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ABSTRACT 
 
 

The way cell-cell organization of neuronal networks influences activity and 

facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing 

cell patterning technologies have enabled access to and control of in vitro neuronal 

networks spawning much new research in neuroscience and neuroengineering. We 

propose that small, simple networks of neurons with defined circuitry may serve as 

valuable research models where every connection can be analyzed, controlled and 

manipulated. 

Towards the goal of creating such neuronal networks we have applied 

microfabricated elastomeric membranes, surface modification and our unique laser cell 

patterning system to create defined neuronal circuits with single-cell precision on MEAs.  

Definition of synaptic connectivity was imposed by the 3D physical constraints of 

polydimethylsiloxane elastomeric membranes. The membranes had 20µm clear-through 

holes and 2-3µm deep channels which when applied to the surface of the MEA formed 

microwells to confine neurons to electrodes connected via shallow tunnels to direct 

neurite outgrowth. Tapering and turning of channels was used to influence neurite 

polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer 

extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma 

treatment and heated pressure.  

The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and 

laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell 

patterning the outer edge of culture area was seeded with 5x105 cells per cm and 
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incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then 

patterned into the microwells and onto the electrodes using our laser cell patterning 

system. 

Patterned neurons successfully attached to and were confined to the electrodes. 

Neurites extended through the interconnecting channels and connected with adjacent 

neurons. These results demonstrate that neuronal circuits can be created with clearly 

defined circuitry and a one-to-one neuron-electrode ratio. The techniques and processes 

described here may be used in future research to create defined neuronal circuits to model 

in vivo circuits and study neuronal network processing. 
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CHAPTER I 
INTRODUCTION 

 
 

The mammalian brain is an enormously complex organ with immense parallelism, 

adaptability, and pattern recognition capabilities. There are great rewards if we can 

understand, repair, mimic, interface or repurpose the machinery behind these abilities. 

Still, our interests go deeper than just the concrete computational functions; embodied 

within the human brain are the abilities to create, think and decide as well as our 

personalities and ultimately, consciousness. The advancing field of neuroscience and our 

growing knowledge of how our brains and minds work is having an increasingly large 

impact or our society, and this trend will accelerate as the field of neuroengineering 

develops. 

Historically, the study of the brain has been approached from two directions, the 

anatomical and the cellular/molecular or as Kandel and Pittenger divide the study of 

memory[6], the systems level and the molecular level. These two approaches were 

shaped by the available tools and previous knowledge, (or limits thereof). 

 
Neuroscience at the Anatomical Level 

The effort to localize mental processes to specific regions of the brain began in 

the early 1800s, with Gall (phrenology). While the 35 mental faculties ascribed by Gall to 

specific cortical regions may seem ill conceived from today’s perspective, there is still a 

consensus that different regions of the brain perform certain specific tasks and 

communicate with other regions to operate as a system. At the anatomical level, brain 

damage, open brain surgery, and functional magnetic resonance imaging(fMRI) have 
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enabled us to map cognitive functions to specific regions of the brain[6]. One region of 

particular interest has been the hippocampal region of the brain which has been 

implicated in learning and memory. Much of what we have learned about the 

hippocampus has come from electrophysiological studies of ex vivo slices of the tissue 

via patch clamp or MEA. The hippocampus is also notable because of its implication in 

Alzheimer’s disease. 

 Using Camillo Golgi’s sliver chromate stain Ramón y Cajal was able to resolve 

the fine structures of the brain and concluded that nervous tissue was comprised of 

individual autonomous cells, “neurons” rather than a continuous web as previously 

thought. For this discovery Cajal shared the 1906 Nobel Prize in Physiology with Golgi. 

This marks the start studying neuroscience at the cellular level. Confocal and two-photon 

microscopy techniques and fluorescent labeling techniques such as antibody staining and 

transgenic labeling are enabling a clearer vision of how individual neurons connect to 

form neuronal networks in vitro  and in vivo[7] . Yet examining a neuronal networks 

electrical activity and synapse characteristics at a single cell level is a challenge even 

today. 

Neuroscience at the Cellular Level 

Towards understanding the newfound cellular components of the brain, a large 

part of neuroscience research in the 20th century investigated the activities and 

mechanisms of single neurons or single synapses. By mid-century the voltage clamp 

technique was allowing scientists to probe the electrical activity of single neurons, a 
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crucial tool in understanding the ionic and molecular mechanisms of these cells and the 

electrical activities so important to transmission and processing of information.  

Famously John Eccles applied these tools to the reflex arc to study synaptic 

transmission. Hodgkin and Huxley who shared the 1963 Nobel Prize in Physiology with 

Eccles were some of the first to perform intracellular electrophysiology using the voltage 

clamp method to understand and model the initiation and propagation of action potentials 

in the neuron. Using multiple patch clamps as well as chemical stimulation methods 

scientists like Eric Kandel probed the learning mechanisms of individual synapses. This 

experimental method could electrically probe simple invertebrate neuronal circuits, in 

vitro neuronal circuits, or circuits within brain slices. The patch clamp technique has 

enabled our understanding about how single neurons and individual synapses behave, 

including the various receptors, gated ion channels and secondary messengers related to 

learning and memory.  

While neuroscience has made immense progress in elucidating the biology and 

function of the brain and neurons there are still many unanswered fundamental questions. 

We have yet to explain the relation between organization and activity at the intermediate 

level of the brains structure: how do the higher cognitive functions of the brain arise from 

the individual connections between single neurons? Furthermore it is still not clear if 

neurons or synapses are the basic computational unit of the brain[8] or whether the 

complex functions of the brain can even be broken down into a machine composed of 

fundamental units. It may be impossible to simplify the neural activity in such a manner 

Unknown Fundamentals of Neuroscience 
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as the characteristics and activities of neurons, synapses, astrocytes, and non-synaptic 

extracellular signals all contribute. For example, Astrocytes were until recently 

considered only a passive component of the brains signal processing functions. However, 

it is known that astrocytes increase the number of synapses, and that increase in synapses 

leads to an exponential increase[9] in network activity[10]. Astrocytes also play 

important roles in the recycling of neurotransmitters at synapses and may be important to 

synaptic information processing[11]. Neurons and glia communicate intimately [12-14]  

yet astrocytes have largely been left out of in vitro neuronal network models, and the 

mathematical modeling of synapses and neuronal networks. We believe that the field of 

neuroscience lacks a practical tool for creating defined and simplified heterotypic 

(including astrocytes) neuronal networks in which every intercellular connection is 

identifiable, and every cell has a dedicated electrophysiological, input and output. For a 

full and good understanding of neuronal network processing it is absolutely necessary to 

include astrocyte components in the investigation of neuronal network structure/function. 

Even if we disregard the indefinite roles of astrocytes and concentrate only on 

neuron to neuron connections, understanding the architecture of neuronal circuitry is still 

a tremendous challenge. The human brain contains and estimated 100 billion neurons, 

each connected with 5,000-10,000 other neurons for a grand total of  a quadrillion neural 

connections[15]. This complexity is unrivaled by any other biological system and 

facilitates similarly unrivaled mental capabilities. It is the complex connections between 

neurons that give rise to the incredible sensing, learning, memory and thinking abilities as 

Neural Connections Give Way to Function 
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well as consciousness. While we are beginning to understand certain circuits, such as 

those which produce vision, other higher levels of thought, decision making, and memory 

are not understood. One problem is the difficulty in monitoring the activity the individual 

neurons that make up complex networks. Tools and techniques that enable reduced 

complexity and/or increased access in order to explore the roles of cell-contact and 

network architecture in computational capability are extremely important. The ability to 

identify single cells and individual connections is a key prerequisite to understanding the 

components and conditions needed to produce computational networks with specific 

functions. In this way it is possible to decipher, test and prove models for neuronal 

network logic. By manipulating and monitoring individual neurons and neuronal 

networks we can understand how single cell/connection changes shape network 

development and operation. This same process may also be applied toward 

neurodegenerative diseases. The initial causes and mechanisms of disease progression 

from a single cell/location through neuronal circuitry or regions of the brain are still 

unknown for Alzheimer’s disease and Amyotrophic lateral sclerosis. Simplified 

heterotypic neuronal circuit models could provide a valuable research models for these 

diseases which cannot be monitored or manipulated at such a scale in vivo or even with 

conventional in vitro cultures. 

To create in vitro research models which offer control over geometry, cell types, 

and cell-cell interactions researchers have developed many cell patterning techniques by 

borrowing, bending and building upon microfabrication techniques of the microelectronic 

Cell Patterning Technology 
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industry. Photolithography may be used to create surface patterns of cytophilic or 

cytophobic chemicals to control areas of cell attachment. Photolithography may also be 

used as a first step to create molds for elastomeric devices including stamps for 

microcontact printing (µCP), elastomeric membranes, and microfluidics. Additionally 

there are jet-based printing techniques and laser printing and manipulation techniques for 

controlling the geometry of cells cultures. In native tissues cells are highly ordered, 

especially neuronal networks, these technologies offer the ability to organize cells in 

order to mimic, isolate, and study how the geometry and organization of cells shape their 

development and function[16]. 

The patch clamp technique remains an important and useful electrophysiological 

tool with the unique ability to probe single ion channels with its micropipette and 

examine actual electrical properties of the membrane including conductance, potential, 

and capacitance. Yet it is the micropipette and the associated headstage and 

micromanipulators that limit the number of electrodes that can physically be employed. 

To investigate neuronal network activity, many simultaneous recordings are required. 

Microelectrode arrays, like cell patterning techniques, borrow microelectronics 

technology for the study of cell biology. Neuroscience has reached this stage of inquiry 

by building upon our knowledge of neurons at the cellular and molecular level and 

through the development of microelectronic devices.  

Microelectrode Arrays 

In contrast to the patch clamp technique MEAs are only capable of recording of 

extracellular potentials produced by a cells ionic current as they travel through the 
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extracellular environment. For this reason, MEAs are used only to examine the action 

potential or spike activity from neurons and neuronal networks. However, a prevailing 

concept is that neuronal information is processed, transmitted and stored as a code of 

spikes. A typical MEA may have 60 electrodes versus the 2-3 electrodes that may be 

employed simultaneously with a patch clamp set up. This allows for recording many 

more points in the network, but does not allow for specific neurons to be probed, as the 

neurons are usually randomly cultured at high density over the electrodes. 

Combining cell patterning technology with microelectrode arrays in order to study 

neuronal networks is an obvious idea at least a decade old. In this time it has been 

demonstrated to be a powerful tool with clear potential, but it is still relatively new and 

our abilities are still advancing. Because the electrodes of a planar MEA cannot be 

brought to a cell the way a patch clamp micropipette can be, patterning not only allows 

for refining network structure, but bringing it to  and keeping it on the electrodes. 

Microcontact printing is the most popular method and has been used to create more and 

more restricted networks. Bruce Wheeler’s group has worked extensively with µCP to 

create rows and lattices of neuronal circuitry [17-19]. The use of elastomeric membranes 

with microtunnels has been gaining interest[20], but has not yet been employed for single 

cell resolution circuits. Among research which does achieve single cells resolution [21, 

22] the cells must be actively deposited into the microwells. This deposition is 

traditionally achieved via a micro-manipulated micropipette, which is tedious, risks 

contamination, and is limited in its ability to securely seat cells in 3d microstructures. The 

Engineering Neuronal Networks 
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direction that neuronal network engineering is advancing is clear, though success has 

been limited. 

During the course of the research presented in this dissertation, our guiding goal 

has been to establish a method for producing fully-defined, heterotypic, single-cell-

resolution neuronal networks with full electrophysiological access. Toward this end the 

objectives of our research were : - (a) to develop a laser cell patterning system capable of 

depositing single neurons to the electrodes of an MEA, (b) create elastomeric membranes to 

confine neurons to the electrodes of the MEA and direct neurite outgrowth towards adjacent 

electrodes, (c) use these systems to create viable heterotypic neuron-astrocyte circuits with 

defined connectivity and single cell resolution (d) demonstrate electrophysiological 

stimulation and recording of these circuits with the microelectrode array and assess signal 

propagation characteristics.  

Research Goal 

This dissertation will discuss the history, methods and motivation of defining 

neuronal networks on microelectrode arrays, as well as briefly reviewing pertinent 

background information on neurons, astrocytes, neuronal network electrophysiology, 

surface modification, contact guidance, optical force manipulation and microfabrication 

techniques. We will create various laser patterned neuronal circuits with single cell 

resolution and examine the complications involved with creating, culturing and 

electrophysiological probing single cell resolution neuronal circuits. We will complete 

our analysis by examining the viability and polarity and synapse formation of neuronal 

circuits with different cell types, cell numbers, and with or without astrocyte contact. 
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Finally we will discuss the limitations of the current process and future possibilities for 

these processes and for creating defined neuronal circuits. 
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CHAPTER II 
LITERATURE REVIEW 

 
 

 
Neuronal Network and Cell Components 

Neurons 
 

Neurons are electrically active cells which convey electrical signaling throughout 

the body and brain. They are the primary computational cells of the brain. Neurons are 

polar cells with four specialized regions, the axon, terminals, cell body (soma) and 

dendrites. Neurons are polarized cells which send signals out along their axons which 

form synapses at terminals upon all regions of other neurons to form axodendritic, 

axosomatic, axoaxonic synapses. This polarity is a crucial aspect in neuronal circuitry. 

Both axons and dendrites may be called neurites, which are the slender outgrowths which 

develop as a neuron matures. Neurites may be highly branched allowing for a single 

neuron to synapse with thousands of others neurons. 

Synapses are points where neurons connect with other cells by translating an 

electrical action potential into a chemical signal. Although the previously mentioned 

axodendritic, axosomatic, and axoaxonic synapses are the most numerous, synapses may 

be formed between dendrites (dendrodendritic) and cell bodies (somasomatic). The 

location of synapses has an effect on its influence or weight in contributing to or 

inhibiting and action potential. Synapses are small open spaces where vesicles of 

neurotransmitters are released from the presynaptic neuron into the synaptic cleft which 

is between 20-30nm across. The vesicles activate ligand-gated ion channels (receptors) in 
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the postsynaptic neuron (or other cell), which may activate more ion channels or 

secondary messengers through a cascading mechanism. 

The electrical signal 

produced in the postsynaptic 

neuron is a postsynaptic potential 

(PSP). Synapses may be excitatory 

or inhibitory depending 

neurotransmitter of the presyanptic 

neuron and the receptors of the 

postsynaptic neurons, and PSPs can be 

inhibitory (IPSP, hyperpolarizing), or 

excitatory (EPSP, depolarizing). A 

neuron may receive many inputs, and 

integrate the resulting PSPs (Figure 2.1). If the summation and integration of all PSPs 

sufficiently depolarizes the neuron from the resting potential (65-70mv) beyond a 

threshold (40-50mv) an all-or-nothing action potential is initiated by positive feedback 

from voltage gated ion channels in the membrane of the neuron. An increased density of 

these ion channels at the area on the soma adjacent to the axon termed the hillock makes 

it an originating point for action potentials. The action potential travels along the 

membrane via saltatory conduction, along the axon until voltage gated channels in the 

axon bulb trigger the release of synaptic vesicles.  

Figure 2.1: The cell membrane of a 

neuron integrates the PSP from several 

synapses. Carlson, 2007[2] 
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Because the action potential is an all-or-nothing signal, it is not graded and no 

information is believed to be conveyed in its amplitude. Rather, information is coded in 

the spike rate and timing, and in the characteristics and strengths of the synapse. Synapse 

strengths may be modified by synchronized firing (Hebbian[23]) and back-propagation of 

signals, as in pyramidal hippocampal neurons [12]. This modification of synapse strength 

is termed plasticity. Hebbian plasticity and back-propagation of signals are important 

mechanisms of learning and memory. Information is interpreted by summing and 

Figure 2.2[2]: A postsynaptic neuron performs spatial and temporal summation of 

excitatory and inhibitory PSPs. Individual PSPs have small amplitudes (0.1-10mV) and slow 

attack (0.4mV/ms) rates which are singularly are usually in sufficient to trigger an action 

potential. If the summed membrane potential exceeds a threshold an action potential results. 

Carlson, 2007[2] 



13 

 

integrating a large number of inhibitory and excitatory PSPs as depicted in Figure 2.2. 

Typically several excitatory potentials are required to generate a spike, however a single 

presynaptic neuron can have many synapses with a single postsynaptic neuron making it 

capable of triggering a spike in a postsynaptic neuron[21]? Neuroscience has yet to 

determine the basic computational unit of the brain, whether it is the neuron, or the 

individual synapse[8]. The ability to visualize what connections are present in a circuit, test 

their individual responses, and compare these with the dynamic activity of the entire circuit 

or network is vital to clarifying the issue.  

Glial Cells 

Neurons are supported by glial cells and in the brain astrocytes are the primary 

glial cell and outnumber neurons 10 to1. Astrocytes support neurons by providing growth 

factors, recycling neurotransmitters, regulating metabolism, protecting form excitotoxic 

factors and maintaining homeostasis. Astrocytes have been shown to play an important 

role in synaptic plasticity, including LTP, and have long been known as a factor in 

electrical activity through their vital role in axon physiology (saltatory conduction). Glial 

cells are important in neuronal network development including the control of neural stem 

cell differentiation, neuron guidance, and synaptogenesis. In some instances such as the 

neuromuscular junction[24], glial cells are required for efficient innervations.  

Developmental Role of Glia 

Glial cells play important roles in development, influencing the fate of 

differentiating cells, guiding neuron motility and neurite extension, and even acting as 
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stem cells. Glial cells release factors that can induce a change in cell fate toward 

neurogenesis[25]. During development, radial glia are an important guide for neurons to 

follow to their destination in the cortex[26]. Glia cells are required for efficient 

innervation at the neuromuscular junction in vitro [24]. In fact some cells we refer to as 

glia cells can function as neuron stem cells.[27] 

Support and Protection by Glia 

Glial cells play an important role in protecting neurons from damage. In fact, 

malfunction of the glial system has been closely linked in the physiopathology of many 

neurodegenerative diseases. Astrocytes protect neurons from oxidative stress[28] through 

several activities including the release of catalase[29] glutathione precursors[30] 

ceruloplasmin[31] and the recycling of vitamin C[28]. The neuron-protective effects of 

astrocytes begin at astrocyte/neuron ratios as low as 1/20[29].  

Glial cells support neurons in many ways. Glial cells are a mediator between the 

vasculature in the brain and neurons, playing an important role in neurovascular 

function[32]. This includes regulating dilation of arteries to increase nutrients to active 

neurons as well as forming and release energetic substrates including glycogen and 

lactate and uptaking glucose[33]. Astrocytes are vital to maintaining healthy glutamate 

levels. Glial glutamate (Glu) transporters are the primary pathway for actively removing 

extracellular Glu, maintaining it at a low level, below 1 mM [34]. Through excitatory 

amino acid transporters (EAATs) glial cells terminated excitatory synaptic transmission 

and protect cells from prolonged influx of a calcium and excitotoxicity. Because of their 
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protective activities, and a related role in inflammation, glial cells are implicated in 

several neurodegenerative diseases including AD and ALS[35].  

Excitability of Glia 

There is still some debate weather glial cells are[36] or are not[37] excitable. It is 

clear that glial cells release neurotransmitters when stimulated by neurons and have a 

variety of neurotransmitter receptors[38]. Physically glial are have intimate contact with 

the neuron-neuron synapse[39] and are ultimately responsible for removal of glutamate 

from the synaptic cleft, and stopping synaptic excitation. Additionally glial cells can 

modulate the level synaptic transmission, releasing a glutamate receptor agonist to 

enhance excitatory transmission or releasing ATP to suppress transmission[40]. If one 

considers an action potential and saltatory conduction as the requirements for 

‘excitability’ than glial cells are not excitable. However, if a transient electrical 

depolarization in response to receptor activation leading to neurotransmitter release from 

voltage-gated[41] channels is the requirement than glial cells are excitable, basing their 

excitability on intracellular Ca2
+ variations[42]. Even if astrocytes are not excitable, that 

does not mean they do not play a role in transmitting signals through neuronal networks 

(Figure 2.3).  

Modulation of Synaptic Plasticity by Glia 

While it is not agreed whether glia are excitable, there is consensus that they are 

synaptically active. The ‘tripartite synapses’ between a pre- and postsynaptic neurons and 

the adjacent glia may be considered a functional unit[43]. Astrocytes my release 
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glutamate at neuronal synapses, extending 

the influx of calcium which can have 

potentiating effects. Glial cells  also release 

soluble N-ethylmaleimide–sensitive factor 

attachment protein receptor (SNARE) 

protein which activates metabotropic 

glutamate receptors (mGluRs)[44]. Glial 

cells regulate post-synaptic AMPA receptor 

density, and by the release of D-serine can 

help induce LTP and LTD[45]. It has been 

shown that astrocytes are actively involved 

in the transfer and storage of synaptic 

information[44]. In Haydon’s review of the 

glial role in synaptic activity[5] he calls for 

the inclusion of glial cells in our models of 

neuronal network activity. The glial role in 

synaptic plasticity has been reviewed 

recently[46, 47] and it is clear that glial 

cells not passive as once believed. 

Consequently, it is important to study how 

they affect neuronal network activity and 

Figure 2.3: The role of astrocytes in 

neurosignalling. A) Astrocytes remove and release 

Glutamate at synapses. B) Astrocytes can transmit 

intercellular signaling between neurons. Haydon, 

2001[5] 
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include them in neuronal network models.  

Cell Culture 

Our research required considerable time and development of culturing practices 

for primary neurons and astrocytes from both chick and rat. While we were compelled to 

study the literature reporting on these techniques we believe a full review of the subject is 

not warranted here. However, there are two specific issues which influenced our research 

choices and should be briefly addressed. These have to do with differences between chick 

and rat neurons, and the use of glial conditioned media. 

Culture of Neurons 

For in vitro dissociated neuron cultures, rat cells are the most widely used and 

chick cells are also popular. The advantages of using chick neurons are the ease of use 

and cost efficiency. Because the animal develops inside an egg, and cells are harvested 

from embryonic chicks, specimen can be kept in a counter top incubator with only water 

and electricity required and minimum upkeep. There are two primary disadvantages of 

the chick as a model, the short cell lifetime and the questionable relevance of an avian, 

rather than a mammalian model. To date, there have been no published research 

investigating or using chick neurons cultured on MEAs, though their activity has been 

studied with patch clamp[48]. Chick neurons have been used repeatedly in non-

electrophysiological in vitro studies of DRG, motor neurons, and cortical (forebrain) 

neurons. Heidemann et al describe the techniques for chick forebrain culturing in chapter 

four of Methods in Cell Biology volume 71[49], which is an invaluable source for anyone 
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culturing chick neurons. One great advantage of the forebrain neuron culture is that it is 

nearly pure, removing a purifying step, and the nuisance of overwhelming glial or 

fibroblast proliferation. In chapter two of the same text He and Baas give a good review 

of culturing peripheral neurons, including rat and chick DRG. And Chapter 5 Kuhn 

describes the techniques for culturing chick spinal motor neurons (SMN).  

The use of chick neurons in MEA experiments has not been reported, there are a 

few possible reasons. While chick forebrain neurons have many morphological 

similarities to embryonic rat hippocampal neurons, the fine processes do not fully 

develop into dendrites seen stage 4 and 5 hippocampal cells[50]. Another limiting factor 

may be the unsuitability of the cells for long term culture, or possibly a lack of 

appropriate long term culture techniques. For neuronal network experiments on MEA 

most researchers have chosen to study the activity of rat cortical cells[51] or hippocampal 

cells[52] which are usually harvested from embryonic day 18 (E18) rats. Because of the 

popularity of this cell source, there is a wealth of harvesting and culturing protocols, and 

the larger size of the animal makes many dissections (i.e. DRG) easier than in chick. 

However the cost of housing animals is substantial. An interesting alternative is available 

through Brain Bits LLC, a company that sells micro-dissected brain regions from 

embryonic rats, which can be a cost effective alternative.  

Glial Contribution 

In light of the wide range of important activities performed by glia (glial section), 

a glial co-culture or conditioned media approach should be considered when modeling 

the nervous system for in vitro investigation. Such preparations are likely to improve 
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culture viability and function, and improve the model by more closely mimicking the in 

vivo environment. More importantly, when investigating neurodegenerative disease or the 

learning process and synaptic plasticity of neuronal networks inclusion of glial cells is 

vital, if not the focus of the research.  

Astrocyte Conditioned media 

Conditioned media is essentially used media. The media is ‘conditioned’ by 

exposure to a cell culture, accumulating trophic factors and soluble signals, as well as 

waste products. The use of media conditioned by a higher density cell culture, or culture 

of a different cell type can be used to re-introduce trophic factors that may be to diffuse 

due to low density cell culture or missing because of lack of a supporting cell type in the 

culture. Specifically, astrocyte conditioned media has been shown to improve synapse 

formation [53]. Additionally, conditioned media can help to regulate density 

dependant[54] proliferation that is mediated by autocrine signaling[55] (i.e. glial and 

myoblast). Conditioned media may also be beneficial for what it doesn’t have. Glial 

conditioned media has been used to deplete a serum supplemented media of glutamate, 

improving cell survival[56]. Conditioned media is generally exchanged before the normal 

lifespan of the media, so as to retain nutrients and reduce waste products. It may also be 

mixed with unconditioned media.[57]. 

 However, not all cell signaling and trophic effects are carried out via 

soluble, diffusible, global factors. Cell-cell contact can be very important to the function 

of a cell type. For example astrocytes extend processes that contact neuronal synapses 

where they remove excitatory amino acids[58]. Blocking of EAA transporters has been 
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shown to result in neuronal and glial cell death[59]. Ultimately, one must consider the 

processes being studied when choosing whether or not to use a conditioned media, or a 

co-culture system in the experimental design. 

Almost all tissues and organs are comprised of cells with an organized structure 

which facilitates function. The brain itself has many different functions and regions made 

up of different neuron types with distinct morphologies and unique network architectures. 

Due to the tricky access to and  enormous complexity of brain circuitry, the task of 

correlating the neuronal morphologies and network architecture of specific regions with 

their function is difficult and largely undone[60]. A reduction in complexity and 

increased access are both achieved by in vitro cultures of dissociated neurons. However, 

in random 2d in vitro neuronal networks, it is not possible to monitor every neuron 

separately, nor is it possible to observe and map all physical connections between cells. 

To achieve these goals some type of cell patterning must be implemented to reduce the 

number of cells and the complexity of the network. 

Cell Patterning Techniques 

There are many different cell patterning techniques, most of which are adaptations 

from other technologies including photolithography and inkjet printing. These techniques 

may be employed for neuronal and non-neuronal cells alike. Here we describe only a few 

cell patterning techniques which are used or particularly relevant for neuronal network 

definition. These include surface patterning with chemicals that modify the attachment of 

cells, microfluidic/elastomeric membrane patterning which uses physical restriction and 

contact guidance, and finally optical force patterning techniques. Microfabrication has 
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become a significant tool in cell biology and tissue engineering. In fact a high impact 

journal devoted to microfabricated devices (lab-on-a-chip) was created in 2001 and 

publishes research including surface patterning, microfluidic, and microelectrode array 

techniques.  

The most common patterning method used with MEAs is to surface pattern 

cytophilic and/or cytophobic factors (determined by a cell’s adhesive properties) using 

microcontact printing. Typically, in this technique a PDMS stamp is primed with a 

cytophilic molecule such as Laminin. The stamp is then aligned to the features of the 

MEA and brought into contact with the MEA surface, transferring the Laminin. 

Randomly deposited neurons will selectively adhere to the Laminin pattern and develop 

into a patterned network. Because there is still a random component to the patterning 

process, each electrode does not necessarily receive the same number o neurons, which 

may also attach onto bars of the pattern. Furthermore, the fidelity of this type of 

patterning degrades overtime. Most importantly, controlling the placement multiple cell 

types is difficult and limited by the number of cell specific adhesion molecules. 

Cell Patterning Techniques - Surface Patterning 

 During development neurons are guided by repulsive and attractive cues arising 

from contact with other cells and/or the extracellular matrix (ECM) or by diffusible 

molecules. It has been shown that both surface bound and diffusible molecules are 

responsible for survival and guidance of neurite outgrowth, and that they work in a 

synergistic way. Surface bound molecules may be used to promote or reduce cell 

attachment to a substrate by making it cytophilic or cytophobic. By patterning attractive 
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or repulsive chemicals to the surface with a technique such as photolithography 

researchers may control cell attachment, migration and neurite extension. Kleinfeld and 

colleagues used photolithography to pattern self-assembled monolayers of alkyl- and 

aminosilanes in a pioneering example of this technique[61]. The contrasting cytophilic 

and cytophobic regions produced defined electrically excitable networks of cerebellar 

granule cells and Purkinje neurons. This kind of surface patterning combines the use of a 

patterning technique (photolithography), and a surface modification technique 

(silanization). 

Cell patterning Techniques - Surface Modification 

Surface modification may be employed for a number of reasons including implant 

and biomedical device biocompatibility or to create self assembled monolayers to model 

surface interactions or to create biochemical assays[62]. Here we are reviewing two of 

the most common reasons pertaining to in vitro  cell culture, to increase or decrease cell 

adhesion. Many surface patterning methods to control neuronal network geometry use a 

cytophilic/cytophobic surface modification contrast[63].Cell adhesion is influenced by 

several factors including topography, surface charge, surface hydrophobicity, surface 

chemistry, and protein interactions. The basic chemistries used for surface modification 

are oxidation, reduction, addition and elimination. Oxidation is convenient and can be 

used on most of the common materials used in cell culture including glass, polystyrene, 

PDMS, and the MEA electrodes made of indium tin-oxide (ITO) and the insulating layer 

of silicon nitride (Si3N4). 
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Surface Modification - Oxidation 

 Once PDMS is polymerized and crosslinked into a solid form, it surface is 

hydrophobic, which may require surface modification for proper wetting in microfluidic 

techniques[64] and improved cell attachment. Oxidizing the surface is usually done via 

O2 plasma treatment, which replaces the –CH3 groups with –OH groups converting the 

surface from hydrophobic to hydrophilic and adds some –O- groups which give the 

surface a negative charge. Vickers have developed a extraction/oxidation process to 

generate hydrophilic PDMS[65]. This process combines the use of solvents 

(triethylamine, ethylacetate and acetone) to remove PDMS oligomers and the subsequent 

treatment with O2 plasma to convert the surface groups to SiO2. They found that the 

extraction process increase the lifetime of hydrophilic surface groups from 3 hours on 

non-extracted PDMS to 7 days in extracted PDMS. This resulted in increased efficiency 

for electro-osmotic flow and electrochemical detection in the microfluidic device. 

Besides increasing wetting to allow for better and more uniform coverage, and improving 

cell adhesion by making the surface hydrophilic, and the –OH groups added by oxidation 

are useful for silanization.  

Other groups have used the extraction process to treat microfluidics and improve 

biocompatibility. Millet and colleges compared the survival and neurite outgrowth of 

neurons cultured in either untreated, extracted, or autoclaved PDMS microfluidic 

tunnels[66]. They found that the extraction process improved neuron survival, with lesser 

improvement seen in autoclaved PDMS versus the untreated PDMS. They believe the 
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short chain oligomers may be cytotoxic and extraction removes them while autoclaving 

increases the degree of polymerization, also reducing oligomers. 

Oxidation of polymers may also be achieved via chemical means with acids or 

bases, with the advantage that specific functional groups are created on the surface which 

can be used in further covalent modification. However, these acids and bases may be 

damaging to electrodes and can leave behind unwanted salts. Because of the wide 

publication and excellent results of plasma oxidation, these will not be reviewed.  

Surface Modification - Physiosorption 

Physiosorption can be used to attach proteins to a surface, the proteins adhere via 

Van der Waals or electrostatic forces only [67] in physiosorption. Physiosorption is a 

very simple technique for modifying surfaces because it requires no specified chemical 

reaction, only a clean and activated substrate. This can be achieved by sonication in a 

cleaning solvent such as acetone for hydrophilic surfaces or by oxidation or ashing in 

plasma cleaner. Activation via plasma treatment is achieved when weak boundary layers 

(especially organic molecules) with the lowest molecular weight are removed, and the 

surface becomes oxidized, increasing polar groups and increasing adhesion and wetting 

properties. Oxygen radicals may also break bonds to promote 3D cross bonding. A 

limitation of physiosorption is a possibly shorter lifetime of the modified surface because 

of weak interactions.  
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Surface Modification - Functionalization 

Functionalization is the altering functional group to enhance attachment of macro 

molecules [68]. When functionalizing a polymer surface the goal is to create a surface 

layer of well-defined functional groups. This can be achieved by the use of oxidizing 

solutions such as sulfuric or nitric acid, or by hydrolysis using a base such as sodium 

hydroxide when an electron deficient carbon group is present. In the case of 

microelectrode arrays, these acids and bases may not be appropriate because of their 

reaction with the metal electrodes. PDMS[69] ITO functionalization [70] 

Surface Modification - Polyethylenimine (PEI) 

Polyethylenimine (CH2CH2NH) n is an organic cationic polymer. Possessing a 

high density of amino groups that can be protonated, PEI has a positive charge and has 

been shown to increase the attachment of cells such as neurons [71], which would 

otherwise attach only weakly to a glass substrate. However PEI has been shown to be 

unfavorable to human Schwann cell proliferation, at least in comparison to PDL, 

Fibronectin, Laminin or cross linked gelatin.[72]. Lakard and colleagues coated fluorine-

doped tin oxide (FTO) with several polymeric films, and found PEI to improve 

attachment most[73]. When compared with other polymeric amines such as polyornithine 

for the culturing of fetal rat neurons, its effectiveness was equal[74]. While native PEI is 

water soluble, it is possible to hydrophobize PEI by combining the branched form with 

octadecanyl groups bound to 2 mol% of the amino groups of the PEI. This form of PEI, 

polymer AB-30, is soluble in ethanol, but not in water or cell media. This modified PEI 

film may be especially effective for long-term studies because it has a sustained coating 
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lifetime, and sustained cell attachment effects.[75] PEI has shown good cell adhesion 

results for neurons in vitro  when used with Laminin in a layer-by-layer (LbL) coating 

technique[76]. The same group used this method to coat electrodes implanted into the 

brains of rats, in an attempt to improve the long-term reliability of implanted 

electrodes[77], one of the major challenges facing chronic implantation. The LBL 

technique has also been employed with Heparin to create a surface that repels cell 

adhesion[78]. PEI is easily coated on indium-tin oxide (ITO)[79], a common electrode 

material. Though the use of PEI is well documented, it is its use is not consistent. It has 

been used at concentrations as low as 0.001% w/v[80] and as high as 0.1% w/v[81, 82]. 

Another group tested several concentrations of PEI (0.025, 0.25, 2.5, 25 and 250ug/ml) 

found that 25ug/ml (0.0025%) was optimal for retaining the most HEK-293 (human 

embryonic kidney) cells subjected to repeated washings. [71] Furthermore, some have 

used it diluted in nanopore filtered water[71], while it is also commonly diluted in a 

borate buffer. 

Surface Modification - Poly-L-lysine (PLL) 

Poly-L-Lysine is a synthetic cationic poly-amino acid. Poly-amino acids including 

Poly-D-lysine (PDL) and Poly-L-Ornithine (PLO) have properties that mimic proteins, 

which can be exploited for increasing the adhesiveness of cell culture and tissue 

engineering substrates. Cell adhesion is improved by non-specific binding due to 

increasing electrostatic interactions. Glass and oxidized surfaces have a negative charge, 

as does the cell membrane; the protonated (positively charged) amino groups of PLL 

increase the electrostatic interactions. Poly-amino acids may also be used for drug 
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delivery and the delivery of nucleic acids. PDL differs from PLL in its d-enantiomer, 

which, produced in plants is less prone to animal protease-mediated breakdown, 

extending its lifetime in culture. PLL can be toxic to cells if it is unattached from the 

surface or present in too high of a concentration. PLL is applied to a cell culture surface 

at a concentration of 0.1- 1.0 mg/ml. A higher concentration of PLL can be used in media 

containing serum than in serum free media. PLL can inhibit neurite outgrowth  in 

sympathetic neurons[83], possibly because it is too ‘sticky’. Low molecular weight 

(average) 27,000 is more effective at promoting neuritogenesis than high molecular 

weight poly-lysine (130,000) when tested at concentration of 5micrograms/ml[84].  

 In addition to being applied to glass or oxidized polymer surfaces PLL 

may be attached to a SAM[85]. Layered films have also been implemented with PLL and 

poly(L-glutamic acid) (PGA)[86]. PLL is often used as an intermediate layer between 

glass and a natural protein such as Laminin, and can even be conjugated to Laminin 

before deposition[87]. 

Surface Modification - Natural Adhesive Proteins 

Cells naturally contact proteins in the extra-cellular matrix (ECM), they have 

evolved to specifically bind to target proteins via integrins, and interpret trophic signals 

from their interaction with ECM proteins[88, 89]. It is therefore logical and wise to use 

biological proteins on a surface when possible. This can not only improve attachment and 

viability, but may improve cell health and function such as accelerated neurite outgrowth. 
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Natural Adhesive Proteins - Collagen 

Collagen is a fibrous protein made up of smaller collagen rods about 300 nm long 

and 1.5nm in. It is a triple helix formed from polypeptide strands. These rods are packed 

together to form fibrils, which in turn are combined to make collagen fibers. There are 

many types of collagen, collagen IV is found in the basal lamina, which is crucial to 

neuronal development. It is often employed as a gel for exploring neuronal phenomenon 

in 3D cultures[90, 91]. The presence of collagen in a 3D extracellular matrix and its 

effect on neurite out growth are complex[92]. Alignment of collagen fibers can be used to 

influence the direction of axon extension and glial migration[93].  

Natural Adhesive Proteins - Laminin 

Laminin is a cross shaped glycoprotein and ligand that helps make up the extra-

cellular matrix (ECM). It is an 800kDa heterotrimeric ECM molecule, composed of three 

chains, alpha, beta, and gamma. The Laminin family of heterotrimers play a role in many 

areas of the body including the muscle, brain and kidney[94]. Receptor mediated 

polymerization of Laminin networks are important to the formation of basement 

membranes[95]. High resolution video microscopy has shown that Laminin has  rapid  

effects on the growth cone, dramatically accelerating the transport of membranous 

organelles microtubules to the lemellipodium, increasing extension rate[96]. Laminin and 

its ligand Nidogen have been found to be essential for growth cone turning in vivo[88]. It 

is the most commonly employed ECM protein in neuronal cultures. 
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Natural Adhesive Proteins - Entactin/Nidogen 

Entactin also known as Nidogen binds Laminin to Collagen in the ECM along 

with Perlecan. It is important in directing the migration of neurons and Schwann cells, 

and is a pro-survival cue for Schwann cells[89]. As mentioned above, it facilitates the 

some neural functions of Laminin[96]. 

Natural Adhesive Proteins - ECL 

All the above proteins are part of the extracellular matrix. Instead of just 

employing one of these proteins it may be beneficial to provide an extracellular 

environment that more closely resembles the real extracellular matrix. ECL is a 

commercially available mixture of Entactin, Collagen, and Laminin, The role of the ECM 

extends beyond direct interaction with cells, and it also mediates communication between 

cell types. For example, ECM proteins provide important cues for Schwann cell 

proliferation, migration, and activation, and induce Schwann cells to release trophic 

signals improving neurite outgrowth[97].  

Microfluidic/Elastomeric Membrane Techniques 
Extraction of Short Oligomers from PDMS Membranes 

 
As mentioned in the biocompatibility section extraction of short oligomers can 

improve cell viability, and help extend the life surface modifications. This is relatively 

easy process that can be achieved using a number of polar solvents. A detailed analysis of 

the compatibility of different solvents with PDMS has been performed Lee et al[98]. 

Effective solvents include triethylamine, ethyl acetate, pentane, xylene isomers, 

ethylbenzene, acetone and ethanol. These solvents do cause swelling which can be 
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advantageous in removing PDMS membranes form rigid molds. However, when 

extracting oligomers, to avoid cracking and tearing from uneven shrinkage the PDMS 

structures should be soaked in progressively lower solubility solvents[99]. Lee and others 

from Whiteside’s group at Harvard examined the influence of PDMS with varying 

treatments and compositions on the attachment and growth of several mammalian cell 

types.[100] they found that PDMS with excess curing agent was the allowed the most 

cells to attach and survive, followed by PDMS with excess curing agent and then PDMS 

that was extracted. Normal PDMS was the worst. They did not test PDMS with excess 

curing agent and extraction. They found oxidation (without physiosorption) to reduce the 

number of cells that attached and grew. Finally while short-chain oligomer extraction 

improves the viability of most cell types cultured on PDMS, it may be best not to use 

extracted PDMS with microcontact printing techniques as short chain oligomer 

contamination has been shown to improve oligonucleotide and consequently transfer. 

absorption[101]. 

Microfluidic/Elastomeric Devices 

Microfluidic devices are an attractive technology for creating networks with pre-

determined connectivity for several reasons. If properly constructed microfluidic 

channels and compartments are capable providing patterning definition and retention well 

beyond the lifetime of a neuronal culture allowing for longer pattern fidelity than 

attainable with degradable surface patterns as well as adding the ability to be reused. 

Recognizing this strength Morin and colleagues have employed PDMS microfluidics on 

MEAs to define connectivity, but did so with very large (600µm2) microwells[102], 
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which were far too large to acquire the single cell resolution networks. Work by Dworak 

and Bruce Wheeler’s group employs a similar approach using microtunnels in a PDMS 

membrane to guide the neurites of large neuron cultures over a set of electrodes[20]. 

PDMS microstencil[103]. Employing such elastomeric membranes Claverol-Tinture and 

colleagues were able to guide the axon of a single invertebrate neuron over a series of 

electrodes[104].  

The small volumes inside microfluidic channels can aid in culturing neurons at 

very low densities. Millet and coworkers have successfully cultured neurons in a simple 

microfluidic channels at densities not possible otherwise[66]. The channels were also 

used to coat the substrate with PDL and Laminin and to slowly flow media over the 

neurons which improved viability.  

Finally, the shape of microfluidic channels may be used to influence the turning 

of neurite outgrowths. Francisco and colleagues cultured neurons in non-microfluidic 3D 

structures to study the effects of channel geometries on neurite extension. They were able 

to regulate the axon guidance and by varying the angle turns in channels[105]. These 

topographical guidance cues were shown to influence neurite outgrowth as early as 

1987[106].  

While the strengths of microfluidic devices are applicable to maintaining low 

density neuronal network health and structure, they are not well suited to initial pattern 

formation. Placing cells to specific points on a substrate will require a different approach. 
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Optical Force Manipulation 

In all of the neuronal network patterning previously discussed, placement of 

individual cells to specific wells or electrodes was performed by contact manipulation 

with a micropipette. This process is time consuming and involves cumbersome 

micromanipulators which usually necessitate an open environment prone to 

contamination. Additionally, the access angles available when using a micropipette and 

micromanipulator may not allow easy placement of cells in a 3D structure, as 

manipulation is achieved by dropping, nudging or flowing a cell using the micropipette.  

When one applies laser guidance and laser trapping systems for biological use, a 

wavelength of 800nm is usually used to reduce cell damage. Work by both 

Vorobjev[107] and Liang[108] has shown that optical traps using lasers with wavelengths 

in the 800nm range have little effect on cellular processes for exposure times less than 3 

minutes. When Odde and Renn used and 800nm wavelength laser in their first laser 

guided direct writing of chick neurons they found that the cells remained viable even 

after hour long exposures at high intensities of over 100W/m2 [109]. In 2002 Mohanty 

used the COMET assay to assess the DNA damage to cells exposed to micro-focused 

laser radiation over wavelengths form 750nm-1064nm, they found that the least damage 

occurred over the 800nm-1064nm range with little variation in that range.[110] Over the 

past decade it has been demonstrated optical force manipulation using 800nm wavelength 

radiation causes very little damage to cells if any. 
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Optical Force Manipulation - Background and History 

(For an in depth history and review of optical trapping please read “History of 

Optical Trapping and Manipulation of Small-Neutral Particle, Atoms, and Molecules” 

[111] For an exhaustive list and guide to literature see “Laser-based optical tweezers” 

[112]) 

Here we discuss two patterning techniques using optical force; laser tweezers, and 

laser guided direct writing. Optically, laser cell patterning is the same technique as laser 

guided direct writing. These techniques are derived from a single phenomenon first 

reported by Ashkin[1] in 1970, who discovered the phenomenon while working at Bell 

Labs. In this publication Ashkin examines how micron sized dielectric particles become 

trapped in stable optical potential wells by radiation pressure.  

Laser Guidance - Theory and Optics 

The forces of laser guidance can be explained in different ways depending on the 

size of the guided particle relative to the wavelength of the laser. If the particle diameter 

is much larger than the wavelength this is the Mie regime, and can be explained using ray 

optics. If the particle is much smaller than the wavelength of the incident light, than the 

electromagnetic wave (Rayleigh) approach must be used. A third model, the generalized 

Lorenz–Mie theory (GLMT) can describe particles in the intermediate range. While this 

is a strong approach, and best for particles that are not much larger, or much smaller than 

the wavelength, it is complex and computationally demanding. The ray optics approach 

to calculating the forces on a trapped particle is simpler, and when using a near IR laser 

with wavelength of 800nm and cells which have a diameter no less than about 8μm, the 
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cell is an order of magnitude large than the wavelength. Therefore, I will not delve into 

the electromagnetic wave approach or GMLT. To illustrate the phenomenon I will use the 

ray optics approach which is the way Ashkin first explained it.  

In the ray optics approach we can define two forces, a radial force, which pulls 

the cell toward the center of the laser, and an axial force, which, if the laser is weakly 

focused can push the cell in the direction of the beams propagation. 

Modeling the cell as a sphere with an index of refraction higher than the 

surrounding media is valid for most embryonic cells which are round, including neurons. 

Using a single mode (TEM00) laser beam with a Gaussian intensity profile the initial off-

axis cell can be modeled as in this Figure2.4 from Ashkin's publication[1]. 

 

 

The rays a and b represent just some of the many rays of the laser beam which 

increase in intensity toward the beams axis A. The index of refraction of the cell is 

Figure 2.4: Ray optics model of optical force guidance of a 
dielectric sphere by Ashkin. 1970 [1] 
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roughly nH =1.35 and the index of the surrounding media, without an excessive amount 

of serum or other supplements near that of water with nL = 1.333. As the cell is off axis, 

beam a has a higher intensity, than beam b. At the interface between the cell and the 

media, the rays undergo Fresnel reflection and refraction. Using Snell’s law 1 2

2 1

sin
sin

n
n

θ
θ

=  , 

where θ1 is the angle between the incident ray and the vector normal to the interface and 

θ2 is the angle between the refracted ray and the normal vector. The beams are refracted 

as they enter the cell, and again as they exit. The photons of light in rays a and b have 

momentum p= h/λ, where h is Planck’s constant and λ is the wavelength of the photon. 

As the photons are refracted, a radial momentum is imparted to the photon, which must 

be compensated by a opposite radial momentum in the cell as per conservation of 

momentum. Because of the Gaussian intensity profile and the off axis position of the cell 

ray a has more momentum than ray b. In order to conserve momentum a net force on the 

cell toward the beams axis arises. This force will pull the cell toward the center of the 

beam. Once in the center ray a and ray b will have equal momentum and the net radial 

force will be zero.  

The axial force arises from scattering of photons, and reflection. If the laser is 

weakly focused then these forces will be greater than the any forces due to refraction or 

radiation pressure. In strongly focused beam, the radiation forces will overcome the 

scattering forces and trap the cell in all three dimensions. This difference in the way the 

beam is focused is what separates optical trapping (trapped in 3 dimensions) form optical 

guidance (trapped in 2 dimensions). To strongly focus a beam, an objective with a high 
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numerical aperture (NA) is used, a weakly focused beam is produced by an objective 

with a lower NA. A crucial parameter that is correlated with the NA of an objective is the 

working distance (the distance between the lens and the focal point). The objectives with 

high NAs used in optical trapping have short working distances, which can limit their 

applications.  

The first publication by 

Ashkin does not mention the NA 

of the focusing lens or 

characteristics of the focused 

laser beam, but describes a laser 

trap using two coaxial laser 

beams from opposing directions. 

In 1986 Ashkin reports on a 

single beam trap (Figure 2.5), 

using a higher NA(1.25) focusing 

lens and “demonstrate the 

existence of negative radiation 

pressure, or backward force 

component, that is due to an axial 

Figure 2.5: a) Ray optics of a single beam optical trap resulting 
from a high NA objective. b) Photograph of a trapped 
particle in water showing incident and refracted light. 
Ashkin, 1986 [3] 
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intensity gradient.” [3] “Although the tweezer trap at first sight seems counter-intuitive, it 

is axially stable because of the dominance of the backward axial gradient force over the 

forward-scattering force”[111] 

At some point Ashkin and his colleagues had accidentally trapped what they 

believed to be bacteria in a laser trap which inspired tem to try it on purpose. “We could 

trap, observe, and manipulate bacteria which we grew from bits of Joe Dziedzic’s ham 

sandwich. We readily confirmed our hypothesis. Our paper in Science [103] on laser 

trapping of viruses and bacteria was the first report of optical manipulation of living cells, 

although optical damage to bacteria cells was apparent.”[113] This experiment was with 

a 514.5 nm laser, so they tried other wavelengths that might be less damaging . In 1987 

Ashkin and colleagues reported their application of this phenomenon for the 

manipulation of single cells using an infrared laser beam[114]. The 1060nm YAG laser 

and could trap bacteria that actual reproduced inside the 50mw trap.  

Optical Force Patterning - Cell Damage Considerations 

A reasonable concern is that exposure to the laser radiation, especially in its focus 

may cause cell damage. Because of the strength and popularity of optical tweezers as a 

biological tool, there have been several studies investigating the optimal wavelength of 

laser radiation that should be used for minimum biological damage, and what effects it 

may have. 

Vorobjev and coworkers first reported on their investigations of biological 

damage versus radiation wavelength effects in 1993[107]. They found that laser 

irradiation caused chromosomal shoulders to stick together during separation. They 
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assessed the amount of ‘sticking’ in relation to radiation wavelengths from 700nm to 

840nm at 130mW power for times up to 5 minutes. They found that the wavelengths 

producing minimal chromosomal separation abnormalities were 700nm and 800-820nm. 

They also found that the maximum chromosomal sticking occurred with exposure to the 

760-765nm wavelength.  

In a 1996 Studying different optical trapping wavelengths on human spermatozoa, 

Konig et al found that wavelengths below 800nm induced UVA type oxidative stress and 

cell death[115]. They also suggested the use of a single frequency laser, to reduce 

cytotoxic effects. In 1996 Liang investigated the effects of optical trap wavelength on 

cloning efficiency, and came to a similar conclusion, adding that for exposure times less 

than 3 minutes, there was little effect[108]. 

When Odde and Renn used and 800nm wavelength laser in their first laser guided 

direct writing of chick neurons they found that the cells remained viable even after hour 

long exposures at high intensities of over 100W/m2 [109]. In 2002 Mohanty used the 

COMET assay to assess the DNA damage to cells exposed to micro-focused laser 

radiation over wavelengths form 750nm-1064nm, they found that the least damage 

occurred over the 800nm-1064nm range with little variation in that range[110]. Their 

data for 30s exposure times at 120mW showed the least damaging wavelength was 

800nm resulting in a mean DNA damage of 12%. Besides the direct effects of radiation 

on cellular DNA, the effect of heating was also considered. Liu et al examined the change 

in the temperature of Chinese hamster ovary (CHO) cells when exposed to the focus of a 

1064nm laser, finding that the heat generated was roughly 1.15±0.25°C/100mW[116]. 
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With laser guidance and trapping powers between 100-150mW, the amount of heat 

generated is likely not harmful. 

Laser Guided Direct Writing (LGDW) 

Some reviews have named LGDW as the fist ‘cell printing’[117]. LGDW can be 

used to droplets of material, including biomolecules, or cells to a substrate with very high 

accuracy. It employs the laser guidance force created by a weakly focused Gaussian beam 

described above. Renn and Pastel first published on this technique in 1998, where they 

patterned NaCl droplets which were suspended in atmosphere by a ultrasonic 

nebulizer[118]. The focusing optics were aligned to guide the particles through a hollow 

optical fiber and onto a substrate. One year later they reported patterning a wide variety 

of particles including water droplets, polystyrene spheres, glycerin droplets, salt, sugar, 

KI, CdTe, Si, and Ge crystals, and Au and Ag metal particles with sizes ranging from 50 

nm to 10 mm using a 0.5-W laser of 800nm.[119] 

 According to some, the first reported ‘cell printing’ was performed using 

LGDW[117]. While optical traps had been demonstrated on living cells for over a 

decade, they were not guided with LGDW until 2000[109]. Here Odde and Renn guided 

embryonic chick spinal cord neurons through a hollow fiber and onto a substrate.. They 

were able to 10–100 cells in a continuous process, at with a resolution <1μm, and to 

various substrates. LGDW has been shown to be an effective tool in 3d patterning of 

small population sizes for a variety of different cells[120]. In this publication they 

published a table that indicates how laser guidance parameters change with cell type.  

Electrophysiology 
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Introduction 

Electrophysiology 

Before we can really discuss neuronal networks and neuronal network 

electrophysiology, an introduction of the tools used will be helpful. As previously 

mentioned, the activity of neuronal networks is built upon the mechanisms involved in 

single neuron and synapse activity. Most of what we have described about the basic 

electrophysiological activities of single neurons was learned using patch clamp.  

Patch Clamp 

The conventional tool for electrophysiology experiments has been the patch 

clamp. The patch clamp uses a micropipette, which is usually a fire polished, pulled glass 

capillary tube with an electrode and intracellular-like fluid inside. While observed under 

a microscope the micropipette is carefully maneuvered into contact with a cell by a 

micromanipulator. In the whole-cell type patch suction is applied to the micropipette, 

rupturing the cell membrane and allowing for intra-cellular recordings. This process of 

obtaining a patch takes hundreds of hours of practice and experience to perform 

successfully. The patch clamp can act in voltage or current clamp modes, allowing for 

detailed recordings of currents and membrane potentials, membrane resistance, and 

membrane capacitance. With ability to control membrane potential while measuring 

current, it is possible to deduce the characteristics of voltage gated channels and of ion 

concentrations. Because of its ability to analyze the detailed electrical activity of a cell 

patch clamp is often employed to test the health or functionality of an altered cell or a 
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differentiated stem cell. Furthermore in ex vivo slice studies or with very low density in 

vitro  cultures you can bring the electrode to the cell.  

Detail in resolving membrane potentials and ion currents are a major advantage of 

the patch clamp. Another advantage of patch clamp is that the micropipette is moveable 

and can be brought into contact with a cell of choice, where as the MEA electrodes are 

fixed and can only record from neurons which are growing on or near them. However, 

the disadvantages of the patch clamp method are primarily related to the micropipette. Its 

use implies an open air culture, which even with an onstage incubator may experience 

significant changes in osmolarity due to evaporation. The micropipette and 

micromanipulation head-stage are relatively cumbersome, and limit the number of 

simultaneous electrodes that can be used to 3 or 4. Finally, to achieve intracellular 

recordings the cell membrane must be ruptured, which ultimately kills the cell and 

making long term studies impossible.  

While the patch clamp technique has yielded many insights into the electrical 

activity and memory mechanisms of single cells and synapses, it is inadequate for 

monitoring many cells at once or for recording from cells multiple times over several 

days or weeks. When studying neuronal network activity many more electrodes are 

required and the non-destructive extracellular recording allows studying network 

development and training phenomenon. 

Microelectrode Arrays - Introduction 

In 1972 Thomas and colleagues first published their invention of a planar 

multielectrode array [121] that had 2 rows of 15 electrodes made of gold and plated with 
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platinum black. At first they were not successful in recording from neurons, but could 

record from chick myocytes. In 1979, without knowledge of Thomas’s work Gross et al. 

took advantage of emerging integrated circuit microfabrication technologies to form 

planar arrays of microelectrodes which could be used to stimulate or record the electrical 

activity of cells cultured on such arrays (a single snail ganglion)[122]. The third MEA 

pioneer, who also developed an MEA system for neuronal electrophysiology without 

reference to previous work was Pine in 1980 [123]. MEAs have been used for large and 

long-term in vitro  network studies[124], explanted hippocampal brain slices [125], as 

well as in vivo, implanted into the brain and spinal cord[126]. 

In the last 30 years the MEA has become a powerful and popular tool to study 

electrically active cells (nerve and muscle cells), in vitro and in vivo. Stemming from and 

leading to the growing popularity of MEA electrophysiology, complete commercial 

systems (MEAs, amplifiers, AD cards, Stimulators, and Control/Recording software) are 

available, and individual components, including specialized analysis software are can 

also be obtained from commercial sources. However, many labs still produce their own 

MEAs, exploring custom configurations and materials; this is especially true for in vivo 

applications, as long-term biocompatibility is still a limiting factor to therapeutic use. 

There is a growing selection of MEA types that are commercially available including 

flexible planar arrays for in vivo use, perforated arrays to increase nutrient and waste 

transport and 3D arrays with spikes that can reach further into brain slice preparations, 

past the dead cell layer.  
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 However, for the study of neuronal networks of dissociated neurons there is a 

popular standard. This MEA design starts with a glass substrate about 3mm thick with 

indium tin-oxide (ITO) electrode leads, insulated by a thin silicon nitride layer. The 

electrodes themselves are usually coated with Titanium nitride (TiN) to reduce 

impedance. The standard array of electrodes is composed of 60 or 59 electrodes ( 1 

electrode lead may be used as an internal reference). Each electrode is 30μm in diameter 

and they are arranged in a pseudo 8x8 square array (corners missing) with an inter-

electrode spacing of 200μm. Other options are available, but this configuration is very 

popular and almost all the experiments reviewed here are performed on this type of array. 

Most groups have chosen to modify these arrays with surface patterning, microfluidic 

overlays, or with custom stimulation and recording hardware and software. This standard 

MEA is inserted into a compatible amplifier, which contacts all the ends of the electrode 

leads, and amplifies the small (mV) signal. The amplifier is connected to a computer for 

simultaneous recording from all the electrodes. A stimulation system is can be purchased 

or built, and leads from this apparatus can be plugged into pin holes on the amplifier 

board for stimulation of the same electrodes used in recording. Some groups have built 

their own control cards and used alternative AD/DA cards to perform simultaneous 

stimulation of larger electrode arrays. Additionally, open source software has been 

developed in C++ and runs on a Linux system. This software adds some functionality and 

efficiency that is not available in commercial software.  
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Microelectrode Arrays - Advantages 

There are two primary advantages of MEAs for studying the electrophysiology of 

in vitro neuronal networks. MEAs are non-invasive and allow for long-term studies 

involving electrical stimulation and recording, and they allow simultaneous multi-site 

recording, far exceeding the number of electrode that can be employed in patch clamp 

setups.  

Micro/multi-electrode arrays are the standard for studying neuronal network 

activity in vitro. Unlike patch clamp which is limited by the physical space required for 

headstages, and the skill required attaining patches, a typical MEAs can stimulate and 

record from 60 electrodes at one time. Furthermore, extracellular electrodes do not 

puncture the cell membrane the way a micropipette does during a whole cell patch clamp 

experiment, which ultimately leads to cell death. A major disadvantage has been that the 

electrodes are fixed in place, and alignment with specific cells in a network is difficult or 

impossible. 

Microelectrode Arrays - Disadvantages 

While the MEA has some clear advantages over patch clamp, it also has 

drawbacks. MEAs can be used to measure only the extracellular electric field potential at 

an electrode. The extracellular ion currents which occur during an action potential 

generate a spiked waveform. The magnitude of this waveform is mostly a product of the 

extracellular matrix components and the distance from the electrode, and offers no 

information other than that a spike has occurred. Furthermore, this dependence on 

electrode contact or separation and the decreases yields a lower signal-to-noise ratio than 
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patch clamp. Additionally, the field potential at an electrode may be the summation of 

currents from several local neurons, with different spike timing and magnitudes. In this 

case discerning the activity of a single neuron requires complex signal processing and 

spike sorting algorithms. This ambiguous mode of interpretation is not ideal for studying 

the signal propagation through single cells. Finally, the micropipette used in a patch 

clamp system is brought into intimate contact with the cell, where as the electrodes of an 

MEA are not movable, and can only record from cells growing on or near them. 

Microelectrode Arrays - Applications 

Work with neuronal tissue in culture can be classified as part of two major 

mechanistic domains: (1) receptor-dependent studies and (2) circuit-dependent studies 

(pg193)[127]. As one would expect, the domain being investigated influences the 

experimental design. Generally, when investigating a receptor-dependant phenomenon on 

an MEA, random 2D cultures of neurons are used. By applying different chemical 

agonists or antagonists to a culture, one can study the change in network activity resulting 

from stimulating or blocking a receptor. This may be applied to study the relation of 

certain receptors and synapse types on network activity and learning phenomenon, or it 

may be used employed as a biosensor for detecting substances. Gramowski et al[128] 

created a database of 30 extracted activity states of neuronal networks on MEA to profile 

the effects of different substances, which could then be used to identify unknown 

substances based on their activity state profile. This illustrates not only the application of 

the neuronal network/MEA hybrid devices as a biosensor, but shows how network 

activity can be interpreted without reference to the circuitry.  
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When investigating circuit-dependent phenomenon there are few experiments that 

can be performed with a fully random 2D culture. The density of cells may be 

manipulated and should have an effect on circuitry which arises, and can be studied by 

looking at neuronal network activity. At extremely low densities simple networks may 

automatically arise, which has been the case with some in vitro invertebrate neuron 

cultures. However, this extremely low cell density significantly reduces the chance of 

neuron-electrode contact. In fact, most of the invertebrate studies of simple circuits have 

been studied with patch clamp. 

In order to really study the circuitry of a neuronal culture, some connectivity 

restrictions must be imposed, as the connectivity in random 2D cultures is to complex 

and dense for direct monitoring. Toward this end researchers have employed the cell 

patterning and neurite guidance techniques. The most popular technique is surface 

patterning via microcontact printing; the second most popular technique is the use of 

microfluidic overlays for physical restriction. Thus far applications of these techniques 

have still fallen short of an ideal system for investigating circuit-dependent phenomenon 

in vitro. As one researcher in the field has put it: 

“The most challenging area in neural engineering today is to determine the 

formation of memory at the cellular level. In order to achieve this, it is essential to 

acquire electrical recordings from individual neurons.”[129] 

Only Suzuki and colleagues, using their stepwise photothermal etching technique, 

have successfully created a directionally and geometrically controlled linear neuronal 

circuit with a one-to-one neuron electrode pairing[21].  
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Microelectrode Arrays - Stimulation Parameters and Protocols 

Appropriate stimulation protocols for in vitro  cultures of neurons vary depending 

not just on the cell type but also for electrode (material, size, and coatings),  the 

ECM(artificial), and microstructures such as elastomeric membranes, as the stimulation 

voltage varies with the resistance of the medium between the electrode and the cell. 

These relationships are easiest to model using a current driven stimulus as the electric 

field is most simply described as 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  1
𝑅𝑅𝑠𝑠

[𝑈𝑈𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 − 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ] [130]. 

When choosing stimulation parameters one must also consider the electrode 

material properties, as an excessive stimulation can damage the electrodes and/or 

insulation layer as well as causing electrochemical fouling of the electrode. To reduce the 

electrochemical effects, a biphasic pulse should be used, that leaves the electrode with a 

net charge of zero. To avoid excessive electrode voltages that may damage the electrode 

or cell, voltage controlled stimulation is preferred to current control. Wagenaar and 

colleagues published an in depth review of various stimulation parameters in which both 

current and voltage control are tested with several profiles[131]. They found that a 

negative current was most effective, and can be achieved with a biphasic voltage pulse 

that begins with a positive voltage, followed by a negative voltage. They also found that 

the ideal pulse width is around 400 µs, enough time to allow the cell membrane and 

parasitic capacitances of the system to charge. They tested the evoked response of a 

random monolayer of E18 rat cortical neurons. In this model they found a linear 

relationship between the numbers of neurons directly stimulated by a voltage controlled 
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pulse and the pulse amplitude. Here they tested between -900mV and 900mV, however 

these values are very dependent on the experimental setup.  

Microelectrode Arrays - Stimulation artifacts 

With stimulation voltages in the range of Volts and recorded signals in the 10-

100µV range, stimulation artifacts may make recorded action potentials imperceptible. 

To overcome the stimulus artifact problem, newer MEA amplifiers from Multi Channel 

systems include a blanking circuit which grounds the amplifier during stimulation. 

However, a new artifact may result from re-inclusion of the amplifier, a problem reported 

by Jimbo et al [132]. They addressed the stimulus artifact with a custom built  “hold + 

discharge” circuit, which employs a sample and hold circuit which keeps the amplifier 

input at its pre-stimulus level for the duration of the pulse, and an electrode in the media 

which acts as a sink for the electrode/electrolyte capacitive charge. However, purchasing 

a commercial amplifier system with blanking circuit can be very expensive, and many 

researchers do not have the time or training to build their own circuits. Luckily and free 

and open source software solution has been developed called MEABench (D.A. 

Wagenaar, <http://www.its.caltech.edu/~pinelab/wagenaar/meabench.html>). This 

system employs Suppression of Artifacts by Local Polynomial Approximation (SALPA), 

which models and removes the stimulus artifact for each electrode individually, allowing 

for spike detection from directly stimulated neurons within 2ms of the stimulus[133]. 

 

 

http://www.its.caltech.edu/~pinelab/wagenaar/meabench.html�
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Neuronal Network Electrophysiology 

In a biological neuronal network the connections between neurons are real and 

must exist in some spatial form. The physical geometry of the network restricts synaptic 

possibilities. Additionally, the physical layout affects our ability to monitor areas of the 

network, and insert stimulation. It is logical to expect that in our investigation of neuronal 

networks in vitro that we would start with simple models first, increasing the size and 

complexity of networks as our understanding grew. Yet the cell patterning technologies 

for implementing such simple circuits were developed after the advent of the MEA. 

Consequently, the use of MEAs to study in vitro neuronal networks began with 

experiments monitoring random 2D (monolayer) neuronal networks. As cell patterning 

technologies evolved they were then applied to neuronal network research.  

Quantification of Neuronal Network Activity Features 

The dynamic network activity of 2D neuronal networks on MEAs has been 

studied under several conditions including development[134], chemical antagonists[128], 

and stimulation protocols intended to train[52] the networks, eliciting a defined change in 

activity. While exact definition of activity features may vary between researchers, some 

general activity features are commonly quantified. The fundamental activity that can be 

recorded on an mea is an spike, caused by a an action potential from a cell or group of 

cells, the simple and effective way to recognize a spike is to set a threshold from 3 – 8 

times the RMS noise level. A spike train is a series of spikes, many believe the inter-

spike interval is how neural information is encoded[135]. A burst is a period of high 

activity, which can be defined as attaining a certain number of spikes and a given window 
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of time. Bursts are not isolated to one electrode, rather they happen over a burst area, 

which can be quantified by the number or percentage of electrode over which it takes 

place. Bursts propagate throughout a culture and this propagation can be characterized by 

a vector, and a speed[136]. It should be noted that bursting activity of 2D in vitro 

neuronal networks is not associated with an analogous activity in vivo. This activity is 

especially abundant during network development, and can be greatly reduced by 

introducing programmed stimulation simulating input from other brain regions[137]. The 

basic features of bursts and spike rates can be quantified by their rate or frequency. Bursts 

can also be quantified by their duration. Furthermore one can quantify the interval 

between spikes and bursts, the spike rates during bursting and during intervals, the peak 

and mean values of spike rates and bursting rates, and the change in values. Additionally 

a coefficient of variation (CV) can be assessed. CV is a statistical term which measures 

the dispersion of the probability distribution, it is equal to σ/μ, where to σ is the standard 

deviation and μ is the mean. The meaningfulness of all these quantification methods may 

be questionable as one tries to relate them to events and mechanisms in vivo. Usually the 

results are related to a baseline activity of the 2D network without chemical or electrical 

manipulation. The ‘normal’ activity of a 2D culture has been characterized as it develops 

over the lifetime of the culture by multiple groups [134, 138].  

Spontaneous firing is a normal part of neuronal network development[139]. 

Spontaneous release of neurotransmitters like glutamate contribute to spontaneous firing 

of cells[140, 141]. Ion channel fluctuations may also cause such firing[142]. This 

spontaneous activity may be an indicator of neuronal network development. 
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Electrophysiology of 2D Neuronal Networks 

Most of what we know about neurons and synapses has been gleaned from their 

isolated function rather that the concerted functions they perform in networks. The two 

dimensional arrangement of neuronal networks on MEAs may be seen in two ways; The 

model may be seen as inadequate to mimic in vivo networks and reveal meaningful 

properties of 3D in vivo. Or it may be seen as a simplified scenario, which is easier to 

access with chemical and electrophysiological tools, and easier to test against a 

mathematical model. As stated by Michele Giugliano “such an approach makes it 

possible to dissect the interactions among individual neurons of a network and to look for 

collective mechanism as the cellular and sub-cellular levels, through manipulation of the 

physiochemical conditions[127].” In random 2D neuronal networks, the primary methods 

of manipulation will be chemical (or genetic) and electrical. By applying chemicals to an 

in vitro neuronal culture on MEA, such as specific receptor antagonists or altering the 

levels of a certain ion, researchers can isolate and investigate the activity of receptors, 

and study how they influence network behavior[143]. Relating changes in network 

activity in response to chemical or electrical manipulation can shed some insight into 

what role certain receptors play in signal processing and memory, as well as more general 

mechanisms of neuronal network activity. However, in random 2d neuronal networks, it 

is not possible to monitor every neuron nor to observe and map all physical connections.  
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2D Neuronal Networks - Electrical Manipulation and ‘Training’ 

Much of the research with MEAs and neuronal networks is focused on the effects 

different stimulation parameters on the activity of the neuronal network, as an alternative 

or in addition to chemical manipulation.  

An example of an electrical manipulation only experiment, which is not aimed at 

learning is the Wagenaar et al 2005 publication on controlling bursting behavior with 

closed-loop multi-electrode stimulation. Building on the idea that networks with a large 

fraction of intrinsically spiking neurons have a lower bursting rate[144],  they 

investigated different stimulation protocols to see if they reduced bursting behavior[137]. 

They began by injecting spikes at single electrodes are various frequencies, eventually 

finding that injecting spikes at frequencies of 50hz distributed over 25 electrodes 

suppressed bursting completely. However, this high rate of stimulation can interfere with 

other experiments and introduces more artifacts. Furthermore, many MEA experimental 

setups do not allow for stimulation at 25 electrodes. By employing a closed loop, where 

stimulation rate and electrode depended on the culture activity, they could achieve similar 

results with lower stimulation frequencies across only 10 electrodes. One advantage of 

this method of burst suppression is that it does not impede the networks response to other 

stimulation protocols the way partially blocking excitatory synaptic transmission with an 

antagonist such as AP5 or CNQX does[145]. Training protocols may be superimposed 

over the background burst suppression. An attractive aspect of this technique is that it 

more closely mimics natural modes of activity where constant stimulation comes from 

sensory afferents.  
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Demarse et al took the closed-loop stimulation concept one step further, to 

embody the neuronal network in a virtual environment[146] so that activity vectors in the 

culture would control the movement of the ‘animat’ in a square room. A program 

interpreted and learned the activity vectors to translate them into movement. The animat 

would then receive 5 inputs, 1 for each direction of motion, and 1 for collision detection. 

The results did not indicate that the animat learned that it was in a confined space or that 

it had real control over its direction. Nor did the group “know in detail how the complex 

patterns of activity were affected by the stimulation we provided, nor what changes 

within the network are responsible for producing the different patterns.” However, this 

experiment does introduce an experimental design that is likely to be revisited and 

improved upon when we have a better understanding of the complex activity patterns of 

neuronal networks, and it illustrates how complex the challenge of appropriately 

stimulating and analyzing the activity of random 2D neuronal networks is.   

Shahof and Marom have demonstrated the ability of MEA networks to ‘learn’ an 

activity by stimulating a coupled pair of electrodes in the network at a low frequency 

(0.3–1 Hz) until a desired predefined response (activity at an initially unresponsive 

electrode pair) was observed 50±10 milliseconds after the stimulus or 10 minutes, 

whichever came first at which point stimulation was immediately removed. Then after a 5 

min rest the teaching cycle was repeated, this process lead to a specific response elicited 

by the stimulus[147]. Importantly, this ‘learning’ was achieved without a reward 

mechanism or other chemical treatment which is a novel achievement. They relate this 

achievement to a psychological theories by Hull and Guthrie, that “it is not necessary to 
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assume a separate mechanism for the biological realization of a reward in distinction 

from the process of exploration for solutions; the behavioral concept of reward might be 

considered as a change (removal) in the drive underlying the exploration in the space of 

possible modes of network response. A drive to explore that is removed when a desired 

state is achieved is an intentionless natural principle for adaptation to rich and unlabeled 

environment.” However, even if this type of learning can be shown to have an in vivo 

correlate, the idea of learning through reward is no less important [148-150]. The analysis 

employed in this experiment, correlating the firing of two electrodes is an important 

concept carried over to experiments involving reward. 

2D Neuronal Networks - Conditional firing probabilities (CFP) 

Building of the work of Shahof and Marom[147] in 2004 Eytan et al[151] 

employed CFP as a neuronal network analysis tool in their investigation of Dopamine’s 

effects on in learning in in vitro  cortical neuron populations, calling it functional 

association strength. They observed that in the random monolayer approach to MEA 

neuronal network studies, several synaptic pathways may be present between each pair of 

electrodes. They looked at the effects of Dopamine on CFPs, finding that Dopamine is a 

catalyst for change in CFPs rather than stability. It has been found that Dopamine is 

released in animals when they experience an unpredicted stimuli, Eytan and colleagues 

propose that change in neuron population associations is enhanced because the current 

associations are in adequate[151]. 

In 2007, Feber et al improved upon this approach, looking at the relationships for 

every pair of electrodes (i, j) they defined “the conditional firing probability (CFPi,j [τ ]) 
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as the probability that electrode j records a spike at t = τ, given that an action potential 

was recorded at electrode i at t = 0.. 

” “If a CFPi,j [τ ] distribution clearly deviated from a flat one, electrodes i and j 

were considered to be related.”[152]. Using the CFP they characterized the strength of 

the relationship between electrodes as the maximum probability of a paired firing, and the 

propagation time as the delay between t=0 and the time when CFP was maximum. CFP is 

an important concept if one considers Feber’s remark, “The formation and development 

of connections is assumed to be crucial in the process of learning, their conservation is 

assumed to be essential for memory. To demonstrate either memory or learning, one 

needs to monitor the connections in neuronal networks.”[152] 

While there are many similarities of 2D random cultures of neurons with in vivo 

networks, there are inherent differences. Foremost, neuronal networks in the brain are 

3D, with the neurons enclosed in a matrix of astrocytes and ECM which affects chemical 

and electrical signaling. Additionally, in vivo neuronal networks have a more engineered 

order due to developmental cues. Furthermore, local neuronal networks in the brain 

receive input from other areas of the brain and from other neuron types, rather than 

existing as a homogenous self-contained network.  

2D Neuronal Network s- Computational Modeling 

However, by developing models to explain the general role of cellular and 

synaptic organization on network function and of chemical and genetic factors on overall 

network activity, we may reveal some lower level universal concepts that can be 

extrapolated to models based on the physiological organization of neuronal networks. 
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There have been several efforts toward this goal, most of which are mathematically 

involved and may require a strong understanding of statistics and network theory. Most 

models start with a simplified model of the neuron, a popular model is the integrate-and-

fire (IF) model[153]. In the IF model, or leaky IF model, a neuron is represented as a 

leaky capacitor which fires when a threshold membrane potential is exceeded. By 

creating a network of such inputs has been possible to simulate the input a single neuron 

receives from a cultured network and inject a corresponding current via patch clam[154]. 

When modeling a neural network, complex reverberations of activity spontaneously 

emerge with sufficient feedback. Donald Hebb proposed that these reverberations may be 

used to encode and store information in the nervous system. Such reverberations of 

activity are commonly observed in 2D neuronal networks[155]. Depending on the initial 

conditions, (a perturbations of network activity from stimulation) network activity may 

‘settle’ to a specific activity state, or a persistent dynamic attractors. Several network 

models of memory embrace these dynamic attractors[156]. In this manner a single 

network may have several end attractor states or memories based on the pattern of 

stimulation. Many of these dynamic attractor models are based on the work of Hopfield 

and the Hopfield network[157], which bases its synaptic weight calculations on a 

Hebbian model[158] commonly stated as “fire together, wire together.” Attractor-based 

models of memory may include as little as 8 neurons[159]. There is indirect evidence that 

attractor states are responsible for hippocampal spatial maps (place cells). However, 

“Since hippocampus is a multimodal integration area and hippocampal place cells are 

driven by a variety of sensory inputs and intrinsically generated path-integration signals, 
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one considerable hurdle is to design a controlled situation where the hippocampus is 

disconnected from all external influences.”[160] 

Finally, percolation theory, employed in many scientific fields, has been 

suggested by a few researchers attempting to model 2D neuronal networks [161, 162]. 

Here, the specific connections may be overlooked in order to address an overall activity 

of the network, such as “the critical distance that dendrites and axons have to travel in 

order to make the network percolate, i.e., to establish a path from one neuron of the 

network to any other, or the number of bonds (connections) or sites (cell bodies) that can 

be removed without critically damaging the functionality of the circuit.”[163]  

Electrophysiology of Patterned Neuronal Networks 

While MEA research with 2D neuronal networks is an expanding field with 

interesting phenomena and provocative models, connecting 2D neuronal network 

phenomenon with the anatomical or single cell level of current knowledge is often 

difficult. It may seem that the random 2D realm is at best, floating between these two 

levels, without a firm attachment to either side. Every neuron in a neuronal network 

makes tens to hundreds of connections with other neurons. With confluent monolayers 

especially, it is impossible to discern the detailed connectivity of a randomly cultured 

neuronal network. Though the activity of such networks can be interrogated by the 

previously described techniques, unambiguous testing of these models is virtually 

impossible. Towards removing the ambiguity of neuronal network architecture and 

recordings scientists have worked to simplify these networks by reducing and restricting 
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the connectivity. The earliest attempts at spatial organization of cells on electrode array 

surfaces used surface patterned chemical cues [164, 165]. 

Chang, who used microcontact printing to create patterned neuronal networks on 

MEAs takes a cautious approach to interpreting network activity as he chose to“…assess 

the level of activity with the percentage of electrodes active rather than applying spike 

sorting or burst analysis because physical connectivity and extended network activity 

should be established for spike and burst analysis to be meaningful.”[166] In this set of 

experiments, 40μm wide lines PDL were stamped onto the array, inducing several 1D 

neuronal networks across the array. In these patterned networks neuronal activity was 

increased compared to random cultures of the same cell density, in agreement with earlier 

results[167]. Additional observations included accelerated gliogenesis and 

synaptogenesis, and an increase in glial proliferation, in the absence of serum. This final 

result may reflect the findings of other groups that glia increase neuronal activity. Chang 

acknowledges that their patented networks lacked the desired regulation of neurite 

extension, not yet realizing full control over network geometry. Finally, an important 

question is raised with crucial implications on neuronal network design; what is “the 

minimum network size, in terms of cell number that results in network activity”? 

Maeda et all cultured a random 2d network, and then partitioned it into pieces 

with a UV laser to investigate if synchronized bursting behavior was due electrical 

excitation or a diffusive chemical factor[136]. They found when the larger network was 

sectioned into pieces that synchronized bursting was isolated for each division, and that 

the frequency of spontaneous bursts did not change significantly. However, they did find 
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that propagation velocity was decreased after sectioning, implying that projection 

(neurite) density is a determinant propagation velocity. 

Feinerman and colleagues have published several different experiments all using a 

quasi 1D neuronal network. They pattern rat hippocampal neurons into long >17mm lines 

that are170μm wide. The cell activity is observed optically using calcium sensitive dyes. 

This model allows them to easily monitor the propagation of signals and bursts along the 

line[168] leading to a more ‘behaved’ culture resembling a hippocampal slice. In one 

experiment investigating bursting activity[169], they could temporarily partition the 

cultures (in contrast to work by Maeda[136]) with TTX applied to only a center portion 

of the line. In this fashion they could analyze the independent activity of burst initiation 

zones (BIZs). They found that BIZs compete to drive the global bursting behavior, and 

the BIZ with the shortest refractory time is the winner. Essentially, after every burst, cells 

begin to recover, and the first BIZ to do so will initiate a burst. They also correlated BIZs 

with a higher cell density, and lower ratio of inhibitory synapses. This makes sense in 

light of Chang’s work[166], where a restricted linear network increases activity, possibly 

by a decrease in refractory time with an increase in glial cell contact. In other work they 

used a similar model (8.5cm long, 170μm wide) to investigate the propagation speed of 

signals through the network, and the stability of rate coded information[168]. Here they 

found that signal propagation along the line fits precisely with an information theory 

model of Gaussian communication channels and that rate coded information fails with in 

a 3mm distance from synaptic noise of a layered network.  
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Truly 1D neuronal networks with single cell resolution have only been achieved 

by only 1 group. In 2005 Suzuki et al employed their unique stepwise photothermal 

etching method to etch micro-wells and connecting channels in an agarose substrate 

covering an MEA. They achieved not only a linear 3 cell circuit, but by creating the 

channels in a stepwise fashion, controlled the direction of neurite outgrowth. They found 

these directionally controlled circuits had a one-way propagation of signal transmission 

as opposed to conventional open channel preparations[21]. One problem with this 

technique was that not all neurons they placed down were recorded, though signal still 

propagated through to the next electrode. This may be because of the etching procedure 

leaves a fouled electrode with a poor SNR. Thus far the group has not published any 

more results, expanding the technique to more mature experiments or complex circuits. 

One other group has prepared system for 1D networks with single cell resolution, 

however they have only reported its use with a single cell at a time. Using an elastomeric 

membrane method to confine the neuron to the electrode and direct the neurite Claverol-

Tinture and co-workers [104] grew Helix aspersa neurons on electrodes and stimulated 

them pharmacologically. They then recorded the signal propagation through the neurite 

as it passed several electrodes. More recently Dworak has demonstrated a similar 

application of  PDMS microtunnels, directing the axons of large populations of neurons 

over microelectrode wires[20].  
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CHAPTER III 
PROJECT RATIONALE 

 
 

 
Overall Goal 

The previously described cell patterning techniques and research approaches to 

studying and defining in vitro  neuronal networks have lead the way for the work 

described in this dissertation. Previous research has opened a path and provided 

important stepping stones that make this research possible. We believe that the ability to 

create defined heterotypic neuronal circuits with single-cell-resolution and one-to-one 

neuron electrode access is a significant advancement in neuronal network research which 

may similarly clear the path for more complex fully-defined neuronal network research 

models. 

It is clear from the brief literature review that there is no shortage of techniques 

for patterning cells. For neurons specifically, the most widely used method of controlling 

cell placement and neurite outgrowth is surface patterning of cytophilic molecules via 

microcontact printing. While surface patterning has been a successful approach, it does 

not offer direct placement of neurons on electrodes, but requires the neurons to 

preferentially migrate to the larger cytophilic area of a stamped electrode. Furthermore, 

complex multi-stamping procedures are required to achieve heterotypic, cell-type-

specific patterning. To bypass these drawbacks we have chosen to use an optical force 

manipulation technique cultivated in our lab to place cells to specific points on the 

substrate. However, this technique alone provides no control over cell migration which 

quickly undoes patterns created by precise cell placement. To compensate we have 
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employed elastomeric membranes with micro-holes and micro-channels which serve as 

micro-wells and micro-tunnels when aligned and attached to a flat substrate such as a 

coverslip or an MEA. These microwells of the elastomeric membranes are used to 

confine cells to the electrodes of the mea and the micro-tunnels direct neurite outgrowth 

between specific neuron/electrode pairs. The elastomeric membranes address the 

additional challenge of survival of neurons cultured at the very low densities implied by 

single-cell-resolution circuits. The microstructures of the elastomeric membranes closely 

resemble microfluidic channels which have been shown to aid in the culturing of neurons 

at very low densities[66].  

The guiding goal of this design based research project was to establish a method 

for producing fully-defined, heterotypic, single-cell-resolution neuronal circuits with 

electrophysiological access to individual neurons. Successful achievement of this goal 

may be marked by milestones which are reflected in the specific aims of the research 

plan. These aims were:  

1. Develop a Laser patterning System with capability to pattern various 
cell types to various substrates with greater than 10µm accuracy. 

2. Develop the microfabrication techniques, and microstructure designs 
to impose 'defined' neuronal circuitry. 

3. Use the laser cell patterning system to place individual neurons and or 
astrocytes into the elastomeric membrane microstructure and on 
microelectrode arrays. 

4. Determine the rate of patterned neuron viability, the success rate of 
neurite polarity control. 

These aims provide a template for neuronal biochip construction which can be 

used in a variety of neuronal network research applications. Successful realization of 

these aims will serve as proof that a defined neuronal network can be implemented into a 
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microfluidic and electrophysiological device and serve as a guide for the construction of 

future defined neuronal network biochips. The flexibility of the systems in Aims 1 and 2 

will allow different configurations and different cell types to be easily included at low 

cost, yielding a productive research tool which can be applied to several different 

diseases including ALS and AD. 

Aim 1 

Rationale of Specific Aims 

 Develop a Laser patterning System with capability to pattern various cell types to 
various substrates with greater than 10µm accuracy. 

 
A method for depositing single cells to specific points on a substrate is central to 

creating neuronal networks with single cell definition. The method must have sufficient 

accuracy and precision to place neuronal cells with a diameter of 8 µm into microwells as 

small as 10 µm in diameter (Aim 2). The method chosen must also meet the requirement 

of creating heterotypic (i.e. neuron and astrocyte) cell patterns to enable the proposed, as 

well as future, research scenarios. Optical force manipulation systems have proven to be 

very useful in manipulation, separation, and patterning of individual cells and can meet 

the above requirements.  

Factors influencing the optical properties of the system include the cell medium, 

the size and index of refraction of the cell which varies for each cell type, as well as 

factors arising from the cell deposition chamber. The laser patterning process must take 

place in a sealed chamber to eliminate turbulence inducing leaks and contamination.  
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This laser deposition chamber must be biocompatible, allow for the minimally 

altered passage of light for imaging and laser guidance, and incorporate various 

substrates including a microelectrode array (MEA) and any microstructures attached to it.  

Aim 2 
Develop the microfabrication techniques, and microstructure designs to impose 

'defined' neuronal circuitry 
 
Neurons, like many cell types, tend to migrate. To keep cells in their initial 

patterned positions, especially neurons patterned to electrodes, some mechanism must be 

employed to control cell migration. Furthermore, it is also desirable to control the 

direction in which neurons extend their axons and dendrites in order to fully define the 

neuronal circuits cultured on the chip. We propose using 3D microstructures to confine 

cell bodies and guide neurite extension. This choice of methods also addresses the 

additional challenge of maintaining neuronal cultures with very low cell densities 

(<2500cells/cm2). The incorporation of microfluidic structures creates a very low-volume 

culture space which can aid in the survival of low density  neuronal cultures[66, 84] due 

to a decrease in autocrine and paracrine signal diffusion. 

Aim 3 
Use the laser cell patterning system to place individual neurons and or astrocytes 

into the elastomeric membrane microstructure and on microelectrode arrays 
 

In order to create a neuronal biochip which can be used as a research tool, 

creating patterns of neurons on the microelectrode array and microstructure substrate is 

not enough. The neurons must develop into a healthy network which can serve as a 

meaningful model for the way neurons would behave in vivo. Toward this end a crucial 
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part of this project will be to determine what fabrication and culturing methods will yield 

arrays of healthy neurons that extend neurites and connect to neighboring neurons to 

create a network. Specifically we must succeed in inducing the following sequence of 

neuronal culture states.  

• Cells attach to the substrate and extend neurites 
• Cells survive for at least 1 week.  
• Neurites fully extend to neighboring cells, showing visible contact  

Initial success of the neuronal circuit creation systems will be evaluated by 

observing cell and network morphology with microscopic techniques. Survival, 

outgrowth, and synapse formation must be achieved before electrical activity and signal 

propagation can be expected. Live-cell phase microscopy will be used to quickly assess 

the rate of neuron survival and neurite extension. Immunocytochemical antibody staining 

and fluorescent microscopy will be used to assess neurite outgrowth and synapse 

formation which may be difficult to observe because of debris or substrate features. 

Aim 4 
Determine the rate of patterned neuron viability, the success rate of neurite 

polarity control. 
 

Once the laser cell patterning, microfabrication, and culture techniques are 

sufficiently refined to support neurite outgrowth we will begin to assess two 

characteristics of the patterned neurons. In normal randomly seeded cultures of neurons 

only a fraction of the cells plated survive and extend neurites. Therefore, we do not 

expect every patterned neuron to survive and extend neurites. The success rate of a 

patterned neuron to survive and extend neurites will affect the efficiency of the system to 

create single the intended fully defined single cell circuits. We would like to optimize the 



66 

 

laser cell patterning, microfabrication, and culture methods to maximize the fraction of 

patterned cells which survive and extend neurites. Therefore we will assess the viability 

of neurons laser patterned into the PDMS microstructure. 

We hypothesize that channel geometries can be used to influence polarity of 

neurons. The fabrication process employed permits a feature resolution no smaller than 

8µm which is not ideal for restricting the path of neurite elongation in a single direction. 

Working with this limitation we instead used a combination of channel width tapering 

and sharp or obtuse channel turns to influence the direction of neurite extension and 

neuron polarity. To test the effectiveness of this method we will observe the path of polar 

processes, axons and dendrites, by time interval live-cell microscopy and 

immunocytochemical staining. 



 

 

CHAPTER IV 
LASER CELL PATTERNING SYSTEM 

 
 

 
Introduction 

Conventional manipulation of cells in space is performed with a micropipette and 

micromanipulators similar to those used in a patch clamp experiment. This is a time 

consuming process that can expose the culture to contamination and is not amenable to 

placing cells firmly into the bottom of a microwell. We have chosen to use an optical 

force cell patterning method which has the advantages of keeping the cells in an air/water 

tight chamber reducing contamination, is easier and faster than contact manipulation, and 

can firmly press a cell into contact with a surface without damaging pressure. 

While the inherent qualities of optical force manipulation may suffice the 

requirements for achieving Aim 1 there are other points of concern that must be 

addressed during development of the laser cell patterning system. There are three major 

points; 1) The laser cell patterning system including all cell contacting components must 

be biocompatible and provide the means for cell support such as media and gas exchange 

and temperature control. 2) The laser patterning system must be compatible with the 

substrate; specifically it must be able to pattern cells inside the microwells of a PDMS 

membrane and onto the electrodes of an MEA without damaging the electrodes. 3) It 

must pattern cells in a time efficient manner so that arrays of cells (60) can be patterned 

in a practical time period (~1hour). These issues are addressed by the proposed system 

design which will first be briefly summarized and is illustrated in Figure 13. The laser 

cell pattern system[170] is faster, easier, and more sterile than conventional methods 
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using a micropipette, and more adept at placing cells fully onto electrodes inside a 3D 

microwell. Together, these advantages amount to a major increase in practicality. 

Additionally, the laser patterning system can be used to pattern multiple cell types 

enabling heterotypic neuronal circuits which can be used to model in vivo circuits 

between different brain regions, to test the effect of different cell types on a circuit, and to 

investigate how cells form transgenic disease model animals behave and affect circuits 

The laser guidance phenomenon used in our laser cell patterning system exploits 

the same radial gradient force that is used in laser tweezers systems. When a laser beam 

with a Gaussian intensity profile passes through a particle, the particle experiences a 

force pulling it toward the center of the beam. In laser trapping, the laser is focused so 

tightly that a gradient force also pulls the cell toward the center of the beams waist. In 

laser guidance, the weakly focused beam does not produce a strong enough gradient to 

overcome the predominate scattering force which pushes the cell in the direction of the 

beam. This begets two advantages of laser guidance over laser trapping. The weakly 

focused beam may be achieved with a long-working-distance objective, allowing for an 

extended 3D space to work in. Additionally, forward pushing axial force of a weakly 

focused beam allows for cells to be pushed onto the substrate, ensuring good cell 

electrode contact. 

The entire laser cell patterning system, illustrated in Figure 4.1 was built around a 

stationary downward propagating laser beam. This laser beam was weakly focused to 

produce a guidance region where a cell would become physically trapped in the 

Overview 
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horizontal plane and pushed downward in the direction of the beams propagation. Cells 

suspended in a culturing media within the cell deposition chamber could be brought into 

the guidance region by moving the chamber relative to the focused laser’s guidance 

region. Once a cell was trapped and guided, the chamber and the attached substrate could 

then be moved so as to bring the guidance region and the guided cell into alignment with 

a desired point on the substrate. The process was imaged using the same stationary 

objective used to focus the beam. 

 

Figure 4.1: Schematic of laser cell patterning system hardware (not to scale). 
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Optics 

Materials and Methods 

The laser source used was a Spectra-Physics 3900S CW Tunable Ti:sapphire laser 

pumped by a Millennia Vs and tuned to produce an 800nm wavelength single mode beam 

with a Gaussian intensity profile. The beam was passed through 3 prisms with 

antireflective coating optimized for 800nm to bring the beam parallel to the table up, 

over, and down as shown in figure x. The beam was then focused and expanded using an 

f = 17mm, D=10mm lens and collimated using an f = 48mm, D=10mm lens. The 

expanding lens was mounted on a motorized translational stage and used to steer the 

beam’s focus point so that the guidance region of the beam coincided with the object 

plane of the imaging system. The beam then passed through a 45º dichroic mirror which 

was used to reflect the visible image to the CCD camera while allowing passage of the 

800nm beam. The beam was then focused using an EPI L Plan Apo 20x long working 

distance objective with NA = 0.35 and f= 200. The illumination source was a simple 

incandescent light source with a green pass filter. The illumination was passed through an 

iris to control brightness and aid in system alignment. The illumination beam was 

reflected upwards with a dichroic mirror and through the bottom of the laser cell 

deposition chamber; it passed through the 20x objective and was reflected to the side by 

the dichroic mirror. The image was then passed through several IR filters to remove 

artifacts from the guidance beam, before it hit the Sony CCD camera. The CCD camera 

was mounted on 3 orthogonal translational stages to allow for the center of the CCD to be 

aligned to the laser guidance region.  
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Laser Cell Patterning Chamber 

Living cells require media to survive. In the long term the media must provide 

nutrients and growth factors as well as aiding in transport of waste material. In the short 

term the media provides a hydrating source with the proper osmolarity and pH to keep 

cells healthy. During the cell patterning process cells must be kept in such an 

environment. To satisfy this need laser guidance and cell patterning took place inside the 

cell deposition chamber. This component of the system held media in an air and water 

tight seal over the substrate (MEA with microfluidic structure overlay) and allowed the 

laser beam and the imagining illumination to pass through.  

During the course of this research the laser deposition chamber underwent many 

revisions, but there were two general designs that were employed. The earlier design 

(stacked) was more modular and centered around a stacked design which would allow for 

interchangeable and customizable parts, and compatibility with different substrates. The 

later design (patternscope) removed the use of a PDMS wall component which was found 

to be susceptible to fungal contamination. We will discuss both designs as each has some 

advantages, and a understanding of the patternscope design advantages is improved with 

comparison to the stacked design. 

Stacked Chamber 

 An exploded view of the chamber with substrate is illustrated in Figure 4.2. The 

chamber consisted of a custom 0.5-3mm thick PDMS gasket and a ‘ventblock’(Figure 

4.3) which was made from a #1 glass coverslip glued to a stainless steel block with an 

inlet, outlet and an optical window. Through-holes were drilled in the coverslip with a 
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high-speed dremmel and a 2.3mm diamond bur ball drill bit (diamondburs.net LLC). The 

PDSM gasket was formed by molding PDMS over several small fibers glued to the 

bottom of a 200mm glass Petri dish. Once cured, the PDMS was removed, cut in 

22mmX22mm squares and holes were punched for the center chamber and the 

connecting inlet and outlet ports. The fibers in the mold produced small grooves or 

channels which accommodated the 360µm diameter PEEK tubing which was part of the 

microinjection system used to deliver cells into the chamber for patterning. These 

components were all clamped together by two round stainless steel plates fastened with 

10-32 thumb screws, creating a sealed chamber.



 

 

 

 

 

 

  

Figure 4.2: Stacked chamber illustration. The Ventblock and PDMS Gasket 

are stacked on top of the substrate (an MEA with Elastomeric Membrane). 

Figure 4.3: Ventblock bottom view.  
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Figure 4.4: Stacked chamber 

disassembled. The MEA has a PDMS Gasket 

bound to it. 

Figure 4.5: Stacked chamber partially 

assembled. The red microinjection fiber (PEEK 

tubing) can be seen protruding into the center of 

the chamber. 

Figure 4.6: Stacked chamber fully 

assembled and mounted in the laser 

patterning system.  
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Patternscope Chamber 

The patternscope design is based on a submersible laser passage window housed 

in a tubular structure which allows for rotation and height adjustment. Part of the 

patternscope component is a fiber guide which allows for the insertion and adjustable 

positioning of a microinjection fiber. The patternscope includes a ‘skirt’ which helps to 

stabilize the fluid beneath the chamber which is otherwise prone to sloshing. The sloshing 

is due to the incomplete filling of the chamber with media, in contrast with the stacked 

chamber design which was completely filled. In the patternscope chamber design (Figure 

4.7) the substrate being patterned to should have a fluid containing wall (as in a Petri dish 

or the glass ring of a standard MEA). This wall is will be clamped tight to a PDMS laser 

attached to the underside of the top clamp. This PDMS layer seals the substrate dish as 

well as the pattern scope, creating an airtight seal. The importance of this design is that 

the seal is not wet as the previous seal was. The wicking action of this seal was hospitable 

to fungus. A dry seal is not. Furthermore, this allows for standard Petri dish or glass rings 

to be used. With the previous chamber, the PDMS wall was used as a culture dish. 

Because shallow chambers (<= 1mm) were best for patterning, they were also used for 

culturing, which presented a very low media volume which could evaporate quickly. It 

also allowed for thin layers of media to sit on top of the PDMS wall. We observed that 

the combination of fungal contamination during the patterning process by the wet seal 

and the following culture condition of thin media coverage of a porous PDMS wall was 

much too supportive of fungus in the presents of non-clean lab conditions. Finally, as an 

extra measure of contamination prevention, the patternscope chamber design employs an 
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airtight outer seal made of PDMS which creates one additional layer of protection from 

the un-clean laboratory conditions. 

Figure 4.7: Patternscope chamber design. A standard Petri dish or mea is sandwiched between the 

two clams and a PDMS gasket which seals to the patternscope body and the top lip of the dish or mea. 



 

 

 

  

Figure 4.9: Top clamp of patternscope chamber. Patternscope is poking through the top. 

microinjection fiber feeds through the SS 21G conduit. In this prototype chamber the conduit 

does not lay flush with the patternscope tube so a notch was filed in the clamp top enable fit. This 

notch does not allow for rotation which an intended benefit of the patternscope design. 

Figure 4.8: Bottom Clamp of 

Patternscope chamber. Bolts come up 

through for easy alignment of top clamp. 

PDMS wall creates second seal to outside 

environment. 
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Figure 4.10: Bottom of patternscope. The prototype patternscope was constructed from a 

two 15mL tubes glued together. Then inner cone is cut and a 9mm x 9mm #2 coverglass was 

glued to the cone. 

Figure 4.11: Upside down view of top clamp with PDMS seal 

and patternscope. 



 

 

Laser Cell Patterning System - Microinjection 

A microinjection system was implemented to introduce cells into the chamber 

with control over the number of cells and the time at which they were released into the 

chamber. The rotatable patternscope and fiber guide also enable control over where in the 

chamber the cells are injected. In early implementations of the laser patterning system 

before the inclusion of a microinjection system the chamber itself was filled with cell 

suspension, and the majority of those cells would fall randomly onto the substrate, 

disrupting the defined pattern. Under normal conditions cells eventually settle out of the 

suspension and come to rest on the substrate. While the laser guidance system can exert 

force in any direction within the horizontal plane, it can only push cells forward 

(downward). Therefore without the use of a cell feeding system, there is a limited amount 

of time (<15 minutes) during which the cells can be guided to points on the substrate 

before all have fallen onto the substrate. Furthermore, filling the entire chamber with cell 

suspension in this way inevitably leads to pattern disruption by unintended cells falling 

into the pattern area. 

A cell suspension containing between 20x104 and 50x104 cells/ml was loaded into 

a 50µL glass luer-lock syringe (SGE). Microtight® fittings (Upchurch Scientific) were 

used to couple poly(etheretherketone) (PEEK) tubing with an inner diameter of 100µm 

and an outer diameter of 360µm to the luer-lock of the syringe. The tubing was then 

inserted into the cell deposition chamber during assembly. During patterning the syringe 

was loaded into an UltraMicroPumpII (World Precision Instruments Inc.) which was 

capable of injecting as little as 5nL of suspension at a time, allowing for a single cell to 
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be fed into the chamber if needed. Up to 4 of these micropumps may be controlled with 

the Micro4™ MicroSyringe Pump Controller, enabling multiple cell types to be patterned 

in a single session. The micropump controller was issued commands from the computer 

via an rs232 port. 

Laser Cell Patterning System - Motorized stage 

During the cell patterning process the chamber was secured in an aluminum 

mount attached to a 3 axis motorized stage (Aerotech FA90-25-25-25). The stage was 

driven by 3 Aerotech N-drive units which communicate with the computer via 

IEEE1394. The stage was capable of sub-micron resolution and accuracy and a 25mm 

travel for all three axis.  

Laser Cell Patterning System - Incubator 

An incubation system was built to maintain optimal culture temperatures during 

patterning to increase cell health as well as moderating the convection forces that can 

arise from the substrates absorbance of the laser radiation. The system consisted of thin 

Kapton coated heating elements and small resistance temperature detector (RTD), which 

were connected to an Omega CN9512 proportional-integral-derivative (PID) controller. 

However, patterning neurons at room-temperature was not detrimental to neurons 

survival. The convection forces were most noticeable on thick substrates (such as MEAs) 

with thick membranes, and larger deposition chamber volumes resulting from thicker 

>1.5mm PDMS gaskets. As the laser cell patterning and elastomeric membrane process 

was refined, both thinner membranes (<40µm) and PDMS gaskets (<500µm) were used, 
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minimizing the convection forces and making temperature control unnecessary. 

However, such convection forces were found to be minimal at room temperatures of 

20ºC, and that maintaining this temperature was a far more effective way to mitigate 

convection forces than by the used of an incubation system. Use of the incubation system 

was discontinued. 

Laser Cell Patterning System - Control System 

A control system was needed to integrate the operation of the above components 

and to enable efficient and precise manipulation of cells.  

Control System - Overview 

The entire laser cell pattering system was controlled by an application written in 

LabVIEW 8.6 which allowed for tuning various parameters of the system. The 

application provides 3D-position memory mark and recall functions and an intuitive user 

interface and control system 

for navigating cells from the 

microinjection point to the 

deposition point on the 

substrate.  

Cell manipulation 

and navigation were 

primarily controlled by a 

gamepad controller 

X/Y Control

Z Control

Position 
Memory

Laser 
ON/OFF

Microinject 
Cell

Recall 
Position

Mark 
Position

Speed

Figure 4.12: Gamepad Controller: The each button is labeled 

with its function 
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(Figure.4.12). The analog thumb-sticks were used to maneuver in X,Y, and Z. A mark 

and recall system allowed a user to mark way-points on the substrate, for example an 

electrode. Pressing another button triggered an injection of cells into the chamber, and 

commanded the motorized stage to bring those cells into the field of view (FOV) and 

laser guidance region. At that point the user would maneuver the cell into the center of 

the screen where the laser was focused and press a button to open the laser shutter, 

turning on laser guidance. Once the user captured the cell in the guidance beam, and it 

was held in the center of the FOV, an on screen direction indicator points toward the 

previously marked way-point. Following the indicator the user would navigate to the way 

point using the thumb sticks, carrying the cell along in the laser guidance region. A 

pattern of neurons could be created by repeating this sequence of events 1) Mark a way-

point at the desired position to deposit the cell. 2) Inject cells for patterning. 3) Capture 

the cell with the laser. 4) Navigate the cell back to the way-point. 

As previously stated, the primary user control input device was a gamepad 

controller (Microsoft Xbox 360) with 2 thumb sticks. The advantages of using this type 

of controller was that no hardware wiring was required, more inputs buttons were 

available than on the normal joystick controller available for most motorized stages, and 

it was considerably cheaper, readily available and easily replaced. Additionally, it is a 

device many users are already familiar with which decreased the learning curve.  

The control system ran on an Intel Core 2 Quad computer (Dell Precision 390). 

Programming the control software in LabVIEW 8.6 allowed for the manual assignment 

of specific processes individual cores of the processor. The Aerotech stage used RTX 
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(Venturecom® ) to communicate with the computer in Real-Time, allowing or fast and 

temporally accurate commands to be issued at a low-level outside the WindowsXP 

operating system through a firewire (IEEE1394) port. One processor core driver was 

replaced with an RTX enabled driver leaving 3 cores, two of which could be assigned 

exclusively. The program was comprised of 4 primary timed loops to handle 1) the user 

inputs from the front panel, keyboard and gamepad, 2)to capture process and display the 

patterning video with navigational overlays, 3)to read motion control data from the 

analog sticks and compute the movement vectors and 4)to issue motion commands to 

each of the three axis. Processes 3 and 4 were vital to the programs response time and 

were assigned to dedicated processor cores. These process ran in parallel, allowing for 

the shortest loop periods and smoothest control. Low priority tasks were executed using 

subprograms provided by Aerotech. However motion control commands were issued 

directly to .dlls.  

The opening and closing of the shutter and intensity of the laser were controlled 

via serial port/rs232 access through VISA in LabVIEW. The injection command and 

parameters of volume and rate were also sent through rs232 to the microinjector.  

Control System - Features 

There are several system features which were integral to improving and adding to 

the patterning systems abilities. Here we will describe their function, application, and 

how they were implemented. 
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Features - Speed controls 

There were several points to consider in controlling the speed of the laser 

pattering process. The ability to manipulate cells with the laser patterning system was 

dependent on the optical force. This force was only able to support a certain acceleration 

of the cells without ‘dropping’ the cell, leaving it behind as the stage moved on. 

Furthermore, the fluid filled chamber caused a drag force which limited the maximum 

speed a cell could be pulled by the optical force without similarly dropping the cell. 

While these values depended on the size and type of cell, they were typically on the order 

of 150µ/s in the X and Y axis. In Z axis the speed was not based on pulling but on 

keeping up with the forward motion of the cell due to the axial force. This downward 

velocity was typically 25µ/s. 

During normal navigation through the chamber without a cell trapped in the 

guidance region, the maximum speeds used for moving a cell could be painfully slow. A 

more efficient speed for chamber navigation tasks such as scouting out the patterning 

area and marking specific points on the substrate was around 500-1000µ/s. The wide 

range in speeds needed made fine control difficult for inexperienced users. Poor control 

resulted  in frequent dropping of the cell and inaccurate deposition to the substrate 

making the laser cell patterning process long, frustrating, and less effective. 

In order to address these points several controls were created which enabled 

versatile and quick movements through the chamber while making it easy for even first 

time users to manipulate the cells skillfully. A master maximum speed control extended 

from 0-1000µ/s. This control could be changed by moving a slider on the GUI or by 
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pressing the D-pad on the gamepad controller. No matter what,  the speed could not 

exceed this value. Within this range the speed was controlled by the extent of the 

thumbstick displacement from center. At full displacement the speed was equal to the 

master maximum speed. In between the speed followed a cubic curve allowing for greater 

precision while retaining top-end speed. Furthermore, the program automatically imposed 

a maximum acceleration which helped to make the controls smoother, reduced cell 

dropping, and reduced wear on the stage. 

Finally a ‘maximum guidance speed’ could be set for both the horizontal (X and 

Y) and the vertical directions. When a user wanted to guide a cell a trigger on the 

gamepad was held down which in turn held the laser shutter open, enabling capture of the 

cell. If the maximum guidance speed had been set and enabled that speed (i.e. 100µ/s 

XY, 25µ/s Z) was imposed. This feature was the most effective at enabling novice users 

to use the laser cell patterning system successfully. 

Features - Mark and Recall 

The mark/recall functionality made use of the positional feedback of the Aerotech 

stage. The positional feedback was one of the crucial features of the Aerotech stage. 

Because the stage could report the current position of all 3 axis and later recall that point 

with sub-micron accuracy, it was trivial to record the current position to a table in the 

LabVIEW code with an assigned button or key-combination. However, the ability to 

recall a marked point was not a crucial function of the control application. The recall 

function was most usefully employed as part of the cell injection process, where the 

injection point was automatically recalled if the current position wasn’t within the ‘recall 
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area’ a user defined radius specified in microns. The positional feedback was most 

important to the navigation cue included in the GUI and to the auto-intensity function. 

Features - Automatic Intensity Reduction 

The electrodes of a standard MEA are made of Indium tin-oxide (ITO) coated 

with platinum. Even without the platinum coating the ITO electrodes absorb significantly 

more of the 800nm laser radiation than the glass substrate or silicon nitride insulation. 

This absorbed radiation creates sufficient heat to boil the media overlying the electrode, 

fouling or damaging it. Additionally, this amount of heat is likely to critically damage a 

cell besides forcefully expelling it from the electrode as the bubble is formed. To avoid 

this heating the laser intensity can be reduced from 100mW to 15mW. Reducing the 

intensity manual is difficult and prone to error. An auto-intensity reduction function, if 

enabled will reduce the laser to intensity to a set level when the stage/laser/cell is within a 

set distance from the marked deposition point in the horizontal plane (i.e. 50µm) and a set 

distance above (i.e. 150µm). 

Features - Imaging 

The GUI features a display of the cell deposition process. The control program 

included functions to record video or take snap shots of the laser patterning process. 

Additionally there were simple image processing abilities that could be enabled to 

increase contrast and to remove artifacts from dust on the imaging optics. 
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Control System Application - Programming 
Program Design 

 
  The LabVIEW program design is most clearly explained by the flow chart in 

Figure x. Each program component (as represented by a block in the flow chart) was 

implemented in its own timed loop (or multiple loops). The timed loop structure is 

similar to a while loop, with the addition of control variables including the period, 

priority, processor, and overtime conditions (Figure 4.2). These variables were crucial to 

managing the many processes implemented in the application and synchronizing their 

execution. The period, specified in ms, was simply the amount of time allotted to the loop 

to execute. If the loop was finished executing before this time was up, it would wait 

before the next iteration. The overtime conditions specified what should happen if the 

loop did not finish executing in the allotted time.  

The highest priority set of processes were those which received and interpreted 

user input from the control pad, calculated stage movement vectors, and issued 

movement commands to the motorized stage. These processes were of highest priority 

because of they were the primary function of the control application and because they 

required the highest frequency of execution in order to yield smooth and accurate control 

of the patterning process. Most of the control buttons from the GUI, keyboard, and 

control pad were handled by an event structure enclosed in a timed loop (shown in Figure 

4.13 as the Operation Loop). 



 

 

Figure 4.13: Laser cell patterning system control application flow chart. The shaded boxes surrounding operations depict a single processor core 

on which the operations are executed. 



 

 

Programming - VISA for control of serial instruments 

VISA is a standard I/O language for instrumentation programming. LabVIEW 

implements VISA for programming serial instruments (RS232). VISA is a simple object 

oriented language and the commands to the laser and the microinjector were easy to 

implement. However, improper programming, such as inappropriate opening and closing 

of the VISA instruments was found to be a major source of program instability and 

caused many communication errors with Aerotech NDrives. The instruments had to be 

set up in the NI Measurement and Automation explorer. The computer used in our setup 

had only one onboard serial port so a USB-serial port adapter was used to communicate 

with the microinjector. It was important to keep the USB-serial port adapter plugged into 

the same USB port at all times, otherwise the com port number would change and the 

instrument would have to be setup again in the Measurement and Automation Explorer to 

work with the control software. 

Programming - Reading and interpreting game pad 

Microsoft Windows® XP includes the winmm.dll file which can be used to query 

the state of any joystick or gamepad configured in Windows. Using the “joyGetPosEx” 

call of this dll would return a cluster of binary strings named dw*** for the relevant 

thumb stick or button data. This cluster was separated and the thumbstick data was 

normalized while button data was read into appropriately labeled Boolean variables. The 

thumbstick values which were now normalized between values of -1 and 1 for the X, Y 

and Z axis. This axis could be inverted by a GUI control in case the setup of the stages 

changed. Because the thumbsticks did not reliably come to rest to a specific point in the 
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center when released a ‘dead zone’ was implemented which was an area in the center for 

which all values remained zero. This was achieved with a simple ‘if’ or case statement. 

At the end of the dead zone to the furthest deflection of the thumbstick values increased 

in a cubic fashion so that finer control was available in the center and increased speed 

was available at the furthest deflections.  

Programming - Navigation system 

The navigation system drew input from a marked point deposition point, and the 

current position of the 3-axis stage. Using these coordinates a vector was computed, 

normalized and used to create a direction indicator line which was overlaid onto the 

chamber image before it was displayed in the GUI (Fig x). When the target deposition 

point was within 80µm in X and Y the line was replaced with a circle centered on the 

deposition point to avoid obscuring the view of the deposition point. 

Programming - Image Capture 

Image capture was performed with an NI1407 capture card which, because it was 

manufactured by National Instruments, was highly compatible with LabVIEW and easy 

to command with LabVIEW’s IMAQ functions and the Measurement and Automation 

Explorer. The NI1407 card was configured in NI Measurements and Automation explorer 

under Devices and Interfaces/IMAQ devices. This is where the interface name was set, 

which is how the card was referenced in the LabVIEW program. Additionally this is 

where the acquisition parameters were set including the acquisition window height and 

width, and the black and white reference levels. These attributes could not be set in the 
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LabVIEW workspace or the running application. If the image was too bright or dark the  

configuration of the capture card had to be reset to obtain the best image visibility. 

In the LabVIEW program image capture started with the ‘IMAQ Init.vi’ using the 

NI1407 interface name (img0). A temporary memory location was created (IMAQ 

Create.vi) and a grab acquisition set up (IMAQ Grab Setup.vi) outside of the imaging 

timed loop structure, causing it to happen once at the program startup. These settings 

were run into a flat sequence structure with in the imaging timed loop structure where the 

first function was an image grab (IMAW Grab Acquire.vi) completing image capture. 

The image was further processed, overlaid with navigation cues, and recorded. 

Programming - Image Processing 

The image was processed in several ways to enhance the image for patterning and 

improve video quality. While the imaging optics were cleaned, the large number of filters 

in front of the CCD tended to make a perfectly dust free image unlikely and temporary. 

As such, to remove the image artifacts created by dust particles a matching algorithm was 

used. First an image was captured with the substrate far out of focus so the only visible 

things were dust particles. This image was saved as default file “baseline.bmp” which 

was loaded during the applications startup. This image was converted to an array, and the 

average value of elements was computed, then each element was subtracted from the 

average, this new array was then added to the incoming image converted to and array and 

then re-converted to an image. This removal of baseline artifacts could be switched on or 

off, and that option was carried through the rest of the image stream. 
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It was easier to recognize cells, which often appeared very faintly, by increasing 

the contrast of the image. Towards this end a BCG (brightness, contrast, and gamma) 

table could also be engaged. The values of the BCG table were configurable from the 

front panel (GUI). From here the image was sent to the recording functions. 

Programming - Image Recording 

Video footage of early experiments was captured on a different computer because 

of the processing requirements and lack of recording software. The entire patterning 

process had to be recorded, generating hours of footage and tens of gigabytes of data then 

needed to be sorted. With the introduction of multicore processors it became possible to 

perform this process to the patterning computer. We implemented an in-program 

recording facility which would allow for quick and on-demand capture of single 

frames/images (snap) or short lengths of video (grab). With the previously implemented 

image acquisition stream saving an image with IMAQ write.vi was simple. To record 

lengths of video an AVI had to be created, individual frames written and eventually 

closed, each as a separate step enclosed in a case structure as the entire sequence was part 

of a loop.  

Stage Programming - Aerotech calls 

There were two modes of speaking with the Aerotech stage, a queue mode or a 

queue free mode. The mode was set during the application and the stage initialization, 

and could be changed at any time. In the queue free mode every motion command was 

immediately issued to the stage and the previous commands were aborted in contrast to 
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queue mode in which successive commands were added to a stack and the stack 

dequeued from the bottom. In order to achieve smooth navigation with the controlpad the 

queue free mode was used. To recall specific points on the substrate automatically, the 

queue mode was used. There was another option of modes which was important in 

controlling the stage; Absolute or Relative modes when describing a movement and 

whether it should refer to an absolute position in space, or a movement relative to the 

current position. The Absolute mode was called with AerQueMoveAbs when a specific 

point needed to be recalled. Finally, the AerParamGetValue command was important for 

reading the current position of the stage.  

Programming - Graphical User Interface 

The graphic user interface (GUI) is shown in Figure 4.14. The 'front panel' as it is 

referred to in LabVIEW contains labeled controls and indicators linked to the features 

described earlier in this section. 



 

 Figure 4.14: Graphical user interface of the laser cell patterning system's control application. 



 

 

Control System - Automation 

While the control application did automate some processes including automatic 

reduction of laser intensity and  position recall, which was used to bring the injection 

point into view when a cell was injected, overall automation of the entire cell patterning 

process was never implemented. A semi-automatic patterning mode was attempted but 

ultimately abandoned. Though the patterning process was made to be very user friendly, 

it would be best if user control was not necessary to place each individual cell on every 

electrode.  

We tried to implement a semi-automated cell deposition algorithm with some 

success. Under the semiautomatic mode, the control software used visual feedback to 

ensure that the cell was guided toward the destination point at maximum speed without 

moving the laser so quickly that the cell was dropped. During a normal recall operation 

without visual feedback when a cell was dropped the laser would continue on toward the 

destination point leaving the cell floating freely in the area where radial trap and axial 

guidance were lost. Visual 

feedback was used to keep 

the distance between the 

cell’s centroid and the laser 

beam’s center just less than 

the optimal distance, D. D 

was the distance from the 

Figure 4.15: Illustration explaining the automation algorithm. 
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cross-sectional center of the laser beam (where the cell experienced a zero net radial 

force) to where the cell experienced a maximum net radial force. This value arose from 

the Gaussian profile of the laser beam and was determined experimentally, as discussed 

in optical traps [15]. The system computed a normalized vector Vp based on the real 

world coordinates of the stage from its current position to a marked destination position 

(Figure 4.15). The vector Vc extended from the cell center to the laser center and was 

based on the pixel coordinates. For ideal guidance, Vc multiplied by the micrometer/pixel 

ratio (0.46) should equal Vp. However, because Vc was always decreasing when there 

was no movement of the stage, and because of turbulence inside the chamber from 

thermal effects, the difference between Vc and Vp was computed and this vector, Vm, 

was issued in the stage’s motion command, at a speed equal to the magnitude of the 

vector divided by the refresh rate of the entire process (about 200 ms). While this 

algorithm did not perfectly align the cell and laser in the direction of the destination 

point, it had the advantage of requiring much less processing than converting pixel 

coordinates to actual real world coordinates, and provided a smooth and efficient 

guidance motion. As the stage got nearer to the target position, a deceleration multiplier 

was used to reduce the magnitude of the motion vector, allowing the cell to catch up with 

the laser center as it becomes centered on the programmed deposition point.  

The image recognition algorithm used to find the cell centroid began with a high-

pass fast Fourier transform (FFT) to remove gradual variations in image brightness. Next 

in the processing sequence was an erode function followed by a circle finder function, 

both of which were available in the LabVIEW Vision Development Module. The circle 
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finder function was tuned find all the round objects between 7 and 12 um in diameter (the 

healthy size of chick forebrain neurons) though this could be changed for proper 

recognition of different cell types. Next the algorithm would select the round object 

which was nearest to the center of the field of view (where the laser guidance region was) 

and move the laser to that point.  

Because of slight inconsistencies in the chamber mounting such as different 

chamber walls and slightly un-level chamber assemblies, the laser focus could vary for 

each patterning session by as much as 20 um. This required a rough mechanical 

adjustment of the CCD camera, and a finer calibration of the laser point. This fine 

calibration was performed by capturing the closest cell, and once trapped, marking that 

cell’s centroid as the laser center. Using the image coordinates of the computed centroid 

of a currently patterned cell and the saved coordinates of the laser center a vector 

between them could be computed (Figure 4-15).  

Because the patterning process was imaged perpendicular to the substrate plane 

(axis X and Y) the cells position in Z was not recognized and its guidance had to be 

manually controlled. Other options such as a set vertical guidance speed, or a focusing 

algorithm based on sharpness and or changes in circle size were not accurate enough to 

keep the cell in the guidance region. 

 Additionally, there were constant image irregularities (large bright or dark spots 

which occluded the image of the cell) present in the chamber arising from surface and 

suspended debris, accidental air bubbles, accumulated cells, and the refractive qualities of 

microstructures in the elastomeric membranes. These were so frequent, and in the case of 
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elastomeric membranes, unavoidable that a fully automated system was judged too 

intensive and outside the scope of this research. We believe a dedicated PhD project 

would be needed to develop the machine vision and image recognition technology to 

achieve full automation of the laser cell patterning process. 

Cell Culture 

Truly, one of the biggest concerns with any cell biology experiment is keeping the 

cells healthy and viable. Manipulations to cells such as laser patterning can reduce 

viability and increase the time before a cell is plated. Additionally a process such as laser 

pattering, live cell microscopy, or electrophysiology can increase the probability of 

contamination. Additionally, we aimed to culture neurons at a density well below the 

standard minimum density of 10,000 cells/cm2. Finally, the substrates required 

modification to promote cell attachment, survival and neurite outgrowth. In this section 

we will discuss the cells used and their culture mediums. Because of its importance to 

culturing in elastomeric membranes, surface modification will be discussed in that 

section.  

Cell Culture - Cell source 

Aim one was focused only on creating the defined neuronal circuits and 

throughout this aim only chick neurons were used. This allowed for experiments to be 

performed on a daily basis.  
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Cell Culture - Primary Forebrain Neurons 

Forebrain neurons were harvested from day 7 embryonic white leghorn chicks. 

Fertilized eggs were obtained from the poultry farm and kept at 4°C for up to 1 week 

before being placed in the incubator. Hovabators™ equipped with automatic egg turners 

and air circulation fans were used to keep the eggs between 37°C and 39°C. On day 7 

eggs were wiped down with 70% ethanol, the top of the egg was removed with large 

forceps and the chick embryo removed. The chick was decapitated and the head was 

placed in a 35mm dish with a shallow later of sterile PBS. The neck was clipped of close 

to the skull and the head was flipped upright. Curved #7 forceps were used to pinch-clip 

the skin over the brain remove it. The forceps were then used to pinch and scoop the two 

frontal lobes. The lobes were then moved to a separate dish where the meninges was 

removed so that the remaining tissue was pure white. The tissue was then placed in a 

1mL tube filled with .1% Trypsin EDTA, inverted twice and incubated for 5 minutes. 

After five minutes the Trypsin was removed and 1mL of media with 10% serum was 

added, the tube was closed and inverted twice and the media was removed and replaced 

with culture medium. The tissue was then triturated up to 10 times with a 21G needle and 

syringe with care not to create bubbles. The cells were then counted and used. Cultures 

were incubated at 37°C and 5% CO2.  

Cell Culture - Establishment of Astrocyte Cultures 

The protocol for astrocyte cultures presented here is based upon  [171]. Astrocyte 

cultures were derived from day 14 chick embryonic cerebral hemispheres (E15CH). Eggs 

were wiped down with 70% ethanol and the top was removed. The embryo was removed 
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from the egg and decapitated. The skull was opened with serrated scissors and the 

cerebral hemispheres were removed. The cerebral hemispheres from up to 3 chicks were 

broken into fine pieces with two pairs of forceps. Next these pieces were mechanically 

dissociated by sieving through a nylon mesh (73μm pore diameter) into Media 199 

containing 10% fetal bovine serum (FBS). The cell suspension was plated in a T150 

flask. Cultures were grown at 37°C and 5% CO2. After 3 days the media was replaced 

with additional media changes every 3–4 days. Only a small fraction of the cells (<1/10) 

survived 24 hr after dissociation and were attached to the plastic substratum. Cultures 

reached confluency after 1-2 weeks at which time they were used to condition media for 

3-4 days. After 3-4 days in of confluency the cells were passaged by dissociating with 

.25% Trypsin EDTA for 5minutes, neutralizing with normal glial media. They were then 

spun in a centrifuge at 1000rpm for 6 minutes. The supernatant was removed and the 

cells were re-suspended in 1ml of glial media. A fraction of these cells were re-plated in 

T-150 flasks while the rest were cryogenically frozen for later use. 1ml of a concentrated 

cells suspension in 50% FBS 10%DMSO were slowly frozen in a 2ml freezing vial and 

kept at -80°C for up to 3 months. Thawing and resuspension of cells was performed by 

quickly thawing the 2ml tube in a 37°C water bath just until liquid, but still cold. 1ml of 

glial media was added to this drop-wise. The 2ml was transferred to a 15ml conical tube 

and 8ml of glial media was added. This suspension was centrifuged at 1100rpm for 6 

minutes, the supernatant removed, and 10ml of fresh glial media was added. After a 

gentle trituration this media was added to a T150 flask and placed in the incubator. 
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Astrocytes cultures were kept to condition media as well as with the intent for use 

in later heterotypic neuronal circuits. High purity astrocyte cultures were obtained by 

passage 3[172]. Astrocytes were discarded after passage 4 as their ability to produce 

astrocytic factors was questionable[173]. 

Cell Culture - Media 

The media used for culturing and patterning neurons was conditioned by 

astrocytes. The preconditioned medium was comprised of Neurobasal™ (without l-

glutamine or phenol red) supplemented with 1x GlutaMAX™ (Gibco) 1% 

antibiotic/antimycotic (10,000 units/mL penicillin G sodium, 10,000ug/mL streptomycin 

sulfate) 50µg/mL Gentamicin and 2.5µg/mL Amphotericin. When astrocyte cultures 

reached confluency they were switched to this serum free, preconditioned media for 3 

days. 20mL of preconditioned medium was added to T150 flasks with confluent astrocyte 

cultures. The media was removed 24 hours later and added to a 250mL bottle of frozen 

conditioned media and returned to the freezer. When a bottle was filled it was thawed and 

filtered with .22µm filter and aliquotted into 50mL tubes and refrozen. As needed 50mL 

tubes were thawed and 2% B27 and 100ng/mL NGF 7s was added to create the a finished 

neuron culture media. The astrocyte conditioned media critically improved neuron 

survival at low densities (as low as 10cells/cm2) 

Base  media: 

Media 199 without L-glutamine or phenol-red 

5% fetal bovine serum 

0.5 % (1x) GlutaMAX (L-glutamine substitute) 
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2% B27 neuronal supplement 

100 ng/mL NGF 

  1%  antibiotic/antimycotic 

  50ug/mL Gentamicin  

  2.5ug/mL Amphotericin 

 

The other medium used in our experiments, referred to as glial media, was 

comprised of Media 199 (without l-glutamine or phenol red) with 10% fetal bovine 

serum with 1x GlutaMAX™ (Gibco) 1% antibiotic/antimycotic, 50µg/mL Gentamicin 

and 2.5µg/mL Amphotericin. This media was used to plate and grow astrocyte cultures to 

confluency, as well as to rinse brain tissue after digestion with Trypsin.  

Serum free glial conditioned media: 

Neurobasal without L-glutamine or phenol-red 

0.5% antibiotic/antimycotic 

0.5% Gentamicin  

0.5 % (1x) GlutaMAX (L-glutamine substitute) 

After 24 hours on confluent culture of glial cells  

Freeze  

Filter .2µm filter 

Add 2% B27 neuronal supplement 

100 ng/mL NGF  
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Laser Cell Patterning Process 

The step-by-step process of assembling the laser deposition chamber and 

patterning cells using the laser cell patterning software control application is described in 

Appendix A and B respectively. Generally, 25-100nL volumes of cell suspension were 

injected into the chamber by the microinjection system to an area near (Z<1000µm, 

XY<2000µm) but not directly above the desired deposition point. Some clumping could 

occur while cells were sitting in the syringe and injection fiber and these clumps should 

not fall into the desired deposition area. Single, round, dark cells were selected from the 

injected suspension and manipulated at about 150µm/s horizontally and 25 µs vertically 

toward electrodes and/or microwells of the substrate. Rows were patterned at once, from 

the closest to the farthest from the injection point. The microinjection fiber was inserted 

or withdrawn from the chamber every 2 to 3 rows in order to keep minimize the distance 

(and time) between the microinjection point and the target positions on the substrate. 

Each cell took between 30 and 45seconds to guide to a point on a substrate. However, 

injection and finding healthy looking, single cells added to the overall pattern time. The 

overall average time to pattern a cell was closer to 90 seconds.  

Laser Cell Patterning Process - Post patterning 

After patterning the chamber was sprayed with 70% ethanol or Enivrocide™ and 

wiped down. The microwells of the membrane protect the cells from being washed out by 

movement, so the patterned substrate may be immediately removed from the chamber. 

After removal form chamber membrane bound coverslips were placed in 35 mm dishes 

(if not already in a dish) prefilled with 2mL of culture media. MEAs were placed in MEA 
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boxes and media was topped off. Patterned substrates were then incubated at 37°C and 

5% CO2. Cells were kept inside custom made boxes with FEP film tops which allowed 

for the exchange of gasses (C02 and 02) but retained water. A small container of water 

with AquaClean (Wak-Chemie®) was kept inside these boxes. This was especially 

important because some of the MEA cultures had very low volumes of media which were 

otherwise prone to dehydration. Furthermore, it allows for increased isolation, and more 

sterile transport between the incubator and the bio-hood or microscope. 

Accuracy of Laser Cell Deposition System 

Results 

To calculate the accuracy of the laser deposition system, we patterned rows of  8-

μm diameter polymer microspheres rather than cells because they had a more uniform 

shape and size which allowed for more accurately pinpointed centroids. The beads where 

Figure 4.16: Examples of patterning accuracy. A) 8µm polymer microspheres patterned 

with the laser cell patterning system in a square array. B) Chick forebrain neurons patterned with 

the laser cell patterning system with the same square pattern. 
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patterned every 100μm and the resulting 10-bead pattern was imaged and analyzed. The 

average distance between spheres, from centroid to centroid was 100.0 ± 0.9μm, yielding 

an accuracy of less than 1μm. By repeatedly depositing beads into the same location, we 

obtained that the spatial accuracy for a single guidance was better than 1/10 pixel (0.46 

μm/pixel for that setup). This accuracy and precision is far beyond the error imposed by 

cell irregularities and cell migration. Furthermore, the substrate features which are the 

target of our pattering process in this research were 30µm diameter electrodes. 

Results - Viability of Laser Patterned Neurons 

During early development and testing the laser pattering system judgment of 

viability was briefly assessed to ensure the method was suitable and warranted continued 

development. The viability of neurons patterned with similar IR and near IR lasers had 

been demonstrated by other groups[109] as discussed in chapter 2. Observing cells within 

four hours of patterning was used to demonstrate not only the accuracy of the system but 

also the viability of patterned cells. We deemed the extension of neurite outgrowth by 

phase microscopy sufficient to show the viability of neurons. Long term viability was 

difficult to address because of the nearly guaranteed migration of the cells. Until a means 

of confinement or tracking was developed further assessment was not possible. 

Additionally, viability of the laser patterned neurons and DNA damage were assessed by 

a co-worker, Tabitha Rosenbalm, and presented in her master's thesis. She exposed 

neurons trapped in agarose gels the laser radiation normally used for patterning and 

assessed outgrowth and DNA damage using COMET assay. 
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Results - Cell types and cell patterns 

The laser cell pattern system was used to pattern multiple cell types and created 

various cell patterns; it was also used to patter growth factor encapsulated microspheres. 

Results - Astrocyte Culture Purity 

In order to ensure a high probability of patterning a true astrocyte during the 

single cell heterotypic neuronal circuit experiments the astrocyte cultures were evaluated 

for purity. This was done by re-plating a small fraction of astrocytes in a standard 35mm 

polystyrene dish with at a density that allowed individual cells to be easily identified. 

These cells were allowed to attach for 4 hours and then fixed with 4% formaldehyde and 

1% glutaraldehyde in 0.1 M Phosphate Buffer (PB) (pH 7.4) for at least 2 hours at room 

temperature or overnight. This plate was then immunocytochemically stained with a 

primary antibody for Glial Fibrillary Acidic Protein (GFAP)(MAB360, Millipore), and 

Alexa Fluor 488 Donkey anti-mouse 

Figure 4.17: 10x micrographs of first passage astrocytes stained for GFAP. a) fluorescent 

image showing GFAP positive cells b) Phase image showing all cells. 
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secondary (Molecular Probes A21202). A 10x micrograph with a field of view covering a 

600µm x 1200µm area of the culture was taken under phase microscopy and fluorescent 

microcopy. Approximately 100 cells were imaged in this area and the fraction of GFAP 

positive cells over phase contrast identified cells was recorded. After the first passage 

cells were nearly 100% pure astrocytes (Figure 4.17). 

Results - Laser Patterned Fibroblast Bridge 

As the Laser Cell Patterning System was developed it was continually applied to 

various research projects which were also used to test its ability and aid in developing a 

widely applicable research tool. One example was its use in building a bridge of 

fibroblasts between two 'islands' of cardiomyocytes. This was done to test the distance 

Figure4.18: Fibroblast bridge between two cardiomyocyte 'islands'. 
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over which fibroblasts could synchronize the beating of the two groups of 

cardiomyocytes by electrical signal conduction. This application is illustrated in Figure 

4.18. The application illustrates the ability of the system to deposit cells to areas specific, 

but not predetermined points on the substrate with high resolution. It also demonstrated 

the temporal precision of the system, and how it can be employed in cell biology 

research. 

Results - Laser Patterned Line of Pectoral Myoblasts on MEA 

In early attempts to create a simple but fully closed neuronal circuit we attempted 

to build an on-chip reflex arc. For these experiments pectoral myoblasts were harvested 

from day 12 embryonic chicks and patterned in a line between two electrodes (Figure 

Figure 1-1: A line of Pectoral Myoblast cells patterned across two 

electrodes of an MEA. 
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4.19). This early application demonstrated the additional need for some form of 

restriction  (i.e. elastomeric membranes) as the cells would clump into an island rather 

than fusing to form a myotube. 

Results - Laser Aligned Adult Cardiomyocytes 

Another unique application of the laser patterning system was for patterning and 

aligning rod-shaped adult cardio myocytes. Adult cardiomyocytes are rod-like cells about 

150µm in length and 30-50µm in diameter. In vivo these cells have a very organized 

structure, one that is difficult to recreate after dissociation. The laser cell patterning 

system because of the weakly focused laser's axially elongated (200µm) guidance and 

Figure 4.20: Adult cardiomyocytes aligned side by side. 
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trapping region could be used to manipulate the cells into a vertical column and guide 

them to the substrate. Once the bottom end of the cell made contact with the substrate the 

laser was used to pull the cell in a specific direction as it was pushed flat onto the 

substrate. In this manner the rod-like adult cardiomyocytes could be aligned side by side  

(Figure 4.20) and end to end (Figure 4.21). 

  

Figure 4.21: Adult cardiomyocytes aligned end to end. 



 

 

CHAPTER V 
MICROFABRICATION FOR CIRCUIT DEFINITION 

 
 

 
Introduction 

Physical confinement and restrictive guidance imposed by a 3D construct is a 

simple and highly effective method for patterning cells and controlling axon 

outgrowth[105, 174, 175]. The only example of single-cell-resolution neuronal circuits to 

date employed channels and microwells etched in agar[21] to confine and direct neurite 

outgrowth. We have chosen to use PDMS elastomeric membranes with microwells and 

microtunnels for this purpose. PDMS is biocompatible, reusable, transparent, and 

increases the signal to noise ratio of electrodes[20]. The elastomeric membranes are very 

similar to and fabricated using the same techniques as microfluidic devices.  

Microfabrication - Design 

Materials and Methods 

Design of the elastomeric membranes was based on a simple system of 

microwells connected by microtunnels. The microwells would keep neurons patterned to 

the electrodes of an MEA from migrating off the electrode. The microtunnels would 

restrict neurite outgrowth from neurons along a specific path to adjacent 

neuron/microwell/electrode targets. The microwells and microtunnels were created when 

an elastomeric membrane with clear-through holes and shallow channels was aligned and 

a attached to an MEA. As long as the elastomeric membrane is firmly sealed to the MEA 

all neurite extension will be restricted to the tunnels defining interneuron connectivity. 

Based on publications dealing with geometric guidance of neurite outgrowth[174, 175], 
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two different designs were proposed which were intended to influence neurite polarity as 

well imposing direction. These designs were created with the goal of overcoming the 

resolution and feature size limitation of our photolithography process, which could only 

produce channels as narrow as 8 microns across. Such a wide channel width could not be 

used as a barrier to cell migration. Instead, the tunnel height was made shallow enough 

(<3µm) to keep the neurons from moving from the microwell into the microtunnel 

(Figure 5.1). The “directed” design is composed of rows of clear through holes connected 

by tapered channels as seen in Figure 5.2. In the “snag” design (Figure 5.3) the tapered 

channels end in a sharp turn, which may reduce the probability of a neuron extending its 

axon in the wrong direction. With higher resolution features, the tapering could be more 

drastic and probably more effective. Finally, once some experiments were carried out and 

we began to understand more about the limitations of the microfabrication system a final 

microstructure design intended to influence polarity was developed. This "hook" design 

is shown in Figure 5.4. 

Microfluidic channels in the elastomeric membranes were used to flow surface 

modification solutions, culture media and experimental factors into the microwells and 

guidance channels. This allows for neuronal survival at the very low culture density 

required to achieve a one-to-one neuron-electrode ratio and completely identified 

connections.  
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Figure 5.1: Elastomeric membrane. The Microwells confine the neurons the short 

microtunnels allow only the neurites to pass through. 



 

 

 

Figure 5.2: Original "Directed" microstructure design. At the narrowest point the channels 

are 8-10µm in diameter. 

Figure 5.3: "Snag" microstructure design intended to induce polarity by hindering neurite 

outgrowth in the backward direction via a sharp angled turn. However, misalignment of the 

circular micro wells could easily overwrite the sharp angles of the first layer. 

Figure5.4: "Hook" microstructure design. In this design the microwell is distanced from 

the sharp angled meeting of microtunnels, eliminating the chance of overwriting. However, the 

path of the presynaptic neuron 1.1 takes when it converges with the microtunnel of 1.2 is 

uncertain. This is the type of scenario that can be studied with the microstructure and laser cell 

patterning systems. 
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Microfabrication - Photolithography 

The elastomeric membranes were made by curing PDMS on rigid silicon molds. 

The silicon molds were created using standard photolithography techniques with 2” 

mechanical grade polished silicon wafers, SU-8 (2000.5,2005,2025,2050) negative 

photoresist, a Laurell WS-400B-6NPP/LITE  spin coater and a Suss MJB-3 microaligner 

with 200W lamp house. With these materials it was possible to create molds with short 

(<2 µm) channel features and strong 30-60 µm tall posts. 

Microfabrication - Photolithography Masks 

The masks which were used to selectively block the UV radiation from the mask 

aligner and UV lamp were designed in AutoCAD™ and laser photo-plotted by CAD/Art 

Services, Inc. Laser photoplots were much cheaper than traditional chromium masks 

allowing for frequent modifications of elastomeric membrane designs. The drawback was 

that the resolution of the masks was limited to 8-10µm for the smallest feature. When 

using photoplots the emulsion side was placed downward in immediate contact with the 

photoresist coated wafer to obtain the best resolution. If a design was intended to align to 

a certain layout, as was the case with membranes aligned to the electrodes of the MEA, it 

was important to make sure that the layout correctly oriented and that the desired 

emulsion side be specified to enable proper alignment. For the multilayer molds needed 

to form shallow channels and deep holes an alignment guide was added around the 

outside of every mask design (Figure 5.5). The alignment pattern included an outline 

matching the shape of the 2” wafer which was helpful in quickly making a rough 

alignment. The masks were cut out from the photoplot sheet and attached to 4”x4”x ¼” 
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soda-lime glass with small dabs of superglue in 4 corners. The masks were cut larger than 

the 2" wafers to ensure that full coverage was achieved. If a mask only partially covered a 

wafer it could cause poor leveling leading to poor resolution, or it could scratch the 

photoresist surface and become stuck, making alignment difficult. Care was taken to 

avoid contamination of the transparent areas with glue, and to use as little glue as 

possible to minimize the distance between the mask and the glass. The features which 

were meant to match the MEA were enlarged by 4.3% in the AutoCAD™ drawing (but 

not the alignment marks) to account for shrinkage of the PDMS molds during curing. 

 

Microfabrication - Layers Spinning 

The protocol for creating a multi-layered silicon mold had many steps 

necessitated by the limitations in visualizing the exposed features in the photoresist and 

Figure 5.5: Image of a 

photolithography mask. The actual 

microstructure design is in the very center 

with four corner dots surrounding it. The 

outer circles are holes to vent bubble when 

attaching the membrane. The larger shapes 

including stars, letters and lines are the 

alignment guides. 
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by defects in the photoresist. Small air bubbles, dust, scratches, or an 'edge-bead'(an 

artifact of the spinning process) could case surface inconsistencies which hindered full 

contact of the photomask or alignment of the photomask. These cause poor resolution, or 

poor alignment respectively. The first layer created on the silicon wafer was the layer 

containing the 2-3µm tall features which served as molds for the microtunnels. With the 

Karl Suss MJB3 aligner it is nearly impossible to discern these features through a second 

coat of photoresist more than 10µm thick. We experimented with creating a blank 

alignment layer before the first layer of features, but the inconsistencies present in a 

thicker (>30µm) layer adversely affected the wafer-mask contact and critically reduced 

resolution. Table 5.1 shows the multiple layers of a typical mold, their thicknesses and 

details about their construction including UV exposure, baking and development times.. 

The procedure for aligning a mask to the previously exposed layers of a wafer is detailed 

in Appendix C. 

 

 

Table 5.1; Microfabrication Parameters A 
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Microfabrication - Exposure 

Negative resists such as SU-8 are crosslinked by exposure to UV radiation. The 

energy required to fully crosslink the resist is related to the thickness of the resist. The 

specification sheet provided by Microchem for their SU-8 photoresists lists a table of 

exposure energies (mJ/cm2) for different resist thicknesses. The power supply/controller 

for the UV lamp on the MJB3 aligner will keep the output of the lamp at a constant 

intensity (mW/cm2). Exposure times are simply computed by dividing the suggested 

energy by the lamps set output. For best results an overexposure of 10%-50% was 

normally used. Over exposure ensures full crosslinking and penetration to the bottom of 

the resist, but can reduce resolution. 

Microfabrication - Development 

When a layer or several layers were finished, the uncross-linked photoresist was 

removed by submerging the wafer in developer. Many different chemicals could be used 

as a developer, we chose MicroChem® SU-8 developer. In the instruction documentation 

Table 5.2; Microfabrication Parameters B 



119 

 

provided by MicroChem there was a table of layer thickness vs. development time. In our 

experience we found these times to be much longer than needed. If the mold is exposed 

to developer for too long (at times listed in the table) there was a tendency for features to 

separate from the silicon mold and flake off. As such, molds were developed just long 

enough that no resist is visible on the wafer. At this point the wafer was removed and 

rinsed one last time with fresh developer, and then both sides were rinsed with isopropyl 

alcohol. Care was taken to not spray the center features directly as even the force from 

this rinsing could damage the features. If the isopropanol created a milky residue on the 

wafer, the wafer required further development. No harm came from rinsing the mold too 

early, so it was better to observe the milky residue than to develop for too long which 

could cause flaking of the photoresist from the wafer. Often, an additional 10-30 seconds 

of development was sufficient to finish development. After rinsing with isopropanol both 

sides of the wafer were rinsed with DI water. The wafer was then placed back on the 

65degree hotplate to evaporate the DI water. This final step was optional unless more 

layers were to be added. In the case of additional layers, full drying of the mold on the 

hotplate before adding photoresist was crucial. 

Microfabrication - Hard Baking 

Though it was not required for SU-8 resists, a hard-bake may increase the strength 

of a molds features as well as insuring release of any solvents. Molds were hard baked at 

137°C in a vacuum oven for at least 4 hours. 
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Microfabrication - Soft lithography 

Soft lithography refers to processes which use lithography via elastomeric (soft) 

transfer of a pattern. We used the same techniques used for creating the soft lithography 

stamps to create our elastomeric membranes.  

Softlithography - Silanization of Rigid Mold 

To aid in the removal of elastomeric membranes from the silicon molds the 

surface was first silanized. The thin elastomeric membranes were not strong enough to 

withstand removal without this step. Hard-baked molds were placed in a vacuum 

desiccator face up. 3-7 drops of 1H,1H,2H,2H-Perfluorooctyltrichlorosilane (PFOTS) 

was placed in the desiccator and it was placed under vacuum. Once a maximum vacuum 

(~25 inches) was attained, the desiccator valve was shut and the molds were evaporation 

coated over night. Usually the vacuum desiccator  would lose its vacuum seal by the next 

day, if not care was taken to slowly bring the desiccator  back up to atmospheric pressure 

as a sudden influx of air would whisk and shatter the silicon wafer inside the desiccator. 
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Softlithography - Polymer Spinning 

Polydimethylsiloxane (PDMS) was obtained as a two-part elastomer, Sylgard™ 

184, from World Precision Instruments. The base was mixed with the curing agent in 9:1 

(rather than the recommended 10:1)  as a higher curing agent content has been shown to 

be more biocompatible to in vitro cell cultures[100]. To this mixture we added 10% 

xylene to decrease viscosity allowing more uniform breakthrough clear-through-hole-

forming pillars. The uncured PDMS solution was spin-coated onto the silicon molds at 

speeds sufficient to reduce the PDMS thickness to just below the 40µm posts. The posts 

were fabricated at this height in accordance with the desired membrane thickness. To 

Figure 5.6: Graph (published by Zhang [4]) used to estimate spin speed 

for a desired PDMS film thickness. 
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minimize optical aberrations and thermal absorption the thickness of the elastomeric 

membranes was minimized. However, to retain a sufficient amount of mechanical 

strength and durability a balanced thickness was found to be 35µm. There are several 

journal publications which plot PDMS spin speed versus PDMS film thickness [4, 176, 

177]. While it did not account for PDMS mixed with xylene, we chose to use the chart 

published by Zhang[4] (Figure 5.6) which served as a good guide while we 

experimentally determined the appropriate speed to spin PDMS. To obtain clear through 

holes with minimal microwell aberrations a PDMS mixture with 10% xylene additive 

was spun at 4000rpm.  

Softlithography - Polymer Baking 

The PDMS was then cured by baking the wafer on a hotplate at 125ºC for 1-3 

minutes. An entire membrane of this thickness is virtually impossible to peel off the mold 

or align to the MEA, therefore additional annular layers were spun on top the 35µm layer 

excepting the central features. Next a syringe was used to deposit a thicker annular of 

PDMS (without xylene) around the feature area and then spun flat to about 100 µm and 

baked again. A second annular layer was added exactly as the first. The annular provided 

mechanical support for the delicate center area. The elastomeric membranes could then 

be gently peeled from the mold and the process is repeated. A single silicon mold could 

be used to produce over 20 elastomeric membranes before losing integrity (features 

breaking off).  

After all 3 layers were cured in this manner, a collection of membranes was baked 

in a vacuum oven at 137ºC for at least 2 hours. This was done to ensure maximum cross-
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linking and equivalent cross-linking between membranes. In work by Millet and 

colleagues it was found that an improvement in biocompatibility of PDMS microfluidic 

neuronal culture systems resulted from both autoclaving and short chain oligomer 

extraction[66]. They posited that the autoclave process increases the amount of cross-

linking, reducing the number of short chain oligomers which are presumed to be a 

cytotoxic. We therefore baked the membranes before the oligomer extraction process. 

Elastomeric Membrane - Oligomer Extraction 

The cured PDMS membranes were then leached of oligomers in a three solvent 

process derived from one published by Millet and coworkers[66]. They found that the 

extraction of oligomers improves cell survival inside PDMS microfluidic devices. PDMS 

membranes were sonicated twice for 1hour in each of 3 solvents, triethylamine, ethyl 

acetate, and acetone, listed in decreasing solvency. The membranes were then vacuum 

baked for at least 2 hours to make sure solvents were removed. Next the membranes were 

attached to the substrate (coverglass or MEA). 

Alignment and Attachment of Membranes to MEA 

The membranes were aligned to the MEA under a dissection microscope in a 

dissection hood. Both the MEA and the elastomeric membrane were treated with oxygen 

plasma at 150 mTorr for 5 minutes on medium (longer times and higher power rendered 

the PDMS surface too glassy and lead to cracking and greater shrinkage). After plasma 

treatment the MEA was lightly sprayed with 70% ethanol which acted as a quickly 

evaporating lubricant to aid in sliding the membrane. As the ethanol-water mixture dried, 
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the movement of the membrane became slower. Using two sets of forceps the membrane 

was aligned so that all microholes were arranged over the electrodes. Once proper 

alignment was achieved the substrate was allowed to dry under the microscope 

illumination, temporarily fixing it in place. Next any air bubbles were pressed out toward 

the edges with a gloved finger and alignment was rechecked. If alignment was preserved 

the MEA was then heated at 50°C for 2 hours, creating a permanent bond. 

 
Results 

Elastomeric Membrane Microstructures 
 

Figure 5.7 shows a finished 'snag' membrane aligned to an MEA. The features are 

well resolved and the membrane features align very closely to  the electrodes of the 

MEA. While the features are well resolved and align well to the MEA, the position of the 

microwell within the membrane may be slightly misaligned relative to the microtunnels 

as seen in Figure 5.8. This is a result of the small misalignments in successive layers of 

the mold during the many layered photolithography process. Several molds must be 

microfabricated to obtain a perfectly aligned set of layers even with meticulous alignment 

by a skilled person. For this reason the 'hook' design was created which is more forgiving 

of slightly misaligned microwells. 



 

 

 

Figure 5.7: Elastomeric membrane with 'snag' microstructure. The microwells are 

aligned to the electrodes of an MEA. 
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Figure 5.8: Example of off target microwell resulting from misalignment of masks with 

the bottom layer during the photolithography step of microfabrication. The microwell's position 

eliminated the intended sharp angle in the backward microtunnel.



 

 

CHAPTER VI 
CREATING DEFINED CIRCUITRY 

 
 

 
Materials and Methods 

Defined circuitry was achieved by using the laser patterning system in 

conjunction with the elastomeric membranes. Implementation of these methods was the 

same as described in the previous section. New or altered methods include the surface 

modification techniques and other substrate preparation measures to culture cells in the 

elastomeric membranes and on MEAs. 

Substrate Methods - Surface Modification for Cell Culture 

The unaltered surfaces of the MEA and the overlying PDMS membrane were not 

natively supportive of cell attachment, spreading or neurite outgrowth. Therefore we 

developed/adapted a series of surface modification treatments to improve the 

biocompatibility of the substrate materials. The surface modification techniques were 

used to transform the silicon nitride (MEA insulating layer) indium tin oxide (ITO, 

electrode material) and PDMS (elastomeric membrane) substrate into a cytophilic surface 

which promoted neuron attachment and neurite outgrowth. All three of these materials 

were able to be activated by treatment with oxygen plasma. Such treatment burns off 

organic residues and gives the surface a negative charge by adding 0- and 0H- groups. 

The charged surface increases hydrophilicity, helps bind cationic polymers, and can be 

used to irreversibly bind PDMS to silicon nitride or glass. 

Substrates were treated with oxygen plasma (or ashed[20]) for 10 minutes at 150 

mTorr using the high setting on a Harrick Plasma PDC-32G cleaner/sterilizer. 
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Immediately following plasma treatment the substrates were immersed in a cationic 

polymer suspended in borate buffer with pH of 8.4. The two cationic polymers tested 

were polyethylimine (PEI) and Poly-D-Lysine (PDL). PDL (500-550 kD BD™ #354210) 

was diluted to 100µg/mL as reported by Dworak[20]. PEI was diluted to 0.05% w/v in 

8.5pH borate buffer.  

Methods - MEA reuse 

While culturing random monolayers on MEA we used several MEAs, some new 

and some older, some over 5 years old with an unknown number of uses. Cell attachment 

was not consistent across MEAs even with the same cleaning and surface modification 

procedures. This is to be expected as Multi Channel Systems (MCS GmbH) lists the 

MEA lifespan at 30 uses, and some groups use[20] their MEAs (not MCS) as few as 5 

times before replacement. We also observed that over time the MEA surfaces become 

unsuitable for cell attachment. Two primary modes of failure were observed with cell 

attachment to MEAs. In the first mode, the majority of cells simply fail to attach and 

spread, remaining round and clear, eventually dying. In the second mode, cells do attach 

spread and form a network, but the network detaches from the center of the mea and 

recedes towards the walls of the MEA or even of a polystyrene culture dish. The second 

mode of failure occurred with cell seeding densities above 2x105cells/cm).  

Furthermore, to test the hypothesis that MEAs could ‘go bad’, as cells were 

cultured on MEAs, the cell attachment status was recorded and tracked over several 

cleaning, coating, culturing trials to determine if poor attachment was a characteristic of 

specific MEAs. This was found to be true, and use of these MEAs was discontinued. One 
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final attempt at growing cells on the MEAs was to grow glial cells on the MEAs, which 

are more robust and attach to untreated surfaces relatively well. If even astrocytes cannot 

attach and survive on the surface there is not hope for neurons to do so. Furthermore, 

culturing astrocytes on the surface could condition the surface and improve attachment of 

neurons later.  

Methods - Substrate Cleaning 

The substrates including membranes were reused. Irreversible bonding of 

elastomeric membranes to the MEAs which are expensive required reuse. Cell debris in 

microwells and microchannels had to be cleaned out to allow new cells to be patterned 

into the microwells and to clear any debris blocking the microtunnels for neurite 

outgrowth. If the substrate has been contaminated by fungus or bacteria it was first 

cleaned and soaked in Envirocide™. After a 24 hour soak in Envirocide™ the substrates 

were rinsed for 2 days  and boiled in DI water for 1 hour before they were treated with 

the normal cleaning process. Normally, the cleaning process began by rinsing the 

substrate with DI water to kill cells and remove media. Next the substrate was soaked in 

DI water with 5% Tergazyme™ for 1-2 days, until cell debris was fully dissolved by the 

enzymatic action of the cleaner. Substrates are rinsed 5 times with DI water, and soaked 

in DI water for 1 day before boiling for 1 hour in DI water. Next the membranes were 

placed in a sterile bio-safety hood and allowed to dry, and then exposed to UV radiation 

for at least 15 minutes. The final sterilization step was the use of oxygen plasma in the 

surface modification procedure. 
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Methods - Patterning Cells Into Circuit Defining Microstructures 

The elastomeric membranes contained 63 microwells (64 - 1 for the electrode lead 

used for the internal reference) despite the MEA only having 59 electrodes. The corner 

microwells were included to increase the array elements because the same elastomeric 

membranes were used on plain coverglasses. Single neurons were patterned to each well. 

In the rare case where a random neuron had fallen into a well, that was indicated with an 

R and a neuron was not patterned to that well. In some cases debris covered the well and 

a pattern was not possible, this was marked with a D. Some membranes had a blocked 

microwell resulting from a failure of the pillar to break through the PDMS layer during 

the membrane fabrication process; this was marked with a S. The final case which 

required notation was when single cells could not be found to pattern to a well and more 

than one was patterned. This was noted with the number patterned to the well (1 cell was 

with no problems was marked as a 1). This scenario occurred when the cell supply was 

running low, or if the cell suspension had been inadequately dissociated. At the end of a 

patterning session the pattern was reviewed to make sure no cells had floated away, if 

they had a replacement cell was deposited. For every patterning session a 8x8 tablet was 

filled out denoting the session's cell pattern. The substrates were transferred to a 35mm 

Petri dish and immersed in astrocyte conditioned media. Every day half the media was 

changed. 48 hours post patterning the substrate/ cell patterns were evaluated via phase 

microscopy using a LD 40x (or 63x using the 1.6x optovar) objective. Each cell was 

counted for presence and whether or not it exhibited neurite outgrowth. These results 

were compared with the initial pattern to evaluate viability and neurite outgrowth. 
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Methods - Antibody Staining 

To verify astrocyte purity we stained astrocyte cultures after the first passage for 

Glial Fibrillary Acidic Protein (GFAP)(MAB360, Millipore). To identify axons we 

stained with an antibody for neurofilaments (MAB1621, Millipore). To identify dendrites 

we will use an Anti-Microtubule-Associated Protein 2 (MAP2) (IHCR1004-6, Millipore). 

Alexa Fluor 488 anti-mouse and Alex Fluor 594 anti-rabbit were used as secondary 

antibody fluorescent markers. 

Viability and Time in the Microsyringe 

During the course of some laser cell patterning sessions we had to refill the 

microsyringe with cell suspension in the middle of the patterning process. Later, when 

reviewing the neurite outgrowth of the patterned neurons an abrupt spike in the 

occurrence of neurite outgrowth coincided with the cells patterned immediately after 

reloading the microsyringe. Further review pointed to a correlation between the time cells 

resided in the microsyringe and a decrease in the probability that they would extend 

neurite outgrowths.  

The replacement cells came from the same dissection and were prepared the same 

way and left at the same cell density. The only difference was whether they had been 

sitting in the microsyringe, and whether they had been kept at 37ºC. While sitting in the 

syringe there was also no atmospheric buffer. Typically 3ml Cell suspension was kept in 

the incubator in a 15mL conical tube, leaving over 12mL of atmospheric air. 

Furthermore, a relatively large volume of cells should be available in the 50µL syringe as 

the typical injected volume is around 50nL injections. However the supply of cells 
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normally ran out long before the 50µL of cell suspension were fully ejected. Between 30 

minutes to one hour into the patterning process the ratio of large round cells to smaller 

cells and cell debris decreased until no cells could be found. The decline in viability 

correlated with the time the cell suspension resided in the microsyringe may result from 

the decreased atmospheric buffer allowing the cells enough O2 to survive or CO2 to keep 

a compatible pH. An alternative but unlikely cause may be the difference in temperature 

between the two cell suspensions. We believed this was unlikely because cells patterned 

to the substrate but sitting in the chamber at room temperature (20ºC) show no decrease 

in survival. Finally, the glass syringes, though well cleaned and rinsed, may cause some 

harm to the cells.  

Temperature and Atmospheric Buffer 

The first experiment performed to investigate the cause of decreased viability 

focused on temperature and atmospheric buffer. This was achieved by using a C02 

independent media (Hibernate E) and leaving extra cell suspension in a conical tube 

beside the laser cell patterning system for the time of patterning.  

Freshly dissociated chick forebrain neurons were suspended in Hibernate-E 

without CaCl2 with Gentamicin, Amphotericin, and Penicillin/Streptomycin at previously 

stated concentrations. Again, both the cells suspension and chamber medias must be 

perfectly matched to avoid media density flows which hinder the pattering process. The 

cells were suspended at a density of 333,333 cells/mL following normal patterning 

procedure. Before patterning (t=0) three 35mm polystyrene culture dishes were coated 

with Laminin for 10 minutes and then seeded with 2mL of cell suspension each. An 
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additional 6mL of cell suspension was placed in a 15mL conical tube and placed with by 

the chamber during the patterning process. The cells were patterned for 1 hour and the 

typical decrease in viability and cell count was witnessed. The chamber was returned to 

the hood, and the substrate media was changed to astrocyte conditioned Neurobasal 

media with the standard supplements. After patterning (t=1hour) 2mL of cell suspension 

Figure 6.1: A 10x micrograph of cells plated for the C02/ temperature viability 

experiment. The ImageJ Cell Counter markers are overlaid. Blue type 1 markers are for cells. 

Green type 2 makers are for neurite outgrowth 
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from the 15mL conical tube was plated to  each of three more Petri dishes prepared 

identically to the first three.  

The dishes were fixed after 24hours in culture. 5 different micrographs with the 

same 10x size field-of-view were taken of each dish. Using ImageJ application with the 

Cell Counter plug-in every cell or cell sized particle was counted (6.1). Clumps of cells 

were counted for the number of cells that it seemed made the clump up or for the number 

of cells required to cover each cell. This was a very imprecise way of estimating the 

number actual number of cells but was consistent across the different samples. Next the 

number of neurite outgrowths was counted. If a cell had more than one outgrowth it each 

was counted. If a cell connected to another cell the interconnecting neurite was counted 

only once. The total number neurite outgrowths was counted and divided by the total 

number of neuron sized (6-12µm) round bodies.  

Results - C02/Temperature Viability 

The average ratio neurites to neurons for each set of samples was taken and 

results from each set showed that there was little difference in the fraction of cells 

exhibiting neurite extension at each time point. Using a two-sided Student's T-test no 

significant difference in the ratio of neurite outgrowth was found (t=-0.30, DF = 27.89, P 

= 0.77). From this we concluded that it was neither a deficiency of CO2 buffer nor the 

lowered temperature that had caused the reduced viability of the cells in the 

microsyringe. We suspected two possible causes related to cells residing in the 

microsyringe; 1) the continual movement of the cells through the microsyringe as it was 
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depressed every minute agitated the cells and caused them to apoptosize. 2) Residing in 

the small space of the microsyringe induced cell death. 

 

Figure 6.2: The ratio (as a percentage) of neurite outgrowth to cell number for the 

CO2/Temperature viability experiment. Error bars represent standard error. There is no 

statistically significant difference between in neurite outgrowth between cells seeded at 0 hours 

after dissociation and re-suspension and cells seeded after 1 hour left at room temperature.  
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Microsyringe Movement Experiment 

To test the hypothesis that the continual movement of the cells along the micro 

syringe stressed the cells to the point of apoptosis a microsyringe movement experiment 

was performed. Fresh cell suspension was prepared as previously described and loaded 

into two microsyringes which were laid flat in a culture hood (Figure 6.3). One 

microsyringe was depressed at a rate of 14nl/second for 1 hour to eject the entire 50µL of 

cell suspension. The other microsyringe received no depression of the plunger until the 1 

hour time point, and then was fully depressed in 2 seconds. The output of each syringe 

was routed through the Microtight fittings and peek tubing used for laser patterning. The 

fibers were fed through small holes in a cover into single wells of a 48 well plate. The 

wells were coated with PDL and Laminin and filled with 500uL of Hibernate E medium 

with previously listed supplements. The dish was incubated at 37°C for 48 hours before 

being micrographed.  

 

Figure 6.3: Syringe movement experimental setup. 



 

 

Results - Syringe Movement Experiment 

Results 

Micrographs from each sample type (continuous and single ejection) are shown in 

Figures 6.4 through 6.7. We did not attempt to count the cells because the spreading of 

the cells through the well bottom was not evenly distributed. However, there were a 

significantly larger number of cells and cells with outgrowth in the well that was filled by 

a single ejection than the well that was filled by continuous ejection. 



 

 

 

Figure 6.5: 4x micrograph of 50µL of cell ejected at a continuous 

rate of 14nL/s. immediately following completion of ejection. 

Figure6.4: 4x micrograph of 50µL of cells ejected in a single pulse 

of 25µL/s once cells had come to rest on the surface following ejection. 
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Figure 6.7: 4x micrograph of 50µL of cell ejected at a continuous 

rate of 14nL/s 48 hours after ejection. 

Figure 6.6: 4x micrograph of 50µL of cells ejected in a single pulse 

of 25µL/s once cells had come to rest on the surface following ejection. 



 

 

Results - Viability Patterned Neuron Cultures. 

To obtain a basis for comparison of patterned neuron viability and neurite 

outgrowth we used  the same data from the CO2/temperature viability experiment. That  

neurite to cell ratio expressed as a percent was 35.58% with a standard error of 0.03%. 

This is relatively close than the published results of Heidemann[49] which was the basis 

for our chick forebrain neuron culturing protocol. Heidemann and colleagues found very 

little to no neurite outgrowth from chick forebrain neurons plated below 5x103 cells/cm2. 

This was in contrast to rat hippocampal neurons which more readily survive and extend 

neurites at low densities. Furthermore, they found that at 10x103 cells/cm2 only about 

50% of the plated cells survived. 

Discovery of the link between the time cells spent in the microsyringe and the rate 

of survival and neurite outgrowth was toward the end of this research project. Assessing 

the viability and outgrowth of all cells patterned before this discovery is unrepresentative 

of the true rates of viability and neurite extension of neurons patterned to microwells of 

elastomeric membrane microstructures. For this reason these results are based on a single 

patterning session in which the microsyringe was refilled with from an undisturbed 

aliquot of cell suspension for each or 8 rows of cells patterned. A total of 33 cells were 

deposited with the laser patterning system into clear through unobstructed microwells. 

After 24 hours in culture 28 of these 33 cells survived (retained a round, un-blebbed 

structure) and 14 had extended neurites. The percentage of patterned cells that survived 

and extended neurites was 48%. Which is better than our measured neurite/cell ratio for 

normally plated cells and about equal to the results reported by Heidemann[49].  



 

 

Results - Viability and Surface Modification 

Following the surface modification protocol published by Dworak and 

colleagues[20] we found an abrupt increase in the viability and neurite outgrowth of 

neurons we patterned into elastomeric membrane microstructures. Their protocol differed 

from ours in several ways. They used PDL as a cationic polymer film instead of the PEI 

that we used. The suspended their PDL in a borate buffer with pH 8.5 and finally they 

rinsed their microtunnels for 24 hours in comparison to our 4 - 8 hour rinses. To 

determine what factors were responsible we did several experiments changing only a 

single parameter at a time and found that the use of borate buffer was most important. 

Without suspending the cationic polymer in borate buffer we had zero surviving neurons. 

When using a borate buffer we witnessed survival and outgrowth from neurons even 

when using PEI with a minimal 4 hour rinse. 

Results - Circuit Connectivity 

Patterned cells took longer to extend neurites than non-patterned neurons 

randomly seeded in glass bottom Petri dishes prepared with the same surface 

modification procedures. Typically 5 to 6 days were required for a neuron to extend its 

neurite the full 200µm length of a microtunnel from one microwell to the next. In normal 

cultures such an extension took 2 to 3 days. Figures 6.8 through 6.10 show typical circuit 

connectivity.  

 



 

 

Figure 6.8: Laser patterned neurons extending neurites towards adjacent wells to form 

circuits. Green indicates the presence of MAP2 and Red indicates the presence of neurofilaments. 

Figure 6.9: Confocal images of laser patterned neurons extending neurites toward 

adjacent wells to form circuits. Green indicates the presence of MAP2 and Red indicates the 

presence of neurofilaments. 



 

 

 

 

 

 

 

 

Figure 6.10: Fluorescent micrograph spliced to show a typical row of neurons. 



 

 

Results - Polarity and Microstructure Design 

Polarity could not be discerned from the antibody markers of the IHC stained 

circuits (though some polarity info could be gleaned from circuits that did not fully 

connect such as in Figure 6.11). Instead of identifying polarity by axon and dendrite 

specific markers we used live cell phase microscopy of cells as the neurites developed but 

before they fully connected. There were four possible scenarios that could be witnessed 

by a neuron. It either extended a primary neurite in the direction intended by the 

microstructure geometry (+), in the opposing direction (-), into the channels in both 

directions (Both), and it extended neurite(s) but not into either microtunnel (Neither). As 

previously mentioned, some microstructures had misaligned microwells which nullified 

the geometry of the microtunnels (Figure 6.12). Membranes of this type were not 

considered. Only the elastomeric membranes with the 'snag' microstructures were 

considered as preliminary data suggested the simple tapered channels of the 'directed' 

microstructures had no influence. Table 6.1shows the compiled results for 87 neurons 

with visible neurite outgrowth present in 8 different laser cell patterned microstructures. 

Figures 6-13 through 6-16 depict typical results for each scenario.  

Table 6.1: Occurrence of Neurite Extension Types 
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Figure 6.11: Fluorescent micrograph of patterned neurons showing both forward and 

backward extending neurites. Stains for MAP2 appear as green and stains for neurofilaments 

appear as red. 

 

 

 

 

 

 

 

 

 

Figure 6.12: A misaligned microwell eliminates the sharp angles of the 

microtunnels. Neurites are extended in both directions. 

Figure 6.13: A well formed microstructure 

with a neuron extending neurites in both directions. 
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Figure 6.15: A neuron exhibiting neurite extension in the unintended direction. 

Figure 6.16: A neuron exhibiting neurite extension in the 

intended direction. 

 

Figure 6.14: A neuron exhibiting neurite extension which 

does not clearly extend into either microtunnel. 



 

 

Results - Heterotypic Patterns 

A typical heterotypic pattern created by patterning Neurons (0 hours) and 

astrocytes 24 hours later has the following results shown in Table 3. Micrographs were 

taken of every microwell which had a cell body present. It was easy to identify a single 

neuron or a single astrocyte if they were extending neurites or spreading. However, 

sometimes there were only round blobs. If there were 2 such blobs and it was known that 

one of each type was patterned there, than one was attributed to each cell type. Where 

only a single round cell was present with no spreading or outgrowth it was marked as 

unidentified. Finally, not all neurons may have been counted as the astrocytes often 

spread very wide and it were much thicker making it difficult to recognize a neurite 

outgrowth if one was present. From the data in Table 6.2 we can see that after 24 hours 

61 % of neurons survived. Yet only of 45 % of surviving neurons showed neurite 

outgrowth. The rate of survival of patterned astrocytes is nearly 100 % at 72 hours after 

patterning (96hours). 24 hours after they patterning only 5/23 were identifiable as 

astrocytes by their spread morphology. Some typical results are shown through the 

different time points in Figures 6.17 through 6.26



 

 

 

Table 6.2: Heterotypic Pattern Behavior 



 

 

 

Figure 6.18: Neuron A and astrocyte A 1 hour after astrocyte deposition with 

laser patterning system (1 day after neuron deposition). 

Figure 6.17: Neuron A 24 hours after deposition with laser cell patterning system. 
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Figure 6.20: Neuron A and astrocyte A 72 hours after astrocyte deposition (96 

hours after neuron deposition) 

Figure 6.19: Neuron A and astrocyte A 24 hours after astrocyte deposition (48 hours 

after neuron deposition) 



 

 

 

Figure 6.21: Neuron B 24 hours after deposition with laser 

cell patterning system. 

Figure 6.22: Neuron B and astrocyte B 1 hour after astrocyte 

deposition with laser patterning system (1 day after neuron deposition). 
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Figure 6.23: Neuron B and astrocyte B 24 hours after astrocyte 

deposition with laser patterning system (48 day after neuron 

deposition). 

Figure 6.24: Neuron B and astrocyte B 72 hours after 

astrocyte deposition (96 hours after neuron deposition) 



 

 

Figure 6.26: A single astrocyte 72 hours after laser deposition has elongated through 

almost the entire microtunnel. 

Figure 6.25: A single astrocyte 72 hours after laser deposition has multiplied and 

migrated 

 



 

 

Results - Circuits on MEA 

Finally, using the laser cell patterning system we were able to deposit single 

neurons into microwells aligned to the electrodes of an MEA. The microtunnels of the 

elastomeric membrane guided the neurites which extend toward adjacent microwells 

(Figure 6.27) and connect and to neurons patterned on adjacent electrodes (Figure 6.28).  

Figure 6.27: A row of neurons deposited with the laser cell pattering system creating a defined 

linear circuit across 3 electrodes. Once connected the axons tensioned into a straight line.  

Figure 6.27: A neuron deposited to an electrode with the laser cell patterning system 

and confined there by the overlaid elastomeric membrane microstructure extends a neurite 

which is guided by the tapered microtunnel. 



 

 

Syringe Viability 

Discussion 

The introduction of the new patternscope chamber design enabled easier refilling 

and reintroduction of the microinjection system because the microinjection fiber was not 

pressed tightly between the PDMS wall and the ventblock but instead was threaded 

through a hollow stainless steel conduit. During a refill using the earlier chamber a 

problem that frequently occurred during removal and reattachment of the microsyringe 

from the Microtight™ fitting (which coupled it to the injection fiber) was the introduction 

of air bubbles into the microinjection system. The patternscope chamber, by facilitating 

removal and re-insertion of the injection fiber, allowed for the injection system to be 

primed after reloading the syringe, removing air bubbles and making reloading of the 

syringe much more practical. The patternscope chamber was only implemented toward 

the very end of this research progress as a measure to overcome a period of challenging 

laboratory conditions. While the viability experiments performed prior to implementation 

of the patternscope chamber are likely invalid because a standard refill protocol was not 

followed and the time of each cells deposition/time-in-the-microsyringe was not 

documented important questions were introduced by this period of research which 

ultimately have lead to improvements in the laser cell patterning system,. It was 

determined that the continual movement of cells in the microsyringe lead to cell death 

and decreased viability of cells deposited with the laser cell pattering system.  

 



156 

 

Analysis of Polarity 

Previous research in controlling neuron polarization[178, 179] has been evaluated 

by immunocytochemical staining of neurofilaments (abundant in the axon but not the 

dendrites) and MAP2 (abundant in the dendrites but not the axon). Our fluorescent 

microscopy photos of immunocytochemically stained neurofilaments and dendrites were 

not indicative of neuronal polarity. Unlike the previously mentioned research, where 

axons and dendrites occupied mutually exclusive areas of the substrate, our hypothesized 

method of defining polarity allowed both axons and dendrites to occupy the same space 

and there was large overlap of each within the microtunnels so that once fully connected 

the direction could not be discerned. 

By using live-cell phase microscopy before complete connection between neurons 

was achieved a better analysis of polarity could be determined. One shortcoming of the 

'snag' microstructure design was that the turning points of the microtunnels where much 

too close to the microwells. This was a problem because of the multi-layered fabrication 

process, in which small misalignments which would normally be tolerable, where 

overlaid on each other and sometimes eliminated the sharp angular turns of the 

microtunnels thereby nullifying our proposed mode of polarity induction. However 

among the subset of microstructures which were properly formed 49% of neurons 

exhibiting neurite outgrowth extend those outgrowths in the desired direction compared 

with only 15% directed in the opposing direction This equates to over 3 times as many 

neurites being guided in the intended direction than in the wrong direction. Furthermore 

only 10% of cells exhibiting neurites extended those neurites in both directions. The 25% 
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of cells whose neurites did not fully extend into either microtunnel may, with improved 

culture techniques be promoted to extend their neurites, and would likely split directions 

along the 49%-15%-10% ratio. Still, for fully defined circuits with control over polarity 

the odds of getting 4 cells connected with the intended polarity would be less than just 

over 5%. In order to address both the design flaw of the 'snag' membrane and it's 

successful but less than ideal control over polarity a new 'hook' microstructure was 

designed. No experiments were performed on the polarity control of this membrane. 

However, besides showing that neurite polarity can be influenced by geometric guidance 

these polarity experiments demonstrate the ability of the laser cell patterning system and 

the microfabrication system to set up and test the development of single neurons in a 

controlled microenvironment. In the case of the 'hook' microstructure, the developed 

systems will allow us to investigate how an axon is guided, up or down the postsynaptic 

cells axon, when it is incident at 90°.  

Analysis of Heterotypic Patterning 

Heterotypic patterning of neurons and astrocytes into a single elastomeric 

membrane microstructure was successfully demonstrated. As could be seen in the 

micrographs there are several different outcomes that may results from such heterotypic 

cell-cell interactions. The laser cell pattering system is a unique and powerful tool for 

investigate these heterotypic cell-cell interactions. Specifically it can be used to set up 

and study developmental scenarios between neurons and astrocytes and by patterning to 

an MEA the contribution of astrocytes to the electrical activity of neuronal circuits.  

. 



 

 

CHAPTER VII 
ELECTROPHYSIOLOGY 

 
 

 
Introduction 

The primary objective of the electrophysiology experiments was to show the 

health and functionality of the defined neuronal circuits and demonstrate the ability of the 

biochip to record and stimulate the defined circuits. As a final validation of the biochips 

use in neuronal network research, we aimed to show a difference in neuronal network 

activity in relation to an imposed parameter of the neuronal circuits. Possible 

experimental comparison included neuron type (chick vs. rat), neuron number per node, 

and contact with astrocytes. 

Because our group had only limited experience with neuron electrophysiology 

using microelectrode arrays part of the electrophysiology aim included culturing random 

monolayer cultures on MEAs to verify neuronal network activity by conventional culture 

methods. 

Circuit Creation 

Materials and Methods 

Neuronal circuits tested for electrophysiology were created with the exact same 

procedures used in the circuit definition experiments. The only difference was the use of 

an MEA as a substrate, and that PDMS walls were permanently bound to the substrate in 

order to for it to stay sealed to the MEA while it is placed inside the amplifier during 

electrophysiological experiments. Of note, rat neurons have a darker color and a slightly 

larger size (~10-12µm in diameter) than chick neurons. These visible differences as well 
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as other undetected differences resulted in a faster guidance speed of 30-35µm/s. This 

difference was an advantage in pattern time, and illustrates the phenomenon which our 

lab is exploring for cell sorting and identification. 

Cell culture 

Chick neurons were cultured as previously described and plated on PDL coated 

MEAs at a density of x cells/cm2 which is around 1.5x106 cells per glass ring MEA and 

1x106 cells per PDMS gasket bound MEA. These are also the densities used for rat cells. 

Rat Cortical Neurons were purchased from BrainBits LLC (Springfield, IL). Brain 

bits cells are available in the form of fresh brain tissue or as frozen cells. Initially vials of 

1million frozen cells were ordered, but cell survival was poor. The stress of freezing 

necessitates immediate plating of neurons for survival. Even with immediate plating, the 

fraction of cells that remain viable is much less than can be achieved when using fresh 

tissue. Considering the 1 hour delay before cell-substrate contact imparted by the laser 

patterning process and the already tenuous culture conditions of the single cell resolution 

circuits we chose to use only fresh cells. 

BrainBits LLC supplies neurons from embryonic day 18 Sprague/Dawley or 

Fischer 344 rats. Fresh tissue comes as a pair of  cortex halves packaged in a 2ml tube 

containing B27/ Hibernate® (with calcium) media. Under refrigeration (4-8oC) 

Hibernate® media can preserve neural tissue for weeks[180], though the recommended 

period is 1 week. To maximize the experiment opportunities per tissue order the cortical 

halves were separated the day of delivery. One half was used that day, and the other 

within 2 days. The Hibernate® media can also be used for C02 independent culture 
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situations such as live cell microscopy, or in our case, electrophysiology experiments. 

During electrophysiology experiments we used Hibernate®-E (for embryonic tissue) 

without calcium. During normal culture the cells were cultured in Neurobasal media 

supplemented with B27, 0.5 mM glutamine, 25 uM GlutaMAX, and NGF.  

Early experiments with random monolayer cultures of chick forebrain neurons on 

MEA yielded very little activity. On one occasion of nearly 50 experiments activity was 

observed from two electrodes (Figure 7.1). This was from a 5 Day old culture of chick 

neurons. This activity was never reproduced. Because of these difficulties we moved on 

to using Rat cortical neurons which are widely used in MEA experiments. There was a 

distinct difference in morphology and in the tendency of the neurons not to adhere to the 

center of the MEA where the electrodes were present. Because of this difficulty, and the 

clear disadvantage of chick neuronal network arrangement, and the lack of published 

work using chick neurons on MEA, the use of chick neurons on MEA was abandoned.  

Results 
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Results - Astrocyte Culture on MEA 

Astrocytes were cultured on MEA which would not support neuron attachment or 

neurite outgrowth to determine if the surface could support a different, more robust cell 

Figure 7.1: Activity from 5 day old chick neurons randomly cultured on an MEA. The screen capture from 

the MCS MCRack software shows waveforms are from two electrodes. Each electrode was sorted for spikes and the 

last 10 spikes are overlaid on each other. The frequency of spiking for each electrode is 77.40hz and 51.98hz. The 

spike threshold was set at 3 standard deviations of the signal. Spike amplitudes were -55µV and -65µV. 
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type. Astrocytes did not adhere well to the MEAs or multiply to confluency. Typical 

cultures are shown in Figures 7.2, 7.3, and 7.4. 

 

Figure 7.2: An MEA seeded with astrocytes at 1 week. Very few cells 

were attached to the surface of the electrode area. Cells that did exhibit a spread 

morphology did not multiply. 
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Figure 7.3: An MEA seeded with astrocytes at 1 week. More cells 

attached around the outside of the MEA surface away from the electrodes. 

Figure 7.4: An MEA seeded with astrocytes at 1 week. Astrocytes 

attach on the perimeter but do not adhere to the center area where the 

electrodes are located. 
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The surfaces of MEAs degrade with use. Multichannel Systems sets an upper 

limit of the times an MEA can be reused at about 30. Wheeler's group which studies the 

electrophysiology of large groups of neurons cultured on MEAs report reusing MEAs a 

maximum of 5 times[20]. During the course of this research our group performed many 

experiments culturing neurons on MEAs in order to developed successful protocols for 

culture, stimulation, and recording. The high cost of MEAs  limited the number of MEAs 

available for our research to 10-15 MEAs. This necessitated a high reuse rate. Problems 

with contamination which required more aggressive cleaning measures may also have 

shortened the life of the MEAs. Astrocytes are hardy cells which attach very well to 

substrates and will grow to confluency on most culture surfaces. The results from the 

astrocyte culture experiments suggest that the MEAs we were using were degraded to a 

critical point unsupportive of cell attachment and spreading. Early in the experimental 

process electrophysiological recordings were obtained from chick neurons cultured on an 

MEA, an achievement which has not been previously reported (on MEA). 

Discussion 
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CHAPTER VIII 
CONCLUSIONS AND RECOMMENDATIONS 

 
 

 
Significance 

This research is significant because it provides a tool that can create single cell 

resolution heterotypic neuronal circuits with defined connections on microelectrode 

arrays. This accomplishment cannot be achieved by other contemporary research 

methodologies. The tools and protocols developed to achieve this research objective are 

applicable and advantageous to the field of neuronal network research as well as cell 

biology research in general.  

Moreover, while the singular achievements of the laser cell pattering and 

microfabrication systems can be combined to meet the intended goal of creating defined 

single cell resolution heterotypic circuits with one-to-one neuron electrode coupling, the 

singular achievements demonstrate other valuable applications of the system. 

Specifically, the laser cell patterning system can be used to orient cells such as adult 

cardiomyocytes to study cell-cell interactions of polar cells. The laser cell patterning 

system can place cells with high spatial and temporal resolution which was demonstrated 

in building a fibroblast bridge between myocyte islands. The laser cell pattering system is 

well complimented by the microfabrication system in order to study how single cells 

develop in novel microenvironments as demonstrated by the experiments testing the 

geometric control of neuronal polarity. It was shown that geometric microstructures are 

effective at influencing neuron polarity and such microstructures can be use as a tool in 

defining the polarity of circuits. Finally, the laser cell pattering system and the 
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microfabrication system can be used to place two cells of different types in close contact 

with in a closed, marked environment so that the cell-cell interactions can easily be 

tracked over time. 

The patterning and confinement systems we have chosen give us the ability to use 

multiple cell types and to control the direction of neurite outgrowth. These abilities open 

up the potential to create more complex circuits such as the reflex arc, or a single-cell 

resolution hippocampal loop. Furthermore, our use of microfluidic type structures 

introduces the possibility for microfluidic delivery of acetylcholine or dopamine, which 

may be used in models of memory and neurodegenerative diseases.   

One potential application is the study of Amyotrophic Lateral Sclerosis (ALS). 

This disease of the motor neurons could be modeled with an on chip neuromuscular 

junction (motor neuron, muscle fiber and glia). The electrophysiological and microscopic 

analysis could be easily performed on circuits where single cell components were 

replaced with cells from a transgenic mouse model of ALS. 

Another application that could advance from this research is to model the circuit 

that is suspect in the development of Alzheimer ’s disease. Here a circuit of cells from the 

entorhinal cortex (EC), dentate gyrus (DG), CA3, and CA1 could be created on a biochip. 

These cells have been shown to be highly affected in AD and their respective brain 

regions contain many markers associated with the disease such as NFT and loss of 

cholinergic input. It is not clear what the exact causes are, or how the disease progresses 

in its ordered fashion. The proposed model would allow us to look at individual cells in 
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relation to the rest of the network, and analyze their electrical activity and signal 

transmission in the presence or absence of certain factors. 

Microfabrication has been previously demonstrated as a useful tool for cell 

biology research. The laser cell patterning system is a unique and powerful tool 

developed in this research project. However the whole of these two systems is surely 

more than sum of the parts. 

Optics 

Recommendations 

The optics configuration of the laser pattering system was very effective. Only 

one improvement is suggested. The current system uses a large, expensive, and sensitive 

tunable laser. The laser cell patterning system does not require a tunable laser, such a 

high power laser, or one with such a pure mode. A diode laser has the advantage of being 

cheaper, smaller, and more durable. The laser of the laser cell patterning system should 

be replaced with a diode laser to reduce cost, maintenance, and make the system smaller 

and possibly portable.  

Control Application 

The control system has been made very user friendly and was very effective. The 

only improvement we can recommend would be to revisit image recognition based 

automation, however this does not seem like a good allocation of resources at the present 

time. 
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Microfabrication 

The microfabricated membranes were effective at controlling cell outgrowth and 

polarity. However, microstructure design for inducing polarity and for controlling 

astrocyte migration has not been optimized. This is less a recommendation and more of 

an avenue for future work as constant redesign of the microstructures was the reason for 

using laser photoplotted photomasks. 

Electrophysiology 

The electrophysiology component of this research is the most in need of 

development. Commercial MEAs are expensive and do not last very long. Wheelers 

group has in the last few years begun fabricating their own MEAs. The elastomeric 

membranes used for microstructures may also be used as an insulator over MEA 

electrode leads. Without the need for an extra insulation layer the fabrication of an MEA 

is on step simpler. Additionally, the irreversible attachment of elastomeric membrane 

microstructures is required to keep neurons from extending neurites underneath the non-

microtunnel areas of the microstructure. This irreversible binding also limits the number 

of times the MEAs can be reused. A silicon dissolving product is available which will not 

harm metal or glass (Dynasolve218 from Dynaloy). This product may be used to remove 

worn out or clogged elastomeric membranes so that an MEA may be reused more times. 
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Appendix A 

 

Chamber Loading Process 

Before chamber assembly all chamber parts and accessories should be cleaned 

and sterilized. Parts should be cleaned in a Tergazyme® solution which removes cell 

debris which may otherwise clog microinjection fibers and Microtight fittings. Except for 

the microinjection syringe all parts may be autoclaved. The microinjection syringe is 

sterilized by filling with and soaking in 2% bleach and then thoroughly rinsed with DI 

water. Next it is rinsed ethanol and allowed to dry fully for at least one day (to remove 

traces of ethanol toxic to cells). For best results, all chamber parts are exposed to UV 

radiation for 15 minutes just before use. 

  First the bottom clamp is placed with the beveled side down on a flat surface 

with the four threaded holes making a square as shown in Figure x. The substrate, which 

was either a coverslip with membrane or MEA with membrane, either of which are 

square, was placed in a diagonal/diamond configuration with the corners pointing 

between screw holes. If a PDMS chamber wall has been bound to the substrate, the 

microinjection fiber channel should be oriented to one side. If one has not been applied it 

should be carefully aligned to the substrate in a similar fashion. If a PDMS wall is not 

permanently bound, it may be difficult to obtain a tight seal, especially if the surface has 

been coated with slippery gel. Additionally, after culture, if an MEA is not using a 

permanently bound PDMS wall, the wall will leak fluid through the spaces of an 

unclamped PDMS wall setting on the substrate. One should also consider the height of 
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the PDMS wall. For patterning a 500µm height may be desirable to reduce the Z travel 

distance and overall patterning time; however this height provides very little space for an 

adequate media volume to cover the culture. With these considerations in mind, it  was 

best to apply a thin, but full covering silicon grease to the underside of the PDMS wall 

before attachment to ensure a water-tight seal improve PDMS wall immobilization. 

Before the microinjection fiber is inserted it should be checked to ensure proper 

fluid flow to avoid assembling the chamber with a clogged fiber. To check fluid flow, 

loosely assemble the three-piece Microtight fitting and insert one end of a microinjection 

fiber in the fitting. Make sure the fiber is fully seated in the fitting and then secure the 

fitting with moderate torque. To loose of a fastening will come undone or leak, to tight 

can damage the fitting and reduce the flow aperture. Next attach a 3ml luer-locking 

syringe filled with media or sterile water (no air bubbles). Depress the plunger and 

observe fluid flow from the microinjection fiber tip. Once fluid flow is confirmed, rest 

the fiber in the fiber-channel of the PDMS wall so that the fiber tip is ½ to ¾ of the way 

into the chamber. Rest the syringe on the table so that the fiber stays in this position. 

Next, insert 10-32/barbed nylon elbow fittings into the ventblock and tighten them 

as far as they will go while remaining pointing out. Make sure that the glass is clean, if it 

is not, clean it with ethanol, and/or scrape it with a razorblade. Now place the ventblock 

directly over the PDMS wall, with the inlet and outlet ports pointing up/down, 

towards/away from you so that they align with the inlet and outlet cutouts in the PDMS 

walls. At this point, the microinjection fiber may be placing some pressure on the vent 

block to move. If so, hold the vent block down with one hand. With the other hand pick 
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up the top clamp so that your index and middle finger go through the rectangular 

opening. Use these  fingers to press downward on the nylon fittings of the vent block, 

holding it in place, and freeing the first hand. Orient the top clamp so the holes align with 

those of the bottom clamp and drop all four thumb screws into the holes. Insert and 

tighten 1-2 turns at a time 2 opposing screws at a time until the clamp is lightly secured. 

Do not over tighten the screws; this will crack the glass substrate or ventblock window. 

Now the 50µL syringe should be loaded with cell suspension. Optimal cell 

density is between 200,000 and 500,000 cells/mL If cells are plentiful, 1 million cells 

may be added to 3mL of media in a 15mL conical tube. This allows room to insert the 

50uL syringe into the tube and be adequately submerged in media. Place the syringe with 

fully depressed plunger into a tilted tube and tap it against the tube to release air bubbles 

from the luer lock. Next, slowly withdraw the plunger almost completely. Notice the air 

bubble near the whit Teflon plunger tip. Slowly depress the plunger 80% of the way. 

Now quickly tap the plunger with a finger to depress it fully and expel air bubbles, tap the 

plunger to release air bubbles and repeat this process until no air bubbles are seen in the 

microsyringe. If cells are limited, perform this last step with blank media. With 20% 

volume remaining in the syringe, invert it and slowly depress the rest of the way. With a 

pipette aid, dispense the patterning cell suspension with appropriate cell density drop-

wise onto the microsyringe tip. Slowly withdraw the syringe to decrease the size of the 

drop resting on the tip. Do not suck in all of the drop. Add another drop of suspension 

and repeat until the syringe is fully loaded.  



173 

 

Set the micro syringe aside, on its side) and pick up the 3mL syringe attached to 

the microinjection fiber. Carefully unscrew it from the Microtight fitting. Dispense drop-

wise media into the top of the Microtight fitting until filled. There will be bubbles on top, 

remove bubbles by suctioning them off with the 3mL syringe. Refill the Microtight fitting 

until it is full and there are no bubbles on top. Holding the Microtight upright in one 

hand, grab the 50µL syringe with the other, plunger sticking up. Depress the plunger 

slightly so that a drop of cell suspension is visible at the tip of the syringe. Place the 

syringe into the Microtight fitting and screw them together tightly. Depress the plunger 

10% just to ensure any air bubbles in the line are expelled. 

Attach the tubes with nylon barb/luer-lock fittings onto the barbed ventblock 

fittings, (they need not be fully inserted, just securely). Attach the previous 3mL syringe 

full of media to the tube nearest you. From here on every step of the way be careful not to 

pull out the micro injection fiber. Now tilt the chamber toward you so that you can see 

inside the chamber including the micro injection fiber. Slowly inject media into the 

chamber, clearing all bubbles from inside the chamber. When the media begins to flow 

into the exit tube, pause and watch the media level. If it is stationary then you have a 

good chamber seal, if it is slowly receding, the chamber is not sealed properly and you 

must restart the process. If the chamber is not leaking, affix a cap to the end of the outlet 

tube. 

Place a chamber in a sealed box for transport to the laser patterning system. The 

potential for contamination of your culture while travelling through the hallway and 

different rooms high. Turn on the nitrogen supply to the stage counter balance and the 
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power to the laser patterning system components. Remove the chamber from the box and 

place the bottom camp into the mount so that the microinjection fiber is leading towards 

the micro injector. Raise the stage with your hand so that the substrate comes into focus 

on the imaging screen. Place the 50uL syringe next to the microinjector, note the 

disparity between the plunger holder and the plunger position. On the UltraMicroPumpII 

controller use the cursor keys to select the “I” for inject, press select to change the “I” to 

“W” for withdraw. Use the cursor and number keys to change the injection volumes and 

rates to 900µL and 925µL/S, this will speed up this step. Press the “run” button 

repeatedly until the plunger holder is aligned with the plunger end. Now press the syringe 

clamp button on the microinjector and push the syringe inside. Secure the plunger by 

tightening the plunger clamp.  

Make sure that the Xbox360 controller is turned on, press the x button until the 

battery status is displayed on screen, then press it again to remove the status display. You 

may now start the laser patterning control software. 
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Using the Laser Cell Patterning Control Application 

Before starting the application make sure the power to the stage and microinjector 

are turned on and that the Xbox360 controller is on and recognized.  

Start Application 

Initialize 

Click each axis indicator once to turn it green, adding it to the axis mask which 

will receive commands 

Enable axis 

If automatic intensity reduction is desired, check the box next to it and input the 

desired values for X and Y closeness and for Z distance above when you want the 

intensity to be reduced. 

Use the thumbsticks to navigate through the chamber and find the area of the 

substrate where the cells should be deposited. Mark the first deposition point 

Navigate back through the chamber (toward the bottom of the screen) while 

sweeping left to right until you see the long shadow of the microinjection fiber. 

Navigate to the tip of the microinjection fiber and press the 'set injection point' 

button on the control program's front panel. 

Press the top left shoulder button on the game pad to inject cells. 

Select a cell that looks healthy, maneuver it to the center of the screen, and pull 

the left trigger to open the laser shutter and grab the cell. 
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Hold the laser trigger and follow the onscreen navigation arrow to guide the cell 

to the deposition point. 

Push the cell to the surface until it will not slide. The cell has been patterned. 

Release the laser trigger 

Find the next deposition point and mark it. 

Repeat from step 9 (the chamber will automatically move to bring the 

microinjection fiber into the field of view.) 

When all cells are patterned, press the STOP button (do not hit the top right X). 

 



 

 

Appendix C 

 

Alignment of Masks 

Operation of the Karl Suss MJB-3 Mask aligner was described in the machines 

manual. Practically however, alignment of the pattern in the exposed layers of photoresist 

on the wafer with the un exposed mask attached to the mask holder was not described, 

and must be worked out on one's own, taught in the photolithography lab. Here we will 

briefly describe a method for aligning the mask and the wafer so as to provide a third or 

supplementary means of learning the process. A set of alignment guides or marks (as 

shown in Figure 5.5) must be present in all layers to make alignment possible. A rough 

alignment is helpful because it saves time spent searching over a wide area for the 

alignment markings. Additionally, X, Y and rotational travel of the chuck stage was 

limited and may be insufficient to bring the wafer into alignment without a good rough 

alignment. Using the large outer marking for rough alignment to the 2" wafer shape was 

very helpful. Once the wafer was placed on the chuck and moved beneath the mask, the 

chuck was raised, but without coming into contact with the mask. The mask and the 

wafer could both be visualized in this manner, though not as clearly as in contact mode or 

defined separation. The first stage of alignment was performed at this point by finding 

and perfectly aligning the top markings, then moving to the bottom markings and 

aligning half the difference with the X translation and half with the rotational adjustment. 

Once the alignment was close, the chuck was brought into full contact and then separated 

by 350µm with the separation lever. At this stage, surface defects could cause sticking 
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between the wafer and the mask, and separation may be increased to 450µm if needed. 

For best visualization the illumination iris was closed to its smallest position and the 

intensity turned to its max. Again the wafer was aligned by adjusting the top and bottom 

markers using the 'half difference' method, and then the left and right markers using the 

'half difference' method. Finally, the horizontal (X) alignment was confirmed using the 

top and bottom markers, and then never touched again. The vertical(Y) alignment was 

finalized by looking at the right arrow shaped marker (Figure 5.5) which could give a 

good indication of alignment without changing the X translation. Next the separation 

lever was withdrawn and vacuum contact engaged. A good contact sufficient for 

obtaining good resolution was affirmed by a vacuum reading of at least -4.5 mTorr.  
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