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Abstract

This dissertation presents some new results in stationary multivariate time series.

The asymptotic properties of the sample autocovariance are established, that is, we

derive a multivariate version of Bartlett’s Classic Formula. The estimation of the autoco-

variance function plays a crucial role in time series analysis, in particular for the identifi-

cation problem. Explicit formula for vector autoregressive (p) and vector moving average

(q) processes are presented as examples. We also address linear processes driven by non-

independent errors, a feature that permits consideration of multivariate GARCH processes.

We next compare several techniques to discriminate two multivariate stationary

signals. The compared methods include Gaussian likelihood ratio variance/covariance ma-

trix tests and spectral-based tests gauging equality of the autocovariance function of the

two signals. A simulation study is presented that illuminates the various properties of the

methods. An analysis of experimentally collected gearbox data is also presented.
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Chapter 1

Introduction

1.1 Time Series Overview

Time series analysis is a part of statistics; i.e., the study of the reduction of data.

Time series are processes that are recorded in a temporal order. The subject is mathemat-

ically elaborate, yet realistic. In its modern form, time series analysis dates from the early

1950s and the advent of high speed computing. The first reasonably connected account in

this sense is probably [1], which is still perhaps worth studying.

Definition 1.1 A time series is a set of time-ordered observations {Xt}, Xt being at the

observation at time t.

A time series model entails specification of a suitable probability model for the ob-

served data. A complete time series model for {Xt} is a specification of the joint distribution

of {Xt}, of which {xt} is postulated to be a realization. In practice, often only means and

variance/covariance are modeled.

Definition 1.2 Let {Xt} be a time series with E(X2
t ) <∞. The mean function of {Xt} is

µX(t) = E(Xt).
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The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))]

for all integers r and s.

Definition 1.3 {Xt} is (weakly) stationary if

(i) µX(t) does not depend on t,

and

(ii) γX(t+ h, t) does not depend on t for each h.

We point out that a strictly stationary time series {Xt, t = 0,±1, . . .} means that

(X1, . . . , Xn) and (X1+h, . . . , Xn+h) have the joint distributions for all integers h and n > 0.

Henceforth, we will use the term stationary to mean weak stationarity; if a process is

stationary in a strict sense, we will use the term strictly stationary (should this be relevant).

Because the mean E(Xt) = µX(t) of a stationary time series does not dependent on

time t, we write µX(t) = µ. Also, because γX(r, s) depends on r and s only through |r− s|,

We write

γX(h) := γX(h, 0) = γX(t+ h, t).

Definition 1.4 Let {Xt} be a stationary time series. The autocovariance function (ACVF)

of {Xt} at lag h is

γX(h) = Cov(Xt+h, Xt).

The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) =
γX(h)

γX(0)
= Cor(Xt+h, Xt).

The impact of time series analysis on scientific applications is partially appreciated

by producing an abbreviated list of the diverse fields in which important time series problems
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arise. For example, many familiar time series occur in the field of economics, where we are

continually exposed to daily stock market quotations or monthly unemployment figures.

Social scientists follow populations series, such as birthrates or school enrollments. An

epidemiologist might be interested in the number of influenza cases observed over time.

Some of the most intensive and sophisticated applications of time series methods

have been to problems in the physical and environmental sciences. This fact accounts for the

basic engineering flavor permeating the topic’s language of the topics. One of the earliest

recorded series is the monthly sunspot numbers studied by Schuster [32]. More modern

investigations center on whether warming is present in global temperature measurements

or whether levels of pollution may influence daily mortality in Los Angeles. The modeling of

speech series is an important problem related to the efficient transmission of voice recordings.

Here, a time series characteristic known as the power spectrum is used to help computers

recognize and translate speech. Geophysical time series, such as those produced by yearly

depositions of various kinds, can provide long-range proxies for temperature and rainfall.

Seismic recordings can aid in mapping fault lines or in distinguishing between earthquakes

and nuclear explosions.

Methods for time series analysis may be divided into two classes: time-domain

methods and frequency-domain methods.

The time domain approach is generally motivated by the presumption that correla-

tion between adjacent points in time is best explained in terms of dependence between the

current value on past values. The time domain approach focuses on modeling future value

of a series as a parametric function of the current and past values. In this scenario, linear

regression models are often used to describe the present value of a series in terms of past

values and on past values of other series.

Conversely, the frequency domain approach assumes the primary characteristics of

interest relate to periodic or systematic sinusoidal variations found naturally in most data.

These periodic variations are often caused by the biological, physical, or environmental

phenomena of interest. In spectral analysis, the partition of the variation in a time series
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is accomplished by evaluating separately the variance associated with each periodicity of

interest. This variance profile over frequency is called the power spectrum.

Many time series arising in practice are best considered as components of some

vector-valued (multivariate) time series {Xt} having not only serial dependence within each

component series {Xti}, but also interdependence between the different component series

{Xti} and {Xtj}, i 6= j. For instance, in a system consisting of investment, income, and

consumption, one may want to understand the likely impact of a change in income. Alterna-

tively, given a particular theory, is it consistent with the relations implied by a multivariate

time series model which is developed with the help of statistical tools? Questions regarding

the structure of the relationships between the variables involved are occasionally investi-

gated in the context of multivariate time series analysis. Obtaining insight into the dynamic

structure of a system is one objective of multivariate time series analysis. Much of the the-

ory of univariate time series extends in a natural way to the multivariate case; however,

new problems arise.

As in the univariate case, a particularly important role is played by the class of

multivariate stationary time series, defined as follows.

Definition 1.5 The m-variate series {Xt} is (weakly) stationary if

(i) µX(t) = E[Xt] does not depend on t,

and

(ii) ΓX(t + h, t) = cov(Xt+h − E[Xt+h], Xt − E[Xt]) does not depend on t for each

h.

For a stationary time series, we shall use the notation

µ := E[Xt] =


µ1

...

µm

 (1.1.1)
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and

Γ(h) = E[(Xt+h − µ)(Xt − µ)′] =


γ11(h) . . . γ1m(h)

...
. . .

...

γm1(h) . . . γmm(h)

 .

We shall refer to µ as the mean of the series and to Γ(h) as the covariance matrix at lag h.

Notice that if {Xt} is stationary with covariance matrix function Γ(·), then for each i, {Xti}

is univariate stationary with covariance function γii(·). The function γij(·), i 6= j, is called

the cross-covariance function of the two series {Xti} and {Xtj}. It should be noted that

γij(·) is not in general the same as γji(·). The correlation matrix function R(·) is defined

by

R(h) :=


ρ11(h) . . . ρ1m(h)

...
. . .

...

ρm1(h) . . . ρmm(h)

 ,

where ρij(h) = γij(h)/[γii(0)γjj(0)]1/2. The basic properties of Γ(·) are

1. Γ(h) = Γ′(−h),

2. |γij(h)| ≤ [γii(0)γjj(0)]1/2, i, j = 1, . . . ,m,

3. γii(·) is an autocovariance function, i = 1, . . . ,m, and

4.
∑n

j,k=1 a
′
jΓ(j − k)ak ≥ 0 for all n ∈ {1, 2, . . .} and a1, . . . an ∈ Rm.

1.2 Univariate Versions of Bartlett’s Formula

If {Xt} is a real-valued stationary process, then from a second-order point of view

it is characterized by its mean µ and its autocovariance function γ(·). The estimation of

µ, γ(·), and the autocorrelation function ρ(·) = γ(·)/γ(0) from observations of X1, . . . , Xn,

therefore plays a crucial role in problems of inference, and in particular, in the problem of

constructing an appropriate model for the data.
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A univariate Bartlett’s result states that the first L sample autocovariances are

asymptotically normal as n→∞:



γ̂(0)

γ̂(1)

γ̂(2)

...

γ̂(L)


∼ AN





γ(0)

γ(1)

γ(2)

...

γ(L)


,
W

n


. (1.2.2)

The matrix W is clarified further below. The assumptions needed here are that {Xt} has the

linear process representation Xt =
∑∞

k=−∞ ψkZt−k, where {Zt} is i.i.d. with a finite fourth

moment. In particular, we will need that {Xt} is fourth-order stationary, which implies

that E[XtXt+iXt+rXt+r+j ] does not depend on t. In (1.2.2), W is an (L + 1) × (L + 1)

matrix with entries Wi,j = limn→∞ nCov(γ̂(i), γ̂(j)). It is known that

Wi,j =

∞∑
r=−∞

[E[XtXt+iXt+rXt+r+j ]− γ(i)γ(j)], 0 ≤ i, j ≤ L.

The term E[XtXt+iXt+rXt+r+j ] does not depend on time t since {Xt} is strictly stationary.

Proposition 7.3.1 in Brockwell and Davis [3] provides the equivalent form

Wi,j = (η − 3)γ(i)γ(j) +
∞∑

k=−∞
[γ(k)γ(k − i+ j) + γ(k + j)γ(k − i)], (1.2.3)

for 0 ≤ i, j ≤ L. Here, E[Z4
t ] = ησ4. When {Zt} is Gaussian, η = 3 and the first term in

(1.2.3) is zero.

The corresponding asymptotic property of the sample autocorrelation function is
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stated as follows:



ρ̂(1)

ρ̂(2)

...

ρ̂(L)


∼ AN





ρ(1)

ρ(2)

...

ρ(L)


,
V

n


, (1.2.4)

where V is the covariance matrix whose (i, j)-element is given by classical Bartlett’s formula:

vij = {ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j) + 2ρ(i)ρ(j)ρ2(k) (1.2.5)

− 2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)}

1.3 Research Goals

Our objective is to derive forms of the above results in multivariate setting; that is,

establish asymptotic normality of the random matrices Γ̂(0), Γ̂(1), . . ., Γ̂(L) as a function of

the sample size n and identify the limiting information matrix. As noted above, this issue

has been classically settled in univariate treatments on time series, for example, Bartlett

[1], Hannan [8], Brockwell and Davis [3], and Shumway and Stoffer [14]. However, no one

has yet tackled the multivariate case. In the next section, a compact multivariate version

formula analogue to (1.2.3) is presented. One will appreciate the difficulties encountered in

its derivation there.

We also show a parallel result to (1.2.6) for the asymptotic sample autocorrelation

structure by applying a multivariate delta method. This work verifies the bivariate Gaussian

formula in Theorem 11.2.3 of Brockwell and Davis [3], which was simply stated but not

derived.

Proofs essentially rely on joint asymptotic normality of sample autocovariances. Un-

der Gaussian assumptions, our formulae greatly simplify. However, the matrix calculations

are still intense. For example, we will often need to reshape the vector or matrix. Here
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permutation matrices and properties of Kronecker products help.

Examples similar to those common in univariate case are also presented. We specif-

ically, consider the first order causal autoregression satisfying

Xt = ΦXt−1 + Zt, (1.3.6)

where {Zt} is zero mean d-variate white noise with covariance matrix Σ. We assume that Φ

is invertible. We identify each piece in Equation (2.3.10), which reduces to that in Example

7.2.3 in Brockwell and Davis [3] when d = 1.

Next, we move to a qth order moving-average {Xt} satisfying

Xt = Zt + Θ1Zt−1 + · · ·+ ΘqZt−q,

where {Zt} is zero mean white noise with covariance matrix Σ. We again consider the

Gaussian case and concentrate on computation of the sum appearing below in (2.3.10).

1.4 Application

Our applications compares several techniques that are used to discriminate two

multivariate stationary signals. The compared methods include Gaussian likelihood ratio

variance/covariance matrix tests and spectral-based tests gauging equality of the autoco-

variance function (over all lags) of the two signals. We show how one can make inappro-

priate conclusions with PCA tests, even when dimension augmentation techniques are used

to incorporate non-zero lag autocovariances into the analysis. The various discrimination

methods are first discussed. A simulation study is then presented that illuminates the vari-

ous properties of the methods. An analysis of experimentally collected gearbox data is also

presented.

Elaborating, given two d-dimensional series {Xt} and {Yt} that are preprocessed

to a zero-mean stationary setting, we considers how to assess whether (or not) the two sig-

8



nals have the same time series dynamics. This is useful in discrimination and classification

pursuits. For example, if a test signal {Yt} is deemed to have different dynamics than a

reference signal {Xt} that is known to be “healthy”, the test signal could be deemed un-

healthy. Signal discrimination problems are fundamental ([15] [16]) and are well-developed

when discriminating series via means or first moments; here, Hotelling T 2 or Q statistics

are frequently relied upon ([17], [18]). In 1986, Coates [19] considered discrimination of two

univariate constant-mean series based on their sample autocovariances. Speech signals, for

example, are typically of constant mean, regardless of what words are being spoken. Here,

word-to-word changes are best identified through autocovariances shifts and monitoring

of the mean is insufficient to identify dynamic changes. Kakizawa [20] seeks to discrimi-

nate an earthquake from a covert underground nuclear test; again, the crux issue lies with

constant-mean data.

The classical way of discriminating {Xt} and {Yt} through second order character-

istics is via a Gaussian likelihood ratio. Such a test compares the sample variance matrix of

the two series. Elaborating, conclusions are based on how different the two sample variance

matrices

N−1
N∑
t=1

XtX
′
t, N−1

N∑
t=1

YtY
′
t

are from each other. Here, N is the sample length of the two series, which are assumed equal

for convenience. When the dimension d is large, this comparison is typically made after

a dimension reduction transformation, usually some type of principal component analysis

(PCA), is done. Without dimension reduction aspects, covariance comparisons are not truly

PCA techniques; however, they share the commonality in that conclusions are made only

from sample variances.

Basing signal equality conclusions exclusively on sample variances can produce er-

roneous conclusions when the two series are not multivariate white noise. A more compre-

hensive test would compare the sample autocovariances

9



Γ̂X(h) = N−1
N−h∑
t=1

Xt+hX
′
t

and

Γ̂Y (h) = N−1
N−h∑
t=1

Yt+hY
′
t

over all suitable lags h ≥ 0. Such tests for multivariate series were discussed in [20], [21],

[22], and the references within.

Bassily [21] and Lund [22] attack the problem with frequency domain techniques.

Specifically, two multivariate covariance functions are equal if and only if their spectral

densities are equal at all frequencies (the spectrum is assumed to have no point masses).

From this, signal equality tests that compare the periodograms of both series were devised

(Section 3.2 elaborates). Chapter 3 rehashes these methods and shows how one can fool

variance-based tests for signal equality, even when the dimension is augmented to account

for non-zero autocovariances at higher lags. The pros and cons of the various methods

are demonstrated by simulating multivariate stationary signals with various properties and

then applying the tests. An application to a series of gearbox vibrations is included.
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Chapter 2

Multivariate Versions of Bartlett’s

Formula

This section quantifies the form of the asymptotic covariance matrix of the sample

autocovariances in a multivariate stationary time series — the classic Bartlett formula. Such

quantification is useful in many statistical inferences involving autocovariances. While joint

asymptotic normality of the sample autocovariances is well-known in univariate settings,

explicit forms of the asymptotic covariances have not been investigated in the general mul-

tivariate non-Gaussian case. We fill this gap by providing such an analysis, bookkeeping all

skewness terms. Additionally, following a recent univariate paper by Francq and Zakoian,

we consider linear processes driven by non-independent errors, a feature that permits con-

sideration of multivariate GARCH processes.

2.1 Introduction

Considers a d-dimensional stationary time series {Xt} satisfying the linear process

representation

Xt =
∞∑

k=−∞
ΨkZt−k, (2.1.1)

11



where
∑∞

k=−∞ |Ψk| < ∞ in a component by component sense. Throughout, we assume

that {Zt} is d-dimensional white noise with finite fourth moments and covariance matrix

Σ = E[ZtZ
′
t]; stronger assumptions on {Zt} will occasionally be imposed. Let µ = E[Xt]

be the series mean and

Γ(h) = E[(Xt+h − µ)(Xt − µ)′] = {γi,j(h)}di,j=1

be the theoretical lag h autocovariance. Our notation for the sample autocovariances is

Γ̂(h) =
1

n

n−h∑
t=1

(Xt+h − X̄)(Xt − X̄)′ = {γ̂i,j(h)}di,j=1,

where the data are X1, . . . , Xn and X̄ = n−1
∑n

t=1Xt.

When Σ is invertible, it is possible to reduce consideration to Σ = Id, where Id

denotes the d-dimensional identity matrix. This is seen by noting that

Xt =

∞∑
k=−∞

Ψ∗kZ
∗
t−k,

where Ψ∗k = ΨkΣ
1/2 and {Z∗t } defined pointwise by Z∗t = Σ−1/2Zt is zero mean d-variate

white noise with covariance matrix Id. This reduction, however, does not overly simplify

our future computations; hence, we work with the model as written in (2.1.1).

Our objective is to establish joint asymptotic normality of the random matrices Γ̂(0),

Γ̂(1), . . ., Γ̂(L) as a function of the sample size n and identify the limiting information matrix.

This issue has been classically settled in univariate treatments on time series, for example,

Bartlett [1], Hannan [8], Brockwell and Davis [3], and Shumway and Stoffer [14]. There,

the noise process {Zt} is commonly assumed to be independent and identically distributed

(IID) with a finite fourth moment. Recently, Francq and Zakoian [5] considered univariate

extensions of Bartlett’s formula when {Zt} is not IID, but rather satisfied a fourth-order

symmetry condition. This permits inferences in GARCH and other processes satisfying

(2.1.1) where independence of the Zt’s does not hold. Later, we investigate multivariate
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results in this setting.

General multivariate versions of Bartlett’s result do not exist. However, many au-

thors have trodden adjacent to the problem. Hannan [8], Romano and Thombs [12], and

Berlinet and Francq [2] give the formula

lim
n→∞

nCov(γ̂i,j(h), γ̂i′,j′(k)) =
∞∑

`=−∞
Cov(Xt(i)Xt−h(j), Xt+`(i

′)Xt+`−k(j
′))

for fourth-order stationary series but do not attempt to derive an asymptotic covariance

matrix in terms of the moments of {Zt} or second-order properties of {Xt}. Brockwell

and Davis [3] state Bartlett’s multivariate formula for sample autocorrelations, but do not

provide proof or consider autocovariances (asymptotic results for autocovariances and auto-

correlations structurally differ when the higher order cumulants of {Zt} are non-zero, which

is the non-Gaussian case). Shumway and Stoffer [14] handle the multivariate case by citing

Brockwell and Davis [3]. While Fuller [6] (Theorem 6.4.1) does consider multivariate au-

tocovariances and autocorrelations, his arguments only apply to Gaussian processes, where

skewness terms are zero. Lütkepohl [11] and Reinsel [13], two other prominent multivariate

time series references, do not pursue the issue. Given this, it seems worthwhile to derive a

multivariate version of Bartlett’s result in as much generality as possible. And while our

arguments are largely bookkeeping, the bookkeeping is sometimes cumbersome.

Arguments justifying normality in the limiting distribution of sample covariances

and correlations follow the same line of reasoning as Brockwell and Davis [3] (Chapter 7)

when {Zt} is IID with a finite fourth moment; we will not repeat this logic here. Instead,

we focus on identifying an explicit form for the limiting covariance, which is

lim
n→∞

nE[Γ̂(p)⊗ Γ̂(q)],

where ⊗ denotes the usual Kronecker product (see Appendix A). In this pursuit, we define

the covariance between two random matrices X and Y as
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Cov(X,Y ) = E[X ⊗ Y ]− E[X]⊗ E[Y ].

There is a caveat here: a non-singular limit distribution for
√
nΓ̂(0) does not exist

as a d× d multivariate normal random matrix. This is simply because γ̂i,j(0) = γ̂j,i(0) for

i, j ∈ {1, . . . , d}, so that some of the components of Γ̂(0) are redundant. Nonetheless, it is

convenient to allow singular covariance matrices in the limit and we do not mention this

issue further.

2.2 Preliminaries

Clarifying notation, suppose that ci ∈ Rn for i = 1, . . . ,m and set C = [c1, . . . , cm].

Then vec(C) is defined as the mn-dimensional vector formed by stacking the columns of C

on top of one another:

vec(C) =


c1

...

cm

 ∈ Rmn.

The Kronecker product of the m×n matrix A and r× s matrix B is defined as the mr×ns

matrix of form

A⊗B =


a1,1B . . . a1,nB

...
. . .

...

am,1B . . . am,nB

 .
Several identities that will be used repeatedly are worth collecting here. If C is an

n× p matrix and D is an s× t matrix, then

(A⊗B)′ = (A′ ⊗B′) (2.2.2)
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and

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (2.2.3)

both sides of (2.2.3) being mr × pt matrices. Also,

vec(ABC) = (C ′ ⊗A)vec(B). (2.2.4)

Another useful identity is

vec(A⊗B) = (Id ⊗K ⊗ Id)[vec(A)⊗ vec(B)], (2.2.5)

where K is the d2 × d2 matrix such that vec(A′) = Kvec(A). The form of K is discussed

on page 466 of Lütkepohl [11]; however, we note that all entries in K are either zero or one.

While Kronecker products are not commutative, they are permutation equivalent.

This means that there exist permutation matrices P and Q such that

(A⊗B) = P (B ⊗A) (2.2.6)

and

(A⊗B) = (B ⊗A)Q (2.2.7)

Here, P and Q = P ′ are d2 × d2 orthogonal permutation matrices whose entries are either

zero or unity. In fact, some analysis will show that the unit entries of P are generated by

Pd(ν−1)+j+1,ν+jd = 1, 1 ≤ ν ≤ d and 0 ≤ j ≤ d− 1. One has P 2 = Q2 = Id2 .

Chain rule derivative relations for matrices of appropriate dimensions are

∂vec(BAC)

∂vec(A)
= C ′ ⊗B, ∂vec(BC)

∂vec(A)
= (C ′ ⊗ I)

∂vec(B)

∂vec(A)
+ (I ⊗B)

∂vec(C)

∂vec(A)
, (2.2.8)
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where I denotes an identity matrix of appropriate dimension. Moreover, if A is an n × n

matrix and B an m×m matrix, the nm× nm Kronecker sum is defined as

A⊕B = A⊗ Im + In ⊗B, (2.2.9)

where Id denotes the d-dimensional identity matrix.

2.3 Results

Our first result considers asymptotic normality in the simplest case: that where

{Zt} is IID.

Theorem 2.1 Consider {Xt} in (1.1) and suppose that {Zt} is zero mean IID noise with the

d×d variance matrix E[ZtZ
′
t] = Σ and the d2×d2 skewness matrix η = E[ZtZ

′
t⊗ZtZ ′t] <∞.

Then the asymptotic normality

 Γ̂(p)

Γ̂(q)

 ∼ AN

 Γ(p)

Γ(q)

 , n−1

Vp,p Vp,q

Vq,p Vq,q




holds, where Vi,j is a d2 × d2 dimensional matrix with the structure

Vi,j = Si,j +

∞∑
k=−∞

[vec(Γ(k))vec(Γ(k − i+ j))′ + P (Γ(k − i)⊗ Γ(k + j))], (2.3.10)

where Si,j is the skewness that has the form

vec(Si,j) = [Γ̃(i)⊗ Γ̃(j)]vec(M)

with M = η − vec(Σ)vec(Σ)′ − P (Σ⊗ Σ)− Σ⊗ Σ and

Γ̃(i) =

∞∑
`=−∞

Ψ`+i ⊗Ψ`. (2.3.11)
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Here, P is a d2 × d2 orthogonal permutation matrix whose entries are either zero or unity.

The unit entries of P are generated as Pd(ν−1)+j+1,ν+jd = 1 for 1 ≤ ν ≤ d and 0 ≤ j ≤ d−1.

The quantity Γ̃(i) is a second moment quantity and satisfies E[Xt+i ⊗Xt] = Γ̃(i)vec(Σ).

The result in Theorem 2.1 reduces to the classical result when d = 1. The component

Si,j is viewed as the contribution due to skewness of Zt. In the case where {Xt} is Gaussian,

Si,j = 0. It is interesting to note the differences between (2.3.10) and the univariate version

of (2.3.10), which is

lim
n→∞

nCov(γ̂(p), γ̂(q)) = (η − 3)γ(p)γ(q) +
∞∑

k=−∞
[γ(k)γ(k − p+ q) + γ(k + q)γ(k − p)],

with η = E[Z4
t ]. In the univariate case, one does not need a permutation matrix P to

scramble the orders of the components. Also, there is no need to stack components with

vec operations, nor does the Kronecker product arise. The form of the skewness is also more

unwieldy.

The next result is a component by component result of Theorem 2.1 and can be

obtained by extracting sub-blocks of the information matrix in Theorem 2.1, or by arguing

from scratch with four-fold summations as in the Proof of Theorem 2.1. The details are left

to the reader.

Theorem 2.2 Under the assumptions of Theorem 2.1,

 γ̂a,b(p)

γ̂c,d(q)

 ∼ AN

 γa,b(p)

γc,d(q)

 , n−1

mp,p mp,q

mq,p mq,q


 ,

where

mi,j = si,j +
∞∑

h=−∞
[γa,c(h)γb,d(h− i+ j) + γa,d(h+ j)γb,c(h− i)]. (2.3.12)
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and si,j is the (c, d)th entry in the (a, b)th d2 × d2 subblock of Si,j in Theorem 2.1. ♣

We now move to settings where {Zt} is not IID. Akin to Francq and Zakoian [5],

we make the symmetry assumption

E[Zt1Z
′
t2 ⊗ Zt3Z

′
t4 ] = 0 (2.3.13)

when t1 6= t2, t1 6= t3 and t1 6= t4. To proceed, we need notation for the stationary series

{ZtZ ′t} and {Zt ⊗ Zt}. For this, we make the definitions

ΓZtZ′
t
(h) = Cov((Zt+hZ

′
t+h), (ZtZ

′
t)) = E[Zt+hZ

′
t+h ⊗ ZtZ ′t]− Σ⊗ Σ (2.3.14)

and

ΓZt⊗Zt(h) = Cov((Zt+h ⊗ Zt+h), (Zt ⊗ Zt))

= E[(Zt+h ⊗ Zt+h)(Zt ⊗ Zt)′]− E[Zt+h ⊗ Zt+h]E[Zt ⊗ Zt]′. (2.3.15)

Observe that ΓZtZ′
t
(h) and ΓZt⊗Zt(h) are d2 × d2 matrices. Define the memory κ =∑∞

h=−∞ |ΓZtZ′
t
(h)| and when all components of κ are finite, set

κ∗ =

[ ∞∑
h=−∞

ΓZtZ′
t
(h)

]
− ΓZtZ′

t
(0).

Our next result establishes the form of the limiting information matrix of the sample

autocovariances. For this, additional assumptions on {Zt} are needed to ensure asymptotic

normality. In fact, counterexamples exist where sample autocovariances are asymptotically

non-Gaussian when {Zt} does not mix rapidly enough (even in one dimension). Mixing

conditions that are sufficient to induce asymptotic normality of the sample autocovariances

are presented in Hannan [9], Chanda [4], Romano and Thombs [12], Berlinet and Francq
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[2], and Giraitis [7]; we refer the reader to these references for more.

Theorem 2.3 Consider {Xt} in (2.1.1) where {Zt} satisfies (2.3.13) and suppose that

κ < ∞ and that {Zt} mixes rapidly enough to guarantee asymptotic normality of the

sample autocovariances (for example, satisfies Theorem 2.1 in Chanda [4]). Then for any

non-negative integer p and q,

 Γ̂(p)

Γ̂(q)

 ∼ AN

 Γ(p)

Γ(q)

 , n−1

Wp,p Wp,q

Wq,p Wq,q


 .

Here, Wi,j is a d2 × d2 dimensional matrix with the structure

Wi,j = Vi,j + V ∗i,j ,

where

vec(V ∗i,j) = [Γ̃(i)⊗ Γ̃(j)]vec(κ∗)

+
∑
6̀=i

(Γ̃(`)⊗ Γ̃(`− i+ j))vec(ΓZt⊗Zt(`− i))

+
∑
6̀=i

(Γ̃(`)⊗ Γ̃(−`+ i+ j))vec(PΓZtZ′
t
(`− i)).

Here, Vi,j and Γ̃(·) are defined by (2.3.10) and (2.3.11) respectively.

For pairwise autocovariances, we obtain the following. The result is obtained in a

similar manner to which Theorem 2.2 follows from Theorem 2.1.

Theorem 2.4 Under the assumptions of Theorem 2.3,

 γ̂a,b(p)

γ̂c,d(q)

 ∼ AN

 γa,b(p)

γc,d(q)

 , n−1

wp,p wp,q

wq,p wq,q


 .

Here, wi,j = mi,j + m∗i,j , where mi,j and m∗i,j are the (c, d)th entry in the (a, b)th d2 × d2
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subblock of Vi,j in Theorem 2.1 and V ∗i,j in Theorem 2.3, respectively.

2.4 Discussion

Remark 2.5 Asymptotic properties of the sample autocorrelation function can also be

quantified. The lag h autocorrelation ρ(h) is

ρ(h) = D−1/2Γ(h)D−1/2 =

[
γi,j(h)√

γi,i(0)γj,j(0)

]d
i,j=1

,

where D = diag(Γ(0)). The lag h sample autocorrelation is

ρ̂(h) = D̂−1/2Γ̂(h)D̂−1/2.

Observe that (ρ̂(p), ρ̂(q)) depends only on Γ̂(0), Γ̂(p), and Γ̂(q). The partial derivative

matrix of this transformation is

J =

 ∂ρ(p)
∂Γ(0)

∂ρ(p)
∂Γ(p)

∂ρ(p)
∂Γ(q)

∂ρ(q)
∂Γ(0)

∂ρ(q)
∂Γ(p)

∂ρ(q)
∂Γ(q)

 .

Notice that J has a 2 × 3 block structure where each block is a d2 × d2 matrix. Matrix

derivatives are defined by stacking elements of the matrix in the usual vec fashion; e.g.,

∂ρ(p)

∂Γ(0)
=
∂vec(ρ(p))

∂vec(Γ(0))
.

Applying (2.2.8) several times gives

∂vec(ρ(p))

∂Γ(0)
= (D−1/2Γ(p)′ ⊗ Id)Λ + (Id ⊗D−1/2Γ(p))Λ,

where Λ = ∂vec(D−1/2)/∂vec(Γ(0)) is the d2 × d2 diagonal matrix whose only non-zero

entries are
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Λi,i = −1

2
γ
−3/2
i,i (0)

when i = k(d+ 1) + 1 for some k in {0, 1, . . . , d− 1}.

The remaining blocks in J are similarly computed:

J =

[D−1/2Γ′(p)⊕D−1/2Γ(p)]Λ D−1/2 ⊗D−1/2 0

[D−1/2Γ′(q)⊕D−1/2Γ(q)]Λ 0 D−1/2 ⊗D−1/2

 . (2.4.16)

Now let

Υ =


V0,0 V0,p V0,q

Vp,0 Vp,p Vp,q

Vq,0 Vq,p Vq,q


denote the asymptotic covariance structure of (Γ̂(0), Γ̂(p), Γ̂(q)) specified in Theorem 2.1.

Applying a multivariate delta method (see Proposition 6.4.3 in Brockwell and Davis [3], for

example) gives

 ρ̂(p)

ρ̂(q)

 ∼ AN

 ρ(p)

ρ(q)

 , n−1JΥJ ′

 .

An implication here is that

lim
n→∞

nCov(ρ̂(p), ρ̂(q)) = [JΥJ ′]1,2,

where [·]1,2 denotes the row 1, column 2 d× d subblock of the matrix in brackets. Applying

(2.4.16) reveals

21



lim
n→∞

nCov(ρ̂(p), ρ̂(q)) = [D−1/2Γ′(p)⊕D−1/2Γ(p)]V0,0[D−1/2Γ′(q)⊕D−1/2Γ(q)]Λ2

+(D−1/2 ⊗D−1/2)Vp,0[D−1/2Γ′(q)⊕D−1/2Γ(q)]Λ

+[D−1/2Γ′(p)⊕D−1/2Γ(p)]V0,q(D
−1/2 ⊗D−1/2)Λ

+(D−1/2 ⊗D−1/2)Vp,q(D
−1/2 ⊗D−1/2). (2.4.17)

♣

Remark 2.6 Suppose that {Xt} is Gaussian so that skewness contributions are zero. We

seek to explicitly identify

lim
n→∞

nCov(ρ̂a,b(p), ρ̂c,d(q)).

Observe that (ρ̂(p), ρ̂(q)) depends only on (γ̂a,a(0), γ̂a,b(p), γ̂b,b(0), γ̂c,c(0), γ̂c,d(q), γ̂d,d(0)).

The partial derivative matrix of this transformation has the form

J∗ =

A1 A2 A3 0 0 0

0 0 0 B1 B2 B3

 ,

where

A1 = −1

2
γ
− 3

2
a,a (0)γa,b(p)γ

− 1
2

b,b (0), A2 = γ
− 1

2
a,a (0)γ

− 1
2

b,b (0), A3 = −1

2
γ
− 1

2
a,a (0)γa,b(p)γ

− 3
2

b,b (0)

and

B1 = −1

2
γ
− 3

2
c,c (0)γc,d(q)γ

− 1
2

d,d (0), B2 = γ
− 1

2
c,c (0)γ

− 1
2

d,d (0) B3 = −1

2
γ
− 1

2
c,c (0)γc,d(q)γ

− 3
2

d,d (0).

Let Ξ denote the limiting covariance structure of
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(γ̂a,a(0), γ̂a,b(p), γ̂b,b(0), γ̂c,c(0), γ̂c,d(q), γ̂d,d(0))′

specified in Theorem 2.2. Arguing as in the last remark with a delta method shows that

lim
n→∞

nCov(ρ̂a,b(p), ρ̂c,d(q)) =
[
J∗Ξ(J∗)′]1,2

= A1Ξ1,4B1 +A2Ξ2,4B1 +A3Ξ3,4B1 +A1Ξ1,5B2 +A2Ξ2,5B2

+ A3Ξ3,5B2 +A1Ξ1,6B3 +A2Ξ2,6B3 +A3Ξ3,6B3.

Expanding and simplifying gives

lim
n→∞

nCov(ρ̂a,b(p), ρ̂c,d(q)) =

∞∑
h=−∞

[
ρa,c(h)ρb,d(h− p+ q) + ρa,d(h+ q)ρb,c(h− p)

− ρa,b(p){ρa,c(h)ρa,d(h+ q) + ρb,c(h)ρb,d(h+ q)}

− ρc,d(q){ρa,c(h)ρb,c(h− p) + ρa,d(h)ρb,d(h− p)}

+
1

2
ρa,b(p)ρc,d(q){ρ2

a,c(h) + ρ2
b,c(h) + ρ2

a,d(h) + ρ2
b,d(h)}

]
.

This verifies the bivariate Gaussian formula in Theorem 11.2.3 of Brockwell and Davis [3].

We have been unable to verify the formula in Corollary 6.4.1.1 of Fuller [6] (which should

be the same) and suspect a typographical error.

2.5 Examples

This section presents multivariate extensions of two classical time series derivations:

identifying Vp,p in first order autoregressions and general moving-averages. The reader will

gain feel for the complexity of the computations in multivariate settings.
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Example 3.1 Consider the first order causal autoregression satisfying

Xt = ΦXt−1 + Zt, (2.5.18)

where {Zt} is zero mean d-variate white noise with covariance matrix Σ. We assume that

Φ is invertible. Causality implies that all eigenvalues of Φ are less than unity in absolute

value. For simplicity, we work with a Gaussian series so that skewness terms are zero. Our

goal here is to identify Vp,p. This is useful since Γ̂(p) ∼ AN(Γ(p), Vp,p/n). Equation (2.3.10)

gives

Vp,p =

∞∑
k=−∞

[
vec(Γ(k))vec(Γ(k))′ + P (Γ(k − p)⊗ Γ(k + p))

]
. (2.5.19)

To compute Vp,p, we need the autocovariances of the model. Taking variances on

both sides of (2.5.18) produces

Γ(0)− ΦΓ(0)Φ′ = Σ. (2.5.20)

While this equation cannot be solved explicitly for Γ(0), it is possible to obtain vec(Γ(0))

in an explicit manner. The components of Γ(0) can be recovered from vec(Γ(0)) as follows:

for 1 ≤ ` ≤ d2, the `th component of vec(Γ(0)) is γi,j(0) with i = b(` − 1)/dc + 1 and

j = `− (i− 1)d. To obtain vec(Γ(0)), take vecs of both sides of (2.5.20), apply (2.2.4), and

solve the resulting equation to get

vec(Γ(0)) = (Id2 − Φ⊗ Φ)−1vec(Σ). (2.5.21)

The causality assumption guarantees that Id2 − Φ⊗ Φ is invertible. Covariances at higher

lags are obtained from (2.5.18) and are Γ(h) = ΦhΓ(0) and Γ(−h) = Γ(0)(Φ′)h for h ≥ 1.

For h ≥ 1, (2.2.4) and induction give vec(Γ(h)) = (Id ⊗Φ)hvec(Γ(0)). Combining this with

24



(2.5.21) produces

vec(Γ(k)) = (Id ⊗ Φ)k(Id2 − Φ⊗ Φ)−1vec(Σ), k ≥ 0. (2.5.22)

Similarly,

vec(Γ(−k)) = (Φ′ ⊗ Id)k(Id2 − Φ⊗ Φ)−1vec(Σ), k > 0. (2.5.23)

The quantity vec(Vp,p), a d4-dimensional vector, can now be explicitly calculated

as follows. We begin by working on the summation in (2.5.19) involving the vec terms.

Applying (2.5.22) gives

∞∑
k=0

vec(Γ(k))vec(Γ(k))′ =
∞∑
k=0

(Id ⊗ Φ)kBB′(Id ⊗ Φ′)k =
∞∑
k=0

Uk1G(U ′1)k := S1,

where U1 = (Id ⊗ Φ), B = (Id2 − Φ ⊗ Φ)−1vec(Σ), and G = BB′. The infinite geometric

sum S1 can be shown to satisfy the relationship

S1 − U1S1U
′
1 = G.

Now take vecs on both sides of this equation and argue as in the lines that produced (2.5.21)

from (2.5.20) to get

vec(S1) = (Id4 − U1 ⊗ U1)−1vec(G).

Similar arguments produce

−1∑
k=−∞

vec(Γ(k))vec(Γ(k))′ =
∞∑
k=1

Uk2G(U ′2)k := S2,

where U2 = (Φ′ ⊗ Id) and
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vec(S2) = (Id4 − U2 ⊗ U2)−1(U2 ⊗ U2)vec(G).

It follows that

vec

( ∞∑
k=−∞

vec(Γ(k))vec(Γ(k))′

)
= (Id4 − U1 ⊗ U1)−1vec(G)

+ (Id4 − U2 ⊗ U2)−1(U2 ⊗ U2)vec(G). (2.5.24)

To evaluate the vec of the second summation in (2.5.19), we partition the infinite summation

into three pieces. First, use the linearity of vec and (2.2.4) to get

vec

 ∞∑
k=p

P [Γ(k − p)⊗ Γ(k + p)]

 =

∞∑
k=p

(Id2 ⊗ P )vec (Γ(k − p)⊗ Γ(k + p)) . (2.5.25)

Using (2.2.5) in (2.5.25) and applying (2.5.22) and (2.2.3) gives

vec

 ∞∑
k=p

P [Γ(k − p)⊗ Γ(k + p)]

 = CS3(B ⊗B),

where C = (Id2 ⊗ P )(Id ⊗K ⊗ Id) and S3 is the geometric sum

S3 = Id2 ⊗ U
2p
1 + U1 ⊗ U2p+1

1 + · · · .

One can sum this geometric series explicitly to get S3 = (Id4 − U1 ⊗ U1)−1(Id2 ⊗ U
2p
1 ) and

hence

vec

 ∞∑
k=p

P [Γ(k − p)⊗ Γ(k + p)]

 = C(Id4 − U1 ⊗ U1)−1(Id2 ⊗ U
2p
1 )(B ⊗B). (2.5.26)
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Similar arguments provide

vec

( −p∑
k=−∞

P [Γ(k − p)⊗ Γ(k + p)]

)
= C(Id4 − U2 ⊗ U2)−1(U2p

2 ⊗ Id2)(B ⊗B). (2.5.27)

Causality guarantees invertibility of (Id4 −U1 ⊗U1) and (Id4 −U2 ⊗U2). The finite sum is

similarly handled. In the end, one gets

vec

 p−1∑
k=−p+1

P [Γ(k − p)⊗ Γ(k + p)]

 = C(Id4−U−1
2 ⊗U1)−1(U2p−1

2 ⊗U1−Id2⊗U
2p
1 )(B⊗B).

(2.5.28)

Now combine (2.5.24), (2.5.26), (2.5.27), and (2.5.28) and simplify to get

vec(Vp,p) =
[
(Id4 − U1 ⊗ U1)−1 + (Id4 − U2 ⊗ U2)−1(U2 ⊗ U2)

]
vec(G)

+ C
[
(Id4 − U1 ⊗ U1)−1(Id2 ⊗ U

2p
1 ) + (Id4 − U2 ⊗ U2)−1(U2p

2 ⊗ Id2)

+ (Id4 − U−1
2 ⊗ U1)−1(U2p−1

2 ⊗ U1 − Id2 ⊗ U
2p
1 )
]
(B ⊗B).

This expression reduces to that in Example 7.2.3 in Brockwell and Davis [3] when d = 1.

Example 3.2 Consider a qth order moving-average {Xt} satisfying

Xt = Zt + Θ1Zt−1 + · · ·+ ΘqZt−q,

where {Zt} is zero mean white noise with covariance matrix Σ. We again consider the

Gaussian case and concentrate on computation of the sum in (2.3.10). Tests for moving-

averages of order q are sometimes constructed by assessing whether or not Γ̂(q + 1) is

significantly different from zero. This is quantified via
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Γ̂(q + 1) ∼ AN
(

0,
Vq+1,q+1

n

)
and the task is to identify Vq+1,q+1.

The covariance function of {Xt} is

Γ(h) =

q−h∑
i=0

Θi+hΣΘ′i,

for h = 0, . . . , q with the convention that Θ0 = Id. Also, Γ(−h) = Γ(h)′. Observe that

Γ(h) = 0 when |h| > q. Thus, (2.3.10) gives

Vq+1,q+1 =

q∑
k=−q

vec(Γ(k))vec(Γ(k))′.

This expression reduces to the classical σ4[γ(0) + 2
∑q

k=1 γ(k)2] in the univariate case (see

Example 7.2.2 in Brockwell and Davis [3]). We also note that Vk,k = Vq+1,q+1 for k ≥ 2.

2.6 Proofs

The following Lemma is the basis of our computations.

Lemma 1 Under the assumptions of Theorem 2.1,

E[XtX
′
t+p ⊗Xt+h+pX

′
t+h+p+q] = Rp,q(h+ p) + Γ(p)⊗ Γ(q) + vec(Γ(h+ p))vec(Γ(h+ q))′

+ PΓ(h)⊗ Γ(h+ p+ q), (2.6.29)

where

Rp,q(h+p) =

∞∑
i=−∞

(Ψi⊗Ψh+p+i)[η−vec(Σ)vec(Σ)′−P (Σ⊗Σ)−Σ⊗Σ](Ψp+i⊗Ψh+p+q+i)
′.
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Proof of Lemma 1 Expanding Xt with (2.1.1) and taking expectations provides

E[XtX
′
t+p ⊗Xt+h+pX

′
t+h+p+q]

=
∞∑

i=−∞

∞∑
j=−∞

∞∑
k=−∞

∞∑
`=−∞

E[ΨiZt−iZ
′
t+p−jΨ

′
j ⊗ΨkZt+h+p−kZ

′
t+h+p+q−`Ψ

′
`]

=
∑
T1

E[ΨiZt−iZ
′
t+p−jΨ

′
j ⊗ΨkZt+h+p−kZ

′
t+h+p+q−`Ψ

′
`]

+
∑
T2

E[ΨiZt−iZ
′
t+p−jΨ

′
j ⊗ΨkZt+h+p−kZ

′
t+h+p+q−`Ψ

′
`]

+
∑
T3

E[ΨiZt−iZ
′
t+p−jΨ

′
j ⊗ΨkZt+h+p−kZ

′
t+h+p+q−`Ψ

′
`]

+
∑
T4

E[ΨiZt−iZ
′
t+p−jΨ

′
j ⊗ΨkZt+h+p−kZ

′
t+h+p+q−`Ψ

′
`]

=: I+II+III+IV,

when the zero-mean IID structure of {Zt} is used. Here, Ti describes the following indices

that must be summed over for a fixed t:

T1 = {(i, j, k, `) : t− i = t+ p− j = t+ h+ p− k = t+ h+ p+ q − `}

= {−∞ < i <∞; j = p+ i; k = h+ p+ i; ` = h+ p+ q + i}. (2.6.30)

Similar reasoning gives

T2 = {(i, j, k, `) : t− i = t+ p− j, t+ h+ p− k = t+ h+ p+ q − `, t− i 6= t+ h+ p− k}

= {−∞ < i <∞;−∞ < k <∞; j = p+ i; ` = h+ p+ q + i; k 6= h+ p+ i}. (2.6.31)
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T3 = {(i, j, k, `) : t− i = t+ h+ p− k, t+ p− j = t+ h+ p+ q − `, t− i 6= t+ p− j}

= {−∞ < i <∞;−∞ < j <∞; k = h+ p+ i; ` = h+ q + j; j 6= p+ i}. (2.6.32)

T4 = {(i, j, k, `) : t− i = t+ h+ p+ q − `, t+ p− j = t+ h+ p− k, t− i 6= t+ p− j}

= {−∞ < i <∞;−∞ < j <∞; k = h+ p+ j; ` = h+ p+ q + i; j 6= p+ i}. (2.6.33)

Note that T1 requires a single summation whereas T2, T3, and T4 require double summations.

We examine each of these terms case by case. For notation, let Mt = ZtZ
′
t and observe that

η = E[Mt ⊗Mt].

The first term is easy to evaluate with application of (2.2.3):

I =

∞∑
i=−∞

E[(ΨiMt ⊗Ψh+p+iMt)(Ψ
′
p+i ⊗Ψ′h+p+q+i)

=
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)E[Mt ⊗Mt](Ψp+i ⊗Ψh+p+q+i)

′

=
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)η(Ψ′p+i ⊗Ψ′h+p+q+i).

For the second term, suppose that t 6= s so that Zt and Zs are uncorrelated. Now simplify

II into
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II =
∞∑

i=−∞

∞∑
k=−∞

E[ΨiZtZ
′
tΨ
′
p+i ⊗ΨkZsZ

′
sΨ
′
q+k]

−
∞∑

i=−∞
E[ΨiZtZ

′
tΨ
′
p+i ⊗Ψh+p+iZsZ

′
sΨ
′
h+p+q+i].

Using (2.1.1), one can verify that

Γ(p)⊗ Γ(q) =

∞∑
i=−∞

∞∑
j=−∞

E[ΨiZtZ
′
tΨ
′
p+i ⊗ΨjZsZ

′
sΨ
′
j+q]

=
∞∑

i=−∞

∞∑
j=−∞

(Ψi ⊗Ψj)(Σ⊗ Σ)(Ψ′i+p ⊗Ψ′j+q).

Combining the last two relations and applying (2.2.4) identifies II as

II = Γ(p)⊗ Γ(q)−
∞∑

i=−∞
E[ΨiZtZ

′
tΨ
′
h+p+i ⊗Ψp+iZsZ

′
sΨ
′
h+p+q+i]

= Γ(p)⊗ Γ(q)−
∞∑

i=−∞
(Ψi ⊗Ψp+i)(Σ⊗ Σ)(Ψ′h+p+i ⊗Ψ′h+p+q+i). (2.6.34)

For the third term,
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III =
∞∑

i=−∞

∞∑
j=−∞

E[ΨiZtZ
′
sΨ
′
j ⊗Ψh+p+iZtZ

′
sΨ
′
h+q+j ]

−
∞∑

i=−∞
E[ΨiZtZ

′
sΨ
′
p+i ⊗Ψh+p+iZtZ

′
sΨ
′
h+p+q+i]

=
∞∑

i=−∞

∞∑
j=−∞

E[(ΨiZtZ
′
s ⊗Ψh+p+iZtZ

′
s)(Ψ

′
j ⊗Ψ′h+q+j)]

−
∞∑

i=−∞
E[(ΨiZtZ

′
s ⊗Ψh+p+iZtZ

′
s)(Ψ

′
p+i ⊗Ψ′h+p+q+i)]

=

∞∑
i=−∞

∞∑
j=−∞

(Ψi ⊗Ψh+p+i)E[ZtZ
′
s ⊗ ZtZ ′s](Ψ′j ⊗Ψ′h+q+j)

−
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)E[ZtZ

′
s ⊗ ZtZ ′s](Ψ′p+i ⊗Ψ′h+p+q+i).

But when t 6= s, E[ZtZ
′
s ⊗ ZtZ ′s] = E[(Zt ⊗ Zt)(Z ′s ⊗ Z ′s)] = vec(Σ)vec(Σ)′, and hence,

III =
∞∑

i=−∞

∞∑
j=−∞

(Ψi ⊗Ψh+p+i)vec(Σ)vec(Σ)′(Ψ′j ⊗Ψ′h+q+j)

−
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)vec(Σ)vec(Σ)′(Ψ′p+i ⊗Ψ′h+p+q+i).

Now apply (2.2.4) to get

III =
∞∑

i=−∞

∞∑
j=−∞

vec(Ψh+p+iΣΨ′i)vec(Ψh+q+jΣΨ′j)
′

−
∞∑

i=−∞
vec(Ψh+p+iΣΨ′i)vec(Ψh+p+q+iΣΨ′p+i)

′

= vec(Γ(h+ p))vec(Γ(h+ q))′ −
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)vec(Σ)vec(Σ)′(Ψ′p+i ⊗Ψ′h+p+q+i).
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The last term is the hardest. For this term with t 6= s, start with

IV =
∞∑

i=−∞

∞∑
j=−∞

E[ΨiZt−iZ
′
t+p−jΨ

′
j ⊗Ψh+jZt+p−jZ

′
t−iΨ

′
h+p+q+i]

−
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)E[ZtZ

′
s ⊗ ZsZ ′t](Ψ′p+i ⊗Ψ′h+p+q+i)

=
∞∑

i=−∞

∞∑
j=−∞

E[(ΨiZt−iZ
′
t+p−j ⊗Ψh+jZt+p−jZ

′
t−i)(Ψ

′
j ⊗Ψ′h+p+q+i)]

−
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)E[ZtZ

′
s ⊗ ZsZ ′t](Ψ′p+i ⊗Ψ′h+p+q+i)

=

∞∑
i=−∞

∞∑
j=−∞

(Ψi ⊗Ψh+j)E[Zt−iZ
′
t+p−j ⊗ Zt+p−jZ ′t−i](Ψ′j ⊗Ψ′h+p+q+i)

−
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)E[ZtZ

′
s ⊗ ZsZ ′t](Ψ′p+i ⊗Ψ′h+p+q+i).

Taking conditional expectations identifies the inner bracketed term:

E[Zt−iZ
′
t+p−j ⊗ Zt+p−jZ ′t−i] = E[E[Zt−iZ

′
t+p−j ⊗ Zt+p−jZ ′t−i] | Zt+p−j ])

= E[E[(Id ⊗ Zt+p−j)(Zt−i ⊗ Z ′t−i)(Z ′t+p−j ⊗ Id) | Zt+p−j ])

= E[(Id ⊗ Zt+p−j)Σ(Z ′t+p−j ⊗ Id)].
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Hence,

∞∑
i=−∞

∞∑
j=−∞

(Ψi ⊗Ψh+j)E[Zt−iZ
′
t+p−j ⊗ Zt+p−jZ ′t−i](Ψ′j ⊗Ψ′h+p+q+i)

=

∞∑
i=−∞

∞∑
j=−∞

E[(Ψi ⊗Ψh+j)(In ⊗ Zt+p−j)Σ(Z ′t+p−j ⊗ In)(Ψ′j ⊗Ψ′h+p+q+i)]

=

∞∑
i=−∞

∞∑
j=−∞

E[(Ψi ⊗Ψh+jZt+p−j)Σ(Z ′t+p−j ⊗ In)(Ψ′j ⊗Ψ′h+p+q+i)].

Applying (2.2.6) gives

∞∑
i=−∞

∞∑
j=−∞

(Ψi ⊗Ψh+j)E[Zt−iZ
′
t+p−j ⊗ Zt+p−jZ ′t−i](Ψ′j ⊗Ψ′h+p+q+i)

=
∞∑

i=−∞

∞∑
j=−∞

E[P (Ψh+jZt+p−j ⊗Ψi)Σ(Z ′t+p−j ⊗ In)(Ψ′j ⊗Ψ′h+p+q+i)]

= P
∞∑

i=−∞

∞∑
j=−∞

E[(Ψh+jZt+p−j ⊗ΨiΣ)(Z ′t+p−j ⊗ In)(Ψ′j ⊗Ψ′h+p+q+i)]

= P
∞∑

i=−∞

∞∑
j=−∞

E[(Ψh+jZt+p−jZ
′
t+p−jΨ

′
j)⊗ (ΨiΣΨ′h+p+q+i)]

= PΓ(h)⊗ Γ(h+ p+ q).

Similar reasoning gives

∞∑
i=−∞

(Ψi ⊗Ψh+p+i)E[ZtZ
′
s ⊗ ZsZ ′t](Ψ′p+i ⊗Ψ′h+p+q+i)

=

∞∑
i=−∞

(Ψi ⊗Ψh+p+i)(P (Σ⊗ Σ))(Ψ′p+i ⊗Ψ′h+p+q+i).
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Therefore,

IV = PΓ(h)⊗ Γ(h+ p+ q)−
∞∑

i=−∞
(Ψi ⊗Ψh+p+i)(P (Σ⊗ Σ))(Ψ′p+i ⊗Ψ′h+p+q+i).

Putting the above computations together establishes the Lemma. ♣

Proof of Theorem 2.1: The argument is essentially the same as that on page 227 of

Brockwell and Davis [3]. We provide the main points for the sake of completeness.

Observe that

E[Γ̂∗(p)⊗ Γ̂∗(q)] = n−2
n∑
s=1

n∑
t=1

E[XtX
′
t+p ⊗XsX

′
s+q],

where Γ̂∗(h) = n−1
∑n

t=1XtX
′
t+h is an unbiased estimator of Γ(h) that can be shown to

have the same asymptotic properties as Γ̂(h). Applying Lemma 1 gives

E[Γ̂∗(p)⊗ Γ̂∗(q)] = n−2
n∑
s=1

n∑
t=1

[
Rp,q(t− s) + Γ(p)⊗ Γ(q) + vec(Γ(s− t))vec(Γ(s− t− p+ q))′

+ PΓ(s− t− p)⊗ Γ(s− t+ q)

]
.

where

Rp,q(k) =

∞∑
i=−∞

(Ψi ⊗Ψi+k)[η − vec(Σ)vec(Σ)′ − P (Σ⊗ Σ)− Σ⊗ Σ](Ψ′i+p ⊗Ψ′i+k+q).

Subtracting Γ(p)⊗ Γ(q) and regrouping terms by diagonals gives

Cov(Γ̂∗(p), Γ̂∗(q)) = n−1
∑
|k|<n

(1− |k|/n)(Tk +Rp,q(k)),

where
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Tk = vec(Γ(k))vec(Γ(k − p+ q))′ + PΓ(k − p)⊗ Γ(k + q), − n < k < n.

Dominated convergence now gives

lim
n→∞

nCov(Γ̂∗(p), Γ̂∗(q)) = Sp,q+

∞∑
k=−∞

[vec(Γ(k))vec(Γ(k−p+q))′+P (Γ(k−p)⊗Γ(k+q))],

where Sp,q is the skewness

Sp,q =
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)M(Ψ′`1+p ⊗Ψ′`2+q) (2.6.35)

and M = η − vec(Σ)vec(Σ)′ − P (Σ ⊗ Σ) − Σ ⊗ Σ. Since the limiting properties of starred

and unstarred versions of Γ̂(h) are the same, this proves the result except for the skewness

statements.

Taking vecs of both sides (2.6.35) and applying (2.2.4) gives

vec(Si,j) =

 ∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1+i ⊗Ψ`2+j)(Ψ`1 ⊗Ψ`2)

 vec(M).

Now use (2.2.7), associativity of Kronecker products, and the definition of Γ̃(j) to get

vec(Si,j) =

 ∞∑
`1=−∞

Ψ`1+i ⊗ Γ̃(j)⊗Ψ`1

Qvec(M).

Use the same commutative tactics and the fact that Q2 = Id2 to get

vec(Si,j) = [Γ̃(i)⊗ Γ̃(j)]vec(M).

Finally, to get E[Xt+i ⊗Xt] = Γ̃(i)vec(Σ), expand with (2.1.1) to get

36



E[Xt+i ⊗Xt] =
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)E[Zt+i−`1 ⊗ Zt−`2 ].

But since E[Zt+i−`1 ⊗ Zt−`2 ] is zero unless `2 = `1 − i and is vec(Σ) when `2 = `1 − i, the

identity follows.

Proof of Theorem 2.3: We need a modification of Lemma 1. For this, expand as before

to get

E[XtX
′
t+p ⊗Xt+hX

′
t+h+q]

=

∞∑
`1=−∞

∞∑
`2=−∞

∞∑
`3=−∞

∞∑
`4=−∞

[(Ψ`1Zt−`1)(Ψ`2Zt+p−`2)′ ⊗ (Ψ`3Zt+h−`3)(Ψ`4Zt+h+q−`4)′].

By the symmetry condition (2.3.13), one encounters non-zero summands only when all four

indices in four-fold sum agree, or if there are two pairs of indices that agree (see also Francq

and Zakoian [5]). Proceeding as in the proof of Lemma 1 gives

E[XtX
′
t+p ⊗Xt+hX

′
t+h+q]

=
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)E[Zt−`1Z
′
t−`1 ⊗ Zt+p−`2Z

′
t+p−`2 ](Ψ`1+p ⊗Ψ`2+q)

′

+
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`1+h)E[Zt−`1Z
′
t+p−`2 ⊗ Zt−`1Z

′
t+p−`2 ](Ψ`2 ⊗Ψ`2+h−p+q)

′

+
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2+h−p)E[Zt−`1Z
′
t+p−`2 ⊗ Zt+p−`2Z

′
t−`1 ](Ψ`2 ⊗Ψ`1+h+q)

′

− 2

∞∑
`=−∞

(Ψ` ⊗Ψ`+h)η(Ψ`+p ⊗Ψ`+h+q)
′.

Applying (2.3.14) now gives
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E[XtX
′
t+p ⊗Xt+hX

′
t+h+q]

=

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)[ΓZtZ′
t
(`2 − `1 − p) + Σ⊗ Σ](Ψ`1+p ⊗Ψ`2+q)

′

+

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`1+h)[ΓZt⊗Zt(`2 − `1 − p) + vec(Σ)vec(Σ)′](Ψ`2 ⊗Ψ`2+h−p+q)
′

+

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2+h−p)P [ΓZtZ′
t
(`2 − `1 − p) + Σ⊗ Σ](Ψ`2 ⊗Ψ`1+h+q)

′

− 2

∞∑
`=−∞

(Ψ` ⊗Ψ`+h)η(Ψ`+p ⊗Ψ`+h+q)
′.

The argument finishing the proof of Theorem 2.1 provides

Wp,q = lim
n→∞

nCov(Γ̂(p), Γ̂(q)) =
∞∑

h=−∞
Cov(XtX

′
t+p, Xt+hX

′
t+h+q).

Therefore,

Wp,q =
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)
∞∑

h=−∞
ΓZtZ′

t
(h)(Ψ`1+p ⊗Ψ`2+q)

′

+
∞∑

h=−∞

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`1+h)[ΓZt⊗Zt(`2 − `1 − p) + vec(Σ)vec(Σ)′](Ψ`2 ⊗Ψ`2+h−p+q)
′

+

∞∑
h=−∞

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2+h−p)P [ΓZtZ′
t
(`2 − `1 − p) + Σ⊗ Σ](Ψ`2 ⊗Ψ`1+h+q)

′

− 2

∞∑
h=−∞

∞∑
`=−∞

(Ψ` ⊗Ψ`+h)η(Ψ`+p ⊗Ψ`+h+q)
′.

Combining the first and last two terms in the above equation, and at the same time sepa-

rating out the vec(Σ)vec(Σ)′ and Σ⊗ Σ terms, it follows that
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Wp,q =
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)(κ− 2η)(Ψ`1+p ⊗Ψ`2+q)
′

+

∞∑
h=−∞

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`1+h)ΓZt⊗Zt(`2 − `1 − p)(Ψ`2 ⊗Ψ`2+h−p+q)
′

+

∞∑
h=−∞

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2+h−p)PΓZtZ′
t
(`2 − `1 − p)(Ψ`2 ⊗Ψ`1+h+q)

′

+

∞∑
h=−∞

vec(Γ(h))vec(Γ(h− p+ q)′) + PΓ(h− p)⊗ Γ(h+ q).

Now use κ = η−Σ⊗Σ + κ∗, ΓZt⊗Zt(0) = η− vec(Σ)vec(Σ)′, ΓZtZ′
t
(0) = η−Σ⊗Σ,

and separate out the lag zero summands to get

Wp,q =
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)(κ∗ + ΓZtZ′
t
(0)− 2η)(Ψ`1+p ⊗Ψ`2+q)

′

+
∞∑

h=−∞
vec(Γ(h))vec(Γ(h− p+ q)′) + PΓ(h− p)⊗ Γ(h+ q)

+
∞∑

h=−∞

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`1+h)ΓZt⊗Zt(`2 − `1 − p)(Ψ`2 ⊗Ψ`2+h−p+q)
′

+

∞∑
h=−∞

∞∑
`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2+h−p)PΓZtZ′
t
(`2 − `1 − p)(Ψ`2 ⊗Ψ`1+h+q)

′

=: Vp,q + V ∗p,q,

where Vp,q shares the form as (2.3.10) and

V ∗p,q =
∞∑

`1=−∞

∞∑
`2=−∞

(Ψ`1 ⊗Ψ`2)κ∗(Ψ`1+p ⊗Ψ`2+q)
′

+
∑
Tp

(Ψ`1 ⊗Ψ`1+h)ΓZt⊗Zt(`2 − `1 − p)(Ψ`2 ⊗Ψ`2+h−p+q)
′

+
∑
Tp

(Ψ`1 ⊗Ψ`2+h−p)PΓZtZ′
t
(`2 − `1 − p)(Ψ`2 ⊗Ψ`1+h+q)

′. (2.6.36)
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Arguing as in the proof of Theorem 2.1 gives

vec(V ∗p,q) = (Γ̃(p)⊗ Γ̃(q))vec(κ∗)

+
∑
Tp

(Γ̃(`2 − `1)⊗ Γ̃(`2 − `1 − p+ q))vec(ΓZt⊗Zt(`2 − `1 − p))

+
∑
Tp

(Γ̃(`2 − `1)⊗ Γ̃(`1 − `2 + p+ q))vec(PΓZtZ′
t
(`2 − `1 − p)),

where the index set is Tp = {(h, `1, `2) : −∞ < h, `1, `2 < ∞, `2 − `1 − p 6= 0}. Setting

` = `2 − `1, we obtain

vec(V ∗p,q) = (Γ̃(p)⊗ Γ̃(q))vec(κ∗)

+
∑
` 6=p

(Γ̃(`)⊗ Γ̃(`− p+ q))vec(ΓZt⊗Zt(`− p))

+
∑
` 6=p

(Γ̃(`)⊗ Γ̃(−`+ p+ q))vec(PΓZtZ′
t
(`− p)).

2.7 Concluding Remarks

Some issues with the above work are enumerated here.

First, it would be desirable to have a central limit theorem for general d-variate

processes satisfying (2.1.1), where {Zt} obeys an “easily checkable” set of mixing conditions.

It is not enough for Zt to have polynomial moments of all orders — counterexamples exist

where {Zt} is white noise whose polynomial moments are all finite but where Γ̂(h) is not

asymptotically normal. The most relevant result in the literature guaranteeing asymptotic

normality of sample autocovariance appears to be Theorem 2.1 of Chanda [4].

Second, it is not clear to us whether (2.4.17) can be further simplified, nor is it clear

that the asymptotic covariance depends only on autocorrelations and not on autocovariances

as in the univariate case.

Finally, we have not pursued a multivariate GARCH example (of course, even uni-
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variate GARCH computations are difficult). The logical choice here would work in a mul-

tivariate ARCH(1) setting.
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Chapter 3

A Comparison of Multivariate

Signal Discrimination Techniques

We compare several techniques to discriminate two multivariate stationary signals.

The compared methods include Gaussian likelihood ratio variance/covariance matrix tests

— perhaps best viewed as principal component analyses (PCA) without dimension reduction

aspects — and spectral-based tests gauging equality of the autocovariance function (over all

lags) of the two signals. We show how one can make inappropriate conclusions with PCA

tests, even when dimension augmentation techniques are used to incorporate non-zero lag

autocovariances into the analysis. The various discrimination methods are first discussed.

A simulation study is then presented that illuminates the various properties of the methods.

An analysis of experimentally collected gearbox data is also presented.

3.1 Introduction

Given two d-dimensional series {Xt} and {Yt} that are preprocessed to a zero-

mean stationary setting, we considers how to assess whether (or not) the two signals have

the same time series dynamics. This is useful in discrimination and classification pursuits.

For example, if a test signal {Yt} is deemed to have different dynamics than a reference
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signal {Xt} that is known to be “healthy”, the test signal could be deemed unhealthy.

Signal discrimination problems are fundamental ([15] [16]) and are well-developed when

discriminating series via means or first moments; here, Hotelling T 2 or Q statistics are

frequently relied upon ([17], [18]). In 1986, [19] considered discrimination of two univariate

constant-mean series based on their sample autocovariances. Speech signals, for example,

are typically of constant mean, regardless of what words are being spoken. Here, word-to-

word changes are best identified through autocovariances shifts and monitoring of the mean

is insufficient to identify dynamic changes. [20] seeks to discriminate an earthquake from a

covert underground nuclear test; again, the crux issue lies with constant-mean data.

The classical way of discriminating {Xt} and {Yt} through second order character-

istics is via a Gaussian likelihood ratio. Such a test compares the sample variance matrix of

the two series. Elaborating, conclusions are based on how different the two sample variance

matrices

N−1
N∑
t=1

XtX
′
t, N−1

N∑
t=1

YtY
′
t

are from each other. Section 3.2 shows how to do this. Here, N is the sample length of

the two series, which are assumed equal for convenience. When the dimension d is large,

this comparison is typically made after a dimension reduction transformation, usually some

type of principal component analysis (PCA), is done. Without dimension reduction aspects,

covariance comparisons are not truly PCA techniques; however, they share the commonality

in that conclusions are made only from sample autocovariances.

Basing signal equality conclusions exclusively on sample variances can produce er-

roneous conclusions when the two series are not multivariate white noise. A more compre-

hensive test would compare the sample autocovariances

Γ̂X(h) = N−1
N−h∑
t=1

Xt+hX
′
t

and
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Γ̂Y (h) = N−1
N−h∑
t=1

Yt+hY
′
t

over all suitable lags h ≥ 0. Such tests for multivariate series were discussed in [20], [21],

[22], and the references within.

PCA methods have been extended to handle cases where correlation at non-zero

series lags is present. This is typically done through a dimension augmentation scheme. For

example, if ΓX(1) and/or ΓY (1) are believed to be non-zero, one could compare the sample

covariance matrices of the 2d-dimensional vectors {X∗t } and {Y∗t }, where

X∗t = (X2t−1,1, . . . , X2t−1,d, X2t,1, . . . , X2t,d)
′

and

Y∗t = (Y2t−1,1, . . . , Y2t−1,d, Y2t,1, . . . , Y2t,d)
′.

If the sample variance of {X∗t } and {Y∗t } agree, then one concludes that ΓX(0) = ΓY (0)

and ΓX(1) = ΓY (1). Higher order comparisons are constructed from analogous reasoning.

Of course, such dimension augmentation tactics shorten the observed series length; also,

there is no clear maximum lag to augment by when autocovariances at all lags are non-zero,

the typical case in practice.

Bassily [21] and Lund [22] attack the problem with different techniques. Specifically,

two multivariate covariance functions are equal if and only if their spectral densities are

equal at all frequencies (the spectrum is assumed to have no point masses). From this,

signal equality tests that compare the periodograms of both series were devised (Section 3.2

elaborates). This paper rehashes these methods and shows how one can fool variance-based

tests for signal equality, even when the dimension is augmented to account for non-zero

autocovariances at higher lags. The pros and cons of the various methods are demonstrated

by simulating multivariate stationary signals with various properties and then applying the

tests. An application to a series of gearbox vibrations is included.
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3.2 Background

We work with two zero-mean d-dimensional covariance stationary signals {Xt} and

{Yt} observed at times t = 1, . . . , N . The covariance matrices at lag h ≥ 0 are

ΓX(h) = E[Xt+hX
′
t], ΓY (h) = E[Yt+hY

′
t].

3.2.1 Testing Equality of Variances

The classical test for signal equality of zero-mean stationary series merely compares

the sample variance matrices of the two observed series. The null hypothesis is that ΓX(0) =

ΓY (0). A Gaussian likelihood ratio statistic for testing this hypothesis is

λ =

2d
det
[
Γ̂X(0)Γ̂Y (0)

]1/2

det
[
Γ̂X(0) + Γ̂Y (0)

]

N

, (3.2.1)

where det indicates matrix determinant. This statistic is derived in [24], pg. 404. Values

of λ are in [0, 1] and the null hypothesis is rejected when λ is too small to be explained by

random chance. Authors have used this test when the series are non-Gaussian white noise

without drastic performance degradations. Here, the usual central limit caveat applies: the

test works well for large N provided marginal distributions of the series are not heavy-

tailed. Applying the test when the data are autocorrelated (i.e, not white noise) is more

problematic. This aspect will be demonstrated in the next Section.

In great generality, −2 ln(λ) has an asymptotic (as N →∞) chi-squared distribution

([25], [26]). The degrees of freedom is equal to the number of parameters that are saved

when the two signals have the same covariance matrix. Since covariance matrices of a d-

dimensional signal are d×d symmetric matrices, d(d+ 1)/2 free parameters are saved; that

is, d(d+ 1)/2 is the appropriate degrees of freedom. Phrased another way, λ asymptotically

behaves as e−L/2, where L is a chi-squared random variate with d(d + 1)/2 degrees of

freedom. From this, it follows that λ has the asymptotic density

45



Table 3.1: Ninety-Fifth Percentiles for λ

Dimension Ninety-Fifth Percentile

1 0.1478

2 0.02025

3 0.001839

4 1.035e-4

5 3.580e-6

fλ(x) =
[− ln(x)]d(d+1)/4−1

Γ
(
d(d+1)

4

) , 0 ≤ x ≤ 1.

Here, Γ(α) represents the usual Gamma function at argument α > 0 (the use of Γ as both a

covariance and a function should cause no confusion). This density can be used to extract

percentiles; however, exact formulas cannot be given since the antiderivative of ln(x)β for

β > 0 has no explicit formula. Table I lists how small λ must be to warrant rejection

of equal variances with 95% statistical confidence for several valued of d. A plot of the

asymptotic density of λ for d = 2 is shown in Fig. 3.1.
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Figure 3.1: Plot of the PDF for λ with d=2
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3.2.2 Testing Equality of the Autocovariance Functions

A spectral approach to testing equality of multivariate autocovariance functions was

developed in [21]. Since ΓX(h) = ΓY (h) for all lags h ≥ 0 if and only if fX(λ) = fY (λ) for

all frequencies λ ∈ [0, 2π) (with respect to the Lebesgue measure), where

fX(λ) =
1

2π

∞∑
h=−∞

ΓX(h)e−iλh

and

fY (λ) =
1

2π

∞∑
h=−∞

ΓY (h)e−iλh

are the theoretical spectral densities of {Xt} and {Yt} at frequency λ, respectively.

Bassily [21] estimates the spectral densities of the two series and statistically com-

pares their ratios. Specifically, the discrete Fourier transforms (DFTs) of the series are first

computed via

JX(λj) = N−1/2
N∑
t=1

Xte
−itλj

and

JY (λj) = N−1/2
N∑
t=1

Yte
−itλj

at all Fourier frequencies λj = 2πj/N , for j = 0, . . . , N − 1 (see [27] and [28] for Fourier

transform basics). The raw (unsmoothed) spectral densities are estimated via

f̂X(λj) =
JX(λj)J

∗
X(λj)

2π
, f̂Y (λj) =

JY (λj)J
∗
Y (λj)

2π
.

Here, the asterisk denotes complex conjugation. The raw spectral estimates are then

smoothed in a uniform manner over 2M + 1 Fourier frequencies closest to the Fourier

frequency being considered:
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f̂ sX(λj) =

∑M
k=−M f̂X(λj+k)

2M + 1
, f̂ sY (λj) =

∑M
k=−M f̂Y (λj+k)

2M + 1
.

Here, M is a positive integer, representing a smoothing bandwidth, that satisfies 2M+1 ≥ d

(this is needed for technical reasons rooted in the finiteness of variances). The choice of

M does not usually influence practical conclusions about signal equality. In smoothing the

raw spectral estimates, frequencies outside of [0, 2π) are rounded modulo 2π to mimic the

periodic nature of the DFT; for example, f̂X(λj+N ) = f̂X(λj).

Bassily [21] base signal equality conclusions on the statistic

∆̄ =
1

N
2 − 1

N
2
−1∑

j=1

|∆(λj)|. (3.2.2)

Here, the ∆(λj)’s are the log determinant of the ratios of the smoothed spectral density

estimates:

∆(λj) = log
(

det
(
f̂ sX(λj)

))
− log

(
det
(
f̂ sY (λj)

))
. (3.2.3)

Under the null hypothesis of equal autocovariance functions, ∆(ωj) should be statistically

close to zero for every non-zero Fourier frequency λj . Bassily [21] show that ∆(λj) has an

asymptotic distribution that does not depend on j for j = 1, 2, . . . , N/2− 1 or the common

spectral density of {Xt} and {Yt}. From this structure, a test for signal equality based on

∆ is easily constructed based on the central limit theorem (the ∆(λj)’s for varying j are

approximately independent). Such a test rejects equality of autocovariance functions when

∆̄ > µM + zα
σM√
N
2 − 1

. (3.2.4)

Here, zα denotes a quantile that cuts off an upper tail area of α in the standard normal

distribution (zα = 1.645 when α = 0.05) and µM and σM are the theoretical mean and

variance of |∆(λj)|. Note that this is a one sided test.
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The constants µM and σ2
M depend on both M and d and are difficult to derive. Lund

[22] derives explicit expressions when d = 1, but the computations for the multidimensional

case are intense. However, simulations with Gaussian white noise readily provide good

estimates of them. These estimates are given in tables in [21].

The detection power of the ∆̄ statistic can be increased if the signals are known to

be band-limited. Specifically, in the spectrums of {Xt} and {Yt} are known to limited to

the interval [λL, λU ], then (3.2.2) is modified to

∆̄ = C−1
∑

{j:λj∈[λL,λU ]}

|∆(λj)|,

where C is the number of distinct Fourier frequencies in the interval [λL, λU ]. The rejection

region is the same as in (3.2.4), except that N/2− 1 is replaced by C. One should take C

large enough to induce asymptotic normality of averages (a typical rule of thumb is to have

C ≥ 30.) Detection power increases because many frequencies where no differences occur

are excluded in the analysis, accentuating the importance of differences in the considered

frequency increments.

3.3 Method Comparison

This section studies the properties of the λ and ∆̄ statistics through specifically

designed simulations to illustrate various points. In all cases, the issues are apparent in

dimension d = 2 and at 95% statistical confidence. The smoothing parameter M = 5

and series length N = 1024 are common to all runs. In all cases, one hundred thousand

simulations were conducted.

First, the λ and ∆̄ statistics were computed for each simulated realization of {Xt}

and {Yt}, each realization containing zero-mean Gaussian white noise. In this case, the

covariance matrix of Xt and Yt was taken as the two-dimensional identity matrix. Hence,

this case, which we refer to as Case I, is a scenario where the two signals have the same

dynamics. Table 3.2 shows empirically aggregated proportions of runs where the λ and ∆̄
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reject the null hypothesis of signal equality at level 95%. As both proportions are close to

5%, both methods have worked well in this case.

Our second case is one where {Xt} and {Yt} do not have the same variance (lag-

zero covariance matrix). Here, {Xt} and {Yt} are zero-mean Gaussian white noise with

the covariance matrices

ΓX(0) =

 1.0 0.0

0.0 1.0

 , ΓY (0) =

 1.1 0.1

0.1 1.0

 ,
respectively. Table 3.2 displays the proportions of times the λ and ∆̄ tests reject signal

equality at confidence 95%. In this case, the likelihood ratio statistic λ has worked best,

drastically so, as seen by its larger empirical rejection proportion. This is not unexpected:

while both methods should ideally reject signal equality, the two signals differ only in their

variances; covariances at all higher lags are zero. While the λ statistic focuses solely on

variance differences, the ∆̄ statistics must consider all covariance lags. This essentially

degrades the detection power of the ∆̄ test in this case.

Case III considers a situation where {Xt} and {Yt} have the same variances, but

where there is non-zero autocorrelation at non-zero lags; that is, the series under consider-

ation are not multivariate white noise. We do this by examining solutions to the vector au-

toregressive moving-average (VARMA) model of autoregressive order 2 and moving-average

order 1. Specifically, both {Xt} and {Yt} obey the VARMA difference equation

Xt = Φ1Xt−1 + Φ2Xt−2 + Zt + Θ1Zt−1.

Here, the autoregressive matrix coefficients were chosen as

Φ1 =

 0.40 0.05

0.05 0.30

 , Φ2 =

 −0.48 0.10

0.10 −0.06

 ,
and the moving-average coefficient matrix was selected as
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Table 3.2: Method Detection and False Alarm Probabilities
λ ∆̄

Case I 5.14% 5.39%

Case II 57.69% 7.05%

Case III 19.04% 5.54%

Case IV 73.19% 5.62%

Case V 8.12% 100.00%

Case VI 100.00% 100.00%

Case VII 7.61% 15.64%

Θ1 =

 0.30 0.10

0.10 0.50

 .
Here, {Zt} is chosen as white noise with an identity covariance matrix. The Case III perfor-

mance characteristics reverse from Case II with the λ statistic erroneously rejecting signal

equality about 19% of the time. Most statisticians view this false alarm rate as unaccept-

able in a 95% test. The ∆̄ statistic, however, rejects signal equality at approximately the

intended 5% rate.

Case IV represents an exacerbated version of Case III. Here, the two series are taken

as vector autoregressions of order one. Specifically, both series follow the VAR(1) dynamics

Xt = ΦXt−1 + Zt,

where {Zt} is taken as Gaussian white noise with the identity covariance matrix and

Φ =

 0.90 0.10

−0.10 0.90

 .
The dynamics of this model lie near the boundary of the multivariate causality region of

a VAR(1) model, as is seen by the near unit diagonal entries in Φ. In this case, the λ

statistic erroneously rejects signal equality at a whopping 75% rate. The false alarm (Type

I error) of the ∆̄ test is also getting a bit larger than the specified 5%, but not drastically
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so. Taken together, the last two cases show that likelihood ratio tests to detect variances

changes perform suboptimally unless the signals are known to be white noise. At this point,

one can also question the detection power of the ∆̄ statistic as it performed poorly in in the

one case where the signals were truly different (Case II). The next three cases will perhaps

remedy this concern.

Case V moves to a situation designed to fool the λ statistic. Specifically, our {Xt}

is taken as the first-order moving-average satisfying

Xt = Zt + ΘZt−1.

and {Yt} is taken as white noise

Yt = ηt.

The caveat here is that we select the parameters Θ, Var(Zt) = ΣZ , and Var(ηt) = Ση so

that ΓX(0) = ΓY (0). To do this, we take

Θ =

 0.70 0.30

0.30 0.50

 , ΣZ =

 1.00 0.00

0.00 1.00

 ,
and

Ση =

 1.58 0.36

0.36 1.34

 ,
In this case, the two series have different dynamics, but have the same lag-zero

variance matrix. The empirical probabilities in Table 3.2 reflect this property: the λ statistic

opts for equivalent signal dynamics only slightly more than the 5% nominal false alarm rate;

however, the ∆̄ statistic makes the correct conclusion of signal inequality in all of the one

hundred thousand runs.

Summarizing to this point, the λ test degrades under correlation but is more pow-
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erful at detecting variance changes when only variance changes are truly present.

One can reduce equality of autocovariance problems to variance comparisons through

dimension augmentation techniques. For example, suppose that the signal’s autocovariances

are only non-zero at lags 0, 1, . . . , κ and set

X∗n = (X′(n−1)(κ+1)+1, . . . ,X
′
n(κ+1))

′.

Then {Xt} and {Yt} have the same autocovariances at lags h = 0, . . . , κ if {X∗n} and {Y∗n}

have equal variances. For example, in Case V, X∗t = (X2t−1,1, X2t−1,2, X2t,1, X2t,2)′ and

Y∗t = (Y2t−1,1, Y2t−1,2, Y2t,1, Y2t,2)′. Of course, such tactics may not represent an efficient

way of proceeding when κ is large as series sample sizes are reduced.

Case VI shows empirical probabilities of signal equality rejection when 4-dimensional

vectors are made to analyze the signals generated in Case IV. We will not rerun the ∆̄

analyses, preferring to emphasize that the ∆̄ method naturally handles autocorrelation and

that there is no need to do any sort of dimension augmentation. The rejection probability

of the λ statistic in Case V increases to 100% when the dimension is augmented to four

dimensions. Since moving averages are completely characterized by their lag-zero and lag-

one autocovariances, dimension augmentation works very well here.

Selection of the dimension to augment by is problematic. If one selects the aug-

mentation dimension too small, higher order covariances will not be considered (which is

suboptimal if these autocovariances are non-zero). On the other hand, if the selected di-

mension is too large, then the sample size becomes significantly smaller and discrimination

power is lost.

Our last case is intended to show that there are no easy ways of selecting augmen-

tation dimensions. We do this by constructing two series where the signals have different

dynamics, but where both the lag-zero and lag-one autocovariances agree. That is, we want

{Xt} and {Yt} to have different dynamics, but ΓX(0) = ΓY (0) and ΓX(1) = ΓY (1). Case

VII shows signal equality rejection probabilities in such a case. This was done by mixing
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two univariate signals with equal lag-zero and lag-one autocovariances. Specifically, suppose

that {Xt,1}, and {Xt,2}, the components of {Xt}, both follow the AR(1) dynamics

Xt,1 = φXt−1,1 + Zt,1, Xt,2 = φXt−1,2 + Zt,2,

where {Zt,1} and {Zt,2} are independent zero-mean unit-variance Gaussian white noise

series. Hence, the two components of {Xt} are independent AR(1) series having the same

univariate covariances at all lags. Now suppose that both components of {Yt} obey MA(1)

dynamics:

Yt,1 = ηt,1 + θ1ηt−1,1, Yt,2 = ηt,2 + θ2ηt−1,2,

where {ηt,1} and {ηt,2} are independent zero-mean variance σ2
η Gaussian white noise series.

A simple computation shows that {Xt,1} and {Yt,1} have the same lag-zero and lag-one

autocovariances when

φ =
θ

1 + θ2
, σ2

η =
1 + θ2

1 + θ2 + θ4
.

To mix the two components (so that {Xt,1} and {Xt,2} are not independent), set

Xt = L

 Xt,1

Xt,2

 , Yt = L

 Yt,1

Yt,2

 ,

where

L =

 1/2 1/3

−1/3 1/2

 .
Then {Xt} and {Yt} have different signal dynamics, yet, by construction, ΓX(0) = ΓY (0)

and ΓX(1) = ΓY (1).

The Case VII probabilites use φ = 1/4. The values θ1 = 2 +
√

3, θ2 = 2 −
√

3,
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and σ2
η = 0.9952 were then chosen to satisfy the above constraints. The Table 3.2 rejection

proportions show that while the ∆̄ statistic does not detect signal inequality well, the λ

statistic is almost completely fooled. Because of this, we do not consider comparing signals

whose autocovariances match to a higher number of lags as the pattern is clear: the λ

statistic will have more difficulty correctly discriminating such signals.

Overall, the ∆̄ tests seems to perform well without the need for dimension augmen-

tation. Performance of the classical λ test can degrade should autocorrelations in the series

be present (i.e., this test perform well for white noise discrimination only). We suggest that

the ∆̄ statistic be considered should conclusions on signal equality have importance.

3.4 Gearbox Analysis

To demonstrate discrimination capabilities on actual data, the λ and ∆̄ statistics

will be computed for three experimentally collected gearbox vibration signals of dimension

d = 2. Our goal here lies with fault diagnosis. In fault diagnosis schemes, a known healthy

signal is compared to a test signal, which may be healthy or unhealthy. An unhealthy signal

is indicative of faults. Such an approach has been used to diagnose faults in wind turbine

gearboxes ([29] [30]), gas turbines ([31] [33]), electric motors ([34] [35] [36] [37]), and general

rotating components ([38]). See [39] [40] [41] [42] [43] [44] [45] [46] [47] and [48] for other

fault detection research.

The vibration data used here comes from The Prognostics and Health Management

Society (PHM Society) as part of their 2009 PHM Challenge Competition Data Set. Similar

data sets are found at NASA’s Prognostics Center of Excellence’s prognostic-data-repository

(http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/). The data

were collected from a generic, three-axis gearbox with accelerometers mounted on the input

side and output side (see fig. 3.2). The input pinion had 32 teeth, the input-side idler gear

96 teeth, the output-side idler gear 48 teeth, and the output gear 80 teeth, resulting in the

5 to 1 reduction ratio.
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Figure 3.2: System diagram of the generic industrial gearbox used in the 2009 PHM Society
competition showing the location of the accelerometers and the physical relation of the
components.

The vibration data set, as a whole, contains over 560 two dimensional series. These

series correspond to gearbox runs at 30, 35, 40, 45, and 50 Hz under high and low load-

ings, all repeated twice. This frequency sequence was run again for numerous fault cases,

including chipped teeth, broken teeth, eccentric gears, bent shafts, imbalanced shafts, and

inner and outer bearing defects. This battery of was repeated for helical and spur gears.

The series were collected at 66.6kHz and are of length N = 266000.

Our investigation focuses on three series. Series A and B were collected from the

gearbox when no faults are present (healthy data). Series C was collected after various faults

have been introduced (faulty data). The faults present in series C include an eccentric gear,

a gear with a broken tooth, and a bearing with a fouled ball.

Figure 3.3 plot segments of the component series. Notice that the data appear to

have a constant mean (roughly) and were sampled at a very high frequency. In fact, the

entire data length corresponds to only x.xx seconds of runtime. In truth, non-stationarity is

likely present in these series. Plausibly, there are many deterministic sinusoids embedded in

the series, a prominent one residing at 30Hz. We will combat local variance change aspects

by making sliding subsegments of length 1024.

Smoothed periodograms of the components of the healthy series A and faulty series

C are plotted in fig. 3.4. The smoothing uniformly weights eleven adjacent periodogram

ordinates. The periodograms of the healthy and faulty data appear pretty similar. Observe
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Figure 3.3: Sample of data to be analyzed. (a) Gear 1 Signal 1. (b) Gear 1 Signal 2. (c)
Gear 2 Signal 1. (d) Gear 2 Signal 2.
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that all significant spectral content is located below 12,000Hz and that the more significant

spectral content is found below 5,000Hz. This is to be expected. The input shaft for the

data being analyzed is rotating at 30Hz and with a gear reduction ratio of 5:1, the output

shaft will be rotating at 6Hz. The spectral contributions from the rotating shafts and

gears as well as the tooth interactions are expected to be at lower frequencies, particularly

below 1,000Hz. Because of this, we band-limit all ∆̄ statistics to [0, 1000]Hz. That is

not to say the higher frequencies are totally negligible. A broken tooth, for example,

creates a short-duration disturbance once-per-gear revolution. This once per cycle, short-

duration disturbance may be similar to a impulse-train type disturbance and may affect the

system accordingly. Impact Technologies identified such behavior and exploited it in their

ImpactEnergy detection algorithms ([49] [50] [51] [52] [53] [54]).

0 1 2 3

x 10
4

−25

−20

−15

−10

−5

Single−Sided Amplitude Spectrum of x
1
(t)

Frequency (Hz)

0 1 2 3

x 10
4

−25

−20

−15

−10

−5

Single−Sided Amplitude Spectrum of x
2
(t)

Frequency (Hz)

0 1 2 3

x 10
4

−25

−20

−15

−10

−5

Single−Sided Amplitude Spectrum of y
1
(t)

Frequency (Hz)

0 1 2 3

x 10
4

−25

−20

−15

−10

−5

Single−Sided Amplitude Spectrum of y
2
(t)

Frequency (Hz)

Figure 3.4: Periodograms of healthy and faulty signals. (top left) Healthy signal, input
accelerometer. (bottom left) Healthy signal, output accelerometer. (top right) Faulty signal,
input accelerometer. (bottom right) Faulty signal, output accelerometer. Notice the change
in the periodograms from healthy signal to faulty signal.

To compare signals, each series will be segmented into non-overlapping segments

of length 1024, resulting in roughly 250 subsegments. Each subsegment will be compared

to the corresponding subsegment in the other series and referred to as a trial. Each trial

calculates a λ and a band-limited ∆̄. Once all 250 comparisons are made, the percentage

of trials that exceed the 95th percentile for each corresponding statistic will be reported.
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Table 3.3: Detection Powers
Test/Comparison λ ∆̄

Healthy (A)-Healthy (B) 96.4% 50.0%

Healthy (A)-Faulty (C) 100.0% 87.2%

Healthy (B)-Faulty (C) 96.4% 88.4%

Table 3.3 summarizes the outcomes. For the case where the comparison is between

two like signals, the λ statistic declares them different 96.4% of the time (all conclusions are

made at level 5%) while the ∆̄ statistic declares them different only 50.0% of the time. In

truth, there are likely some subtle differences between the two healthy case runs. However,

as there is significant non-zero correlation at many lags in this data, one believes the ∆̄

results to be more realistic.

When comparing signal A to signal C, the λ statistic declares them different 100.0%

of the time while the ∆̄ statistic declares them different 87.2% of the time. When comparing

signal B to signal C, the λ statistic declares them different 96.4 the ∆̄ statistic declares them

different xx.x% of the time. Overall, it appears that both statistics capably identified that

the signals were born of two different processes.

3.5 Conclusion

This paper compared two multivariate signal discrimination techniques under var-

ious scenarios. The likelihood ratio statistic λ rejects signal equality in a reliable manner

only when the series considered are white noise. However, when the series are white noise,

it has a larger detection probability than the ∆̄ statistic. In cases where autocovariances

at higher lags are non-zero, the ∆̄ statistic is more reliable. In fact, a simple VAR(1) case

was constructed where the false alarm rate of the λ statistic was approximately 15 times

higher than advertised. Applications to an experimental set of gearbox vibrations showed

similar structure. Overall, it is wise to base signal equality conclusions on the ∆̄ statistic

when signals are not multivariate white noises.
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