowledge amount as the number of distinct knowledge domains from which 

the requisite development knowledge to contribute to a FLOSS community draws. De-

velopment tasks that draw from a broad base of functional domains are referred to as 
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complex tasks (Zander and Kogut, 1995). Simple and highly specialized tasks will draw 

from a narrow body of highly related knowledge and will require little effort to complete 

(Grant, 1996a). Given that a source code is an explicit form the requisite development 

knowledge, the complexity of the software product will reflect the complexity of the de-

velopment task.

In the FLOSS marketplace context, the development of complex products will not 

only require understanding general programming principles, but depending on how gen-

eral the software product is, developers might also need to draw on knowledge from dif-

ferent disciplines. An Enterprise Resource Planning (ERP) system serves as a good ex-

ample of a general software system that draws from a broad and complex knowledge 

base. In addition to understanding how to build robust software systems, developers need 

to draw on knowledge from other disciplines, such as accounting and resource manage-

ment, in order to build an ERP system. There is also the possibility of needing to imple-

ment knowledge about different programming languages to integrate an ERP with 

COBOL-based legacy systems. A more specific software system, such as a text editor, 

will draw from a much narrower and simpler knowledge base. Internalizing the highly 

diverse knowledge required for the development of complex software products will be 

impossible for a single developer to do (Grant, 1996a) and will be a formidable task even 

for a group of developers.

Well designed code bases, as generally found in FLOSS projects (MacCormack et al., 

2006), could reduce the cognitive burden on developers and only require them to com-

prehend a subset of the code base (Baldwin and Clark, 2006) by encapsulating (i.e. 
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grouping) the code of related functionality into independent parts (i.e. modules) (Page-

Jones, 1998; Darcy et al., 2005). However, as we have explained in Section 2.2.4.3, de-

velopers still need to obtain a high level understanding of the interplay between the indi-

vidual parts of the software system and how they might relate to the part they are working 

on before they can modify it (Darcy et al., 2005). Doing so, however, becomes more dif-

ficult as the software continues to grow and draw from an even greater number of knowl-

edge domains (Lehman et al., 1997). The effort required to reach an understanding that 

would allow a potential contributor to make a modification to the code base will increase 

as the number of individual parts that comprise the software increase. As a result, poten-

tial contributors are required to invest more upfront effort before making their initial con-

tributions, as the requisite development knowledge amount increases. Therefore, we ex-

pect knowledge amount to have a negative relationship with the sustainability of a 

FLOSS community. Hence,

H 3 The amount of source-code-related knowledge that exists in a FLOSS community is 

negatively related to the sustainability of that community. 

Knowledge relatedness

While we have discussed in Section 2.2.4.3 numerous benefits that are a direct result of 

modularity, such as the reduction of development uncertainty (Tiwana, 2008) and ena-

bling parallel development (Baldwin and Clark, 2006), these benefits are mostly a result 

of the loose coupling of the modules that comprise the code base. In regards to knowl-

edge relatedness, we would like to get at the effort associated with comprehending a sin-
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gle cohesive module (Darcy et al., 2005). Highly modular code bases may be equivalent 

in terms of the number of modules and the degree of coupling between modules; how-

ever, they could vary greatly in terms of the size of each individual module (See Appen-

dix A for a clear delineation of the modularity-related constructs in our study.) We attrib-

ute this variability in size to the relatedness of the underlying knowledge.

Knowledge relatedness refers to the extent to which the different knowledge domains 

from which the requisite development knowledge draws are related. When the requisite 

knowledge is highly related, it must be wholly comprehended in the mind of a single in-

dividual (Galunic and Rodan, 1998). However, if the development knowledge is highly 

unrelated, it can be easily decomposed into independent parts that different individuals 

are able to comprehend, thereby making it possible for different individuals to work on 

relevant parts of the source code independently. Assuming that the source code is an ex-

plicit form of knowledge and that FLOSS communities are effective in designing the 

source code to reflect the underlying knowledge, then highly unrelated knowledge will 

result in modules that encapsulate functionality that draws from a single domain. As re-

latedness increases, these modules will draw from a greater number of related domains 

and result in larger modules (Darcy et al., 2005).

The increased module sizes will also have a negative impact on coordination costs as 

the encapsulation of multiple functionalities will likely create the needs for multiple de-

velopers to work on the same module. As a result, a greater need for coordination arises 

whenever contributors are required to work on the same module (Crowston, 1997). The 
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increase in coordination effort contributes to the overall increase in contribution costs and 

thus negatively relates to sustainability.

When there are two code bases equivalent in modularity and amount of knowledge but 

one code base has larger modules than the other due to higher knowledge relatedness, 

new contributors are likely to expend less effort contributing to the code base with the 

smaller modules. Assuming that the contributor needs to comprehend the underlying 

knowledge of only a single module to make a contribution, the effort needed for the 

smaller module will be less difficult to acquire than for the larger one. The same could 

also be said of the need for coordination, as larger modules encapsulated a greater num-

ber of functionality will create the need for contributors to work on the same module and 

result in greater coordination effort. As a result, we expect knowledge relatedness to in-

crease contribution costs because it increases the size of modules in the code base that 

has an adverse effect on both coordination and learning costs. Hence,

H 4 The relatedness of source-code-related knowledge that exists in a FLOSS community 

is negatively related to the sustainability of that community. 

3  Methodology

3.1  Sample

Prior studies on FLOSS chose their sample from the projects listed on sourceforge.net 

since it was the most accessible data (e.g. Krishnamurthy, 2002; Crowston and Howison, 

2005; Stewart et al., 2006; Liu and Iyer, 2007; Midha, 2008). However, such data is not 
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fit to test our theory given that many projects listed on sourcefore.net are not popular or 

actively being developed (Krishnamurthy, 2002). Because we assume that the FLOSS 

projects to which our theory applies have inherent value to the users which could result in 

contribution, we limit our sample to include successful FLOSS projects that have proven 

their worth. However, we needed to take care when selecting observations from this sam-

ple, as we did not want to include inactive projects, either from lack of interest or matur-

ity, as this might bias our results since such projects will not have new contributors re-

gardless of the variation in our hypothesized effects. In addition, since the act of partici-

pation requires the project to be known, projects that are popular are likely to attract more 

users and contributors. Therefore, we needed to select FLOSS projects that were equally 

popular, or we needed to be able to assess and control for the popularity of the projects 

we chose for our sample. 

Ohloh.net met the requirements that we placed on our sample. With more than 

275,000 listed projects, it offered the best representative sample of the FLOSS popula-

tion. Unlike sourceforge.net, which provides data for only projects that it hosts, ohloh.net 

covers projects hosted independently or those hosted by services like sourceforge.net. In 

addition, Ohloh.net provides a meta-community of developers that self report usage and 

contribution, which can be used as a means of estimating the popularity of the projects.

To test our hypotheses (see Figure 2.3), we sampled from the top 1000 most popular 

FLOSS projects listed on ohloh.net that enjoyed active development between the begin-

ning of January 2007 and the end of June 2009. Of these projects, we found only 22% to 
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be hosted on sourceforge.net, confirming our claim that ohloh.net offers a more represen-

tative sample of popular FLOSS projects. 

Because it was impractical to analyze all of the projects in the top 1000 and to maxi-

mize the external validity of the empirical findings from our sample, we opted to analyze 

projects that use one of the three most popular programming languages in FLOSS devel-

opment: C, C++, and Python. Between them, these programming languages were used by 

over 18% of all of the listed projects on ohloh.net and by 47% of the projects in our sam-

ple frame. Furthermore, given the fact that Python is a dynamically typed scripted lan-

guage and that C and C++  are statically typed compiled languages, we believe that we 

have a good representation of the most widely used programming paradigms within 

FLOSS communities. 

We excluded from our sample meta-projects that included more than a single project, 

such as the Gnome and KDE projects. However, we analyzed projects under these com-

munities if they were popular enough to be listed independently in the top 1000 projects 

on ohloh.net. From our sample frame, we identified 289 potential projects to analyze, 

which represented 28.9% of the top 1000 projects. Once our sample was identified, we 

proceeded to download the source code repository for the projects on which we per-

formed our analysis. There were however five projects that were impractical to analyze 

using our methods given their extremely large code bases and were, therefore, excluded. 

In addition, a number of projects had incomplete development history or missing values 

for the variables used in our study, which is why we ended up with a total sample size of 
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235 projects. Below is a summarization of the steps we took to obtain and analyze our 

sample:

1.	

 Download list of top 1000 projects listed on ohloh.net to ensure we analyze valu-

able and popular FLOSS projects. 

2.	

 Download source code repositories for C-, C++-, and Python-based discrete 

FLOSS projects. 

3.	

 Extract quarterly data points for variables listed in Table 2.6. 

4.	

 Screen the data for missing values and periods of inactivity that could bias our re-

sults. 

5.	

 Prepare data. 

6. Perform statistical analysis. 

88



Table 2.6: Variable operationalizations

Construct Definition Operational Defini-
tion Operationalization

 Sustainabil-
ity

The ability of the 
FLOSS community to 
effectively convert 
users to contributors 
in order to maintain 
the development ef-
fort over time.

The number of new 
unique contributors 
to the FLOSS pro-
ject.

Estimated as the count 
of new individuals join-
ing the development ef-
fort identified from the 
revision control system 
during the analysis pe-
riod without reference to 
the contributors in the 
previous periods 
(Midha, 2008).

Knowledge 
Codifiability

The extent to which 
development-related 
source code knowl-
edge is articulated, 
unambiguous, and 
observable.

The extent to which 
the source code base 
is documented.

Estimated as the line 
count of documentation 
in the source code as a 
ratio of source lines of 
code for the beginning 
of the analysis period 
(Zander and Kogut, 
1995).

Knowledge 
Completeness

The degree to which 
the available knowl-
edge for the software 
development task is 
entirely sufficient to 
predict the behavior 
of the software sys-
tem after modifica-
tion.

The magnitude of 
change in the struc-
ture of the code base.

The change in graph 
modularity measure 
(Newman and Girvan, 
2004; Newman, 2006b) 
that results from parti-
tioning the source code 
dependency graph using 
the leading eigen-vector 
method (Newman and 
Girvan, 2004; Newman, 
2006a) for the beginning 
of the analysis period.
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Knowledge 
Diversity: 
Amount

The number of dis-
tinct knowledge do-
mains from which the 
requisite development 
knowledge to contrib-
ute to a FLOSS com-
munity draws.

The number of 
unique modules in 
the code base.

Estimated as the count 
of modules identified by 
the leading eigen-vector 
method for the begin-
ning of the analysis pe-
riod (Newman and Gir-
van, 2004; Newman, 
2006a).

Knowledge 
Diversity: 
Relatedness

The extent to which 
the different knowl-
edge domains from 
which the requisite 
development knowl-
edge of a FLOSS 
community draws are 
related.

The increase in aver-
age module size as a 
result of having high 
knowledge related-
ness.

Estimated as the count 
of source code lines for 
the beginning of the 
analysis period as a ratio 
of number of modules 
(Darcy et al, 2005).

 

3.2  Variables

Since our theory involves learning processes in which new developers overcome knowl-

edge barriers to become contributors, we expect time to play an important factor (Attew-

ell, 1992). Once our project sample was identified, we obtained quarterly observations for 

our variables between January 2007 and June 2009. Since some of the projects were 

started after January -2007, we had an unequal number of observations per project. We 

excluded from each project the first observation because we used it as a reference for 

subsequent observations to determine the value of some of the variables. In addition, the 

last observation from each project was discarded because some of the variables were 

based on the difference between the value of current and subsequent periods. In total, we 

had 1832 total observations. Table 2.7 gives some descriptive statistics about the projects 
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we analyzed. As can be seen, the quarterly observations suggest that the projects in our 

sample were actively developed and having at least a single patch commit performed per 

quarter. Since our subsequent analysis also suggests that there is no significant effect for 

the age of the project, we can safely assume that our results are not impacted by inactivity 

due to maturity.

Table 2.7: Descriptive statistics for project sample

Median Mean STD
AgeIn weeks relative 
to 1-1-2007

4 5.64 48.7

Popularity 57.5 192.1 447.71

CommittersCount 
per quarter

5 10.84 14.489

Contributor-
scount per quarter

8 16.29 26.786

Commitscount per 
quarter

116 289.2 456.656

 

3.2.1  Sustainability

Content Validity

 Sustainability is defined as a FLOSS community’s ability to effectively convert users to 

contributors in order to maintain development efforts. Since FLOSS developers do not 

remain with the community indefinitely, sustainability will center on a community’s abil-

ity to attract new contributing members. In our sample, new contributors can be identified 

from the log messages in the revision control system of the FLOSS community. The revi-

sion control system keeps track of all of the commits made to the community code base 
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and associates every commit to a committer. Identifying the contributors is a matter of 

parsing the log message prepared by a committer for any indication that the patch was 

contributed from someone else, such as a name, pseudo-name13, or email. Individuals 

with no references to them as contributors or committers in prior log messages are con-

sidered to be new contributors.

Procedure

 Given how complex the procedure was, we provide a high-level summary of the main 

steps we performed to extract the number of new contributors and offer a more detailed 

description in Appendix B: 

1.	

 Extract contributor names for projects that list names in log messages: 

(a)	

Perform manual extraction of names for randomly selected sample. 

(b)	

Perform automated extraction for the same sample as the manually extracted 

sample. 

(c)	

Assess Inter Class Correlation (ICC) (Shrout and Fleiss, 1979) between 

manual and automated name extraction results and optimize automated proc-

ess for increased reliability (ICC = 0.92). 

2.	

 Extract contributor names for projects that list contributor names in project tracker:

(a)	

Extract ticket numbers from log messages. 
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(b)	

Parse ticket webpage and extract name of contributor and the contribution 

date. 

3.	

 Clean names by removing any extracted value that does not represent name, 

pseudo-name, or email. 

4.	

 Normalize names such that misspelled names and related names refer to a single 

individual. 

5.	

 For each analysis period, count new normalized names having no reference to them 

in prior analysis periods as a single new contributor. 

3.2.2  Knowledge Codifiability

Content Validity

 We defined knowledge codifiability in Sec.   2.2.4.2 as the extent to which the 

development-related source code knowledge is articulated, unambiguous, and observable. 

The source code itself is a form of codified knowledge; however, a develop cannot inter-

nalize this without obtaining certain requisite knowledge (Grant, 1996a; Fichman and 

Kemerer, 1997). For example, there might be some assumptions about data structure ac-

cess or organizational conventions that, if violated, would render the source code unsta-

ble. Such information can be embedded as documentation in the source code, which 

would be considered an explicit form of the requisite knowledge needed for development. 

Such documentation could also include explanations for some of the source code that de-

velopers could reference when they need to.
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Procedure

To get an indication of the extent to which requisite knowledge was codified, we counted 

the lines of code comments that were available for the developers. We used the ratio of 

lines of comments to lines of source code as an estimate of the extent to which the 

development-related source code knowledge is codified. We obtained this estimate for the 

beginning of the analysis period (i.e., the estimate was obtained by analyzing the source 

code from the commit that occurred closest to and after the first day of the quarter to be 

analyzed).

3.2.3  Knowledge Completeness

Content Validity

As mentioned in Sec. 2.2.4.3, knowledge completeness refers to whether the available 

knowledge for the software development task is entirely sufficient to predict the behavior 

of the software system after modifications. Thus, it seems likely that tasks that are highly 

uncertain would not have enough available knowledge to complete them. For FLOSS 

software development, this not only involves the knowledge to develop the software but 

also the knowledge to determine that the software is fit for use after a change is made 

(i.e., that the change will not introduce a bug or break the system). When the develop-

ment task is highly uncertain, the developer may be unclear as to whether the software 

will behave in a predictable manner after a change is made or whether conflict will occur 

with other developers when a commit is made. Such uncertainty arises because other de-
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velopers would have committed changes that the developer would not know of until he/

she attempts to commit his changes.

We also explained in Sec. 2.2.4.3 how a modular software structure could reduce the 

uncertainty related to the development process by limiting the dependencies between 

modules, thereby enabling parallel development by contributors (Baldwin and Clark, 

2006) and reducing the maintenance cost of any introduced bugs (Page-Jones, 1998). In 

addition, similar functionality is encapsulated into modules that reduce the cognitive bur-

den on potential contributors to acquire complete knowledge. We mentioned also that 

these benefits are contingent upon the stability of the source code structure (Darcy et al., 

2005). Given that the software is an explicit form of the requisite development knowl-

edge, we argue that the degree to which development knowledge is incomplete or uncer-

tain could be estimated by the magnitude of change in modularity of the code base.

Procedure

 The process in which we obtained a modularity measure is summarized below: 

1.	

 Extract dependency graph of source code between source files. 

2.	

 Perform leading eigen-vector method partitioning that maximizes modularity (See 

Appendix C). 

3.	

 Extract the modularity measure from the partitioned graph along with the number 

of modules. 

We extracted the modularity value for both the beginning and end of the analysis period 

and used the difference to estimate the change in the structure of the code base, which we 
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then used as a proxy for knowledge completeness. Since change in modularity measure 

can be either positive or negative, then the magnitude of change will be smallest close 

zero and highest close to the maximum and minimum values. As such, knowledge com-

pleteness will be highest for low magnitudes of change whereas it will be lowest for high 

magnitudes of change. Because we are interested in the effect of the magnitude of change    

in modularity and hypothesizing that the effect of low magnitudes of change differ from 

that of higher magnitudes, then it is best to  test for this effect using non-linear terms. 

Specifically, it is best tested using a cubic effects because it can capture the effect of posi-

tive change in magnitude independently of negative change.

3.2.4  Knowledge Diversity: Amount

Content Validity

According to our discussion in Sec. 2.2.4.4, knowledge amount refers to the number of 

distinct knowledge domains from which the requisite development knowledge to contrib-

ute to a FLOSS community draws. Given that software is an explicit form of this knowl-

edge, we could determine its amount by identifying the number of unique modules in the 

code base. Assuming FLOSS communities are effective in modularizing source code, 

which they are (MacCormack et al., 2006), the result is that highly related programming 

tasks are grouped in a single cohesive module (Page-Jones, 1998). The functionality 

within a cohesive module will draw from the same body of knowledge. This knowledge 

will differ from the knowledge contained in other modules. Therefore, we argue that 
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knowledge amount could be estimated using the number of cohesive functional units (i.e., 

modules) in the code base. 

Procedure

Since the leading eigen-vector method (See Section 2.3.2.3) identifies modules by maxi-

mizing cohesion and minimizing coupling, we used the number of identified modules 

from this method at the beginning of the analysis period as an estimate for the amount of 

requisite development knowledge.

3.2.5  Knowledge Diversity: Relatedness

Content Validity

According to our discussion in Sec. 2.2.4.4, knowledge relatedness refers to the extent to 

which the different knowledge domains from which the requisite development knowledge 

of a FLOSS community draws are related. Related knowledge is difficult to split and 

must be absorbed as a whole into an individual’s mind in order to be of use (Galunic and 

Rodan 1998). When knowledge is highly unrelated, the different knowledge domain can 

easily be identified, and the modules of the code base clearly reflect them. As knowledge 

relatedness increases, knowledge from different domains becomes more difficult to dis-

tinguish or separate. As a result, the modules reflecting such knowledge would draw from 

more knowledge domains, resulting in larger source code modules.

Procedure
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Once the number of modules using the leading eigen-vector method (See Section 2.3.2.3) 

is identified, we divided the total lines of source code by it. The result is the average size 

of the module measured in source lines of code.

3.3  Controls

3.3.1  Number of Committers

Seeking and finding the right knowledge is an important step in knowledge acquisition 

(Alavi and Leidner, 2001). Whether this knowledge is tacit or codified, finding knowl-

edge that is relevant to a developer’s needs might prove to be a formidable task. In active 

FLOSS projects, knowledge related to where relevant documentation resides is already 

internalized by the developers who contribute frequently, such as committers. This allows 

the committers to assist other developers and makes it easier for them to find relevant 

knowledge, thereby reducing the effort needed to make a contribution.

Furthermore, there is evidence that committers can be overloaded from community 

interaction, which could limit the amount of knowledge transferred from committers to 

contributors (Kuk, 2006). Communities with a greater number of committers will have a 

greater capacity to transfer development-related knowledge, and since communities ob-

serve a great degree of variability in their number of committers, it becomes necessary to 

control our results for their numbers. Given that the revision control system lists the name 

of the committer that performed the for every commit performed, we extract these names 

and normalize them for the analysis period (See Appendix B). We count the unique nor-

malized names of committers for the analysis period and use it as a control.
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3.3.2  Popularity of the FLOSS project

The popularity of a FLOSS project might also play a role in the number of contributors 

simply because contributors are themselves users. Therefore, a FLOSS community’s 

numbers are limited by how many people know of and use its software. Furthermore, as-

suming that projects with higher value will attract a greater number of users (c.f. Ray-

mond, 2001;Lerner and Tirole, 2002; Roberts et al., 2006; Lakhani and Wolf, 2007), 

popularity can serve as a control for the effect of value on participation. This would allow 

us to capture the effect of reducing cost of participation that results in the increase in 

number of contributors that is independent of the effect of value.

To control for popularity, we used the number of users that reported using the software 

on ohloh.net. Given that ohloh.net is a social website for FLOSS developers, the number 

of users that report using a software product serves as a good proxy for popularity 

amongst developers. 

3.3.3  License Restrictiveness

Following the work of Stewart et al. (2006), we operationalized license restrictiveness by 

coding the licenses based on whether they included the General Public License (GPL) or 

not. GPL is one of the most restrictive FLOSS licenses with provisions that prevent the 

mixing of FLOSS source code with proprietary source code and the requirement that de-

rivative work be released under the GPL license. Such provisions might prevent many 

users, especially for-profit organizations, from leveraging FLOSS for their own use. This 
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could limit a FLOSS community’s number of users and, as a result, the number of poten-

tial developers.

3.3.4  Project Age and Analysis Period

The age of the project is an important control that serves as a proxy for several other fac-

tors (Stewart et al., 2006). For example, older projects could be well established and more 

popular than newer projects. Project age may also serve as a proxy for the experience or 

familiarity the committers have with the community, which could make their interactions 

and knowledge exchanges easier. We calculated the age of each FLOSS project as the 

number of weeks from the first commit to January 1, 2007 with projects that have a nega-

tive age signifying that they began after Jan 1, 2007. In addition, we control for the 

analysis period from the start of the project. This is important since projects might un-

dergo different stages of growth, which could influence the number of new contributors 

per stage.

3.3.5  Programming Language

The programming language used for each FLOSS project could also have an impact since 

it is inherently easier to make changes to scripted languages, such as Python, than it is to 

compiled languages, such as C, which require the mastery of a different set of building 

and compilation tools. In addition, code written in Python is inherently shorter than code 

written in C or C++ given the dynamic nature of the language. The popularity of the pro-

gramming language among developers will also limit the pool of potential developers that 

100



might participate in a FLOSS project. We used dummy variables to encode the languages 

used in the code bases, since all three could be mixed together.

3.4  Analysis and Results

Given the longitudinal nature of our data, we used mixed models where the project is a 

level two random effect variable. In addition, we modeled our main effect variables are as 

level one random effects which takes into account the serial correlation between observa-

tions (Cohen et al., 2003). The first step we performed in our analysis was to assess the 

distributional characteristics of our variables to ensure that none of the main assumptions 

of mixed model analysis were violated. Since most our variables are count based, we ei-

ther had to perform log or negative power transformations to ensure that our independent 

variables did not violate the assumption that the variables were normally distributed. As 

for the dependent variable, since it is a count-based variable with no negative values, we 

opted to fit our model using a poisson-based generalized mixed model (Gardner et al., 

1995; Cohen et al., 2003). As a result, we checked for signs of any violations to the as-

sumptions of a poisson-based regression model. Specifically, we looked for signs of zero 

inflation or over-dispersion and found our data to satisfy the requirements of the model 

with less than 25% of the observations of the dependent variable being zeros and the dis-

persion parameter showing a value close to one14 (Gardner et al., 1995; Warton, 2005).
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The next step before the analysis was to assess the correlations of our variables to de-

termine the discriminant validity of our variables and to discount any issues in our analy-

sis related to multicolinearity. Table 2.8 provides the correlation between the variables 

used in our study and some descriptive statistics. Given that there are no unusually high 

correlations between the variables, we concluded that our variables are distinct and pro-

ceeded to check if there were any projects that exerted an unusually high influence on the 

result of our analysis. Using Cook’s distance (Cohen et al., 2003) from the influence.ME 

package (Nieuwenhuis et al., 2009), only a single project exhibited an unusually high in-

fluence with a Cook’s d value of one (Cohen et al., 2002). The observations from that 

project were excluded from the analysis, which brought down the number of analyzed 

projects to 234 and total observations to 1823. 

The subsequent step was to fit our statistical model and to make some statistical infer-

ences; for this step we used the R statistical package version 2.9.1 (R Development Core 

Team, 2009) in addition to the lme4 library for fitting random effect models (Bates and 

Maechler, 2009). By process of adding our main effect variables and assessing the sig-

nificance of including the variable as a random effect using Chi2 difference tests, we iden-

tified KAMT, KREL, KCOD, and KCOMP as random effects embedded within projects. 

102



Table 2.8: Variable correlations and descriptive statistics

SUS KCOD KCOMP KREL KAMT COM AGE PER isGPL isC isCpp isPy POP

SUS 1.00

KCOD -0.10 1.00

KCOMP -0.02 0.02 1.00

KREL 0.19 -0.32 -0.05 1.00

KAMT 0.30 0.00 0.03 -0.07 1.00

COM 0.40 -0.12 0.00 0.13 0.38 1.00

AGE 0.15 -0.04 -0.03 0.30 0.13 0.12 1.00

PER -0.06 0.00 -0.02 0.03 0.05 -0.01 0.04 1.00

isGPL 0.02 -0.05 -0.02 -0.04 0.00 0.04 0.09 0.05 1.00

isC 0.18 -0.34 0.01 0.38 0.09 0.18 0.33 0.00 0.10 1.00

isCpp -0.01 -0.13 0.02 -0.02 0.40 0.15 -0.09 -0.02 0.09 0.01 1.00

isPy -0.09 0.41 -0.02 -0.35 -0.14 -0.07 -0.27 0.00 -0.14 -0.58 -0.33 1.00

POP -0.34 0.02 0.03 -0.18 -0.18 -0.24 -0.40 -0.03 -0.12 -0.20 0.07 0.20 1.00

min 0.00 -0.37 -0.45 -6.39 -3.44 -1.73 -7.63 1.00 0.00 0.00 0.00 0.00 -0.21

mean 5.96 0.00 0.00 0.00 0.00 0.00 0.00 4.54 0.42 0.82 0.43 0.14 0.00

median 3.00 0.00 0.00 0.04 -0.11 -0.12 0.26 4.00 0.00 1.00 0.00 0.00 0.00

max 94.00 0.56 0.55 4.77 3.63 3.09 13.14 10.00 1.00 1.00 1.00 1.00 0.15

std 4.45 0.09 0.01 0.93 1.03 1.36 2.59 2.97 0.00 0.00 0.00 0.00 0.11

  

Table 2.9 summarizes the results of our model fitting statistical analysis. The first of 

these models is the null model used as a baseline to determine the explanatory power of 

subsequent models. The second model is the control only model for which we included 

the control variables as fixed effects. As can be seen from Table 2.9, the control model 

has an R2 of %14.6 based on the reduction in the deviance value from the null model. The 

Chi2 difference test also suggests that the control model explains significantly more vari-

ance than the null model.
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Table 2.9: Model fitting

Model Null ControlControlControl Main EffectsMain EffectsMain Effects QuadraticQuadraticQuadratic CubicCubicCubic
Estimate Std. Err. p Estimate Std. Err. p Estimate Std. Err. p Estimate Std. Err. p

KCOMP
3 -14.242 5.643 0.012*

KCOMP
2 -3.043 1.538 0.048* 0.28 2.01 0.889

KCOD2 — -9.478 4.133 0.022* -9.443 4.149 0.023*

KAMT2 — -0.082 0.029 0.005** -0.082 0.029 0.005**

KREL2 — -0.12 0.036 <.001*** cubic 0.036 <.001***

KCOD — -0.896 0.975 0.363 -0.693 0.947 0.464 -0.715 0.949 0.451

KCOMP — 1.580 0.531 0.003** 1.626 0.549 0.003** 1.994 0.567 <.001***

KAMT — -0.060 0.079 0.525 -0.04 0.08 0.617 -0.045 0.08 0.575

KREL — 0.157 0.095 0.123 0.124 0.096 0.193 0.129 0.096 0.176

COM — 0.731 0.030 <.0001*** 0.805 0.034 <.0001*** 0.791 0.034 <.001*** 0.789 0.034 <.001***

AGE — 0.008 0.032 0.806 -0.011 0.039 0.778 -0.018 0.038 0.642 -0.014 0.038 0.694

PER — -0.031 0.004 <.0001*** -0.032 0.005 <.0001*** -0.031 0.005 <.001*** -0.031 0.005 <.001***

isGPL — 0.033 0.153 0.832 -0.027 0.175 0.921 -0.058 0.171 0.734 -0.057 0.171 0.738

isC — 0.471 0.252 0.061. 0.340 0.304 0.262 0.274 0.294 0.352 0.254 0.294 0.388

isCpp — -0.286 0.167 0.086. -0.268 0.198 0.192 -0.296 0.192 0.123 -0.28 0.193 0.146

isPy — 0.005 0.291 0.97 0.36 0.358 0.319 0.35 0.341 0.305 0.342 0.342 0.317

POP — 2.074 0.890 0.02* 1.992 1.037 0.055. 1.857 1.009 0.066. 1.818 1.013 0.073.

Int 1.009**
* 0.849 0.275 0.002** 0.974 0.338 0.003** 1.07 0.319 <.001*** 1.085 0.32 <.001***

AIC 5619 481248124812 457445744574 454945494549 454545454545

LogLik -2807 -2396-2396-2396 -2259-2259-2259 -2242-2242-2242 -2239-2239-2239

Deviance 5615 479247924792 451845184518 448544854485 447944794479

R2 — %14.6%14.6%14.6 %19.53%19.53%19.53 %20.13%20.13%20.13 %20.24%20.24%20.24

Chi2 Diff — 822.468822.468822.468 274.282274.282274.282 29.63929.63929.639 6.0376.0376.037

p — <.0001***<.0001***<.0001*** <.0001***<.0001***<.0001*** <.0001***<.0001***<.0001*** 0.014*0.014*0.014*
Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1

  

Our interest lies mostly with the main effects model in which the Chi2 difference test 

suggests that the model explains significantly more variance than the control model with 

an R2 of %19.53. Among the coefficients of the hypothesized effects, only KCOMP is 

found to be significant at p=0.003 and estimated at 1.58. However, since we are interested 

in effect of magnitude of change, the linear effect for KCOMP is not of interest to us.
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As for the non-supported effects, we consider if the reason for obtaining such a result 

was due to the non-linear nature of these effects. If you recall from Sec. 2.2.1.2, we ex-

plained how value of the software or community benefits could also play a role the deci-

sion of value-maximizing developers to make a contribution. The interplay between such 

value and contribution cost that grows with further software development (Lehman et al., 

1997) gives us reason to believe in the existence of non-linear relationships between 

these variables and sustainability. In addition, we made the assumption that value is dis-

tributed within a narrow range across FLOSS communities for a linear effect to be de-

tected. The results so far suggests the violation of this assumption, however, we would 

like to know if this holds true for all FLOSS communities or a subset of them. More im-

portantly, we would like to know if this is a result of the non-linear nature of their rela-

tionship or that there is no independent effect for cost.

To search for the non-linear effects, we continued our investigation by testing for 

quadratic relationships. The expectation is that high levels of our variables of interest will 

have different value and cost implications on a FLOSS community than low values of the 

same variables. For example, a community with might have a small code base because 

the software is at the initial stages of development and is yet to be of value for many us-

ers. Adding features for communities at this stage might yield higher value than cost and 

would result in effects that are opposite to what we predicted.

To test for quadratic effects, we added each quadratic term individually and used a 

Chi2 difference test to ensure that each term explained a significant amount of variability. 

Our investigation resulted in the higher order model (depicted in Table 2.9) in which 
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KAMT, KREL, and KCOD all observed negative and significant quadratic effects. Fur-

thermore, the Chi2 difference test suggests that the higher order model explains a signifi-

cant amount of variance above and beyond the main effects model with an R2 of %20.13. 

To get a better understanding of the nature of these relationships, we graphed in Figures 

2.4-2.9 the curves representing the quadratic relationship followed by the graph of the 

simple slopes to illustrate how the relationship changes over different values of the 

KAMT, KREL, and KCOD.

Figure 2.4: Quadratic effect of knowledge codifiability 
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Figure 2.5: Simple slopes for the quadratic effect of knowledge codifiability 

Figure 2.6: Quadratic effect of knowledge amount
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Figure 2.7: Simple slopes for the quadratic effect of knowledge amount

Figure 2.8: Quadratic effect of knowledge relatedness
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Figure 2.9: Simple slopes for the quadratic effect of knowledge relatedness

The quadratic effects in figures 2.4, 2.6, and 2.8 suggest that the nature of the relation-

ship to sustainability is changing for different values of the independent variables in 

question. To illustrate this, we plot the simple slopes in figures 2.5, 2.7, and 2.9. Moving 

in single standard deviation steps away from the mean, we plotted the first simple slope to 

exhibit significance based on a two tailed t-test and the following value for the standard 

error:

Sb =
�

S11 + 4XS12 + 4X2S22
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where S11 and S22 are variance in the regression coefficients for the main and quadratic 

effects respectively, and S12 is the covariance between these same coefficients (Aiken and 

West, 1991).

As can be inferred from the simple slope graphs, the negative relationship hypothe-

sized in H1 is supported for below average values of KCOD. The support is evident from 

the significant and negative slopes in Figure 2.5 for values standard deviations or more 

below the mean. This might seem unlikely to occur, however, the absolute minimum 

value for KCOD is zero when there is no documentation in the code base. The significant 

simple slope for values below three standard deviations suggests that having some docu-

mentation is certainty better than none. H2 and H4 are supported for the above average 

and high values of both KAMT and KREL. This is evident from the significant and nega-

tive simple slope values in Figures 2.7 and 2.9 for values that two and one standard de-

viations above the mean respectively. 

Notice that we also obtained a significant and negative effect for the coefficient of the 

quadratic KCOMP term (-3.043, p-value = 0.048). While this term suggests that there is a 

detrimental effect for any change in the absolute value of the modularity measure, the 

quadratic term will not tell us if the smaller changes will result in a positive relationship 

between knowledge completeness and sustainability. To uncover such an effect, we test 

for a cubic KCOMP coefficient and find it to be negative and significant (-14.242, p-value 

= 0.012). We depict this cubic effect in Figure 2.10.
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Figure 2.10: Cubic effect of knowledge completeness

To simplify interpretation, we plot two simple slope graphs for the cubic effect of 

KCOMP. The first, depicted in Figure 2.11, is a graph representing positive change in the 

KCOMP measure. Given that KCOMP is mean centered, notice how the coefficient of the 

simple slope for the line depicting small change is positive and significant (1.994, p-value 

= <0.001). The simple slope shares the same significance test as the one for the linear ef-

fect of KCOMP in the cubic model (Aiken and West, 1991). This line suggests that the 

relationship between knowledge completeness and sustainability is positive for small 

changes in the structure of the code base (i.e., high knowledge completeness) supporting 

H2 for high levels of knowledge completeness. Notice also how the relationship between 

sustainability and knowledge completeness reverses its direction for high values of 

change in modularity measure (i.e., low knowledge completeness). The change in the 
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slope is significant as indicated by the significance of the cubic KCOMP term, supporting 

H2 for low levels of knowledge completeness.
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Figure 2.11: Simple slopes for positive change in knowledge completeness
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Figure 2.12: Simple slopes for negative change in knowledge completeness

We also plot the simple slopes for the effect of negative changes in the modularity 

measure in Figure 2.12. As can be seen, the results for negative changes in modularity 

measure mirror those of the positive changes. With a positive and significant simple slope 

for knowledge completeness for low levels of change in modularity measure (1.994, p-

value = <0.001), the relationship between sustainability and knowledge completeness is 

positive for low levels of knowledge completeness. The relationship reverses itself for 

more extreme values of negative change in modularity.

As for the small effect sizes for the cubic and quadratic models, it is typical when 

looking for higher order effects in archival data (e.g., Kuk, 2006; Lavie, 2007; Gulati et 
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al., 2009) and inline with the 0.002 median effect size for moderation effects found by 

Aguinis et al. (2005) in their review of management and psychological literature from the 

past 30 years. Both the error present in the data and amount of residual variance after par-

tialling out the main effects make it difficult to detect higher order effect (McClelland and 

Judd, 1993). Furthermore, higher order effects with small magnitudes will be even more 

difficult to detect and will require large sample sizes (Ullrich et al., 2008; Champoux and 

Peters, 1987). The fact that we found a significant effect for our higher order effects given 

all these odds against finding them suggests that the actual effect might be even greater 

than what the results are telling us. Furthermore, Champoux and Peters (1987) suggest 

that the significance and magnitude of the effect are more important than the change in 

effect size in determining the importance of the higher order effect.

4  Discussion

For the purpose of discussing our findings, we summarize our empirical findings in Table 

2.10. We hypothesized in H1 that knowledge codifiability will have a positive relation-

ship to sustainability, which is defined as a FLOSS community’s ability to convert users 

to contributors effectively in order to maintain development efforts. We argued that mak-

ing requisite knowledge more explicit would reduce contribution costs by making such 

knowledge more accessible. What we found is that this hypothesis holds for below aver-

age values of knowledge codifiability and starts to reverse in direction for above average 

values of knowledge codifiability. We provide an explanation of this reversal in the direc-

tion of the relationship in the following section.
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Table 2.10: Summary of empirical findings from the higher order model

Hypothesis Coeffecient Support

H1: The extent to which source-code-
related knowledge for a FLOSS commu-
nity is codified will be positively related 
to the sustainability of that community.

KCOD2: -9.954 
p=0.016*

Supported for below average values of 
knowledge codifiability.

H2: The extent to which source-code-
related knowledge for a FLOSS commu-
nity is complete will be positively related 
to the sustainability of that community.

KCOMP3: 
-14.242, 
p=0.012**

Supported.

H3: The amount of source-code-related 
knowledge that exists in a FLOSS com-
munity is negatively related to the sus-
tainability of that community.

KAMT2: -0.088 
p=0.002**

Supported for above average values of 
knowledge amount.

H4: The relatedness of source-code-
related knowledge that exists in a FLOSS 
community is negatively related to the 
sustainability of that community.

KREL2: -0.129 
p=0.0003***

Supported for above average values of 
knowledge relatedness.

  

We argued in H2 for a positive relationship between knowledge completeness, which 

was operationalized as the change in modularity of the code base and sustainability. We 

argued that a a stable code base code base would convey more complete knowledge for a 

contributor that requires to integrate a patch into the community code base. Complete 

knowledge entails that ones the code base is checked out, the contributor would not be 

required to to rewrite his patch at time of committal because the community code base 

changed significantly in its structure rendering his/her patch incompatible. As a result, the 

effort to integrate a patch is reduced, thereby, increasing the number of new contributors 

that are likely to participate. H2 was best supported in the cubic model that shows a posi-

tive relationship between knowledge completeness and sustainability for high levels of 
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knowledge completeness. This relationship reverses direction when for extreme values of 

knowledge completeness whether they are positive or negative.

There are a number of important implications for both theory and practice from the 

results of H2. The finding provides empirical support for theories that propose that source 

code structures could encourage participation (Baldwin and Clark, 2006). The findings 

also lend support to the validity of the modularity measure since the measure observed 

behavior that we predicted prior to knowing the results of the analysis. As for practice, 

this finding highlights the importance of stability of code design and the importance of 

the release early release often practice. Such a practice encourages small incremental 

changes that do not bring significant changes to the community code base, which our 

work suggests is important to encourage participation from new contributors. 

In H3 and H4, we argued that both dimension of diversity (i.e., amount and related-

ness) for knowledge that exits in a FLOSS community are negatively related to the sus-

tainability of the FLOSS community because they increase contribution costs. This rela-

tionship was found to hold for above average values of knowledge amount and related-

ness, as can been seen from the significant and negative slopes in Figures 2.5 and 2.6. 

This negative relationship was attributed to the increased contribution cost associated 

with the increased effort in comprehending a code base that consists of a diverse and 

large number of modules. While we have discussed the benefits of modularity in reducing 

contribution costs by allowing developers to contribute by working and comprehending 

individual modules, knowledge relatedness negates the effect of modularity by requiring 

a developer to comprehend a group of highly related modules. The result is that develop-
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ers are required to expend greater effort to acquire knowledge that is required to make the 

initial contribution. 

These results highlight how certain projects are inherently complex and are likely to 

be unsustainable in the long run. The inherent complexity highlights the need for FLOSS 

communities to be clear in terms of the goals they want to achieve with the software 

products they are developing. An effective way of managing complexity is to partition 

complex projects into smaller related projects that deal with specific, but smaller, prob-

lems. Such an approach is only enabled by open standards. An example of this strategy is 

evident in the Python community in which the WSGI protocol is a standard that allows 

different applications to work with web-requests and pass it on to the next application 

that could make use of it. This allowed a highly complex web framework known as 

ZOPE to be partitioned into smaller, but manageable, FLOSS projects15.

Furthermore, the complexity highlights one of the strengths of the FLOSS market-

place: renewal. FLOSS projects could grow to be complex simply from the accumulation 

of source code over time (Lehman et al., 1997). Such projects become difficult to main-

tain and might spur potential contributors who cannot break into a community to develop 

their own FLOSS solutions that might surpass older and more complex solutions that 

they originally considered using, thereby, heightening the competition in the FLOSS 

marketplace. This is highlighted by the emergence of the Django web framework to re-

place the Zope web framework, and now the emergence of micro web frameworks to re-

place Django, which itself is becoming difficult to maintain.
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4.1  Post-Hoc Analysis of Quadratic Effects

The quadratic effects are very interesting because the relationships’ directions are re-

versed. This warrants a closer examination of the unexpected reverse effects in light of 

the FLOSS marketplace framework that we have developed. We start with the negative 

effect associated with an increase in knowledge codifiability as measured by the ratio of 

lines of documentation to the lines of code. This negative relationship becomes evident 

and significant for above average ratios of documentation to code. This is the least sur-

prising of the reverse effects, given that we made the assumption that contributors are 

boundedly rational (Simon, 1955). As the amount of documentation increases, potential 

contributors are still required to expend effort to read the documentation and find their 

way through it to get to the relevant parts. Therefore, the effort to acquire the knowledge 

embedded in the documentation might increase and may reach a point where the value 

the contributor will get from contribution no longer justifies the effort required to read the 

documentation, let alone make the contribution.

This finding has a very important implication to FLOSS communities, as it suggests 

that long-known truths about the value of information still hold in the new age of distrib-

uted software development (Ackoff, 1967). The increased amount of documentation 

might be a signal that the quality of the documentation is poor or that too much unneces-

sary information is included, making it more difficult to find relevant knowledge. There-

fore, FLOSS communities should be aware of how critical documentation is. Even 

though documentation is often considered a chore and many developers tend to avoid it 
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(Lakhani and Wolf, 2007), the quadratic effect suggests that it is necessary and, more im-

portantly, that it must be done right or it could have the reverse effect on potential con-

tributors (at the minimum). FLOSS communities may want to consider hiring or solicit-

ing the assistance of individuals with good technical writing skills to edit and improve the 

documentation. Furthermore, the documentation should be continuously improved just 

like the software itself and not be left to accumulate unnecessary or outdated bits of in-

formation over time.

The positive relationships for low levels of knowledge amount and relatedness were 

the most surprising of our empirical findings. While it is contrary to the cost argument we 

used to explain how effective FLOSS communities convert users into contributors, it 

highlights another very important dynamic in the FLOSS marketplace. We are referring 

here to the potential value that is generated from implementing and adding source code. 

Needless to say, adding such source code would result in an increase in complexity, but 

this is the case with any conventional software project (Lehman et al., 1997), especially 

successful projects. The added value would result in an increase in the number of users of 

the software, which might indirectly result in a greater number of new contributors.

Furthermore, the unexpected positive relationship could highlight the importance of 

implementing just enough of the code base to allow developers to gravitate around it 

(AlMarzouq et al., 2005). With a significant portion of the source code written that offers 

just enough functionality to be useful, potential contributors can leverage all of the 

knowledge behind the software without needing to acquire the development knowledge 

fully and re-implement what has already been implemented in the code base. As knowl-
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edge diversity from implementing more functionality increases, the cost of internalizing 

all of the underlying knowledge requirements also increases. When a software project 

that requires diverse knowledge is released as FLOSS, the rational choice for any devel-

oper that seeks to contribute to such a project is to pool his/her effort with that of the 

community. This way, the developers can specialize in creating specific components 

rather than working on the whole code base, resulting in higher quality and more innova-

tive software (Grant, 1996a). 

However, it is important to note that the range of values for which the effect of knowl-

edge diversity starts to reverse its effect cannot be specified ex-ante. The reason for this is 

that these values have to be taken into consideration relative to other characteristics of the 

source code and of the FLOSS project, as our statistical analysis suggests. Because each 

project is unique in its design and the characteristics of its underlying knowledge, there is 

no specific number of modules or module size that fits all. More importantly, the com-

plexity of the code base cannot be known until the source code is actually written. Even if 

it is known, FLOSS communities sometimes consciously choose to make the software 

complex in order to maintain compatibility with older versions of the software that might 

be used by community members or interoperate with other software packages. This find-

ing highlights the complexity of the trade-offs that have to be made by FLOSS communi-

ties.

Therefore, the quadratic effect related to the dimensions of knowledge diversity sug-

gests that when a developer is faced with the choice between working with a FLOSS 

community or repeating the effort of the community by developing a similar solution us-
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ing a proprietary model, the rational choice would be to pool the developer’s effort with 

that of the FLOSS community. However, there is only a certain amount of complexity 

that the developer can tolerate; otherwise, the rational choice might be to simply create a 

new project or develop the software solution in-house. Similar to the implications related 

to H3 and H4, this finding highlights the importance of the renewal of complex projects 

in the FLOSS marketplace. Furthermore, it suggests that such acts of project renewal may 

have a good probability of success when they are released as FLOSS. The main reason 

for this success is that the alternatives to participating a highly complex FLOSS project or 

developing a similar propriety system might be less cost effective.

Another important effect of the quadratic effects of the dimension of knowledge diver-

sity is that the success of a FLOSS community, as measured by the number of new con-

tributors joining the development effort, is a delicate balancing act between what features 

should be included in the code base and how much complexity such features introduce. 

The results suggest that an increase in complexity is healthy to a certain degree, as it adds 

value to users and contributors. Adding too many features, however, could be detrimental 

to the sustainability of the project in the long run. Adding too many features might be a 

result of the community’s lack of clear goals as to what problems they would like their 

software to target. Therefore, it is important for communities to set goals such that it be-

comes clear to committers when to refuse and when to incorporate contributed features 

into the code base.

5  Brooks’ Law Revisited
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According to Brooks (1975), one of the main causes for software project delays is due to 

the current developers’ distraction from training newly added members, which is referred 

to as the ramp-up effect. It has been debated in the research community whether the 

Brooks’ contributions, collectively known as Brook’s Law, apply in the FLOSS develop-

ment context (Capiluppi and Adams, 2009) or not (Koch, 2004; Schweik et al., 2008). 

The debate mostly focused on the effort needed to communicate but disregarded the ef-

fects of a ramp-up. Our study’s findings contribute to this discourse by proposing a con-

ceptualization of the ramp-up effect fit for the FLOSS context and by providing empirical 

support of its effects.

One way in which FLOSS development differs from conventional software develop-

ment is that developers are volunteers (Raymond, 2001). As a result, members are under 

no obligation to waste their time in training other contributors. However, the knowledge 

embedded in the source code itself allows potential contributors to bring themselves up to 

speed by reading the source code and acquiring the necessary knowledge to make contri-

butions (Raymond, 2001). Since new contributors do not significantly distract current de-

velopers, it is assumed that the ramp-up effect is not relevant to FLOSS development. 

However, when the ramp-up effect is conceptualized as the knowledge barriers that a de-

veloper must overcome to become an effective team members, it becomes easier to argue 

for the ramp-up effect’s influence in the FLOSS context. 

If the ramp-up effect is viewed as a knowledge barrier, it implies that it varies from 

one project to the next (Attewell, 1992). Therefore, in conventional teams, the amount of 

effort from or the distraction to current members will be proportional to the size of these 
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effects (Attewell, 1992). However, in FLOSS teams, the size of the ramp-up effect will be 

proportional to the effort expended by potential contributors in reading the source code 

and acquiring the embedded knowledge. Therefore, we argue that projects that have high 

knowledge barriers due to the nature of the knowledge embedded into the code base will 

deter potential contributors from joining the development effort. The result of such situa-

tions is that the FLOSS project would lose effort that could have potentially been gained 

if the knowledge barriers were lower. Furthermore, these knowledge barriers might im-

pact the propensity of the FLOSS project to sustain development over time.

Our empirical findings support the idea that knowledge barriers and, therefore, the 

ramp-up effect vary between projects. The magnitude of these barriers will depend on the 

codifiability, completeness, and diversity of the knowledge underlying the source code. 

Therefore, we conclude that the ramp-up effect is indeed still relevant in the FLOSS de-

velopment context. However, because participation in FLOSS teams is voluntary, the 

ramp-up effect impacts the performance of FLOSS communities through different dy-

namics than in conventional software development teams.

Given that software production is considered a knowledge intensive task, other online 

and virtual communities focusing on the production and dissemination of knowledge 

could also benefits from our findings. Communities of practice and knowledge production 

communities, such as Wikipedia, that rely on the participation of volunteers could benefit 

from increasing the numbers of new contributors by lowering the contribution costs. As 

with FLOSS communities, an initial contribution to Wikipedia will require the participant 

to learn and comprehend the article that he/she is about to contribute to, understand how 
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to use the tools to contribute, and coordinate with the gatekeepers of the community to 

have their contribution accepted. Future research on such communities could benefit from 

our conceptualization of the ramp-up effect as a bases to understand the costs associated 

with the initial contribution.

6  Limitations and Future research

Although we have built up the logic to argue that the reduction of transaction costs is the 

most effective strategy for increasing the number of external participants, we believe that 

the value appropriated by individuals from contributing to a FLOSS project is still valu-

able to understand contribution behavior, especially at the individual level. Our novel ap-

proach in framing the FLOSS marketplace opens up the possibility for leveraging other 

value-based organizational theories to understand FLOSS participation. For example, 

resource-based theory could be leveraged to understand how certain community-based 

resources could cause new contributor participation or even how FLOSS communities 

could sustain a competitive advantage, however that concept might be conceptualized, in 

the FLOSS marketplace.

A potential limitation to our work is associated with the tools that we used to collect 

our empirical data. Our tools allowed us to collect data only about completed transac-

tions; that is, we were not able to collect information pertaining to developers’ attempts to 

submit patches that were rejected. This information resides in the project trackers and de-

veloper mailing lists related to individual projects. Given that each project uses a differ-

ent system, the complexity of the tools that we would have needed to collect all of this 
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data would have been an order of a magnitude more complex than what we have devel-

oped and used for this study. This information, however, could add further insight into the 

effects of contribution costs and community structures, and future studies could benefit 

from collecting and making inferences from such information. This was more of a trade-

off than a limitation, though, as we chose generalizability over rich data. To our knowl-

edge, this is the only FLOSS-related work that attempts to base large-sample observa-

tions on an established theory like TCT.

Furthermore, we have alluded to the possible influence of having star programmers 

join the development effort of a FLOSS community and how that might increase the 

popularity of a project and result in greater numbers of new contributors. While ideally, 

we would have liked to capture such information, the scope of the projects and the time-

lines that we have examined made it impossible for us to know which programmers are 

considered stars. We attempted to make up for this limitation by controlling for the effect 

of popularity as reported by FLOSS developers on ohloh.net. If it was at all possible to 

identify the time periods in which star programmers joined a FLOSS projects, future 

studies could provide a better understanding of the impact of such an effect.

Some of the empirical findings were also a surprise and warrant further investigation 

to understand more fully the nature of the relationships they represent. For example, 

while we have not predicted the non-linear nature of the relationship of knowledge codi-

fiability, amount, and relatedness, we offered post-hoc analysis that could establish the 

basis for future investigations. Follow-up studies could examine the quadratic relation-

ships and treat them explicitly using deductive theory. While we now know that there is a 
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certain threshold at which benefits associated with knowledge codifiability and knowl-

edge diversity turn into liabilities, it is difficult to establish a priori what these threshold 

points are. This does not however diminish the value of this finding, as FLOSS communi-

ties are now made more informed of the complexities associated with managing commu-

nity sustainability.

It is also important to note that this is the first attempt that we know of that uses the 

leading eigen-vector method of community structure identification (Newman and Girvan, 

2004; Newman, 2006b) to assess the dependency structure and modularity of a software 

code base. Given that the modularity-based variable observed both discriminant validity 

and a significant relationship to the dependent variable in the direction predicted by our 

theory, this leads us to conclude that there is validity to the measure. However, given that 

this is a new measure, we have yet to establish meaning to subtle variations in the meas-

ure to be able to use it in more practical settings. Although the measure serves well in 

comparing which code base is more modular relative to another code base and assessing 

the design improvements for the same code base by comparing new values to previous 

values of modularity, we still do not have a complete understanding of what the implica-

tions are for absolute modularity values in and of themselves. We believe that further use 

of this method could provide a better understanding of these values and their implications 

and, more importantly, an understanding of the strengths and weaknesses of this method. 

For example, further use of this method would allow us to determine whether a modular-

ity value of .9 has indeed significant management implications when compared to a code 

base with a modularity of .5 or .89. In addition, further investigation is needed to under-
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stand the nomological network in which such a measure is embedded in order to under-

stand whether the measure can serve project managers well as a standalone measure or 

whether it should be considered relative to other metrics, such as code size, team size, 

and number of modules.

7  Conclusion

 In this study, we conceptualize FLOSS communities as competitors in both the software 

and FLOSS marketplaces. FLOSS communities compete in the software marketplace to 

get more people to use their software products. In the FLOSS marketplace, communities 

compete for a larger portion of contributor mindshare, contributors receive community-

related benefits, and the community benefits from advancing its software development 

effort. The two marketplaces are related in that development efforts in the FLOSS mar-

ketplace would allow the community to become more competitive in the software mar-

ketplace by improving its software offerings. At the same time, FLOSS communities 

compete on converting users of their software to contributors that participate in the 

FLOSS marketplace. We take particular interest in the conversion of users into first-time 

contributors and use the insights from TCT to explain how contribution transaction costs 

are the main impediment to initial contributions. We identify the characteristics of knowl-

edge, codifiability, completeness, and diversity as the main sources of contribution-

related transaction costs. We then provide empirical support for our theory.

We contribute to the body of knowledge on FLOSS community management by find-

ing empirical support to the idea that the codification of requisite development knowledge 
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by means of documenting the source code is important in reducing the effort required of 

potential contributors. By reducing the costs associated with acquiring requisite knowl-

edge, a FLOSS community can increase the number of developers who make a contribu-

tion to its source code. However, such costs can only be managed up to a point. After that 

point navigating through the code base starts to become cumbersome and might deter de-

velopers from contributors. 

In line with the theory forwarded by Baldwin and Clark (2006), we contribute by find-

ing empirical support for the idea that diverse and complete development knowledge, 

which is reflected by modularity, size, and the number of modules in a code base, is re-

lated to the number of contributors. These findings highlight the importance of properly 

designing software to encourage participation. Modular designs that minimize dependen-

cies across modules and maximize them within modules are designs that encourage par-

ticipation. Maximizing dependencies within a module requires developers to group 

highly related modularity within a module, making it easy to find by potential contribu-

tors. Reducing the dependencies across modules would help make changes in one module 

have little effect on other modules, thereby enabling parallel development and more pre-

dictable software that is easier to manage (Baldwin and Clark, 2000; Page-Jones, 1998).

The relationship of the size and number of modules to contribution in particular might 

suggest that there are certain types of software products that have a tendency to attract 

contributors if the software was developed by a FLOSS community. We attributed this to 

the reduction in risk associated with the development effort since contributors get to 

benefit from the software and pool their efforts, thereby distributing the risk of failure 
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over a larger group of contributors. This situation would be a more rational option than 

developing such software alone. However, we also found that having a very large number 

of modules might also come at a cost and deter participation since developers will have a 

hard time finding their way around the code base in order to make their changes.

The final contribution we make is the utilization of the leading eigen-vector method 

for community structure identification (Newman and Girvan, 2004; Newman, 2006a) and 

the graph modularity measure (Newman, 2006b) as software metric tools. We also con-

tribute by finding evidence of the validity of the modularity measure. This evidence is 

observed through the support of the relationship between modularity and sustainability 

that was predicted prior to obtaining the result in addition to the discriminant validity of 

the measure.

Our contributions have important implications for both theory and practice. As part of 

the theoretical implications, we clarify the theoretical distinction between the FLOSS 

marketplace and the software marketplace. This distinction will have profound theoretical 

impacts since it differentiates between the dynamics of usage of FLOSS through the 

software marketplace and those of development through the FLOSS marketplace. Fur-

thermore, our conceptualization of the marketplace contributes to the discourse on 

whether FLOSS development represents a cathedral or a bazaar (e.g. Bezroukov, 1999; 

Raymond, 2001; Krishnamurthy, 2002; Crowston and Howison, 2005). What our framing 

suggests is that the constellation of all the FLOSS communities can be thought of as a 

babbling bazaar in which users and developers can pick and choose the software they use 

and the projects they work on. After all, a bazaar is merely a marketplace.
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As with any marketplace, competition is a very important aspect that is not yet under-

stood well in the FLOSS context. Our framing also allows us to highlight some competi-

tive forces in the FLOSS marketplace and to use established theories in organizational 

literature, like TCT, to gain a better understanding of the dynamics in the FLOSS market-

place. This opens up the possibility of using other organizational theories that focus on 

competition to understand the competitive nature of FLOSS communities more fully.

In addition, we outline the importance of understanding the structure of the source 

code as a proxy for requisite knowledge given that it is an explicit form of that knowl-

edge. We also propose the use of new methods that offer rigorous and objective means to 

compare and examine software structures (i.e., source code dependency graphs). Since 

these tools measure aspects that are important in software engineering efforts, such as 

modularity, they can be used to assess the impact of initiatives that aim to improve a 

software’s structure, whether it be in FLOSS communities or software engineering pro-

jects. 

Overall, the results support the basic idea behind our theory, namely that FLOSS con-

tributors are rational value-maximizing actors that will refrain from contribution when 

the cost to contribute is higher than the returns gained from participation. In addition, the 

results also lend support to the existence of transaction costs in the context of FLOSS 

participation and are closely tied to the characteristics of the code base. Both ideas are 

supported by our empirical findings that support our hypotheses and the diminishing re-

turns of knowledge codifiability, amount, and relatedness. This suggests that managing 

the costs of participation is indeed an effective strategy to encourage new contributions 
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and maintaining the sustainability of FLOSS communities. The interplay between cost to 

participate and the value of that participation is yet to be understood and is a good direc-

tion for future research. Such research could provide a better explanation to the observa-

tion of diminishing returns from knowledge codifiability, amount, and relatedness. In ad-

dition, our empirical findings suggest that the knowledge diversity construct is multidi-

mensional as suggested by Turner and Makhija (2006) given the distinct effect for each.

Another important practical implication of our findings is our outline of the impor-

tance of activities that are usually considered to be chores in FLOSS communities, such 

as code reorganization and documentation. The importance of these activities not only 

lies in how they improve the maintainability of a code base but also in their ability to in-

crease the number of new contributors. 
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 Appendix A:  Modularity Related Constructs

Figure 2.7: How the different modularity-related constructs vary independently
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 Appendix B:  Analyzing Contributors

The following message is an example of a log message from the Django project revision 

control system that indicates a patch was made by a contributor with the pseudo-name 

nfg:

Fixed #9859  Added another missing force_unicode 

needed in admin when running on Python 2.3. Many 

thanks for report & patch to nfg.

- (Django Revision 9656) 

We wrote automation scripts to identify the names of contributors from log messages 

by looking for certain keywords in the log messages such as "thanks" or "patch." While 

identifying the names from log messages might be a trivial task when performed by hu-

mans, automating such a task was quite involved given that projects identified contribu-

tors differently and that the same individual could use multiple spelling for his/her name. 

Nevertheless, we undertook this task and developed the automated scripts. Once we com-

pleted the scripts, we needed a way to assess their reliability. Since we knew that the 

same process could be performed reliably by a human, we assessed the inter-rater reli-

ability for the results of a manual process relative to the results of an automated process 

for the name identification. Towards that end, we first randomly sampled around 100 log 

messages from each of the projects in our sample. We then counted the names identified 

from each log using both a manual process (i.e., human) and an automated process that 
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used the automation scripts we developed. We then computed the inter-class correlation 

(ICC) between the results produced by the manual relative to the results produced by the 

automated processes. Using the ICC measure as an estimate of the inter-rater reliability 

(Shrout and Fleiss, 1979), we obtained a value of 0.921 for a total of 18500 observations 

from 185 projects from our sample. This result led us to conclude that the results from the 

automation scripts and manual process were interchangeable and that we could proceed 

to use our automation scripts to identify the names of contributors reliably.

Notice, however, that the automation scripts were used only on 185 projects from the 

total 235 projects in our sample. The reason we could not use the automation scripts on 

some of the projects is that these projects identified a ticket number in the commit log 

messages rather than attributing individuals. For such projects, we wrote a different set of 

automation scripts that collected these ticket numbers and used them to retrieve contribu-

tor information from the project tracking website16. Only information related to contribu-

tions made between the beginning of January 2007 and the end of June-2009 was col-

lected.

After obtaining the names of the authors from all of the projects in our sample, we 

then proceeded to clean the data to reduce any errors associated with the automated col-

lection of names. We first manually cleaned the names by removing any references that 

did not represent real authors. For example, when terms like "bug #1234" were captured 

as authors, they were discarded. We only retained names, pseudo-names, or emails. 
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Following the cleaning step, we proceeded to normalize the names to ensure that dif-

ferent reference to the same individual counted as a single author rather than different 

authors. We developed an application that listed all the identified names of all committers 

and contributors within a project and then made a all the other names that could poten-

tially be variations of identified names. For example, a name like "John Doe" would have 

all of the following names listed as potentially related to it should they exist in the sys-

tem: "John," "Doe,""john.doe@gmail.com," and "jdoe". We then manually confirmed 

which names were related, and the system then counted all of these related names as a 

single individual, whether for a committer or contributor. In cases in which the authors 

were identified as "Guest," "anon," or "anonymous" because they forgot to mention their 

names, we normalized the names following the recommendation of Howison and Crow-

ston (2004) to count only a single anonymous contributor as unique per single commit.

We then proceeded to count the number of new contributors within an analysis period. 

To identify new contributors, we counted only individuals who had not been referenced 

in prior analysis periods either as contributors or committers. Since we had no history 

about contributors prior to 2007, we excluded the first three months of our data from the 

analysis and used it only as a means of identifying new contributors for subsequent peri-

ods. It is important to note that the normalized names were used in this counting process 

to avoid inflating the numbers of new contributors when a individuals used different 

spellings of their names to identify themselves.
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 Appendix C:  Measuring Modularity

To measure modularity, we utilized the leading eigen-vector method of community struc-

ture identification (Newman, 2006a) to partition the dependency graph of the source 

code. This partitioning method is similar in nature to principle component analysis (PCA) 

(Newman, 2006a). While PCA uses a covariance matrix to cluster items and maximize 

the explained variance in the data, the leading eigen-vector method uses the eigen-vectors 

of the modularity matrix to divide a graph continually while maintaining the maximum 

possible modularity measure (Newman and Girvan, 2004) in order to discover groups.

Modularity is a measure of how cleanly a graph is partitioned (Newman and Girvan, 

2004; Newman, 2006b). It takes into account the groups identified by any clustering 

method, such as the leading eigen-vector method, and then gives a probability of how 

random the edges are distributed in a graph. A great number of edges within groups and a 

low number of edges between vertices belonging to different groups indicate that the dis-

tribution of edges follows a pattern and is not random and that the modularity value will 

be closer to one. When the edges are random, the probability that an edge goes from one 

node to another will be the same. In such graphs, we will not see any particular edge pat-

tern for any group. When the graph is partitioned, the number of edges leaving a group 

will not differ from the number of edges within a group, which results in an inefficient 

partitioning of the graph with modularity values close to or possibly lower than zero17. 

137

17 According to Newman (2006a), modularity values that are less than zero are equivalent to zero.



So, the question that the value of modularity would answer would be "are we seeing more 

than the expected number of edges in a group, and less than expected number of edges 

spanning groups?"

When the software code dependency graph is partitioned using the leading eigen-

vector method, the files are classified into modules to maximize the edge count (i.e., de-

pendencies) between files that are in the same module, while minimizing the count of 

edges that span modules. Just like PCA, items that hold together well (i.e., exhibit cohe-

sion) are identified as modules. However, a lack of edges between modules, as in PCA, 

would signify how distinct each module is (i.e., exhibits loose coupling). Once the struc-

ture was identified, we extracted the modularity measures of the partitioned source code 

dependency graph and used it as an estimate of the modularity of the code base design. 
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Chapter 3

Study 2: Towards a Theory on the Technical Per-

formance of FLOSS Communities
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Abstract

Committers in Free/Libre and Open Source Software (FLOSS) communities play a 

critical role in the progress of the software development tasks in the community. Not only 

are they some of the most productive members in terms of development activities, but 

they also get involved by committing the work of other contributors into the community 

code base, coordinating the development effort, communicating with the broader com-

munity for both technical and development support, and participating in most decision-

making processes. As a result of this enormous effort shouldered by committers, it comes 

as no surprise that the FLOSS research found that most committers leave the community 

they are part of after serving for only a short time period.

Given the critical role that committers play in the progress of FLOSS communities, 

we question how committers are able to balance the demands of their own development 

work and their committal duties towards the community and identify the committers as a 

potential development bottleneck. As a result, we expect the tradeoffs made by the com-

mitters to have implications on the pace of progress made by a FLOSS community. 

Which is why we start questioning Raymond’s claim that Brooks’ law is obsolete in the 

FLOSS development context, as some of the tradeoff decisions made by the committers 

might result in greater development effort, but not necessarily progress.
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Using the lens of Organization Information Processing Theory (OIPT), we explain 

how the technical performance of a FLOSS community is constrained by the committers’ 

capabilities. Our findings suggest that the way in which committers are organized will 

have a profound implication on the technical performance of the FLOSS community. Fur-

thermore, we find that there is no superior form of organization (i.e., centralized vs. dis-

tributed organization of committers); rather, the needs of the community should deter-

mine the best organizational form. We provide empirical support for our proposed model 

and offer some theoretical and practical implications for our findings. We conclude by 

discussing the limitation of our work and suggest directions for future research.
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1  Introduction

Free/Libre and Open Source Software (FLOSS) is produced by online communities in 

which members’ individual development efforts are coordinated with the efforts of other 

members and are integrated into a coherent whole (O’Mahony and Ferraro, 2007). Mem-

bers write source code patches that implement a feature or fix a bug, which they then 

submit for integration into the community source code base to benefit all members (Ray-

mond, 2001). 

The idea that a large group of distributed developers can work together to develop 

software that rivals, if not exceeds, commercial software (AlMarzouq et al., 2005) goes 

against the conventional wisdom of software engineering. Specifically, FLOSS develop-

ment seems to go against the ideas forwarded by Fred Brooks’, which are referred to as 

Brooks’ Law given how widely they are accepted by software engineers (Brooks, 1975).

One of the ideas from Brooks’s Law that clearly goes against the grain of FLOSS de-

velopment is that developers are required to exert effort in communicating with other 

team members to maintain the functional integrity of the developed software. However, 

as more developers are added, conventional software projects start to experience delays 

because more of the developers’ time is wasted on communication. Based on this law, the 

development performance of large FLOSS communities, such as the Linux Kernel, could 

not be possible (e.g., Kroah-Hartman et al., 2008).
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In his seminal work The Cathedral and The Bazaar, Eric Raymond (2001) drew on his 

personal experiences in FLOSS development to provide an explanation as to why 

Brooks’ Law does not apply in the case of FLOSS development. Unlike the significant 

effort required in traditional software development teams (Brooks, 1975), Raymond sug-

gests that communication requirements between FLOSS developers is minimal because 

the source code can convey much of the information needed for coordination. Such 

source-code-enabled communication allows for distributed development, which Ray-

mond described as a babbling bazaar. In addition, Raymond highlights the benefits of the 

FLOSS practice of releasing software updates early and often. These benefits not only 

include improved software quality due to the early discovery and correction of bugs, but 

more importantly, developers can contribute incremental changes that reduce the effort 

needed to communicate with one another and can thus increase the development per-

formance of the community.

However, more recent literature began to find differences between many FLOSS pro-

jects and the way Raymond described them, thereby raising questions about the assump-

tions we hold regarding FLOSS. For example, while Raymond described FLOSS com-

munities as being distributed babbling bazaars, Krishnamurthy (2002) found that the ma-

jority of FLOSS projects hosted on sourceForge.net were highly centralized, describing 

them instead as caves. Mockus et  al. (2002) and later Crowston and Howison (2005) 

found that FLOSS communities varied in how they organized their development activi-

ties. More interestingly, it seems that empirical support was found for both Raymond’s 
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(eg. Koch, 2004; Schweik et al., 2008) and Brooks’ (Capiluppi and Adams, 2009, eg.) 

views.

The opposing results from the literature suggest that both views are likely to be recon-

ciled and that there is much that we have yet to know about the development performance 

of FLOSS communities. Specifically, we would like to understand if one of the views 

prevails due to the variations found in how FLOSS communities organize development 

and whether this variation will have any implication on performance. This will be impor-

tant to both theory and practice given the increased interest in FLOSS by for-profit or-

ganizations (Fitzgerald, 2006). Furthermore, the transformation of the FLOSS phenome-

non (Fitzgerald, 2006) tells us that it will be important to revisit our understanding of the 

development process in FLOSS communities and that we need to ground our understand-

ing of its performance in established theory.

To state our research question formally, we want to know: “Is there a relationship be-

tween the organization of committal activities and development performance in a FLOSS 

community, and what factors will it be contingent upon?”  To answer this question, we 

would like to view FLOSS communities in light of traditional organizational theories, 

which we discuss in more detail in Sec. 3.2.2. Specifically, we leverage insights from Or-

ganizational Information Processing Theory (OIPT) (Galbraith, 1973) to reconcile the 

views of Raymond and Brooks on the performance of FLOSS development teams.

We conclude that no development structure is necessarily better than another; rather, 

we suggest that FLOSS communities make structural decisions to meet the demands of 

the tasks that they are performing. Our findings suggest that varying the organization of 
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development activities might not be the only way to foster performance gains in FLOSS 

communities. Taking actions to reduce the uncertainty associated with the development 

tasks, such as code reorganization, might also improve the development performance of a 

FLOSS community.

To address our research question, this paper will be structured as follows. First, we 

review the FLOSS development process and identify the critical factors constraining a 

FLOSS community’s performance and identify the committal structure. Then, we review 

OIPT and explain the notion of fit between the committal structure and tasks in a FLOSS 

community. Next, we leverage the insights from OIPT to present our research model, 

which predicts the performance of a FLOSS community based on the fit between the de-

velopment task and the development structure. In the section that follows, we discuss the 

methods used to validate our research model empirically. Finally, we discuss the results, 

implications, and limitations of our study and offer directions for future research. 

2  Theoretical Development

2.1  Structures in FLOSS Communities

FLOSS communities have been described as knowledge-sharing and production commu-

nities (Lee and Cole, 2003). They integrate the voluntary efforts of individual members 

into a common pool (i.e., the software), which requires a great deal of effort and coordi-

nation (O’Mahony and Ferraro, 2007). The process in which this coordination occurs 

within FLOSS communities has been described as emergent (O’Mahony and Bechky, 
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2008), as individuals’ roles emerge from the tasks they perform, which they self-select 

based on their abilities and interests (Raymond, 2001; Lee and Cole, 2003; Bonaccorsi 

and Rossi, 2003; Crowston et al., 2005; Shah, 2006). Most members participate tempo-

rarily and very few continue with the community indefinitely (Shah, 2006; O’Mahony 

and Ferraro, 2007). Therefore, FLOSS communities’ structures tend to be dynamic and 

evolve along with community needs (Oh and Jeon, 2007).

Although community membership is dynamic, a FLOSS community’s structure can be 

inferred from the patterns of member participation. Crowston and Howison ( 2005) de-

scribe the structure of FLOSS communities as onion shaped, having four different types 

of community members: the core, the periphery, active users, and passive users (see 

Fig. 3.1). The development work is conducted by both the core and periphery members. 

The distinction between these two development groups is that core members perform 

most of the development work and participate in a more frequent and consistent manner 

than periphery members (Crowston and Howison, 2005). Bug reports and feature re-

quests could come from members of the core, periphery, or active-user groups. Active 

and passive users do not contribute to the development but are merely consumers of the 

FLOSS community product; however, active users differ from passive users in that they 

contribute feature requests and bug reports to the community.
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Figure 3.1: FLOSS community structure (adapted from Crowston and Howison, 2005)

There are two distinct substructures in the overall FLOSS community structure: the de-

velopment structure and the communication structure. The development structure consists 

of community members who perform development tasks and centers on how the mem-

bers are organized. The communication structure, on the other hand, spans the whole 

community and centers on how communication patterns are organized (Mockus et  al., 

2002; Crowston and Howison, 2005). The development structure is of interest to us since 

we want to understand the development performance of FLOSS communities.

Within the development structure, there are two different types of members: the com-

mitters and the contributors. Both types of members contribute to the software develop-

ment effort in the FLOSS community, which is why we will refer to them collectively as 

developers in this work. However, the committers differ in that they have access rights to 

154



the community code base. As a result, committers can incorporate changes they make di-

rectly into the community code base, while contributors have to work with a committer to 

do so. Committers rise from the ranks of the contributors after they have proven their 

trustworthiness and technical competence from their continued contributions to the com-

munity (Shah, 2006; Riehle, 2007). 

2.1.1  The FLOSS Development Process

In Fig.  3.2 we summarize the steps developers go through before their source code 

patches are incorporated into the community code base.

 Figure 3.2: Steps required to complete a source code contribution in a FLOSS commu-

nity

We refer to the first stage a developer goes through as the learning stage. It starts when 

the developer reviews a fresh copy of the community code base and then attempts to un-

derstand its structure and functionality; this is what Brooks refers to as the ramp-up effect 
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(Brooks, 1975). After acquiring the necessary knowledge to make changes to the code 

base, the developer then proceeds to make modifications. By the end of this learning 

stage, the developer has a modified copy of the code base that implements a feature or 

fixes a bug. Thus far, the developer has worked in isolation and most of the effort he/she 

has expended is related to learning about the code base.

We refer to the next stage in the contribution process as the coordination stage. The 

first step of the coordination stage is the preparation step in which the developer prepares 

a patch that can be contributed to the community. This step includes pulling a recent copy 

of the community code base and making sure that the recent changes by the contributor 

do not conflict with changes made my other developers since the initial review step. This 

step also includes making modifications to the patch to make sure it complies with com-

munity coding standards, such as including unit tests or documentation. The developer 

then posts the patch to the community tracker or mailing list and waits to receive any 

feedback from the community for possible modifications. 

The final step occurs when the patch is committed to the code base by a committer, 

which may involve further modifications to rectify any problems that the committal step 

might uncover. At the end of this step the patch is incorporated into the community code 

base. If the patch was the developer’s first contribution to the code base, then the devel-

oper is considered a contributor to the community at this time. 

The last three steps of the contribution process, which comprise the coordination 

stage, will require the contributor to work with other committers and possibly contribu-

tors in the community. As a result, in this stage any costs are generally related to coordi-
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nation and increase with the number of other contributors with whom one needs to coor-

dinate (cf. Brooks, 1975), which is why we refer to it as the coordination stage.

The focus of this work is mainly on the coordination stage. The costs in the coordina-

tion stage will vary from one community to another depending on factors that we will 

identify later in this work. More importantly, however, as we explain in the next section, 

we expect that committers will be a potential performance bottleneck given the effort re-

quired of them before any contribution can be committed.

2.1.2  The Bottleneck

Although committers might initially seem to have an easier job than contributors, they are 

actually the busiest FLOSS community members, as they are responsible for committing 

contributions directly to the code base. Not only are they themselves developers in the 

community, they are also tasked with making decisions about other contributors’ work 

(Shah, 2006), which makes them critical to any contribution. For example, if a contribu-

tion is accepted, the committer is tasked with integrating the contributed patch into the 

code base, which places more responsibility and work on the committer’s shoulders, es-

pecially when the committed code breaks the work of other developers.

Once we realize the tremendous effort shouldered by committers, it becomes easy to 

understand why many of them spend only four months on average serving the community 

after they are promoted (Shah, 2006). Some try to cope with this increased responsibility 

by limiting their interactions within the community to include only members who they 

think possess valuable knowledge (Kuk, 2006). To illustrate that this is indeed a problem 
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that many FLOSS communities face and that it is worthy of community consideration, we 

present excerpts from the guidelines of some well known FLOSS projects in Tab. 3.1.

Table 3.1: Evidence of delays in FLOSS the development process

Community Excerpt Notes

Subversion
If you don’t get a response for a while, and 
don’t see the patch applied, it may just mean 
that people are really busy.

Patch committals can experi-
ence delays.

Mozilla

Getting attention: If a reviewer doesn’t re-
spond within a week or so of the review re-
quest: 

• Join #developers ... 

Because delays in the review 
process are all too common, 
the Mozilla community has a 
process for how to deal with 
the problem.

Apache

What if my patch gets ignored?
Because Apache has only a small number of 
volunteer developers, and these developers are 
often very busy, it is possible that your patch 
will not receive any immediate feedback. De-
velopers must prioritize their time, dealing 
first with serious bugs and with parts of the 
code in which they have interest and knowl-
edge. Here are some suggestions on what you 
can do to encourage action on your patch:...

Delays in patch committal are 
all too common and the 
community explains the rea-
sons and gives suggestions on 
how to alleviate the problem.

 

Since all development work must involve a committer and committers are the busiest 

members of the community, we conclude that their activities are the bottleneck to the 

FLOSS development process (cf. Goldratt and Cox, 1994). This means that the perform-

ance of a community will depend on the performance of the committers and that any per-

formance impacting optimization should target committers’ (Goldratt and Cox, 1994). As 
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a result, we conclude that the way in which workload is distributed among the committers 

will be an important determinant of performance. 

 2.1.3  The Committal Structure

The committal structure refers to how committal workload is distributed among the 

committers. The committal structure can be centralized, if committal activity is per-

formed by a focal group that is considered small relative to the size of the development 

structure’s membership. The committal structure can also be decentralized when this fo-

cal group represents a larger portion of the developers. A highly centralized committal 

structure would include only a single committer, whereas, a highly decentralized structure 

would include all the developers as committers.

Somewhat contrary to the babbling bazaar description by Raymond (2001), which rep-

resents a decentralized committal structure, FLOSS communities display both centralized 

(e.g. Krishnamurthy, 2002; Crowston and Howison, 2005) and decentralized tendencies 

(Mockus et al., 2002; Crowston and Howison, 2005). However, the implications of these 

structures are yet to be understood fully. 

To the extent that we can view FLOSS communities as organizations, we can leverage 

insights from established organizational literature to give us a better understanding of the 

implications of these structures. The Organizational Information Processing Theory 

(OIPT) stream of literature (e.g. Galbraith, 1973; Tushman and Nadler, 1978; Tushman, 

1979) seems to be the most relevant for understanding committal structures and for 

reaching the overall goals of this study, as it is concerned with the fit between organiza-
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tional structures and organizational performance. Therefore, we will first review the OIPT 

literature and then revisit committal structures to understand their implications on per-

formance.

2.2  FLOSS and Organizational Information Processing The-

ory

Organizational Information Processing Theory (OIPT) (Galbraith, 1973) introduces the 

idea that organizations are information-processing systems that deal with uncertainty in 

their environment. The theory suggests that organizations that find a fit between their 

information-processing capabilities and their information-processing needs will perform 

better than organizations that cannot find such a fit. The theory also implies that there is 

no single organizational structure associated with superior performance; rather, it sug-

gests that different organizational structures are suited for different conditions (Lawrence 

and Lorsch, 1967). These insights are important for understanding the implications of the 

different committal structures in FLOSS communities and their relationships to develop-

ment performance. Specifically, the theory suggests that neither a centralized nor a decen-

tralized committal structure is better; rather, it suggests that the FLOSS community’s 

needs should determine which structure is a better fit for what developers and users want 

to accomplish.

Before using OIPT, we first need to demonstrate the theory’s relevance in FLOSS 

communities. Towards that goal, we first need to establish that FLOSS communities can 
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be viewed as organizations; then we need to establish that the main task performed by 

such communities involves information processing. 

Ahuja and Carley (1999) define a virtual organization as “a geographically distributed 

organization whose members are bound by a long-term common interest or goal, and who 

communicate and coordinate their work through information technology.”  (p. 742). 

FLOSS communities are a special type of a virtual organization since community mem-

bers work towards the common goal of software development, are geographically dis-

persed, and coordinate their work through information technology. So, the first require-

ment for using OIPT in this context is fulfilled, as FLOSS communities are essentially 

virtual organizations.

Secondly, software development tasks, which are the main tasks performed by FLOSS 

communities, have been described as knowledge-intensive (O’Mahony and Ferraro, 

2007; Lee and Cole, 2003). Completing these knowledge-intensive tasks requires devel-

opers to acquire specific knowledge related to a development process in order to partici-

pate effectively (Fichman and Kemerer, 1997; Lee and Cole, 2003). These tasks also re-

quire team members to constantly coordinate with one another to ensure that the changes 

they make to the code base do not conflict with those made by other team members 

(Crowston, 1997). As depicted in Fig. 3.2, both learning (stages 1 to 3) and coordination 

(stages 4 to 6) activities are part of the development process in FLOSS communities. 

Given the specific nature of the knowledge related to development in FLOSS communi-

ties (see Study 1), learning or sharing (i.e., coordinating) that knowledge will require ex-

tensive interaction and communication among team members (Choudhury and Sampler, 
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1997; Brooks, 1975), which are considered information-processing tasks (Galbraith, 

1973; Crowston, 1997). As such, the second requirement for using OIPT in this context is 

fulfilled, making OIPT an appropriate lens to understand development performance in 

FLOSS communities.

2.2.1  The Relationship Between Structure and Performance: Fit

Galbraith (1973) explains the relationship between performance and organizational struc-

ture by describing a situation in which subordinate workers are tasked with performing 

simple tasks. When an unusual circumstance occurs due to a change in the organization’s 

environment, the worker will seek a superior to resolve the situation and will then com-

plete the task. 

Such a situation could occur in a FLOSS community in any of the contribution stages 

depicted in Fig. 3.2. When contributors lack certain knowledge that is required to move 

through the contribution stages, such as identifying which files need to be changed in or-

der to implement a feature or resolve a bug, they will seek out that knowledge. The com-

mitters, having experience with the source code and the community in general, will be the 

members most likely to possess this knowledge or could at least identify individuals who 

do. Therefore, contributors constantly seek out committers to assist them in resolving a 

myriad of issues related to the contribution process. 

Before a contribution is committed into the community code base, committers are also 

required to intervene and, possibly, modify contributed patches before they are commit-

ted. As one committer puts it: “I’ve written before on mailing lists that only about two out 
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of every five submitted patches I review go in unchanged on a good day and that seems to 

match other maintainers’ experiences, too,” 1 suggesting that contributions demand some 

effort from committers before they are committed. Although the relationship between 

committers and contributors is not one between a superior and a subordinate, completing 

a development task will require them to interact in a manner similar to how OIPT de-

scribes the relationship between a superior and a subordinate.

Based on OIPT, an organization’s structure starts to affect performance when superiors 

are no longer able to respond to the subordinates’ requests for intervention in a timely 

manner. This situation occurs mainly when the number of requests exceeds the superiors’ 

capacity for handling them, which is a function of the uncertainty inherent in the task per-

formed by the organization (Galbraith, 1973; Tushman, 1979). As a result, tasks are not 

completed as quickly when superiors are overloaded, and the overall performance of the 

organization suffers. Thus, such situations occur when the organization’s information-

processing needs exceed its information-processing capacity, which we refer to as lack of 

fit for short.

It is not surprising that lack of fit would occur in FLOSS communities since commit-

ters are mostly volunteers and will very likely have less time to dedicate to community 

coordination than would a full-time supervisor in a more conventional organization. Fur-

thermore, whatever time committers can afford to give to the community will not be en-

tirely dedicated to resolving contributor issues, as the committers will also be engaged in 
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both their own development tasks and interactions with the broader community (Shah, 

2006; Crowston et al., 2005; Mockus et al., 2002). 

Based on OIPT, FLOSS communities, like organizations, can choose from two differ-

ent strategies to deal with lack of fit and improve development performance. First, a 

FLOSS community could increase the information-processing capacity of the committal 

structure to be able to process more contributions and give committers more time for their 

own development activities, thereby improving the development performance of the 

community. Second, the community could take action to reduce their information proc-

essing needs by reducing the uncertainty inherent in development tasks. We will refer to 

both of these strategies collectively as fit strategies.

2.2.2  Theoretical Assumptions

The extent to which we expect the fit strategies to work rests on a number of assump-

tions. The first assumption we make is that development tasks cannot be completed if 

there are outstanding coordination tasks, which is a reasonable assumption to make in 

software development as developers need to coordinate to ensure the functional integrity 

of the software (Brooks, 1975). 

The second assumption is about the nature of the coordination task, namely that it in-

volves communication among a group of developers and, therefore, cannot be subdi-

vided. As a result, we cannot have a single individual performing all of the coordination 

tasks; rather, coordination will demand the involvement of a group of developers, similar 

to how Brooks (1975) described communication channels between developers.
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The third assumption is that the committers are boundedly rational, meaning that they 

have a limited capacity to process and comprehend information (Simon, 1955). This as-

sumption results in the committal structure having a limited information processing ca-

pacity. 

The fourth assumption is that there is project-specific knowledge, which developers 

must gain before performing any development tasks within a FLOSS community, and 

that this knowledge is immobile in nature and requires extensive effort to transfer and 

communicate (Choudhury and Sampler, 1997; Fichman and Kemerer, 1997). In addition, 

this knowledge is heterogeneously distributed among community members. As a result, 

no two members possess similar knowledge, which makes it difficult to replace and/or 

add developers without incurring costs related to transferring the requisite knowledge 

(Brooks, 1975). 

Another result of this last assumption is that before new participants can partake in 

development efforts, they need to obtain the requisite knowledge by either reading the 

source code or by interacting with knowledgeable community members (Brooks, 1975), 

which places a burden on these knowledgeable members, including committers. Since 

committers are also boundedly rational, they will have to make a tradeoff between per-

forming their own development work and assisting other members. This tradeoff could 

potentially limit the flow of knowledge within the community (Kuk, 2006) and the num-

ber of individuals who can effectively participate in the development process; this, in 

turn, affects the overall performance of the community.
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Finally, because committers are the busiest community members and because devel-

opment progress depends on their intervention, we make a final assumption that the de-

velopment bottleneck resides within the committal structure and that improving the 

information-processing capacity of that structure will improve a FLOSS community’s 

development performance (Goldratt and Cox, 1994). Therefore, to expand its capacity for 

information processing, a committal structure has to be more decentralized, which can be 

done through the promotion of more committers from the ranks of the contributors. How-

ever, based on the assumptions we made, such a strategy will not come without a cost 

(Tushman and Nadler, 1978), the nature of which we have yet to fully understand. To that 

end, we formalize our research model in the following section.

2.3  Theoretical Model

Thus far, we have conceptualized FLOSS communities as information-processing sys-

tems whose goal is the production of software. Our basic argument, based on OIPT, is 

that high performing FLOSS communities will be those that manage to find a fit between 

their information-processing capabilities and their information-processing needs. 

We identified committers as being the potential performance bottleneck in FLOSS 

communities given that they are required to be involved with all contributions and are the 

busiest members of the community. Therefore, how committers are organized in the 

community, which we refer to as committal structure, will be the main determinant of a 

FLOSS community’s processing capacity (cf. Galbraith, 1973; Tushman, 1979).
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As for the information-processing needs of a FLOSS community, OIPT suggests that 

these needs will emerge from the inherent uncertainty of software development tasks and 

the environment (Galbraith, 1973). There are, however, many facets to the development 

tasks that can be sources of uncertainty, which OIPT does not specify. In order to identify 

the specific sources of uncertainty, we follow the work of Tushman (1979).

Tushman (1979) identified three main source of task-related uncertainty in organiza-

tional settings: 1) task routineness, defined as the unpredictability of the task, 2) task en-

vironment uncertainty, defined as the rate of change in the external environment that is 

beyond the organization’s control, and 3) task interdependence, defined as the extent to 

which tasks require coordination to be accomplished.

The same sources of uncertainty exist in FLOSS communities, which we identify in 

Tab. 3.2. However, the broad nature of the task environment uncertainty construct 

(Tushman, 1979) in addition to the differences in the competitive dynamics of FLOSS 

communities and that of the conventional market competitors (see Study 1) requires that 

we adapt the construct specifically for our context. As a result, we identify first-time con-

tributors as a source of uncontrollable, external environment uncertainty and rename this 

construct contributor uncertainty.

Following OIPT, we forward the model depicted in Fig. 3.3. We identified the cen-

tralization of the committal structure as the source of a FLOSS community’s information-

processing capacity, while task-related sources of uncertainty—task routineness, con-

tributor uncertainty, and task interdependence—are identified as the source of 
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information-processing capacity. In the following sections, we discuss the logic behind 

our model in more detail.

Figure 3.3: Overview of research model

Table 3.2: Overview of theoretical constructs

Construct Definition
Performance Progress made towards meeting the demands of the FLOSS commu-

nity.
Centralization The degree to which the committal activity in a FLOSS community is 

concentrated in the hands of a small group of committers relative to 
the overall size of the development structure’s membership

Task Routineness The degree of predictability in the software-development task done 
within the FLOSS community.

Contributor Un-
certainty

The unpredictability in development tasks that is introduced from the 
need to integrate the work from contributors who are considered ex-
ternal to the FLOSS development structure.

Task Interdepend-
ence

The degree to which developers’ development tasks in a FLOSS 
community require cooperation.
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2.3.1  Performance

According to Brooks (1975), effort and progress are two separate concepts. More effort 

can be expended by a software development project, but that does not guarantee that pro-

gress will be made. As Brooks (1975) explains, this occurs when more developers, whose 

tasks are sequential in nature, are introduced late into a project. The effort needed to bring 

new developers up to speed (i.e., the ramp-up effect) and coordinate development with 

them will only detract the most productive developers from making progress, thereby de-

laying the project. Our concept of performance is similar to Brooks’ (1975) notion of 

progress. As such, we define performance as the progress made towards meeting the de-

mands of the FLOSS community.

The situation with FLOSS development is similar to how Brooks (1975) described 

progress in traditional development teams. As explained in Sec. 3.2.2, we identified learn-

ing and coordination as two important stages in the contribution process (see Fig. 3.2). 

Committers might become involved in assisting contributors in the learning stage by an-

swering their technical questions and giving them guidance (von Krogh et al., 2003). The 

effort expended in this learning stage is equivalent to the ramp-up effect described by 

Brooks (1975). Progress would suffer as the productive committer chooses to trade-off 

some of his/her development and committal time towards helping other contributors.

The coordination stage is also similar to how Brooks (1975) described software-

development teams, as coordination will be required between committers and contribu-

tors before a contributed patch can be committed. The number of individuals with whom 

the contributor or committer need to coordinate may vary depending on who could af-
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fected if a problem occurs during the patch-committal process. Since we are assuming 

that development progress cannot happen if a community’s coordination requirements are 

not met, committers must perform the needed coordination tasks, which detracts them 

from making progress, thereby delaying the committal of a patch.

While the notions of effort and progress exist in FLOSS communities, progress has to 

be re-conceptualized for FLOSS communities. Unlike conventional software-

development teams for which where progress is measured by how close a team has 

achieved its deadline or met its project requirements (Espinosa et al., 2007; Gemino et al., 

2007; Crowston, 1997; Nidumolu, 1995; DeLone and McLean, 1992), FLOSS communi-

ties differ in two regards. First, there are no enforceable deadlines within FLOSS com-

munities because participation is voluntary, which makes it difficult to determine effec-

tiveness in terms of meeting deadlines (Raymond, 2001). Second, there are no preset de-

velopment requirements for FLOSS communities, which is similar to the conventional 

waterfall-development model of traditional software creation; rather, requirements are set 

by members on a needs basis with no guarantee that the needed features will be imple-

mented (Scacchi, 2002).

Given that committers make trade-offs similar to the trade-offs made by productive 

developers in traditional software development (Brooks, 1975), progress can be observed 

through the committal activity on the community code base (Koch and Schneider, 2002). 

A well organized FLOSS project will utilize the time of committers better to produce use-

ful code, rather than requiring them to expend their efforts on coordination and learning 

activities. More importantly, a commit corresponds to a met demand in the community 
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signaling that progress has been made (Grewal et al., 2006). Furthermore, a commit only 

occurs after all coordination and learning issues have been resolved and the committer is 

satisfied with the quality of the contribution (von Krogh et al., 2003). 

Therefore, if two projects have a similar number of committers, holding everything 

else equal, the team that is able to make more progress is the one that is able to commit 

more patches within the same time period. The committers for the project that commits 

fewer patches are probably expending more effort towards coordination and learning, 

which results in committal delays and fewer patches being committed within a specific 

time period.

To summarize, our definition of performance fits with the OIPT conceptualization of 

FLOSS communities as information-processing systems whose goal is the production of 

software. Software is produced as a result of all of the information processing and coor-

dination tasks completed by committers (Crowston, 1997; O’Mahony and Ferraro, 2007). 

These information-processing tasks must be handled by the committal structure, and the 

completion of these tasks occurs when a patch is committed. The committal structure will 

have a limited capacity for information processing that will be expended towards effort 

(i.e., coordination and learning) or progress (i.e., patch committal). As the effort require-

ments increase due to increased uncertainty, progress will be compromised. When effort 

is minimized by controlling uncertainty, progress is maximized.

2.3.2  Centralization
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The most prevalent conceptualization of centralization in recent FLOSS literature (e.g., 

Grewal et al., 2006; Wu et al., 2007; Tan et al., 2007) is based on the variations of the 

centrality concept from social network analysis (Freeman, 1979). The different conceptu-

alizations of centralization within the social network literature include: degree centrality, 

betweenness centrality, and closeness centrality (Freeman, 1979). Such conceptualiza-

tions reflect traits of individuals that are part of an underlying communication network. 

Our conceptualization of centralization departs from this network based understanding to 

a more classical organizational theory understanding of the construct and is mostly con-

cerned with the capacity of the social or organizational structure to process information.

In organizational literature, centralization has been conceptualized as a characteristic 

of the organization (Hage and Aiken, 1967; Ouchi and Dowling, 1974). It has been asso-

ciated with the span of control for supervisors in an organization (Hage and Aiken, 1967). 

Centralized structures limit control in the hands a few individuals in which a larger group 

of individuals must report to. Because a supervisor expends greater effort to oversee and 

communicate with a larger group of employees in centralized structures, he/she is de-

scribed as having a wide span of control that could result in the overwhelming of the su-

pervisor (Blau, 1968). In decentralized structures however, supervisors will be responsi-

ble to oversee and communicate with a smaller group of employees. As a result, they are 

described as having a narrow span of control in which supervisors are able to dedicate 

more of their time per employee compared to centralized structures (Blau, 1968).

Span of control doesn’t necessarily describe a relationship in which supervisors over-

see employees, it is also valid of the relationship between supervisor and employee in 
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which employees initiate communication and describes the time that a supervisor makes 

available for an employee (Blau 1968). The relationship between committers and con-

tributors in FLOSS communities might not be that of supervisor and subordinate, never-

theless, span of control could be used to describe the nature of communication between 

the two within a FLOSS community. Span of control describes the amount of time or ef-

fort any committer can make available per contributor, and thus, could be thought of as 

the capacity to deal with the demands of the contributors.

A committer might have to communicate with a large number of contributors which 

results in a situation that is analogous to having a wide span of control (i.e., centralized 

structure). The need to communicate and coordinate with all these contributors is likely to 

overwhelm the committers’ capacity for information processing as the number of con-

tributors increase. A narrower span of control (i.e., decentralized structure) on the other 

hand is less likely to overwhelm any individual committer and spread the workload over 

a greater number of committers. As a result, when the span of control for committers is 

wide, the capacity of the committal structure is likely to be at its limits and is said to be 

centralized. On the other hand, given the same number of committers and a narrow span 

of control, the committal structure would still have the capacity to process more informa-

tion because the committers are less overwhelmed. Such structures are described as being 

decentralized.

Based on our prior discussion, centralization is defined as the degree to which the 

committal activity in a FLOSS community is concentrated in the hands of a small group 

of committers relative to the overall size of the development structure’s membership. 
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While adding committers would make a FLOSS community’s committal structure seem 

more decentralized, how decentralized the committal structure is relative to other com-

munities will depend on the proportion of members of the development structure (i.e. 

contributors) that posses committal rights. Based on our discussion in Sec. 3.2.1, we ex-

pect committers to be the main development bottleneck in a FLOSS community because 

all development activities will require their involvement. Therefore, we expect that the 

way in which they are organized will have a profound impact on the community’s per-

formance.

FLOSS communities can exhibit both centralized and decentralized development 

structures. Decentralized structures are expected to provide a greater capacity for process-

ing information, since a larger group of members will not only add to the processing ca-

pacity of the structure but will distribute more of the workload to leave smaller tasks for 

individual committers. However, we do not expect that adding committers will be cos-

tless (cf. Tushman and Nadler, 1978) since a larger group of committers could increase 

the need for coordination (Brooks, 1975; Crowston, 1997). Nevertheless, according to 

OIPT, we expect both types of committal structure will be the best fit for different devel-

opment conditions.

2.3.3  Task Routineness

We define task routineness as the degree of predictability in a software development task 

(Perrow, 1967; Tushman, 1979; March and Simon, 1993). Routine tasks are simple in na-

ture and are reflective of the knowledge required to accomplish them (Turner and Ma-
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khija, 2006). Simple tasks will draw from a limited domain of knowledge and will require 

little effort to accomplish (Zander and Kogut, 1995; Grant, 1996a). Non-routine tasks, on 

the other hand, have a great degree of unpredictability (Perrow, 1967). Such tasks will 

also require complex underlying knowledge that draws from a diverse set of knowledge 

domains (Turner and Makhija, 2006). As a result, non-routine tasks will require individu-

als to put forth greater effort to accomplish them (Zander and Kogut, 1995; Grant, 

1996a).

Assuming that the source code reflects a FLOSS community’s underlying develop-

ment knowledge, non-routine tasks will require the modification or addition of a greater 

number files. The reason behind such modification is the fact that it is good programming 

practice to encapsulate similar functionality into the same modules or files (Page-Jones, 

1998). FLOSS communities are known to follow good programming practices (MacCor-

mack et al., 2006; Raymond, 2001); therefore, it is probable that contributed patches re-

flect the complexity of the development tasks.

What is important, however, is how these patches impact committal structures. As the 

number of files modified by a patch increase, the code that needs to be reviewed by a 

committer also increases. In addition, the likelihood that such a patch will interfere with 

the work of other developers will increase as more files are impacted, thereby increasing 

the chance that the committer will be required to coordinate between developers. Fur-

thermore, since the code is not localized to a specific file, when a patch introduces a bug, 

the committer’s debugging task will be much more complex since he/she is required to 

trace a larger number of files. As a result, we expect that non-route development tasks 
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will place a greater amount of coordination requirements on committers, thereby placing 

a heaver information-processing burden on the committal structure than would routine 

tasks.

Furthermore, non-routine tasks will place greater learning efforts on committers. Con-

tributors who are required to perform these complex tasks will also be required to change 

a greater portion of the source file in the code base. Before a change is made to any file, 

the contributor must understand the contents of that file and understand the best way to 

make the changes. To obtain that understanding, contributors will not only need to read 

the source code (Raymond, 2001), but they will also need to seek the assistance of com-

mitters in helping them understand the impact of their changes (Krogh and Hippel, 2006). 

As a result, greater information-processing requirements are placed on the committal 

structure due to learning requirements associated with non-routine tasks. Hence,

H 1 Task routineness is positively related to a FLOSS community’s performance 

Because routine tasks are simple and highly predictable, they will not generate a great 

amount of uncertainty and will not require much in terms of information processing. Fur-

thermore, since the requisite knowledge for completing such tasks is easily codifiable, it 

is easier to communicate by nature (Grant, 1996b, 1996a; Kogut and Zander, 1992), mak-

ing the time spent by any one individual to learn or communicate development knowl-

edge relatively small. Therefore, we expect routine tasks to put little strain on the devel-

opment structure in terms of development-related information-processing requirements, 

making a centralized structure, with its limited information-processing capacity, fit with 

the completion and management of such tasks. Decentralized structures, on the other 
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hand, will introduce extra overhead from the need to coordinate between committers (cf. 

Tushman and Nadler, 1978).

Knowledge of non-routine tasks is more varied and likely to be tacit in nature (Kogut 

and Zander, 1992), thus making it more difficult to share and communicate (Choudhury 

and Sampler, 1997). Therefore, non-routine tasks will strain centralized development 

structures and overwhelm the central committers not only because of the effort required 

to review complex patches but also because of the extra effort needed to communicate the 

tacit development knowledge in this technology-mediated environment (Daft and Lengel, 

1986). 

Given that committers are the most productive developers in a FLOSS community 

(Shah, 2006; Mockus et al., 2002), a distributed committal structure will allow commit-

ters to specialize in different aspects of complex code base development (Grant, 1996a). 

As a result, committers will need to obtain specialized knowledge about the specific parts 

of the code base that they work on (von Krogh et al., 2003).

With a greater number of specialized committers, the information-processing require-

ments are distributed over a greater number of committers, resulting in less effort being 

performed by any one individual (Tushman, 1979). Coordination and learning activities 

can then be performed in parallel, resulting in less overall time needed to perform them, 

even if the time required for any individual task increases due to the extra coordination 

efforts required with distributed structures. 

Therefore, we expect the performance gains for FLOSS communities as development 

tasks become more routine to be higher under a centralized committal structure than un-

177



der a decentralized committal structure because of the lack of coordination overhead be-

tween committers. It can also be said that as tasks become less routine, the performance 

gains for decentralized committal structures will be higher than for centralized committal 

structures because the coordination and leaning tasks being performed in parallel. As a 

result, a distributed committal structure becomes a better fit for non-routine development 

tasks. Hence,

H 2 As tasks become more routine, FLOSS communities with centralized committal struc-

tures will have higher performance gains than communities with decentralized committal 

structures. 

2.3.4  Contributor Uncertainty

Contributor uncertainty is defined as the unpredictability in development tasks that is in-

troduced from the need to integrate the work of contributors who are considered external 

to the FLOSS development structure. Before contributors can submit patches, they need 

to acquire the requisite knowledge about the code base that will allow them to make a 

contribution. Since this knowledge is tacit in nature, it will require a great deal of com-

munication with other knowledgeable developers.

Because the committers are the most knowledgeable about the code base, they will 

spend a great deal of time communicating with contributors, responding to their ques-

tions, and explaining the intricacies of the code base (von Krogh et  al., 2003), which 

places a learning-related burden on committers’ information-processing capacities. This 

is true mostly of contributors who are new to the development process in a FLOSS com-
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munity, as returning contributors would likely have absorbed the norms and knowledge 

related to making a contribution to the community without placing much burden on the 

committers. This effect is similar to Brooks’ (1975) concept of the ramp-up effect. 

In addition, new contributors are likely to be the least knowledgeable about the code 

base. As a result, their patches are likely to introduce more bugs or violate some of the 

programming guidelines or assumptions that must be adhered to, such as variable access 

rules and coding conventions. Therefore, patches from new contributors will require more 

scrutiny and, therefore, more effort from the committers, resulting in delays in the com-

mittal of the patch. Therefore, we expect contributor uncertainty to have a negative im-

pact on performance. Hence, 

H 3 Contributor uncertainty will be negatively related to a FLOSS community’s perform-

ance. 

When a problem occurs during the committal of a contributed patch, the committer 

will have to read through the code base to find the source of the bug or communicate with 

other developers to find a solution, both of which are information-processing tasks. As 

the number of such problems increase, a centralized committal structure will become 

overwhelmed if it does not promote more committers due to its limited information-

processing capacity (Tushman, 1979; Ahuja and Carley, 1999). When the committal 

structure is no longer coping with the community’s information-processing load, external 

contributions are the first to be ignored by committers who will focus on their own devel-

opment work. FLOSS communities could cope with lack of fit due to high contributor 

uncertainty by making the committal structure more decentralized. This, in turn, would 
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development and decision-making tasks free of constraints by any specific individual 

(Tushman, 1979).

A decentralized committal structure has the development knowledge and decision-

making authority more distributed throughout the community. As a result, the committal 

and development workload is distributed among a greater number of committers resulting 

in less information-processing work for each individual committer. Furthermore, since 

the knowledge is distributed, the coordination and learning activities will not come to a 

halt when a committer decides to take the time to assist a new contributor. For these rea-

sons, we argue that a decentralized structure is a better fit for situations in which con-

tributor uncertainty is high, as it will result in higher performance gains with increased 

uncertainty when compared to centralized committal structures. Hence,

H 4 As contributor uncertainty increases, FLOSS communities with centralized committal 

structures will have lower performance gains than communities with decentralized com-

mittal structures. 

2.3.5  Task Interdependence

When task completion requires the cooperation of multiple individuals or organizational 

units, it is said to exhibit interdependence (Tushman, 1979; Malone and Crowston, 1994). 

There are two types of interdependence: intra-unit interdependence and inter-unit inter-

dependence (Tushman, 1979). Intra-unit interdependence occurs when individuals within 

the same organizational unit are required to cooperate to complete a task, while inter-unit 
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interdependence occurs when different organizational units within an organization are 

required to cooperate. 

Intra-unit cooperation was found to be much easier than inter-unit cooperation because 

the members of a single organizational unit possess common knowledge and language, 

which makes it easier for them to cooperate (Tushman, 1979; Grant, 1996a). Cooperation 

across organizational units is much more difficult since the language and knowledge dif-

fers significantly from one unit to another, making it difficult for members of one unit to 

cooperate easily with those of another unit. As a result, different organizational units col-

laborate through designated managers or liaisons who have the necessary skills and 

authority to work with other units (Tushman, 1979).

A similar organizational pattern can be observed in FLOSS communities in which de-

velopers organize around functional software units referred to as modules (Crowston 

et al., 2005). Organizing source code such that similar and related functionality is encap-

sulated into the same module is considered good programming practice. Such organiza-

tion allows modules to exhibit a high degree of within-module interdependency, which is 

known as cohesion (Page-Jones, 1998). Since similar functionality is contained in single 

modules, the developers working in each module would share similar knowledge and be 

able to collaborate as if they were in a single organizational unit in which joint problem 

solving is important (Tushman, 1979). 

Since modules’ functionality is limited in scope (Page-Jones, 1998), each module is 

assigned an owner who is responsible for coordinating its development efforts (Crowston 

et al., 2005; Crowston, 1997). Within-module coordination is centralized, and it is appro-
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priate because of the limited coordination and development information-processing re-

quirements generated from a single module. These requirements are lessened because 

only a small group of developers who share common knowledge related to the modules 

are involved in the development, which allows them to coordinate more effectively. 

Therefore, we argue that within-module coordination does not generate a significant 

strain on the development structure.

Inter-unit interdependence can also be observed within FLOSS communities when de-

velopers working on separate modules are required to coordinate. The need for such co-

ordination is caused by the functional dependencies between modules (Crowston, 1997). 

Developers working on different modules will possess different sets of knowledge, mak-

ing coordination more difficult than within-module coordination (Tushman, 1979; Grant, 

1996a). Unlike intra-unit dependencies for which problems are localized to the module 

the developers are working on, problems might not be localized to one particular module 

when inter-unit dependencies exist. Therefore, managing the effects of inter-unit depend-

encies is more difficult.

To coordinate in these contexts effectively, not only will the developers need to proc-

ess coordination information, but they will also need to build common knowledge that 

will allow them to organize their development tasks (Grant, 1996a). This common 

knowledge consists of understanding the requisite development information of the other 

group (von Krogh et al., 2003), which negates the benefits of having a distributed devel-

opment structure because the developers can no longer specialize in their own modules. 

In addition to performing all of the coordination tasks, committers will also be required to 
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perform more development-related information-processing tasks, which forces them to 

make tradeoffs affecting the overall performance of the community. Therefore,

H 5 Task interdependency will be negatively related to a FLOSS community’s perform-

ance. 

As mentioned in the previous section, task interdependence in software development 

occurs between developers when they are working on the same source code files within a 

module or when the source code files they are working on have functional dependencies 

that span modules (Malone and Crowston, 1994; Crowston, 1997). Since within-module 

dependencies do not put a significant strain on the development structure, it follows that 

the committal structure will not be strained. As a result, cross-module dependencies be-

come a significant source of development-related information-processing requirements.

Adding new committers will not help address this demand because more committers 

in addition to the existence of high dependencies would increase the amount of cross-

module communication channels needed to maintain the functional integrity of the soft-

ware (cf. Brooks, 1975; Crowston, 1997). As a result, more of the committal structure’s 

information-processing capacity would be expended in meeting coordination demands. 

The key to achieving fit in such situations becomes a matter of reducing information-

processing requirements in general (Galbraith, 1973).

Since task interdependence is created from dependencies in the source code (Brooks, 

1975; Crowston, 1997; Tiwana, 2008), we argue that coordination-related information-

processing requirements can be reduced through conscious design decisions that reduce 

cross-modules dependencies. If source code is designed to exhibit few dependencies be-
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tween program units (i.e., modules) and high dependencies within a single unit, then this 

would allow developers to work concurrently on different program units with little need 

for coordination between them; such a design is said to exhibit high modularity (Sanchez 

and Mahoney, 1996; Baldwin and Clark, 2006; Tiwana, 2008).

Limiting cross-module dependencies would limit the unanticipated side effects of 

making changes in one module, which often appear in different modules. This, in turn, 

reduces the need for coordination and communication because the development tasks per-

formed by developers would be restricted to specific modules and would enable develop-

ers working on different modules to work in parallel (Crowston, 1997). Such a limitation 

is equivalent to the strategy suggested by Galbraith (1973) for creating self-contained 

tasks. Furthermore, one of the assumptions Brooks (1975) mentions as to what would 

lead to an increase in the number of communication channels is the serialization (i.e., de-

pendencies) between tasks. Removing the serialization constraint would reduce the need 

to communicate between developers.

When coordination requirements are reduced, more of the committers’ time is freed 

for development-related information processing. As a result, the whole community bene-

fits from committers’ increased responsiveness to communication and knowledge sharing 

(Tushman, 1979) and from the specialization that results from modularization (Grant, 

1996a). These improvements make the community’s overall development more efficient 

and increase its overall development performance. More importantly, modular designs 

enable developers to work in parallel, and by reducing coordination requirements, it also 

reduces the coordination-related costs associated with adding more committers (Baldwin 
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and Clark, 2006). Therefore, we argue that distributed development is a good fit only 

when a community improves the modular design of its code base, thereby reducing the 

task interdependence between developers.

Therefore, what we expect to observe is that FLOSS communities with a distributed 

committal structure that manage to reduce task interdependence through improved modu-

lar designs will exhibit higher performance gains than similar communities with a cen-

tralized committal structure. We attribute this higher performance to the reduction of 

coordination-related information-processing requirements that are removed by the im-

proved source code design. Similarly, FLOSS communities with centralized committal 

structures and highly interdependent development tasks will perform better than similar 

communities with decentralized committal structures because decentralized structures 

will introduce more coordination-related information-processing requirements. Therefore,

H 6 As task interdependency increases, FLOSS communities with centralized committal 

structures will have higher performance gains than communities with decentralized 

committal structures. 

3  Methodology

3.1  Sample

To test our theory, we had to select a sample that satisfied the requirements stated in Sec. 

3.2.2.2. Specifically, we needed a sample that represents successful FLOSS projects that 

enjoy active development, as a great proportion of FLOSS projects are known to be dor-
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mant (Krishnamurthy, 2002). Only for actively developed projects, in which committal 

activity is ongoing over time,  could we observe variations in performance. Therefore, 

our sample frame was limited to successful projects that were likely to have ongoing de-

velopment activity (Crowston et al., 2003).

Prior literature used sourceforge.net to select their samples, citing that it represented a 

significant proportion of FLOSS projects (e.g. Krishnamurthy, 2002; Crowston and 

Howison, 2005; Stewart and Gosain, 2006; Stewart et al., 2006). However, there have 

been recent reports suggesting that the relevance of SourceForge.net as the main hosting 

service for FLOSS projects has declined (Paul, 2009a, 2009b). As such, we used 

ohloh.net, which is a website that lists over 275,000 FLOSS projects regardless of where 

they are hosted, to find a more representative sample of FLOSS projects. Our choice 

seems to have grounding, as sourceforge.net purchased ohloh.net to increase its relevance 

in the FLOSS-hosting market (2009hq).

Following the work of Wu et al. (2007), we selected from the top 1000 most success-

ful projects; however, our sample differed in that we used ohloh.net as the selection web-

site. We got further support that selecting projects from ohloh.net was the right choice 

when we found that only 22% of the top 1000 projects listed on ohloh.net were hosted on 

sourceforege.net. Therefore, we expect our results to have more external validity than 

prior literature that focused on sourceforge.net projects.

3.2  Data Collection
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For practical reasons, however, we were unable to analyze all of the projects listed in our 

sample frame. We found that prior literature focused on a specific programming language 

(e.g. Midha, 2008; MacCormack et al., 2006). They cite the choice of the language on the 

size and complexity of the resultant product (Midha, 2008; Wyuker; jones; seemidharefs). 

Since our goal is to respond to the call to increase the external validity empirical FLOSS 

studies’ findings (Koch, 2004), we expanded our selection to include three of the most 

widely used languages in FLOSS development that represent the primary programming 

philosophies: C, C++, and Python. We identified 289 potential projects for analysis repre-

senting 28.9% of the top 1000 projects. 

Following the recommendations of Howison and Crowston (2004) and prior empirical 

literature on FLOSS dealing with source code repositories (e.g. Wu et al., 2007; Midha, 

2008; Liu and Iyer, 2007), we screened the projects and excluded projects that repre-

sented meta-projects and projects with missing history or inaccessible repositories. Since 

there were no established criteria in prior literature as to what an actively developed pro-

ject was (besides the ranking on sourceforge.net), we had to establish our own criteria 

because the majority of the projects in our sample were not listed on sourceforge.net and 

varied significantly in their level of activity. Therefore, we identified an actively devel-

oped project as any project that observed at least a single commit per analysis period 

since the start of our observation2. This left us with a usable sample of 237 projects. We 
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then downloaded the source code repository for all of the projects in our sample and pro-

ceeded with the data collection. 

Prior literature has examined FLOSS projects by observing the activity between re-

leases that spanned several months (Midha, 2008), while others observed the activity for 

fixed time periods ranging from one month to up to a year (e.g., Wu et al., 2007; Liu and 

Iyer, 2007; Stewart et al., 2006; Koch, 2004). We chose to go with a fixed period of three 

months, which we believe is long enough to capture any changes in the community’s ac-

tivity in response to changes in the structure.

Tab. 3.3 provides some descriptive statistics of the projects, which shows that the 

minimum number of commits per quarter was one. Notice how the number of commits is 

also skewed towards a high number of commits per month with a mean of 289.2 and a 

median of 116. The same could be seen for the number of committers, contributors, and 

popularity, which were measured as number of self-reported users in ohloh.net. This leads 

us to conclude that our sample is indeed representative of actively developed FLOSS pro-

jects. Tab. 3.4 lists the variables we collected from this sample and provides a summary 

of the corresponding construct definitions and operationalization.
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Table 3.3: Descriptive statistics for the project sample

Median Mean STD
Age
In weeks relative to 1-1-2007

4 5.64 48.7

Popularity 57.5 192.1 447.71
CommittersCount per quarter 5 10.84 14.489
Contributorscount per quarter 8 16.29 26.786
Commitscount per quarter 116 289.2 456.656

 

Table 3.4: Variable operationalization

Variable Definition Operationalization

Performance
(PERF)

Progress made towards meeting 
the demands of the FLOSS com-

munity.

The tallied count of commits listed in 
the repository within a three month 
window (Koch and Schneider, 2002; 
Grewal et al., 2006).

Centralization
(CENT)

The degree to which the commit-
tal activity in a FLOSS commu-
nity is concentrated in the hands 
of a small group of committers 
relative to the overall size of the 
development structure’s member-
ship.

The ratio of committers to total num-
ber of developers in the community 
(Ouchi and Dowling, 1974).
	


.

Task Routine-
ness (TROUT)

The degree of predictability in the 
software development task done 
within the FLOSS community.

The average number of files changed 
per commit.

Contributor
Uncertainty
(CUNC)

The unpredictability in develop-
ment tasks that is introduced from 
the need to integrate the work 
from contributors who are consid-
ered external to the FLOSS devel-
opment structure.

The ratio of new contributors to the 
total number of contributors during 
the analysis period.
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Task
Interdependence 
(TINT)

The degree to which the develop-
ment tasks of the developers in a 
FLOSS community require coop-
eration to be completed.

The modularity measure (Newman 
and Girvan, 2004; Newman, 2006b) 
of the leading eigen-vector partition-
ing (Newman, 2006a) of the depend-
ency graph for the beginning of the 
analysis period.

 

3.3  Variables

3.3.1  Performance

Content Validity

Performance is defined as the progress made towards meeting the demands of the FLOSS 

community. Since our theory is built on the premise that the committal structure is the 

bottleneck for development activities in FLOSS communities, we can assess how many 

tasks are completed by the committers based on the number of completed commits (Koch 

and Schneider, 2002; Grewal et al., 2006). We make the assumption that a commit ad-

dresses at least one community request by either fixing a bug or implementing a feature. 

Hence, we can compare the relative performance of communities based on how many 

issues are addressed while controlling for the differences between these projects. 

Procedure

To estimate performance, we counted the total number of commits made by a project per-

formed during a single analysis period. The distribution of the count data suffered from 

over-dispersion with a dispersion parameter of 56, which prevented us from using a 
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Poisson-based regression. To address this problem, we performed log transformation to 

normalize the distribution of the data.

3.3.2  Centralization

Content Validity

Centralization is defined as the degree to which the committal activity in a FLOSS com-

munity is concentrated in the hands of a small group of committers. In such cases, the 

majority of committal activity is done by a relatively small number of committers who 

divvy the distribution of the workload. When the development structure is more decen-

tralized, committal activity will be distributed among a greater number of committers. In 

decentralized development structures, the workload is more evenly distributed to a larger 

number of committers.

To estimate centralization, we calculated the ratio of committers to the total number of 

developers (i.e., contributors and committers) in a FLOSS community. The intuition be-

hind this measure is that the higher the ratio, (i.e., the greater the number of committers to 

total developers), the greater the distribution of workload, which is the reverse of cen-

tralization. Therefore, higher ratios represent more decentralized structures, while lower 

ratios represent more centralized structures. 

This notion of centrality is very close to the concept of span of control (Simon, 1997) 

that is measured as number of subordinates to supervisors (Ouchi and Dowling; 1974). 

While the relationship between a committer and contributor is not that of subordinate and 

supervisor, the ratio between their numbers reflect the density in upward communication 
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going from contributors to committers (Ouchi and Dowling, 1974). Low communication 

density (i.e., smaller ratio) suggests centralized structures where committers expend 

greater effort having to communicate with more contributors. Whereas low communica-

tion density (i.e., greater ratio) suggests a more decentralized structure where the com-

munication effort with contributors is distributed among a larger group of committers. 

Procedure

To obtain the centralization estimate, we counted the total number of committers and con-

tributors as identified from the revision control system for the whole analysis period. We 

then obtained the ratio of committers to total number of committers and contributors as 

an estimate of decentralization of committal structure. We subtracted that ratio from one 

to make it a ratio that increased with centralization. 

The variable, however, observed a non-normal distribution with distributional masses 

close to both zero and one. To address this distributional problem, we had to transform 

the variable into a nominal variable using a median split given the distributional charac-

teristics (MacCallum et al., 2002), where zero represents a decentralized committal struc-

ture and one represents a centralized committal structure3.

3.3.3  Task Routineness

Content Validity
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 We define task routineness as the degree of predictability in the software development 

task. Predictable tasks are analyzable and, therefore, easy to break down into simple rou-

tines and steps (Perrow, 1967). For software development tasks, simple routines and steps 

can be implemented and grouped into a single source file. Complex development tasks, 

on the other hand, will draw from different functional domains (Grant, 1996a) and will 

require the modification or addition of more than a single source file. Changes to more 

source files entails that the developer have to acquire the knowledge embedded in each 

modified file. Furthermore, spreading out the changes to a larger number of files increases 

the risk of introducing a bug or creating a conflict with another developer, as the likeli-

hood of two developers working on the same file increases (Crowston, 1997). Therefore, 

the average number of files changed per commit will be inversely related to the routine-

ness of the development task.

Procedure

To obtain the estimate of task routineness we first counted the total number of files 

changed or added over the analysis period. We then divided that number by the number 

of commits to estimate the average number of files changed per commit. We then log 

transformed the variable to normalize its distribution and mean center as recommended 

by Aiken and West (1991) when testing for interaction terms. As mentioned in the previ-

ous section, however, routine tasks are associated with a smaller number of changed or 

added files. As a result, this proxy will be negatively covaried to variables that truly rep-

resent task routineness. Since our variable is mean centered, we multiply it by negative 
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one to reverse the direction of the variance as to make it positively covaried in relation to 

task routineness.

3.3.4  Contributor Uncertainty

Content Validity

Uncertainty in task environment is defined as the unpredictability in development tasks 

that is introduced from the need to integrate the work from contributors who are consid-

ered external to the FLOSS development structure. The uncertainty comes specifically 

from new contributors who are likely to make more mistakes either because they know 

less about the current code base or about the development process. As a result, commit-

ters find themselves spending more time reviewing and committing the work of first time 

contributors (von Krogh et al., 2003). Furthermore, new contributors will require more of 

the committers’ time to help them get past the ramp-up effect (Brooks, 1975). Returning 

contributors are likely to have absorbed more of the knowledge required to make a con-

tribution to the code base and to have gotten past the ramp-up effect with a prior contri-

bution. Therefore, we make the assumption that returning contributors are considered part 

of the development team and will not introduce external uncertainty to the committal 

structure.

Procedure

We counted the number of unique contributors for the analysis period by extracting their 

names from the committal logs of the revision control system. We estimated contributor 
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uncertainty using the ratio of new contributors to the total number of committers. How-

ever, given the distributional characteristics of the variable where there are masses close 

to the values of zero and one, we had to perform a median split and dichotomize the vari-

able into low (zero) and high (one) uncertainty (MacCallum et al., 2002).

3.3.5  Task Interdependence

Content Validity

Task interdependence is defined as the degree to which the completion of development 

tasks in a FLOSS community requires the developer cooperation. The first form of inter-

dependence we discussed in Sec 3.2.3.5 was intra-unit interdependence, which are the 

dependencies shared by developers working on the same set of files. We also explained in 

Sec 3.2.3.5 another form of task-interdependence, inter-unit interdependence, which re-

quires coordination and communication between developers working on different mod-

ules. The need for communication across modules is generated by dependencies between 

the different modules on which developers are working. When organizational units 

maximize intra-unit dependencies and minimize inter-unit dependencies, it would allow 

the different units to work in parallel by reducing the communication and coordination 

requirements (Crowston, 1997). 

In software development teams, such separation could be achieved by managing the 

dependencies between the different functional units (i.e., modules) in the software on 

which the development team is working (Crowston, 1997). By minimizing coupling be-

tween modules, a software development team could reduce the need for communication 
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between groups working on different modules and could enable a parallel development 

process (Baldwin and Clark, 2000). On the other hand, developers working on the same 

modules that encapsulate highly related functionality will need to put forth less effort for 

communication due to the amount of shared knowledge between them from working on a 

highly specialized unit of software, This, in turn, enables shared problem solving and im-

proved maintainability of the module (Grant, 1996a; Page-Jones, 1998).

To estimate the level of dependencies across and within modules, we leveraged the 

leading eigen-vector method to partition the dependency graph of the source code and 

obtain an estimate of its modularity (Newman, 2006a). The modularity value would be 

high when cross-module dependencies are low (i.e., loosely coupled) and within-modules 

dependencies are high, suggesting that the modules are properly partitioned with very 

little interdependence of tasks across functional units (see Study 1). Therefore, the modu-

larity measure can be used as a proxy that is inversely related to task interdependence.

Procedure

First we extracted the dependency graph for a snapshot of the source code at the begin-

ning of the analysis period. We then used the leading eigen-vector method (Newman, 

2006a) to examine how well the graph could be partitioned into sub-graphs. Next, we ex-

tracted the modularity measure for the resulting partition from the leading eigen-vector 

method. We then mean centered the variable since we would be testing an interaction 

term (Aiken and West, 1991). Finally, we multiplied the value by negative 1 since the 

modularity estimate was inversely related to task interdependence.
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3.4  Controls

3.4.1  Age of Project

The age of the FLOSS project might have an effect on the number of committers since 

older projects have more established roles and procedures for coordination than younger 

projects, which might impact performance. In addition, age can serve as a proxy for the 

stage in which the FLOSS project is, which could affect the level of activity in the project 

and, thereby, its performance (Stewart et al., 2006). Age was measured in terms of num-

ber of months from the time the first committal was made to the source code up to the 

first day of the analysis period.

3.4.2  Programming Language

Different programming languages follow different philosophies. Some languages, like 

Python, focus on prototyping and are thus easier to develop for and collaborate on 

(Stewart et al., 2006; Midha, 2008). Such languages are designed with productivity in 

mind, which is why we expect language to have an impact on a community’s overall de-

velopment performance.

3.4.3  Project Popularity

A FLOSS project’s popularity might also play a role in performance because developers 

may find popular projects to be more attractive to join due to the social benefits associ-

ated with participation and exposure (Lakhani and Wolf, 2007; Lerner and Tirole, 2002). 

In addition, popular projects tend to have a greater number of software users, which 
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means the pool of potential contributors to the project is larger (see Study 1). Thus, hav-

ing more contributors will have an impact on overall project performance.

To measure popularity, we obtained the number of users that reported using the soft-

ware on ohloh.net. Given that ohloh.net is a social website for FLOSS developers, the 

number of users that report using a software product serves as a good proxy for popular-

ity amongst developers who are likely to contribute.

3.4.4  Size of Project

Projects with a larger code base are likely to be more complex and have a greater need for 

change (see Study 1). Therefore, we expect projects to differ in the amount of develop-

ment activity they require, which might make smaller projects inherently less active. Fur-

thermore, the rate of change in the source code, or the development inertia, has been 

found to be closely related with the size of the code base in Source Lines of Code 

(SLOC) (Booch, 2008). Therefore, it was important to control for the size of the code 

base, estimated as SLOC, for the beginning of the analysis period, which allowed us to 

compare differently size projects.

3.4.5  Number of Committers

While we are interested in the ratio of committers to external contributors in our study, 

the total number of committers still has implications for performance. Larger projects can 

perform a greater number of commits simply by virtue of having a larger group of com-

mitters. As a result, we controlled for the number of committers, as we are interested in 

the effects that are above and beyond size-related variables.
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3.5  Analysis and Results

Given the longitudinal nature of our study, we used a mixed-model analysis to fit our sta-

tistical models (Cohen et al., 2003). Specifically, we used the lme4 library (Bates and 

Maechler, 2009) for the GNU R (R Development Core Team, 2009) to perform a 

Gaussian-based mixed model given the normally distributed dependent variable. Before 

performing that step, however, we screened our data and made sure that we had no miss-

ing data or variables with distributions that violated the assumptions of mixed-model 

analysis. The correlation matrix (Tab.  3.5) suggests that our variables have discriminant 

validity given that the correlations between them are low.

Furthermore, we used the influence.ME package (Nieuwenhuis et al., 2009) to assess 

the influence of our observations on the results of the mixed-model analysis using Cook’s 

d (Cohen et al., 2003). With Cook’s d values less than .3, we concluded that no single ob-

servation had any excessive influence over the results.

Table 3.6 summarizes the results from our mixed-model analysis (Cohen et al., 2003). 

The mixed models were fitted such that the observations were nested within projects. 

Relative to the null model, the controls-only model was able to explain 17.7% of the 

variability. The main-effects model was a significant improvement over the control with 

an R2 of 23.84%. Since we are fitting a Gaussian-mixed model for an unbalanced design, 

the recommended method to estimate p-values for inference tests is to use a Markov 

Chain Monte Carlo simulation and estimate the 95% Highest Probability Density Interval 

(HPD) (Bates and Maechler, 2009; Chen et al., 2000).
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Table 3.5: Variable correlations and descriptive statistics

PERF CENT TROUT CUNC TINT AGE PER isGPL isC isCpp isPy POP SLOC COM

PERF 1.00

CENT 0.22 1.00

TROUT 0.24 0.03 1.00

CUNC 0.16 0.33 0.10 1.00

TINT -0.27 -0.03 0.21 -0.01 1.00

AGE 0.06 0.11 0.00 0.02 -0.15 1.00

PER -0.06 0.03 -0.02 -0.15 -0.01 0.04 1.00

isGPL -0.01 -0.01 0.01 0.02 0.00 0.10 0.05 1.00

isC 0.21 0.12 0.10 0.02 -0.11 0.34 0.00 0.10 1.00

isCpp 0.20 -0.06 -0.24 -0.06 -0.29 -0.09 -0.01 0.11 0.03 1.00

isPy -0.13 -0.05 0.10 0.01 0.20 -0.29 0.00 -0.15 -0.63 -0.32 1.00

POP -0.20 -0.13 -0.01 0.00 0.09 -0.39 -0.03 -0.11 -0.18 0.08 0.18 1.00

SLOC 0.44 0.14 -0.28 -0.02 -0.44 0.32 0.06 -0.04 0.35 0.29 -0.36 -0.26 1.00

COM 0.66 -0.08 0.14 0.15 -0.22 0.13 -0.01 0.04 0.19 0.17 -0.07 -0.24 0.39 1.00

min 0.00 0.00 -4.64 0.00 -0.42 -7.61 1.00 0.00 0.00 0.00 0.00 -0.21 -6.01 -1.77

mean 4.68 0.48 0.00 0.50 0.00 0.00 4.54 0.42 0.82 0.43 0.14 0.00 0.00 0.00

median 4.84 0.00 0.01 0.00 0.03 0.27 4.00 0.00 1.00 0.00 0.00 0.00 0.01 0.02

max 8.33 1.00 5.03 1.00 0.65 13.16 10.00 1.00 1.00 1.00 1.00 0.15 3.73 3.05

std 1.64 0.00 0.86 0.00 0.29 2.65 2.97 0.00 0.00 0.00 0.00 0.11 1.41 1.15
  

The null hypotheses that the regression coefficient is different from zero is rejected 

with an alpha < .05 when zero is not within the range of the HPD interval. Based on this 

inference method, we notice that TROUT has a significant relationship with PERF with a 

coefficient of 0.2873 in the main-effect model. This result lends support to our hypothe-

sized positive relationship between task routineness and performance in H1. Similarly, 

the results suggest that TINT ha a significant relationship with PERF with a coefficient of 

-0.3801. This result lends support to the hypothesized negative relationship between task 

interdependence and performance in H5. We could not find support for H3 given that the 

CUNC has a non-significant coefficient.
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Table 3.6: Model fitting 

Model Null ControlControlControl Main EffectsMain EffectsMain Effects Interaction EffectsInteraction EffectsInteraction Effects

Estimate HPD LowerHPD Upper Estimate HPD LowerHPD Upper Estimate HPD LowerHPD Upper

TROUT*C
ENT — 0.079* 0.007 0.176

CUNC*CE
NT — -0.153* -0.372 -0.03

TINT*CEN
T — 0.41. -0.035 0.738

CENT — 0.601*** 0.572 0.772 0.701*** 0.649 0.929

TROUT — 0.287*** 0.275 0.378 0.251*** 0.224 0.348

CUNC — 0.099 -0.03 0.151 0.162* 0.023 0.264

TINT — -0.37*** -0.813 -0.161 -0.56*** -1.036 -0.294

AGE — -0.062*** -0.109 -0.033 -0.071*** -0.113 -0.047 -0.069*** -0.112 -0.045

PER — -0.031*** -0.052 -0.019 -0.03*** -0.052 -0.021 -0.031*** -0.052 -0.022

isGPL — -0.153 -0.286 0.073 -0.124 -0.233 0.074 -0.125 -0.239 0.073

isC — 0.228 -0.042 0.544 0.011 -0.285 0.243 0.023 -0.263 0.264

isCpp — 0.132 -0.082 0.317 0.257* 0.055 0.412 0.252* 0.045 0.403

isPy — -0.222 -0.417 0.258 -0.279 -0.475 0.129 -0.271 -0.462 0.135

POP — -0.431 -1.666 0.411 -0.353 -1.346 0.472 -0.277 -1.229 0.591

SLOC — 0.002*** 0.067 0.202 0.056*** 0.111 0.24 0.06*** 0.113 0.24

COM — 1.226*** 0.979 1.115 1.089*** 0.878 1.006 1.085*** 0.878 1.004

Int 4.652*** 4.6779*** 4.603 4.77 4.344*** 4.25 4.43 4.314*** 4.202 4.391

AIC 5538 462346234623 430843084308 431143114311

LogLik -2766 -2300-2300-2300 -2138-2138-2138 -2136-2136-2136

Deviance 5532 456845684568 422742274227 421442144214

R2 — %17.2%17.2%17.2 %23.01%23.01%23.01 %23.08%23.08%23.08

Chi2 Diff — 983.745983.745983.745 341.096341.096341.096 13.1413.1413.14

P — <.0001***<.0001***<.0001*** <.0001***<.0001***<.0001*** 0.00434***0.00434***0.00434***

Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1
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Since we used single-indicator variables as proxies for our theoretical constructs, we 

followed the recommendation of Venkatraman (1989) to test for the hypothesized fit in 

H2, H4 and H5 as moderation. We also followed the recommendations of Aiken and West 

(1991) and Cohen et al. (2003) and mean centered all of the continuous variables such 

that the intercept and lower-order effect terms could be interpreted.

We included the interaction terms in the interaction model between our main effect 

variables and CENT, which is the moderator that represents the centralization of a 

FLOSS community’s committal structure. Based on the Chi2 difference test, the interac-

tion model explains a significant amount of variability more than the main effect model. 

With an R2 of 20.08% the change in the effect size due to the addition of the interaction 

terms is quite small. This however is typical of moderation effects in psychological and 

management studies in which the median for the effect size for studies conducted over 

the past 30 years was found to be around 0.002 (Aguinis et al., 2005). McClelland and 

Judd (1993) attribute this to the small amount of residual variance, after accounting for 

the main effects, that is used to detect moderation effects.

The positive and significant coefficient of the TROUT*CENT coefficient (0.079, p-

value < 0.05) lends support to H2, which suggests communities with centralized commit-

tal structures are a better fit for routine tasks. To illustrate this, we plotted the simple 

slopes for the interaction term in Fig. 3.4, which shows how performance increases at a 

higher rate for centralized committal structures than for decentralized committal struc-

tures as the development task becomes more routine (Aiken and West,1991; Cohen 

et al.,2003). The simple slope for decentralized FLOSS communities is represented by 
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the main effect coefficient associated with TROUT in the interaction model (0.251, p-

value < 0.0001). The significance test for this main effect coefficient is also used to test 

whether the TROUT simple slope for the decentralized reference group is significantly 

different from zero (Aiken and West, 1991; Cohen et al., 2003).

Figure 3.4: Simple slopes for effect of TROUT over different levels of CENT

 To obtain the TROUT simple slope for the centralized FLOSS communities, we simply 

added the TROUT*CENT coefficient to the TROUT coefficient (0.33, p-value = < 

0.0001). The significance test for this simple slope was obtained by reverse coding the 
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CENT variable such that the centralized FLOSS projects are the reference group and then 

refitting the interaction model (Aiken and West, 1991; Cohen et al., 2003).

As can be seen in Fig 3.4, the higher increase in performance is signified by the 

steeper and positive slope of the centralized committal structure line. Since TROUT is a 

continuous and mean-centered variable, the significance of the interaction term 

TROUT*CENT (p-value < 0.05) was used as a test to confirm that the difference in the 

simple slopes between the two levels of CENT is indeed significant (Aiken and West, 

1991).

The negative and significant slope of the CUNC*CENT coefficient (-0.147, p-value < 

0.05) lends support to H4, which suggests that a decentralized committal structure is a 

better fit for dealing with higher contributor uncertainty (i.e., the increase in numbers of 

new contributors). This result also confirms that the simple slopes for centralized and de-

centralized FLOSS communities are significantly different (Aiken and West, 1991).

To illustrate this difference, we plotted the simple slopes for the interaction term as 

shown in Fig. 3.5. The graph shows that the effect of uncertainty on performance has a 

positive and steeper slope for decentralized communities than for centralized communi-

ties. The CUNC simple slope for centralized FLOSS communities is non-significant 

(0.009, p-value > 0.1)4, suggesting that contributor uncertainty has no impact on perform-

ance for centralized FLOSS communities. On the other hand, the CUNC simple slope for 
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decentralized communities was positive and significant (0.162, p-value < .05), which is 

contrary to our expectations.

Figure 3.5: Simple slopes for effect of CUNC over different levels of CENT

 Finally, we found partial support for H6, which suggests that centralized committal 

structures are a better fit when there is a high degree of task interdependence, as illus-

trated by the coefficient of the TINT*CENT term (0.406, p-value < 0.1). The results sug-

gest that FLOSS communities with centralized committal structures can perform better 
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than communities with decentralized committal structures as task interdependence is in-

creased.

To illustrate this, we plotted the simple slopes for the interaction term shown in Fig. 

3.6. The steeper slope for the relationship between TINT and PERF for FLOSS commu-

nities with decentralized committal structures suggests that centralized committal struc-

tures are a better fit for increasing task interdependence, as performance drops at a much 

slower rate than in decentralized committal structure (-0.5603, p-value = < 0.0001)5. For 

the simple slope for centralized committal structures, however, there was only partial 

support that it was significantly different from zero (-0.151, p-value < 0.1), suggesting 

that interdependence might have a less detrimental effect on performance for centralized 

FLOSS communities.

Furthermore, when looking at the increasing performance from the right side of the 

graph to the left, the same graph suggests that decentralized committal structures can ob-

serve higher performance gains as task interdependence is reduced by means of improv-

ing the software design to be more modular. However, the difference in between these 

simple slopes only finds partial support with the partially significant TINT*CENT coeffi-

cient (-0.41, p-value < 0.1) (Aiken and West, 1991).
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Figure 3.6: Simple slopes for effect of TINT over different levels of CENT

4  Discussion

The main premise of our theory is that development activities within a FLOSS commu-

nity are information-processing tasks (Galbraith, 1973). Under the assumption of 

bounded rationality, we forwarded the argument that the committal structure will be the 

main bottleneck of performance as the information-processing requirements of a FLOSS 

community increased. The results of our statistical analysis suggest that there is good 

overall support for the theory we have forwarded about the performance of FLOSS com-
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munities as summarized in Tab. 3.7. We also summarize the main contributions of our 

work in Tab. 3.8

Table 3.7: Summary of empirical findings from the higher-order model

Hypothesis Coeffecient Support

H1: Task routineness is positively related to a FLOSS com-
munity’s performance.

TROUT: 0.287 p-value < 0.001 Supported.

H2: As tasks become more routine, FLOSS communities with 
centralized committal structures will have higher performance 
gains than communities with decentralized committal struc-
tures.

TROUT*CENT: 0.079 p-value < 0.001 Supported.

H3: Contributor uncertainty will be positively related to a 
FLOSS community’s performance.

CUNC: 0.099 p-value > 0.1 Not supported.

H4: As contributor uncertainty increases, FLOSS communities 
with centralized committal structures will have lower per-
formance gains than communities with decentralized commit-
tal structures.

CUNC*CENT: -0.147 p-value < 0.05 Supported.

H5: Task interdependency will be negatively related to a 
FLOSS community’s performance.

TINT: -0.37 p-value < 0.001 Supported.

H6: As task interdependency is increased, FLOSS communi-
ties with centralized committal structures will have higher 
performance gains than communities with decentralized com-
mittal structures.

TINT*CENT: 0.41 p-value < 0.1 Partially supported.
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Table 3.8: Summary of this work’s main contributions 

Finding Impact

FLOSS communities per-
forming simple tasks per-
form better.

•	

 Importance of good source code design to simplify develop-
ment. 

•	

 Contributors should work closer to the community and make 
small incremental changes rather than work in isolation and 
accumulate their patches into a single patch that is hard to 
incorporate. 

Centralized committal struc-
tures are a better fit for rou-
tine tasks.

•	

 The committal structure should match the needs of the com-
munity. 

•	

 There is no single superior structure. 

Decentralized committal 
structures are a better fit un-
der high contributor uncer-
tainty.

•	

 Decentralized committal structures are necessary if commu-
nity involvement is valued. 

•	

 Brooks’ law is not obsolete; the committal structure has to be 
overwhelmed for it to become obvious. 

Task interdependence in-
creases information-
processing requirements for 
a FLOSS community and 
reduces performance.

•	

 Importance of modularizing the source code and its effect on 
the performance of a FLOSS community. 

•	

 Further validation of the Newman (2006a) modularity meas-
ure. 

Decentralized committal 
structures are a better fit un-
der conditions of low task 
interdependence.

•	

 Decentralized committal structures are enabled by proper 
code design. 

•	

 Centralized committal structures might be the only way to 
continue to maintain and develop tightly coupled code bases. 

•	

 Brooks’ and Raymond’s views are complementary. Raymond 
explains how FLOSS development is conducted under condi-
tions of fit, while Brooks’ views become apparent under con-
dition with lack of fit. 
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In H1, we hypothesized that FLOSS communities will perform better when their de-

velopment tasks are more routine. We attributed the improved performance to the reduced 

information-processing requirement of routine tasks, which are less likely to overwhelm 

the committal structure. The results from our statistical analysis lend support to this hy-

pothesis.

These findings suggest that FLOSS communities could improve their performance if 

development tasks are simplified. Specifically, communities should invest their time in 

properly designing and organizing the source code such that similar functionality is en-

capsulated in specific modules (Page-Jones, 1998). The findings also signify the impor-

tance of working within the community for contributors. By being close to the commu-

nity and contributing small and incremental changes, contributors are likely to find the 

committal structure more responsive. Working in isolation and contributing a large patch 

to the community will likely require a significant time investment from committers and 

will most likely result in the patch not being accepted. 

In addition, we hypothesized that centralized committal structures are a better fit for 

routine development tasks because the coordination requirements between committers are 

generally lower for centralized committal structures than for decentralized structures due 

to the smaller number of communication channels that each committer is required to 

maintain with other committers (Brooks, 1975). This hypothesis also found support in our 

statistical analysis.

What these results suggest is that even though decentralized committal structures 

might have a higher capacity to process information, they are not the best fit for every 
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situation. Communities that maintain projects that require routine development activities, 

either from the simplicity of the problem or the maturity of project with plateaued devel-

opment activity, could be developed and maintained more efficiently with a centralized 

committal structure. On the other hand, more complex projects could benefit greatly from 

the distributing the development process. However, there is the limitation that the design 

of the code base must be improved to enable such a distributed development mode, as we 

shall explain in the discussion about the results for H5 and H6.

We hypothesize in H3 that increased uncertainty from having new contributors par-

ticipate might have a detrimental effect on performance, as new contributors, and even 

their patches, will demand extra attention from committers. The results did not lend sup-

port to this hypothesis. It is possible that the dichotomization of the variable was the 

cause of our failure to detect such an effect, which we acknowledge to be an unavoidable 

limitation in our methods (MacCallum et al., 2002). It could also mean that the central-

ized committal structure is overwhelmed and that the committers are doing a good job of 

organizing the committal activities so as to continue to maintain progress. To confirm that 

this was indeed the case, we would need to examine the number of ignored patches by the 

community. While there is no denying that such data could enrich our methods, we found 

it very difficult to collect, which seems to be a limitation that could be addressed in future 

work.

We were surprised, however, from the significant and negative interaction term that 

suggests, as we predicted in H4, that FLOSS communities with decentralized committal 

structures tend to perform better under higher uncertainty. The simple slopes suggest that 
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uncertainty had no impact on performance for centralized committal structures. However, 

higher uncertainty translated into higher performance under decentralized committal 

structures. 

The higher performance of decentralized committal structures under high uncertainty 

could be attributed to decentralized committal structures being able to deal with the ex-

ternal uncertainty introduced by new contributors more effectively. As we explained in 

Sec. 3.2.2, committal activities are performed in parallel, resulting in a continuance of 

committal activity when new contributors require the attention of one of the committers. 

This may even lead to more of the new contributors turning into regular contributors and 

adding to the increased performance of the community.

What is interesting about this finding is that it shows the direct tension between 

Brooks’ and Raymond’s views. The lack of performance improvement for centralized 

structures shows, as Brooks’ had anticipated, that there are no performance gains. To take 

advantage of new contributors’ effort, the community should be able to decentralize the 

committal structure to be able to handle the extra uncertainty introduced by new contribu-

tors. 

In light of these results, we conclude that it is a bit premature to consider Brooks’ law 

obsolete. Rather, it seems that Brooks’ law starts to take effect in FLOSS communities 

when the committal structure hits the limits of its information-processing capacity. This is 

even further highlighted by the support for H4 in which we specifically hypothesized that 

decentralized committal structures are a better fit for dealing with contributor uncertainty. 

We believe this to be true mainly due to their greater capacity for information processing 
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from their distribution of tasks and requisite development knowledge among a larger 

group of committers, which reduces the workload on any single individual.

In H5, we hypothesized that communities with fewer interdependencies in their devel-

opment task will generally perform better. We attribute this improved performance to the 

reduction in such communities’ need for coordination, which frees up more of the com-

mittal structure’s information-processing capacity for performing more tasks. The need 

from coordination stems mainly from dependencies between the source files on which 

different developers work, which creates the need for coordination Crowston (1997). By 

improving the design of the source code to exhibit higher modularity (i.e., low coupling 

between modules and high cohesion within a module), FLOSS communities can improve 

their performance. The results from our analysis generally support this hypothesis. The 

importance of this finding also stems from the fact that it offers further validation to the 

modularity measure (Newman, 2006a). 

Finally, we hypothesize in H6 that centralized committal structures are a better fit for 

highly interdependent tasks because highly interdependent tasks will require greater co-

ordination efforts. In communities with decentralized committal structures, committers 

will have to maintain communication channels with a larger group of committers to 

maintain the functional integrity of the developed software (Brooks, 1975; Crowston, 

1997). With higher task interdependence, the amount of information that needs to be ex-

changed in each channel will increase, making it impossible for a committer to maintain 

the same amount of channels. Therefore, centralized structures have the advantage of 

having a smaller group of committers maintaining a smaller number of communication 
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channels, which, in turn, take up much less of the committal structure’s information-

processing capacity. This hypothesis found support with the higher decrease in perform-

ance for decentralized committal structures as compared to centralized committal struc-

tures. 

The flip-side of the previous argument is that the improvement gains to software de-

sign in decentralized committal structures are greater than for centralized committal 

structures. We would even go as far as saying that large FLOSS communities with large 

committal structures require a highly modular design to continue to function. This also 

goes back to the tension between Brooks’ and Raymond’s view. While Raymond sup-

ported the distributed development model of the FLOSS community and touted its bene-

fits, the caveat to this idea is that the software should be designed to enable such a proc-

ess. Adding developers or improving performance always comes at an information-

processing cost, and FLOSS communities will be able to improve on both only up to 

what the information-processing capacity of the committal structure would allow them to. 

After that point, the community must make a trade-off to either reduce their information-

processing needs or increase their information-processing capacity.

5  Limitations and Future Research

Although our work provides insight into the development structure of FLOSS communi-

ties, care should be taken so as not to confuse the development structure with the com-

munication structure (Crowston and Howison, 2005). There is evidence that a FLOSS 

community’s communication structure will not match its development structure (Mockus 
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et al., 2002). As such, it will be rather interesting to know how the two relate. Our work 

raises the following questions that future studies could help address: could an increase in 

communication activity signal that there is a problem in coordination that could be reme-

died by increased communication; and will this affect the sustainability of the community 

since it would result in an increased cost for participation and an information overload on 

the members (Jones et al., 2004; Kuk, 2006)? 

The way we conceptualized the development structure to exclude the communication 

structure might seem to be a limitation; however, it was a necessary simplification that 

lead us one step closer to understanding organizational structures in FLOSS communities. 

We explained that we took this approach because we saw the main function of a FLOSS 

community as being the development of software and that all contributions must be proc-

essed by committers; therefore, they are indeed a bottleneck in the development structure. 

Prior work that examined development organization in FLOSS communities took a 

small-sample approach (Mockus et al., 2002; Shah, 2006; O’Mahony and Ferraro, 2007) 

or mainly examined the communication structure (Crowston and Howison, 2005). This 

work came as a response to the call by Koch (2004) for more studies that attempt to gen-

eralize findings across a diverse set of FLOSS projects. Future studies could build on our 

work and take a more granular approach to classifying FLOSS community structures and 

understanding their effects on participation and productivity in addition to their relation 

to the communication structure.

It is also important to highlight the limitations of our methods in the hope that future 

studies could improve upon them. The first of these limitations relates to the quarterly 
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window used to aggregate our data. While we have justified our selection based on prior 

work that used anywhere from a one-month to a one-year window, we feel that our selec-

tion was somewhat arbitrary. We hope to vary this window of analysis with our future 

work and compare the results. The limited computational resources at this time prevented 

us from feasibly performing this task.

Furthermore, due to the unusual distribution of some of our variables, we were left 

with no choice but to dichotomize the variables. Such an approach might yield spurious 

relationships and result in lowering the power of the statistical analysis (MacCallum 

et al., 2002). However, we ruled out the chance that our results are spurious by conduct-

ing the analysis using alternative methods for factoring the variables and found the results 

to hold (see Appendix A). We chose to use the results of the dichotomized variables be-

cause they are easier to present and interpret. The fact that we found significant results 

despite the lower statistical power of our chosen method of factorization suggests that the  

actual effects that we are trying to detect might have a larger effect size in reality. While 

we were limited in terms of the variables we could extract from the available data ar-

chive, we hope to make improvements in future work by augmenting our data with sur-

veys and alternative data sources.

Finally, while we may have espoused the idea that there is no single superior organiza-

tional form, we only examined a subset of the potential tradeoffs between the different 

committal structures. There are still some broader implications for the different committal 

structures that future studies could expand on. For example, what are the actual organiza-

tional costs for a community to change the committal structure and how might that 

216



change impact contributors and performance over the transition period. Furthermore, 

given that such initiatives could be conceptualized as a form of business-process reengi-

neering, the risk that such initiatives could fail does exist. Therefore, it will be important 

to understand what factors might contribute to the success or failure of such initiatives.

6  Conclusion

The goal we set out to achieve with this study is to determine if organizational theories of 

fit apply to FLOSS communities, knowing that FLOSS communities have emergent 

structures by nature (O’Mahony and Ferraro, 2007). We leveraged OIPT (Galbraith, 

1973) to argue that FLOSS communities that perform highly in terms of source code out-

put will organize to achieve the best fit between their information-processing capabilities 

and needs. The empirical results lend support to our theory that high-performing FLOSS 

communities match their development structure, as the embodiment of their information-

processing capabilities, with their software development tasks, as the main source of their 

information–processing needs.

This work contributes to both theory and practice. From a theoretical standpoint, we 

have shown that FLOSS communities are not so different from conventional organiza-

tional units from an information-processing perspective. We have also given an explana-

tion as to how the emergent development structure in FLOSS communities could form in 

response to the community’s information-processing needs. In addition, we have given an 

account of the different development-related organizational structures and have found 
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that there is no single superior structure; rather, what is important in the development 

process is finding the fit between the community’s development needs and its structure.

Our theoretical deductions and empirical results support the idea that FLOSS commu-

nities performing development tasks that are generally routine, highly interdependent, 

and generate little contributor uncertainty will perform better under a centralized commit-

tal structure. On the other hand, decentralized committal structures thrive under the con-

ditions of task non-routineness, low task interdependence, and high contributor uncer-

tainty.

More importantly, these findings highlight the tension between the views forwarded 

by Brooks (1975) about software development and Raymond (2001) about FLOSS de-

velopment. While both of these views have been seen as conflicting, we show with this 

work that they are actually complementary. We attribute the conflict to the lack of clarity 

in the assumptions of both views and find that Raymond’s view generally holds true of 

FLOSS development until the committal structure is overwhelmed. In such cases, we be-

gin to see signs that Brooks’ views hold true even in FLOSS development.

The results of our study are equally useful to FLOSS community organizers and or-

ganizations that seek to increase the development output from FLOSS communities that 

are under their management. We have highlighted the importance of good code design in 

managing dependencies between developers to allow for a more distributed development 

process. 

Our work also makes clear that promoting committers is not always a favorable option 

to improve the output of the community or to help developers when they are over-
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whelmed, especially when the source code is highly interdependent. The best course of 

action in such situations involves a reorganization of the source code. Adding more 

committers might simply heighten the cost of coordination between developers, thereby 

reducing the overall performance of the community. This shows how FLOSS communi-

ties are no different than any other software development team and that Brooks’ law 

(Brooks, 1975), as one of the most important classical theories on software project man-

agement, still holds true in the FLOSS context.
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 Appendix A:  Robustness of Median Split Results

To ensure that our results are not caused by the median split (MacCallum et al., 2002), 

we performed a tertile split on both CUNC and CENT and refit our interaction model. 

The results are summarized in Tab. 9 and 10, which show that our results hold, suggest-

ing that the median split did not have an impact on our results. With all continuous vari-

ables mean centered, we could interpret the interaction effects and lower order main ef-

fects (Aiken and West, 1991). 

If you recall from Tab. 7, we found support for H1, H2, H4, and H5. In Tab. 9, we can 

see that TROUT has a positive and significant coefficient, thus supporting H1. TINT also 

has a negative and significant coefficient, providing support for H5. In Tab. 9, we have 

the results from the interaction model. The TROUT*CENThi coefficient is positive and sig-

nificant suggesting that the TROUT coefficient for the high centralization group is higher 

and significantly different than the coefficient for the reference low centralization group, 

thus providing support for H2. The CUNChi*CENT coefficients are also significant or 

partially significant and negative, suggesting that groups with high centralization have a 

significantly lower coefficient than the reference group with low centralization, providing 

support for H4.
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Table 3.9: Main-effect model with tertile split of CENT and CUNC

Term Coeffecient P-Value Supports

TROUT 0.287 0.0001*** H1

CUNC_med 0.13 0.296

CUNChi 0.103 0.575

TINT -0.43 0.0001*** H5

CENTmed 0.336 0.0001***

CENThi 0.857 0.0001***

Table 3.10: Interaction model with tertile split of CENT and CUNC

Term Coeffecient P-Value Supports

TROUT*CENTmed -0.018 0.315

TROUT*CENThi 0.11 0.039* H2

CUNCmed*CENTmed -0.129 0.315

CUNCmed*CENThi 0.164 0.513

CUNChi*CENTmed -0.336 0.002** H4

CUNChi*CENThi -0.106 0.096. H4

TINT*CENTmed 0.347 0.301

TINT*CENThi 0.241 0.844

TROUT 0.264 0.0001***

CUNC_med 0.097 0.75

CUNChi 0.259 0.006**

TINT -0.642 0.001***

CENTmed 0.499 0.0001***

CENThi 0.796 0.0001***
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