
Clemson University
TigerPrints

All Dissertations Dissertations

12-2009

TOWARDS A THEORY ON THE
SUSTAINABILITY AND PERFORMANCE OF
FLOSS COMMUNITIES
Mohammad Almarzouq
Clemson University, malmarz@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Organizational Behavior and Theory Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Almarzouq, Mohammad, "TOWARDS A THEORY ON THE SUSTAINABILITY AND PERFORMANCE OF FLOSS
COMMUNITIES" (2009). All Dissertations. 471.
https://tigerprints.clemson.edu/all_dissertations/471

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/639?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/471?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

TOWARDS A THEORY ON THE SUSTAINABILITY AND PERFORMANCE OF
FLOSS COMMUNITIES 

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Management

by
Mohammad AlMarzouq

December 2009

Accepted by:
Dr. Varun Grover, Committee Co-Chair

Dr. Jason Bennett Thatcher, Committee Co-Chair
Dr. DeWayne Moore

Dr. Richard Klein
Dr. Molly Wasko

Abstract

With the emergence of Free/Libre and Open Source Software as a significant force that is

reshaping the software industry, it becomes more important to reassess conventionally

held wisdom about software development. Recent literature on the FLOSS development

process suggests that our previously held knowledge about software development might

be obsolete. We specifically highlight the tension between the views embodied by the

Linus’ Law and Brooks’ Law.

Linus’ Law was forwarded by Eric Raymond and suggests that the FLOSS develop-

ment process benefits greatly from large numbers of developers. Brooks’ Law, which is

part of currently held wisdom on software development, suggests that adding developers

is detrimental to the progress of software projects. Raymond explains that the distributed

nature of the FLOSS development process and the capacity of source code to convey rich

information between developers are the main causes of the obsolescence Brooks’ Law in

the FLOSS development context.

By performing two separate studies, we show how both views of software develop-

ment can be complementary. Using the lens of Transaction Cost Theory (TCT) in the first

study, we identify the characteristics of the development knowledge as being the main

factors constraining new members from contributing source code to FLOSS development

projects. We also conceptualize of these knowledge characteristics as being analogous to

what Brooks’ described as the ramp-up effect. We forward the argument, and offer em-

ii

pirical validation, that managing these characteristics of knowledge would result in an

increase the number of contributors to a FLOSS projects.

The second study is concerned with the impact if having these new members added to

the development team in a FLOSS project. Using the lens of Organizational Information

Processing Theory (OIPT), we forward the argument, and offer empirical validation, that

more contributors can be detrimental to progress if the committers of a FLOSS project

are overwhelmed. Our findings also suggest that large development teams are indeed pos-

sible in FLOSS, however, they must be supported by proper source code design and

community structures.

iii

Dedication

To my parents and grand parents, who raised me to appreciate knowledge and set an ex-

ample for me to follow on dedication and integrity. To my wife, Ruqayyah, and sons, Fa-

had and Abdulrahman, who endured with me and supported me throughout my years as a

PhD student. I love you all.

iv

Acknowledgement

Special thanks to Kuwait University and the Government of Kuwait for the scholarship

that supported me throughout the PhD program. Special thanks also go to the attendees

and organizers of the AOM 2006 FLOSS Workshop and the OSS 2009 PhD Consortium

for their comments which helped me tremendously in shaping my thoughts into this

work.

v

Table Of Contents

..Chapter 1 1

..Introduction 1

..1 FLOSS: A Primer 4
..1.1 The FLOSS Development Process 6

....................2 The Obsolescence of Conventional Software Development Wisdom 9
...3 The Research Question 11

..3.1 The Studies 14
...4 Literature Review 18

...4.1 Study 1 18

...4.2 Study 2 20
..5 Results and Implications 23

...5.1 Study 1 24

...5.2 Study 2 27
..6 Conclusion 30

..References 31

..Chapter 2 36

....Study 1: The FLOSS Marketplace and The Sustainability of FLOSS Communities 36

..Abstract 37
..1 Introduction 39

..2 Theoretical Framework 43
...2.1 The Markets 44

..2.2 Sustainability of a FLOSS Community 52
..2.3 The Contribution Transaction 57

..2.4 Community-Level Antecedents to Cost 71
..3 Methodology 85
...3.1 Sample 85

..3.2 Variables 90
...3.3 Controls 98

..3.4 Analysis and Results 101
..4 Discussion 114

..4.1 Post-Hoc Analysis of Quadratic Effects 118
...5 Brooks’ Law Revisited 121

vi

...6 Limitations and Future research 124
..7 Conclusion 127

...Appendices 132
..Appendix A: Modularity Related Constructs 133

..Appendix B: Analyzing Contributors 134
...Appendix C: Measuring Modularity 137

..References 139

..Chapter 3 146

..Study 2: Towards a Theory on the Technical Performance of FLOSS Communities 146

..Abstract 147
..1 Introduction 149

...2 Theoretical Development 152
...2.1 Structures in FLOSS Communities 152

....................2.2 FLOSS and Organizational Information Processing Theory 160
..2.3 Theoretical Model 166

..3 Methodology 185
...3.1 Sample 185

..3.2 Data Collection 186
..3.3 Variables 190
...3.4 Controls 197

..3.5 Analysis and Results 199
..4 Discussion 207

..5 Limitations and Future Research 214
..6 Conclusion 217

...Appendices 220
..Appendix A: Robustness of Median Split Results 221

..References 223

vii

Table Of Figures

Figure Page

...1.1 Pictorial depiction of Brooks’ Law. 10
...1.2 Position of studies with respect to Brooks’ Law 15

...2.1 The FLOSS value chain 46
..2.2 The contribution transaction 58
..2.3 Overview of research model 72

...2.4 Quadratic effect of knowledge codifiability 106
.....................2.5 Simple slopes for the quadratic effect of knowledge codifiability 107

...2.6 Quadratic effect of knowledge amount 107
.............................2.7 Simple slopes for the quadratic effect of knowledge amount 108

...2.8 Quadratic effect of knowledge relatedness 108
.......................2.9 Simple slopes for the quadratic effect of knowledge relatedness 109

..2.10 Cubic effect of knowledge completeness 111
..........................2.11 Simple slopes for positive change in knowledge completeness 112
.........................2.12 Simple slopes for negative change in knowledge completeness 113

.....3.1 FLOSS community structure (adapted from Crowston and Howison, 2005) 154
3.2 Steps required to complete a source code contribution in a FLOSS community 155

..3.3 Overview of research model 168
...................3.4 Simple slopes for effect of TROUT over different levels of CENT 203

.....................3.5 Simple slopes for effect of CUNC over different levels of CENT 205
........................3.6 Simple slopes for effect of TINT over different levels of CENT 207

viii

Table Of Tables

Table Page

.............................1.1 Comparison of conventional and FLOSS development process 8
..1.2 FLOSS studies related to new member participation 20
..1.3 FLOSS studies related to development productivity 22

..1.4 Summary of Study 1’s main findings 25

..1.5 Summary of Study 2’s main findings 28
...2.1 The FLOSS value chain 47

...2.2 Contribution costs incurred by FLOSS developers 59
..............................2.3 Example of a technical conflict between developers A and B 62

..2.4 Overview of theoretical constructs 73
...2.5 Antecedents to coordination costs 74

..2.6 Variable operationalizations 89
..2.7 Descriptive statistics for project sample 91

..2.8 Variable correlations and descriptive statistics 103
..2.9 Model fitting 104

.............................2.10 Summary of empirical findings from the higher order model 115
.....................................3.1 Evidence of delays in FLOSS the development process 158

..3.2 Overview of theoretical constructs 168
..3.3 Descriptive statistics for the project sample 189

..3.4 Variable operationalization 189
..3.5 Variable correlations and descriptive statistics 200

..3.6 Model fitting 201
............................3.7 Summary of empirical findings from the higher-order model 208

...3.8 Summary of this work’s main contributions 209
..................................3.9 Main-effect model with tertile split of CENT and CUNC 222

....................................3.10 Interaction model with tertile split of CENT and CUNC 222

ix

 Chapter 1

Introduction

Free/Libre and Open Source Software (FLOSS) refers to software that has its source code

made available for users to examine, use, and modify (Raymond, 2001; AlMarzouq et al.,

2005). As a result of making the source code accessible, users may participate in the de-

velopment of the product by uncovering and fixing bugs and security holes or implement-

ing new features (Raymond, 2001). User participation in development is thought to in-

crease the quality of the software; as Eric Raymond put it, "Given enough eyeballs, all

bugs are shallow" (Raymond, 2001, p.30). In addition, having more users would put the

software in different operating conditions that could expose hidden bugs in the imple-

mentation, which can then be fixed by any user willing to put forth the effort to do so

(Raymond, 2001; Liu and Iyer, 2007).

While the improved quality is the most tangible benefit of the FLOSS development

model, there seems to be a broader impact of this model, which is reshaping the dynamics

of competition in the software industry (Economides and Katsamakas, 2006; Bonaccorsi

et al., 2006). Take for example the recent move by Sun to release Java as FLOSS and lev-

erage the FLOSS development model1, or Microsoft’s foray into FLOSS development

with the establishment of the codeplex.com website for incubating FLOSS projects and

1

1 See http://www.openjdk.org

http://www.openjdk.org
http://www.openjdk.org

providing tools for users and developers to collaborate2. In addition, the 2007 develop-

ment report by the Linux Foundation suggests that over 11% of the changes made to the

Linux Kernel source code were sponsored by some of the biggest companies in the soft-

ware and technology industries, such as Intel, IBM, HP, Red Hat, Cisco, and Google

(Kroah-Hartman et al., 2008).

These moves by for-profit organizations seem at odds with the traditional way these

entities operate in the software industry. On one hand, we see bitter competitors cooperat-

ing on the development of the Linux Kernel and other FLOSS projects. On the other

hand, we see organizations that have built their business on selling software licenses, re-

leasing the software as FLOSS and relinquishing all of the profit that could potentially

come from selling copies of the software (AlMarzouq et al., 2005). These two observa-

tions suggest that there is a fundamental shift happening in the software and technology

industries, which we observe to be highly related to FLOSS.

The relationship between FLOSS and the shift in the software industry was high-

lighted by Tim O’Reilly’s description of FLOSS as a "commoditizing" force. According

to O’Reilly, what FLOSS is doing to the software industry is exactly what the PC did to

the super computer industry (Schwartz et al., 2009). As a result of the FLOSS commodi-

tizing force, established business models for selling software licenses are no longer as

profitable, and new profitable business models are emerging that rely on commoditized

software.

2

2 See http://www.codeplex.com

For example, Riehle (2007) observed that software licensing was a significant cost

component to companies offering turn-key solutions, such as IBM. FLOSS would allow

such companies to eliminate the cost associated with software licensing and take in a big-

ger profit, while reducing the cost to the customer at the same time. Furthermore, one

could attribute the recent emergence of network and "cloud" services to this commoditiz-

ing force of FLOSS (Schwartz et al., 2009). These services deliver computing resources

to customers, which are built on commoditized hardware and software layers, through the

Internet. By shielding the customer from the complexities of managing a computing in-

frastructure, the companies that offer cloud and network services create value for the cus-

tomer and earn profit for themselves. In addition, these companies create value from the

ease with which such services can be scaled up or down based on customer needs. With-

out the commoditized hardware and software layers, such infrastructures would have

been expensive to create (Schwartz et al., 2009). As a result, profitability shifted from es-

tablished business models of licensing infrastructure management software to service

models that offered complete infrastructure solutions.

Thus far, we have described what we believe is a fundamental shift in the software

industry resulting from the FLOSS movement. This highlights the importance of under-

standing FLOSS for both academics and practitioners alike. What we have not explained

yet is how FLOSS brought about that change. To understand this how this change came

about, we first need to give a brief introduction to the concepts and history surrounding

FLOSS.

3

1 FLOSS: A Primer3

The origins of FLOSS date back to the computing industry in the 1950s. Back then, all

software was free and all source code was accessible since the value of software had yet

to be recognized. During the 1960s, the Department of Defense built ARPAnet, which

connected researchers and engineers and lead to the establishment of the initial informal

guidelines for distributed software development (Raymond, 2000a), which can be viewed

as the early incarnation of FLOSS. The situation with software changed when IBM un-

bundled software from hardware, which lead to the recognition software’s value. This

newly found value lead to the establishment of a marketplace for software in the 1970s;

more importantly, the newly found value encouraged the safe-guarding of source code as

a means of protecting trade secrets, which was detrimental to the early version of FLOSS

development (Glass, 2004).

Dissatisfied with the state of software development, Richard Stallman, a participant of

MIT’s Artificial Intelligence lab, established the Free Software Foundation (FSF). The

goal of the organization was to promote the development and use of free software. The

idea behind free software is that users are guaranteed the rights to freely use, distribute,

and modify the software. The foundation contributed to the effort to develop free soft-

ware solutions to many networking and software problems, such as Apache and Linux,

which later powered the growth of the Internet. The Internet and free software’s role in

4

3 Adapted from our tutorial in CAIS (AlMarzouq et al., 2005)

its development further added to the success of the free software movement (Raymond,

2000a).

The success of free software, especially that coming from the distributed and open de-

velopment model, inspired Eric Raymond to write his seminal piece The Cathedral and

The Bazaar. His work played a key role in justifying the decision of Netscapeâ™’s CEO,

Jim Barksdale, to release the source code for Netscape Navigator in 1998. What followed

was the recognition of the importance of marketing the free-software movement to ensure

its long-term survival. This recognition eventually led to the term "Open Source" being

coined as a less ambiguous term than "Free" and without the negative connotations in the

business world. The Open Source Initiative (OSI) was then established to promote the

ideals of Open Source to the business world (Raymond, 2000b).

The Open Source movement recognized the value of making source code accessible as

a means to create higher quality software and was more pragmatic than the FSF in recog-

nizing that the interests of the business world has to be met. Richard Stallman did not

think the term Open Source conveyed the ideals of the FSF: that users had the right to

freely modify, use, and redistribute the software (Raymond, 2000b). Therefore, the FSF

and the OSI are two initiatives that promoted the same software development principles

but differed in term of their ultimate goals (AlMarzouq et al., 2005).

One of the duties that both the FSF and OSI perform was the approval of FLOSS li-

censes that adhered to their ideals. Even today, the license is what distinguishes a soft-

ware as being FLOSS (AlMarzouq et al., 2005). While the overall premise of every li-

cense must adhere to the principles of giving users the ability to use, modify, copy, and

5

redistribute software as they see fit, some licenses go beyond that principle by preventing

the software’s code from being mixed with proprietary source code and/or preventing the

privatization of the source code (Stewart et al., 2006).

The software, however, is not the only valuable component of FLOSS. The commu-

nity that builds such software is equally valuable. A FLOSS community consists of all of

the users and developers of the software who are dispersed over time and space. Commu-

nity members interact over the Internet and contribute source code, requirements, support

for other members, and bug reports (Raymond, 2001; Scacchi, 2002). A community be-

gins when a developer provides a proof-of-concept implementation of a software that

members can collaboratively work on improving. As the software improve in features and

quality, it initiates a self-enforcing growth cycle and attracts more users, and developers

that contribute further to its development (Raymond, 2001). Most community members

only contribute temporarily until their needs are satisfied, and only a small fraction of the

members stay indefinitely with the community (Shah, 2006). Therefore, the survival of a

FLOSS community will depend on its ability to continually attract new contributors to

the development process.

1.1 The FLOSS Development Process

One could argue that the way in which the software development process changed with

the emergence of FLOSS is the main reason why FLOSS became a significant force that

changed the software industry. With traditional software development methods, an or-

ganization would assume all of the risks associated with software development and,

6

therefore, reap the rewards when the software is successful. The traditional software de-

velopment method would start with requirements analysis to determine what features to

incorporate into the software that will be built. Developers are then employed to imple-

ment and test the software. Finally, the organization building the software would continue

to maintain the software after it has been released. The organization would assume the

risks associated with failure in all of these steps in the development process, ranging from

misspecification of the requirements and budget estimates to poor implementation and

design. Because of the high risks associated with software development, it comes as no

surprise that the majority of software projects fail (Brooks, 1975). Given these high risks,

the rewards from the projects that do succeed result in the most profitable organizations

in free-market history.

The FLOSS development process did away with much of the risks associated with the

traditional software development process, mostly by doing away with deadlines and by

distributing the risk amongst a larger group of stakeholders (i.e., contributors) and allow-

ing them to pool their resources (Raymond, 2001). The availability of the source code

allows users to modify the software for their own use, which leads to the discovery of

hidden bugs, since these unique use cases often trigger unusual execution paths in the

source code.

The increased number of eyes looking at the source code also reduces the likelihood

that bugs will go undetected for a long time and increases the chances that someone will

write a good fix from which all members will benefit (Raymond, 2001). The result of this

collaborative behavior in the community is a reduction in the risks associated with im-

7

plementation, which results in higher quality software. In addition, the users are a source

of ideas and inspiration for the developers. Since FLOSS community requirements are

not set in stone like in traditional software-development settings, users can work on im-

plementing the features that they would like to see, resulting in software that is continu-

ally improving in both its functionality and quality. We highlight further differences be-

tween traditional software and FLOSS development processes in Table 1.1.

Table 1.1: Comparison of conventional and FLOSS development process

 Development Process Conventional FLOSS

Membership (Raymond,
2001) Limited to project team

Open to any user of the
software

Deadlines (Raymond, 2001)
Negotiate with customers
and enforceable contracts

Release early and often
and no enforceable dead-
lines

Roles (Crowston et al.,
2005)

Defined by project man-
ager

Self-selection based on
need and interest

Leadership (Scozzi, 2008)
Explicit with role of pro-
ject manager

Implicit and difficult to
identify at times

Commitment of resources
(van Wendel De Joode,

2004)

Developers are committed
prior to engaging in de-
velopment effort

Patches are contributed
after work is completed
by a developer, no re-
quirement for commit-
ment prior to engaging
with a problem.

Requirements gathering
(Scacchi, 2002)

Requirements made ex-
plicit.

Features emerge from
community discourse

8

2 The Obsolescence of Conventional Software Development

Wisdom

Based on our description of the FLOSS development process, we find that the benefits of

FLOSS are a result of a greater number of participants in the development process. As

more developers pool their resources, the less costly the development will be for any one

developer and the more the risk of failure will be distributed. The discovery of bugs and

the number of features suggested or implemented will also depend on the number of users

and developers involved in the development process. Eric Raymond eloquently summa-

rized the strength of FLOSS in what he dubbed, the Linus’ Law: "Given enough eyeballs,

all bugs are shallow" (p.19 Raymond, 2001)

The Linus’ Law forwarded by Raymond seems to be at odds with conventional soft-

ware engineering wisdom drawn from Brooks’ Law. Brooks’ Law can be summarized as

"Adding developers to a late project only makes it later" (p. 25 Brooks, 1975). What

Brooks’ Law suggests, is that adding developers to an ongoing project is detrimental to

its progress (Brooks, 1975). Brooks (1975) attributes the detrimental effect of adding de-

velopers to a software project to what he refers to as the ramp-up effect and to the com-

munication effort required in large software development teams. We offer a pictorial

summary of Brooks’ Law in Figure 1.1.

9

Figure 1.1: Pictorial depiction of Brooks’ Law.

The ramp-up effect refers to the training effort required to get new members up to

speed, such that they become productive team members. The duty of training these new

members will fall on productive incumbent members. As a result, the productivity of

these incumbent members will decrease, as they are distracted from working on the pro-

ject (Brooks, 1975).

Furthermore, adding more people to a project will increase the number of communica-

tion channels that any developer needs to maintain in order to ensure the functional integ-

rity of the software project (Brooks, 1975). Two developers will be required to expend

less effort communicating about their work to one another than 20 members would. Each

developer of the 20-member group will need to communicate to all of the other 19 mem-

bers, which takes a significant portion of the members’ time and hurts overall team pro-

ductivity.

10

Raymond (2001) went as far as declaring Brooks’ Law obsolete in the FLOSS context.

He attributes the differences of the FLOSS development process in addition to the ability

to use source code as a communication medium, a fact that Brooks (1975) overlooked, as

being the main reasons why Brooks’ Law no longer applies. For example, the release-

early/release-often mentality employed in FLOSS implies that contributions from exter-

nal contributors are incremental in nature. Provided that the source code is solid and the

patch is well written, patches can be easily comprehended and incorporated into the main

code base with minimal effort. As such, new contributors will not place a significant

learning or communication burden on the current development team in a FLOSS commu-

nity.

3 The Research Question

While Raymond’s (2001) arguments) are compelling and have even found empirical sup-

port (e.g. Koch, 2004; Schweik et al., 2008), we believe that recent changes in the

FLOSS movement (Fitzgerald, 2006) warrant a revisit to the conflict between Raymond’s

and Brooks’ views.

FLOSS has had a surge in interest in recent years and has been increasingly adopted

by for-profit organizations (Fitzgerald, 2006), which invalidates the view that FLOSS

contributors are mostly hobbyists (Shah, 2006; Raymond, 2001). The 2007 report by the

Linux Software Foundation found that the majority of contributors to the Linux Kernel

were employed by the largest organizations in the software and hardware markets

(Kroah-Hartman et al., 2008). Furthermore, researchers observed that some of the most

11

successful projects are able to maintain super-linear growth of the source code (Herraiz

et al., 2006). Therefore, it is possible that the assumptions held by Raymond (2001) might

differ from the current realities of FLOSS development efforts.

Indeed, researchers have begun to question many of Raymond’s (2001) assumptions

and descriptions. For example, not all FLOSS communities observed a distributed

bazaar-like development model, as the majority of FLOSS communities are highly cen-

tralized (Krishnamurthy, 2002; Crowston et al., 2005). In addition, not all communities

seem to follow the release-early/release-often mentality (Krishnamurthy, 2002; Herraiz

et al., 2006). More recently, there has even been work suggesting that Brooks’ Law might

not be obsolete after all (Capiluppi and Adams, 2009). Therefore, it seems like there is

mounting evidence that we still do not have a complete understanding of the FLOSS de-

velopment process in its more recent reincarnation.

The goal of this work is to resolve the paradox in our understanding of the software

development process in the FLOSS context. Conventional wisdom points to the detrimen-

tal effect of team size in a software development team, while Eric Raymond’s description

of the FLOSS development process and recent empirical work suggests that size is bene-

ficial. What is at stake here is the sustainability of the FLOSS development process and

the livelihood of FLOSS communities. Failure to understand the implications of Brooks’

Law in the FLOSS context might result in dysfunctional development processes. There-

fore, with this work, we will attempt to answer the following research question: "Is

Brooks’ Law obsolete in the context of FLOSS development?"

12

To address this general research question, we need to take into consideration the dif-

ferences between the conventional and FLOSS development processes (see Table 1.1).

There are a number of differences between the two processes that require us to reexamine

the assumptions behind Brook’s Law before we declare it obsolete or not: namely, the

voluntary nature of participation in FLOSS and the absence of enforceable deadlines in

FLOSS development. We will also attempt to address issues that have been ignored by

literature examining Brooks’ Law in the FLOSS context: mainly, the nature and effect of

the ramp-up effect (Raymond, 2001; Koch, 2004; Schweik et al., 2008; Capiluppi and

Adams, 2009). As such, we will perform two separate studies that address the main as-

pects of Brooks’ Law. The first will be concerned with the nature of the ramp-up effect

and how it impacts a FLOSS community. The second will directly address the tension

between Brooks’ and Raymond’s views with regards to the effect of greater numbers in

FLOSS development communities.

Answering our research question will be of practical and theoretical importance. We

have highlighted the role FLOSS plays in enabling new service-based business models,

such as cloud computing services. Understanding the nature of the FLOSS development

process will be important to any company that seeks to build a business model that relies

on FLOSS, as these companies will have to engage the FLOSS community in order to

effectively build their services. Knowing how the FLOSS development process works

allows such companies to participate in the most effective manner. This understanding of

the FLOSS development process will be equally important to FLOSS community manag-

ers, as this understanding would empower them to shape the development process more

13

effectively and make it more efficient in order to utilize the time offered by contributing

volunteers contributing in the most beneficial way possible.

There are also important theoretical implications to this work, such as understanding

the boundary conditions of Brooks’ Law and consolidating two important but conflicting

views of the dynamics of the FLOSS development process. Furthermore, our work will

lead us to understand the nature and implications of the ramp-up effects in FLOSS com-

munities more fully. Finally, the results of this work will allow us to understand the fac-

tors that contribute to the increased performance of the software development process.

3.1 The Studies

To address our general research question, we will perform two separate studies that ad-

dress different aspects of Brooks’ Law and how it might apply to the FLOSS develop-

ment context (see Figure 1.2 for an overview of the studies). The first of these studies will

be concerned with the nature of the ramp-up effect and its impact on FLOSS communi-

ties. The second study is concerned with the impact of developer numbers on the per-

formance of FLOSS communities.

14

Figure 1.2: Position of studies with respect to Brooks’ Law

3.1.1 Study 1

According to Brooks (1975), the ramp-up effect will reduce the productivity of a software

development team because current members are responsible for training new members

that join the development team after it has begun. In FLOSS development, current devel-

opers are under no obligation to train any new members, so how can we conceptualize of

the ramp-up effect?

We conceptualize the ramp-up effect in this study as knowledge barriers that incum-

bent members of conventional software development teams help new members overcome

through training (Attewell, 1992). While it is possible for current developers in a FLOSS

15

to also help new contributors, they are under no obligation to do so, especially since the

source code can convey all of the knowledge required to become a developer (Raymond,

2001). Therefore, assuming that the source code is the main knowledge source for new

contributors, the ramp-up effect could vary from community to community based on the

characteristics of the source code.

With this conceptualization of the ramp-up effect, we view source code design as a

kind of resistor to the participation of new contributors. When the resistance is high, po-

tential contributors are required to expend considerable effort to acquire the necessary

knowledge to become contributors. Since most contributors are volunteers, having a high

level of resistance from the source code (i.e., knowledge barrier) would result in fewer

new contributors for projects relative to projects with less resistance. As such, we ask

"what are the factors that lead to greater numbers of new contributors in a FLOSS com-

munity?"

To answer this question, we conceptualize FLOSS communities as being competitive

actors in what we refer to as the FLOSS marketplace. In this FLOSS marketplace, com-

munities compete to gain contributions from developers in order to sustain their devel-

opment activity. We also conceptualize the act of contribution as a transaction that is

completed once a source code contribution is fully incorporated into the community code

base. Using the insights from Transaction Cost Theory (TCT) (Coase, 1937; Williamson,

1975), we identify the characteristics of the underlying development knowledge as the

main factors that increase the costs of contribution (i.e., increased knowledge barriers).

Specifically, we argue that FLOSS communities could increase the numbers of new con-

16

tributors if they could manage the codifiability, completeness, and diversity of their un-

derlying development knowledge.

3.1.2 Study 2

In this study, we directly address the tension between Brooks’ view and Raymond’s view

on developer numbers in FLOSS development teams. According to Brooks (1975), a high

number of developers is detrimental to the progress of a software development team be-

cause of the effort required to maintain open communication channels by any one devel-

oper with the other members of the team. With more communication channels, the effort

becomes significant and can distract the developer from his/her main development work,

thereby, reducing the overall productivity of the team.

Raymond (2001), on the other hand, views larger numbers as beneficial for FLOSS

development teams because the result is higher quality software and more productive

communities. He argues against the need for significant communication efforts in FLOSS

teams because the source code itself could be a rich communication medium.

In this study, we identify what we refer to as the committal structure of the FLOSS

community and suggest that it is a potential bottleneck for the FLOSS development proc-

ess (Goldratt and Cox, 1994). The committal structure represents the way in which com-

mittal activities are performed (i.e., how patches are integrated into the code base). This

study differs from the first study in that it focuses on the efforts shouldered by the com-

mitters during committal activities and how it might impact the performance of the com-

munity. In the first study, we focus on the effort shouldered by potential contributors up to

17

the act of committal and how that process may impact the contributors’ decision to go

through with the process. Therefore, we identify the main research question for this study

as "Is there a relationship between the organization of committal activities and develop-

ment performance in a FLOSS community, and upon what factors will it be contingent

upon?"

To address this question, we conceptualize FLOSS communities as information-

processing systems in which the information-processing task is the act of committal. Us-

ing insights from Organizational Information Processing Theory (OIPT) (Galbraith,

1973), we argue that the performance of FLOSS communities is contingent upon the ca-

pacity of the committal structure to process information and the information-processing

requirements of the committal task. Using this conceptualization, we also reach an under-

standing of how performance can be viewed for FLOSS communities in which deadlines

are not relevant. We identify task routineness, contributor uncertainty, and task interde-

pendence as the main sources of uncertainty that increase the information-processing re-

quirements of a FLOSS development community and, therefore, the performance of the

community.

4 Literature Review

4.1 Study 1

We summarize the literature pertaining to why developers join FLOSS development ef-

forts in Table 1.2. What the table makes apparent is the following:

18

•	

 All of the literature in the table focuses on motivational factors as opposed to fac-

tors that might cause resistance to participation with the exception of the study by

Midha (2008), which lacks an overarching theoretical modlel and might be consid-

ered exploratory in nature.

•	

 Most of the literature focuses on individual characteristics with the exception of

Baldwin and Clark (2006), which is purely theoretical; MacCormack et al., (2006),

which is a case study with limited external validity; and Midha (2008), which lacks

a strong theoretical foundation.

•	

 Empirical studies in the table have limited generalizability because of the research

approach (i.e., case study) or use sourceforge.net samples that can no longer be

considered be representative of the FLOSS population (Paul, 2009b, 2009a).

•	

 The tools used in studies that examine the structure of the code are somewhat com-

plicated and do not offer the means to feasibly compare the designs of multiple

code bases (e.g., MacCormack et al., 2006)

In our effort to address our first study’s research question, we hope to also address the

gaps that we have highlighted in Table 1.2. Specifically, we will give a resistance- (i.e.,

cost) based explanation as to why developers contribute to FLOSS projects. Our work

will also be of an empirical nature, focusing the project as the main unit of analysis. We

will utilize a method proposed by Newman (2006a) to examine the structures of networks

as a means to examine, assess, and compare the designs of FLOSS code bases and em-

pirically test the idea of structures of participation (Baldwin and Clark, 2006). Finally, we

19

will test our model using archival data, which we expect to result in findings with greater

external validity than the previously conducted empirical studies on FLOSS participation.

Table 1.2: FLOSS studies related to new member participation

Study Type LoA Relevant Findings

 (Lerner and Tirole, 2002) Theoretical Individual
Motivation was derived from indirect signaling about
quality, with the payoff to come in higher career earn-
ings.

(Hars and Ou, 2001) Empirical - Survey of 81 FLOSS
participants Individual Individual motivations to contribute to FLOSS can be

classified into intrinsic and extrinsic categories.

(Ye and Kishida, 2003)
Theoretical - Based on learning
theory of legitimate peripheral
participation

Individual
FLOSS contributors are motivated by learning, which
is enabled by the availability and modularity of the
source code.

(Lakhani and von Hippel, 2003) Empirical - Survey and archival
data of 336 Apache participants Individual Mundain but necessary tasks are performed by par-

ticipants for their own learning benefit.

(von Krogh et al., 2003)
Inductive Theory - Interviews
and archival data from Freenet
project

Individual Individuals gain committal privileges through techni-
cal and constant contributions.

(Hann et al., 2004) Empirical - Survey of 122 con-
tributors to three Apache projectsIndividual

Use value, recreational value, and potential career
impact were found to be the main motivators for par-
ticipation in the sample.

(Roberts et al., 2006) Empirical - Survey and Archival
data of 288 Apache contributors. Individual Intrinsic and extrinsic motivations for participation are

related and have an impact on individual performance.

(MacCormack et al., 2006)
Exploratory study - Comparison
of Linux and Mozilla code struc-
ture

FLOSS
Project

FLOSS project development is enabled by code struc-
tures that enable participation (i.e., modular).

(Baldwin and Clark, 2006) Theoretical - Modeling FLOSS
project

Modularity and option value of modules encourage
participation.

(Shah, 2006) Inductive theory - Two commu-
nities from sourceforge.net Individual

Need is the biggest driver of participation, most con-
tributors leave the community then. A small subset
continues with the community and contribution be-
comes more of a hobby.

(Midha, 2008)
Empirical - Archival data from
450 C/C++ based
sourceforge.net projects

FLOSS
project

Change in aggregate McCabe’s cyclomatic complex-
ity measure was found to be related to the number of
new committers.

4.2 Study 2

While the empirical work on the performance of FLOSS communities is more diverse

than participation, we notice that the notions of performance and goals are also diverse

20

and are usually referred to as success. We summarize the main studies that we examined

for this study in Table 1.3, which highlights the following gaps in the FLOSS perform-

ance literature:

•	

 With the exception of Capiluppi and Adams (2009), all of the studies seem to sup-

port the obsolescence of Brooks’ Law directly or indirectly.

•	

 There is no treatment of the relationship between the structure of the source code

and the development structure in the listed studies.

•	

 Studies taking a social-network-analysis approach make the assumption that per-

formance is a result of some of the communication patterns observed in the com-

munication structure. However, there are a number coexisting structures present in

a FLOSS community, such as the development and communication structures

(Mockus et al., 2002). No clear theoretical underpinning is given as to why per-

formance is caused by the structures examined in these studies.

With this study, we hope to find the answer to the main research question and, in the

process, address the highlighted limitations in the current literature. We hope to specifi-

cally address the tension between Brooks’ view and Raymond’s view of FLOSS devel-

opment and explain why there are conflicting results in the literature. We will reach that

result by using the insights from Organizational Information Processing Theory (OIPT)

(Galbraith, 1973) in order to understand the relationship between the structure of soft-

ware and the development structure and how their fit could relate to performance. More

importantly, we identify the committal structure, consisting of committers, as the main

21

development bottleneck that could limit performance (Goldratt and Cox, 1994). With this

theory-driven approach, we hope to avoid the main concerns that have caused doubt

about the internal validity of many prior studies on FLOSS performance.

 Table 1.3: FLOSS studies related to development productivity

Study Type LoA Relevant Findings

 (Mockus et al., 2002)

Case Study - Apache web server
and Mozilla Browser communi-
ties with follow-up quantitative
study on Mozilla archival data

Multiple

FLOSS communities use different coordination
mechanisms depending on the size of the devel-
opment team. In addition, the relative size of the
core developer group to other groups in the
FLOSS community will have different implica-
tions on the productivity and sustainability of the
community in addition to the software quality.

(von Krogh et al., 2003)
Inductive Theory - Interviews
and archival data from Freenet
project

Individual
Committers specialize in a specific component
when they are first granted committal privileges
due to contribution barriers.

(Sagers, 2004) Empirical - Survey and archival
data from 38 FLOSS projects FLOSS project

Using network governance theory, success was
found to be related to social mechanisms of
coordination and safeguarding. These mecha-
nisms are restricted in terms of access to the
source code, collective sanctions, and the reputa-
tion of developers. Success was measured as
self-reported performance of the project, age of
the project, and ratio of open issues (i.e., bug
report and feature requests) to the total number
of issues.

(Long and Yuan, 2005)
Empirical - Archival data of 300
FLOSS projects hosted on
sourceforge.net

FLOSS Project Success, in terms of number of downloads, is
closely related to core developer advocacy.

(Daniel et al., 2006) Empirical - Archival data of 78
FLOSS projects hosted on FLOSS Project

The user and developer groups in a FLOSS pro-
ject enhance the absorptive capacity of a FLOSS
project through two salient capabilities: knowl-
edge transfer and knowledge acquisition. FLOSS
project with higher absorptive capacities were
found to perform better in terms of closed tickets
and lines of code added.

(Grewal et al., 2006)
Empirical - Archival data of 108
FLOSS projects
onsourceforge.net

FLOSS Project

The embeddeness of a network (i.e., how inter-
connected a project is to other projects through
its members) is more closely related to technical
success than commercial success. Technical
success was measured as the number of commits,
while commercial success as the number of
downloads.

(Liu and Iyer, 2007)
Empirical - Archival data of 200
FLOSS projects hosted on
sourceforge.net

FLOSS Project

The software design and communication struc-
ture of the developers will be related to success
in terms of the quality of the developed software
and the velocity of the development.

22

(Singh, 2007)
Empirical - Archival data of
2013 FLOSS projects hosted on
sourceforge.net

FLOSS Project

Small world properties (i.e., dense clustering and
short average patch of communication between
developers) are found to be positively related to
productivity in terms of number of commits.

(Tan et al., 2007)
Empirical - Archival data of
5191 FLOSS projects hosted on
sourceforge.net

FLOSS Project

Direct and indirect ties, in addition to communi-
cation network cohesion, were all found to be
positively related to the productivity of the
FLOSS community as measured by number of
commits.

(Wu et al., 2007)
Empirical - Archival data of 59
FLOSS projects hosted on
sourceforge.net

FLOSS project

Project characteristics (e.g.., license and com-
plexity) and communication patterns (i.e., cen-
trality and density) are related to the performance
of the FLOSS project.

(Midha, 2008)
Empirical - Archival data from
450 C/C++ based
sourceforge.net projects

FLOSS project
Change in aggregate McCabe’s cyclomatic com-
plexity measure was found to be related to the
number of bugs and the time to fix bugs.

(Capiluppi and Adams, 2009) Empirical - Archival data from
KDE project repository Individual

The average number of communication channels
generally decreases with increased numbers of
contributors but increases significantly after a
certain threshold number of concurrent develop-
ers was reached.

5 Results and Implications

Following the call of Koch (2004) to perform empirical research with more external va-

lidity, we empirically test our research models using data that we believe is more repre-

sentative of the FLOSS population than prior studies. While prior studies relied mainly

on data collected from sourceforge.net, which hosts FLOSS projects (e.g., Stewart et al.,

2006, 2006; Koch, 2004; Liu and Iyer, 2007; Midha, 2008), we selected our sample from

ohloh.net, which lists FLOSS projects regardless where or how they are hosted.

We believe our sample to be more representative given the recent decline of

sourceforge.net as the leading hosting website for FLOSS projects (Paul, 2009b, 2009a).

In addition, we found that only 22% of the top projects listed on ohloh.net (ordered by

popularity) to be hosted on sourceforge.net.

23

Using archival data from the source code repositories of 234 FLOSS projects, we

collect quarterly observations for the relevant variables in both of our studies between the

years 2007 and 2009 for a total of 1823 observations. Given the longitudinal nature of our

observations and variations in the number of observations per project, we used mixed

model analysis (Cohen et al., 2003) to fit our statistical model and make inferences about

our observations. We summarize the main findings and implications of the results in the

following sections.

5.1 Study 1

The importance of our first study stems from the conceptualization of the ramp-up effect

in the FLOSS context and how it relates to the sustainability of a FLOSS community and

the relationship between new-member participation and the sustainability of the devel-

opment effort in a FLOSS community. Using Transaction Cost Theory (TCT) (Coase,

1937; Williamson, 1975), we identify knowledge codifiability, knowledge completeness,

and knowledge diversity as the main dimensions of the underlying development knowl-

edge that relates to the numbers of new contributors.

24

Table 1.4: Summary of Study 1’s main findings

Finding Impact

FLOSS marketplace conceptuali-
zation. •	

 Delineate the differences between the software and the FLOSS

marketplaces.
•	

 Application of theories related to market competition to under-

stand key aspects of FLOSS.

Knowledge codifiability is posi-
tively related to an increase in the
number of new contributors.

•	

 While source code is a codified form of knowledge, there are also
tacit assumptions that can be made explicit in code documenta-
tion.

•	

 Importance of good code documentation.

Knowledge completeness is posi-
tively related to an increase in the
number of new contributors.

•	

 While software development is an inherently uncertain task, this
uncertainty tends to vary between FLOSS projects.

•	

 Highly modularized projects reduce the uncertainty inherent in
the software development task and could result in greater partici-
pation in FLOSS.

Knowledge diversity is nega-
tively related to an increase in the
number of new contributors.

•	

 Amount and relatedness of knowledge are two distinct dimen-
sions of knowledge diversity with their own unique impact on
participation.

•	

 Projects with highly diverse underlying knowledge might become
more manageable if broken down into smaller FLOSS projects.

The impact of knowledge codifi-
ability and diversity on the num-
bers of new contributors follows
a diminishing returns pattern.

•	

 FLOSS communities need to play a balancing act in terms of how
much of the code base should be documented and must always
keep the documentation up to date.

•	

 FLOSS communities need to be clear on the goals of their pro-
jects and be able to say no to the inclusion of certain features such
that their projects can remain manageable.

Application of the leading eigen-
vector and modularity measure
(Newman, 2006a) to understand
the structure of source code.

•	

 Objective measure of modularity that is programming-language-
agnostic.

•	

 Software engineering tool that could assist in assessing code reor-
ganization efforts.

25

The findings from the first study have some important theoretical implications. In

developing our theory, we framed the relationship between developers and FLOSS com-

munities as that of a marketplace in which the ramp-up effect is seen as a knowledge bar-

rier and a source of transaction cost. This framing opens up the possibility of studying

FLOSS communities in light of strategic organizational theories to understand how

communities can be more competitive in the marketplace. In addition, our work gives us

a better understanding of the relationship between the characteristics of development-

related knowledge and the number of new contributors joining the development effort in

a FLOSS community.

Finally, we contribute by introducing a novel measure of modularity suggested by

Newman (2006b), which will be important to understand the effects of code organization

more fully. The empirical results in this study suggest that there is validity to this method.

What is unique about this measure is that it is language-agnostic, as it relies mostly on the

dependencies between source code files to estimate modularity. Such a property would

make the measure not only useful for larger groups of developers using different pro-

gramming languages but also for theorists who wish to get at the heart of the concept of

modularity without being influenced by programming–language-specific constructs.

Our findings also have some important practical implications for FLOSS commu-

nity organizers. The findings suggest that communities that manage the ramp-up effect by

reducing contribution costs will be able to attract more contributors and increase their

chances sustaining their development effort for a longer period of time. Such costs are

26

manageable if the FLOSS community dedicates effort to tasks that are usually considered

mundane, unexciting, and likely to attract the least interest from contributors, such as

documentation and code reorganization. However, the results also suggest that there is a

limit to managing such costs given the tendency of a source code to grow in complexity

(Lehman and Belady, 1985)In addition, the modularity measure has the potential to be

used as a tool by developers to understand the effect of their code reorganization efforts

and whether such efforts actually improve the code structure or not.

5.2 Study 2

For the second study, we directly addressed the tension between Brooks’ and Raymond’s

views of software development. Based on Information Processing Theory (Galbraith,

1973) and the assumption that committers are boundedly rational (Simon, 1955), we

identify the committal structure as the performance bottleneck in a FLOSS community.

We summarize the main findings and their implications in Table 1.5

Our findings have important theoretical implications for research on FLOSS pro-

ductivity and community organization. We suggest that no committal structure is a supe-

rior choice; rather, it is the communities’ conditions that should dictate which structure to

employ. We identify task routineness, contributor uncertainty, and task interdependence

as the main factors that influence a community’s decision to choose the optimal commit-

tal structure.

27

Table 1.5: Summary of Study 2’s main findings

Finding Impact

FLOSS communities perform-
ing simple tasks perform bet-
ter.

•	

 Importance of good source code design to simplify develop-
ment.

•	

 Contributors should work closer to the community and make
small incremental changes rather than work in isolation and
accumulate their patches into a single patch that is hard to
incorporate.

Centralized committal struc-
tures are a better fit for routine
tasks.

•	

 The committal structure should match the needs of the com-
munity.

•	

 There is no single superior structure.

Decentralized committal
structures are a better fit under
high contributor uncertainty.

•	

 Decentralized committal structures are necessary if commu-
nity involvement is valued.

•	

 Brooks’ Law is not obsolete, but the committal structure has
to be overwhelmed for it to become obvious.

Task interdependence in-
creases information-
processing requirements on a
FLOSS community and re-
duces performance.

•	

 Importance of modularizing the source code and its effect on
the performance of a FLOSS community.

•	

 Further validation of the Newman (2006a) modularity meas-
ure.

Decentralized committal
structures are a better fit under
conditions of low task inter-
dependence.

•	

 Decentralized committal structures are enabled by proper
code design.

•	

 Centralized committal structures might be the only way to
continue to maintain and develop tightly coupled code bases.

•	

 Brooks’ and Raymond’s views are complementary. Raymond
explains how FLOSS development is conducted under condi-
tions of fit, while Brooks’ views become apparent under con-
dition of lack of fit.

28

The findings also suggest that FLOSS development teams are no different from

any other development team and that that our understanding of managing FLOSS com-

munities could benefit greatly from the organizational body of knowledge. Using OIPT,

we elaborate on the concept of fit to for a community to achieve superior performance.

Fit requires that the committal structure, as the source of information-processing capacity,

should match the requirements of the development task. With lack of fit, a FLOSS com-

munity could either work on improving their information-processing capacity through the

use of development tools and a more decentralized committal structure, or they could re-

duce their information-processing needs through code reorganization efforts.

Finally, and most importantly, the findings suggest that the views of Brooks’ and

Raymond are not mutually exclusive; rather they suggest that having more contributors is

indeed beneficial to the performance of FLOSS communities under the condition that the

community achieves a fit between its committal structure and the information-processing

requirements of the committal task. When there is a lack of fit, communities start to expe-

rience a degradation in performance or have no performance gains as the number of con-

tributors increases.

The findings also have important practical implications ,as they provide a better

understanding for community organizers in terms of how to put less burdens on commit-

ters by properly organizing them. This, in turn, reduces the risk of losing them after a

short time of service. Furthermore, these results give for-profit organizations an under-

standing of the similarities between FLOSS development teams and traditional software

development teams, thereby leveraging their current knowledge base to improve the de-

29

velopment performance of FLOSS communities further, especially since deadlines are a

great concern for many of the for-profit organizations involved with FLOSS.

6 Conclusion

The two studies we conducted combine to give a detailed picture of the tension between

Brooks’ and Raymond’s views of software development. In the first study, we forward a

conceptualization of the ramp-up effect as knowledge barriers that impact the sustainabil-

ity, and potentially performance, of FLOSS communities by limiting the number of new

contributors that join the development effort. The second study complements this under-

standing by directly exploring the interplay between a community’s structure and the

source code’s structure and how it impacts the community’s overall performance. We also

explain, in this last study, how performance in FLOSS communities should be conceptu-

alized relative to other communities due to the irrelevance of deadlines in the FLOSS

context.

Based on these two studies, we conclude that Brooks’ and Raymond’s’ views are

not at odds but actually complement one another. We found that Raymond’s views hold

when the committal structure is not overwhelmed. In such conditions, the community can

handle an increase in the numbers of contributors and could actually benefit from their

contributions and increase performance. However, in conditions of lack of fit in which the

committal structure is overwhelmed, greater numbers could be detrimental to the per-

formance of the community, as committers have to make a tradeoff between their own

development work and committing the work of others. It is in such conditions that

30

Brooks’ view becomes prevalent in FLOSS. As such, we attribute the conflicting results

in research to the differing contexts and assumptions in these studies.

References

AlMarzouq, M., Zheng, L., Rong, G., and Grover, V. (2005). Open source: Concepts,
benefits, and challenges. Communications of AIS, 2005(16):756–784.

Attewell, P. (1992). Technology diffusion and organizational learning: The case of busi-
ness computing. Organization Science, 3(1): –19.

Baldwin, C. Y. and Clark, K. B. (2006). The architecture of participation: Does code ar-
chitecture mitigate free riding in the open source development model? Management
Science, 52(7):1116–1127.

Bonaccorsi, A., Giannangeli, S., and Rossi, C. (2006). Entry strategies under competing
standards: Hybrid business models in the open source software industry. Manage-
ment Science, 52(7):1085–1098.

Brooks, F. (1975). The mythical man-month. In Proceedings of the International Confer-
ence on Reliable Software, volume 10. ACM Press.

Capiluppi, A. and Adams, P. J. (2009). Reassessing Brooks’ Law for the free software
community. In Boldyreff, C., Crowston, K., Lundell, B., and Wasserman, A. I., edi-
tors, OSS, volume 299 of IFIP, pages 274–283. Springer.

Coase, R. H. (1937). The nature of the firm. Economica, 4(16):386–405. ArticleType:
primary_article/Full publication date: Nov., 1937 / Copyright © 1937 The London
School of Economics and Political Science.

Cohen, J., Cohen, P., West, S., and Aiken, L. (2003). Applied multiple regression/
correlation analysis for the behavioral sciences. Lawrence Erlbaum, third edition.

Crowston, K., Wei, K., Li, Q., Eseryel, U., and Howison, J. (2005). Coordination of free/
libre open source software development. In ICIS 2005 Proceedings.

Daniel, S., Agarwal, R., and Stewart, K. (2006). An absorptive capacity perspective of
open source software development group performance. In ICIS 2006 Proceedings.

31

Economides, N. and Katsamakas, E. (2006). Two-sided competition of proprietary vs.
open source technology platforms and the implications for the software industry.
Management Science, 52(7):1057–1071.

Fitzgerald, B. (2006). The transformation of open source software. MIS Quarterly,
30(3):587–598.

Galbraith, J. R. (1973). Designing Complex Organizations. Addison-Wesley series on or-
ganization development. Addison Wesley.

Glass, R. L. (2004). A look at the economics of open source. Commun. ACM, 47(2):25–
27.

Goldratt, E. M. and Cox, J. (1994). The Goal. North River Press, second edition.

Grewal, R., Lilien, G. L., and Mallapragada, G. (2006). Location, location, location: How
network embeddedness affects project success in open source systems. Management
Science, 52(7):1043–1056.

Hann, I.-H., Roberts, J., and Slaughter, S. (2004). Why developers participate in open
source software projects: An empirical investigation. In ICIS 2004 Proceedings.

Hars, A. and Ou, S. (2001). Working for free?: Motivations of participating in open
source projects. In HICSS ’01: Proceedings of the 34th Annual Hawaii International
Conference on System Sciences (HICSS-34)-Volume 7. IEEE Computer Society.

Herraiz, I., Robles, G., and Gonzalez-Barahon, J. M. (2006). Comparison between slocs
and number of files as size metrics for software evolution analysis. In CSMR ’06:
Proceedings of the Conference on Software Maintenance and Reengineering, pages
206–213, Washington, DC, USA. IEEE Computer Society.

Koch, S. (2004). Profiling an open source project ecology and its programmers. Elec-
tronic Markets, 14(2):77–88.

Krishnamurthy, S. (2002). Cave or community?: An empirical examination of 100 mature
o p e n s o u r c e p r o j e c t s .
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881.

Kroah-Hartman, G., Corbet, J., and McPherson, A. (2008). Linux Kernel development
(A p r i l 2 0 0 8) .
https://www.linuxfoundation.org/publications/linuxKerneldevelopment.php.

Lakhani, K. R. and von Hippel, E. (2003). How open source software works: "free" user-
to-user assistance. Research Policy, 32(6):923–943.

32

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881
https://www.linuxfoundation.org/publications/linuxKerneldevelopment.php
https://www.linuxfoundation.org/publications/linuxKerneldevelopment.php

Lehman, M. M. and Belady, L. A., editors (1985). Program evolution: processes of soft-
ware change. Academic Press Professional, Inc., San Diego, CA, USA.

Lerner, J. and Tirole, J. (2002). Some simple economics of open source. Journal of Indus-
trial Economics, 50(2):197.

Liu, X. and Iyer, B. (2007). Design architecture, developer networks and performance of
open source software projects. In ICIS 2007 Proceedings.

Long, J. and Yuan, M. J. (2005). Are all open source projects created equal?: Understand-
ing the sustainability of open source software development model. In AMCIS 2005
Proceedings.

MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2006). Exploring the structure of com-
plex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015–1030.

Midha, V. (2008). Does complexity matter?: The impact of change in structural complex-
ity on software maintenance and new developers’ contributions in open source soft-
ware. In ICIS 2008 Proceedings.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol.,
11(3):309–346.

Newman, M. E. J. (2006a). Finding community structure in networks using the eigenvec-
tors of matrices. Physical Review E, 74:036104.

Newman, M. E. J. (2006b). Modularity and community structure in networks. PNAS,
103:8577.

Paul, R. (2009a). SourceForge adds support for new version control systems.
http://arstechnica.com/open-source/news/2009/03/sourceforge-adds-support-for-new
-version-control-systems.ars.

Paul, R. (2009b). SourceForge wants to be collaboration powerhouse, buys ohloh.
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-m
etric-web-site-ohloh.ars.

Raymond, E. (2000a). A brief history of hackerdom.
http://www.catb.org/~esr/writings/cathedral-bazaar/hacker-history/.

R a y m o n d , E . (2 0 0 0 b) . R e v e n g e o f t h e h a c k e r s .
http://www.catb.org/~esr/writings/cathedral-bazaar/hacker-revenge/.

33

http://arstechnica.com/open-source/news/2009/03/sourceforge-adds-support-for-new-version-control-systems.ars
http://arstechnica.com/open-source/news/2009/03/sourceforge-adds-support-for-new-version-control-systems.ars
http://arstechnica.com/open-source/news/2009/03/sourceforge-adds-support-for-new-version-control-systems.ars
http://arstechnica.com/open-source/news/2009/03/sourceforge-adds-support-for-new-version-control-systems.ars
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars
http://www.catb.org/~esr/writings/cathedral-bazaar/hacker-history/
http://www.catb.org/~esr/writings/cathedral-bazaar/hacker-history/
http://www.catb.org/~esr/writings/cathedral-bazaar/hacker-revenge/
http://www.catb.org/~esr/writings/cathedral-bazaar/hacker-revenge/

Raymond, E. (2001). The cathedral and the bazaar: Musings on Linux and open source
by an accidental revolutionary. O’Reilly, Cambridge, MA, revised edition.

Riehle, D. (2007). The economic motivation of open source software: Stakeholder per-
spectives. Computer, 40(4):25–32.

Roberts, J. A., Hann, I., and Slaughter, S. A. (2006). Understanding the motivations, par-
ticipation, and performance of open source software developers: A longitudinal study
of the apache projects. Management Science, 52(7):984–999.

Sagers, G. (2004). The influence of network governance factors on success in open
source software development projects. In ICIS 2004 Proceedings.

Scacchi, W. (2002). Understanding the requirements for developing open source software
systems. Software, IEE Proceedings, 149(1):24–39.

Schwartz, R., Bacon, J., and Laporte, L. (2009). Floss weekly 73: Tim O’Reilly. Podcast.

Schweik, C. M., English, R. C., Kitsing, M., and Haire, S. (2008). Brooks’ versus Linus’
law: An empirical test of open source projects. In dg.o ’08: Proceedings of the 2008
international conference on Digital government research, pages 423–424. Digital
Government Society of North America.

Scozzi, B., C. K. E. U. L. Q. (2008). Shared mental models among open source software
developers. In Hawai’i International Conference on System Science.

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open
source software development. Management Science, 52(7):1000–1014.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(1):99–118.

Singh, P. (2007). Open source software development and the small world phenomenon:
An empirical investigations of macro level colaboration network properties on pro-
ject success. In ICIS 2007 Proceedings.

Stewart, K. J., Ammeter, A. P., and Maruping, L. M. (2006). Impacts of license choice
and organizational sponsorship on user interest and development activity in open
source software projects. Information Systems Research, 17(2):126–144.

Tan, Y., Mookerjee, V., and Singh, P. (2007). Social capital, structural holes and team
composition: Collaborative networks of the open source software community. In
ICIS 2007 Proceedings.

34

van Wendel De Joode, R. (2004). Managing conflicts in open source communities. Elec-
tronic Markets, 14(2):104–113.

von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003). Community, joining, and speciali-
zation in open source software innovation: A case study. Research Policy, 32(7):
1217-1241.

Williamson, O. E. (1975). Markets and hierarchies: Analysis and antitrust implications.
The Free Press, New York, NY.

Wu, J., Goh, K.-Y., and Tang, Q. (2007). Investigating success of open source software
projects: A social network perspective. In ICIS 2007 Proceedings.

Ye, Y. and Kishida, K. (2003). Toward an understanding of the motivation open source
software developers. In Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 419–429, Portland, Oregon. IEEE Computer Society.

35

 Chapter 2

Study 1: The FLOSS Marketplace and The Sus-

tainability of FLOSS Communities

36

Abstract

A great deal of the Free/Libre and Open Source Software (FLOSS) literature inappropri-

ately assumes that the reasons FLOSS community members make source code contribu-

tions are the same. The literature cites several reasons that members contribute, including

satisfying one’s own needs, demonstrating one’s ability to potential employers, and gain-

ing peer recognition; however, much of this literature does not take into account the dif-

ferences between new and experienced contributors. We argue that these two groups of

contributors are faced with different cost components related to contributing and that a

FLOSS community’s ability to nurture new contributors will be important for its long-

term survival. To understand why new contributors participate, we distinguish between

the software and FLOSS marketplaces and present the conditions that could influence ra-

tional profit-maximizing actors’ decisions not to contribute to a FLOSS project. With this

framing, we develop a model based on Transaction Cost Theory that sheds light on how

FLOSS communities can effectively convert users of the software into members that con-

tribute to its development. Based on this model, we conclude that the knowledge charac-

teristics required to make a contribution are the main impediment for first-time contribu-

tors. We argue that improving software design is the most effective way for FLOSS

communities to encourage new contributors to participate in the development effort, as it

reduces the burden on potential contributors to acquire the knowledge necessary to make

37

source code contributions. We discuss the process by which we will test this model and

our use of a novel approach to measuring software modularity. Finally, we conclude with

a discussion of the implications and limitations of our study.

38

1 Introduction

Free, Libre, and Open Source Software (FLOSS) is licensed to enable users to redistrib-

ute and modify it freely (Raymond, 2001). As a result, users can easily obtain a copy of

the code base and participate in development efforts by contributing their modifications

to various FLOSS projects. These projects rely on such voluntary contributions for their

continued development and growth (Lee and Cole, 2003).

Because users can obtain FLOSS at no cost, some individuals simply use these pro-

grams without contributing to their development. Known as the free-rider problem, this

occurs when individuals take advantage of common-pool goods without taking action to

support the community that develops them (von Hippel and von Krogh, 2003; O’Mahony,

2003; English and Schweik, 2007). Should free-riding behavior become prevalent, the

long-term survival of FLOSS communities would be seriously endangered. Therefore, to

understand FLOSS sustainability, it is extremely important to understand the factors that

lead individuals to voluntarily contribute source code.

Individual contributions to FLOSS communities take many forms. Some contributors

report bugs or suggest features, while others write code to improve the software (Mockus

et al., 2002). In this study, we are primarily interested in code writers, as the FLOSS

products would have not been produced without their efforts.

According to Shah (2006), code writers can be classified into two groups: contributors

and committers. Contributors are those individuals considered external to the main devel-

39

opment efforts in the community and occasionally contribute patches of code. Commit-

ters are members that have the necessary privileges to approve and incorporate patches

into a community code base. In addition, the committers perform the largest share of de-

velopment and are, therefore, considered part of the FLOSS community’s core develop-

ment team (Crowston and Howison, 2005).

Although contributors and committers differ in terms of their level of involvement and

the frequency of their contributions, the literature on FLOSS participation does not offer

any clear, theory-driven distinctions between these types of participants in FLOSS com-

munities. Within the FLOSS literature, there is an implicit assumption that all participants

contribute to FLOSS communities for the same primary reasons. For example, the litera-

ture suggests that gaining social status motivates individual developers to participate in

code development rather than simply free-ride (Raymond, 2001; Lakhani and Wolf,

2007). Alternately, individual participants may contribute to demonstrate their software-

development abilities to potential employers (Lerner and Tirole, 2002; Roberts et al.,

2006). Some would also suggest that individual developers contribute source code simply

to satisfy their personal interests (Raymond, 2001).

What the FLOSS motivational literature overlooks is a barrier that impacts any new

participant in any ongoing software development effort known as the ramp-up effect

(Brooks, 1975). The ramp-up effect refers to the training and knowledge that new partici-

pants in a software development effort need to acquire before they can contribute any-

thing useful to the development effort (Brooks, 1975). Why the literature has overlooked

such an effect could possibly be attributed explained by Raymond’s (2001) suggestion

40

that Brooks’ law, which forwarded the idea of the ramp-up effect, has become obsolete in

the context of FLOSS development. The rationale behind this conclusion is the distrib-

uted nature of development in FLOSS communities in which the source code itself is

considered a medium for communication, thus resulting in the need for fewer interactions

between developers. However, should the ramp-up effect really exist, the failure of

FLOSS communities to take it into account could have a detrimental effect on their long

term sustainability.

To show why these detrimental effects are probable, consider the role the committers

play in a FLOSS community. Committers are considered the main drivers of progress in a

FLOSS community because they shoulder the majority of the development effort (Shah,

2006; Crowston and Howison, 2005; Mockus et al., 2002). Committers, however, are not

guaranteed to remain with a community indefinitely. Many committers have been found

to leave after only four months of service with a FLOSS community, only to be replaced

by the promotion of contributors that have proven their dedication to and experience

within the community (Shah, 2006; Riehle, 2007). Therefore, FLOSS communities need

to encourage new contributors to join development efforts in order to ensure that the

ranks of the committers are replenished and that their FLOSS communities’ progress con-

tinues.

Managing the number of contributors is not an easy task because software code base

becomes more complex as it evolves over time (Lehman et al., 1997). As a result, com-

mitters and/or contributors are required to maintain a strong familiarity with the code if

they wish to continue making changes to it (Lehman et al., 1997). The increased com-

41

plexity of the code base also results in an increase of the ramp-up effect, making it more

difficult for new contributors to familiarize themselves with the intricacies of the code

design, thus resulting in a decline in the number of new contributors over time.

We argue in this work that the magnitude of the ramp-up effect that prevents new con-

tributors from making an initial contribution is determined by the characteristics of the

development knowledge that contributors must obtain before making an effective contri-

bution. Therefore, the ramp-up effect can be viewed as a knowledge barrier (Attewell,

1992) that contributors must transcend before making a useful contribution. While there

is empirical support for complexity’s negative impact as a knowledge barrier on the pro-

motion of new committers (Midha, 2008), its effect on new contributors is not under-

stood. The value of this work comes from understanding how these knowledge barriers

impact the numbers of new contributors from whom committers are promoted (Riehle,

2007). Furthermore, we provide with this work empirical support for the idea that source

code structure could encourage participation (Baldwin and Clark, 2006; MacCormack

et al., 2006).

New contributors, in particular, will have more difficulty dealing with the growing

knowledge barriers associated with software evolution as compared to seasoned contribu-

tors or committers, suggesting that the numbers of new contributors could dwindle

throughout a FLOSS community’s existence as a result of increased development com-

plexity. For this reason, we take a particular interest in new contributors and try to de-

velop a distinction between contributors and committers. More formally, our research

question is "What are the factors that lead to greater numbers of new contributors to a

42

FLOSS community?" We believe that the answer to this question is important because of

the role contributors play in sustaining the development effort of FLOSS communities. In

addition, the answer highlights the importance of making a distinction between the types

of participants in FLOSS communities when building theories of participation.

To answer our research question, we first introduce our conception of the FLOSS

marketplace and explain how knowledge acquisition, assimilation, and use are important

activities performed by contributors. Next, we explain the costs associated with participa-

tion from the contributor’s perspective. Then, we shift our focus to the FLOSS commu-

nity and utilize Transaction Cost Theory (Williamson, 1975) to understand the

community-level factors that increase an individual contributor’s contribution costs, such

as the modularity of the code base and the level of documentation. We then formalize our

theoretical model and suggest the means by which we can empirically test this model.

Finally, we discuss the potential implications and limitations of this work.

2 Theoretical Framework

The goal of our work is to explain how FLOSS communities can increase their number of

contributors regardless of the contributors’ motivations. To that end, we first explain how

the interaction between a FLOSS community and its contributors can be viewed as a

market transaction in which contributors make a source code contribution to the commu-

nity. We refer to this market transaction as the contribution transaction, which will be dis-

cussed in more detail in Sec. 2.2.3.

43

Assuming that contributors are rational value-maximizing actors, we argue that reduc-

ing the costs associated with contribution transactions should increase the number of us-

ers that see code contribution as a rational choice, thereby increasing the number of con-

tributors in the community. Furthermore, we make two additional assumptions that set the

boundary conditions for our theory. First, we assume that the users of the FLOSS soft-

ware have some understanding of computer programming and can write patches; there-

fore, the learning cost for the programming language is not significant enough to prevent

a user from contributing. Secondly, we assume that the code base of the FLOSS project is

still in active development and has room to grow and create value for its users. A mature

project that no one sees a need to further enhance is highly unlikely to attract any new

contributors and will not undergo active development.

2.1 The Markets

Markets coordinate the flow of goods and services between two adjacent steps in a value

chain. Markets also facilitate the exchange of goods and services between individuals or

firms external to one another where the terms of the exchange are determined by market

forces. In this latter situation, buyers scan the market for alternatives before making a de-

cision on which terms to go with (Malone et al., 1987). For example, FLOSS developers

would assess the technical superiority of a software package before using it and, subse-

quently, contributing to it to ensure that the software package will continue to serve their

future needs (e.g. Ramm, 2008). Such behavior suggests that developers have preferences

and choose which FLOSS communities they contribute to, which serves as a demand

44

force in the FLOSS marketplace. Therefore, for FLOSS communities to gain contribu-

tors, they have to improve their software and technical offerings, creating the competitive

and supply forces needed to designate the exchange between developers and FLOSS

communities as a marketplace. We will discuss this designation in more detail in

Sec. 2.2.1.2.

Markets also allow transacting parties to maintain their rights to self govern (i.e., work

for themselves) (Conner and Prahalad, 1996). We view the flow of source code contribu-

tions between developers and FLOSS communities to be coordinated under a market-type

structure. In this FLOSS marketplace, each actor retains the right to self-govern, and the

supply and demand forces determine what and who is involved in an exchange, as we

shall make clear in Sec. 2.2.1.2.

The FLOSS marketplace and software marketplace are related in that FLOSS commu-

nities are participants in both. The two marketplaces can be conceptualized as two adja-

cent links in the FLOSS value chain in which source code patches that are accumulated

by the FLOSS communities in the FLOSS marketplace are integrated into a coherent

software system that has value in the software marketplace (see Figure 2.1). FLOSS

communities use the FLOSS value chain as an alternative to the proprietary software

value chain, which is used by software companies competing with FLOSS communities

in the software market. The proprietary value chain differs from the FLOSS value chain

in that software companies have hierarchical-like control over developers through em-

ployment contracts (Conner and Prahalad, 1996). FLOSS communities, on the other

hand, use the market mechanism of the FLOSS marketplace to solicit source code contri-

45

butions from contributors to maintain the development of the software that is sold/

exchanged in the software marketplace.

 Figure 2.1: The FLOSS value chain

The differences between the software and FLOSS marketplaces, mainly the currency (See

Table 2.1), allow us to conceptualize FLOSS communities as sellers in both market-

places. The FLOSS community is the seller in both markets since they receive currency

for their offerings in either marketplace. In the software marketplace, the user1 (the

buyer) engages in a market transaction with a FLOSS community (the seller) when he/

she chooses to download and use its software offering, since the software is made avail-

46

1 Developers and users are referred to interchangeably because we are assuming that our theory applies to
users that have some understanding of programming to be able to make a contribution.

able for free. In the FLOSS marketplace, however, the developer (the a buyer) engages in

a market transaction when he/she offers a patch to obtain the community benefits offered

by a FLOSS community (the seller) and that patch is accepted.

Table 2.1: The FLOSS value chain

Software Marketplace FLOSS Marketplace

Sellers
FLOSS communities,
software vendors, IT so-
lution vendors

FLOSS communities.

Sellers’ Goals
Maximize profit, in-
crease market share of
product

Maximize patch contributions and qual-
ity.

Buyers Software users, hardware
manufacturers or vendors

Individual developers contributing their
own free time or organizations that do-
nate the work time of the developers it
employs.

Buyers’ Goals
Create the highest qual-
ity product for the lowest
price

Maximize benefit from FLOSS commu-
nity by having patches accepted beyond
satisfying immediate software needs.
Benefits include recognition (Lerner and
Tirole, 2002; Roberts et al., 2006) and
community development assistance
(Raymond, 2001; Dahlander and Mag-
nusson, 2005).

Currency Cash for software Patches for community benefits.

Market
Forces Exam-
ple

Similar software offer-
ings by different sellers
that differ in price and
quality.

Different FLOSS communities offering
solutions to similar problems that differ
in their technical superiority and associ-
ated community benefits.

2.1.1 The software marketplace

47

The software marketplace is considered a marketplace because of the market forces that

exist within it (i.e., supply and demand). Demand is generated by users who seek to ob-

tain software that can maximize their returns; that is, users will choose software that

meets their feature and quality requirements for the minimum expense. To meet this de-

mand, sellers compete to offer different software choices in order to win as many of users

as possible. To remain in business, a seller’s goal is to maximize profit from selling soft-

ware to users by either minimizing the cost of producing the software and thus improve

their price offering or by improving their offerings2 but demanding higher prices. Sellers

can afford to remain in this market as long as the income they make covers the expenses

associated with developing the software and competing in this marketplace. This model

describes the proprietary value chain depicted in Figure 2.1, which is employed by for-

profit organizations, such as software development companies. These companies pay the

salaries of the developers they contract from the proceeds of the software sales as part of

competing in the software marketplace.

FLOSS communities are amongst the competitors for software development compa-

nies in the software marketplace. The way FLOSS communities sustain, or fund, their

development activities as part of their value chain differs than that of the software devel-

opment companies. While FLOSS communities compete for a larger user base, just like

any other seller in the software marketplace, they do so as a means of attracting contribu-

tors to fund their development instead of selling software, which highlights the impor-

tance for FLOSS communities to be competitive in the software marketplace. Since any-

48

2 Improving a software offering can be done by improving the softwares quality or features.

one can obtain the software produced by FLOSS communities freely without contributing

to the development efforts , we argue that the act of contribution follows a different dy-

namic than the one described in the software marketplace, which relies on the fact that

users derive benefits from software usage. This is why we describe the act of contribution

in the context of what we refer to as the FLOSS marketplace.

2.1.2 The FLOSS Marketplace

The FLOSS marketplace is considered such due to the existence of supply and demand

forces. The sellers in this marketplace are FLOSS communities that supply benefits to

contributors associated with community participation, such as peer recognition (Lakhani

and Wolf, 2007), development assistance (Dahlander and Magnusson, 2005), and better

employment opportunities (Roberts et al., 2006; Lerner and Tirole, 2002). The develop-

ers3 are the buyers in this marketplace, and they will have varying perceptions of value

based on the benefits offered by the FLOSS communities. Assuming that developers are

value-maximizing actors, they will choose to contribute to communities that offer them

the highest returns. The fact that developers have choices regarding which community

they can participate with suggests that communities will have to compete with each other

by offering greater benefits in order to become the primary choice of the majority of de-

velopers. Communities that are able to attract the greatest number of developers—who

will eventually become contributors—will have a better chance of sustaining their devel-

49

3 We refer to these individuals as developers since they have yet to make a contribution and are so far only
potential contributors. See Sec. 2.2 for more detail.

opment efforts. Therefore, the sustainability of a FLOSS community’s development effort

will be closely associated with its ability to compete in the FLOSS marketplace.

There are numerous behaviors that can be observed in FLOSS communities that sug-

gest the existence of competition in the FLOSS marketplace. We observed that there are

numerous software packages that provide solutions for the exact same problem. For ex-

ample, Ruby on Rails, Django, Zope, Pylons, and Grails are all FLOSS web frameworks

that can be used to build web applications. Web frameworks are by no means the only

example of competing implementations; the trend continues with almost all software

categories, including databases, operating systems, and ERP systems, to name a few4 .

Based on this observation, we conclude that FLOSS communities are not purely coopera-

tive in nature or else we would have observed only a single solution for each problem.

Furthermore, we observed that communities actively promote their software. As part of

this active promotion, members frequently compare their own community’s product to

those of other communities (e.g. Ramm, 2008) or even list comparisons on the commu-

nity websites5. Finally, we observed that FLOSS communities often imitate software fea-

tures and development processes employed by other FLOSS communities that users and

potential contributors might have expressed an interest in. These imitations include, for

50

4 Both http://wikipedia.com and http://ohloh.net are good sources to identify competing FLOSS implemen-
tation for the software categories we mentioned in addition to other categories. Of the identified software
categories, we were able to identify at least four competing and successful implementations for each cate-
gory.

5 See http://south.aeracode.org/wiki/Alternatives and http://www.cherrypy.org/wiki/CherryPyAndPaste as
examples.

http://wikipedia.com
http://wikipedia.com
http://ohloh.net
http://ohloh.net
http://south.aeracode.org/wiki/Alternatives
http://south.aeracode.org/wiki/Alternatives
http://www.cherrypy.org/wiki/CherryPyAndPaste
http://www.cherrypy.org/wiki/CherryPyAndPaste

instance, the compliance with the WSGI6 protocol by most Python-based web frame-

works, which is perceived to make both development and deployment of web applica-

tions easier. The recent move by Wine, Mozilla, and OpenJDK to distributed revision

control systems (e.g., Git and Mercurial) instead of centralized systems (e.g., CVS and

Subversion) serves as another example of imitation amongst FLOSS communities that

serve to improve the development process and appease contributors. We view these ac-

tions by communities as a means to gain a competitive advantage or competitive parity in

both the software and FLOSS marketplace,s which can be seen as evidence supporting

the existence of competitive forces in these marketplaces (Mata et al., 1995).

These observations of the competitive behavior in FLOSS communities might not be

sufficient to demonstrate the competition in this marketplace. Therefore, to argue for the

existence of this competition more effectively, we need to observe that contributors, as

buyers, are willing to change their preferences should FLOSS communities improve their

offerings. Furthermore, we need to observe that communities do indeed benefit from im-

proving their competitive position by offering greater benefits to developers, which might

include improved product offerings. As it happens, both observations can be made in the

FLOSS marketplace. Empirical evidence shows that users and developers show a prefer-

ence and willingness to migrate between FLOSS projects (Oh and Jeon, 2007), which

means that FLOSS communities are able to influence the decisions of users and develop-

ers to be part of their community.

51

6 WSGI stand for web server gateway interface, which is a specification on how web servers and applica-
tion server communicate.

Furthermore, communities stand to gain much in terms of contributions should a high-

profile developer choose to use the software and make significant contributions to im-

prove its appeal to other users and developers. In such a case, it is likely that more con-

tributors would join the development effort of the community. For example, Guido van

Rossum, the inventor of the Python language, mentioned in an interview that the Django

web framework is the most Pythonic amongst the Python web frameworks (Laporte and

DiBona, 2006). Django was incorporated as part of the Google app engine project that

van Rossum was working on, which eventually led to his development contributions to

the Django project. Ever since, the number of contributors, and even users for that matter,

continued to increase for the Django project7. Based on these observations in FLOSS

communities, we conclude that it is safe to assume that competitive behavior exists in the

FLOSS marketplace and that communities stand to gain from being more competitive.

2.2 Sustainability of a FLOSS Community

Based on the FLOSS marketplace framing (See Sec. 2.2.1), we can assume that the com-

petitive forces will drive FLOSS communities to improve their offerings to gain more

contributions. The offerings can be in the form of a better solution to a technical problem

or benefits associated with a community model of software development. The contribu-

tions received by the community would result in the improvement of the software system

and would start a self re-enforcing cycle that results in the FLOSS community being

more competitive, thereby attracting more contributions.

52

7 See http://www.ohloh.net/p/compare?metric=Contributors&project_0=Django

http://www.ohloh.net/p/compare?metric=Contributors&project_0=Django
http://www.ohloh.net/p/compare?metric=Contributors&project_0=Django

While contributions could come from a number of sources when a FLOSS community

is highly competitive in the FLOSS marketplace, we are specifically interested in the

community’s ability to obtain contributions from new sources (i.e., new contributors). It

is common knowledge that the development efforts in FLOSS communities is mostly

shouldered by relatively few individuals who repeatedly contribute source code patches;

these individuals are also known as the core developers and include both committers and

frequent contributors (Krishnamurthy, 2002; Mockus et al., 2002; Crowston and Howi-

son, 2005). These core developers do not usually contribute to a FLOSS community in-

definitely, and there generally comes a time when they stop contributing altogether (Shah,

2006), assuming of course that there is room for the project to grow and that the decline

in participation is not due to maturity8.

Therefore, to ensure that the development effort is sustained within a FLOSS commu-

nity, the community needs to take actions to promote the participation of new contribu-

tors, thus replenishing the ranks of the lost core developers (Riehle, 2007). Should new

contributors cease to join a FLOSS community, there will come a time when the ranks of

the core developers will dwindle, thus impacting the community’s ability to progress with

development. Therefore, we define the sustainability of a FLOSS community as the

community’s propensity to maintain its development effort over time by effectively con-

verting users into developers.

2.2.1 User Conversion Strategies

53

8 We attempt to control for this effect in our sample selection as we explain in Section 2.3.1 and find an
insignificant effect for age suggesting that we have appropriately selected our sample.

Assuming that the users are rational value-maximizing actors, FLOSS communities could

increase the number of users who provide contributions by making it more rewarding for

them to do so. When a good, such as a FLOSS product, is made available for public con-

sumption (Weimer and Vining, 2004), a user has a choice between using the software

without incurring any cost related to development or using the software while contribut-

ing to its development. Both options allow the actor to benefit from the software, but the

rational value-maximizing approach would be to use the software without incurring any

contribution costs, which is known as free-riding. Since FLOSS users often exhibit free-

riding behavior (Bonaccorsi and Rossi, 2005; O’Mahony, 2003; von Hippel and von

Krogh, 2003), we believe it is reasonable to assume that users, in addition to developers

who are a subset thereof, are value-maximizing rational actors.

Of the strategies that FLOSS communities can adopt to increase returns for develop-

ers, we focus on cost reduction strategies because they have the potential to increase re-

turns for potential participants regardless of their motivations. Attempts to increase the

value of the software might improve a FLOSS community’s chance of success in the

software marketplace, thereby increasing its user base. However, having a large user base

does not guarantee an increase in contributors. As rational value-maximizing actors, users

need to perceive the value of contributing to be higher than free-riding. As such, reducing

the cost of contribution would increase the returns from contribution relative to free-

riding, thereby making the option to participate more attractive to a greater number of

users. Assuming that the returns developers get from participation vary as a result of both

varying cost and value perceptions, we expect the number of contributors in a FLOSS

54

community to increase as the cost of contribution is reduced. The idea behind this expec-

tation is that reducing contribution costs will increase the returns from contributing for all

of the developers relative to other rational options.

Arguing that a cost reduction strategy is effective in attracting new contributors does

not imply that benefits of value increasing strategies are ineffective. Indeed, literature fo-

cusing on FLOSS participation and motivation suggests that individuals have motivations

that differ in nature (e.g., Raymond, 2001;Lerner and Tirole, 2002; Roberts et al., 2006;

Lakhani and Wolf, 2007). While value increasing strategies could be effective at targeting

specific groups of potential contributors (cf. Lakhani and Wolf, 2007), we are simply

making the argument that cost reduction strategies are more effective in that they impact

all potential contributor groups regardless of their motivation. The way in which value

perceptions are distributed in a community will have an impact however on how many

contributors join the development effort when the cost is reduced. For example, due to

the nature of different FLOSS communities, there might be a greater number of potential

contributors who are close to the borderline of contributing than another community. As

such, when both communities reduce the cost to contribute for a similar amount, the

number of new contributors might differ.

Given this relationship between value and cost in rational value maximizing decision

making and the differing nature of value (i.e., motivation), we find our selves in need of

making a simplifying assumption of the nature of the variability in value between differ-

ent FLOSS communities. We make the assumption that this variability is relatively nar-

row in range. A result of this assumption is that, as we shall explain, the antecedents to

55

cost will have a uniform, or relatively similar, impact on participation across communi-

ties. Violating this assumption will result in our inability to detect an independent effect

for cost, as cost reduction will result in few or no added contributors for communities

with a large variability in value perceptions. We will revisit this assumption when dis-

cussing the methods used to test our proposed model.

2.2.2 Cost Reduction Strategy

Reducing the cost of contribution involves reducing the cost of development tasks.

Software development tasks are considered to be highly complex and knowledge inten-

sive. This means that in order for developers to make initial contributions, they first need

to overcome the knowledge barriers of the development process (Fichman and Kemerer,

1997). These knowledge barriers are a significant source of cost that exist because the

requisite knowledge required for development is immobile in nature and, therefore, costly

to transfer (Attewell, 1992; Choudhury and Sampler, 1997). These barriers are found to

be closely related to the complexity of the software and grow as the software matures; as

a result, developers will find it easier to join a software development project earlier rather

than later in its life cycle (Lehman et al., 1997). Within the FLOSS context, these knowl-

edge barriers include understanding how the source code is organized, how it is compiled,

and how modifications can be made to it. As these knowledge barriers increase over time,

new developers will find it increasingly difficult to perform these tasks, and as a result,

the project will lose future replacements for current team members. Therefore, managing

56

development knowledge barriers and keeping them low will be very important to ensure

the continued supply of new contributors and the sustainability of the FLOSS project.

Since contributors in the FLOSS marketplace benefit in their own way from the ex-

change of source code for community benefits (Raymond, 2001; Lerner and Tirole, 2002;

Shah, 2006; Krogh and Hippel, 2006; Lakhani and Wolf, 2007) and FLOSS communities

also benefit from the contributed code, we conclude that this exchange is an economic

transaction that can be viewed in light of transaction cost theory (TCT). We refer to this

transaction as the contribution transaction and to the knowledge barriers as the main

source of contribution costs, which are viewed as transaction costs9. A community’s abil-

ity to manage these transaction costs will increase the number of developers who prefer

the contribution arrangement and will, therefore, increase the number of new contributors

to the community. We leverage the insights from TCT to gain a better understanding of

the main sources of transaction costs and how these costs affect the number of contribu-

tors in a FLOSS community. To accomplish this goal, we first need to explain the steps

that comprise a contribution transaction.

2.3 The Contribution Transaction

To understand the costs associated with contributions, we first need to review the steps

that a developer goes through to complete a contribution transaction (See Figure 2.2)

(Raymond, 2001; Shah, 2006; Mockus et al., 2002; Lee and Cole, 2003). A contribution

transaction is completed in the FLOSS marketplace when a developer contributes a

57

9 From this point on, we will refer to contribution costs and transaction costs interchangeably.

source code patch to a community and the community accepts it as part of its code base.

Contribution is a process that occurs over time and includes costs that are predominantly

associated with obtaining the requisite knowledge to make a contribution. Since we al-

ready assume that the returns developers perceive vary, our theory takes into account the

difference in developers’ programming abilities, which might affect developers’ contribu-

tion costs and, therefore, their perceived net returns. Throughout the contribution process,

the developer will incur different types of costs when going through the different contri-

bution steps. We group the steps that comprise a contribution transaction into two stages

based on the major cost components (See Figure 2.2 and Table 2.2): learning and coordi-

nation. Also, it should be noted that these costs are mostly knowledge based (Kogut and

Zander, 1996).

 Figure 2.2: The contribution transaction

58

Table 2.2: Contribution costs incurred by FLOSS developers

Learning Stage Coordination Stage

Description

This is the stage in which a use-
ful modification is made to the
author’s private copy of the
community code base. The
author could benefit from this
modification even though it is
not yet integrated into the com-
munity code base.

This stage involves integrating the
modification made in the initial
stage into the community code
base. Completion of this stage sig-
nals the completion of the contribu-
tion transaction and community
benefits bestowed on the contribu-
tor.

Steps in
Figure 2.2 1,2, & 3 4, 5, & 6

Required by Anyone making a private or pub-
lic change to the code base

Anyone contributing a patch to the
community code base

Recurrence

Required to obtain requisite de-
velopment knowledge before a
contribution can be made to a
FLOSS project that is considered
new to the developer making the
contribution. Incremental effort
is expended afterwards for the
developer to understand changes
made by others.

With every contribution to resolve
any conflict.

During the learning stage of contribution, the contributor works in isolation from the

community to obtain a modified version of the code base and to implement enhancements

that satisfy his/her own needs. Of course, communication could occur between different

members of the core development team within the FLOSS community; however, we are

interested in the behavior of potential contributors who have yet to be assimilated into the

community. As a result, it is safe to assume that potential contributors have yet to under-

59

stand the community norms or know to whom exactly they need to speak; thus, they are

likely to work in isolation. Nevertheless, communicating with other community members

during this stage might serve to lower the learning costs. The end product of this initial

stage is a usable, enhanced version of the software (Shah, 2006; Ven and Mannaert, 2008)

that might create technical conflict if merged with the community code base. However,

since the developer of these changes is able to benefit from the software, there is no re-

quirement for him/her to coordinate with the community. For this reason, we assume that

the cost to coordinate with other developers is not relevant in this stage.

 Even a proficient programmer will be faced with difficulty during the learning phase

of contribution. While such individuals may have general programming knowledge, de-

veloping knowledge about a specific code base can be very challenging and time consum-

ing (Brooks, 1975; Lehman et al., 1997). Before developers can modify a code base, they

need to acquire and assimilate knowledge that is specific to the FLOSS community’s

code base, which is generally highly immobile in nature (cf. Cohen and Levinthal, 1990;

Attewell, 1992; Choudhury and Sampler, 1997). An example of such knowledge would

be the detailed programming techniques used throughout a specific code base (Fichman

and Kemerer, 1997). Understanding the unique data structures and assumptions about a

community’s access conditions is another form of source-code-specific knowledge that is

important, yet difficult, to acquire. If developers take such knowledge lightly, the soft-

ware is put in an undesirable state, especially if uninformed changes are made to the code

base (Goetz et al., 2006). In addition, how the source code is organized into different files

and how these files are brought together to work as a coherent system (Baldwin and

60

Clark, 2006) is also very important requisite knowledge needed by any developer who

wishes to make changes to a code base. Developers incur cost by performing tasks neces-

sary to acquire this requisite knowledge, which involves reading the source code and

documentation or communicating with knowledgeable individuals.

The tasks necessary to gain knowledge in the learning stage can be viewed as knowl-

edge barriers that any developer needs to overcome when attempting to make a first con-

tribution to a FLOSS project. Once the requisite knowledge is obtained, the developer

can reuse it for subsequent contributions to the same project. Such knowledge cannot be

considered non-recurring, since a developer might be required to reacquire such knowl-

edge if enough time is spent away from the project. Given enough time, the general lay-

out of the source code and all of the assumptions embedded in the code will change, mak-

ing it difficult for the developer to contribute (Lehman et al., 1997).

The costs of the coordination stage differ from the earlier stage because the contribu-

tor is no longer working in isolation but interacts with other contributors and committers.

The costs associated with the later steps involve coordinating the efforts of contributors

working concurrently on the community code base (Malone and Crowston, 1994; Crow-

ston, 1997). Because committers need to approve and incorporate patches into the code

base, their capacity to process information might limit the number of patches accepted by

a community and, as a result, limit the number of contributors that complete a contribu-

tion transaction. For this study, we are interested in the costs incurred by contributors

rather than the cost incurred by the community through the committers. As a result, we

61

will not focus on the committers in our theorizing or control for their effects in our meth-

ods10.

When working simultaneously on the same code base, developers might introduce or

remove source code sections that carry assumptions with them that are poorly understood

by other contributors or violate patches offered by new contributors (Collins-Sussman

et al., 2004; Goetz et al., 2006). For example, consider if developer A contributes a patch

that adds a code section that depends on the value of an earlier variable. Developer A

makes the assumption that this value will remain constant at the time of execution. De-

veloper B contributes a patch that modifies the value of the variable on which developer

A’s code depends, thereby violating the assumption developer A made and putting the

software in an unstable state that might prove costly to fix. Another possibility is that de-

veloper B’s patch would remove the variable on which developer A’s code depends,

thereby breaking the software altogether (See Table 2.3 for example). We refer to such

problems introduced by mis-coordination as technical conflict, or simply conflict for

short.

Table 2.3: Example of a technical conflict between developers A and B

Original Code Developer A Developer B

int x = getSomeValue()
if(x == CERTAIN_VALUE){
 /* do some work on x */
 //new value of x
 return x;
}

int x = getSomeValue()
if(x == CERTAIN_VALUE){
 /* do some work on x */

 StoreValueInDatabase(x);
 //new value of x
 return x;
}

int radius = getSomeValue()
if(radius == CERTAIN_VALUE){
 /* do some work on radius
*/
 //Which variable name
 //do we use?
 return newValue;
}

62

10 In study 2 of this dissertation, we take an information processing perspective to examine the relationship
between the decision structure of the FLOSS community as represented by the committers, the characteris-
tics of the development task, and the development performance of a community.

Since technical conflict results from mis-coordination, resolving it is a matter of en-

suring that both developers share the same knowledge (i.e., assumptions) about their con-

tributions. This involves initiating communication between the developers (Collins-

Sussman et al., 2004; Malone and Crowston, 1994; Crowston, 1997) or reading the

source code and documentation incorporated within the contributed patch. As with the

initial stage, the costs in the later stage are also based on knowledge transfer and acquisi-

tion. Therefore, what stands between any developer and his/her participation in a FLOSS

community are the coordination costs required to overcome knowledge barriers (Attew-

ell, 1992; Conner and Prahalad, 1996). As such, the main costs associated with contribu-

tion are those incurred by the developer to acquire the requisite source code knowledge

and the cost of coordination with others to reconcile the technical conflicts that occur

when making a contribution to a FLOSS community.

TCT (Coase, 1937; Williamson, 1975) enhances our understanding of how

knowledge-related costs influence a FLOSS community’s ability to attract contributors.

TCT posits that rational transacting parties will choose the most efficient exchange ar-

rangement (i.e., market vs. hierarchy) to complete their transactions. Inefficiency is born

out of transaction costs that increase the overall cost of the transaction. From a FLOSS

developer’s perspective, the choice to participate in the FLOSS marketplace by means of

a contribution transaction signals that this is the most efficient choice for that individual.

That is, the cost to contribute a patch, including acquiring the requisite knowledge to do

so, offers a higher return for that particular developer than any other available options.

63

According to TCT, transaction costs are necessary for conducting an economic ex-

change but have no direct bearing on the production costs of the goods or services ex-

changed (Williamson, 1975). For a software developer, the production costs include the

planning necessary to develop a solution and the time spent writing the code. These costs

are associated with the direct effort involved in the software production that will result in

a usable product. In software development, such costs are usually considered sunk since

there is no marginal cost to reproduce another copy of the product (Baldwin and Clark,

2006). Transaction costs are considered to be any additional costs beyond the production

costs that are required to sell a software product to a customer (Williamson, 1975). In the

case of the FLOSS marketplace, these would include the additional costs for preparing a

patch for a specific FLOSS community (i.e., learning and coordination), which would be

different if the same software was developed in a different context (e.g., within a software

company or a different FLOSS community).

For example, if a software developer creates a database system, all of the effort that

went into the creation of the standalone database product is considered a production cost.

Any additional effort to adapt this product to embed it into a customer product or to con-

figure it for a customer are additional costs required in order to sell the product to a par-

ticular consumer. Since such configuration costs are incurred every time the product is

sold to a new customer, they must be incurred before completing each of the sale transac-

tions to the customers, hence the term transaction costs. Similarly, in the FLOSS market-

place context, a software developer can develop a software feature as a standalone prod-

uct, which would be the production cost of that feature. What is key here is that no spe-

64

cific adaptations are made to accommodate the requirements of a specific FLOSS project.

If the developer wants to incorporate his/her feature into a specific FLOSS community

code base, then the developer is first required to obtain the knowledge specific to the ex-

isting FLOSS community code base (i.e., learning cost) before the developed feature can

integrated with that specific code base. This knowledge is considered above and beyond

the requirements of production and is, therefore, considered a transaction cost. If the de-

veloper wanted to incorporate the same feature into a different FLOSS community, then

he/she is again required to learn the knowledge specific to the new community’s code

base and once more create a specific patch for it. Therefore, transaction costs are born

from the effort expended by the developer during the learning stage of the contribution

transaction.

In addition to acquiring the requisite code-base-specific knowledge, a developer can

incur additional transaction costs from the need to coordinate efforts with other develop-

ers working simultaneously on the same code base. When a developer starts working on

modifying a code base, other developers would have already committed numerous

changes to it. These changes might affect the work of the developer and lead to a techni-

cal conflict, but the only way to know if and how a conflict can be resolved requires the

developer to acquire knowledge that is specific to the changes made by other developers.

There are numerous ways to coordinate the efforts of these developers. For example, they

could communicate during development and exchange knowledge that would allow them

to create compatible patches and avoid conflicts. However, since no one can be certain

who is working on the code base at any one time, the most practical way to coordinate

65

efforts in FLOSS communities is to rely on a revision control system. A revision control

system identifies the most obvious conflict related to an individual overwriting the work

of others, and based on the system’s findings, the developers can communicate to con-

solidate the differences in their work (Collins-Sussman et al., 2004). Other conflicts

might not be as easy to discover and may manifest themselves as unpredictable behaviors

in the software system (i.e., bugs). The effort expended by the FLOSS developers to read

through others’ work and to communicate with one another to resolve technical conflicts

is another source of transaction costs that also involves the transfer of immobile knowl-

edge between different developers.

After showing that the learning and coordination costs can be viewed as transaction

costs related to contribution transactions, we can use TCT to understand the sources of

these costs. According to TCT, transaction costs exist for two reasons: bounded rational-

ity and opportunism. Of these, we argue that only bounded rationality will be relevant in

the FLOSS marketplace context. Bounded rationality implies that the participants in the

marketplace have a limited ability to process information (Simon, 1955) and that transac-

tion costs arise from the efforts made by the participants in seeking, acquiring, and proc-

essing information that is necessary for the completion of a transaction (Williamson,

1975). In the case of the FLOSS marketplace, transaction costs arise from the cost in-

curred by the developer to seek, acquire, assimilate, and use the knowledge that is unique

to a FLOSS community’s code base, which involves information processing and commu-

nication (Turner and Makhija, 2006; Choudhury and Sampler, 1997). Therefore, develop-

ers will be limited in their ability to read source code or documentation, to seek and so-

66

cialize with knowledgeable individuals, and to coordinate development efforts with other

developers. Developers who lack sufficient time or the capacity to incur the cost of such

activities will not be able to participate in a FLOSS project. Therefore, a FLOSS commu-

nity could reduce transaction costs if actions are taken to reduce the need for, or the cost

associated with, the aforementioned information-processing activities performed by de-

velopers.

According to TCT, the other reason transaction costs exist is due to opportunism. Op-

portunism implies that there will be participants in the marketplace who will exploit any

opportunity that is presented to them to gain higher returns, even if doing so is against the

interest of others. This suggests that some market participants will avoid fulfilling con-

tract obligations if they can do so without facing negative consequences. Transaction

costs are incurred when either party involved in the transaction expend effort to monitor

and prevent opportunistic behavior by the other party. For opportunism to be relevant to

our current study, it must impact the transaction costs incurred by the contributors.

 2.3.1 Opportunism in FLOSS

Academic literature on FLOSS identified two forms of opportunistic behavior: free-riding

and commercial appropriation (von Hippel and von Krogh, 2003; O’Mahony, 2003).

Free-riding is the act of using the software without contributing to its development, while

commercial appropriation is the act of profiting from the software without compensating

the developers for their effort. With regards to free-riding, developers choose to partici-

pate in a FLOSS community knowing beforehand what the FLOSS license entails;

67

namely, that FLOSS-licensed software does not place any restriction on usage, even if

users choose to free-ride. Furthermore, free-riding behavior does not have any significant

negative impact on either the community or its contributors because the software is a

digital good and its value does not decrease nor do its costs increase with additional us-

age (von Hippel and von Krogh, 2003).

As for commercial appropriation, the General Public License (GPL) was drafted spe-

cifically to prevent such behavior (O’Mahony, 2003). When an entity appropriates the

effort of developers, a license violation occurs. Such violations, when addressed, are usu-

ally dealt with by the non-profit organization that oversees the interest of the community

(O’Mahony, 2003). Hence, individual developers do not shoulder any of the burdens that

could potentially deter them from contributing. In other words, we do not expect the cost

associated with monitoring and preventing opportunistic behavior to have any significant

impact on the decision or ability of FLOSS users to participate in the development effort.

Appropriation might be a bigger issue when deciding to release a software package

under a FLOSS license because a for-profit organization stands to lose all of its future

income from directly selling the software (West, 2007). However, appropriation might be

less of a concern for any organization considering contributing to an ongoing FLOSS ef-

fort by providing bug fixes and incremental feature enhancements. The cost of such ac-

tivities would be a negligible because the total development effort would be distributed

amongst the community members. More importantly, the Open Source movement, as rep-

resented by the Open Source Initiative, approves of licenses that permit appropriation.

Permissive licenses, as they have come to be known, entice commercial participation be-

68

cause they tie the success of the commercial entity with the success of the FLOSS com-

munity (AlMarzouq et al., 2005). Empirical evidence suggests that FLOSS communities

that use permissive licenses (i.e., licenses other than the GPL) have increased contribu-

tions and sponsorship from for-profit organizations (Stewart et al., 2006).

We are not trying to argue that opportunism does not exist in the FLOSS context; on

the contrary, the need for FLOSS licenses and the existence of non-profit organizations to

look after the best interests of FLOSS communities suggests that it exists (von Hippel and

von Krogh, 2003; O’Mahony, 2003). What we are arguing, however, is that opportunism

will not be a significant force on a user’s decision to make a source code contribution to

an already established and active FLOSS project. In support of our argument, consider

the main factor that gives rise to opportunism-based transaction costs, namely asset

specificity (Williamson, 1975; Clemons and Hitt, 2004). When a transacting party makes

an investment that is valuable only as part of a specific transaction, the other transacting

party is the only entity that would be able to take advantage of the situation. As a result,

transaction costs arise from the need to monitor and prevent transacting parties from tak-

ing advantage of one another.

In the FLOSS marketplace context, when a developer makes a contribution, the com-

munity has no way of forcibly (i.e. control) extracting any benefits from a contributor be-

yond what the contributor offers willingly. More importantly, when the software is li-

censed as FLOSS, a contributor is guaranteed to benefit from the software in the future;

therefore, no entity can hold any contributor hostage to his work by threatening to pre-

vent him/her from benefiting from the software. Should such a situation occur, the con-

69

tributor could simply fork11 the source code or switch to another project. Finally, the par-

ties involved in the contribution transaction (i.e., the FLOSS community and the con-

tributor) have congruent goals, which mitigates the need to monitor opportunistic behav-

ior (Ouchi, 1980; Clemons et al., 1993). The goals of the community and the contributor

are congruent because the community relies on contributions, and the contributor, as a

user, would like to see the software improved and maintained. This symbiotic relationship

enables both parties to benefit from the act of contribution. Therefore, we conclude that

opportunism-based transaction costs are not significant in the FLOSS marketplace con-

text.

Although opportunism is not relevant to understanding users’ contributions to FLOSS,

it does not mean that TCT is inappropriate for understanding contributions in the FLOSS

marketplace, as transaction costs can and do exist in the absence of opportunism (Conner

and Prahalad, 1996). According to Clemons et al. (1993), coordination costs and transac-

tion risks are the two main dimensions of transaction costs. Coordination costs are costs

born out of the bounded rationality condition, and transaction risks are costs associated

with mitigating the opportunistic behavior of the other party in an exchange. Therefore,

transaction costs in the FLOSS marketplace are purely coordination costs, which Clem-

ons et al. (1993) define in the most liberal form to encompass all costs born out of

bounded rationality. In our case, these costs include those related to acquiring the requi-

70

11 Forking occurs when a developer makes a copy of a source code and starts a new development branch.
Every developer forks the community's source code before developing a feature that is eventually contrib-
uted to the community. Forking can also occur at the community level when members disagree on funda-
mental issues. The result is that the community is split with each half working on a different copy of the
original code base.

site development knowledge and coordination with other developers. This idea is consis-

tent with our view that the costs associated with a contribution transaction are knowledge

based, requiring information-processing efforts on behalf of the developers. We will clar-

ify the details of TCT further in the subsequent section as we identify the causes of trans-

action costs in the FLOSS context. Thus far, we have explained how contribution transac-

tion costs are mostly knowledge and coordination based (Kogut and Zander, 1996). As a

result, it will be important to understand the characteristics of knowledge that are related

to the effort expended by individuals to learn and coordinate (Grant, 1996b).

2.4 Community-Level Antecedents to Cost

After establishing that transaction costs in the FLOSS marketplace are knowledge based

and born out of bounded rationality, it becomes important to understand the characteris-

tics of the requisite development knowledge and how it might impact the cost of contri-

bution. Doing so allows us to understand how a community could manage source-code-

related knowledge in order to minimize the transaction costs incurred by its developers.

We follow the classification proposed by Turner and Makhija (2006), which is based on

an extensive review of knowledge management literature. This classification states that

the main observable dimensions of knowledge are codifiability, completeness, and diver-

sity. We also work under the assumption that the source code that resides in a FLOSS

community is an explicit form of the knowledge required for development and that the

characteristics of this knowledge can be observed from the source code. In the following

section, we will use TCT to explain how the dimensions of knowledge relate to transac-

71

tion costs, and we will identify the salient community-level characteristics that could im-

pact developer-level transaction costs (See Figure 2.3 and Table 2.4 for an overview).

Figure 2.3: Overview of research model

72

Table 2.4: Overview of theoretical constructs

Construct Definition

Sustainability of FLOSS
Community

The ability of the FLOSS community to continue to main-
tain the development effort over time by effectively convert-
ing users to developers.

Knowledge Codifiability The extent to which the development-related source code
knowledge is articulated, unambiguous, and observable.

Knowledge Complete-
ness

The degree to which the available knowledge for the soft-
ware development task is entirely sufficient to predict the
behavior of the software system after modification.

Knowledge Diversity:
Amount

The number of distinct knowledge domains from which the
requisite development knowledge to contribute to a FLOSS
community draws.

Knowledge Diversity:
Relatedness

The extent to which the different knowledge domains from
which the requisite development knowledge of a FLOSS
community draws are related.

2.4.1 Sustainability

Sustainability, the endogenous variable of this study, is defined as a FLOSS community’s

ability to continue to maintain the development effort over time by effectively converting

users to developers. As explained in Sec. 2.2.2, we expect that FLOSS communities with

low contribution transaction costs will observe greater numbers of new contributors as

compared to communities with high transaction costs. We attribute this tendency to a

greater proportion of potential contributors that see contribution as a rational choice rela-

tive to free-riding. Since the complexity of software and contribution transaction costs are

expected to increase over time (Lehman et al., 1997), we argue that communities are able

to increase the number of new contributors over time if they are able to maintain low, or

73

lower, contribution transaction costs. We summarize how the main constructs impact the

components of contribution costs (i.e., learning and coordination costs) in Table 2.5.

Table 2.5: Antecedents to coordination costs

Construct Learning Cost Coordination Cost

Knowledge
Codifiability

Reduce effort in comprehending
the source code by making explicit
knowledge that is important to
comprehend the source code.

Knowledge
Completeness

Incomplete knowledge (i.e., uncer-
tain) is a result of the dynamic na-
ture of the code base and will re-
quire contributors to expend addi-
tional effort at time of committal
to comprehend changes made
since that last source code check-
out was performed.

When committing to a dynamic
code base, a contributor might
break the work of others that has
already been committed and will
require coordination with these
community members to resolve
any incompatibilities with the con-
tributed patch.

Knowledge
Diversity:
Amount

To work on an isolated program-
ming unit of the code base (i.e.,
module), a contributor needs to at
least understand how this module
interacts with other modules in the
code base. The effort to acquire
such knowledge grows with the
number of modules in the code
base.

Knowledge
Diversity: Re-

latedness

Comprehending larger modules
that result from highly related
knowledge will require greater ef-
fort from contributor.

Working on larger modules that
result from highly related knowl-
edge is likely to result in the need
of one or more developers to work
on the same modules and result in
technical conflict.

2.4.2 Knowledge Codifiability

Knowledge codifiability refers to the extent to which knowledge can be articulated into

indisputable, unambiguous, and observable information (Kogut and Zander, 1992).

74

Highly codifiable knowledge is referred to as explicit knowledge (Zander and Kogut,

1995; Turner and Makhija, 2006) and can be transferred easily between individuals with-

out losing meaning (Grant, 1996b, 1996a). Non-codifiable knowledge, referred to as tacit

knowledge (Turner and Makhija, 2006), is more difficult to transfer between individuals,

as it is difficult to articulate and requires extensive communication amongst individuals

before it can be transferred between them (Alavi and Leidner, 2001).

 An important aspect of any FLOSS code base is the amount of documentation that

resides within it. These comments are a codified form of the tacit knowledge that resides

in the minds of the developers. Such knowledge could include assumptions about vari-

able access rules that source code might not clearly convey. Since such knowledge is only

useful for a specific project, it is considered asset specific, meaning that it is of no value

outside that specific project (Williamson, 1975).

Maintaining source-code-related knowledge in a tacit form (i.e., in the minds of de-

velopers) would make the transfer of such knowledge expensive (Zander and Kogut,

1995; Grant, 1996a). This type of specificity is referred to as human-asset specificity be-

cause the knowledge is specific to the individual who obtains it (Williamson, 1975; Ma-

lone et al., 1987). Communicating such knowledge requires significant investments from

developers, which could involve time and effort searching for and socializing with other

community developers to share and acquire the requisite development knowledge. Since

the knowledge obtained is specific to the FLOSS project, most of it will be useless for

developers in other projects, which would make it difficult for many developers to justify

75

expending the effort to obtain this specific knowledge when the effort needed to acquire it

is significant.

When a FLOSS community expends the effort and codifies this knowledge by embed-

ding it as comments within the code base, the knowledge becomes easier to communi-

cate. It is no longer specific to certain individuals; rather, any individual has the ability to

obtain it simply by reading the documentation. Knowledge in its explicit form as docu-

mentation12 becomes easily searchable and transferrable. Even though this knowledge is

still specific to the FLOSS code base, it is now less human specific and much easier to

obtain and comprehend by more developers than when it was in a tacit form. This, in

turn, reduces the amount of transaction costs incurred by developers wanting to obtain

this knowledge. Therefore, we conclude that communities that expend greater efforts in

documenting the code base will reduce transaction costs related to contribution, thereby

gaining a greater number of new contributors over time. As such,

H 1 The extent to which source-code-related knowledge for a FLOSS community is codi-

fied will be positively related to the sustainability of that community.

2.4.3 Knowledge Completeness

Knowledge completeness is defined as whether the available knowledge for decision

making or task completion is entirely sufficient (Turner and Makhija, 2006). It is consid-

ered the mirror image (i.e. opposite) of knowledge uncertainty, which is defined as the

unpredictability in the knowledge that is a result of its dynamic nature (Turner and Ma-

76

12 We use the terms documentation and comments interchangeably.

khija, 2006). The outcome of any task in which the individual performing the task pos-

sesses complete knowledge about it becomes predictable. For example, a manufacturing

worker that is required to tighten a specific screw on a product need only know how to

use a screwdriver and which screw to work on. This task is simple and requires limited

knowledge to perform, which makes it easy for the worker to know everything there is

about tightening that specific screw for that specific task. The worker will always know

what happens when the screw is tightened, which makes the outcome of the task highly

predictable.

On the other hand, when the knowledge available to an individual performing a task is

not complete, the outcome of the task becomes unpredictable. Knowledge associated with

software development tasks are considered incomplete because developed software usu-

ally behaves unpredictably. While the developer might have honestly attempted to de-

velop software to meet certain specifications, the nature of software development intro-

duces many uncertainties that might break the software that the developer may not have

accounted for. For example, a developer might produce software that works perfectly in

the development environment and on a specific hardware configuration. However, once

this software is released commercially, the developer may start receiving complaints from

customers that the software does not work on their particular hardware configurations.

Although the developer might know how to deal with such problems once they arise, at

the time of software development, the developer did not think that the customers’ hard-

ware configurations would matter. Thus, the developers’ knowledge was incomplete, and

the outcome of the task was unpredictable.

77

In the FLOSS marketplace context, the developers are boundedly rational and have no

way of knowing what any other developer is doing until a conflict arises. As described in

Sec. 2.2.3, contributors who have not absorbed the norms of the community are not able

to communicate or coordinate development activities as effectively with other members.

This uncertainty gives rise to technical conflicts (e.g., developers overwrite the work of

one another) that need to be resolved before a patch can be fully committed to the code

base (Collins-Sussman et al., 2004). Therefore, developers who do not possess the com-

plete knowledge that allows them to finish their development task with certainty will be

required to expend additional effort in examining the contribution logs to understand

what other developers have done and to communicate with them to resolve any technical

conflicts. This leads us to conclude that there is a transaction cost associated with every

contribution transaction due to a lack of complete knowledge, which requires a developer

to expend extra effort before a patch can be fully committed.

According to TCT, uncertainty is a primary cause of transaction costs (Williamson,

1975). In the absence of opportunism, unforeseen changes in the environment that are

born out of uncertainty can lead to honest disagreement between transacting parties who

are boundedly rational since each of them would possess incomplete, but different,

knowledge. The effort expended from the two parties to acquire more complete knowl-

edge in order to reach an agreement is the main source of transaction cost (Conner and

Prahalad, 1996). Similarly, technical conflict in a FLOSS community could occur be-

tween two developers when they do not have complete knowledge about what each de-

veloper is doing. Therefore, to reduce the transaction costs incurred by developers from

78

the occurrence of technical conflicts, a FLOSS community should design its code base

such that the outcomes of development tasks are more predictable, thereby reducing the

chance of technical conflicts.

Designing the code base to be modular is one approach to reducing the uncertainty

associated with developing a code base and to reducing technical conflict (Baldwin and

Clark, 2000; Tiwana, 2008). A software system is said to exhibit modularity if its parts

can be developed independently of one another but still work well together as a whole

(Baldwin and Clark, 2006). This approach entails limited dependency between parts (i.e.,

loose coupling) and a high level of dependency between the components that comprise a

single part (i.e., cohesion) (MacCormack et al., 2006).

Making changes to modular code bases is inherently less certain because side effects

are usually isolated to the modified module (Baldwin and Clark, 2000; Jackson, 2006). In

addition, modular code bases reduce the cognitive burden on developers, since develop-

ers will not be required to comprehend the complexities of implementation of modules

that are not relevant to their needs (Jackson, 2006; Darcy et al., 2005). Finally, modular-

ity allows different developers to work in parallel on different modules and be able to

easily integrate their work together with out the need to know what other developers are

working on (Baldwin and Clark, 2000; Sanchez and Mahoney, 1996; Tiwana, 2008).

Modular structures bring about these benefits by maximizingwithin modules and depend-

encies between modules (Darcy et al., 2005; MacCormack et al., 2006).

What is critical to obtain the benefits of modularity is that the structure of the code

base (i.e. dependencies) needs to remain consistent. With a stable structure developers

79

can work on specific modules knowing that if they do not change the way in which the

module interacts with other modules, their modifications will continue to work once inte-

grated with the main code base (Darcy et al., 2005). Such stability is said to convey more

complete knowledge to developers because the developer can be certain that his/her work

will continue to work after changes are completed. Stability in the FLOSS context would

mean that by the time a contributor prepares his/her patch, it is likely that no additional

effort is needed to integrate the patch to the community code base. As such, the source

code is said to convey complete development knowledge when it is checked out by the

contributor.

On the other hand, if the code base of a FLOSS community was highly dynamic, then

the community code base is likely to mutate significantly in the from the time a copy of

the code base is checked out by a contributor to the time a patch is submitted for commit-

tal. To integrate such a patch, the contributor is required to exert extra effort to compre-

hend what changes were made to the community code base and how to modify the patch

to work with such changes. Such code base is said to convey highly uncertain knowledge

(i.e., incomplete) when it is checked out by the contributor (Turner and Makhija, 2006).

Therefore,

H 2 The extent to which source-code-related knowledge for a FLOSS community is com-

plete will be positively related to the sustainability of that community.

2.4.4 Knowledge Diversity

80

Knowledge diversity is defined as the amount and relatedness of the knowledge required

to complete a software development task that is equivalent in functionality to what cur-

rently resides in the FLOSS community (Turner and Makhija, 2006). According to Turner

and Makhija (2006), diverse knowledge overlaps with the notion of complex knowledge

as described by Zander and Kogut (1995) but goes further to incorporate the notion of

relatedness. Knowledge amount refers to the number of distinct knowledge domains from

which knowledge draws, whereas relatedness refers to how difficult it is to decompose

knowledge into independent parts. Knowledge that is highly related resides entirely in the

mind of a single individual, while the parts of highly unrelated knowledge could be dis-

persed over the minds of numerous individuals (Galunic and Rodan, 1998). Turner and

Makhija (2006) argue that the notions of relatedness and amount are highly interrelated

and difficult to separate because knowledge drawing from a larger body of knowledge is

also likely to be unrelated. Nevertheless, we believe that each dimension of knowledge

diversity (i.e., amount and relatedness) will have its own unique impact on the cost to

contribute to a FLOSS community as we shall explain in the next section. Therefore, we

will discuss the impact of the dimensions of knowledge diversity on the sustainability of

a FLOSS community independently.

Knowledge Amount

We define knowledge amount as the number of distinct knowledge domains from which

the requisite development knowledge to contribute to a FLOSS community draws. De-

velopment tasks that draw from a broad base of functional domains are referred to as

81

complex tasks (Zander and Kogut, 1995). Simple and highly specialized tasks will draw

from a narrow body of highly related knowledge and will require little effort to complete

(Grant, 1996a). Given that a source code is an explicit form the requisite development

knowledge, the complexity of the software product will reflect the complexity of the de-

velopment task.

In the FLOSS marketplace context, the development of complex products will not

only require understanding general programming principles, but depending on how gen-

eral the software product is, developers might also need to draw on knowledge from dif-

ferent disciplines. An Enterprise Resource Planning (ERP) system serves as a good ex-

ample of a general software system that draws from a broad and complex knowledge

base. In addition to understanding how to build robust software systems, developers need

to draw on knowledge from other disciplines, such as accounting and resource manage-

ment, in order to build an ERP system. There is also the possibility of needing to imple-

ment knowledge about different programming languages to integrate an ERP with

COBOL-based legacy systems. A more specific software system, such as a text editor,

will draw from a much narrower and simpler knowledge base. Internalizing the highly

diverse knowledge required for the development of complex software products will be

impossible for a single developer to do (Grant, 1996a) and will be a formidable task even

for a group of developers.

Well designed code bases, as generally found in FLOSS projects (MacCormack et al.,

2006), could reduce the cognitive burden on developers and only require them to com-

prehend a subset of the code base (Baldwin and Clark, 2006) by encapsulating (i.e.

82

grouping) the code of related functionality into independent parts (i.e. modules) (Page-

Jones, 1998; Darcy et al., 2005). However, as we have explained in Section 2.2.4.3, de-

velopers still need to obtain a high level understanding of the interplay between the indi-

vidual parts of the software system and how they might relate to the part they are working

on before they can modify it (Darcy et al., 2005). Doing so, however, becomes more dif-

ficult as the software continues to grow and draw from an even greater number of knowl-

edge domains (Lehman et al., 1997). The effort required to reach an understanding that

would allow a potential contributor to make a modification to the code base will increase

as the number of individual parts that comprise the software increase. As a result, poten-

tial contributors are required to invest more upfront effort before making their initial con-

tributions, as the requisite development knowledge amount increases. Therefore, we ex-

pect knowledge amount to have a negative relationship with the sustainability of a

FLOSS community. Hence,

H 3 The amount of source-code-related knowledge that exists in a FLOSS community is

negatively related to the sustainability of that community.

Knowledge relatedness

While we have discussed in Section 2.2.4.3 numerous benefits that are a direct result of

modularity, such as the reduction of development uncertainty (Tiwana, 2008) and ena-

bling parallel development (Baldwin and Clark, 2006), these benefits are mostly a result

of the loose coupling of the modules that comprise the code base. In regards to knowl-

edge relatedness, we would like to get at the effort associated with comprehending a sin-

83

gle cohesive module (Darcy et al., 2005). Highly modular code bases may be equivalent

in terms of the number of modules and the degree of coupling between modules; how-

ever, they could vary greatly in terms of the size of each individual module (See Appen-

dix A for a clear delineation of the modularity-related constructs in our study.) We attrib-

ute this variability in size to the relatedness of the underlying knowledge.

Knowledge relatedness refers to the extent to which the different knowledge domains

from which the requisite development knowledge draws are related. When the requisite

knowledge is highly related, it must be wholly comprehended in the mind of a single in-

dividual (Galunic and Rodan, 1998). However, if the development knowledge is highly

unrelated, it can be easily decomposed into independent parts that different individuals

are able to comprehend, thereby making it possible for different individuals to work on

relevant parts of the source code independently. Assuming that the source code is an ex-

plicit form of knowledge and that FLOSS communities are effective in designing the

source code to reflect the underlying knowledge, then highly unrelated knowledge will

result in modules that encapsulate functionality that draws from a single domain. As re-

latedness increases, these modules will draw from a greater number of related domains

and result in larger modules (Darcy et al., 2005).

The increased module sizes will also have a negative impact on coordination costs as

the encapsulation of multiple functionalities will likely create the needs for multiple de-

velopers to work on the same module. As a result, a greater need for coordination arises

whenever contributors are required to work on the same module (Crowston, 1997). The

84

increase in coordination effort contributes to the overall increase in contribution costs and

thus negatively relates to sustainability.

When there are two code bases equivalent in modularity and amount of knowledge but

one code base has larger modules than the other due to higher knowledge relatedness,

new contributors are likely to expend less effort contributing to the code base with the

smaller modules. Assuming that the contributor needs to comprehend the underlying

knowledge of only a single module to make a contribution, the effort needed for the

smaller module will be less difficult to acquire than for the larger one. The same could

also be said of the need for coordination, as larger modules encapsulated a greater num-

ber of functionality will create the need for contributors to work on the same module and

result in greater coordination effort. As a result, we expect knowledge relatedness to in-

crease contribution costs because it increases the size of modules in the code base that

has an adverse effect on both coordination and learning costs. Hence,

H 4 The relatedness of source-code-related knowledge that exists in a FLOSS community

is negatively related to the sustainability of that community.

3 Methodology

3.1 Sample

Prior studies on FLOSS chose their sample from the projects listed on sourceforge.net

since it was the most accessible data (e.g. Krishnamurthy, 2002; Crowston and Howison,

2005; Stewart et al., 2006; Liu and Iyer, 2007; Midha, 2008). However, such data is not

85

fit to test our theory given that many projects listed on sourcefore.net are not popular or

actively being developed (Krishnamurthy, 2002). Because we assume that the FLOSS

projects to which our theory applies have inherent value to the users which could result in

contribution, we limit our sample to include successful FLOSS projects that have proven

their worth. However, we needed to take care when selecting observations from this sam-

ple, as we did not want to include inactive projects, either from lack of interest or matur-

ity, as this might bias our results since such projects will not have new contributors re-

gardless of the variation in our hypothesized effects. In addition, since the act of partici-

pation requires the project to be known, projects that are popular are likely to attract more

users and contributors. Therefore, we needed to select FLOSS projects that were equally

popular, or we needed to be able to assess and control for the popularity of the projects

we chose for our sample.

Ohloh.net met the requirements that we placed on our sample. With more than

275,000 listed projects, it offered the best representative sample of the FLOSS popula-

tion. Unlike sourceforge.net, which provides data for only projects that it hosts, ohloh.net

covers projects hosted independently or those hosted by services like sourceforge.net. In

addition, Ohloh.net provides a meta-community of developers that self report usage and

contribution, which can be used as a means of estimating the popularity of the projects.

To test our hypotheses (see Figure 2.3), we sampled from the top 1000 most popular

FLOSS projects listed on ohloh.net that enjoyed active development between the begin-

ning of January 2007 and the end of June 2009. Of these projects, we found only 22% to

86

be hosted on sourceforge.net, confirming our claim that ohloh.net offers a more represen-

tative sample of popular FLOSS projects.

Because it was impractical to analyze all of the projects in the top 1000 and to maxi-

mize the external validity of the empirical findings from our sample, we opted to analyze

projects that use one of the three most popular programming languages in FLOSS devel-

opment: C, C++, and Python. Between them, these programming languages were used by

over 18% of all of the listed projects on ohloh.net and by 47% of the projects in our sam-

ple frame. Furthermore, given the fact that Python is a dynamically typed scripted lan-

guage and that C and C++ are statically typed compiled languages, we believe that we

have a good representation of the most widely used programming paradigms within

FLOSS communities.

We excluded from our sample meta-projects that included more than a single project,

such as the Gnome and KDE projects. However, we analyzed projects under these com-

munities if they were popular enough to be listed independently in the top 1000 projects

on ohloh.net. From our sample frame, we identified 289 potential projects to analyze,

which represented 28.9% of the top 1000 projects. Once our sample was identified, we

proceeded to download the source code repository for the projects on which we per-

formed our analysis. There were however five projects that were impractical to analyze

using our methods given their extremely large code bases and were, therefore, excluded.

In addition, a number of projects had incomplete development history or missing values

for the variables used in our study, which is why we ended up with a total sample size of

87

235 projects. Below is a summarization of the steps we took to obtain and analyze our

sample:

1.	

 Download list of top 1000 projects listed on ohloh.net to ensure we analyze valu-

able and popular FLOSS projects.

2.	

 Download source code repositories for C-, C++-, and Python-based discrete

FLOSS projects.

3.	

 Extract quarterly data points for variables listed in Table 2.6.

4.	

 Screen the data for missing values and periods of inactivity that could bias our re-

sults.

5.	

 Prepare data.

6. Perform statistical analysis.

88

Table 2.6: Variable operationalizations

Construct Definition Operational Defini-
tion Operationalization

 Sustainabil-
ity

The ability of the
FLOSS community to
effectively convert
users to contributors
in order to maintain
the development ef-
fort over time.

The number of new
unique contributors
to the FLOSS pro-
ject.

Estimated as the count
of new individuals join-
ing the development ef-
fort identified from the
revision control system
during the analysis pe-
riod without reference to
the contributors in the
previous periods
(Midha, 2008).

Knowledge
Codifiability

The extent to which
development-related
source code knowl-
edge is articulated,
unambiguous, and
observable.

The extent to which
the source code base
is documented.

Estimated as the line
count of documentation
in the source code as a
ratio of source lines of
code for the beginning
of the analysis period
(Zander and Kogut,
1995).

Knowledge
Completeness

The degree to which
the available knowl-
edge for the software
development task is
entirely sufficient to
predict the behavior
of the software sys-
tem after modifica-
tion.

The magnitude of
change in the struc-
ture of the code base.

The change in graph
modularity measure
(Newman and Girvan,
2004; Newman, 2006b)
that results from parti-
tioning the source code
dependency graph using
the leading eigen-vector
method (Newman and
Girvan, 2004; Newman,
2006a) for the beginning
of the analysis period.

89

Knowledge
Diversity:
Amount

The number of dis-
tinct knowledge do-
mains from which the
requisite development
knowledge to contrib-
ute to a FLOSS com-
munity draws.

The number of
unique modules in
the code base.

Estimated as the count
of modules identified by
the leading eigen-vector
method for the begin-
ning of the analysis pe-
riod (Newman and Gir-
van, 2004; Newman,
2006a).

Knowledge
Diversity:
Relatedness

The extent to which
the different knowl-
edge domains from
which the requisite
development knowl-
edge of a FLOSS
community draws are
related.

The increase in aver-
age module size as a
result of having high
knowledge related-
ness.

Estimated as the count
of source code lines for
the beginning of the
analysis period as a ratio
of number of modules
(Darcy et al, 2005).

3.2 Variables

Since our theory involves learning processes in which new developers overcome knowl-

edge barriers to become contributors, we expect time to play an important factor (Attew-

ell, 1992). Once our project sample was identified, we obtained quarterly observations for

our variables between January 2007 and June 2009. Since some of the projects were

started after January -2007, we had an unequal number of observations per project. We

excluded from each project the first observation because we used it as a reference for

subsequent observations to determine the value of some of the variables. In addition, the

last observation from each project was discarded because some of the variables were

based on the difference between the value of current and subsequent periods. In total, we

had 1832 total observations. Table 2.7 gives some descriptive statistics about the projects

90

we analyzed. As can be seen, the quarterly observations suggest that the projects in our

sample were actively developed and having at least a single patch commit performed per

quarter. Since our subsequent analysis also suggests that there is no significant effect for

the age of the project, we can safely assume that our results are not impacted by inactivity

due to maturity.

Table 2.7: Descriptive statistics for project sample

Median Mean STD
AgeIn weeks relative
to 1-1-2007

4 5.64 48.7

Popularity 57.5 192.1 447.71

CommittersCount
per quarter

5 10.84 14.489

Contributor-
scount per quarter

8 16.29 26.786

Commitscount per
quarter

116 289.2 456.656

3.2.1 Sustainability

Content Validity

 Sustainability is defined as a FLOSS community’s ability to effectively convert users to

contributors in order to maintain development efforts. Since FLOSS developers do not

remain with the community indefinitely, sustainability will center on a community’s abil-

ity to attract new contributing members. In our sample, new contributors can be identified

from the log messages in the revision control system of the FLOSS community. The revi-

sion control system keeps track of all of the commits made to the community code base

91

and associates every commit to a committer. Identifying the contributors is a matter of

parsing the log message prepared by a committer for any indication that the patch was

contributed from someone else, such as a name, pseudo-name13, or email. Individuals

with no references to them as contributors or committers in prior log messages are con-

sidered to be new contributors.

Procedure

 Given how complex the procedure was, we provide a high-level summary of the main

steps we performed to extract the number of new contributors and offer a more detailed

description in Appendix B:

1.	

 Extract contributor names for projects that list names in log messages:

(a)	

Perform manual extraction of names for randomly selected sample.

(b)	

Perform automated extraction for the same sample as the manually extracted

sample.

(c)	

Assess Inter Class Correlation (ICC) (Shrout and Fleiss, 1979) between

manual and automated name extraction results and optimize automated proc-

ess for increased reliability (ICC = 0.92).

2.	

 Extract contributor names for projects that list contributor names in project tracker:

(a)	

Extract ticket numbers from log messages.

92

13 A pseudo-name is a name used to identify an individual that is not his/her real name. Internet users use
such names to maintain anonymity or make it more convenient for them or others to type or remember their
names.

(b)	

Parse ticket webpage and extract name of contributor and the contribution

date.

3.	

 Clean names by removing any extracted value that does not represent name,

pseudo-name, or email.

4.	

 Normalize names such that misspelled names and related names refer to a single

individual.

5.	

 For each analysis period, count new normalized names having no reference to them

in prior analysis periods as a single new contributor.

3.2.2 Knowledge Codifiability

Content Validity

 We defined knowledge codifiability in Sec. 2.2.4.2 as the extent to which the

development-related source code knowledge is articulated, unambiguous, and observable.

The source code itself is a form of codified knowledge; however, a develop cannot inter-

nalize this without obtaining certain requisite knowledge (Grant, 1996a; Fichman and

Kemerer, 1997). For example, there might be some assumptions about data structure ac-

cess or organizational conventions that, if violated, would render the source code unsta-

ble. Such information can be embedded as documentation in the source code, which

would be considered an explicit form of the requisite knowledge needed for development.

Such documentation could also include explanations for some of the source code that de-

velopers could reference when they need to.

93

Procedure

To get an indication of the extent to which requisite knowledge was codified, we counted

the lines of code comments that were available for the developers. We used the ratio of

lines of comments to lines of source code as an estimate of the extent to which the

development-related source code knowledge is codified. We obtained this estimate for the

beginning of the analysis period (i.e., the estimate was obtained by analyzing the source

code from the commit that occurred closest to and after the first day of the quarter to be

analyzed).

3.2.3 Knowledge Completeness

Content Validity

As mentioned in Sec. 2.2.4.3, knowledge completeness refers to whether the available

knowledge for the software development task is entirely sufficient to predict the behavior

of the software system after modifications. Thus, it seems likely that tasks that are highly

uncertain would not have enough available knowledge to complete them. For FLOSS

software development, this not only involves the knowledge to develop the software but

also the knowledge to determine that the software is fit for use after a change is made

(i.e., that the change will not introduce a bug or break the system). When the develop-

ment task is highly uncertain, the developer may be unclear as to whether the software

will behave in a predictable manner after a change is made or whether conflict will occur

with other developers when a commit is made. Such uncertainty arises because other de-

94

velopers would have committed changes that the developer would not know of until he/

she attempts to commit his changes.

We also explained in Sec. 2.2.4.3 how a modular software structure could reduce the

uncertainty related to the development process by limiting the dependencies between

modules, thereby enabling parallel development by contributors (Baldwin and Clark,

2006) and reducing the maintenance cost of any introduced bugs (Page-Jones, 1998). In

addition, similar functionality is encapsulated into modules that reduce the cognitive bur-

den on potential contributors to acquire complete knowledge. We mentioned also that

these benefits are contingent upon the stability of the source code structure (Darcy et al.,

2005). Given that the software is an explicit form of the requisite development knowl-

edge, we argue that the degree to which development knowledge is incomplete or uncer-

tain could be estimated by the magnitude of change in modularity of the code base.

Procedure

 The process in which we obtained a modularity measure is summarized below:

1.	

 Extract dependency graph of source code between source files.

2.	

 Perform leading eigen-vector method partitioning that maximizes modularity (See

Appendix C).

3.	

 Extract the modularity measure from the partitioned graph along with the number

of modules.

We extracted the modularity value for both the beginning and end of the analysis period

and used the difference to estimate the change in the structure of the code base, which we

95

then used as a proxy for knowledge completeness. Since change in modularity measure

can be either positive or negative, then the magnitude of change will be smallest close

zero and highest close to the maximum and minimum values. As such, knowledge com-

pleteness will be highest for low magnitudes of change whereas it will be lowest for high

magnitudes of change. Because we are interested in the effect of the magnitude of change

in modularity and hypothesizing that the effect of low magnitudes of change differ from

that of higher magnitudes, then it is best to test for this effect using non-linear terms.

Specifically, it is best tested using a cubic effects because it can capture the effect of posi-

tive change in magnitude independently of negative change.

3.2.4 Knowledge Diversity: Amount

Content Validity

According to our discussion in Sec. 2.2.4.4, knowledge amount refers to the number of

distinct knowledge domains from which the requisite development knowledge to contrib-

ute to a FLOSS community draws. Given that software is an explicit form of this knowl-

edge, we could determine its amount by identifying the number of unique modules in the

code base. Assuming FLOSS communities are effective in modularizing source code,

which they are (MacCormack et al., 2006), the result is that highly related programming

tasks are grouped in a single cohesive module (Page-Jones, 1998). The functionality

within a cohesive module will draw from the same body of knowledge. This knowledge

will differ from the knowledge contained in other modules. Therefore, we argue that

96

knowledge amount could be estimated using the number of cohesive functional units (i.e.,

modules) in the code base.

Procedure

Since the leading eigen-vector method (See Section 2.3.2.3) identifies modules by maxi-

mizing cohesion and minimizing coupling, we used the number of identified modules

from this method at the beginning of the analysis period as an estimate for the amount of

requisite development knowledge.

3.2.5 Knowledge Diversity: Relatedness

Content Validity

According to our discussion in Sec. 2.2.4.4, knowledge relatedness refers to the extent to

which the different knowledge domains from which the requisite development knowledge

of a FLOSS community draws are related. Related knowledge is difficult to split and

must be absorbed as a whole into an individual’s mind in order to be of use (Galunic and

Rodan 1998). When knowledge is highly unrelated, the different knowledge domain can

easily be identified, and the modules of the code base clearly reflect them. As knowledge

relatedness increases, knowledge from different domains becomes more difficult to dis-

tinguish or separate. As a result, the modules reflecting such knowledge would draw from

more knowledge domains, resulting in larger source code modules.

Procedure

97

Once the number of modules using the leading eigen-vector method (See Section 2.3.2.3)

is identified, we divided the total lines of source code by it. The result is the average size

of the module measured in source lines of code.

3.3 Controls

3.3.1 Number of Committers

Seeking and finding the right knowledge is an important step in knowledge acquisition

(Alavi and Leidner, 2001). Whether this knowledge is tacit or codified, finding knowl-

edge that is relevant to a developer’s needs might prove to be a formidable task. In active

FLOSS projects, knowledge related to where relevant documentation resides is already

internalized by the developers who contribute frequently, such as committers. This allows

the committers to assist other developers and makes it easier for them to find relevant

knowledge, thereby reducing the effort needed to make a contribution.

Furthermore, there is evidence that committers can be overloaded from community

interaction, which could limit the amount of knowledge transferred from committers to

contributors (Kuk, 2006). Communities with a greater number of committers will have a

greater capacity to transfer development-related knowledge, and since communities ob-

serve a great degree of variability in their number of committers, it becomes necessary to

control our results for their numbers. Given that the revision control system lists the name

of the committer that performed the for every commit performed, we extract these names

and normalize them for the analysis period (See Appendix B). We count the unique nor-

malized names of committers for the analysis period and use it as a control.

98

3.3.2 Popularity of the FLOSS project

The popularity of a FLOSS project might also play a role in the number of contributors

simply because contributors are themselves users. Therefore, a FLOSS community’s

numbers are limited by how many people know of and use its software. Furthermore, as-

suming that projects with higher value will attract a greater number of users (c.f. Ray-

mond, 2001;Lerner and Tirole, 2002; Roberts et al., 2006; Lakhani and Wolf, 2007),

popularity can serve as a control for the effect of value on participation. This would allow

us to capture the effect of reducing cost of participation that results in the increase in

number of contributors that is independent of the effect of value.

To control for popularity, we used the number of users that reported using the software

on ohloh.net. Given that ohloh.net is a social website for FLOSS developers, the number

of users that report using a software product serves as a good proxy for popularity

amongst developers.

3.3.3 License Restrictiveness

Following the work of Stewart et al. (2006), we operationalized license restrictiveness by

coding the licenses based on whether they included the General Public License (GPL) or

not. GPL is one of the most restrictive FLOSS licenses with provisions that prevent the

mixing of FLOSS source code with proprietary source code and the requirement that de-

rivative work be released under the GPL license. Such provisions might prevent many

users, especially for-profit organizations, from leveraging FLOSS for their own use. This

99

could limit a FLOSS community’s number of users and, as a result, the number of poten-

tial developers.

3.3.4 Project Age and Analysis Period

The age of the project is an important control that serves as a proxy for several other fac-

tors (Stewart et al., 2006). For example, older projects could be well established and more

popular than newer projects. Project age may also serve as a proxy for the experience or

familiarity the committers have with the community, which could make their interactions

and knowledge exchanges easier. We calculated the age of each FLOSS project as the

number of weeks from the first commit to January 1, 2007 with projects that have a nega-

tive age signifying that they began after Jan 1, 2007. In addition, we control for the

analysis period from the start of the project. This is important since projects might un-

dergo different stages of growth, which could influence the number of new contributors

per stage.

3.3.5 Programming Language

The programming language used for each FLOSS project could also have an impact since

it is inherently easier to make changes to scripted languages, such as Python, than it is to

compiled languages, such as C, which require the mastery of a different set of building

and compilation tools. In addition, code written in Python is inherently shorter than code

written in C or C++ given the dynamic nature of the language. The popularity of the pro-

gramming language among developers will also limit the pool of potential developers that

100

might participate in a FLOSS project. We used dummy variables to encode the languages

used in the code bases, since all three could be mixed together.

3.4 Analysis and Results

Given the longitudinal nature of our data, we used mixed models where the project is a

level two random effect variable. In addition, we modeled our main effect variables are as

level one random effects which takes into account the serial correlation between observa-

tions (Cohen et al., 2003). The first step we performed in our analysis was to assess the

distributional characteristics of our variables to ensure that none of the main assumptions

of mixed model analysis were violated. Since most our variables are count based, we ei-

ther had to perform log or negative power transformations to ensure that our independent

variables did not violate the assumption that the variables were normally distributed. As

for the dependent variable, since it is a count-based variable with no negative values, we

opted to fit our model using a poisson-based generalized mixed model (Gardner et al.,

1995; Cohen et al., 2003). As a result, we checked for signs of any violations to the as-

sumptions of a poisson-based regression model. Specifically, we looked for signs of zero

inflation or over-dispersion and found our data to satisfy the requirements of the model

with less than 25% of the observations of the dependent variable being zeros and the dis-

persion parameter showing a value close to one14 (Gardner et al., 1995; Warton, 2005).

101

14 We performed the additional step of fitting a QuasiPoisson generalized mixed model to deal with the case
that over dispersion might exist in our data (Gardner et al., 1995) and ended up with the exact same results
as a poisson model including inference tests. The dispersion parameters for the different models we fitted
were between the values .6 & 1.7.

The next step before the analysis was to assess the correlations of our variables to de-

termine the discriminant validity of our variables and to discount any issues in our analy-

sis related to multicolinearity. Table 2.8 provides the correlation between the variables

used in our study and some descriptive statistics. Given that there are no unusually high

correlations between the variables, we concluded that our variables are distinct and pro-

ceeded to check if there were any projects that exerted an unusually high influence on the

result of our analysis. Using Cook’s distance (Cohen et al., 2003) from the influence.ME

package (Nieuwenhuis et al., 2009), only a single project exhibited an unusually high in-

fluence with a Cook’s d value of one (Cohen et al., 2002). The observations from that

project were excluded from the analysis, which brought down the number of analyzed

projects to 234 and total observations to 1823.

The subsequent step was to fit our statistical model and to make some statistical infer-

ences; for this step we used the R statistical package version 2.9.1 (R Development Core

Team, 2009) in addition to the lme4 library for fitting random effect models (Bates and

Maechler, 2009). By process of adding our main effect variables and assessing the sig-

nificance of including the variable as a random effect using Chi2 difference tests, we iden-

tified KAMT, KREL, KCOD, and KCOMP as random effects embedded within projects.

102

Table 2.8: Variable correlations and descriptive statistics

SUS KCOD KCOMP KREL KAMT COM AGE PER isGPL isC isCpp isPy POP

SUS 1.00

KCOD -0.10 1.00

KCOMP -0.02 0.02 1.00

KREL 0.19 -0.32 -0.05 1.00

KAMT 0.30 0.00 0.03 -0.07 1.00

COM 0.40 -0.12 0.00 0.13 0.38 1.00

AGE 0.15 -0.04 -0.03 0.30 0.13 0.12 1.00

PER -0.06 0.00 -0.02 0.03 0.05 -0.01 0.04 1.00

isGPL 0.02 -0.05 -0.02 -0.04 0.00 0.04 0.09 0.05 1.00

isC 0.18 -0.34 0.01 0.38 0.09 0.18 0.33 0.00 0.10 1.00

isCpp -0.01 -0.13 0.02 -0.02 0.40 0.15 -0.09 -0.02 0.09 0.01 1.00

isPy -0.09 0.41 -0.02 -0.35 -0.14 -0.07 -0.27 0.00 -0.14 -0.58 -0.33 1.00

POP -0.34 0.02 0.03 -0.18 -0.18 -0.24 -0.40 -0.03 -0.12 -0.20 0.07 0.20 1.00

min 0.00 -0.37 -0.45 -6.39 -3.44 -1.73 -7.63 1.00 0.00 0.00 0.00 0.00 -0.21

mean 5.96 0.00 0.00 0.00 0.00 0.00 0.00 4.54 0.42 0.82 0.43 0.14 0.00

median 3.00 0.00 0.00 0.04 -0.11 -0.12 0.26 4.00 0.00 1.00 0.00 0.00 0.00

max 94.00 0.56 0.55 4.77 3.63 3.09 13.14 10.00 1.00 1.00 1.00 1.00 0.15

std 4.45 0.09 0.01 0.93 1.03 1.36 2.59 2.97 0.00 0.00 0.00 0.00 0.11

Table 2.9 summarizes the results of our model fitting statistical analysis. The first of

these models is the null model used as a baseline to determine the explanatory power of

subsequent models. The second model is the control only model for which we included

the control variables as fixed effects. As can be seen from Table 2.9, the control model

has an R2 of %14.6 based on the reduction in the deviance value from the null model. The

Chi2 difference test also suggests that the control model explains significantly more vari-

ance than the null model.

103

Table 2.9: Model fitting

Model Null ControlControlControl Main EffectsMain EffectsMain Effects QuadraticQuadraticQuadratic CubicCubicCubic
Estimate Std. Err. p Estimate Std. Err. p Estimate Std. Err. p Estimate Std. Err. p

KCOMP
3 -14.242 5.643 0.012*

KCOMP
2 -3.043 1.538 0.048* 0.28 2.01 0.889

KCOD2 — -9.478 4.133 0.022* -9.443 4.149 0.023*

KAMT2 — -0.082 0.029 0.005** -0.082 0.029 0.005**

KREL2 — -0.12 0.036 <.001*** cubic 0.036 <.001***

KCOD — -0.896 0.975 0.363 -0.693 0.947 0.464 -0.715 0.949 0.451

KCOMP — 1.580 0.531 0.003** 1.626 0.549 0.003** 1.994 0.567 <.001***

KAMT — -0.060 0.079 0.525 -0.04 0.08 0.617 -0.045 0.08 0.575

KREL — 0.157 0.095 0.123 0.124 0.096 0.193 0.129 0.096 0.176

COM — 0.731 0.030 <.0001*** 0.805 0.034 <.0001*** 0.791 0.034 <.001*** 0.789 0.034 <.001***

AGE — 0.008 0.032 0.806 -0.011 0.039 0.778 -0.018 0.038 0.642 -0.014 0.038 0.694

PER — -0.031 0.004 <.0001*** -0.032 0.005 <.0001*** -0.031 0.005 <.001*** -0.031 0.005 <.001***

isGPL — 0.033 0.153 0.832 -0.027 0.175 0.921 -0.058 0.171 0.734 -0.057 0.171 0.738

isC — 0.471 0.252 0.061. 0.340 0.304 0.262 0.274 0.294 0.352 0.254 0.294 0.388

isCpp — -0.286 0.167 0.086. -0.268 0.198 0.192 -0.296 0.192 0.123 -0.28 0.193 0.146

isPy — 0.005 0.291 0.97 0.36 0.358 0.319 0.35 0.341 0.305 0.342 0.342 0.317

POP — 2.074 0.890 0.02* 1.992 1.037 0.055. 1.857 1.009 0.066. 1.818 1.013 0.073.

Int 1.009**
* 0.849 0.275 0.002** 0.974 0.338 0.003** 1.07 0.319 <.001*** 1.085 0.32 <.001***

AIC 5619 481248124812 457445744574 454945494549 454545454545

LogLik -2807 -2396-2396-2396 -2259-2259-2259 -2242-2242-2242 -2239-2239-2239

Deviance 5615 479247924792 451845184518 448544854485 447944794479

R2 — %14.6%14.6%14.6 %19.53%19.53%19.53 %20.13%20.13%20.13 %20.24%20.24%20.24

Chi2 Diff — 822.468822.468822.468 274.282274.282274.282 29.63929.63929.639 6.0376.0376.037

p — <.0001***<.0001***<.0001*** <.0001***<.0001***<.0001*** <.0001***<.0001***<.0001*** 0.014*0.014*0.014*
Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1Significance codes: ’***’ <0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ‘ 1

Our interest lies mostly with the main effects model in which the Chi2 difference test

suggests that the model explains significantly more variance than the control model with

an R2 of %19.53. Among the coefficients of the hypothesized effects, only KCOMP is

found to be significant at p=0.003 and estimated at 1.58. However, since we are interested

in effect of magnitude of change, the linear effect for KCOMP is not of interest to us.

104

As for the non-supported effects, we consider if the reason for obtaining such a result

was due to the non-linear nature of these effects. If you recall from Sec. 2.2.1.2, we ex-

plained how value of the software or community benefits could also play a role the deci-

sion of value-maximizing developers to make a contribution. The interplay between such

value and contribution cost that grows with further software development (Lehman et al.,

1997) gives us reason to believe in the existence of non-linear relationships between

these variables and sustainability. In addition, we made the assumption that value is dis-

tributed within a narrow range across FLOSS communities for a linear effect to be de-

tected. The results so far suggests the violation of this assumption, however, we would

like to know if this holds true for all FLOSS communities or a subset of them. More im-

portantly, we would like to know if this is a result of the non-linear nature of their rela-

tionship or that there is no independent effect for cost.

To search for the non-linear effects, we continued our investigation by testing for

quadratic relationships. The expectation is that high levels of our variables of interest will

have different value and cost implications on a FLOSS community than low values of the

same variables. For example, a community with might have a small code base because

the software is at the initial stages of development and is yet to be of value for many us-

ers. Adding features for communities at this stage might yield higher value than cost and

would result in effects that are opposite to what we predicted.

To test for quadratic effects, we added each quadratic term individually and used a

Chi2 difference test to ensure that each term explained a significant amount of variability.

Our investigation resulted in the higher order model (depicted in Table 2.9) in which

105

KAMT, KREL, and KCOD all observed negative and significant quadratic effects. Fur-

thermore, the Chi2 difference test suggests that the higher order model explains a signifi-

cant amount of variance above and beyond the main effects model with an R2 of %20.13.

To get a better understanding of the nature of these relationships, we graphed in Figures

2.4-2.9 the curves representing the quadratic relationship followed by the graph of the

simple slopes to illustrate how the relationship changes over different values of the

KAMT, KREL, and KCOD.

Figure 2.4: Quadratic effect of knowledge codifiability

-0.45 -0.30 -0.15 0 0.15 0.30 0.45 0.60

Su
sta

in
ab

ili
ty

Knowledge Codifiability

106

-5.25

-3.50

-1.75

0

1.75

3.50

5.25

7.00

Su
sta

in
ab

ili
ty

Knowledge Codifiability

Low (-3sd) High (+sd)

Figure 2.5: Simple slopes for the quadratic effect of knowledge codifiability

Figure 2.6: Quadratic effect of knowledge amount

-4 -3 -2 -1 0 1 2 3 4

Su
sta

in
ab

ili
ty

Knowledge Amount

107

-0.232*

0.34*

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Su
sta

in
ab

ili
ty

Knowledge Amount

Low (-2sd) High (+sd)

Figure 2.7: Simple slopes for the quadratic effect of knowledge amount

Figure 2.8: Quadratic effect of knowledge relatedness

-7.00 -5.25 -3.50 -1.75 0 1.75 3.50 5.25

Su
sta

in
ab

ili
ty

Knowledge Relatedness

108

6.559*

-3.069*

-0.500

-0.375

-0.250

-0.125

0

0.125

0.250

0.375

0.500

Su
sta

in
ab

ili
ty

Knowledge Relatedness

Low (-sd) High (+2sd)

Figure 2.9: Simple slopes for the quadratic effect of knowledge relatedness

The quadratic effects in figures 2.4, 2.6, and 2.8 suggest that the nature of the relation-

ship to sustainability is changing for different values of the independent variables in

question. To illustrate this, we plot the simple slopes in figures 2.5, 2.7, and 2.9. Moving

in single standard deviation steps away from the mean, we plotted the first simple slope to

exhibit significance based on a two tailed t-test and the following value for the standard

error:

Sb =
�

S11 + 4XS12 + 4X2S22

109

-0.411*

0.392*

where S11 and S22 are variance in the regression coefficients for the main and quadratic

effects respectively, and S12 is the covariance between these same coefficients (Aiken and

West, 1991).

As can be inferred from the simple slope graphs, the negative relationship hypothe-

sized in H1 is supported for below average values of KCOD. The support is evident from

the significant and negative slopes in Figure 2.5 for values standard deviations or more

below the mean. This might seem unlikely to occur, however, the absolute minimum

value for KCOD is zero when there is no documentation in the code base. The significant

simple slope for values below three standard deviations suggests that having some docu-

mentation is certainty better than none. H2 and H4 are supported for the above average

and high values of both KAMT and KREL. This is evident from the significant and nega-

tive simple slope values in Figures 2.7 and 2.9 for values that two and one standard de-

viations above the mean respectively.

Notice that we also obtained a significant and negative effect for the coefficient of the

quadratic KCOMP term (-3.043, p-value = 0.048). While this term suggests that there is a

detrimental effect for any change in the absolute value of the modularity measure, the

quadratic term will not tell us if the smaller changes will result in a positive relationship

between knowledge completeness and sustainability. To uncover such an effect, we test

for a cubic KCOMP coefficient and find it to be negative and significant (-14.242, p-value

= 0.012). We depict this cubic effect in Figure 2.10.

110

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Su
sta

in
ab

ili
ty

Change in modularity

Figure 2.10: Cubic effect of knowledge completeness

To simplify interpretation, we plot two simple slope graphs for the cubic effect of

KCOMP. The first, depicted in Figure 2.11, is a graph representing positive change in the

KCOMP measure. Given that KCOMP is mean centered, notice how the coefficient of the

simple slope for the line depicting small change is positive and significant (1.994, p-value

= <0.001). The simple slope shares the same significance test as the one for the linear ef-

fect of KCOMP in the cubic model (Aiken and West, 1991). This line suggests that the

relationship between knowledge completeness and sustainability is positive for small

changes in the structure of the code base (i.e., high knowledge completeness) supporting

H2 for high levels of knowledge completeness. Notice also how the relationship between

sustainability and knowledge completeness reverses its direction for high values of

change in modularity measure (i.e., low knowledge completeness). The change in the

111

slope is significant as indicated by the significance of the cubic KCOMP term, supporting

H2 for low levels of knowledge completeness.

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

Su
sta

in
ab

ili
ty

Knowledge Uncertainty

Small Change Med Change Large Change

Figure 2.11: Simple slopes for positive change in knowledge completeness

112

1.994***

1.116

-1.684

-3.00

-2.25

-1.50

-0.75

0

0.75

1.50

2.25
Su

sta
in

ab
ili

ty

Knowledge Uncertainty

Small Change Med Change Large Change

Figure 2.12: Simple slopes for negative change in knowledge completeness

We also plot the simple slopes for the effect of negative changes in the modularity

measure in Figure 2.12. As can be seen, the results for negative changes in modularity

measure mirror those of the positive changes. With a positive and significant simple slope

for knowledge completeness for low levels of change in modularity measure (1.994, p-

value = <0.001), the relationship between sustainability and knowledge completeness is

positive for low levels of knowledge completeness. The relationship reverses itself for

more extreme values of negative change in modularity.

As for the small effect sizes for the cubic and quadratic models, it is typical when

looking for higher order effects in archival data (e.g., Kuk, 2006; Lavie, 2007; Gulati et

113

1.994***

0.948

-2.02

al., 2009) and inline with the 0.002 median effect size for moderation effects found by

Aguinis et al. (2005) in their review of management and psychological literature from the

past 30 years. Both the error present in the data and amount of residual variance after par-

tialling out the main effects make it difficult to detect higher order effect (McClelland and

Judd, 1993). Furthermore, higher order effects with small magnitudes will be even more

difficult to detect and will require large sample sizes (Ullrich et al., 2008; Champoux and

Peters, 1987). The fact that we found a significant effect for our higher order effects given

all these odds against finding them suggests that the actual effect might be even greater

than what the results are telling us. Furthermore, Champoux and Peters (1987) suggest

that the significance and magnitude of the effect are more important than the change in

effect size in determining the importance of the higher order effect.

4 Discussion

For the purpose of discussing our findings, we summarize our empirical findings in Table

2.10. We hypothesized in H1 that knowledge codifiability will have a positive relation-

ship to sustainability, which is defined as a FLOSS community’s ability to convert users

to contributors effectively in order to maintain development efforts. We argued that mak-

ing requisite knowledge more explicit would reduce contribution costs by making such

knowledge more accessible. What we found is that this hypothesis holds for below aver-

age values of knowledge codifiability and starts to reverse in direction for above average

values of knowledge codifiability. We provide an explanation of this reversal in the direc-

tion of the relationship in the following section.

114

Table 2.10: Summary of empirical findings from the higher order model

Hypothesis Coeffecient Support

H1: The extent to which source-code-
related knowledge for a FLOSS commu-
nity is codified will be positively related
to the sustainability of that community.

KCOD2: -9.954
p=0.016*

Supported for below average values of
knowledge codifiability.

H2: The extent to which source-code-
related knowledge for a FLOSS commu-
nity is complete will be positively related
to the sustainability of that community.

KCOMP3:
-14.242,
p=0.012**

Supported.

H3: The amount of source-code-related
knowledge that exists in a FLOSS com-
munity is negatively related to the sus-
tainability of that community.

KAMT2: -0.088
p=0.002**

Supported for above average values of
knowledge amount.

H4: The relatedness of source-code-
related knowledge that exists in a FLOSS
community is negatively related to the
sustainability of that community.

KREL2: -0.129
p=0.0003***

Supported for above average values of
knowledge relatedness.

We argued in H2 for a positive relationship between knowledge completeness, which

was operationalized as the change in modularity of the code base and sustainability. We

argued that a a stable code base code base would convey more complete knowledge for a

contributor that requires to integrate a patch into the community code base. Complete

knowledge entails that ones the code base is checked out, the contributor would not be

required to to rewrite his patch at time of committal because the community code base

changed significantly in its structure rendering his/her patch incompatible. As a result, the

effort to integrate a patch is reduced, thereby, increasing the number of new contributors

that are likely to participate. H2 was best supported in the cubic model that shows a posi-

tive relationship between knowledge completeness and sustainability for high levels of

115

knowledge completeness. This relationship reverses direction when for extreme values of

knowledge completeness whether they are positive or negative.

There are a number of important implications for both theory and practice from the

results of H2. The finding provides empirical support for theories that propose that source

code structures could encourage participation (Baldwin and Clark, 2006). The findings

also lend support to the validity of the modularity measure since the measure observed

behavior that we predicted prior to knowing the results of the analysis. As for practice,

this finding highlights the importance of stability of code design and the importance of

the release early release often practice. Such a practice encourages small incremental

changes that do not bring significant changes to the community code base, which our

work suggests is important to encourage participation from new contributors.

In H3 and H4, we argued that both dimension of diversity (i.e., amount and related-

ness) for knowledge that exits in a FLOSS community are negatively related to the sus-

tainability of the FLOSS community because they increase contribution costs. This rela-

tionship was found to hold for above average values of knowledge amount and related-

ness, as can been seen from the significant and negative slopes in Figures 2.5 and 2.6.

This negative relationship was attributed to the increased contribution cost associated

with the increased effort in comprehending a code base that consists of a diverse and

large number of modules. While we have discussed the benefits of modularity in reducing

contribution costs by allowing developers to contribute by working and comprehending

individual modules, knowledge relatedness negates the effect of modularity by requiring

a developer to comprehend a group of highly related modules. The result is that develop-

116

ers are required to expend greater effort to acquire knowledge that is required to make the

initial contribution.

These results highlight how certain projects are inherently complex and are likely to

be unsustainable in the long run. The inherent complexity highlights the need for FLOSS

communities to be clear in terms of the goals they want to achieve with the software

products they are developing. An effective way of managing complexity is to partition

complex projects into smaller related projects that deal with specific, but smaller, prob-

lems. Such an approach is only enabled by open standards. An example of this strategy is

evident in the Python community in which the WSGI protocol is a standard that allows

different applications to work with web-requests and pass it on to the next application

that could make use of it. This allowed a highly complex web framework known as

ZOPE to be partitioned into smaller, but manageable, FLOSS projects15.

Furthermore, the complexity highlights one of the strengths of the FLOSS market-

place: renewal. FLOSS projects could grow to be complex simply from the accumulation

of source code over time (Lehman et al., 1997). Such projects become difficult to main-

tain and might spur potential contributors who cannot break into a community to develop

their own FLOSS solutions that might surpass older and more complex solutions that

they originally considered using, thereby, heightening the competition in the FLOSS

marketplace. This is highlighted by the emergence of the Django web framework to re-

place the Zope web framework, and now the emergence of micro web frameworks to re-

place Django, which itself is becoming difficult to maintain.

117

15 See http://repoze.org/

http://repoze.org
http://repoze.org

4.1 Post-Hoc Analysis of Quadratic Effects

The quadratic effects are very interesting because the relationships’ directions are re-

versed. This warrants a closer examination of the unexpected reverse effects in light of

the FLOSS marketplace framework that we have developed. We start with the negative

effect associated with an increase in knowledge codifiability as measured by the ratio of

lines of documentation to the lines of code. This negative relationship becomes evident

and significant for above average ratios of documentation to code. This is the least sur-

prising of the reverse effects, given that we made the assumption that contributors are

boundedly rational (Simon, 1955). As the amount of documentation increases, potential

contributors are still required to expend effort to read the documentation and find their

way through it to get to the relevant parts. Therefore, the effort to acquire the knowledge

embedded in the documentation might increase and may reach a point where the value

the contributor will get from contribution no longer justifies the effort required to read the

documentation, let alone make the contribution.

This finding has a very important implication to FLOSS communities, as it suggests

that long-known truths about the value of information still hold in the new age of distrib-

uted software development (Ackoff, 1967). The increased amount of documentation

might be a signal that the quality of the documentation is poor or that too much unneces-

sary information is included, making it more difficult to find relevant knowledge. There-

fore, FLOSS communities should be aware of how critical documentation is. Even

though documentation is often considered a chore and many developers tend to avoid it

118

(Lakhani and Wolf, 2007), the quadratic effect suggests that it is necessary and, more im-

portantly, that it must be done right or it could have the reverse effect on potential con-

tributors (at the minimum). FLOSS communities may want to consider hiring or solicit-

ing the assistance of individuals with good technical writing skills to edit and improve the

documentation. Furthermore, the documentation should be continuously improved just

like the software itself and not be left to accumulate unnecessary or outdated bits of in-

formation over time.

The positive relationships for low levels of knowledge amount and relatedness were

the most surprising of our empirical findings. While it is contrary to the cost argument we

used to explain how effective FLOSS communities convert users into contributors, it

highlights another very important dynamic in the FLOSS marketplace. We are referring

here to the potential value that is generated from implementing and adding source code.

Needless to say, adding such source code would result in an increase in complexity, but

this is the case with any conventional software project (Lehman et al., 1997), especially

successful projects. The added value would result in an increase in the number of users of

the software, which might indirectly result in a greater number of new contributors.

Furthermore, the unexpected positive relationship could highlight the importance of

implementing just enough of the code base to allow developers to gravitate around it

(AlMarzouq et al., 2005). With a significant portion of the source code written that offers

just enough functionality to be useful, potential contributors can leverage all of the

knowledge behind the software without needing to acquire the development knowledge

fully and re-implement what has already been implemented in the code base. As knowl-

119

edge diversity from implementing more functionality increases, the cost of internalizing

all of the underlying knowledge requirements also increases. When a software project

that requires diverse knowledge is released as FLOSS, the rational choice for any devel-

oper that seeks to contribute to such a project is to pool his/her effort with that of the

community. This way, the developers can specialize in creating specific components

rather than working on the whole code base, resulting in higher quality and more innova-

tive software (Grant, 1996a).

However, it is important to note that the range of values for which the effect of knowl-

edge diversity starts to reverse its effect cannot be specified ex-ante. The reason for this is

that these values have to be taken into consideration relative to other characteristics of the

source code and of the FLOSS project, as our statistical analysis suggests. Because each

project is unique in its design and the characteristics of its underlying knowledge, there is

no specific number of modules or module size that fits all. More importantly, the com-

plexity of the code base cannot be known until the source code is actually written. Even if

it is known, FLOSS communities sometimes consciously choose to make the software

complex in order to maintain compatibility with older versions of the software that might

be used by community members or interoperate with other software packages. This find-

ing highlights the complexity of the trade-offs that have to be made by FLOSS communi-

ties.

Therefore, the quadratic effect related to the dimensions of knowledge diversity sug-

gests that when a developer is faced with the choice between working with a FLOSS

community or repeating the effort of the community by developing a similar solution us-

120

ing a proprietary model, the rational choice would be to pool the developer’s effort with

that of the FLOSS community. However, there is only a certain amount of complexity

that the developer can tolerate; otherwise, the rational choice might be to simply create a

new project or develop the software solution in-house. Similar to the implications related

to H3 and H4, this finding highlights the importance of the renewal of complex projects

in the FLOSS marketplace. Furthermore, it suggests that such acts of project renewal may

have a good probability of success when they are released as FLOSS. The main reason

for this success is that the alternatives to participating a highly complex FLOSS project or

developing a similar propriety system might be less cost effective.

Another important effect of the quadratic effects of the dimension of knowledge diver-

sity is that the success of a FLOSS community, as measured by the number of new con-

tributors joining the development effort, is a delicate balancing act between what features

should be included in the code base and how much complexity such features introduce.

The results suggest that an increase in complexity is healthy to a certain degree, as it adds

value to users and contributors. Adding too many features, however, could be detrimental

to the sustainability of the project in the long run. Adding too many features might be a

result of the community’s lack of clear goals as to what problems they would like their

software to target. Therefore, it is important for communities to set goals such that it be-

comes clear to committers when to refuse and when to incorporate contributed features

into the code base.

5 Brooks’ Law Revisited

121

According to Brooks (1975), one of the main causes for software project delays is due to

the current developers’ distraction from training newly added members, which is referred

to as the ramp-up effect. It has been debated in the research community whether the

Brooks’ contributions, collectively known as Brook’s Law, apply in the FLOSS develop-

ment context (Capiluppi and Adams, 2009) or not (Koch, 2004; Schweik et al., 2008).

The debate mostly focused on the effort needed to communicate but disregarded the ef-

fects of a ramp-up. Our study’s findings contribute to this discourse by proposing a con-

ceptualization of the ramp-up effect fit for the FLOSS context and by providing empirical

support of its effects.

One way in which FLOSS development differs from conventional software develop-

ment is that developers are volunteers (Raymond, 2001). As a result, members are under

no obligation to waste their time in training other contributors. However, the knowledge

embedded in the source code itself allows potential contributors to bring themselves up to

speed by reading the source code and acquiring the necessary knowledge to make contri-

butions (Raymond, 2001). Since new contributors do not significantly distract current de-

velopers, it is assumed that the ramp-up effect is not relevant to FLOSS development.

However, when the ramp-up effect is conceptualized as the knowledge barriers that a de-

veloper must overcome to become an effective team members, it becomes easier to argue

for the ramp-up effect’s influence in the FLOSS context.

If the ramp-up effect is viewed as a knowledge barrier, it implies that it varies from

one project to the next (Attewell, 1992). Therefore, in conventional teams, the amount of

effort from or the distraction to current members will be proportional to the size of these

122

effects (Attewell, 1992). However, in FLOSS teams, the size of the ramp-up effect will be

proportional to the effort expended by potential contributors in reading the source code

and acquiring the embedded knowledge. Therefore, we argue that projects that have high

knowledge barriers due to the nature of the knowledge embedded into the code base will

deter potential contributors from joining the development effort. The result of such situa-

tions is that the FLOSS project would lose effort that could have potentially been gained

if the knowledge barriers were lower. Furthermore, these knowledge barriers might im-

pact the propensity of the FLOSS project to sustain development over time.

Our empirical findings support the idea that knowledge barriers and, therefore, the

ramp-up effect vary between projects. The magnitude of these barriers will depend on the

codifiability, completeness, and diversity of the knowledge underlying the source code.

Therefore, we conclude that the ramp-up effect is indeed still relevant in the FLOSS de-

velopment context. However, because participation in FLOSS teams is voluntary, the

ramp-up effect impacts the performance of FLOSS communities through different dy-

namics than in conventional software development teams.

Given that software production is considered a knowledge intensive task, other online

and virtual communities focusing on the production and dissemination of knowledge

could also benefits from our findings. Communities of practice and knowledge production

communities, such as Wikipedia, that rely on the participation of volunteers could benefit

from increasing the numbers of new contributors by lowering the contribution costs. As

with FLOSS communities, an initial contribution to Wikipedia will require the participant

to learn and comprehend the article that he/she is about to contribute to, understand how

123

to use the tools to contribute, and coordinate with the gatekeepers of the community to

have their contribution accepted. Future research on such communities could benefit from

our conceptualization of the ramp-up effect as a bases to understand the costs associated

with the initial contribution.

6 Limitations and Future research

Although we have built up the logic to argue that the reduction of transaction costs is the

most effective strategy for increasing the number of external participants, we believe that

the value appropriated by individuals from contributing to a FLOSS project is still valu-

able to understand contribution behavior, especially at the individual level. Our novel ap-

proach in framing the FLOSS marketplace opens up the possibility for leveraging other

value-based organizational theories to understand FLOSS participation. For example,

resource-based theory could be leveraged to understand how certain community-based

resources could cause new contributor participation or even how FLOSS communities

could sustain a competitive advantage, however that concept might be conceptualized, in

the FLOSS marketplace.

A potential limitation to our work is associated with the tools that we used to collect

our empirical data. Our tools allowed us to collect data only about completed transac-

tions; that is, we were not able to collect information pertaining to developers’ attempts to

submit patches that were rejected. This information resides in the project trackers and de-

veloper mailing lists related to individual projects. Given that each project uses a differ-

ent system, the complexity of the tools that we would have needed to collect all of this

124

data would have been an order of a magnitude more complex than what we have devel-

oped and used for this study. This information, however, could add further insight into the

effects of contribution costs and community structures, and future studies could benefit

from collecting and making inferences from such information. This was more of a trade-

off than a limitation, though, as we chose generalizability over rich data. To our knowl-

edge, this is the only FLOSS-related work that attempts to base large-sample observa-

tions on an established theory like TCT.

Furthermore, we have alluded to the possible influence of having star programmers

join the development effort of a FLOSS community and how that might increase the

popularity of a project and result in greater numbers of new contributors. While ideally,

we would have liked to capture such information, the scope of the projects and the time-

lines that we have examined made it impossible for us to know which programmers are

considered stars. We attempted to make up for this limitation by controlling for the effect

of popularity as reported by FLOSS developers on ohloh.net. If it was at all possible to

identify the time periods in which star programmers joined a FLOSS projects, future

studies could provide a better understanding of the impact of such an effect.

Some of the empirical findings were also a surprise and warrant further investigation

to understand more fully the nature of the relationships they represent. For example,

while we have not predicted the non-linear nature of the relationship of knowledge codi-

fiability, amount, and relatedness, we offered post-hoc analysis that could establish the

basis for future investigations. Follow-up studies could examine the quadratic relation-

ships and treat them explicitly using deductive theory. While we now know that there is a

125

certain threshold at which benefits associated with knowledge codifiability and knowl-

edge diversity turn into liabilities, it is difficult to establish a priori what these threshold

points are. This does not however diminish the value of this finding, as FLOSS communi-

ties are now made more informed of the complexities associated with managing commu-

nity sustainability.

It is also important to note that this is the first attempt that we know of that uses the

leading eigen-vector method of community structure identification (Newman and Girvan,

2004; Newman, 2006b) to assess the dependency structure and modularity of a software

code base. Given that the modularity-based variable observed both discriminant validity

and a significant relationship to the dependent variable in the direction predicted by our

theory, this leads us to conclude that there is validity to the measure. However, given that

this is a new measure, we have yet to establish meaning to subtle variations in the meas-

ure to be able to use it in more practical settings. Although the measure serves well in

comparing which code base is more modular relative to another code base and assessing

the design improvements for the same code base by comparing new values to previous

values of modularity, we still do not have a complete understanding of what the implica-

tions are for absolute modularity values in and of themselves. We believe that further use

of this method could provide a better understanding of these values and their implications

and, more importantly, an understanding of the strengths and weaknesses of this method.

For example, further use of this method would allow us to determine whether a modular-

ity value of .9 has indeed significant management implications when compared to a code

base with a modularity of .5 or .89. In addition, further investigation is needed to under-

126

stand the nomological network in which such a measure is embedded in order to under-

stand whether the measure can serve project managers well as a standalone measure or

whether it should be considered relative to other metrics, such as code size, team size,

and number of modules.

7 Conclusion

 In this study, we conceptualize FLOSS communities as competitors in both the software

and FLOSS marketplaces. FLOSS communities compete in the software marketplace to

get more people to use their software products. In the FLOSS marketplace, communities

compete for a larger portion of contributor mindshare, contributors receive community-

related benefits, and the community benefits from advancing its software development

effort. The two marketplaces are related in that development efforts in the FLOSS mar-

ketplace would allow the community to become more competitive in the software mar-

ketplace by improving its software offerings. At the same time, FLOSS communities

compete on converting users of their software to contributors that participate in the

FLOSS marketplace. We take particular interest in the conversion of users into first-time

contributors and use the insights from TCT to explain how contribution transaction costs

are the main impediment to initial contributions. We identify the characteristics of knowl-

edge, codifiability, completeness, and diversity as the main sources of contribution-

related transaction costs. We then provide empirical support for our theory.

We contribute to the body of knowledge on FLOSS community management by find-

ing empirical support to the idea that the codification of requisite development knowledge

127

by means of documenting the source code is important in reducing the effort required of

potential contributors. By reducing the costs associated with acquiring requisite knowl-

edge, a FLOSS community can increase the number of developers who make a contribu-

tion to its source code. However, such costs can only be managed up to a point. After that

point navigating through the code base starts to become cumbersome and might deter de-

velopers from contributors.

In line with the theory forwarded by Baldwin and Clark (2006), we contribute by find-

ing empirical support for the idea that diverse and complete development knowledge,

which is reflected by modularity, size, and the number of modules in a code base, is re-

lated to the number of contributors. These findings highlight the importance of properly

designing software to encourage participation. Modular designs that minimize dependen-

cies across modules and maximize them within modules are designs that encourage par-

ticipation. Maximizing dependencies within a module requires developers to group

highly related modularity within a module, making it easy to find by potential contribu-

tors. Reducing the dependencies across modules would help make changes in one module

have little effect on other modules, thereby enabling parallel development and more pre-

dictable software that is easier to manage (Baldwin and Clark, 2000; Page-Jones, 1998).

The relationship of the size and number of modules to contribution in particular might

suggest that there are certain types of software products that have a tendency to attract

contributors if the software was developed by a FLOSS community. We attributed this to

the reduction in risk associated with the development effort since contributors get to

benefit from the software and pool their efforts, thereby distributing the risk of failure

128

over a larger group of contributors. This situation would be a more rational option than

developing such software alone. However, we also found that having a very large number

of modules might also come at a cost and deter participation since developers will have a

hard time finding their way around the code base in order to make their changes.

The final contribution we make is the utilization of the leading eigen-vector method

for community structure identification (Newman and Girvan, 2004; Newman, 2006a) and

the graph modularity measure (Newman, 2006b) as software metric tools. We also con-

tribute by finding evidence of the validity of the modularity measure. This evidence is

observed through the support of the relationship between modularity and sustainability

that was predicted prior to obtaining the result in addition to the discriminant validity of

the measure.

Our contributions have important implications for both theory and practice. As part of

the theoretical implications, we clarify the theoretical distinction between the FLOSS

marketplace and the software marketplace. This distinction will have profound theoretical

impacts since it differentiates between the dynamics of usage of FLOSS through the

software marketplace and those of development through the FLOSS marketplace. Fur-

thermore, our conceptualization of the marketplace contributes to the discourse on

whether FLOSS development represents a cathedral or a bazaar (e.g. Bezroukov, 1999;

Raymond, 2001; Krishnamurthy, 2002; Crowston and Howison, 2005). What our framing

suggests is that the constellation of all the FLOSS communities can be thought of as a

babbling bazaar in which users and developers can pick and choose the software they use

and the projects they work on. After all, a bazaar is merely a marketplace.

129

As with any marketplace, competition is a very important aspect that is not yet under-

stood well in the FLOSS context. Our framing also allows us to highlight some competi-

tive forces in the FLOSS marketplace and to use established theories in organizational

literature, like TCT, to gain a better understanding of the dynamics in the FLOSS market-

place. This opens up the possibility of using other organizational theories that focus on

competition to understand the competitive nature of FLOSS communities more fully.

In addition, we outline the importance of understanding the structure of the source

code as a proxy for requisite knowledge given that it is an explicit form of that knowl-

edge. We also propose the use of new methods that offer rigorous and objective means to

compare and examine software structures (i.e., source code dependency graphs). Since

these tools measure aspects that are important in software engineering efforts, such as

modularity, they can be used to assess the impact of initiatives that aim to improve a

software’s structure, whether it be in FLOSS communities or software engineering pro-

jects.

Overall, the results support the basic idea behind our theory, namely that FLOSS con-

tributors are rational value-maximizing actors that will refrain from contribution when

the cost to contribute is higher than the returns gained from participation. In addition, the

results also lend support to the existence of transaction costs in the context of FLOSS

participation and are closely tied to the characteristics of the code base. Both ideas are

supported by our empirical findings that support our hypotheses and the diminishing re-

turns of knowledge codifiability, amount, and relatedness. This suggests that managing

the costs of participation is indeed an effective strategy to encourage new contributions

130

and maintaining the sustainability of FLOSS communities. The interplay between cost to

participate and the value of that participation is yet to be understood and is a good direc-

tion for future research. Such research could provide a better explanation to the observa-

tion of diminishing returns from knowledge codifiability, amount, and relatedness. In ad-

dition, our empirical findings suggest that the knowledge diversity construct is multidi-

mensional as suggested by Turner and Makhija (2006) given the distinct effect for each.

Another important practical implication of our findings is our outline of the impor-

tance of activities that are usually considered to be chores in FLOSS communities, such

as code reorganization and documentation. The importance of these activities not only

lies in how they improve the maintainability of a code base but also in their ability to in-

crease the number of new contributors.

131

 Appendices

132

 Appendix A: Modularity Related Constructs

Figure 2.7: How the different modularity-related constructs vary independently

133

 Appendix B: Analyzing Contributors

The following message is an example of a log message from the Django project revision

control system that indicates a patch was made by a contributor with the pseudo-name

nfg:

Fixed #9859 Added another missing force_unicode

needed in admin when running on Python 2.3. Many

thanks for report & patch to nfg.

- (Django Revision 9656)

We wrote automation scripts to identify the names of contributors from log messages

by looking for certain keywords in the log messages such as "thanks" or "patch." While

identifying the names from log messages might be a trivial task when performed by hu-

mans, automating such a task was quite involved given that projects identified contribu-

tors differently and that the same individual could use multiple spelling for his/her name.

Nevertheless, we undertook this task and developed the automated scripts. Once we com-

pleted the scripts, we needed a way to assess their reliability. Since we knew that the

same process could be performed reliably by a human, we assessed the inter-rater reli-

ability for the results of a manual process relative to the results of an automated process

for the name identification. Towards that end, we first randomly sampled around 100 log

messages from each of the projects in our sample. We then counted the names identified

from each log using both a manual process (i.e., human) and an automated process that

134

used the automation scripts we developed. We then computed the inter-class correlation

(ICC) between the results produced by the manual relative to the results produced by the

automated processes. Using the ICC measure as an estimate of the inter-rater reliability

(Shrout and Fleiss, 1979), we obtained a value of 0.921 for a total of 18500 observations

from 185 projects from our sample. This result led us to conclude that the results from the

automation scripts and manual process were interchangeable and that we could proceed

to use our automation scripts to identify the names of contributors reliably.

Notice, however, that the automation scripts were used only on 185 projects from the

total 235 projects in our sample. The reason we could not use the automation scripts on

some of the projects is that these projects identified a ticket number in the commit log

messages rather than attributing individuals. For such projects, we wrote a different set of

automation scripts that collected these ticket numbers and used them to retrieve contribu-

tor information from the project tracking website16. Only information related to contribu-

tions made between the beginning of January 2007 and the end of June-2009 was col-

lected.

After obtaining the names of the authors from all of the projects in our sample, we

then proceeded to clean the data to reduce any errors associated with the automated col-

lection of names. We first manually cleaned the names by removing any references that

did not represent real authors. For example, when terms like "bug #1234" were captured

as authors, they were discarded. We only retained names, pseudo-names, or emails.

135

16 The project tracking website is the website used to list known bugs and list feature requests. Some
FLOSS projects rely more heavily on such websites for their development process, where contributors
would post their patch for review on the project tracker before it is reviewed and committed.

Following the cleaning step, we proceeded to normalize the names to ensure that dif-

ferent reference to the same individual counted as a single author rather than different

authors. We developed an application that listed all the identified names of all committers

and contributors within a project and then made a all the other names that could poten-

tially be variations of identified names. For example, a name like "John Doe" would have

all of the following names listed as potentially related to it should they exist in the sys-

tem: "John," "Doe,""john.doe@gmail.com," and "jdoe". We then manually confirmed

which names were related, and the system then counted all of these related names as a

single individual, whether for a committer or contributor. In cases in which the authors

were identified as "Guest," "anon," or "anonymous" because they forgot to mention their

names, we normalized the names following the recommendation of Howison and Crow-

ston (2004) to count only a single anonymous contributor as unique per single commit.

We then proceeded to count the number of new contributors within an analysis period.

To identify new contributors, we counted only individuals who had not been referenced

in prior analysis periods either as contributors or committers. Since we had no history

about contributors prior to 2007, we excluded the first three months of our data from the

analysis and used it only as a means of identifying new contributors for subsequent peri-

ods. It is important to note that the normalized names were used in this counting process

to avoid inflating the numbers of new contributors when a individuals used different

spellings of their names to identify themselves.

136

mailto:john.doe@gmail.com
mailto:john.doe@gmail.com

 Appendix C: Measuring Modularity

To measure modularity, we utilized the leading eigen-vector method of community struc-

ture identification (Newman, 2006a) to partition the dependency graph of the source

code. This partitioning method is similar in nature to principle component analysis (PCA)

(Newman, 2006a). While PCA uses a covariance matrix to cluster items and maximize

the explained variance in the data, the leading eigen-vector method uses the eigen-vectors

of the modularity matrix to divide a graph continually while maintaining the maximum

possible modularity measure (Newman and Girvan, 2004) in order to discover groups.

Modularity is a measure of how cleanly a graph is partitioned (Newman and Girvan,

2004; Newman, 2006b). It takes into account the groups identified by any clustering

method, such as the leading eigen-vector method, and then gives a probability of how

random the edges are distributed in a graph. A great number of edges within groups and a

low number of edges between vertices belonging to different groups indicate that the dis-

tribution of edges follows a pattern and is not random and that the modularity value will

be closer to one. When the edges are random, the probability that an edge goes from one

node to another will be the same. In such graphs, we will not see any particular edge pat-

tern for any group. When the graph is partitioned, the number of edges leaving a group

will not differ from the number of edges within a group, which results in an inefficient

partitioning of the graph with modularity values close to or possibly lower than zero17.

137

17 According to Newman (2006a), modularity values that are less than zero are equivalent to zero.

So, the question that the value of modularity would answer would be "are we seeing more

than the expected number of edges in a group, and less than expected number of edges

spanning groups?"

When the software code dependency graph is partitioned using the leading eigen-

vector method, the files are classified into modules to maximize the edge count (i.e., de-

pendencies) between files that are in the same module, while minimizing the count of

edges that span modules. Just like PCA, items that hold together well (i.e., exhibit cohe-

sion) are identified as modules. However, a lack of edges between modules, as in PCA,

would signify how distinct each module is (i.e., exhibits loose coupling). Once the struc-

ture was identified, we extracted the modularity measures of the partitioned source code

dependency graph and used it as an estimate of the modularity of the code base design.

138

References

Ackoff, R. (1967). Management misinformation systems. Management Science, 14(4):
B147-B156.

Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2005). Effect Size and Power in
Assessing Moderating Effects of Categorical Variables Using Multiple Regression: A
30-Year Review. Journal of Applied Psychology, 90(1), 94-107.

Aiken, L. S. and West, S. G. (1991). Multiple Regression: Testing and interpreting inter-
actions. Sage Publications, Inc.

Alavi, M. and Leidner, D. E. (2001). Review: Knowledge management and knowledge
management systems: Conceptual foundations and research issues. MIS Quarterly,
25(1):107-136.

AlMarzouq, M., Zheng, L., Rong, G., and Grover, V. (2005). Open source: Concepts,
benefits, and challenges. Communications of AIS, 2005(16):756-784.

Attewell, P. (1992). Technology diffusion and organizational learning: The case of busi-
ness computing. Organization Science, 3(1):1–19.

Baldwin, C. Y. and Clark, K. B. (2000). Design rules, Vol. 1: The power of modularity.
The MIT Press.

Baldwin, C. Y. and Clark, K. B. (2006). The architecture of participation: Does code ar-
chitecture mitigate free riding in the open source development model? Management
Science, 52(7):1116-1127.

Bates, D. and Maechler, M. (2009). lme4: Linear mixed-effects models using S4 classes.
R package version 0.999375-31.

Bezroukov, N. (1999). Open source software development as a special type of academic
r e s e a r c h : C r i t i q u e o f v u l g a r r a y m o n d i s m .
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/696/606.

Bonaccorsi, A. and Rossi, C. (2005). Altruistic individuals, selfish firms?
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1476.

139

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/696/606
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/696/606
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1476
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1476

Brooks, F. (1975). The mythical man-month. In Proceedings of the international confer-
ence on reliable software, volume 10. ACM Press.

Capiluppi, A. and Adams, P. J. (2009). Reassessing brooks’ law for the free software
community. In Boldyreff, C., Crowston, K., Lundell, B., and Wasserman, A. I., edi-
tors, OSS, volume 299 of IFIP, 274-283. Springer.

Champoux, J. E., & Peters, W. S. (1987). Form, effect size and power in moderated re-
gression analysis. Journal of Occupational Psychology, 60(3), 243-255.

Choudhury, V. and Sampler, J. L. (1997). Information specificity and environmental
scanning: An economic perspective. MIS Quarterly, 21(1):25-53.

Clemons, E. K. and Hitt, L. M. (2004). Poaching and the misappropriation of informa-
tion: Transaction risks of information exchange. Journal of Management Information
Systems, 21(2):87-107.

Clemons, E. K., Reddi, S. P., and Row, M. C. (1993). The impact of information technol-
ogy on the organization of economic activity: The "move to the middle" hypothesis.
Journal of Management Information Systems, 10(2):9-35.

Coase, R. H. (1937). The nature of the firm. Economica, 4(16):386–405.

Cohen, J., Cohen, P., West, S., and Aiken, L. (2003). Applied multiple regression/
correlation analysis for the behavioral sciences. Lawrence Erlbaum, third edition.

Cohen, P., Cohen, J., West, S. G., and Aiken, L. S. (2002). Applied multiple regression/
correlation analysis for the behavioral sciences, Third Edition. Lawrence Erlbaum,
third edition.

Cohen, W. M. and Levinthal, D. A. (1990). Absorptive capacity: A new perspective on
learning and innovation. Administrative Science Quarterly, 35(1):p128- 152.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M. (2004). Version Control with
Subversion. O’Reilly Media, Inc., Sebastopol, CA.

Conner, K. R. and Prahalad, C. K. (1996). A resource-based theory of the firm: Knowl-
edge versus opportunism. Organization Science, 7(5):477-501.

Crowston, K. (1997). A coordination theory approach to organizational process design.
Organization Science, 8(2):157-175.

Crowston, K. and Howison, J. (2005). The social structure of free and open source soft-
w a r e d e v e l o p m e n t .
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1207.

140

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1207
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1207

Dahlander, L. and Magnusson, M. G. (2005). Relationships between open source soft-
ware companies and communities: Observations from nordic firms. Research Policy,
34(4):481-493.

Darcy, D., Kemerer, C., Slaughter, S., & Tomayko, J. (2005). The structural complexity
of software an experimental test. Software Engineering, IEEE Transactions on,
31(11), 982-995.

English, R. and Schweik, C. M. (2007). Identifying success and tragedy of floss com-
mons: A preliminary classification of sourceforge.net projects. In FLOSS ’07: Pro-
ceedings of the First International Workshop on Emerging Trends in FLOSS Re-
search and Development, 11, Washington, DC, USA. IEEE Computer Society.

Fichman, R. G. and Kemerer, C. F. (1997). The assimilation of software process innova-
tions: An organizational learning perspective. Management Science,
43(10):1345-1363.

Galunic, D. C. and Rodan, S. (1998). Resource recombinations in the firm: knowledge
structures and the potential for schumpeterian innovation. Strategic Management
Journal, 19(12):1193-1201.

Gardner, W., Mulvey, E. P., and Shaw, E. C. (1995). Regression analyses of counts and
rates: Poisson, overdispersed poisson, and negative binomial models. Psychological
Bulletin, 118(3):392 -404.

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., and Lea, D. (2006). Java Con-
currency in Practice. Addison-Wesley Professional.

Grant, R. M. (1996a). Prospering in dynamically-competitive environments: Organiza-
tional capability as knowledge integration. Organization Science, 7(4):375- 387.

Grant, R. M. (1996b). Toward a knowledge-based theory of the firm. Strategic Manage-
ment Journal, 17:109- 122.

Gulati, R., Lavie, D., & Singh, H. (2009). The nature of partnering experience and the
gains from alliances. Strategic Management Journal, 30(11), 1213-1233.

Howison, J. and Crowston, K. (2004). The perils and pitfalls of mining sourceforge. In In
Proceedings of the International Workshop on Mining Software Repositories (MSR
2004, pages 7-11.

Jackson, D. (2006). Software abstractions: logic, language, and analysis. The MIT Press.

Koch, S. (2004). Profiling an open source project ecology and its programmers. Elec-
tronic Markets, 14(2):77-88.

141

Kogut, B. and Zander, U. (1992). Knowledge of the firm, combinative capabilities, and
the replications of technology. Organization Science, 3(3):383-397.

Kogut, B. and Zander, U. (1996). What firms do? coordination, identity, and learning.
Organization Science, 7(5):518, 502.

Krishnamurthy, S. (2002). Cave or community? an empirical examination of 100 mature
o p e n s o u r c e p r o j e c t s .
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881.

Krogh, G. V. and Hippel, E. V. (2006). The promise of research on open source software.
Management Science, 52(7):975-983.

Kuk, G. (2006). Strategic interaction and knowledge sharing in the KDE developer mail-
ing list. Management Science, 52(7):1031-1042.

Lakhani, K. R. and Wolf, R. G. (2007). Why hackers do what they do: Understanding
motivation and effort in free/open source software projects, 3-22. The MIT Press.

Laporte, L. and DiBona, C. (2006). Interview with guido van rossum. Podcast.

Lavie, D. (2007). Alliance portfolios and firm performance: A study of value creation and
appropriation in the U.S. software industry. Strategic Management Journal, 28(12),
1187-1212.

Lee, G. K. and Cole, R. E. (2003). From a firm-based to a community-based model of
knowledge creation: The case of the linux Kernel development. Organization Sci-
ence, 14(6):633-649.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski, W. M. (1997). Met-
rics and laws of software evolution—the nineties view. In METRICS ’97: Proceed-
ings of the 4th International Symposium on Software Metrics, page 20, Washington,
DC, USA. IEEE Computer Society.

Lerner, J. and Tirole, J. (2002). Some simple economics of open source. Journal of Indus-
trial Economics, 50(2):197.

Liu, X. and Iyer, B. (2007). Design architecture, developer networks and performance of
open source software projects. In ICIS 2007 Proceedings.

MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2006). Exploring the structure of com-
plex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015-1030.

142

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881

Malone, T. W. and Crowston, K. (1994). The interdisciplinary study of coordination.
ACM Comput. Surv., 26(1):87-119.

Malone, T. W., Yates, J., and Benjamin, R. I. (1987). Electronic markets and electronic
hierarchies. Commun. ACM, 30(6):484-497.

Mata, F. J., Fuerst, W. L., and Barney, J. B. (1995). Information technology and sustained
competitive advantage: A resource-based analysis. MIS Quarterly, 19(4):487-505.

McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions
and moderator effects. Psychological Bulletin, 114(2), 376-390.

Midha, V. (2008). Does complexity matter? the impact of change in structural complex-
ity on software maintenance and new developers’ contributions in open source soft-
ware. In ICIS 2008 Proceedings.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open source
software development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol.,
11(3):309-346.

Newman, M. E. J. (2006a). Finding community structure in networks using the eigenvec-
tors of matrices. Physical Review E, 74:036104.

Newman, M. E. J. (2006b). Modularity and community structure in networks. PNAS,
103:8577.

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in
networks. Physical Review E, 69:026113.

Nieuwenhuis, R., Pelzer, B., and te Grotenhuis, M. (2009). Influence.ME: Tools for de-
tecting influential data in mixed effects models. R package version 0.7.

Oh, W. and Jeon, S. (2007). Membership herding and network stability in the open source
community: The ising perspective. Management Science, 53(7):1086-1101.

O’Mahony, S. (2003). Guarding the commons: How community managed software pro-
jects protect their work. Research Policy, 32(7):1179-1198.

Ouchi, W. G. (1980). Markets, bureaucracies, and clans. Administrative Science Quar-
terly, 25(1):129-141.

Page-Jones, M. (1998). Cohesion. In The Practical Guide to Structured Systems Design.
R e t r i e v e d O c t o b e r 6 , 2 0 0 8 , f r o m
http://www.waysys.com/ws_content_bl_pgssd_ch06.html

143

http://www.waysys.com/ws_content_bl_pgssd_ch06
http://www.waysys.com/ws_content_bl_pgssd_ch06

R Development Core Team (2009). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Ramm, M. (2008). DjangoCon 2008 keynote: Mark Ramm.

Raymond, E. (2001). The cathedral and the bazaar: Musings on linux and open source by
an accidental revolutionary. O’Reilly, Cambridge, MA, revised edition.

Riehle, D. (2007). The economic motivation of open source software: Stakeholder per-
spectives. Computer, 40(4):25-32.

Roberts, J. A., Hann, I., and Slaughter, S. A. (2006). Understanding the motivations, par-
ticipation, and performance of open source software developers: A longitudinal study
of the apache projects. Management Science, 52(7):984-999.

Sanchez, R. and Mahoney, J. (1996). Modularity, flexibility, and knowledge management
in product and organization design. Strategic Management Journal, 17:76, 63.

Schweik, C. M., English, R. C., Kitsing, M., and Haire, S. (2008). Brooks’ versus Linus’
law: an empirical test of open source projects. In dg.o ’08: Proceedings of the 2008
international conference on Digital government research, pages 423-424. Digital
Government Society of North America.

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open
source software development. Management Science, 52(7):1000-1014.

Shrout, P. E. and Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reli-
ability. Psychological Bulletin, 86(2):420-428.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(1):99-118.

Stewart, K. J., Ammeter, A. P., and Maruping, L. M. (2006). Impacts of license choice
and organizational sponsorship on user interest and development activity in open
source software projects. Information Systems Research, 17(2):126-144.

Tiwana, A. (2008). Does interfirm modularity complement ignorance? a field study of
software outsourcing alliances. Strategic Management Journal, 29(11):1252, 1241.

Turner, K. L. and Makhija, M. V. (2006). The role of organizational controls in managing
knowledge. Academy of Management Review, 31(1):197-217.

Ullrich, J., Schermelleh-Engel, K., & Böttcher, B. (2008). The moderator effect that
wasn't there: Statistical problems in ambivalence research. Journal of Personality
and Social Psychology, 95(4), 774-794.

144

Ven, K. and Mannaert, H. (2008). Challenges and strategies in the use of open source
software by independent software vendors. Inf. Softw. Technol., 50(9-10):991-1002.

von Hippel, E. and von Krogh, G. (2003). Open source software and the “Private-
Collective” innovation model: Issues for organization science. Organization Science,
14(2):209-223.

Warton, D. I. (2005). Many zeros does not mean zero inflation: comparing the goodness-
of-fit of parametric models to multivariate abundance data. Environmetrics,
16(3):275-289.

Weimer, D. and Vining, A. (2004). Policy Analysis: concepts andp. Prentice Hall, fourth
edition.

West, J. (2007). Seeking open infrastructure: Contrasting open standards, open source and
o p e n i n n o v a t i o n .
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1913/1795.

Williamson, O. E. (1975). Markets and hierarchies: Analysis and antitrust implications.
The Free Press, New York, NY.

Zander, U. and Kogut, B. (1995). Knowledge and the speed of the transfer and imitation
of organizational capabilities: An empirical test. Organization Science, 6(1):p76-92.

145

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1913/1795
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1913/1795

Chapter 3

Study 2: Towards a Theory on the Technical Per-

formance of FLOSS Communities

146

Abstract

Committers in Free/Libre and Open Source Software (FLOSS) communities play a

critical role in the progress of the software development tasks in the community. Not only

are they some of the most productive members in terms of development activities, but

they also get involved by committing the work of other contributors into the community

code base, coordinating the development effort, communicating with the broader com-

munity for both technical and development support, and participating in most decision-

making processes. As a result of this enormous effort shouldered by committers, it comes

as no surprise that the FLOSS research found that most committers leave the community

they are part of after serving for only a short time period.

Given the critical role that committers play in the progress of FLOSS communities,

we question how committers are able to balance the demands of their own development

work and their committal duties towards the community and identify the committers as a

potential development bottleneck. As a result, we expect the tradeoffs made by the com-

mitters to have implications on the pace of progress made by a FLOSS community.

Which is why we start questioning Raymond’s claim that Brooks’ law is obsolete in the

FLOSS development context, as some of the tradeoff decisions made by the committers

might result in greater development effort, but not necessarily progress.

147

Using the lens of Organization Information Processing Theory (OIPT), we explain

how the technical performance of a FLOSS community is constrained by the committers’

capabilities. Our findings suggest that the way in which committers are organized will

have a profound implication on the technical performance of the FLOSS community. Fur-

thermore, we find that there is no superior form of organization (i.e., centralized vs. dis-

tributed organization of committers); rather, the needs of the community should deter-

mine the best organizational form. We provide empirical support for our proposed model

and offer some theoretical and practical implications for our findings. We conclude by

discussing the limitation of our work and suggest directions for future research.

148

1 Introduction

Free/Libre and Open Source Software (FLOSS) is produced by online communities in

which members’ individual development efforts are coordinated with the efforts of other

members and are integrated into a coherent whole (O’Mahony and Ferraro, 2007). Mem-

bers write source code patches that implement a feature or fix a bug, which they then

submit for integration into the community source code base to benefit all members (Ray-

mond, 2001).

The idea that a large group of distributed developers can work together to develop

software that rivals, if not exceeds, commercial software (AlMarzouq et al., 2005) goes

against the conventional wisdom of software engineering. Specifically, FLOSS develop-

ment seems to go against the ideas forwarded by Fred Brooks’, which are referred to as

Brooks’ Law given how widely they are accepted by software engineers (Brooks, 1975).

One of the ideas from Brooks’s Law that clearly goes against the grain of FLOSS de-

velopment is that developers are required to exert effort in communicating with other

team members to maintain the functional integrity of the developed software. However,

as more developers are added, conventional software projects start to experience delays

because more of the developers’ time is wasted on communication. Based on this law, the

development performance of large FLOSS communities, such as the Linux Kernel, could

not be possible (e.g., Kroah-Hartman et al., 2008).

149

In his seminal work The Cathedral and The Bazaar, Eric Raymond (2001) drew on his

personal experiences in FLOSS development to provide an explanation as to why

Brooks’ Law does not apply in the case of FLOSS development. Unlike the significant

effort required in traditional software development teams (Brooks, 1975), Raymond sug-

gests that communication requirements between FLOSS developers is minimal because

the source code can convey much of the information needed for coordination. Such

source-code-enabled communication allows for distributed development, which Ray-

mond described as a babbling bazaar. In addition, Raymond highlights the benefits of the

FLOSS practice of releasing software updates early and often. These benefits not only

include improved software quality due to the early discovery and correction of bugs, but

more importantly, developers can contribute incremental changes that reduce the effort

needed to communicate with one another and can thus increase the development per-

formance of the community.

However, more recent literature began to find differences between many FLOSS pro-

jects and the way Raymond described them, thereby raising questions about the assump-

tions we hold regarding FLOSS. For example, while Raymond described FLOSS com-

munities as being distributed babbling bazaars, Krishnamurthy (2002) found that the ma-

jority of FLOSS projects hosted on sourceForge.net were highly centralized, describing

them instead as caves. Mockus et al. (2002) and later Crowston and Howison (2005)

found that FLOSS communities varied in how they organized their development activi-

ties. More interestingly, it seems that empirical support was found for both Raymond’s

150

(eg. Koch, 2004; Schweik et al., 2008) and Brooks’ (Capiluppi and Adams, 2009, eg.)

views.

The opposing results from the literature suggest that both views are likely to be recon-

ciled and that there is much that we have yet to know about the development performance

of FLOSS communities. Specifically, we would like to understand if one of the views

prevails due to the variations found in how FLOSS communities organize development

and whether this variation will have any implication on performance. This will be impor-

tant to both theory and practice given the increased interest in FLOSS by for-profit or-

ganizations (Fitzgerald, 2006). Furthermore, the transformation of the FLOSS phenome-

non (Fitzgerald, 2006) tells us that it will be important to revisit our understanding of the

development process in FLOSS communities and that we need to ground our understand-

ing of its performance in established theory.

To state our research question formally, we want to know: “Is there a relationship be-

tween the organization of committal activities and development performance in a FLOSS

community, and what factors will it be contingent upon?” To answer this question, we

would like to view FLOSS communities in light of traditional organizational theories,

which we discuss in more detail in Sec. 3.2.2. Specifically, we leverage insights from Or-

ganizational Information Processing Theory (OIPT) (Galbraith, 1973) to reconcile the

views of Raymond and Brooks on the performance of FLOSS development teams.

We conclude that no development structure is necessarily better than another; rather,

we suggest that FLOSS communities make structural decisions to meet the demands of

the tasks that they are performing. Our findings suggest that varying the organization of

151

development activities might not be the only way to foster performance gains in FLOSS

communities. Taking actions to reduce the uncertainty associated with the development

tasks, such as code reorganization, might also improve the development performance of a

FLOSS community.

To address our research question, this paper will be structured as follows. First, we

review the FLOSS development process and identify the critical factors constraining a

FLOSS community’s performance and identify the committal structure. Then, we review

OIPT and explain the notion of fit between the committal structure and tasks in a FLOSS

community. Next, we leverage the insights from OIPT to present our research model,

which predicts the performance of a FLOSS community based on the fit between the de-

velopment task and the development structure. In the section that follows, we discuss the

methods used to validate our research model empirically. Finally, we discuss the results,

implications, and limitations of our study and offer directions for future research.

2 Theoretical Development

2.1 Structures in FLOSS Communities

FLOSS communities have been described as knowledge-sharing and production commu-

nities (Lee and Cole, 2003). They integrate the voluntary efforts of individual members

into a common pool (i.e., the software), which requires a great deal of effort and coordi-

nation (O’Mahony and Ferraro, 2007). The process in which this coordination occurs

within FLOSS communities has been described as emergent (O’Mahony and Bechky,

152

2008), as individuals’ roles emerge from the tasks they perform, which they self-select

based on their abilities and interests (Raymond, 2001; Lee and Cole, 2003; Bonaccorsi

and Rossi, 2003; Crowston et al., 2005; Shah, 2006). Most members participate tempo-

rarily and very few continue with the community indefinitely (Shah, 2006; O’Mahony

and Ferraro, 2007). Therefore, FLOSS communities’ structures tend to be dynamic and

evolve along with community needs (Oh and Jeon, 2007).

Although community membership is dynamic, a FLOSS community’s structure can be

inferred from the patterns of member participation. Crowston and Howison (2005) de-

scribe the structure of FLOSS communities as onion shaped, having four different types

of community members: the core, the periphery, active users, and passive users (see

Fig. 3.1). The development work is conducted by both the core and periphery members.

The distinction between these two development groups is that core members perform

most of the development work and participate in a more frequent and consistent manner

than periphery members (Crowston and Howison, 2005). Bug reports and feature re-

quests could come from members of the core, periphery, or active-user groups. Active

and passive users do not contribute to the development but are merely consumers of the

FLOSS community product; however, active users differ from passive users in that they

contribute feature requests and bug reports to the community.

153

Figure 3.1: FLOSS community structure (adapted from Crowston and Howison, 2005)

There are two distinct substructures in the overall FLOSS community structure: the de-

velopment structure and the communication structure. The development structure consists

of community members who perform development tasks and centers on how the mem-

bers are organized. The communication structure, on the other hand, spans the whole

community and centers on how communication patterns are organized (Mockus et al.,

2002; Crowston and Howison, 2005). The development structure is of interest to us since

we want to understand the development performance of FLOSS communities.

Within the development structure, there are two different types of members: the com-

mitters and the contributors. Both types of members contribute to the software develop-

ment effort in the FLOSS community, which is why we will refer to them collectively as

developers in this work. However, the committers differ in that they have access rights to

154

the community code base. As a result, committers can incorporate changes they make di-

rectly into the community code base, while contributors have to work with a committer to

do so. Committers rise from the ranks of the contributors after they have proven their

trustworthiness and technical competence from their continued contributions to the com-

munity (Shah, 2006; Riehle, 2007).

2.1.1 The FLOSS Development Process

In Fig. 3.2 we summarize the steps developers go through before their source code

patches are incorporated into the community code base.

 Figure 3.2: Steps required to complete a source code contribution in a FLOSS commu-

nity

We refer to the first stage a developer goes through as the learning stage. It starts when

the developer reviews a fresh copy of the community code base and then attempts to un-

derstand its structure and functionality; this is what Brooks refers to as the ramp-up effect

155

(Brooks, 1975). After acquiring the necessary knowledge to make changes to the code

base, the developer then proceeds to make modifications. By the end of this learning

stage, the developer has a modified copy of the code base that implements a feature or

fixes a bug. Thus far, the developer has worked in isolation and most of the effort he/she

has expended is related to learning about the code base.

We refer to the next stage in the contribution process as the coordination stage. The

first step of the coordination stage is the preparation step in which the developer prepares

a patch that can be contributed to the community. This step includes pulling a recent copy

of the community code base and making sure that the recent changes by the contributor

do not conflict with changes made my other developers since the initial review step. This

step also includes making modifications to the patch to make sure it complies with com-

munity coding standards, such as including unit tests or documentation. The developer

then posts the patch to the community tracker or mailing list and waits to receive any

feedback from the community for possible modifications.

The final step occurs when the patch is committed to the code base by a committer,

which may involve further modifications to rectify any problems that the committal step

might uncover. At the end of this step the patch is incorporated into the community code

base. If the patch was the developer’s first contribution to the code base, then the devel-

oper is considered a contributor to the community at this time.

The last three steps of the contribution process, which comprise the coordination

stage, will require the contributor to work with other committers and possibly contribu-

tors in the community. As a result, in this stage any costs are generally related to coordi-

156

nation and increase with the number of other contributors with whom one needs to coor-

dinate (cf. Brooks, 1975), which is why we refer to it as the coordination stage.

The focus of this work is mainly on the coordination stage. The costs in the coordina-

tion stage will vary from one community to another depending on factors that we will

identify later in this work. More importantly, however, as we explain in the next section,

we expect that committers will be a potential performance bottleneck given the effort re-

quired of them before any contribution can be committed.

2.1.2 The Bottleneck

Although committers might initially seem to have an easier job than contributors, they are

actually the busiest FLOSS community members, as they are responsible for committing

contributions directly to the code base. Not only are they themselves developers in the

community, they are also tasked with making decisions about other contributors’ work

(Shah, 2006), which makes them critical to any contribution. For example, if a contribu-

tion is accepted, the committer is tasked with integrating the contributed patch into the

code base, which places more responsibility and work on the committer’s shoulders, es-

pecially when the committed code breaks the work of other developers.

Once we realize the tremendous effort shouldered by committers, it becomes easy to

understand why many of them spend only four months on average serving the community

after they are promoted (Shah, 2006). Some try to cope with this increased responsibility

by limiting their interactions within the community to include only members who they

think possess valuable knowledge (Kuk, 2006). To illustrate that this is indeed a problem

157

that many FLOSS communities face and that it is worthy of community consideration, we

present excerpts from the guidelines of some well known FLOSS projects in Tab. 3.1.

Table 3.1: Evidence of delays in FLOSS the development process

Community Excerpt Notes

Subversion
If you don’t get a response for a while, and
don’t see the patch applied, it may just mean
that people are really busy.

Patch committals can experi-
ence delays.

Mozilla

Getting attention: If a reviewer doesn’t re-
spond within a week or so of the review re-
quest:

• Join #developers ...

Because delays in the review
process are all too common,
the Mozilla community has a
process for how to deal with
the problem.

Apache

What if my patch gets ignored?
Because Apache has only a small number of
volunteer developers, and these developers are
often very busy, it is possible that your patch
will not receive any immediate feedback. De-
velopers must prioritize their time, dealing
first with serious bugs and with parts of the
code in which they have interest and knowl-
edge. Here are some suggestions on what you
can do to encourage action on your patch:...

Delays in patch committal are
all too common and the
community explains the rea-
sons and gives suggestions on
how to alleviate the problem.

Since all development work must involve a committer and committers are the busiest

members of the community, we conclude that their activities are the bottleneck to the

FLOSS development process (cf. Goldratt and Cox, 1994). This means that the perform-

ance of a community will depend on the performance of the committers and that any per-

formance impacting optimization should target committers’ (Goldratt and Cox, 1994). As

158

a result, we conclude that the way in which workload is distributed among the committers

will be an important determinant of performance.

 2.1.3 The Committal Structure

The committal structure refers to how committal workload is distributed among the

committers. The committal structure can be centralized, if committal activity is per-

formed by a focal group that is considered small relative to the size of the development

structure’s membership. The committal structure can also be decentralized when this fo-

cal group represents a larger portion of the developers. A highly centralized committal

structure would include only a single committer, whereas, a highly decentralized structure

would include all the developers as committers.

Somewhat contrary to the babbling bazaar description by Raymond (2001), which rep-

resents a decentralized committal structure, FLOSS communities display both centralized

(e.g. Krishnamurthy, 2002; Crowston and Howison, 2005) and decentralized tendencies

(Mockus et al., 2002; Crowston and Howison, 2005). However, the implications of these

structures are yet to be understood fully.

To the extent that we can view FLOSS communities as organizations, we can leverage

insights from established organizational literature to give us a better understanding of the

implications of these structures. The Organizational Information Processing Theory

(OIPT) stream of literature (e.g. Galbraith, 1973; Tushman and Nadler, 1978; Tushman,

1979) seems to be the most relevant for understanding committal structures and for

reaching the overall goals of this study, as it is concerned with the fit between organiza-

159

tional structures and organizational performance. Therefore, we will first review the OIPT

literature and then revisit committal structures to understand their implications on per-

formance.

2.2 FLOSS and Organizational Information Processing The-

ory

Organizational Information Processing Theory (OIPT) (Galbraith, 1973) introduces the

idea that organizations are information-processing systems that deal with uncertainty in

their environment. The theory suggests that organizations that find a fit between their

information-processing capabilities and their information-processing needs will perform

better than organizations that cannot find such a fit. The theory also implies that there is

no single organizational structure associated with superior performance; rather, it sug-

gests that different organizational structures are suited for different conditions (Lawrence

and Lorsch, 1967). These insights are important for understanding the implications of the

different committal structures in FLOSS communities and their relationships to develop-

ment performance. Specifically, the theory suggests that neither a centralized nor a decen-

tralized committal structure is better; rather, it suggests that the FLOSS community’s

needs should determine which structure is a better fit for what developers and users want

to accomplish.

Before using OIPT, we first need to demonstrate the theory’s relevance in FLOSS

communities. Towards that goal, we first need to establish that FLOSS communities can

160

be viewed as organizations; then we need to establish that the main task performed by

such communities involves information processing.

Ahuja and Carley (1999) define a virtual organization as “a geographically distributed

organization whose members are bound by a long-term common interest or goal, and who

communicate and coordinate their work through information technology.” (p. 742).

FLOSS communities are a special type of a virtual organization since community mem-

bers work towards the common goal of software development, are geographically dis-

persed, and coordinate their work through information technology. So, the first require-

ment for using OIPT in this context is fulfilled, as FLOSS communities are essentially

virtual organizations.

Secondly, software development tasks, which are the main tasks performed by FLOSS

communities, have been described as knowledge-intensive (O’Mahony and Ferraro,

2007; Lee and Cole, 2003). Completing these knowledge-intensive tasks requires devel-

opers to acquire specific knowledge related to a development process in order to partici-

pate effectively (Fichman and Kemerer, 1997; Lee and Cole, 2003). These tasks also re-

quire team members to constantly coordinate with one another to ensure that the changes

they make to the code base do not conflict with those made by other team members

(Crowston, 1997). As depicted in Fig. 3.2, both learning (stages 1 to 3) and coordination

(stages 4 to 6) activities are part of the development process in FLOSS communities.

Given the specific nature of the knowledge related to development in FLOSS communi-

ties (see Study 1), learning or sharing (i.e., coordinating) that knowledge will require ex-

tensive interaction and communication among team members (Choudhury and Sampler,

161

1997; Brooks, 1975), which are considered information-processing tasks (Galbraith,

1973; Crowston, 1997). As such, the second requirement for using OIPT in this context is

fulfilled, making OIPT an appropriate lens to understand development performance in

FLOSS communities.

2.2.1 The Relationship Between Structure and Performance: Fit

Galbraith (1973) explains the relationship between performance and organizational struc-

ture by describing a situation in which subordinate workers are tasked with performing

simple tasks. When an unusual circumstance occurs due to a change in the organization’s

environment, the worker will seek a superior to resolve the situation and will then com-

plete the task.

Such a situation could occur in a FLOSS community in any of the contribution stages

depicted in Fig. 3.2. When contributors lack certain knowledge that is required to move

through the contribution stages, such as identifying which files need to be changed in or-

der to implement a feature or resolve a bug, they will seek out that knowledge. The com-

mitters, having experience with the source code and the community in general, will be the

members most likely to possess this knowledge or could at least identify individuals who

do. Therefore, contributors constantly seek out committers to assist them in resolving a

myriad of issues related to the contribution process.

Before a contribution is committed into the community code base, committers are also

required to intervene and, possibly, modify contributed patches before they are commit-

ted. As one committer puts it: “I’ve written before on mailing lists that only about two out

162

of every five submitted patches I review go in unchanged on a good day and that seems to

match other maintainers’ experiences, too,” 1 suggesting that contributions demand some

effort from committers before they are committed. Although the relationship between

committers and contributors is not one between a superior and a subordinate, completing

a development task will require them to interact in a manner similar to how OIPT de-

scribes the relationship between a superior and a subordinate.

Based on OIPT, an organization’s structure starts to affect performance when superiors

are no longer able to respond to the subordinates’ requests for intervention in a timely

manner. This situation occurs mainly when the number of requests exceeds the superiors’

capacity for handling them, which is a function of the uncertainty inherent in the task per-

formed by the organization (Galbraith, 1973; Tushman, 1979). As a result, tasks are not

completed as quickly when superiors are overloaded, and the overall performance of the

organization suffers. Thus, such situations occur when the organization’s information-

processing needs exceed its information-processing capacity, which we refer to as lack of

fit for short.

It is not surprising that lack of fit would occur in FLOSS communities since commit-

ters are mostly volunteers and will very likely have less time to dedicate to community

coordination than would a full-time supervisor in a more conventional organization. Fur-

thermore, whatever time committers can afford to give to the community will not be en-

tirely dedicated to resolving contributor issues, as the committers will also be engaged in

163

1 From the blog of a committer in the Django web framework FLOSS project:
http://www.pointy-stick.com/blog/2007/11/02/development-experiences-version-control/

http://www.pointy-stick.com/blog/2007/11/02/development-experiences-version-control/
http://www.pointy-stick.com/blog/2007/11/02/development-experiences-version-control/

both their own development tasks and interactions with the broader community (Shah,

2006; Crowston et al., 2005; Mockus et al., 2002).

Based on OIPT, FLOSS communities, like organizations, can choose from two differ-

ent strategies to deal with lack of fit and improve development performance. First, a

FLOSS community could increase the information-processing capacity of the committal

structure to be able to process more contributions and give committers more time for their

own development activities, thereby improving the development performance of the

community. Second, the community could take action to reduce their information proc-

essing needs by reducing the uncertainty inherent in development tasks. We will refer to

both of these strategies collectively as fit strategies.

2.2.2 Theoretical Assumptions

The extent to which we expect the fit strategies to work rests on a number of assump-

tions. The first assumption we make is that development tasks cannot be completed if

there are outstanding coordination tasks, which is a reasonable assumption to make in

software development as developers need to coordinate to ensure the functional integrity

of the software (Brooks, 1975).

The second assumption is about the nature of the coordination task, namely that it in-

volves communication among a group of developers and, therefore, cannot be subdi-

vided. As a result, we cannot have a single individual performing all of the coordination

tasks; rather, coordination will demand the involvement of a group of developers, similar

to how Brooks (1975) described communication channels between developers.

164

The third assumption is that the committers are boundedly rational, meaning that they

have a limited capacity to process and comprehend information (Simon, 1955). This as-

sumption results in the committal structure having a limited information processing ca-

pacity.

The fourth assumption is that there is project-specific knowledge, which developers

must gain before performing any development tasks within a FLOSS community, and

that this knowledge is immobile in nature and requires extensive effort to transfer and

communicate (Choudhury and Sampler, 1997; Fichman and Kemerer, 1997). In addition,

this knowledge is heterogeneously distributed among community members. As a result,

no two members possess similar knowledge, which makes it difficult to replace and/or

add developers without incurring costs related to transferring the requisite knowledge

(Brooks, 1975).

Another result of this last assumption is that before new participants can partake in

development efforts, they need to obtain the requisite knowledge by either reading the

source code or by interacting with knowledgeable community members (Brooks, 1975),

which places a burden on these knowledgeable members, including committers. Since

committers are also boundedly rational, they will have to make a tradeoff between per-

forming their own development work and assisting other members. This tradeoff could

potentially limit the flow of knowledge within the community (Kuk, 2006) and the num-

ber of individuals who can effectively participate in the development process; this, in

turn, affects the overall performance of the community.

165

Finally, because committers are the busiest community members and because devel-

opment progress depends on their intervention, we make a final assumption that the de-

velopment bottleneck resides within the committal structure and that improving the

information-processing capacity of that structure will improve a FLOSS community’s

development performance (Goldratt and Cox, 1994). Therefore, to expand its capacity for

information processing, a committal structure has to be more decentralized, which can be

done through the promotion of more committers from the ranks of the contributors. How-

ever, based on the assumptions we made, such a strategy will not come without a cost

(Tushman and Nadler, 1978), the nature of which we have yet to fully understand. To that

end, we formalize our research model in the following section.

2.3 Theoretical Model

Thus far, we have conceptualized FLOSS communities as information-processing sys-

tems whose goal is the production of software. Our basic argument, based on OIPT, is

that high performing FLOSS communities will be those that manage to find a fit between

their information-processing capabilities and their information-processing needs.

We identified committers as being the potential performance bottleneck in FLOSS

communities given that they are required to be involved with all contributions and are the

busiest members of the community. Therefore, how committers are organized in the

community, which we refer to as committal structure, will be the main determinant of a

FLOSS community’s processing capacity (cf. Galbraith, 1973; Tushman, 1979).

166

As for the information-processing needs of a FLOSS community, OIPT suggests that

these needs will emerge from the inherent uncertainty of software development tasks and

the environment (Galbraith, 1973). There are, however, many facets to the development

tasks that can be sources of uncertainty, which OIPT does not specify. In order to identify

the specific sources of uncertainty, we follow the work of Tushman (1979).

Tushman (1979) identified three main source of task-related uncertainty in organiza-

tional settings: 1) task routineness, defined as the unpredictability of the task, 2) task en-

vironment uncertainty, defined as the rate of change in the external environment that is

beyond the organization’s control, and 3) task interdependence, defined as the extent to

which tasks require coordination to be accomplished.

The same sources of uncertainty exist in FLOSS communities, which we identify in

Tab. 3.2. However, the broad nature of the task environment uncertainty construct

(Tushman, 1979) in addition to the differences in the competitive dynamics of FLOSS

communities and that of the conventional market competitors (see Study 1) requires that

we adapt the construct specifically for our context. As a result, we identify first-time con-

tributors as a source of uncontrollable, external environment uncertainty and rename this

construct contributor uncertainty.

Following OIPT, we forward the model depicted in Fig. 3.3. We identified the cen-

tralization of the committal structure as the source of a FLOSS community’s information-

processing capacity, while task-related sources of uncertainty—task routineness, con-

tributor uncertainty, and task interdependence—are identified as the source of

167

information-processing capacity. In the following sections, we discuss the logic behind

our model in more detail.

Figure 3.3: Overview of research model

Table 3.2: Overview of theoretical constructs

Construct Definition
Performance Progress made towards meeting the demands of the FLOSS commu-

nity.
Centralization The degree to which the committal activity in a FLOSS community is

concentrated in the hands of a small group of committers relative to
the overall size of the development structure’s membership

Task Routineness The degree of predictability in the software-development task done
within the FLOSS community.

Contributor Un-
certainty

The unpredictability in development tasks that is introduced from the
need to integrate the work from contributors who are considered ex-
ternal to the FLOSS development structure.

Task Interdepend-
ence

The degree to which developers’ development tasks in a FLOSS
community require cooperation.

168

2.3.1 Performance

According to Brooks (1975), effort and progress are two separate concepts. More effort

can be expended by a software development project, but that does not guarantee that pro-

gress will be made. As Brooks (1975) explains, this occurs when more developers, whose

tasks are sequential in nature, are introduced late into a project. The effort needed to bring

new developers up to speed (i.e., the ramp-up effect) and coordinate development with

them will only detract the most productive developers from making progress, thereby de-

laying the project. Our concept of performance is similar to Brooks’ (1975) notion of

progress. As such, we define performance as the progress made towards meeting the de-

mands of the FLOSS community.

The situation with FLOSS development is similar to how Brooks (1975) described

progress in traditional development teams. As explained in Sec. 3.2.2, we identified learn-

ing and coordination as two important stages in the contribution process (see Fig. 3.2).

Committers might become involved in assisting contributors in the learning stage by an-

swering their technical questions and giving them guidance (von Krogh et al., 2003). The

effort expended in this learning stage is equivalent to the ramp-up effect described by

Brooks (1975). Progress would suffer as the productive committer chooses to trade-off

some of his/her development and committal time towards helping other contributors.

The coordination stage is also similar to how Brooks (1975) described software-

development teams, as coordination will be required between committers and contribu-

tors before a contributed patch can be committed. The number of individuals with whom

the contributor or committer need to coordinate may vary depending on who could af-

169

fected if a problem occurs during the patch-committal process. Since we are assuming

that development progress cannot happen if a community’s coordination requirements are

not met, committers must perform the needed coordination tasks, which detracts them

from making progress, thereby delaying the committal of a patch.

While the notions of effort and progress exist in FLOSS communities, progress has to

be re-conceptualized for FLOSS communities. Unlike conventional software-

development teams for which where progress is measured by how close a team has

achieved its deadline or met its project requirements (Espinosa et al., 2007; Gemino et al.,

2007; Crowston, 1997; Nidumolu, 1995; DeLone and McLean, 1992), FLOSS communi-

ties differ in two regards. First, there are no enforceable deadlines within FLOSS com-

munities because participation is voluntary, which makes it difficult to determine effec-

tiveness in terms of meeting deadlines (Raymond, 2001). Second, there are no preset de-

velopment requirements for FLOSS communities, which is similar to the conventional

waterfall-development model of traditional software creation; rather, requirements are set

by members on a needs basis with no guarantee that the needed features will be imple-

mented (Scacchi, 2002).

Given that committers make trade-offs similar to the trade-offs made by productive

developers in traditional software development (Brooks, 1975), progress can be observed

through the committal activity on the community code base (Koch and Schneider, 2002).

A well organized FLOSS project will utilize the time of committers better to produce use-

ful code, rather than requiring them to expend their efforts on coordination and learning

activities. More importantly, a commit corresponds to a met demand in the community

170

signaling that progress has been made (Grewal et al., 2006). Furthermore, a commit only

occurs after all coordination and learning issues have been resolved and the committer is

satisfied with the quality of the contribution (von Krogh et al., 2003).

Therefore, if two projects have a similar number of committers, holding everything

else equal, the team that is able to make more progress is the one that is able to commit

more patches within the same time period. The committers for the project that commits

fewer patches are probably expending more effort towards coordination and learning,

which results in committal delays and fewer patches being committed within a specific

time period.

To summarize, our definition of performance fits with the OIPT conceptualization of

FLOSS communities as information-processing systems whose goal is the production of

software. Software is produced as a result of all of the information processing and coor-

dination tasks completed by committers (Crowston, 1997; O’Mahony and Ferraro, 2007).

These information-processing tasks must be handled by the committal structure, and the

completion of these tasks occurs when a patch is committed. The committal structure will

have a limited capacity for information processing that will be expended towards effort

(i.e., coordination and learning) or progress (i.e., patch committal). As the effort require-

ments increase due to increased uncertainty, progress will be compromised. When effort

is minimized by controlling uncertainty, progress is maximized.

2.3.2 Centralization

171

The most prevalent conceptualization of centralization in recent FLOSS literature (e.g.,

Grewal et al., 2006; Wu et al., 2007; Tan et al., 2007) is based on the variations of the

centrality concept from social network analysis (Freeman, 1979). The different conceptu-

alizations of centralization within the social network literature include: degree centrality,

betweenness centrality, and closeness centrality (Freeman, 1979). Such conceptualiza-

tions reflect traits of individuals that are part of an underlying communication network.

Our conceptualization of centralization departs from this network based understanding to

a more classical organizational theory understanding of the construct and is mostly con-

cerned with the capacity of the social or organizational structure to process information.

In organizational literature, centralization has been conceptualized as a characteristic

of the organization (Hage and Aiken, 1967; Ouchi and Dowling, 1974). It has been asso-

ciated with the span of control for supervisors in an organization (Hage and Aiken, 1967).

Centralized structures limit control in the hands a few individuals in which a larger group

of individuals must report to. Because a supervisor expends greater effort to oversee and

communicate with a larger group of employees in centralized structures, he/she is de-

scribed as having a wide span of control that could result in the overwhelming of the su-

pervisor (Blau, 1968). In decentralized structures however, supervisors will be responsi-

ble to oversee and communicate with a smaller group of employees. As a result, they are

described as having a narrow span of control in which supervisors are able to dedicate

more of their time per employee compared to centralized structures (Blau, 1968).

Span of control doesn’t necessarily describe a relationship in which supervisors over-

see employees, it is also valid of the relationship between supervisor and employee in

172

which employees initiate communication and describes the time that a supervisor makes

available for an employee (Blau 1968). The relationship between committers and con-

tributors in FLOSS communities might not be that of supervisor and subordinate, never-

theless, span of control could be used to describe the nature of communication between

the two within a FLOSS community. Span of control describes the amount of time or ef-

fort any committer can make available per contributor, and thus, could be thought of as

the capacity to deal with the demands of the contributors.

A committer might have to communicate with a large number of contributors which

results in a situation that is analogous to having a wide span of control (i.e., centralized

structure). The need to communicate and coordinate with all these contributors is likely to

overwhelm the committers’ capacity for information processing as the number of con-

tributors increase. A narrower span of control (i.e., decentralized structure) on the other

hand is less likely to overwhelm any individual committer and spread the workload over

a greater number of committers. As a result, when the span of control for committers is

wide, the capacity of the committal structure is likely to be at its limits and is said to be

centralized. On the other hand, given the same number of committers and a narrow span

of control, the committal structure would still have the capacity to process more informa-

tion because the committers are less overwhelmed. Such structures are described as being

decentralized.

Based on our prior discussion, centralization is defined as the degree to which the

committal activity in a FLOSS community is concentrated in the hands of a small group

of committers relative to the overall size of the development structure’s membership.

173

While adding committers would make a FLOSS community’s committal structure seem

more decentralized, how decentralized the committal structure is relative to other com-

munities will depend on the proportion of members of the development structure (i.e.

contributors) that posses committal rights. Based on our discussion in Sec. 3.2.1, we ex-

pect committers to be the main development bottleneck in a FLOSS community because

all development activities will require their involvement. Therefore, we expect that the

way in which they are organized will have a profound impact on the community’s per-

formance.

FLOSS communities can exhibit both centralized and decentralized development

structures. Decentralized structures are expected to provide a greater capacity for process-

ing information, since a larger group of members will not only add to the processing ca-

pacity of the structure but will distribute more of the workload to leave smaller tasks for

individual committers. However, we do not expect that adding committers will be cos-

tless (cf. Tushman and Nadler, 1978) since a larger group of committers could increase

the need for coordination (Brooks, 1975; Crowston, 1997). Nevertheless, according to

OIPT, we expect both types of committal structure will be the best fit for different devel-

opment conditions.

2.3.3 Task Routineness

We define task routineness as the degree of predictability in a software development task

(Perrow, 1967; Tushman, 1979; March and Simon, 1993). Routine tasks are simple in na-

ture and are reflective of the knowledge required to accomplish them (Turner and Ma-

174

khija, 2006). Simple tasks will draw from a limited domain of knowledge and will require

little effort to accomplish (Zander and Kogut, 1995; Grant, 1996a). Non-routine tasks, on

the other hand, have a great degree of unpredictability (Perrow, 1967). Such tasks will

also require complex underlying knowledge that draws from a diverse set of knowledge

domains (Turner and Makhija, 2006). As a result, non-routine tasks will require individu-

als to put forth greater effort to accomplish them (Zander and Kogut, 1995; Grant,

1996a).

Assuming that the source code reflects a FLOSS community’s underlying develop-

ment knowledge, non-routine tasks will require the modification or addition of a greater

number files. The reason behind such modification is the fact that it is good programming

practice to encapsulate similar functionality into the same modules or files (Page-Jones,

1998). FLOSS communities are known to follow good programming practices (MacCor-

mack et al., 2006; Raymond, 2001); therefore, it is probable that contributed patches re-

flect the complexity of the development tasks.

What is important, however, is how these patches impact committal structures. As the

number of files modified by a patch increase, the code that needs to be reviewed by a

committer also increases. In addition, the likelihood that such a patch will interfere with

the work of other developers will increase as more files are impacted, thereby increasing

the chance that the committer will be required to coordinate between developers. Fur-

thermore, since the code is not localized to a specific file, when a patch introduces a bug,

the committer’s debugging task will be much more complex since he/she is required to

trace a larger number of files. As a result, we expect that non-route development tasks

175

will place a greater amount of coordination requirements on committers, thereby placing

a heaver information-processing burden on the committal structure than would routine

tasks.

Furthermore, non-routine tasks will place greater learning efforts on committers. Con-

tributors who are required to perform these complex tasks will also be required to change

a greater portion of the source file in the code base. Before a change is made to any file,

the contributor must understand the contents of that file and understand the best way to

make the changes. To obtain that understanding, contributors will not only need to read

the source code (Raymond, 2001), but they will also need to seek the assistance of com-

mitters in helping them understand the impact of their changes (Krogh and Hippel, 2006).

As a result, greater information-processing requirements are placed on the committal

structure due to learning requirements associated with non-routine tasks. Hence,

H 1 Task routineness is positively related to a FLOSS community’s performance

Because routine tasks are simple and highly predictable, they will not generate a great

amount of uncertainty and will not require much in terms of information processing. Fur-

thermore, since the requisite knowledge for completing such tasks is easily codifiable, it

is easier to communicate by nature (Grant, 1996b, 1996a; Kogut and Zander, 1992), mak-

ing the time spent by any one individual to learn or communicate development knowl-

edge relatively small. Therefore, we expect routine tasks to put little strain on the devel-

opment structure in terms of development-related information-processing requirements,

making a centralized structure, with its limited information-processing capacity, fit with

the completion and management of such tasks. Decentralized structures, on the other

176

hand, will introduce extra overhead from the need to coordinate between committers (cf.

Tushman and Nadler, 1978).

Knowledge of non-routine tasks is more varied and likely to be tacit in nature (Kogut

and Zander, 1992), thus making it more difficult to share and communicate (Choudhury

and Sampler, 1997). Therefore, non-routine tasks will strain centralized development

structures and overwhelm the central committers not only because of the effort required

to review complex patches but also because of the extra effort needed to communicate the

tacit development knowledge in this technology-mediated environment (Daft and Lengel,

1986).

Given that committers are the most productive developers in a FLOSS community

(Shah, 2006; Mockus et al., 2002), a distributed committal structure will allow commit-

ters to specialize in different aspects of complex code base development (Grant, 1996a).

As a result, committers will need to obtain specialized knowledge about the specific parts

of the code base that they work on (von Krogh et al., 2003).

With a greater number of specialized committers, the information-processing require-

ments are distributed over a greater number of committers, resulting in less effort being

performed by any one individual (Tushman, 1979). Coordination and learning activities

can then be performed in parallel, resulting in less overall time needed to perform them,

even if the time required for any individual task increases due to the extra coordination

efforts required with distributed structures.

Therefore, we expect the performance gains for FLOSS communities as development

tasks become more routine to be higher under a centralized committal structure than un-

177

der a decentralized committal structure because of the lack of coordination overhead be-

tween committers. It can also be said that as tasks become less routine, the performance

gains for decentralized committal structures will be higher than for centralized committal

structures because the coordination and leaning tasks being performed in parallel. As a

result, a distributed committal structure becomes a better fit for non-routine development

tasks. Hence,

H 2 As tasks become more routine, FLOSS communities with centralized committal struc-

tures will have higher performance gains than communities with decentralized committal

structures.

2.3.4 Contributor Uncertainty

Contributor uncertainty is defined as the unpredictability in development tasks that is in-

troduced from the need to integrate the work of contributors who are considered external

to the FLOSS development structure. Before contributors can submit patches, they need

to acquire the requisite knowledge about the code base that will allow them to make a

contribution. Since this knowledge is tacit in nature, it will require a great deal of com-

munication with other knowledgeable developers.

Because the committers are the most knowledgeable about the code base, they will

spend a great deal of time communicating with contributors, responding to their ques-

tions, and explaining the intricacies of the code base (von Krogh et al., 2003), which

places a learning-related burden on committers’ information-processing capacities. This

is true mostly of contributors who are new to the development process in a FLOSS com-

178

munity, as returning contributors would likely have absorbed the norms and knowledge

related to making a contribution to the community without placing much burden on the

committers. This effect is similar to Brooks’ (1975) concept of the ramp-up effect.

In addition, new contributors are likely to be the least knowledgeable about the code

base. As a result, their patches are likely to introduce more bugs or violate some of the

programming guidelines or assumptions that must be adhered to, such as variable access

rules and coding conventions. Therefore, patches from new contributors will require more

scrutiny and, therefore, more effort from the committers, resulting in delays in the com-

mittal of the patch. Therefore, we expect contributor uncertainty to have a negative im-

pact on performance. Hence,

H 3 Contributor uncertainty will be negatively related to a FLOSS community’s perform-

ance.

When a problem occurs during the committal of a contributed patch, the committer

will have to read through the code base to find the source of the bug or communicate with

other developers to find a solution, both of which are information-processing tasks. As

the number of such problems increase, a centralized committal structure will become

overwhelmed if it does not promote more committers due to its limited information-

processing capacity (Tushman, 1979; Ahuja and Carley, 1999). When the committal

structure is no longer coping with the community’s information-processing load, external

contributions are the first to be ignored by committers who will focus on their own devel-

opment work. FLOSS communities could cope with lack of fit due to high contributor

uncertainty by making the committal structure more decentralized. This, in turn, would

179

development and decision-making tasks free of constraints by any specific individual

(Tushman, 1979).

A decentralized committal structure has the development knowledge and decision-

making authority more distributed throughout the community. As a result, the committal

and development workload is distributed among a greater number of committers resulting

in less information-processing work for each individual committer. Furthermore, since

the knowledge is distributed, the coordination and learning activities will not come to a

halt when a committer decides to take the time to assist a new contributor. For these rea-

sons, we argue that a decentralized structure is a better fit for situations in which con-

tributor uncertainty is high, as it will result in higher performance gains with increased

uncertainty when compared to centralized committal structures. Hence,

H 4 As contributor uncertainty increases, FLOSS communities with centralized committal

structures will have lower performance gains than communities with decentralized com-

mittal structures.

2.3.5 Task Interdependence

When task completion requires the cooperation of multiple individuals or organizational

units, it is said to exhibit interdependence (Tushman, 1979; Malone and Crowston, 1994).

There are two types of interdependence: intra-unit interdependence and inter-unit inter-

dependence (Tushman, 1979). Intra-unit interdependence occurs when individuals within

the same organizational unit are required to cooperate to complete a task, while inter-unit

180

interdependence occurs when different organizational units within an organization are

required to cooperate.

Intra-unit cooperation was found to be much easier than inter-unit cooperation because

the members of a single organizational unit possess common knowledge and language,

which makes it easier for them to cooperate (Tushman, 1979; Grant, 1996a). Cooperation

across organizational units is much more difficult since the language and knowledge dif-

fers significantly from one unit to another, making it difficult for members of one unit to

cooperate easily with those of another unit. As a result, different organizational units col-

laborate through designated managers or liaisons who have the necessary skills and

authority to work with other units (Tushman, 1979).

A similar organizational pattern can be observed in FLOSS communities in which de-

velopers organize around functional software units referred to as modules (Crowston

et al., 2005). Organizing source code such that similar and related functionality is encap-

sulated into the same module is considered good programming practice. Such organiza-

tion allows modules to exhibit a high degree of within-module interdependency, which is

known as cohesion (Page-Jones, 1998). Since similar functionality is contained in single

modules, the developers working in each module would share similar knowledge and be

able to collaborate as if they were in a single organizational unit in which joint problem

solving is important (Tushman, 1979).

Since modules’ functionality is limited in scope (Page-Jones, 1998), each module is

assigned an owner who is responsible for coordinating its development efforts (Crowston

et al., 2005; Crowston, 1997). Within-module coordination is centralized, and it is appro-

181

priate because of the limited coordination and development information-processing re-

quirements generated from a single module. These requirements are lessened because

only a small group of developers who share common knowledge related to the modules

are involved in the development, which allows them to coordinate more effectively.

Therefore, we argue that within-module coordination does not generate a significant

strain on the development structure.

Inter-unit interdependence can also be observed within FLOSS communities when de-

velopers working on separate modules are required to coordinate. The need for such co-

ordination is caused by the functional dependencies between modules (Crowston, 1997).

Developers working on different modules will possess different sets of knowledge, mak-

ing coordination more difficult than within-module coordination (Tushman, 1979; Grant,

1996a). Unlike intra-unit dependencies for which problems are localized to the module

the developers are working on, problems might not be localized to one particular module

when inter-unit dependencies exist. Therefore, managing the effects of inter-unit depend-

encies is more difficult.

To coordinate in these contexts effectively, not only will the developers need to proc-

ess coordination information, but they will also need to build common knowledge that

will allow them to organize their development tasks (Grant, 1996a). This common

knowledge consists of understanding the requisite development information of the other

group (von Krogh et al., 2003), which negates the benefits of having a distributed devel-

opment structure because the developers can no longer specialize in their own modules.

In addition to performing all of the coordination tasks, committers will also be required to

182

perform more development-related information-processing tasks, which forces them to

make tradeoffs affecting the overall performance of the community. Therefore,

H 5 Task interdependency will be negatively related to a FLOSS community’s perform-

ance.

As mentioned in the previous section, task interdependence in software development

occurs between developers when they are working on the same source code files within a

module or when the source code files they are working on have functional dependencies

that span modules (Malone and Crowston, 1994; Crowston, 1997). Since within-module

dependencies do not put a significant strain on the development structure, it follows that

the committal structure will not be strained. As a result, cross-module dependencies be-

come a significant source of development-related information-processing requirements.

Adding new committers will not help address this demand because more committers

in addition to the existence of high dependencies would increase the amount of cross-

module communication channels needed to maintain the functional integrity of the soft-

ware (cf. Brooks, 1975; Crowston, 1997). As a result, more of the committal structure’s

information-processing capacity would be expended in meeting coordination demands.

The key to achieving fit in such situations becomes a matter of reducing information-

processing requirements in general (Galbraith, 1973).

Since task interdependence is created from dependencies in the source code (Brooks,

1975; Crowston, 1997; Tiwana, 2008), we argue that coordination-related information-

processing requirements can be reduced through conscious design decisions that reduce

cross-modules dependencies. If source code is designed to exhibit few dependencies be-

183

tween program units (i.e., modules) and high dependencies within a single unit, then this

would allow developers to work concurrently on different program units with little need

for coordination between them; such a design is said to exhibit high modularity (Sanchez

and Mahoney, 1996; Baldwin and Clark, 2006; Tiwana, 2008).

Limiting cross-module dependencies would limit the unanticipated side effects of

making changes in one module, which often appear in different modules. This, in turn,

reduces the need for coordination and communication because the development tasks per-

formed by developers would be restricted to specific modules and would enable develop-

ers working on different modules to work in parallel (Crowston, 1997). Such a limitation

is equivalent to the strategy suggested by Galbraith (1973) for creating self-contained

tasks. Furthermore, one of the assumptions Brooks (1975) mentions as to what would

lead to an increase in the number of communication channels is the serialization (i.e., de-

pendencies) between tasks. Removing the serialization constraint would reduce the need

to communicate between developers.

When coordination requirements are reduced, more of the committers’ time is freed

for development-related information processing. As a result, the whole community bene-

fits from committers’ increased responsiveness to communication and knowledge sharing

(Tushman, 1979) and from the specialization that results from modularization (Grant,

1996a). These improvements make the community’s overall development more efficient

and increase its overall development performance. More importantly, modular designs

enable developers to work in parallel, and by reducing coordination requirements, it also

reduces the coordination-related costs associated with adding more committers (Baldwin

184

and Clark, 2006). Therefore, we argue that distributed development is a good fit only

when a community improves the modular design of its code base, thereby reducing the

task interdependence between developers.

Therefore, what we expect to observe is that FLOSS communities with a distributed

committal structure that manage to reduce task interdependence through improved modu-

lar designs will exhibit higher performance gains than similar communities with a cen-

tralized committal structure. We attribute this higher performance to the reduction of

coordination-related information-processing requirements that are removed by the im-

proved source code design. Similarly, FLOSS communities with centralized committal

structures and highly interdependent development tasks will perform better than similar

communities with decentralized committal structures because decentralized structures

will introduce more coordination-related information-processing requirements. Therefore,

H 6 As task interdependency increases, FLOSS communities with centralized committal

structures will have higher performance gains than communities with decentralized

committal structures.

3 Methodology

3.1 Sample

To test our theory, we had to select a sample that satisfied the requirements stated in Sec.

3.2.2.2. Specifically, we needed a sample that represents successful FLOSS projects that

enjoy active development, as a great proportion of FLOSS projects are known to be dor-

185

mant (Krishnamurthy, 2002). Only for actively developed projects, in which committal

activity is ongoing over time, could we observe variations in performance. Therefore,

our sample frame was limited to successful projects that were likely to have ongoing de-

velopment activity (Crowston et al., 2003).

Prior literature used sourceforge.net to select their samples, citing that it represented a

significant proportion of FLOSS projects (e.g. Krishnamurthy, 2002; Crowston and

Howison, 2005; Stewart and Gosain, 2006; Stewart et al., 2006). However, there have

been recent reports suggesting that the relevance of SourceForge.net as the main hosting

service for FLOSS projects has declined (Paul, 2009a, 2009b). As such, we used

ohloh.net, which is a website that lists over 275,000 FLOSS projects regardless of where

they are hosted, to find a more representative sample of FLOSS projects. Our choice

seems to have grounding, as sourceforge.net purchased ohloh.net to increase its relevance

in the FLOSS-hosting market (2009hq).

Following the work of Wu et al. (2007), we selected from the top 1000 most success-

ful projects; however, our sample differed in that we used ohloh.net as the selection web-

site. We got further support that selecting projects from ohloh.net was the right choice

when we found that only 22% of the top 1000 projects listed on ohloh.net were hosted on

sourceforege.net. Therefore, we expect our results to have more external validity than

prior literature that focused on sourceforge.net projects.

3.2 Data Collection

186

For practical reasons, however, we were unable to analyze all of the projects listed in our

sample frame. We found that prior literature focused on a specific programming language

(e.g. Midha, 2008; MacCormack et al., 2006). They cite the choice of the language on the

size and complexity of the resultant product (Midha, 2008; Wyuker; jones; seemidharefs).

Since our goal is to respond to the call to increase the external validity empirical FLOSS

studies’ findings (Koch, 2004), we expanded our selection to include three of the most

widely used languages in FLOSS development that represent the primary programming

philosophies: C, C++, and Python. We identified 289 potential projects for analysis repre-

senting 28.9% of the top 1000 projects.

Following the recommendations of Howison and Crowston (2004) and prior empirical

literature on FLOSS dealing with source code repositories (e.g. Wu et al., 2007; Midha,

2008; Liu and Iyer, 2007), we screened the projects and excluded projects that repre-

sented meta-projects and projects with missing history or inaccessible repositories. Since

there were no established criteria in prior literature as to what an actively developed pro-

ject was (besides the ranking on sourceforge.net), we had to establish our own criteria

because the majority of the projects in our sample were not listed on sourceforge.net and

varied significantly in their level of activity. Therefore, we identified an actively devel-

oped project as any project that observed at least a single commit per analysis period

since the start of our observation2. This left us with a usable sample of 237 projects. We

187

2 The closes criteria was the one used by Koch and Schneider (2002) where they identify committers as
active if they perform at least a single commit during an analysis period.

then downloaded the source code repository for all of the projects in our sample and pro-

ceeded with the data collection.

Prior literature has examined FLOSS projects by observing the activity between re-

leases that spanned several months (Midha, 2008), while others observed the activity for

fixed time periods ranging from one month to up to a year (e.g., Wu et al., 2007; Liu and

Iyer, 2007; Stewart et al., 2006; Koch, 2004). We chose to go with a fixed period of three

months, which we believe is long enough to capture any changes in the community’s ac-

tivity in response to changes in the structure.

Tab. 3.3 provides some descriptive statistics of the projects, which shows that the

minimum number of commits per quarter was one. Notice how the number of commits is

also skewed towards a high number of commits per month with a mean of 289.2 and a

median of 116. The same could be seen for the number of committers, contributors, and

popularity, which were measured as number of self-reported users in ohloh.net. This leads

us to conclude that our sample is indeed representative of actively developed FLOSS pro-

jects. Tab. 3.4 lists the variables we collected from this sample and provides a summary

of the corresponding construct definitions and operationalization.

188

Table 3.3: Descriptive statistics for the project sample

Median Mean STD
Age
In weeks relative to 1-1-2007

4 5.64 48.7

Popularity 57.5 192.1 447.71
CommittersCount per quarter 5 10.84 14.489
Contributorscount per quarter 8 16.29 26.786
Commitscount per quarter 116 289.2 456.656

Table 3.4: Variable operationalization

Variable Definition Operationalization

Performance
(PERF)

Progress made towards meeting
the demands of the FLOSS com-

munity.

The tallied count of commits listed in
the repository within a three month
window (Koch and Schneider, 2002;
Grewal et al., 2006).

Centralization
(CENT)

The degree to which the commit-
tal activity in a FLOSS commu-
nity is concentrated in the hands
of a small group of committers
relative to the overall size of the
development structure’s member-
ship.

The ratio of committers to total num-
ber of developers in the community
(Ouchi and Dowling, 1974).
	

.

Task Routine-
ness (TROUT)

The degree of predictability in the
software development task done
within the FLOSS community.

The average number of files changed
per commit.

Contributor
Uncertainty
(CUNC)

The unpredictability in develop-
ment tasks that is introduced from
the need to integrate the work
from contributors who are consid-
ered external to the FLOSS devel-
opment structure.

The ratio of new contributors to the
total number of contributors during
the analysis period.

189

Task
Interdependence
(TINT)

The degree to which the develop-
ment tasks of the developers in a
FLOSS community require coop-
eration to be completed.

The modularity measure (Newman
and Girvan, 2004; Newman, 2006b)
of the leading eigen-vector partition-
ing (Newman, 2006a) of the depend-
ency graph for the beginning of the
analysis period.

3.3 Variables

3.3.1 Performance

Content Validity

Performance is defined as the progress made towards meeting the demands of the FLOSS

community. Since our theory is built on the premise that the committal structure is the

bottleneck for development activities in FLOSS communities, we can assess how many

tasks are completed by the committers based on the number of completed commits (Koch

and Schneider, 2002; Grewal et al., 2006). We make the assumption that a commit ad-

dresses at least one community request by either fixing a bug or implementing a feature.

Hence, we can compare the relative performance of communities based on how many

issues are addressed while controlling for the differences between these projects.

Procedure

To estimate performance, we counted the total number of commits made by a project per-

formed during a single analysis period. The distribution of the count data suffered from

over-dispersion with a dispersion parameter of 56, which prevented us from using a

190

Poisson-based regression. To address this problem, we performed log transformation to

normalize the distribution of the data.

3.3.2 Centralization

Content Validity

Centralization is defined as the degree to which the committal activity in a FLOSS com-

munity is concentrated in the hands of a small group of committers. In such cases, the

majority of committal activity is done by a relatively small number of committers who

divvy the distribution of the workload. When the development structure is more decen-

tralized, committal activity will be distributed among a greater number of committers. In

decentralized development structures, the workload is more evenly distributed to a larger

number of committers.

To estimate centralization, we calculated the ratio of committers to the total number of

developers (i.e., contributors and committers) in a FLOSS community. The intuition be-

hind this measure is that the higher the ratio, (i.e., the greater the number of committers to

total developers), the greater the distribution of workload, which is the reverse of cen-

tralization. Therefore, higher ratios represent more decentralized structures, while lower

ratios represent more centralized structures.

This notion of centrality is very close to the concept of span of control (Simon, 1997)

that is measured as number of subordinates to supervisors (Ouchi and Dowling; 1974).

While the relationship between a committer and contributor is not that of subordinate and

supervisor, the ratio between their numbers reflect the density in upward communication

191

going from contributors to committers (Ouchi and Dowling, 1974). Low communication

density (i.e., smaller ratio) suggests centralized structures where committers expend

greater effort having to communicate with more contributors. Whereas low communica-

tion density (i.e., greater ratio) suggests a more decentralized structure where the com-

munication effort with contributors is distributed among a larger group of committers.

Procedure

To obtain the centralization estimate, we counted the total number of committers and con-

tributors as identified from the revision control system for the whole analysis period. We

then obtained the ratio of committers to total number of committers and contributors as

an estimate of decentralization of committal structure. We subtracted that ratio from one

to make it a ratio that increased with centralization.

The variable, however, observed a non-normal distribution with distributional masses

close to both zero and one. To address this distributional problem, we had to transform

the variable into a nominal variable using a median split given the distributional charac-

teristics (MacCallum et al., 2002), where zero represents a decentralized committal struc-

ture and one represents a centralized committal structure3.

3.3.3 Task Routineness

Content Validity

192

3 We test the robustness of our results using alternative splits to rule out that our results are an artifact of the
median split and use the median split results because they are the easiest to present and interpret. See ap-
pendix A for details.

 We define task routineness as the degree of predictability in the software development

task. Predictable tasks are analyzable and, therefore, easy to break down into simple rou-

tines and steps (Perrow, 1967). For software development tasks, simple routines and steps

can be implemented and grouped into a single source file. Complex development tasks,

on the other hand, will draw from different functional domains (Grant, 1996a) and will

require the modification or addition of more than a single source file. Changes to more

source files entails that the developer have to acquire the knowledge embedded in each

modified file. Furthermore, spreading out the changes to a larger number of files increases

the risk of introducing a bug or creating a conflict with another developer, as the likeli-

hood of two developers working on the same file increases (Crowston, 1997). Therefore,

the average number of files changed per commit will be inversely related to the routine-

ness of the development task.

Procedure

To obtain the estimate of task routineness we first counted the total number of files

changed or added over the analysis period. We then divided that number by the number

of commits to estimate the average number of files changed per commit. We then log

transformed the variable to normalize its distribution and mean center as recommended

by Aiken and West (1991) when testing for interaction terms. As mentioned in the previ-

ous section, however, routine tasks are associated with a smaller number of changed or

added files. As a result, this proxy will be negatively covaried to variables that truly rep-

resent task routineness. Since our variable is mean centered, we multiply it by negative

193

one to reverse the direction of the variance as to make it positively covaried in relation to

task routineness.

3.3.4 Contributor Uncertainty

Content Validity

Uncertainty in task environment is defined as the unpredictability in development tasks

that is introduced from the need to integrate the work from contributors who are consid-

ered external to the FLOSS development structure. The uncertainty comes specifically

from new contributors who are likely to make more mistakes either because they know

less about the current code base or about the development process. As a result, commit-

ters find themselves spending more time reviewing and committing the work of first time

contributors (von Krogh et al., 2003). Furthermore, new contributors will require more of

the committers’ time to help them get past the ramp-up effect (Brooks, 1975). Returning

contributors are likely to have absorbed more of the knowledge required to make a con-

tribution to the code base and to have gotten past the ramp-up effect with a prior contri-

bution. Therefore, we make the assumption that returning contributors are considered part

of the development team and will not introduce external uncertainty to the committal

structure.

Procedure

We counted the number of unique contributors for the analysis period by extracting their

names from the committal logs of the revision control system. We estimated contributor

194

uncertainty using the ratio of new contributors to the total number of committers. How-

ever, given the distributional characteristics of the variable where there are masses close

to the values of zero and one, we had to perform a median split and dichotomize the vari-

able into low (zero) and high (one) uncertainty (MacCallum et al., 2002).

3.3.5 Task Interdependence

Content Validity

Task interdependence is defined as the degree to which the completion of development

tasks in a FLOSS community requires the developer cooperation. The first form of inter-

dependence we discussed in Sec 3.2.3.5 was intra-unit interdependence, which are the

dependencies shared by developers working on the same set of files. We also explained in

Sec 3.2.3.5 another form of task-interdependence, inter-unit interdependence, which re-

quires coordination and communication between developers working on different mod-

ules. The need for communication across modules is generated by dependencies between

the different modules on which developers are working. When organizational units

maximize intra-unit dependencies and minimize inter-unit dependencies, it would allow

the different units to work in parallel by reducing the communication and coordination

requirements (Crowston, 1997).

In software development teams, such separation could be achieved by managing the

dependencies between the different functional units (i.e., modules) in the software on

which the development team is working (Crowston, 1997). By minimizing coupling be-

tween modules, a software development team could reduce the need for communication

195

between groups working on different modules and could enable a parallel development

process (Baldwin and Clark, 2000). On the other hand, developers working on the same

modules that encapsulate highly related functionality will need to put forth less effort for

communication due to the amount of shared knowledge between them from working on a

highly specialized unit of software, This, in turn, enables shared problem solving and im-

proved maintainability of the module (Grant, 1996a; Page-Jones, 1998).

To estimate the level of dependencies across and within modules, we leveraged the

leading eigen-vector method to partition the dependency graph of the source code and

obtain an estimate of its modularity (Newman, 2006a). The modularity value would be

high when cross-module dependencies are low (i.e., loosely coupled) and within-modules

dependencies are high, suggesting that the modules are properly partitioned with very

little interdependence of tasks across functional units (see Study 1). Therefore, the modu-

larity measure can be used as a proxy that is inversely related to task interdependence.

Procedure

First we extracted the dependency graph for a snapshot of the source code at the begin-

ning of the analysis period. We then used the leading eigen-vector method (Newman,

2006a) to examine how well the graph could be partitioned into sub-graphs. Next, we ex-

tracted the modularity measure for the resulting partition from the leading eigen-vector

method. We then mean centered the variable since we would be testing an interaction

term (Aiken and West, 1991). Finally, we multiplied the value by negative 1 since the

modularity estimate was inversely related to task interdependence.

196

3.4 Controls

3.4.1 Age of Project

The age of the FLOSS project might have an effect on the number of committers since

older projects have more established roles and procedures for coordination than younger

projects, which might impact performance. In addition, age can serve as a proxy for the

stage in which the FLOSS project is, which could affect the level of activity in the project

and, thereby, its performance (Stewart et al., 2006). Age was measured in terms of num-

ber of months from the time the first committal was made to the source code up to the

first day of the analysis period.

3.4.2 Programming Language

Different programming languages follow different philosophies. Some languages, like

Python, focus on prototyping and are thus easier to develop for and collaborate on

(Stewart et al., 2006; Midha, 2008). Such languages are designed with productivity in

mind, which is why we expect language to have an impact on a community’s overall de-

velopment performance.

3.4.3 Project Popularity

A FLOSS project’s popularity might also play a role in performance because developers

may find popular projects to be more attractive to join due to the social benefits associ-

ated with participation and exposure (Lakhani and Wolf, 2007; Lerner and Tirole, 2002).

In addition, popular projects tend to have a greater number of software users, which

197

means the pool of potential contributors to the project is larger (see Study 1). Thus, hav-

ing more contributors will have an impact on overall project performance.

To measure popularity, we obtained the number of users that reported using the soft-

ware on ohloh.net. Given that ohloh.net is a social website for FLOSS developers, the

number of users that report using a software product serves as a good proxy for popular-

ity amongst developers who are likely to contribute.

3.4.4 Size of Project

Projects with a larger code base are likely to be more complex and have a greater need for

change (see Study 1). Therefore, we expect projects to differ in the amount of develop-

ment activity they require, which might make smaller projects inherently less active. Fur-

thermore, the rate of change in the source code, or the development inertia, has been

found to be closely related with the size of the code base in Source Lines of Code

(SLOC) (Booch, 2008). Therefore, it was important to control for the size of the code

base, estimated as SLOC, for the beginning of the analysis period, which allowed us to

compare differently size projects.

3.4.5 Number of Committers

While we are interested in the ratio of committers to external contributors in our study,

the total number of committers still has implications for performance. Larger projects can

perform a greater number of commits simply by virtue of having a larger group of com-

mitters. As a result, we controlled for the number of committers, as we are interested in

the effects that are above and beyond size-related variables.

198

3.5 Analysis and Results

Given the longitudinal nature of our study, we used a mixed-model analysis to fit our sta-

tistical models (Cohen et al., 2003). Specifically, we used the lme4 library (Bates and

Maechler, 2009) for the GNU R (R Development Core Team, 2009) to perform a

Gaussian-based mixed model given the normally distributed dependent variable. Before

performing that step, however, we screened our data and made sure that we had no miss-

ing data or variables with distributions that violated the assumptions of mixed-model

analysis. The correlation matrix (Tab. 3.5) suggests that our variables have discriminant

validity given that the correlations between them are low.

Furthermore, we used the influence.ME package (Nieuwenhuis et al., 2009) to assess

the influence of our observations on the results of the mixed-model analysis using Cook’s

d (Cohen et al., 2003). With Cook’s d values less than .3, we concluded that no single ob-

servation had any excessive influence over the results.

Table 3.6 summarizes the results from our mixed-model analysis (Cohen et al., 2003).

The mixed models were fitted such that the observations were nested within projects.

Relative to the null model, the controls-only model was able to explain 17.7% of the

variability. The main-effects model was a significant improvement over the control with

an R2 of 23.84%. Since we are fitting a Gaussian-mixed model for an unbalanced design,

the recommended method to estimate p-values for inference tests is to use a Markov

Chain Monte Carlo simulation and estimate the 95% Highest Probability Density Interval

(HPD) (Bates and Maechler, 2009; Chen et al., 2000).

199

Table 3.5: Variable correlations and descriptive statistics

PERF CENT TROUT CUNC TINT AGE PER isGPL isC isCpp isPy POP SLOC COM

PERF 1.00

CENT 0.22 1.00

TROUT 0.24 0.03 1.00

CUNC 0.16 0.33 0.10 1.00

TINT -0.27 -0.03 0.21 -0.01 1.00

AGE 0.06 0.11 0.00 0.02 -0.15 1.00

PER -0.06 0.03 -0.02 -0.15 -0.01 0.04 1.00

isGPL -0.01 -0.01 0.01 0.02 0.00 0.10 0.05 1.00

isC 0.21 0.12 0.10 0.02 -0.11 0.34 0.00 0.10 1.00

isCpp 0.20 -0.06 -0.24 -0.06 -0.29 -0.09 -0.01 0.11 0.03 1.00

isPy -0.13 -0.05 0.10 0.01 0.20 -0.29 0.00 -0.15 -0.63 -0.32 1.00

POP -0.20 -0.13 -0.01 0.00 0.09 -0.39 -0.03 -0.11 -0.18 0.08 0.18 1.00

SLOC 0.44 0.14 -0.28 -0.02 -0.44 0.32 0.06 -0.04 0.35 0.29 -0.36 -0.26 1.00

COM 0.66 -0.08 0.14 0.15 -0.22 0.13 -0.01 0.04 0.19 0.17 -0.07 -0.24 0.39 1.00

min 0.00 0.00 -4.64 0.00 -0.42 -7.61 1.00 0.00 0.00 0.00 0.00 -0.21 -6.01 -1.77

mean 4.68 0.48 0.00 0.50 0.00 0.00 4.54 0.42 0.82 0.43 0.14 0.00 0.00 0.00

median 4.84 0.00 0.01 0.00 0.03 0.27 4.00 0.00 1.00 0.00 0.00 0.00 0.01 0.02

max 8.33 1.00 5.03 1.00 0.65 13.16 10.00 1.00 1.00 1.00 1.00 0.15 3.73 3.05

std 1.64 0.00 0.86 0.00 0.29 2.65 2.97 0.00 0.00 0.00 0.00 0.11 1.41 1.15

The null hypotheses that the regression coefficient is different from zero is rejected

with an alpha < .05 when zero is not within the range of the HPD interval. Based on this

inference method, we notice that TROUT has a significant relationship with PERF with a

coefficient of 0.2873 in the main-effect model. This result lends support to our hypothe-

sized positive relationship between task routineness and performance in H1. Similarly,

the results suggest that TINT ha a significant relationship with PERF with a coefficient of

-0.3801. This result lends support to the hypothesized negative relationship between task

interdependence and performance in H5. We could not find support for H3 given that the

CUNC has a non-significant coefficient.

200

Table 3.6: Model fitting

Model Null ControlControlControl Main EffectsMain EffectsMain Effects Interaction EffectsInteraction EffectsInteraction Effects

Estimate HPD LowerHPD Upper Estimate HPD LowerHPD Upper Estimate HPD LowerHPD Upper

TROUT*C
ENT — 0.079* 0.007 0.176

CUNC*CE
NT — -0.153* -0.372 -0.03

TINT*CEN
T — 0.41. -0.035 0.738

CENT — 0.601*** 0.572 0.772 0.701*** 0.649 0.929

TROUT — 0.287*** 0.275 0.378 0.251*** 0.224 0.348

CUNC — 0.099 -0.03 0.151 0.162* 0.023 0.264

TINT — -0.37*** -0.813 -0.161 -0.56*** -1.036 -0.294

AGE — -0.062*** -0.109 -0.033 -0.071*** -0.113 -0.047 -0.069*** -0.112 -0.045

PER — -0.031*** -0.052 -0.019 -0.03*** -0.052 -0.021 -0.031*** -0.052 -0.022

isGPL — -0.153 -0.286 0.073 -0.124 -0.233 0.074 -0.125 -0.239 0.073

isC — 0.228 -0.042 0.544 0.011 -0.285 0.243 0.023 -0.263 0.264

isCpp — 0.132 -0.082 0.317 0.257* 0.055 0.412 0.252* 0.045 0.403

isPy — -0.222 -0.417 0.258 -0.279 -0.475 0.129 -0.271 -0.462 0.135

POP — -0.431 -1.666 0.411 -0.353 -1.346 0.472 -0.277 -1.229 0.591

SLOC — 0.002*** 0.067 0.202 0.056*** 0.111 0.24 0.06*** 0.113 0.24

COM — 1.226*** 0.979 1.115 1.089*** 0.878 1.006 1.085*** 0.878 1.004

Int 4.652*** 4.6779*** 4.603 4.77 4.344*** 4.25 4.43 4.314*** 4.202 4.391

AIC 5538 462346234623 430843084308 431143114311

LogLik -2766 -2300-2300-2300 -2138-2138-2138 -2136-2136-2136

Deviance 5532 456845684568 422742274227 421442144214

R2 — %17.2%17.2%17.2 %23.01%23.01%23.01 %23.08%23.08%23.08

Chi2 Diff — 983.745983.745983.745 341.096341.096341.096 13.1413.1413.14

P — <.0001***<.0001***<.0001*** <.0001***<.0001***<.0001*** 0.00434***0.00434***0.00434***

Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

201

Since we used single-indicator variables as proxies for our theoretical constructs, we

followed the recommendation of Venkatraman (1989) to test for the hypothesized fit in

H2, H4 and H5 as moderation. We also followed the recommendations of Aiken and West

(1991) and Cohen et al. (2003) and mean centered all of the continuous variables such

that the intercept and lower-order effect terms could be interpreted.

We included the interaction terms in the interaction model between our main effect

variables and CENT, which is the moderator that represents the centralization of a

FLOSS community’s committal structure. Based on the Chi2 difference test, the interac-

tion model explains a significant amount of variability more than the main effect model.

With an R2 of 20.08% the change in the effect size due to the addition of the interaction

terms is quite small. This however is typical of moderation effects in psychological and

management studies in which the median for the effect size for studies conducted over

the past 30 years was found to be around 0.002 (Aguinis et al., 2005). McClelland and

Judd (1993) attribute this to the small amount of residual variance, after accounting for

the main effects, that is used to detect moderation effects.

The positive and significant coefficient of the TROUT*CENT coefficient (0.079, p-

value < 0.05) lends support to H2, which suggests communities with centralized commit-

tal structures are a better fit for routine tasks. To illustrate this, we plotted the simple

slopes for the interaction term in Fig. 3.4, which shows how performance increases at a

higher rate for centralized committal structures than for decentralized committal struc-

tures as the development task becomes more routine (Aiken and West,1991; Cohen

et al.,2003). The simple slope for decentralized FLOSS communities is represented by

202

the main effect coefficient associated with TROUT in the interaction model (0.251, p-

value < 0.0001). The significance test for this main effect coefficient is also used to test

whether the TROUT simple slope for the decentralized reference group is significantly

different from zero (Aiken and West, 1991; Cohen et al., 2003).

Figure 3.4: Simple slopes for effect of TROUT over different levels of CENT

 To obtain the TROUT simple slope for the centralized FLOSS communities, we simply

added the TROUT*CENT coefficient to the TROUT coefficient (0.33, p-value = <

0.0001). The significance test for this simple slope was obtained by reverse coding the

203

CENT variable such that the centralized FLOSS projects are the reference group and then

refitting the interaction model (Aiken and West, 1991; Cohen et al., 2003).

As can be seen in Fig 3.4, the higher increase in performance is signified by the

steeper and positive slope of the centralized committal structure line. Since TROUT is a

continuous and mean-centered variable, the significance of the interaction term

TROUT*CENT (p-value < 0.05) was used as a test to confirm that the difference in the

simple slopes between the two levels of CENT is indeed significant (Aiken and West,

1991).

The negative and significant slope of the CUNC*CENT coefficient (-0.147, p-value <

0.05) lends support to H4, which suggests that a decentralized committal structure is a

better fit for dealing with higher contributor uncertainty (i.e., the increase in numbers of

new contributors). This result also confirms that the simple slopes for centralized and de-

centralized FLOSS communities are significantly different (Aiken and West, 1991).

To illustrate this difference, we plotted the simple slopes for the interaction term as

shown in Fig. 3.5. The graph shows that the effect of uncertainty on performance has a

positive and steeper slope for decentralized communities than for centralized communi-

ties. The CUNC simple slope for centralized FLOSS communities is non-significant

(0.009, p-value > 0.1)4, suggesting that contributor uncertainty has no impact on perform-

ance for centralized FLOSS communities. On the other hand, the CUNC simple slope for

204

4 The significance test was obtained after reverse coding CENT and refitting the interaction model and us-
ing the significance test for the CUNC coefficient (Aiken and West, 1991).

decentralized communities was positive and significant (0.162, p-value < .05), which is

contrary to our expectations.

Figure 3.5: Simple slopes for effect of CUNC over different levels of CENT

 Finally, we found partial support for H6, which suggests that centralized committal

structures are a better fit when there is a high degree of task interdependence, as illus-

trated by the coefficient of the TINT*CENT term (0.406, p-value < 0.1). The results sug-

gest that FLOSS communities with centralized committal structures can perform better

205

than communities with decentralized committal structures as task interdependence is in-

creased.

To illustrate this, we plotted the simple slopes for the interaction term shown in Fig.

3.6. The steeper slope for the relationship between TINT and PERF for FLOSS commu-

nities with decentralized committal structures suggests that centralized committal struc-

tures are a better fit for increasing task interdependence, as performance drops at a much

slower rate than in decentralized committal structure (-0.5603, p-value = < 0.0001)5. For

the simple slope for centralized committal structures, however, there was only partial

support that it was significantly different from zero (-0.151, p-value < 0.1), suggesting

that interdependence might have a less detrimental effect on performance for centralized

FLOSS communities.

Furthermore, when looking at the increasing performance from the right side of the

graph to the left, the same graph suggests that decentralized committal structures can ob-

serve higher performance gains as task interdependence is reduced by means of improv-

ing the software design to be more modular. However, the difference in between these

simple slopes only finds partial support with the partially significant TINT*CENT coeffi-

cient (-0.41, p-value < 0.1) (Aiken and West, 1991).

206

5 The significance test was obtained after reverse coding CENT and refitting the interaction model and us-
ing the significance test for the TINT coefficient (Aiken and West, 1991).

Figure 3.6: Simple slopes for effect of TINT over different levels of CENT

4 Discussion

The main premise of our theory is that development activities within a FLOSS commu-

nity are information-processing tasks (Galbraith, 1973). Under the assumption of

bounded rationality, we forwarded the argument that the committal structure will be the

main bottleneck of performance as the information-processing requirements of a FLOSS

community increased. The results of our statistical analysis suggest that there is good

overall support for the theory we have forwarded about the performance of FLOSS com-

207

munities as summarized in Tab. 3.7. We also summarize the main contributions of our

work in Tab. 3.8

Table 3.7: Summary of empirical findings from the higher-order model

Hypothesis Coeffecient Support

H1: Task routineness is positively related to a FLOSS com-
munity’s performance.

TROUT: 0.287 p-value < 0.001 Supported.

H2: As tasks become more routine, FLOSS communities with
centralized committal structures will have higher performance
gains than communities with decentralized committal struc-
tures.

TROUT*CENT: 0.079 p-value < 0.001 Supported.

H3: Contributor uncertainty will be positively related to a
FLOSS community’s performance.

CUNC: 0.099 p-value > 0.1 Not supported.

H4: As contributor uncertainty increases, FLOSS communities
with centralized committal structures will have lower per-
formance gains than communities with decentralized commit-
tal structures.

CUNC*CENT: -0.147 p-value < 0.05 Supported.

H5: Task interdependency will be negatively related to a
FLOSS community’s performance.

TINT: -0.37 p-value < 0.001 Supported.

H6: As task interdependency is increased, FLOSS communi-
ties with centralized committal structures will have higher
performance gains than communities with decentralized com-
mittal structures.

TINT*CENT: 0.41 p-value < 0.1 Partially supported.

208

Table 3.8: Summary of this work’s main contributions

Finding Impact

FLOSS communities per-
forming simple tasks per-
form better.

•	

 Importance of good source code design to simplify develop-
ment.

•	

 Contributors should work closer to the community and make
small incremental changes rather than work in isolation and
accumulate their patches into a single patch that is hard to
incorporate.

Centralized committal struc-
tures are a better fit for rou-
tine tasks.

•	

 The committal structure should match the needs of the com-
munity.

•	

 There is no single superior structure.

Decentralized committal
structures are a better fit un-
der high contributor uncer-
tainty.

•	

 Decentralized committal structures are necessary if commu-
nity involvement is valued.

•	

 Brooks’ law is not obsolete; the committal structure has to be
overwhelmed for it to become obvious.

Task interdependence in-
creases information-
processing requirements for
a FLOSS community and
reduces performance.

•	

 Importance of modularizing the source code and its effect on
the performance of a FLOSS community.

•	

 Further validation of the Newman (2006a) modularity meas-
ure.

Decentralized committal
structures are a better fit un-
der conditions of low task
interdependence.

•	

 Decentralized committal structures are enabled by proper
code design.

•	

 Centralized committal structures might be the only way to
continue to maintain and develop tightly coupled code bases.

•	

 Brooks’ and Raymond’s views are complementary. Raymond
explains how FLOSS development is conducted under condi-
tions of fit, while Brooks’ views become apparent under con-
dition with lack of fit.

209

In H1, we hypothesized that FLOSS communities will perform better when their de-

velopment tasks are more routine. We attributed the improved performance to the reduced

information-processing requirement of routine tasks, which are less likely to overwhelm

the committal structure. The results from our statistical analysis lend support to this hy-

pothesis.

These findings suggest that FLOSS communities could improve their performance if

development tasks are simplified. Specifically, communities should invest their time in

properly designing and organizing the source code such that similar functionality is en-

capsulated in specific modules (Page-Jones, 1998). The findings also signify the impor-

tance of working within the community for contributors. By being close to the commu-

nity and contributing small and incremental changes, contributors are likely to find the

committal structure more responsive. Working in isolation and contributing a large patch

to the community will likely require a significant time investment from committers and

will most likely result in the patch not being accepted.

In addition, we hypothesized that centralized committal structures are a better fit for

routine development tasks because the coordination requirements between committers are

generally lower for centralized committal structures than for decentralized structures due

to the smaller number of communication channels that each committer is required to

maintain with other committers (Brooks, 1975). This hypothesis also found support in our

statistical analysis.

What these results suggest is that even though decentralized committal structures

might have a higher capacity to process information, they are not the best fit for every

210

situation. Communities that maintain projects that require routine development activities,

either from the simplicity of the problem or the maturity of project with plateaued devel-

opment activity, could be developed and maintained more efficiently with a centralized

committal structure. On the other hand, more complex projects could benefit greatly from

the distributing the development process. However, there is the limitation that the design

of the code base must be improved to enable such a distributed development mode, as we

shall explain in the discussion about the results for H5 and H6.

We hypothesize in H3 that increased uncertainty from having new contributors par-

ticipate might have a detrimental effect on performance, as new contributors, and even

their patches, will demand extra attention from committers. The results did not lend sup-

port to this hypothesis. It is possible that the dichotomization of the variable was the

cause of our failure to detect such an effect, which we acknowledge to be an unavoidable

limitation in our methods (MacCallum et al., 2002). It could also mean that the central-

ized committal structure is overwhelmed and that the committers are doing a good job of

organizing the committal activities so as to continue to maintain progress. To confirm that

this was indeed the case, we would need to examine the number of ignored patches by the

community. While there is no denying that such data could enrich our methods, we found

it very difficult to collect, which seems to be a limitation that could be addressed in future

work.

We were surprised, however, from the significant and negative interaction term that

suggests, as we predicted in H4, that FLOSS communities with decentralized committal

structures tend to perform better under higher uncertainty. The simple slopes suggest that

211

uncertainty had no impact on performance for centralized committal structures. However,

higher uncertainty translated into higher performance under decentralized committal

structures.

The higher performance of decentralized committal structures under high uncertainty

could be attributed to decentralized committal structures being able to deal with the ex-

ternal uncertainty introduced by new contributors more effectively. As we explained in

Sec. 3.2.2, committal activities are performed in parallel, resulting in a continuance of

committal activity when new contributors require the attention of one of the committers.

This may even lead to more of the new contributors turning into regular contributors and

adding to the increased performance of the community.

What is interesting about this finding is that it shows the direct tension between

Brooks’ and Raymond’s views. The lack of performance improvement for centralized

structures shows, as Brooks’ had anticipated, that there are no performance gains. To take

advantage of new contributors’ effort, the community should be able to decentralize the

committal structure to be able to handle the extra uncertainty introduced by new contribu-

tors.

In light of these results, we conclude that it is a bit premature to consider Brooks’ law

obsolete. Rather, it seems that Brooks’ law starts to take effect in FLOSS communities

when the committal structure hits the limits of its information-processing capacity. This is

even further highlighted by the support for H4 in which we specifically hypothesized that

decentralized committal structures are a better fit for dealing with contributor uncertainty.

We believe this to be true mainly due to their greater capacity for information processing

212

from their distribution of tasks and requisite development knowledge among a larger

group of committers, which reduces the workload on any single individual.

In H5, we hypothesized that communities with fewer interdependencies in their devel-

opment task will generally perform better. We attribute this improved performance to the

reduction in such communities’ need for coordination, which frees up more of the com-

mittal structure’s information-processing capacity for performing more tasks. The need

from coordination stems mainly from dependencies between the source files on which

different developers work, which creates the need for coordination Crowston (1997). By

improving the design of the source code to exhibit higher modularity (i.e., low coupling

between modules and high cohesion within a module), FLOSS communities can improve

their performance. The results from our analysis generally support this hypothesis. The

importance of this finding also stems from the fact that it offers further validation to the

modularity measure (Newman, 2006a).

Finally, we hypothesize in H6 that centralized committal structures are a better fit for

highly interdependent tasks because highly interdependent tasks will require greater co-

ordination efforts. In communities with decentralized committal structures, committers

will have to maintain communication channels with a larger group of committers to

maintain the functional integrity of the developed software (Brooks, 1975; Crowston,

1997). With higher task interdependence, the amount of information that needs to be ex-

changed in each channel will increase, making it impossible for a committer to maintain

the same amount of channels. Therefore, centralized structures have the advantage of

having a smaller group of committers maintaining a smaller number of communication

213

channels, which, in turn, take up much less of the committal structure’s information-

processing capacity. This hypothesis found support with the higher decrease in perform-

ance for decentralized committal structures as compared to centralized committal struc-

tures.

The flip-side of the previous argument is that the improvement gains to software de-

sign in decentralized committal structures are greater than for centralized committal

structures. We would even go as far as saying that large FLOSS communities with large

committal structures require a highly modular design to continue to function. This also

goes back to the tension between Brooks’ and Raymond’s view. While Raymond sup-

ported the distributed development model of the FLOSS community and touted its bene-

fits, the caveat to this idea is that the software should be designed to enable such a proc-

ess. Adding developers or improving performance always comes at an information-

processing cost, and FLOSS communities will be able to improve on both only up to

what the information-processing capacity of the committal structure would allow them to.

After that point, the community must make a trade-off to either reduce their information-

processing needs or increase their information-processing capacity.

5 Limitations and Future Research

Although our work provides insight into the development structure of FLOSS communi-

ties, care should be taken so as not to confuse the development structure with the com-

munication structure (Crowston and Howison, 2005). There is evidence that a FLOSS

community’s communication structure will not match its development structure (Mockus

214

et al., 2002). As such, it will be rather interesting to know how the two relate. Our work

raises the following questions that future studies could help address: could an increase in

communication activity signal that there is a problem in coordination that could be reme-

died by increased communication; and will this affect the sustainability of the community

since it would result in an increased cost for participation and an information overload on

the members (Jones et al., 2004; Kuk, 2006)?

The way we conceptualized the development structure to exclude the communication

structure might seem to be a limitation; however, it was a necessary simplification that

lead us one step closer to understanding organizational structures in FLOSS communities.

We explained that we took this approach because we saw the main function of a FLOSS

community as being the development of software and that all contributions must be proc-

essed by committers; therefore, they are indeed a bottleneck in the development structure.

Prior work that examined development organization in FLOSS communities took a

small-sample approach (Mockus et al., 2002; Shah, 2006; O’Mahony and Ferraro, 2007)

or mainly examined the communication structure (Crowston and Howison, 2005). This

work came as a response to the call by Koch (2004) for more studies that attempt to gen-

eralize findings across a diverse set of FLOSS projects. Future studies could build on our

work and take a more granular approach to classifying FLOSS community structures and

understanding their effects on participation and productivity in addition to their relation

to the communication structure.

It is also important to highlight the limitations of our methods in the hope that future

studies could improve upon them. The first of these limitations relates to the quarterly

215

window used to aggregate our data. While we have justified our selection based on prior

work that used anywhere from a one-month to a one-year window, we feel that our selec-

tion was somewhat arbitrary. We hope to vary this window of analysis with our future

work and compare the results. The limited computational resources at this time prevented

us from feasibly performing this task.

Furthermore, due to the unusual distribution of some of our variables, we were left

with no choice but to dichotomize the variables. Such an approach might yield spurious

relationships and result in lowering the power of the statistical analysis (MacCallum

et al., 2002). However, we ruled out the chance that our results are spurious by conduct-

ing the analysis using alternative methods for factoring the variables and found the results

to hold (see Appendix A). We chose to use the results of the dichotomized variables be-

cause they are easier to present and interpret. The fact that we found significant results

despite the lower statistical power of our chosen method of factorization suggests that the

actual effects that we are trying to detect might have a larger effect size in reality. While

we were limited in terms of the variables we could extract from the available data ar-

chive, we hope to make improvements in future work by augmenting our data with sur-

veys and alternative data sources.

Finally, while we may have espoused the idea that there is no single superior organiza-

tional form, we only examined a subset of the potential tradeoffs between the different

committal structures. There are still some broader implications for the different committal

structures that future studies could expand on. For example, what are the actual organiza-

tional costs for a community to change the committal structure and how might that

216

change impact contributors and performance over the transition period. Furthermore,

given that such initiatives could be conceptualized as a form of business-process reengi-

neering, the risk that such initiatives could fail does exist. Therefore, it will be important

to understand what factors might contribute to the success or failure of such initiatives.

6 Conclusion

The goal we set out to achieve with this study is to determine if organizational theories of

fit apply to FLOSS communities, knowing that FLOSS communities have emergent

structures by nature (O’Mahony and Ferraro, 2007). We leveraged OIPT (Galbraith,

1973) to argue that FLOSS communities that perform highly in terms of source code out-

put will organize to achieve the best fit between their information-processing capabilities

and needs. The empirical results lend support to our theory that high-performing FLOSS

communities match their development structure, as the embodiment of their information-

processing capabilities, with their software development tasks, as the main source of their

information–processing needs.

This work contributes to both theory and practice. From a theoretical standpoint, we

have shown that FLOSS communities are not so different from conventional organiza-

tional units from an information-processing perspective. We have also given an explana-

tion as to how the emergent development structure in FLOSS communities could form in

response to the community’s information-processing needs. In addition, we have given an

account of the different development-related organizational structures and have found

217

that there is no single superior structure; rather, what is important in the development

process is finding the fit between the community’s development needs and its structure.

Our theoretical deductions and empirical results support the idea that FLOSS commu-

nities performing development tasks that are generally routine, highly interdependent,

and generate little contributor uncertainty will perform better under a centralized commit-

tal structure. On the other hand, decentralized committal structures thrive under the con-

ditions of task non-routineness, low task interdependence, and high contributor uncer-

tainty.

More importantly, these findings highlight the tension between the views forwarded

by Brooks (1975) about software development and Raymond (2001) about FLOSS de-

velopment. While both of these views have been seen as conflicting, we show with this

work that they are actually complementary. We attribute the conflict to the lack of clarity

in the assumptions of both views and find that Raymond’s view generally holds true of

FLOSS development until the committal structure is overwhelmed. In such cases, we be-

gin to see signs that Brooks’ views hold true even in FLOSS development.

The results of our study are equally useful to FLOSS community organizers and or-

ganizations that seek to increase the development output from FLOSS communities that

are under their management. We have highlighted the importance of good code design in

managing dependencies between developers to allow for a more distributed development

process.

Our work also makes clear that promoting committers is not always a favorable option

to improve the output of the community or to help developers when they are over-

218

whelmed, especially when the source code is highly interdependent. The best course of

action in such situations involves a reorganization of the source code. Adding more

committers might simply heighten the cost of coordination between developers, thereby

reducing the overall performance of the community. This shows how FLOSS communi-

ties are no different than any other software development team and that Brooks’ law

(Brooks, 1975), as one of the most important classical theories on software project man-

agement, still holds true in the FLOSS context.

219

Appendices

220

 Appendix A: Robustness of Median Split Results

To ensure that our results are not caused by the median split (MacCallum et al., 2002),

we performed a tertile split on both CUNC and CENT and refit our interaction model.

The results are summarized in Tab. 9 and 10, which show that our results hold, suggest-

ing that the median split did not have an impact on our results. With all continuous vari-

ables mean centered, we could interpret the interaction effects and lower order main ef-

fects (Aiken and West, 1991).

If you recall from Tab. 7, we found support for H1, H2, H4, and H5. In Tab. 9, we can

see that TROUT has a positive and significant coefficient, thus supporting H1. TINT also

has a negative and significant coefficient, providing support for H5. In Tab. 9, we have

the results from the interaction model. The TROUT*CENThi coefficient is positive and sig-

nificant suggesting that the TROUT coefficient for the high centralization group is higher

and significantly different than the coefficient for the reference low centralization group,

thus providing support for H2. The CUNChi*CENT coefficients are also significant or

partially significant and negative, suggesting that groups with high centralization have a

significantly lower coefficient than the reference group with low centralization, providing

support for H4.

221

Table 3.9: Main-effect model with tertile split of CENT and CUNC

Term Coeffecient P-Value Supports

TROUT 0.287 0.0001*** H1

CUNC_med 0.13 0.296

CUNChi 0.103 0.575

TINT -0.43 0.0001*** H5

CENTmed 0.336 0.0001***

CENThi 0.857 0.0001***

Table 3.10: Interaction model with tertile split of CENT and CUNC

Term Coeffecient P-Value Supports

TROUT*CENTmed -0.018 0.315

TROUT*CENThi 0.11 0.039* H2

CUNCmed*CENTmed -0.129 0.315

CUNCmed*CENThi 0.164 0.513

CUNChi*CENTmed -0.336 0.002** H4

CUNChi*CENThi -0.106 0.096. H4

TINT*CENTmed 0.347 0.301

TINT*CENThi 0.241 0.844

TROUT 0.264 0.0001***

CUNC_med 0.097 0.75

CUNChi 0.259 0.006**

TINT -0.642 0.001***

CENTmed 0.499 0.0001***

CENThi 0.796 0.0001***

222

References

Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2005). Effect Size and Power in
Assessing Moderating Effects of Categorical Variables Using Multiple Regression: A
30-Year Review. Journal of Applied Psychology, 90(1), 94-107.

Ahuja, M. K. and Carley, K. M. (1999). Network structure in virtual organizations. Or-
ganization Science, 10(6):741-757.

Aiken, L. S. and West, S. G. (1991). Multiple regression: Testing and interpreting inter-
actions. Sage Publications, Inc.

AlMarzouq, M., Zheng, L., Rong, G., and Grover, V. (2005). Open source: Concepts,
benefits, and challenges. Communications of AIS, 2005(16):756-784.

Baldwin, C. Y. and Clark, K. B. (2000). Design rules, Vol. 1: The power of modularity.
The MIT Press.

Baldwin, C. Y. and Clark, K. B. (2006). The architecture of participation: Does code ar-
chitecture mitigate free riding in the open source development model? Management
Science, 52(7):1116-1127.

Bates, D. and Maechler, M. (2009). lme4: Linear mixed-effects models using S4 classes.
R package version 0.999375-31.

Blau, P. M. (1968). The Hierarchy of Authority in Organizations. The American Journal
of Sociology, 73(4), 453-467.

Bonaccorsi, A. and Rossi, C. (2003). Why open source software can succeed. Research
Policy, 32(7):1243-1258.

Booch, G. (2008). Measuring architectural complexity. IEEE Softw., 25(4):14-15.

Brooks, F. (1975). The mythical man-month. In Proceedings of the International Confer-
ence on Reliable Software, volume 10. ACM Press.

Capiluppi, A. and Adams, P. J. (2009). Reassessing Brooks’ law for the free software
community. In Boldyreff, C., Crowston, K., Lundell, B., and Wasserman, A. I., edi-
tors, OSS, volume 299 of IFIP, pages 274-283. Springer.

223

Chen, M.-H., Shao, Q.-M., and Ibrahim, J. G. (2000). Monte Carlo methods in bayesian
computation (Springer series in statistics). Springer.

Choudhury, V. and Sampler, J. L. (1997). Information specificity and environmental
scanning: An economic perspective. MIS Quarterly, 21(1):25-53.

Cohen, J., Cohen, P., West, S., and Aiken, L. (2003). Applied Multiple Regression/
Correlation Analysis for the Behavioral Sciences. Lawrence Erlbaum, third edition.

Crowston, K. (1997). A coordination theory approach to organizational process design.
Organization Science, 8(2):157-175.

Crowston, K., Annabi, H., and Howison, J. (2003). Defining open source software project
success. In Proceedings of the 24th International Conference on Information Systems
(ICIS 2003, pages 327-340.

Crowston, K. and Howison, J. (2005). The social structure of free and open source soft-
w a r e d e v e l o p m e n t .
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1207.

Crowston, K., Wei, K., Li, Q., Eseryel, U., and Howison, J. (2005). Coordination of free/
libre open source software development. In ICIS 2005 Proceedings.

Daft, R. L. and Lengel, R. H. (1986). Organizational information requirements, media
richness and structural design. Management Science, 32(5):554-571.

DeLone, W. H. and McLean, E. R. (1992). Information systems success: The quest for
the dependent variable. Information Systems Research, 3(1):60-95.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., and Herbsleb, J. D. (2007). Familiarity,
complexity, and team performance in geographically distributed software develop-
ment. Organization Science, 18(4):613-630.

Fichman, R. G. and Kemerer, C. F. (1997). The assimilation of software process innova-
tions: An organizational learning perspective. Management Science,
43(10):1345-1363.

Fitzgerald, B. (2006). The transformation of open source software. MIS Quarterly,
30(3):587-598.

Freeman, L. (1979). Centrality in social networks conceptual clarification. Social Net-
works, 1(3), 239, 215.

Galbraith, J. R. (1973). Designing complex organizations. Addison-Wesley series on or-
ganization development. Addison Wesley.

224

Gemino, A., Reich, B. H., and Sauer R, C. (2007). A temporal model of information tech-
nology project performance. Journal of Management Information Systems,
24(3):9-44.

Goldratt, E. M. and Cox, J. (1994). The goal. North River Press, second edition.

Grant, R. M. (1996a). Prospering in dynamically-competitive environments: Organiza-
tional capability as knowledge integration. Organization Science, 7(4):375-387.

Grant, R. M. (1996b). Toward a knowledge-based theory of the firm. Strategic Manage-
ment Journal, 17:109-122.

Grewal, R., Lilien, G. L., and Mallapragada, G. (2006). Location, location, location: How
network embeddedness affects project success in open source systems. Management
Science, 52(7):1043-1056.

Hage, J., & Aiken, M. (1967). Relationship of Centralization to Other Structural Proper-
ties. Administrative Science Quarterly, 12(1), 72-92.

Howison, J. and Crowston, K. (2004). The perils and pitfalls of mining sourceforge. In
Proceedings of the International Workshop on Mining Software Repositories (MSR
2004, pages 7-11.

Jones, Q., Ravid, G., and Rafaeli, S. (2004). Information overload and the message dy-
namics of online interaction spaces: A theoretical model and empirical exploration.
Information Systems Research, 15(2):194-210.

Koch, S. (2004). Profiling an open source project ecology and its programmers. Elec-
tronic Markets, 14(2):77-88.

Koch, S. and Schneider, G. (2002). Effort, co-operation and co-ordination in an open
source software project: Gnome. Information Systems Journal, 12(1):27-42.

Kogut, B. and Zander, U. (1992). Knowledge of the firm, combinative capabilities, and
the replications of technology. Organization Science, 3(3):383-397.

Krishnamurthy, S. (2002). Cave or community? An empirical examination of 100 mature
o p e n s o u r c e p r o j e c t s .
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/960/881.

Kroah-Hartman, G., Corbet, J., and McPherson, A. (2008). Linux Kernel development
(A p r i l 2 0 0 8) .
https://www.linuxfoundation.org/publications/linuxKerneldevelopment.php.

225

Krogh, G. V. and Hippel, E. V. (2006). The promise of research on open source software.
Management Science, 52(7):975-983.

Kuk, G. (2006). Strategic interaction and knowledge sharing in the KDE developer mail-
ing list. Management Science, 52(7):1031-1042.

Lakhani, K. R. and Wolf, R. G. (2007). Why hackers do what they do: Understanding
motivation and effort in free/open source software projects, pages 3-22. The MIT
Press.

Lawrence, P. R. and Lorsch, J. W. (1967). Differentiation and integration in complex or-
ganizations. Administrative Science Quarterly, 12(1):1-47.

Lee, G. K. and Cole, R. E. (2003). From a firm-based to a community-based model of
knowledge creation: The case of the linux Kernel development. Organization Sci-
ence, 14(6):633-649.

Lerner, J. and Tirole, J. (2002). Some simple economics of open source. Journal of Indus-
trial Economics, 50(2):197.

Liu, X. and Iyer, B. (2007). Design architecture, developer networks and performance of
open source software projects. In ICIS 2007 Proceedings.

MacCallum, R. C., Zhang, S., Preacher, K. J., and Rucker, D. D. (2002). On the practice
of dichotomization of quantitative variables. Psychological Methods, 7(1):19-40.

MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2006). Exploring the structure of com-
plex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015-1030.

Malone, T. W. and Crowston, K. (1994). The interdisciplinary study of coordination.
ACM Comput. Surv., 26(1):87-119.

March, J. G. and Simon, H. A. (1993). Organizations. Blackwell Publishers.

McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions
and moderator effects. Psychological Bulletin, 114(2), 376-390.

Midha, V. (2008). Does complexity matter? The impact of change in structural complex-
ity on software maintenance and new developers’ contributions in open source soft-
ware. In ICIS 2008 Proceedings.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol.,
11(3):309-346.

226

Newman, M. E. J. (2006a). Finding community structure in networks using the eigen-
vectors of matrices. Physical Review E, 74:036104.

Newman, M. E. J. (2006b). Modularity and community structure in networks. PNAS,
103:8577.

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in
networks. Physical Review E, 69:026113.

Nidumolu, S. (1995). The effect of coordination and uncertainty on software project per-
formance: Residual performance risk as an intervening variable. Information Systems
Research, 6(3):191-219.

Nieuwenhuis, R., Pelzer, B., and te Grotenhuis, M. (2009). influence.ME: Tools for de-
tecting influential data in mixed effects models. R package version 0.7.

Oh, W. and Jeon, S. (2007). Membership herding and network stability in the open source
community: The ising perspective. Management Science, 53(7):1086-1101.

O’Mahony, S. and Bechky, B. A. (2008). Boundary organizations: Enabling collaboration
among unexpected allies. Administrative Science Quarterly, 53(3):422-459.

O’Mahony, S. and Ferraro, F. (2007). The emergence of governance in an open source
community. Academy of Management Journal, 50(5):1079-1106.

Ouchi, W. G., & Dowling, J. B. (1974). Defining the Span of Control. Administrative
Science Quarterly, 19(3), 357-365.

Page-Jones, M. (1998). Cohesion. In The Practical Guide to Structured Systems Design.
R e t r i e v e d O c t o b e r 6 , 2 0 0 8 , f r o m
http://www.waysys.com/ws_content_bl_pgssd_ch06.html

Paul, R. (2009a). SourceForge adds support for new version control systems.
http://arstechnica.com/open-source/news/2009/03/sourceforge-adds-support-for-new
-version-control-systems.ars.

Paul, R. (2009b). SourceForge wants to be collaboration powerhouse, buys ohloh.
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-m
etric-web-site-ohloh.ars.

Perrow, C. (1967). A framework for the comparative analysis of organizations. American
Sociological Review, 32(2):194-208.

227

http://www.waysys.com/ws_content_bl_pgssd_ch06
http://www.waysys.com/ws_content_bl_pgssd_ch06
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars
http://arstechnica.com/open-source/news/2009/05/sourceforge-acquires-foss-code-metric-web-site-ohloh.ars

R Development Core Team (2009). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-
0.

Raymond, E. (2001). The cathedral and the bazaar: Musings on Linux and open source
by an accidental revolutionary. O’Reilly, Cambridge, MA, revised edition.

Riehle, D. (2007). The economic motivation of open source software: Stakeholder per-
spectives. Computer, 40(4):25-32.

Sanchez, R. and Mahoney, J. (1996). Modularity, flexibility, and knowledge management
in product and organization design. Strategic Management Journal, 17:76, 63.

Scacchi, W. (2002). Understanding the requirements for developing open source software
systems. Software, IEE Proceedings, 149(1):24-39.

Schweik, C. M., English, R. C., Kitsing, M., and Haire, S. (2008). Brooks’ versus Linus’
law: an empirical test of open source projects. In dg.o ’08: Proceedings of the 2008
international conference on digital government research, pages 423-424. Digital
Government Society of North America.

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open
source software development. Management Science, 52(7):1000-1014.

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of
Economics, 69(1):99-118.

Simon, H. (1997). Administrative Behavior, 4th Edition. Free Press.

Stewart, K. J., Ammeter, A. P., and Maruping, L. M. (2006). Impacts of license choice
and organizational sponsorship on user interest and development activity in open
source software projects. Information Systems Research, 17(2):126-144.

Stewart, K. J. and Gosain, S. (2006). The impact of ideology on effectiveness in open
source software development teams. MIS Quarterly, 30(2):291-314.

Tan, Y., Mookerjee, V., and Singh, P. (2007). Social capital, structural holes and team
composition: Collaborative networks of the open source software community. In
ICIS 2007 Proceedings.

Tiwana, A. (2008). Does interfirm modularity complement ignorance? A field study of
software outsourcing alliances. Strategic Management Journal, 29(11):1252, 1241.

Turner, K. L. and Makhija, M. V. (2006). The role of organizational controls in managing
knowledge. Academy of Management Review, 31(1):197-217.

228

Tushman, M. L. (1979). Work characteristics and subunit communication structure: A
contingency analysis. Administrative Science Quarterly, 24(1):82-98.

Tushman, M. L. and Nadler, D. A. (1978). Information processing as an integrating con-
cept in organizational design. Academy of Management Review, 3(3):613-624.

Venkatraman, N. (1989). The concept of fit in strategy research: Toward verbal and statis-
tical correspondence. Academy of Management Review, 14(3):423- 444.

von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003). Community, joining, and speciali-
zation in open source software innovation: a case study. Research Policy, 32(7).

Wu, J., Goh, K.-Y., and Tang, Q. (2007). Investigating success of open source software
projects: A social network perspective. In ICIS 2007 Proceedings.

Zander, U. and Kogut, B. (1995). Knowledge and the speed of the transfer and imitation
of organizational capabilities: An empirical test. Organization Science, 6(1):76- 92.

229

	Clemson University
	TigerPrints
	12-2009

	TOWARDS A THEORY ON THE SUSTAINABILITY AND PERFORMANCE OF FLOSS COMMUNITIES
	Mohammad Almarzouq
	Recommended Citation

	thesis

