
Clemson University
TigerPrints

All Dissertations Dissertations

8-2009

Motion Segmentation from Clustering of Sparse
Point Features Using Spatially Constrained Mixture
Models
Shrinivas Pundlik
Clemson University, spundli@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Pundlik, Shrinivas, "Motion Segmentation from Clustering of Sparse Point Features Using Spatially Constrained Mixture Models"
(2009). All Dissertations. 417.
https://tigerprints.clemson.edu/all_dissertations/417

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/417?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

MOTION SEGMENTATION FROM CLUSTERING OFSPARSE
POINT FEATURESUSING SPATIALLY CONSTRAINED

M IXTURE MODELS

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Electrical Engineering

by

Shrinivas J. Pundlik

August 2009

Accepted by:

Dr. Stanley Birchfield, Committee Chair

Dr. Adam Hoover

Dr. Ian Walker

Dr. Damon Woodard

Abstract

Motion is one of the strongest cues available for segmentation. While motion

segmentation finds wide ranging applications in object detection, tracking, surveillance,

robotics, image and video compression, scene reconstruction, video editing, and so on, it

faces various challenges such as accurate motion recovery from noisy data, varying com-

plexity of the models required to describe the computed image motion, the dynamic nature

of the scene that may include a large number of independentlymoving objects undergoing

occlusions, and the need to make high-level decisions whiledealing with long image se-

quences. Keeping the sparse point features as the pivotal point, this thesis presents three

distinct approaches that address some of the above mentioned motion segmentation chal-

lenges.

The first part deals with the detection and tracking of sparsepoint features in image

sequences. A framework is proposed where point features canbe tracked jointly. Tradi-

tionally, sparse features have been tracked independentlyof one another. Combining the

ideas from Lucas-Kanade and Horn-Schunck, this thesis presents a technique in which

the estimated motion of a feature is influenced by the motion of the neighboring features.

The joint feature tracking algorithm leads to an improved tracking performance over the

standard Lucas-Kanade based tracking approach, especially while tracking features in un-

textured regions.

The second part is related to motion segmentation using sparse point feature trajec-

ii

tories. The approach utilizes a spatially constrained mixture model framework and a greedy

EM algorithm to group point features. In contrast to previous work, the algorithm is incre-

mental in nature and allows for an arbitrary number of objects traveling at different relative

speeds to be segmented, thus eliminating the need for an explicit initialization of the num-

ber of groups. The primary parameter used by the algorithm isthe amount of evidence

that must be accumulated before the features are grouped. A statistical goodness-of-fit test

monitors the change in the motion parameters of a group over time in order to automatically

update the reference frame. The approach works in real time and is able to segment var-

ious challenging sequences captured from still and moving cameras that contain multiple

independently moving objects and motion blur.

The third part of this thesis deals with the use of specialized models for motion

segmentation. The articulated human motion is chosen as a representative example that

requires a complex model to be accurately described. A motion-based approach for seg-

mentation, tracking, and pose estimation of articulated bodies is presented. The human

body is represented using the trajectories of a number of sparse points. A novel motion de-

scriptor encodes the spatial relationships of the motion vectors representing various parts

of the person and can discriminate between articulated and non-articulated motions, as well

as between various pose and view angles. Furthermore, a nearest neighbor search for the

closest motion descriptor from the labeled training data consisting of the human gait cycle

in multiple views is performed, and this distance is fed to a Hidden Markov Model defined

over multiple poses and viewpoints to obtain temporally consistent pose estimates. Ex-

perimental results on various sequences of walking subjects with multiple viewpoints and

scale demonstrate the effectiveness of the approach. In particular, the purely motion based

approach is able to track people in night-time sequences, even when the appearance based

cues are not available.

Finally, an application of image segmentation is presentedin the context of iris

iii

segmentation. Iris is a widely used biometric for recognition and is known to be highly

accurate if the segmentation of the iris region is near perfect. Non-ideal situations arise

when the iris undergoes occlusion by eyelashes or eyelids, or the overall quality of the

segmented iris is affected by illumination changes, or due to out-of-plane rotation of the

eye. The proposed iris segmentation approach combines the appearance and the geometry

of the eye to segment iris regions from non-ideal images. Theimage is modeled as a

Markov random field, and a graph cuts based energy minimization algorithm is applied

to label the pixels either as eyelashes, pupil, iris, or background using texture and image

intensity information. The iris shape is modeled as an ellipse and is used to refine the pixel

based segmentation. The results indicate the effectiveness of the segmentation algorithm

in handling non-ideal iris images.

iv

Dedication

I dedicate this work to my parents who have struggled hard in life to give me the

best.

v

Acknowledgments

I am most grateful to my adviser, Dr. Stanley Birchfield for guiding and encour-

aging me at every step of this endeavor while being extremelypatient. The freedom he

gave me to pursue new ideas made this work a truly enjoyable learning experience. Things

learned from him during these six years will guide me throughout my life. I also thank Dr.

Adam Hoover and Dr. Ian Walker for their valuable suggestions and insights regarding my

dissertation work. Many thanks to Dr. Damon Woodard for the generous financial support

and for giving me an opportunity to explore new ideas. I wouldlike to thank Dr. Rick

Tyrell for the nighttime sequences of walking humans, Mr. Pawan Kumar for providing the

results of his segmentation algorithm for comparison, and Zhichao Chen for helping me

out with the robots.

I would like to thank members of my research group for provinga forum for dis-

cussing research ideas and giving valuable feedback. Special thanks to Neeraj Kanhere and

Nikhil Rane for being great lab mates and making the lab a fun place to work. Also, thanks

to Vidya Murali for all the discussions on myriad topics.

Special thanks to all my friends for making my stay in Clemsona truly memorable

one. Over the years I have been in Clemson, I had the privilegeof sharing apartment with

three Sourabhs (Zadgaokar, Pansare and Kulkarni), two Nikhils (Karkhanis and Iyengar),

and with Sameer Bhide, Arjun Seshadri, and Sriram Rangarajan for various periods of

time. Many thanks to Nikhil Karkhanis for being the go-to guyfor any computer related

vi

issue, Sourbh Pansare for his initiative, insights and advise on various topics ranging from

planning road trips to career management, and Sourabh Kulkarni for bearing the brunt of

my occasional raucous verbal outbursts directed at random individuals, and for generally

being a great roommate.

In addition to these great roommates, I have been fortunate to have a large number

of friends like Santosh Rahane, Neeraj and Uma Kanhere, Akhilesh and Akanksha Singh,

and Gaurav and Vidhya Javalkar. I owe Santosh a lot for introducing me to American foot-

ball and basketball and for the many great movie watching experiences. Special thanks to

Uma for being a great friend and for the various amazing food items that she has served.

Many thanks to Akhilesh and Akanksha Singh for being the gracious hosts of a large num-

ber of highly enjoyable social gatherings.

Among all my friends, Abhijit and Rucha Karve deserve a special mention. They

are more than just friends. They have been like elders to me all this while and I cannot

fathom what I would have done without them. They have provided me with some of the

most delicious food I have ever eaten, given me advice on wideranging matters, and helped

me in some way or the other on innumerable instances. They have been there for me at

every step and at every occasion. I will always remain indebted to them.

Finally, I would like to thank my parents for their immense love, support, and pa-

tience.

vii

Table of Contents

Title Page . i

Abstract . ii

Dedication . v

Acknowledgments . vi

List of Tables . xi

List of Figures . xii

1 Introduction . 1
1.1 Previous Work. 5
1.2 Motion Segmentation Challenges. 7
1.3 Thesis Outline. 10

2 Mixture Models for Segmentation . 14
2.1 Finite Mixture Models . 15
2.2 Parameter Estimation Using Expectation Maximization (EM) 17

2.2.1 MAP Formulation. 17
2.2.2 ML Formulation . 19
2.2.3 Complete Data Log Likelihood Function. 20
2.2.4 Expectation Maximization Algorithm. 21
2.2.5 Limitations of the Finite Mixture Models. 24

2.3 Spatially Variant Finite Mixture Models. 25
2.3.1 ML-SVFMM . 26
2.3.2 MAP-SVFMM . 27

2.4 A Spatially Constrained Finite Mixture Model(SCFMM). 29
2.5 Application of Mixture Models for Image Segmentation. 33

2.5.1 Implementation Details. 33
2.5.2 Experimental Results. 36

2.6 Summary . 45

viii

3 Point Feature Tracking . 47
3.1 Motion Estimation Basics. 47
3.2 Lucas-Kanade (LK) Method. 50
3.3 Detection of Point Features. 55
3.4 Horn-Schunck: An Alternative to Lucas-Kanade. 58
3.5 Joint Lucas-Kanade Algorithm. 61
3.6 Summary . 65

4 Motion Segmentation Using Point Features. 67
4.1 Mixture Models for Motion Segmentation. 68

4.1.1 Affine Motion Model . 68
4.1.2 Neighborhood Computation. 70

4.2 Grouping Features Using Two Frames. 70
4.3 Maintaining Feature Groups Over Time. 78
4.4 Experimental Results. 82
4.5 Summary . 94

5 Motion Models of Articulated Bodies . 95
5.1 Motivation for Articulated Human Motion Analysis. 95
5.2 Learning Models for Multiple Poses and Viewpoints. 99

5.2.1 Training Data. 101
5.2.2 Motion Descriptor . 102

5.3 Pose and Viewpoint Estimation. 105
5.4 Experimental Results. 106
5.5 Summary . 111

6 Iris Image Segmentation . 112
6.1 Motivation for Iris Segmentation. 113
6.2 Segmentation of Eyelashes. 116

6.2.1 Texture Computation. 117
6.2.2 Image Bipartitioning using Graph Cuts. 119

6.3 Iris Segmentation. 122
6.4 Experimental Results. 124
6.5 Summary . 127

7 Conclusion . 128
7.1 Contributions . 128
7.2 Future Work. 130
7.3 Lessons Learned. 132

Appendices . 134

A EM Details . 135

ix

A.1 Complete Data Log-Likelihood Function. 135
A.2 Expectation Maximization Details. 136

B Delaunay Triangulation . 139
B.1 Delaunay Triangulation Properties. 139
B.2 Computation of Delaunay Triangulation. 141

C Parameter Values . 144

Bibliography . 146

x

List of Tables

4.1 Comparison with different motion segmentation algorithms.. 89

6.1 Comparison of estimated iris region parameters with theground truth data. 126

xi

List of Figures

1.1 Gestalt laws of visual grouping. 2
1.2 Subjective nature of image segmentation. 4
1.3 Motion boundaries resulting from motion segmentation. 4
1.4 Relationship of motion threshold and reference frame.. 9

2.1 An example of a Gaussian mixture model. 17
2.2 Data labeling in a FMM. 23
2.3 Pair-wise cliques in an undirected graph. 29
2.4 EM algorithm for parameter estimation in an FMM.. 37
2.5 EM algorithm for parameter estimation in an ML-SVFMM. 38
2.6 EM algorithm for parameter estimation in MAP-SVFMM.. 39
2.7 Greedy EM algorithm for parameter estimation in an SCFMM. 40
2.8 Noise corrupted synthetic grayscale image. 41
2.9 Segmentation of noisy synthetic image using mixture models 42
2.10 Output of the labeling algorithms on the sky image. 42
2.11 Segmentation results ofgreedyEM-SCFMMon some natural images. . . 43
2.12 Energy minimization plots for mixture models. 45
2.13 Stability of the SCFMM. 45

3.1 Differential methods for tracking. 52
3.2 The standard Lucas-Kanade algorithm.. 53
3.3 Sparse optical flow from point feature tracking. 55
3.4 The Aperture problem. 56
3.5 Intensity profile of good features. 57
3.6 The joint Lucas-Kanade algorithm.. 63
3.7 Comparison of joint Lucas-Kanade and standard Lucas-Kanade. 65

4.1 Delaunay triangulation of planar points.. 71
4.2 Formation of a feature group by region growing. 74
4.3 Greedy EM algorithm for feature grouping.. 75
4.4 Formation of consistent feature groups using the consistency matrix. 76
4.5 Consistent feature groups.. 77
4.6 Algorithm for finding consistent feature groups.. 78
4.7 Splitting an existing feature group.. 81
4.8 Motion segmentation offreethrow, car-map, andmobile-calendarsequences.82

xii

4.9 Motion segmentation results on thestatuesequence.. 85
4.10 Motion segmentation results on therobotssequence.. 85
4.11 Motion segmentation results on thehighwaysequence. 86
4.12 Plots of number of features groups vs. time.. 87
4.13 Insensitivity to parameters.. 87
4.14 Insensitivity to speed.. 89
4.15 Quantitative analysis of the insensitivity of the algorithm to speed. 90
4.16 The reference frame versus time for two groups in the statue sequence.. . . 90
4.17 Segmentation results after joint tracking of features. 91
4.18 Comparison with other approaches.. 92

5.1 Various examples of articulated human motion. 97
5.2 Overview of the proposed approach to extract human motion models 99
5.3 Use of 3D motion capture data for training. 101
5.4 Motion descriptor for human motion. 104
5.5 Discriminating ability of the motion descriptor. 104
5.6 Articulated motion detection for various viewpoints. 108
5.7 Articulated motion segmentation for the statue sequence 108
5.8 Plot of estimated and ground truth knee angles for the right profile view. . . 108
5.9 Pose estimation for the right and angular profile view. 109
5.10 Pose estimation for the front view and the night-time sequence 110

6.1 An ideal iris image contrasted with non-ideal images. 114
6.2 Overview of the proposed iris segmentation approach.. 115
6.3 Removing specular reflection in iris images. 117
6.4 Eyelash segmentation details. 120
6.5 Iris segmentation details. 122
6.6 Refining the iris segmentation. 125
6.7 Non-ideal iris segmentation results. 126

B.1 Properties of Delaunay triangulation of a point set. 139

xiii

Chapter 1

Introduction

In computer vision, segmentation is defined as the process ofdividing an image(s)

into regions in the spatial and/or temporal domain, based onsome image property. Seg-

mentation (also known as grouping, or clustering, or labeling) forms the basis of a large

number of computer vision tasks. Therefore, a better understanding of the segmentation

process is crucial to their success. In essence, the multitude of keywords used to explain

the segmentation underscore its breadth as a field of inquiry. However, the question of

how to perform segmentation is challenging. For years, computer vision researchers have

looked at Gestalt laws of visual perception to tackle this question.

The Gestalt school of psychology, which emerged in the early20th century in Ger-

many, stresses the holistic and self-organizing nature of human visual perception. The

word gestaltliterally means form, or structure, and conveys the idea that visual perception

focuses on well organized patterns rather than disparate parts. This implies that grouping

of various elements is the key to visual perception leading to a single form which at the

same time is more than just the sum of its parts. Visual representation of an object can be

considered as a result of grouping individual neural responses, which is in turn guided by

the factors underlying the scene such as similarity betweenelements, closure, symmetry,

1

Figure 1.1: Gestalt laws of visual grouping. If the goal is toobtain two groups from the
eight elements that are given, then different Gestalt laws may produce different grouping
outcomes. In this example, (a) the similarity criterion groups based on appearance and
separates black and white elements, (b) proximity ignores the appearance and uses distance
between the elements , (c) common-fate based grouping is dependent on the motion of
elements, (d) and continuity criterion attempts to fit linesin order to find patterns in the
scattered elements. For each case, the points are on the leftand the corresponding groups
are on the right.

continuity, proximity, common fate, and others. These are known as the Gestalt laws and

some of them are shown in Figure1.1. It is easy to see the intuitiveness of the Gestalt laws

and their relation to the segmentation process. Any one or a combination of multiple laws

provide suitable criteria to perform segmentation of images.

Common fate, also known as common motion, is a powerful cue for scene under-

standing [91, 42], and according to Gestalt psychology the human visual system groups

pixels that move in the same direction in order to focus attention on perceptually salient

regions of the scene. As a result, the ability to segment images based upon pixel motion is

important for automated image analysis impacting a number of important applications, in-

cluding object detection [105], tracking [87, 57], surveillance [46, 13], robotics [55], image

and video compression [6], scene reconstruction [38], and various video manipulation ap-

plications such as video matting [112], motion magnification [69], background substitution

[26], video annotation for perceptual grouping, and content based video retrieval [68].

The data used for motion segmentation can either be motion vectors corresponding

to each of the pixel locations (dense) or a subset of image locations (sparse). A common

segmentation approach is to assume that the points belonging to each segment follow a

2

known model but with unknown parameters. Then the entire data can be represented as a

mixture of different models corresponding to different segments. Estimates of the param-

eters of the models and their mixing proportions can explainthe segmentation. This is the

classical mixture model framework used for segmentation. The primary goal of motion

segmentation is to produce homogeneous image regions basedon their motion. Homo-

geneity is an important condition for enforcing the adjacent data elements to belong to the

same segment unless a motion boundary separates the two. Ideally, a motion segmentation

algorithm has to be sensitive to respect the motion boundaries while producing homoge-

neous regions (or clusters of points) by smoothing out effects of noise and outliers in the

interior of a region. Classical mixture model framework does not guarantee a labeling that

considers spatial saliency of the data elements which is whythe spatially variant mixture

models are important for segmentation.

Segmentation is an inherently challenging problem becauseof the absence of a

clearly defined objective and the uncertainty regarding thesegmentation criteria to be em-

ployed. The Figure1.2 shows an example of an image and its multiple possible segmen-

tation solutions: different segmentation criteria resultin different segmentation outputs.

While not completely alleviating the subjective nature of the segmentation problem, use

of motion for segmentation reduces the ambiguity to some extent. Figure1.3 shows two

frames of a sequence and the expected motion segmentation solution. As compared to im-

age segmentation in Figure1.2, it is easier to see that there are three moving objects (the

ball, the toy-train and the calendar) in front of the static background and that the segmenta-

tion boundaries align with the motion boundaries. Nevertheless, motion segmentation re-

mains a challenging problem, primarily because the estimation of image motion from given

sequences is challenging, and also because simple motion models, like used in this exam-

ple, do not always accurately describe the actual motion. Both of these lead to ambiguities

in segmentation. The 3D motion projected onto a 2D image plane makes the problem of

3

Figure 1.2: Subjective nature of the segmentation problem.A natural image from the
Berkeley Segmentation Database [73] (top row) and its various possible ground truth seg-
mentations marked by different subjects (bottom row). The aim here is to show that the
segmentation is a subjective concept and there is no one truesolution to a given problem.

Figure 1.3: Two frames of a sequence (left and center) that has three moving objects: the
ball, the train and the calendar in front of a static background. The motion boundaries
overlaid on the second frame of the sequence (right). Even though all the parts of the toy
train are expected to follow the same motion in 3D, the observed image motion is different
for different pixels of the toy-train. So is the case for all the other image regions.

motion estimation underconstrained, and various assumptions regarding the scene motion

have to be made in order to recover it. Adding to the challengeis the dynamic nature of the

videos that include sudden illumination changes, non-rigid motion of image regions, and

occlusions.

4

1.1 Previous Work

Motion segmentation is a classic problem in computer visionwhich has been ex-

plored by various researchers over the years. One traditional approach has been to as-

sign the pixels to layers and to compute a parametric motion for each layer, following

Wang and Adelson [108, 109, 3]. This approach determines a dense segmentation of the

video sequence by minimizing an energy functional, typically using either expectation-

maximization (EM) or graph cuts. In a series of papers, Jojic, Frey, and colleagues [53, 22,

54] demonstrate algorithms capable of segmenting sequences and representing those se-

quences using example patches. In other recent work, Smith,Drummond, and Cipolla [95]

present a technique for dense motion segmentation that applies EM to the edges in a se-

quence. Xiao and Shah [113] combine a general occlusion constraint, graph cuts, and alpha

matting to perform accurate, dense segmentation. Kumar, Torr, and Zisserman [62] com-

bine loopy belief propagation with graph cuts to densely segment short video sequences.

Cremers and Soatto [24] minimize a continuous energy functional over a spatio-temporal

volume to perform two-frame segmentation, a technique which is extended by Brox, Bruhn,

and Weickert [19]. Spatiotemporal coupling has been enforced using graph cuts and hidden

layers representing occlusion [35] and by dynamic Bayesian networks [98].

An alternate approach is to formulate the problem as one of multi-body factoriza-

tion, which is solved using subspace constraints on a measurement matrix computed over

a fixed number of frames, based upon the early work of Costeiraand Kanade [23]. Ke and

Kanade [58] extended this work by presenting a low-dimensional robustlinear subspace

approach to exploit the global spatial-temporal constraints. Zelnik-Manor et al. [118] ex-

pand upon traditional measures of motion consistency by taking into account the temporal

consistency of behaviors across multiple frames in the video sequence, which can then

be applied to 2D, 3D, and some non-rigid motions. Vidal and Sastry [102, 103] show

5

that multiple motions can, in theory, be recovered and segmented simultaneously using

the multi-body epipolar constraint, although segmentation of more than three bodies has

proved to be problematic in practice. In recent work, Yan andPollefeys [115] have ex-

amined the effects of articulated and degenerate motion upon the motion matrix, to which

recursive spectral clustering is applied to segment relatively short video sequences. In other

recent work, Gruber and Weiss [45] extend the standard multi-body factorization approach

by incorporating spatial coherence.

The problem has been approached from other points of view as well. Various re-

searchers have utilized the assumption that the dominant motion is that of the background

in order to detect independently moving objects [87, 78, 50]. Other researchers have ex-

plored the connection between bottom-up and top-down processing, noting that some top-

down evidence will be needed for segmentation algorithms toproduce the results expected

by human evaluators [60, 99, 66]. Wills et al. [110] combine sparse feature correspon-

dence with layer assignments to compute dense segmentationwhen objects undergo large

inter-frame motion, followed by more recent work [64] in which the time-linearity of the

homographies obtained under the assumption of constant translation is exploited in order

to segment periodic motions from non-periodic backgrounds. Shi and Malik [90, 91] clus-

ter pixels based on their motion profiles using eigenvectors, a technique that has proved

successful for monocular cues but which does not take occlusion information into account.

Rothganger et al. [84] apply the rank constraint to feature correspondences in order to di-

vide the sequence into locally coherent 3D regions. In two pieces of recent interesting

work, Sivic, Schaffalitzky, and Zisserman [94] use object-level grouping of affine patches

in a video shot to develop a system for video retrieval, and Criminisi et al. [26] present a

real-time foreground/background segmentation techniquewith sufficient accuracy for com-

positing the foreground onto novel backgrounds.

To summarize, classification of the existing motion segmentation approaches can

6

be done in multiple ways. From an algorithmic point of view, they can be classified as

motion layers estimation, multi-body factorization, object-level grouping of features, or

some combination of top-down and bottom-up techniques. If classified based on the nature

of the data used, some approaches perform dense segmentation, i.e., recovering the motion

of each pixel and assigning them to one of the groups while others rely on clustering of

sparse features descriptors such as SIFT features [70]. Some approaches are purely motion

based while others use additional image cues for segmentation. Based on the type of energy

minimization technique used, the approaches can be classified as those using Expectation-

Maximization (EM) or its variations, graph cuts, normalized cuts, or belief propagation.

1.2 Motion Segmentation Challenges

There are two aspects to motion segmentation in long sequences: (i) segmenting

two image frames (which may or may not be consecutive), and (ii) long-term handling of

the resultant groups. Many of the previous approaches described above have a significant

limitation in that the number of groups must be knowna priori. In addition, if the al-

gorithms are using parametric motion models, the parameterinitialization has to be done

carefully. Also, the motion segmentation process is significantly impacted by the way the

image motion is estimated. Conventional approaches assumethe independence of data ele-

ments (sparse point features) while estimating their motion which is a limiting assumption

in certain situations. A more powerful assumption is that the neighbors show common

motion which leads to the challenge of incorporating the motion of immediate neighbors

while estimating the motion of a data element. Another challenge is to handle a variety of

motions present in natural sequences. While a large number of cases can be dealt with the

use of conventional models such as translation or affine, some special cases such as seg-

mentation of articulated human motion requires a special kind of model to be appropriately

7

described.

Long term aspects concern with handling the segmented groups over time. Tradi-

tional motion segmentation algorithms limit themselves tousing the information between

timest andt + K, whereK is a constant parameter, in order to determine the number and

composition of the groups [108, 53, 95, 113, 24, 23, 91]. Ignoring the fact that motion is

inherently a differential concept, such an approach is similar to estimating the derivative

of a function using finite differences with a fixed window size: Too small of a window

increases susceptibility to noise, while too large of a window ignores important details.

The drawback of using a fixed number of image frames is illustrated in Figure

1.4a with two objects moving at different speeds,∆x1/∆t1 and ∆x2/∆t2, respectively,

relative to a static background, where∆x1 = ∆x2. Since the amount of evidence in the

block of frames is dependent upon the velocity of the object relative to the background,

the slowly moving object is never detected (i.e., separatedfrom the background) because

∆x2/∆t2 < τ , whereτ = ∆x/∆t is a threshold indicating the minimum amount of relative

motion between two objects required to separate them. The threshold must be set above

the noise level (of the motion estimator) in order to avoid over-segmentation, but if it is

set too high, then objects moving slowly relative to each other will not be distinguished.

The solution to this problem is to use a fixed reference frame with the thresholdτ = ∆x

indicating the amount of relativedisplacementneeded between two objects, as shown in

Figure1.4b. As additional images become available over time, evidence for the motion of

an object is allowed to accumulate, so that objects are detected regardless of their speed

once their overall displacement exceeds the threshold, i.e., ∆xi > τ .

Of course, in practice the reference frame must be updated eventually due to the

divergence over time of the actual pixel motion from the low-order model of the group

motion. Thus, a crucial issue in designing a motion segmentation system that operates on

variable speeds is to adaptively update the reference frame. To do so, the system must be

8

(a) (b)

Figure 1.4: A fast object (object 1) and a slow object (object2) move against a static
background. (a) If the thresholdτ is dependent upon velocity, then the slowly moving
object is never detected because∆x2/∆t2 < τ . (b) In contrast, a fixed reference frame
enables both objects to be detected independently of their speed, as soon as enough image
evidence accumulates (timet1 for object 1 andt2 for object 2).

able to distinguish between two common cases. First, the pixels in a region may not be

moving coherently due to the presence of multiple objects occupying the region, in which

case the group should be split. Secondly, the motion divergence may be due to unmod-

eled effects in the underlying motion model, in which case the reference frame should be

updated.

Based on the study of the previous work and the above discussion, several com-

mon themes emerge regarding limitations of the existing motion segmentation approaches.

First, batch processing is quiet common, with many approaches operating either on two

images at a time or on a spatio-temporal volume containing a fixed number of images. In

the case of multiple frames, the motion of the object is oftenconsidered to be constant or

slowly changing throughout the sequence of frames under consideration to simplify the in-

tegration of information over time. Secondly, the techniques are usually limited to a small

time window in which the motion of all of the objects is expected to be well behaved. Ad-

ditionally, it is generally the case that the focus of the research is not upon computationally

efficient algorithms, leading in some cases to techniques that require orders of magnitude

9

more than is available in real-time applications. Finally,some of the techniques are limited

to a small number of objects (two or three), due to either the computational burden or more

fundamental aspects of the algorithm.

1.3 Thesis Outline

The main goal of the work presented in this thesis is to propose an approach for

motion segmentation that is able to handle long image sequences with an arbitrary number

of objects, is automatic with a few user defined parameters, and is computationally effi-

cient. A mixture model framework is employed for the purposeof segmentation, where

it is assumed that the individual moving regions in an image sequence follow parametric

motion models and the overall motion in the sequence is the resultant mixture of these

individual models. To describe a mixture, it is necessary tospecify the kind of motion

each region undergoes (nature of the parameters of the model), a set of observable data el-

ements, and a procedure to learn the parameters of each of themodels which in turn guide

the segmentation. The observed data in this work are the sparse motion trajectories that are

obtained by detection and tracking of point features in a joint manner through the consecu-

tive frames of the sequence. Each moving image region is composed of sparse points whose

trajectories follow an affine motion model. To obtain a suitable segmentation, parameters

of these affine motion models are learned using a novel procedure based on Expectation

Maximization (EM). The long term handling of the feature groups is done by maintaining

existing groups (splitting them if required), or addition of a new group altogether. One of

the secondary goals of this work is to explore a special motion model tailored for handling

articulated human motion. Since articulated motion cannotbe completely described by

any conventional motion model, special models are requiredfor its description. Hence, the

goal is to learn the various pose and viewpoint configurationof human gait and use them

10

for segmentation and pose estimation of articulated human motion. Another goal of the

work presented in this thesis is to describe the use of mixture models for segmentation of

natural images as well as a special application involving iris image segmentation.

The thesis is organized in the following manner. Chapter2 describes the various

mixture models, notably the spatially variant mixture models in the context of image seg-

mentation. A general description of the EM algorithm for parameter estimation is given. A

greedy spatially variant mixture model, an extension of theexisting spatially variant mix-

ture model, is proposed that overcomes some of the limitations of the existing models with

respect to the initialization and computational efficiency. Implementation of the various

mixture models described in this chapter is shown for segmentation of natural images. Im-

age segmentation, being a more intuitive and simpler to understand application of mixture

models, is chosen here to demonstrate the effectiveness of the proposed greedy spatially

variant mixture model. Another reason for demonstrating the mixture model algorithms

using image segmentation is that many of the previous approaches describe mixture mod-

els in the context of image segmentation.

Chapters3 and 4 form the bulk of the proposed motion segmentation approach.

Chapter3 describes tracking of point features in image sequences. Topics covered in this

chapter include the basics of motion estimation, detectionand tracking of point features,

and a joint feature tracking algorithm that, as the name suggests, tracks point features in

a joint fashion instead of tracking them independently as isdone by the conventional fea-

ture tracking algorithms. This joint feature tracking approach was presented at theIEEE

Conference Computer Vision and Pattern Recognition (CVPR), 2008[9]. In joint feature

tracking, the neighboring feature points influence the trajectory of a feature and this prop-

erty can be used to track features reliably in places with less or repetitive texture. The

motion vectors obtained from point feature trajectories are used as the input data for the

motion segmentation algorithm described in the next chapter.

11

Chapter4 begins by describing how to adapt the greedy spatially variant mixture

model introduced in Chapter2 for motion segmentation. Specifically, an affine motion

model and a neighborhood computing criterion in the case of sparse features is described.

Following the description of the algorithm, experimental results are demonstrated on var-

ious sequences. The motion segmentation algorithm performs in real time on a standard

computer, handles an arbitrary number of groups, and is demonstrated on several challeng-

ing sequences involving independently moving objects, occlusion, and parallax effects. The

number of groups is determined automatically and dynamically as objects move relative to

one another and as they enter and leave the scene. The primaryparameter of the algorithm

is a threshold that captures the amount of evidence (in termsof motion variation) needed

to decide that features belong to different groups. A part ofthis algorithm was described in

the paper published inIEEE Transactions of Systems, Man, and Cybernetics, 2008[80].

Segmentation using articulated human motion models is described in Chapter5.

The idea is to learn articulated motion models corresponding to various pose and view

angle configuration using 3D motion capture (mocap) data which is obtained from the tra-

jectories of the markers attached to the various body parts.A single gait cycle is quantized

into a fixed number of pose configurations as is the 360◦ of field of view. Motion vectors

of the markers in 2D can now be obtained for each pose and view angle and their discrim-

inative ability is captured by a spatially salient motion descriptor. These descriptors are

used for segmentation of articulated human motion and pose estimation. The advantage of

this approach is that it is purely motion based and hence can be applied to scenes where

extractions of appearance information is difficult.

Chapter6 revisits the problem of image segmentation in the context ofsegmenta-

tion of iris images. This application differs from the generic image segmentation presented

in Chapter2 due to the fact that a lot of a priori information is availablein the case of iris

images as compared to generic natural images. The number of components as well as the

12

shape of the iris and pupil are known a priori, thus leads to a much simplified formulation

of the segmentation problem. Texture and image intensity information is utilized along

with the shape information for segmentation of iris regions. Results are demonstrated on

non-ideal iris images that suffer from illumination effects, occlusion and in and out of plane

rotation. The iris segmentation approach was presented at theCVPR Workshop on Biomet-

rics, 2008[81]. Conclusions, contributions of the thesis and some potential directions for

future work are presented in Chapter7.

13

Chapter 2

Mixture Models for Segmentation

Mixture models, which are extensively used in segmentation, form an integral part

of the motion segmentation algorithm that will be presentedin Chapter4. This chapter

gives a general description of mixture models, their various formulations, the methods

of learning the mixture parameters, and their use in segmentation. Beginning with the

definition of a Finite Mixture Model (FMM) and the Expectation-Maximization (EM) al-

gorithm for parameter estimation, this chapter goes on to describe the Spatially Variant

Finite Mixture Models (SVFMMs) that can produce a smoother labeling compared with

FMMs. Several limitations of SVFMMs are discussed which motivate a new approach

based on iterative region growing that improves upon the existing SVFMM framework.

Termed as Spatially Constrained Finite Mixture Model (SCFMM), the effectiveness of the

new approach is demonstrated vis-à-vis the existing mixture models in the context of image

segmentation. The chief purpose of this chapter is to provide a theoretical backing to our

region growing approach by connecting it with the spatiallyvariant mixture models and

the EM algorithm. The reader may wish to skip the mathematical details of the mixture

models in this chapter on first reading, since our motion segmentation algorithm may be

understood without these details.

14

Most previous work in mixture models and EM is aimed at image segmentation.

In [21], the EM algorithm is used for learning component density parameters of an FMM

for image segmentation was described . The SVFMMs were first proposed in [86] for im-

age segmentation, and its various extensions were presented in subsequent works [76, 11,

33, 88] that introduce different prior models and different ways of solving for the parame-

ter estimates. While many approaches rely on Expectation Maximization for maximizing

the likelihood, an approach presented in [117] uses a combination of EM and graph cuts

(originally proposed in [17]) for energy minimization.

2.1 Finite Mixture Models

Clustering or labeling problems are common in computer vision where an observed

data element has to be classified as belonging to one ofK classes (also referred to as com-

ponents, groups, or clusters),K being a positive integer. For example, the objective of

image segmentation is to assign a label to each pixel from a set of finite labels based on

some image property. In addition to assigning the labels, itis also necessary to estimate

the overall properties of the pixels having the same labels (estimate the class parameters).

Hence, if each class follows a particular probability density function, then any pixel in the

image can be considered as a sample drawn from the mixture of the individual class densi-

ties. Finite mixture models (FMM) provide a suitable framework to formulate such labeling

problems, where mathematical techniques are already established for estimating the labels

and the class parameters [74]. A density function describing a finite mixture model withK

components is given by:

g(x(i)) =
K
∑

j=1

πjφ(x(i); θj), (2.1)

15

wherex(i) is the i th observation (a random variable or vector),φ(x(i); θj) is the density

function of thej th component withθj parameters, andπj is the corresponding mixing weight

such that
∑K

j=1 πj = 1, andπj ≥ 0, j = 1, . . . ,K. The mixing weight for a component can

be considered as the prior probability of drawing a sample from that component.

A Gaussian mixture model (GMM) is a special case of FMM where individual

component densities are Gaussian, i.e.,

φ(x(i); µj, σj) =
1

√

2πσ2
j

exp







−(x(i) − µj)
2

2σ2
j







, (2.2)

whereµj andσj are the mean and the standard deviation of thej th Gaussian density (pa-

rameters of the Gaussian density function,θj =
〈

µj, σj

〉

). Figure2.1 shows an example

of a grayscale image whose intensities can be modeled as a mixture of four 1D Gaussian

densities. The individual component densities observed inmany of the computer vision

problems such as segmentation are often approximated by Gaussian densities due to which

GMMs are the commonly used mixture model. Learning the mixture constitutes estimating

the parametersθ1, . . . , θK and the mixing weightsπ1, . . . , πK for theK components. There

are two basic ways in which the parameters (and the mixing weights) can be estimated:

maximum-likelihood (ML) or maximum a posteriori (MAP). These estimates can be found

using algorithms such as Expectation-Maximization (EM) which is most commonly used

to determine the ML or MAP estimates of the parameters of a mixture density.

16

Figure 2.1: An example of a Gaussian mixture model.LEFT: A grayscale image.RIGHT:
Mixture of four Gaussian components from which the pixels ofthe image on the left are
drawn as random samples.

2.2 Parameter Estimation Using Expectation Maximiza-

tion (EM)

Parameter estimation is based on the observed data. Assuming that the amount of

observable data is finite and discrete, letx(i) denote thei th data sample from a total ofN

samples, and letX =
〈

x(1), . . . , x(N)
〉

be the entire data set. For the sake of convenience,

the parameters of individual component densities and theircorresponding mixing weights

for the mixture model given in equation (2.1) are represented in a combined fashion by

Θ = 〈π1, θ1, . . . , πK, θK〉, such thatΘj = 〈πj , θj〉.

2.2.1 MAP Formulation

MAP is also known as Bayesian formulation as it is based on Bayes’ rule. The

parameters, that are to be estimated, are assumed to follow aknown (a priori) distribution.

From Bayes’ rule, the a posteriori probability density function of the parameters of thej th

17

component,Θj, given thei th data samplex(i) is

g(Θj; x(i)) =
πjφ(x(i); θj)g(Θj)

g(x(i))
, (2.3)

whereφ(x(i); θj) is the density function of thej th component,πj is the prior probability

of that component,g(Θj) is the prior density on the parameters of thej th component, and

g(x(i)) is a constant value that depends on the observed data. For theentire mixture (allK

components) given a single data element it can be written as

g(Θ; x(i)) =
K
∑

j=1

(

πjφ(x(i); θj)g(Θj)

g(x(i))

)

. (2.4)

Assuming that theN data samples are independent, equation (2.4) can be modified to

g(Θ; X) = g(Θ; x(1), . . . , x(N)) = g(Θ; x(1)), . . . , g(Θ; x(N)) =
N
∏

i=1

g(Θ; x(i)). (2.5)

From equations (2.4) and (2.5), the a posterior probability of the set of parameters given

the entire data is

g(Θ; X) =
N
∏

i=1

K
∑

j=1

πjφ(x(i); θj)g(Θj)

g(x(i))
. (2.6)

The MAP estimate of the parameter set can now be obtained by maximizing g(Θ; X), i.e.,

Θ̂MAP = arg max
Θ
{g(Θ; X)} . (2.7)

Usually, instead of maximizing the actual density term, itslog is maximized in order to

simplify the calculations. Also, since the denominator of equation2.6 is a scaling factor,

it can be conveniently ignored for maximization operation,leading to the MAP estimate

18

equation

Θ̂MAP = arg max
Θ







N
∑

i=1

K
∑

j=1

log{πjφ(x(i); θj)g(Θj)}






. (2.8)

Differentiating the above equation, equating it to zero andsolving it further yields MAP

estimate of parameters.

2.2.2 ML Formulation

There are many situations when the prior probability distribution of the parameters

P(Θ) is unknown. A convenient way is to assume thatΘ is uniformly distributed and is

equally likely to take on all possible values in the parameter space. Hence, the prior prob-

ability density functiong(Θj) in equation (2.3) can be eliminated. Since the denominator

g(x(i)) in equation (2.6) can be ignored, maximizing the a posteriori probability density

function is equivalent to maximizing the likelihood function. The likelihood function is

given by

L(Θ) =
N
∏

i=1

K
∑

j=1

πjφ(x(i); θj). (2.9)

Maximizing the likelihood function in equation (2.9) leads to the maximum likelihood

(ML) estimate of the parameters

Θ̂ML = arg max
Θ







N
∏

i=1

K
∑

j=1

πjφ(x(i); θj)







. (2.10)

As in the case of MAP estimation, log of the likelihood function can be maximized instead

of the above equation so that

Θ̂ML = arg max
Θ

log







N
∏

i=1

K
∑

j=1

πjφ(x(i); θj)







= arg max
Θ







N
∑

i=1

K
∑

j=1

log
{

πjφ(x(i); θj)
}







.

(2.11)

19

The following two sections describe an algorithm for ML estimation of the parameters of

the mixture model.

2.2.3 Complete Data Log Likelihood Function

Revisiting the initial labeling problem, it can be seen thatthe ML or MAP for-

mulations presented above do not explicitly consider pixellabels. They only consider the

observed dataX , which is termed asincomplete data[86, 85]. Usually, the pixel labels are

represented as hidden or missing variables on which the observed data is conditioned. Let

c(i) be aK dimensional vector associated with thei th observed data elementx(i), such that

its j th element is

c(i)
j =







1 if x(i) ∈ j th component

0 otherwise
. (2.12)

The vectorc(i) is aK dimensional binary indicator vector. There areN such indicator vec-

tors, one corresponding to each observed data element, and they are used to indicate which

class the data elements belong to. It is assumed thatx(i) belongs to only one class as seen

from equation (2.12). Observed dataX = {x(1), . . . , x(N)} along with the corresponding

binary indicator vectorsC = {c(1), . . . , c(N)}, are calledcomplete data[14, 86] and can

be represented asy(i) = {x(i), c(i)} or for the entire set,Y = 〈X , C〉. Introduction of the

indicator vectors to make the data “complete” allows for a tractable solution for the EM

update equations (described in next section).

The density function for the complete data likelihood is given by

g(Y ; Θ) =
N
∏

i=1

K
∏

j=1

(

πjφ(x(i); θj)
)c(i)

j
. (2.13)

Details of the derivation of the density function in (2.13) can be found in AppendixA.1.

The likelihood function, defined in the previous section over incomplete data can be modi-

20

fied to represent complete data as

Lc(Θ) = log{g(X , C | Θ)} = log{g(Y | Θ)} . (2.14)

This modified likelihood function representing the complete data is iteratively maximized

using the EM algorithm to find the maximum-likelihood estimates of the parameters.

2.2.4 Expectation Maximization Algorithm

The Expectation-Maximization (EM) algorithm consists of two steps. In the expec-

tation step or E step, the hidden variables are estimated using the current estimates of the

parameters of the component densities. In the maximizationor M step, the likelihood func-

tion is maximized. The algorithm requires an initial estimates of the parameters. Hence,

ML estimates of the parameters are given by

Θ̂ML = arg max
Θ
{E[log(g(X , C | Θ))]} , (2.15)

whereE(.) is the conditional expectation function. The EM algorithm can now be de-

scribed. From equations (2.13), (2.14), and (2.15) the E step can be written as

E [Lc(Θ)] =
N
∑

i=1

K
∑

j=1

E
(

c(i)
j ; x(i),Θ

)

log
(

πjφ(x(i); θj)
)

. (2.16)

Since the elementsc(i)
j of the binary indicator vectors can be assigned to either 1 or0,

E
(

c(i)
j ; x(i),Θ

)

= P(c(i)
j = 1 | x(i),Θ). Bayes’ rule is applied toP(c(i)

j = 1 | x(i),Θ) to

obtain

P(c(i)
j = 1 | x(i),Θ) =

P(x(i) | c(i)
j = 1,Θ)P(c(i)

j = 1 | Θ)

P(x(i) | Θ)
(2.17)

21

E
(

c(i)
j ; x(i),Θ

)

=
πjφ(x(i); θj)

∑K
j=1 πjφ(x(i); θj)

= wj(x
(i); Θ) (2.18)

This is nothing but a Bayes’ classifier. Hence, to assign the class labels to the correspond-

ing data elements, maximum probability value obtained fromthe Bayes’ classifier can be

used (see Figure2.2). Explanation of EM algorithm involves the use of the likelihood func-

tion of equation (2.16) and finding the estimate of the parametersΘ̂ that would maximize

this function as shown in equation (2.15). Let Θ̂(t) be the estimated parameters at thetth

iteration. The E step finds the expectation of the log-likelihood function and for the(t+1)th

iteration given by

Q(Θ; Θ̂(t)) =
N
∑

i=1

K
∑

j=1

wj(x
(i); Θ̂(t))log

(

πjφ(x(i); θj)
)

, (2.19)

wherewj(x
(i); Θ̂(t)) =

π̂
(t)
j φ(x(i); θ̂

(t)
j)

∑K
j=1 π̂

(t)
j φ(x(i); θ̂

(t)
j)

(2.20)

andπ̂j andθ̂j are the estimates ofπj andθj respectively obtained at thetth iteration.

The maximization step now involves finding

Θ̂(t+1) = arg max
Θ

Q(Θ; Θ̂(t)). (2.21)

Since the mixing weights and the density parameters are independent of each other, their

expression can be determined separately. The update equation for the mixing weights is

given by

π
(t+1)
j =

1

N

N
∑

i=1

wj(x
(i); Θ̂(t)). (2.22)

For derivation of (2.22), please refer to AppendixA.2. Assuming that the individual com-

ponent densities are Gaussian in nature as shown in equation(2.2), the objective is to find

the expressions for the meanµj and the standard deviationσj. For finding the expression

22

Figure 2.2: Assigning labels to the data for an FMM.LEFT: Each data element is rep-
resented by a set of weightsw(i)

j corresponding to the components of the mixture model.
CENTER: The mixing weightsπj for each component are obtained by summing up and
normalizing thew(i)

j for all the data elements.RIGHT: The final label is assigned based on
the component that has the maximum weight for a given data element.

for the class mean and standard deviation the log-likelihood function from equation (2.16)

is differentiated with respect toµj andσj and equated to zero. The final update equations

for the mean and standard deviation are given by

µ(t+1)
j =

∑N
i=1 wj(x(i); Θ̂(t))x(i)

∑N
i=1 wj(x(i); Θ̂(t))

. (2.23)

Similarly, the expression for the standard deviation update is given by:

σ
(t+1)
j =

√

√

√

√

√

∑N
i=1 wj(x(i); Θ̂(t))(x(i) − µ(t+1)

j)2

∑N
i=1 wj(x(i); Θ̂(t))

. (2.24)

The E and M steps continue until convergence i.e., untilL(Θ(t+1)) > L(Θt). EM is guar-

anteed to converge to some local minimum [32]. Appendix A.2 provides the details of

derivation of the expressions for the class mean and standard deviation.

23

2.2.5 Limitations of the Finite Mixture Models

Even though FMMs provide an effective framework to mathematically formulate

and solve a variety of clustering problems, some major limitations exist that limit their use

in segmentation or labeling problems.

1. Direct estimation of data labels not possible:Classification of the data in a FMM

is performed using the Bayes’ classifier described in equation (2.18) which deter-

mines the maximum a-posteriori probability of an element ofthe data belonging to

a particular class based on the mixing weights (prior) and the component densities

(likelihood). This is a soft classification, i.e., for each data element, there exists a

set of probabilities belonging to each of the components andfor classification, the

maximum value amongst them is chosen. Hence, the FMMs do not allow for the

direct estimation of the data labels, and an indirect approach has to be utilized.

2. Absence of spatial correlation between the observations:While arriving at a like-

lihood function to be maximized in equation (2.9), one of the key assumptions was

that of the statistical independence of the observed data. This assumption, while

simplifying the derivation to obtain and maximize the likelihood function, affects the

ability of classification of the observed data in cases wherespatial saliency of the data

is important. For example, in the case of image segmentation, the nearby pixels are

more likely to have the same grayscale intensity or color. FMMs cannot utilize such

spatial information for classification, unless the spatialcoordinates are part of the

data vector. Even then, such a segmentation may have regionsthat are not spatially

constrained (regions produced may be disconnected), and such an approach imposes

elliptical model which does not accurately represent arbitrarily shaped regions. An

improved model is required that can take into account the spatial information for

classification in such a way that the labeling appears smooth.

24

2.3 Spatially Variant Finite Mixture Models

An SVFMM can be considered as a more generalized form of an FMM. The main

difference between the two models is that in the SVFMM, instead of the mixing weights,

each data element has label probabilities. As previously defined, there are K components

in a FMM and mixing weights corresponding to each component is represented byπj such

that
∑K

j=1 πj = 1 andπj > 0. In a SVFMM, the mixing weights become label probabilities,

i.e., aK dimensional weight vector for each observation, whose elements describe the prob-

ability of the observation belonging to the corresponding components. Letπ(i) be the label

probability vector corresponding to thei th data element, andπ(i)
j be itsj th component, then

π
(i)
j represents the probability of thei th data element belonging to thej th component. There

areN number of suchK dimensional weight vectors with the conditions that
∑K

j=1 π
(i)
j = 1

andπ(i)
j > 0, ∀ i = 1, . . . ,N. The density function for thei th observation can be defined as

g(x(i); π(1) . . . π(N), θ1 . . . θK) =
K
∑

j=1

π
(i)
j φ(x(i); θj). (2.25)

Considering the observed data to be statistically independent, the conditional density for

the entire set of observations is given as

g(X ; π(1) . . . π(N), θ1 . . . θK) =
N
∏

i=1

K
∑

j=1

π
(i)
j φ(x(i); θj). (2.26)

It can be seen from the above equation that there are some differences in the parameters

on which the data is conditioned in the SVFMM as compared to the FMM. Here the set

of parameters can be represented asΘ =
〈

π(1) . . . π(N), θ1, . . . , θK

〉

. Hence, the number

of parameters to be estimated in the case of an SVFMM is comparable to the amount

of observed data (N × K label probabilities andK component density parameter vectors)

whereas in the case of FMM, this value is invariant of the amount of data (K mixing weights

25

and parameter vectors). EM algorithm can be used to find either the ML or MAP estimates

of the parameters of an SVFMM.

2.3.1 ML-SVFMM

ML estimation of parameters for an SVFMM is similar to that ofan FMM except

in one key area which will be described momentarily. An interesting property of the label

probabilitiesπ(i)
j is that their ML estimates converge to either 0 or 1, thus enforcing a

binary labeling (for details, see [86]). The expressions for the label probabilities and the

parameters of the component densities (assuming Gaussian)for the (t + 1)th iteration are

given by

π
(i)(t+1)
j =

1
∑K

j=1

(

w(i)
j

)(t)

(

w(i)
j

)(t)
, (2.27)

where
(

w(i)
j

)(t)
=

(

π
(i)
j

)(t)
φ(x(i); (θj)

(t))

∑K
j=1

(

π
(i)
j

)(t)
φ(x(i); (θj)

(t))
, (2.28)

µ(t+1)
j =

1
∑K

j=1

(

w(i)
j

)(t)

(

w(i)
j

)(t)
x(i), (2.29)

(σ2
j)

(t+1) =
1

∑N
i=1

(

w(i)
j

)(t)

N
∑

i=1

(

w(i)
j

)(t) (

x(i) − µ(t+1)
j

)2
. (2.30)

Equations (2.27) - (2.30) for the ML estimation of the SVFMM parameters are very similar

to the corresponding equations of the FMMs with one essential difference. In the case

of ML-SVFMM, the label probabilities of a data element for the next iteration are the

weights computed in the current iteration:
(

π
(i)
j

)(t+1)
=
(

w(i)
j

)(t)
. Unlike the FMMs, in

ML-SVFMM the pdfs over the data elements are not summed up andnormalized to obtain

one prior probability per component. Instead, each data element retains its pdf over the

components which acts as a prior for the next iteration. Because of this difference, the

26

labeling becomes spatially variant. Since the label probabilities are directly estimated,

SVFMM addresses the first concern regarding FMMs stated in section 2.2.5, but it does

not address the limitation of spatial continuity of the labels (because there is no interaction

between the neighboring labels) since in ML estimation the prior on the parameters is

assumed to be uniform. To effectively utilize the SVFMM framework, a suitable prior for

the label probabilities is required that enforces spatial continuity on the estimated labels.

This is the motivation for performing MAP estimation.

2.3.2 MAP-SVFMM

Maximum a posteriori estimation of parameters of an SVFMM can incorporate spa-

tial information in the observed data. This is done by choosing a suitable prior probability

density function for the parameters to be estimated. For a SVFMM, the set of parameters

to be estimated is given byΘ =
〈

π(1) . . . π(N), θ1, . . . , θK

〉

, and therefore the prior density

function is given byg(Θ) = g(π(1) . . . π(N), θ1, . . . , θK). Since the label probabilities{π(i)
j },

and the component density parameters{θj} are independent, the prior density function can

be written asg(Θ) = g(π(1) . . . π(N))g(θ1, . . . , θK). The a posteriori density function is

given by

g(π(1) . . . π(N), θ1, . . . , θK; X) ∝ g(X ; π(1) . . . π(N), θ1, . . . , θK)g(π(1) . . . π(N), θ1, . . . , θK)

(2.31)

g(π(1) . . . π(N), θ1, . . . , θK ; X) ∝ g(X ; π(1) . . . π(N), θ1, . . . , θK)g(π(1) . . . π(N))g(θ1, . . . , θK)

(2.32)

While choosing a prior density forΘ, the component parameters can be assumed

to follow a uniform distribution thus leaving only the labelprobabilities to be selected. It

is usually the case that in typical labeling applications only local interactions of the data

elements are important. By local interactions, it is meant that the label assigned to a data

27

element is only affected by the labels of its immediate neighbors. This leads toward a

Markov Random Field (MRF) assumption on the label probabilities.

Three key aspects of representing the local interactions inthe observed data us-

ing MRF are: a method to impose spatial connectivity, a parameter that defines the local

neighborhood and a function that defines the strength of the local interactions. These re-

quirements are met by treating the problem as a graph with thevertices representing the

data and the edges modeling the connections between the neighboring data elements. The

size of the neighborhood is determined by the order of the clique. In an undirected graph,

a clique of ordern is the set ofn vertices that are connected to each other. Gibbs density

function is a commonly used function to represent the MRF based label prior density and

is defined as

g(π(1) . . . π(N)) =
1

Zβ

exp
[

−U(π(1) . . . π(N))
]

, (2.33)

where

U(π(1) . . . π(N)) = β
∑

n∈M
Vn(π

(1) . . . π(N)) (2.34)

andβ andZβ are constants,Vn(.) is the clique potential function that determines the strength

of interaction between the clique vertices andM represents the set of all possible cliques in

the observed data. The parameterβ regulates the overall effect of the prior probability term

on the label assignment process, and a high value ofβ signifies the increased influence of

neighboring label probability terms on the current data element, creating an effect similar

to spatial smoothing.

The clique potential function is chosen in such a way that it assigns higher label

probability to a data element if its neighbors have been assigned the same labels. So in the

local neighborhoodN (i) of the i th data member, the clique potential function for thenth

28

Figure 2.3: Markov Random Field with2nd order cliques for a 4-connected and 8-connected
neighborhood.

order clique is defined as

∑

n∈M
Vn(π

(1) . . . π(N)) =
∑

(i,m)∈N (i)

K
∑

j=1

(

π(i) − π(m)
)2
. (2.35)

A commonly used clique order is two, which leads to the pairwise interaction of data el-

ements. In the case of images, the local neighborhood is usually defined as 4-connected

or 8-connected (see Figure2.3). From equations (2.33), (2.35), an expression for the prior

probability density is obtained that can be used in equation(2.32) to solve for the MAP

estimation of the parameters. Details of the procedure adopted to arrive at the parameter

estimates can be found in [86].

2.4 A Spatially Constrained Finite Mixture Model

(SCFMM)

The SVFMM based labeling is supposed to generate smooth labels, but there is still

a possibility that spatially disjoint regions may be assigned the same labels. This property

29

is undesirable especially if a large number of small regionsare segmented in the interior of

a big region. In order to rectify this effect the segmentation has to be constrained to produce

a labeling which follows the spatial continuity of the data elements. Additionally, two chief

limitations of the EM algorithm for parameter estimation ofthe SVFMMs are related to its

initialization and its computational cost. The number of components may not be known a

priori in many cases. Consequently, the EM algorithm for solving for SVFMMs has to use

a value ofK predefined by the user or has to resort to using a separate initialization routine.

Similarly, initialization of the component density parameters is not a trivial task given that

they have a large impact on the segmentation outcome. For Gaussian component densities,

if the initialization is not close to the actual mean, then the EM algorithm can get stuck

into local minima and not converge to the desired location. More importantly, the variance

initialization also has to be optimum; where a large value can lead the algorithm astray, or

too small a value can make the algorithm susceptible to noise. Initialization also determines

the amount of time it takes to reach convergence. Generally,algorithms that are based on

spatial smoothing like MAP-SVFMM tend to be slow as they process the neighborhood of

each pixel for multiple iterations. Due to these reasons, anapproach is required that is fast

and does not need explicit initialization in terms of numberof components.

The spatially constrained finite mixture model (SCFMM)1 is a variation of the

SVFMM, where the emphasis is on assigning spatially connected labels which can be com-

puted by a greedy EM algorithm. Although the termgreedy EMwas introduced in [106],

our algorithm is agglomerative as opposed to the divisive nature of the previous algorithm.

The algorithm can automatically determine the number of groups and is also computation-

ally efficient as compared to the standard EM algorithm used for solving MAP-SVFMM.

The greedy EM is inspired from the region growing algorithm.In region growing algo-

1Our use of the termspatially constrainedshould not be confused with that of [76], where the term
describes a variation of the SVFMM [86] that smooths the label probabilities across the pixels butdoes not
constrain the connectivity of the segmented region.

30

rithm, starting from a seed location, the neighboring pixels are incrementally accumulated

if they satisfy a particular condition. This condition is problem dependent and could be, for

example, to include all pixels with grayscale values below acertain threshold. The region

growing stops when no more pixels can be added to the already accumulated ones. Then

another location is chosen and the growing procedure is repeated all over again. This region

growing technique has some interesting properties. First,it does not need to know the total

number of regions in the given data. In fact, the number of segmented regions is the output

of the algorithm. The starting locations can be chosen at random or deterministically, and

it is not totally unreasonable to assume that the segmentation output is somewhat indepen-

dent of the choice of the seed points although this is not guaranteed. Another property

is that the component parameters are initialized and learned on the fly as the processing

proceeds. Also, region growing has strong spatial connotations. Since region growing is

done locally, i.e., by accumulating immediate neighbors, there is no risk of labeling spa-

tially disconnected regions with the same label. This property points toward the idea of

the algorithm being spatially constrained. Finally, the algorithm can be implemented in a

very efficient manner. One limitation of such a region growing approach is that being a

local process, it can ignore the higher level information which can lead to generation of

undesirable regions due to noise. The criterion for inclusion of neighboring pixels has to

carefully selected, otherwise there is a risk of a region growing too big or too small (over-

or under-segmentation).

To learn the parameters, the region growing algorithm can berun repeatedly for

a single region until a stable set of pixels are obtained. Theproperties of the set can be

updated at each iteration to refine the inclusion criterion.This is similar in spirit to the

parameter estimation process in other mixture models usingthe EM algorithm, especially a

greedy EM algorithm where the clusters are automatically determined at the end. Consider

an example of iterative region growing. Starting from a random location in the image,

31

the region parameters can be initialized over a small neighborhood. At the end of the

first iteration, the region parameters and a new mean location are obtained. This new

location, now becomes the starting location and the region parameters become the initial

estimates for the second iteration. Progressively, mean and variance values are refined, and

the algorithm converges to a set of parameters (or a particular labeling) that do not change

after subsequent growing iterations.

The SCFMM and the greedy EM algorithm can now be formulated. Assuming that

the observed image data is independent of each other given the parameters, the probability

of describing the entire observed data given the set of parameters can be written as

P(X , C | Θ) =
N
∏

i=1

K
∑

j=1

P(x(i) | c(i)
j ,Θ)P(c(i)

j | Θ), (2.36)

whereC = {c(1), . . . , c(N)}; c(i) =
〈

c(i)
1 , . . . , c

(i)
K

〉

, are the binary labels on the pixels similar

to (2.12). For thej th component the data independence assumption meansP(c(1)
j , . . . , c(N)

j |

Θ) =
∏N

i=1 P(c(i)
j | Θ). A more realistic formulation that is in accordance with theproposed

SCFMM would take the spatial continuity of the regions in account. For thei th pixel, its

labelC(i)
j depends on its parents i.e., the pixel that included thei th pixel in the group. This

way, the pixels of region growing can be arranged in a chain starting from the seed location

to the current pixel yielding

P(c(1)
j , . . . , c(N)

j | Θ) =
N
∏

i=1

P(c(i)
j | c(i−1)

j ,Θ)

=
N
∏

i=1

P(c(i)
j | Θ)c(i−1)

j ,

on the account ofc(i−1)
j also being a binary variable. Extending this result to 2D, let ǫ(i)j be

a binary variable for thej th component whose value is 1 if and only if there exists a path

(according to a predefined neighborhood) from thei th pixel to the seed location such that

32

c(l)
j = 1 for all pixelsx(l) along the path. As actual labels are unavailable, an estimate of

ǫ
(i)
j given byǫ̂(i)j is used, which is set to one ifP(c(l)

j | Θ) > pτ for all the pixels along the

path, wherepτ is a predefined threshold. This leads to a greedy EM like algorithm with the

following update equations

(

π
(i)
j

)(t+1)
=

(

π
(i)
j

)(t)
φ(x(i); θ

(t)
j)

(

ǫ̂
(i)
j

)(t)

∑K
l=1

(

π
(i)
l

)(t)
φ(x(i); θ

(t)
l)

(

ǫ̂
(i)
l

)(t) (2.37)

ǫ̂
(i)
j =

{

min
l
π

(l)
j

}

> pτ (2.38)

µ(t+1)
j =

1
∑N

i=1

(

π
(i)
j

)(t)

N
∑

i=1

(

π
(i)
j

)(t)
x(i) (2.39)

(

σ2
j

)(t+1)
=

1
∑N

i=1

(

π
(i)
j

)(t)

N
∑

i=1

(

π
(i)
j

)(t) (

x(i) − µ(t+1)
j

)2
(2.40)

2.5 Application of Mixture Models for Image Segmenta-

tion

The use of the various mixture models proposed in the previous sections for image

segmentation is now demonstrated.

2.5.1 Implementation Details

A general clustering problem using various mixture models described in the previ-

ous sections involves answering the following questions:

• What is the nature of the data?

• How many components are present in the mixture model?

33

• What are the mixing weights (or label probabilities) of the components?

• What density functions do the components follow and what arethe parameters?

• What is the prior on the parameters?

• How is the system solved to obtain the parameter estimates and classification labels?

For the problem of image segmentation, the data to be clustered can be the pixel

values or any other quantity derived from the image (such as texture). Furthermore, the

observed image data is considered to be sampled from a mixture of probability density

functions. The nature of such mixture models with regard to the kind of component den-

sities and their parameters is assumed to be known beforehand. This helps in establishing

the objective for any formal procedure used to obtain a solution, i.e., to estimate the pa-

rameters and the mixing weights. In this section, segmentation based on image color or

grayscale intensities is described, and hence the data is either scalar (grayscale images) or

a vector (3×1 color vector). LetI be the input image withN pixels, and letx(i) be its value

at thei th pixel. The important thing to note here is that the pixel value x(i) is an observed

quantity because an image is assumed to be corrupted by Gaussian noise of varianceσ2
η.

The component densities are assumed to be Gaussian and the dimensionality of their cor-

responding parameters, the component means and the variances, depend onx(i). The goal

is to obtain a labeled imageL, such thatL(i) = j; j = 1, . . . ,K. The key factor that is

mostly implementation dependent is the number of componentsK or labels. This has to be

supplied externally and all the parameter estimation expressions for a given mixture model

depend on the value ofK. The parameter estimates are obtained iteratively by the maxi-

mization of likelihood (or minimization of energy) using the EM algorithm. For the mixture

models introduced in the previous sections, the algorithmsEM-FMM, EM-ML-SVFMMand

EM-MAP-SVFMMdescribe the parameter estimation and the labeling process.

34

AlgorithmsEM-FMM, EM-ML-SVFMMare shown in Figures2.4, and2.5, respec-

tively and are relatively straightforward to understand and implement as compared to the

EM-MAP-SVFMM. This is because assumption of uniform prior on the parameters which

simplifies the likelihood function. It can be solved to obtain expressions for the values of

mixing weights (or label probabilities) and means and the variances which are updated for

every iteration until convergence is achieved. The MAP-SVFMM on the other hand as-

sumes that the pixel label probabilities follow the MRF model. This leads to a likelihood

function with additional terms. The label probabilities need to be estimated in a constrained

manner, i.e., ensuring that for a pixel the probability values with respect to all labels should

sum to unity. The net effect of this is that additional steps need to be performed for con-

strained optimization using techniques like gradient projection. This is shown in steps 2(b)

i - vii of the algorithmMAP-SVFMMshown in Figure2.6. TheEM-MAP-SVFMMhere is

reproduced form [86] where is described in its entirety along with a detailed analysis.

Two important aspects of the parameter estimation process using EM are initializa-

tion and convergence. EM requires a good initialization to arrive at desired results. Good

initialization refers to starting close to the desired or expected parameter estimates. For a

FMM or SVFMM with Gaussian component densities, four quantities need to be initial-

ized, namely, the number of components, the mixing weights (FMM) or label probabilities

(SVFMM), the component means, and the variances. Initialization is mostly problem de-

pendent. As described earlier, the number of classesK is usually predefined. The mixing

weights or the label probabilities are initialized to1/K, which eliminates bias toward a

particular labeling assignment in absence of any a priori information. Initialization of com-

ponent densities depends on the data and the range of the datacan be used to initialize class

means. One way to initialize class means is to ensure that they are at equal distances in

the data space. Variance of the components can then be some percent of the variance of

the entire data. In the EM algorithm, the likelihood is maximized over a period of time,

35

due to which it takes a certain number of iterations to achieve convergence. The number of

iterations varies depending upon the initialization of theparameters as well as the nature of

the data. EM is guaranteed to converge at some local minimum.

The implementation details of the greedy EM are shown in Figure 2.7. For the

sake of implementation, some new terms are introduced. TheN × 1 vectorb is a binary

vector that indicates whether a pixel is labeled. The functionsN 4
1 (.), N 8

1 (.), N 4
2 (.), and

N 8
2 (.) are the neighborhood computing functions. The subscript denotes the pixel distance

and the superscript denotes the neighborhood connectedness. So,N 8
1 (i, b) returns all the

unlabeled pixels in the 8-connected neighborhood within 1 pixel distance of thei th pixel,

while N 8
2 (i, b) returns the unlabeled pixels from a larger neighborhood that are used for

initialization of mean and variance for the region to be grown. The functionN 8
1 (i, L)

returns the labels of the neighbors of thei th pixel. xj denotes the centroid or spatial mean

of the j th segment which is iteratively computed.Gj is the set of pixels that are assigned

the j th label. As it can be seen, the algorithm does not require any preconditions on the

number of components. The means and the variances of each of the potential segment are

initialized around each new starting point as the algorithmproceeds. The two important

parameters to be set are: i)pτ , the condition of inclusion of a pixel in the current region,

and ii)nmin, the minimum number of pixels in a group for it to be declared valid. This limits

over-segmentation in case of noise in the image.

2.5.2 Experimental Results

Experimental results of theEM-FMM, EM-ML-SVFMM, EM-MAP-SVFMM, and

greedyEM-SCFMMalgorithms are demonstrated on various test images. Figure2.8shows

a synthetic image with four different grayscale values 30, 100, 170 and 240. Zero mean

Gaussian noise of standard deviationση = 25 was added to generate the noisy synthetic

36

Algorithm: EM-FMM

Input: Noise corrupted grayscale image I with N pixels
Output: Labeled image L

1. Initialization:

(a) Set a value for number of components, K

(b) Set mixing weights, (πj)
(0) = 1/K, ∀ j = 1 . . .K

(c) Set component density parameters, mean µ(0)
j and variance σ

(0)
j ,

and ∀ j = 1 . . .K

(d) Set a value for maximum number of iterations, nitr

2. for t = 1:nitr

(a) E STEP

i. for i = 1 : N

(a) Set x(i) = I(i)

(b) for j = 1 : K

• Compute φ(x(i); µ(t)
j , σ

(t)
j) = 1√

2πσ
(t)
j

exp

(

− (x(i)−µ
(t)
j)2

2(σ
(t)
j)2

)

• Compute (w(i)
j)(t) =

(πj)
(t)φ(x(i); µ

(t)
j ,σ

(t)
j)

∑K
j=1

(πj)
(t)φ(x(i); µ

(t)
j ,σ

(t)
j)

• Compute W(i)
j = (w(i)

j)(t)x(i)

(b) M STEP

i. for j = 1 : K

(a) Update mixing weights, (πj)
(t+1) = 1

N

∑N
i=1(w

(i)
j)(t)

(b) Update class mean, µ(t+1)
j =

∑N
i=1

W(i)
j

∑N
i=1

(w(i)
j)(t)

(c) Update class variance, σ(t)
j =

∑N
i=1

(w(i)
j)(t)

[

x(i)−µ
(t+1)
j

]2

∑N
i=1

(w(i)
j)(t)

3. Update label image, L(i) = arg maxj

{

(w(i)
j)(t)

}

, for i = 1, . . . ,N

Figure 2.4: EM algorithm for parameter estimation in an FMM.

37

Algorithm: EM-ML-SVFMM

Input: Noise corrupted grayscale image I with N pixels
Output: Labeled image L

1. Initialization:

(a) Set a value for number of components, K

(b) Set label probabilities,
(

π
(i)
j

)(0)
= 1/K, ∀ j = 1 . . .K, and ∀ i = 1 . . .N

(c) Set component density parameters, mean µ(0)
j and variance σ(0)

j , ∀ j =
1 . . .K

(d) Set a value for maximum number of iterations, nitr

2. for t = 1:nitr

(a) E STEP

i. for i = 1 : N

(a) Set x(i) = I(i)

(b) for j = 1 : K

• Compute φ(x(i); µ(t)
j , σ

(t)
j) = 1√

2πσ
(t)
j

exp

(

− (x(i)−µ
(t)
j)2

2(σ
(t)
j)2

)

• Compute (w(i)
j)(t) =

(π
(i)
j)(t)φ(x(i); µ

(t)
j ,σ

(t)
j)

∑K
j=1

(π
(i)
j)(t)φ(x(i); µ

(t)
j ,σ

(t)
j)

• Compute W(i)
j = (w(i)

j)(t)x(i)

• Update label probabilities, (π
(i)
j)(t+1) =

(w(i)
j)(t)

∑K
j=1

(w(i)
j)(t)

(b) M - STEP

i. for j = 1 : K

(a) Update class mean, µ(t+1)
j =

∑N
i=1

W(i)
j

∑N
i=1

(w(i)
j)(t)

(b) Update class variance, σ(t+1)
j =

∑N
i=1

(w(i)
j)(t)

[

x(i)−µ
(t+1)
j

]2

∑N
i=1

(w(i)
j)(t)

3. Update label image, L(i) = arg maxj

{

(π
(i)
j)(t+1)

}

, for i = 1, . . . ,N

Figure 2.5: EM algorithm for parameter estimation in an ML-SVFMM. The only difference
between this algorithm and theEM-FMMis the use ofπ(i)

j instead ofπj.

38

Algorithm: EM-MAP-SVFMM

Input: Noise corrupted grayscale image I with N pixels
Output: Labeled image L

1. Initialization: same as in algorithms FMMand ML-SVFMM

2. for t = 1:nitr

(a) E STEP

i. for i = 1 : N

(a) Set x(i) = I(i)

(b) Compute φ(x(i); µ
(t)
j , σ

(t)
j)

(c) Compute (w(i)
j)(t)

(d) Compute W(i)
j = (w(i)

j)(t)x(i)

ii. for i = 1 : N

(a) s1 =
∑K

j=1(w
(i)
j)(t)ln

(

(π
(i)
j)(t)

)

− β
∑

m∈N (i) Vm
(

(π(i))(t), π(m)
)

(b)
(

q(i)
j

)(t)
=

φ(x(i); θ
(t)
j)PK

l=1(π
(i)
l)(t)φ(x(i); θ

(t)
j)
− β

∑

m∈N (i)

[

∂Vm((π(i))(t),π(m))
∂π

(i)
j

]

π(i)=(π(i))(t)

(c) Evaluate condition ϕ(π
(i)
j , q(i)

j) =

{

1, if π
(i)
j = 0 and q(i)

j < 0
0, otherwise

(d) Compute

(Rj,l)
(t) =











0, if ϕ((π
(i)
j)(t), (q(i)

j)(t)) = 1 or ϕ((π
(i)
l)(t), (q(i)

l)(t)) = 1
H−1

H , if j = l, and ϕ((π
(i)
j)(t), (q(i)

j)(t)) = 0
−1
H , otherwise

H = K− number of elements in (π(i))(t) satisfying ϕ((π
(i)
j)(t), (q(i)

j)(t)) = 1

(e) (d
(i)

)(t) = (R(i))(t)(q(i))(t)

(f) Set α = 1.0 and stop= 0

(g) Repeat until stop= 0

• (π(i))(t+1) = (π(i))(t) + α(d
(i)

)(t)

• s2 =
∑K

j=1(w
(i)
j)(t)ln

(

(π
(i)
j)(t+1)

)

− β
∑

m∈N (i) Vm

(

(π(i))(t+1), π(m)
)

• if s2 < s1, α = 0.5α, else stop= 1

(b) M STEP

i. Update class mean, µ
(t+1)
j =

PN
i=1 W(i)

jPN
i=1(w(i)

j)(t)

ii. Update class variance, σ
(t+1)
j =

PN
i=1(w(i)

j)(t)
h
x(i)

−µ
(t+1)
j

i2PN
i=1(w(i)

j)(t)

3. Update label image, L(i) = argmaxj

{

(π
(i)
j)(t+1)

}

Figure 2.6: EM algorithm for parameter estimation in MAP-SVFMM.

39

Algorithm: greedyEM-SCFMM

Input: Noise corrupted grayscale image I with N pixels
Output: Labeled image L

1. Initialization:

(a) Set current label j = 0

(b) Set label probabilities for N pixels
(

π
(i)
j+1

)(0)
= 0, i = 1, . . . ,N

(c) Set pixel availability indicator vector b(i) = 0, i = 1, . . . ,N

2. Repeat until all pixels are labeled

(a) Select a random unlabeled pixel x(i) such that b(i) = 0

(b) Compute neighbors of x(i), mu = N 8
1 (i, b) that are unlabeled

(c) if | mu |> 0

i. Compute initialization neighborhood nu = N 8
2 (i, b)

ii. π(k)
j+1 = 1, k = 1, . . . , | nu |

iii. Compute region centroid xj+1 from nu

iv. Repeat until xj+1 does not change
(a) Compute the nearest pixel, i ′ ∈ nu to xj+1

(b) Set π(k)
j+1 = 0, ∀ k 6= i ′

(c) Repeat until no more points can be included
for each l such that π(l)

j+1 = 1

if k ∈ N 4
1 (l, b) && π

(k)
j+1 == 0 && φ(x(k); θj) > pτ

π
(k)
j+1 = 1

Gj+1 = l

(d) Compute µj+1 from Gj+1

(e) Compute σ2
j+1 from Gj+1

(f) Compute xj+1 from Gj+1

v. Set b(i) = max{b(i), π
(i)
j+1}, i = 1, . . . ,N

vi. Assign labels L(k) = j + 1, ∀ k ∈ Gj+1

vii. if
∑N

i=1 π
(i)
j+1 ≥ nmin, then j = j + 1

(d) compute ml = N 8
1 (i, L)

(e) compute L(i) = arg minj{φ(x(i), θj)}, j ∈ ml

Figure 2.7: Greedy EM algorithm for parameter estimation inan SCFMM.

40

original noisy

Figure 2.8: Image used for testing the segmentation output of the various mixture models.
LEFT: A synthetic grayscale image composed of 4 different grayscale values. RIGHT:
Image on the left corrupted by Gaussian noise with zero mean and a standard deviation of
25.

image. The image is constructed in a manner such that spatialcoherency of regions is

emphasized. Figure2.9 and2.10show the segmentation results of all four algorithms on

the noisy synthetic image and the sky image respectively. The value ofK was set to 4

and 3 in the synthetic and sky images, respectively, for theEM-FMM, EM-ML-SVFMM, and

EM-MAP-SVFMM. The mean and the variance of the components were initialized using the

grayscale histogram of the images. For the synthetic and thesky image, the class means

were set to{31, 85, 170, 245} and{30, 80, 210} respectively. The class variance was set

to 10% of the entire data range. The value ofβ for EM-MAP-SVFMMwas set to1.0.

For thegreedyEM-SCFMMalgorithm, the value ofpτ was0.005 andnmin was 30 pixels.

Segmentation results ofgreedyEM-SCFMMon various other natural images are shown in

Figure2.11.

To quantitatively analyze the results, labeling energy is computed for each algo-

rithm for the synthetic and sky images. Labeling energy measures how close the pixel

value is to the class mean for that label as well as how smooth the labeling is with respect

to the pixel neighbors. The former term is also known as the data energy while the later is

41

EM-FMM EM-ML-SVFMM

EM-MAP-SVFMM greedyEM-SCFMM

Figure 2.9: Output of the EM algorithmsEM-FMM, EM-ML-SVFMM, EM-MAP-SVFMM
and thegreedyEM-SCFMMon the noisy synthetic image.

EM-FMM EM-ML-SVFMM

EM-MAP-SVFMM greedyEM-SCFMM

Figure 2.10: Output of the EM algorithmsEM-FMM, EM-ML-SVFMM, EM-MAP-SVFMM
and thegreedyEM-SCFMMon the sky image.

42

input segmentation

Figure 2.11: Segmentation results ofgreedyEM-SCFMM on some natural images. The
images in the top two rows are segmented using grayscale intensities as the data while
those on the bottom two rows use color. The images on the bottom three rows are from the
Berkeley Segmentation dataset [73].

43

also known as the smoothness energy. Formally, the labelingenergy can be defined as

Elabel(L, I) = Edata(L, I) + Esmooth(L, I), (2.41)

where

Edata(L, I) =
N
∑

i=1

−1

2
ln
(

2πσ2
j

)

−
(

I(i)− µj

)2

2σ2
j

, withj = L(i), and (2.42)

Esmooth(L, I) =
∑

i=1N

∑

m∈N 4
1 (i)

exp
{

− (I(i)− I(m))2
}

δ (L(i), L(m)) , (2.43)

with δ(.) being the Kronecker delta function given by







δ (L(i), L(m)) = 1 , if L(i) = L(m)

0, otherwise
. (2.44)

Here the idea is to assign lower penalty (higher energy reduction) if the neighboring

pixels of different labels have large differences in their pixel values as compared to those

pixels having separate labels but similar values. The reason for choosing this kind of energy

function is twofold. First, since the likelihood functionsof all the algorithms differ to some

extent, this serves as a common energy function to quantify the performance. Second,

all the algorithms can now be judged purely on the basis of thelabeling output produced.

Figure2.12shows the energy minimization for the four algorithms tested for the synthetic

and the sky images. ThegreedyEM-SCFMM algorithm, in addition to producing more

visually appealing results, also minimizes labeling energy better than the other three. The

EM-FMM, EM-ML-SVFMM, andEM-MAP-SVFMMwould perform much better with more

finer tuning of the parameters. ThegreedyEM-SCFMMon the other hand does not rely

on any explicit initialization. Since it is randomly initialized, plots in Figure2.13show the

variation in the minimum energy and the number of labels generated for 10 random trials

with different starting locations. The plots show the stability of the greedyEM-SCFMM

44

2 4 6 8 10 12 14 16 18
1

1.05

1.1

1.15

iterations

la
be

lin
g

en
er

gy
SCFMM
MAP−SVFMM
ML−SVFMM
FMM

5 10 15 20
0.95

1

1.05

1.1

1.15

iterations

la
be

lin
g

en
er

gy

SCFMM
MAP−SVFMM
ML−SVFMM
FMM

noisy synthetic image sky image

Figure 2.12: Plots showing the minimization of labeling energy for the EM-FMM,
EM-ML-SVFMM, EM-MAP-SVFMMand thegreedyEM-SCFMMalgorithms.

1 2 3 4 5 6 7 8 9 10
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

trials

la
be

lin
g

en
er

gy

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

trials

la
be

ls

Figure 2.13:LEFT: Plot of labeling energy andRIGHT: number of labels detected over 10
random trials of SCFMM on the noisy synthetic image.

even though the nature of the algorithm is random. The numberof labels varies due to

merging of some of the neighboring regions of same intensityvalues.

2.6 Summary

This chapter has described various kinds of mixture models and the EM algorithm

used for estimating their parameters. Finite mixture models are not very well suited for

45

spatially salient labeling required in segmentation applications and hence, spatially variant

finite mixture models are used for such applications. Concerns regarding the initialization

and computational efficiency of the SVFMMs motivate the use of an improved framework

for segmentation. Inspired from the region growing approach, this chapter has introduced

a novel spatially constrained mixture model with a greedy-EM algorithm for parameter

estimation that overcomes the above mentioned limitationsof SVFMMs. The effectiveness

of the proposed approach is demonstrated using segmentation of images based on color or

grayscale values. Later we use the spatially constrained mixture model and the greedy-EM

algorithm for motion segmentation. But first, a method to compute image motion has to be

described. The next chapter focuses on sparse motion computation in image sequences by

tracking feature points.

46

Chapter 3

Point Feature Tracking

Image motion can be computed from the sparse feature trajectories obtained by

tracking features between two frames. The image motion thuscomputed can be used for

the purpose of motion segmentation. This chapter gives a general overview of the problem

of feature tracking and explains how it can be used to computeimage motion, with a special

emphasis on the Lucas-Kanade method of feature tracking along with its advantages and

limitations. The Lucas-Kanade algorithm treats each feature point independently while

tracking, but a better assumption is that the motion of a point feature is dependent on its

immediate neighbors. Based on this idea, a joint feature tracking algorithm [9] is described

that is able to track features more reliably than the Lucas-Kanade algorithm in certain

situations such as tracking in less textured regions.

3.1 Motion Estimation Basics

Success of a motion segmentation algorithm depends on the accuracy of motion

estimation in the given image sequence. Motion in image sequences is observed when a

dynamic 3D scene is captured by a camera, i.e., projection ofobjects moving in a three

47

dimensional world on an image plane gives rise to a motion field. This is different from

optical flow, which can be defined as the observed motion of intensity patterns on the image

plane. Since changing brightness patterns can also be produced by phenomena that do not

involve motion in three dimensions such as specular reflections, the motion field and the

optical flow for an image sequence may not be the same. Nevertheless, optical flow is often

used to estimate the motion field. One fundamental assumption regarding the nature of the

scene is that the moving objects maintain constant intensity profile throughout their motion.

This assumption is the famous brightness constancy assumption and forms the basis of all

the approaches for estimating optical flow.

Let I be an image andI(x(t), y(t), t) denote the intensity of a point projected onto

the image at the location(x(t), y(t)) at timet. At a timet+∆t, the projected point moves to

a new location(x(t + ∆t), y(t + ∆t)). According to the brightness constancy assumption,

the point has the same intensity at both locations, which means

I(x(t + ∆t), y(t + ∆t), t + ∆t) = I(x, y, t).

Expanding the above equation using Taylor series about the point (x(t), y(t)) and taking the

limits, a familiar form of the optical flow equation is obtained which is given by

f (u, v; t) = Ixu + Iyv + It = 0, (3.1)

whereIx andIy represent the partial derivatives of the image inx andy directions respec-

tively, It represents the temporal derivative of the image, andu andv are the horizontal and

vertical components of the unknown pixel velocity respectively. This classic equation re-

lates the spatial and the temporal derivatives of an image pixel to its velocity vectors. Given

a pair of images and their spatial and temporal derivatives,the goal is to determine[u, v]T.

48

Since there is only one equation involving two unknowns, thesystem is underconstrained,

and an unambiguous solution cannot be obtained. This is the well known aperture problem,

and herein lies the biggest challenge in estimating the optical flow.

The way to address the aperture problem is to add more constraints so as to obtain

a required set of equations at least equal in number to the unknowns. Solving for[u, v]T

requires an additional equation which can be obtained by considering motion of two pixels

together instead of one. This results in two equations, and the system can be solved. In

practice, multiple pixels are considered together to obtain a set of equations such that their

solution minimizes some error function. Most optical flow approaches differ from each

other in the way they bunch pixels together for the estimation of their combined velocity,

or the kind of error function they minimize. The prominent optical flow approaches can be

classified into one of the following categories:

• Block matching based:finding optical flow vector for a window of pixels by finding

its warp in the consecutive frame using techniques like normalized cross correlation,

sum of absolute differences (SAD), or sum squared differences (SSD) [2].

• Differential: using the spatial and temporal derivatives of the image to estimate the

pixel displacement. This can be achieved by computing localdisplacement of image

patches (Lucas-Kanade [71]), or imposing a global smoothness function on the flow

field (Horn-Schunck [49]), or a combination of both (Bruhn et al. [20], Birchfield-

Pundlik [9]). Lucas-Kanade appeals more to the idea of sparse optical flow while

Horn-Schunck approach is more suited for computing dense flow.

• Variational: involving use of additional terms based on the calculus of variations

in the energy functional to be minimized to obtain optical flow. Such techniques

have become popular recently because of their ability to model the discontinuities in

the motion and produce highly accurate optical flow estimates (Cremers-Soatto [24],

49

Brox et al. [19]).

The next section describes the Lucas-Kanade algorithm for computing optical flow

and the relationship between optical flow and point feature tracking. The following de-

scription interchangeably uses the term pixel velocity anddisplacement while referring to

optical flow. Velocity given by[u, v]T is equivalent to displacement in unit time interval.

3.2 Lucas-Kanade (LK) Method

The basic assumption in the Lucas-Kanade (LK) method is thatthe pixels in a local

neighborhood undergo a constant but unknown displacementu = [u v]T. This additional

constraint is used to overcome the aperture problem as it yields one optical flow equation

(see (3.1)) per pixel in the neighborhood. The constant displacementof neighboring pixels

implies two basic assumptions, namely, the spatial coherence (neighboring pixels belong to

the same 3D surface projected onto the image plane) and the temporal persistence (motion

of the pixel neighborhood changes gradually over time). LetI andJ be the two frames

between which the flow has to be estimated and letx = [x y]T denote a pixel location.

Optical flow equation (3.1) for a single pixelx can be rewritten as

[Ix(x) Iy(x)]









u

v









= −It(x) = I(x)− J(x). (3.2)

Considering that then pointsx1, . . . , xn in a local neighborhood have the same amount of

displacement, all of then pixels will then follow equation (3.2), leading to

















Ix(x1) Iy(x1)

. .

Ix(xn) Iy(xn)

























u

v









=

















It(x1)

.

It(xn)

















(3.3)

50









Ix(x1) . Iy(x1)

Ix(xn) . Iy(xn)

























Ix(x1) Iy(x1)

. .

Ix(xn) Iy(xn)

























u

v









=









Ix(x1) . Iy(x1)

Ix(xn) . Iy(xn)

























It(x1)

.

It(xn)

















(3.4)

n
∑

j=1









I2
x (xj) Ix(xj)Iy(xj)

Ix(xj)Iy(xj) I2
y (xj)

















u

v









=
n
∑

j=1









Ix(xj)It(xj)

Iy(xj)It(xj)









(3.5)

Equation (3.5) consolidates the optical flow by summing the spatial and temporal deriva-

tives over a neighborhood. Instead of performing a summation over a spatial window, a

weighted window such as a Gaussian with its mean at the centerpixel can also be used.

Hence, a general case of Lucas-Kanade equation is given by









Kρ ∗ (I2
x) Kρ ∗ (IxIy)

Kρ ∗ (IxIy) Kρ ∗ (I2
y)

















u

v









=









Kρ ∗ (IxIt)

Kρ ∗ (IyIt)









, (3.6)

whereKρ is a suitable convolution kernel whose size determines the number of neighboring

pixels to be aggregated and assigns appropriate weights to the pixels inside the window.

The size ofKρ has to be selected carefully because a small sized window maynot be

enough to overcome the aperture problem due to the presence of image noise. On the other

hand, a very large window size may lead to the breakdown of spatial coherency assumption.

Equation (3.6) can be written in a simplified form as

Zu = e. (3.7)

It can be seen thatZ looks like a covariance matrix with squares of gradients in thex and

y directions along the diagonal, and it is symmetric, which iswhy it is called the gradient

51

Figure 3.1: Differential methods for tracking relate the spatial and temporal derivatives to
the displacement of the signal. Displacement over time of a linear (left) and non-linear
(right) 1D signal can be determined using differential methods. While the solution is ob-
tained directly from the spatial and temporal derivatives in the case of the linear signal, this
procedure is iteratively applied to the non-linear signal.

covariance matrix or the Hessian.

Displacementu of a local neighborhood of pixels can be directly determinedby

solving the equation (3.7) via least squares, i.e., by minimizing

ELK(u) = Kρ ∗
(

f (u, t)2
)

, (3.8)

or equivalently, solving for the estimatêu = Z−1e. But this may not yield an accurate esti-

mate because equation (3.5) is a linear approximation of a nonlinear function (the original

optical flow equation is nonlinear if all the terms in the Taylor series are considered). To ob-

tain an accurate estimate, iterative schemes such as Newton-Raphson are used (see Figure

3.1). Newton-Raphson is a popular technique of approximating the values of the roots of a

real valued function given the initial estimate of the roots. Consider a 1D case, where ifu(k)

(pixel displacement in 1D) is the estimate of the root of function f (u, t) = Ixu+ It = 0 (1D

counterpart to the optic flow function) at thekth iteration, then its update value at(k + 1)th

iteration is given byu(k) − f (u(k))
f ′(u(k))

. From inspection it can be seen thatf (u(k)) = Ixu(k) + It

and f ′(u(k)) = Ix, which meansu(k+1) = − It
Ix

. Every iteration yields a value ofu that is

added to the overall displacement and convergence is obtained whenu does not change

52

Algorithm: Lucas-Kanade

Input: two images I and J of a sequence
Output: optical flow field

1. pre-compute the spatial derivatives Ix and Iy

2. initialize Kρ

3. for each point i

(a) compute gradient covariance matrix, Zi

(b) initialize u i = (0, 0)

(c) repeat until convergence

i. compute It from first image and shifted second image, It = I(x i)−J(x i +
u i)

ii. compute ei

iii. find the estimate of displacement, û i = Z−1
i ei

iv. u i = u i + û i

v. if ‖ û i‖ < εLK (minimum displacement threshold), exit

Figure 3.2: The standard Lucas-Kanade algorithm.

significantly between two iterations. Extending this idea to two dimensions, every iteration

of the Newton-Raphson technique gives a displacementu(k) of the window. The window

in the next frame is shifted byu and warped with the first image to obtain a new value ofIt

at each iteration and a new displacement estimate is found using û = Z−1e (see Algorithm

Lucas-Kanade for a complete description). Figure3.3shows the point feature tracking

using Lucas-Kanade algorithm between two frames of a sequence.

To efficiently compute the optical flow using LK, some implementation issues should

be addressed. The computational cost of the algorithm depends on the nature of mathemat-

ical operations performed and the time it takes to converge.Since the same set of steps

are applied to each point (or each pixel) for which the flow field is computed, reducing the

computation time of one flow vector directly affects the overall computation cost. Look-

53

ing at the description of theLucas-Kanade algorithm (Figure3.2) it can be seen that

the mathematical operations include computingZ−1, spatial derivatives of the imageI and

warping of the window in imageJ to computeIt. Of the above mentioned quantities, image

derivatives can be computed beforehand along with their squares and products (hence,Z

for each point can be computed beforehand). Solving for a system of equations shown in

(3.7) yieldsu, but it is more efficient to use Gaussian elimination rather than actually com-

putingZ−1. The only computation that needs to be iteratively performed is the warping of

the window in the second image and computation ofe. Usually, the location of the shifted

window is given by non-integers. Hence, methods like bilinear interpolation are utilized

to compute the value of image intensity at sub-pixel precision. This improves the accu-

racy of estimation ofu. Regarding the convergence, Newton-Raphson reaches an optimum

solution within a few iterations if the initial estimate of the root is close enough. In this

case it also depends onεLK, the threshold for minimum displacement obtained during one

iteration.

Many implementations of LK adopt a coarse-to-fine refinementstrategy to accu-

rately estimate optic flow [7, 15]. The idea here is to sub-sample the images progressively

and build image pyramids such that the coarsest scale is at the top. Thenu is computed

starting from the coarsest level to the finest level. At everylevel, theu is scaled up accord-

ing to the scale factor of that level and the warp is computed between corresponding levels

of the two image pyramids. There are two main advantages of such an approach. First, it

reduces the effect of temporal aliasing and the high frequency component introduced as a

result in the image signal. Second, it can estimate large motions (where inter-frame dis-

placement of the feature window is large). Since velocity isreduced at the coarsest level,

estimates at the coarsest level can be scaled up and determined accurately at the finer levels.

Computational cost in this kind of implementation is increased as compared to the standard

case and is directly proportional to the number of levels of the pyramid used. A pyramidal

54

Figure 3.3: Sparse optical flow from point feature tracking.LEFT TO RIGHT: First and the
second frame of the statue sequence, and the tracked points between the two frames along
with their trajectories overlaid on the second frame.

implementation of LK isO(nNm) as compared toO(Nm) of the single scale implementa-

tion, whereN is the number of points,m is average number of Newton-Raphson iterations

andn is the number of pyramid levels.

3.3 Detection of Point Features

An important question that needs to be answered is whether itis feasible to compute

the motion vectors of each pixel (dense optical flow field) using LK. Since LK is essentially

a local method, it tracks small patches of images between twoframes instead of single a

pixel. But aggregating neighboring pixels for tracking in asmall neighborhood does not

guarantee that the aperture problem will not arise. For example, in Figure3.4, the square

object moves between two frames with certain displacement.Intuitively speaking, a win-

dow centered around the corner of the object can be matched unambiguously to the corner

of the object in the next frame as it moves with a fixed velocity. Another window centered

somewhere on the edge of the object in the first frame can be matched unambiguously only

in one dimension but not in the other. A window centered inside the object suffers even

worse fate as it cannot be matched to any location in both the dimensions (one way to alle-

viate this problem is to increase the size of the window, i.e., increase the aperture, but this

decreases the accuracy of the motion model). Usually, the window size remains fixed while

55

Figure 3.4: The Aperture problem is persistent even when considering a pixel neighborhood
for tracking. LEFT TO RIGHT: A moving square object, window centered on a corner of
the square is reliably matched, window centered on the edge,and window inside the object
which is textureless. In the latter two cases, the window cannot be matched unambiguously.

processing a sequence. This means all the patches in the image will not have enough motion

information to be tracked reliably (such as edges and regions of low intensity variation),

making them unsuitable for LK based optical flow.

From a mathematical perspective,u can be computed for a pixel window if the gra-

dient covariance matrixZ at that location is invertible (of full rank) or, in other words, if it

is well conditioned. Conditioning ofZ is more of a practical aspect to be considered while

computing the solution ofu in presence of image noise as at certain locations,Z might be

of full rank theoretically but sill numerically unstable. Being well conditioned means that

there should not be a large difference between its two eigenvalues. Also, to account for

noise, both the eigenvalues should be of sufficiently large value. From a physical perspec-

tive, eigenvalues ofZ signify the variation of intensities in thex andy directions, and a

large eigenvalue means high amount of variation in the corresponding direction. Therefore

two large eigenvalues imply a high texture patch, two small eigenvalues imply a nearly uni-

form intensity patch with small change of intensity overallwhile one small and one large

eigenvalue indicate an intensity edge (see Figure3.5). In the latter two cases, the gradient

covariance matrixZ is ill-conditioned, and consequently the system of equations described

in (3.7) cannot be solved, which in turn means that the LK method cannot determine the

motion of these patches.

Since LK only works well in the regions of high intensity variation, optical flow

56

Figure 3.5: Good features have a high intensity variation inboth directions while a line
feature shows variation only in one direction. Untextured areas have a plane intensity
profile.

is computed only at locations where pixel windows can be reliably tracked. These points

(rather the pixel windows at these points) are also known as point features, or corner fea-

tures, or interest point operators. For the above property of LK, it is also termed as a method

that can compute sparse optical flow. There are many ways to detect the point features in an

image but one particular definition of point features is moresuitable for them to be tracked

well [92] and is given by the criterion :

min(emin, emax) > εf , (3.9)

where(emin, emax) are the eigenvalues ofZ and εf is the user defined threshold on the

minimum eigenvalue such that the point is a good feature.

57

Over the years, the standard LK has been extended and improved upon to adapt to

various computer vision tasks. One area of improvement is the use of robust estimators to

overcome the problem of non-Gaussian errors in the least square estimates [10]. A large

body of work concentrates on using LK to track point features. Most notably, Shi-Tomasi

[92] describe the use of affine motion model for minimizing the feature dissimilarity in two

frames of a sequence. Recall that the standard LK formulation described in Section3.2as-

sumes that the image motion is translational. As concluded by Shi-Tomasi, this assumption

is good for motion between two consecutive frames of a sequence but often breaks down

while tracking over long sequences due to the deformations of the feature window over

time. An affine motion model is better suited for such an eventuality and can be used to

reject the features that no longer bear similarity to the original ones. Multiple approaches

have further extended LK for feature tracking by handling statistics based outlier rejec-

tion [97], motion parallel to camera axis (increasing or decreasingdepth over time) [107],

lighting or camera gain changes [59, 51], or tracking of large image patches [5].

3.4 Horn-Schunck: An Alternative to Lucas-Kanade

Another notable approach for optical flow estimation is the Horn-Schunck algo-

rithm (HS) [49]. It is more of a global approach as opposed to the local LK. The term

global approach implies that the HS algorithm relies on regularization to compute global

displacement functions for the pixels of an image. Ifu(x, y) andv(x, y) are the global dis-

placement functions in thex andy directions respectively, then the cost function minimized

by HS is given by

EHS(u, v) =
∫

Ω
(IXu + Iyv + It)

2 + λ(‖∇u‖2 + ‖∇v‖2)dx dy, (3.10)

58

whereλ is the regularization parameter andΩ is the image domain. The minimum of this

functional is found by solving the corresponding Euler-Lagrange equations, leading to





I2
x IxIy

IxIy I2
y









u

v



 =





λ∇2u− IxIt

λ∇2v− IyIt



 , (3.11)

where∇2u = ∂2u
∂x2 + ∂2u

∂y2 and∇2v = ∂2v
∂x2 + ∂2v

∂y2 are the Laplacian ofu andv, respectively.

Solving this equation foru andv and using the approximation that∇2u≈ k(ū− u), where

ū is the average of the values ofu among the neighbors of the pixel, andk is a constant

scale factor, we get




u

v



 =





ū

v̄



− Ixū + Iyv̄ + It

kλ+I2
x + I2

y





Ix

Iy



 . (3.12)

Thus, the sparse linear system can be solved using the Jacobimethod with iterations for

pixel (i, j)T of the form:

u(k+1)
ij = ū(k)

ij − γIx (3.13)

v(k+1)
ij = v̄(k)

ij − γIy,

where

γ =
Ixū

(k)
ij + Iyv̄

(k)
ij + It

kλ+I2
x + I2

y

. (3.14)

The displacement functions obtained as a result of the aboveminimization repre-

sent a smooth flow field. An advantage of this method is that theregions of low intensity

variations can also yield smooth optical flow estimates. This way the approach can prop-

agate the motion information over large distances in the image [41]. So places where LK

approach cannot compute optical flow due to ill-conditionedZ matrix, HS method can use

the pixel motion from nearby regions (which may or may not be in the immediate neigh-

borhood of the pixel) to obtain an estimate. For this reason HS is well suited for obtaining

59

dense flow field estimates from the images. Though HS algorithm gives smooth flow field

estimates, it has a tendency to ignore motion boundaries while regularization and special

procedures are required to address the issue of smoothing over image boundaries. Also,

HS is computationally expensive as compared to LK due to the fact that a large system

of linear equations needs to be solved using methods such as Gauss-Seidel, or Successive

over-relaxation (SOR).

More recent techniques such as those described by Cremer-Soatto [24] and Brox et

al. [19] have resorted to the use of variational approaches like level-sets to model motion

boundaries while dense optical flow is accurately estimatedinside the region defined by the

level-set contour. The approach serves the dual purpose of estimating the optical flow while

performing scene segmentation based on motion. There have been attempts to combine the

global and local properties of HS and LK approaches respectively to improve the optical

flow estimation. Bruhn et al. [20] proposed an algorithm that improves the dense optical

flow estimates by incorporating local smoothness of LK. Since dense flow approaches suf-

fer from noise issues, incorporating local smoothness reduces its vulnerability to noise.

Joint tracking of features espouses an opposite goal: to incorporate the advantages

of global methods to improve local methods. In this approach, point features are tracked

jointly, i.e., trajectory of each feature point is influenced by its immediate neighbors. This

smoothing effect is similar to the regularization of flow fields in HS and serves as an ad-

ditional term along with the standard LK based feature dissimilarity in the minimization

scheme. The resultant joint feature tracker is better equipped to track features reliably in

relatively less textured regions or in areas of repetitive texture, as compared to the standard

LK algorithm.

60

3.5 Joint Lucas-Kanade Algorithm

Combination of Lucas-Kanade and Horn-Schunck energy functionals in (3.8) and

(3.10) respectively results in an energy functional to be minimized for Joint Lucas-Kanade

(JLK):

EJLK =
N
∑

i=1

(ED(i) + λi ES(i)), (3.15)

whereN is the number of feature points, and the data and smoothness terms are given by

ED(i) = Kρ ∗
(

(f (ui, vi ; I))2
)

(3.16)

ES(i) =
(

(ui − ûi)
2 + (vi − v̂i)

2
)

. (3.17)

In these equations, the energy of featurei is determined by how well its displacement

(ui, vi)
T matches the local image data, as well as how far the displacement deviates from

the expected displacement(ûi, v̂i)
T. Note that the expected displacement can be computed

in any desired manner and is not necessarily required to be the average of the neighboring

displacements.

DifferentiatingEJLK with respect to the displacements(ui , vi)
T, i = 1, . . . ,N, and

setting the derivatives to zero, yields a large2N× 2N sparse matrix equation, whose(2i −

1)th and(2i)th rows are

Ziui = ei, (3.18)

where

Zi =





λi +Kρ ∗ (IxIx) Kρ ∗ (IxIy)

Kρ ∗ (IxIy) λi +Kρ ∗ (IyIy)





ei =





λi ûi − Kρ ∗ (IxIt)

λi v̂i − Kρ ∗ (IyIt)



 .

61

This sparse system of equations can be solved using Jacobi iterations of the form

u(k+1)
i = û(k)

i −
Jxxû

(k)
i + Jxyv̂

(k)
i + Jxt

λi +Jxx + Jyy
(3.19)

v(k+1)
i = v̂(k)

i −
Jxyû

(k)
i + Jyyv̂

(k)
i + Jyt

λi +Jxx + Jyy
, (3.20)

whereJxx = Kρ∗(I2
x), Jxy = Kρ∗(IxIy), Jxt = Kρ∗(IxIt), Jyy = Kρ∗(I2

y), andJyt = Kρ∗(IyIt).

As before, convergence speed is greatly increased by performing Gauss-Seidel it-

erations so that̂u(k)
i and v̂(k)

i are actually computed using a mixture of values from the

kth and(k + 1)th iterations (depending upon the order in which the values are updated),

and by performing a weighted average of the most recent estimate and the new estimate

(successive overrelaxation). With this modification, the update equations are given by

u(k+1)
i = (1 − ω)u(k)

i + ωũ(k)
i , whereũ(k)

i is the estimate expressed on the right hand side

of Eqs. (3.19–3.20), andω ∈ (0, 2) is the relaxation parameter. For fast convergence,ω is

usually set to a value between1.9 and1.99. Note that forω = 1 the approach reduces to

Gauss-Seidel.

Pyramidal implementation of the Joint Lucas-Kanade algorithm is shown in Fig-

ure 3.6. Both the standard Lucas-Kanade method and the proposed joint Lucas-Kanade

method involve iteratively solving a sparse2N× 2N linear system to find the minimum of

a quadratic cost functional. In the former, the matrix is block-diagonal, leading to a sim-

ple and efficient implementation via a set of2 × 2 linear systems, while in the latter, the

off-diagonal terms require the approach presented in the previous section. Like standard

Lucas-Kanade, JLK isO(Nnm), whereN is the number of features,n is the number of

pyramid levels, andm is the average number of iterations. However, because it considers

all the features at a time, the JLK algorithm must precomputethe Zi matrices for all the

features.

62

Algorithm: Joint Lucas-Kanade

1. For each featurei,

(a) Initializeui ← (0, 0)T

(b) Initializeλi

2. For pyramid leveln− 1 to 0 step−1,

(a) For each featurei, computeZi

(b) Repeat until convergence:

i. For each featurei,

(a) Determinêui

(b) Compute the differenceIt between the first image and the shifted
second image:It(x, y) = I1(x, y)− I2(x + ui, y + vi)

(c) Computeei

(d) SolveZiu′
i = ei for incremental motionu′

i

(e) Add incremental motion to overall estimate:ui ← ui + u′
i

(c) Expand to the next level:ui ← kui, wherek is the pyramid scale factor

Figure 3.6: The joint Lucas-Kanade algorithm.

Several implementation issues remain. First, how should the regularization parame-

tersλi be chosen? Since a large number of features can often be tracked accurately without

any assistance from their neighbors, one could imagine weighting some features more than

others, e.g., using one of the standard measures for detecting features in the first place [92].

For example, since large eigenvalues of the gradient covariance matrix indicate sufficient

image intensity information for tracking, such features could receive smaller smoothing

weights (regularization parameter values) than those withinsufficient information. How-

ever, this scheme is frustrated by the fact that the eigenvalues do not take into account

important issues such as occlusions, motion discontinuities, and lighting changes, making

it difficult to determine beforehand which features will actually be tracked reliably. As a

63

result, we simply set all of the regularization parameters to a constant value in this work:

λi = 50.

Another issue is how to determine the expected values(ûi, v̂i)
T of the displacements.

Because the features are sparse, a significant difference inmotion between neighboring fea-

tures is not uncommon, even when the features are on the same rigid surface in the world.

As a result, we cannot simply average the values of the neighbors as is commonly done

[49, 20]. Instead, we predict the motion displacement of a pixel by fitting an affine motion

model to the displacements of the surrounding features, which are inversely weighted ac-

cording to their distance to the pixel. We use a Gaussian weighting function on the distance,

with σ = 10 pixels.

Finally, because the algorithm enforces smoothness, it is able to overcome the aper-

ture problem by determining the motion of underconstrainedpixels that lie along intensity

edges. We modify the feature detection algorithm accordingly. To detect features, we use

the two eigenvaluesemin andemax, emin ≤ emax of the original Lucas-Kanade gradient co-

variance matrixZ. Rather than selecting the minimum eigenvalueemin, as is often done

[92], we select features usingmax(emin, ηemax), whereη < 1 is a scaling factor. The ra-

tionale behind this choice is that along an intensity edgeemax will be large whileemin will

be arbitrarily small. Instead of treating an edge like an untextured region, the proposed

measure rewards the feature for the information that it doeshave. For pixels having two

comparable eigenvalues, the proposed measure reduces to the more common minimum

eigenvalue. In this work we setη = 0.1.

In general, the joint tracking algorithm exhibits smootherflows and is thus better

equipped to handle features without sufficient local information. In particular, repetitive

textures that cause individual features to be distracted bysimilar nearby patterns using

the traditional algorithm do not pose a problem in the proposed algorithm. An example

showing this behavior is in the top row of Figure3.7. The difference between the two

64

image Standard Lucas-Kanade Joint Lucas-Kanade

Figure 3.7: Comparison of joint Lucas-Kanade and standard Lucas-Kanade. Each row
shows the input image, point features tracked using standard Lucas-Kanade, and joint
Lucas-Kanade algorithms. TOP: An image showing repetitive texture. BOTTOM: A rela-
tively untextured scene. The results of the two algorithms (motion vectors are scaled for
display). The standard algorithm computes erroneous results for many features, while the
joint algorithm computes accurate flow vectors.

algorithms is even more pronounced when the scene does not contain much texture, as is

often the case in indoor man-made environments. The bottom row of Figure3.7 shows

one such scene, along with the results computed by the two algorithms. In this sequence

the camera is moving down and to the right with a slight counterclockwise rotation. The

camera gain control causes a severe intensity change in the window of the door, causing

those features to be lost. Notice that the joint algorithm isable to compute accurate flow

vectors for features that do not contain sufficient local information to be accurately tracked

independently.

3.6 Summary

This chapter describes the detection and tracking of point features and their use

for computing optical flow in image sequences. Lucas-Kanadeis a popular method of

65

feature tracking and provides a fast and accurate way for computing sparse optical flow.

One limitation of Lucas-Kanade is that it is essentially a local method and cannot reliably

compute global dense flow fields like the Horn-Schunck method. This chapter further

describes a joint feature tracking approach that combines the local and global properties

of LK and HS respectively to track features more accurately and reliably. With the sparse

point feature trajectories, motion segmentation can be performed by clustering the point

features. The next chapter describes an algorithm that can efficiently group point features

in long image sequences using a spatially constrained mixture model and a greedy EM

algorithm.

66

Chapter 4

Motion Segmentation Using Point

Features

Motion and image segmentation differ from each other because of the differences

in the data required for both purposes. Also, the addition ofthe temporal dimension to the

problem in the case of motion segmentation introduces a hostof issues regarding the main-

tenance of the segmentation over time. The mixture model framework described in Chapter

2 can be used to perform motion segmentation, although the nature of the problem neces-

sitates modification of some key details of the SCFMM approach. This chapter describes a

motion segmentation approach that models the sparse feature motion using a SCFMM and

obtains feature labels using a greedy EM algorithm. The chapter begins with a description

of how to adapt the SCFMM for motion segmentation followed bythe description of the

segmentation algorithm and its performance on some test sequences.

67

4.1 Mixture Models for Motion Segmentation

Motion vectors corresponding to the sparse 2D points form the data in our motion

segmentation approach. The motion model used in this work isan affine motion model.

Since the nature of data is sparse, familiar 2D lattice structure of a typical image is not

available. Hence, instead of a conventional spatial neighborhood (like 4-connected or 8-

connected), a different kind of neighborhood has to be established between points scattered

in a 2D plane. These factors lead to changes in the way the component density functions

are defined and the kind of parameters that need to be estimated. In this section, the affine

motion model and the neighborhood computation in the case ofsparse point features are

explained. Throughout the discussion in this chapter, it isassumed that the point feature tra-

jectories are already available for the given pair of framesof a sequence using the approach

presented in Chapter3.

4.1.1 Affine Motion Model

Each point feature trajectory is assumed to belong to a model, i.e., the model pa-

rameters describe the motion of the features over time. Two frequently used models are:

translation and affine. While translation is simpler to dealwith, it may not be enough to

describe some of the more complicated motions observed in natural scenes such as in-plane

rotation, scale changes and shearing. These effects can be modeled using an affine motion

model. For a pointx = [x, y]T in a 2D plane, its coordinatesxa = [xa, ya]
T after affine

transformation are given by









xa

ya









=









a11 a12

a21 a22

















x

y









+









tx

ty









, (4.1)

68

or x̃a = Ax̃, whereA is a3× 3 affine matrix given by

A =

















a11 a12 tx

a21 a22 ty

0 0 1

















(4.2)

that incorporates the3×1 translation vector in its3rd column in homogeneous coordinates.

x̃a and x̃ are the pointsx andxa expressed in homogeneous coordinates. In all, there are

six degrees of freedom (or six parameters) in this transformation. The affine matrix can be

decomposed using Singular Value Decomposition (SVD) to reveal that it is a combination

of two in-plane rotations and scaling in the two orthonormaldirections [47]. Geometric

properties such as parallel lines, ratio of lengths of parallel lines, and ratio of areas are pre-

served in affine transform. Evidently, affine transform is defined over a plane (or a region)

and a single point cannot determine the transform parameters. A minimum of three points

are required, but in practice, a large set of correspondences are needed to effectively deter-

mine the affine parameters in the presence of noise. From a setof point correspondences,

the affine parameters can be determined using techniques like least squares by minimizing

the error function‖Ax̃− x̃a‖2, which leads to the system of equations given by









































x(1) y(1) 0 0 1 0

0 0 x(1) y(1) 0 1

x(N) y(N) 0 0 1 0

0 0 x(N) y(N) 0 1

















































































a11

a12

a21

a22

tx

ty









































=









































x(1)
a

y(1)
a

x(N)
a

y(N)
a









































. (4.3)

69

Solving the above system of equations yields a least-squares based affine parameter esti-

mate which can be viewed as fitting a plane to a given set of points. The least squares

procedure is sensitive to the outliers and hence care must betaken that all the point corre-

spondences belong to the same 3D surface (planar if possible).

4.1.2 Neighborhood Computation

A neighborhood criterion has to be defined for sparse points scattered in a 2D plane.

The nature of data precludes defining the 4-connected or 8-connected neighborhoods as in

the case of images. A spatial window could be used to collect aset of point features, but it

is inefficient. It is difficult to define pairwise cliques in such a situation. Delaunay triangu-

lation of feature points in the image is an effective way to solve this problem as it naturally

provides the immediate neighbors of a point feature withoutany spatial constraints. Also,

the nearest point to a given point is guaranteed to be included in the list of the neighboring

points. Figure4.1 (left) shows an example of 10 points connected by Delaunay triangu-

lation (we use the procedure from [89]), and it can be seen that, for a given point, every

point that shares an edge is considered its neighbor. Delaunay triangulation of the sparse

point features for a frame of the statue sequence is also shown. For more details about the

Delaunay triangulation technique and its computation, seeAppendixB.1.

4.2 Grouping Features Using Two Frames

This section presents the feature grouping between two frames using the Spatially

Constrained Finite Mixture Model and a greedy EM algorithm.Let f (i), i = 1, . . . ,N be the

sparse features tracked in a video sequence, and letf (i)
t represent the(x, y) coordinates of

the i th feature in image framet. Let x(i) = 〈f (i)
1 , . . . , f (i)

T 〉 be the trajectory of thei th feature,

whereT is the maximum frame number, and letX = 〈x(1), . . . , x(N)〉 be all the trajectories

70

Figure 4.1:LEFT: Delaunay triangulation of planar points.RIGHT: Delaunay triangulation
of point features in an image can be used for neighborhood assignment.

collectively.

The trajectories of neighboring features typically exhibit a strong correlation be-

cause they follow the motion of the same surface in the world.Let Θ = 〈θ1, . . . , θK〉 be the

motion models of theK components from which the feature trajectories arise. Our goal is

to find the estimate of the parameters given by

Θ∗ = arg max
Θ

P(X | Θ). (4.4)

Assuming that the different trajectories are independent givenΘ, we have

P(X | Θ) =
N
∏

i=1

K
∑

j=1

P(x(i) | c(i)
j ,Θ)P(c(i)

j | Θ), (4.5)

wherec(i)
j is a binary indicator variable that indicates whether feature f (i) belongs to com-

ponentj.

Let φ(x(i); θj) = P(x(i) | c(i)
j ,Θ) measure how well the trajectoryx(i) fits the jth

model, and letπ(i)
j = P(c(i)

j | Θ) be the weight indicating the probability that feature

71

f (i) belongs to componentj given Θ, thus
∑K

j=1 π
(i)
j = 1. Then, by converting to a log

likelihood, we can rewrite the expression as

Θ∗ = arg max
Θ

N
∑

i=1

log gK(x(i)), (4.6)

where

gK(x(i)) =
K
∑

j=1

π
(i)
j φ(x(i); θj). (4.7)

As with existing motion segmentation algorithms, the core of our approach involves

grouping features between a pair of (not necessarily consecutive) image frames. In this

work we use an affine motion model, so that

φ(x(i); θj) =
1

√

2πσ2
f

exp







− ‖ Ajf
(i)
t − f (i)

r j
‖2

2σ2
f







, (4.8)

whereAj is the3× 3 matrix of affine parameters (homogeneous coordinates are used, with

a slight abuse of notation),r j specifies the reference image frame of thejth group, andσ2
f

is the variance of the Gaussian distribution. The parameters of a group areθj = 〈Aj, r j, µj〉,

whereµj is the centroid. Learning the mixture involves estimating the weightsπ(i)
j and

the parametersθj. To do this, we use the greedy EM algorithm introduced in Chapter 2,

which incrementally adds components to determineK automatically. Since we process the

sequence causally, in the following discussionT should be interpreted as the maximum

frame number encountered so far. Bust first, formulation of the problem in terms of a

SCFMM is presented next.

Notice that Equation (4.5) assumes that the binary labels of the features are inde-

pendent givenΘ, i.e.,P(c(1)
j , . . . , c(n)

j | Θ) =
∏N

i=1 P(c(i)
j | Θ). A more realistic formulation

would take the spatial continuity of regions into account. For simplicity, assume that the

features are ordered in a linear chain starting from the feature closest to the centroid of the

72

group. Then the requirement of spatial continuity yields:

P(c(1)
j , . . . , c(n)

j | Θ) =
N
∏

i=1

P(c(i)
j | c(i−1)

j ,Θ)

=
N
∏

i=1

P(c(i)
j | Θ)c(i−1)

j , (4.9)

where the last equality arises fromc(i−1)
j being a binary variable. Extending this result to

2D, let ǫ(i)j be a binary indicator variable whose value is 1 if and only if there exists a path

(according to a predefined neighborhood) fromf (i) to the feature closest to the centroid

such thatc(ℓ)
j = 1 for all featuresf (ℓ) along the path. Since we do not have access to the

actual labels, we instead use an estimateǫ̂
(i)
j , which is set to 1 if and only ifP(c(ℓ)

j | Θ) > pτ

for all the features on the path.

This analysis leads to a SCFMM that is minimized using a greedy EM algorithm.

For each componentj, log-likelihood maximization is performed using the following itera-

tive update equations:

π
(i)
j ← π

(i)
j φ(x(i); θj)ǫ̂

(i)
j

∑K
j=1 π

(i)
j φ(x(i); θj)ǫ̂

(i)
j

(4.10)

ǫ̂
(i)
j ←

{

min
ℓ
π

(ℓ)
j

}

> pτ (4.11)

µj ←
∑N

i=1 π
(i)
j f (i)

∑

π
(i)
j

(4.12)

Aj ← arg min
a
‖W(Fta− Fr j) ‖2, (4.13)

whereW is a diagonal weighting matrix with elementsWii = π
(i)
j , Ft is a matrix containing

the features at framet, anda is a vectorization of the affine matrix.

Figure4.2shows the greedy EM algorithm for feature grouping. Groups are added

one at a time by region growing from a random ungrouped feature, and the region growing

is performed iteratively for each group after adjusting thecentroid using all the features

73

Figure 4.2: Formation of a feature group by region growing, using the motion between two
frames of a sequence. LEFT: The initial group with the seed pointf (represented as a star)
and its immediately neighboring ungrouped featuresNu(f) in the Delaunay triangulation.
CENTER: The group after the first iteration, whenS is empty. RIGHT: The final feature
group afterGroupFeatures has converged on a solution. Repeated iterations do not
produce any changes in the feature group.

gathered in the previous iteration. The functionN (i; t) returns the indices of all the fea-

tures that are immediate neighbors of featuref (i) in the Delaunay triangulation at frame

t, and the binary vectorb keeps track of which features have already been considered for

grouping. The output of this procedure is the number of groups, along with the binary

weights indicating the membership of the features in the groups.

Figure4.2demonstrates the growing procedure for a single group. Whenno more

features can be added to the group, the group is reset to the feature closest to the centroid

of the group, and the process begins again. Convergence is usually obtained within two

or three iterations. Once the first group has been found, the procedure is then repeated

using another random ungrouped feature as the new seed point. Note that the algorithm

automatically determines the number of groups using the single parameterpτ , along with

the minimum sizenmin of a group.

The feature grouping algorithm learns the group parametersin the fly as it grows

the group. This means the initialization is performed locally at the seed point. In the

case of motion segmentation, it is observed that assignmentof labels to the features is not

totally invariant to the randomly chosen seed point if the motion of the various neighbor-

ing regions are not very different form each other. To solve this problem, we introduce

74

Algorithm: GroupFeatures

Input: Featuresf (i), i = 1, . . . ,N and framest andr
Output:K (number of groups), andπ(i)

j , j = 1, . . . ,K

1. SetK ← 0

2. Setπ(i)
K+1 ← 0, i = 1, . . . ,N

3. Setb(i) ← 0, i = 1, . . . ,N

4. Repeat until a random feature cannot be found

(a) Select a randomf (ℓ) such thatb(ℓ) = 0

(b) Setπ(i)
K+1 ← 1, ∀ i ∈ {ℓ,N (ℓ; t)}

(c) SetrK+1 ← r, and computeAK+1 using (4.13)

(d) Repeat untilµK+1 does not change

i. SetµK+1 using (4.12)

ii. Setπ(i)
K+1 ← 0, ∀ i 6= ℓ,

wheref (ℓ) is the feature closest toµK+1

iii. Repeat as long asπ(i)
K+1 changes for somei

(a) For eachℓ such thatπ(ℓ)
K+1 = 1,

if i ∈ N (ℓ; t) andπ(i)
K+1 = 0

andφ(x(i); θj) > pτ , then setπ(i)
K+1 ← 1

(b) ComputeAK+1 using (4.13)

(e) Setb(i) ← max{b(i), π
(i)
K+1}, i = 1, . . . , n

(f) If
∑N

i=1 π
(i)
K+1 ≥ nmin, thenK ← K + 1

Figure 4.3: Greedy EM algorithm for feature grouping.

75

a seed-point consistency checkwhich is reminiscent of the left-right consistency check of

stereo matching [43]. The grouping algorithmGroupFeatures is run multiple times,

starting from different random seed points. A consistency matrix is maintained in which

ciℓ is the number of results in whichf (i) and f (ℓ) belong to the same group. A set of fea-

tures is said to form a consistent group if the features always belong to the same group as

each other, i.e.,ciℓ = Ns for all features in the set, whereNs is the number of times that

GroupFeatures is run. The collection of consistent groups larger than the minimum

sizenmin are retained, while the remaining features receive zero weight for all groups. This

GroupConsistentFeatures (shown in Figure4.6) algorithm is illustrated in Fig-

ure4.4 for a simple example. The dependency ofGroupFeatures on the random seed

point, along with the results ofGroupConsistentFeatures on an example pair of

images, is displayed in Figure4.5.

Figure 4.4: Formation of consistent feature groups using the consistency matrix. The first
run of GroupFeatures groupsa, b, andd together while placingc in a separate group.
The second run, using a different random seed point, groupsa andc together, andb andd
together. Shown on the right are the three consistent groups: b andd together,a by itself,
andc by itself.

76

Figure 4.5: The consistent groups (right) obtained by applying the
GroupConsistentFeatures algorithm to the results of running the algorithm
GroupFeatures with three different seed points (left three images). The bull’s eye
indicates the first seed point of each run. Notice that although the original groups are
highly sensitive to the seed point, the consistent groups effectively segment the four
regions of the image: statue (black circles), wall (white squares), grass (black+’s), and
trees (white triangles).

The algorithmGroupConsistentFeatures can be considered as the parent

algorithm that calls theGroupFeatures multiple times and outputs the numberK of

groups, the centroidsµj and affine parametersAj of the groups, and the weightsπ(i)
j of the

features. The interdependency betweenǫ̂
(i)
j andπ(i)

j requires care, because any weight set

to zero by (4.11) will remain zero due to its reuse in (4.10). Recognizing that the prior

π
(i)
j in (4.10) does not affect the shape of the distribution represented by the weights at

the stationary point, we implement the algorithm by resetting to a uniform prior in each

iteration. In other words, for each groupj, we perform the following steps for alli =

1, . . . ,N:

1. Setπ(i)
j ← 1

2. Setπ(i)
j ← π

(i)
j φ(x(i); θj)

3. Set̂ǫ(i)j using (4.11) by region growing fromµj

4. Setπ(i)
j ← π

(i)
j ǫ̂

(i)
j

After all the groups have been considered, the weights are normalized according toπ(i)
j ←

π
(i)
j /

∑K
j=1 π

(i)
j . Together, this procedure constitutes the E-step. The M-step involves sim-

ply applying (4.12) and (4.13). Concerning convergence, in our experience the procedure

77

Algorithm: GroupConsistentFeatures

Input: Featuresf (i), i = 1, . . . ,N and framest andr
Output:K (number of groups), andπ(i)

j , j = 1, . . . ,K

1. Setciℓ ← 0 for every pair of featuresf (i) andf (ℓ)

2. Fori ← 1 to Ns,

(a) RunGroupFeatures

(b) For each pair of featuresf (i) andf (ℓ), incrementciℓ if f (i) andf (ℓ) belong to
the same group

3. SetK ← 0

4. Repeat until all features have been considered,

(a) Setπ(i)
K+1 ← 0, i = 1, . . . ,N

(b) Gather a maximal setF of consistent features such thatciℓ = Ns for all pairs
of features in the set

(c) If | F |> nmin, then

i. Setπ(i)
K+1 ← 1, ∀ i such thatf (i) ∈ F

ii. SetK ← K + 1

Figure 4.6: Algorithm for finding consistent feature groups.

settles onto a solution in few iterations, although proof ofconvergence is left for future

work.

4.3 Maintaining Feature Groups Over Time

The grouping procedure of the previous section operates on exactly two (not neces-

sarily consecutive) image frames, assuming a fixed reference framer j for each group. As

such, it exhibits the same limitations of existing algorithms. If the time-difference between

the two frames being compared is short, then slowly moving objects will not be detected.

78

On the other hand, if the time-difference is large, then the affine motion assumption is likely

to fail, and fewer features will be successfully tracked between the two frames. In this sec-

tion we embed the two-frame algorithm within a procedure forupdating the groups over

time in an incremental fashion so that the objects can be detected no matter their speed.

Our goal is a method that adapts the time-difference and captures the dynamic behavior of

features and objects as observed in long real-world image sequences.

The incremental procedure involves three steps. First, theinitialization algorithm

GroupConsistentFeatures is applied to all the features that have not yet been

grouped, in order to add new groups to the existing ones. Secondly, ungrouped features

are assimilated into existing groups using the greedy EM procedure of the previous section

to update their weights. Different groups may have different reference frames, so any new

feature whose start frame (the frame in which the feature wasfirst detected) is more recent

than a reference frame are not considered for grouping.

The last of the three steps is by far the most difficult. The inescapable question at

this point is: How can one determine whether a group exhibitscoherent motion in such

a way that the result is achieved for any object speed? In other words, the coherency of

motion is determined by comparing the feature coordinates in the current frame with those

in the reference frame. If the reference frame is never updated, then the number of features

successfully tracked between the two frames will decrease (eventually to zero), and the

underlying motion model will become a poor fit to the real, noisy data (eventually causing

incoherent motion even in a single object). On the other hand, if the reference frame is

updated at a constant rate, as is commonly done, then the differential nature of motion is

being ignored, and the result will depend upon object speed.

EM cannot solve this dilemma. Maximizing (4.6) with respect tor j, j = 1, . . . ,K

would yield the trivial solution of setting the reference frame to the current frame, just as

maximizing the equation with respect toK would yield the trivial solution of producing

79

exactly one group per feature. Just as EM requiresK to be fixed, so it also requiresr j to be

fixed for all j. As a result, we are forced to turn to an ad hoc technique, in much the same

way that others have resorted to suboptimal methods for determining the number of groups

[106, 101].

To solve the dilemma, then, we turn to the chi-squared (χ2) test. This non-parametric

statistical test compares observed data with an expected probability distribution in order to

decide whether to reject the null hypothesisH0 that the data were drawn from the distri-

bution. The test is asymmetric: Although a largeχ2 value indicates thatH0 should be

rejected, a small value says nothing about whetherH0 should be accepted, but only that

insufficient evidence exists to reject it. The test is therefore a natural fit to the problem of

motion segmentation, in which one can never conclude based on low-level image motion

alone that features belong to the same object. Instead, either the features belong to different

objects with high probability, or there is insufficient evidence in the data to conclude that

they belong to different objects.

To apply theχ2 test, we compute a distribution of the residues of all the features in

a group, using the motion model of the group. The distribution is quantized into five bins,

each of width0.3σd, whereσd is the standard deviation of the distribution. We reject the

assumption that the motion of the group is coherent ifχ2 =
∑n

i=1(Oi − Ei)
2/Ei > χ2

α; k,

whereOi is the observed frequency for bini, Ei is the expected frequency for bini, andχ2
α; k

is the critical threshold for aχ2 distribution withk degrees of freedom and significance level

α. We useα = 99% andk = 3.

Initially we planned to compute the observed distribution using the current and

reference frames, and to use a zero-mean unit-variance Gaussian for the expected distri-

bution; that is, a group would not be split if its residues follow a Gaussian distribution.

However, we found this approach to fail due to the sparse distribution sampling (only five

bins) and the variable inter-frame spacing, which togethercause single-object distributions

80

Figure 4.7: Splitting an existing feature group. If theχ2 test fails to uphold the assumption
of coherent motion within the group, then the algorithmGroupConsistentFeatures
is applied to the features in the group to facilitate regrouping. This results either in multiple
groups or the discarding of outlier features (feature number 6).

to be non-Gaussian. Instead, we have adopted an approach in which the expected distribu-

tion is generated from the motion residues using the reference framer j, and the observed

distribution is generated using the frameround (t − βe(t − r j)), where0 < βe < 1. This

method allows the distribution to adapt to the changing characteristics of individual objects

over time.

The features in a group are dynamically adjusted over time asfeatures are lost due to

the feature tracking and as new features are added by assimilation. At each frame theχ2 test

is applied to the features in the group. If the test fails, then the features are regrouped using

the initialization procedure mentioned in the previous section. This computation results in

either the group splitting into multiple groups due to the presence of multiple objects, or it

causes the outlier features to be discarded from the group. Once a split has been attempted

for a group, the reference frame is updated to the frameround (t − βr(t − r j)), where

0 < βr < 1. In our implementation we setβe = 0.1 andβr = 0.25. The procedure is

illustrated in Figure4.7.

81

Figure 4.8: Results of the algorithm on three image sequences: freethrow(top), car-map
(middle), andmobile-calendar(bottom). The original image (left), the feature groups over-
laid on the image (middle), and the feature groups detected on another image later in the
sequence (right). Features belonging to different groups are indicated by markers of differ-
ent shapes, and solid lines outline the convex hull of each group. The top row shows frames
9 and 14, the middle shows frames 11 and 20, and the bottom shows frames 14 and 69.

4.4 Experimental Results

The algorithm was tested on a total of six grayscale image sequences. Motion

segmentation results for three of these sequences are shownin Figure4.8, with features

assigned to the group with the highest weight.1 In the freethrowsequence, a basketball

player moves down in the image as he prepares to shoot a freethrow, while the camera

moves slightly down. Two groups are found by the algorithm, one for the player (indicated

1Videos of the results can be found at
http://www.ces.clemson.edu/˜stb/research/motion segmentation .

82

by black triangles) and one for the crowd in the background (indicated by white circles).

In the car-mapsequence, a car drives in a straight line behind a map while the camera

remains stationary. The car (white circles), map (blackx ’s), ground (black triangles), and

background (white squares) are detected. The car is occluded for a period of time behind

the map then is detected again as it reappears on the other side. In themobile-calendar

sequence, a toy train pushes a ball to the left, and a calendarslides down in front of a

textured background, while the camera zooms out and moves slightly left. All of the objects

are detected, even though the ball (white+’s) and train (black circles) move faster than the

calendar (blackx ’s) and background (white squares). It should be noted that the white

borders around the feature groups are shown only for the sakeof clarity and are not to be

considered the object boundaries.

Thestatuesequence, shown in Figure4.9, is the most challenging. These images

were captured by a hand-held camera moving in an uncontrolled fashion around a statue,

while a bicyclist drove behind the statue and a pedestrian walked in front of the statue. The

motion of the objects is not linear, and several objects appear and disappear over the course

of the sequence. With just two frames the algorithm is able toseparate the background

(containing the wall and the trees) from the foreground (containing the grass and the statue).

By frame 6, four groups are found: the statue (black circles), the grass (white asterisks),

the trees (white triangles), and the stone wall (white squares). Although some of the trees

are inadvertently grouped with the stone wall initially, over time they are correctly joined

with the rest of the trees as more evidence becomes available. The bicyclist enters in frame

151, is detected in frame 185 (whitex ’s), becomes occluded by the statue in frame 312,

emerges on the other side of the statue in frame 356, and is detected again in frame 444

(black stars). Although the algorithm currently does not attempt correspondence between

occluded and disoccluded objects, a straightforward extension would maintain the identity

of the bicyclist through the occlusion. The pedestrian enters the scene in frame 444 and

83

is segmented successfully (black+’s), although the non-rigid motion prevents the feature

tracker from maintaining a large number of features throughout, and it prevents the affine

motion model from well approximating the actual motion. Thepedestrian occludes the

statue from frames 486 to 501, after which the statue is regrouped into separate groups for

top and bottom. Near the end of the sequence the lack of texture on the ground, combined

with motion blur of the shaking camera, prevent the feature tracker from replenishing the

features on the grass after the pedestrian passes.

Results for therobot sequence are shown in Figure4.10. In this sequence, two

robots move in the same direction roughly parallel to the plane of the camera, although

there is a significant pan of the camera toward the end of the sequence. The robots start

from the same initial location and travel together at the same speed for several seconds,

after which the robot farther from the camera accelerates and overtakes the other robot. As

seen in the figure, the group belonging to the robots splits into two groups, one per robot,

when their relative speeds change; while the background is maintained as a single group

throughout.

Figure4.11shows a highway scene captured from a low-angle camera. Fourteen

vehicles enter and exit the scene during the 90 frames of the sequence. Of the ten vehicles

in the three nearby lanes (approaching traffic), 80% of the vehicles were segmented from

the background correctly. The two vehicles in the nearby lanes that were not detected

were close to adjacent vehicles traveling at the same speed (see the car behind the truck

in the middle image). In addition, the algorithm segmented four vehicles in the far lanes

(receding traffic), even though their image size is small (onan average approximately 50

pixels). The background is split into two large regions in the middle image of the figure

because the vehicle traffic removes the adjacency of the background features in that portion

of the image. Also, the grass on the left side of the image is further split from the trees due

to movement of the latter.

84

Figure 4.9: Results on thestatuesequence, with the original image shown in the upper-left
inset. In lexicographic order the image frames are 6, 64, 185, 395, 480, and 520. The
algorithm forms new groups or splits existing groups due to the arrival or departure of
entities in the scene.

Figure 4.10: Results on therobot sequence (frames 35, 120, and 100), with the original
image shown in the bottom-right inset. The algorithm splitsthe group belonging to the
robots into two separate groups as the farther robot accelerates.

85

Figure 4.11: Results on thehighwaysequence (frames 15, 39, and 61), with the original
image shown in the top-left inset. The algorithm forms new groups or splits existing groups
due to the arrival or departure of vehicles in the scene.

Since the algorithm operates in an incremental fashion, creating and maintaining

groups of features as more evidence becomes available, the number of groups is determined

automatically and dynamically. Figure4.12displays the dynamic progress of the results on

all of the six sequences (freethrow, mobile-calendar, car-map, statue, robot, andvehicle).

In the first sequence the basketball player becomes separable from the background almost

immediately. In the second sequence the faster train and ball become separable after only

two frames, while six frames are needed to separate the calendar and background. In the

third sequence the objects are detected one at a time, with all four objects segmented by

frame 16. In the statue sequence the primary four areas of thescene are segmented after

just a few frames, then the bicyclist and pedestrian are detected as they enter the scene and

removed as they leave. In the robot sequence, the moving robots are separated from the

background, and after a while, the faster robot is separatedfrom the slower one. Finally, in

the vehicle sequence, large number of vehicles appear and disappear throughout the length

of the sequence.

One of the advantages of this algorithm is its lack of parameters. The parameter

τ , which was set to1.5 for all the results in this section, governs the amount of image

evidence needed before features are declared to be moving consistently with one another.

It is used to computepτ = 1√
2σ2

f

exp
{

− τ2

2σ2
f

}

for (4.11), whereσf = 0.7. Significantly,

86

0 5 10 15 20
0

1

2

3

4

5

6

7

frame

nu
m

be
r

of
 fe

at
ur

e
gr

ou
ps

player and background

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

frame

nu
m

be
r

of
 fe

at
ur

e
gr

ou
ps

background and
calendar separated

train and ball segmented

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

frame

nu
m

be
r

of
 fe

at
ur

e
gr

ou
ps

 car
 background

 grass and map

disoccluded car

freethrow mobile-calendar car-map

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

frame

nu
m

be
r

of
 fe

at
ur

e
gr

ou
ps

trees, wall, grass and statue

biker

biker occluded

trees
biker

pedestrian

pedestrian lost

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

frames

nu
m

be
r

of
 fe

at
ur

e
gr

ou
ps

both robots
separated from
background

faster robot
segmented

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

frame

nu
m

be
r

of
 fe

at
ur

e
gr

ou
ps

vehicles

statue robot vehicle

Figure 4.12: The algorithm automatically and dynamically determines the number of fea-
ture groups. Plotted are the number of groups versus image frame for each of the six
sequences.

Figure 4.13: Insensitivity to parameters. Segmentation results shown for two different
values ofτ for frames 4, 8, 12 and 64 (from left to right) of the statue sequence.TOP: τ =
3.0,BOTTOM: τ = 0.7.

87

the results are insensitive to this parameter: Ifτ is increased, then the algorithm simply

waits longer before declaring a group by accumulating the motion difference between the

objects over time, while ifτ is decreased then the groups are declared sooner. Figure4.13

displays this insensitivity. Similar experiments reveal the insensitivity of the results to the

other parameters, such asβe, βr , andnmin.

Insensitivity to speed is shown in Figure4.14. Qualitatively similar results are

obtained by running the algorithm on the originalstatuesequence and on a sequence gen-

erated by replicating each frame in the sequence (thus effectively decreasing the relative

speed of the objects by half). Although not shown due to lack of space, the same result

occurs by further replication (i.e., reducing the speed by any positive factor). Similarly,

nearly identical results are obtained by running the algorithm on every other image of the

sequence (thus doubling the motions). All these results were obtained without changing

any parameters of the algorithm.

Quantitative results are shown in Figure4.15for these downsampled and upsampled

statuesequences. Except for the end of the sequence, where the errors in the feature track-

ing cause mismatch in the groups detected, the maximum errorin the number of groups

found is one. These spikes, near frames 160 and 300, occur dueto the late detection and

early loss of the bicyclist, thus indicating a mere temporalmisalignment error from which

the algorithm recovers. The difference in the centroids of the groups is small, averaging 4

pixels over the entire sequence and never exceeding 6.5 pixels. Similarly, the average error

in the areas of the groups, computed by the convex hull of the features in each group, is

12% and 15% for the upsampled and downsampled sequences, respectively. These errors

are relatively small, keeping in mind that the sparse algorithm is not designed to recover

accurate shape of the objects and thus is subject to artifacts of feature tracking and density.

Moreover, the errors do not increase with further upsampling.

Figure4.16displays the updating of the reference frame over time for two feature

88

Algorithm Run time Number
(sec / frame) of groups

Xiao and Shah [113] 520 4
Kumar et al. [62] 500 6
Smith et al. [95] 180 3
Rothganger et al. [84] 30 3
Jojic and Frey [53] 1 3
Cremers and Soatto [24] 40 4
our algorithm 0.16 6

Table 4.1: A comparison of the computational time of variousmotion segmentation algo-
rithms. The rightmost column indicates the maximum number of groups found by each
algorithm in the reported results.

Figure 4.14: The algorithm is insensitive to speed. TOP: Results on a modified statue
sequence in which each frame occurs twice, thus reducing themotion by half. BOTTOM:
Results on a modified statue sequence in which every other frame has been discarded, thus
doubling the motion. Shown are frames 64, 185, 395 and 480 of the original sequence.

groups in the statue sequence: the statue itself, and the trees behind the statue. Because

the tree group is large and contains non-planar surfaces in the real world, it contains a fair

number of outliers. These outliers cause the chi-square test for that group to fail often, thus

necessitating the reference frame to be updated frequently. Other groups in the sequence,

such as the grass and the wall, exhibit similar behavior. In contrast, the small and stable

statue group requires only infrequent updating of the reference frame. Even though the

statue is not planar, its extent allows the affine model to approximate its motion well.

89

0 100 200 300 400 500
−5

−4

−3

−2

−1

0

1

2

3

4

5

frames

er
ro

r
in

 n
um

be
r

of
 g

ro
up

s

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

frames

rm
s

er
ro

r
fo

r
ce

nt
ro

id
s

(in
 p

ix
el

s)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frames

av
g.

 %
 e

rr
or

 in
 a

re
a

0 100 200 300 400 500
−5

−4

−3

−2

−1

0

1

2

3

4

5

frames

er
ro

r
in

 n
um

be
r

of
 g

ro
up

s

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

frames

rm
s

er
ro

r
fo

r
ce

nt
ro

id
s

(in
 p

ix
el

s)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frames

av
g.

 %
 e

rr
or

 in
 a

re
a

Figure 4.15: Quantitative analysis of the insensitivity ofthe algorithm to speed for the up-
sampled (slower) sequence (TOP ROW) and the downsampled (faster) sequence (BOTTOM

ROW). The plots compare the original and modified sequences using the number of groups
detected (LEFT), the root-mean-square error of the centroids (CENTER), and the average
percentage difference between the areas of the corresponding groups (RIGHT).

50 100 150 200 250
50

100

150

200

250

re
fe

re
nc

e
fr

am
e

frame
50 100 150 200 250

50

100

150

200

250

re
fe

re
nc

e
fr

am
e

frame

Figure 4.16: The reference frame versus time for two groups in the statue sequence. LEFT:
the statue; RIGHT: the trees behind the statue.

90

Figure 4.17: Motion segmentation results using joint feature tracking algorithm presented
in Chapter3. TOP ROW: Input images of an indoor sequence (150 frames) with a cam-
era mounted on a mobile platform. There are a large number of untextured regions and
especially, on the ground.MIDDLE ROW: Motion segmentation using point feature trajec-
tories obtained from KLT feature tracking [7]. BOTTOM ROW: Motion segmentation using
point feature trajectories obtained from joint feature tracking. Notice that there are multiple
groups when using KLT on the ground as the sequence progress,while this is not observed
in the case when features are tracked using the joint featuretracking algorithm.

91

1
4

2

3

5

2
1

3

1

2

Figure 4.18: Segmentation results of [62] on portions of thestatue, robot, andcar-map
sequences. The algorithm processed frames 161–196, 150–175, and 25–35, respectively.
Shown are a sample image from each sequence (top) and the results for that image (bottom).

Figure4.17shows the effect of joint feature tracking algorithm presented in Chapter

3 on the grouping of the features in an indoor sequence. The sequence is captured using a

camera attached to a mobile platform and looking down towardthe ground while moving

forward. While motion segmentation using the feature trajectories obtained from the joint

feature tracking algorithm does not outperform the segmentation using the conventional

feature tracking for the six previously shown sequences, the sequence shown in Figure4.17

is well suited for joint feature tracking since it has a largeuntextured areas and regions of

repetitive texture. Since joint tracking performs better in such situations, the segmentation

results using the corresponding feature trajectories are better as compared to those using

the conventional tracking.

In terms of computation, our algorithm is orders of magnitude faster than other

recent techniques, as shown in Table4.1. The algorithm requires only 160 ms per frame

for a sequence of320 × 240 images with 1000 features on a 2.8 GHz P4 computer using

an unoptimized Visual C++ implementation using the KLT feature tracker [7] within the

92

Blepo library [8]. Most of this computation (140 ms) is used by the feature tracking, with

only 20 ms needed by the segmentation algorithm. In [113], 95% of the computation

is spent on the preprocessing stage to determine the number of groups along with their

motion models, which is what our algorithm produces. Thus, our approach can be seen

as a computationally-efficient front-end for initializingone of these more expensive dense

segmentation methods in order to drastically reduce their computational load.

It is difficult to compare the quality of our segmentation with those of other algo-

rithms, because the goals are different. As an example, Figure4.18shows the groups found

by the algorithm of Kumar et al. [62] by batch processing small clips from three of the se-

quences. Because the algorithm assumes that objects move parallel to the image plane, it

performs well when that assumption holds, enabling a crisp delineation of the regions on

these clips. However, even on the short clip of thestatuesequence their algorithm fails to

separate the trees on the left from the wall on the right, and it erroneously merges much

of the grass with the tree/wall region. More importantly, the algorithm cannot process the

entire video sequence, both because of its computational cost and because of the assump-

tions that it makes regarding the presence and motion of objects. In a similar manner, the

algorithm does not perform as favorably on the other sequences (e.g.,mobile-calendar,

freethrow, andvehicles) because of the large rotations and the appearance/disappearance of

objects.

Although other algorithms exhibit strengths according to the goals for which they

were designed, they perform less favorably on our sequences. For example, the technique

of Jojic and Frey [53] requires a static background, so it is unable to properly segment

these sequences in which the camera moves considerably. Thehard limit of the Smith et

al. algorithm [95] to a maximum of three regions would also prevent its obtaining a proper

segmentation. Similarly, Cremers and Soatto [24] detect up to four synthetic regions using

the intersection of two contours, an approach that is unlikely to generalize to the complexity

93

of sequences containing multiple independently moving objects. Moreover, their approach

handles just two image frames and requires the contours to beinitialized, which is not

possible in the context of on-line automatic segmentation of live video. Similarly, the

approach of Xiao and Shah [113] computes accurate dense motion layers, but it detects the

number of layers initially and keeps this number constant throughout the sequence. Finally,

Rothganger et al. [84] group sparse feature points by processing a small block of image

frames in batch.

4.5 Summary

This chapter has described a motion segmentation algorithmthat clusters sparse

feature point trajectories using a spatially constrained mixture model and a greedy EM

algorithm. The algorithm detects a relatively large numberof objects and automatically

determines the number of objects in the scene along with their motion parameters. It adap-

tively updates the reference frame by distinguishing between multiple motions within a

group and an obsolete reference frame. The algorithm operates in real time and accurately

segments challenging sequences. In this chapter, it was assumed that the regions in the

image sequences undergo affine motion. Next chapter deals with learning and the use of a

more complex model for articulated human motion for segmentation and pose estimation.

94

Chapter 5

Motion Models of Articulated Bodies

The algorithm presented in the previous chapter assumes affine motion for cluster-

ing features. While the assumption of affine motion of regions may hold for a large number

of situations, it is not sufficient to capture the rich diversity of motions encountered in nat-

ural scenes. One common non-affine motion is articulated human motion. If motion model

of a walking human were available, it could be plugged into the motion segmentation algo-

rithm presented in the previous chapter to yield even betterresults. This chapter describes a

motion based approach for learning the articulated human motion models for multiple pose

and view angles. These models are then used to perform segmentation and pose estimation

in sequences captured by still or moving camera that involvewalking human targets with

varying view angles, scale, and lighting conditions. In this work, we treat the learning and

segmentation of the articulated motion as one module in the overall segmentation problem.

5.1 Motivation for Articulated Human Motion Analysis

Detection of articulated human motion finds applications ina large number of ar-

eas such as pedestrian detection for surveillance, or traffic safety, gait/pose recognition for

95

human computer interaction, videoconferencing, computergraphics, or for medical pur-

poses. Johansson’s pioneering work on moving light displays (MLDs) [52] has enabled

researchers to study the mechanism and development of humanvisual system with a differ-

ent perspective by decoupling the motion information from all other modalities of vision

such as color and texture. One compelling conclusion that can be drawn from these studies

is that motion alone captures a wealth of information about the scene and can lead toward

successful detection of articulated motion.

Figure5.1shows some examples of humans walking as seen from multiple angles

along with their motion trajectories. Even though the appearance features (shape, color,

texture) can be discriminative for detection of humans in the sequence, the motion vectors

corresponding to the point features themselves can be used to detect humans. Motion of

these points become even more compelling when viewed in a video, as human visual system

fuses the information temporally to segment human motion from the rest of the scene. It

is common knowledge that in spite of having a separate motion, each body part moves in a

particular pattern. Our goal is to exploit the motion properties of the sparse points attached

to a human body in a top-down approach for human motion analysis. More specifically,

our attempt is to answer the question: If provided only with the motion tracks (sparse point

trajectories) and no appearance information, how well can an algorithm detect, track, and

estimate the pose of the human(s) in the videos?

Even while considering only a restricted set of action categories such as walking

alone, human motion analysis can still be a challenging problem due to various factors

such as pose, scale, viewpoint, and scene illumination variations. A purely motion based

approach can overcome some of the problems associated with the appearance based ap-

proaches. Daubney et al. [28] describe the use of motion information alone in a bottom-up

manner for inferring correct human pose. While effective inmany circumstances, use of

motion introduces some of its own challenges. It is mostly due to multiple simultaneous

96

Figure 5.1: Various examples of human motion such as walkingperpendicular, along the
camera axis and at an angle. TOP ROW: Input images.BOTTOM ROW: Motion vectors
corresponding to the tracked feature points.

motions and self occlusions of the body parts during the motion of the target, making it

difficult to establish long term trajectories of the variousbody parts.

In this chapter, we focus on a top-down approach, where instead of learning the

motion of individual joints and limbs, we learn the short-term motion pattern of the entire

body in multiple pose and viewpoint configurations. Pose estimation can then be performed

by a direct comparison of the learned motion patterns to those extracted from the candidate

locations. The advantage of using such a top-down approach is that it greatly simplifies

the learning step. At the same time, the learned motion patterns can be reliably used to

estimate the pose and the viewpoint in the presence of noise.Using only the sparse motion

trajectories and a single gait cycle of 3D motion capture data points of a walking person

for training, we demonstrate detection and pose estimationof articulated motion on various

sequences that involve viewpoint, scale, and illuminationvariations and camera motion.

Previous work related to human motion detection and analysis can be loosely classi-

fied into three categories: pedestrian detection for surveillance, pose estimation, and action

97

recognition. The nature of algorithms dealing with the different categories varies signifi-

cantly due to the differences in the input image sequences. Approaches dealing with pedes-

trian detection for surveillance treat the problem as appearance-based object detection fol-

lowed by the tracking of the detected targets, which is performed by considering them as

blobs or image patches. For example, [104, 79] learn the appearance of the humans using

texture to perform pedestrian detection. Pedestrian detection from a mobile platform using

both appearance and stereo vision is described in [44]. Detection of individual human body

parts separately and then combining the results to detect pedestrians has been discussed in

[111]. Detection of human activities in IR videos is presented in[119]. Periodic motion of

silhouettes is used for pedestrian detection and tracking in [27].

Another direction of research has been human pose estimation for which the hu-

man motion is captured in greater detail as compared to pedestrian detection. Contrary to

the pedestrian detection approaches, motion of the subjects cannot be viewed as a single

moving blob. Instead, they are composed of disparate motionof multiple body parts. Pose

estimation based on fitting human body model to the subject has been a popular approach

over the past decade [1, 93, 100, 82]. Other notable approaches include graph based unsu-

pervised pose estimation [96], detection of multiple body parts and their combination by

belief propagation to estimate the 3D pose [65], and use of spatio-temporal features in a

Hidden Markov Model (HMM) framework [18, 63]. A purely motion based approach is

described in [28], where low level sparse feature trajectories are learned to estimate pose.

A motion exemplar based algorithm for comparing sequences of images with the training

sequences for pose estimation is described in [37]. Use of residual optical flow field for un-

supervised detection of cyclic non-rigid human motion is described in [67]. The approach

described in [36] learns the 2D motion models from the 3D training data and uses them in

a Bayesian framework for detection and tracking of articulated motion.

Human action recognition is an area of research that is related to the pose detec-

98

Figure 5.2: Overview of the proposed approach to extract human motion models.

tion problem. In this case, the objective is to classify the detected human motion in one

of several predefined categories. Evidently, the approaches dealing with this problem are

heavily dependent on the training data used for learning theaction categories. Commonly

used cues for action recognition include spatio-temporal features [34], spatio-temporal fea-

tures along with shape and color features [75], motion trajectories in a multi-view geometry

framework [116], sequential ordering of spatio-temporal features [77], and motion history

descriptors [12] among others.

5.2 Learning Models for Multiple Poses and Viewpoints

An overview of the proposed approach is shown in Figure5.2. Given an image

sequence our goal is to segment, track, and determine the configuration of the walking

human subject (pose and viewpoint) using only the sparse motion vectors corresponding

to the feature points in the sequence. This chapter follows its own notation and all the

quantities used are defined for this particular chapter. Thepoint features are detected and

tracked using the Lucas-Kanade algorithm. Since there is a significant amount of self

99

occlusion, many point features representing the target arelost. Therefore, we use only

short term feature trajectories (between two consecutive frames). LetVt =
〈

v(t)
1 , . . . , v

(t)
K

〉

be the velocities of theK feature points at framet, t = 1, . . . ,T, whereT is the total

number of frames. For convenience, assume that theseK tracked features describe the

target. Configuration of the subject in the current frame is denoted byct = 〈mt, nt〉, where

mt and nt are the pose and view at the timet respectively. Even if the viewpointnt is

unknown, we assume that it stays the same throughout the sequence. The configuration

in the current frame is dependent not only on the motion vectors in the current frame but

also on the configuration at the previous time instants. For determiningct, the Bayesian

formulation of the problem is given by

P(ct | Vt, c0:t−1) ∝ P(Vt | ct, c0:t−1)P(ct | c0:t−1), (5.1)

whereP(Vt | ct, c0:t−1) is the likelihood of observing the particular set of motion vectors

given the configuration at timet andt − 1 andP(ct | c0:t−1) is the prior for time instantt

that depends on the configurations at the previous instancesof time. Assuming a Markov

processes, we can write the above equation as

P(ct | Vt, c0:t−1) ∝ P(Vt | ct, ct−1)P(ct | ct−1). (5.2)

The estimate of the configuration at a timet is c∗t , and our goal is to estimate configurations

over the entire sequence,C = 〈c∗0, . . . , c∗T〉. The likelihood,P(Vt | ct, ct−1), is obtained

from the training data and is described in next section whilethe configuration is estimated

using the Hidden Markov Model (HMM) described in Section5.3. Learning the motion

patterns of the multiple pose and viewpoints involves first preparing the raw training data

and obtaining a set of motion descriptors that describe eachpose in each viewpoint.

100

−3000
−2000

−1000
0

0

1000

2000

3000

0

500

1000

1500

x y

z
0 45 90 135

−135 −90 −45180

3D points angular viewpoints

1 2 3 4 5 6 7 8

Figure 5.3: Top: 3D Motion capture data and its projection onvarious plane to get multiple
views in 2D. Bottom: Stick figure models for various walking poses for the profile view.

5.2.1 Training Data

For training, we use the CMU Motion Capture (mocap) data1 that has human sub-

jects performing various actions. This work is restricted only to the sequences where the

subject is walking. In a typical motion capture sequence, using multiple cameras, the 3D

locations of the markers associated with the joints and limbs are acquired for the entire

sequence containing multiple gait phases. The sequence is cropped in parts such that one

part consists of an entire sequence of gait phases. The obtained 3D points (marker loca-

tions) are projected onto multiple planes at various anglesto the subject in each phase and

corresponding motion vectors are obtained. Such a multi-view training approach was also

adopted in [36]. The advantage of using the 3D sequence is that a single sequence provides

a large amount of training data.

All possible views and gait phases are quantized to some finite number of viewpoint

and pose configurations. LetM be the number of quantized poses andN be the number of

1http://mocap.cs.cmu.edu

101

views. Letq(i)
m = (qx, qy, qz)

T, i = 1, . . . , l be the 3D point locations obtained from the

mocap data for themth phase. Then the projection of thei th 3D point on planes correspond-

ing to n view angles is given byp(i)
mn = Tnq(i)

m . Herep(i)
mn is the 2D point corresponding to

the phasem and the viewn, and the transformation matrix for thenth view angle is given

by Tn = PnRn, wherePn is the 2D projection matrix(2 × 3) andRn is the 3D rotation

matrix (3 × 3) along thez axis. We limit our view variations inx andy directions. Let

Pm,n =
〈

p(mn)
1 , . . . , p(mn)

l

〉

be the tuple of points representing the human figure in phasem

and viewn andVm,n =
〈

v(mn)
1 , . . . , v(mn)

l

〉

be their corresponding motion vectors. Note that

V denotes motion vectors obtained from the training data while V represents the motion

vectors obtained from the test sequences. Figure5.3 shows the multiple views and pose

configurations obtained from the 3D marker data. In this work, we use 8 viewpoints and 8

pose configurations per view.

5.2.2 Motion Descriptor

The training data obtained in terms of sparse motion vectorscannot be directly

used for comparison. Often, some kind of dimensionality reduction technique is used to

represent the variation in the pose or angle. PCA is a common technique that has been

used in the past [36]. We choose to represent the motion vectors corresponding to each

pose and view using a descriptor centered on the mean body position that encodes spatial

relationships of low level motion (local or frame-to-framemotion) of various joints and

limbs. The descriptor is designed in such a way that it suppresses noisy motion vectors

and outliers. Noise is not a factor in training data but is present in a significant amount

when dealing with real world image sequences. The basic requirements behind the motion

descriptor is that it should enable discrimination of humanand non-human motion and

at the same time also discriminate between multiple poses and viewpoints. The upper

102

body tends to exhibit a consistent motion while the lower body may have multiple motions

associated with it. We weight the motion vectors with 9 spatially separated Gaussians with

different orientations and generate an 18 dimensional vector corresponding to the weighted

magnitude and orientation of the motion vectors. Dependingupon the pose and the strength

of the motion vectors, different bins will have different values.

Given the training data,Pm,n andVm,n, the motion descriptor for posem and viewn

is denoted byψmn. Thej th bin of the motion descriptor is given by

ψmn(j) =
l
∑

i=1

v(i)
mnG(p(i)

mn, µxy(j), σ
2
xy(j)), (5.3)

whereG() is a 2D oriented Gaussian:

G(p(i)
mn, µxy(j), σ

2
xy(j)) =

1

2πσ2
xy(j)

exp











−
(

p(i)
mn− µxy(j)

)2

2σ2
xy(j)











, (5.4)

with µxy(j) andσ2
xy(j) being the mean and the variances that are precomputed with refer-

ence to the body center. Figure5.4 shows the Gaussian weight maps and a representative

diagram of ellipses approximating the Gaussian functions plotted on the profile view of the

human subject. Figure5.5 shows the discriminative ability of the motion descriptor.The

left image shows the difference of a descriptor from the training data with all the other de-

scriptors. The diagonal elements have zero value and the distance between two descriptors

is less if they belong to adjacent pose or viewpoints. The figure on the right shows the plots

of the descriptor bin values for two cases: 3 different viewpoints but the same pose, and 3

different poses but the same viewpoint. It can be seen that the first few bins have more or

less the same values as they represent the upper body but the last few bins representing the

lower body show a large degree of variation amongst themselves.

103

45 90 135 180

−45 −90 −135 0

x x x x

y y y y

x x x x

y y y y

−3500 −3000 −2500 −2000 −1500 −1000 −500
−500

0

500

1000

1500

2000

2500

Figure 5.4: LEFT: Gaussian weight maps of different parameters used for computing the
motion descriptor. RIGHT: Spatial representation of the Gaussian maps with density func-
tions are displayed as ellipses with precomputed means (shown by +) and variances with
respect to the body center. The sparse points correspondingto the body parts are denoted
by×.

10 20 30 40 50 60

10

20

30

40

50

60

0 5 10 15 20
0

0.05

0.1

0.15

0.2

bins

va
lu

e

0
90
180

0 5 10 15 20
0

0.05

0.1

0.15

0.2

bins

va
lu

e

1
2
3

Figure 5.5: Discriminating ability of the motion descriptor. LEFT: A 64 × 64 matrix (8
poses and 8 viewpoints) that shows the distance of each motion descriptor from every other
motion descriptor in the training set.RIGHT: Plots of descriptor bin values for same pose
but different viewpoints (top) and different pose and the same viewpoint (bottom).

104

5.3 Pose and Viewpoint Estimation

Hidden Markov Models (HMMs) are well suited for pose estimation over time.

HMMs are statistical models consisting of a finite number of states which are not directly

observable (hidden) and follow a Markov chain, i.e., the likelihood of the occurrence of

a state at the next instant of time depends only on the currentstate and not on any of the

states occurring at the previous instants of time. Even though the states themselves are not

visible, some quantities may be known (or computed) such as the probability of observing

a variable given the occurrence of a particular state (knownas the observation probability),

the probability of transitioning from one state to another (the state transition probability)

and the probability of being in a state at the beginning (the prior). Once such a model

is defined, using a series of observations, we can address some of the key problems such

as computing the probability of obtaining a particular sequence of observations (analysis

or evaluation problem), estimation of the state sequence for generating a given sequence

of observations, or estimation of the parameters of the HMM (synthesis problem). Since

human gait varies over time only in a particular fashion, it can be assumed to be a Markov

process, i.e., pose at the next instant of time will conditionally depend on the pose at the

current instant of time. Since the actual pose is unknown, observation probabilities can be

computed from the image data using motion of the limbs. The state transition probabilities

and the priors can be defined based on any pre-existing assumptions regarding the nature

of the test sequences. The goal is to determine the hidden state sequence (pose estimates)

based on a series of observations obtained from the image data.

Let λ = (A,B, π) be the HMM, whereA is the state transition probability,B is

the observational probability, andπ is the prior. Being consistent with our notation from

Section5.2, let the configurationct represent the hidden state of the model at timet, and let

Ot be the observation at timet, t = 1, . . . ,T. There is a finite number of states, hencect is

105

assigned values from a finite set of numbers,S = {〈1, 1〉 , . . . , 〈M,N〉} corresponding to

each pose and view angle. The state transition probability is A(i, j) = P(ct+1 = j | ct = i),

i, j ∈ S, i.e., the probability of being in statej at timet + 1 given the current state being

i. Observation probability is given byB(j, t) = P(Ot | ct = j) i.e., observingOt at time

t given the current state isj. Given the HMMλ = (A,B, π), and series of observations

O = {O1, . . . ,OT}, our goal is to find the sequence of statesC = {c1, . . . , cT} such that

the joint probability of the observation sequence and the state sequence given the model

P(O, C | λ) is maximized. The probability of the configurationct is given by equation

(5.2). While the state transition probability is predefined, theobservation probability is

computed based on the closeness of the observed data to the state (configurations from the

training data). IfVct → Vmn refers to the motion vectors of themth pose andnth view of the

training data,Vt represents the observed motion vectors at timet, and the corresponding

motion descriptors are given byψmn andψt respectively, then the observation probability

can be computed from the normalized Euclidean distance betweenψmn andψt. The state

transition probabilities are set such that a state can transition to the next state or remain the

same at the next time instant. The optimum state sequenceC for the HMM can now be

computed using the Viterbi algorithm.

5.4 Experimental Results

We present results of our approach on a variety of sequences of walking humans

under multiple pose, viewpoint, scale, and illumination variations. Segmentation of articu-

lated bodies is performed by applying the motion descriptorto each pixel at multiple scales

in the detection area, and a strength map is generated. The detection area is determined by

the scale of the descriptor. In this work we use 3 different scales of humans. The maxi-

mum of the strength map gives a probable location and scale ofthe target. Unique nature

106

of the human motion as compared to the various other motions present in an outdoor or

indoor sequences helps in segmentation. Figure5.6 shows human detection based only

on motion. This serves an an initial estimate of the positionand the scale of the target.

Point features are then tracked through the sequence and based on the tracked points at-

tached to the segmented target, the location and the scale isupdated. The entire process

is completely automatic. Figure5.7 shows the segmentation of the person walking in the

statue sequence. Note the improvement with respect to the motion segmentation algorithm

in chapter4, where the person is lost in many frames because the affine motion model is a

poor fit for describing such a complex motion.

Figure5.9shows the pose estimation results for sequences captured from the right

profile and the angular profile views. Each sequence covers anentire gait cycle. The

stick figure models correspond to the nearest configuration found in the training data. The

biggest challenge is to deal with noisy data. Point feature tracks are not very accurate in

noisy sequences and a large number of point features belonging to the background may

cause errors in the pose estimation. The sequences with humans walking toward or away

from the camera are especially challenging since the motionof the target is small as com-

pared to other cases. In addition, if there is a small amount of camera motion, such as in

the sequence shown in the columns 1 and 2 row of Figure5.10, then a small number of

outliers in the background can cause significant errors in the pose estimate. The real utility

of a purely motion based approach can be seen in the night-time sequence in the columns 3

and 4 of Figure5.10, where a person walks wearing a special body suit fitted with reflectors

that glows at night. This suit is used by psychologists to study the effectiveness of reflec-

tors for pedestrian safety by exploiting the hardwired biomotion capabilities of the human

visual system of automobile drivers. Even without any appearance information, the motion

vectors are relatively straightforward to obtain in such situations and are highly effective

within the current framework for estimating the pose. Figure5.8shows the estimated knee

107

Figure 5.6: Articulated motion detection for various viewpoints (left to right) right profile,
left profile, angular and front.

Figure 5.7: Articulated motion segmentation results for 4 of the 100 frames of the statue
sequence where the pedestrian walks in front of the statue.

angles at every frame along with the ground truth (manually marked) on the right profile

view sequence.

2 4 6 8 10 12 14 16

−2

0

2

frames

an
gl

e
(r

ad
)

ground truth
estimated

2 4 6 8 10 12 14 16

−2

0

2

frames

an
gl

e
(r

ad
)

ground truth
estimated

Figure 5.8: Plot of estimated and ground truth knee angles for the right profile view.

108

Figure 5.9: Input images and the corresponding pose estimation results for the right
(columns 1 and 2) and the angular profile views(columns 3 and 4).

109

Figure 5.10: Input images and the corresponding pose estimation results for the front view
(columns 1 and 2) and the right profile view for the night-timesequence (columns 3 and 4).

110

5.5 Summary

In an attempt to learn complex motion models for segmentation, this chapter de-

scribes an approach for segmentation, tracking, and pose estimation of articulated human

motion that is invariant of scale and viewpoint. The motion capture data in 3D helps in

learning the various pose and viewpoint configurations. A novel motion descriptor is pro-

posed that encodes the spatial interactions of the motion vectors corresponding to the dif-

ferent parts of the body. The segmentation, tracking and pose estimation results are shown

for various challenging indoor and outdoor sequences involving walking human subjects.

Integration of the human motion model into the motion segmentation algorithm presented

in the previous chapter is left for future work. In the next chapter, we revisit the problem

of image segmentation in the context of a specific application, namely, iris image segmen-

tation.

111

Chapter 6

Iris Image Segmentation

In the previous chapters we have focused primarily upon various aspects of motion

segmentation using mixture models. As demonstrated in Chapter 2, mixture models can

also be used for segmentation of a single image. In this chapter, we revisit the image seg-

mentation problem but focus our efforts on a specific application, namely, segmentation of

iris images. An image of an eye presents a unique challenge. In spite of a large amount

of a priori information being available in terms of the number of segments (four segments:

eyelash, iris, pupil and background) as well as the shape andthe expected intensity distri-

bution of the segments, it still is a challenging problem dueto out-of-plane iris rotation,

extensive iris occlusion by eyelashes and eyelids, and various illumination effects. What

is essentially required is algorithm for labeling the imagepixels, and for the reasons that

will be explained momentarily, we use graph cuts algorithm for this purpose. The fol-

lowing sections describe the importance of iris segmentation, texture and intensity based

segmentation using graph cuts, and refining of the segmentediris region using iris shape

information. Experimental results are demonstrated on non-ideal iris images that suffer

from occlusions, illumination effects and in and out-of-plane rotations.

112

6.1 Motivation for Iris Segmentation

Automated person identification and verification systems based on human biomet-

rics are becoming increasingly popular and have found wide ranging applications in de-

fense, public and private sectors. Over the years, a large number of biometrics haven been

explored such as fingerprints, hand geometry, palm prints, face, iris, retina, voice among

others. Even though iris has emerged as a potent biometric for person identification and ver-

ification systems in the past few years, many of these advanced systems are still grappling

with issues such as acquisition of good iris images and theirpreprocessing to improve the

accuracy of the overall system. This paper presents an approach for preprocessing the iris

images to remove eyelashes, eyebrows and specular reflections and accurately localizing

the iris regions.

Much of the popularity of the iris recognition systems stemsform three broad rea-

sons. First, iris is almost an ideal biometric i.e., it is highly unique for an individual and

stable over one’s lifetime. Second, it is easily distinguishable, and fast and highly accurate

algorithms exist to perform the matching ([29]). Third, since iris is an internal organ it is

difficult to spoof. Also the iris recognition systems can achieve high false rejection rates

which means they are very secure. Having said this, iris recognition systems are not totally

devoid of errors. A typical iris recognition system consists of a sensor to acquire the iris

image, a preprocessing step and iris encoding and matching algorithm. Each stage may

contribute to the overall recognition errors but as pointedout earlier, the iris recognition al-

gorithms themselves are highly accurate. This means, a large number of recognition errors

are due to noisy iris images and errors in preprocessing steps. Some of the factors which

make preprocessing step critical to the success of an iris recognition algorithm are occlu-

sion of iris due to eyelashes and eyebrows, specular reflections, blurring, pupil dilation and

other iris artifacts. A large number of iris recognition approaches rely onideal iris images

113

Figure 6.1: An ideal iris image (left), and iris images of varying quality (right three
columns), containing out of plane rotation, illumination effects, and occlusion.

for successful recognition, i.e., low noise iris images in which the person is looking straight

at the camera. Their performance degrades if the iris undergoes large occlusion, illumina-

tion change, or out-of-plane rotation. Iris recognition using suchnon-ideal iris imagesis

still a challenging problem. Figure6.1shows an ideal and several non-ideal iris images.

Iris segmentation is an important part of the larger recognition problem, because

only once the iris has been localized can the unique signature be extracted. In previous

work, geometric approaches have been common. For example, in his pioneering work on

iris recognition, Daugman [29, 30] fits a circle to the iris and parabolic curves above and

below the iris to account for eyelids and eyelashes. Similarly, geometric cues such as pupil

location or eyelid location have been used for iris localization [39], while stretching and

contraction properties of the pupil and iris have also been used [48]. Another important

approach has been to detect the eyelashes in order to determine iris occlusion. To this end,

Ma et al. [72] use Fourier transforms to determine whether the iris is being occluded by

the eyelashes; the unique spectrum associated with eyelashes are used to reject images in

which significant iris occlusion occurs. Other approaches for eyelash segmentation involve

the use of image intensity differences between the eyelash and iris regions [61, 56], gray

level co-occurrence matrices [4], and the use of multiple eyelash models [114]. These

attempts at iris segmentation are limited to ideal iris images, assuming that the shape of

the iris can be modeled as a circle. Such a simplifying assumption limits the range of

input images that can be successfully used for recognition.By relying on geometry, these

114

Figure 6.2: Overview of the proposed iris segmentation approach.

techniques are sensitive to noise in the image. Some more recent approaches to handle

non-ideal iris images rely upon active contour models [31] or geodesic active contours [83]

for iris segmentation. Building upon this work, we propose in this paper an algorithm

for eyelash and iris segmentation that uses image intensityinformation directly instead of

relying on intensity gradients.

While it is true that finite mixture models along with the EM algorithm can be

used for iris image segmentation based on the texture and intensity, we use graph cuts for

segmentation due to their various advantages over EM. Graphcuts are faster and more

efficient as compared to EM and they can produce spatially smooth segmentation. Since

the problem of segmentation is constrained in the case of iris images as described before,

graph cuts are suitable for assigning the pixel labels. Also, since there is no requirement

for the real time performance we can afford the slightly higher computation cost of using

graph cuts as compared to the greedy EM algorithm.

An overview of our approach is presented in Figure6.2. The first step is a simple

preprocessing procedure applied to the input images to dealwith specular reflections which

115

may cause errors in segmentation. In the second step we perform texture computation for

eyelash segmentation by measuring the amount of intensity variations in the neighborhood

of a pixel and generating a probability map in which each pixel is assigned a probability

of belonging to a highly textured region. This pixel probability map is fed to an energy

minimization procedure that uses graph cuts to produce a binary segmentation of the im-

age separating the eyelash and non-eyelash pixels. A simplepostprocessing step applies

morphological operations to refine the eyelash segmentation results. The next step is to seg-

ment the non-eyelash pixels into remaining three categories (iris, pupil, and background)

based on grayscale intensity. The expected values of these classes are obtained via his-

togramming. The iris refinement step involves fitting ellipses to the segmented iris regions

for parameter estimation. The final step is to combine the iris region mask and the specular

reflection mask to output usable iris regions. These steps are described in more detail in

the following sections.

6.2 Segmentation of Eyelashes

Specular reflections are a major cause of errors in iris recognition systems because

of the fact that the affected iris pixels cannot be used for recognition . In this case, these

bright spots (see Figure6.3) are a cause of segmentation error as high texture values are

assigned to the pixels surrounding these points which are inturn segmented as eyelashes.

We adopt a straightforward preprocessing procedure to remove the specular reflections

from the input iris images. LetR be the raw input image. The output of this preprocessing

step is the preprocessed iris imageI with the reflections removed and a binary maskMR

corresponding to the pixels removed fromR. We maintain a list of all the pixel locations

in the input image with grayscale intensity higher that a preset threshold value along with

their immediate neighbors. The values of the pixel locations in the list are set to zero, i.e.,

116

Figure 6.3: Removing specular reflection in iris images. LEFT: Input image. RIGHT:
Preprocessed image with specular reflections removed.

these pixels are unpainted. The list is sorted according to the number of painted neighbors

each pixel has. Starting from the first element in the list, grayscale values are linearly

interpolated until all the unpainted pixels are assigned a valid gray value. Results of the

specular reflection removal algorithm are shown in Figure6.3. It should be noted that the

paintedpixels obtained by the above algorithm cannot be used for iris recognition and are

discarded or masked while constructing the iris signatures.

6.2.1 Texture Computation

Let I be an image withN pixels, and letIx andIy denote the derivatives of the image

in thex andy directions, respectively. For each image pixeln, texture is computed using the

gradient covariance matrix, which captures the intensity variation in the different directions

[92]:

G(n) =
∑

n′∈Ng(n)









I2
x(n

′) Ix(n′)Iy(n′)

Ix(n′)Iy(n′) I2
y (n

′)









, (6.1)

whereNg(n) is the local neighborhood around the pixel. If both the eigenvalues ofG(n)

are large, then the pixeln has large intensity variations in orthogonal directions. This

is usually known as a point feature and is indicative of a highamount of texture in its

117

immediate neighborhood. Lettinge1 and e2 be the two eigenvalues ofG(n), we detect

points for whichh(n) = min{e1, e2} > εf , whereεf is a threshold. The valueh(n) is

indicative of the quality of the feature. Depending upon thevalue ofεf , we can adjust the

quality and hence the number of such points detected in any image.

Let fi be the i th point feature detected in the image with corresponding weight

h(fi) > εf , i = 1, . . . ,M. HereM ≪ N, i.e., the number of point features detected is

much less than the number of image pixels. We need a dense map that assigns a proba-

bility value to each pixel in the input image. To accomplish this, we compute an oriented

histogram of point features weighted by their values in a region around a pixel in an image.

This spatial histogram is defined by two concentric circles of radii r1 andr2 centered around

a pixeln. The inner and outer circular regions are represented byHn andHn, respectively.

These regions are divided intoK bins, each spanning(360/K) degrees and carrying an

equal weight ofωb. The bin values of this 2D oriented histogram are further multiplied by

the weights associated with the circular region of which it is a part, i.e., bins in the inner

circle are weighted byωr1 while the outer ones are weighted byωr2. The feature point score

at a pixeln is obtained from the normalized sum of all the bins at a point:

Pf (n) =
1

K

K
∑

k=1

ωb







∑

f∈Hn(k)

ωr1h(f) +
∑

f∈Hn(k)

ωr2h(f)







, (6.2)

whereHn(k) andHn(k) are the set of features contributing to thekth bins of the two his-

tograms.

The feature point score alone cannot give a substantive measure of texture in an

image because the feature points represent locations whereimage intensity changes occur

in both x andy directions. To effectively compute the texture around a point, we have

to account for all the neighboring points with gradient changes in a single direction. To

address this problem, we sum the gradient magnitudes in the neighborhood of a pixel in a

118

manner similar to the one described above in the case of finding the feature point score in

Equation (6.2). The score due to gradients is given by

Pg(n) =
1

K

K
∑

k=1

ωb











∑

j∈R(k)

ωr1g(j) +
∑

j∈R(k)

ωr2g(j)











, (6.3)

where

g(j) =
√

I2
x (j) + I2

y (j)

is the gradient magnitude sum in thej th pixel in a histogram, andR(k) andR(k) are the

image regions specified by thekth bins of the two histograms.

The total score for a pixel is the sum of the feature point score and the gradient

score:

P(n) = Pf (n) + Pg(n). (6.4)

We compute the total score for each pixel and normalize the values to obtain a probability

map that assigns the probability of each pixel having high texture in its neighborhood.

Figure6.4shows the various texture measures and the texture probability map obtained for

an iris image.

6.2.2 Image Bipartitioning using Graph Cuts

Once the texture probability map is obtained for an input image, it is desirable that

the segmentation produces smooth regions as an output. Thisproblem can be considered

as a binary labeling problem. Our goal is to assign a labell ∈ {0, 1} to each pixel in the

image based on the probability mapP. Let ψ : x → l be a function that maps an image

pixel x to a labell. If Dn(ln) represents the energy associated with assigning labelln to the

119

Figure 6.4: Eyelash segmentation details.LEFT: Steps involved in the texture computation.
RIGHT: Binary graph cuts on an image. For clarity, only a few nodes and corresponding
links are shown. Thicker links denote greater affinity between the corresponding nodes or
terminals (i.e.,t-links between terminals and nodes andn-links between two nodes).

nth pixel, then the energy term to be minimized is given by

E(ψ) = ES(ψ) + λED(ψ), (6.5)

where

ES(ψ) =
N
∑

n=1

∑

m∈Ns(n)

Sn,m(ln, lm) (6.6)

ED(ψ) =
N
∑

n=1

Dn(ln). (6.7)

120

In these equations,Es(ψ) is the smoothness energy term that enforces spatial continuity

in the regions, ,N is the number of pixels in the image,Ns(n) is the neighborhood of the

nth pixel, andλ is the regularization parameter. The data penalty term, derived fromP, is

given by:

Dn(ln) = exp{ρ(ln−P(n))},

where

ρ =







1 if ln = 1

−1 if ln = 0
.

The smoothness term is given by:

Sm,n(lm, ln) = [1− δ(m, n)] exp{−‖I(m)− I(n)‖2},

whereδ(m, n) = 1 whenm = n, or 0 otherwise.I(m) andI(n) are image intensities ofmth

andnth pixels, respectively.

The energy term in Equation (6.5) is minimized by a graph cut algorithm [16]. The

image can be considered as a weighted graphG(V, E), where the verticesV are the pixels,

and the edgesE are the links between neighboring pixels. For a binary graphcut problem,

two additional nodes known as source and sink terminals are added to the graph. The

terminals correspond to the labels being assigned to the nodes, i.e., pixels of the image. In

this case, the source terminal corresponds to the high-texture label, while the sink terminal

is associated with the low-texture label. A cutC is a set of edges that separates the source

and sink terminals such that no subsets of the edges themselves separate the two terminals.

The sum of the weights of the edges in the cut is the capacity ofthe cut. The goal is to find

the minimum cut, i.e., the cut for which the sum of the edge weights in the cut is minimum.

Figure6.4is a representative diagram showing the process of partitioning the input image.

121

0 50 100 150 200 250

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

iris

pupil

background

Figure 6.5: Iris segmentation details. TOP: Grayscale histogram of a typical iris image and
a smoothed version on the right with peak detection. BOTTOM: Iris image for which the
histogram is computed and the corresponding segmentation.

6.3 Iris Segmentation

Iris segmentation is based upon the same energy minimization approach described

in the previous section, except that it involves more than two labels. In fact, for a typical

image, four labels are considered: eyelash, pupil, iris, and background (i.e., the rest of the

eye). Since the eyelash segmentation already provides us with a binary labeling that sepa-

rates the eyelash pixels, our problem is reduced to that of assigning labels to the remaining

pixels in the image. Although this is an NP-hard problem, thesolution provided by theα-β

swapgraph-cut algorithm [17] is in practice a close approximation to the global minimum.

The algorithm works by initially assigning random labels tothe pixels. Then for all pos-

sible pairs of labels, the pixels assigned to those labels are allowed to swap their label in

order to minimize the energy of Equation (6.5). The new labeling is retained only if the

energy is minimized, and this procedure is repeated until the overall energy is not further

122

minimized. Convergence is usually obtained in a few (about 3–4) iterations. Grayscale

intensities of the pixels are used to compute the data energyterm of Equation (6.7). Fig-

ure 6.5 shows the grayscale histogram of a typical image of an eye. The three peaks in

the histogram correspond to the grayscale intensities of the pupil, iris, and background.

The desired grayscale values for the pupil, iris, and background regions are obtained via a

simple histogram peak detecting algorithm, where we assumethat the first local maximum

corresponds to the pupil region, the second to the iris, and so on. Figure6.5shows the iris

segmentation obtained using this approach.

The quality of iris segmentation depends on the nature of theimage and is highly

susceptible to noise and illumination effects in the input images. To overcome these prob-

lems, we use a priori information regarding the eye geometryfor refining the segmentation

of the iris region. Specifically, we assume the iris can be approximated by an ellipse cen-

tered on the pupil and aligned with the image axes. Even if these assumptions are not valid

for some images, they serve as a good starting point for estimating the iris region. The pre-

vious segmentation step provides us with a location of the pupil center. In our experiments,

we observed that the pupil is accurately segmented in almostall cases even if the overall

image quality is poor. However, in certain cases, other darkregions are mistakenly labeled

as pupil. These mistakes are easily corrected by enforcing amaximum eccentricity on the

dark region to distinguish the true pupil from these distracting pixels.

In order to find the best fitting ellipse to the segmented iris region, points near the

iris boundary must be reliably located considering the possibilities that the segmented iris

region may not have a elliptical shape, and that the iris may be occluded partly by the

eyelashes (on the top or bottom or both). In other words, evenif we know the approximate

location of the center of the iris (i.e., the pupil center), its exact extent in both thex and

y directions cannot be naively ascertained using the segmented iris regions. For a reliable

initial estimate of iris boundary points, we extend rays from the pupil center in all directions

123

(360◦) with one degree increments and find those locations where the lines transition from

an iris region to the background region (see Figure6.6). Because all these lines extending

out from a center point may not lead to an iris boundary point,only a subset of the 360

points is obtained. To increase the number of points (and hence increase the reliability of

the ellipse fitting procedure), we utilize the inherent symmetry of the iris region. For each

ellipse point, a new point is generated about the vertical symmetry line passing through

the center of the iris, if a point does not already exist for that direction. In addition, points

whose distance from the pupil center exceeds 1.5 times the distance of the closest point to

the pupil center are rejected. This yields a substantial setof points to which an ellipse is fit

using the least squares method proposed by Fitzgibbon et.al. [40]. Figure6.6summarizes

this process and shows the results of our ellipse fitting algorithm.

6.4 Experimental Results

We tested our approach on various non-ideal iris images captured using a near in-

frared camera. Figure6.7 shows the results of our approach on some sample images ob-

tained from the West Virginia University (WVU) Non-Ideal Iris database, [25] (a sample

of images can be found online1). It can be seen that each step in our approach aids the

next one. For example, eyelash segmentation helps in iris segmentation by removing the

eyelashes which may cause errors in iris segmentation. To perform eyelash segmentation

we used 8-bin histograms for computing feature points and gradient scores(K = 8). The

bin weight,ωb, is set at 0.125 whilewr1 = 1, wr2 = 0.75, andεf = 50. It can be seen that

despite using a simple texture measure, the algorithm is able to accurately segment regions.

The iris segmentation step, in turn, helps the iris refinement step, and the preprocessing step

to remove specular reflections is also helpful in iris segmentation and building a mask of

1 http://www.csee.wvu.edu/˜xinl/demo/nonideal iris.html

124

Figure 6.6: Refining the iris segmentation.TOP LEFT: Iris segmentation image with pupil
center overlaid (green dot). The lines originating from thecenter point in360◦ of the center
point intersect with the iris boundary at points shown in red. For clarity only a subset of
lines and corresponding points are shown.TOP RIGHT: Potential iris boundary points. Due
to erroneous segmentation, the full set of points is not obtained.BOTTOM LEFT: Increasing
the iris boundary points using the pupil center and the inherent symmetry in the iris regions.
BOTTOM RIGHT: Ellipse fitting to the potential iris boundary points leadsto an erroneous
result (red ellipse), while fitting to the increased boundary points leads to the correct result
(yellow ellipse).

usable iris regions.

To quantitatively evaluate our results we compared our irislocalization results with

direct ground truth. We used 60 iris images (40 with out-of-plane rotation) from the WVU

Non-Ideal Iris image database for iris localization and verification. We manually marked

the iris regions in the input images and obtained the ground truth parameters such as the

location of the center of the iris and thex andy radius values. We also obtained a mask of

the usable iris regions (without specular reflections) fromthe original image. The parame-

ters of our estimated iris region were compared with ground truth in terms of the iris center

125

input eyelash iris iris mask ellipse
segmentation segmentation

Figure 6.7: Experimental results of the proposed approach on a sample of iris images from
the WVU Non-Ideal Iris image database.

Iris Parameter Average Error Standard Deviation
(in pixels) (in pixels)

Center (x) 1.9 2.2
Center (y) 2.7 2.5
Radius (x) 3.4 5.2
Radius (y) 3.9 4.0

Pixel labels 5.9% 7.2%

Table 6.1: Comparison of estimated iris region parameters with the ground truth data for
60 images from the WVU Non-Ideal Iris database.

location,x andy radius, and the number of pixels in agreement with the iris label. Table

6.1shows that the average error in the estimation of iris regionparameters as compared to

the ground truth is small, indicating accurate segmentation and localization.

126

6.5 Summary

This chapter describes an image segmentation application that deals with iris im-

ages. An approach to segment non-ideal iris images suffering from iris occlusions, out-of-

plane rotations, and illumination effects is presented that outputs for regions: iris, pupil,

background and eyelashes based on grayscale intensity and coarse texture. Graph cuts

based energy minimization procedure is used for obtaining the labeling. The iris shape is

used for further refinement of the segmented iris regions.

127

Chapter 7

Conclusion

Motion segmentation plays an important role in the process of automated scene

understanding. The ability to perform motion segmentationis key for the success of a large

number of computer vision tasks. Various challenges for segmenting natural scenes using

motion are accurate estimation of image motion, use of appropriate models for describing

the observed motion, assigning labels to the data in the presence of noise, and handling

long image sequences with an arbitrary number of moving regions undergoing occlusions,

deformations, and so on.

7.1 Contributions

This thesis has addressed some of the above concerns regarding motion segmenta-

tion using sparse point features. The main contributions ofthis thesis are listed below.

1. A motion segmentation algorithm [80] that is based on clustering of the point feature

trajectories in natural indoor and outdoor image sequences. From the performance

point of view, the algorithm

• automatically determines the number of groups in the sequence,

128

• requires minimal initialization,

• operates in real time, and

• handles long sequences with dynamic scenes involving independently moving

objects and a large amount of motion blur.

From an algorithmic stand point the novelties of the approach include the following:

• a spatially constrained finite mixture model that enforces spatially smooth la-

beling,

• a greedy EM algorithm that efficiently estimates the parameter in an incremen-

tal fashion, and

• procedures to maintain feature groups over time by adding new features to the

existing groups, splitting the groups if necessary and adding new groups.

2. Use of SCFMM and greedy EM algorithm for segmentation of images. The image

segmentation algorithm is able to work with minimal initialization and produces a

smooth labeling while automatically estimating the numberof segments, and mini-

mizing the labeling energy more efficiently as compared to the MAP-SVFMM.

3. A joint feature tracking algorithm [9], which is an improvement over the conventional

feature tracking algorithms that track point features independently. The idea is to

aggregate global information to improve the tracking of sparse feature points. The

joint feature tracking algorithm outperforms the Lucas-Kanade based feature trackers

when tracking features in areas of low texture, repetitive texture, or tracking edges.

Moreover, motion segmentation results using the joint tracking are more visually

appealing as compared to those using traditional feature tracking for certain texture

less scenes.

129

4. An approach to learn articulated human motion models and their use for segmenta-

tion and pose estimation of walking humans in various indoorand outdoor sequences.

Main features of the algorithm are the use of 3D motion capture data for learning var-

ious pose and view angles of human walking action, a novel motion descriptor that

accounts for the spatial interactions of various body movements through the gait cy-

cle, and a HMM based pose estimation approach. Performance wise, the approach

is purely based on motion and is able to handle changes in viewangles, scale, and

illumination conditions (day and night-time sequences). Also, it can segment human

walking motion in sequences undergoing rapid camera movements, motion blur with

dynamic background.

5. An iris segmentation algorithm in non-ideal images [81] that

• uses graph cuts for texture and intensity based labeling of image pixels,

• combines appearance and eye geometry for refining the segmentation, and

• handles images with iris occlusion due to eyelashes, illumination effects, and

out-of -plane rotations.

7.2 Future Work

One way to improve the work presented in this thesis is to integrate the various

ideas like joint tracking of feature points, motion segmentation, and handling of variety of

complex motions observed in natural scenes. In joint feature tracking, the smoothing of

motion displacements across motion discontinuities creates artifacts in the resulting flow

fields. To solve this problem, robust penalty functions or segmentation algorithm similar to

ours can be employed. While incorporation of motion segmentation may lead to improve-

ment in joint tracking, motion segmentation itself may be benefited due to better feature

130

tracking. Moreover, a hierarchical representation of motion segmentation allows regions

of the image that move differently but share a common relationship, such as articulated

objects, to be accurately modeled.

A natural application of the motion segmentation algorithmis to serve as a front-

end for detecting dense object boundaries and motion discontinuities in live video, with the

boundaries refined using dense pixel motion, texture, intensity gradients, and/or color. On

the other end of the spectrum, non-textured regions, the sparse segmentation, and motion

discontinuities and contours, would yield a novel representation of a video. Enhancements

in feature tracking would further improve the segmentationalgorithm to deal with non-rigid

objects, periodic motion, and occlusion.

Motion can be effectively utilized for biological motion analysis. Even though we

have restricted ourselves to walking action in this work, the results indicate that the artic-

ulated motion models could be extended to describe and recognize various other actions.

Having said this, our intention is not to totally discount the importance of appearance in-

formation but merely to explore an alternative direction ofresearch. The future work also

involves exploring robust ways of articulated motion segmentation such as modeling the

background motion to deal with a dynamic background in a robust manner, allowing the

subjects to change viewpoints as they are tracked, and combining the bottom-up and top-

down approach for accurate pose estimation.

Many improvements can be made to the iris segmentation approach at each stage

of its operation. The texture measure used by the current algorithm can be modified by

including gradient orientation cues to improve the accuracy of eyelash segmentation. The

current iris segmentation is somewhat limited as it relies on histogram peaks of the images

to assign labels; therefore, multi-modal distributions ofintensities in any of the regions

can lead to errors. This can be improved by using an approach that uses both intensity

distributions and intensity edges to compute the objectivefunction. Another important

131

improvement to be made is to reduce the overall computation time of the algorithm. Finally,

the iris segmentation algorithm can be used for iris based recognition on various standard

iris image databases to evaluate its performance.

7.3 Lessons Learned

Segmentation is a challenging problem because of all the reasons mentioned at the

various occasions throughout this thesis. The biggest reason why segmentation seems so

challenging is probably related to how well the human visualsystem can perform it. This

sets the standards vary high for automated systems. Though there are various theories

regarding how the human visual system performs segmentation, one thing is clear: a large

amount of contextual knowledge is used which is difficult to emulate for a machine. The

key is to appropriately define the problem, constrain it withconditions and assumptions,

and narrow down the scope so as to make it tractable. This phenomenon is observed in

almost all vision based algorithms. In this thesis, there are many examples where it is

manifested, like in the optical flow computation (brightness constancy, spatial and temporal

coherency), or Markov Random Field based algorithms (only immediate neighbors in the

data space influence the properties of a data element), or in motion models (the points in the

entire moving region undergo a specific motion), to name a few. While such assumptions

and constraints are key to solving the problem, care must be taken that these constrains

do not take away much from the solution. What constitutes a fair assumption is problem

dependent and must be addressed carefully.

One way to constrain the segmentation problem is to decide which cue has to be

used for the segmentation. Motion is a strong cue. In fact, even in the absence of other

strong cues such as intensity or color, motion on its own is capable for providing a very

good idea about the scene. To take the argument further, eventhe sparse point feature trajec-

132

tories can contribute toward scene understanding on their own. This is clearly demonstrated

if we watch a video of sparse point features being tracked through a sequence but overlaid

on a blank background. The motion in the scene can provide us with the big picture of

the overall scene structure and various independently moving objects. The fact that point

features themselves can capture a wealth of information wasone of the prime motivators

behind this work.

An important debate that often surfaces in computer vision is the use of bottom-

up vs. top-down approaches. We had to face this dilemma whilelearning the articulated

human motion models. Our approach is essentially a top-downapproach as we learn the

high-level interactions of the trajectories of the body parts. Bottom-up approaches have also

been proposed that build a higher level representation by tracking individual body parts. A

combination of bottom-up and top-down approaches would seem to be advantageous over

the individual approaches.

Finally, a note regarding the complexity of the algorithms used and their versatility

of application. It is not necessarily true that a complex algorithm is always better. For

example, the algorithms that can compute optical flow accurately on a small set of images

are not necessarily at a point yet where they generalize wellto arbitrary images. In contrast,

a simple Lucas-Kanade based feature tracking algorithm shows surprising ability to work

on wide variety of images. Moreover, a simple region growingbased approach can compete

with more computationally intensive approaches for segmentation.

133

Appendices

134

Appendix A

EM Details

A.1 Complete Data Log-Likelihood Function

The density function for thei th element from the complete data is given by

g(y(i); Θ) = g(x(i), c(i); Θ). (A.1)

Sincec(i) is a binary vector, i.e, the elements ofc(i) are binary numbers, we can write

g(x(i), c(i)
1 = 1, c(i)

2 = 0, . . . , c(i)
K = 0; Θ) = g(x(i); Θ1), or (A.2)

g(x(i),Θ1) = g(x(i), c(i)
1 = 1; Θ) . . .g(x(i), c(i)

K = 0; Θ) (A.3)

Similarly, we can write expressions forg(x(i),Θj), j = 2, . . . ,K. Hence, for a general case,

g(x(i); c(i),Θ) =
(

g(x(i); Θ1)
)c(i)

1
. . .
(

g(x(i); ΘK)
)c(i)

K

=
K
∏

j=1

(

g(x(i); Θj)
)c(i)

j

135

=
K
∏

j=1

(

πjφ(x(i); θj)
)c(i)

j
. (A.4)

Assuming that theN data samples are independent,

g(Y ; Θ) =
N
∏

i=1

K
∏

j=1

(

πjφ(x(i); θj)
)c(i)

j
. (A.5)

A.2 Expectation Maximization Details

To derive an expression for finding the mixing weightsπj, it can be observed that the

maximization in equation (2.21) has to be performed with the constraint that
∑K

j=1 πj = 1.

For performing constrained maximization of a function, a popular technique of Lagrange

multipliers is used [85]. Let h(s) be a function of any variables. The goal is to maximize

h(s) using a constraint:l(s) = d, where d is a constant. Lagrange function can be defined

as

Λ(s, λ) = h(s)− λ (l(s)− d) , (A.6)

λ is the Lagrange multiplier. Here, the goal is to find the stationary point of the Lagrange

function defined above i.e., a point where the partial derivatives of the function with respect

to s andλ are zero. This will lead to the necessary condition to find constrained maxima

of h(s). In addition to this,h(s) must be differentiable at the stationary point to ensure that

such a maximum actually exists. Going back to the problem of constrained maximization

of Q(Θ; Θ̂(t)), the use of Lagrangian function from equation (A.6) gives

Λ(Θ, λ) = Q(Θ; Θ̂(t))− λ




K
∑

j=1

−1



 . (A.7)

136

To find the stationary point of this function, the partial derivatives ofΛ(Θ, λ) with respect

to πj andλ should be zero (note that effect ofθj is ignored as it is not dependent onπj).

∂(Λ(Θ, λ))

∂πj
=

1

πj

N
∑

i=1

wj(x
(i); Θ̂(t))− λ = 0 (A.8)

∂(Λ(Θ, λ))

∂λ
=

K
∑

j=1

πj − 1 = 0 (A.9)

Solving the above two equations, an expression forλ is obtained:

λ =
N
∑

i=1

K
∑

j=1

wj(x
(i); Θ̂(t)). (A.10)

But since
∑K

j=1 wj(x(i); Θ̂(t)) = 1, the above equation reduces toλ = N, which gives the

(t + 1)th estimate ofπj as

π
(t+1)
j =

1

N

N
∑

i=1

wj(x
(i); Θ̂(t)). (A.11)

For finding the expression forµj start with the complete data log likelihood function from

equation (2.16) and differentiate with respect toµj and equate it to zero as shown below:

∂Lc(Θ)

∂µj

=
N
∑

i=1

wj(x
(i); Θ̂(t))

∂

∂µj

[

log
{

πjφ(x(i); µj, σj)
}]

= 0 (A.12)

∂(log(πjφ(x(i); µj, σj)))

∂µj

=
∂

∂µj



log(πj)− log(
√

2πσ2
j)−

(x(i) − µj)
2

2σ2
j





=
x(i) − µj

σ2
j

(A.13)

137

From equations (A.12) and (A.13),

N
∑

i=1

wj(x
(i); Θ̂(t))





x(i) − µj

σ2
j



 = 0, (A.14)

which gives the updated value of the mean as

µ(t+1)
j =

∑N
i=1 wj(x(i); Θ̂(t))x(i)

∑N
i=1 wj(x(i); Θ̂(t))

. (A.15)

Similarly, for obtaining an expression for the standard deviation update start with:

∂Lc(Θ)

∂σj
=

N
∑

i=1

wj(x
(i); Θ̂(t))

∂

∂σj

[

log
{

πjφ(x(i); µj , σj)
}]

= 0 (A.16)

∂(log(πjφ(x(i); µj , σj)))

∂σj
= − 1

σj
+

(

x(i) − µ(t+1)
j

)2

σ3
(A.17)

From equations (A.16) and (A.17)

N
∑

i=1

wj(x
(i); Θ̂(t))







(

x(i) − µ(t+1)
j

)2

σ3
− 1

σj





 = 0, (A.18)

which gives the updated value of the standard deviation as

σ
(t+1)
j =

√

√

√

√

√

∑N
i=1 wj(x(i); Θ̂(t))(x(i) − µ(t+1)

j)2

∑N
i=1 wj(x(i); Θ̂(t))

. (A.19)

138

Appendix B

Delaunay Triangulation

B.1 Delaunay Triangulation Properties

A planar graph is contained in a plane and drawn in such a manner that no edges

intersect. Triangulation of a point set is a planar graph in which the points are joined by

line segments such that every region to the interior to the convex hull of the points is a

triangle. Delaunay triangulation is a special kind of triangulation where the circumcircle

Figure B.1:LEFT: Delaunay triangulation and Voronoi diagram of a point set.The points
are indicated in blue whereas the Voronoi vertices are indicated in green.RIGHT: Circum-
circle property and edge flipping.∆ABDand∆ABCdo not form a Delaunay triangulation
as the circumcenters of each of these circles contain external points. By deleting the edge
BD and creating the segmentAC the triangulation conforms to the Delaunay properties.

139

of a triangle formed by three points does not include any other point. Finding Delaunay

triangulation of a given set of points leads to an efficient way of finding solutions to a large

number of problems such as finding the nearest neighbor(s) ofa point, neighbors of all the

points, closest pair of points, euclidean minimum spanningtree and so on. For any given

set of points in a plane, a unique Delaunay triangulation exists if no three points lie on a

line and no four points lie on a circle. Such a point set is known to have points in a general

position.

1. Empty Circumcircle:An important property that sets Delaunay triangulation apart

from the rest is that the circumcircle of a triangle from the triangulation does not

contain any other points (see FigureB.1). It should be noted that one edge can be

shared by only two triangles while a vertex may be shared by a large number of

triangles depending upon the location of other points in theplane.

2. Delaunay neighbors:For a point in the Delaunay triangulation, any point sharingan

edge is a neighbor. For a planar point set, Delaunay triangulation effectively provides

the list of neighboring points without any spatial constraints.

3. Closest points in a set:Of all the given points, two closest points (distance mea-

sured is a Euclidean distance) are neighbors in Delaunay triangulation. This can be

analytically deduced from the circumcircle property.

4. Maximizing minimum angle:Delaunay triangulation maximizes the minimum angle

of the triangles formed. This again is due to the circumcircle property. This property

makes sure that the triangles formed by Delaunay triangulation are not usually skinny

or thin i.e., obtuse. This of course depends on the way pointsare distributed in the

plane. If a uniform distribution is assumed, then Delaunay triangulation is better off

in terms of the nature of the triangles. Due to this property,Delaunay triangulation

140

is very useful in building meshes and for interpolation of points.

5. Relation to the Voronoi diagram:Voronoi diagram is a dual graph of Delaunay tri-

angulation. The edges in the Voronoi diagram are perpendicular bisectors of the

corresponding Delaunay triangle edges and three Voronoi edges intersect to form

the circumcenter of the corresponding triangle (see FigureB.1). Hence Voronoi dia-

gram can be obtained from the Delaunay triangulation and vise-versa. Both save the

proximity information of the points in the plane and can be used as a solution of the

problems involving nearest neighbors) of a point.

6. Relation to convex hulls:Delaunay triangulation and convex hull are related concepts

and Delaunay triangulation of a set of points ind dimension can be obtained from

the convex hull of the same points in(d + 1) dimension.

B.2 Computation of Delaunay Triangulation

Many algorithms exist that compute Delaunay triangulationof points in a plane but

they all depend on the examining the same basic empty circumcenter property of Delaunay

triangles. LetA = (xA, yA), B = (xB, yB), C = (xC, yC) are the three points in a plane and

the triangle defined by these three points∆ABC is a Delaunay trinagle if and only if its

circumcircle does not contain any other point. We wish to test whether a pointP = (xP, yP)

lies inside the circumcircle of∆ABC. This can be found by computing the following

141

determinant

Det(∆ABC) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xA yA x2
A + y2

A 1

xB yB x2
B + y2

B 1

xC yC x2
C + y2

C 1

xP yP x2
P + y2

P 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The point order of pointsA, B, C andP is counterclockwise.P lies inside the circumcircle

if Det(∆ABC) > 0, and on the circumcircle ifDet(∆ABC) = 0.

One class of algorithms for computing Delaunay triangulation are based on the

idea of adding points, one at a time, to the existing triangulation and updating it. Such

algorithms are called incremental algorithms. A naive approach is to add a point to the

existing triangulation, delete the affected triangles that do no conform and re-triangulate

those points. This requires a search over all the possible circumcircles in the existing graph.

As a result, this approach is not very efficient. It can be speedup by using the sweep line

approach described in the previous section. The points in a plane are added as the sweep

line moves across the plane. This limits the search spaceto the triangles near the sweep

line. A further speedup can be obtained by building a tree like data structure such that the

triangle being replaced is a parent and the triable that it replaces is its child. So if a new

point is inserted then it is easy to figure out which trianglesin the current triangulation are

affected. Hence following four basic steps are repeated until no new points are added:

1. add a point to the existing triangulation

2. perform the circumcircle test to find which triangle the added point belongs

3. add three new edges starting from the added point toward the vertices of the sur-

rounding triangle

142

4. rearrange the triangulation by performing required number of edge flips

Another popular category of algorithms for obtaining Delaunay triangulation of a

point set are termed as divide and conquer algorithms which are similar in spirit with the

divide and conquer algorithms for finding convex hull of points. The idea is to recursively

divide the point set into smaller groups and find the triangulation of these groups and then

merge the groups to form progressively bigger triangulation at each step. Merging two sets

is a tricky step especially if the sets are large. While merging two sets, triangulation of

only a part of each set is affected. These algorithms are computationally efficient for a

large point set but at the same time they are difficult to implement.

143

Appendix C

Parameter Values

Image Segmentation (Chapter2)
grouping threshold,pτ = 0.005

minimum number of pixels required for a valid segment,nmin = 30 pixels

smoothing parameter for MAP SVFMM,β = 1.0

Joint Feature Tracking (Chapter3)
threshold on min. eigenvalues,η = 0.1

Gauss-Seidel damping factor,ω = 1

regularization parameter,λi = 50

neighborhood window,σJLK = 10 pixels

Motion Segmentation (Chapter4)
number of features,N = 1000

grouping threshold,τ = 1.5

minimum number of features required for a valid group,nmin = 0.001× N

144

number of seed points,Ns = 7

χ2 parameters:α = 99%, k = 3

long term frame update:βe = 0.1, βr = 0.25

feature tracking parameters:

minimum distance between features= 5 pixels

feature window size= 5× 5

minimum window displacement,εLK = 0.1

feature detection threshold,εf = 10

Motion Models of Articulated Bodies (Chapter5)
number of poses,M = 8

number of views,N = 8:, {0◦, 45◦, 90◦, 135◦, 180◦,−135◦,−90◦,−45◦}

target aspect ratio (width× height) =1× 2

number of scales = 4

window width for each scale{25, 30, 35, 40}

145

Bibliography

[1] A. Agarwal and B. Triggs. Tracking articulated motion using a mixture of autore-
gressive models. InProceedings of the European Conference on Computer Vision,
pages 54–65, 2004.

[2] P. Anandan. A computational framework and an algorithm for the measurement of
visual motion.International Journal of Computer Vision, 2(3):283–310, 1989.

[3] S. Ayer and H. S. Sawhney. Layered representation of motion video using robust
maximum-likelihood estimation of mixture models and MDL encoding. InPro-
ceedings of the 5th International Conference on Computer Vision, pages 777–784,
June 1995.

[4] A. Bachoo and J. Tapamo. Texture detection for segmentation of iris images.An-
nual Research Conference of the South African Institute of Computer Information
Technologies, pages 236–243, 2005.

[5] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. In-
ternational Journal of Computer Vision, 56(3):221–255, 2004.

[6] A. Barbu and S.-C. Zhu. On the relationship between imageand motion segmenta-
tion. In Proceedings of the European Conference on Computer Vision, 2004.

[7] S. Birchfield. KLT: An implementation of the Kanade-Lucas-Tomasi feature tracker,
http://www.ces.clemson.edu/˜stb/klt/.

[8] S. Birchfield. Blepo computer vision library,
http://www.ces.clemson.edu/∼stb/blepo/.

[9] S. T. Birchfield and S. J. Pundlik. Joint tracking of features and edges. InProceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2008.

[10] M. J. Black and P. Anandan. A robust estimation of multiple motions: Parametric
and piece-wise smooth flow fields.Computer Vision and Image Understanding,
63:75–104, 1996.

146

[11] K. Blekas, A. Likas, N. Galatsanos, and I. Lagaris. A spatially constrained mixture
model for image segmentation.IEEE Transcations on Neural Networks, 16(2):494–
498, 2005.

[12] A. Bobick and J. Davis. The recognition of human movement using temporal tem-
plates.IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3):257–
267, Mar. 2001.

[13] O. Boiman and M. Irani. Detecting irregularities in images and videos.International
Journal of Computer Vision, 74(1):17–31, 2007.

[14] S. Borman. The expectation maximization algorithm: A short tutorial,
http://www.seanborman.com/publications/em-algorithm.pdf. 2004.

[15] J.-Y. Bouguet. Pyramidal implementation of the Lucas Kanade feature tracker.
OpenCV documentation, Intel Corporation, MicroprocessorResearch Labs, 1999.

[16] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision.IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 26(9):1124–1137, 2004.

[17] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, 2001.

[18] C. Bregler. Learning and recognizing human dynamics invideo sequences. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 568–575, 1997.

[19] T. Brox, A. Bruhn, and J. Weickert. Variational motion segmentation with level sets.
In Proceedings of the European Conference on Computer Vision, pages I: 471–483,
May 2006.

[20] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: Com-
bining local and global optic flow methods.International Journal of Computer Vi-
sion, 61(3):211–231, 2005.

[21] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld:image segmentation
using expectation-maximization and its application to image querying.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(8):1026–1038, 2002.

[22] V. Cheung, B. Frey, and N. Jojic. Video epitomes. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages I: 42–49, June 2005.

[23] J. Costeira and T. Kanade. A multi-body factorization method for motion analysis. In
Proceedings of the International Conference on Computer Vision, pages 1071–1076,
1995.

147

[24] D. Cremers and S. Soatto. Motion competition: a variational approach to piecewise
parametric motion.International Journal of Computer Vision, 62(3):249–265, May
2005.

[25] S. G. Crihalmeanu, A. A. Ross, S. A. Schuckers, and L. A. Hornak. A protocol
for multibiometric data acquisition, storage and dissemination. Technical report,
Lane Department of Computer Science and Electrical Engineering, West Virginia
University, 2007.

[26] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer segmentation of live
video. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages I: 53–60, June 2006.

[27] R. Cutler and L. Davis. Robust real-time periodic motion detection, analysis, and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):781–796, Aug. 2000.

[28] B. Daubney, D. Gibson, and N. Campbell. Human pose estimation using motion
exemplars. InProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, 2008.

[29] J. Daugman. High confidence visual recognition of persons by a test of statistical
independence.IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1148–1161, 1993.

[30] J. Daugman. Statistical richness of visual phase information: update on recognizing
persons by iris patterns.International Journal of Computer Vision, 45(1):23–38,
2001.

[31] J. Daugman. New methods in iris recognition.IEEE Transactions on System, Man
and Cybernetics-Part B: Cybernetics, 37(5):1167–1175, 2007.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm.Journal of the Royal Statistical Society, Series B
(Methodological), 39(1):1–38, 1977.

[33] A. Diplaros, N. Vlassis, and T. Gevers. A spatially constrained generative model and
an EM algorithm for image segmentation.IEEE Transactions on Neural Networks,
18(3):798–808, May 2007.

[34] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse
spatio-temporal features. InIEEE Workshop on Visual Surveillance and Perfor-
mance Evaluation of Tracking and Surveillance, pages 65–72, 2005.

[35] R. Dupont, O. Juan, and R. Keriven. Robust segmentationof hidden layers in video
sequences. InProceedings of the IAPR International Conference on Pattern Recog-
nition, volume 3, pages 75–78, 2006.

148

[36] R. Fablet and M. Black. Automatic detection and tracking of human motion with a
view based representation. InProceedings of the European Conference on Computer
Vision, pages 476–491, 2002.

[37] A. Fathi and G. Mori. Human pose estimation using motionexemplars. InProceed-
ings of the International Conference on Computer Vision, pages 1–8, 2007.

[38] P. Favaro and S. Soatto. A variational approach to scenereconstruction and image
segmentation from motion blur cues. InProceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages I: 631–637, 2004.

[39] X. Feng, C. Fang, X. Ding, and Y. Wu. Iris localization with dual coarse to fine strat-
egy. InProceedings of the IAPR International Conference on Pattern Recognition,
pages 553–556, 2006.

[40] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct least-squares fitting of ellipses.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5):476–480,
May 1999.

[41] D. J. Fleet and Y. Weiss. Optical flow estimation. InHandbook of Mathematical
Models in Computer Vision, Springer, 2005.

[42] D. Forsyth and J. Ponce.Computer Vision: A Modern Approach. Prentice-Hall,
2003.

[43] P. Fua. Combining stereo and monocular information to compute dense depth maps
that preserve depth discontinuities. InProceedings of the 12th International Joint
Conference on Artificial Intelligence, pages 1292–1298, 1991.

[44] D. Gavrila and S. Munder. Multi-cue pedestrian detection and tracking from a mov-
ing vehicle.International Journal of Computer Vision, 73(1):41–59, 2007.

[45] A. Gruber and Y. Weiss. Incorporating non-motion cues into 3D motion segmen-
tation. InProceedings of the European Conference on Computer Vision, pages III:
84–97, May 2006.

[46] I. Haritaoglu, D. Harwood, and L. S. Davis. W4: Real-time surveillance of people
and their activities. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(8):809–830, Aug. 2000.

[47] R. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2004.

[48] Z. He, T. Tan, and Z. Sun. Iris localization via pulling and pushing. InProceedings
of the IAPR International Conference on Pattern Recognition, pages 366–369, 2006.

149

[49] B. K. P. Horn and B. G. Schunck. Determining optical flow.Artificial Intelligence,
17(185):185–203, 1981.

[50] M. Irani and P. Anandan. A unified approach to moving object detection in 2D
and 3D scenes.IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(6):577–589, June 1998.

[51] H. Jin, P. Favaro, and S. Soatto. Real-time feature tracking and outlier rejection
with changes in illumination. InProceedings of the International Conference on
Computer Vision, 2001.

[52] G. Johansson. Visual perception of biological motion and a model for its analysis.
Perception and Psychophysics, 14:201–211, 1973.

[53] N. Jojic and B. J. Frey. Learning flexible sprites in video layers. InProceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages I:199–
206, 2001.

[54] N. Jojic, J. Winn, and L. Zitnick. Escaping local minimathrough hierarchical model
selection: Automatic object discovery, segmentation, andtracking in video. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages I: 117–124, June 2006.

[55] B. Jung and G. S. Sukhatme. Detecting moving objects using a single camera on a
mobile robot in an outdoor environment. InProceedings of the 8th Conference on
Intelligent Autonomous Systems, 2004.

[56] B. Kang and K. Park. A robust eyelash detection based on iris focus assessment.
Pattern Recognition Letters, 28:1630–1639, 2007.

[57] N. K. Kanhere, S. J. Pundlik, and S. T. Birchfield. Vehicle segmentation and track-
ing from a low-angle off-axis camera. InProceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1152–1157, June 2005.

[58] Q. Ke and T. Kanade. A subspace approach to layer extraction. InProceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages I: 255–262,
2001.

[59] S. J. Kim, J.-M. Frahm, and M. Pollefeys. Joint feature tracking and radiometric cal-
ibration from auto-exposure video. InProceedings of the International Conference
on Computer Vision, 2007.

[60] I. Kokkinos and P. Maragos. An expectation maximization approach to the syn-
ergy between image segmentation and object categorization. In Proceedings of the
International Conference on Computer Vision, pages I: 617–624, Oct. 2005.

150

[61] W. Kong and D. Zhang. Detecting the eyelash and reflection for accurate iris seg-
mentation.International Journal of Pattern Recognition and Artificial Intelligence,
pages 1025–1034, 2003.

[62] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Learning layered motion segmenta-
tions of video. InProceedings of the International Conference on Computer Vision,
pages I: 33–40, Oct. 2005.

[63] X. Lan and D. Huttenlocher. A unified spatio-temporal articulated model for track-
ing. InProceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 722–729, 2004.

[64] I. Laptev, S. J. Belongie, P. Pérez, and J. Wills. Periodic motion detection and seg-
mentation via approximate sequence alignment. InProceedings of the International
Conference on Computer Vision, pages I: 816–823, Oct. 2005.

[65] M. Lee and R. Nevatia. Human pose tracking using multiple level structured models.
In Proceedings of the European Conference on Computer Vision, pages 368–381,
2006.

[66] A. Levin and Y. Weiss. Learning to combine bottom-up andtop-down segmentation.
In Proceedings of the European Conference on Computer Vision, pages IV: 581–594,
May 2006.

[67] A. Lipton. Local applications of optic flow to analyse rigid versus non-rigid motion.
In ICCV Workshop on Frame-Rate Applications, 1999.

[68] C. Liu, A. Torralba, W. Freeman, F. Durand, and E. Adelson. Efficient object re-
trieval from videos. InSIGGRAPH, 2005.

[69] C. Liu, A. Torralba, W. Freeman, F. Durand, and E. Adelson. Motion magnification.
In SIGGRAPH, 2005.

[70] D. G. Lowe. Distinctive image features from scale-invariant keypoints.International
Journal of Computer Vision, 60(2):91–110, 2004.

[71] B. D. Lucas and T. Kanade. An iterative image registration technique with an appli-
cation to stereo vision. InProceedings of the 7th International Joint Conference on
Artificial Intelligence, pages 674–679, 1981.

[72] L. Ma, T. Tan, Y. Wang, and D. Zhang. Personal identification based on iris tex-
ture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(12):1519–1533, 2003.

151

[73] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database ofhuman segmented natu-
ral images and its application to evaluating segmentation algorithms and measuring
ecological statistics. InProc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–
423, July 2001.

[74] G. Mclachlan and D. Peel.Finite Mixture Models. Wiley-Interscience, 2000.

[75] J. Niebles and L. Fei-Fei. A hierarchical model of shapeand appearance for human
action classification. InProceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8, 2007.

[76] C. Nikou, N. Galatsanos, and A. Likas. A class-adaptivespatially variant mix-
ture model for image segmentation.IEEE Transactions on Image Processing,
16(4):1121–1130, 2007.

[77] S. Nowozin, G. Bakir, and K. Tsuda. Discriminative subsequence mining for action
classification. InProceedings of the International Conference on Computer Vision,
pages 1919–1923, 2007.

[78] A. S. Ogale, C. Fermüller, and Y. Aloimonos. Motion segmentation using occlu-
sions.IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):988–
992, June 2005.

[79] C. Papageorgiou and T. Poggio. A trainable system for object detection.Interna-
tional Journal of Computer Vision, 38(1):15–33, 2000.

[80] S. Pundlik and S. T. Birchfield. Real-time incremental segmentation and tracking of
vehicles at low camera angles using stable features.IEEE Transactions on Systems,
Man and Cybernetics, 2008.

[81] S. Pundlik, D. Woodard, and S. Birchfield. Non-ideal iris segmentation using graph
cuts. InProceedings of the IEEE Computer Society Workshop on Biometrics (in
association with CVPR), 2008.

[82] D. Ramanan and D. Forsyth. Finding and tracking people from bottom-up. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 467–474, 2003.

[83] A. Ross and S. Shah. Segmenting non-ideal irises using geodesic active contours. In
Proceedings of Biometrics Symposium, 2006.

[84] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, modeling, and
matching video clips containing multiple moving objects. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 477–491,
2004.

152

[85] D. M. Rouse.Estimation of Finite Mixture Models. PhD thesis, Dept. of Electrical
Engineering, North Carolina State University, 2005.

[86] S. Sanjay-Gopal and T. Hebert. Bayesian pixel classification using spatially variant
finite mixtures and generalized em algorithm.IEEE Transactions on Image Process-
ing, 7(7):1014–1028, 1998.

[87] H. S. Sawhney, Y. Guo, and R. Kumar. Independent motion detection in 3D scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1191–
1199, Oct. 2000.

[88] G. Sfikas, C. Nikou, and N. Galatsanos. Edge preserving spatially variant mixtures
for image segmentation. InProceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2008.

[89] J. R. Shewchuk. Triangle: Engineering a 2D Quality MeshGenerator and Delau-
nay Triangulator. In M. C. Lin and D. Manocha, editors,Applied Computational
Geometry: Towards Geometric Engineering, volume 1148 ofLecture Notes in Com-
puter Science, pages 203–222. Springer-Verlag, May 1996. From the First ACM
Workshop on Applied Computational Geometry.

[90] J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In
Proceedings of the 6th International Conference on Computer Vision, pages 1154–
1160, 1998.

[91] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, Aug. 2000.

[92] J. Shi and C. Tomasi. Good features to track. InProceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 593–600, 1994.

[93] L. Sigal, S. Bhatia, S. Roth, M. Black, and M. Isard. Tracking loose limbed people.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 421–428, 2004.

[94] J. Sivic, F. Schaffalitzky, and A. Zisserman. Object level grouping for video shots. In
Proceedings of the European Conference on Computer Vision, pages Vol II: 85–98,
2004.

[95] P. Smith, T. Drummond, and R. Cipolla. Layered motion segmentation and depth
ordering by tracking edges.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(4):479–494, Apr. 2004.

[96] Y. Song, L. Goncalves, and P. Perona. Unsupervised learning of human motion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):814–827,
2003.

153

[97] T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto. Making good features track
better. InProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1998.

[98] M. Toussaint, V. Willert, J. Eggert, and E. Körner. Motion segmentation using infer-
ence in dynamic Bayesian networks. InProceedings of the British Machine Vision
Conference, pages 12–21, 2007.

[99] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image parsing: Unifying segmentation,
detection, and recognition.International Journal of Computer Vision, 63(2):113–
140, 2005.

[100] R. Urtasun, D. Fleet, A. Hertzman, and P. Fua. Priors for people from small training
sets. InProceedings of the International Conference on Computer Vision, pages
403–410, 2005.

[101] J. J. Verbeek, N. Vlassis, and B. Kröse. Efficient greedy learning of Gaussian mixture
models.Neural Computation, 15(2):469–485, 2003.

[102] R. Vidal and S. Sastry. Optimal segmentation of dynamic scenes from two perspec-
tive views. InProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages II: 281–286, 2003.

[103] R. Vidal and D. Singaraju. A closed form solution to direct motion segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2005.

[104] P. Viola, M. Jones, and D. Snow. Detecting pedestriansusing patterns of motion and
appearance. InProceedings of the International Conference on Computer Vision,
2003.

[105] P. A. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion
and appearance.International Journal of Computer Vision, 63(2):153–161, 2005.

[106] N. Vlassis and A. Likas. A greedy EM algorithm for Gaussian mixture learning.
Neural Processing Letters, 15(1):77–87, 2002.

[107] S. Šegvić, A. Remazeilles, and F. Chaumette. Enhancing the point feature tracker
by adaptive modelling of the feature support. InProceedings of the European Con-
ference on Computer Vision, pages 112–124, 2006.

[108] J. Y. A. Wang and E. H. Adelson. Representing moving images with layers.IEEE
Transactions on Image Processing, 3(5):625–638, Sept. 1994.

154

[109] Y. Weiss and E. H. Adelson. A unified mixture framework for motion segmentation:
Incorporating spatial coherence and estimating the numberof models. InProceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
321–326, 1996.

[110] J. Wills, S. Agarwal, and S. Belongie. What went where.In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages I: 37–44, 2003.

[111] B. Wu and R. Nevatia. Detection and tracking of multiple partially occluded humans
by Bayesian combination of edgelet based part detectors.International Journal of
Computer Vision, 75(2):247–266, Nov. 2007.

[112] J. Xiao and M. Shah. Accurate motion layer segmentation and matting. InProceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[113] J. Xiao and M. Shah. Motion layer extraction in the presence of occlusion us-
ing graph cuts.IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(10):1644–1659, Oct. 2005.

[114] G. Xu, Z. Zhang, and Y. Ma. Improving the performance ofiris recognition systems
using eyelids and eyelash detection and iris image enhancement. InProceedings of
5th International Conference on Cognitive Informatics, 2006.

[115] J. Yan and M. Pollefeys. A general framework for motionsegmentation: Indepen-
dent, articulated, rigid, non-rigid, degenerate and non-degenerate. InProceedings of
the European Conference on Computer Vision, May 2006.

[116] A. Yilmaz and M. Shah. Recognizing human actions in videos acquired by uncal-
ibrated moving cameras. InProceedings of the International Conference on Com-
puter Vision, pages 150–157, 2005.

[117] R. Zabih and V. Kolmogorov. Spatially coherent clustering with graph cuts. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2004.

[118] L. Zelnik-Manor, M. Machline, and M. Irani. Multi-body factorization with uncer-
tainty: Revisiting motion consistency.International Journal of Computer Vision,
68(1):27–41, 2006.

[119] L. Zhang, B. Wu, and R. Nevatia. Detection and trackingof multiple humans with
extensive pose articulation. InProceedings of the International Conference on Com-
puter Vision, pages 1–8, 2007.

155

	Clemson University
	TigerPrints
	8-2009

	Motion Segmentation from Clustering of Sparse Point Features Using Spatially Constrained Mixture Models
	Shrinivas Pundlik
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Previous Work
	Motion Segmentation Challenges
	Thesis Outline

	Mixture Models for Segmentation
	Finite Mixture Models
	Parameter Estimation Using Expectation Maximization (EM)
	MAP Formulation
	ML Formulation
	Complete Data Log Likelihood Function
	 Expectation Maximization Algorithm
	Limitations of the Finite Mixture Models

	Spatially Variant Finite Mixture Models
	ML-SVFMM
	MAP-SVFMM

	A Spatially Constrained Finite Mixture Model (SCFMM)
	Application of Mixture Models for Image Segmentation
	Implementation Details
	Experimental Results

	Summary

	Point Feature Tracking
	Motion Estimation Basics
	Lucas-Kanade (LK) Method
	Detection of Point Features
	Horn-Schunck: An Alternative to Lucas-Kanade
	Joint Lucas-Kanade Algorithm
	Summary

	Motion Segmentation Using Point Features
	Mixture Models for Motion Segmentation
	Affine Motion Model
	Neighborhood Computation

	Grouping Features Using Two Frames
	Maintaining Feature Groups Over Time
	Experimental Results
	Summary

	Motion Models of Articulated Bodies
	Motivation for Articulated Human Motion Analysis
	Learning Models for Multiple Poses and Viewpoints
	Training Data
	Motion Descriptor

	Pose and Viewpoint Estimation
	Experimental Results
	Summary

	Iris Image Segmentation
	Motivation for Iris Segmentation
	Segmentation of Eyelashes
	Texture Computation
	Image Bipartitioning using Graph Cuts

	Iris Segmentation
	Experimental Results
	Summary

	Conclusion
	Contributions
	Future Work
	Lessons Learned

	Appendices
	EM Details
	Complete Data Log-Likelihood Function
	Expectation Maximization Details

	Delaunay Triangulation
	Delaunay Triangulation Properties
	Computation of Delaunay Triangulation

	Parameter Values
	Bibliography

