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Abstract

Motion is one of the strongest cues available for segmeamtatiWhile motion
segmentation finds wide ranging applications in objectate, tracking, surveillance,
robotics, image and video compression, scene reconstnystideo editing, and so on, it
faces various challenges such as accurate motion recaweryrfoisy data, varying com-
plexity of the models required to describe the computed gmagtion, the dynamic nature
of the scene that may include a large number of independeraiyng objects undergoing
occlusions, and the need to make high-level decisions vdei&ing with long image se-
guences. Keeping the sparse point features as the pivatd| gas thesis presents three
distinct approaches that address some of the above mettoagon segmentation chal-
lenges.

The first part deals with the detection and tracking of spposet features in image
sequences. A framework is proposed where point featurebedracked jointly. Tradi-
tionally, sparse features have been tracked independeitige another. Combining the
ideas from Lucas-Kanade and Horn-Schunck, this thesieptes technique in which
the estimated motion of a feature is influenced by the motfdh@neighboring features.
The joint feature tracking algorithm leads to an improvestking performance over the
standard Lucas-Kanade based tracking approach, esgesgfalé tracking features in un-
textured regions.

The second part is related to motion segmentation usingspaint feature trajec-



tories. The approach utilizes a spatially constrained unéxinodel framework and a greedy
EM algorithm to group point features. In contrast to pregiatork, the algorithm is incre-
mental in nature and allows for an arbitrary number of olgjéetveling at different relative
speeds to be segmented, thus eliminating the need for aiciekptialization of the num-
ber of groups. The primary parameter used by the algoriththeésamount of evidence
that must be accumulated before the features are groupddtistisal goodness-of-fit test
monitors the change in the motion parameters of a group mwerih order to automatically
update the reference frame. The approach works in real tide@saable to segment var-
ious challenging sequences captured from still and movamgeras that contain multiple
independently moving objects and motion blur.

The third part of this thesis deals with the use of specidliz®dels for motion
segmentation. The articulated human motion is chosen agrasentative example that
requires a complex model to be accurately described. A mdiased approach for seg-
mentation, tracking, and pose estimation of articulatedid®is presented. The human
body is represented using the trajectories of a number eésgmints. A novel motion de-
scriptor encodes the spatial relationships of the motiartors representing various parts
of the person and can discriminate between articulated angarticulated motions, as well
as between various pose and view angles. Furthermore, asteaighbor search for the
closest motion descriptor from the labeled training datastiing of the human gait cycle
in multiple views is performed, and this distance is fed toidden Markov Model defined
over multiple poses and viewpoints to obtain temporallysistent pose estimates. Ex-
perimental results on various sequences of walking subjeith multiple viewpoints and
scale demonstrate the effectiveness of the approach. tieydar, the purely motion based
approach is able to track people in night-time sequences) ethen the appearance based
cues are not available.

Finally, an application of image segmentation is preseinteithe context of iris



segmentation. lIris is a widely used biometric for recogmitand is known to be highly
accurate if the segmentation of the iris region is near perfdlon-ideal situations arise
when the iris undergoes occlusion by eyelashes or eyelid)eooverall quality of the
segmented iris is affected by illumination changes, or dueuit-of-plane rotation of the
eye. The proposed iris segmentation approach combinepfeaence and the geometry
of the eye to segment iris regions from non-ideal images. iftege is modeled as a
Markov random field, and a graph cuts based energy mininoizatigorithm is applied
to label the pixels either as eyelashes, pupil, iris, or gemknd using texture and image
intensity information. The iris shape is modeled as an &#ignd is used to refine the pixel
based segmentation. The results indicate the effectiganfethe segmentation algorithm

in handling non-ideal iris images.
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Chapter 1

Introduction

In computer vision, segmentation is defined as the procedwioling an image(s)
into regions in the spatial and/or temporal domain, basedoone image property. Seg-
mentation (also known as grouping, or clustering, or ladgglforms the basis of a large
number of computer vision tasks. Therefore, a better utai®igng of the segmentation
process is crucial to their success. In essence, the nuétif keywords used to explain
the segmentation underscore its breadth as a field of ingtdowever, the question of
how to perform segmentation is challenging. For years, agarpvision researchers have
looked at Gestalt laws of visual perception to tackle thisggion.

The Gestalt school of psychology, which emerged in the &tis century in Ger-
many, stresses the holistic and self-organizing natureuaian visual perception. The
word gestaltliterally means form, or structure, and conveys the idea\isaial perception
focuses on well organized patterns rather than disparats. pehis implies that grouping
of various elements is the key to visual perception leading single form which at the
same time is more than just the sum of its parts. Visual reptesion of an object can be
considered as a result of grouping individual neural respsnwhich is in turn guided by

the factors underlying the scene such as similarity betvedements, closure, symmetry,
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Figure 1.1: Gestalt laws of visual grouping. If the goal isotwiain two groups from the
eight elements that are given, then different Gestalt lawg produce different grouping
outcomes. In this example, (a) the similarity criterion s based on appearance and
separates black and white elements, (b) proximity igndresippearance and uses distance
between the elements , (c) common-fate based grouping esndept on the motion of
elements, (d) and continuity criterion attempts to fit lime®rder to find patterns in the
scattered elements. For each case, the points are on tlaadkefhe corresponding groups
are on the right.
continuity, proximity, common fate, and others. These arewkn as the Gestalt laws and
some of them are shown in Figutel It is easy to see the intuitiveness of the Gestalt laws
and their relation to the segmentation process. Any one on@mbmation of multiple laws
provide suitable criteria to perform segmentation of insage

Common fate, also known as common motion, is a powerful cuedene under-
standing 91, 42|, and according to Gestalt psychology the human visuakesysiroups
pixels that move in the same direction in order to focus #tteron perceptually salient
regions of the scene. As a result, the ability to segment @s&gsed upon pixel motion is
important for automated image analysis impacting a numbienjgortant applications, in-
cluding object detectiorllf04, tracking [87, 57], surveillance 46, 13], robotics b5, image
and video compressiof], scene reconstructiord§], and various video manipulation ap-
plications such as video matting]2, motion magnification§9], background substitution
[26], video annotation for perceptual grouping, and contestedavideo retrievaldg].

The data used for motion segmentation can either be motictorgecorresponding

to each of the pixel locations (dense) or a subset of imaggitots (sparse). A common

segmentation approach is to assume that the points befpthgieach segment follow a
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known model but with unknown parameters. Then the entira dah be represented as a
mixture of different models corresponding to differentreegts. Estimates of the param-
eters of the models and their mixing proportions can exglansegmentation. This is the
classical mixture model framework used for segmentatione frimary goal of motion
segmentation is to produce homogeneous image regions bas#gkir motion. Homo-
geneity is an important condition for enforcing the adjdaata elements to belong to the
same segment unless a motion boundary separates the tably,ldanotion segmentation
algorithm has to be sensitive to respect the motion boueslavhile producing homoge-
neous regions (or clusters of points) by smoothing out &ffe€noise and outliers in the
interior of a region. Classical mixture model framework sloet guarantee a labeling that
considers spatial saliency of the data elements which istiwagpatially variant mixture
models are important for segmentation.

Segmentation is an inherently challenging problem becafiske absence of a
clearly defined objective and the uncertainty regardingsiggmentation criteria to be em-
ployed. The Figurd.2 shows an example of an image and its multiple possible segmen
tation solutions: different segmentation criteria resaltlifferent segmentation outputs.
While not completely alleviating the subjective nature lnd segmentation problem, use
of motion for segmentation reduces the ambiguity to somergxtFigurel.3 shows two
frames of a sequence and the expected motion segmentalitiosoAs compared to im-
age segmentation in Figufde2, it is easier to see that there are three moving objects (the
ball, the toy-train and the calendar) in front of the staaickground and that the segmenta-
tion boundaries align with the motion boundaries. Nevéesg motion segmentation re-
mains a challenging problem, primarily because the esiimat image motion from given
sequences is challenging, and also because simple motidalsptike used in this exam-
ple, do not always accurately describe the actual motioth Bbthese lead to ambiguities

in segmentation. The 3D motion projected onto a 2D imageepiaakes the problem of

3



Figure 1.2: Subjective nature of the segmentation problématural image from the
Berkeley Segmentation Databa3@][(top row) and its various possible ground truth seg-
mentations marked by different subjects (bottom row). Tine ldere is to show that the
segmentation is a subjective concept and there is no onsafugon to a given problem.
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Figure 1.3: Two frames of a sequence (left and center) thathrae moving objects: the
ball, the train and the calendar in front of a static backgtbuThe motion boundaries

overlaid on the second frame of the sequence (right). Eveugth all the parts of the toy
train are expected to follow the same motion in 3D, the olestimage motion is different

for different pixels of the toy-train. So is the case for &k tother image regions.
motion estimation underconstrained, and various assomptegarding the scene motion
have to be made in order to recover it. Adding to the challestfee dynamic nature of the

videos that include sudden illumination changes, nordrigotion of image regions, and

occlusions.



1.1 Previous Work

Motion segmentation is a classic problem in computer visubich has been ex-
plored by various researchers over the years. One traditepproach has been to as-
sign the pixels to layers and to compute a parametric motoreéch layer, following
Wang and Adelsonl08 109 3]. This approach determines a dense segmentation of the
video sequence by minimizing an energy functional, typycaking either expectation-
maximization (EM) or graph cuts. In a series of papers, JBjiey, and colleagues3, 22,
54] demonstrate algorithms capable of segmenting sequemcksepresenting those se-
guences using example patches. In other recent work, Shrtimmmond, and Cipollad5
present a technique for dense motion segmentation thaeadpM to the edges in a se-
guence. Xiao and ShathI3 combine a general occlusion constraint, graph cuts, gritthal
matting to perform accurate, dense segmentation. Kumar, dled Zissermang2] com-
bine loopy belief propagation with graph cuts to denselyrssgt short video sequences.
Cremers and Soatt@4] minimize a continuous energy functional over a spatiogieral
volume to perform two-frame segmentation, a technique isiextended by Brox, Bruhn,
and Weickert 19]. Spatiotemporal coupling has been enforced using grafshacd hidden
layers representing occlusio8q] and by dynamic Bayesian networl3g].

An alternate approach is to formulate the problem as one di-mdy factoriza-
tion, which is solved using subspace constraints on a measnt matrix computed over
a fixed number of frames, based upon the early work of CosteinaKanadeZ3]. Ke and
Kanade 58] extended this work by presenting a low-dimensional rotinsiar subspace
approach to exploit the global spatial-temporal constsaidelnik-Manor et al. 11§ ex-
pand upon traditional measures of motion consistency bpgakto account the temporal
consistency of behaviors across multiple frames in theosskquence, which can then

be applied to 2D, 3D, and some non-rigid motions. Vidal andti$gq102 103 show



that multiple motions can, in theory, be recovered and seggdesimultaneously using
the multi-body epipolar constraint, although segmentatibmore than three bodies has
proved to be problematic in practice. In recent work, Yan Botlefeys 115 have ex-
amined the effects of articulated and degenerate motion thmotion matrix, to which
recursive spectral clustering is applied to segment k&tshort video sequences. In other
recent work, Gruber and Weis$q] extend the standard multi-body factorization approach
by incorporating spatial coherence.

The problem has been approached from other points of viewedls Warious re-
searchers have utilized the assumption that the dominatidmis that of the background
in order to detect independently moving obje@g,[78, 50]. Other researchers have ex-
plored the connection between bottom-up and top-down geieg, noting that some top-
down evidence will be needed for segmentation algorithnpsaduce the results expected
by human evaluators, 99, 66]. Wills et al. [L1(0 combine sparse feature correspon-
dence with layer assignments to compute dense segmentdigmobjects undergo large
inter-frame motion, followed by more recent wo4] in which the time-linearity of the
homographies obtained under the assumption of constardldtaon is exploited in order
to segment periodic motions from non-periodic backgrousdts and Malik PO, 91] clus-
ter pixels based on their motion profiles using eigenvectaitechnique that has proved
successful for monocular cues but which does not take aodursformation into account.
Rothganger et al.84] apply the rank constraint to feature correspondencesdardo di-
vide the sequence into locally coherent 3D regions. In tvergs of recent interesting
work, Sivic, Schaffalitzky, and Zisserma4] use object-level grouping of affine patches
in a video shot to develop a system for video retrieval, anchi@isi et al. [26] present a
real-time foreground/background segmentation technigtresufficient accuracy for com-
positing the foreground onto novel backgrounds.

To summarize, classification of the existing motion segugot approaches can

6



be done in multiple ways. From an algorithmic point of vieley can be classified as
motion layers estimation, multi-body factorization, atijevel grouping of features, or
some combination of top-down and bottom-up techniqueda#sified based on the nature
of the data used, some approaches perform dense segmeyitatiaecovering the motion
of each pixel and assigning them to one of the groups whilersthely on clustering of
sparse features descriptors such as SIFT featd@ps$ome approaches are purely motion
based while others use additional image cues for segmemi&ased on the type of energy
minimization technique used, the approaches can be cibsidi those using Expectation-

Maximization (EM) or its variations, graph cuts, normatizauts, or belief propagation.

1.2 Motion Segmentation Challenges

There are two aspects to motion segmentation in long segserf) segmenting
two image frames (which may or may not be consecutive), aptb(g-term handling of
the resultant groups. Many of the previous approaches idescabove have a significant
limitation in that the number of groups must be knowpriori. In addition, if the al-
gorithms are using parametric motion models, the paranmat&lization has to be done
carefully. Also, the motion segmentation process is sigaifily impacted by the way the
image motion is estimated. Conventional approaches astemedependence of data ele-
ments (sparse point features) while estimating their nmotrbich is a limiting assumption
in certain situations. A more powerful assumption is that tleighbors show common
motion which leads to the challenge of incorporating theiambf immediate neighbors
while estimating the motion of a data element. Another emaé is to handle a variety of
motions present in natural sequences. While a large nunilbases can be dealt with the
use of conventional models such as translation or affine gsspacial cases such as seg-

mentation of articulated human motion requires a specn kf model to be appropriately



described.

Long term aspects concern with handling the segmented growgr time. Tradi-
tional motion segmentation algorithms limit themselvesistng the information between
timest andt + K, whereK is a constant parameter, in order to determine the number and
composition of the groupslP8 53, 95, 113 24, 23, 91]. Ignoring the fact that motion is
inherently a differential concept, such an approach islamid estimating the derivative
of a function using finite differences with a fixed window siZBoo small of a window
increases susceptibility to noise, while too large of a wimdgnores important details.

The drawback of using a fixed number of image frames is illstt in Figure
1.4a with two objects moving at different speedsy; /At; and Axy/At,, respectively,
relative to a static background, whefe; = Ax,. Since the amount of evidence in the
block of frames is dependent upon the velocity of the objelztive to the background,
the slowly moving object is never detected (i.e., separatad the background) because
Axo /Aty < 7, wherer = Ax/At is a threshold indicating the minimum amount of relative
motion between two objects required to separate them. Tieshbld must be set above
the noise level (of the motion estimator) in order to avoi@resegmentation, but if it is
set too high, then objects moving slowly relative to eactepthill not be distinguished.
The solution to this problem is to use a fixed reference frantle the threshold- = Ax
indicating the amount of relativéisplacemenheeded between two objects, as shown in
Figurel.4b. As additional images become available over time, eviddéacthe motion of
an object is allowed to accumulate, so that objects are @eteegardless of their speed
once their overall displacement exceeds the threshold ¢ > .

Of course, in practice the reference frame must be updatectesily due to the
divergence over time of the actual pixel motion from the losder model of the group
motion. Thus, a crucial issue in designing a motion segntientaystem that operates on

variable speeds is to adaptively update the reference frdmeo so, the system must be

8



xh object 1 rZAx/A‘t’ object 2 x+ object | _»Object 2
v Al =Ax ’ <
pel T o]
""¢ Ax] sz "‘¢¢ Ax
e i i - Al l >
“Atl t T t
At —— < L
2
@) (b)

Figure 1.4: A fast object (object 1) and a slow object (objgctmove against a static
background. (a) If the thresholdis dependent upon velocity, then the slowly moving
object is never detected becaus®,/At, < 7. (b) In contrast, a fixed reference frame
enables both objects to be detected independently of the&ds as soon as enough image
evidence accumulates (timefor object 1 and, for object 2).

able to distinguish between two common cases. First, thelgpir a region may not be
moving coherently due to the presence of multiple objectsipging the region, in which
case the group should be split. Secondly, the motion divegenay be due to unmod-
eled effects in the underlying motion model, in which caseréference frame should be
updated.

Based on the study of the previous work and the above dismusseveral com-
mon themes emerge regarding limitations of the existingonategmentation approaches.
First, batch processing is quiet common, with many apprescperating either on two
images at a time or on a spatio-temporal volume containingea fnumber of images. In
the case of multiple frames, the motion of the object is oftensidered to be constant or
slowly changing throughout the sequence of frames undeideration to simplify the in-
tegration of information over time. Secondly, the techesjare usually limited to a small
time window in which the motion of all of the objects is expatto be well behaved. Ad-

ditionally, it is generally the case that the focus of theeggsh is not upon computationally

efficient algorithms, leading in some cases to techniquatsrdguire orders of magnitude



more than is available in real-time applications. Finatyne of the techniques are limited
to a small number of objects (two or three), due to either tmeputational burden or more

fundamental aspects of the algorithm.

1.3 Thesis Outline

The main goal of the work presented in this thesis is to pre@rsapproach for
motion segmentation that is able to handle long image seggenith an arbitrary number
of objects, is automatic with a few user defined parameterd,i@ computationally effi-
cient. A mixture model framework is employed for the purpo$segmentation, where
it is assumed that the individual moving regions in an imagguence follow parametric
motion models and the overall motion in the sequence is theltemnt mixture of these
individual models. To describe a mixture, it is necessarggecify the kind of motion
each region undergoes (nature of the parameters of the jnadst of observable data el-
ements, and a procedure to learn the parameters of eachmbithels which in turn guide
the segmentation. The observed data in this work are theepawtion trajectories that are
obtained by detection and tracking of point features inatjmianner through the consecu-
tive frames of the sequence. Each moving image region is osatpof sparse points whose
trajectories follow an affine motion model. To obtain a doitkasegmentation, parameters
of these affine motion models are learned using a novel puwedshsed on Expectation
Maximization (EM). The long term handling of the feature gps is done by maintaining
existing groups (splitting them if required), or additioheonew group altogether. One of
the secondary goals of this work is to explore a special matiodel tailored for handling
articulated human motion. Since articulated motion carfmotompletely described by
any conventional motion model, special models are requiaeitls description. Hence, the

goal is to learn the various pose and viewpoint configuradioinuman gait and use them
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for segmentation and pose estimation of articulated humatiom Another goal of the
work presented in this thesis is to describe the use of mextuvdels for segmentation of
natural images as well as a special application involvirsgimnage segmentation.

The thesis is organized in the following manner. Chagtdescribes the various
mixture models, notably the spatially variant mixture misde the context of image seg-
mentation. A general description of the EM algorithm forgraeter estimation is given. A
greedy spatially variant mixture model, an extension ofdkisting spatially variant mix-
ture model, is proposed that overcomes some of the limitatd the existing models with
respect to the initialization and computational efficienayplementation of the various
mixture models described in this chapter is shown for segatien of natural images. Im-
age segmentation, being a more intuitive and simpler to nstaled application of mixture
models, is chosen here to demonstrate the effectivenes® qgfrbposed greedy spatially
variant mixture model. Another reason for demonstratirgyrthixture model algorithms
using image segmentation is that many of the previous appesadescribe mixture mod-
els in the context of image segmentation.

Chapters3 and 4 form the bulk of the proposed motion segmentation approach.
Chapter3 describes tracking of point features in image sequencgscgaovered in this
chapter include the basics of motion estimation, detediwh tracking of point features,
and a joint feature tracking algorithm that, as the name &sigg tracks point features in
a joint fashion instead of tracking them independently atoise by the conventional fea-
ture tracking algorithms. This joint feature tracking agpgoeh was presented at tHeEE
Conference Computer Vision and Pattern Recognition (CYR&)8[9]. In joint feature
tracking, the neighboring feature points influence theetijry of a feature and this prop-
erty can be used to track features reliably in places with tasrepetitive texture. The
motion vectors obtained from point feature trajectories @ged as the input data for the

motion segmentation algorithm described in the next cliapte
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Chapterd begins by describing how to adapt the greedy spatially manaxture
model introduced in Chapt& for motion segmentation. Specifically, an affine motion
model and a neighborhood computing criterion in the cas@aifse features is described.
Following the description of the algorithm, experimentdults are demonstrated on var-
ious sequences. The motion segmentation algorithm pesfarmeal time on a standard
computer, handles an arbitrary number of groups, and is detraded on several challeng-
ing sequences involving independently moving objectdusaan, and parallax effects. The
number of groups is determined automatically and dynatyieal objects move relative to
one another and as they enter and leave the scene. The pparameter of the algorithm
is a threshold that captures the amount of evidence (in tefmsotion variation) needed
to decide that features belong to different groups. A pathisfalgorithm was described in
the paper published ifEEE Transactions of Systems, Man, and Cybernetics, P88

Segmentation using articulated human motion models isritbescin Chaptemb.
The idea is to learn articulated motion models correspanttinvarious pose and view
angle configuration using 3D motion capture (mocap) dat&kvis obtained from the tra-
jectories of the markers attached to the various body parsingle gait cycle is quantized
into a fixed number of pose configurations as is the’3@Gdield of view. Motion vectors
of the markers in 2D can now be obtained for each pose and vigle and their discrim-
inative ability is captured by a spatially salient motiorsdeptor. These descriptors are
used for segmentation of articulated human motion and pstseation. The advantage of
this approach is that it is purely motion based and hence eaapplied to scenes where
extractions of appearance information is difficult.

Chapter6 revisits the problem of image segmentation in the contesegimenta-
tion of iris images. This application differs from the gelsemage segmentation presented
in Chapter2 due to the fact that a lot of a priori information is availabiehe case of iris

images as compared to generic natural images. The numbengdfanents as well as the
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shape of the iris and pupil are known a priori, thus leads taiamsimplified formulation
of the segmentation problem. Texture and image intensftyrnmation is utilized along
with the shape information for segmentation of iris regioResults are demonstrated on
non-ideal iris images that suffer from illumination effecbcclusion and in and out of plane
rotation. The iris segmentation approach was presentéx &\MPR Workshop on Biomet-
rics, 2008[81]. Conclusions, contributions of the thesis and some ptieditections for

future work are presented in Chapter
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Chapter 2

Mixture Models for Segmentation

Mixture models, which are extensively used in segmentafamm an integral part
of the motion segmentation algorithm that will be presente@hapter4. This chapter
gives a general description of mixture models, their vaitarmulations, the methods
of learning the mixture parameters, and their use in segatient Beginning with the
definition of a Finite Mixture Model (FMM) and the Expectatidaximization (EM) al-
gorithm for parameter estimation, this chapter goes on serilge the Spatially Variant
Finite Mixture Models (SVFMMs) that can produce a smootlareling compared with
FMMs. Several limitations of SVFMMs are discussed which iwaie a new approach
based on iterative region growing that improves upon thstexj SVFMM framework.
Termed as Spatially Constrained Finite Mixture Model (SQFMthe effectiveness of the
new approach is demonstrated @is4s the existing mixture models in the context of image
segmentation. The chief purpose of this chapter is to peogitheoretical backing to our
region growing approach by connecting it with the spatiallyiant mixture models and
the EM algorithm. The reader may wish to skip the mathemiatietails of the mixture
models in this chapter on first reading, since our motion sggation algorithm may be

understood without these details.
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Most previous work in mixture models and EM is aimed at imaggnsentation.
In [21], the EM algorithm is used for learning component densitsapeeters of an FMM
for image segmentation was described . The SVFMMs were ficgigsed in 6] for im-
age segmentation, and its various extensions were presentebsequent workg g, 11,
33, 89| that introduce different prior models and different waysolving for the parame-
ter estimates. While many approaches rely on Expectatioxiriaation for maximizing
the likelihood, an approach presented 117] uses a combination of EM and graph cuts

(originally proposed in17]) for energy minimization.

2.1 Finite Mixture Models

Clustering or labeling problems are common in computepwisvhere an observed
data element has to be classified as belonging to oKeatdsses (also referred to as com-
ponents, groups, or clusterdy, being a positive integer. For example, the objective of
image segmentation is to assign a label to each pixel from afdmite labels based on
some image property. In addition to assigning the labels, also necessary to estimate
the overall properties of the pixels having the same lale8rhate the class parameters).
Hence, if each class follows a particular probability dgn&inction, then any pixel in the
image can be considered as a sample drawn from the mixtuhe afidividual class densi-
ties. Finite mixture models (FMM) provide a suitable franogkto formulate such labeling
problems, where mathematical techniques are alreadylissiad for estimating the labels
and the class paramete®]. A density function describing a finite mixture model wkh

components is given by:

. K .
g(xV) = ijgb(x('); 0), (2.1)
=1
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wherex( is thei™ observation (a random variable or vectasix"; 6,) is the density
function of the™ component wittt) parameters, ang is the corresponding mixing weight
such thanK:1 7 = 1,andm > 0, ] = 1,...,K. The mixing weight for a component can
be considered as the prior probability of drawing a sammmfthat component.

A Gaussian mixture model (GMM) is a special case of FMM whewividual
component densities are Gaussian, i.e.,

| Cx _ )2
o(XV; 1y, 07) = S {u} : (2.2)

2
27r0j2 20

where; ando;j are the mean and the standard deviation ofjth&aussian density (pa-
rameters of the Gaussian density functién= <M,-, o—,->). Figure2.1 shows an example
of a grayscale image whose intensities can be modeled astaredf four 1D Gaussian
densities. The individual component densities observadany of the computer vision
problems such as segmentation are often approximated bgs@aldensities due to which
GMMs are the commonly used mixture model. Learning the mextonstitutes estimating
the parameterg,, . . ., ¢ and the mixing weights, . . ., 7k for theK components. There
are two basic ways in which the parameters (and the mixinglhtg) can be estimated:
maximume-likelihood (ML) or maximum a posteriori (MAP). Téeestimates can be found
using algorithms such as Expectation-Maximization (EM)akiis most commonly used

to determine the ML or MAP estimates of the parameters of durexdensity.
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Figure 2.1: An example of a Gaussian mixture mode€lrT: A grayscale imagerIGHT:
Mixture of four Gaussian components from which the pixelshaf image on the left are
drawn as random samples.

2.2 Parameter Estimation Using Expectation Maximiza-
tion (EM)

Parameter estimation is based on the observed data. Aggtinaihthe amount of
observable data is finite and discrete,Xét denote thé™ data sample from a total dd
samples, and let = <x(1>, . ,x('\')> be the entire data set. For the sake of convenience,
the parameters of individual component densities and toenesponding mixing weights
for the mixture model given in equatio2.Q) are represented in a combined fashion by

6= <7T1,91, .. .,7TK,9K>, such tha’@, = <7TJ,91>

2.2.1 MAP Formulation

MAP is also known as Bayesian formulation as it is based oreBagule. The
parameters, that are to be estimated, are assumed to fokaaven (a priori) distribution.

From Bayes’ rule, the a posteriori probability density ftioc of the parameters of tH&
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component@;, given thei™" data sample is

mo(xV; 6,)09(0;)
g(x®) ’

9(65; x") = (2.3)

wheres(x; 6,) is the density function of thg" componenty; is the prior probability
of that componenty(©;) is the prior density on the parameters of jfiecomponent, and
g(x) is a constant value that depends on the observed data. Fentine mixture (allK

components) given a single data element it can be written as

g(©; X0 :i(”’ ngg(@")) (2.4)

Assuming that thél data samples are independent, equati4) can be modified to

N
9(0; X) = g(0; xV, ..., xV) = g(©; xV),... 9O = JJa(® . (2.5)

i=1

From equations2.4) and @.5), the a posterior probability of the set of parameters given

the entire data is
o(xV; 1)9(9)

= ll;[; x(' ) (2.6)

The MAP estimate of the parameter set can now be obtained kynmizang g(©; X), i.e

Oup = arg max {g(©; X)}. (2.7)

Usually, instead of maximizing the actual density term |atg is maximized in order to
simplify the calculations. Also, since the denominator gfi@ion2.6is a scaling factor,

it can be conveniently ignored for maximization operati@ading to the MAP estimate
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equation

Oup = arg max {Z > log{me(xV; )g(@,)}} (2.8)

i=1j=1
Differentiating the above equation, equating it to zero aoling it further yields MAP

estimate of parameters.

2.2.2 ML Formulation

There are many situations when the prior probability disttion of the parameters
P(©) is unknown. A convenient way is to assume thais uniformly distributed and is
equally likely to take on all possible values in the paramspace. Hence, the prior prob-
ability density functiong(©;) in equation 2.3) can be eliminated. Since the denominator
g(x) in equation 2.6) can be ignored, maximizing the a posteriori probabilitysity
function is equivalent to maximizing the likelihood furai. The likelihood function is
given by
XK: 7TJ¢ (2.9)

1j=

::jz

—_

Maximizing the likelihood function in equatior2(9) leads to the maximum likelihood

(ML) estimate of the parameters

&Mx

N
Ou, = arg max {H (XD 9,-)} : (2.10)

As in the case of MAP estimation, log of the likelihood fulectican be maximized instead

of the above equation so that

:]z

115" motx 4) ,}—argmax{i§| {0 9,)}}

O = arg max log
1j=1 i=1j=1
(2.11)
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The following two sections describe an algorithm for ML gsdtion of the parameters of

the mixture model.

2.2.3 Complete Data Log Likelihood Function

Reuvisiting the initial labeling problem, it can be seen ttiee ML or MAP for-
mulations presented above do not explicitly consider gede¢ls. They only consider the
observed dat&’, which is termed agicomplete dat§86, 85|. Usually, the pixel labels are
represented as hidden or missing variables on which the\@sdata is conditioned. Let
t be aK dimensional vector associated with tffeobserved data elemexit), such that
its j" element is

. 1 if X e j" component
= { : P . (2.12)

0 otherwise
The vectorc is aK dimensional binary indicator vector. There &teuch indicator vec-
tors, one corresponding to each observed data elementeydre used to indicate which
class the data elements belong to. It is assumedkthdtelongs to only one class as seen
from equation 2.12. Observed data’ = {x"),... xN)} along with the corresponding
binary indicator vectorg = {cV,...,cM}, are calledcomplete datg14, 86] and can
be represented a8) = {x,t®} or for the entire sety = (X,C). Introduction of the
indicator vectors to make the data “complete” allows foractable solution for the EM
update equations (described in next section).

The density function for the complete data likelihood isegivby

K C(i)
g(V; ©) =HH(7r¢ (x; ,) : (2.13)

i=1j=1

Details of the derivation of the density function iR.13 can be found in AppendiA.1.

The likelihood function, defined in the previous sectionraneomplete data can be modi-
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fied to represent complete data as

L(0) =log{g(X,C|O)} =log{g(Y|©O)}. (2.14)

This modified likelihood function representing the comeldata is iteratively maximized

using the EM algorithm to find the maximum-likelihood esttesof the parameters.

2.2.4 Expectation Maximization Algorithm

The Expectation-Maximization (EM) algorithm consistswbtsteps. In the expec-
tation step or E step, the hidden variables are estimated tise current estimates of the
parameters of the component densities. In the maximizatidhstep, the likelihood func-
tion is maximized. The algorithm requires an initial estiesaof the parameters. Hence,

ML estimates of the parameters are given by
éML = arg mgx{E“Og(g(X,C | @))]}7 (2.15)

whereE(.) is the conditional expectation function. The EM algoritheamaow be de-

scribed. From equation2.(13), (2.14), and Q.15 the E step can be written as

N
=33 E(¢"s x.0)log (me(x"; 6)). (2.16)
i=1j=1
Since the elements” of the binary indicator vectors can be assigned to either @, or
E(cj(i); x(i),G)) = P(cj(i) = 1| x9,0). Bayes’ rule is applied t@(cj(i) =1]x9,0)to

obtain
P(x | ¢ —1@) P’ =1]0)
PV | ©)

P(¢) =1]x0,0) = (2.17)
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(). () o mex; 8) o).
E(¢"; XV, 0) = > SETECIY =w(x"; ©) (2.18)

This is nothing but a Bayes’ classifier. Hence, to assign ldeesdabels to the correspond-
ing data elements, maximum probability value obtained ftbenBayes’ classifier can be
used (see Figur2.2). Explanation of EM algorithm involves the use of the likelod func-
tion of equation 2.16 and finding the estimate of the paramet@rshat would maximize
this function as shown in equatioB.(5. Let OV be the estimated parameters at the
iteration. The E step finds the expectation of the log-Itketid function and for th& +1)™

iteration given by

Q(6; ©9) =>> w(x"; 6W)log (me(x?; 6)) (2.19)
i=1j=1
~ (1) o). p®
A x4
wherew;(xV; 60) = K7T ta() — g(t) (2.20)
Sic 7 o(xWs 6;7)
and#; andd; are the estimates af andf; respectively obtained at th# iteration.
The maximization step now involves finding
O — arg max Q(e; 8W). (2.21)

Since the mixing weights and the density parameters argertient of each other, their
expression can be determined separately. The update @gdatithe mixing weights is
given by

) = %ﬁ;vvj(x(‘); o). (2.22)

For derivation of .22, please refer to AppendiX.2. Assuming that the individual com-
ponent densities are Gaussian in nature as shown in eqat®nthe objective is to find

the expressions for the meapand the standard deviation. For finding the expression

22



: L X X JOX@)

|
eedee N\l
ooeee | v/ eeeoo
9960 e . _, 00000
e . 00000
999 00000
90 T eeeee
(Iagz:ep:r\gs;gbri]ri?ies) mixture of components labeled data

Figure 2.2: Assigning labels to the data for an FMMFT: Each data element is rep-

resented by a set of weighl\éi) corresponding to the components of the mixture model.
CENTER The mixing weightsrj for each component are obtained by summing up and

normalizing then{"’ for all the data elementsiGHT: The final label is assigned based on
the component that has the maximum weight for a given dataezie

for the class mean and standard deviation the log-liketifaaction from equation2.16
is differentiated with respect o ando; and equated to zero. The final update equations

for the mean and standard deviation are given by

(t+1) _ Zil\lzle(x(i); é(t))x(i)

—— 2.23
‘ w i (x5 00) (229)
Similarly, the expression for the standard deviation upaagiven by:
. A i t+1
S S, Wy (x; @(t))(x('z - “j(+ ))2. (2.24)

! ZiN:l Wj(X(i); o)

The E and M steps continue until convergence i.e., uht®") > £(6"). EM is guar-
anteed to converge to some local minimud2][ AppendixA.2 provides the details of

derivation of the expressions for the class mean and stdndaiation.
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2.2.5 Limitations of the Finite Mixture Models

Even though FMMs provide an effective framework to matheca#ly formulate
and solve a variety of clustering problems, some major &tions exist that limit their use

in segmentation or labeling problems.

1. Direct estimation of data labels not possibleClassification of the data in a FMM
is performed using the Bayes’ classifier described in eqnaf.18 which deter-
mines the maximum a-posteriori probability of an elementhef data belonging to
a particular class based on the mixing weights (prior) amdcttmponent densities
(likelihood). This is a soft classification, i.e., for eacata element, there exists a
set of probabilities belonging to each of the componentsfandlassification, the
maximum value amongst them is chosen. Hence, the FMMs dollogt for the

direct estimation of the data labels, and an indirect apgrdas to be utilized.

2. Absence of spatial correlation between the observation&¥Vhile arriving at a like-
lihood function to be maximized in equatioB.9), one of the key assumptions was
that of the statistical independence of the observed datas &ssumption, while
simplifying the derivation to obtain and maximize the likelod function, affects the
ability of classification of the observed data in cases whpatial saliency of the data
is important. For example, in the case of image segmentatiemearby pixels are
more likely to have the same grayscale intensity or colorMatannot utilize such
spatial information for classification, unless the spat@brdinates are part of the
data vector. Even then, such a segmentation may have rejianare not spatially
constrained (regions produced may be disconnected), adbsuapproach imposes
elliptical model which does not accurately represent eahily shaped regions. An
improved model is required that can take into account théiapgaformation for

classification in such a way that the labeling appears smooth
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2.3 Spatially Variant Finite Mixture Models

An SVFMM can be considered as a more generalized form of an FliM main
difference between the two models is that in the SVFMM, iadtef the mixing weights,
each data element has label probabilities. As previoudipei®, there are K components
in a FMM and mixing weights corresponding to each comporergpresented by such
thathK:1 7j = 1 andr > 0. In a SVFMM, the mixing weights become label probabilities,
i.e., aK dimensional weight vector for each observation, whose etgadescribe the prob-
ability of the observation belonging to the correspondiomponents. Ler() be the label
probability vector corresponding to tifé data element, anq(i) be itsj™ component, then
wj(i) represents the probability of th'e data element belonging to tffe component. There

areN number of suclk dimensional weight vectors with the conditions tml wj(i) =1

andr) > 0,Vi=1,...,N. The density function for th&" observation can be defined as
gxV; 707N 0y ) =Y w0 6y). (2.25)
i=

Considering the observed data to be statistically indepetdhe conditional density for

the entire set of observations is given as

N . ]

g(x; 7V 7N g 6 = [ 7 e (x0; 6). (2.26)
i=1

i=1j=1

It can be seen from the above equation that there are soneeettitfes in the parameters
on which the data is conditioned in the SVFMM as compared ¢oRkIM. Here the set
of parameters can be representedas: <7(1) LwN g ,9K>. Hence, the number
of parameters to be estimated in the case of an SVFMM is cabfsmto the amount
of observed data\ x K label probabilities ané&k component density parameter vectors)

whereas in the case of FMM, this value is invariant of the amofidata K mixing weights
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and parameter vectors). EM algorithm can be used to findrditeeML or MAP estimates

of the parameters of an SVFMM.

2.3.1 ML-SVFMM

ML estimation of parameters for an SVFMM is similar to thataof FMM except
in one key area which will be described momentarily. An iegting property of the label
probabilitiesm(i) is that their ML estimates converge to either 0 or 1, thus renig a
binary labeling (for details, se@¢]). The expressions for the label probabilities and the

parameters of the component densities (assuming Gaugsiahg (t + 1) iteration are

given by
(i)t _ 1 (WU))“) (2.27)
AN TN CING AV '
S (w)
N (W_(i))(t) H(x (9_)(0)
where (vvj(')) = J G L o~ (2.28)
: .
S (1) e (6)Y)
1 O
(t+1) _ () (i)
'ui T K i\ ® (WJ ) X7 (2.29)
=i (")
2\(t1) 1 > OV (o) _ 1)) 2 230
@) = g2 (W) (0 =) (2.30)
Zi:l (ij ) i=1

Equations2.27) - (2.30 for the ML estimation of the SVFMM parameters are very samil
to the corresponding equations of the FMMs with one esdedifference. In the case
of ML-SVFMM, the label probabilities of a data element foethext iteration are the
)(H—l)

_ (w-(i))(t). Unlike the FMMs, in

weights computed in the current iteratio(wj(i) J

ML-SVFMM the pdfs over the data elements are not summed umandalized to obtain
one prior probability per component. Instead, each datamehe retains its pdf over the

components which acts as a prior for the next iteration. Bseaf this difference, the
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labeling becomes spatially variant. Since the label proitials are directly estimated,
SVFMM addresses the first concern regarding FMMs stateddtiose2.2.5 but it does
not address the limitation of spatial continuity of the Is@ecause there is no interaction
between the neighboring labels) since in ML estimation thHerpmpn the parameters is
assumed to be uniform. To effectively utilize the SVFMM franork, a suitable prior for
the label probabilities is required that enforces spataitiouity on the estimated labels.

This is the motivation for performing MAP estimation.

2.3.2 MAP-SVFMM

Maximum a posteriori estimation of parameters of an SVFMM ic&orporate spa-
tial information in the observed data. This is done by chogsi suitable prior probability
density function for the parameters to be estimated. For @MV, the set of parameters
to be estimated is given by = <ﬁ(1> N e ,9K>, and therefore the prior density
function is given byg(©) = g(7" ...7™N),4,,.. ., ). Since the label probabilitiesr"},
and the component density parametghg are independent, the prior density function can
be written asg(©) = g(@" ... #M)g(4y,...,0«). The a posteriori density function is

given by

g @V 7N 6, X)) ocg(x; TV T N e a)g@Y w6y 6
(2.31)
o@D 7N 6 0 X) ocg(x; T 7N 6, 60)g@W L mMN)g(6y, . k)
(2.32)
While choosing a prior density fa®, the component parameters can be assumed
to follow a uniform distribution thus leaving only the laljglobabilities to be selected. It
is usually the case that in typical labeling application/dacal interactions of the data

elements are important. By local interactions, it is mehat the label assigned to a data
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element is only affected by the labels of its immediate neayh. This leads toward a
Markov Random Field (MRF) assumption on the label probaédi

Three key aspects of representing the local interactiortiérobserved data us-
ing MRF are: a method to impose spatial connectivity, a patanthat defines the local
neighborhood and a function that defines the strength ofdte interactions. These re-
quirements are met by treating the problem as a graph witlheéhees representing the
data and the edges modeling the connections between theboeigg data elements. The
size of the neighborhood is determined by the order of tlgpieli In an undirected graph,
a clique of ordem is the set o vertices that are connected to each other. Gibbs density

function is a commonly used function to represent the MRe@dabel prior density and

is defined as
g ... 7Ny = Ziﬁexp[—U(f“) 7, (2.33)
where
UFEY .7 =33 Vo@D .. .7N) (2.34)
nemM

andj andZ; are constantd/y(.) is the clique potential function that determines the sttieng
of interaction between the clique vertices antlirepresents the set of all possible cliques in
the observed data. The parameteegulates the overall effect of the prior probability term
on the label assignment process, and a high valuesifinifies the increased influence of
neighboring label probability terms on the current datanelet, creating an effect similar
to spatial smoothing.
The clique potential function is chosen in such a way thas#igns higher label

probability to a data element if its neighbors have beergassi the same labels. So in the

local neighborhoodV(i) of thei" data member, the clique potential function for ti&
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Figure 2.3: Markov Random Field witi order cliques for a 4-connected and 8-connected
neighborhood.

order clique is defined as

S Va(7FY 7Ny = (ﬁ(‘) — ﬁ(”‘))z. (2.35)

nem (,meN (i) i=1

A commonly used clique order is two, which leads to the paennteraction of data el-
ements. In the case of images, the local neighborhood idlysiedined as 4-connected
or 8-connected (see Figuged). From equations.33, (2.35, an expression for the prior
probability density is obtained that can be used in equa2o82 to solve for the MAP

estimation of the parameters. Details of the proceduretadadp arrive at the parameter

estimates can be found iB4).

2.4 A Spatially Constrained Finite Mixture Model
(SCFMM)

The SVFMM based labeling is supposed to generate smootls|ddug there is still

a possibility that spatially disjoint regions may be assijthe same labels. This property
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is undesirable especially if a large number of small regamessegmented in the interior of
a big region. In order to rectify this effect the segmentatias to be constrained to produce
a labeling which follows the spatial continuity of the dakaneents. Additionally, two chief
limitations of the EM algorithm for parameter estimatiorttoéd SVFMMs are related to its
initialization and its computational cost. The number ainpmnents may not be known a
priori in many cases. Consequently, the EM algorithm fovisg) for SVFMMs has to use
a value ofK predefined by the user or has to resort to using a separasdization routine.
Similarly, initialization of the component density paraers is not a trivial task given that
they have a large impact on the segmentation outcome. F@dzaucomponent densities,
if the initialization is not close to the actual mean, thea EM algorithm can get stuck
into local minima and not converge to the desired locationréimportantly, the variance
initialization also has to be optimum; where a large valuelead the algorithm astray, or
too small a value can make the algorithm susceptible to ngelization also determines
the amount of time it takes to reach convergence. GenegddJgrithms that are based on
spatial smoothing like MAP-SVFMM tend to be slow as they gsxthe neighborhood of
each pixel for multiple iterations. Due to these reasongproach is required that is fast
and does not need explicit initialization in terms of numblecomponents.

The spatially constrained finite mixture model (SCFMNB a variation of the
SVFMM, where the emphasis is on assigning spatially comudetels which can be com-
puted by a greedy EM algorithm. Although the tegneedy EMwas introduced inJ06],
our algorithm is agglomerative as opposed to the divisitanezof the previous algorithm.
The algorithm can automatically determine the number ofigsaand is also computation-
ally efficient as compared to the standard EM algorithm usegdlving MAP-SVFMM.

The greedy EM is inspired from the region growing algorithin.region growing algo-

10ur use of the ternspatially constrainedshould not be confused with that 67q], where the term
describes a variation of the SVFMN8§] that smooths the label probabilities across the pixeldoets not
constrain the connectivity of the segmented region.
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rithm, starting from a seed location, the neighboring @k incrementally accumulated
if they satisfy a particular condition. This condition isopiem dependent and could be, for
example, to include all pixels with grayscale values belovedain threshold. The region
growing stops when no more pixels can be added to the alreamyraulated ones. Then
another location is chosen and the growing procedure istegall over again. This region
growing technique has some interesting properties. Fildbes not need to know the total
number of regions in the given data. In fact, the number ofreaged regions is the output
of the algorithm. The starting locations can be chosen atawamor deterministically, and
it is not totally unreasonable to assume that the segmentatitput is somewhat indepen-
dent of the choice of the seed points although this is notaguaed. Another property
is that the component parameters are initialized and ldaonethe fly as the processing
proceeds. Also, region growing has strong spatial coniooigt Since region growing is
done locally, i.e., by accumulating immediate neighbdusre is no risk of labeling spa-
tially disconnected regions with the same label. This priypeoints toward the idea of
the algorithm being spatially constrained. Finally, thgoaithm can be implemented in a
very efficient manner. One limitation of such a region grayvapproach is that being a
local process, it can ignore the higher level informatiorictcan lead to generation of
undesirable regions due to noise. The criterion for inclgf neighboring pixels has to
carefully selected, otherwise there is a risk of a regionwgrg too big or too small (over-
or under-segmentation).

To learn the parameters, the region growing algorithm caruberepeatedly for
a single region until a stable set of pixels are obtained. droperties of the set can be
updated at each iteration to refine the inclusion criteridhis is similar in spirit to the
parameter estimation process in other mixture models usagM algorithm, especially a
greedy EM algorithm where the clusters are automaticallgrd@ned at the end. Consider

an example of iterative region growing. Starting from a @ndocation in the image,

31



the region parameters can be initialized over a small n@didod. At the end of the
first iteration, the region parameters and a new mean latatie obtained. This new
location, now becomes the starting location and the regayameters become the initial
estimates for the second iteration. Progressively, medwariance values are refined, and
the algorithm converges to a set of parameters (or a paatitabbeling) that do not change
after subsequent growing iterations.
The SCFMM and the greedy EM algorithm can now be formulateskuining that

the observed image data is independent of each other giegratlameters, the probability

of describing the entire observed data given the set of patersican be written as

K

P(x,c|10) =T3PV |d",0)PE"|e), (2.36)
i=1j=1
whereC = {t®M, ..., c™}; clh) = <c§'), o c,(?>, are the binary labels on the pixels similar
to (2.12). For thej!™ component the data independence assumption rrR(aH%, o cj(N) |
0)=TIIY, P(cj(i) | ©). Amore realistic formulation that is in accordance with pneposed
SCFMM would take the spatial continuity of the regions in@aat. For thé™ pixel, its
IabeICj(i) depends on its parents i.e., the pixel that included®hgxel in the group. This

way, the pixels of region growing can be arranged in a chairtisty from the seed location

to the current pixel yielding

N
1 N i i—1
Pc”,....dV @) = Hlp(cj('>|c,-<' ),0)
1=
ot | oD
= HP<C1 ‘@)CJ )

Il
—

on the account ottj(i_l) also being a binary variable. Extending this result to 2D¢j(iébe
a binary variable for th¢" component whose value is 1 if and only if there exists a path

(according to a predefined neighborhood) from ith@ixel to the seed location such that
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cj(') = 1 for all pixelsx(" along the path. As actual labels are unavailable, an estiofat
ej(i) given byéj(i) is used, which is set to one Ff(cj(') | ©) > p. for all the pixels along the
path, wherg. is a predefined threshold. This leads to a greedy EM like @lgarwith the

following update equations

(W(i))(t+l) B (Wj(i))(t) ¢(X(i); 9,-(0) (éj(i))(t)
j —

_ : (2.37)

() - NOMNU)

s (70)" ox0: 69 ()"
éj(i) = {mlin Wj(l)} > p- (2.38)
@y L XN: ( _(i))(t) x(® (2.39)

K TN (W-(i))(t) £ iy .
i=1 (7T
(t+1) 1 N MO /i (t+1)\ 2

(7)) = A (w,m)(t) ; (") (< = Y) (2.40)

2.5 Application of Mixture Models for Image Segmenta-
tion
The use of the various mixture models proposed in the preseations for image

segmentation is now demonstrated.

2.5.1 Implementation Details

A general clustering problem using various mixture modelscdibed in the previ-

ous sections involves answering the following questions:
e What is the nature of the data?

e How many components are present in the mixture model?
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What are the mixing weights (or label probabilities) of tlenponents?

What density functions do the components follow and whatleegarameters?

What is the prior on the parameters?

How is the system solved to obtain the parameter estimateslassification labels?

For the problem of image segmentation, the data to be ckdiean be the pixel
values or any other quantity derived from the image (suctessite). Furthermore, the
observed image data is considered to be sampled from a mirfuprobability density
functions. The nature of such mixture models with regarcheokind of component den-
sities and their parameters is assumed to be known befatefdis helps in establishing
the objective for any formal procedure used to obtain a swiyi.e., to estimate the pa-
rameters and the mixing weights. In this section, segmientétased on image color or
grayscale intensities is described, and hence the datther scalar (grayscale images) or
avector § x 1 color vector). Let be the input image witN pixels, and lek®) be its value
at thei™ pixel. The important thing to note here is that the pixel eatly is an observed
guantity because an image is assumed to be corrupted by iGaussse of varianceg.
The component densities are assumed to be Gaussian andndesibnality of their cor-
responding parameters, the component means and the \esjatepend or). The goal
is to obtain a labeled imade such that (i) = j; j = 1,...,K. The key factor that is
mostly implementation dependent is the number of compaent labels. This has to be
supplied externally and all the parameter estimation esgpo@s for a given mixture model
depend on the value &. The parameter estimates are obtained iteratively by tha-ma
mization of likelihood (or minimization of energy) usingetEM algorithm. For the mixture
models introduced in the previous sections, the algoriteiMsFMMEM-ML-SVFMMand

EM-MAP-SVFMMescribe the parameter estimation and the labeling process
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Algorithms EM-FMMEM-ML-SVFMMare shown in Figureg.4, and2.5, respec-
tively and are relatively straightforward to understand anplement as compared to the
EM-MAP-SVFMMThis is because assumption of uniform prior on the paramethich
simplifies the likelihood function. It can be solved to obtaxpressions for the values of
mixing weights (or label probabilities) and means and thieawnaes which are updated for
every iteration until convergence is achieved. The MAP-BN(Fon the other hand as-
sumes that the pixel label probabilities follow the MRF miodehis leads to a likelihood
function with additional terms. The label probabilitieededo be estimated in a constrained
manner, i.e., ensuring that for a pixel the probability eslwith respect to all labels should
sum to unity. The net effect of this is that additional stepedto be performed for con-
strained optimization using techniques like gradientgetpn. This is shown in steps 2(b)
i - vii of the algorithmMAP-SVFMMhown in Figure2.6. The EM-MAP-SVFMNMNere is
reproduced form86] where is described in its entirety along with a detailedygsia.

Two important aspects of the parameter estimation procgsg &M are initializa-
tion and convergence. EM requires a good initializationrtiva at desired results. Good
initialization refers to starting close to the desired opested parameter estimates. For a
FMM or SVFMM with Gaussian component densities, four qu#egineed to be initial-
ized, namely, the number of components, the mixing weidkta\) or label probabilities
(SVFMM), the component means, and the variances. Iniibn is mostly problem de-
pendent. As described earlier, the number of claksiesusually predefined. The mixing
weights or the label probabilities are initialized 1K, which eliminates bias toward a
particular labeling assignment in absence of any a priémrmation. Initialization of com-
ponent densities depends on the data and the range of theadidbe used to initialize class
means. One way to initialize class means is to ensure thptafeeat equal distances in
the data space. Variance of the components can then be saooenipef the variance of

the entire data. In the EM algorithm, the likelihood is maied over a period of time,
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due to which it takes a certain number of iterations to acghanvergence. The number of
iterations varies depending upon the initialization of paeameters as well as the nature of
the data. EM is guaranteed to converge at some local minimum.

The implementation details of the greedy EM are shown in feédu7. For the
sake of implementation, some new terms are introduced.Nr'kel vectorb is a binary
vector that indicates whether a pixel is labeled. The fumstivy(.), NF(.), N3(.), and
N3(.) are the neighborhood computing functions. The subscripbtés the pixel distance
and the superscript denotes the neighborhood connected8esV: (i, b) returns all the
unlabeled pixels in the 8-connected neighborhood withix&lmlistance of thé™ pixel,
while N (i, b) returns the unlabeled pixels from a larger neighborhootiaha used for
initialization of mean and variance for the region to be gnowrhe function\{(i, L)
returns the labels of the neighbors of iHepixel. X, denotes the centroid or spatial mean
of the ™ segment which is iteratively compute; is the set of pixels that are assigned
thej™ label. As it can be seen, the algorithm does not require asgomditions on the
number of components. The means and the variances of ealsl pbtential segment are
initialized around each new starting point as the algoriffroceeds. The two important
parameters to be set are:pi), the condition of inclusion of a pixel in the current region,
and ii) Nyin, the minimum number of pixels in a group for it to be declaralids This limits

over-segmentation in case of noise in the image.

2.5.2 Experimental Results

Experimental results of theM-FMMEM-ML-SVFMVMEM-MAP-SVFMMand
greedyEM-SCFMMalgorithms are demonstrated on various testimages. Fj@sthows
a synthetic image with four different grayscale values 3M),1170 and 240. Zero mean

Gaussian noise of standard deviatign= 25 was added to generate the noisy synthetic
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Algorithm: EM-FMM

Input: Noise corrupted grayscale image | with N pixels
Output: Labeled image L

1. Initialization:
(a) Set a value for number of components, K
(b) Set mixing weights, (7)® =1/K,Vj=1...K

(c) Set component density parameters, mean uj(o) and variance aj(o),
andVj=1...K

(d) Set a value for maximum number of iterations, nitr

2. for t = 1:nitr
(a) E STEP
i. fori=1:N
(@) Set xV =1(i)
(b) forj=1:K

e Compute ¢(x:; uj(t), o—j(t)) = mexp <—7(X;2;(ﬁj(;)2>
(m) D (x; ujm ) |
S a0 W)
o Compute W" = (w")Ox®
(b) M STEP
i. forj=1:K
(a) Update mixing weights, ()" = LN (w")®

T S
(b) Update class mean, p; ' = W

2
N O\t | (), (t+1)
. O Zi:l(wj ) [X Hi }
(c) Update class variance, o;” = S WO

3. Update label image, L(i) = arg max; {(vvj(‘))(t)}, fori=1,...,N

o Compute (W")® =

Figure 2.4: EM algorithm for parameter estimation in an FMM.
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Algorithm: EM-ML-SVFMM

Input: Noise corrupted grayscale image | with N pixels
Output: Labeled image L

1. Initialization:

(a) Set a value for number of components, K

(b) Setlabel probabilties, (x")"” = 1/K, vj = 1...K, and Vi = 1...N

(©) fet clgmponent density parameters, mean uj(o) and variance oj(o), V=

(d) Set a value for maximum number of iterations, nitr

2. for t = 1:nitr
(a) E STEP
i. fori=1:N
(@) Setx =1(i)
(b) forj=1:K
U CI S Wy (L)
o Compute o(x; 47, 07") = mgjmexp( e

(w0 (x; u ¥ 0V
S @) OG0 100
o Compute W" = (w")Ox®

e Compute (vvji))(t) =

e Update label probabilities, (")) =

(b) M- STEP
. forj=1:K
(1) _ W
(@) Update class mean, ;" = W

N ONGINOEE 2] ?
. (t+1) Zi:l(wj ) {X H }
(b) Update class variance, o; = S W0

3. Update label image, L(i) = arg max; {(wj“))(m)}, fori=1,...,N

Figure 2.5: EM algorithm for parameter estimation in an M F8/M. The only difference
between this algorithm and tiEeM-FMMs the use ofrj(') instead ofr;.
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Algorithm: EM-MAP-SVFMM

Input: Noise corrupted grayscale image | with N pixels
Output: Labeled image L

1. Initialization: same as in algorithms FMMand ML-SVFMM
2. fort = L:nitr
(a) ESTEP
i. fori=1:N
(@) Setx® =1(i)
(b) Compute H(xV; 1Y, o)
(c) Compute (wj(i))“)
(d) Compute V\/j(i) — (Wj(i))(t)x(i)

i. fori=1:N
@ st = X5 )OI (1)) = 8 Ee ) Vin ((70) O, 7)
i © (xD; O N (FD)O 7))
b .(') = S Tl S — — I i A A A
( ) (q] ) Z|K:1 (Trl('))(‘)qﬁ()(('); 9]( )) 5 ZmGN(I) 6ﬂ_i(') ?(i):(ﬁ(i))(t)

; ; () _ ()
(c) Evaluate condition go(wj('),qj(')) = { L, ifm7 =0andqg” <0
0, otherwise

(d) Compute

0, (). (")) = 1or p((m") Y, (¢")V) =1
(R =14 Bt ifj =1, and ()0, (¢")V) = 0

u, Otherwise

H = K— number of elements in (1)) satisfying o((x(")®, (q))®) =1
@ (@)0 = (RO @M
(f) Seta = 1.0 and stop= 0
(9) Repeat until stop= 0
° (ﬁ(i))(“rl) — (f(i))(t) + a(a(i))(t)
° 5= Zszl(V\/j(i))(t)m ((ﬁj(i))(tﬂ)) _ gzm@v(i) Vi ((f(i))(tﬂ)ﬁ(m))
o ifs, <5, =050, else stop=1
(b) M STEP
(1) _ _ZEW0
S S )

N y® [ ) _, t+1]?
.. . (t+1) 2imi(w) [X —H ]
ii. Update class variance, o; = SR

i. Update class mean, p

3. Update label image, L(i) = arg max; {(wj(i))(““l)}

Figure 2.6: EM algorithm for parameter estimation in MAP3WM.
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Algorithm: greedyEM-SCFMM

Input: Noise corrupted grayscale image | with N pixels
Output: Labeled image L

1. Initialization:
(a) Set current labelj =0
(b) Set label probabilities for N pixels ( JH)(O) =0,i=1,...,N
(c) Set pixel availability indicator vector b =0,i=1,... N

2. Repeat until all pixels are labeled

(a) Select a random unlabeled pixel x such that b®) =
(b) Compute neighbors of x), m, = A%(i, b) that are unlabeled

(c) if [ my|>0
i. Compute initialization neighborhood n, = N3 (i, b)
i 7 =1 k=1,....]ny|

ii. Compute region centroid X, from ny
iv. Repeat until X, does not change
(@) Compute the nearest pixel, i’ € n, to X4,
(b) Set J+1 =0,Vk#T
(c) Repeat until no more points can be included
for each | such that J-ll-l =1

if ke NV(l,b) && 7rj+1 == 0&& ¢(x¥; 6) > p,
k
=1
G =1
(d) Compute 4, from G4
(e) Compute o7, from Gj;,
(f) Compute X, from G,

v. Set b = max{b(i),qur)l}, i=1,...,N
vi. Assign Iabels L(k) =j+1,Vke Gy
vii. if Z, 1 J+1 > Nmin, then j = + 1

(d) compute m = N3(i,L)

(e) compute L(i) = argmin;{p(xD, 6)},j € m

Figure 2.7: Greedy EM algorithm for parameter estimatioanrSCFMM.
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original noisy

Figure 2.8: Image used for testing the segmentation oufthieovarious mixture models.
LEFT: A synthetic grayscale image composed of 4 different gralgsgalues. RIGHT:
Image on the left corrupted by Gaussian noise with zero medraatandard deviation of
25.
image. The image is constructed in a manner such that sgati@rency of regions is
emphasized. Figur2.9 and2.10show the segmentation results of all four algorithms on
the noisy synthetic image and the sky image respectivelye itlue ofK was set to 4
and 3 in the synthetic and sky images, respectively, foEtMeFMMEM-ML-SVFMMand
EM-MAP-SVFMMI'he mean and the variance of the components were initthligang the
grayscale histogram of the images. For the synthetic andkémage, the class means
were set to{31, 85,170,245} and {30, 80,210} respectively. The class variance was set
to 10% of the entire data range. The value @ffor EM-MAP-SVFMMvas set tol.0.
For thegreedyEM-SCFMMalgorithm, the value op, was0.005 andn,, was 30 pixels.
Segmentation results greedyEM-SCFMMon various other natural images are shown in
Figure2.11

To quantitatively analyze the results, labeling energyosputed for each algo-
rithm for the synthetic and sky images. Labeling energy mesmsshow close the pixel
value is to the class mean for that label as well as how smabethabeling is with respect

to the pixel neighbors. The former term is also known as tlia daergy while the later is
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EM-MAP-SVFMM greedyEM-SCFMM

Figure 2.9: Output of the EM algorithmEM-FMM EM-ML-SVFMMEM-MAP-SVFMM
and thegreedyEM-SCFMMon the noisy synthetic image.

¥ N

EM-ML-SVFMM

EM-MAP-SVFMM greedyEM-SCFMM

Figure 2.10: Output of the EM algorithntiM-FMMEM-ML-SVFMMEM-MAP-SVFMM
and thegreedyEM-SCFMMon the sky image.
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segmentation

Figure 2.11: Segmentation resultsgreedyEM-SCFMM on some natural images. The
images in the top two rows are segmented using grayscalesitiess as the data while
those on the bottom two rows use color. The images on therhdticee rows are from the

Berkeley Segmentation datas@é8].

43



also known as the smoothness energy. Formally, the labetieggy can be defined as

Elabel(l-a I) - Edata(l-7 I) + ESFI”IOOﬂ"(I—v |)7 (2-41)
where ,
Egaa(L, 1) = zN: —%m (2m07) — (I('%‘“) withj = L(i), and (2.42)
i=1 0]
Esmoor{L 1) = >~ > exp{— (1(i) — 1(m))*} 6 (L(i), L(m)), (2.43)
i=IN meNA(i)

with 6(.) being the Kronecker delta function given by

{6(L(i), L(m) =1 ,if L(i) = L(m)
. (2.44)

0, otherwise

Here the idea is to assign lower penalty (higher energy tezhidf the neighboring
pixels of different labels have large differences in theékepvalues as compared to those
pixels having separate labels but similar values. The reesa@hoosing this kind of energy
function is twofold. First, since the likelihood functionotall the algorithms differ to some
extent, this serves as a common energy function to quartéyperformance. Second,
all the algorithms can now be judged purely on the basis ofabeling output produced.
Figure2.12shows the energy minimization for the four algorithms tegte the synthetic
and the sky images. ThgreedyEM-SCFMM algorithm, in addition to producing more
visually appealing results, also minimizes labeling epdrgtter than the other three. The
EM-FMMEM-ML-SVFMMandEM-MAP-SVFMMvould perform much better with more
finer tuning of the parameters. TlgeeedyEM-SCFMM on the other hand does not rely
on any explicit initialization. Since it is randomly initizaed, plots in Figure&.13show the
variation in the minimum energy and the number of labels geed for 10 random trials

with different starting locations. The plots show the ditibof the greedyEM-SCFMM
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Figure 2.12: Plots showing the minimization of labeling mgyefor the EM-FMM
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even though the nature of the algorithm is random. The nurab&bels varies due to

merging of some of the neighboring regions of same intensilyes.

2.6 Summary

This chapter has described various kinds of mixture modedstlae EM algorithm

used for estimating their parameters. Finite mixture medeé not very well suited for
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spatially salient labeling required in segmentation aggions and hence, spatially variant
finite mixture models are used for such applications. Carxeggarding the initialization
and computational efficiency of the SVFMMs motivate the usamimproved framework
for segmentation. Inspired from the region growing appino#iais chapter has introduced
a novel spatially constrained mixture model with a greed§-&gorithm for parameter
estimation that overcomes the above mentioned limitand®/FMMs. The effectiveness
of the proposed approach is demonstrated using segmentdiimages based on color or
grayscale values. Later we use the spatially constraingtlreimodel and the greedy-EM
algorithm for motion segmentation. But first, a method to pate image motion has to be
described. The next chapter focuses on sparse motion catigruin image sequences by

tracking feature points.
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Chapter 3

Point Feature Tracking

Image motion can be computed from the sparse feature tajestobtained by
tracking features between two frames. The image motiont¢bogputed can be used for
the purpose of motion segmentation. This chapter gives argeaverview of the problem
of feature tracking and explains how it can be used to commage motion, with a special
emphasis on the Lucas-Kanade method of feature trackingyaldth its advantages and
limitations. The Lucas-Kanade algorithm treats each feapoint independently while
tracking, but a better assumption is that the motion of atgei@ture is dependent on its
immediate neighbors. Based on this idea, a joint featuokitmg algorithm P] is described
that is able to track features more reliably than the Lucasdtle algorithm in certain

situations such as tracking in less textured regions.

3.1 Motion Estimation Basics

Success of a motion segmentation algorithm depends on theaamy of motion
estimation in the given image sequence. Motion in image esecps is observed when a

dynamic 3D scene is captured by a camera, i.e., projectiabjgicts moving in a three
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dimensional world on an image plane gives rise to a motiod.fidhis is different from
optical flow, which can be defined as the observed motion efiity patterns on the image
plane. Since changing brightness patterns can also begeddiy phenomena that do not
involve motion in three dimensions such as specular reflestithe motion field and the
optical flow for an image sequence may not be the same. Nelest) optical flow is often
used to estimate the motion field. One fundamental assumpagarding the nature of the
scene is that the moving objects maintain constant intepsiffile throughout their motion.
This assumption is the famous brightness constancy asgmgstd forms the basis of all
the approaches for estimating optical flow.

Let | be an image ant(x(t), y(t),t) denote the intensity of a point projected onto
the image at the locatiofx(t), y(t)) at timet. At a timet+ At, the projected point moves to
a new locationx(t + At), y(t + At)). According to the brightness constancy assumption,

the point has the same intensity at both locations, whicmsiea

[(x(t + At), y(t + At), t + At) = 1(x, y,1).

Expanding the above equation using Taylor series aboutdim (x(t), y(t)) and taking the

limits, a familiar form of the optical flow equation is obtauhwhich is given by

f(uv; t)=Lu+Iv+I1 =0, (3.1)

wherely andly represent the partial derivatives of the imagex @ndy directions respec-
tively, I; represents the temporal derivative of the image,aaddv are the horizontal and
vertical components of the unknown pixel velocity respasyi. This classic equation re-
lates the spatial and the temporal derivatives of an imag# fm its velocity vectors. Given

a pair of images and their spatial and temporal derivativesgoal is to determingi, v]'.
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Since there is only one equation involving two unknowns,sy&em is underconstrained,
and an unambiguous solution cannot be obtained. This iséli&mown aperture problem,
and herein lies the biggest challenge in estimating thecalgiow.

The way to address the aperture problem is to add more corists® as to obtain
a required set of equations at least equal in number to theawrs. Solving for{u, v|"
requires an additional equation which can be obtained bgidening motion of two pixels
together instead of one. This results in two equations, hadsystem can be solved. In
practice, multiple pixels are considered together to oldaset of equations such that their
solution minimizes some error function. Most optical flonpegaches differ from each
other in the way they bunch pixels together for the estinmatibtheir combined velocity,
or the kind of error function they minimize. The prominentiogl flow approaches can be

classified into one of the following categories:

¢ Block matching based:finding optical flow vector for a window of pixels by finding
its warp in the consecutive frame using techniques like mdized cross correlation,

sum of absolute differences (SAD), or sum squared differei€SD) 2].

o Differential: using the spatial and temporal derivatives of the imagetimease the
pixel displacement. This can be achieved by computing ldisglacement of image
patches (Lucas-Kanad@1]]), or imposing a global smoothness function on the flow
field (Horn-Schunck49]), or a combination of both (Bruhn et al2(], Birchfield-
Pundlik [9]). Lucas-Kanade appeals more to the idea of sparse optmalvihile

Horn-Schunck approach is more suited for computing denge flo

e Variational: involving use of additional terms based on the calculus ofati@ans
in the energy functional to be minimized to obtain opticalfloSuch techniques
have become popular recently because of their ability toehibe discontinuities in

the motion and produce highly accurate optical flow estisié@@emers-Soatt@f],
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Brox et al. fL9)).

The next section describes the Lucas-Kanade algorithnoimpating optical flow
and the relationship between optical flow and point featteeking. The following de-
scription interchangeably uses the term pixel velocity disglacement while referring to

optical flow. Velocity given byfu, v]" is equivalent to displacement in unit time interval.

3.2 Lucas-Kanade (LK) Method

The basic assumption in the Lucas-Kanade (LK) method igtiegpixels in a local
neighborhood undergo a constant but unknown displacemenfu Vi". This additional
constraint is used to overcome the aperture problem asldsyene optical flow equation
(see 8.1) per pixel in the neighborhood. The constant displaceraengighboring pixels
implies two basic assumptions, namely, the spatial colveréreighboring pixels belong to
the same 3D surface projected onto the image plane) andrtipotal persistence (motion
of the pixel neighborhood changes gradually over time). ILabdJ be the two frames
between which the flow has to be estimated andklet [x yj™ denote a pixel location.

Optical flow equation3.1) for a single pixek can be rewritten as

L) L] | | = 10 = 1) — I(x). (3.2)

Considering that the pointsx, .. ., X, in a local neighborhood have the same amount of

displacement, all of tha pixels will then follow equation3.2), leading to

Ix(X1)  1y(X1) le(X1)
= . (3.3)

Ix(Xn)  ly(Xn) l+(Xn)
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(X)) ly(x1) li(x1)
Ix(X1) . ly(Xy) u Ix(X1) . 1y(xq)

(%) - ly(Xn) ' ' v (%) - ly(Xn)

lx(Xn)  ly(Xn) lt(Xn)
(3.4)

Z”: L0g)  Ix()ly0g) | fuf 2”: (X)) 1e(X)) (3.5)
= L)ly(x)  15(x) v L Og)h(G)
Equation 8.5 consolidates the optical flow by summing the spatial andotenad deriva-
tives over a neighborhood. Instead of performing a summatiger a spatial window, a
weighted window such as a Gaussian with its mean at the cpielrcan also be used.
Hence, a general case of Lucas-Kanade equation is given by

Ko (17) Ky (Idy) | | u _ Kp o (Idy) (3.6)

K, (Idy) K, (17) Vv K, * (Iyly)
whereK, is a suitable convolution kernel whose size determinesuiaer of neighboring
pixels to be aggregated and assigns appropriate weighketpixels inside the window.
The size ofK, has to be selected carefully because a small sized windownogpe
enough to overcome the aperture problem due to the presémage noise. On the other
hand, a very large window size may lead to the breakdown dfedjgaherency assumption.

Equation 8.6) can be written in a simplified form as
Zu=e (3.7)

It can be seen that looks like a covariance matrix with squares of gradienthaxtand

y directions along the diagonal, and it is symmetric, whictving it is called the gradient
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Figure 3.1: Differential methods for tracking relate thatsal and temporal derivatives to
the displacement of the signal. Displacement over time ofi@al (left) and non-linear
(right) 1D signal can be determined using differential noeih While the solution is ob-
tained directly from the spatial and temporal derivativethie case of the linear signal, this
procedure is iteratively applied to the non-linear signal.
covariance matrix or the Hessian.

Displacemenu of a local neighborhood of pixels can be directly determibgd

solving the equation3;7) via least squares, i.e., by minimizing
Ewx(u) = K, * (f(u,1)?), (3.8)

or equivalently, solving for the estimafie= Z~'e. But this may not yield an accurate esti-
mate because equatiod.9) is a linear approximation of a nonlinear function (the ora
optical flow equation is nonlinear if all the terms in the Tayderies are considered). To ob-
tain an accurate estimate, iterative schemes such as Né¥apinson are used (see Figure
3.1). Newton-Raphson is a popular technique of approximatieg/alues of the roots of a
real valued function given the initial estimate of the ro@snsider a 1D case, wherauff
(pixel displacement in 1D) is the estimate of the root of timef (u,t) = l,u+ 1y = 0 (1D

counterpart to the optic flow function) at tk# iteration, then its update value @+ 1)

f(u®)

— fiwy - From inspection it can be seen thiat®) = 1,u® + 1

iteration is given byu®

andf’(u%) = I, which meansi**!) = —t. Every iteration yields a value af that is

added to the overall displacement and convergence is @gataitnenu does not change
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Algorithm: Lucas-Kanade

Input: two images | and J of a sequence
Output: optical flow field

1. pre-compute the spatial derivatives Iy and |y
2. initialize K,
3. for each pointi

(a) compute gradient covariance matrix, Z
(b) initialize u; = (0,0)
(c) repeat until convergence
i. compute I; from first image and shifted second image, I; = 1 (x;) —J(x; +
Ui)
ii. compute g
jii. find the estimate of displacement, u; = Zi‘lei
iV. Uj=uj+ Uj
v. if || Uj]] < ek (minimum displacement threshold), exit

Figure 3.2: The standard Lucas-Kanade algorithm.

significantly between two iterations. Extending this ide&ito dimensions, every iteration
of the Newton-Raphson technique gives a displacem&hbf the window. The window
in the next frame is shifted by and warped with the first image to obtain a new valug of
at each iteration and a new displacement estimate is fouind tus= Z~'e ( see Algorithm
Lucas-Kanade for a complete description). FiguB3shows the point feature tracking
using Lucas-Kanade algorithm between two frames of a s@guen

To efficiently compute the optical flow using LK, some implartaion issues should
be addressed. The computational cost of the algorithm disp@mthe nature of mathemat-
ical operations performed and the time it takes to convef&jace the same set of steps
are applied to each point (or each pixel) for which the flondfislcomputed, reducing the

computation time of one flow vector directly affects the @liecomputation cost. Look-
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ing at the description of theucas-Kanade algorithm (Figure3.2) it can be seen that
the mathematical operations include compufing, spatial derivatives of the imadeand
warping of the window in imagé to computd,. Of the above mentioned quantities, image
derivatives can be computed beforehand along with theiargguand products (hence,
for each point can be computed beforehand). Solving for esysf equations shown in
(3.7) yieldsu, but it is more efficient to use Gaussian elimination rathantactually com-
putingZ~*. The only computation that needs to be iteratively perfatisehe warping of
the window in the second image and computatior.dfisually, the location of the shifted
window is given by non-integers. Hence, methods like bdmiaterpolation are utilized
to compute the value of image intensity at sub-pixel preacisiThis improves the accu-
racy of estimation ofi. Regarding the convergence, Newton-Raphson reaches iamuopt
solution within a few iterations if the initial estimate dfe root is close enough. In this
case it also depends arx, the threshold for minimum displacement obtained during on
iteration.

Many implementations of LK adopt a coarse-to-fine refinensérategy to accu-
rately estimate optic flowr, 15. The idea here is to sub-sample the images progressively
and build image pyramids such that the coarsest scale idbgh Thenu is computed
starting from the coarsest level to the finest level. At evevgl, theu is scaled up accord-
ing to the scale factor of that level and the warp is computtdiben corresponding levels
of the two image pyramids. There are two main advantagesabf ao approach. First, it
reduces the effect of temporal aliasing and the high frequeomponent introduced as a
result in the image signal. Second, it can estimate largeom®{where inter-frame dis-
placement of the feature window is large). Since velocitsetuced at the coarsest level,
estimates at the coarsest level can be scaled up and deteradaurately at the finer levels.
Computational cost in this kind of implementation is in@ed as compared to the standard

case and is directly proportional to the number of leveldefgyramid used. A pyramidal
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Figure 3.3: Sparse optical flow from point feature trackiogrFT TO RIGHT. First and the
second frame of the statue sequence, and the tracked petatsdn the two frames along
with their trajectories overlaid on the second frame.

implementation of LK iSO(nNm) as compared t®(Nm) of the single scale implementa-

tion, whereN is the number of pointsnis average number of Newton-Raphson iterations

andnis the number of pyramid levels.

3.3 Detection of Point Features

An important question that needs to be answered is whetisde#sible to compute
the motion vectors of each pixel (dense optical flow fieldhgdiK. Since LK is essentially
a local method, it tracks small patches of images betweerfravoes instead of single a
pixel. But aggregating neighboring pixels for tracking israall neighborhood does not
guarantee that the aperture problem will not arise. For @kanm Figure3.4, the square
object moves between two frames with certain displacematuitively speaking, a win-
dow centered around the corner of the object can be matchadhiguously to the corner
of the object in the next frame as it moves with a fixed velodkyother window centered
somewhere on the edge of the object in the first frame can beheditinambiguously only
in one dimension but not in the other. A window centered iegtlte object suffers even
worse fate as it cannot be matched to any location in bothithertsions (one way to alle-
viate this problem is to increase the size of the window, inerease the aperture, but this

decreases the accuracy of the motion model). Usually, thdaw size remains fixed while
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Figure 3.4: The Aperture problem is persistent even whegidening a pixel neighborhood
for tracking. LEFT TO RIGHT. A moving square object, window centered on a corner of
the square is reliably matched, window centered on the edgkwindow inside the object
which is textureless. In the latter two cases, the windowoahe matched unambiguously.
processing a sequence. This means all the patches in the wilagot have enough motion
information to be tracked reliably (such as edges and regadriow intensity variation),
making them unsuitable for LK based optical flow.

From a mathematical perspectivecan be computed for a pixel window if the gra-
dient covariance matriX at that location is invertible (of full rank) or, in other wis, if it
is well conditioned. Conditioning o is more of a practical aspect to be considered while
computing the solution afl in presence of image noise as at certain locatidnajght be
of full rank theoretically but sill numerically unstable eBig well conditioned means that
there should not be a large difference between its two eagjaas. Also, to account for
noise, both the eigenvalues should be of sufficiently laajae: From a physical perspec-
tive, eigenvalues of signify the variation of intensities in theandy directions, and a
large eigenvalue means high amount of variation in the spoeding direction. Therefore
two large eigenvalues imply a high texture patch, two smgémvalues imply a nearly uni-
form intensity patch with small change of intensity overallile one small and one large
eigenvalue indicate an intensity edge (see Fi@.8e In the latter two cases, the gradient
covariance matri¥ is ill-conditioned, and consequently the system of equatatescribed
in (3.7) cannot be solved, which in turn means that the LK method adetermine the
motion of these patches.

Since LK only works well in the regions of high intensity \ation, optical flow
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Figure 3.5: Good features have a high intensity variatiobath directions while a line
feature shows variation only in one direction. Untextureelaa have a plane intensity
profile.

is computed only at locations where pixel windows can bebdjitracked. These points
(rather the pixel windows at these points) are also knowroa# features, or corner fea-
tures, or interest point operators. For the above propétti{oit is also termed as a method
that can compute sparse optical flow. There are many wayseotdbe point features in an

image but one particular definition of point features is msrigable for them to be tracked

well [92] and is given by the criterion :

MIN(€min, €max) > &t (3.9)

where (e,in, enax) are the eigenvalues & and¢; is the user defined threshold on the

minimum eigenvalue such that the point is a good feature.

57



Over the years, the standard LK has been extended and inthupas to adapt to
various computer vision tasks. One area of improvemeneisitie of robust estimators to
overcome the problem of non-Gaussian errors in the leastregstimateslf0]. A large
body of work concentrates on using LK to track point featutdsst notably, Shi-Tomasi
[92] describe the use of affine motion model for minimizing thetfee dissimilarity in two
frames of a sequence. Recall that the standard LK formulakscribed in SectioB.2 as-
sumes that the image motion is translational. As conclugeegh- Tomasi, this assumption
is good for motion between two consecutive frames of a semubuat often breaks down
while tracking over long sequences due to the deformatidriseofeature window over
time. An affine motion model is better suited for such an ewality and can be used to
reject the features that no longer bear similarity to thginal ones. Multiple approaches
have further extended LK for feature tracking by handlingtistics based outlier rejec-
tion [97], motion parallel to camera axis (increasing or decreadeth over time)107),

lighting or camera gain changesq 51], or tracking of large image patches]|

3.4 Horn-Schunck: An Alternative to Lucas-Kanade

Another notable approach for optical flow estimation is treHSchunck algo-
rithm (HS) [49]. It is more of a global approach as opposed to the local Lke Tdrm
global approach implies that the HS algorithm relies on l&ugation to compute global
displacement functions for the pixels of an imageu(lX, y) andv(x, y) are the global dis-
placement functions in theandy directions respectively, then the cost function minimized

by HS is given by

Ens(U, V) = /Q(Iqur W+ 12+ ([ VUl + [ Vv|2)dx  dy (3.10)
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where\ is the regularization parameter afids the image domain. The minimum of this

functional is found by solving the corresponding Euler-taage equations, leading to

12 1Ldy7 [u
Wy 12 ] [v

2, _ 9% 9%u 2y, _ 9% 9%v ; ;
whereV2u = 57 + o andV?v = 955 + o5z are the Laplacian afl andv, respectively.

(3.11)

AV2U— L,
AV = I |

Solving this equation fou andv and using the approximation th&fu ~ k(u — u), where

0 is the average of the values nfamong the neighbors of the pixel, akds a constant

vl vl KAFIZE12

Thus, the sparse linear system can be solved using the Jaethod with iterations for

scale factor, we get

I
} . (3.12)
IY

pixel (i, )T of the form:

uf = (3.13)

k+1 —(k
Vi(j+) _ Vi(j)_'ylyv

where
Lot + 1 41
y=L TR T (3.14)
KA+1Z + 15

The displacement functions obtained as a result of the atmoninization repre-
sent a smooth flow field. An advantage of this method is thategens of low intensity
variations can also yield smooth optical flow estimates.sTay the approach can prop-
agate the motion information over large distances in theyendl]. So places where LK
approach cannot compute optical flow due to ill-conditiodedatrix, HS method can use
the pixel motion from nearby regions (which may or may notrbéhie immediate neigh-

borhood of the pixel) to obtain an estimate. For this reas8ndHvell suited for obtaining
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dense flow field estimates from the images. Though HS algorifives smooth flow field
estimates, it has a tendency to ignore motion boundariele wdgjularization and special
procedures are required to address the issue of smoothargraage boundaries. Also,
HS is computationally expensive as compared to LK due to doethat a large system
of linear equations needs to be solved using methods suchuasscseidel, or Successive
over-relaxation (SOR).

More recent techniques such as those described by Creragn$2 and Brox et
al. [19] have resorted to the use of variational approaches likelds®ts to model motion
boundaries while dense optical flow is accurately estimatgde the region defined by the
level-set contour. The approach serves the dual purpostiofating the optical flow while
performing scene segmentation based on motion. There leaveditempts to combine the
global and local properties of HS and LK approaches resgaygtio improve the optical
flow estimation. Bruhn et al.20] proposed an algorithm that improves the dense optical
flow estimates by incorporating local smoothness of LK. 8idense flow approaches suf-
fer from noise issues, incorporating local smoothnessaesliis vulnerability to noise.

Joint tracking of features espouses an opposite goal: typocate the advantages
of global methods to improve local methods. In this approacint features are tracked
jointly, i.e., trajectory of each feature point is influeddgy its immediate neighbors. This
smoothing effect is similar to the regularization of flow diglin HS and serves as an ad-
ditional term along with the standard LK based feature digarity in the minimization
scheme. The resultant joint feature tracker is better gago track features reliably in
relatively less textured regions or in areas of repetitxure, as compared to the standard

LK algorithm.
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3.5 Joint Lucas-Kanade Algorithm

Combination of Lucas-Kanade and Horn-Schunck energy iomals in 3.8) and
(3.10 respectively results in an energy functional to be minedifor Joint Lucas-Kanade
(JLK):
= 3 (Enli) + A Esli). 3.15)

i=1

whereN is the number of feature points, and the data and smootheress are given by

Eo(i) = K= ((F(u,w; D)) (3.16)

Es(i) = ((Ui —0)% 4 (Vi — Vi)Q) : (3.17)

In these equations, the energy of featurie determined by how well its displacement
(u, vi)T matches the local image data, as well as how far the displacedeviates from
the expected displacemett, )T. Note that the expected displacement can be computed
in any desired manner and is not necessarily required toebavérage of the neighboring
displacements.

Differentiating E; .« with respect to the displacemeritg,v;)™,i = 1,...,N, and
setting the derivatives to zero, yields a lagi x 2N sparse matrix equation, whogz —

1)th and(2i)th rows are

ZiUi =€, (318)
where
. ')\i +K,, * (Ixlx) K, * (ley) }
i =
I K, * (Ixly) A AK, s (1yly)
A G — K, (Ixly)

e = K .

LA = K (Iyl)
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This sparse system of equations can be solved using Jaerdtiagns of the form

~ (kK ~ (K

(k+1) o

S _ 3.19

i i At dy -
J A_(k) J A.(k) J

Vi(k+1) _ vi(k)_ ny|)\ HdpVi T+ Yt7 (3.20)

wheredy = K, * (13), Jy = Ky x (Ily), Ja = Ko (Idy), Jyy = K% (17), anddye = K, x (Iyly).

As before, convergence speed is greatly increased by parfgrGauss-Seidel it-
erations so thaﬂi(k) and vi(” are actually computed using a mixture of values from the
kth and(k + 1)th iterations (depending upon the order in which the valuesupdated),
and by performing a weighted average of the most recent astiand the new estimate
(successive overrelaxation). With this modification, thelate equations are given by

(1) — (1-— w)ui(k) + wﬂi(k), Whereﬂi(k) is the estimate expressed on the right hand side

U
of Egs. 8.19-3.20, andw € (0, 2) is the relaxation parameter. For fast convergencs,
usually set to a value betweérd and1.99. Note that forw = 1 the approach reduces to
Gauss-Seidel.

Pyramidal implementation of the Joint Lucas-Kanade atgoriis shown in Fig-
ure 3.6. Both the standard Lucas-Kanade method and the proposad jocas-Kanade
method involve iteratively solving a spardd x 2N linear system to find the minimum of
a quadratic cost functional. In the former, the matrix ischlaliagonal, leading to a sim-
ple and efficient implementation via a setdk 2 linear systems, while in the latter, the
off-diagonal terms require the approach presented in teeiqus section. Like standard
Lucas-Kanade, JLK i©(Nnm), whereN is the number of features is the number of
pyramid levels, andn is the average number of iterations. However, because giders

all the features at a time, the JLK algorithm must precomplgeZ; matrices for all the

features.
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Algorithm: Joint Lucas-Kanade

1. For each feature

(@) Initializeu; < (0,0)7
(b) Initialize \,

2. For pyramid leveh — 1 to 0 step—1,

() For each feature computez;
(b) Repeat until convergence:
i. For each feature
(a) Determinay;

(b) Compute the differenck between the first image and the shifted
second imageli(x,y) = l1(X,y) — la(X+ Ui,y + V)

(c) Computes

(d) Solvezu; = g for incremental motiom;

(e) Add incremental motion to overall estimatg:«— u; + u;

(c) Expand to the next levell; <— ku;, wherek is the pyramid scale factor

Figure 3.6: The joint Lucas-Kanade algorithm.

Several implementation issues remain. First, how sho@ddgularization parame-
ters); be chosen? Since a large number of features can often bedrackurately without
any assistance from their neighbors, one could imaginehtieiggsome features more than
others, e.g., using one of the standard measures for degdetitures in the first plac8?)].
For example, since large eigenvalues of the gradient cavesi matrix indicate sufficient
image intensity information for tracking, such featuresildoreceive smaller smoothing
weights (regularization parameter values) than those wghfficient information. How-
ever, this scheme is frustrated by the fact that the eigaegatlo not take into account
important issues such as occlusions, motion discontesjiind lighting changes, making

it difficult to determine beforehand which features will @ally be tracked reliably. As a
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result, we simply set all of the regularization parametera tonstant value in this work:
A, = 50.

Another issue is how to determine the expected valtes;) " of the displacements.
Because the features are sparse, a significant differemeetion between neighboring fea-
tures is not uncommon, even when the features are on the $gichsurface in the world.
As a result, we cannot simply average the values of the nerghds is commonly done
[49, 20]. Instead, we predict the motion displacement of a pixel tin§ an affine motion
model to the displacements of the surrounding features;iwédiie inversely weighted ac-
cording to their distance to the pixel. We use a Gaussianhtieigifunction on the distance,
with o = 10 pixels.

Finally, because the algorithm enforces smoothness, liiésta overcome the aper-
ture problem by determining the motion of underconstraigdls that lie along intensity
edges. We modify the feature detection algorithm accoiginp detect features, we use
the two eigenvalues,,;, ande,..., €.in < €nax Of the original Lucas-Kanade gradient co-
variance matrixZ. Rather than selecting the minimum eigenvadyg,, as is often done
[92], we select features usingax(€yin, 7€max), Wheren < 1 is a scaling factor. The ra-
tionale behind this choice is that along an intensity eglge will be large whilee,;,, will
be arbitrarily small. Instead of treating an edge like arexnitred region, the proposed
measure rewards the feature for the information that it d@e®. For pixels having two
comparable eigenvalues, the proposed measure reduces tootle common minimum
eigenvalue. In this work we set= 0.1.

In general, the joint tracking algorithm exhibits smootfews and is thus better
equipped to handle features without sufficient local infation. In particular, repetitive
textures that cause individual features to be distractediloyiar nearby patterns using
the traditional algorithm do not pose a problem in the prepoalgorithm. An example

showing this behavior is in the top row of Figuge7. The difference between the two
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image Standard Lucas-Kanade  Joint Lucas-Kanade

Figure 3.7: Comparison of joint Lucas-Kanade and standarchg-Kanade. Each row
shows the input image, point features tracked using stdndacas-Kanade, and joint
Lucas-Kanade algorithms.OP: An image showing repetitive texture.0BToMm: A rela-
tively untextured scene. The results of the two algorithmet{on vectors are scaled for
display). The standard algorithm computes erroneoustsefarlmany features, while the
joint algorithm computes accurate flow vectors.

algorithms is even more pronounced when the scene does migiiiconuch texture, as is
often the case in indoor man-made environments. The bottevof Figure3.7 shows
one such scene, along with the results computed by the tvasitims. In this sequence
the camera is moving down and to the right with a slight cowhdekwise rotation. The
camera gain control causes a severe intensity change inititeow of the door, causing
those features to be lost. Notice that the joint algorithralike to compute accurate flow

vectors for features that do not contain sufficient locabinfation to be accurately tracked

independently.

3.6 Summary

This chapter describes the detection and tracking of peatufes and their use

for computing optical flow in image sequences. Lucas-Kanade popular method of
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feature tracking and provides a fast and accurate way foipating sparse optical flow.
One limitation of Lucas-Kanade is that it is essentially @alanethod and cannot reliably
compute global dense flow fields like the Horn-Schunck methddis chapter further
describes a joint feature tracking approach that combimedacal and global properties
of LK and HS respectively to track features more accurately r@liably. With the sparse
point feature trajectories, motion segmentation can beopaed by clustering the point
features. The next chapter describes an algorithm thatf@areetly group point features
in long image sequences using a spatially constrained neixttodel and a greedy EM

algorithm.
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Chapter 4

Motion Segmentation Using Point

Features

Motion and image segmentation differ from each other bexafishe differences
in the data required for both purposes. Also, the additiotheftemporal dimension to the
problem in the case of motion segmentation introduces adi@ssues regarding the main-
tenance of the segmentation over time. The mixture modeldveork described in Chapter
2 can be used to perform motion segmentation, although theeaft the problem neces-
sitates modification of some key details of the SCFMM appnoddis chapter describes a
motion segmentation approach that models the sparse égattion using a SCFMM and
obtains feature labels using a greedy EM algorithm. The tehdgggins with a description
of how to adapt the SCFMM for motion segmentation followedths description of the

segmentation algorithm and its performance on some testseqs.
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4.1 Mixture Models for Motion Segmentation

Motion vectors corresponding to the sparse 2D points forendéita in our motion
segmentation approach. The motion model used in this woak iaffine motion model.
Since the nature of data is sparse, familiar 2D lattice strecof a typical image is not
available. Hence, instead of a conventional spatial nadidnd (like 4-connected or 8-
connected), a different kind of neighborhood has to be éshkadal between points scattered
in a 2D plane. These factors lead to changes in the way the @oamp density functions
are defined and the kind of parameters that need to be estimatthis section, the affine
motion model and the neighborhood computation in the caspalfse point features are
explained. Throughout the discussionin this chapterassimed that the point feature tra-
jectories are already available for the given pair of framfesssequence using the approach

presented in Chapt&

4.1.1 Affine Motion Model

Each point feature trajectory is assumed to belong to a madelthe model pa-
rameters describe the motion of the features over time. Tegquently used models are:
translation and affine. While translation is simpler to dedh, it may not be enough to
describe some of the more complicated motions observedumaigcenes such as in-plane
rotation, scale changes and shearing. These effects canded using an affine motion
model. For a poink = [x,y]" in a 2D plane, its coordinates, = [X,,Y.|" after affine

transformation are given by

Xa air A X ty
= + , 4.1)

Ya Q1 Q2 y ty
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or X, = AX, whereAis a3 x 3 affine matrix given by

a;; Ik
A=l ay ap t (4.2)

0 0 1

that incorporates th&x 1 translation vector in it8™ column in homogeneous coordinates.
Xa andXx are the pointx andx, expressed in homogeneous coordinates. In all, there are
six degrees of freedom (or six parameters) in this transétion. The affine matrix can be
decomposed using Singular Value Decomposition (SVD) teakthat it is a combination
of two in-plane rotations and scaling in the two orthonormliaéctions 7]. Geometric
properties such as parallel lines, ratio of lengths of pelrishes, and ratio of areas are pre-
served in affine transform. Evidently, affine transform ifirted over a plane (or a region)
and a single point cannot determine the transform parasefeminimum of three points
are required, but in practice, a large set of correspondegieeneeded to effectively deter-
mine the affine parameters in the presence of noise. Fromad petnt correspondences,
the affine parameters can be determined using techniguekelkt squares by minimizing

the error functiorj| AX — X,||?, which leads to the system of equations given by

—x(1> yb o0 0 10_—a11_ _xgl>_
0 0 xM yh o1 ays y
o _ . (4.3)
Az2
xNoy™N 0 0 10 ty x(N)
0 0 xN yN g 1 t, yNn
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Solving the above system of equations yields a least-sgumaged affine parameter esti-
mate which can be viewed as fitting a plane to a given set oftpoifihe least squares
procedure is sensitive to the outliers and hence care muakba that all the point corre-

spondences belong to the same 3D surface (planar if possible

4.1.2 Neighborhood Computation

A neighborhood criterion has to be defined for sparse podatifered in a 2D plane.
The nature of data precludes defining the 4-connected onBemted neighborhoods as in
the case of images. A spatial window could be used to collset af point features, but it
is inefficient. It is difficult to define pairwise cliques in&ua situation. Delaunay triangu-
lation of feature points in the image is an effective way tlvethis problem as it naturally
provides the immediate neighbors of a point feature witlamyt spatial constraints. Also,
the nearest point to a given point is guaranteed to be indludthe list of the neighboring
points. Figured.l (left) shows an example of 10 points connected by Delaunaggu-
lation (we use the procedure fror@89), and it can be seen that, for a given point, every
point that shares an edge is considered its neighbor. D&yawiangulation of the sparse
point features for a frame of the statue sequence is alsorshiéar more details about the

Delaunay triangulation technique and its computation AggeendixB. 1.

4.2 Grouping Features Using Two Frames

This section presents the feature grouping between twoefsarsing the Spatially
Constrained Finite Mixture Model and a greedy EM algorithmetf i = 1,... N bethe
sparse features tracked in a video sequence, arﬁﬂ)leepresent théx, y) coordinates of
theit" feature in image frame Letx® = (£, ... £V} be the trajectory of thé" feature,

whereT is the maximum frame number, and Rt= (x1), ... xN)) be all the trajectories
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Figure 4.1:LEFT: Delaunay triangulation of planar poin®lGHT: Delaunay triangulation
of point features in an image can be used for neighborhoagrassnt.
collectively.

The trajectories of neighboring features typically exhiistrong correlation be-
cause they follow the motion of the same surface in the wadd© = (6, ..., 0k) be the
motion models of th& components from which the feature trajectories arise. @at i3

to find the estimate of the parameters given by
O* = arg max P(X | ©). (4.4)
Assuming that the different trajectories are independaeigo, we have

P(X|0) = HZP x| ", 0P | o), (4.5)

i=1j=1

Wherecj(i) is a binary indicator variable that indicates whether feat(}) belongs to com-
ponent.
Let o(xV; 6) = P(x? | ¢", ©) measure how well the trajectory’) fits thejth

model, and |et7rj(i) = (cj(' | ©) be the weight indicating the probability that feature
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f@ belongs to componertgiven ©, thus> <, 7rj(i) = 1. Then, by converting to a log

likelihood, we can rewrite the expression as

N
O* = arg mgxz log gk (xV), (4.6)
i=1
where
K _
g (xV) = Zﬁj(l)éﬁ(x(')% 0). (4.7)
=1

As with existing motion segmentation algorithms, the cdrew approach involves
grouping features between a pair of (not necessarily caisef image frames. In this

work we use an affine motion model, so that

_ ) g3 2
S0 gy = L exp{ | AR —£0 ) } 4.8)

\/2mo? 207

whereA is the3 x 3 matrix of affine parameters (homogeneous coordinates agg wéth

a slight abuse of notationy, specifies the reference image frame of jitegroup, and-?
is the variance of the Gaussian distribution. The pararseties group aré; = (A, rj, 1),
wherey; is the centroid. Learning the mixture involves estimatihg Weightsm-(i) and
the parameterg,. To do this, we use the greedy EM algorithm introduced in @dved
which incrementally adds components to deterndreutomatically. Since we process the
sequence causally, in the following discussibrshould be interpreted as the maximum
frame number encountered so far. Bust first, formulationhef problem in terms of a
SCFMM is presented next.

Notice that Equation4.5 assumes that the binary labels of the features are inde-
pendent giver®, i.e.,P(cj(l), . .,cj(”) | ©) =T11IY, P(cj(i) | ©). A more realistic formulation
would take the spatial continuity of regions into accountr implicity, assume that the

features are ordered in a linear chain starting from theufeatlosest to the centroid of the
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group. Then the requirement of spatial continuity yields:

Pic” [, 0)

—

Il
—

Pc”,....c"|0) =

P(c” | @), (4.9)

Il
e

Il
—

where the last equality arises frou:ﬁ_l) being a binary variable. Extending this result to
2D, Iete be a binary indicator variable whose value is 1 if and onlyére exists a path
(according to a predefined neighborhood) fréf to the feature closest to the centroid
such thalcj(g) = 1 for all features () along the path. Since we do not have access to the

actual labels, we instead use an estinitewhich is set to 1 if and only iP(c”

| ©) >p;
for all the features on the path.

This analysis leads to a SCFMM that is minimized using a grdeld algorithm.
For each componeiptlog-likelihood maximization is performed using the fallmg itera-

tive update equations:

A(1)
O 7TJ ¢(X(' 0)é _ (4.10)
J ZJ 17 (I P (xV; ej)éj(l)
€j(i) — {méln 7r( )} > p- (4.11)
o 2'2171 (4.12)
e
A — argmalln | W(Fa—Fy) 12, (4.13)

whereW is a diagonal weighting matrix with eleme$ = wj(i), F. is a matrix containing
the features at framig anda is a vectorization of the affine matrix.

Figure4.2 shows the greedy EM algorithm for feature grouping. Groupsaaded
one at a time by region growing from a random ungrouped featurd the region growing

is performed iteratively for each group after adjusting ¢teatroid using all the features
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Figure 4.2: Formation of a feature group by region growirging the motion between two
frames of a sequenceEET: The initial group with the seed poiht(represented as a star)
and its immediately neighboring ungrouped featukgsf ) in the Delaunay triangulation.
CENTER The group after the first iteration, whehis empty. RGHT: The final feature
group afterGroupFeatures has converged on a solution. Repeated iterations do not
produce any changes in the feature group.
gathered in the previous iteration. The functidii; t) returns the indices of all the fea-
tures that are immediate neighbors of featfftein the Delaunay triangulation at frame
t, and the binary vectdr keeps track of which features have already been considered f
grouping. The output of this procedure is the number of gsp@bong with the binary
weights indicating the membership of the features in thegso

Figure4.2 demonstrates the growing procedure for a single group. Wbenore
features can be added to the group, the group is reset todhedeclosest to the centroid
of the group, and the process begins again. Convergenceiadyusbtained within two
or three iterations. Once the first group has been found, theegdure is then repeated
using another random ungrouped feature as the new seed ote that the algorithm
automatically determines the number of groups using thglesiparametep.., along with
the minimum sizen,,;,, of a group.

The feature grouping algorithm learns the group paramatettse fly as it grows
the group. This means the initialization is performed lycat the seed point. In the
case of motion segmentation, it is observed that assignaféabels to the features is not

totally invariant to the randomly chosen seed point if theioroof the various neighbor-

ing regions are not very different form each other. To sohis problem, we introduce
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Algorithm: GroupFeatures

Input: Feature$® i =1,..., N and frames andr
Output:K (number of groups), anq('),j =1,...,K

1. Setk — 0

2. Setry,, —0,i=1,....N

3. Seth®) «—0,i=1,...,N

4. Repeat until a random feature cannot be found

(@) Select a randorit?) such thab®) = 0
(b) Setr), — 1,Vie {{, N(; t)}
(c) Setrg,; < r, and computdy_,; using 4.13
(d) Repeat until, ,, does not change
. Setuy, using @.129
ii. Setm(,, — 0,Vi#¢,
wheref () is the feature closest g . ,
lii. Repeat as long as,@rl changes for somie
(a) For eacH such thabr,(fil =1,
if i € N(¢; t) andmy), = 0
andg(xV: 6,) > p,, then setry),, — 1
(b) ComputeAx; using é.13
(e) Seth® — max{b® ¢}, },i=1,...,n

0 1 SN, 7, > Ny, thenK — K + 1

Figure 4.3: Greedy EM algorithm for feature grouping.
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a seed-point consistency cheekich is reminiscent of the left-right consistency check of
stereo matching43]. The grouping algorithnGroupFeatures is run multiple times,
starting from different random seed points. A consisteneyrixis maintained in which
ci¢ is the number of results in whidh?) andf(® belong to the same group. A set of fea-
tures is said to form a consistent group if the features advimgjong to the same group as
each other, i.eg, = Ns for all features in the set, wheid; is the number of times that
GroupFeatures is run. The collection of consistent groups larger than th@mum
sizen,,;, are retained, while the remaining features receive zerghtéor all groups. This
GroupConsistentFeatures (shown in Figure4.6) algorithm is illustrated in Fig-
ure4.4for a simple example. The dependencyGbupFeatures on the random seed
point, along with the results deroupConsistentFeatures on an example pair of

images, is displayed in Figure5h.

seed point seed point
a@h.._ b
:" * \-
0 AN
cO'"~- Y
d
a b ¢ d

Figure 4.4: Formation of consistent feature groups usiegtinsistency matrix. The first
run of GroupFeatures  groupsa, b, andd together while placing in a separate group.
The second run, using a different random seed point, graagpslc together, andb andd
together. Shown on the right are the three consistent grdupadd togethera by itself,
andc by itself.
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Figure 4.5: The consistent groups (right) obtained by apgly the
GroupConsistentFeatures algorithm to the results of running the algorithm
GroupFeatures  with three different seed points (left three images). Thi#'saye
indicates the first seed point of each run. Notice that afjhotlne original groups are
highly sensitive to the seed point, the consistent groupsctdfely segment the four
regions of the image: statue (black circles), wall (whiteags), grass (black’s), and
trees (white triangles).

The algorithmGroupConsistentFeatures can be considered as the parent
algorithm that calls th&roupFeatures  multiple times and outputs the numbi€rof
groups, the centroids, and affine parameter§ of the groups, and the Weigh7t§) of the
features. The interdependency betwél@nandvrj(i) requires care, because any weight set
to zero by 4.11) will remain zero due to its reuse id.(LQ. Recognizing that the prior
=" in (4.10 does not affect the shape of the distribution represenyethé weights at
the stationary point, we implement the algorithm by resgtto a uniform prior in each
iteration. In other words, for each groypwe perform the following steps for ail =

1,...,N:
1. Setwj(i) —1

3. Setéj(i) using @.11) by region growing fromy

4. Setﬂ'j(i) — 7TJ(I)€J(I)

After all the groups have been considered, the weights arealzed according tmj(i) —
wj(i)/ ZJ-K:l 70, Together, this procedure constitutes the E-step. Thedd-stvolves sim-

ply applying @.12 and @.13. Concerning convergence, in our experience the procedure
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Algorithm: GroupConsistentFeatures

Input: Feature$® i =1,... N and frameg andr
Output:K (number of groups), anq('),j =1,...,K

1. Setc, — 0 for every pair of features® andf (*)
2. Fori < 1to N,

(@) RunGroupFeatures
(b) For each pair of featurds) andf®), increment;, if f) andf® belong to
the same group
3. Setk 0

4. Repeat until all features have been considered,

(@) Setry\, —0,i=1,...,N

(b) Gather a maximal sef of consistent features such tltat= N; for all pairs
of features in the set

(c) If | F |> Ny, then
i. Setry,, — 1,Visuchthat® e F
ii. SetK «— K +1

Figure 4.6: Algorithm for finding consistent feature groups

settles onto a solution in few iterations, although prootofvergence is left for future

work.

4.3 Maintaining Feature Groups Over Time

The grouping procedure of the previous section operategaxctlg two (not neces-
sarily consecutive) image frames, assuming a fixed refer&amer; for each group. As
such, it exhibits the same limitations of existing algamth If the time-difference between

the two frames being compared is short, then slowly movirjgatb will not be detected.
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On the other hand, if the time-difference is large, then theeamotion assumption is likely
to fail, and fewer features will be successfully trackedimsin the two frames. In this sec-
tion we embed the two-frame algorithm within a procedureujpdating the groups over
time in an incremental fashion so that the objects can bectigteno matter their speed.
Our goal is a method that adapts the time-difference andicegpthe dynamic behavior of
features and objects as observed in long real-world imageesees.

The incremental procedure involves three steps. Firsinitialization algorithm
GroupConsistentFeatures is applied to all the features that have not yet been
grouped, in order to add new groups to the existing ones. reiygaungrouped features
are assimilated into existing groups using the greedy EMeatare of the previous section
to update their weights. Different groups may have differeference frames, so any new
feature whose start frame (the frame in which the featurefinsigetected) is more recent
than a reference frame are not considered for grouping.

The last of the three steps is by far the most difficult. The@apable question at
this point is: How can one determine whether a group exhimtgerent motion in such
a way that the result is achieved for any object speed? Irr @tbeds, the coherency of
motion is determined by comparing the feature coordinaidiseé current frame with those
in the reference frame. If the reference frame is never @aléen the number of features
successfully tracked between the two frames will decreagentually to zero), and the
underlying motion model will become a poor fit to the real,ayailata (eventually causing
incoherent motion even in a single object). On the other hdrttie reference frame is
updated at a constant rate, as is commonly done, then tlegatiffal nature of motion is
being ignored, and the result will depend upon object speed.

EM cannot solve this dilemma. Maximizing.@) with respect ta;,j = 1,...,K
would yield the trivial solution of setting the referencarfre to the current frame, just as

maximizing the equation with respect Kowould yield the trivial solution of producing
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exactly one group per feature. Just as EM requirés be fixed, so it also requiresto be
fixed for allj. As a result, we are forced to turn to an ad hoc technique, ichnthe same
way that others have resorted to suboptimal methods formdatang the number of groups
[106, 101].

To solve the dilemma, then, we turn to the chi-squaséditest. This non-parametric
statistical test compares observed data with an expectddpility distribution in order to
decide whether to reject the null hypothekigthat the data were drawn from the distri-
bution. The test is asymmetric: Although a largé value indicates thatl, should be
rejected, a small value says nothing about whetheshould be accepted, but only that
insufficient evidence exists to reject it. The test is themefa natural fit to the problem of
motion segmentation, in which one can never conclude basdéowslevel image motion
alone that features belong to the same object. Instea@y ¢iith features belong to different
objects with high probability, or there is insufficient egitte in the data to conclude that
they belong to different objects.

To apply they? test, we compute a distribution of the residues of all théufes in
a group, using the motion model of the group. The distribuitsoquantized into five bins,
each of width0.304, whereoy is the standard deviation of the distribution. We reject the
assumption that the motion of the group is coherent’it= >, (O; — E)*/E > 2.y,
whereQ,; is the observed frequency for birE; is the expected frequency for b'i,randXi; K
is the critical threshold for & distribution withk degrees of freedom and significance level
a. We usex = 99% andk = 3.

Initially we planned to compute the observed distributiaing the current and
reference frames, and to use a zero-mean unit-variances{@ausr the expected distri-
bution; that is, a group would not be split if its residueddai a Gaussian distribution.
However, we found this approach to fail due to the sparseillision sampling (only five

bins) and the variable inter-frame spacing, which togethese single-object distributions
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features groups ©)
are found

Figure 4.7: Splitting an existing feature group. If thetest fails to uphold the assumption
of coherent motion within the group, then the algorit@GmupConsistentFeatures
is applied to the features in the group to facilitate regmgpThis results either in multiple
groups or the discarding of outlier features (feature nurhe
to be non-Gaussian. Instead, we have adopted an approadtticim the expected distribu-
tion is generated from the motion residues using the reteréramer;, and the observed
distribution is generated using the framoeind (t — Ge(t — 1)), where0 < e < 1. This
method allows the distribution to adapt to the changingattaristics of individual objects
over time.

The features in a group are dynamically adjusted over tinfieedsres are lost due to
the feature tracking and as new features are added by assimil At each frame thg? test
is applied to the features in the group. If the test failsnttiee features are regrouped using
the initialization procedure mentioned in the previoudisec This computation results in
either the group splitting into multiple groups due to thegance of multiple objects, or it
causes the outlier features to be discarded from the gronpe @ split has been attempted
for a group, the reference frame is updated to the fraowed (t — 3. (t —r;)), where
0 < G < 1. In our implementation we segt. = 0.1 and3, = 0.25. The procedure is

illustrated in Figured.7.
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Figure 4.8: Results of the algorithm on three image seqeerimsethrow(top), car-map
(middle), andnobile-calendafbottom). The original image (left), the feature groupsreve
laid on the image (middle), and the feature groups deteateahother image later in the
sequence (right). Features belonging to different groupsaicated by markers of differ-
ent shapes, and solid lines outline the convex hull of eacbgrThe top row shows frames
9 and 14, the middle shows frames 11 and 20, and the bottomsdnames 14 and 69.

4.4 Experimental Results

The algorithm was tested on a total of six grayscale imageessmps. Motion
segmentation results for three of these sequences are shdvigure 4.8 with features
assigned to the group with the highest weighia the freethrowsequence, a basketball
player moves down in the image as he prepares to shoot armeetivhile the camera

moves slightly down. Two groups are found by the algorithne tor the player (indicated

Lvideos of the results can be found at
http://www.ces.clemson.edu/"stb/research/motion _segmentation
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by black triangles) and one for the crowd in the backgroundi¢iated by white circles).
In the car-mapsequence, a car drives in a straight line behind a map whileedéimera
remains stationary. The car (white circles), map (bbas, ground (black triangles), and
background (white squares) are detected. The car is oathode period of time behind
the map then is detected again as it reappears on the otleer Isidhemobile-calendar
sequence, a toy train pushes a ball to the left, and a caletidas down in front of a
textured background, while the camera zooms out and magégsiglieft. All of the objects
are detected, even though the ball (white) and train (black circles) move faster than the
calendar (black’s) and background (white squares). It should be noted ti@atthite
borders around the feature groups are shown only for theafaddarity and are not to be
considered the object boundaries.

The statuesequence, shown in Figu#e9, is the most challenging. These images
were captured by a hand-held camera moving in an uncordrédihion around a statue,
while a bicyclist drove behind the statue and a pedestridkadan front of the statue. The
motion of the objects is not linear, and several objects apaed disappear over the course
of the sequence. With just two frames the algorithm is ablsejparate the background
(containing the wall and the trees) from the foreground {@mmng the grass and the statue).
By frame 6, four groups are found: the statue (black cir¢clg® grass (white asterisks),
the trees (white triangles), and the stone wall (white seglarAlthough some of the trees
are inadvertently grouped with the stone wall initiallyeotime they are correctly joined
with the rest of the trees as more evidence becomes availBEidebicyclist enters in frame
151, is detected in frame 185 (whixés), becomes occluded by the statue in frame 312,
emerges on the other side of the statue in frame 356, andastddtagain in frame 444
(black stars). Although the algorithm currently does nt¢rapt correspondence between
occluded and disoccluded objects, a straightforward sixta@rwould maintain the identity

of the bicyclist through the occlusion. The pedestrian mntiee scene in frame 444 and
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is segmented successfully (blagks), although the non-rigid motion prevents the feature
tracker from maintaining a large number of features thrawghand it prevents the affine
motion model from well approximating the actual motion. Tgedestrian occludes the
statue from frames 486 to 501, after which the statue is tggr@ into separate groups for
top and bottom. Near the end of the sequence the lack of tegtuthe ground, combined
with motion blur of the shaking camera, prevent the feattaekier from replenishing the
features on the grass after the pedestrian passes.

Results for therobot sequence are shown in Figu4elQ In this sequence, two
robots move in the same direction roughly parallel to then@laf the camera, although
there is a significant pan of the camera toward the end of theesee. The robots start
from the same initial location and travel together at the esapeed for several seconds,
after which the robot farther from the camera acceleratdaartakes the other robot. As
seen in the figure, the group belonging to the robots splitstimo groups, one per robot,
when their relative speeds change; while the backgroundaistained as a single group
throughout.

Figure4.11shows a highway scene captured from a low-angle camera.tdeour
vehicles enter and exit the scene during the 90 frames oflipgenice. Of the ten vehicles
in the three nearby lanes (approaching traffic), 80% of thecles were segmented from
the background correctly. The two vehicles in the nearbydatihat were not detected
were close to adjacent vehicles traveling at the same spseedtije car behind the truck
in the middle image). In addition, the algorithm segmentad fvehicles in the far lanes
(receding traffic), even though their image size is smalldoraverage approximately 50
pixels). The background is split into two large regions ia thiddle image of the figure
because the vehicle traffic removes the adjacency of thegbaigkd features in that portion
of the image. Also, the grass on the left side of the imagertaéun split from the trees due

to movement of the latter.
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Figure 4.9: Results on tretatuesequence, with the original image shown in the upper-left
inset. In lexicographic order the image frames are 6, 64, B95, 480, and 520. The
algorithm forms new groups or splits existing groups duehi arrival or departure of

entities in the scene.

Figure 4.10: Results on thebot sequence (frames 35, 120, and 100), with the original
image shown in the bottom-right inset. The algorithm sphis group belonging to the
robots into two separate groups as the farther robot aeteter
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Figure 4.11: Results on teghwaysequence (frames 15, 39, and 61), with the original
image shown in the top-left inset. The algorithm forms neaugs or splits existing groups
due to the arrival or departure of vehicles in the scene.

Since the algorithm operates in an incremental fashiorgticrg and maintaining
groups of features as more evidence becomes availableythiear of groups is determined
automatically and dynamically. Figudel2displays the dynamic progress of the results on
all of the six sequences$réethrow mobile-calendarcar-map statue robot, andvehiclg.

In the first sequence the basketball player becomes sepdrabi the background almost
immediately. In the second sequence the faster train ahdb&adme separable after only
two frames, while six frames are needed to separate thedaal@md background. In the
third sequence the objects are detected one at a time, Withualobjects segmented by
frame 16. In the statue sequence the primary four areas diciee are segmented after
just a few frames, then the bicyclist and pedestrian arectixteas they enter the scene and
removed as they leave. In the robot sequence, the movings@be separated from the
background, and after a while, the faster robot is sepafedetdthe slower one. Finally, in
the vehicle sequence, large number of vehicles appear aadmiar throughout the length
of the sequence.

One of the advantages of this algorithm is its lack of paransetThe parameter
7, which was set td.5 for all the results in this section, governs the amount ofgena

evidence needed before features are declared to be mounsgstently with one another.

It is used to compute, = —~ exp {—%} for (4.11), whereos = 0.7. Significantly,

A /2<7f2
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Figure 4.12: The algorithm automatically and dynamicakyeidmines the number of fea-
ture groups. Plotted are the number of groups versus imageefifor each of the six
sequences.

Figure 4.13: Insensitivity to parameters. Segmentaticulte shown for two different
values ofr for frames 4, 8, 12 and 64 (from left to right) of the statueusete.TOP: 7 =
3.0,soTTOM: T =0.7.
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the results are insensitive to this parameterr I§ increased, then the algorithm simply
waits longer before declaring a group by accumulating théondifference between the
objects over time, while if is decreased then the groups are declared sooner. HdiBe
displays this insensitivity. Similar experiments revewd tnsensitivity of the results to the
other parameters, such as f5;, andn,,;,.

Insensitivity to speed is shown in Figudel4 Qualitatively similar results are
obtained by running the algorithm on the origisthtuesequence and on a sequence gen-
erated by replicating each frame in the sequence (thustie#gcdecreasing the relative
speed of the objects by half). Although not shown due to ldcgpace, the same result
occurs by further replication (i.e., reducing the speed oy positive factor). Similarly,
nearly identical results are obtained by running the atgorion every other image of the
sequence (thus doubling the motions). All these resultgwbtained without changing
any parameters of the algorithm.

Quantitative results are shown in Figurd 5for these downsampled and upsampled
statuesequences. Except for the end of the sequence, where the iertbe feature track-
ing cause mismatch in the groups detected, the maximum iertbe number of groups
found is one. These spikes, near frames 160 and 300, occuodhbe late detection and
early loss of the bicyclist, thus indicating a mere temparealignment error from which
the algorithm recovers. The difference in the centroidsefdgroups is small, averaging 4
pixels over the entire sequence and never exceeding 6.5 p&ienilarly, the average error
in the areas of the groups, computed by the convex hull oféatufes in each group, is
12% and 15% for the upsampled and downsampled sequengesctiesly. These errors
are relatively small, keeping in mind that the sparse atgoriis not designed to recover
accurate shape of the objects and thus is subject to astiddétature tracking and density.
Moreover, the errors do not increase with further upsangplin

Figure4.16displays the updating of the reference frame over time far feature
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Algorithm Runtime | Number
(sec / frame) of groups
Xiao and Shah]13 520 4
Kumar et al. §2] 500 6
Smith et al. 5] 180 3
Rothganger et al.84] 30 3
Jojic and Frey$3] 1 3
Cremers and Soatt@4] 40 4
our algorithm 0.16 6

Table 4.1: A comparison of the computational time of varimaion segmentation algo-
rithms. The rightmost column indicates the maximum numbegroups found by each
algorithm in the reported results.

Figure 4.14: The algorithm is insensitive to speedoPT Results on a modified statue
sequence in which each frame occurs twice, thus reducinmti®n by half. BboTTOM:
Results on a modified statue sequence in which every otheeftas been discarded, thus
doubling the motion. Shown are frames 64, 185, 395 and 48@eobtiginal sequence.
groups in the statue sequence: the statue itself, and the Iehind the statue. Because
the tree group is large and contains non-planar surfacésireal world, it contains a fair
number of outliers. These outliers cause the chi-squarétethat group to fail often, thus
necessitating the reference frame to be updated frequédther groups in the sequence,
such as the grass and the wall, exhibit similar behavior.olmtrast, the small and stable

statue group requires only infrequent updating of the ezfee frame. Even though the

statue is not planar, its extent allows the affine model toa@pmate its motion well.
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Figure 4.15: Quantitative analysis of the insensitivitytlod algorithm to speed for the up-
sampled (slower) sequenceoP ROW and the downsampled (faster) sequerB@T(Tom
ROW). The plots compare the original and modified sequenceg tissnnumber of groups
detected I(EFT), the root-mean-square error of the centroidsNTER), and the average
percentage difference between the areas of the corresgpgups RIGHT).
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Figure 4.16: The reference frame versus time for two gronppise statue sequenceekT:
the statue; RGHT: the trees behind the statue.
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Figure 4.17: Motion segmentation results using joint featuacking algorithm presented

in Chapter3. Top ROW Input images of an indoor sequence (150 frames) with a cam-
era mounted on a mobile platform. There are a large numbenteitured regions and
especially, on the groundaiDDLE ROW: Motion segmentation using point feature trajec-
tories obtained from KLT feature tracking][ BOTTOM ROW. Motion segmentation using
point feature trajectories obtained from joint featurekiag. Notice that there are multiple
groups when using KLT on the ground as the sequence progvk#s,this is not observed

in the case when features are tracked using the joint fetrtacking algorithm.
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Figure 4.18: Segmentation results 6] on portions of thestatue robot, andcar-map
sequences. The algorithm processed frames 161-196, 150aid 25-35, respectively.
Shown are a sample image from each sequence (top) and tkts festhat image (bottom).
Figure4.17shows the effect of joint feature tracking algorithm prdsdnn Chapter
3 on the grouping of the features in an indoor sequence. Theeseq is captured using a
camera attached to a mobile platform and looking down tow@edyround while moving
forward. While motion segmentation using the feature ttajees obtained from the joint
feature tracking algorithm does not outperform the segatemt using the conventional
feature tracking for the six previously shown sequencességuence shown in Figu4el7
is well suited for joint feature tracking since it has a latggextured areas and regions of
repetitive texture. Since joint tracking performs bettesuch situations, the segmentation
results using the corresponding feature trajectories atteas compared to those using
the conventional tracking.
In terms of computation, our algorithm is orders of magnétddster than other
recent techniques, as shown in TaBl& The algorithm requires only 160 ms per frame
for a sequence df20 x 240 images with 1000 features on a 2.8 GHz P4 computer using

an unoptimized Visual C++ implementation using the KLT teattracker 7] within the
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Blepo library B]. Most of this computation (140 ms) is used by the featurekiray, with
only 20 ms needed by the segmentation algorithm. 1h3], 95% of the computation
is spent on the preprocessing stage to determine the nurhigeoups along with their
motion models, which is what our algorithm produces. Thus, approach can be seen
as a computationally-efficient front-end for initializimge of these more expensive dense
segmentation methods in order to drastically reduce tloamputational load.

It is difficult to compare the quality of our segmentationiwihose of other algo-
rithms, because the goals are different. As an exampleré4gu8shows the groups found
by the algorithm of Kumar et al 6p] by batch processing small clips from three of the se-
guences. Because the algorithm assumes that objects m@telp@ the image plane, it
performs well when that assumption holds, enabling a credmeéation of the regions on
these clips. However, even on the short clip of stetuesequence their algorithm fails to
separate the trees on the left from the wall on the right, aedroneously merges much
of the grass with the tree/wall region. More importantlye #dgorithm cannot process the
entire video sequence, both because of its computatiosalarml because of the assump-
tions that it makes regarding the presence and motion ottshjén a similar manner, the
algorithm does not perform as favorably on the other secgfe.g.,mobile-calendar
freethrow andvehicle$ because of the large rotations and the appearance/deange of
objects.

Although other algorithms exhibit strengths accordinghe goals for which they
were designed, they perform less favorably on our sequer@esexample, the technique
of Jojic and Frey $3] requires a static background, so it is unable to propertymsnt
these sequences in which the camera moves considerablyhartidimit of the Smith et
al. algorithm P5] to a maximum of three regions would also prevent its obteyjra proper
segmentation. Similarly, Cremers and Soa#dj detect up to four synthetic regions using

the intersection of two contours, an approach that is ulyliikegeneralize to the complexity
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of sequences containing multiple independently movingciisj Moreover, their approach
handles just two image frames and requires the contours ftoitieized, which is not
possible in the context of on-line automatic segmentatibhve video. Similarly, the
approach of Xiao and Shath13 computes accurate dense motion layers, but it detects the
number of layers initially and keeps this number constamitphout the sequence. Finally,
Rothganger et al.84] group sparse feature points by processing a small blocknafje

frames in batch.

4.5 Summary

This chapter has described a motion segmentation algotitlatnclusters sparse
feature point trajectories using a spatially constrainextune model and a greedy EM
algorithm. The algorithm detects a relatively large numiieobjects and automatically
determines the number of objects in the scene along withith@iion parameters. It adap-
tively updates the reference frame by distinguishing betweultiple motions within a
group and an obsolete reference frame. The algorithm ggeenmareal time and accurately
segments challenging sequences. In this chapter, it wasnassthat the regions in the
image sequences undergo affine motion. Next chapter detldesrning and the use of a

more complex model for articulated human motion for seguiént and pose estimation.
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Chapter 5

Motion Models of Articulated Bodies

The algorithm presented in the previous chapter assumes afibtion for cluster-
ing features. While the assumption of affine motion of regioray hold for a large number
of situations, it is not sufficient to capture the rich divgref motions encountered in nat-
ural scenes. One common non-affine motion is articulatedamummtion. If motion model
of a walking human were available, it could be plugged intortiotion segmentation algo-
rithm presented in the previous chapter to yield even bedgarlts. This chapter describes a
motion based approach for learning the articulated humammmodels for multiple pose
and view angles. These models are then used to perform séginarand pose estimation
in sequences captured by still or moving camera that inveiaing human targets with
varying view angles, scale, and lighting conditions. Irstwork, we treat the learning and

segmentation of the articulated motion as one module intbeatl segmentation problem.

5.1 Motivation for Articulated Human Motion Analysis

Detection of articulated human motion finds applicationa large number of ar-

eas such as pedestrian detection for surveillance, orctsafety, gait/pose recognition for
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human computer interaction, videoconferencing, compagitaphics, or for medical pur-
poses. Johansson’s pioneering work on moving light disp(8LDs) [52] has enabled
researchers to study the mechanism and development of huisumh system with a differ-
ent perspective by decoupling the motion information frdhother modalities of vision
such as color and texture. One compelling conclusion thrabeadrawn from these studies
is that motion alone captures a wealth of information abbetscene and can lead toward
successful detection of articulated motion.

Figure5.1shows some examples of humans walking as seen from multiglesa
along with their motion trajectories. Even though the appeee features (shape, color,
texture) can be discriminative for detection of humans enxgaquence, the motion vectors
corresponding to the point features themselves can be osget¢ct humans. Motion of
these points become even more compelling when viewed iremyas human visual system
fuses the information temporally to segment human motiomfthe rest of the scene. It
is common knowledge that in spite of having a separate mog@ach body part moves in a
particular pattern. Our goal is to exploit the motion prdjesrof the sparse points attached
to a human body in a top-down approach for human motion aisalygore specifically,
our attempt is to answer the question: If provided only whig tnotion tracks (sparse point
trajectories) and no appearance information, how well caalgorithm detect, track, and
estimate the pose of the human(s) in the videos?

Even while considering only a restricted set of action catieg such as walking
alone, human motion analysis can still be a challenging lproldue to various factors
such as pose, scale, viewpoint, and scene illuminatiomtans. A purely motion based
approach can overcome some of the problems associatedheitppearance based ap-
proaches. Daubney et aR§] describe the use of motion information alone in a bottom-up
manner for inferring correct human pose. While effectivenany circumstances, use of

motion introduces some of its own challenges. It is mostlg tumultiple simultaneous
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Figure 5.1: Various examples of human motion such as walgargendicular, along the
camera axis and at an angleoA ROW Input images.BOTTOM ROW. Motion vectors
corresponding to the tracked feature points.

motions and self occlusions of the body parts during the omotif the target, making it
difficult to establish long term trajectories of the varidnggly parts.

In this chapter, we focus on a top-down approach, whereadsté learning the
motion of individual joints and limbs, we learn the shontatemotion pattern of the entire
body in multiple pose and viewpoint configurations. Poseredton can then be performed
by a direct comparison of the learned motion patterns tcetleagracted from the candidate
locations. The advantage of using such a top-down appr&atiat it greatly simplifies
the learning step. At the same time, the learned motion npattean be reliably used to
estimate the pose and the viewpoint in the presence of Nd&@eg only the sparse motion
trajectories and a single gait cycle of 3D motion capture ghtints of a walking person
for training, we demonstrate detection and pose estimafiarticulated motion on various
sequences that involve viewpoint, scale, and illuminatamations and camera motion.

Previous work related to human motion detection and arsbg be loosely classi-

fied into three categories: pedestrian detection for slianee, pose estimation, and action
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recognition. The nature of algorithms dealing with the eént categories varies signifi-
cantly due to the differences in the input image sequencpgrdaches dealing with pedes-
trian detection for surveillance treat the problem as afgreze-based object detection fol-
lowed by the tracking of the detected targets, which is peréa by considering them as
blobs or image patches. For examplE)4, 79| learn the appearance of the humans using
texture to perform pedestrian detection. Pedestrian tieteftom a mobile platform using
both appearance and stereo vision is describedd Detection of individual human body
parts separately and then combining the results to detdeispéans has been discussed in
[111]]. Detection of human activities in IR videos is presentefllibd. Periodic motion of
silhouettes is used for pedestrian detection and trackifig.

Another direction of research has been human pose estmiaiiavhich the hu-
man motion is captured in greater detail as compared to petesdetection. Contrary to
the pedestrian detection approaches, motion of the sgbgacinot be viewed as a single
moving blob. Instead, they are composed of disparate mofionultiple body parts. Pose
estimation based on fitting human body model to the subjexcbkan a popular approach
over the past decad#,[93, 100, 82]. Other notable approaches include graph based unsu-
pervised pose estimatiof§)], detection of multiple body parts and their combination by
belief propagation to estimate the 3D po6é|[ and use of spatio-temporal features in a
Hidden Markov Model (HMM) framework18, 63]. A purely motion based approach is
described in28], where low level sparse feature trajectories are learoexzstimate pose.
A motion exemplar based algorithm for comparing sequentesages with the training
sequences for pose estimation is describe@7h [Use of residual optical flow field for un-
supervised detection of cyclic non-rigid human motion isaitbed in p7]. The approach
described in36] learns the 2D motion models from the 3D training data and tisem in
a Bayesian framework for detection and tracking of artimdanotion.

Human action recognition is an area of research that iseelt the pose detec-
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Figure 5.2: Overview of the proposed approach to extractdarumotion models.

tion problem. In this case, the objective is to classify tkéedted human motion in one
of several predefined categories. Evidently, the appr@adbaling with this problem are
heavily dependent on the training data used for learningttien categories. Commonly
used cues for action recognition include spatio-tempeatiires 34|, spatio-temporal fea-
tures along with shape and color featurés]] motion trajectories in a multi-view geometry
framework [L16], sequential ordering of spatio-temporal featurgg,[and motion history

descriptors12] among others.

5.2 Learning Models for Multiple Poses and Viewpoints

An overview of the proposed approach is shown in FighuZz Given an image
sequence our goal is to segment, track, and determine tHgya@tion of the walking
human subject (pose and viewpoint) using only the spars@émueéctors corresponding
to the feature points in the sequence. This chapter follesvewn notation and all the
guantities used are defined for this particular chapter. pidiet features are detected and

tracked using the Lucas-Kanade algorithm. Since there igrafisant amount of self
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occlusion, many point features representing the targetoste Therefore, we use only
short term feature trajectories (between two consecutarads). Lel; = <v§t), - ,v}(f)>
be the velocities of th& feature points at framg t = 1,..., T, whereT is the total
number of frames. For convenience, assume that tesacked features describe the
target. Configuration of the subject in the current frameeisaled byc, = (m, ny), where
m, and n; are the pose and view at the timeespectively. Even if the viewpoint is
unknown, we assume that it stays the same throughout thesegu The configuration
in the current frame is dependent not only on the motion wedtothe current frame but
also on the configuration at the previous time instants. [eberchiningc;, the Bayesian

formulation of the problem is given by

P(ct | Vi, Coit—1) o< P(Vy | &, Coi—1)P(Ct | Coit—1), (5.1)

whereP(V; | ¢, Cot—1) is the likelihood of observing the particular set of moticectors
given the configuration at timeandt — 1 andP(c; | Cot_1) is the prior for time instant
that depends on the configurations at the previous instarfdese. Assuming a Markov

processes, we can write the above equation as

P(ct | Vi, Coit—1) o< P(Vt | €, G—1)P(Ct | Ci—1). (5.2)

The estimate of the configuration at a titrie ¢/, and our goal is to estimate configurations
over the entire sequencé,= (c,...,cs). The likelihood,P(V; | ¢,ci_1), is obtained
from the training data and is described in next section whideconfiguration is estimated
using the Hidden Markov Model (HMM) described in Sect®:3. Learning the motion
patterns of the multiple pose and viewpoints involves firsiparing the raw training data

and obtaining a set of motion descriptors that describe pash in each viewpoint.
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o

5.2.1 Training Data

For training, we use the CMU Motion Capture (mocap) d&tat has human sub-
jects performing various actions. This work is restrictedlydo the sequences where the
subject is walking. In a typical motion capture sequencagusultiple cameras, the 3D
locations of the markers associated with the joints and dimte acquired for the entire
sequence containing multiple gait phases. The sequenceppex in parts such that one
part consists of an entire sequence of gait phases. Thenetdt8D points (marker loca-
tions) are projected onto multiple planes at various angléise subject in each phase and
corresponding motion vectors are obtained. Such a mudtirwiaining approach was also
adopted in 86]. The advantage of using the 3D sequence is that a singlesegyrovides
a large amount of training data.

All possible views and gait phases are quantized to some fininber of viewpoint

and pose configurations. LBt be the number of quantized poses &hte the number of

Ihttp://mocap.cs.cmu.edu
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views. Letq!) = (qy,qy,0,)", i = 1,...,1 be the 3D point locations obtained from the
mocap data for thet" phase. Then the projection of tH&3D point on planes correspond-
ing to n view angles is given bp) = 7,q{). Herep{) is the 2D point corresponding to
the phasen and the viewn, and the transformation matrix for tm¥ view angle is given
by 7, = PyR,, whereP, is the 2D projection matriX2 x 3) andR, is the 3D rotation
matrix (3 x 3) along thez axis. We limit our view variations irx andy directions. Let
Pan = <p§m”), o p,(m”)> be the tuple of points representing the human figure in phase
and viewn andVy,, = <v§m”), . ,vl(m”)> be their corresponding motion vectors. Note that
V denotes motion vectors obtained from the training dataewitepresents the motion
vectors obtained from the test sequences. FiguBeshows the multiple views and pose

configurations obtained from the 3D marker data. In this wask use 8 viewpoints and 8

pose configurations per view.

5.2.2 Motion Descriptor

The training data obtained in terms of sparse motion veatarsiot be directly
used for comparison. Often, some kind of dimensionalityuotidn technique is used to
represent the variation in the pose or angle. PCA is a comedmique that has been
used in the past3p]. We choose to represent the motion vectors correspondirgcth
pose and view using a descriptor centered on the mean bodjopdbat encodes spatial
relationships of low level motion (local or frame-to-frameotion) of various joints and
limbs. The descriptor is designed in such a way that it slgg@® noisy motion vectors
and outliers. Noise is not a factor in training data but isspre in a significant amount
when dealing with real world image sequences. The basidreagants behind the motion
descriptor is that it should enable discrimination of hunaga non-human motion and

at the same time also discriminate between multiple posdsveawpoints. The upper
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body tends to exhibit a consistent motion while the lowenbwdy have multiple motions
associated with it. We weight the motion vectors with 9 sgibtiseparated Gaussians with
different orientations and generate an 18 dimensionabveciresponding to the weighted
magnitude and orientation of the motion vectors. Dependpan the pose and the strength
of the motion vectors, different bins will have differentwes.

Given the training dateéPy,, andVn,,, the motion descriptor for pose and viewn

is denoted by/mn. Thej™ bin of the motion descriptor is given by

Ynni) = D VRGPl 1y (1) o, (1)) (5.3)

i=1

whereG() is a 2D oriented Gaussian:

o 1 (P — 1))
G(pgn)nv uxy(])v U)%y(])) = Wexp{ - 20_3}/(]-); } ) (5-4)

with /1,,(j) and oy,(J) being the mean and the variances that are precomputed Viéth re
ence to the body center. Figused shows the Gaussian weight maps and a representative
diagram of ellipses approximating the Gaussian functidoigul on the profile view of the
human subject. Figurg.5 shows the discriminative ability of the motion descriptdhe

left image shows the difference of a descriptor from thentrey data with all the other de-
scriptors. The diagonal elements have zero value and ttendis between two descriptors

is less if they belong to adjacent pose or viewpoints. Thedigm the right shows the plots

of the descriptor bin values for two cases: 3 different vieimfs but the same pose, and 3
different poses but the same viewpoint. It can be seen tkdirgt few bins have more or
less the same values as they represent the upper body bastliew bins representing the

lower body show a large degree of variation amongst theraselv
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5.3 Pose and Viewpoint Estimation

Hidden Markov Models (HMMs) are well suited for pose estiimatover time.
HMMs are statistical models consisting of a finite numbertates which are not directly
observable (hidden) and follow a Markov chain, i.e., thelitkkood of the occurrence of
a state at the next instant of time depends only on the custaté and not on any of the
states occurring at the previous instants of time. Evenghahe states themselves are not
visible, some quantities may be known (or computed) suchagiobability of observing
a variable given the occurrence of a particular state (knasvime observation probability),
the probability of transitioning from one state to anothbie(state transition probability)
and the probability of being in a state at the beginning (therp Once such a model
is defined, using a series of observations, we can address agbthe key problems such
as computing the probability of obtaining a particular s&tpe of observations (analysis
or evaluation problem), estimation of the state sequencgdnoerating a given sequence
of observations, or estimation of the parameters of the HMihesis problem). Since
human gait varies over time only in a particular fashionait e assumed to be a Markov
process, i.e., pose at the next instant of time will condaity depend on the pose at the
current instant of time. Since the actual pose is unknowsenlation probabilities can be
computed from the image data using motion of the limbs. Tagdtansition probabilities
and the priors can be defined based on any pre-existing aismspegarding the nature
of the test sequences. The goal is to determine the hiddensgquence (pose estimates)
based on a series of observations obtained from the image dat

Let A = (A B, ) be the HMM, whereA is the state transition probabilit is
the observational probability, andis the prior. Being consistent with our notation from
Section5.2 let the configuratiom, represent the hidden state of the model at tinaad let

O, be the observation at timet = 1,..., T. There is a finite number of states, hemges
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assigned values from a finite set of numbe&tfs= {(1,1),...,(M,N)} corresponding to
each pose and view angle. The state transition probalBlayiij) = P(c.; =j | ¢ =),

i,] € S, i.e., the probability of being in stajeat timet + 1 given the current state being
i. Observation probability is given bB(j,t) = P(O; | ¢ = j) i.e., observingd; at time

t given the current state js Given the HMM A = (A B, ), and series of observations
O = {0Oy,...,0r}, our goal is to find the sequence of stafes- {c,, ..., cr} such that
the joint probability of the observation sequence and theessequence given the model
P(O,C | \) is maximized. The probability of the configuratienis given by equation
(5.2. While the state transition probability is predefined, timservation probability is
computed based on the closeness of the observed data tathécsinfigurations from the
training data). IfV, — Vi refers to the motion vectors of tié" pose andh™ view of the
training data,V; represents the observed motion vectors at tijrend the corresponding
motion descriptors are given by, and respectively, then the observation probability
can be computed from the normalized Euclidean distancedstw,,, and«y. The state
transition probabilities are set such that a state canitramso the next state or remain the
same at the next time instant. The optimum state sequéricethe HMM can now be

computed using the Viterbi algorithm.

5.4 Experimental Results

We present results of our approach on a variety of sequericgalking humans
under multiple pose, viewpoint, scale, and illuminationatons. Segmentation of articu-
lated bodies is performed by applying the motion descrifst@ach pixel at multiple scales
in the detection area, and a strength map is generated. Téetida area is determined by
the scale of the descriptor. In this work we use 3 differealesc of humans. The maxi-

mum of the strength map gives a probable location and scaledhrget. Unique nature
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of the human motion as compared to the various other motiocgsept in an outdoor or
indoor sequences helps in segmentation. Figuéeshows human detection based only
on motion. This serves an an initial estimate of the positind the scale of the target.
Point features are then tracked through the sequence aed bashe tracked points at-
tached to the segmented target, the location and the scafeleged. The entire process
is completely automatic. Figu®7 shows the segmentation of the person walking in the
statue sequence. Note the improvement with respect to thiemsegmentation algorithm

in chapter4, where the person is lost in many frames because the affinemmabdel is a
poor fit for describing such a complex motion.

Figure5.9shows the pose estimation results for sequences captamdtie right
profile and the angular profile views. Each sequence coverntire gait cycle. The
stick figure models correspond to the nearest configurationd in the training data. The
biggest challenge is to deal with noisy data. Point feattaeks are not very accurate in
noisy sequences and a large number of point features balpngithe background may
cause errors in the pose estimation. The sequences withrisuvadking toward or away
from the camera are especially challenging since the matidine target is small as com-
pared to other cases. In addition, if there is a small amoflicamera motion, such as in
the sequence shown in the columns 1 and 2 row of Fi§utg then a small number of
outliers in the background can cause significant errorsarptise estimate. The real utility
of a purely motion based approach can be seen in the nigbtsiaguence in the columns 3
and 4 of Figurés.10Q where a person walks wearing a special body suit fitted \eflbctors
that glows at night. This suit is used by psychologists tagtine effectiveness of reflec-
tors for pedestrian safety by exploiting the hardwired kition capabilities of the human
visual system of automobile drivers. Even without any apgeee information, the motion
vectors are relatively straightforward to obtain in sudaions and are highly effective

within the current framework for estimating the pose. FefuB shows the estimated knee

107



Figure 5.6: Articulated motion detection for various vievins (left to right) right profile,
left profile, angular and front.

Figure 5.7: Articulated motion segmentation results foif 4he 100 frames of the statue
sequence where the pedestrian walks in front of the statue.

angles at every frame along with the ground truth (manuabyked) on the right profile

view sequence.
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Figure 5.8: Plot of estimated and ground truth knee anglethéright profile view.
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Figure 5.9: Input images and the corresponding pose estimatsults for the right
(columns 1 and 2) and the angular profile views(columns 3 and 4
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Figure 5.10: Input images and the corresponding pose estimra&sults for the front view
(columns 1 and 2) and the right profile view for the night-tiseguence (columns 3 and 4).
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5.5 Summary

In an attempt to learn complex motion models for segmemtatius chapter de-
scribes an approach for segmentation, tracking, and pdiseati®n of articulated human
motion that is invariant of scale and viewpoint. The moti@pttre data in 3D helps in
learning the various pose and viewpoint configurations. ®ehmotion descriptor is pro-
posed that encodes the spatial interactions of the motiotorgecorresponding to the dif-
ferent parts of the body. The segmentation, tracking and pssmation results are shown
for various challenging indoor and outdoor sequences unglwalking human subjects.
Integration of the human motion model into the motion segwt@m algorithm presented
in the previous chapter is left for future work. In the nexapter, we revisit the problem
of image segmentation in the context of a specific applicatiamely, iris image segmen-

tation.
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Chapter 6

Iris Image Segmentation

In the previous chapters we have focused primarily uporouaraspects of motion
segmentation using mixture models. As demonstrated in €hapmixture models can
also be used for segmentation of a single image. In this enhape revisit the image seg-
mentation problem but focus our efforts on a specific appboanamely, segmentation of
iris images. An image of an eye presents a unique challengspite of a large amount
of a priori information being available in terms of the numbésegments (four segments:
eyelash, iris, pupil and background) as well as the shapé¢hemexpected intensity distri-
bution of the segments, it still is a challenging problem tlueut-of-plane iris rotation,
extensive iris occlusion by eyelashes and eyelids, andwsiilumination effects. What
is essentially required is algorithm for labeling the imageels, and for the reasons that
will be explained momentarily, we use graph cuts algoritemthis purpose. The fol-
lowing sections describe the importance of iris segmeatexture and intensity based
segmentation using graph cuts, and refining of the segménde@gion using iris shape
information. Experimental results are demonstrated orideal iris images that suffer

from occlusions, illumination effects and in and out-o&ipé rotations.
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6.1 Motivation for Iris Segmentation

Automated person identification and verification systensgetan human biomet-
rics are becoming increasingly popular and have found waaging applications in de-
fense, public and private sectors. Over the years, a larggauof biometrics haven been
explored such as fingerprints, hand geometry, palm priat®,firis, retina, voice among
others. Even though iris has emerged as a potent biometpefson identification and ver-
ification systems in the past few years, many of these addasystems are still grappling
with issues such as acquisition of good iris images and fireprocessing to improve the
accuracy of the overall system. This paper presents an agiprfor preprocessing the iris
images to remove eyelashes, eyebrows and specular rafleetia accurately localizing
the iris regions.

Much of the popularity of the iris recognition systems stdore three broad rea-
sons. First, iris is almost an ideal biometric i.e., it isligunique for an individual and
stable over one’s lifetime. Second, it is easily distingaisle, and fast and highly accurate
algorithms exist to perform the matchin@9). Third, since iris is an internal organ it is
difficult to spoof. Also the iris recognition systems can iagk high false rejection rates
which means they are very secure. Having said this, irisgieition systems are not totally
devoid of errors. A typical iris recognition system consist a sensor to acquire the iris
image, a preprocessing step and iris encoding and matchkgogtam. Each stage may
contribute to the overall recognition errors but as poirdetearlier, the iris recognition al-
gorithms themselves are highly accurate. This means, a tarmber of recognition errors
are due to noisy iris images and errors in preprocessing.st&pme of the factors which
make preprocessing step critical to the success of an segraetion algorithm are occlu-
sion of iris due to eyelashes and eyebrows, specular reffes;tblurring, pupil dilation and

other iris artifacts. A large number of iris recognition apgches rely odeal iris images
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Figure 6.1: An ideal iris image (left), and iris images of wiag quality (right three
columns), containing out of plane rotation, illuminatidfeets, and occlusion.
for successful recognition, i.e., low noise iris images ek the person is looking straight
at the camera. Their performance degrades if the iris uodsrtarge occlusion, illumina-
tion change, or out-of-plane rotation. Iris recognitiongssuchnon-ideal iris imagess
still a challenging problem. Figut& 1 shows an ideal and several non-ideal iris images.
Iris segmentation is an important part of the larger reciogmiproblem, because
only once the iris has been localized can the unique sigadterextracted. In previous
work, geometric approaches have been common. For examgiés pioneering work on
iris recognition, Daugmarp, 30] fits a circle to the iris and parabolic curves above and
below the iris to account for eyelids and eyelashes. Siigjlgeometric cues such as pupil
location or eyelid location have been used for iris localma[39], while stretching and
contraction properties of the pupil and iris have also bessd48]. Another important
approach has been to detect the eyelashes in order to de¢grmiocclusion. To this end,
Ma et al. [72] use Fourier transforms to determine whether the iris isidp@iccluded by
the eyelashes; the unique spectrum associated with egslasé used to reject images in
which significant iris occlusion occurs. Other approaclegyelash segmentation involve
the use of image intensity differences between the eyelaghre regions 1, 56|, gray
level co-occurrence matriced][ and the use of multiple eyelash modeld4]. These
attempts at iris segmentation are limited to ideal iris isgggassuming that the shape of
the iris can be modeled as a circle. Such a simplifying assomfimits the range of

input images that can be successfully used for recogniByrrelying on geometry, these
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Figure 6.2: Overview of the proposed iris segmentation @g.

techniques are sensitive to noise in the image. Some moeatrapproaches to handle
non-ideal iris images rely upon active contour mod8H pr geodesic active contour83
for iris segmentation. Building upon this work, we proposethis paper an algorithm
for eyelash and iris segmentation that uses image inteimgaymation directly instead of
relying on intensity gradients.

While it is true that finite mixture models along with the EMgafithm can be
used for iris image segmentation based on the texture aedsity, we use graph cuts for
segmentation due to their various advantages over EM. Geatshare faster and more
efficient as compared to EM and they can produce spatiallyofmgegmentation. Since
the problem of segmentation is constrained in the caseimages as described before,
graph cuts are suitable for assigning the pixel labels. Adswe there is no requirement
for the real time performance we can afford the slightly leigbomputation cost of using
graph cuts as compared to the greedy EM algorithm.

An overview of our approach is presented in Fig8r2a The first step is a simple

preprocessing procedure applied to the input images tordtraspecular reflections which
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may cause errors in segmentation. In the second step weapetdature computation for
eyelash segmentation by measuring the amount of interasitgtions in the neighborhood
of a pixel and generating a probability map in which each lpx@ssigned a probability
of belonging to a highly textured region. This pixel probapimap is fed to an energy
minimization procedure that uses graph cuts to produce arypsegmentation of the im-
age separating the eyelash and non-eyelash pixels. A spoglprocessing step applies
morphological operations to refine the eyelash segmenteggults. The next step is to seg-
ment the non-eyelash pixels into remaining three categdniis, pupil, and background)
based on grayscale intensity. The expected values of thasses are obtained via his-
togramming. The iris refinement step involves fitting ekip$o the segmented iris regions
for parameter estimation. The final step is to combine tise@gion mask and the specular
reflection mask to output usable iris regions. These stepsl@scribed in more detail in

the following sections.

6.2 Segmentation of Eyelashes

Specular reflections are a major cause of errors in iris r@tiog systems because
of the fact that the affected iris pixels cannot be used foogaition . In this case, these
bright spots (see Figur@.3) are a cause of segmentation error as high texture values are
assigned to the pixels surrounding these points which angrimsegmented as eyelashes.
We adopt a straightforward preprocessing procedure to vertioe specular reflections
from the input iris images. LéR be the raw input image. The output of this preprocessing
step is the preprocessed iris imadgwith the reflections removed and a binary magk
corresponding to the pixels removed frdtn We maintain a list of all the pixel locations
in the input image with grayscale intensity higher that asptéhreshold value along with

their immediate neighbors. The values of the pixel locatimrthe list are set to zero, i.e.,
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Figure 6.3: Removing specular reflection in iris imagesFL Input image. RGHT:
Preprocessed image with specular reflections removed.

these pixels are unpainted. The list is sorted accordingamtmber of painted neighbors
each pixel has. Starting from the first element in the lisgygcale values are linearly
interpolated until all the unpainted pixels are assignedlal\gray value. Results of the
specular reflection removal algorithm are shown in Figu® It should be noted that the
paintedpixels obtained by the above algorithm cannot be used ®ragcognition and are

discarded or masked while constructing the iris signatures

6.2.1 Texture Computation

Letl be animage witiN pixels, and let, andl, denote the derivatives of the image
in thex andy directions, respectively. For each image pixgiexture is computed using the
gradient covariance matrix, which captures the intenstyation in the different directions

[92:

Gn)= > , (6.1)

e | L(n)ly(n') — 15(n')
whereNg(n) is the local neighborhood around the pixel. If both the eigdues ofG(n)
are large, then the pixel has large intensity variations in orthogonal directionshisT

is usually known as a point feature and is indicative of a haghount of texture in its
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immediate neighborhood. Letting ande, be the two eigenvalues @(n), we detect
points for whichh(n) = min{e;,e,} > &, wheree; is a threshold. The valule(n) is
indicative of the quality of the feature. Depending upon\hakie ofs;, we can adjust the
quality and hence the number of such points detected in aagem

Let f; be thei™ point feature detected in the image with corresponding kateig
h(f) > &,1 = 1,...,M. HereM < N, i.e., the number of point features detected is
much less than the number of image pixels. We need a densehaiagssigns a proba-
bility value to each pixel in the input image. To accompliblsf we compute an oriented
histogram of point features weighted by their values in doreground a pixel in an image.
This spatial histogram is defined by two concentric circlesdii r, andr, centered around
a pixeln. The inner and outer circular regions are represented tgndH,, respectively.
These regions are divided int6 bins, each spannin@60/K) degrees and carrying an
equal weight ofu,. The bin values of this 2D oriented histogram are furthertiphigd by
the weights associated with the circular region of whicls iaipart, i.e., bins in the inner
circle are weighted by, while the outer ones are weighteddy,. The feature point score

at a pixeln is obtained from the normalized sum of all the bins at a point:

K
Pf(n):lzwb{ Y wnh(f)+ Y wmh(f)}, (6.2)
K= feHn(k)

feﬁn(k)

whereH, (k) andH,(k) are the set of features contributing to ti®bins of the two his-
tograms.

The feature point score alone cannot give a substantiveureea$ texture in an
image because the feature points represent locations whage intensity changes occur
in both x andy directions. To effectively compute the texture around anfjaoive have
to account for all the neighboring points with gradient aipesin a single direction. To

address this problem, we sum the gradient magnitudes indighimorhood of a pixel in a

118



manner similar to the one described above in the case of gritimfeature point score in

Equation 6.2). The score due to gradients is given by

K
Py = >oent Y wigl)+ Y wngl) g 63)
k=1 JER(K) JER(K)

where

is the gradient magnitude sum in tfi&pixel in a histogram, an® (k) andR (k) are the
image regions specified by thk# bins of the two histograms.

The total score for a pixel is the sum of the feature pointesaord the gradient
score:

P(n) = Pr(n) + Py(n). (6.4)

We compute the total score for each pixel and normalize thesgao obtain a probability
map that assigns the probability of each pixel having higtiute in its neighborhood.
Figure6.4shows the various texture measures and the texture prapabdp obtained for

an iris image.

6.2.2 Image Bipartitioning using Graph Cuts

Once the texture probability map is obtained for an inputgeat is desirable that
the segmentation produces smooth regions as an outputpfidbtem can be considered
as a binary labeling problem. Our goal is to assign a label {0, 1} to each pixel in the
image based on the probability m@p Letvy : x — | be a function that maps an image

pixel x to a labell. If Dy(l,) represents the energy associated with assigning labethe
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Figure 6.4: Eyelash segmentation detailsFT: Steps involved in the texture computation.
RIGHT: Binary graph cuts on an image. For clarity, only a few nodes @orresponding
links are shown. Thicker links denote greater affinity betwéhe corresponding nodes or
terminals (i.e.f-links between terminals and nodes amnlinks between two nodes).

n'" pixel, then the energy term to be minimized is given by

E(v) = Es(v) + AEp(¥), (6.5)
where
ES(?»[}) = Z Sh,m(lna |m) (66)
n=1 meNs(n)
N
Eo(¥) = > Da(ln). (6.7)



In these equation€s(v) is the smoothness energy term that enforces spatial caytinu
in the regions, N is the number of pixels in the imagé&/s(n) is the neighborhood of the
n'" pixel, and)\ is the regularization parameter. The data penalty ternivetbfrom P, is
given by:

Dn(In) = exp{p(ln — P(n))},

1 ifly=1
p= - :

The smoothness term is given by:

where

Sna(lm, In) = [1 — 6(m. n)] exp{— |1 (m) — 1 (m)[|*},

whered(m, n) = 1 whenm = n, or 0 otherwise.l (m) andl (n) are image intensities oh"
andn™ pixels, respectively.

The energy term in Equatio® ) is minimized by a graph cut algorithmi§]. The
image can be considered as a weighted g@ph, £), where the vertice¥ are the pixels,
and the edges§ are the links between neighboring pixels. For a binary g@aghproblem,
two additional nodes known as source and sink terminals @dedato the graph. The
terminals correspond to the labels being assigned to thes)aé., pixels of the image. In
this case, the source terminal corresponds to the highrteldbel, while the sink terminal
is associated with the low-texture label. A cluts a set of edges that separates the source
and sink terminals such that no subsets of the edges thessssparate the two terminals.
The sum of the weights of the edges in the cut is the capacityeofut. The goal is to find
the minimum cut, i.e., the cut for which the sum of the edgeghvts in the cut is minimum.

Figure6.4is a representative diagram showing the process of pauitigathe input image.
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Figure 6.5: Iris segmentation detailsof: Grayscale histogram of a typical iris image and
a smoothed version on the right with peak detectio@TBomMm: Iris image for which the
histogram is computed and the corresponding segmentation.

6.3 Iris Segmentation

Iris segmentation is based upon the same energy minimizapproach described
in the previous section, except that it involves more tham labels. In fact, for a typical
image, four labels are considered: eyelash, pupil, irid,l@ackground (i.e., the rest of the
eye). Since the eyelash segmentation already providesthswinary labeling that sepa-
rates the eyelash pixels, our problem is reduced to thatsijrisg labels to the remaining
pixels in the image. Although this is an NP-hard problem gibleition provided by the-(
swapgraph-cut algorithm17] is in practice a close approximation to the global minimum.
The algorithm works by initially assigning random labelghe pixels. Then for all pos-
sible pairs of labels, the pixels assigned to those labelabowed to swap their label in
order to minimize the energy of Equatio.f). The new labeling is retained only if the

energy is minimized, and this procedure is repeated urgibtrerall energy is not further
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minimized. Convergence is usually obtained in a few (abeut) 3terations. Grayscale
intensities of the pixels are used to compute the data ertergyof Equation§.7). Fig-
ure 6.5 shows the grayscale histogram of a typical image of an eye thifee peaks in
the histogram correspond to the grayscale intensitieseptlpil, iris, and background.
The desired grayscale values for the pupil, iris, and bamkagpl regions are obtained via a
simple histogram peak detecting algorithm, where we asshatehe first local maximum
corresponds to the pupil region, the second to the iris, amahs Figure6.5 shows the iris
segmentation obtained using this approach.

The quality of iris segmentation depends on the nature ointlage and is highly
susceptible to noise and illumination effects in the inpu&ges. To overcome these prob-
lems, we use a priori information regarding the eye geonfetryefining the segmentation
of the iris region. Specifically, we assume the iris can be@gmated by an ellipse cen-
tered on the pupil and aligned with the image axes. Even gdl@ssumptions are not valid
for some images, they serve as a good starting point for astigithe iris region. The pre-
vious segmentation step provides us with a location of thml panter. In our experiments,
we observed that the pupil is accurately segmented in alalbsases even if the overall
image quality is poor. However, in certain cases, other daglons are mistakenly labeled
as pupil. These mistakes are easily corrected by enforcmgxamum eccentricity on the
dark region to distinguish the true pupil from these didtragrpixels.

In order to find the best fitting ellipse to the segmented &gan, points near the
iris boundary must be reliably located considering the ibagges that the segmented iris
region may not have a elliptical shape, and that the iris mapdrluded partly by the
eyelashes (on the top or bottom or both). In other words, éwea know the approximate
location of the center of the iris (i.e., the pupil centet3, exact extent in both theand
y directions cannot be naively ascertained using the seguéns regions. For a reliable

initial estimate of iris boundary points, we extend raysrirtie pupil center in all directions
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(360°) with one degree increments and find those locations wherkrths transition from
an iris region to the background region (see Fighi&. Because all these lines extending
out from a center point may not lead to an iris boundary panty a subset of the 360
points is obtained. To increase the number of points (andéhercrease the reliability of
the ellipse fitting procedure), we utilize the inherent syatiy of the iris region. For each
ellipse point, a new point is generated about the verticalragtry line passing through
the center of the iris, if a point does not already exist fat tirection. In addition, points
whose distance from the pupil center exceeds 1.5 times thandie of the closest point to
the pupil center are rejected. This yields a substantialfggbints to which an ellipse is fit
using the least squares method proposed by Fitzgibbon BtGhl Figure 6.6 summarizes

this process and shows the results of our ellipse fittingrélya.

6.4 Experimental Results

We tested our approach on various non-ideal iris imagesioaghusing a near in-
frared camera. Figuré.7 shows the results of our approach on some sample images ob-
tained from the West Virginia University (WVU) Non-Idealdrdatabase,2p] (a sample
of images can be found onlife It can be seen that each step in our approach aids the
next one. For example, eyelash segmentation helps in gimeetation by removing the
eyelashes which may cause errors in iris segmentation. fforpeeyelash segmentation
we used 8-bin histograms for computing feature points aadignt score$K = 8). The
bin weight,wy, is set at 0.125 whiley, = 1, w,, = 0.75, ands; = 50. It can be seen that
despite using a simple texture measure, the algorithm éstalziccurately segment regions.
The iris segmentation step, in turn, helps the iris refinerstp, and the preprocessing step

to remove specular reflections is also helpful in iris segiaigan and building a mask of

L http://lwww.csee.wvu.edu/"xinl/demo/nonideal _iris.html
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Figure 6.6: Refining the iris segmentatioroP LEFT. Iris segmentation image with pupil
center overlaid (green dot). The lines originating fromahater point ir860° of the center
point intersect with the iris boundary at points shown in.rédr clarity only a subset of
lines and corresponding points are showap RIGHT. Potential iris boundary points. Due
to erroneous segmentation, the full set of points is notinbthBOTTOM LEFT: Increasing
the iris boundary points using the pupil center and the iaiesymmetry in the iris regions.
BOTTOM RIGHT: Ellipse fitting to the potential iris boundary points leadsan erroneous
result (red ellipse), while fitting to the increased bouydasints leads to the correct result
(yellow ellipse).

usable iris regions.

To quantitatively evaluate our results we compared outaialization results with
direct ground truth. We used 60 iris images (40 with outdafae rotation) from the WVU
Non-ldeal Iris image database for iris localization andfieation. We manually marked
the iris regions in the input images and obtained the grownt parameters such as the
location of the center of the iris and tkeandy radius values. We also obtained a mask of

the usable iris regions (without specular reflections) ftomoriginal image. The parame-

ters of our estimated iris region were compared with grouutthtin terms of the iris center
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Figure 6.7: Experimental results of the proposed approachsample of iris images from
the WVU Non-Ideal Iris image database.

Iris Parameter Average Error| Standard Deviation
(in pixels) (in pixels)
Center (x) 1.9 2.2
Center (y) 2.7 2.5
Radius (x) 3.4 5.2
Radius (y) 3.9 4.0
| Pixel labels | 59% | 7.2% |

Table 6.1: Comparison of estimated iris region parametétls thve ground truth data for
60 images from the WVU Non-ldeal Iris database.

location,x andy radius, and the number of pixels in agreement with the ibgllaTable
6.1 shows that the average error in the estimation of iris regemameters as compared to

the ground truth is small, indicating accurate segmemitatial localization.
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6.5 Summary

This chapter describes an image segmentation applicdtadrdeals with iris im-
ages. An approach to segment non-ideal iris images suffénam iris occlusions, out-of-
plane rotations, and illumination effects is presented theiputs for regions: iris, pupil,
background and eyelashes based on grayscale intensityoansectexture. Graph cuts
based energy minimization procedure is used for obtairtiedabeling. The iris shape is

used for further refinement of the segmented iris regions.
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Chapter 7

Conclusion

Motion segmentation plays an important role in the procdssutomated scene
understanding. The ability to perform motion segmentagdey for the success of a large
number of computer vision tasks. Various challenges fomssding natural scenes using
motion are accurate estimation of image motion, use of gg@t® models for describing
the observed motion, assigning labels to the data in theepoesof noise, and handling
long image sequences with an arbitrary number of movingregundergoing occlusions,

deformations, and so on.

7.1 Contributions

This thesis has addressed some of the above concerns regardiion segmenta-

tion using sparse point features. The main contributiorikisfthesis are listed below.

1. A motion segmentation algorithr8(Q] that is based on clustering of the point feature
trajectories in natural indoor and outdoor image sequenEesm the performance
point of view, the algorithm

e automatically determines the number of groups in the sexgjen
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e requires minimal initialization,
e Operates in real time, and

e handles long sequences with dynamic scenes involving ertigmtly moving

objects and a large amount of motion blur.
From an algorithmic stand point the novelties of the appnaaclude the following:

e a spatially constrained finite mixture model that enforqastially smooth la-

beling,

e a greedy EM algorithm that efficiently estimates the parametan incremen-

tal fashion, and

e procedures to maintain feature groups over time by addimgfeatures to the

existing groups, splitting the groups if necessary andragidew groups.

2. Use of SCFMM and greedy EM algorithm for segmentation ciges. The image
segmentation algorithm is able to work with minimal initzation and produces a
smooth labeling while automatically estimating the numiiiesegments, and mini-

mizing the labeling energy more efficiently as compared éoMAP-SVFMM.

3. Ajoint feature tracking algorithn®], which is an improvement over the conventional
feature tracking algorithms that track point features petelently. The idea is to
aggregate global information to improve the tracking ofrspdeature points. The
joint feature tracking algorithm outperforms the Lucasalde based feature trackers
when tracking features in areas of low texture, repetitdsditre, or tracking edges.
Moreover, motion segmentation results using the jointkirag are more visually
appealing as compared to those using traditional feataokitrg for certain texture

less scenes.
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4. An approach to learn articulated human motion models hei tise for segmenta-
tion and pose estimation of walking humans in various in@mar outdoor sequences.
Main features of the algorithm are the use of 3D motion capdiata for learning var-
ious pose and view angles of human walking action, a noveiamatescriptor that
accounts for the spatial interactions of various body ma@sithrough the gait cy-
cle, and a HMM based pose estimation approach. Performaiseg thie approach
is purely based on motion and is able to handle changes in aigles, scale, and
illumination conditions (day and night-time sequenced¥oAit can segment human
walking motion in sequences undergoing rapid camera montsn@otion blur with

dynamic background.
5. Aniris segmentation algorithm in non-ideal imag@#§] that

e uses graph cuts for texture and intensity based labelingage pixels,
e combines appearance and eye geometry for refining the ségtmoenand

e handles images with iris occlusion due to eyelashes, ihation effects, and

out-of -plane rotations.

7.2 Future Work

One way to improve the work presented in this thesis is togmatie the various
ideas like joint tracking of feature points, motion segna¢ion, and handling of variety of
complex motions observed in natural scenes. In joint featxacking, the smoothing of
motion displacements across motion discontinuities egeattifacts in the resulting flow
fields. To solve this problem, robust penalty functions @nsentation algorithm similar to
ours can be employed. While incorporation of motion segatért may lead to improve-

ment in joint tracking, motion segmentation itself may badféed due to better feature
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tracking. Moreover, a hierarchical representation of mogegmentation allows regions
of the image that move differently but share a common retatiip, such as articulated
objects, to be accurately modeled.

A natural application of the motion segmentation algoritisno serve as a front-
end for detecting dense object boundaries and motion discaties in live video, with the
boundaries refined using dense pixel motion, texture, siggradients, and/or color. On
the other end of the spectrum, non-textured regions, thessg@gmentation, and motion
discontinuities and contours, would yield a novel représtgon of a video. Enhancements
in feature tracking would further improve the segmentailgorithm to deal with non-rigid
objects, periodic motion, and occlusion.

Motion can be effectively utilized for biological motion alysis. Even though we
have restricted ourselves to walking action in this worle, tésults indicate that the artic-
ulated motion models could be extended to describe and memmgarious other actions.
Having said this, our intention is not to totally discoung timportance of appearance in-
formation but merely to explore an alternative directiomegearch. The future work also
involves exploring robust ways of articulated motion segtagon such as modeling the
background motion to deal with a dynamic background in a sbmanner, allowing the
subjects to change viewpoints as they are tracked, and oomglthe bottom-up and top-
down approach for accurate pose estimation.

Many improvements can be made to the iris segmentation apprat each stage
of its operation. The texture measure used by the curreotidign can be modified by
including gradient orientation cues to improve the accprEeyelash segmentation. The
current iris segmentation is somewhat limited as it reliedigtogram peaks of the images
to assign labels; therefore, multi-modal distributiongraénsities in any of the regions
can lead to errors. This can be improved by using an apprdathuses both intensity

distributions and intensity edges to compute the objedtivetion. Another important
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improvement to be made is to reduce the overall computatimnaf the algorithm. Finally,
the iris segmentation algorithm can be used for iris basedgmtion on various standard

iris image databases to evaluate its performance.

7.3 Lessons Learned

Segmentation is a challenging problem because of all tleorsamentioned at the
various occasions throughout this thesis. The biggesbreatly segmentation seems so
challenging is probably related to how well the human vigyatem can perform it. This
sets the standards vary high for automated systems. Thdwge are various theories
regarding how the human visual system performs segmentatie thing is clear: a large
amount of contextual knowledge is used which is difficult houdate for a machine. The
key is to appropriately define the problem, constrain it veitimditions and assumptions,
and narrow down the scope so as to make it tractable. Thisopmhemon is observed in
almost all vision based algorithms. In this thesis, thee raany examples where it is
manifested, like in the optical flow computation (brighteesnstancy, spatial and temporal
coherency), or Markov Random Field based algorithms (amipediate neighbors in the
data space influence the properties of a data element), astiommodels (the points in the
entire moving region undergo a specific motion), to name a #hile such assumptions
and constraints are key to solving the problem, care musakentthat these constrains
do not take away much from the solution. What constitutesraatsumption is problem
dependent and must be addressed carefully.

One way to constrain the segmentation problem is to decidehwdue has to be
used for the segmentation. Motion is a strong cue. In fadnen the absence of other
strong cues such as intensity or color, motion on its own pabke for providing a very

good idea about the scene. To take the argument furtherflesaparse point feature trajec-
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tories can contribute toward scene understanding on tiveir ®his is clearly demonstrated
if we watch a video of sparse point features being trackealiin a sequence but overlaid
on a blank background. The motion in the scene can provideitinstiae big picture of
the overall scene structure and various independently myosbjects. The fact that point
features themselves can capture a wealth of informationomasof the prime motivators
behind this work.

An important debate that often surfaces in computer vissotiné use of bottom-
up vs. top-down approaches. We had to face this dilemma Wdalaing the articulated
human motion models. Our approach is essentially a top-cappnoach as we learn the
high-level interactions of the trajectories of the bodytpaBottom-up approaches have also
been proposed that build a higher level representationdakitng individual body parts. A
combination of bottom-up and top-down approaches woulthdeebe advantageous over
the individual approaches.

Finally, a note regarding the complexity of the algorithrsediand their versatility
of application. It is not necessarily true that a complexoathm is always better. For
example, the algorithms that can compute optical flow a¢elyr@n a small set of images
are not necessarily at a point yet where they generalizetavatbitrary images. In contrast,
a simple Lucas-Kanade based feature tracking algorithwsisarprising ability to work
on wide variety of images. Moreover, a simple region grovaged approach can compete

with more computationally intensive approaches for segatim.
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Appendix A

EM Detalls

A.1 Complete Data Log-Likelihood Function

The density function for thé" element from the complete data is given by
gy"; ©) = g(x?,c; ©). (A.1)
Sincecl is a binary vector, i.e, the elementstt are binary numbers, we can write
gx, ¢V =1,c =0,...,c¥ =0; ©) =g(x; ©,), or (A.2)

g, 01) = g, ¢’ = 1; ©) ... gV, ¢ = 0; ©) (A-3)
Similarly, we can write expressions fg(x, ©;),j = 2, ..., K. Hence, for a general case,

. _ _ (i) ) (i)
gx?; € 0) = (gx"; @1))C1 (g @K))CK
0

(90; @)

I
i

Il
—

J
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K o
= TT(mex; 6))" . (A.4)

j=1
Assuming that thé&\ data samples are independent,

(i)

K
o; ©) = [T 11 (mee<; ,)CJ' . (A.5)

i=1j=1

A.2 Expectation Maximization Details

To derive an expression for finding the mixing weightgt can be observed that the
maximization in equation;21) has to be performed with the constraint tfjﬁll m = 1.
For performing constrained maximization of a function, @yar technique of Lagrange
multipliers is used85]. Let h(s) be a function of any variable The goal is to maximize
h(s) using a constraint(s) = d, where d is a constant. Lagrange function can be defined
as

A(s.)\) = h(s) — A(I(s) — d), (A.6)

A is the Lagrange multiplier. Here, the goal is to find the etadry point of the Lagrange
function defined above i.e., a point where the partial déxiga of the function with respect
to sand\ are zero. This will lead to the necessary condition to findst@mned maxima
of h(s). In addition to thish(s) must be differentiable at the stationary point to ensure tha
such a maximum actually exists. Going back to the problenbostrained maximization

of Q(©; 6M), the use of Lagrangian function from equati@ng) gives

A(©,)) = Q(6; ) (XK: 1) (A.7)

j=1
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To find the stationary point of this function, the partial idatives of A(©, \) with respect

to 7; and\ should be zero (note that effect@fis ignored as it is not dependent oy).

oAO,N) 1

5 =S wx"; 0Y) —x=0 (A.8)
7Tj T i=1
A K
PO 1= (A.9)

Solving the above two equations, an expression\fisrobtained:

A= XN: szw, x; (A.10)

i=1j=1

But sinceX"[, w(x); ©U) = 1, the above equation reduces)to= N, which gives the
(t+ 1) estimate ofr; as

L Zw, ). . (A.11)

For finding the expression fgr; start with the complete data log likelihood function from

equation 2.16) and differentiate with respect g and equate it to zero as shown below:

N .
8ﬁaMJ _ ; w; (x1; % {Iog {ﬁjgﬁ(x(l); M,-,Uj)H —0 (A.12)

d(log(mjp(x; 14> 07))) 0 3 (x — Mj)z
8#]. = a—luj |Og(7TJ)—|Og(\/27TO'j)—T‘_j2
X0 _
S (A.13)

I
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From equationsA.12) and A.13),

N X(i) —
Z w; (x; ( 5 “’) =0, (A.14)
which gives the updated value of the mean as

(t+1) L wi(xY; O)x(

= x . A.15
| Vw5 60) (A15)
Similarly, for obtaining an expression for the standardiaigen update start with:
0L:(O A 0 _
5; ) > w(x; 60)5 log {mo(x"; 1, 07)}] =0 (A.16)
1=
. . 2
log(mo(x; o)) 1 (X0 =)
o~ nt (A17)
From equationsA.16) and A.17)
N _ X _ 'u_(t+1))2 ]
(. § ( j I
;WJ(X ; 0) ( - —|=0 (A.18)
which gives the updated value of the standard deviation as
t+1) SN wg (X é)(t))(x(i) _ Nj(t+1))2
9 = N - B0 . (A.19)
Zi:l\Nj(X ) S) )
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Appendix B

Delaunay Triangulation

B.1 Delaunay Triangulation Properties

A planar graph is contained in a plane and drawn in such a nnahaeno edges
intersect. Triangulation of a point set is a planar graph Imictv the points are joined by
line segments such that every region to the interior to theveo hull of the points is a

triangle. Delaunay triangulation is a special kind of tgalation where the circumcircle

Figure B.1:LEFT: Delaunay triangulation and Voronoi diagram of a point éte points
are indicated in blue whereas the Voronoi vertices are atditin greenrIGHT: Circum-
circle property and edge flippingA\ABD and AABC do not form a Delaunay triangulation
as the circumcenters of each of these circles contain eltpaints. By deleting the edge
BD and creating the segmeAC the triangulation conforms to the Delaunay properties.
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of a triangle formed by three points does not include anyrgpieent. Finding Delaunay
triangulation of a given set of points leads to an efficieny wifinding solutions to a large
number of problems such as finding the nearest neighboréspoint, neighbors of all the
points, closest pair of points, euclidean minimum spantieg and so on. For any given
set of points in a plane, a unique Delaunay triangulatiostexf no three points lie on a
line and no four points lie on a circle. Such a point set is kméovhave points in a general

position.

1. Empty Circumcircle:An important property that sets Delaunay triangulationrapa
from the rest is that the circumcircle of a triangle from thiartigulation does not
contain any other points (see FiguBel). It should be noted that one edge can be
shared by only two triangles while a vertex may be shared kgrgelnumber of

triangles depending upon the location of other points irplhee.

2. Delaunay neighborsFor a point in the Delaunay triangulation, any point shaang
edge is a neighbor. For a planar point set, Delaunay triatigul effectively provides

the list of neighboring points without any spatial consttai

3. Closest points in a setOf all the given points, two closest points (distance mea-
sured is a Euclidean distance) are neighbors in Delaureygwiation. This can be

analytically deduced from the circumcircle property.

4. Maximizing minimum angleDelaunay triangulation maximizes the minimum angle
of the triangles formed. This again is due to the circumeiprioperty. This property
makes sure that the triangles formed by Delaunay trianignlate not usually skinny
or thin i.e., obtuse. This of course depends on the way pangtglistributed in the
plane. If a uniform distribution is assumed, then Delaumayngulation is better off

in terms of the nature of the triangles. Due to this propéglaunay triangulation
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is very useful in building meshes and for interpolation oifps.

5. Relation to the Voronoi diagramvoronoi diagram is a dual graph of Delaunay tri-
angulation. The edges in the Voronoi diagram are perpelatitisectors of the
corresponding Delaunay triangle edges and three Vororgpesthtersect to form
the circumcenter of the corresponding triangle (see Figutg Hence Voronoi dia-
gram can be obtained from the Delaunay triangulation aretwéssa. Both save the
proximity information of the points in the plane and can bedias a solution of the

problems involving nearest neighbors) of a point.

6. Relation to convex hulldDelaunay triangulation and convex hull are related corscept
and Delaunay triangulation of a set of pointsdmimension can be obtained from

the convex hull of the same points(id + 1) dimension.

B.2 Computation of Delaunay Triangulation

Many algorithms exist that compute Delaunay triangulatibpoints in a plane but
they all depend on the examining the same basic empty cirentacproperty of Delaunay
triangles. LetA = (Xa,Ya), B = (Xg,Ys), C = (Xc,Yc) are the three points in a plane and
the triangle defined by these three poid8BCis a Delaunay trinagle if and only if its
circumcircle does not contain any other point. We wish towdeether a poinP = (xp, yp)

lies inside the circumcircle oAABC. This can be found by computing the following
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determinant

XA YA Xa+VYa 1
X X3 +Vy3 1
Det(AABQ) — | & B BT
Xc Yo Xe+Ye 1

Xp VYp X%+y|23 1

The point order of pointé, B, C andP is counterclockwiseP lies inside the circumcircle
if Det(AABC) > 0, and on the circumcircle Det( AABC) = 0.

One class of algorithms for computing Delaunay triangalatare based on the
idea of adding points, one at a time, to the existing triaagoih and updating it. Such
algorithms are called incremental algorithms. A naive apph is to add a point to the
existing triangulation, delete the affected triangled th@no conform and re-triangulate
those points. This requires a search over all the possitderocircles in the existing graph.
As a result, this approach is not very efficient. It can be dppéy using the sweep line
approach described in the previous section. The points iareepare added as the sweep
line moves across the plane. This limits the search spabettriangles near the sweep
line. A further speedup can be obtained by building a tree diita structure such that the
triangle being replaced is a parent and the triable thapitiees is its child. So if a new
point is inserted then it is easy to figure out which triangpethe current triangulation are

affected. Hence following four basic steps are repeateitinmhew points are added:
1. add a point to the existing triangulation
2. perform the circumcircle test to find which triangle theled point belongs

3. add three new edges starting from the added point towa& dehtices of the sur-

rounding triangle
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4. rearrange the triangulation by performing required nendb edge flips

Another popular category of algorithms for obtaining Delay triangulation of a
point set are termed as divide and conquer algorithms whiglsianilar in spirit with the
divide and conquer algorithms for finding convex hull of @sinThe idea is to recursively
divide the point set into smaller groups and find the triaaggah of these groups and then
merge the groups to form progressively bigger triangutesibeach step. Merging two sets
is a tricky step especially if the sets are large. While megdivo sets, triangulation of
only a part of each set is affected. These algorithms are atatipnally efficient for a

large point set but at the same time they are difficult to inmaaet.
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Appendix C

Parameter Values

Image Segmentation (Chap@®r
grouping thresholdy, = 0.005

minimum number of pixels required for a valid segmenyj, = 30 pixels

smoothing parameter for MAP SVFMM, = 1.0

Joint Feature Tracking (Chapt8r

threshold on min. eigenvalueg= 0.1

Gauss-Seidel damping factar,= 1
regularization parametek; = 50

neighborhood windowy; x = 10 pixels

Motion Segmentation (Chaptdy

number of featuresy = 1000
grouping threshold; = 1.5

minimum number of features required for a valid groog, = 0.001 x N
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number of seed pointdls = 7

x? parametersey = 99%, k = 3

long term frame updatei. = 0.1, 5, = 0.25

feature tracking parameters:
minimum distance between features pixels
feature window size= 5 x 5
minimum window displacement;x = 0.1

feature detection thresholg, = 10

Motion Models of Articulated Bodies (Chaptgy

number of posesyl = 8

number of viewsN = 8:, {0°,45°,90°,135°,180°, —135°, —90°, —45°}
target aspect ratio (widtk height) =1 x 2
number of scales = 4

window width for each scalé25, 30, 35,40}
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