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Abstract

This dissertation aims to address two problems in regression analysis. One problem is the

model selection and robust parameter estimation in high dimensional linear regressions. The other

is concerning developing a robust and efficient estimator in nonparametric regressions.

In Chapter 1, we introduce the robust and efficient regression analysis, discuss those two

interesting problems and our motivations, and present several exciting results.

We propose a novel robust penalized method for high dimensional linear regression in Chap-

ter 2. Asymptotic properties are established and a data-driven procedure is developed to select

adaptive penalties. We show it is the very first estimator to achieve desired oracle properties with

certainty for high dimensional linear regression. Extensive simulations have been conducted and

demonstrate the usefulness of the new technique.

A new local polynomial nonparametric regression is developed in Chapter 3. It minimizes

a convex combination of several weighted loss functions simultaneously. The optimal weights are

selected by a proposed procedure and adapt to the tails of the error distribution resulting in a

procedure which is both robust and resistant. The asymptotic properties have been investigated.

We show the resulting estimators are at least as efficient as those provided by existing procedures,

but can be much more efficient for many distributions. Its excellent finite sample performance is

presented through simulations under a variety of settings. A real data analysis exhibits the usefulness

of the proposed methodology.
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Chapter 1

Introduction

Regression analysis is a fundamental statistical tool for the investigation of the relationships

between a dependent variable and one or more independent variables. Of interest is to estimate a

function called the regression function, which describes the expected behaviors or characteristics of

the dependent variables given the independent variables. A great number of techniques for carrying

out regression analysis have been developed and applied to various scientific domains for centuries,

and some of them even have become standard procedures for statistical data analysis, such as linear

regression and ordinary least squares. However, there are still a lot of open problems in this area,

and thus abundant active research is still being conducted. For instance, the least square technique

is inefficient if errors are heavy-tailed. More importantly, it could fail to provide reliable estimates

if the data set is contaminated by some outliers. Therefore, in recent decades, a great amount of

literature has been devoted to develop robust and efficient regression analysis.

Linear regression can be used to detect which among the independent variables are related

to the dependent variable, and to measure the effect of independent variables upon the dependent

variables. This usage is well known as “model selection and parameter estimation”. Although this

has been well studied for the case where the number of independent variables is finite, it is still a

big challenge in the situation where the number of independent variables is much larger than the

number of observations. One of our aims is to propose a robust estimation which can not only select

the true model with probability converging to 1, but also estimate the parameters accurately.

Another attractive problem is so called nonparametric regression, in which we do not as-

sume that the underlying regression function is of any particular parametric form. Instead, it is
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simply required to be a smooth function. Model misspecification can be avoided by using non-

parametric regression. Moreover, nonparametric regression has larger flexility to explain data for

which parametric regression models are incapable of capturing the characteristics of the conditional

expectation function. We attempt to develop a kernel-based local polynomial estimator to achieve

both robustness and efficiency under different errors.

1.1 High dimensional linear regression

Over the last decade, many new applications arising in biometrics, image processing, e-

conometrics, and many other fields, have created an increasing demand for high-dimensional data

analysis to deal with a large number of variables. In many situations, e.g. climate studies, business

intelligence, DNA microarry data, pattern identification problems in social network, the dimen-

sionality, p, exceeds the number of observations, n. The dimensionality p can possibly be of order

O(exp(nα)), for some 0 < α < 1; and may increase with the growth of sample size. But in most

situations, only s of them are significant, where s = o(n). Classical subset selection procedures

are incapable to provide reliable estimates of regression model parameters due to extremely heavy

computational intensity and instability suffering from ‘the curse of dimensionality’. Some of my

doctoral research concentrated on developing model selection and parameters estimation procedures

for high-dimensional linear models (HDLMS).

Some literature (e.g. Fan and Peng (2004), Huang et.al.(2008a), Huang et.al.(2008b)) has

considered modifying penalized estimators (e.g. LASSO, SCAD) for HDLMS, and established the

desired oracle property. Here the oracle property of a method means it can correctly select the

significant variables with probability converging to 1, and provide asymptotically normal estimators

which in the limit perform as well as those fitted with all insignificant variables excluded in advance.

However, those techniques are based on the squared loss and hence require stringent moment con-

ditions on the unobservable error sequence, {εi}, which may not be satisfied by many econometric

data sets. To achieve robustness, Candes and Tao (2007) and Belloni and Chernozhukov (2011) at-

tempted to integrate the quantile regression into the penalty framework. However, both estimators

only achieve the
√
n/(s log(p)) consistency rate, which is slower than the oracle rate

√
n
s from He

and Shao (2000).

Motivated by the results of Wang et al. (2007), Zou and Yuan (2008), and others in
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the literature, we explore robust quantile techniques with fully adaptive penalties to produce an

adaptively penalized quantile regression, which can simultaneously select the model and estimate

regression regression coefficients. We relax strong moment conditions imposed on {εi}, propose a

new data-driven procedure to select penalties which completely adapt to magnitudes of regression

coefficients, and demonstrate that the adaptively penalized quantile regression is not only robust

but also possesses the desired oracle property. This is an advancementd from the existing quantile

regression methods for HDLMS. To our best knowledge, this is the first quantile regression estimator

to enjoy the oracle property with certainty for high dimensional linear models.

1.2 Adaptively weighted kernel regression

A general nonparametric regression model is defined as yi = m(xi) + σ(xi)εi. Since the re-

gression function m(·), does not take any predetermined form, this model has a much larger flexibility

to explain data, and hence can be applied in many areas including: group testing, environmental

science, social science, etc.

Numerous procedures have been proposed to estimate m(·). Most of them are constructed

as local polynomial approximation with two types of loss functions: the least squares (LS) and the

quantile check functions. Compared to local LS, the local quantile regression is robust and more

efficient for heavy-tailed errors, but may be inefficient for short-tailed errors. Kai et al. (2010)

proposed a local composite of quantile regression (CQR), and showed that the local CQR can

significantly improve the estimation efficiency of its local LS counterpart for common non-normal

errors. However, the loss in efficiency compared to the local LS still exists in many scenarios. In

addition to that, it is unclear how many quantiles should be used in the local CQR. Even for a huge

data set, increasing the number of quantiles does not necessarily improve the efficiency of estimates

(See Kai et al. (2010)).

We develop a new local polynomial methodology for nonparametric regression based on

optimizing a linear combination of several loss functions. We propose a simple data-driven procedure

to select weights for the convex combination and establish the asymptotic properties of the resulting

estimator. We show that the proposed method combines the strengths of LS and quantile regression

to gain both efficiency and robustness. It performs at least as well as the local LS or a local CQR

for any error distribution, and can improve the estimation efficiency upon LS and CQR for many
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distributions. The proposed method is also quite robust and works well even if the error distribution

does not have a finite variance. Moreover, we demonstrate we can increase the number of quantiles

for a larger data set to achieve more efficiency. Our simulation experiment and real data analysis

also exhibited the proposed estimator compete favorably with other methods.
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Chapter 2

Adaptive Penalized Quantile

Regression for High Dimensional

Data

In this chapter, we propose a new adaptive L1 penalized quantile regression estimator for

high-dimensional sparse regression models with heterogeneous error sequences. We show that under

weaker conditions compared with alternative procedures, the adaptive L1 quantile regression selects

the true underlying model with probability converging to one, and the unique estimates of nonzero

coefficients it provides have the same asymptotic normal distribution as the quantile estimator which

uses only the covariates with non-zero impact on the response. Thus, the adaptive L1 quantile

regression enjoys oracle properties. We propose a completely data driven choice of the penalty

level λn, which ensures good performance of the adaptive L1 quantile regression. Extensive Monte

Carlo simulation studies have been conducted to demonstrate the finite sample performance of the

proposed method.
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2.1 Introduction

Consider the high dimensional sparse regression model

yi = β∗0 + β∗1zi1 + · · ·+ β∗pzip + εi, i = 1, · · · , n (2.1)

where {yi}’s are random variables, {zi}’s are p× 1 independent random covariate vectors, and {εi}

are independent random error terms with P (εi ≤ 0|zi) = τ for some quantile index τ . We allow the

dimension of the covariate vector to be very large, possibly of order O(exp(nα)), for some constant

0 < α < 1; but the regression parameter β∗ is sparse in the sense that only s << p of its components

are non-zero. Of interest is to identify the nonzero regressors and estimate their regression coefficients

as well. Such models have attracted great attention due to the demand for data analysis created by

many new applications arising in genetics, signal processing, machine learning, climate change point

detection and other fields with high-dimensional data sets available.

Various methods have been developed to identify the unknown model and estimate the

corresponding coefficients simultaneously for the high dimensional sparse model (see Fan and Peng

2004; Huang et.al. 2008a; Huang et.al. 2008b), which mostly focus on the penalized least squares

regression. Although some of them enjoy desirable oracle properties (Fan and Li 2001), they gener-

ally require stringent moment assumptions (Cramér condition) on the unobservable homoscedastic

random errors, {εi}. Therefore, they are not robust and may no be applicable in practice. Compared

with least squares, another important statistical method, quantile regression (Koenker and Bassett

1978), is robust and allows relaxation of moment conditions on the heterogeneous error sequence.

The advantage of quantile regression goes beyond that: it can provide a more complete model of

the relationship between predictors and response variables. (e.g. Koenker 2005), it owns excellent

computational properties. (e.g. Portnoy and Koenker 1997), and it has widespread application-

s, (e.g. Yu et.al. 2003, Chernozhukov 2005). Belloni and Chernozhukov (2011) integrate general

quantile regression into an L1 penalty framework for the high-dimensional sparse model. Another

interesting estimator, the Dantzig selector, considered by Candes and Tao (2007), can be consid-

ered as a penalized median regression. However, both of these estimators achieve the
√
n/(s log(p))

consistency rate, which is slower than the oracle rate
√
n/s from He and Shao(2000). Wang et

al. (2012) proposed a quantile regression with SCAD penalty. Since the objective function is not

convex, the solutions are not unique. To our best knowledge, the desirable oracle properties have
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not been achieved by any penalized quantile regression for the high-dimensional sparse model.

we attempt to overcome the limitations of the existing quantile regression techniques by

combining quantile regression with a fully adaptive L1 penalty function to produce adaptive L1

quantile regression, which can simultaneously select the model and provide a robust estimator pos-

sessing oracle properties. Exploiting the ideas of Wang et.al. (2007) and Zou and Yuan (2008), we

use the consistent estimator from Belloni and Chernozhukov (2011) to determine adaptive weights.

Since we are using quantile loss functions, we do not require the Cramér condition on the error

sequence. Our contributions are summarized as follows:

• First, we show that under mild conditions, the adaptive L1 quantile regression will select the

correct model with probability converging to 1, and for any quantile index in a compact set

in (0,1), the unique adaptive L1 quantile regression estimates are consistent with the oracle

rate
√
n/s. This is an advancement from the existing quantile regrssion methods for the

high-dimensional sparse model.

• Second, any linear combination of the estimates is asymptotically normal with the same asymp-

totic variance as that of the oracle estimator.

• Third, in deriving the aforementioned oracle properties, we propose a new data-driven proce-

dure to select the penalty level and show that it satisfies the requirements to achieve the oracle

rate.

The rest of the chapter is organized as follows. In Section 2, we define the adaptive L1

quantile regression procedure. In section 3, we study the asymptotic properties of the L1 quantile

regression estimator and discuss the choice of penalty level λn. Numerical studies are presented

in Section 4. We give concluding remarks in Section 5, and relegate the technical proofs to the

Appendix A.

2.2 The adaptive L1 quantile regression

We start with introducing notations. We implicitly index all parameter values by the sample

size n, but we omit the index whenever this does not cause confusion. We use the notation a ∨ b =

max{a, b} and a∧ b = min{a, b}. We denote the l2-norm by ‖ · ‖, and the l0-”norm” (the number of
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nonzero components)by ‖ · ‖0. Given a vector δ ∈ Rp+1, and a set of indices T ⊂ {0, 1, · · · , p}, we

denote by δT the vector in which δTj = δj if j ∈ T , δTj = 0 if j /∈ T . And q∗ is the τth quantile of ε.

In order to define the adaptive L1 quantile regression, let us briefly review quantile regression

and L1 penalized quantile regression. Let xi = (1, zTi )T . Quantile regression estimator of β∗ can be

obtained by solving

β̂ = arg min
β

n∑
i=1

ρτ (yi − xTi β), (2.2)

where ρτ (t) = τ1(t > 0)t− (1− τ)1(t ≤ 0)t is the check function.

Without loss of generality, we assume that the first s + 1 elements of β∗ are nonzero, and

the rest are zero. For simplicity, write β∗ = (β∗Ta , β∗Tb )T , where β∗a is a (s+ 1)× 1 vector and β∗b is

a (p− s)× 1 vector of zeroes. Similarly, we decompose xi as (xTia,x
T
ib)

T .

Belloni and Chernozhukov (2011) proposed a penalized L1 quantile regression estimator β̃,

which minimizes:

Q̃τ (β) =

n∑
i=1

ρτ (yi − xTi β) +
λn
√
τ(1− τ)

n

p∑
i=1

σ̂j |βj | (2.3)

where σ̂j =
∑n
i=1 x

2
ij/n, j = 1, · · · , p and obeys P (max1≤j≤p |σ̂j−1| ≤ 1/2) ≥ 1−α→ 1. Here λn is

the penalty parameter. Ideally, a penalty function should be adaptive in the sense that it penalizes

insignificant variables enough to force estimates of their regression coefficients to be zero, but does

not overpenalize significant variables, so that the correct model can be identified and hence oracle

properties can be attained. However, it can be seen that the penalty for each variable in (3) is of the

same order, λn/n, and hence not quite adaptive. A similar issue appears in the estimator proposed

by Candes and Tao (2007).

To improve the quantile regression for the high-dimensional sparse model, we attempt to

assign fully adaptive weights to different variables and propose the adaptive L1 quantile regression

estimator β̂, which is a minimizer of the objective function

Qτ (β) =

n∑
i=1

ρτ (yi − xTi β) + λn

p∑
j=1

ωj |βj | (2.4)

where ω ∈ Rp is weights vector chosen to be |β̃|−1 ∧
√
n, for any

√
n/(s log(n ∨ p))-consistent

estimator β̃ of β∗. For example, we can take the estimator from Belloni and Chernozhukov (2011)

as β̃, which under conditions A1-A3 given below will converge at a sufficiently fast rate. The

formulation (2.4) includes the LAD-Lasso proposed by Wang et. al. (2007) as a special case that

8



the dimensionality p is fixed.

2.3 Asymptotic Properties

In this section, we state primitive regularity conditions and then establish the asymptotic

properties of the adaptive L1 quantile regression estimator.

2.3.1 Regularity Conditions

The following regularity conditions are assumed throughout the rest of this chapter.

A1 (Sampling and smoothness). For any value x in the support of xi, the conditional density

fε|z(ε|z) is continuously differentiable at each y ∈ R, and fε|x(ε|x) and ∂
∂εfε|x(ε|x) are bounded

in absolute value by constants f̄ and f̄ ′ uniformly in ε ∈ R and x in the support of xi. Moreover,

the conditional density of ε|x evaluated at the conditional quantile q∗x is bounded away from

0 uniformly for any x in the support of xi. That is, there exists a constant f , such that

fε|x(q∗x|x) > f > 0 uniformly.

A2 (Restricted identifiability and nonlinearity). Define T = {0, 1, · · · , s}, and T̄ (δ,m) ⊂ {0, 1, · · · , p}\

T as the support of the m largest in absolute value components of the vector. For some constants

m ≥ 0 and c ≥ 0, the matrix E[xix
′
i] satisfies

κ2
m := inf

δ∈Af,δ 6=0

δ′E[xix
′
i]δ

‖δT ⋃
T̄ (δ,m)‖2

> 0

where A := {δ ∈ Rp+1 : ‖δT c‖ ≤ c0‖δT ‖, ‖δT c‖0 ≤ n} and κ2
0 ≤ Cf for some constant Cf .

Moreover,

q :=
3

8

f3/2

f̄ ′
inf

δ∈A,δ 6=0

E[|xTi δ|2]3/2

E[|xTi δ|3]
> 0

A3 (Growth rate of covariates) The growth rate of significant variables and all variables allowed is

assumed to satisfy s3(log(n ∨ p))2+γ/n→ 0, for some γ > 0.

A4 (Moments of covariate) Covariates satisfy the Cramér condition E[|zij |k] ≤ 0.5CmM
k−2k! for

some constantd Cm, M , all k ≥ 2 and all j = 1, · · · , p

9



A5 (Well separated regression coefficients) We assume that there exists a b0 > 0, such that for all

j ≤ s, |β∗j | > b0. We note b0 could still be unknown to us.

Conditions A1-A5 are commonly assumed in the literature (see e.g. Fan and Peng 2004;

Huang et.al. 2008a; Huang et.al. 2008b, Belloni and Chernozhukov 2011). Condition A1 is slightly

different from Condition D.1 in Belloni and Chernozhukov (2011). The assumption D.1 in Belloni

and Chernozhukov (2011), requiring the conditional density at the conditional quantile is uniformly

bounded away from 0, can be replaced by a more general condition. In fact, we only need that the

conditional density is nonvanishing. Condition A2 requires that there exists a constant Cf , such

that κ2
0 ≤ Cf . This along with the fact that κ2

m is nonincreasing in m, immediately entails that the

smallest eigenvalue of the covariance matrix Σs := E[xiax
′
ia] is finite and bounded away from 0.

Condition A3 seems to be a strong assumption at first glance, because it limits the size of

significant variables to be less than n1/3, rather than n2/3 as shown in Portnoy (1984). However, this

assumption is in accord with Welsh (1989), in which the author showed that if the score function

is discontinuous, the growth rate for covariates, p3(log(n))2+γ/n → 0 is sufficient to obtain the

consistency and asymptotic normality under the full model. Since we deal with the high-dimensional

sparse model, the growth rate would be expected to obey s3(log(n ∨ p))2+γ/n → 0. Condition A4

is important for us to apply Bernstein’s inequality, and hence to establish the sparsity property of

the adaptive L1 quantile estimator. In addition, A5 also implies
∑n
i=1E‖xia‖2 ∼ O(ns), which is

essential for establishing the oracle consistency property. Condition A5 is also required in Huang et.

al. (2008b). It assumes that the nonzero coefficients are uniformly bounded away from 0; in other

words, the parameter values of the true model are well separated from zero. This assumption can

be relaxed to that minj≤s |β∗j | goes to 0 at a suitable rate, at the cost of more complicated technical

proofs.

2.3.2 Oracle Properties

We show that the adaptive L1 quantile regression estimator enjoys oracle properties.

Theorem 2.3.1 231 Suppose that assumptions A1-A5 are satisfied. Furthermore, if λn satisfies

λns/
√
n → 0 and λn/(

√
s log(n ∨ p)) → ∞, then the adaptive L1 quantile regression estimator β̂

must satisfy the following three properties:

10



1. Variable selection consistency:

P (β̂b = 0) ≥ 1− 6 exp{− log(n ∨ p)
4

}

2. Estimation consistency:

‖β̂ − β∗‖ = Op(

√
s

n
)

3. Asymptotic Normality: Let u2
s = αTΣsα for any vector α ∈ Rs satisfying ‖α‖ <∞. Then

n1/2u−1
s αT (β̂a − β∗a)

D→ N(0,
τ(1− τ)

f2(q∗)
)

Remark 2.3.1 β̃ must be at least
√
n/(s log(n ∨ p))-consistent. If β̃ is a consistent estimator

of β∗ with some faster rate, that is, there is a sequence of an such that an‖β̃ − β∗‖ ∼ Op(1)

and
√
n/(s log(n ∨ p)) ∼ o(an), the oracle properties can still be achieved if λns/

√
n → 0 and

λnan/
√
n log(n ∨ p)→∞.

Remark 2.3.2 The asymptotic normality of any linear combination u−1
s α(β̂a − β∗a) is a substitute

for the traditional asymptotic normality. Convergence of the finite-dimensional distributions en-

sures convergence in sequence space. In practice, hypothesis tests and confidence intervals would be

constructed using linear combinations.

2.3.3 The choice of λn

The regularization parameter, λn, plays a crucial role for the adaptive L1 quantile esti-

mator. It controls the overall magnitude of the adaptive weights and should be chosen so that

insignificant variables’ regression coefficient estimates shrink to zero, while significant variables are

not overpenalized.

Procedures, which are commonly used to select λn, such as k-fold cross-validation, gener-

alized cross-validation (Tibshirani 1996; Fan and Li 2001), and so on, can be applied to choose λn

with some appropriate modification. However, using them may have several drawbacks. First, p, the

number of variables in the full model, is increasing as the sample size grows. This factor results in an

unpleasant issue in that the number of potential models goes to infinity very quickly, which makes

computation much too expensive. Second, their statistical properties are not clearly understood for
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(ultra)high-dimensional regression. For example, there is no guarantee that K-fold cross-validation

would provide a choice of λn with a proper rate. Third, their statistical properties are still uncharted

under the heavy-tailed errors, where quantile regressions are often applied.

Wang and Leng (2007) developed a BIC criterion to select the tuning parameter λn for least

square approximation (LSA) procedure, and its theoretical model selection consistency property has

been demonstrated in Wang et.al. (2007) for fixed dimensionality and in Wang et. al. (2009) for

high-dimensional regression. However, two limitations make such a BIC criterion less favorable in

this ultra-high dimensional problem. The first limitation is that one of the requirements in Wang

et. al. (2009) is p < n, which may not be satisfied in the ultra-high dimensional problem. The

other limitation is that there is no efficient path-finding algorithm for quantile regression. Thus,

we need to search all possible subsets to find the minimum BIC. This could potentially exhaust

our computation. One might be able to use the LSA to approximate the quantile regression, and

then implement least angle regression slicing (LARS) algorithm to find a solution path in an easier

manner, as pointed out in Wang and Leng (2007). However, this would require obtaining a reliable

estimate of the inverse of the covariance matrix (see Wang and Leng 2007), which is a difficult

problem in the ultra-high dimensional case. Instead we consider an alternative method for selecting

λn.

According to Theorem 2.3.1, a proper λn must satisfy two conditions: λns/
√
n → 0 and

λn/(
√
s log(n ∨ p))→∞. We can see that O(

√
s log(n∨p)(log n)γ/2) is a suitable choice of λn under

the condition A5. However, the obstacle is that we do not know the true dimension s. Hence, a

natural problem is can we find a good estimate of s, or at least get a quantity of order O(s)? Belloni

and Chernozhukov (2011) show that their estimator ‖β̃τ‖0 ∼ Op(s). If the parameter values of the

minimal true model are well separated from zero as condition A7 assumes, then ‖β̃‖0 ∼ Op(s). Since

β̃ is consistent, ‖β̃τ‖0 is of order s with a large probability. Therefore, we can use β̃τ not only to

adjust weights for each regression coefficient, but also to get a quantity used to construct a good

choice of λn. In practice, we choose λn = 0.25
√
‖β̃‖0 log(n ∨ p)(log n)0.1/2 and it works well in our

simulation studies.
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2.4 Numerical analysis

To evaluate the finite sample performance of the proposed estimator, we conducted Monte

Carlo simulations. We compare the performance of the oracle quantile estimator, the L1 penalized,

post L1 penalized quantile estimators (Belloni and Chernozhukov 2011), and the proposed adaptive

estimator. The post L1 penalized quantile estimator is obtained by applying ordinary quantile

regression to the model selected by the L1 penalized quantile regression.

We adopt the simulation settings used in Belloni and Chernozhukov (2011). Consider the

regression model 1:

yi = xTi β + ε,

where β = (1, 1, 1/2, 1/3, 1/4, 1/5, 0, · · · , 0)T and xi = (1, zTi )T consists of an intercept and covariates

zi ∼ N(0,Σ), and the errors ε are independently and identically distributed ε ∼ N(0, σ2). The

dimension p of covariate is 500, and the true dimensiona s is 6. The regressors are correlated with

Σij = ρ|i−j| and ρ = 0.5. We apply the median regression and choose λn = 0.25
√
‖β̃‖0 log(n ∨

p)(log n)0.1/2. We consider three levels of noise σ = 1, 0.5 and 0.1. 100 training data sets are

generated, each consisting of 100 observations. We assess model selection by calculating N1: the

Table 2.1: Simulation results for model 1

Average N1 Average N2 Underfitted Correctly fitted Overfitted Bias Empirical risk

σ=1
Oracle 6 6 0 1 0 0.03 0.31
L1 3.21 3.21 1 0 0 0.77 1.09

Post L1 3.21 3.21 1 0 0 0.30 0.59
Adaptive 4.04 4.04 1 0 0 0.22 0.43

σ=0.5
Oracle 6 6 0 1 0 0.02 0.15
L1 4.41 4.40 0.98 0.02 0 0.49 0.69

Post L1 4.41 4.40 0.98 0.02 0 0.21 0.31
Adaptive 5.05 5.04 0.73 0.26 0.01 0.16 0.25

σ=0.1
Oracle 6 6 0 1 0 0 0.03
L1 5.93 5.93 0.07 0.93 0 0.15 0.20

Post L1 5.93 5.93 0.07 0.93 0 0.01 0.04
Adaptive 6.05 5.99 0.01 0.95 0.04 0.01 0.03

number of covariates selected by each estimator β̂, N2: the correct number of covariates selected by

each estimaor, and the percentage of underfitted, correctly fitted, and overfitted. We evaluate the

estimation accuracy by computing the norm of the bias and the empirical risk [E[xTi (β̂ − β)]2]1/2.

The results are summarized in the Table 1. We can see that although the proposed estimator may
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still fail to select some significant variables when σ is large due to the ultra-high dimensionality, it

significantly improves the performance of quantile regression in both model selection and estimation,

compared with the L1 penalized , post L1 penalized quantile estimators. Notice that the proposed

estimator does not necessarily treat 0 as an absorbing status even when the initial L1 penalized

estimator provides a zero estimate. This is the advantage of using ωj = |β̃|−1 ∧
√
n, which provides

another opportunity to select the significant regressors, and hence provides better results.

Following Wang et. al (2012), we consider model 2, which is a heterogenous version model

1.

yi = xTi β + Φ(xi2)ε

where Φ(·) is the standard normal cumulative density function. We consider σ = 1 and σ = 0.5.

And the results are presented in Table 2. Similar conclusions can be drawn from Table 2. All three

Table 2.2: Simulation results for model 2

Average N1 Average N2 Underfitted Correctly fitted Overfitted Bias Empirical risk

σ=1
Oracle 6 6 0 1 0 0.02 0.11
L1 4.36 4.35 0.96 0.04 0 0.53 0.74

Post L1 4.36 4.35 0.96 0.04 0 0.20 0.31
Adaptive 5.08 5.06 0.75 0.25 0 0.14 0.22

σ=0.5
Oracle 6 6 0 1 0 0 0.05
L1 5.35 5.34 0.62 0.38 0 0.33 0.46

Post L1 5.35 5.34 0.62 0.38 0 0.12 0.15
Adaptive 5.88 5.85 0.15 0.85 0 0.05 0.08

methods are able to work for regression models with heterogenous errors. However, as observed from

Table 2, the adaptive penalized quantile regression drastically outperformed the L1 penalized , post

L1 penalized quantile estimators in both model selection and estimation.

2.5 Conclusion

In this chapter, the adaptive L1 quantile regression is introduced and studied for high-

dimensional sparse models. It is shown that such an adaptive robust estimator enjoys the oracle

properties. In the case of quantile regression we can relax the moment conditions and the constant

variance assumption on the error sequence from those used to prove oracle properties of penalized

least squares loss methods for high-dimensional data. Our simulation results demonstrate that the
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proposed estimator owns satisfactory finite sample performances. Although the oracle properties of

a single quantile index τ are presented here, the result can be easily extended to a finite composite

quantile regression [Zou and Yuan (2008)].
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Chapter 3

Adaptively Weighted Kernel

Regression

In this chapter, we develop a new kernel-based local polynomial methodology for nonpara-

metric regression based on optimizing a linear combination of several loss functions. Optimal weights

for least squares and quantile loss functions can be chosen to provide maximum efficiency and these

optimal weights can be estimated from data. The resulting estimators are at least as efficient as

those provided by existing procedures, but can be much more efficient for many distributions. The

data based weights adapt to the tails of the error distribution resulting in a procedure which is both

robust and resistant. Furthermore, the assumption of homogeneous error variance is not required.

The method is used to model the change of global temperature anomolies over the last 100 years.

3.1 Introduction

Consider a general nonparametric model

Y = m(X) + σ(X)ε, (3.1)

where Y is the response variable, X is the explanatory variable, m(·) is a smooth nonparametric

regression function, σ(X) is a smooth function and ε is random error with a p.d.f. symmetric of 0.

Without loss of generality, we assume E[ε2i ] = 1 if E[ε2i ] <∞.
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Various methods have been developed to fit this type of model [see e.g. Watson (1964);

Wahba (1990); Fan and Gijbels (1996)]. It is fairly common to fit the model weighted least squares

(LS) with local polynomial approximation [e.g. Fan and Gijbels (1992)]. However, least squares

fitting can be very sensitive to heavy-tailed errors and severe outliers. Consequently least squares

based local polynomial regression could fail to produce reliable estimates in some cases. In contrast,

quantile regression [Koenker and Bassett (1978)] is robust against outliers, can provide a more

complete model of the relationship between predictors and response variables [e.g. Koenker (2005)],

owns excellent computational properties. [e.g. Portnoy and Koenker (1997)], and has widespread

applications [e.g. Yu et.al. (2003); Chernozhukov (2005)]. As a result, a substantial amount of

literature has been devoted to study local polynomial quantile regression [see e.g. Fan et al. (1994);

Welsh (1996); Yu and Jones (1998)]. For some error structures, local polynomial quantile regression

can be more efficient than local least squares polynomial regression. For example, if the error follows

a Laplacian distribution, the local median polynomial regression has been demonstrated to be the

most efficient [Fan et al. (1994); Welsh (1996); Yu and Jones (1998)]. In other cases, local quantile

regression could be arbitrarily less efficient than local LS polynomial regression (e.g., for normal

data), resulting from the fact that loss functions of quantile regressions penalize residuals of small

magnitude too strongly.

To improve the performance of quantile regression, Koenker and Portnoy (1987) considered

L-estimation for linear models. An L-estimator is a weighted average of quantile estimators, which

can achieve high efficiency for non-normal data. Bickel (1973) and Koenker (1984) demonstrate

that as the number of quantiles used increases, the optimally weighted L-estimator is as efficient

as the maximum likelihood estimator. However, it is difficult to find the optimal weights [see

Portnoy and Koenker (1989)], and the computational cost increases dramatically with the number

of quantiles. Instead, Zou and Yuan (2008) introduced composite quantile regression (CQR), which

equally weights quantile loss functions. Kai et al. (2010) adapted composite quantiles to the local

polynomial framework. They showed that the local polynomial CQR can significantly improve the

estimation efficiency of its local LS counterpart for common non-normal errors. However, the loss

in efficiency compared to the LS polynomial regression still exists in many scenarios. In addition

to that, it is unclear how many quantiles should be used in the local polynomial CQR. Even for

a huge data set, increasing the number of quantiles does not necessarily improve the efficiency of

estimates [See Kai et al. (2010)]. Since neither L-estimators nor CQR estimators incorporate the
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least squares loss, these estimators can require a large number of quantiles to achieve efficiency

especially when the magnitude of errors is small. Bradic et al. (2011) attempted to minimize

composite loss functions simultaneously which results in a robust and efficient estimator for high

dimensional linear regression.

In this chapter, we attempt to embed the usage of a convex combination of loss functions

into nonparametric kernel regression to obtain a robust estimator with significant improvement in

efficiency. Different from the combination of LS and least absolute deviation (LAD) for errors with

finite errors or the combination of quantile losses for symmetric errors discussed in Bradic et al.

(2011), we combine the least squares loss with quantile loss functions for symmetric errors and

picking weights to optimize asymptotic efficiency results in a method which inherits all strengths

from least squares and quantile regression methods. We establish the asymptotic properties of the

resulting estimator and show that it performs at least as well as the local LS polynomial estimator or a

local polynomial CQR for any error distribution, and can improve the estimation efficiency for many

distributions. Furthermore it achieves the same efficiency as the optimally weighted L-estimator

and can achieve higher efficiency than the equally weighted CQR of Kai et al. (2010). We propose

a simple data-driven procedure to select weights for the convex combination and show that the

aforementioned asymptotic properties can be achieved by this adaptively weighted local polynomial

regression estimator. The adaptively weighted local polynomial estimator is quite robust and works

well even if the error distribution does not have a finite variance.

The rest of this chapter is organized as follows. In Section 2, we define the adaptive weighted

local polynomial regression estimator. In Section 3, we study theoretical properties of the proposed

estimator. Section 4 presents our simulation studies and the analysis of a real data set. We give

concluding remarks in Section 5, and relegate technical proofs to the Appendix B.

3.2 The adaptively weighted local polynomial regression

We start by setting up notations. Let ρτ (t) = τ1(t > 0)t − (1 − τ)1(t ≤ 0)t be the check

function with quantile index τ . Let τk = k
q+1 , k = 1, · · · , q be equally spaced quantile indices between

0 and 1. We denote the τkth quantile by qτk , k = 1, · · · , q. In particular, let τ0 = 0, qτ0 = 0 and

ρτ0(t) = t2. We use F (·) and f(·) to denote the cumulative distribution function and probability

density function of εi, respectively. gX(·) is the marginal density of X. K(·) is a classical kernel
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function. We also use the following notations τk,k′ = τk∧k′ − τkτk′ where k ∧ k′ = min{k, k′}, and

τ0,k = E[εi1(εi ≤ qτk)], for k = 1, · · · , q.

In order to define the adaptively weighted local polynomial regression, let us briefly review

the local LS polynomial regression, the local quantile polynomial regression and the local polynomial

CQR.

Let (xi, yi) be n independently and identically distribution observations. Of interest is to

estimate the value of m(X) at x0. Suppose m(X) is smooth enough to be approximated by a pth

order polynomial in a neighborhood of x0, that is, m(x) ≈
∑p
j=0

1
j!m

(j)(x0)(x − x0)j . The local

LS polynomial regression estimator of (m(x0),m(1)(x0), · · · ,m(p)(x0)) is defined as the minimizer

of the following objective function

min
a0,a1,··· ,ap

n∑
i=1

ρτ0

yi − p∑
j=0

1

j!
aj(xi − x0)j

K

(
xi − x0

h

)
(3.2)

where h is a smoothing parameter. Fan and Gijbels (1992) demonstrated that the local LS poly-

nomial regression owns several desirable properties: it adapts to a wide variety of design densities,

significantly reduces bias at boundary points, and attains high minimax efficiency.

However, the local LS polynomial regression suffers from outliers and heavy-tailed errors.

Motivated by its robustness and other good features, several authors [Fan et al. (1994); Welsh

(1996); Yu and Jones (1998)] advocated local quantile polynomial regression

min
a0,a1,··· ,ap

n∑
i=1

ρτ

yi − p∑
j=0

1

j!
aj(xi − x0)j

K

(
xi − x0

h

)
(3.3)

for some quantile index τ . Although the local quantile polynomial regression can be applied for

more general error structures, it can be arbitrarily inefficient compared to the local LS polynomial

regression. To improve the efficiency of the local quantile polynomial regression while maintaining

the robustness, Kai et al. (2010) proposed the local polynomial CQR as follows

min
a01,··· ,a0q,a1,··· ,ap

n∑
i=1

q∑
k=1

ρτk

yi − a0k −
p∑
j=1

1

j!
aj(xi − x0)j

K

(
xi − x0

h

)
(3.4)

They showed that the local polynomial CQR can significantly improve efficiency compared to the

local quantile polynomial regression. However, the loss of efficiency of the local polynomial CQR

19



still exists for some commonly seen distributions.

We consider combining CQR and LS to produce an efficient and robust regression estimator.

Let θ = (a01, · · · , a0q, a0, a1, · · · , ap) and denote the solution to the objective function

min
θ

n∑
i=1

 q∑
k=0

βkρτk

yi − a0k −
p∑
j=0

1

j!
aj(xi − x0)j

K (xi − x0

h

)
(3.5)

by θ̂β = (â01, · · · , â0q, â0, â1, · · · , âp). Here a00 = 0 and β0, · · · , βq are well-chosen non-negative

weights which adapt to the error structures. The details about how to choose those weights are

presented in Section 3.2. The adaptively weighted local polynomial regression estimator is defined

as

m̂β(x0) =
1

2σ

∑q
k=1 βkf(qτk )â0k

β0+ 1
2σ

∑q
k=1 βkf(qτk )

+ â0

m̂
(j)
β (x0) = âj , j = 1, · · · , p

(3.6)

For identification purposes, we set σβ0 +
∑q
k=1 βkf(qτk)/2 = 1. The estimator becomes

m̂β(x0) =
1

2

q∑
k=1

βkf(qτk)â0k + â0. (3.7)

This formulation actually provides an advantage. In the following section, it can be seen that the

variances of m̂(x0) and m̂(j)(x0), 1 ≤ j ≤ p are of similar forms. Consequently, minimizing them

separately still produces the same optimal weights vector β.

3.3 Asymptotic Properties

In this section, we state primitive regularity conditions and then establish the asymptotic

properties of the adaptively weighted local polynomial regression estimator.

3.3.1 Regularity Conditions

To study the asymptotic properties of the adaptively weighted local polynomial regression

estimator, the following regularity conditions are assumed throughout the rest of this paper.

(A) m(·) has continuous (p+ 2)th derivative in the neighbourhood of x0

(B) f is symmetric about 0 and belongs to the domain of attraction of some stable distribution S.
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(C) f is continuous and positive.

(D) gX(·) is positive and differentiable in the neighborhood of x0.

(E) K(·) is a symmetric kernel function with a compact support [−M,M ], and satisfies

(a) |K(u)| < Ck

(b)
∫M
−M K(u)du = 1

(c)
∫M
−M ujK(u)du = µj ,

∫M
−M ujK2(u)du = νj , j ≥ 0. In particular, µj = νj = 0 for odd j.

Regularity conditions A, C, D, E are commonly assumed in the literature [ see e.g. Fan (1992), Yu

and Jones (1998), Kai et al. (2010)]. As is pointed out elsewhere, the assumption that K(·) has

a compact support can be relaxed at the cost of more complicated technical proofs. In simulation

studies, we exhibit the excellent performance of the proposed estimator with the classical normal

kernel. The assumption that f is symmetric about 0 is required in Kai et al. (2010). Although

weighted CQR for asymmetric errors was considered recently in Sun et al. (2013), we still maintain

the symmetric assumption to simplify the complicated proof that the impact of the LS part is

negligible when E[ε2i ] does not exist. However, our estimator can be generalized to asymmetric

distributions following Sun et al. (2013).

Up front, under the assumption that E[ε2i ] < ∞, we establish the asymptotic properties of

the adaptively weighted local polynomial regression estimator to demonstrate that it is more efficient

and hence is favorable to other polynomial regression estimators. Next we consider E[ε2i ] =∞ and

show that the impact of the LS part in the adaptively weighted local polynomial regression estimator

is asymptotically negligible, while the efficiency is preserved under this infinite variance scenario.

Therefore, the proposed estimator is a robust and efficient alternative to other polynomial regression

estimators.

To avoid the complicated statements, we first illustrate our ideas via the i.i.d error models,

Y = m(X) + σε

and then generalize it to heterogeneous error models.
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3.3.2 Asymptotic Properties when E[εi]
2 exists

Throughout this subsection we assume E[εi]
2 < ∞. To state the asymptotic properties of

the adaptively weighted local polynomial regression estimator, we need to introduce the following

notations:

Define

S(β) =

 S11(β) S12(β)

S21(β) S22(β)


where S11(β) is a q× q diagonal matrix with diagonal elements βkf(qτk)/(2σ), for k = 1, · · · , q, S22

is a (p+1)× (p+1) matrix with (j, j′)-entry µ(j+j′−2), for j, j′ = 1, · · · , p+1, and S12(β) = S21(β)T

is a q × (p+ 1) matrix with (k, j)-entry βkf(qτk)/(2σ)µj−1, for k = 1, · · · , q; j = 1, · · · , p+ 1.

Let

Vβ = 4β2
0σ

2 − 4β0

q∑
k=1

βkστ0,k +

q∑
k,k′=1

βkβk′τk,k′ ,

and we define

Σ(β) =

 Σ11(β) Σ12(β)

Σ21(β) Σ22(β)


where Σ11(β) is a q × q matrix with (k, k′)-entry βkβk′ν0τk,k′ , for k, k′ = 1, · · · , q, Σ22(β) is a

(p+1)×(p+1) matrix with (j, j′)th element Vβν(j+j′−2), for j, j′ = 1, · · · , p+1, and Σ12(β) = ΣT21(β)

is a q×(p+1) matrix with (k, j)-entry (−2β0βkστ0,k+βk
∑q
k′=1 βk′τk,k′)ν(j−1), for k = 1, · · · , q; j =

1, · · · , (p+ 1).

Let ri,p = m(xi) −
∑p
j=0m

(j)(x0)(xi − x0)j/j! be the residual of the Taylor expansion

of m(xi) at x0, and ξβ,i = −2β0(σεi + ri,p) +
∑q
k=1 βk[1(εi ≤ (σqτk − ri,p)/σ) − τk]. We define

Wβ,n = (wβ,01, · · · , wβ,0q, wβ,0, wβ,1, · · · , wβ,p)T , where

wβ,0k = βk
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
[1

(
εi ≤

σqτk − ri,p
σ

)
− τk], k = 1, · · · , q

wβ,j =
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)(
xi − x0

hn

)j
ξβ,i, j = 0, · · · , p.

Then the asymptotic properties of the adaptively weighted local polynomial regression es-

timator can be established in the following theorem:

Theorem 3.3.1 Suppose assumptions A,B,C,D, and E are satisfied. Furthermore, we assume
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E[ε2i ] <∞. If hn → 0 and nhn →∞, then for any nonnegative weights vector β = (β0, · · · , βq)T ,

√
nhnS(β)Ahn(θ̂β − θ∗) +

1

2g(x0)
E[Wβ,n]

L→ N

(
0,

1

4g(x0)
Σ(β)

)

where θ∗ = (qτ1 , · · · , qτq ,m(x0),m(1)(x0), · · · ,m(p)(x0))T is a vector of true parameters and Ahn is

a (q + 1 + p)× (q + 1 + p) diagonal matrix with diagonal elements (1, · · · , 1, h0
n/0!, · · · , hpn/p!).

As special cases, two corollaries follow immediately.

Corollary 3.3.1 Under the same assumptions as Theorem 3.1, if p = 1, we have

√
nhn

[
m̂β(x0)−m(x0)− m(2)(x0)

2
µ2h

2
n

]
L→ N

(
0,

ν0σ
2

4g(x0)
Vβ

)

and the mean squared error of m̂(x0) is

MSE(m̂β(x0)) =

(
m(2)(x0)

2
µ2

)2

h4
n +

ν0σ
2

4g(x0)

Vβ
nhn

+ op

(
h4
n +

1

nhn

)
(3.8)

Corollary 3.3.2 Under the same assumptions as Theorem 3.1, if p = 1, then

√
nhn

[
m̂

(1)
β (x0)−m(1)(x0)−

(
m3(x0)

6
+
m(2)(x0)g(1)(x0)

2g(x0)

)
µ4

µ2
h2
n

]
L→ N

(
0,

ν2σ
2

4g(x0)h2
nµ

2
2

Vβ

)

and

MSE(m̂
(1)
β (x0)) =

(
m(3)(x0)

6
+
m(2)(x0)g(1)(x0)

2g(x0)

)2
µ2

4

µ2
2

h4
n +

ν2σ
2

4g(x0)µ2
2

Vβ
nh3

n

+ op

(
h4
n +

1

nh3
n

)
(3.9)

if p = 2, then

√
nhn

[
m̂

(1)
β (x0)−m(1)(x0)− m(3)(x0)µ4

6µ2
h2
n

]
L→ N

(
0,

ν2σ
2

4g(x0)h2
nµ

2
2

Vβ

)

and

MSE(m̂
(1)
β (x0)) =

(
m(3)(x0)

6

)2
µ2

4

µ2
2

h4
n +

ν2σ
2

4g(x0)µ2
2

Vβ
nh3

n

+ op

(
h4
n +

1

nh3
n

)
(3.10)

Corollary 3.1 indicates that the bias of m̂(x0) relies on β through Cβ , which is assumed to be 1

for model identification. Thus, the optimal weights vector β in the sense of minimizing the MSE of
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m̂(x0) can be chosen by minimizing Vβ :

βopt = argmin
β≥0,αT β=1

Vβ (3.11)

where α = (1, f(qτk)/(2σ), · · · , f(qτq )/(2σ))T .

Remark 3.3.1 When q → ∞, if we set β0 = 0 and minimize Vβ with respect to β, the resulting

covariance matrix is the same as that of the nonparametric polynomial L-estimation with optimal

weights. Therefore, the proposed method is also as efficient as the maximum likelihood, when q →∞.

Noting that the mean squared error of m̂
(1)
β (x0) only depends on β by Vβ as well, then βopt is also

optimal for estimating m(1)(x0). For most practical interests, estimating m(x0) is the main focus.

However, it can be shown that βopt is optimal for estimating all m(j)(x0) for j ≤ p.

Since equation (3.11) is a constrained quadratic minimization problem, the closed form

solution for the optimal weights can be difficult to obtain. However, in some cases, optimal weights

can be explicitly found. We provide several examples to show the availability of the optimal weights.

Example 3.3.1 Let q = 1, τ1 = 1
2 and p ≥ 1. In other words, we consider the combination of LS

and LAD, then the optimal weights are

β0,opt =


0 if 1−2f(0)E[|εi|]

4f(0)2−4f(0)E[|εi|]+1 < 0,

1 if 1−2f(0)E[|εi|]
4f(0)2−4f(0)E[|εi|]+1 > 1,

1
σ

1−2f(0)E[|εi|]
4f(0)2−4f(0)E[|εi|]+1 otherwise.

and β1,opt =
2(1− β0,opt)

f(0)

Example 3.3.2 If εi ∼ N(0, λ2), then β0,opt = 1 and βk,opt = 0, for all 1 ≤ k ≤ q.

Example 3.3.3 If εi ∼ Laplace(0, λ) and q is odd, then βl,opt = 2f(0) for l = (q + 1)/2, and

β0,opt = βk,opt = 0, for all k 6= l.

Both the local polynomial LS and the local polynomial CQR estimators are special cases of weighted

local polynomial regression. Regardless of the error distribution, the efficiency achieved by choosing

the theorectically optimal weights can be no less than that gained by either of those methods.

Moreover, the proposed estimator can be more efficient than the local LS polynomial regression

estimator and the local polynomial CQR for some distributions, as Example 3.1 and 3.2 demonstrate.
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Theorem 2 in Kai et al. (2010) indicates that as the number of quantiles increases, the asymptotic

relative efficiency between CQR and LS converges to 1. For the proposed weighted estimator,

increasing the number of quantiles does not impact the efficiency in this way, but can in fact improve

the asymptotic efficiency of the estimator.

Although Vβ is typically unobservable, we can replace them with consistent estimators. Let

ζ̃i be residuals of a
√
nhn-consistent preliminary estimation, i = 1, · · · , n. For example, we could

use the residuals from local polynomial median regression, or residuals from local polynomial CQR,

or the residuals from local LS polynomial regression, if the error terms {εi} have a finite second

moment. We use the notation T̃ to denote the empirical estimate of T by using ζ̃i, for some statistic

T . Then Ṽβ = 4β2
0 σ̃

2 − 4β0

∑q
k=1 βkσ̃τ̃0,k +

∑q
k,k′=1 βkβk′τk,k′ , and we can obtain the practically

optimal weights vector

β̂ = argmax
β≥0,α̃T β=1

Ṽβ (3.12)

where α̃ = (σ̃, 1
2 f̃(q̃τ1), · · · , 1

2 f̃(q̃τq ))
T . The consistency of β̂ can easily be verified. We have the

following corollary:

Corollary 3.3.3 Under the same assumptions as Theorem 3.1,

√
nhnS(βopt)Ahn(θ̂β̂ − θ

∗) +
1

2g(x0)
E[Wβopt,n]

L→ N

(
0,

1

4g(x0)
Σ(βopt)

)

The proposed estimator, using β̂ obtained from (3.12) does not suffer from any loss of efficiency.

Notice that in Ṽβ , qτk , τ0,k, and fqτk need to be estimated. Therefore, the number of

quantiles depends on the sample size. When the sample size is small we recommend using only a

few quantiles to avoid the impact by introducing too many parameters. On the other hand, if the

sample size is large, more quantiles should be adopted. In practice, the cross-validation, AIC, BIC

type estimators can be applied to choose the number of quantiles.

3.3.3 Asymptotic properties when E[ε2i ] does not exist

Since least squares may not provide reliable estimates when heavy-tailed errors or outliers

appear, in this case one might use a weight of zero (β0 = 0) for the LS part of objective function (3.5).

In practice we do not know if the variance is finite and we propose picking weights using a numerical

solution to the constrained quadratic minimization problem (3.12). So β̂0 is not necessarily 0. We
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would like to find out if the proposed estimator can still be applied.

The following theorem answers the aforementioned question.

Theorem 3.3.2 Suppose assumptions A,B,C,D, and E are satisfied. Furthermore, we assume E[ε2i ]

does not exist. If hn → 0 and nhn →∞, then

√
nhnS(βopt)Ahn(θ̂β̂ − θ

∗) +
1

2g(x0)
E[Wβopt,n]

L→ N

(
0,

1

4g(x0)
Σ(βopt)

)

This theorem indicates that β̂0 converges to 0 fast enough to make the instability caused by LS

negligible. Theorem 3.2 coupled with Theorem 3.1 imply that the adaptively weighted local poly-

nomial regression can be applied universally. It is a very safe alternative to other estimators. In

addition, because β̂ is chosen to adapt to different error distributions, the resulting local polynomial

regression estimator is asymptotically more efficient than the local polynomial CQR. Those features

make the proposed estimator very appealing in practice.

3.3.4 Heterogeneous errors

In the foregoing sections, we exhibit the desirable theoretical properties of the adaptive-

ly weighted local polynomial regression estimator under the homogeneous model. An interesting

question naturally arises: “Can this method be applied to regression problems of which the error

sequences are heterogeneous?”

The essential idea of the proposed procedure is to use the residuals from some preliminary

method to select approximately optimal weights for the different loss functions. If the error sequences

are homogeneous, then all residuals can be employed to establish the error structure. On the other

hand, if the errors are heterogeneous, residuals of observations with covariate values closer to x0, the

point of interest, should contribute more to the local error structure estimation. Hence we can use

weighted residuals to estimate the local error structure at x0, where weights are assigned by a kernel

function. Take the uniform kernel as an illustration, as n → ∞, the number of observations falling

into [x0 − hn, x0 + hn] is of order nhn. Therefore, the asymptotic efficiency should not be impacted

by doing local error structure estimation. In practice, the pilot fit also provides initial bandwidths

so that we can manipulate observations falling into the smoothing window to approximate the error

structure locally.
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Theorem 3.3.3 Under model (1), suppose assumptions A,B,C,D, and E are satisfied. Furthermore,

if hn → 0 and nhn →∞, then

√
nhnS(βopt)Ahn(θ̂β̂ − θ

∗) +
1

2g(x0)
E[Wβopt,n]

L→ N(0,
1

4g(x0)
Σ(βopt))

where β̂ is obtained from (12) by using weighted local residuals.

Notice for heterogeneous cases, Vβ varies at different x. However, it can be shown that for the

theoretical optimal weights βopt at different x, (β1,opt, · · · , βq,opt)’s and σ(x)β0,opt’s are are constant.

Thus, the weights are smooth functions of x, and so are the resulting estimators. Those simple

relationships in fact facilitate our computation to obtain the optimal weights β̂ at different x. We

can randomly select some points in the support X, and calculate β̂ at each point. Then we can first

average obtained (β̂1,opt, · · · , β̂q,opt) as practically global optimal weights for quantiles. Moreover,

we can acquire a basis taking an average of β̂0/σ̂(x)’s. For a given x, the product of the basis and

a consistent estimate of σ(x) yields optimal β̂0.

3.3.5 Bandwidth Selection

The performance of local polynomial regression estimators depends crucially on the smooth-

ing parameter h. Obtaining a good bandwidth is very important for the success of the adaptively

weighted local polynomial regression estimator. Given a weights vector β, the optimal bandwidth

in the sense of minimizing MSE(m̂β(x0)) is

hβ,opt(x0) =

[
1

(m(2)(x0))2

ν0σ
2(x0)

4g(x0)µ2
2

Vβ

] 1
5

n−
1
5 ,

and the optimal bandwidth for the local linear regression estimator is

hLS(x0) =

[
1

(m(2)(x0))2

ν0σ
2(x0)

g(x0)µ2
2

] 1
5

n−
1
5 .

It follows that

hβ,opt(x0) =

(
Vβ
4

)1/5

hLS(x0) (3.13)

As suggested in Kai et al. (2010), when E[ε2i ] exists we can exploit this simple relationship to

select the optimal bandwidth for the proposed estimator using existing bandwidth selectors for the
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local linear estimator. When E[ε2i ] does not exist, we can similarly select the bandwidth via the

relationship between the proposed estimator and the local LAD linear estimator. In both cases, we

can infer Vβ̃ from preliminary estimates.

3.4 Numerical Studies and Applications

In this section, we conduct a simulation study which evaluates the finite sample performance

of the adaptively weighted local polynomial regression estimator. We then apply the proposed

estimator to a real data set as a demonstration of its practical use.

3.4.1 Simulations

In our simulation studies, we adopt the settings used in Kai et al. (2010). We consider two

simulation models.

1. Y = sin(2X) + 2 exp(−16X2) + 0.5ε, where X ∼ N(0, 1)

2. Y = X sin(2πX) + (1/5 + cos(2πX)/10)ε, where X ∼ Unif(0, 1)

In each model, we consider various distributions for ε: N(0, 1) and Unif(−1/2, 1/2) represent light-

tailed errors; Laplace(0, 1) represents moderate-tailed errors; a t3-distribution represents heavy-

tailed errors; a mixture of two normal distributions 0.95N(0, 1) + 0.05N(0, σ2) with σ = 3, 10

represent errors with light and severe outliers, respectively; and Cauchy(0, 1) represent distributions

without finite second moments. They belong to the domain of attraction of some stable distribution,

respectively. For each combination, we simulated 400 independent training data sets, each consisting

of 200 observations.

Since heavy-tailed errors and contaminated data sets are taken into account in the studies,

we use a local polynomial median regression as a safe preliminary fit to get a consistent estimator Ṽβ

for Vβ . The local polynomial median regression can be conveniently obtained via quantreg package

in R.

We compare the proposed method with the classical local linear estimator and the local

polynomial CQR via evaluating the integrated mean squared errors (IMSE), which is a summation

of mean squared errors at L equally spaced grid points over the interval at which the regression

function is estimated. For model 1, we estimate m(x) over [-1.5,1.5] with L = 200 and for model 2,
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Table 3.1: Simulation results for model 1
RIMSE x=0.75 RIMSE x=0.75

mean standard bias standard mean standard bias standard
deviation deviation deviation deviation

N(0, 1) LS - - 0.0026 0.1851
CQR5 0.9517 0.1007 0.0054 0.1957 AW5 0.9831 0.0636 0.0042 0.1896
CQR9 0.9720 0.0683 0.0028 0.1914 AW9 0.9818 0.0513 0.0026 0.1886
CQR19 0.9824 0.0489 0.0034 0.1897 AW19 0.9861 0.0460 0.0027 0.1864

Unif(−1/2, 1/2) LS - - 0.0000 0.0706
CQR5 0.9005 0.0620 0.0010 0.0755 AW5 1.0335 0.1012 0.0010 0.0727
CQR9 0.9565 0.0579 0.0000 0.0740 AW9 1.1485 0.2035 0.0010 0.0756
CQR19 0.9939 0.0625 0.0010 0.0731 AW19 1.1905 0.2912 -0.0011 0.1149

Laplace(0, 1) LS - - 0.0009 0.2572
CQR5 1.1315 0.2079 0.0009 0.2555 AW5 1.2235 0.4206 0.0078 0.2738
CQR9 1.0780 0.1417 0.0027 0.2570 AW9 1.2077 0.3935 0.0093 0.2735
CQR19 1.0390 0.0855 -0.0011 0.2559 AW19 1.1856 0.3617 0.0013 0.2730

t3 LS - - 0.0039 0.2725
CQR5 1.4379 0.9505 -0.0039 0.2395 AW5 1.4949 0.7788 -0.0039 0.2314
CQR9 1.3137 0.6906 -0.0039 0.2666 AW9 1.5286 0.8823 -0.0042 0.2321
CQR19 1.1541 0.3561 -0.0042 0.2706 AW19 1.5003 0.7874 -0.0044 0.2597

0.95N(0, 1) + 0.05N(0, 9) LS - - -0.0017 0.2239
CQR5 1.1006 0.2235 0.0003 0.2335 AW5 1.0889 0.1742 0.0018 0.2334
CQR9 1.0836 0.1618 0.0013 0.2286 AW9 1.0815 0.1445 0.0014 0.2279
CQR19 1.0499 0.1005 -0.0023 0.2303 AW19 1.0778 0.1274 0.0013 0.2300

0.95N(0, 1) + 0.05N(0, 100) LS - - 0.0092 0.5413
CQR5 2.5579 1.4642 0.0085 0.6297 AW5 2.5791 1.4620 -0.0044 0.6204
CQR9 1.9259 1.0100 -0.0033 0.6631 AW9 2.2399 1.0012 -0.0035 0.6433
CQR19 1.3574 0.4989 -0.0011 0.6721 AW19 2.2495 1.0090 0.0014 0.6399
Cauchy(0, 1) LS - - 0.1093 5.1507
CQR5 584.02 3458.39 -0.0526 0.2923 AW5 974.05 5156.48 -0.0354 0.2000
CQR9 314.52 2180.07 -0.0707 0.3941 AW9 992.61 5416.02 -0.0330 0.2028
CQR19 59.97 379.52 -0.1104 0.9891 AW19 999.87 5390.16 0.0325 0.2036

we estimate m(x) over [0,1] with L = 200. We consider q = 5, 9, 19 for the local polynomial CQR and

the adaptively weighted local polynomial regression estimator. We use the normal kernel and select

hLS via a plug-in bandwidth selector, dpill, proposed by Ruppert et al (1995). For the proposed

estimator we select the bandwidth using equation (15). The bandwidths for CQR are calculated

using their relationship to LS. We summarize our simulation results using RIMSE: the ratio of

the IMSE of the local linear estimator over the IMSE of other estimators. We also evaluate the

performance of the proposed estimator at a specific point. The results are presented in Table 1 and

Table 2, where CQR5, CQR9, CQR19 denote the local polynomial CQR with q = 5, 9, 19 respectively,

and likewise AW5, AW9, AW19 denote the adaptively weighted local polynomial regression estimator

with q = 5, 9, 19, respectively.

It appears that the proposed method adapts well to the different error distributions. In

Table 1 we can see that the adaptively weighted local polynomial regression estimators outperform

LS and CQR counterparts for most of the distributions considered. The proposed estimator shows
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Table 3.2: Simulation results for model 2

RIMSE x=0.4 RIMSE x=0.4

mean standard bias standard mean standard bias standard
deviation deviation deviation deviation

N(0, 1) LS - - -0.0078 0.1851
CQR5 0.9360 0.1681 -0.0055 0.1463 AW5 0.9638 0.1148 -0.0077 0.1448
CQR9 0.9640 0.1199 -0.0066 0.1436 AW9 0.9769 0.0966 -0.0082 0.1444
CQR19 0.9786 0.0869 -0.0065 0.1432 AW19 0.9800 0.0909 -0.0070 0.1450

Unif(−1/2, 1/2) LS - - -0.0019 0.0487
CQR5 0.8240 0.0839 -0.0012 0.0532 AW5 1.0088 0.1785 0.0012 0.0484
CQR9 0.8971 0.0703 -0.0015 0.0519 AW9 1.1705 0.3793 0.0010 0.0480
CQR19 0.9493 0.0688 -0.0017 0.0516 AW19 1.1912 0.4840 -0.0012 0.0481

Laplace(0, 1) LS - - -0.0189 0.1841
CQR5 1.2161 0.5549 -0.0157 0.1694 AW5 1.2809 0.7334 0.0158 0.1808
CQR9 1.1399 0.1417 -0.0159 0.1740 AW9 1.2659 0.7234 0.0165 0.1827
CQR19 1.0882 0.2635 0.0175 0.1719 AW19 1.2145 0.6254 0.0179 0.1858

t3 LS - - 0.0130 0.2069
CQR5 1.4906 1.1322 -0.0097 0.1869 AW5 1.6056 1.4276 -0.0089 0.1800
CQR9 1.3753 1.1081 -0.0091 0.1860 AW9 1.6445 1.4496 -0.0084 0.1786
CQR19 1.2087 0.4249 -0.0095 0.1957 AW19 1.6336 1.2998 -0.0093 0.1807

0.95N(0, 1) + 0.05N(0, 9) LS - - -0.0165 0.1681
CQR5 1.1394 0.4607 -0.0220 0.2270 AW5 1.1260 0.3810 -0.0220 0.2271
CQR9 1.1296 0.3960 -0.0241 0.2313 AW9 1.1275 0.3664 -0.0235 0.2304
CQR19 1.0769 0.2372 -0.0231 0.2309 AW19 1.1196 0.3118 -0.0236 0.2291

0.95N(0, 1) + 0.05N(0, 100) LS - - -0.0193 0.2872
CQR5 3.4597 3.3701 -0.0219 0.2059 AW5 3.4498 3.3139 -0.0219 0.2014
CQR9 2.7592 2.2671 -0.0223 0.2360 AW9 3.0444 2.3735 -0.0219 0.2111
CQR19 1.6473 0.9416 -0.0189 0.2530 AW19 3.1194 2.4475 -0.0205 0.2152
Cauchy(0, 1) LS - - 0.0999 2.3582
CQR5 814.34 6309.01 -0.0523 0.0436 AW5 1351.13 10207.48 -0.0366 0.0339
CQR9 629.06 4816.19 -0.0636 0.0556 AW9 1409.42 10972.55 -0.0359 0.0338
CQR19 328.93 3012.81 -0.0803 0.0872 AW19 1423.53 10795.12 -0.0365 0.0368
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significant improvement over CQR in terms of RIMSE and also in terms of estimating the function

at the point x0 = 0.75. The first section of Table 1 shows little loss in efficiency relative to LS, when

the error distribution is normal. Although the RIMSEs of the proposed estimators are slightly less

than 1 for the normal distribution, the asymptotic ratio will get closer to 1 as sample sizes increase.

The results in Table 2 indicate that the proposed adaptively weighted estimator still performs well

in the presence of heteroskedasticity. In this case it appears that using too many quantiles can result

in a loss of efficiency, but the proposed method tends to outperform CQR under the simulation set

up.

3.4.2 A real data analysis

To illustrate its practical use, we apply the adaptively weighted local polynomial regression

to the global temperature data set to study the modern temperature trend. The data set consist-

ing of weighted global temperatures from 1911 to 2011 is available through U.S. national climatic

data center (NCDC). Since the residuals from a local linear median regression have no significant

autocorrelation according to the Ljung-Box test, the independence assumption of the error terms

is not outlandish. We first use the local linear method, the local CQR and the proposed estimator

Figure 3.1: Scatter plot and three fittings
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with 5 quantiles to fit the regression model. In the following analysis, we choose the local linear fit

as the baseline fit. From Figure 3.1, we can see that all three procedures provide similar fits, and

the local linear fit and the AW5 fit are almost identical. The interesting part is the right end of the

plots. It seems that the local linear fit and AW5 support the claim that the global temperature is

still increasing, while the CQR5 indicates there is a change point around 2010.

Although there is no outlier in the data set, we artificially create one to examine robustness

properties, we move the observation of 1956 from -0.4431 to -0.6647. In Figure 3.2 (a) we only depict

the fits from 1931 to 1980 , since for other years the outlier has no effect on the estimates. Comparing

with Figure 3.1 (b), we note that the local CQR5 and AW5 still maintain similar patterns, while

the local linear estimator starts to deviate from the baseline. Moreover, we move the observation of

1956 from -0.4431 to -1.35 to simulate a severe outlier, and the fits are displayed in Figure 3.2 (b).

Although all three procedures are affected by this severe outlier, the local linear changes drastically,

whereas the local CQR5 and AW5 are much less affected.

Figure 3.2: Outliers
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3.5 Conclusion

In this chapter, we combine the strength of the least squares and quantile regression to

propose the adaptively weighted local polynomial estimator for nonparametric regression. The

novelty of the method is that it adapts to the distribution of the error terms in a regression model. We

have explicitly described how data can be used to select weights as well as the bandwidth parameter.

It appears that even when the weights are selected from the data, the estimators perform nearly as

well as the optimal choice. For example, if the distribution is normal the method is nearly as efficient

as LS, but the method still works well if the errors follow a t-distribution with 3 degrees of freedom.

The estimators compete favorably with equally weighted composite quantile regression. The idea of

weighting different objective functions and using asymptotic efficiency to select the optimal weights

can be extended to other situations.
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Appendix A Proofs for Chapter 2

Appendix A-1: Consistency and sparsity

Define the score function of ρτ (·) by ϕτ (·), i.e. ϕτ (t) = τ1(t ≥ 0) − (1 − τ)1(t < 0). β̂τ is the

minimizer of the objective function

Qτ (β) =

n∑
i=1

ρτ (yi − xTi β) + λn

p∑
j=0

ωj |βj |

Throughout β̃ is a
√
n/(s log(n ∨ p))-consistent estimator of β∗.

Lemma A.1 Under assumptions A1-A5, if λn/(
√
s log(n∨p))→∞ and ωi = |β̃τj |−1 for 1 ≤ j ≤ p,

then the adaptive L1 quantile regression estimator β̂τ satisfies β̂τb = 0 with probability tending to 1.

Proof: It can be seen that the objective function Qτ (β) is piecewise linear. According to Theorem

1 in Bloomfield and Steiger (1983, page 7), the minimum of Qτ (β) can be achieved at some breaking

point β̆, where ρτ (yi − xTi β̆) = 0 for some values of i = 1, · · · , n.

Take the first derivative of Q(β) at any differential point β̌ ∈ Rp+1 with respect to βj , j =

s+ 1, · · · , p, and we obtain that

∂Q(β)

∂βj
|β̌ = −

n∑
i=1

ϕ(yi − xTi β̌)xij + λnωjsgn(β̌j) (A.1)

Let

D(β̌, β∗) =

n∑
i=1

ϕ(yi − xTi β̌)xij −
n∑
i=1

ϕ(yi − xTi β
∗)xij
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Note that,

D(β̌, β∗) =
∑

εi≥q∗xi ,εi≥q
∗
xi

+xTi (β̌−β∗)

[τxij − τxij ]

+
∑

εi≥q∗xi ,εi<q
∗
xi

+xTi (β̌−β∗)

[−(1− τ)xij − τxij ]

+
∑

εi<q∗xi
,εi≥q∗xi+xTi (β̌−β∗)

[τxij + (1− τ)xij ]

+
∑

εi<q∗xi
,εi<q∗xi

+xTi (β̌−β∗)

[−(1− τ)xij + (1− τ)xij ].

where q∗xi is the conditional τth quantile of εi|xi. For K1 = {i : q∗xi ≤ εi < q∗xi + xTi (β̌ − β∗)} and

K2 = {i : q∗xi > εi ≥ q∗xi + xTi (β̌ − β∗)},

D(β̌, β∗) = −
∑
K1

xij +
∑
K2

xij .

Hence,

|
n∑
i=1

ϕ(yi − xTi β̌)xij |

= |
n∑
i=1

ϕ(yi − xTi β
∗)xij +D(β̌, β∗)|

≤ |
n∑
i=1

ϕ(yi − xTi β
∗)xij |+ |

∑
K1

xij |+ |
∑
K2

xij |

=: I1 + I2 + I3

Consider I1 first. Let ξi = ϕ(yi − xTi β
∗) = τ1(εi ≥ q∗xi) − (1 − τ)1(εi < q∗xi). Conditional on xi, it

is easy to verify that E[ξixij ] = 0 and ξixij , i = 1, · · · , n satisfy the Cramér condition. As a result,

applying Bernstein’s inequality yields

P (|
n∑
i=1

ξixij | >
√

5Cmn log(n ∨ p))) ≤ 2 exp{− 5Cm log(n ∨ p)

2[Cm +M
√

5Cm

√
log(n∨p)√

n
]
}

≤ 2 exp{−5 log(n ∨ p)
4

}
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Let

Ω1 = { max
s+1≤j≤p

|
n∑
i=1

ξixij | ≤
√

5Cmn log(n ∨ p)}

Then

P (Ω1) ≥ 1− 2 exp{log(p− s)− 5 log(n ∨ p)
4

} ≥ 1− ν1

where ν1 = 2 exp{− log(n ∨ p)/4} → 0 as n→∞. Applying Bernstein’s inequality to I2 yields

P (|
∑
K1

xij | >
√

5Cm log(n ∨ p))) ≤ 2 exp{− 5Cm log(n ∨ p)

2[ |K1|Cm
n +M

√
5Cm

√
log(n∨p)√

n
]
}.

Define

Ω2 = { max
s+1≤j≤p

|
∑
i∈K1

xij | ≤
√

5Cmn log(n ∨ p)}

We obtain P (Ω2) ≥ 1− ν1. A similar argument will show that P (Ω3) ≥ 1− ν1, where

Ω3 = { max
s+1≤j≤p

|
∑
i∈K2

xij | ≤
√

5Cmn log(n ∨ p)}.

Note that Ω1

⋃
Ω2

⋃
Ω3 ⊂ {|ϕ(yi − xTi β̌)xij | ≤ 3

√
5Cmn log(n ∨ p)}. Therefore,

P (|ϕ(yi − xTi β̌)xij | ≤ 3
√

5Cmn log(n ∨ p)) ≥ 1− 3ν1

Since ||β̃|| ∼ Op(
√
s log(n ∨ p)/n), for n sufficiently large with probability approaching 1,

λnωj

3
√

5Cmn log(n ∨ p)
> 1.

With probability at least 1− 3ν1, we have

|ϕ(yi − xTi β̌)xij |
3
√

5Cmn log(n ∨ p)
≤ 1 <

λnωj

3
√

5Cmn log(n ∨ p)
,
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for all j > s. This implies that with probability tending to 1

∂Q(β)

∂βj
|β̌ =

 > 0 if β̌j > 0

< 0 if β̌j < 0

Since Q(β) is a continuous function, β̂, the minimizer of Q(β) must satisfy β̂b = 0.

Lemma A.2 Under the assumptions A1-A5, if λns/
√
n→ 0 and ωi = |β̃τj |−1 for 0 ≤ j ≤ p, then

the adaptive L1 quantile regression estimator is
√
n/s-consistent.

Proof: We want to show that for any ε > 0, there exists a sufficiently large constant, such that

P{ inf
‖δa‖=C

Qa(β∗a +

√
s

n
δa) > Qa(β∗a)} > 1− ε (A.2)

where Qa(·) is the objective function restricted to the true underlying model, δa ∈ Rs and ‖δ‖ = C.

Since the objective function Qa(βa) is strictly convex, the inequality (A.2) implies, with probability

at least 1−ε, the oracle quantile estimator lies in the shrinking ball {β∗+
√
s/nδa : δa ∈ Rs+1, ‖δa‖ ≤

C}. This provides the consistency result immediately.

Qa(β∗a +

√
s

n
δa)−Qa(β∗a) =

n∑
i=1

ρ(yi − xTia(β∗a +

√
s

n
δa))− ρ(yi − xTiaβ

∗
a)

+ λn

s∑
j=0

ωj(|β∗τj +

√
s

n
δaj | − |β∗τj |) (A.3)

According to Knight(1998), for any x 6= 0, we have

|x− y| − |x| = −y[1(x > 0)− 1(x < 0)] + 2

∫ y

0

[1(x < t)− 1(x < 0)]dt

Then we have

ρ(x− y)− ρ(x) = y[1(x < 0)− τ ] + 2

∫ y

0

[1(x < t)− 1(x < 0)]dt
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Hence, (A.3) can be written as

√
s

n

n∑
i=1

xTiaδa[1(yi − xTiaβ
∗
a < 0)− τ ]

+

n∑
i=1

∫ √ s
nxTiaδa

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt

+λn

s∑
j=0

ωj(|β∗τj +

√
s

n
δaj | − |β∗τj |)

:=

√
s

n
T1 + T2 + T3

Using independence and the Cauchy-Schwarz inequality,

E[T 2
1 ] = E[(

n∑
i=1

xTiaδa[1(yi − xTiaβ
∗
a < 0)− τ ])2]

= E[

n∑
i=1

(xTiaδa[1(yi − xTiaβ
∗
a < 0)− τ ])2]

≤ nτ(1− τ)E[‖xia‖2‖δa‖2]

≤ nsτ(1− τ)CmC
2.

Using Chebychev’s inequality, we see that for any constant k

P

(√
s

n
T1 > ksC2

)
≤ τ(1− τ)Cm

C2
. (A.4)

Next, we deal with T2. The goal is to show that T2

p

≥ 0.5sfκ2
0C

2. Using independence and the fact

that V (X) ≤ EX2,

V [T2] = V

[
n∑
i=1

∫ √ s
nxTiaδa

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt

]

≤ nE

[∫ √ s
nxTiaδa

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt

]2
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Given an η > 0 we have

nE

[(∫ √ s
nxTiaδa

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt)21(

√
s

n
|xTiaδa| > η

)]

≤4sE

[
(xTiaδa)21

(√
s

n
|xTiaδa| > η

)]
≤4sE[|xTiaδa|3]2/3

(
P (

√
s

n
|xTiaδa| > η)

)1/3

, (A.5)

where the last line follows from Holder’s inequality. Under condition A4,

E[|xTiaδa|3] ≤ 3

8

f3/2

f̄ ′
E[|xTiaδa|2]3/2

q
. (A.6)

Applying Bernstein’s inequality (Lemma 2.2.11 of Van Der Vaart and Wellner (1996)),

P (|xTiaδa| > η

√
n√
s

) ≤ 2 exp

 −η2n

2s(C2Cm +MCη
√
n√
s

)

 . (A.7)

Combining bounds (A.6) and (A.7) yields :

RHS of (A.5) ≤ 4s

(
3

8

f3/2

f̄ ′
E[|xTiaδa|2]3/2

q

)2/3(
2 exp

{
−η
√
n

2MC
√
s

})1/3

≤ 32/321/3
f

(f̄ ′q)2/3
CmC

2s2 exp

{
−η
√
n

6MC
√
s

}
= 32/321/3

f

(f̄ ′q)2/3
CmC

2 exp

{
2 log(s)− η

√
n

6MC
√
s

}
,

which converges to 0 if η satisfies (C1): log(s) ∼ o (η
√
n/(12MC

√
s)) and (C2): η

√
n/
√
s→∞. On

the other hand,

nE

(∫ √ s
nxTiaδa

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt

)2

1

(√
s

n
|xTiaδa| ≤ η

)
≤2nηE

[(∫ √ s
n |x

T
iaδa|

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt

)
1

(√
s

n
|xTiaδa| < η

)]

=2nηE

[(∫ √ s
n |x

T
iaδa|

0

[Fε|xi(q
∗
xi + t)− Fε|xi(q

∗
xi)]dt

)
1

(√
s

n
|xTiaδa| < η

)]
(A.8)

40



If η is close to 0, then F (t)− F (0) ≤ f̄ t,∀|t| < η. Thus, we obtain

(A.7) ≤ f̄ tηnE[(

∫ √ s
n |x

T
iaδa|

0

tdt)1(

√
s

n
|xTiaδa| < η)] ≤ f̄ tη3n

which converges to 0, if η satisfies (C3): η3n → 0. If η satisfies conditions C1, C2 and C3, then as

n→∞ V (T2)→ 0. By Chebyshev’s inequality, we have

T2 − nE{
∫ √ s

nxTiaδa

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt} p→ p

Using Cauchy-Schwartz inequality and a similar argument as in the proof of V (T2) → 0, we can

show that for n sufficiently large

nE

{∫ √ s
nxTiaδa

0

[1(yi − xTiaβ
∗
a < t)− 1(yi − xTiaβ

∗
a < 0)]dt

}
≥ 1

2
fκ2

0C
2s

Finally for T3, we have

|λn
s∑
j=0

ωj(|β∗j +

√
s

n
δaj | − |β∗j |)| ≤ λn

s∑
j=1

ωj

√
s

n
|δaj | ≤ λn

s√
n

max
1≤j≤s

1

|β∗j |
C → 0

Combining the fact that T3 converges to zero in probability with (A.4), we see that for sufficiently

large C, (A.3) is positive with probability at least 1− ε and (A.2) is satisfied.

Appendix A-2: Asymptotic Normality

Proof of Theorem 2.3.1: As in the foregoing proofs, we see that with probability at least 1 − 3ν1,

β̂ = β̌. Therefore, properties (1) and (2) are achieved automatically. We know that β̌ = ((β∗ +√
s/nδ̌a)T , 0)T where

√
s/nδ̌a is the minimizer of the following function:

Qa(β∗a +

√
s

n
δa)−Qa(β∗a) =

√
s

n

n∑
i=1

xTiaδa[1(εi < q∗xi)− τ ]

+

n∑
i=1

∫ √ s
nxTiaδa

0

[1(εi < q∗xi + t)− 1(εi < q∗xi)]dt

+ λn

s∑
j=0

ωj(|β∗j +

√
s

n
δaj | − |β∗j |)

:= J1 + J2 + J3
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And with probability at least 1 − ε, δ̌a locates in a ball Bε := {δa : ‖δ‖ ≤ C} for some constant C

that implicitly depends on ε. For any δa ∈ Bε, using the argument as in the proof of consistency,

we can show that

E|J1/s|2 ≤ Cm‖δa‖2, J2
p→ 1

2
f(q∗)sδTa ΣSδa,

and

|J3| ≤ ‖δa‖O(
√
s(log(n))γ/2 log(n ∨ p)) s√

n
max
1≤s

1

|β̃j |
= o(1).

Thus, with probability at least 1− 3ν1 − ε, minimizing Qa(β∗a +
√
s/nδa)−Qa(β∗a) is equivalent to

minimizing √
s

n

n∑
i=1

xTiaδa[1(εi < q∗xi)− τ ] +
1

2
f(q∗)sδTa ΣSδa,

which provides

δ̌a =

∑n
i=1 Σ−1

s xia[1(εi < q∗xi)− τ ]

f(q∗)
√
ns

Therefore, with probability at least 1− 3ν1 − ε

√
nu−1

s αT (β̂a − β∗a) =
√
n

∑n
i=1 u

−1
s αTΣ−1

s xia[1(εi < q∗xi)− τ ]

f(q∗)n

Denote ζi by u−1
s αTΣ−1

s xia[1(εi < q∗xi)− τ ] for i = 1, · · · , n. Then E[ζi] = 0 and Var[ζi] = τ(1− τ)

Therefore, we have have
√
n

∑n
i=1 ζi

f(q∗)n

d→ N(0,
τ(1− τ)

f2(q∗)
)

. which completes the proof.
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Appendix B Proofs for Chapter 3

Proof of Theorem 3.3.1:

We sketch the proofs in this section. Detailed proofs are provided in Appendix C.

Let

Qβ(θ) =

n∑
i=1

 q∑
k=0

βkρτk

yi − a0k −
p∑
j=0

1

j!
aj(xi − x0)j

K (xi − x0

h

)

We can see that minimizingQβ(θ) with respect to θ is equivalent to minimizingQβ(θ∗+(nhn)−1/2u)−

Qβ(θ∗) with respect to u, where u = (u01, · · · , u0q, u0, u1, · · · , up)T is a q + 1 + p vector.

Let ∆0,i =
∑p
j=0

1
j!uj(xi − x0)j , and ∆k,i = ∆0,i + u0k, for k = 1, · · · , q. Applying the

identity [Knight (1998)],

ρτ (x− y)− ρτ (x) = y[1(x ≤ 0)− τ ] +

∫ y

0

{1(x ≤ z)− 1(x ≤ 0)}dz

yields

=
1√
nhn

n∑
i=1

K

(
xi − x0

hn

){
−2β0∆0,i(σεi + ri,p) +

q∑
k=1

βk

[
1

(
εi ≤

σqτk − ri,p
σ

)
− τk

]
∆k,i

}

+
β0

nhn

n∑
i=1

K

(
xi − x0

hn

)
∆2

0,i

+

n∑
i=1

K

(
xi − x0

hn

) q∑
k=1

βk

∫ ∆k,i√
nhn

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dz

:= I1 + I2 + I3

By some algebra, we can show that V ar[I3]→ 0. Applying Chebyshev’s inequality yields I3−E[I3]
p→

0 and

E[I3] = n

q∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| ≤ η

)]
+ n

q∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| > η

)]
(B.1)

where Zn,k,i(u) = K
(
xi−x0

hn

) ∫ ∆k,i√
nhn

0

{
1
(
εi ≤

σqτk−ri,p+z

σ

)
− 1

(
εi ≤

σqτk−ri,p
σ

)}
dz. Using the same
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argument as in the proof of E[I2
3 ]→ 0, we can show that

n

q∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| ≤ η

)]

=
1

2

q∑
k=1

βkf(qτk)g(x0)

∫ M

−M
K(ti)

u0k +

p∑
j=0

uj
j!
hjnt

j
i

2

dti + o(‖Ahnu‖2) (B.2)

where ti = (xi − x0)/hn.

Applying the Cauchy-Schwartz inequality, we have

n

p∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| > η

)]
= o(‖Ahnu‖2) = o(1) (B.3)

Therefore,

I3
p→ 1

2

p∑
k=1

βkf(qτk)g(x0)

∫ M

−M
K(ti)

u0k +

p∑
j=0

uj
j!
hjnt

j
i

2

dti (B.4)

According to the law of large numbers, we know

I2
a.s.→ β0g(x0)

∫ M

−M
K(ti)

 p∑
j=0

uj
j!
hjnt

j
i

2

dti (B.5)

Since I1 can be written as WT
β,nAhnu, then

Qβ(θ∗ + (nhn)−1/2u)−Qβ(θ∗) = g(x0)uTAhnS(β)Ahnu + WT
β,nAhnu + op(‖Ahnu‖)

Let û denote the minimizer of Q(θ∗ + (nhn)−1/2u)−Q(θ∗), we have

S(β)Ahn û = − 1

2g(x0)
Wβ,n + op(1)

According to the definition of Wβ,n, applying CLT yields

αTWβ,n − E[αTWβ,n]√
Var[αTWβ,n]

L→ N(0, 1)
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for any nonzero (1 + q + p)× 1 vector α. Thus, The Cramer-Wald device provides us

[Cov(Wβ,n)]−
1
2 (Wβ,n − E[Wβ,n])

L→ N(0, I(1+q+p)×(1+q+p))

where Cov(Wβ,n) is the covariance matrix of Wβ,n. It is easy to check

Cov(Wβ,n)]
p→ g(x0)Σ(β)

Therefore, we have

S(β)Ahn û +
1

2g(x0)
E[Wβ,n]

L→ N(0,
1

4g(x0)
Σ(β)) (B.6)

This completes the proof of Theorem 3.3.1. �

Corollary 3.3.1 and Corollary 3.3.2 are special cases of Theorem 3.1. We omit the proofs here.

Complete proofs can be seen in the supplemental material.

Proof of Corollary 3.3.3:

Consider Qβ̂(θ∗ + (nhn)−1/2u)−Qβ̂(θ∗). We can write it as:

Qγ(θ∗ + (nhn)−1/2u)−Qγ(θ∗) +Qβopt(θ
∗ + (nhn)−1/2u)−Qβopt(θ∗)

where γ = β̂ − βopt. Since βopt is a fixed vector given the error structure, then using the same

arguments as in Theorem 3.1, we obtain that

Qβopt(θ
∗ + (nhn)−1/2u)−Qβopt(θ∗) = g(x0)uTAhnS(βopt)Ahnu + WT

βopt,nAhnu + op(‖Ahnu‖2)
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And we have

Qγ(θ∗ + (nhn)−1/2u)−Qγ(θ∗)

=
1√
nhn

n∑
i=1

K

(
xi − x0

hn

){
−2γ0(σεi + ri,p)∆0,i +

q∑
k=1

γk

[
1

(
εi ≤

σqτk − ri,p
σ

)
− τk

]
∆k,i

}

+
γ0

nhn
∆2

0,i

n∑
i=1

K

(
xi − x0

hn

)

+

n∑
i=1

K

(
xi − x0

hn

) q∑
k=1

γk

∫ ∆k,i√
nhn

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dz (B.7)

Since

n∑
i=1

K

(
xi − x0

hn

)∫ ∆k,i√
nhn

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dz

p→ 1

2σ
f(qτk)g(x0)

∫ M

−M
K(ti)

u0k +

p∑
j=0

uj
j!
hjnt

j
i

2

dti

and

1

nhn

n∑
i=1

K

(
xi − x0

hn

)
∆2

0,i
a.s.→ g(x0)

∫ M

−M
K(ti)

 p∑
j=0

uj
j!
hjnt

j
i

2

dti

then the last two terms of (B.7) are o(‖Ahnu‖2). Applying Slutsky’s Theorem, we can show that

the first term of (B.7) is op(Ahnu). Therefore,

Qβ̂(θ∗ + (nhn)−1/2u)−Qβ̂(θ∗) = g(x0)uTAhnS(βopt)Ahnu + WT
βopt,nAhnu + op(‖Ahnu‖2)

This completes the proof of Corollary 3.3.3. �

In order to prove Theorem 3.3.2, the following lemmas are needed.

Lemma B.1 If assumptions B,C,D and E are satisfied, and E[ε2i ] does not exist, then

(a)
∑n
i=1 |ε|
an
√
n
→ 0
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(b)
∑n
i=1 ε

2
i

a2
n
→ Op(1)

(c)

∑n
i=1

1√
hn
K(

Xi−x0
hn

)εi

an
≤ Op(1)

where {an} is the norming sequence for εi, such that
∑n
i=1 εi
an

L→ S

Lemma B.2 Let β̂0p = 1
σ̃

1+4f̃(0)τ̃0,l
4f̃2(0)+8f̃(0)τ̃0,l+1

1(
1+4f̃(0)τ̃0,l

4f̃2(0)+8f̃(0)τ̃0,l+1
≥ 0), where τl = 1/2. Then β̂0 ≤ β̂0p

almost surely.

We omit the proofs here. They can be found in the supplementary material.

Proof of Theorem 3.3.2:

Let ζ̃i = σε̃i, i = 1, · · · , n denote the residuals of a
√
nhn-consistent fit. Since σ and εi are unknown,

we use σ̃2 =
∑n
i=1 ζ̃

2
i /n to denote the sample variance of σεi. Then we have τ̃0,l = −

∑n
i=1 |ζ̃i|/(2nσ̃)

and f̃(0) = 1
2nb

∑n
i=1 σ̃1 (|σε̃i| < b), for some b ∼ O(n−1/5).

The key of the proof is to show that the impact from the least square part is negligible.

Since β̂0
p→ β0opt = 0, we need to show

σ̃
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
β̂0σεi = op(1) (A.8)

σ̃
1√
nhn

q∑
k=1

β̂k

n∑
i=1

K

(
xi − x0

hn

)
[1 (εi < qτk)− τk] = Op(1) (A.9)

According to Lemma B.2, if we can show that σ̃ 1√
nhn

∑n
i=1K

(
xi−x0

hn

)
β̂0pεi = op(1), then (A.8) can

be directly inferred.

σ̃
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
β̂0pσεi

=
1 + 4f̃(0)τ̃0,l

4f̃2(0) + 8f̃(0)τ̃0,l + 1
1

(
1 + 4f̃(0)τ̃0,l

4f̃2(0) + 8f̃(0)τ̃0,l + 1
≥ 0

)
an√
n

1

an
√
hn

n∑
i=1

K

(
xi − x0

hn

)
σεi
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Since E[ε2i ] does not exist, by Lemma B.1, we have

1

an
√
hn

n∑
i=1

K

(
xi − x0

hn

)
σεi ≤ Op(1)

and

1 + 4f̃(0)τ̃0,l

4f̃2(0) + 8f̃(0)τ̃0,l + 1

an√
n

=
1− 4

∑n
i=1 σ̃1(|σε̃i|<b)

2nb

∑n
i=1 |σε̃i|
2nσ̃

4
(∑n

i=1 1(|σε̃i|<b)
2nb

)2

σ̃2 − 8
∑n
i=1 σ̃1(|σε̃i|<b)

2nb

∑n
i=1 |σε̃i|
2nσ̃ + 1

an√
n

=
1− 2

∑n
i=1 1(|σε̃i|<b)

2nb

∑n
i=1 |σε̃i|
an
√
n

an√
n

4
(∑n

i=1 1(|σε̃i|<b)
2nb

)2
ε̃2i
a2
n

a2
n

n −
4
∑n
i=1 1(|σε̃i|<b)

2nb

∑n
i=1 |σε̃i|
an
√
n

an√
n

+ 1

an√
n

=

√
n

an
− 2

∑n
i=1 1(|σε̃i|<b)

2nb

∑n
i=1 |σε̃i|
an
√
n

4
(∑n

i=1 1(|σε̃i|<b)
2nb

)2
ε̃2i
a2
n
− 4

∑n
i=1 1(|σε̃i|<b)

2nb

∑n
i=1 |σε̃i|
an
√
n

√
n

an
+ n

a2
n

p→ 0

Consequently,

σ̃
1√
nhn

n∑
i=1

K(
xi − x0

hn
)β̂0pεi = op(1)

From the above proof, we can see that as n→∞,

q∑
k=1

f̃(q̃τk)

σ̃
σ̃β̂k =

q∑
k=1

f̃(q̃τk)β̂k = 1− σ̃β̂0 → 1

Since f̃(q̃τk)/σ̃ is bounded for 1 ≤ k ≤ q, then
∑q
k=1 σ̃β̂k is bounded away from 0. There, (A.9) can

be inferred.

This completes the proof of Theorem 3.3.2 �

The proof of Theorem 3.3.3 is essentially the same as for Theorem 3.3.2. Thus, we omit it here.
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Appendix C Supplemental Material

Proof of Theorem 3.3.1:

Qβ(θ∗ + (nhn)−1/2u)−Qβ(θ∗)

= β0

n∑
i=1

yi − p∑
j=0

1

j!
(m(j)(x0) +

uj√
nhn

)(xi − x0)j

2

K

(
xi − x0

hn

)

− β0

n∑
i=1

yi − p∑
j=0

1

j!
m(j)(x0)(xi − x0)j

2

K

(
xi − x0

hn

)

+

q∑
k=1

βk

n∑
i=1

ρτk

yi − σqτk − u0k√
nhn

−
p∑
j=0

1

j!
(m(j)(x0) +

uj√
nhn

)(xi − x0)j

K

(
xi − x0

hn

)

−
q∑

k=1

βk

n∑
i=1

ρτk

yi − σqτk − p∑
j=0

1

j!
m(j)(x0)(xi − x0)j

K

(
xi − x0

hn

)

:= T1 + T2

Consider T1 first. Let ∆0,i =
∑p
j=0 uj(xi − x0)j/j!, ∆k,i = ∆0,i + u0k, and ri,p = m(xi) −∑p

j=0m
(j)(x0)(xi − x0)j/j!, then

T1 = −β0

n∑
i=1

∆0,i√
nhn

(
2σεi + 2ri,p −

∆0,i√
nhn

)
K

(
xi − x0

hn

)

= − 2β0√
nhn

n∑
i=1

{
∆0,i(σεi + ri,p)K

(
xi − x0

hn

)}
+

β0

nhn

n∑
i=1

∆2
0,iK

(
xi − x0

hn

)

We consider T2 next. Applying the identity [Knight (1998)], for x 6= 0

ρτ (x− y)− ρτ (x) = y[1(x ≤ 0)− τ ] +

∫ y

0

{1(x ≤ z)− 1(x ≤ 0)}dz

yields

T2 =
1√
nhn

q∑
k=1

βk

n∑
i=1

∆k,i

[
1

(
εi ≤

σqτk − ri,p
σ

)
− τk

]
K(

xi − x0

hn
)

+

q∑
k=1

βk

n∑
i=1

∫ ∆k,i√
nhn

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dzK

(
xi − x0

hn

)
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Thus,

T1 + T2

=
1√
nhn

n∑
i=1

K

(
xi − x0

hn

){
−2β0∆0,i(σεi + ri,p) +

q∑
k=1

βk

[
1

(
εi ≤

σqτk − ri,p
σ

)
− τk

]
∆k,i

}

+
β0

nhn

n∑
i=1

K

(
xi − x0

hn

)
∆2

0,i

+

n∑
i=1

K

(
xi − x0

hn

) q∑
k=1

βk

∫ ∆k,i√
nhn

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dz

:= I1 + I2 + I3

DenoteK
(
xi−x0

hn

) ∫ ∆k,i√
nhn

0 {1 (εi ≤ (σqτk − ri,p + z)/σ)− 1 (εi ≤ (σqτk − ri,p)/σ)} dz by Zn,k,i(u). Then

E[I2
3 ]

= nE

K2

(
xi − x0

hn

)
q∑

k=1

βk

∫ ∆k,i√
nhn

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dz


2


≤ nE

K2

(
xi − x0

hn

) q∑
k=1

qβ2
k


∫ ∆k,i√

nhn

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dz


2


≤ nq
q∑

k=1

β2
kE[Z2

n,k,i(u)]

For any η > 0, we have

nqE

[
Z2
n,k,i(u)1

(
| ∆k,i√
nhn
| > η

)]

≤ nqE

K2

(
xi − x0

hn

)∫ |∆k,i|√
nhn

0

2dz

2

1

(
| ∆k,i√
nhn
| > η

)
≤ 4qE

[
K2(

xi − x0

hn
)
∆2
k,i

hn
1

(
| ∆k,i√
nhn
| > η

)]
(S.1)

Then (S.1) converges to 0, as
√
nhnη →∞.
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Choose η to be close to 0, and condition on xi’s, we obtain

nqE

[
Z2
n,k,i(u)1

(
| ∆k,i√
nhn
| ≤ η

)]

≤ 2nqηE

K2

(
xi − x0

hn

)∫ | ∆k,i√
nhn
|

0

{
1

(
εi ≤

σqτk − ri,p + z

σ

)
− 1

(
εi ≤

σqτk − ri,p
σ

)}
dz

1

(
| ∆k,i√
nhn
| ≤ η

)]

≤ 2nqηE

K2

(
xi − x0

hn

)
∫ | ∆k,i√

nhn
|

0

{
f

(
σqτk − ri,p

σ

)
z

σ
+ o(z)

}
dz

 1

(
| ∆k,i√
nhn
| ≤ η

)
≤ qηE

[
K2

(
xi − x0

hn

)
f

(
σqτk − ri,p

σ

)
∆2
k,i

σhn
+ o

(
∆2
k,i

hn

)]

= qη

∫ ∞
−∞

{
K2

(
xi − x0

hn

)
(f(qτk) + o(1))(g(x0) + o(1))

∆2
k,i

σhn
+ o

(
∆2
k,i

hn

)}
dxi

=
qη

σ
f(qτk)g(x0)

∫ M

−M
K2(ti)

u0k +

q∑
j=0

uj
j!
hjnt

j
i

2

dti + o(qη‖Ahnu‖2) (S.2)

where ti = (xi−x0)/hn and Ahn is a (q+1+p)× (q+1+p) diagonal matrix with diagonal elements

(1, · · · , 1, h0
n/0!, · · · , hpn/p!).

Since we can choose η arbitrarily small, (S.2) implies

nqE

[
Z2
n,k,i(u)1

(
| ∆k,i√
nhn
| ≤ η

)]
= o(‖Ahnu‖2) = o(1) (S.3)

(S.1) and (S.3) together indicate that E[I2
3 ] = o(1). Applying Chebyshev’s inequality yields

I3 − E[I3]
p→ 0 and

E[I3] = n

q∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| ≤ η

)]
+ n

q∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| > η

)]
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Using the same argument in the proof of E[I2
3 ]→ 0, we can show that

n

q∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| ≤ η

)]

=
1

2σ

q∑
k=1

βkf(qτk)g(x0)

∫ M

−M
K(ti)

u0k +

p∑
j=0

uj
j!
hjnt

j
i

2

dti + o(‖Ahnu‖2)

Applying Cauchy-Schwartz inequality, we have

n

p∑
k=1

βkE

[
Zn,k,i(u)1

(
| ∆k,i√
nhn
| > η

)]
= o(‖Ahnu‖2) = o(1)

Therefore,

I3
p→ 1

2σ

q∑
k=1

βkf(qτk)g(x0)

∫ M

−M
K(ti)

u0k +

p∑
j=0

uj
j!
hjnt

j
i

2

dti (S.4)

According to the law of large number, we know

I2
a.s.→ β0g(x0)

∫ M

−M
K(ti)

 p∑
j=0

uj
j!
hjnt

j
i

2

dti (S.5)

Let ξβ,i = −2β0(σεi+ri,p)+
∑q
k=1 βk[1(εi ≤ (σqτk−ri,p)/σ)−τk]. We define Wβ,n = (wβ,01, · · · , wβ,0q, wβ,0, wβ,1, · · · , wβ,p)T ,

where

wβ,0k = βk
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
[1

(
εi ≤

σqτk − ri,p
σ

)
− τk], k = 1, · · · , q

wβ,j =
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)(
xi − x0

hn

)j
ξβ,i, j = 0, · · · , p.

Let

S(β) =

 S11(β) S12(β)

S21(β) S22(β)


where S11(β) is a q×q diagonal matrix with diagonal elements βkf(qτk)/(2σ), for k = 1, · · · , q, S22(β)

is a (p+ 1)× (p+ 1) matrix with (j, j′)-entry (β0 +
∑q
k=1 βkf(qτk)/(2σ))µ(j+j′−2), i.e. µ(j+j′−2), for

j, j′ = 1, · · · , p+1, and S12(β) = S21(β)T is a q×(p+1) matrix with (k, j)-entry βkf(qτk)/(2σ)µj−1,
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for k = 1, · · · , q; j = 1, · · · , p+ 1.

Since I1 can be written as WT
β,nAhnu, then

Qβ(θ∗ + (nhn)−1/2u)−Qβ(θ∗) = g(x0)uTAhnS(β)Ahnu + WT
β,nAhnu + op(‖Ahnu‖2)

Then minimizing Qβ(θ∗ + (nhn)−1/2u)−Qβ(θ∗) with respect to u yields that

S(β)Ahn û = − 1

2g(x0)
Wβ,n + op(1)

We define W∗
β,n = (w∗β,01, · · · , w∗β,0q, w∗β,0, w∗β,1, · · · , w∗β,p)T , where

w∗β,0k = βk
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)
[1(εi ≤ qτk)− τk], k = 1, · · · , q

w∗β,j =
1√
nhn

n∑
i=1

K

(
xi − x0

hn

)(
xi − x0

hn

)j
ηβ,i, j = 0, · · · , p

where ηβ,i = −2β0σεi +
∑q
k=1 βk[1(εi ≤ qτk)− τk].

Let

Vβ = 4β2
0σ

2 − 4β0

q∑
k=1

βkστ0,k +

q∑
k,k′=1

βkβk′τk,k′ ,

and we define

Σ(β) =

 Σ11(β) Σ12(β)

Σ21(β) Σ22(β)


where Σ11(β) is a q × q matrix with (k, k′)-entry βkβk′ν0τk,k′ , for k, k′ = 1, · · · , q, Σ22(β) is a

(p+1)×(p+1) matrix with (j, j′)th element Vβν(j+j′−2), for j, j′ = 1, · · · , p+1, and Σ12(β) = ΣT21(β)

is a q×(p+1) matrix with (k, j)-entry (−2β0βkστ0,k+βk
∑q
k′=1 βk′τk,k′)ν(j−1), for k = 1, · · · , q; j =

1, · · · , (p+ 1).

It is easy to check

Cov(W∗
β,n)

p→ g(x0)Σ(β).

Therefore, we have

W∗
β,n

L→ N(0, g(x0)Σ(β))

Moreover, we can show that for any nonzero (1+q+p)×1 vector α, Var(αT (W∗
β,n−Wβ,n)) = op(1),
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and applying Central limit theorem (CLT) yields

αTWβ,n − E[αTWβ,n]√
Var[αTW∗

β,n]

L→ N(0, 1)

Therefore, we have

S(β)Ahn û +
1

2g(x0)
E[Wβ,n]

L→ N

(
0,

1

4g(x0)
Σ(β)

)
(S.6)

This completes the proof of Theorem 3.3.1.

Proof of Corollary 3.3.1:

E[wβ,0] = −2β0

√
nhnE[

1

hn
K

(
xi − x0

hn

)
rip]

+

q∑
k=1

βk
√
nhnE

[
1

hn
K

(
xi − x0

hn

){
1

(
εi ≤

σqτk − ri,p
σ

)
− τk

}]
:= J1 + J2

J1 = −2β0

√
nhn

∫ M

−M
K(ti)

m(x0 + tihn)−
p∑
j=0

m(j)(x0)

j!
(tihn)j

 g(x0 + tihn)dti

= −2β0

√
nhn

∫ M

−M
K(ti)

(
m(p+1)(x0)

(p+ 1)!
(tihn)p+1 + o((tihn)p+1)

)
g(x0 + tihn)dti

= − 2

(p+ 1)!
β0g(x0)m(p+1)(x0)µp+1

√
nhnh

p+1
n + o(

√
nhnh

p+1
n )

and condition on x

J2 =

q∑
k=1

βk
√
nhnE

[
1

hn
K

(
xi − x0

hn

){
F (
σqτk − ri,p

σ
)− F (qτk)

}]

= −
q∑

k=1

βk
√
nhnE

[
1

hn
K

(
xi − x0

hn

){
f(qτk)

ri,p
σ

+ o(ri,p)
}]

= − 1

σ(p+ 1)!

q∑
k=1

βkf(qτk)g(x0)m(p+1)(x0)µp+1

√
nhnh

p+1
n + o(

√
nhnh

p+1
n )
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Thus,

E[wβ,0] = − 2

(p+ 1)!

(
β0 +

1

2σ

q∑
k=1

βkf(qτk)

)
g(x0)m(p+1)(x0)µp+1

√
nhnh

p+1
n + o(

√
nhnh

p+1
n )

Set α = (0, · · · , 0︸ ︷︷ ︸
q

, 1, 0, · · · , 0)T . According to Theorem 3.3.1, we have

αTS(β)Ahn û +
1

2g(x0)
E[αTWβ,n]

L→ N

(
0,

1

4g(x0)
αTΣ(β)α

)

If p = 1, then we obtain

q∑
k=1

1

2σ
βkf(qτk)u0k +

(
β0 +

q∑
k=1

1

2σ
βkf(qτk)

)
u0

−

(
β0 +

q∑
k=1

1

2σ
βkf(qτk)

) √
nhn
2

m(2)(x0)µ2h
2
n
L→ N

(
0,

ν0

4g(x0)
Vβ

)

√
nhn

{
q∑

k=1

1

2σ
βkf(qτk)(â0k − qτk) +

(
β0 +

q∑
k=1

1

2σ
βkf(qτk)

)
(u0 −m(x0))

}

−

(
β0 +

q∑
k=1

1

2σ
βkf(qτk)

) √
nhn
2

m(2)(x0)µ2h
2
n
L→ N

(
0,

ν0

4g(x0)
Vβ

)

Set σβ0 +
∑q
k=1 βkf(qτk)/2 = 1. Since m̂β(x0) =

∑q
k=1 βkf(qτk)â0k/2 + â0, then

√
nhn

(
m̂β(x0)−m(x0)− 1

2
m(2)(x0)µ2h

2
n

)
L→ N

(
0,

ν0σ
2

4g(x0)
Vβ

)

and

MSE(m̂β(x0)) =
1

4
(m(2)(x0)µ2)2h4

n +
1

nhn

ν0σ
2

4g(x0)
Vβ + op

(
h4
n +

1

nhn

)
This completes the proof of Corollary 3.3.1.
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Proof of Corollary 3.3.2:

E[wβ,1] = −2β0

√
nhnE

[
1

hn
K

(
xi − x0

hn

)(
xi − x0

hn

)
rip

]
+

q∑
k=1

βk
√
nhnE

[
1

hn
K

(
xi − x0

hn

)(
xi − x0

hn

){
1(εi ≤

σqτk − ri,p
σ

)− τk
}]

:= J3 + J4

If p = 2,

J3 = −2β0

√
nhn

∫ M

−M
K(ti)ti

m(x0 + tihn)−
2∑
j=0

m(j)(x0)

j!
(tihn)j

 g(x0 + tihn)dti

= −2β0

√
nhn

∫ M

−M
K(ti)ti

(
m(3)(x0)

6
(tihn)3 + o((tihn)3)

)
g(x0 + tihn)dti

= −1

3
β0g(x0)m(3)(x0)µ4

√
nhnh

3
n + o(

√
nhnh

3
n)

and condition on x

J4 =

q∑
k=1

βk
√
nhnE

[
1

hn
K

(
xi − x0

hn

)(
xi − x0

hn

){
F

(
σqτk − ri,p

σ

)
− F (qτk)

}]

= −
q∑

k=1

βk
√
nhnE

[
1

hn
K

(
xi − x0

hn

)(
xi − x0

hn

){
f(qτk)

ri,p
σ

+ o(ri,p)
}]

= − 1

6σ

q∑
k=1

βkf(qτk)g(x0)m(3)(x0)µ4

√
nhnh

3
n + o(

√
nhnh

3
n)

Therefore,

E[wβ,1] = −1

3
g(x0)m(3)(x0)µ4

√
nhnh

3
n

(
β0 +

1

2σ

q∑
k=1

βkf(qτk)

)
+ o(

√
nhnh

3
n)

Set α = (0, · · · , 0︸ ︷︷ ︸
q

, 0, 1, 0, · · · , 0)T . According to Theorem 3.3.1, we have

αTS(β)Ahn û +
1

2g(x0)
E[αTWβ,n]

L→ N

(
0,

1

4g(x0)
αTΣ(β)α

)
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Then

√
nhn

(
β0 +

1

2σ

q∑
k=1

βkf(qτk)

)
µ2hn(m̂

(1)
β (x0)−m(1)(x0))

− 1

6
m(3)(x0)µ4

√
nhnh

3
n

(
β0 +

1

2σ

q∑
k=1

βkf(qτk)

)
L→ N

(
0,

ν2

4g(x0)
Vβ

)

Therefore, we have

√
nhnµ2hn

(
m̂

(1)
β (x0)−m(1)(x0)− m(3)(x0)µ4

6
h3
n

)
L→ N

(
0,

ν2σ
2

4g(x0)
Vβ

)

i.e. √
nhn

(
m̂

(1)
β (x0)−m(1)(x0)− m(3)(x0)µ4

6µ2
h2
n

)
L→ N

(
0,

ν2σ
2

4g(x0)h2
nµ

2
2

Vβ

)
Consequencely,

MSE(m̂
(1)
β (x0)) =

(
m(3)(x0)

6

)2
µ2

4

µ2
2

h4
n +

ν2σ
2

4g(x0)µ2
2

Vβ
nh3

n

+ op

(
h4
n +

1

nh3
n

)

We can show the similar results for p = 1. This completes the proof of Corollary 3.3.2.

Proof of Lemma B.1

Since F belongs to the domain of attraction of a stable distribution, then

µ(x) =

∫ ∞
−∞

t2I(|t| ≤ x)dF (t) = E[ε2I(|ε| < x)] ∼ x2−τL(x) (S.7)

where 0 < τ ≤ 2 and L(·) is a slowly varying function, i.e. L(mx)
L(x) → 1 as x → ∞, for any m > 0.

And also

x2P (|εi| > x)

µ(x)
→ 2− τ

τ
(S.8)

From Feller (1971, pg 579), we also know

nµ(an)

a2
n

=
na2−τ

n L(an)

a2
n

→ c (S.9)

57



for some constant c.

Part (a)

Case 1 : 1 < τ ≤ 2

1 < τ ≤ 2 implies E[|εi|] <∞. And since the truncated second moment and the tailsum of

|εi| are the same of that of εi, by applying Theorem 3 of Feller (1971, pg 580), we obtain,

∑n
i=1 |εi| − nE[|εi|]

an

d→ U

for some nondegenerated distribution U .

From the fact that na−τn L(an) → c, we observe
√
n

a
(τ+δ)/2
n

→ 0, where δ = 0 if τ = 2 and any

δ > 0, if τ < 2. Then,

∑n
i=1 |εi|
an
√
n

=

∑n
i=1 |εi| − nE[|εi|]

an
√
n

+
nE[|εi|]
an
√
n

=

∑n
i=1 |εi| − nE[|εi|]

an
√
n

+

√
n

a
(τ+δ)/2
n

a
(τ+δ)/2
n

an
E[|εi|]

→ 0

Case 2 : τ = 1

As shown by Kaminska (2010),

∑n
i=1 |εi| − nE[|εi|I(|εi| ≤ an)]

an

d→ U

for some stable distribution U .

Since τ = 1, then

1− F (x) + F (−x) = P (|εi| > x) ∼ x−1L(x)

Define ξi = sgn(εi)|εi|
1
2 +δ, for some 0 < δ < 1

2 , then

P (|ξi| > x) = P (|εi| > x
1

1
2

+δ ) ∼ x
− 1

1
2

+δL(x
1

1
2

+δ )
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It can be verified that H1(x) = L(x
1

1
2

+δ ) is a slowing varying function. Since 1 < 1
1
2 +δ

< 2,

then ξi belongs to the domain of attraction of some stable distribution U ′.

Hence, we obtain E[ξ2
i I(|ξi| < t)] ∼ t

2− 1
1
2

+δL(t
1

1
2

+δ )(1 + 2δ). Then

nE[ξ2
i I(|ξi| < a

1
2 +δ
n )]

a1+2δ
n

=
E[ξ2

i I(|ξi| < a
1
2 +δ
n )]

(a
1
2 +δ
n )

2− 1
1
2

+δL((a
1
2 +δ
n )

1
1
2

+δ )(1 + 2δ)

n(a
1
2 +δ
n )

2− 1
1
2

+δL((a
1
2 +δ
n )

1
1
2

+δ )(1 + 2δ)

a1+2δ
n

= na−1
n L(an)(1 + 2δ)

= (1 + 2δ)c

Since ξi is symmetric about 0, by Theorem 3 of Feller (1971, pg 580), we have

∑n
i=1 ξi

a
1
2 +δ
n

d→ U ′

.

Then,

n
E[|εi|I(|εi| ≤ an)]

a1+2δ
n

= n
E[|εi|I(|εi| ≤ 1)]

a1+2δ
n

+ n
E[|εi|I(1 < |εi| ≤ an)]

a1+2δ
n

≤ n

a1+2δ
n

+ n
E[|εi|1+2δI(|εi|

1
2 +δ ≤ a

1
2 +δ
n )]

a1+2δ
n

=
n

a1+2δ
n

+ n
E[ξ2

i I(|ξi| ≤ a
1
2 +δ
n )]

a1+2δ
n

→ (1 + 2δ)c

Pick a small δ, and we obtain

∑n
i=1 |εi|
an
√
n

=

∑n
i=1 |εi| − nE[|εi|I(|εi| ≤ an)]

an
√
n

+
nE[|εi|I(|εi| ≤ an)]

a1+2δ
n

a1+2δ
n

an
√
n

→ 0

Case 3 : τ < 1
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Since τ < 1, applying Theorem 3 of Feller (1971, pg 580) yields

∑n
i=1 |εi|
an

d→ U

for some nondegenerated distribution U .

The result is clear.

Part (b)

Case 1 : τ = 2

This implies E[|εi|] > 0 exists (Gnedenko and Kolmogorov 1968). And because µ(x) → ∞

as x→, we have L(x)→∞.

Since τ = 2, then F belongs to the domain of attraction of a normal distribution, that is

∑n
i=1 εi
an

d→ N(0, 1)

Applying Theorem 1.1 of Gut (2006) yields

∑n
i=1 ε

2
i

a2
n

p→ 1

Case 2 : τ < 2

S.4 implies P (|εi| > x) ∼ x−τL(x) 2−τ
τ . Since τ < 2, we only need to check the tail behavior

of ε2i .

P (ε2i > x) = P (|εi| >
√
x) ∼ x−τ/2L(

√
x)

2− τ
τ

According to Corollary 2 of Feller (1971 pg 598), ε2i belongs to the domain of attraction of
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a nondegenerate distribution U . And

E[(ε2i )
2I(ε2i < t)] ∼ t2−τ/2L(

√
t)

Then

nE[(ε2i )]I(ε2i < a2
n)]

a4
n

=
E[(ε2i )]I(ε2i < a2

n)]

(a2
n)2−τ/2L(

√
a2
n)

na4−τ
n L(an)

a4
n

→ c

Then applying bfTheorem 3 of Feller (1971, pg 580), we obtain

∑n
i=1 ε

2
i

a2
n

d→ U

Part (c)

We show that 1√
hn
K(Xi−x0

hn
)εi is symmetric about 0. ∀t > 0,

P (
1√
hn
K(

Xi − x0

hn
)εi > t) =

∫ ∞
−∞

P (εi >
t

1√
hn
K(x−x0

hn
)
)dG(x)

=

∫ ∞
∞

P (εi < −
t

1√
hn
K(Xi−x0

hn
)
)dG(x)

= P (
1√
hn
K(

Xi − x0

hn
)εi < −t)

which implies 1√
hn
K(Xi−x0

hn
)εi is symmetric about 0.

For simplicity, we only present the proof for the uniform kernel. The proofs for other kernel

functions are in the same fashion, since kernel functions can be considered as properly chosen weights.

Define mn =
∑n
i=1 I(|Xi − x0| < hn). We know that, as n→∞

√
nhn(

mn

nhn
− g(x0))→ Op(1)
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then mn = nhng(x0) +
√
nhnOp(1) and mn →∞ almost surely.

∑n
i=1

1√
hn
I(Xi−x0

hn
)εi

an
=

∑
{i:|Xi−x0|<hn} εi

amn

amn
an
√
hn

=: H1 ×H2

Consider H1 first. Since mn →∞ almost surely, we have

∑
{i:|Xi−x0|<hn} εi

amn

d→ U, (S.9)

as n→∞.

According to (S.8), we obtain the following
(
mnL(amn )

c )
1
τ

amn
→ 1 and

(
nL(an)

c )
1
τ

an
→ 1 as n→∞.

Then for H2,

lim
n→∞

H2 = lim
n→∞

amn

(
mnL(amn )

c )
1
τ

(
mnL(amn )

c )
1
τ

(nL(an)
c )

1
τ

√
hn

(nL(an)
c )

1
τ

an

= lim
n→∞

[(nhng(x0) +
√
nhnOp(1))L(anhng(x0)+

√
nhnOp(1))]

1
τ

(nL(an))
1
τ

√
hn

= lim
n→∞

(g(x0) +
Op(1)√
nhn

)
1
τ (
L(anhng(x0)+

√
nhnOp(1))

L(an)
)

1
τ h

( 1
τ−

1
2 )

n

≤ (g(x0))
1
τ (S.10)

Combine (S.9) and (S.10) together, and we have

∑n
i=1

1√
hn
I(Xi−x0

hn
)εi

an
≤ Op(1)

as n→∞.

This completes the proof of the lemma.

Proof of Lemma B.2

Let ζ̃i’s be residuals of a
√
nhn-consistent fit. Then σ̃2 =

∑n
i=1

ε̃2i
n , and τ̃0,k =

∑n
i=1

ε̃
σ̃1
(
ε̃
σ̃ < q̃τk

)
,
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where q̃τk is the τk’s sample quantile of ε̃
σ̃ , for k = 1, · · · , q.

Let τl = 1
2 for some 1 ≤ l ≤ q, β̂0p =

1+4f̃(0)τ̃0,l
4f(0)2+8f̃(0)τ̃0,l+1

1
(

1+4f̃(0)τ̃0,l
4f̃(0)σ̃2+8f̃(0)τ̃0,l+1

≥ 0
)

and β̂lp =

2(1−β̂0p)

f̃(0)
. And we have

β̂ = arg min
β≥0, α̃T β=1

(4β2
0 σ̃

2 − 4β0

q∑
k=1

βkσ̃τ̃0,k +

q∑
k,k′=1

βkβk′τk,k′)

We show that β̂0 ≤ β̂0p almost surely, when E[ε2i ] does not exist. Suppose it is not. Consider

4β̂2
0 σ̃

2 − 4β̂0

∑q
k=1 β̂kσ̃τ̃0,k +

∑q
k,k′=1 β̂kβ̂k′τk,k′

4β̂2
0pσ̃

2 − 4β̂0pβ̂lpτ̃0,l + β̂2
lp

1
4

>
4β̂2

0 σ̃
2

4β̂2
0pσ̃

2 − 4β̂0pβ̂lpσ̃τ̃0,l + β̂2
lp

1
4

=
4β̂2

0

4β̂2
0p − 4β̂0pβ̂lp

τ̃0,l
σ̃ + β̂2

lp
1

4σ̃2

Since E[ε2i ] does not exist, then as n→∞, σ̃2 a.s.→ ∞ and
τ̃0,l
σ̃

a.s.→ 0. Thus, as n→∞,

4β̂2
0 σ̃

2 − 4β̂0

∑q
k=1 β̂k τ̃0,k +

∑q
k,k′=1 β̂kβ̂k′τk,k′

4β̂2
0pσ̃

2 − 4β̂0pβ̂lpτ̃0,l + β̂2
lp

1
4

a.s
> 1

However, by the definition of β̂, we have

4β̂2
0 σ̃

2 − 4β̂0

∑q
k=1 β̂kσ̃τ̃0,k +

∑q
k,k′=1 β̂kβ̂k′τk,k′

4β̂2
0pσ̃

2 − 4β̂0pβ̂lpσ̃τ̃0,l + β̂2
lp

1
4

≤ 1

since σ̃β̂0p + 1
2 f̃(0)β̂lp = 1.

Contradiction!

This completes the proof.
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