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Abstract

Emergency Medical Service (EMS) systems are a service that provides acute care and trans-

portation to a place for definitive care, to people experiencing a medical emergency. The ultimate

goal of EMS systems is to save lives. The ability of EMS systems to do this effectively is impacted

by several resource allocation decisions including location of servers (ambulances), districting of

demand zones and dispatching rules for the servers. The location decision is strategic while the

dispatching decision is operational. Those two decisions are usually made separately although both

affect typical EMS performance measures. The service from an ambulance is usually time sensitive

(patients generally want the ambulances to be available as soon as possible), and the demand for

service is stochastic. Regulators also impose availability constraints, the most generally accepted

being that 90% of high priority calls (such as those related to cardiac arrest events) should be

attended to within 8 minutes and 59 seconds.

In the case of minimizing the mean response time as the only objective, previous works

have shown that there are cases in which it might not be optimal to send the closest available

server to achieve the minimum overall response time. Some researchers have proposed integrated

models in which the two decisions are made sequentially. The main contribution of this work is

precisely in developing the integration of location and dispatching decisions made simultaneously.

Combining those decisions leads to complex optimization models in which even the formulation

is not straightforward. In addition, given the stochastic nature of the EMS systems the models

need to have a way to represent their probabilistic nature. Several researchers agree that the use

of queuing theory elements in combination with location, districting and dispatching models is the

best way to represent EMS systems. Often heuristic/approximate solution procedures have been
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proposed and used since the use of exact methods is only suitable for small instances.

Performance indicators other than Response Time can be affected negatively when the

dispatching rule is sending the closest server. For instance, there are previous works claiming that

when the workload of the servers is taken into account, the nearest dispatching policy can cause

workload imbalances. Therefore, researchers mentioned as a potential research direction to develop

solution approaches in which location, districting and dispatching could be handled in parallel, due

to the effect that all those decisions have on key performance measures for an EMS system. In this

work the aim is precisely the development of an optimization framework for the joint problem of

location and dispatching in the context of EMS systems. The optimization framework is based on

meta heuristics. Fairness performance indicators are also considered, taking into account different

points of view about the system, in addition to the standard efficiency criteria.

Initially we cover general aspects related to EMS systems, including an overall description

of main characteristics being modeled as well as an initial overview of related literature. We

also include an overall description and literature review with focus on solution methodologies for

real instances, of two related problems: the p-median problem and the maximal covering location

problem (MCLP). Those two problems provide much of the basic structure upon which the main

mathematical model integrating location and dispatching decisions is built later.

Next we introduce the mathematical model (mixed-integer non-linear problem) which has

embedded a queuing component describing the service nature of the system. Given the nature of

the resulting model it was necessary to develop a solution algorithm. It was done based on Genetic

Algorithms. We have found no benefit on using the joint approach regarding mean Response Time

minimization or Expected Coverage maximization. We concluded that minimizing Response Time

is a better approach than maximizing Expected Coverage, in terms of the trade-off between those

two criteria.

Once the optimization framework was developed we introduced fairness ideas to the loca-

tion/allocation of servers for EMS systems. Unlike the case of Response Time, we found that the

joint approach finds better solutions for the fairness criteria, both from the point of view of internal

and external costumers. The importance of that result lies in the fact that people not only expect
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the service from ambulances to be quick, but also expect it to be fair, at least in the sense that any

costumer in the system should have the same chances of receiving quick attention. From the point

of view of service providers, balancing ambulance workloads is also desirable. Equity and efficiency

criteria are often in conflict with each other, hence analyzing trade-offs is a first step to attempt

balancing different points of view from different stakeholders.

The initial modeling and solution approach solve the problem by using a heuristic method for

the overall location/allocation decisions and an exact solution to the embedded queuing model. The

problem of such an approach is that the embedded queuing model increases its size exponentially

with relation to the number of ambulances in the system. Thus the approach is not practical

for large scale real systems, say having 10+ ambulances. Therefore we addressed the scalability

problem by introducing approximation procedures to solve the embedded queuing model. The

approximation procedures are faster than the exact solution method for the embedded sub-problem.

Previous works mentioned that the approximated solutions are only marginally apart from the exact

solution (1 to 2%). The mathematical model also changed allowing for several ambulances to be

assigned to a single station, which is a typical characteristic of real world large scale EMS systems.

To be able to solve bigger instances we also changed the solution procedure, using a Tabu Search

based algorithm, with random initialization and dynamic size of the tabu list. The conclusions in

terms of benefits of the joint approach are true for bigger systems, i.e. the joint approach allows

for finding the best solutions from the point of view of several fairness criteria.
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Chapter 1

Introduction

1.1 Emergency Medical Service (EMS) Systems

A wise man once said “Hope for the best, but prepare for the worse”. Murphy’s law states

that if something has the potential to go wrong, it eventually will go wrong. Emergencies happen

inadvertently. We all hope to not be involved in any emergency (we hope for the best), but we also

hope that if we are involved in such an incident there should be help promptly coming our way.

We cannot predict when are we going to need the services of an Emergency Response System, but

when we have that need we surely would prefer it to be satisfied as quickly as possible.

The aims of any EMS system are to prevent premature death, to reduce the pain and to

prevent avoidable disability. In order to fulfill these objectives EMS Systems provide out-of-hospital

acute care and transport to a place of definitive care, to patients with illnesses and injuries that

constitute a medical emergency. Although the ultimate goal of EMS systems is to save lives, typical

performance measures such as coverage and response time are used as a proxy for survivability,

which is the broader objective. A demand zone is said to be covered if there is at least one facility

within a predefined distance/time threshold from the demand zone. The concept of coverage is

related to the availability of a satisfactory facility rather than the best possible one (Farahani et al.,

2012). Li et al. (2011) pointed out that the coverage maximization approach is the most widely

used by practitioners, researchers and regulators.
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Researchers like Erkut et al. (2008) and McLay and Mayorga (2010) have explored the use

of survivability objective functions directly, instead of using a proxy objective function. However,

survivability functions are not readily available for different types of emergency calls. Most of the

works analyzing the rate of survival in the context of EMS systems have focused on cardiac arrest.

However, cardiac arrest accounts only for a small percentage of the total number of calls handled

typically by EMS systems. Generalized survivability functions would be required to include most

of the EMS demand. Another objective that has also been suggested by Lee (2011), among others,

is called Preparedness. The underlying idea is to operate an EMS system not only considering

the current call asking for attention, but also the expected behavior of the system based on some

forecast of the upcoming calls. Or in other words, operate the system trying to be prepared in

advance for what is coming next.

There are other objectives that an EMS system should seek to satisfy and that somehow

the mathematical models usually assume implicitly. For instance, when we are dealing with a

location decision we are usually worried about response time, either trying to minimize it or to set

a maximum that should not be surpassed. We are implicitly assuming that the paramedics and

medical personnel riding in the ambulances are well prepared to handle the emergency they are

responding to (or in other words, one objective of an EMS system should be having well trained

personnel); we also assume that the personnel have the adequate equipment (planners of the EMS

should make it happen); we are also assuming that EMS personnel will have a professional behavior

that not only can save the lives at risk, but also help the patients and their relatives to stay calm,

treating them with respect. In other words, the quality of an EMS system, from the perspective

of the users (patients) can not be reduced to a measure of response time, or whether or not the

ambulance observed an existing standard. Those single numbers can be used for planning and design

purposes, but the day to day operation of the system, in which medical personnel is arguably the

biggest player, needs to be more than those single performance measures. After all, if your EMS

almost always arrive pretty quickly but most of the time perform the wrong medical procedure, it

is unlikely to think that the overall perception of quality is going to be positive. The mathematical

models we propose to be used are just an abstraction of the system, very useful to account for
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certain performance indicators. However, some other characteristics, requirements and operation

rules that cannot be included in those models should be always observed in the real world.

A preliminary review of literature related to location, districting and dispatching problems

in the context of Emergency Medical Services (EMS) reveals a growing trend in the number of papers

published as well as in the number of characteristics from real world systems that are included in

those models. The topic can be considered then as an active research area. In the context of EMS

systems the location decision is related to deciding where should the idle ambulances be positioned

within the geographical region where they offer their services. It is usually a discrete problem in

the sense that both the number of ambulances available and the number and location of potential

stations are known.

To make the problem manageable usually a certain level of aggregation is used. The stan-

dard approach is to divide the geographic region into areas (typically by imposing a grid over the

map representing the region of interest). The demand rate for each cell in the grid is made up

adding the calls coming from within the boundaries of the cell. For planning purposes the demand

of a cell is assumed to be assigned to the center of the cell. When the EMS system is in operation

and a emergency call is received, the next decision is to assign one of the idle ambulances to attend

the call. This assignment process corresponds to the dispatching decision. The most common

dispatching rule is assigning the idle ambulance that is closest to the place of the emergency. Once

the ambulances are assigned to specific locations it is possible to rank them, in relation to each

demand zone, based on the dispatching preference. For instance if the closest dispatching rule is

being used, then for each demand zone the ambulance located at the closest station would be the

preferred one for that demand zone; the next closest ambulance will be the second preferred, and

so on and so forth. This also allows us to talk about cooperation between the ambulances (the

servers), a characteristic that is distinctive of EMS systems. In some circles this is also known as

backup coverage, in the sense that if the preferred station is busy, then there is a backup station (or

several of them) that the EMS planners can still use to attend a particular call. The identification

of demand zones also provides the basis for what is called districting. It corresponds to identifying a

subset of demand zones for which a particular ambulance is going to be the preferred server. From
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the point of view of creating districts the cooperation among ambulances can be seen as allowing

ambulance cross-district services. That is, if a demand happens in the district of an ambulance

when it is busy, then another ambulance from a different district can still be allowed to attend the

demand.

The level of sophistication in the modeling of EMS systems has been growing. Several

reasons can be behind this trend, such as the availability of better hardware, better software as

well as novel heuristic and exact optimization algorithms and techniques. That context has also

created the conditions to allow the inclusion of other objectives than the usual efficiency criteria.

Issues related to fairness/equity have also emerged, both from the perspective of the final (external)

users but also the internal users (medical personal and managers). From the point of view of final

users it wouldn’t be fair, for example, to have some costumers being attended in an amount of time

that is much greater than the mean response time of the whole system. Designing a system with

the least variability in response time among users would be a possible answer for that problem. In

the case of internal users, an unbalanced workload can also be judged as unfair. Minimizing the

variability of the workloads among the different servers can be used as an objective of the system.

1.2 Overview of literature on EMS systems planning

Although examples using criteria other than those related to efficiency can be found in

EMS systems design, the commonly used objectives are minimizing the mean response time and/or

maximizing coverage. Making sure that every patient has the best chances to survive can be seen as

the implicit objective of any EMS. The paper by Brandeau and Chiu (1989) is an extensive survey

of over 50 representative problems in location research that includes more than 200 references.

According to this survey, location theory was formally introduced in 1909 but a theoretical interest

is more recent, traced back to the mid-1960’s. By 1989 they were able to identify a growing trend

in the publication of literature related to location problems, as well as the use of location models

for a much more rich range of applications, health care being one of the newest. Brotcorne et al.

(2003) provided a review focused on location models and their particular application to emergency

response services. They classified the location models that evolved over the past 30 years into
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two main categories, deterministic and probabilistic, recognizing that the most recent models were

more concerned with the representation of the stochastic nature of the systems. Location models

were also distinguished in coverage and median type problems. The first class attempts to locate

the servers so as to maximize the fraction of the demand that has at least one server unit within a

predefined maximum distance or time. The latter type minimizes the average or total travel cost

between servers and demand zones. For service systems the cost is usually measured in time.

The two seminal attempts to develop basic coverage models were the set covering location

problem (SCLP) by Toregas et al. (1971) and the maximal coverage location problem (MCLP) by

Church and ReVelle (1974). These basic models were followed by many extensions. TEAM and

FLEETmodels, by Schilling et al. (1979), considered several types of servers; Marianov and ReVelle

(1992) improved the MCLP model considering two types of servers required simultaneously. Multi-

ple coverage of demands were considered in BACOP1 and BACOP2 by Hogan and Revelle (1986)

and other extensions, DSM and DDSM were added by Gendreau et al. (1997, 2001). The p-

median problem was introduced by Hakimi (1964). The use of the p-median model in the planning

and location of facilities for EMS can be found in Calvo and Marks (1973), Carbone (1974) and

Carson and Batta (1990). Daskin (1983) developed the maximum expected coverage location model

(MEXCLP) including the modeling of congestion elements. Hogan and Revelle (1986) developed

the maximal availability location problem (MALP I and II) and later Marianov and ReVelle (1996)

improved it, endogenously calculating the availability of servers using a queuing model at each

facility.

It was the work by Larson (1974) that first used queueing theory elements in facility loca-

tion models by introducing the hypercube model. Larson (1975) later developed an approximation

for the hypercube model due to the fact that exact calculations were prohibitive. Chiyoshi et al.

(2001) pointed out, after comparing some other models that were used before, that the hyper-

cube model was the only one with the capabilities for an accurate representation of the system.

There is a variety of applications and extensions of the hypercube model to EMS system such

as the works by Brandeau and Chiu (1989), Chelst and Barlach (1981), Mendonca and Morabito

(2001), Atkinson et al. (2006), Atkinson et al. (2008), Iannoni and Morabito (2007), Iannoni et al.
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(2008), Galvao and Morabito (2008) and Geroliminis et al. (2009), among others. In several of

the mentioned works, it has also been stated that the hypercube model is a descriptive tool that

allows the analysis of scenarios, but it was not designed as an optimization model. However, it is

possible to embed the hypercube model into an optimization framework. Batta et al. (1989) com-

bined MEXCLP with the hypercube into an iterative, local search algorithm. Aytug and Saydam

(2002) replaced the local search by a genetic algorithm. Geroliminis et al. (2009) as well as

Iannoni and Morabito (2007), Iannoni et al. (2008) and Geroliminis et al. (2011) have also em-

bedded the hypercube model into genetic algorithms to solve the location problem.

Traditionally, location, districting and dispatching decisions have been approached sepa-

rately. Iannoni et al. (2008) concluded their paper by making the suggestion of trying to develop

future extensions in which location, districting and dispatching can be handled in parallel, due

to the effect that all of them have on key performance measures for an EMS system. Some re-

searchers have proposed integrated models in which the two decisions are made sequentially, like in

Geroliminis et al. (2009). Chiyoshi et al. (2001) have reported that the use of queuing theory ele-

ments in combination with location, districting and dispatching models is the best way to represent

these systems. For the most part heuristic/approximate solution procedures have been proposed

and used since the use of exact methods is only suitable for small instances.

In the case of minimizing the mean response time as the only objective, previous works

by Cuninghame-Green and Harries (1988), Carter et al. (1972) and Repede and Bernardo (1994)

have shown that there are cases in which it might not be optimal to use the nearest dispatching

policy to achieve the minimum average response time. Other performance indicators can be affected

negatively as well when following that dispatching rule. When the workload of the servers is taken

into account, as in the work by Iannoni and Morabito (2007) and Iannoni et al. (2008), they found

that using the nearest dispatching policy can cause imbalances in workloads. Workloads are part of

a fairness performance measurement from the point of view of internal costumers of the system. If

in addition to the mean response time there are other objectives that need consideration, it is not

clear how to select a dispatching policy even if the locations are fixed. Of course, if both decisions

have to be made at the same time the problem is even more challenging.
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1.3 p-Median and Maximal Expected Coverage Location (MEX-

CLP) Problems

These two problems are closely related to the problem being studied in this work. The

p-Median problem corresponds to a location/allocation problem in which, from a set of candidate

locations we need to select exactly p of them, assigning each demand node to an open location, with

the objective of minimizing the mean distance between the open facilities and their assigned demand

zones. In our case we deal with a location/allocation problem in which the ambulances available

need to be located and then assigned a priority with respect to the demand zones. Our problem

is more complex than the p-median because of its server-to-costumer nature. We need to consider

congestion, i.e., the possibility that an allocation decision is not possible in a particular period of

time, as a result of the ambulance being already busy. Furthermore, the MEXCLP problem also

deals with location/allocation. In this case, for a particular location of the servers (ambulances)

it is assumed that all the demand zones within a given distance/time threshold from a server are

assigned to a it. The objective is to maximize the proportion of demand that is reachable within

the given threshold. Both problems have been extensively studied in the literature and because of

their combinatorial nature several heuristic solution procedures have been suggested. What follows

is an overview of those solution procedures.

1.3.1 p-median problem

The work by Mladenovic et al. (2007) is a relatively recent survey of meta-heuristic ap-

proaches applied to the solution of the p-median problem. In turn, Reese (2005) and Varnamkhasti

(2012) offer a broader overview of methods that have been reported to tackle the problem. Reese

(2005) classified the solution methods into the following categories: heuristics, meta-heuristics, ap-

proximation algorithms, LP relaxations, Surrogate relaxations, IP formulations and reductions and

enumeration. His work included 120 references that were selected among an even bigger number of

papers (more than 200). The selection was primarily based on the consideration of other charac-

teristics than those of the classical p-median problem, i.e. minimax or p-center problems although
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related were excluded, stochastic problems were also excluded as well as multi-objective versions

of the problem or multi-services or multi-commodities. Out of those 120 references, 32 were meta-

heuristic related works. 42 out of the 120 references were published between 2000 and 2005, almost

doubling the number of publications of the previous 5-year period (24 references, 1995-1999). The

following table lists the meta-heuristics and the number of publications associated.

Table 1.1: Summary of Meta-heuristic approaches to solve the p-median problem

Meta-heuristics
Number of Papers

Reese (2005) Mladenovic (2007)

Variable Neighborhood Search (VNS) 5 4
Heuristic Concentration (HC) 4 3
Genetic Algorithms (GA) 11 5
Greedy Randomized Adaptive Search Procedures 1 -
Scatter Search (SS) 1 1
Tabu Search (TS) 5 6
Simulated Annealing (SA) 3 3
Neural Networks (NN) 2 2
Ant Colony Optimization (ACO) - 1

The work by Reese (2005) is an “annotated bibliography”, and as such it does not go into

details, providing only a very brief overview of the works that were considered by the authors. Both

works agree in the identification of solution approaches, in particular related to the use of meta-

heuristic techniques. They also agree about a real progress in the state-of-the-art related to the

solution of the p-median problem, thanks to the advent of meta-heuristics. They mentioned that it

is clear that earlier methods such as constructive heuristics and local search have been surpassed

by the new approaches, making it possible to solve larger instances in reduced computational time

and with higher quality of the solutions being obtained. From Table 1.1 it should be noted that the

most common approaches have been Genetic Algorithms, Tabu Search and Variable Neighborhood

Search.

1.3.2 MEXCLP problem

Li et al. (2011) presents an up-to-date review on covering models for EMS systems. They

attempted a review on facility location and planning models for EMS systems, however they finally
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decided to focus only on covering models. They explained that the facility location problems when

applied to EMS can be classified into three categories: (1) covering models, (2) p-median models

and (3) p-center models. The first category approaches the planning problem by determining an

standard (maximum distance/time) to offer the attention, and making decisions so that the stan-

dard is observed. The second problem attempts to minimize the total or average distance/service

time and finally, the third approach aims to minimize the maximum service time/distance for

all demand points. The authors quickly realized that the first approach is the most widely used

by practitioners, researchers and regulators, and therefore they focused their review on covering

models. The same fact was pointed out by Roth (2005), mentioning that the focus has shifted

from minimizing response time to offering a certain level of coverage. Table 1.2 is a summary of

meta-heuristic approaches mentioned in the work by Li et al. (2011).

Table 1.2: Summary of Meta-heuristic approaches to solve location covering problems

Problem Algorithm Number of Papers

MCLP and extensions
Tabu Search 1
Genetic Algorithms 1

MEXCLP
Genetic Algorithms 3
Tabu Search 1
Simulated Annealing 2

MEXCLP - Hypercube Genetic Algorithms 3

DSM - DDSM Tabu Search 4

In table 1.2 MCLP stands for Maximal Covering Location Problem and DSM and DDSM

are the Double Standard Model and the Dynamic version of it, respectively. GAs are the most

common meta-heuristic applied to the solution of MEXCLP. Additionally, in this review the only

meta-heuristic identified to solve the MEXCLP that includes the hypercube model was GA. The

review includes some details about the performance of the different meta-heuristics. In relation

to GA the reported results are good, in comparison to exact solutions found by using an exact

approach. For small cases the optimal solution is found. For larger cases, close to optimal solutions

are found in reasonable computation time (smaller than the time used by the exact algorithm). An

improvement that is mentioned by several authors is the use of a local search add-in to the standard

GA, as well as the use of greedy initialization procedures instead of a pure random initialization of

9



the GA’s population. Only one paper was found by this authors using TS to solve the MEXCLP

problem.

The work by Rajagopalan et al. (2007) offers an experimental design framework to compare

the performance of several popular meta-heuristics, such as TS (Tabu Search), GA (Genetic Algo-

rithms), SA (Simulated Annealing) and HHC (Hybrid Hill Climbing). They solved 400 different

problems, generated by using 6 different system configurations. Each configuration is a combination

of the size of the grid being used to represent the demand zones, and the relative distribution of

the demand across the grid (uniformly and non-uniformly). The solutions were compared to exact

solutions found by using CPLEX. In general, the results suggest that the type of distribution and

size of the problem, in terms of number of demand zones, has the largest effect on the quality of

the solution. It is also showed that GA, in general, produces the best results in terms of quality

of the solutions, however it comes at a price, higher computation times. Regarding this issue, it is

worth to recall results reported by Jaramillo et al. (2002), showing that GAs can quickly generate

good solutions, within 1% of the known optimal, but at the same time, after that it takes a lot of

time for the GA to improve it further. This could be the same phenomenon in this case. Because

of that behavior, Rajagopalan et al. (2007) suggested that a good idea might be to use GA at first

to generate a pool of good solutions, and then to use another approach to improve them further.

1.4 Dissertation structure

The main results from this research are introduced in the next three chapters. Each one

of these chapter adds details about available and relevant bibliographical references. Chapter 2

introduces the research problem, a combination of the location decision for ambulances (strategic

level) and the dispatching decision (operational level). The main result from Chapter 2 is the joint

location/allocation model for EMS systems, as well as the development of a solution strategy for the

model, given the fact that it is not possible to be solved by using off-the-shelf commercial solvers.

The proposed optimization framework is based on Genetic Algorithms. Congestion is modeled by

using a Markovian system and an exact solution procedure is used to characterize the stochastic

behavior of the system.
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Chapter 3 takes advantage of the optimization framework, allowing the analysis of EMS

systems from perspectives other than efficiency. The main result is the identification of fairness

criteria that benefit from the joint approach. These new criteria are used to optimize the system

and comparisons are made showing the different trade-offs, not only between fairness criteria but

also efficiency criteria. The most commonly used approach corresponding to Expected Coverage

maximization is contrasted with a Mean Response Time minimization, identifying that the latter

offers a better trade-off.

Chapter 4 addresses scalability issues associated with the optimization framework. In partic-

ular, the Markovian submodel representing congestion requires a solution procedure whose number

of equations increases exponentially. In addition, the mathematical model used in previous chap-

ters allows only one ambulance to be assigned to each candidate location. In turn, real world EMS

systems usually will allow for several ambulances at strategic locations. This chapter introduces

changes in the model, allowing several ambulances per candidate location. The new model is also

accompanied by a new way to model congestion, dropping the Markovian model and using an ap-

proximation instead, for which the assumption of exponential service times is not required. This

is very important because there is literature showing that response times are not necessarily ex-

ponentially distributed. Changes in the mathematical model also required changes in the solution

procedure. In this case a Tabu Search based heuristic is developed, including random initialization

and dynamic tabu tenure update. Finally, in Chapter 5 a summary of contributions and open

related research questions are presented.
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Chapter 2

Developing the Optimization

Framework

2.1 Introduction

Emergency Medical Service (EMS) systems are a public service that provides out-of-hospital

acute care and transport to a place of definitive care, to patients with illnesses and injuries that

constitute a medical emergency. The ultimate goal of EMS systems is to save lives. The ability of

these systems to do this effectively is impacted by several resource allocation decisions including

location of servers, districting of demand zones and dispatching rules for the servers. Common

objectives are minimizing the mean response time and/or maximizing coverage. The relationship

between minimizing response time and improving survivability has been reported by several works

such as Sanchez-Mangas et al. (2010) and McLay and Mayorga (2010, 2011). A demand zone is said

to be covered if there is at least one facility within a predefined distance/time threshold from the

demand zone. The concept of coverage is related to the availability of a satisfactory facility rather

than the best possible one (Farahani et al., 2012). Li et al. (2011) pointed out that the coverage

maximization approach is the most widely used by practitioners, researchers and regulators.

Traditionally, location and dispatching decisions have been approached separately, even

though various studies have shown that the servers’ busy probabilities (and therefore the response
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time and coverage, among other performance indicators) are sensitive to the server locations and

the choice of server dispatching strategies (Batta et al., 1989; Larson and Odoni, 1981). Ambulance

dispatch is the process of assigning a particular ambulance to answer an emergency call. An

ambulance dispatch policy can be formed using various dispatch methods and there is no single

policy that fits all systems (Li et al., 2011). The same authors emphasized that a dispatch policy

has to be designed to fulfill the particular objectives and performance indicators defined by EMS

providers and regulators. In our work we consider dispatch policies in which there is a single list

associated with each demand zone that ranks the available servers (ambulances), or a subset of

them, in order of dispatch preference. This type of list is commonly referred to as a contingency

table.

The most common dispatching policy for EMS calls is rather simple in that the closest idle

vehicle is usually dispatched to attend the call (Goldberg, 2004; Andersson and Varbrand, 2006).

The rationale behind that policy is related to the idea of having the objective of minimizing the

mean system response time. The works on allocation of distinguishable servers by Jarvis (1981)

and Katehakis and Levine (1986) pointed out that under light traffic conditions using a myopic

allocation policy (i.e. assigning always the closest available sever) will lead to an optimal solution,

when the objective is to minimize the long run average cost (response time). For heavy traffic the

same works mentioned that the optimal policy can deviate from the myopic policy. However, even

in the latter case using the myopic policy still might lead to solutions that are close the the optimum

(Katehakis and Levine, 1986). Related literature applied to EMS systems planning included argu-

ments against the closest dispatching rule as a way to minimize the response time. Arguments were

made originally by Carter et al. (1972) and thereafter supported by Cuninghame-Green and Harries

(1988) and Repede and Bernardo (1994). In the referred works the locations of the servers are as-

sumed to be known. We have not found references addressing the relationship between a myopic

dispatching policy and expected coverage. There is usually a trade-off between response time and

coverage, so that improving one of them implies a sacrifice in the other.

In this work, first we present a mathematical model that integrates the location and dis-

patching decisions for an EMS system. It is a non-linear mixed integer optimization model in which
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even generating some of the equations is computationally intensive, therefore making it hard to

solve. The Hypercube model is used providing an exact model of the stochastic queuing dynamics.

The mathematical model is accompanied by the analysis of randomly generated small instances

whose purpose is twofold: (i) given the small size it is possible to fully enumerate all feasible so-

lutions hence also identifying the optimal, that can be used later for comparison purposes against

faster/smarter solution strategies than enumeration; and (ii) after solving a variety of random in-

stances it is also possible to point out some general trends observed in the optimal solutions (with

respect to response time and coverage). Second, we present an optimization framework to solve the

joint location and dispatching problem based on Genetic Algorithms (GAs). We present a heuristic

solution procedure to solve the exact model of the system. Our work is different from previous

approaches to the problem, for although we assume the general form of the dispatching policy, as a

fixed preference list, we do not assume a priori any particular dispatching order (based on distance,

for example). Instead, we model the location and dispatching decisions in a single mathematical

model, and develop an optimization framework for its solution. In fact, since a district is the union

of the demand zones assigned to a particular server, it can be said that an indirect result of our

model is also a districting strategy: for each available server, all the zones having it as its first

preferred server would form the server’s district.

Our findings are that in fact the common dispatching rule based on the closest available

server leads to the best solutions when the objective is minimizing the mean response time and lo-

cations are optimized simultaneously. Conversely, if the objective is maximizing expected coverage,

then the optimal solution could deviate from the use of the closest dispatching rule. However, the

best solutions based on coverage offer an increase of that indicator (with respect to the coverage

attained by minimizing the mean response time) that is rather small (3.15% average increase -

95% CI: 2.75-3.55%) compared to the sacrifice in response time (65.2% average increase - 95% CI:

56.33-74.24%). Although these numbers correspond to the average results for the small instances,

bigger instances showed similar behavior. The optimization procedure proposed has consistently

obtained good solutions, i.e. within 1% gap compared to the best solutions obtained by full or

partial enumeration procedures, which are computationally more intensive.
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While our main goal was the development of the optimization framework for the solution

of the joint location/dispatching problem, we discovered that little benefit can be gained from the

integrated approach when using the two most commonly used criteria, namely response time and

expected coverage. Thus we considered two additional criteria related to fairness, and we used

one of them to illustrate the potential benefits of the joint approach. In particular we tested the

variance of the individual response times as a measure of fairness from the point of view of the

users of the system (demand zones). We found that in this case using a myopic policy would result

in a potential deviation from the optimal policy aimed at reducing disparities, as measure by the

variance of the response times. We also illustrate the trade-offs among the presented optimization

criteria.

In Section 2.2 we provide the presentation of the problem as well as a review of related

literature. Next, in Section 2.3 we introduce the mathematical model. Section 2.4 presents a

small case study, as well as a summary of its results and implications. Section 2.5 provides a

detailed description of the optimization framework based on GAs and section 2.6 introduces the

case studies to which the optimization procedure is applied, as well as the results obtained. The

last two sections, 2.7 and 2.8 are the discussion of the results and the conclusions, respectively. As

part of the conclusions possible extensions of the present work are mentioned.

2.2 Problem presentation and related literature

In Goldberg’s review of models for deployment of EMS vehicles (Goldberg, 2004), it is

mentioned that little work had been done on dispatching of ambulances. Similar opinion is shared

by Lee (2011), mentioning that the contributions in ambulance dispatching are sparse. In turn,

Galvao and Morabito (2008) and Iannoni et al. (2011) mention as an interesting extension of their

work the use of different dispatch preference lists, instead of assuming that for a given set of

locations the dispatching order is based on the closest dispatching rule.

The most widely used dispatching rule under a fixed preference scheme is to send the closest

unit, looking to minimize the response times (Andersson and Varbrand, 2006). The first argument

against the use of such a policy was made by Carter et al. (1972). They present a case where two
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units, A and B, have equally large areas of responsibility, but A’s area has a significantly higher

call frequency. In those conditions, the mean response time will decrease if B is allowed to respond

to some of the calls for which A is the closest unit. The result was generalized for cases involving

more than two units by Cuninghame-Green and Harries (1988). Repede and Bernardo (1994) also

supported the argument. The works by Jarvis (1981) and Katehakis and Levine (1986) studied the

optimal allocation of distinguishable servers on Markovian queuing systems, reaching a different

conclusion. For a given location of the servers, so that the cost of assigning a server to a particular

costumer is known (the cost in EMS planning is usually related to the amount of time that it

takes for the EMS system to effectively respond to a call), these two works showed that under light

traffic conditions (traffic is measured by the ratio between the mean arrival rate and the mean total

service rate) the use of a myopic policy always would lead to an optimal solution, i.e. minimizing

the long run average cost (response time). For heavy traffic the use of a myopic policy will deviate

from the optimal, however the deviation is rather small (2 to 3%). Katehakis and Levine (1986)

used 0.38 as an indicator of light traffic and 1.94 for the case of heavy traffic.

We propose a mathematical model that combines location and dispatching decisions for

EMS vehicles, initially looking for optimal solutions according to maximum coverage or minimum

response time. The dispatching decisions are modeled as a fixed preference scheme, meaning that

there is a single list associated with each costumer that ranks the available servers (ambulances)

ir order of dispatch preference. That list does not change as a result of changes in the state of the

system. However, the particular unit that will be dispatched to attend each call from a demand

zone is not known in advance, since the assignment depends on the availability of the servers

(system’s state) when the call is received. Katehakis and Levine (1986) pointed out some results

from Markov Decision Theory indicating that, when the number of states of the system as well as

the number of actions available to perform in every state (allocation of the servers) are finite, it

suffices to consider only deterministic policies; a deterministic policy is one which, whenever the

system is in particular state, the set of available actions to perform is deterministic and depends

only of the actual state (in our case, which servers are busy, and which are idle).

The servers in a typical EMS system are: (i) spatially distributed in the region; (ii) share the
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system workload due to cooperation among them and (iii) have different operational characteristics,

such as different preferential regions (Galvao and Morabito, 2008). Those characteristics have been

progressively included in different approaches used for planning EMS systems. Congestion is also a

typical phenomena related to EMS systems. According to Galvao et al. (2005) the volume of calls

for service may keep ambulances busy from 20 to 30% of the time.

Brotcorne et al. (2003) provided a review focused on location models and their particular

application to EMS. They classified the location models that evolved over the past 30 years into

two main categories, deterministic and probabilistic, recognizing that the most recent models were

more concerned with the representation of the stochastic nature of the systems. Location models

were also distinguished in coverage and median type problems. The first class attempts to locate

the servers so as to maximize the fraction of the demand that has at least one server unit within

a predefined maximum distance or time. The latter type minimizes the average or total travel

time/cost between servers and demand zones.

The two seminal attempts to develop basic coverage models were the set covering location

problem (SCLP) by Toregas et al. (1971) and the maximal coverage location problem (MCLP)

by Church and ReVelle (1974). Extension to those basic models were developed later. TEAM and

FLEETmodels, by Schilling et al. (1979), considered several types of servers; Marianov and ReVelle

(1992) improved the MCLP model. Multiple coverage of demands were considered in BACOP1

and BACOP2 by Hogan and Revelle (1986) and other extensions, DSM and DDSM were added by

Gendreau et al. (1997, 2001). The p-median problem was introduced by Hakimi (1964). The use

of the p-median model in the planning and location of facilities for EMS can be found in Carbone

(1974) and Carson and Batta (1990).

Basic location models are deterministic in nature and therefore do not represent the system

accurately (Brotcorne et al., 2003; Jia et al., 2007a). Basic coverage models might make sense when

the location of facilities are fixed, but in the case of an EMS system, as soon as a unit leaves its home

base to attend a request for service, other demand points that are supposed to be covered by that

unit may no longer be covered. The work by Snyder (2004) reviewed several models that address

variations in the inputs, such as demands and travel times, as a way to take uncertainty into account.
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The same work pointed out the importance of addressing congestion. Daskin (1983) developed

the maximum expected coverage location model (MEXCLP) including the modeling of congestion

elements. Hogan and Revelle (1986) developed the maximal availability location problem (MALP

I and II) and later Marianov and ReVelle (1996) improved it. Farahani et al. (2012) present an

extensive up to date review on covering problems in facility location. Arabani and Farahani (2012)

developed a survey on facility locations dynamics.

It was the work by Larson (1974) that first used queueing theory elements in facility loca-

tion models by introducing the hypercube model. Larson (1975) later developed an approximation

for the hypercube model due to the fact that exact calculations were prohibitive. Chiyoshi et al.

(2001) pointed out, after comparing several models, that the hypercube was the only one with the

capabilities for an accurate representation of the system. There is a variety of applications and

extension of the hypercube model to EMS system such as the works by Brandeau and Chiu (1989),

Mendonca and Morabito (2001), Atkinson et al. (2008), Iannoni and Morabito (2007), Iannoni et al.

(2008), Galvao and Morabito (2008) and Geroliminis et al. (2009), among others. It is well doc-

umented that the hypercube model is a descriptive tool allowing scenario analysis, not designed

as an optimization model. However, it is possible to embed it into an optimization framework.

Batta et al. (1989) combined MEXCLP with the hypercube into an iterative, local search algorithm.

Aytug and Saydam (2002) replaced the local search by a genetic algorithm. Iannoni and Morabito

(2007) as well as Iannoni et al. (2008) and Geroliminis et al. (2011) have embedded the hypercube

model into genetic algorithms to solve the location problem. In this paper we also use the hy-

percube model as it exactly models the system. While hypercube approximations (Larson, 1975;

Jarvis, 1985) may lead to faster solution procedures, they do not provide an exact solution. Thus,

as mentioned earlier, our approach is to find a heuristic solution to an exact problem as opposed

to an exact solution to an approximate problem. Future work, related to scalability issues of the

proposed method is mentioned in Section 2.8.
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2.3 Mathematical model

Our model is different from existing literature in that we integrate location and dispatching

decisions into a single framework, whereas the mentioned references assumed the use of a priori

dispatching policy, particularly based on the closest relationship.

2.3.1 Assumptions

It is assumed that the system provides service to a certain geographical region J that is

partitioned into service regions -demand zones, cells or atoms are other terms that have been use

for these partitions. A given number of servers are located at points i ∈ I ⊂ J. Demands occur

solely at the center of each service region by time homogeneous Poisson requests for service and

are attended at exponential service rates. Larson and Odoni (1981) have shown that reasonable

deviation from this last assumption do not significantly alter the accuracy of the model.

Each service region j generates a fraction fj of the total demand (
∑

j fj = 1). The total

demand is then λ and the demand of each zone is λj ≡ λfj . A server’s primary response area

(district) consists of those service regions to which the server would be dispatched if available.

When a request for service arrives, if the primary server is available, it is dispatched immediately.

The server travels to the place of the incident, spends some time at scene and then returns to

its base location. If the responsible server is busy when a request for it arrives, another server

will be assigned, following a fixed priority list with respect to the servers for each demand zone.

The priority list can include all the servers available in the system (total backup) or only a subset

of them (partial backup). If all the servers are busy, the request is considered to be lost (this

typically means that it will be served by an external system). The basic model also assumes that

the servers are identical and that the service time of any response unit for any call for service has

an exponential distribution with mean 1/µ (This assumption is reasonable if the travel times are

short compared to the total service time, which is usually the case in urban areas). The service

time for a call includes the set up time, the travel time from the base to the incident location, the

on-scene time, a possible related follow up-time and the travel time back to the base. The response

time interval is the time from when an ambulance is dispatched until it arrives at the scene.
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Each server can be busy or free (idle), generating 2N possible states for the system (where

N = number of servers); the states can be mapped to the vertices of a hypercube (strictly a cube

for the case of exactly 3 servers) named Bj

(
j = 1, 2, . . . , 2N

)
of dimension N . Each vertex, or state,

is denoted by an ordered set of N one digit binary numbers taking the value of 1 if the server is

busy and 0 if not (Bj ≡ {b1, b2, . . . , bN}). It is assumed that only one step transitions occur, i.e.

two servers cannot be assigned simultaneously. Using the convention proposed by Larson (1974),

transitions are only allowed between states with Hamming distance equal to 1, where the Hamming

distance dij between two vertices Bi and Bj is the number of digits by which the two vertices differ

(or the ‘right angle’ distance between two vertices of the hypercube). The terms “upward” and

“downward” Hamming distance, d+ij and d−ij , refer to the number of binary digits switching from

0 to 1 and 1 to 0. The model of the system corresponds to a finite-state continuous time Markov

process. Steady-state probabilities are determined from equations of detailed balance that express

a conservation of flow between consequent states. This set of balance equations depends on both,

the location of the servers and the dispatching policy.

2.3.2 Formulation

In the following formulation J represents the service regions; I are the potential location

sites, |I| ≤ |J|; N is the total number of response units (servers); tnj is the mean response time

for server n to reach region j, when available; λ is the total network-wide demand (requests/unit

time); fj is the fraction of network-wide workload generated from region j ∈ J; Enj is the set of

states where server n is the preferred server for region j; CN are the vertices of a N-dimensional

hypercube; d−ij , d
+
ij are the “downward” and “upward” Hamming distances between vertices Bi and

Bj , (d
−
ij + d+ij = dij) and λij , µij are the upward and downward mean rates at which transitions

are made from state i to state j, corresponding to vertices Bi and Bj , given that the system is in

state i. Finally, we have the decision variables:

xi =


1 if we locate a vehicle at potential site i

0 otherwise
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ylij =


1 if vehicle located at i has priority l to zone j

0 otherwise

The following are auxiliary decision variables: ρnj is the fraction of dispatches sending unit

n to region j, n = 1, 2, . . . , N ; P (Bk) is the steady-state probability of state corresponding to vertex

Bk, k = 1, 2, . . . , 2N .

The optimization problem is formulated as:

Minimize MRT =

N∑
n=1

J∑
j=1

ρnjtnj (2.1)

s. t:

I∑
i=1

xi = N (2.2)

xi ∈ {0, 1} , i ∈ I (2.3)

ρnj = fj

∑
Bi∈Enj

P (Bi)

1− P (B2N )
n = 1, . . . , N ; j ∈ J (2.4)

P (Bj)

 ∑
i

Bi∈CN :d+ij=1

λij +
∑
i

Bi∈CN :d−ij=1

µij

 =

∑
i

Bi∈CN :d−ij=1

µijP (Bi)+
∑
i

Bi∈CN :d+ij=1

λijP (Bi) j = 1, . . . , 2N (2.5)

2N−1∑
i=0

P (Bi) = 1 (2.6)

ylij ∈ {0, 1} i ∈ I; j ∈ J; l = 1, . . . , N (2.7)

xi ≥ ylij i ∈ I; j ∈ J; l = 1, . . . , N (2.8)

N∑
l=1

ylij = 1 i ∈ I; j ∈ J (2.9)

I∑
i=1

ylij = 1 j ∈ J; l = 1, . . . , N (2.10)
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Equation (2.1) is the objective function, Mean Response Time (MRT); constraint (2.2)

determines the number of servers to be located and constraint (2.3) is the integrality constraint for

the decision variable xi. Constraint (2.4) calculates the fraction of all dispatches that send server

n to region j using standard queueing theory arguments and assuming a zero-line capacity system

(calls that arrive when all the servers are busy are lost); equation (2.5) represents detailed balance

equations determining steady-state probabilities of the finite-state continuous time Markov process

model with N servers. Note that even though it was assumed that the service rate is equal for all

servers since they were identical, the general expression given by this equation allows for different

service rates for different servers. For details on calculating λij and µij , see Geroliminis et al.

(2009).

Constraint (2.6) ensures that the sum of probabilities is equal to one. Equation (2.7) is the

integrality constraint for the decision variable ylij ; constraint (2.8) states the logical relationship

between the location decision and the assignment of a location within the priority list of a demand

zone and finally, constraints (2.9) and (2.10) assure that there is a complete priority list for each

demand zone, and that within the priority list of each demand zone each server appears only once.

The full model given by (2.1)-(2.10) represents the basic optimization problem in which the location

of the servers and the dispatching rule for each demand zone are the decisions to be made. Also note

that the steady-state probabilities are auxiliary variables that change for every full combination of

location and dispatching decision.

Formally, the presented model corresponds to an NP-Hard problem (Geroliminis et al.,

2009). It is a non-linear mixed integer programming model that has embedded a queuing sub-

model corresponding to the finite-state continuous time Markov process. Given a particular set of

locations for the servers available and a preference list for each demand zone with respect to the

same servers, it is necessary to first solve the flow balance equations given by (2.5)-(2.6), before

being able to calculate the value of the objective function. Although compactly written, those

equations are neither easily determined nor easily solved. The number of flow balance equations

equals 2N , therefore the number of equations to solve the subproblem grows exponentially with

respect to the number of servers. It has been mentioned by Galvao and Morabito (2008) that in
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fact the computer time required to generate the coefficients of the linear system may be even higher

than the time required to solve it. That is because of the complex relationships imposed by the

combined location and dispatching decisions. The flow balance equations lead to a linear system of

equations, whose exact solution requires the calculation of the inverse for the matrix of coefficients.

The size of this matrix grows exponentially, therefore the time that it takes to perform a single

iteration to evaluate a candidate solution can be prohibitive.

It was mentioned that maximizing coverage is the most commonly used approach to planning

EMS systems. Instead of the standard coverage, we use the concept of expected coverage as

presented by Ingolfsson et al. (2008), which takes into account the congestion of the system and

potentially the variability in responses times. The following equations details how to calculate the

expected coverage:

Ex.Cov =

J∑
j=1

fj

N∑
n=1

Pj,j(n)(1− Pj(n))

n−1∏
u=1

Pj(u) (2.11)

Where Pj,i is the probability that station i covers node j, Pi corresponds to the busy

probability of the ambulance in station i and j(n) refers to the nth preferred station for demand

node j. Note that Pj,i can be used as a binary variable, indicating whether or not the coverage

threshold is satisfied by the available servers, but it can also be used as the probability of that

coverage being possible within the given threshold, accounting for variability in travel times. In

this particular case it has been used as a binary variable. Equation 2.11 replaces Equation 2.1 in

the optimization model for the cases in which we are looking at maximum expected coverage.

2.4 Toy case study

In this section we introduce a case study that is small enough that we can enumerate all

the possible solutions, also identifying the optimal. Because of the small size we also use the exact

solution for the embedded hypercube model. For this example we use a square region on the

cartesian plane and assume that we have 5 demand zones, that are also candidate locations for 3

available servers. The locations of the demand zones can be in any integer ordered pair within a
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grid, starting at (0,0) and extending up to (10,10) on the plane. The demand for each zone ranges

between 1 and 20 calls/period-time.

To generate different instances we use random numbers as follows. The coordinates (x, y)

for each of the five demand zones are obtained by generating uniform integers between 0 and 10. For

each one of the demand zones the demand is obtained by generating uniform integers between 1 and

20. The distances between demand zones correspond to right angle distances. Optimal locations

are nevertheless insensitive to the choice of a distance metric (Benveniste, 1985). The service rate

for the servers is assigned based on assuming a particular value for the overall utilization of the

system, namely ρ = λ/3µ. As in the works by Budge et al. (2009) and Chiyoshi et al. (2001),

where ρ is varied between 0.1 and 0.9, three different scenarios of utilization are evaluated for each

combination of location of demand zones and demands, by using ρ = 0.1, 0.5, 0.9. The server’s

speed is assumed to be 1.0 distance-units/time. The maximum threshold used for coverage was 7.0

distance units. 100 different set of locations are generated, and since for each one of them three

scenarios are considered for the service rates, we generate 300 different instances.

One of such randomly generated problem (Table 2.1) and its respective optimal solution for

MRT (Table 2.2) after enumeration is detailed next. It is worth noticing the number of possible

solutions: 77,760. There are
(
5
3

)
= 10 possible locations. Each demand zone has an ordered list

of the servers, and since there are 3 servers, each costumer can have 3! unique lists. The total

number of solutions is then 10 × 3!5 = 77, 760. Note that the inclusion of another demand zone

would increase the number of solutions to 466,560. In other words, the number of possible solutions

increase by a factor of 3!. Hence, the search space for a real size problem is huge, and enumeration

is no longer an alternative.

Table 2.1: Locations and demand

Locations
Demand

Index x− coord y − coord

1 10 5 20
2 1 1 18
3 7 9 12
4 2 7 8
5 6 1 6
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Table 2.2: Optimal(MRT) solution information

ρ
Performance indicator Optimal

St.Cov Ex.Cov MRT P[111] locations

0.1 1.0 0.954 2.123 0.003 1-2-3
0.5 1.0 0.721 4.340 0.134 1-2-3
0.9 1.0 0.517 5.355 0.309 1-2-4

In Table 2.2, St.Cov refers to the basic calculation of coverage, hence each demand zone is

considered covered if there is at least one ambulance located at a distance of 7.0 or less distance

units; St.Cov=1.0 means full coverage. However, this definition of coverage does not take into

account the congestion of the system, hence we used Ex.Cov (Eq. 2.11). MRT (Eq. 2.1) is the

mean system response time. The 5th column corresponds to the probability of the system being

busy (all the servers are attending calls), and therefore new calls would be rejected. The last column

indicates the optimal locations of the servers.

At first sight results in Table 2.2 correspond to what was expected. On one hand, the

increase of the overall utilization, which basically means reducing the service rates while keeping

the call rates constant, causes an increase in the expected response time, as well as an increase in

the busy probability. On the other hand, we can see that the standard coverage is not able to take

into account the congestion phenomena. The expected coverage given by (2.11) is clearly affected

by the increase of the overall utilization. The more congested the system, the lower the expected

coverage.

We have solved by enumeration a total of 300 small size problems, for both minimum

response time and maximum expected coverage. As expected according to the arguments expressed

in section 2.2, for each one of the 300 problems, the optimal solution that minimizes MRT was the

same as a solution where the locations were optimized and a dispatching list based on the closest

vehicle was used. We have also observed that, when there are ties (several servers are at the

exactly same minimum distance from a given demand zone), only one of the combinations leads to

the optimal solution, although the use of other dispatching ranking, which would still be based on

the closest rule (because of the ties), causes an increase on the objective function value that in the

worse case is below 2%. Note that the change of the preference list of a single demand zone, even if

25



for that demand zone several servers’ locations are tied, changes the overall performance indicators

of the system.

Next we looked for maximum expected coverage (Ex.Cov), as given by equation (2.11).

Once again, we enumerated all the possible solutions for all 300 instances to be able to identify

the ones that generate the maximum coverage. In this case we have noticed that the optimal

solutions do not follow the closest dispatching rule. We have also observed that there are several

solutions that exhibit the same maximum coverage for a particular instance, and that the associated

response time of those solutions present great variation. Since minimizing the response time is also

important, in cases where there were several optimal solutions with respect to coverage we have

selected the one with the minimum associated response time. Although the optimal solutions with

respect to expected coverage do not follow a myopic allocation policy we have also noticed that the

use of such a policy would cause a decrease in expected coverage that in all cases is below 3.8%. In

fact for half of the cases it is below 1.0%.

Since both objectives are important, we compare the optimal solutions obtained with each

optimization criteria. We noticed that for every instance of the problem, the maximum coverage

identified is in fact greater than the coverage associated with the minimum response time solution.

However, the increase in coverage is small on average, ranging from 0.18% to 17.4%, with a mean

increase of 3.15% (95% CI: 2.75-3.55%). On the other hand, the increase in coverage (obtained by

changing the objective function) comes as a result of worsening the response time. The increase

in MRT ranges from 1.5% to 117%, averaging 65.2 (95% CI: 56.33-74.24%)%. As expected, there

is a trade-off between response time and expected coverage. These results seem to indicate that

focusing on minimizing the response time yields solutions that are robust with respect to the

expected coverage. There were only 4 cases (out of 300) in which the proportional improvement in

coverage (when maximizing coverage) was in fact higher than the corresponding increase in response

time. In all the other cases the trade-off between improved coverage but increased response time

is not appealing. These results are aligned with those reported by Geroliminis et al. (2009), who

mentioned that the optimal locations obtained by using MCLP (a coverage maximization approach)

performed up to 40% worse when the response time was evaluated by using the hypercube model.
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In the next section we introduce an optimization framework that allows us to solve bigger size

problems, hence allowing us to check if the observed behavior of the small instances holds for more

real-world sized problems.

2.5 Genetic algorithm based optimization framework

Next we develop an optimization framework to solve the combined location and dispatching

decision problem for EMS systems. The optimization is based on GAs. In his review, Goldberg

(2004) suggest that the use of spatial queuing (hypercube model) or simulation procedures embed-

ded within a heuristic search offers the greatest utility for real world EMS planning applications.

Aytug and Saydam (2002) also comment on the success of GAs in solving combinatorial prob-

lems, which make them strong candidates to solve the ambulance location/allocation problem.

Iannoni and Morabito (2007) as well as Iannoni et al. (2008) and Geroliminis et al. (2011) have

also embedded the hypercube model into genetic algorithms to solve the location problem. As

mentioned by Geroliminis et al. (2009) the objective function MRT, as a function of the location

space, has many local minima, making it suitable for a global search procedure such as GAs.

Jia et al. (2007b) proposed a GA to solve the problem of locating facilities to attend large scale

emergencies. Shariff et al. (2012) used a GA for solving the MCLP problem applied to healthcare

facility location in Malaysia.

GAs were first introduced by Holland (1975) and popularized later by Goldberg (1989).

GAs are general-purpose, population based search algorithms that resemble the natural selections

survival of the fittest. Particular coded schemes (solutions representations) corresponding to chro-

mosomes represent population members. At each iteration individual solutions are evaluated and

assigned a fitness value (related to the objective function being optimized). According to their fit-

ness values, solutions are selected to construct the next generation by applying genetic operators:

selection, crossover and mutation. Current members of the population are probabilistically selected

based on their fitness values, where a high fitness value yields a higher chance of being selected for

the next generation. After selection, current solutions may be carried to the next generation with-

out altering (selection), or they may be crossed-over to generate the next set of solutions. Crossover
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is an operator by which two solutions mutually interchange their current genes. Mutation is an

operator that randomly alters the value of a gene of a selected solution. Following the work by

Aytug and Saydam (2002), there are five key issues in designing a GA algorithm: (1) Selecting an

appropriate solution representation, (2) an effective mutation operator, (3) an effective crossover

operator, (4) a feasible initialization and (5) appropriate crossover and mutation rates as well as

population size.

2.5.1 Solution representation

The present work uses the idea of a composite chromosome. That is, a chromosome that

is in fact composed of several chromosomes. This representation makes sense given the nature of

the problem in which there are two decisions to be made, a location decision and a dispatching

decision. Therefore, those two decisions are coded in separate sub-chromosomes. Furthermore, since

the dispatching decision is in fact one decision per each demand zone, that gives rise to the idea

of having separate chromosomes to represent each demand zone. Figure 2.2 shows the composite

chromosome for a case in which there are 3 servers to be located among 5 candidate locations

to attend 5 demand zones (every demand node is a candidate to locate a server). Note that the

chromosome has been divided into sub-chromosomes. The first one deals with the location decision,

and therefore has size 5, with the three first components storing the location of a server. The

location sub-chromosome stores more information than required, since only a subset of locations

will have a server. However, it is kept that way to facilitate feasibility checking as well as the

mutation operation, described later. The remaining sub-chromosomes have size 3, representing the

order in which every server is ranked to attend a particular demand zone. Note that the sub-

chromosome for the location decision corresponds to a permutation of the candidate locations and

any sub-chromosome for the dispatching decision corresponds to a permutation of rankings.

2.5.2 Mutation operator

The standard mutation operator randomly selects a chromosome from the pool, and then

goes through every one of its genes changing them randomly with a given probability. Since we are
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using a composite chromosome, once a chromosome has been selected for mutation the operation

should analyze every one of its sub-chromosomes. For we are working with sub-chromosomes that

are a permutation, the standard mutation operator is replaced by a swapping operator. It randomly

interchanges the positions of two genes within the chromosome, as depicted in Figure 2.1. Note

that for the location sub-chromosome the swap is done such that the interchange occurs between

an assigned location in the current solution, and a candidate location not yet selected. That is in

order to avoid swaps that do not affect the solution.

Figure 2.1: Swapping mutation operator

Figure 2.2: Composite chromosome

2.5.3 Cross-over operation

A single point cross-over operation is used on the implementation of the GA. The recombi-

nation of genes is done at sub-chromosomes level, which means that the the candidate cross-over

points correspond to sub-chromosomes as well. To better understand the way it operates an illus-

trative example is given in Figure 2.3. A and B are the two parents. O1 and O2 represent the

two offsprings that it is possible to generate. Parent A has been shadowed so that it is possible to

trace where the genes of it are going to be after the cross-over operation. The possible crossover

points are represented by vertical dashed lines.

2.5.4 Population initialization

It is usually the case that the initialization is done randomly. The existence of constraints

might require us to develop initialization routines that produce feasible solutions. In this case the

population of the GA can be randomly initialized, since any permutation for any sub-chromosome
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Figure 2.3: Single point cross-over for the composite chromosomes

will generate a feasible solution. However, it is also possible to use an initialization procedure to

create ‘good’ initial solutions, using the available knowledge about the problem. Initial tests of the

GA implementation were done with a randomly generated population. Based on the result from

the enumeration procedure for the small case study presented in Section 2.4, a better initialization

procedure is devised. Since the use of the closest dispatching rule seems to effectively helps in

minimizing the response time also providing good coverage, it makes sense to use that information

as part of the initialization process. In fact, when solving mid-size problems, the locations are

generated randomly during the initialization, but the dispatching is based on the use of the closest

servers first.

2.5.5 Cross-over and mutation rates - population size

In order to test the performance of the GA values of mutation (Pm) and cross-over (Pc)

rates are required. Iannoni et al. (2008) used Pc = 0.5, and Pm = 0.06, while the population

size was set to S = 100 individuals. In turn, Aytug and Saydam (2002) suggested Pc = 0.6 and

Pm = 0.03, while the population size was set according to S = max(100; 0.75n), where n is the

number of nodes in the problem being solved. The authors argued that for objective functions

with potential multiple local optima, there is a trade-off between mutation and cross-over, and that

large population sizes are generally favorable, at the cost of computation time. It is also mentioned

that the rule of thumb Pm = 1/L, where L refers to the length of the chromosome could yield

good results. Instead of selecting arbitrarily values for these GA parameters, in the next section

we introduce an experimental design to tune-in the parameters of the GA before using it. The
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implementation of the GA has been done using the Java GA framework developed by Meffert et al.

(2012).

2.6 Computational results

2.6.1 Tuning the GA

A tuning procedure was carried out to find adequate values for several parameters of the GA.

The purpose of any experiment is to get the maximum amount of information with the minimum

expenditure of resources. A Central Composite Experimental Design (CCD) was used, which

according to Montgomory (2008) is widely used because it is highly efficient and flexible. A CCD

is normally used to fit a second order polynomial model of a variable of interest. In our case we

are not trying to fit a polynomial model. However the combination of factors’ values suggested by

the CCD provide a good exploration of trade-offs between the different parameters of the GA and

its general performance.

There are three parameters (factors) that need to be set up: mutation rate, cross-over rate

and population size. In experimental design, for each one of these three factors it is necessary to

specify a minimum and a maximum value. These values have been selected according to general

recommendations of designing GAs from previous works (Iannoni et al., 2008; Aytug and Saydam,

2002). The CCD also uses the midpoint of the factor (given the minimum and maximum values),

as well as the so-called axial points. Axial points correspond to values of the factors that assure

that the predicted values of the fitted response surface have the same variance, if the predicted

points are at the same distance from the center of the design region (Montgomory, 2008). For the

case of three factors a standard CCD requires 20 runs. The first 14 runs correspond to different

combinations of the factor’s levels, while the last 6 runs correspond to experiments in which each

factor is set to its midpoint. A standard CCD does not uses replication. We do use it (30 runs for

each combination of factors), as a way to improve the statistical significance of the tests. Instead of

the 6 last runs each with one replication, we have a single run setting the factors to their midpoints

and we replicate it 30 times. We explore 15 combinations of factors, detailed in Table 2.3.
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The minimum and maximum values for the mutation rate are 2 and 5% (the values used

in the experiments are then those two, plus the center point, 3.5% and the axial points 1 and 6%).

For the Cross-over the minimum and maximum values are 40 and 60% and the population size

varies between 30 and 100 individuals. In all the runs of the GA to tune in the parameters, the

number of evolutions is set up so that the total number of individuals being evaluated remains

constant (approximately equal to 10.000). For example, if the population size is set to 30 then 334

evolutions are performed.

Table 2.3: Experimental design

Combination Pm Pc Pop. Size

1 0.02 0.4 30
2 0.05 0.4 30
3 0.02 0.6 30
4 0.05 0.6 30
5 0.02 0.4 100
6 0.05 0.4 100
7 0.02 0.6 100
8 0.05 0.6 100
9 0.01 0.5 65
10 0.059 0.5 65
11 0.036 0.332 65
12 0.036 0.668 65
13 0.036 0.5 6
14 0.036 0.5 123
15 0.036 0.5 65

The results from the tuning procedure are given by the box plot graph shown in Figure

2.4. It corresponds to the tuning for MRT optimization. As it was mentioned before, for each

combination of factors given in Table 2.3, the GA was run 30 times, applied to different instances

and each time using a different random seed. In each case 100 evolutions of the GA were allowed.

We have noticed that allowing more evolutions didn’t further improve the objective value. In

order to have a comparison point to tune the GA we enumerate only the location solutions for

the case study (
(
30
3

)
= 4, 060) possible location decisions). It is not possible to enumerate the

dispatching decisions. It would be computationally prohibitive. For each possible location solution

we use the closest rule to set the priority dispatching list of each demand zone. We then compare the

32



performance of the GA (GASol) against the best solution found (BestSol) following the enumeration

procedure just described. The Gap is calculated as (Gap = (BestSol −GASol)/BestSol).

Figure 2.4: Comparative performance of the GA varying its parameters

Negative values of the Gap indicate that the GA obtained a solution with a worse objec-

tive function value than the best solution coming from the enumeration procedure. If Gap = 0 it

basically means that the GA was able to find a solution with the same objective function value.

Positives values of the Gap would indicate that the combination of dispatching and location deci-

sions was useful in getting a better value for the objective function. Recall that the gap reported

is the average over 30 runs. Out of the 15 combinations of factor’s levels under consideration,

combinations 7, 8 and 14 showed the best overall performance. All have a Gap close to zero, and

exhibited low variability. We ran normality tests on the selected combinations and could not verify

the normality of the data. Therefore, we performed a non-parametric test, the Wilcoxon Signed

Rank Test, to obtain the Confidence Intervals (CI) for the three candidate combinations. Table

2.4 shows the results from the non-parametric test. As it can be seen, the overlapping CIs indicate

that statistically there is no difference between the parameters combinations. We decided to use

combination 8 which has the smaller CI.
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Table 2.4: Wilcoxon Test for obtaining CIs

Combination Median Gap (%)
Conf. Interval
Lower Upper

Comb7 -0.191 -0.823 -0.058
Comb8 -0.208 -0.476 -0.049
Comb14 -0.271 -0.712 -0.109

2.6.2 Mid-size case study

We solved a bigger, mid-size problem, proposed as an instance of MCLP (Correa et al.,

2007) (http://www.lac.inpe.br/~lorena/correa/Q_MCLP_30.txt). We analyze several scenar-

ios, varying the number of servers to be located, considering 3 and 4 ambulances. Because of the

small number of ambulances we use again an exact solution for the hypercube model. The server

rates are obtained by selecting particular values for the overall utilization factor, ρ = (λ/N ×µ). In

fact, ρ is varied between 0.1 and 0.9, with increases of 0.1. For the scenarios having 3 servers we use

full backup, which means that any zone can be attended by any of the available servers. In the case

of 4 servers we use partial backup, therefore each demand zone is only allowed to be served by 3 of

the available servers. There are two reasons to proceed this way, that have also been suggested by

Geroliminis et al. (2009): (i) from a practical perspective, allowing servers that are ranked as 4th

and up for a particular demand zone is not desirable, because the overall efficiency of the system

would likely decrease; (ii) the calculation of transition rates for the embedded hypercube model

becomes very tedious.

For each instance we ran the GA using the tuned parameters and initially minimizing the

MRT. In each case we also enumerate the location solutions, and combine them with the use of

the closest dispatching policy to have a full solution. That gives us a comparison point. The GA

was allowed to run for 100 evolutions. We have noticed that allowing more evolutions doesn’t

improve the results. The performance of the GA is compared to the best solution coming from the

enumeration procedure. Table 2.5 shows the results of applying the GA, in each case running it 30

times starting with different initial solutions. The experiments have been run on a PC executing

Windows 7 -64 Bit, with an Intel R⃝Core 2 Duo processor running at 2.13 GHz and 2 GB of RAM.
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All the programming was done in Java. The average running time of the GA for the 3 servers

scenarios was 20 seconds, while the average for the case of 4 servers was 55 seconds.

Table 2.5: Mid-size case study - MRT results

ρ
3 servers - MRT 4 servers - MRT
Gap(%) CV Gap(%) CV

0.1 -0.26 0.0039 -0.51 0.0054
0.2 -0.07 0.0015 -0.27 0.0043
0.3 -0.08 0.0022 -0.37 0.0050
0.4 -0.02 0.0009 -0.53 0.0041
0.5 -0.02 0.0001 -0.78 0.0068
0.6 -0.03 0.0012 -0.46 0.0071
0.7 -0.14 0.0054 -1.46 0.0160
0.8 -0.04 0.0014 -0.98 0.0117
0.9 0.00 0.0000 -1.00 0.0113

As expected given the low-medium traffic (Jarvis, 1981; Katehakis and Levine, 1986), for the

mid-size problem the results suggest that a policy that focuses on appropriately selecting locations

in combination with dispatching the closest server minimizes mean system response time. These

results serve as a validation of the general structure of the mathematical model as well as for the

correctness of the optimization procedure. For the mid-size case studies we have also observed that

the expected coverage associated with the solution that minimizes the MRT is smaller (on average

it is 7.2% smaller, with a 95% CI: 6.14-8.31%) than the maximum observed after the enumeration

procedure.

Next we approached the optimization of the system maximizing the expected coverage.

A procedure similar to that described in section 2.6.1 was followed to tune the GA to be used

with the new objective function, Expected Coverage. In this case the combination 7 (from table

2.3) showed the best results and therefore was selected as the values for the GA parameters. The

enumeration procedure of the location decisions together with a myopic dispatching policy was used

again to identify the solution with the highest expected coverage. The performance of the GA was

compared against the solution from enumeration. The overall average Gap of the GA compared

to the the enumeration procedure was -0.87%. The overall mean coefficient of variation of the

maximum coverage was 0.0136. These performance measures of the GA show that the algorithm
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was consistently able to get to the same or to a very close solution from the best found by the

enumeration procedure. Compared to the solution that minimizes the response time, the average

improvement in coverage is 7.9% (95% CI: 6.64-9.09%). However, this increase comes at a price,

a sacrifice of MRT that on average increased by 19.2% (95% CI: 16.35-21.97%). Recall that the

expected coverage of the of the solution minimizing MRT was on average 7.2% smaller than the

maximum obtained with enumeration, while the increase on MRT would be on average 19.2% as a

result of maximizing coverage. The joint location/allocation approach was not able to improve the

solution found by combining the enumeration of locations and the closest dispatching policy.

Thus far we have introduced an optimization framework for the joint location/allocation

problem, however we have noticed that for the two most common objectives the joint approach is

not adding value, since the use of a myopic policy seems to suffice to get to the optimal or near

optimal solution. Hence we have turned our attention to calculating other performance indicators

for the system. In particular, other works have mentioned the importance of finding solutions in

which the total workload is evenly distributed among the available servers, and some others have

mentioned that it would be desirable to have individual response times (the mean response time

for each demand zone) that do not vary too much among the demand zones. Both performance

indicators are associated to the idea of fairness, either from an internal or external point of view.

In Table 2.6 we present the coefficient of variation (CV) for both, mean individual workloads and

mean individual response times, resulting from the solutions that optimize mean response time. In

this table several instances of high CV values (for example ≥ 0.5) are observed, which implies high

variability among server’s workloads or demand zones’ response time.

Among the several instances of the case study it is possible to notice that variability on

individual response times tends to be higher (see Table 2.6), hence we attempted to improve that

performance indicator by using the optimization approach already developed. Equation 2.1 gives

the total average response time for the system and in doing so it includes the response time for each

demand zone. We use the coefficient of variation (CV) of the individual response times as the new

optimization criteria. Once again it was necessary to tune the GA with the new objective function.

The GA parameters that perform the best were the same as for the case of MRT minimization. We
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Table 2.6: Mid-size case study - Workloads and Individual MRT

ρ
3 servers - CV 4 servers - CV

Workload Ind.MRT Workload Ind.MRT

0.1 0.387 0.594 0.357 0.605
0.2 0.250 0.590 0.105 0.529
0.3 0.039 0.565 0.318 0.489
0.4 0.029 0.541 0.335 0.436
0.5 0.038 0.549 0.325 0.512
0.6 0.018 0.539 0.317 0.501
0.7 0.031 0.531 0.612 0.556
0.8 0.028 0.525 0.609 0.551
0.9 0.025 0.520 0.605 0.548

used the enumeration procedure of the location decisions to get a reference point of the minimum

CV for the response times and the compare those solutions with the ones obtained by the joint

location/allocation approach. Table 2.7 shows the results for several instances of the problem, all

of them using 3 servers.

Table 2.7: Mid-size case study - Optimizing CV Resp. Times

ρ
Min CV Ind. RT Delta Trade-offs (%)
Enum. Loc/Disp CV(%) MRT Ex. Cov

0.1 0.489 0.364 -25.577 37.853 -11.980
0.2 0.504 0.355 -29.652 32.423 -10.461
0.3 0.496 0.367 -25.948 24.485 -4.603
0.4 0.478 0.375 -21.571 19.698 -3.981
0.5 0.465 0.380 -18.285 16.345 -3.911
0.6 0.458 0.384 -16.154 13.764 -3.497
0.7 0.454 0.389 -14.300 11.954 -3.472
0.8 0.481 0.392 -18.636 11.051 -3.098
0.9 0.476 0.397 -16.534 9.612 -3.022

The second column in table 2.7 shows the minimum CV for individual response times that

was obtained by using the enumeration procedure for the location decisions in combination with the

closest dispatching rule. The third column shows the CV that was possible to achieve by using the

proposed optimization approach while the fourth column compares the two previous, showing the

relative improvement that was possible thanks to the joint approach. The last two columns show

the sacrifices in MRT and Expected Coverage that come as a result of the reduction in response
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times variability across demand zones. We see that there are both an increase in response time and

a reduction in coverage. The size of the trade-offs depends upon the utilization (ρ) of the system.

The trade-offs were calculated using the solution that minimizes response time as a reference point.

For instance, for ρ = 0.4 there is a reduction of 21.5% in response time variability, as measured by

the coefficient of variation, as well as an increase of about 20% in response time and a reduction of

4% in coverage.

2.7 Results summary and discussion

We have done extensive computational experiments using 300 small case studies (enumer-

ating more that 70,000 solutions for each instance). We were looking for a better understanding

of the potential benefits when location and dispatching decisions are made together for an EMS

system. The instances have been generated randomly therefore not favoring any particular result in

terms of the decisions being made. Although previous literature had suggested that the existence

of demand zones with very different demand rates could lead to situations in which the dispatching

based on the closest rule was not optimal, our results were in agreement with some other references

showing that using a myopic policy can lead to optimal solutions. We have allowed the demand

rates to vary between 1 and 20, therefore introducing differences in the demand rates. What we

have found is that if the dispatching policies are designed as a fixed priority list associated to each

demand zone, then focusing on finding good locations, and combining them with the use of the

closest dispatching rule, yields the desired result of minimizing the mean response time.

In terms of coverage, which is also a common objective to optimize in EMS system, we have

used an expected version of coverage, since previous works have made it clear that the standard

coverage, which does not take into account the congestion phenomena, overestimates the real cov-

erage. For the small instances we have found that the solutions that maximize the coverage did

not use the dispatching policy based on the closest rule. However, we have also noticed that the

improved coverage that comes as a result of its maximization, causes a deterioration in the mean

response time. As pointed out in section 2.4, optimizing the coverage increases it less than 5%

(compared to the coverage obtained by the best solution with respect to MRT), while the sacrifice
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in MRT would be greater than 60%. Those results basically suggest that optimizing the MRT is

a better strategy, and that in fact the results in coverage when optimizing MRT are robust, in

the sense that the coverage is only 1 or 2% below its optimal value. These results about coverage

were also validated with a mid-size real case study found and adapted from previous literature.

For the mid-size cases the best coverage was reached when using the closest policy. The average

improvement in coverage was again smaller than the average increase in response time.

Results from alternative performance indicators such as those depicted in Table 2.6, suggest

some other observations. Given the values for the CVs it is not surprising that in some cases there

are some demand zones with a MRT that doubles that of other zones, or one ambulance having

a much heavier workload than the others. Solutions that are good from the point of view of

system wide mean response time, can have other performance indicators affected negatively. Since

the optimization has been done with a single objective in mind, there is no guarantee of good

performance with respect to other criteria. Our results have shown that optimizing the MRT

also yields good values for expected coverage. That is convenient since those two are the most

common performance indicators used for planning purposes of EMS systems. We illustrated the

potential benefits of the joint approach by considering a fairness performance indicator from the

user point of view, namely coefficient of variation for individual response times. In this case, the

joint approach was able to find better solutions than those that could be reached by using a myopic

allocation policy. Of course, the improvement of a fairness objective like the one we have used has

consequences, altering other performance indicators such as MRT and coverage. It would be up to

the decision maker to balance those trade-offs.

2.8 Conclusions

Our main goal was to develop an optimization framework for the joint location/allocation

problem for EMS systems. We combined the mathematical model and a heuristic solution procedure

based on Genetic Algorithms, to be able to solve bigger instances in which enumeration is no longer

an option. We were able to validate our approach. The GA has been consistently able to find the

same or a pretty close solution to that obtained by full or partial enumeration procedures. In terms
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of MRT minimization or Expected Coverage maximization we have noticed that the integrated

approach does not offer tangible benefits. A more simpler approach considering only the location

decision combined with a myopic allocation of the servers based on closest distance would be enough.

One general explanation of the observed behavior is that MRT and Expected Coverage

are in fact a function of the distance (time) between servers and demand zones. Hence, locations

that reduce the overall distance between servers and costumers tend to dominate the optimization

procedure. Although in this case we could just have proposed an optimization procedure in which

the decisions are the optimal locations, combined with the use of the closest dispatching rule, we

have kept both sets of decisions as part of the optimization framework. We believe that it is

important because it gives us the opportunity to attempt the optimization of other performance

indicators, so that we can see the trade-offs that are being made as a result of focusing on minimizing

the response time or maximizing coverage. The fact that solutions that minimize response time

offer at the same time a good expected coverage is convenient, since those two criteria are the most

commonly used.

We have illustrated two alternative criteria, in particular variability on individual response

time, as well as variability on ambulances workloads. Those criteria can be seen as fairness per-

formance indicators from the perspective of internal and external costumers. We used individual

response time variability as a optimization criteria. As in the case of maximizing the expected

coverage, when focused on reducing response time variability among demand zones it is the case

that the best solutions do not follow the use of the closest dispatching rule. Furthermore, the

improvements that can be made on variability are important, and not only marginal as in the case

of maximizing coverage. The proposed optimization framework, already proven to work correctly,

can be used to analyze the EMS system from other perspectives, gaining insight into the design of

better operation strategies.

As for future research directions, we will attempt to identify other performance indicators

of EMS systems for which the joint location and dispatching problem can yield substantial gains.

Another potential area for future research deals with the issue of scalability. We are aware of the

limitations of our approach in terms of applying the joint model and its solution procedure to real-
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sized case studies, basically because the exact solution of the hypercube model will likely require

extensive computation time (recall that the exact solution to the hypercube model requires solving

a linear system of equations that grows exponentially in size with respect to the number of servers

available in the system). However, available approximation procedures that have been suggested

in the literature could be embedded in the meta-heuristic optimization framework proposed, hence

reducing the computational burden and allowing the solution of bigger instances.
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Chapter 3

Joint Optimization Approach and

Fairness Considerations

3.1 Introduction

Emergency Medical Service (EMS) systems are a public service that provides out-of-hospital

acute care and transport to a place of definitive care, to patients experiencing medical emergencies.

Over the last decades there have been several developments aimed to improve the location planning

of EMS systems (see reviews by Brotcorne et al. (2003), Goldberg (2004), Li et al. (2011) and

Farahani et al. (2012)). The particular characteristics of EMS systems have been recognized, such

as having spatial and temporal demand location (demand occurs over a given geographic area and

potentially changing over time, with some periods experiencing peak demands). EMS systems are

also subject to random variations in demand and response times, which leads to congestion, i.e.

ambulances can be already busy attending a call when they are required to attend another call.

EMS systems are referred to as ‘option goods/services’ (Felder and Brinkmann, 2002); i.e.

patients do not know when they are going to require the service, but when they need it they would

like to have it immediately. When a person experiences an emergency and a call is made to an

EMS system, there is a natural expectation of equitable service, in addition to the expectation of

a quick response. However, most EMS planning literature is concerned only with efficiency. As
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pointed out by Felder and Brinkmann (2002) and Bertsimas et al. (2011), efficient solutions can be

unacceptable when they are achieved at the expense of some players. The same authors mentioned

that there is not a general agreement on how to measure equity.

The most widely used criteria when planning EMS systems are response time and coverage.

The former measures how quickly the EMS system can respond on average to the emergency

calls, from the time a call is received until the time at which the ambulance reaches the site

of the event. The later measures the proportion of all calls that can be reached within a pre-

defined threshold of time/distance. Minimizing response time and maximizing coverage can both

be considered efficiency design criteria. The coverage maximization approach is used by the majority

of researchers, practitioners and regulators (Li et al., 2011). It is reported by Iannoni et al. (2011)

that in the US the most widely used response time standard is based on National Fire Protection

Association (NFPA) guidelines, where 90% of all life threatening calls are expected to be attended

within 8 minutes and 59 seconds.

The location of EMS facilities occurs within a spatially distributed population, hence the

costumers will be located at different distances from ambulances and are likely to experience dif-

ferent effects (coverage, response time, among others), potentially facing inequalities. Differences

in the service provided to costumers can also be the result of congestion. This means that an

ambulance assigned to a costumer as their primary option can be busy when it is required, causing

a different unit to be dispatched, instead of the preferred server. The congestion of the servers de-

pends not only of the relative location among the costumers, but also on the dispatching rules. The

location and allocation of servers to costumers also affects the relative utilization of the ambulances,

therefore inequalities from the point of view of the servers can also appear.

We provide a methodological approach aimed at identifying good solutions for several equity

and efficiency measures, based on a joint modeling approach for the location and dispatching

decisions. This section is based on the previous one, in which the optimization framework for the

joint problem was introduced. Although closely related, this work is different because we focus

on the optimization analysis of several fairness functions, and the trade-offs among them as well

as with common efficiency measures. Conversely, the previous section’s objective was specifically
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the development of the joint optimization model and a solution procedure for it. Due to the

complexity of the systems under study our optimization framework uses an exact model but it is

solved by approximate algorithms (Genetic Algorithms). We use the optimization framework to

show that the joint approach provides better solutions than using a-priori dispatching rules such as

the common assignment of the closest available server, when the optimization criteria is based on

equity. It is also shown that there are trade-offs among the different performance measures, leaving

it up to the decision makers to balance the different criteria. We conclude that the proposed joint

optimization approach can be used to gain insight about some of the implicit trade-offs between

common efficiency measures and the discussed equity criteria.

Although we approach the optimization of EMS systems by using several criteria, we are

not using multi-criteria optimization. Each performance measure is optimized as a single objective,

and once the best solution has been obtained from that point of view, we evaluate the other

performance criteria for comparison purposes. Our main contribution is to show that for the equity

related criteria under consideration the use of a myopic dispatching policy would not lead to the best

solutions, contrary to the case when only efficiency is considered (see Section 2). In other words,

the proposed methodology that uses a joint location/allocation modeling approach adds value when

fairness considerations are in place. We also identify trade-offs among several efficiency and fairness

criteria. Equity is still a critical and controversial issue when allocating public resources (Stone,

2002), and there is not a general agreement as to how to measure it. Thus, we provide an overview

of possible ways to measure equity pointing out important considerations related to operating EMS

systems when a particular form of equity is preferred. Although fairness issues related to facility

location problems have indeed been addressed by previous literature (see for example the reviews

by Marsh and Schilling (1995) and Ogryczak (2000)), we contribute to the literature by analyzing

systems in which not only the location plays an important role, but also the dispatching policies are

critical. To the best of our knowledge, previous literature addressing fairness issues together with

the location of facilities in server to costumers environments (such as EMS systems) have assumed

a-priori dispatching policies, focusing specifically on the location decision. We believe that the joint

approach (location and dispatching decisions), is in itself a contribution that can serve as a starting
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point to better analyze EMS systems. In fact we have identified that it is a better approach, when

considering the optimization of several equity criteria, since it produces better solutions than the

location only approach.

In Section 3.2 we provide a review of related literature. Section 3.3 adds to the mathematical

model the objective functions that are used as optimization criteria. After that we present two

case studies and our computational experiments in Section 3.4, as well as a review of the results

and their implications. One of the case studies is based on data collected in 2007 by the Hanover

Fire/EMS Department, which is located in Hanover, VA. Finally, in Section 3.5 we offer some

conclusions and future research perspectives.

3.2 Problem presentation and related literature

The servers in a typical EMS system are: (i) spatially distributed in the region; (ii) share the

system workload due to cooperation among them and (iii) have different operational characteristics,

such as different preferential regions (Galvao and Morabito, 2008). Those characteristics have been

progressively included in different approaches used for planning EMS systems. Congestion is also a

typical phenomena related to EMS systems. According to Galvao et al. (2005) the volume of calls

for service may keep ambulances busy from 20 to 30% of the time. Since the demand is spatially

distributed and the calls for emergency occur randomly, the servers can be out of their base station

performing a service when a new call is received. In a standard location problem where congestion

is not an issue, once the locations have been decided it is possible to know the distance from every

costumer to the open locations. Using that distance it is possible to estimate an expected service

level. For EMS systems, due to congestion and cooperation, the performance of the servers from

the point of view of the costumers depends not only of the distance from the server’s base station,

but also on availability. Because of cooperation (usually referred to as backup, in EMS systems),

even though a costumer might have a preferred server, another server might serve that costumer if

the preferred server is busy when it is required. The dispatching process, i.e. determining what is

the preferred server for each costumer and the relative order in which back up servers will be used,

becomes then an important part of the operation of the system.
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Location models for EMS systems have been extensively developed in the literature (see re-

views by Brotcorne et al. (2003), Goldberg (2004), Farahani et al. (2012) and Arabani and Farahani

(2012)). The dominant approach has been Coverage maximization, or Expected Coverage max-

imization when congestion is taken into account. Minimization of Mean Response time has also

been a common optimization approach. A key development in facility location applied to EMS

was the Hypercube model by Larson (1974), combining queuing theory elements to better repre-

sent the relationship between the servers and their costumers. In Goldberg’s review of models for

deployment of EMS vehicles (Goldberg, 2004), it is mentioned that little work had been done on

dispatching of ambulances. Similar opinion is shared by Lee (2011), mentioning that the contribu-

tions in ambulance dispatching are sparse. In turn, Galvao and Morabito (2008) and Iannoni et al.

(2011) mention as an interesting extension of their work the use of different dispatch preference

lists, instead of assuming that for a given set of locations the dispatching order is based on the clos-

est dispatching rule. Nonetheless, the most widely used dispatching rule under a fixed preference

scheme is to send the closest unit (Andersson and Varbrand, 2006).

The works by Jarvis (1981) and Katehakis and Levine (1986) studied the optimal allocation

of distinguishable servers on Markovian queuing systems. They conclude that for a given location

of the servers, so that the cost of assigning a server to a particular costumer is known (the cost

in EMS planning is usually related to the amount of time that it takes for the EMS system to

effectively respond to a call), under light traffic conditions (traffic is measured by the ratio between

the mean arrival rate and the mean total service rate) the use of a myopic policy would always lead

to an optimal solution, i.e. minimizing the long run average cost (response time). For heavy traffic

the use of a myopic policy will deviate from the optimal, however the deviation is rather small (2 to

3%). Katehakis and Levine (1986) used 0.38 as an indicator of light traffic and 1.94 for the case of

heavy traffic. Related work on dispatching by Bandara et al. (2012) was aimed to increase patients’s

survivability. Locations are considered to be fixed in their approach. McLay and Mayorga (2012)

presented a model for dispatching, again with fixed locations, in which efficiency and equity are

balanced by introducing several fairness constraints on typical efficiency maximization models.

A mathematical model that combines location and dispatching decisions for EMS vehicles
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was introduced in Section 2. The dispatching decisions are modeled as a fixed preference scheme,

meaning that there is a single list associated with each costumer that ranks the available servers

(ambulances) in order of dispatch preference. This list does not change as a result of changes in the

state of the system. However, the particular unit that will be dispatched to attend each call from

a demand zone is not known in advance, since the assignment depends on the availability of the

servers (system’s state) when the call is received. Katehakis and Levine (1986) pointed out some

results from Markov Decision Theory indicating that, when the number of states of the system as

well as the number of actions available to perform in every state (allocation of the servers) are finite,

it suffices to consider only deterministic policies; a deterministic policy is one which, whenever the

system is in particular state, the set of available actions to perform is deterministic and depends

only of the actual state (in our case, which servers are busy, and which are idle). In Section 2 it was

shown that using the closest dispatching rule leads to optimal solutions when minimizing response

time. Furthermore, although in some cases the maximization of expected coverage would benefit

from a dispatching rule other than sending the closest vehicle, it is also shown that the trade-off

on response time is not appealing. Thus, it is preferable to minimize response time, because the

associated coverage of the minimum response time solution is only marginally smaller than the

optimum coverage.

Although contributions on the topic of fairness and location problems do exist, they are

sparse compared to the works related to efficiency. A recent paper by Bertsimas et al. (2011)

pointed this out very clearly, mentioning that “a great deal of though has been invested in under-

standing and axiomatically characterizing what might constitute a ‘fair’ allocation of resources, but

beyond qualitative economic analysis, there has been little work to quantitatively characterize the

trade-offs inherent in employing these notions”. There are multiple interpretations of the concept of

fairness and they are subjective by nature. Several principles can lead to different forms of fairness.

For example, allocate resources in proportion to an existing claim (Aristotle); allocate by maximiz-

ing the sum of individual utilities (Utilitarianism); give higher priority to players that are least well

off (Rawls); or allocate based on Nash’s Equilibrium. Stone (2002) formulates eight definitions of

equity that depend on the perspective from different stakeholders. Her definitions are aligned with
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three categories: (1) who receives the service, (2) what is being allocated and (3) how resources

are allocated. The conclusion is the same as offered by others: there is no single principle that

is universally accepted (Felder and Brinkmann, 2002; Bertsimas et al., 2011; Leclerc et al., 2012).

References on location analysis focusing on equitable service to costumers can be found in Erkut

(1993), Mulligan (1991) and Ogryczak (2000).

In the reviews by Marsh and Schilling (1995) and Eiselt et al. (1995) there is a list of 20

and 19 equity measures used in location theory, respectively. Range, variance, squared coefficient

of variation, variance of logarithms, absolute and relative mean deviations and the Gini coefficient

based on the Lorenz curve are among the measures identified. The work by Ogryczak (2000) is also

a survey on inequality measures and equitable approaches to location problems. It is a common

conclusion of the mentioned works that there is no consistency in the way those measures are applied

to operation research models, and that little to no consensus exists on the best way to measure

equity. Very often it seems that computational tractability becomes a given reason for selecting a

particular equity criteria. Furthermore, Erkut (1993) noticed that it is rather a common flaw of

all relative inequality measures that while moving away from the spatial units to be serviced one

gets better values of the selected measure, as the relative distances become closer to one another.

Therefore care must be exercised to avoid apparently equitable solutions that are indeed highly

inefficient.

Several characteristics have been suggested as important when selecting a particular equity

measure. In the review by Marsh and Schilling (1995) they collected seven characteristics from

previous literature, although they mention that some might only be desirable while others might

be required. We briefly mention those characteristics here since we consider that they are general

enough to give an idea of what to look for in an equity measure: (1) Analytic tractability, which

is associated with convenience for computational purposes; (2) Appropriateness, not from a math-

ematical point of view but from a managerial/administrative point of view, in the sense that it

should serve to represent the stakeholder’s point of view in a way that is rather clear to them; (3)

Impartiality, which basically calls for a measure that should depend solely on the effects of a policy

and not any other ranking coming from a political point of view; (4) Principle of transfers (also
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know as Pigou-Dalton efficiency), that implies that the equity measure should increase/decrease as

the difference in effect between any two individuals (groups) increases or decreases, respectively;

(5) Scale invariance, which applies to measures that exhibit no change in the level of equity if the

effects on all groups are multiplied by the same constant; (6) Pareto optimality, that implies that,

as the solution improves according to the equity measure, none of the individuals or groups being

affected should be worse off, or in other words, an improved solution should cause at least one

individual to be better off; and finally (7) Normalization, which is related to the principle of scale

invariance.

One of the most commonly used measures of equity is the variance of the individual out-

comes, since a small variance means a low dispersion of the outcomes. The variance is used as a way

to provide equitable service in the works by Berman (1990), Drezner and Drezner (2007), Maimon

(1986) and Drezner and Drezner (2011). The range of outcomes has also been used in the works

by Drezner and Drezner (2007) and Drezner et al. (1986). The Gini coefficient, which is commonly

used in Economics to account for income inequalities has also been applied to location problems by

Drezner (2004), Drezner et al. (2009) and Maimon (1988). Espejo et al. (2009) introduced the envy

criteria, which measures the difference between pairs of costumers (thus is a measure of equity).

Since people feel no dissatisfaction when they are better off than others, only negative effects are

considered. Based on Espejo et al. (2009), the minimum p-envy location model was proposed by

Chanta et al. (2011a), relaxing the strict and ordinal preference assumptions made by Espejo et al.

(2009), and including backup servers. Most of the equity considerations in location problems have

been devoted to reducing disparities among costumers, but they are not the only players in the

system. Those who provide the service are also affected by the decisions made about the system.

However, as pointed out by Leclerc et al. (2012), server’s equity has been overlooked in the litera-

ture. Nevertheless some works can be found looking at server equity such as Berman et al. (2009),

Marn (2011) and Kalcsics et al. (2010).

There have been some attempts at using multi-objective optimization to combine efficiency

and equity measures for EMS systems. However, as pointed by Ogryczak (2000) the multi-criteria

framework is quite difficult to implement, even for small size problems. Ogryczak (2009) developed
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an approach in which a combination of equity and efficiency functions is allowed in a bi-criteria

optimization framework. They identify several inequality measures that can be combined with

typical efficiency measures while preserving the consistency between the two approaches. Their

approach prevents having solutions that apparently equalize the service by making decisions that in

fact would deny service to all costumers. Of course if no one gets service that would be an equitable

solution in a formal sense, but completely inefficient. Hooker and Williams (2012) proposed a model

in which a combination of equity and utilitarianism was attempted. They used a rawlsian approach

to equity, looking to improve the conditions of the least well off. However, the objective function

changes to the utilitarian approach whenever the rawlsian principle takes too many resources from

others to improve only marginally those that are least well off. In the work by Chanta et al. (2011b)

a bi-objective model is used combining the traditional maximization of expected coverage with three

other objectives (one at a time) aimed at reducing disparities between urban and rural areas.

In this work we provide a planning methodology for EMS systems, based on a modeling

approach to the joint location and dispatching problem, aimed at identifying good solutions for

several equity and efficiency measures. The optimization framework for the joint problem was

introduced in Section 2. Although closely related, this work is different because we now focus on

the analysis of several functions representing various ideas of fairness, and the different trade-offs

among them as well as with common efficiency measures. Our work is also different from previous

literature in that we are modeling both decisions, location and dispatching, together. This allow us

to analyze the effect of both decisions over the different optimization criteria, making it possible to

identify performance measures that benefit from the use of dispatching policies other than always

sending the closest server available.

3.3 Mathematical model

Now we introduce the alternative optimization criteria, starting with coverage. We use the

concept of expected coverage as presented by Ingolfsson et al. (2008), which takes into account the

congestion of the system and potentially the variability in responses times. The standard coverage

assumes that the servers are always available, and therefore overestimates the real coverage.
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The following equation details how to calculate the expected coverage:

Ex.Cov =
J∑

j=1

fj

N∑
n=1

Pj,j(n)(1− Pj(n))
n−1∏
u=1

Pj(u) (3.1)

Where Pj,i is the probability that station i covers node j, Pi corresponds to the busy

probability of the ambulance in station i and j(n) refers to the nth preferred station for demand

node j. Note that Pj,i can be used as a binary variable, indicating whether or not the coverage

threshold is satisfied by the available servers, but it can also be used as the probability of that

coverage being possible within the given threshold, accounting for variability in travel times. In

this particular case it has been used as a binary variable.

From the point of view of the costumers (demand zones) we focus our attention on average

individual response times (IRT), which are given by:

IRTj =
N∑

n=1

ρnjtnj (3.2)

The aggregated equity measures accounting for disparities among individual response times

are the variance (Eq. 3.3), the squared coefficient of variation (Eq. 3.4) and the Gini index (Eq. 3.5).

We use variance since it is a commonly used dispersion measure. The squared coefficient of variation

and the Gini index satisfy the scale independence principle, are population size independent and

also comply with the principle of transfers (Pigou-Dalton condition). The coefficient of variation

is also commonly used to relate the mean and dispersion of random variables, and being a number

between 0 and 1 has a rather easy interpretation. Furthermore, the Gini index is very popular in

Economics.

V (IRT ) =
1

|J|
∑
j∈J

(IRTj − IRT )2 (3.3)

CV 2(IRT ) =
V (IRT )

IRT
2 (3.4)
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Gini(IRT ) =
1

IRT |J|2
∑
i∈J

∑
j∈J
|IRTi − IRTj | (3.5)

For the case of measuring equity among servers we focused on calculating the workload of

each server, and the relative differences among all server’s workload. Recall that each server can

be busy or free (idle), and system’s states are denoted by an ordered set of N one digit binary

numbers taking the value of 1 if the server is busy and 0 if not (Bj ≡ {b1, b2, . . . , bN}). The

individual workloads (IWK) can then be obtained according to Equation 3.6.

IWKn =
2N∑

j=1:bn=1

P (Bj) (3.6)

Having the individual server’s workloads, we decided to calculate the variance and the

squared coefficient of variation as the equity measures for servers. Expressions to calculate those

two indicators are given by Equations 3.7 and 3.8.

V (IWK) =
1

N

N∑
n=1

(IWKn − IWK)2 (3.7)

CV 2(IWK) =
V (IWK)

IWK
2 (3.8)

3.4 Results discussion and analysis

3.4.1 Mid-size case study

We solved a mid-size problem, proposed as an instance of the Maximal Covering Location

Probem (MCLP) (http://www.lac.inpe.br/~lorena/correa/Q_MCLP_30.txt) (Correa et al., 2007).

We analyze several scenarios locating 3 ambulances. Because of the small number of ambulances we

use an exact solution for the hypercube model. The server rates are obtained by selecting particular

values for the overall utilization factor, ρ = (λ/N × µ). In fact, ρ is varied between 0.1 and 0.9,

with increases of 0.1. We use full backup, which means that any zone can be attended by any of

the available servers.
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A tuning procedure has been used for every one of the optimization criteria being consid-

ered. Each combination of possible values for the GA’s parameters (combinations suggested by the

experimental design) was tested on randomly selected scenarios for the mid-size problem, starting

the GA each time with a different random seed (therefore, a different initial population). Once

the tuning was performed, the GA was run 30 times for each scenario and for each optimization

criteria. The experiments have been run on a PC executing Windows 7 -64 Bit, with an Intel R⃝Core

2 Duo processor running at 2.13 GHz and 2 GB of RAM. All the programming was done in Java.

The average running time of the GA (a run is made up of 100 evolutions of a population with 100

individuals) for the 3 servers scenarios was 20 seconds.

The mean values obtained for each criteria are presented in Table 3.1, for a subset of the

scenarios that were run. For each value of ρ, the optimization framework was used to get the

best possible heuristic solution under each of the seven criteria. Recall that due to the complex

combinatorial and non-linear nature of the problem it is not computationally attractive to get an

optimal solution using a standard commercial solver applied to the mathematical model. In Table

3.1 each row corresponds to the optimization of the system under a particular criteria. Columns 3 to

9 indicate the performance of the system according to a specific criteria. In each row there is a bold

number that shows the result for the criteria being optimized. The remaining numbers in each row

are the result of the other criteria. For example, when ρ = 0.1 the minimum mean response time

is 0.5877; whereas if we maximize coverage the associated response time is 0.7303. These results

show trade-offs between the different criteria. We will study those trade-offs in more detail later.

Note that the results coming from minimizing the variance of the individual server’s workloads

are the same as those when minimizing the square coefficient of variation for the workloads. This

is because the total workload of the system is a constant. Different dispatching policies simply

redistribute the total workload between different servers, however the average workload will remain

constant. Finally, recall that it has been assumed that the system does not allow queued calls,

hence if a call arrives when all the servers are busy, that call is considered to be lost (attended by

an external system). In a system with full backup Probability(loss) depends only on the overall

ratio between total demand rate and total service rate, regardless of the particular location and
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dispatching decisions. In this case, for instance, P (loss) = 0.0033 when the overall utilization ratio

ρ = 0.1 and P (loss) = 0.0501 for ρ = 0.3.

The most commonly used optimization criteria for EMS systems planning are Response

Time and Coverage. As suggested by previous results (see Section 2), minimizing the system

response time also results in good values of coverage (compared to the maximum coverage when it

is the optimization criteria); however, it is unknown how minimizing system response time affects

the other criteria of interest. In Table 3.2 we take the solution resulting from MRT minimization as

a base scenario, and compare the performance of the system when other criteria are used. For each

value of ρ, each row in this table compares one by one the values of the first row on Table 3.1 for the

same ρ, with the remaining rows (optimization criteria other than MRT). For ρ = 0.3, for instance,

the solution that maximizes expected coverage improves the coverage by 10.51% with respect to the

base scenario (going from 0.8110 to .8963), but at the same time the response time also increases

by 14.32% (from 0.6788 to .7761). The variance of individual response times increases more than

100% (from 1.63E-4 to 3.42E-4) and the variance of the server’s workloads increases more than

200%. The solution that minimizes the Gini coefficient of the individual response times reduces

the Gini coefficient by 47.83% with respect to the base case (from 0.2329 to 0.1215). However, the

response time increases by 28.52% while the expected coverage is reduced by 5.3%.

The last column in Table 3.2 shows the benefit of using the joint location and dispatching

approach for this data-set. To calculate the numbers in this column each scenario was solved

following an approach in which the locations were the decision variables but the dispatching rule

was always sending the closest available server. Hence, the last column on Table 3.2 shows how

much improvement was attained for each criteria by using the joint approach instead. On one hand,

note that the expected coverage can be improved less than 1% by using the integrated approach.

On the other hand, for all the fairness criteria it is possible to get improvements ranging from

15% to more than 100%. Of course, as it has been mentioned before, there is a cost (trade-off)

associated to each improvement in fairness. In particular, it is easy to see that equalizing response

times or workloads will worse efficiency criteria such as response time and expected coverage.

In Figure 3.1a we plot the overall results of the optimization process for the mid-size case
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Table 3.1: Performance indicators - Mid size case study - Mean value

ρ
Optimz. Performance Indicators - Mean
Criteria MRT ExCov V.IRT V.Wkl Gini SCV-RT SCV-WK

0.1

MRT 0.5877 0.9125 1.35E-04 1.47E-03 0.2619 0.3515 0.1481
ExCov 0.7303 0.9675 4.81E-04 4.68E-03 0.3608 0.8119 0.4711
V.IRT 0.8111 0.8022 9.95E-05 3.31E-03 0.1347 0.1405 0.3333
V. Wkl 0.9352 0.7577 5.60E-04 1.47E-07 0.2629 0.4687 0.0000
Gini 0.9044 0.7712 1.10E-04 2.29E-03 0.1181 0.1211 0.2310

SCV-RT 0.9174 0.7625 1.09E-04 2.51E-03 0.1180 0.1160 0.2527
SCV-WK 0.9409 0.7520 5.46E-04 2.07E-07 0.2626 0.4449 0.0000

0.3

MRT 0.6788 0.8110 1.63E-04 2.23E-04 0.2329 0.3188 0.0028
ExCov 0.7761 0.8963 3.42E-04 5.97E-03 0.3125 0.5112 0.0735
V.IRT 0.8423 0.7712 1.06E-04 7.89E-03 0.1234 0.1346 0.0972
V. Wkl 0.8952 0.7579 3.45E-04 3.37E-07 0.2230 0.3266 0.0000
Gini 0.8724 0.7702 1.12E-04 8.25E-03 0.1215 0.1329 0.1016

SCV-RT 0.8961 0.7581 1.13E-04 7.36E-03 0.1251 0.1264 0.0907
SCV-WK 0.8952 0.7579 3.45E-04 3.37E-07 0.2230 0.3266 0.0000

0.5

MRT 0.7223 0.7575 1.72E-04 2.26E-04 0.2205 0.2971 0.0012
ExCov 0.8467 0.8226 3.95E-04 5.09E-03 0.3034 0.4949 0.0272
V.IRT 0.8445 0.7277 1.12E-04 8.13E-03 0.1292 0.1413 0.0434
V. Wkl 0.9822 0.6939 4.47E-04 3.12E-07 0.2185 0.3204 0.0000
Gini 0.8651 0.7257 1.19E-04 8.90E-03 0.1295 0.1430 0.0475

SCV-RT 0.8895 0.7194 1.18E-04 6.96E-03 0.1304 0.1342 0.0372
SCV-WK 0.9822 0.6939 4.47E-04 3.12E-07 0.2185 0.3204 0.0000

0.7

MRT 0.7490 0.6885 1.74E-04 2.62E-04 0.2108 0.2784 0.0009
ExCov 0.8863 0.7390 4.15E-04 3.48E-03 0.2952 0.4756 0.0118
V.IRT 0.8367 0.6654 1.19E-04 4.36E-03 0.1366 0.1526 0.0148
V. Wkl 0.9294 0.6481 3.10E-04 1.71E-07 0.2080 0.2770 0.0000
Gini 0.8673 0.6628 1.22E-04 4.29E-03 0.1326 0.1467 0.0146

SCV-RT 0.8836 0.6609 1.24E-04 5.31E-03 0.1367 0.1429 0.0181
SCV-WK 0.9294 0.6481 3.10E-04 1.71E-07 0.2080 0.2770 0.0000

0.9

MRT 0.7676 0.6192 1.76E-04 1.21E-04 0.2064 0.2696 0.0003
ExCov 0.9174 0.6587 4.37E-04 2.24E-03 0.2907 0.4669 0.0058
V.IRT 0.8426 0.6010 1.24E-04 2.90E-03 0.1407 0.1570 0.0075
V. Wkl 0.9189 0.5859 2.87E-04 1.17E-07 0.2039 0.2704 0.0000
Gini 0.8537 0.5993 1.26E-04 1.99E-03 0.1382 0.1557 0.0051

SCV-RT 0.8853 0.5971 1.29E-04 3.33E-03 0.1408 0.1481 0.0086
SCV-WK 0.9189 0.5859 2.87E-04 1.17E-07 0.2039 0.2704 0.0000
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Table 3.2: Variations vs. minimizing MRT solution

ρ
Optimz. Variations vs. MRT Solution (%) Variation vs.
Criteria MRT ExCov V.IRT V.Wkl Gini SCV-RT Closest (%)

0.1

ExCov 24.26 6.02 >200 >200 37.73 130.96 0.10
V.IRT 38.01 -12.09 -26.27 125.11 -48.59 -60.02 -15.46
V. Wkl 59.11 -16.97 >200 -99.99 0.38 33.35 >-200

Gini 53.88 -15.49 -18.29 55.99 -54.91 -65.54 -71.40
SCV-RT 56.09 -16.44 -19.22 70.69 -54.95 -67.00 -96.19

0.3

ExCov 14.32 10.51 109.59 >200 34.22 60.36 0
V.IRT 24.07 -4.91 -35.17 >200 -47.02 -57.77 -29.89
V. Wkl 31.87 -6.56 111.17 -99.85 -4.23 2.44 >-200

Gini 28.52 -5.03 -31.13 >200 -47.83 -58.31 -52.57
SCV-RT 32.00 -6.53 -31.00 >200 -46.27 -60.34 -66.71

0.5

ExCov 17.22 8.60 129.47 >200 37.59 66.58 0.70
V.IRT 16.93 -3.93 -35.02 >200 -41.40 -52.44 -26.22
V. Wkl 35.98 -8.39 159.70 -99.86 -0.92 7.85 >-200

Gini 19.77 -4.19 -31.06 >200 -41.30 -51.88 -50.00
SCV-RT 23.15 -5.03 -31.64 >200 -40.87 -54.82 -60.84

0.7

ExCov 18.34 7.32 139.27 >200 40.01 -70.84 0.30
V.IRT 11.71 -3.35 -31.66 >200 -35.19 -45.19 -25.66
V. Wkl 24.10 -5.86 78.86 -99.93 -1.34 -0.51 >-200

Gini 15.79 -3.73 -29.51 >200 -37.13 -47.32 -43.58
SCV-RT 17.98 -4.02 -28.68 >200 -35.16 -48.67 -44.03

0.9

ExCov 19.51 6.38 147.42 >200 40.84 73.22 0.60
V.IRT 9.77 -2.94 -29.85 >200 -31.82 -41.77 -20.70
V. Wkl 19.70 -5.38 62.38 -99.90 -1.22 0.32 >-200

Gini 11.22 -3.22 -28.55 >200 -33.06 -42.22 -34.07
SCV-RT 15.33 -3.57 -27.08 >200 -31.78 -45.07 -36.98
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study, averaging over the different scenarios that were considered. There are two series: the response

time (gray rhombus markers) and the expected coverage (black square markers). The graph shows

the results on those two commonly used criteria when the optimization of the system is based on

each of the different criteria (x-axis). The left vertical axis is associated with the response time,

while the right vertical axis is used to plot the expected coverage. All the fairness criteria always

cause a sacrifice of the efficiency criteria, response time and expected coverage. The MRT shows a

minimum value when MRT is the criteria being optimized, just as expected. Note that the response

time obtained under any other optimization criteria is always bigger. If we look at the expected

coverage values it is possible to see that the use of the other criteria will also cause a sacrifice in

coverage. The sacrifice in coverage when minimizing response time looks smaller (it is in fact, see

Table 3.2) than the sacrifice in response time if the coverage is maximized. The expected coverage

obtained under the optimization of the fairness criteria exhibits small variations (The ExCov values

are similar for the fairness criteria). Figure 3.1b shows the results for a particular scenario (in this

case ρ = 0.6).

As it has been mentioned, from the point of view of the final users it is important to get

a quick response when an ambulance is required. At the same time it is also important to have a

system that exhibits fair treatment to the users as well as to the servers. In Figure 3.2 we show

the overall results of system response time along with several fairness criteria. The black markers

should be read on the secondary (right) vertical axis, while the gray markers correspond to response

time and are associated to the primary (left) vertical axis. The right axis is used to represent several

criteria (Gini coefficient and SCV for individual response times).

Note that the solutions obtained when using the Gini coefficient, the square coefficient

of variation or the variance of the individual response times, which are all fairness criteria from

the point of view of the final users, are similar regarding several performance measures. Take for

example the values for expected coverage, depicted in Figure 3.1b by the black squared markers.

If a line is drawn connecting the three squared markers corresponding to the expected coverage

when Gini, SCV-RT and V.IRT were used, that would be almost a flat line. That suggests, as

mentioned, that the solutions obtained when using those three criteria (Gini coefficient, square
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(a) Overall trade-offs

(b) Trade-offs for ρ = 0.6

Figure 3.1: Trade-offs MRT vs. Exp. Coverage mid-size case study
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coefficient of variation or the variance of the individual response times) have a similar expected

coverage. A similar observation can be done for the values of the Gini coefficient (black triangles

markers) and the SCV-Wk (black dots) in Figure 3.2. For the case of the MRT (gray rhombus)

a bigger variation is observed. Also note that regardless of the optimization criteria being used,

the squared coefficient of variation of individual server’s workloads is almost always below 0.1.

From Table 3.2 we see that the use of the variance of individual server’s workloads as optimization

criteria can reduce this variance by almost 100%, with respect to the variance server’s workloads

associated to the solution minimizing response time. Although that seems like a big and important

improvement, the fact is that the system is going from a SCV of 0.02 (which is already small) to

an even smaller value of 4.03E-6 (practically equal to 0). Most managers may agree that a SCV of

0.02 is already small (which suggest that the workload is being almost evenly distributed among

the servers) and no extra efforts to reduce it are required.

Figure 3.2: Overall trade-offs MRT vs. Fairness criteria

In Figure 3.3 we show aggregate trade-off results based on the numbers already presented

in Table 3.2. The variations (percent change) shown in this graph are with respect to the solution

that minimizes response time. In this figure positive variations are used to represent improvements

on the different criteria. When the expected coverage maximization is applied we can see that

indeed the coverage is improved, however all the other criteria deteriorate. We can also see that

although the coverage is indeed higher, the change (increase) of this criteria is smaller than the
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variation of any of the other criteria. In other words, increasing the coverage causes a sacrifice in

all the other criteria, sacrifice that is proportionally higher than the increase in coverage.

Minimizing the Gini coefficient of the individual response times improves (reduces) not

only this criteria, but also the square coefficient of variation and the variance of the individual

response times. All these criteria are intended to create solutions that are fair from the point of

view of the final user, by equalizing the response times. However, the coverage is reduced and the

response times increases (both undesirable effects), although those two variations are smaller than

the improvement in final user’s fairness. The biggest sacrifice is observed in server’s workloads

balance. However, it is worth mentioning that the workload balance among the servers is similar

under the different optimization criteria (SCV-WK almost always below 0.1). Even then, going

from 0.0028 to 0.1016 (the case of ρ = 0.3, for instance) causes a huge relative increment, although

both values are small enough in the sense of a coefficient of variation.

Figure 3.3: Overall trade-offs MRT vs. Fairness criteria

Figure 3.4 depicts the spatial location of the demand zones. The index assigned to every

location not only identifies it but also gives an idea of its ranking according to the proportion

of demand generated by each zone. The lower the index, the bigger the proportion of demand.

Locations 1, 2 and 3 combined account for almost 35% of the total demand. The first 10 locations

represent more than 65% of the total demand. In Table 3.3 we show the changes in the location

decisions for different scenarios. Recall that every demand zone was a candidate location for an

ambulance. All the fairness criteria are shown as a single category, because in all the cases the
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Figure 3.4: Spatial location of demand zones - Mid-size case study

locations selected when the optimization was based on those fairness criteria were the same. The

differences in the performance measures are then explained by different dispatching rules. This

observation is important because it shows that using the closest dispatching rule would not be

enough to obtain good solutions for the equity criteria.

Table 3.3: Location decisions mid-size case study

ρ MRT ExCov Fairness

0.1 2-5-17 2-3-17 1-2-3

0.3 1-3-4 3-7-15 1-2-3

0.5 2-3-4 3-7-9 1-2-3

0.7 & 0.9 2-3-4 2-3-4 1-2-3

3.4.2 Hanover County case study

We have also applied our modeling approach to a case study that uses real data from the

Hanover Fire/EMS department, which is located in Hanover, VA. The county has 474 square miles
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and a population nearing 100,000 individuals. The county has been divided for planning purposes

in 122 demand zones. There are 16 candidate locations for 5 ambulances. The total demand rate

has been estimated in 1.2 calls/hour. The average service time per call has been estimated to be 74

minutes and it is assumed to be independent of the demand zone being served. Additional details

about this case study can be found in Chanta et al. (2011b). For this case study we use partial

backup, allowing every demand zone to be served only by 3 out of the 5 available servers. There are

several reasons to proceed this way. The first two have been suggested by Geroliminis et al. (2009):

(i) from a practical perspective, allowing servers that are ranked as 4th and up for a particular

demand zone is not desirable, because the overall efficiency of the system would likely decrease; (ii)

the calculation of transition rates for the embedded hypercube model becomes very tedious; (iii) the

partial backup better represents the real system, because even when there is a server available, if it

is too far away from the costumer (likely in rural areas), typically a third party will be contacted to

attend that particular call. In addition to the real case study we consider two variations, increasing

the demand by a factor of 1.5 and 2 respectively (which increases the overall utilization, ρ). For

this case study we are also using the exact procedure to solve the hypercube model (with 5 servers

the number of states is 32). The average running time of the GA for each scenario of this case

study was 280 seconds.

Table 3.4 shows the mean performance indicators for the original Hanover data-set as well

as for the hypothetical scenarios with increased demand. Note that for server’s workloads we are

showing only the squared coefficient of variation. This is because, as it was mentioned before, the

variance of the workloads would lead to the same results (small differences can still be observed

when running the algorithm due to rounding). Table 3.5 presents the variation (percent change)

in the performance of the system when criteria other than MRT are used. The percent changes

are presented only for the base case (ρ = 0.2). The same variations are depicted in Figure 3.5

for a subset of criteria. Positive values in Figure 3.5 represent improvements for the criteria.

It is observed that improving the expected coverage sacrifices all the other criteria, with only a

marginal increase in coverage. Improving equity on individual response times (by reducing the Gini

coefficient) negatively affects response time and coverage, with response time increasing more than
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70%. The server’s workloads are also affected, increasing their relative differences, given by the

square coefficient of variation. Finally, trying to equalize the server’s workloads, their coefficient of

variation goes from 0.37 to 0.02 but it has a major negative effect on other performance measures.

For instance, response times increases over 200% and coverage decreases more than 60%.

Table 3.4: Performance indicators - Hanover case study

ρ
Optimz. Performance Indicators - Mean
Criteria MRT ExCov V.IRT V. Wkl Gini SQV-RT SQV-Wk

0.2

MRT 4.5270 0.8768 0.0031 5.36E-03 0.591 2.214 0.1415
ExCov 5.2652 0.8928 0.0110 6.49E-03 0.674 5.894 0.1722
V.IRT 4.9432 0.8580 0.0027 5.93E-03 0.538 1.657 0.1556
V. Wkl 18.5242 0.2699 0.1643 8.83E-06 0.747 6.930 0.0002

Gini 8.3998 0.6895 0.0063 8.41E-03 0.503 1.301 0.2217
SQV-RT 7.6947 0.7316 0.0052 6.11E-03 0.512 1.173 0.1606
SQV-Wk 18.2834 0.2554 0.1430 9.55E-06 0.741 6.152 0.0002

0.3

MRT 4.8236 0.8305 0.0038 8.80E-03 0.600 2.417 0.1121
ExCov 5.8109 0.8453 0.0106 5.89E-03 0.641 4.676 0.0748
V.IRT 5.4450 0.8104 0.0035 1.15E-02 0.549 1.767 0.1480
V. Wkl 18.6544 0.2326 0.1579 1.32E-05 0.736 6.371 0.0002

Gini 8.8163 0.6388 0.0079 1.40E-02 0.527 1.464 0.1782
SQV-RT 8.3356 0.6783 0.0064 9.14E-03 0.525 1.286 0.1151
SQV-Wk 18.7333 0.2179 0.1690 7.09E-06 0.743 6.916 0.0001

0.4

MRT 4.9672 0.7800 0.0042 1.25E-02 0.605 2.523 0.0995
ExCov 5.9712 0.8118 0.0102 4.79E-03 0.631 4.260 0.0376
V.IRT 5.6846 0.7300 0.0037 2.52E-02 0.542 1.687 0.2033
V. Wkl 18.0653 0.2297 0.1558 1.08E-05 0.743 6.957 0.0001

Gini 8.8731 0.6054 0.0088 1.82E-02 0.535 1.586 0.1453
SQV-RT 8.8060 0.6132 0.0079 1.31E-02 0.538 1.397 0.1028
SQV-Wk 17.4731 0.2370 0.1329 1.60E-05 0.733 6.402 0.0001

The last column in Table 3.5 compares the quality of the solutions coming from the joint

approach versus approaching the problem with only the locations as decision variables, in combi-

nation with the closest rule for the dispatching of the ambulances. Note that the improvements

in criteria such as the variance of the individual response times or the Gini coefficient are smaller

than those observed for the mid-size case study. This could be caused by the fact that the Hanover

case study has a reduced number of candidate locations, while the mid-size case study had every

demand point as a candidate for locating an ambulance. Nevertheless, the joint approach was still
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able to generate better solutions, although the relative improvement was in fact smaller. Further-

more, contrary to the results for the mid-size case study, for the Hanover data set the locations

selected when using different fairness criteria are different. For instance, to minimize the variance

of the individual response times the locations selected are [1-6-7-8-10], while for the minimization

of the Gini coefficient the locations will be [1-6-7-10-13]. 4 out of 5 locations remain the same

between those two criteria. Recall that for the previous case study all the fairness criteria selected

the locations with the highest proportion of demand. For the Hanover case only locations 6, 7

and 13 (selected by the two fairness criteria just mentioned) are near to zones with a high demand

relative to other zones. For minimizing the variance of the server’s workloads the locations will be

[1-2-3-4-5], a set of locations that only shares one element with the set of locations selected for the

fairness criteria based on final costumers.

Table 3.5: Variations vs. minimizing MRT solution

Optim. Variation (%) Variation vs.
Criteria MRT ExCov V.IRT V. Wkl Gini SQV-RT SQV-Wk Closest (%)

ExCov 16.31 1.83 >200 20.93 14.13 166.18 21.70 -1.80
V.IRT 9.19 -2.14 -10.85 10.54 -8.88 -25.18 9.96 -2.47
V. Wkl >200 -69.22 >200 -99.84 26.49 >200 -99.84 -99.22
Gini 85.55 -21.36 107.80 56.88 -14.79 -41.25 56.65 -7.24

SQV-RT 69.97 -16.56 69.58 13.93 -13.38 -47.03 13.50 -30.95
SQV-Wk >200 -70.87 >200 -99.82 25.56 177.81 -99.82 -99.12

For the Hanover case study there are no queued calls, therefore congestion of the system

could potentially lead to ‘lost’ calls. There are 5 ambulances available but, as it was mentioned,

partial backup is being used. In particular only 3 ambulances are allowed to serve every demand

zone (the priority order for those ambulances is given as a solution by the optimization framework).

Given these conditions the Probabilty(loss) is not only associated with all servers being busy. In

fact if the three preferred servers of a demand zone are busy when a emergency call originates from

that demand zone, then the call will be lost (in reality an external EMS system is contacted to

attend the call). P (loss) then varies across demand zones, although it will have the same value for

demand zones sharing preferred servers, regardless of the order of preference of those servers for

each zone. Table 3.6 shows the values of P (loss) for the Hanover case study (ρ = 0.2). It is possible
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to see that under all the scenarios (different optimization criteria), the value of P (loss) is less than

0.035. The overall P (loss) for the system, which is the mean value across demand zones is almost

in all cases below 0.015. These low values for P (loss) are of course desirable. Given the nature of

EMS systems, which are designed to respond to emergencies, it makes sense that they are provided

with enough capacity to attend to those emergencies in a timely manner. In fact, as it has been

mentioned before, regulators impose service level constraints so that there is a maximum expected

response time threshold for emergency calls, especially those that are life threatening. This leads

to low values of P (loss) as the ones observed for the real data-set. Even if a call has to be attended

by an external EMS system, that external service should also provide a quick response.

Table 3.6: P (loss) Hanover Case Study - ρ = 0.2

Min Max Mean Mode

MRT 0.0054 0.0255 0.0146 0.0054
ExCov 0.0108 0.0161 0.0131 0.0115
V.IRT 0.0025 0.0343 0.0206 0.0343
Gini 0.0067 0.0193 0.0137 0.0185

SQV-RT 0.0058 0.0220 0.0123 0.0220
SQV-Wk 0.0086 0.0155 0.0133 0.0132

Figure 3.5: Overall trade-offs MRT vs. Fairness criteria - Hanover case study
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3.5 Conclusions

According to our results, an important finding is that the joint location/allocation approach

is useful to get better solutions when the optimization of the system is based on the fairness criteria

under consideration. Recall that when the optimization was based on response time or expected

coverage, the joint approach did not add much value, and the conclusion was then that using a

myopic dispatching policy combined with the selection of good locations provided good enough

solutions (about 1% from the optimal). Conversely, for the fairness criteria we have found that in

fact it is necessary to model both decisions concurrently in order to get to better solutions for these

criteria (improvements ranged from about 2.5% - 100% for the real Hanover data set).

As expected, focusing on different criteria causes the system to behave in different ways.

The use of the different fairness criteria degraded the performance of the commonly used efficiency

criteria, response time and coverage. Wether or not the sacrifice is acceptable will depend on the

particular interest of the system planners. It is also possible to see that the trade-offs are different

when the system is subject to a different level of congestion, as given by the parameter ρ. We have

also seen that the availability of candidate facilities when considering the location of the servers

can impact the results. Making it possible to evaluate EMS systems from different perspectives,

adding fairness considerations to the planning process, should help decision makers and regulators

to better conciliate the expectations from different stake holders. If a particular criteria or a set of

them does not exhibit very good values at least it can be explained in terms of gains from some

other perspective. Of course, the dominant perspective when planning a public system is a matter

of political discussion and agreement between the different parties involved.

From a fairness perspective, we can see that in general the biggest trade-off occurs between

equally serving the demand zones (by offering service times that do not vary that much between

them) and equally distributing the total workload between the available servers. This makes sense

because we are talking about different stake holders. Our approach allows for identifying the trade-

offs and providing the decision makers with different perspectives for planning the system. It might

be the case that additional resources are required to achieve a desired trade-off. Furthermore, we

have to keep in mind that the trade-offs that have been illustrated are the result of optimizing
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only one criteria at a time. Intermediate trade-offs might be also achievable and preferable in

some cases. For example, instead of reducing the Gini coefficient by about 40% by sacrificing the

response time by about 15%, the planners can opt for improving the Gini coefficient by about

20% only, which also means that the sacrifice in response time would likely be less than 15%.

We have used three different criteria to account for variability in individual response times: the

variance, the Gini coefficient and the square coefficient of variation. Although those are different

criteria, as expressed by their mathematical expressions, in all cases their minimization is aimed to

produce smaller differences among individual response times. While they indeed produced different

solutions, the performance of those solutions is similar.

The modeling and solution approach that we introduced here could potentially be used

to identify those desired trade-offs, for example by stopping the GA once you have reached a

particular value of the desired criteria. The joint approach can also serve to evaluate the potential

future improvements of the EMS system if more resources are added, such as new servers, or new

facilities for the location of the available servers. Using some of the performance measures as

constraints can be a way to control the trade-offs. It is also possible to approach the optimization

problem from a different perspective, treating it as a multi-criteria optimization problem. The

model that we have presented can still be used but the solution procedure needs to change, so that

it is possible to generate the efficient frontier between the different criteria under optimization. Our

main contribution was to identify trade-offs among several efficiency and fairness criteria, showing

that for the equity related criteria under consideration the use of a myopic dispatching policy would

not lead to the best solutions. To the best of our knowledge, previous literature addressing fairness

issues together with the location of facilities in server to costumers environments (such as EMS

systems), have assumed a-priori dispatching policies, focusing specifically on the location decision.

Therefore, we believe that the joint approach (location and dispatching decisions) is in itself a

contribution that can serve as a starting point for future developments, such as the multi-criteria

optimization approach.

We are aware of the limitations of our approach in terms of applying the joint model and

its solution procedure to bigger case studies. That is because the exact solution of the hypercube
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model will likely require extensive computation time (recall that the exact solution to the hypercube

model requires solving a linear system of equations that grows exponentially in size with respect

to the number of servers available in the system). We are currently working on using available

approximation procedures that have been suggested in the literature, and that could be embedded

in the meta-heuristic optimization framework proposed, reducing the computational burden and

allowing the solution of bigger instances. Nonetheless, the Hanover case study that we have solved

is a real case study with more than a 120 demand zones accounting for about 100,000 individuals,

and the computation time has been reasonable. Thus, even in its current development stage we

believe that the proposed approach has potential applicability to a wide variety of EMS systems.
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Chapter 4

Scalability of the model and solution

approach

4.1 Introduction

EMS systems operate under the pressure of knowing that human lives might be directly

at stake. Although not all of the emergencies attended daily by EMS systems pose serious risks

to patient’s lives, in the public eye there is still a natural expectation of efficient response to all

calls. From a practical perspective, EMS systems typically operate by assigning priorities to the

incoming calls. The higher the perceived risk for the life of a patient, the higher the priority of

the call. However, it is not always possible to make the right assessment of a medical situation by

phone, hence policy is designed to “play it safe” by responding to most calls as quickly as possible

(McCallion, 2012).

There is abundant literature on the topic of efficient planing of EMS systems, in par-

ticular works seeking to maximize coverage (the percentage of calls attended to within a given

time/distance threshold) or minimize average system-wide response time. The earliest references

on the topic can be traced back to the 1970s. The planning of these systems has been approached

by using different modeling techniques. There are two streams of work clearly recognized: descrip-

tive models, which deal with characterizing the performance of the system given its characteristics,
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such as queuing and simulation models; and normative models, which attempt to find the best set

of decisions from a particular perspective (objective function). However, the use of exacts models

is usually hindered by the fact that the resulting model’s size makes them impractical, due to the

amount of computation time required to obtain solutions. While it is sometimes possible to write

a mathematical model in a very compact way this does not necessarily mean that it can be solved

by off-the-shelf standard commercial solvers.

Objectives different from efficiency have been considered but the literature available is

very sparse compared to efficiency-based works. Furthermore, most of the works including equity

considerations approach the problem from the point of view of the final users. Although the

patients are a very important player in the system, they are not the only stake-holders. Operating

conditions that are perceived as fair by the medical personnel are also desirable. We approach

the planning of EMS systems including fairness considerations and we use heuristic/approximated

solution techniques allowing for the analysis of large scale real systems. Previous works combining

location and dispatching decisions were only capable of analyzing mid-size systems having about

five ambulances available and only one ambulance allowed per location. We use the basic ideas from

the meta/heuristic Tabu Search (TS) to guide the process of identifying good solutions, as well as

an approximation to the queuing behavior of the system to account for its dynamic performance

(ambulance busy probabilities and dispatching probabilities). Our approach is tested on real case

studies having up to 18 ambulances and 180 demand zones, running in reasonable computation

time. Our TS implementation uses random initialization as well as a dynamic/reactive size of the

tabu list, characteristics that are different from a classical version of the meta heuristic.

Two different real systems have been analyzed. One of them corresponds to the city of

Edmonton, Canada and the other one is the city of Charlotte, in North Carolina, USA. In both

cases the number of demand zones exceeds 150 and the number of servers (ambulances) used to

provide the service is at least 12. The former case allows for several ambulances to be located at

a single station (each candidate station has a maximum capacity that is imposed as a constraint

when planing the system). The latter case allows for almost all demand zones to be candidates for

locating an ambulance (only those zones located in the boundaries of the geographical region are
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excluded). By using the heuristic/approximation solution approach this work addresses scalability

issues mentioned in previous research.

The rest of the chapter is organized as follows: in Section 4.2 we provide a review of related

literature. Section 4.3 presents the mathematical model and discusses the approximation scheme

used to deal with the dynamic behavior of the system. Section 4.4 introduces the solution strategy

based on Tabu Search. Then we present the case studies and computational results in Section 4.5.

Finally, in Section 4.6 we offer our conclusions and future research perspectives.

4.2 Problem presentation and related literature

Over the last decades several attempts have been reported aimed to improve the location

planning of EMS systems. The evolution of such attempts can be traced by consulting reviews

such as Brotcorne et al. (2003); Goldberg (2004); Li et al. (2011); Farahani et al. (2012). EMS

are systems with spatial and temporal demand location. Demand occurs over a given geographic

area, at different rates from different zones, potentially changing over time, with some periods

experiencing peak demands. Since these systems are subject to random variations in demand and

response times it leads to congestion. It is very important to be able to describe the system by

assigning a probability of a particular server being busy when the system is in steady state. It

allows for the calculation of different performance measures so that several operating policies can

be compared against each other.

Characterization of typical EMS servers includes: (i) they are spatially distributed over

a given region; (ii) share the system workload following specific cooperation rules and (iii) have

different operational characteristics, such as different preferential regions (Galvao and Morabito,

2008). Congestion is also a typical phenomena related to EMS systems. The volume of calls for

service may keep ambulances busy from 20 to 30% of the time (Galvao et al., 2005). Since the

demand is spatially distributed and calls for emergencies occur randomly, the servers can be out

of their base station and in service when a new call is received. Therefore, due to congestion and

cooperation, the performance of the servers from the point of view of the costumers depends not only

on the distance from the server’s base station (static location), but also on availability. Cooperation
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among servers (usually referred to as backup in EMS systems), allows for the possibility that even

though a costumer might have a preferred server, another server might attend that costumer if the

preferred server is busy when it is required. The dispatching process, i.e. determining which is the

preferred server for each costumer and the relative order in which back up servers will be used,

becomes then an important part of the operation of the system. The planning of EMS systems over

the last two decades has been heavily dominated by the coverage maximization approach, which

is used by the majority of researchers, practitioners and regulators (Li et al., 2011). It has been

reported by Iannoni et al. (2011) that in the US the most widely used response time standard is

based on National Fire Protection Association (NFPA) and it is 8 min and 59 seconds; 90% of all life

threatening calls are expected to be attended within this time threshold. Recall that the concept

of coverage refers to the availability of at least one server within the given time/distance threshold.

The available server(s) are then considered satisfactory but it still leaves an open question regarding

to which one is the best possible alternative (Farahani et al., 2012).

Particularly important to our work is the Hypercube model proposed by Larson (1974). It

was the first work that used queueing theory elements in facility location models applied to EMS

systems. Larson (1975) later developed an approximation for the hypercube model due to the

fact that exact calculations were prohibitive. There are a variety of applications and extension of

the hypercube model to EMS systems (Brandeau and Chiu, 1989; Mendonca and Morabito, 2001;

Atkinson et al., 2008; Iannoni and Morabito, 2007; Iannoni et al., 2008; Galvao and Morabito, 2008;

Geroliminis et al., 2009; Toro-Dı́az et al., 2013), among others. It is well documented that the

hypercube model is a descriptive tool that allows the analysis of scenarios, but it was not de-

signed as an optimization model. However, it has been embedded into optimization frameworks.

Batta et al. (1989) combined MEXCLP with the hypercube into an iterative, local search algorithm.

Aytug and Saydam (2002) replaced the local search by a genetic algorithm. Iannoni and Morabito

(2007), Iannoni et al. (2008), Geroliminis et al. (2011) and Toro-Dı́az et al. (2013) have embedded

the hypercube model into genetic algorithms. In this paper we use the hypercube model and in

particular an approximation to its solution. The earliest approximation was provided by Larson

(1975), who developed the hypercube model. Jarvis (1985) generalized the approximation by al-
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lowing general service time distributions as opposed to requiring exponential behavior. In addition,

his work also considered the possibility of having different response times depending upon the unit

being dispatched and the zone being attended. Goldberg and Paz (1991) extended the work by

Jarvis (1985) reducing the computational effort required to get a solution. We use the more recent

generalization proposed by Budge et al. (2009) which allows analyzing for analysis of systems where

there might be several servers located at a single station.

The demand for EMS, in addition to having a random behavior, belongs to a category

in which the users of the system claim immediate satisfaction of their needs. This is what is

called ‘option goods/services’ (Felder and Brinkmann, 2002). Furthermore, in addition to quick

response there is also a natural expectation of a fair service, meaning that all the people living in a

particular area served by an EMS system should have the same chances of being attended promptly.

Equalization of service is not a concern of efficiency based models. Furthermore, even if there is an

agreement for having fair policies in place, the particular idea of fairness in use can be one of many

different alternatives. Efficient solutions have a natural appeal in public-settings because public

resources are expected to be used efficiently. However, as pointed out by Felder and Brinkmann

(2002) and Bertsimas et al. (2011), efficient solutions can be unacceptable when they are achieved

at the expense of some players.

In spite of the abundant literature on location of EMS facilities, the references addressing

dispatching decisions are rather sparse (Goldberg, 2004; Lee, 2011). The dispatching problem was

initially studied by Carter et al. (1972). The most widely used dispatching rule under a fixed prefer-

ence scheme (each zone ranks the servers in order of preference, which does not change over time) is

to send the closest unit (Andersson and Varbrand, 2006). Researchers such as Galvao and Morabito

(2008); Iannoni et al. (2011) mention that an interesting extension of their work would be the use

of different dispatch preference lists, instead of assuming that for a given set of locations the dis-

patching order is based on the closest dispatching rule. Jarvis (1981); Katehakis and Levine (1986)

studied the optimal allocation of distinguishable servers on Markovian queuing systems. The two

works pointed out some results from Markov Decision Theory indicating that, when the number of

states of the system as well as the number of actions available to perform in every state (allocation
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of the servers) are finite, it suffices to consider only deterministic policies, such as a fixed preference

scheme. Benveniste (1985) proposed non-linear programming techniques for the solution of the

combined location/districting problem assuming a continuous space for the location decisions. A

formulation of the joint location/dispatching problem and a solution procedure was presented in

(Toro-Dı́az et al., 2013). It is shown that using the closest dispatching rule leads to optimal solu-

tions when minimizing response time. The same authors mentioned that although in some cases

the maximization of expected coverage would benefit from a dispatching rule other than sending

the closest vehicle, the trade-off on response time is not acceptable. Related work on dispatching

was aimed to increase patients’s survivability (Bandara et al., 2012); locations are considered to be

fixed in their approach. In McLay and Mayorga (2012) the authors presented a model for dispatch-

ing, again with fixed locations, in which efficiency and equity are balanced by introducing several

fairness constraints on typical efficiency oriented models. Baptista and Oliveira (2012) presented a

case study for Lisbon EMS systems management in which several dispatching policies are proposed

and compared. The model is not normative however, and therefore it is not possible to derive

optimal dispatching policies using their approach.

Contributions on the topic of fairness related to location problems are also sparse (Bertsimas et al.,

2011). There are multiple interpretations of the concept of fairness and they are subjective by na-

ture. For instance, allocate resources in proportion to an existing claim; allocate by maximizing the

sum of individual utilities; give higher priority to those who are least well off; or allocate based on

Nash’s Equilibrium. Stone (2002) formulates eight definitions of equity that depend on the perspec-

tive from different stakeholders. Her definitions are aligned with three categories: (1) who receives

the service, (2) what is being allocated and (3) how resources are allocated. The general agree-

ment is that there is no single principle that is universally accepted (Felder and Brinkmann, 2002;

Bertsimas et al., 2011; Leclerc et al., 2012). References on location analysis focusing on equitable

service to costumers can be found in Erkut (1993); Mulligan (1991); Ogryczak (2000). The reviews

by Marsh and Schilling (1995) and Eiselt et al. (1995) list several equity measures used in location

theory. Range, variance, squared coefficient of variation, variance of logarithms, absolute and rel-

ative mean deviations and the Gini coefficient based on the Lorenz curve are among the measures
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identified. The work by Ogryczak (2000) is also a survey on inequality measures and equitable

approaches to location problems. It is rather a common flaw of all relative inequality measures

that by moving away from the spatial units to be serviced one gets better values of equality, as the

relative distances become closer to one another (Erkut, 1993). Our goal is to present a modeling

and solution approach to the planing of EMS systems in which location and dispatching decisions

are made simultaneously to balance efficiency and fairness. We overcome deficiencies observed in

previous literature related to the size of the systems being analyzed. We also perform an analysis

of the trade-offs between performance criteria.

4.3 Modeling approach

Our model extends the results introduced in Chapter 2, in particular addressing scalabil-

ity issues introducing the possibility of having more than one server per candidate location. The

dynamic behavior of the system is modeled by using an approximation procedure to solve the under-

lying hypercube model. Location and dispatching decisions are integrated into a single framework

instead of assuming the use of an a priori dispatching policy, particularly based on the closest

distance.

4.3.1 Assumptions

It is assumed that the system provides service to a certain geographical region J that is

partitioned into service regions. A given number of servers may be located at points i ∈ I ⊂ J.

Demands occur solely at the center of each service region by time homogeneous Poisson requests for

service and are attended at service rates exhibiting a general distribution and that can be different

depending upon the pair (server, costumer) being considered. Note that by lifting the assumption

of exponential service times the spatial queuing system is no longer Markovian. Previous works

have noticed that service times are better modeled by using a lognormal distribution (Budge et al.,

2009; Rajagopalan et al., 2008).

Each service region j generates a fraction fj of the total demand (
∑

j fj = 1). The total

demand rate is λ and the demand of each zone is λj ≡ λfj . When a request for service arrives, if
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the primary responsible base station has at least one server available, it is dispatched immediately.

The server travels to the place of the incident, spends some time at scene and then returns to its

base location before being assigned to the next request. If the primary responsible station does

not have a server available a server from another base will be assigned, following a fixed priority

list with respect to the base stations for each demand zone. If all the servers are busy the request

is considered to be lost (this typically means that it will be referred to an external system). The

model assumes that the servers are identical. The service time of any response unit for any call for

service has a general distribution with mean depending upon the server location and the demand

zone being served. The service time for a call includes the set up time, the travel time from the base

to the incident location, the on-scene time, a possible related follow up-time and the travel time

back to the base. The response time interval is the time from when an ambulance is dispatched

until it arrives at the scene.

Steady-state probabilities for the underlying spatial queuing system are determined by using

the approximated hypercube model from Budge et al. (2009). In their work, instead of assigning

busy probabilities to each server they focused on finding busy probabilities associated to base

stations. The assumption is that once a call has been assigned to a base station, the particular

server that will be sent is selected randomly among those available at that particular location. The

approximation algorithm depends on the locations having servers, how many servers there are per

location and also on the dispatching policy.

4.3.2 Formulation

J represents the set of service regions; I is the set of potential location sites, |I| ≤ |J|; N

is the total number of response units (servers); Mi is the maximum number of ambulances allowed

at station base i; tij is the mean response time for a server from station i to reach region j, when

available; τij is the mean service time for any server from base i when attending region j; λ is

the total network-wide demand (requests/unit time); fj is the fraction of network-wide demand

generated from region j ∈ J. The decision variables are as follows:
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xi =


1 if potential site i is open

0 otherwise

ylij =


1 if station i has priority l to zone j

0 otherwise

wi = number of servers assigned to potential site i

S = total number of base stations that are open (auxiliary variable)

ρij = fraction of dispatches sending a unit from site i to region j (auxiliary variable)

The optimization problem, using mean response time (MRT) as the objective function, is

formulated as:

Minimize MRT =
I∑

i=1

J∑
j=1

fjρijtij (4.1)

s. t:

I∑
i=1

wi = N (4.2)

wi ≤Mixi i ∈ I (4.3)

I∑
i=1

xi = S (4.4)

xi ≥ ylij i ∈ I; j ∈ J; l = 1, . . . , S (4.5)

S∑
l=1

ylij = 1 i ∈ I; j ∈ J (4.6)

I∑
i=1

ylij = 1 j ∈ J; l = 1, . . . , S (4.7)

xi ∈ {0, 1} i ∈ I (4.8)

ylij ∈ {0, 1} i ∈ I; j ∈ J; l = 1, . . . , S (4.9)

Equation (4.1) is the objective function; constraint (4.2) determines the number of servers to

be located; constraint (4.3) restricts the assignment of ambulances only to the open sites; equation

(4.4) defines the auxiliary variable accounting for the total number of stations open. Constraint
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(4.5) states the logical relationship between the location decision and the assignment of a location

within the priority list of a demand zone and finally, constraints (4.6) and (4.7) assure that there is

a complete priority list for each demand zone, and that within the priority list of each demand zone

each server appears only once. Constraint (4.8) is the integrality constraint for the decision variable

xi and (4.9) is the integrality constraint for the decision variable ylij . The model given by (4.1)-(4.9)

represents the basic optimization problem in which the location of the servers and the dispatching

rule for each demand zone are the decisions to be made. Recall that the auxiliary variable ρij needs

to be calculated by analyzing the queuing behavior of the system. The dispatching probabilities

change whenever any of the location or dispatching decisions change.

The resulting formulation corresponds to a non-linear mixed integer programming model

that has embedded a queuing sub-model corresponding to a finite-state continuous time stochastic

process. It is an NP-Hard problem (Geroliminis et al., 2009). Given a particular set of locations

for the available servers and a preference list for each demand zone with respect to the servers’

locations, it is necessary to solve the embedded queuing model before being able to calculate the

value of the objective function. There is a complex relationship imposed by the combined location

and dispatching decisions. The stochastic sub-system can be analyzed by writing a set of flow

balance equations that in turn will lead to a linear system of equations, whose exact solution

requires the calculation of the inverse for the matrix of coefficients. The size of this matrix grows

exponentially (with respect to the number of servers), therefore the time that it takes to perform

a single iteration to evaluate a candidate solution can be computationally prohibitive.

4.3.3 Solving the embedded queuing model

The dispatching probabilities ρij depend on the particular configuration of the system:

where the servers are and how they will be dispatched to attend incoming emergency calls. The

location and dispatching decisions are given by the decision variables xi, y
l
ij and wi. In what follows

we detail the approximation procedure to obtain the dispatching probabilities. It is based in the

work by Budge et al. (2009). We detail the procedure in terms of our notation for convenience

of the reader. As in the seminal works by Larson (1975) and Jarvis (1985) the approximation
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procedure is derived by initially assuming that the servers operate independently, and then devel-

oping correction factors to account for server cooperation. The algorithm starts by calculating the

following:

bkj = kth preferred station for node j (given by variables ylij)

s(k)j = number of vehicles at the kth preferred station for node j (given by ylij and wi)

z(k)j = s(1)j + s(2)j + . . . + s(k)j

τ(k)j = average response time from kth preferred base station to costumer j

Step 0: Set iteration counter h = 0. Initialize busy fraction (r) and system-wide average

service time (τ), under the assumption of the EMS operating as an Erlang Loss System

M/G/N/0 (superscripts indicate iteration counters). ri corresponds to the busy fraction of

each open station. P0 and PN correspond to the probability of the system being idle (all

ambulances are available) and the probability of all servers being busy, respectively.

τ0 =
1

λN

I∑
i=1

wi

J∑
j=1

λjτij

r0i = r0 = λτ0(1− P 0
N )/N

Step 1: Calculate P h
0 and P h

N

Step 2: Calculate V h
i as follows

V h
i =

J∑
j=1

λjτijQj({S(k)j}, ρh−1, aij)

aij∏
l=1

(rh−1
(l)j )

s(l)j

{S(k)j} is an ordered set containing the number of servers available at each kth preferred

location for costumer j; ri represents the busy fraction of each station i while r stands for

the system-wide average server utilization, r = ρ(1−PN ); ρ is the overall system utilization

(ρ = λτ/N); aij is the order of preference of station i in the priority list of demand zone j.

Finally, the correction factors Qj are defined as follows:

Qj({S(k)j}, ρh−1, aij) =
P0
∑N−1

n=z(k−1)j

(ρN)n

n!

[∏z(k−1)j−1

u=0
n−u
s−u −

∏z(k)j−1

u=0
n−u
s−u

]
rz(k−1)j (1− rs(k)j )

After obtaining the values for V h
i the busy fractions need to be updated. If rh−1 ≤ 0.5 then
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the update should be done using the following:

rhi =
V h
i

wi + (rh−1
i )wi−1V h

i

For relatively high average server utilization, i.e. rh−1 > 0.5, the updating should be done

using the following expression:

rhi =

(
V h
i

V h
i + wi/(r

h−1
i )wi−1

)1/wi

Step 3: Calculate the dispatching probabilities using the following

ρij ≈ Qj({S(k)j}, ρ, k)
k−1∏
l=1

r
s(l)j
(l)j (1− rwi

i )

and then normalize them using ρhij ← ρhij(1− P h
N )/

∑S
i=1 ρ

h
ij

update τh, ρh, rh as follows:

τh =
1

λ(1− P −N)

J∑
j=1

λj

S∑
i=1

ρhijτij , ρh = λτh/N, rh =
1

N

S∑
i=1

wir
h
i

Step 4: If |rhi − rh−1
i | < ξ for all i, then stop. Otherwise, set h = h+ 1 and go to Step 1.

The value of ξ controls the convergence of the algorithm. The developers of the algorithm

mentioned that there is not a theoretical guarantee for the convergence of the algorithm,

but that it did converge in all their test cases, which covered a wide range of operational

conditions for real EMS systems. For further discussion and details the reader is advised to

consult the original work by Budge et al. (2009).

4.3.4 Alternative performance criteria

The model introduced in section 4.3.2 has Mean Response Time as the objective function.

However we have performed experiments with other objective functions, including some that are

related to fairness. The Expected Coverage, which is an efficiency criteria widely used in real EMS

settings is defined next.

Ex.Cov =

J∑
j=1

I∑
i=1

fjρijPi,j (4.10)
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where Pi,j is the probability that station i covers node j. Note that Pi,j can be used as

a binary variable, assuming deterministic response times, indicating whether or not the coverage

threshold is satisfied by the available servers, but it can also be used as the probability of that

coverage is possible within the given threshold, accounting for variability in travel times.

From the point of view of the costumers (demand zones) we calculate average individual

response times (IRT), which are given by equation (4.11).

IRTj =

I∑
i=1

ρijtij (4.11)

Once the individual response times are obtained then it is possible to calculate the following

criteria, Squared Coefficient of Variation (equation (4.12)) and Gini Coefficient (equation (4.13)),

both of which measure dispersion among the individual values. The Gini coefficient has a value

between 0 and 1, with 0 meaning that all the individual values are identical. A value of 0 for

the squared coefficient of variation also means identical values, or standard deviation equal to 0.

The squared coefficient of variation and the Gini index satisfy the scale independence principle,

are population size independent and also comply with the principle of transfers (Pigou-Dalton

condition), which are desirable characteristics of fairness criteria (Marsh and Schilling, 1995).

CV 2(IRTj) =
σ2(IRT )

IRT
2 (4.12)

Gini(IRT ) =
1

IRT |J|2
∑
i∈J

∑
j∈J
|IRTi − IRTj | (4.13)

To measure equity among servers initially we obtain the workload of each station, and then

the relative differences among each station’s workload. The approximation procedure detailed in

Section 4.3.3 includes the calculation of individual station’s busy fractions ri. Note that in this case

we are attempting to equalize the workload assigned to each open station, some of which may have

more than one server assigned. The underlying assumption is that the total workload assigned to

a particular station would be divided proportionally among its servers.
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We use the squared coefficient of variation for server’s workload (Equation 4.14). IWK

stands for Individual Station Workload.

CV 2(IWK) =
σ2(IWK)

IWK
2 (4.14)

4.4 Solution approach

Tabu Search is a path-based metaheuristic based on local search. Local search procedures

used to solve optimization problems start with a given solution (usually easy to generate and if

possible feasible), and then define a set of neighboring solutions that are evaluated looking for an

improvement in the value of the optimization criteria. However, at each iteration of a TS algorithm

it moves to the best neighbor, even if the best neighbor has a worse objective value. Furthermore,

TS uses the idea of memory, keeping track of the last solutions visited (or their characteristics) to

avoid cycling. Solutions stored in memory are considered Tabu for a number of iterations (tabu

tenure), and hence the algorithm considers it illegal to move to those solutions. The use of memory

and moving to the best neighbor (even at the cost of a deterioration in the objective function value)

are ways to escape local optima during the search procedure. Seminal ideas of TS were introduced

in Glover (1986), with further developments and refinements in Hansen (1986); Glover (1989). Our

approach is not a pure TS implementation since we are using random components in the search

procedure, including random initialization and a tabu list with dynamic (reactive) size.

Reviews by Reese (2005) and Mladenovic et al. (2007) related to solving the p-median prob-

lem found TS and Genetic Algorithms (GA) to be the most common metaheuristics used. The

mathematical structure of the p-median problem is close to the structure of the problem we are

approaching. The p-median is a location/allocation problem although it does not include cooper-

ation among servers, which is a distinctive characteristic of EMS systems. The review by Li et al.

(2011) on covering models applied to EMS also identified TS and GAs as the predominant solution

approaches. Although typical covering models assume a-priori dispatching rules, the mathematical

structure of covering problems in particular as applied to EMS system is closely related to that of

our work.
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4.4.1 Solution representation

The main decision variables in our problem are where to locate ambulances, how many

ambulances to locate at each open site and the priority of open stations regarding each demand

zone. For the location decision we use an array with as many components as the number of

ambulances available to locate. Each component of the vector can take an index value representing

the candidate locations. This representation allows for controlling the maximum number of servers

in the system as well as checking if the capacity of each station base is being observed. For

the dispatching decision we concentrate on identifying only the preferred server, hence we have a

representation based on an array with as many components as demand zones. The values that

are valid for each component of the dispatching array depend on the location decision, and in

particular on how many open stations are being considered. Note that it would be invalid to use an

index including all candidate locations, since several of them are not going be active in a particular

solution. Focusing only on the preferred server to each demand zone has the advantage of allowing a

compact representation of the dispatching decision. Furthermore, by analyzing the dynamic queuing

behavior of the EMS systems under consideration we have noticed that the fraction of dispatches

from the preferred base station is usually the highest, which is a desirable characteristic of an EMS

system. The preferred server is expected to offer the best possible service whereas the backup

servers are only acceptable when the preferred one is busy. The solution representation provides

only the preferred base station (which can have several ambulances assigned). The remaining open

stations are organized in order of preference according to the distance from the demand zone, with

the highest priority given to the closest base station.

4.4.2 Neighborhood structure

For a given solution we define its neighbor considering either the location portion of the de-

cision or the dispatching portion of the decision. During each iteration a decision is made randomly

regarding whether a neighborhood is generated based on the location decision or the dispatching

decision. Each neighborhood has a 50% chance of being used. In the case of a neighborhood based

on the location decision each possible interchange is considered, as follows. For each location having
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at least one ambulance assigned in the current solution we consider interchanging one ambulance

with a different location that still has available capacity. If the neighborhood has to be generated

based on the current dispatching portion of the solution, then for every demand zone we consider

interchanging its current preferred base station with any of the other open stations. Recall that any

change in the solution, either on location or dispatching, requires the evaluation of the objective

function, which means the hypercube approximation procedure has the be executed. If required, in

order to reduce the computational burden of the algorithm, it is possible to reduce the size of the

neighborhood. This can be done for instance by using an acceptance probability for each possible

move, although it also reduces the power of the local search component of the TS algorithm.

4.4.3 Tabu tenure

A critical component of any TS implementation is the size of the tabu list, i.e. for how

long (number of iterations) the algorithm will penalize the solutions (or specific characteristics of

their generation process) already visited. Instead of experimenting with several sizes of the tabu

list we are using a reactive tabu list tenure. The idea of having a memory attached to a local

search is to prevent the search procedure from getting trapped at a local optima. However, if the

application of repeated local searches is yielding good results it would be beneficial to keep the

algorithm progressing in the direction suggested by the local search. In this case, the tabu list will

likely get in the way and therefore it makes sense to shorten the list, allowing the algorithm to keep

inspecting a potentially good area of the solution space. On the other hand, if the application of

several local searches is not allowing the optimization criteria to improve it may be a sign of the

algorithm getting trapped at a local optima. In this case it makes sense to use the tabu list to force

the algorithm to move to a different exploration area (by increasing the tabu tenure), even at the

cost of accepting a deterioration in the optimization criteria, at least temporarily. In Erdogan et al.

(2010) the authors solved what they termed MEXCLP+PR+SSBP problem (Maximal Expected

Coverage Location Problem + Probabilistic Response Time + Station Specific Busy Probabilities).

They suggested a TS heuristic for the solution of the problem in which the tabu tenure was set to

10. Gendreau et al. (1997) suggested a tenure in the range 10-30. As mentioned before we use a
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dynamic size of the tabu list based on the progress of the optimization search. As lower and upper

bound for the size we use the range 5-30.

4.5 Computational results

In our experiments we have used the following configuration of the algorithm. The TS

was stopped after 20 iterations in which no improvement was made to the objective function, or

else a maximum number of iterations was set to 50. In many cases we have observed convergence

of the algorithm in less than the maximum number of iterations allowed. We ran experiments

allowing as many as a 100 iterations, however the average number of iterations for convergence

was 43. The algorithm started from a random feasible solution and for each criteria and under

each scenario 30 different runs were made. In all the cases the algorithm converged to solution

values for which the coefficient of variation was below 2%. The tabu list starts with a size of

5, which is the lower bound used in our dynamic tabu tenure approach. The tabu list size is

updated if after 5 iterations of the algorithm the best solution remains the same. The update is

done according to tenurenew = max{1.5tenurecurrent, tenuremax}. If the algorithm is progressing

through improved solutions from one iteration to the next then the tabu tenure is updated according

to tenurenew = min{0.9tenurecurrent, tenuremin}. The proposed updating scheme increases or

decreases the size at small steps, and worked well in our experiments for quick convergence of the

algorithm.

Two case studies are analyzed next. All the required programming was done in Java (v1.5),

using the Open Tabu Search package (Harder, 2013). Experiments were executed on a PC running

Windows R⃝7 -64 Bit, with an Intel R⃝Core 2 Duo processor running at 2.13 GHz and 2 GB of RAM.

The first case study corresponds to the city of Edmonton, Canada. The data has been previously

used for the computational experiments reported in Erkut et al. (2008); Erdogan et al. (2010).

Edmonton data is available from http://apps.business.ualberta.ca/aingolfsson/data/. It

corresponds to a city of about 800,000 people. For the analysis the city has been divided into 180

demand zones. There are 16 candidate locations for ambulances across the city, 7 of which have

capacity for more than one ambulance. The average call rate used was 3.5 calls/hour, which for the
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base case (with 12 ambulances) gives an overall utilization of 0.3 (ratio between total demand and

total service rates). Additional details about this case study can be found in Erkut et al. (2008);

Erdogan et al. (2010).

The second case study corresponds to Mecklenburg County (Greater Charlotte), North

Carolina. The data for this case study corresponds to the year 2004. This region had a population

of about 800,000 (in 2004). In that year approximately 62,092 calls were classified as emergency

calls. For the analysis, the region was divided into 168 demand zones, by imposing a grid of two

mile by two mile squares. The demand zones are at the same time candidate locations for the

ambulances, excluding the areas that correspond to the boundary of the region. After excluding

those zones, there are 121 candidate locations, each one having capacity for only one ambulance.

The case study includes 18 ambulances, with an overall utilization of about 0.55. Additional details

about the case study can be found in Rajagopalan et al. (2008).

4.5.1 Edmonton case study

Table 4.1 shows the results after applying the solution procedure to the data from Edmonton.

Bold values correspond to the best result under each optimization criteria. We are assuming partial

backup, allowing only 3 of the open stations to respond to calls for every demand zone. Recall that

in this case there may be locations with more than 1 ambulance assigned, hence it is still possible

that more than 3 ambulances are allowed to serve a demand zone. According to Geroliminis et al.

(2009), from a practical perspective, being served from locations that are ranked as 4th and up

for a particular demand zone is not desirable, because the overall efficiency of the system would

likely decrease. In addition, the partial backup tends to better represent real systems, because even

when there is a server available, if it is too far away from the costumer, typically a third party

will be contacted to attend that particular call. The average running time of the algorithm for the

Edmonton scenarios ranges from 14 minutes for the base case with 12 ambulances to 28 minutes for

the case of 18 ambulances. Recall that the solution space has a combinatorial nature. Furthermore,

it is important to note that the increase in solution time is not exponential, as it would be if an

exact solution for the queuing submodel were used.
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Table 4.1: Edmonton Overall Results

Num. Optimization Performance Indicator
Ambulances Criteria MRT Exp.Cov Gini SCV-RT SCV-Wk

12

MRT 6.283 0.792 0.617 2.695 0.071
ExCov 6.283 0.792 0.617 2.695 0.071
Gini 10.927 0.476 0.545 1.287 0.115
SCV-RT 12.129 0.415 0.543 1.191 0.128
SCV-Wk 9.580 0.536 0.636 2.245 0.002

15

MRT 5.964 0.832 0.626 2.918 0.110
ExCov 5.965 0.833 0.630 2.933 0.113
Gini 10.004 0.553 0.549 1.420 0.144
SCV-RT 10.665 0.371 0.556 1.244 0.085
SCV-Wk 8.806 0.577 0.678 3.334 0.011

18

MRT 5.807 0.853 0.635 3.071 0.206
ExCov 5.807 0.853 0.635 3.071 0.206
Gini 10.185 0.543 0.562 1.446 0.236
SCV-RT 10.350 0.401 0.549 1.195 0.308
SCV-Wk 8.709 0.536 0.656 2.551 0.005

MRT is given in minutes

The Edmonton data includes the modeling of response times as random variables (Log-

normal distribution). For each pair (potential location, demand zone) the coverage probability is

given, i.e., we know how likely the response time is to be less or equal than the coverage threshold

(8 minutes in this case). Details on how the response times were modeled can be found elsewhere

(Ingolfsson et al., 2008). This modeling choice is a closer representation to the real behavior of the

system; if instead of using this approach the coverage were calculated using the expected response

times as deterministic values, then for all the scenarios considered the Expected Coverage would be

above 90%. Note that adding servers improves the efficiency criteria, response time and coverage.

However, going from 15 to 18 servers (an increase of 20% in the number of ambulances) improves

coverage and response time only by about 5%. In other words we have a decreasing marginal impact

of each additional vehicle, a result that was also mentioned in Goldberg and Paz (1991).

Applying the efficiency criteria (coverage and response time) result in the same or very close

solutions. Both efficiency criteria are distance-based, and the use of coverage as a probability as

opposed to a pure binary variable leads to a expected coverage function that is smoother, which
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may explain why the solutions to Mean Response Time and Expected Coverage problems are the

same. From Table 4.1 we can also see that there are trade-offs between the efficiency and fairness

criteria. Figure 4.1 illustrates the trade-offs, comparing the solutions obtained when applying

fairness criteria against the solution from Expected Coverage/Response time, for the base case (12

ambulances). Positive variations represent improvements. Categories in x-axes correspond to the

different optimization criteria being used.

Figure 4.1: Edmonton trade-offs Efficiency vs. Fairness criteria

Improvements in equity from the point of view of the costumers (demand zones) are in

general accompanied by a sacrifice in efficiency that is proportionally bigger. From the point of

view of server’s workloads it possible to see that improving workload balance causes a decrease

in efficiency that is proportionally smaller. However, going back to Table 4.1 we can see that the

variation in workloads under different criteria, as measured by the squared coefficient of variation

(SQV-Wk), is in general only a small fraction of the variation on individual response times (SQV-

RT). For the base case, considering all the optimization criteria being used, the maximum SQV-Wk

is 0.128, whereas the minimum SQV-RT is 1.191. Given the fact that there is bigger disparity in

response times than in workloads we focus the following analysis on individual’s response time

variation. In particular we further analyze the trade-offs between coverage and squared coefficient

of variation of individual response times.

So far we have used a single objective approach, and once we get the best heuristic solution

from a particular criteria then we obtain the value of the remaining performance criteria. To
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better analyze the trade-offs between Exp.Cov and SQV-RT of individual response times we use

a bi-objective optimization approach, based on the ideas of the ξ−constraint method. The basic

idea is to use one of the criteria as optimization objective while the other one acts as a constraint.

Initially the two objectives are used individually to identify the best possible performance of the

system from their perspective. This is what has been done so far. Next we set one of them as a

constraint, and optimize the system based on the other. For instance, for the base case (with 12

ambulances) the maximum Exp.Cov was 0.792, and the solution reaching this value has a SQV-RT

equal to 2.695. If we set a constraint on Exp.Cov so that it has to be a value strictly less than

0.792 and optimize the system based on SQV-RT, then it is possible to identify different trade-offs.

Formally, the ξ−constraints method requires to perform several optimization scenarios, by choosing

an specific value for ξ. We used expected coverage as the constraint and optimize the system based

on SQV-RT. The lower and upper bounds for the expected coverage were 0.415 and 0.792. We

divided that interval into 10 sections, hence our ξ value is 0.037. The results can be seen in Figure

4.2. The dots in Figure 4.2 correspond to a heuristic approximation to the Pareto front (or efficient

frontier). Solutions that do not belong to the Pareto front are known as dominated solutions

(for the same value of one of the objective functions it is possible to get a different solution that

strictly improves the other objective). The Pareto front is an important decision tool that would

help decision makers to understand how much sacrifice in one criteria is reasonable in order to get

improvements in the other. Solutions that do not belong to the Pareto front should be avoided.

Figure 4.2: Edmonton trade-offs Coverage vs. SQV-RT
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4.5.2 Charlotte case study

Because of the assumption that every demand zone (except those at the boundaries) is

a candidate location for an ambulance we change the neighborhood structure used within the

optimization procedure. This is done in order to reduce the computational effort of the algorithm

and to better match a local search strategy to the data structure. Originally the local search was

designed based on interchanging an ambulance between its current location and every alternative

location available. With 121 potential locations available it would generate too many potential

moves for the local search step of the algorithm. Instead, we use the proposed grid (2 miles by

2 miles squares) to generate the neighborhood of a current location: interchanges are only made

between the current location and those potential locations that surround it on the grid. The

neighborhood for the dispatching decision is the same that was used for the Edmonton case study.

Partial backup is again used, allowing only up to three servers to be in the list of potential units

to attend each demand zone.

Table 4.2 shows the overall results for the Charlotte case study using 18 ambulances. The

data available for Charlotte includes call volume for each demand zone and different periods during

each day of the week. It has been shown that call volume differs across the week and at different

hours during each day (Rajagopalan et al., 2008). The results shown next correspond to demand

observed Mondays from 4:00PM to 6:00PM, which corresponds to a peak of demand during the

day. The overall utilization is 0.55. The same stopping criteria explained before was used, as well

as the same dynamic updating procedure for the tabu list size. Initial solutions are generated

randomly and 30 runs are used for each criteria. For each criteria the coefficient of variation of the

30 different runs was below 3%. The average running time of the algorithm was 18 minutes.

Note that for the Charlotte case study the coverage is based on deterministic response times,

therefore the coverage probability would be either 0 or 1 for each demand zone depending on the

relative location of demand zones and open stations. Despite the coverage probability being 0 or 1 it

is worth noticing that the availability of a server (overall probability of being busy) also plays a role

in determining the expected coverage of each demand zone. We do not have enough data to model

response times as a probability distribution, which would allow for smoothing the expected coverage
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Table 4.2: Charlotte Overall Results

Optimization Performance Indicator
Criteria MRT ExCov Gini SCV-RT SCV-Wk

MRT 3.544 0.963 0.457 0.790 0.094
ExCov 5.219 0.987 0.603 2.236 0.214
Gini 5.956 0.836 0.386 0.487 0.224
SCV-RT 6.435 0.803 0.391 0.479 0.222
SCV-Wk 8.953 0.630 0.584 2.112 0.007

MRT is given in minutes

Figure 4.3: Charlotte trade-offs MRT vs. SQV-RT

function. This change in the modeling approach should explain obtaining different solutions for the

efficiency criteria. For the previous case study using response time or expected coverage led to the

same or similar solutions. We can see that the solution minimizing mean response time is overall

better than the one maximizing coverage: the sacrifice in coverage when reducing response time is

only about 2.5%, and the solution that minimizes response time also offers better values for each

of the fairness criteria.

Analyzing the fairness criteria it is possible to see that for this case study the variations

on individual response times are also proportionally bigger than variations on individual server’s

workloads. We focus then on analyzing the trade-offs between response time and squared coefficient

of variation of individual’s response times. The minimum response time solution has a SQV-RT

of 0.790, while the minimum SQV-RT found was 0.479. Figure 4.3 shows the trade-offs between
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the two criteria, optimizing the response time subject to a constraint on SQV-RT. We use the

ξ−constraint method, varying SQV-RT between 0.479 and 0.79 with increments of 0.031, resulting

in 10 points. This is again a bi-criteria approach that provides decision makers with a better look at

balancing these two competing criteria. It may be the case that in a particular setting one criteria

is more important than the other, according to stakeholders, and therefore one criteria would be

preferred as the optimization objective. However, a decision tool such as the Pareto front helps to

identify tradeoffs that are unacceptable, by showing that it is possible to get a different solution

with the same value on one criteria and strictly a better value on the other criteria.

4.6 Conclusions

Although the analysis and planing of EMS systems is usually based on performance criteria

related to efficiency, it is clear that there are other perspectives that also play an important role

on the overall quality perception of these systems. In addition to the natural expectation of quick

response to emergency calls, in the public eye there is also a concern for equity considerations,

since EMS systems are there to assist people when they are more vulnerable. Hence, there is also

a natural expectation that anyone experiencing an emergency should have the same chances of

receiving quick response. However, there is not a unique and universally accepted way to consider

equity, a conclusion shared by several authors. As there is not an agreement about what equity

should entail for a particular system, it is difficult to include fairness considerations during the

planning of the system. In addition, several groups of stakeholders will usually have different

objectives, and improving a single perspective can lead to bad solutions from other’s points of

view.

We approached the planning of EMS systems taking into consideration not only the typ-

ical efficiency criteria but also fairness considerations, from the point of view of both final users

and internal providers. We used a fairness perspective in which equalizing the performance of the

system with respect to individual stake holders is a desirable characteristic. Hence, we looked to

reduce disparities in the mean response time of different demand zones, as well as disparities in

the workloads of the servers (ambulances). Previous literature had suggested that the combination

92



of location and allocation decisions was required in order to optimize the system from a fairness

perspective. However, the joint problem leads to a formulation of exponential size that was imprac-

tical to use for large scale real systems. With an exponential number of equations to be solved, the

problem quickly saturates the processing capacity and the memory of a computer. We contribute

to the literature by developing a new mathematical model that addresses the large scale limita-

tions, allowing the location of several ambulances at a single station. Furthermore, our solution

procedure is based on a heuristic optimization technique (Tabu Search), and uses an approximation

algorithm to evaluate the stochastic performance of the system. We were able to solve instances

with as many as 18 ambulances and 180 demand zones in under 20 minutes of computation time on

a regular desktop PC. For an exact solution approach, with 18 ambulances the transition matrix

of the queuing submodel could potentially have 6.8E10 entries, and reserving computer memory to

store such a big amount of intermediate values would likely be infeasible.

In addition to addressing the scalability issues we also add a multiobjective (bi-criteria) per-

spective, identifying efficiency and fairness criteria that are in conflict with each other and studying

the tradeoffs so that a Pareto front can be derived. Although it is true that efficiency considerations

are usually considered to be the most important we believe that having the opportunity to identify

the performance from other perspectives should add value to the decision making process. It may

be the case that a reasonable sacrifice on efficiency can led to a more equitable solution, and then

it may make sense to change the configuration of the system accordingly.

Although our results are promising, as a way to achieve a more holistic planning process

for EMS systems we are also aware of potential limitations of the approach. Real EMS systems

are subject to a lot of pressure and often times decisions are made that do not comply with the

original design of the system. The modeling approach does not include situations such as possible

relocation of ambulances, for instance in response to temporal/spatial variations in demand, nor

does the model take into consideration the priority of emergency calls, a practice that is very

common in the real world. We studied the demand for high priority calls, and based our results

on that demand, making the assumption that if the system is reasonably well designed for the

calls with the highest priority, it should be able to respond adequately to less time-sensitive calls.
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Furthermore, although the solution times are small enough so that several configurations of the

system can be evaluated, they are still quite large if real-time decisions were to be made based on

our solution approach.
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Chapter 5

Final remarks

5.1 Summary of contributions

We have approached the study of EMS systems combining decisions from two different

levels: the location of ambulances, which is a strategic decision, and the dispatching rules, which

correspond to the operational level. Our joint approach is a contribution to the literature on EMS

systems planning, where we did not find previous references combining the two decisions on a single

framework. The work was inspired by previous work mentioning that the use of the most commonly

accepted dispatching rule, which is to send the closest ambulance available to attend any emergency

call, could lead to suboptimal solutions from the point of view of the efficiency of the system, in

particular the mean system response time.

Initially we developed the mathematical model for the joint problem. The resulting problem

is NP Hard and has two main components: the first dealing with the combinatorial nature of the

location/allocation decisions, and the second dealing with the evaluation of the system, which is

subject to congestion. Demand for service is indeed random as well as service times; therefore

ambulances can be busy when they are required to attend the next emergency call. Obtaining the

busy probabilities of the ambulances is a critical step in order to be able to estimate performance

indicators for the system.

The complexity of the mathematical model required the development of solution strategies
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based on heuristics. Initially a solution based on Genetic Algorithms (GAs) was proposed and

validated. The GA is used to guide the search of good solutions. The evaluation of each solution

requires solving the congestion submodel, which is a queuing model. The GA solution framework

used an exact solution for the queuing model.

The GA optimization framework was used to analyze several case studies, starting with very

small cases that were possible to solve to optimality by using full enumeration. A mid size case

study taken from the literature was also solved, as well as a real case study of an EMS system. In

all cases we found that the minimization of Mean Response Time can be done by using the closest

dispatching rule to determine the dispatching preference of the servers with respect to each demand

zone. We also analyze Expected Coverage, concluding that in most cases the closest dispatching

rule also produces the best solution for coverage (or solutions that are only marginally worse, as

much as 2%). We also found that the solution that minimizes Mean Response Time also offers a

competitive value of coverage, whereas the sacrifice in Response Time to maximize coverage is not

appealing.

The optimization framework was then used to analyze EMS systems from other perspectives,

in particular taking into account fairness criteria. We focused on equalizing individual response

times and equalizing servers workload, treating each objective separately. Several performance

measures were used to represent the idea of fairness, such as variance and Gini coefficient. In

general we found that the joint approach is required in order to get the best solutions from the

perspective of the fairness criteria we used. In all cases our joint approach was able to find better

solutions from the perspective of fairness than an approach in which the closest dispatching rule is

used.

The potential improvements on fairness criteria come at a price: sacrifices on efficiency.

Our solution approach allowed for identifying different trade-offs between the several criteria that

we used. Providing these trade-offs is also a main contribution from our work since previous

literature did not address directly the measure of criteria other than efficiency based for EMS

systems. We believe that it is important for decision makers to know how their systems are

performing from different points of view. Even if there is a dominant perspective it adds value
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knowing the effect that the selected optimization strategy has on alternative views of the system.

This is particularly important when we are talking about public systems such as EMS, because

there are several stakeholders involved and each one surely has some expectations. Realizing how

the system is performing as a result of selecting particular criteria to optimize is a starting point.

If the resulting optimal or best policy causes some stakeholders to be affected more than others,

then knowing the trade-offs can serve to identify what sacrifices are acceptable to regain balance.

Finally we studied scalability issues related to our proposed joint model and its solution

approach. It turned out that using en exact model for the congestion/queuing component is not

a good idea if the approach is going to be used on large scale real world EMS systems. Initially

we used the exact approach as a way to understand the benefits of the joint model. After realizing

that there were benefits related to optimize fairness objectives we turned our attention to make

the solution process scalable. In order to do so we developed a new mathematical model, allowing

for several ambulances to be located at a single station since this is typical on large scale EMS

systems. We also changed our solution approach from a population based heuristic to a path based

heuristic, in this case Tabu search (TS). Due to the dynamic nature of the dispatching decision,

related to the fact that several ambulances can be located at a single station, and therefore we do

not know beforehand how many open stations we are going to have, the solution representation

that was natural for GA was no longer valid.

The new solution procedure is based on Tabu search but also has characteristics that are

not part of a classic implementation. We used random initialization, also a random component

determining the type of neighborhood that is used at each iteration (related to either the location

or dispatching decision), and dynamic update of the size of the Tabu list. By using the new

optimization framework we were able to analyze two different real world large scale EMS systems

with as much as 18 ambulances and 180 demand zones, covering a population of about 800,000

people. The solution approach allows for identifying trade-offs between the different criteria in

reasonable computation time, usually under 20 minutes on a regular desktop based PC.
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5.2 Managerial insights

The planning of EMS systems is heavily dominated by the use of efficiency criteria. We have

seen this trend being mentioned not only in several references cited throughout the document, but

also on opinions and comments that were received after presenting our results at several academic

conferences. Among the efficiency criteria the most commonly used is Coverage (or Expected

Coverage). In fact, we have found that not only in the US but also in other countries (such as

Canada, England, Germany, Netherlands) the minimum standard required for EMS systems is

given as a function of coverage.

We have found that selecting coverage maximization as the optimization criteria can have

undesirable effects on other criteria, including response time, which is also a key performance

measure for EMS systems. In fact, for critical emergencies such as cardiac arrest and similar

time-sensitive incidents, reducing the response time increases the chances of saving lives. In all

of our case studies the coverage maximization approach causes a sacrifice in response time that is

proportionally bigger than the additional coverage obtained. We believe this is a very important

result for practitioners. If the overall coverage resulting from a response time minimization approach

is good enough to meet the regulations that are in place, then minimizing response time is a better

approach. Some EMS planners will not realize this; since they are being measured by the coverage

that they are providing it is only natural that their planning approach would be based on coverage

maximization.

The public nature of EMS systems as well as their key role in saving human lives makes them

particularly subject to close scrutiny. Although efficiency is a must, equity considerations are also

becoming part of the discussion. We believe that our results are important for practitioners because

we show explicitly the trade-offs between several criteria, including some criteria that look for

equitable solutions from several perspectives. Even if a particular solution and operating conditions

are in agreement with the regulation that applies (in particular regarding minimum coverage), the

solution can also cause big differences between individual stakeholders. Our modeling framework

and solution methodology allows for analizing/optimizing several performance indicators, making

it possible to compare different planning perspectives.
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A key component of our modeling and solution approach is the integrated location/allocation

framework. We have shown that the use of a-priori dispatching rules, and in particular to send the

closest available ambulance, generates good (optimal in most cases) solutions only if we are using

efficiency criteria. If fairness considerations are included then the joint approach generates better

solutions. This is also an important result for practitioners looking at improving the planning

of their EMS systems including perspectives other than efficiency. Although sending the closest

ambulance available is the most commonly used dispatching rule, we have shown that deviating

from that policy can have benefits, in the form of more equitable solutions. The trade-offs provide

elements for negotiating the right balance between efficiency and fairness.

5.3 Limitations and future work

We conclude our work by mentioning some of the limitations that we have identified and

that at the same time are areas for potential extension of our work. There are several characteristics

of real world EMS systems that we have left out from our modeling and solution approach. For

instance, it is a typical practice to use a priority classification system for the calls that each EMS

receives. We have assumed that there is only one type of call (or that objectives are the same for

all types of calls), in fact focusing on high priority calls (or life threatening situations), assuming

that if our solutions perform well for these critical calls, the performance for less critical incidents

should be also reasonable good. The inclusion of several call types as part of the joint model and

subsequently solution approach can lead to a closer representation of the system, although the

resulting model will be also harder to solve.

EMS systems can also have different types of ambulances/personnel, such as basic units that

are used only for transportation, and more advanced units that can be used to perform medical

procedures on site or while in transit to a hospital. The use of different types of ambulances can be

combined to identifying the priority of each call, so that different priority also means using one or

another type of ambulance. We have assumed that all the ambulances available were of the same

type, which is a simplification of the system nonetheless commonly used for planning purposes.

A common practice in real world EMS systems is the relocation of ambulances, or dynamic
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allocation of ambulances. This means that instead of determining a unique location for an ambu-

lance, it can be changed over time depending upon the behavior of the system. The relocation can

be the result of identifying that the demand is changing over time, exhibiting particular patterns.

In that case one approach could be running a location model for each period, and then figuring

out a way to move the ambulances between locations (if required) according to the results for each

period. A more extreme approach to relocation is to move the ambulances in real time, so that

whenever an ambulance leaves its current base to perform a service, the remaining idle ambulances

can be relocated. In the latter case a very fast algorithm is required to determine the best relocation

possible. Our approach could not be used in such a scenario because the solution times would be

too long.

In order to better understand some of the trade-offs we have performed bi-objective opti-

mization experiments with our last solution framework. A potential extension to our work would

be to use a pure multi-objective optimization approach, allowing for the generation of the whole

Pareto front, potentially including more than two objectives. There are specialized multi-objective

optimization algorithms, some of them based on meta-heuristics, hence this looks like a promising

area to extend our work.
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