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Abstract

To analyze real-world events, researchers collect observation data from an underlying process

and construct models to represent the observed situation. In this work, we consider issues that affect

the construction and usage of a specific type of model. Markov models are commonly used because

their combination of discrete states and stochastic transitions is suited to applications with both

deterministic and stochastic components. Hidden Markov Models (HMMs) are a class of Markov

model commonly used in pattern recognition. We first demonstrate how to construct HMMs using

only the observation data, and no a priori information, by extending a previously developed approach

from J.P. Crutchfield and C.R. Shalizi. We also show how to determine with a level of statistical

confidence whether or not the model fully encapsulates the underlying process.

Once models are constructed from observation data, the models are used to identify other

types of observations. Traditional approaches consider the maximum likelihood that the model

matches the observation, solving a classification problem. We present a new method using confidence

intervals and receiver operating characteristic curves. Our method solves a detection problem by

determining if observation data matches zero, one, or more than one model.

To detect the occurrence of a behavior in observation data, one must consider the amount

of data required. We consider behaviors to be “serial Markovian,” when the behavior can change

from one model to another at any time. When analyzing observation data, considering too much

data induces high delay and could lead to confusion in the system if multiple behaviors are observed

in the data stream. If too little data is used, the system has a high false positive rate and is unable

to correctly detect behaviors.

We demonstrate the effectiveness of all methods using illustrative examples and consumer

behavior data.
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Chapter 1

Introduction

This dissertation is the culmination of several years of work on Markov models, the exten-

sion of hidden Markov models (HMMs), and a generalization developed by C.R. Shalizi and J.P.

Crutchfield, the ε-machine. Markov models and HMMs are used extensively in pattern recogni-

tion applications or other systems with deterministic and stochastic components. Applications for

Markov models include voice recognition [1, 2, 3, 4], texture recognition [5], biometrics [6], hand-

writing recognition [7, 8, 9, 10, 11], gait recognition [12], tracking [13, 14], and human behavior

recognition [15, 16]. We refer the reader to [17] for a more detailed review of applications, training,

and classification approaches.

1.1 Motivation

In this work, we consider the recognition of behaviors. We use the word “behavior” generi-

cally, not necessarily referring to human behaviors such as emotions (e.g. happy or sad) or actions

(e.g. washing dishes or driving a car). Instead, we consider the behavior of objects, such as vehi-

cles or ships. Most movements of objects of this type are predictable and are consistent for every

occurrence of the behavior. For example, consider a humvee leaving a military base in a city. For

simplicity, let us assume that three behaviors are possible for the humvee:

• Patrol base perimeter

• Patrol city

1



• Direct path to a location in the city, then return to base

By tracking the location of the humvee while it exhibits each of these behaviors, we can construct

three different models. With a single vehicle, the usefulness of this task is unclear. If we consider a

computer tracking the location of dozens of humvees simultaneously, it immediately becomes clear

that having a set of known behaviors would be helpful to human operators watching the current

situation. Computer aided analysis of situations such as those mentioned here may help to save

lives.

In several of our examples, we show how approaches can be used indirectly in human be-

havior recognition. Consumer behavior recognition is the application of computer algorithms to

predict the shopping patterns and purchasing power of different consumers. We specifically look at

movie rental behaviors and assume that an individual’s movie tastes remain constant for a given

time period. For example, a couple’s interest in movies may lie in romance and horror movies while

dating, action and drama genres before children, and cartoon and family movies after children. We

would construct three different behavior models to represent the three phases of the family’s life.

Computer aided analysis of consumer behavior may reduce the number of irritating advertisements

thus benefiting consumers and decreasing marketing costs for corporations.

To accomplish the goal of computer aided analysis, we consider four questions in this dis-

sertation:

1. Can models be constructed using no a priori information?

2. Can we be confident that the observations and model adequately represent the underlying

process?

3. How can we determine if observations match zero, one, or more than one constructed model?

4. Do bounds exist on the amount of data we need to match observation data and models?

1.2 Organization

The outline of this dissertation is as follows. The remainder of Chapter 1 describes why

questions one through four are important to the area of pattern recognition.

Chapter 2 explains the mathematics that form the foundation for this work. The models we

use have deterministic and stochastic components. As such, these models with our extensions are

2



governed by probability theory. We introduce probability theory in a clear progression from basic

concepts to the many probability distributions that will be referenced throughout the dissertation.

We conclude the chapter with a discussion of Markov models and the most famous extension, the

hidden Markov model.

Chapter 3 contains an overview of model construction. To construct models without a priori

knowledge of the structure, we use the ε-machine construction process developed by J.P. Crutchfield

and C.R. Shalizi that requires only a sequence of observations and a maximum data string length

[18]. Values of the maximum data string length that are too small result in incorrect models being

constructed. Values that are too large reduce the number of data samples that can be considered

and exponentially increase the algorithm’s computational complexity. We present a method for

automatically inferring this parameter directly from training data as part of the model construction

process [19]. This chapter answers the first of the four questions listed previously. The novel

extension explained in this chapter removes the only user defined value of Shalizi’s and Crutchfield’s

approach and allows models to be constructed directly from observation sequences without user

input.

Chapter 4 elucidates how to calculate model confidence when constructing ε-machines from

observed data sequences. If an insufficient amount of observation data is used to generate the HMM,

the model will not be representative of the actual underlying process. Current methods assume the

observations completely represent the underlying process; the methods presented in this chapter

determine if the model matches the observation data. We do not assume that the observations

gathered fully represent the underlying process. Therefore we desire a level of confidence that the

constructed model is representative of the underlying process, not the observations. We present

two methods that determine if the observation data and constructed model fully encapsulate the

underlying process with a given level of statistical significance [20], answering the second question

listed above. We use illustrative examples to demonstrate the effectiveness of the approaches.

Chapter 5 describes a novel approach for detecting matches between constructed models

and new observation sequences. Currently, HMMs recognize patterns using a maximum likelihood

method. One major drawback with this approach is that data observations are mapped to HMMs

without considering the number of data samples available [1]. Another problem is that this method

is only useful for choosing between HMMs. It does not provide a criteria for determining whether or

not a given HMM adequately matches the data stream. In this work, we recognize complex behaviors
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using HMMs and confidence intervals [21]. The certainty of a data match increases with the number

of data samples considered. We detail an approach that has the ability to have more than one model

or no models match the observation sequence. This extension solves a classification problem by

translating the result into a detection problem, which answers the third question. We demonstrate

the approach using both illustrative models and models from a consumer behavior dataset.

Chapter 6 explicates methods that find the bounds on the size of data windows used to

match observation sequences and models. We consider how to detect patterns in data streams

that are “serial Markovian,” where target behaviors are Markovian but targets may switch from one

Markovian behavior to another. Traditional Markov model based pattern detection approaches, such

as hidden Markov models, use maximum likelihood techniques over the entire data stream to detect

behaviors. To detect changes between behaviors, we use statistical pattern matching calculations

performed on a sliding window of data samples. If the window size is too small, the system will

suffer from excessive false positive rates. If the window is too large, change point detection is

delayed. This dissertation finds both necessary and sufficient bounds on the window size. In this

chapter, we develop the two mathematical approaches that derive the bounds directly from the

models, mitigating the issue of changing window sizes due to changing observation data [22]. This

development completes our solution set to the four questions posed in this introduction.

Chapter 7 concludes with a summary of our accomplishments stated in this dissertation.

We also provide our thoughts for future extensions and paths that future researchers could explore.

1.3 Model Construction and Confidence

Traditionally, the Baum-Welch Algorithm is used to infer the state transition matrix of a

Markov model and symbol output probabilities associated with the states, given an initial Markov

model and a sequence of symbolic output values (see [1]). The Baum-Welch Algorithm uses ex-

pectation maximization to solve a non-linear optimization problem. The fundamental approach of

constructing Markov models from data streams has been heavily researched for specific applications.

Methods in [23] and [24], for example, illustrate construction and training in speech recognition

applications.

To construct a Markov model without a priori structural information, we use an approach

developed by J.P. Crutchfield and C.R. Shalizi [18, 25, 26], which derives the HMM state structure
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and transition matrix from available data samples. Alternate methods use pruning to decrease the

size of the HMM until it is optimal for the observation data [27]. To maximize the classification

ability of the model, [28] proposes incorporating predictive measures into model development. Other

approaches may be used to construct models from data streams for specific areas such as speech

recognition [29]. The minimum description length principle from information theory [30] has been

used in maximum-likelihood model construction [31]. In this dissertation, we only consider the

approach from Shalizi et al.

Shalizi’s approach finds statistically significant groupings of the training data that corre-

spond to HMM states. This is accomplished by analyzing the conditional next symbol probabilities

for a data window that slides over the training data. This data window increases gradually from a

size of two to an a priori known maximum window size L. Except for the training data, the only

initial information required to construct the HMM model using Shalizi’s approach is the parameter

L. The parameter L expresses the maximum number of symbols that are statistically relevant to the

next symbol in the sequence. The state structure of the Markov model is inferred from the symbol

groupings of length ≤ L by adding those states to the model that lower system entropy [32, 33].

To date, no one has considered how to dynamically find the parameter L. We extend the work of

Crutchfield and Shalizi so that we determine parameter L with no prior knowledge and therefore

derive minimum entropy HMMs with no a priori information.

When constructing models dynamically, issues arise that can affect the quality of the models.

If an insufficient amount of observation data is used in construction, the model parameters may

not allow enough variation in observation data for general use. If a sufficient amount of data is

gathered, a topic commonly addressed is whether the constructed model is a representation of the

observations. To determine this, the assumption that the observation data fully encapsulates the

underlying process is made. If the observation data does not completely represent the underlying

process, any model constructed from the data will not be representative of the process. Therefore we

desire a level of confidence that the constructed model is representative of the underlying process,

not just the observations.

Confidence is a concept derived from statistics typically used for mean and variance analysis.

The allowable error of the mean for a set of values can be determined by measuring the standard

deviation of the individual values. A model is simply a set of probabilistic transitions linking a set

of states. We use model confidence on the transition probabilities and the likelihood that the system
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is in a given model state to determine the probability of unknown events occurring.

1.4 Detection and Data Size

Traditionally HMMs are used for data classification, which assigns the observed data stream

to one of a known set of models. This is most commonly done using a maximum likelihood approach

[1]. Although detection and classification are similar problems in many respects, we note that

detection is subtly different from classification. By definition, classification always returns one (and

exactly one) model that matches the data stream. Detection may find that no model matches the

data stream. It may also return more than one model.

We use confidence intervals for HMM analysis. This has the advantage in that we can

consider the number of data samples available when comparing an HMM model with a sensor data

stream. Our use of Receiver Operating Characteristic (ROC) curves to find detection thresholds is

a novel approach when confidence intervals are used.

Detecting instances when observation data sequences correspond to behavior models is a

form of the matching problem. Matching can be performed after all data has been collected for an

a posteriori interpretation, such as with consumer behaviors, or during data collection for real-time

data interpretation, such as in military situations. Providing methods to allow the application to

adjust functionality between these two types of matching is critical for versatility.

We consider behavior data that is “serial Markovian.” At any given time, the target being

observed performs a behavior that can be expressed as a Markov model. However, the behavior

being executed by the observed target may change over time. Consider the problem of matching

cruise ships to cruise itineraries using a series of GPS coordinates. At any point in time, a ship may

switch from one established itinerary to a different established itinerary. Reliability in recognizing

any given or change in itinerary will require using several GPS readings.

This application is problematic for maximum likelihood approaches that consider the entire

data stream. Consequently, we recognize Markovian behaviors by considering data within a sliding

window of the data stream. If the window is too small, the process does not have sufficient data

to distinguish between models so it suffers from an excessive false positive rate. If the window is

too large, data collected after the change point is overwhelmed by data collected before the change

point. This forces the system to wait for an excessively long period of time before recognizing the
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new behavior [34, 35]. In other works, finding the proper window size to match models against input

data streams is often left for future analysis [36, 37, 38], or the effect of different window sizes on

results is not demonstrated [39]. In this dissertation, we show how to find the window size that

is best able to detect changes when the target’s behavior switches from one Markovian process to

another.
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Chapter 2

Background

Probability theory is a very profound area, much more complex than can be addressed in

this chapter. All of the proofs and explanatory reasoning is omitted from the background as all the

concepts here have been vetted by mathematicians and statisticians over several hundred years. This

background chapter will cover relevant mathematical concepts which are necessary to understand

the topics in following chapters.

2.1 Probability

This dissertation focuses on the fundamentals of probability. The study of probability

allows us to represent many of life’s seemingly unmeasurable situations with mathematical models

and simulations. We will cover the basic tenets of probability necessary to understand the upcoming

chapters. This discussion is succinct at best and the reader is encouraged to review textbooks

on probability theory, such as [40], [41], and [42]. These references describe the derivation of these

concepts and present a more complete discussion of the areas of probability which are not mentioned

nor covered in this review.

2.1.1 Set Notation

Consider three sets S, S1, and S2, where S1 and S2 are subsets of S (i.e. S1 ⊂ S, S2 ⊂ S).

The combination of S1 and S2 is called union and is written S1 ∪ S2. The equivalent portion of

S1 and S2 is called intersection and is written S1 ∩ S2. A null intersection is represented by the
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empty set, S1 ∩ S2 = ∅. Unions and intersections of a small number of sets are often represented

with Venn diagrams. Figure 2.1 demonstrates the union and intersection of two sets. The notation

of set theory is used in probability theory, which we now discuss.

2.1.2 Events

The fundamental concept in probability is an event. An event is an action or an observable

occurrence. Assume that we perform n experiments or trials to measure an event E. The probability

of an event E occurring is estimated with

Pr(E) = lim
n→∞

# times E occurs
n

All events occur within the space of all possible events, Ω. In practicality, we artificially limit Ω to fit

all events within the context of our analysis. The probability of an event occurring in Ω is certain, or

Pr(Ω) = 1. Consider two events A,B ∈ Ω. The probability of both A and B occurring is Pr(A∩B) =

Pr(AB). A and B are independent if the occurrence of B does not positively or negatively affect the

occurrence of A. If this is true, then the joint occurrence, Pr(AB), can be represented by multiplying

the probabilities of their individual occurrences, i.e. Pr(AB) = Pr(A) · Pr(B). The probability of

either A or B occurring is Pr(A ∪B) = Pr(A) + Pr(B)− Pr(AB).

If the occurrence of B does affect the occurrence of A, Bayes Theorem is used to calculate

the conditional probability. Bayes Theorem states the probability of A occurring given that B has

occurred is the ratio of the joint occurrence and the probability of B occurring.

Pr(A|B) =
Pr(AB)
Pr(B)

If A and B are independent, Pr(A|B) = Pr(A). We note that Pr(A|B) = Pr(A) is necessary but

not sufficient for the independence of A and B. If we observe a series of events A1, A2, . . . where

Ai ∩Aj = ∅ for i 6= j, then the series of events is independent and identically distributed (i.i.d.).

2.1.3 Random Variables

In complex systems, analyzing singular events often does not produce meaningful results.

In many applications, we have a number of output values and thus a desire to know the probability
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(a)

(b)

(c)

Figure 2.1: Venn diagrams illustrating (a) S1 ∪ S2; (b) S1 ∩ S2; (c) S1 ∩ S2 = ∅
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that a specific output occurs. To relate the space of possible events and the output space, we use a

mapping function called a random variable. Formally, a random variable X is defined as

X : (Ω, P )→ Y

where Ω is the event space, Y is the output space, and P contains the probability of a mapping from

Ω to Y .

A random variable X has several properties to regulate the mapping. These properties are

listed in Table 2.1 where x is a value that X can take.

Table 2.1: Properties of Random Variables

Discrete Continuous

p(x) = Pr(X = x) f(x) ≥ 0

Pr(X = x) ≥ 0 Pr(X = x) = 0∑x
i=0 Pr(X = i) = 1

∫∞
−∞ f(x)dx = 1

The first equations for both the discrete and continuous cases are the functions used to

represent the probability distribution functions. Notice that p(x) represents the probability of a

single value in the discrete case and f(x) is only a real nonnegative function. In the discrete case,

the second item simply states that probabilities can never be negative. The third states that for all

possible values of x, the sum of the probabilities must equal one. In the continuous case, the second

equation states that the probability of a continuous random variable taking on a single real value

is zero. This is equivalent to the probability selecting a single point out of an infinite number of

points. The third equation is the continuous equivalent to the discrete equation.

To explain how a random variable is assigned values, we use an example with two coins.

There are two possible events for each coin, heads (H) and tails (T). The possible outcomes from

flipping two coins simultaneously are: HH, HT, TH, and TT. If we let X equal the number of heads,

X can take on three values: zero, one, or two. The function that determines if a random variable X

equals x, p(x), is called the probability mass function. In the continuous case, f(x) is the probability

density function. Both are different types of probability distribution functions. The function that

determines if a random variable X is less than or equal to x, Pr(X ≤ x), is called the cumulative

distribution function.
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When considering results from experiments with random variables, two commonly discussed

features of probability distributions are the expectation and the variance. The expected value of a

random variable, written as E(X), is the value of x predicted to occur after a large number of trials

given a probability distribution function. The expected value can be determined using Equation

(2.1) for discrete distributions and Equation (2.2) for continuous distributions.

E(X) =
∑
x

xp(x) (2.1)

E(X) =
∫ ∞
−∞

xf(x)dx (2.2)

The expected value of a probability distribution is written as µ in addition to E(X).

Variance is the measure of the variability in the outcomes. It is the expectation of the dif-

ference between the random variable X and the calculated expected value µ. Variance is determined

using one of the forms in Equation (2.3) for both discrete and continuous distributions.

V (X) = E(X − µ)2 = E(X2)− µ2 (2.3)

The variance of a probability distribution is written as σ2 in addition to V (X). The commonly

known statistical measure of standard deviation is σ =
√
V (X).

The phrase random process refers to a series of random variables X that may take a different

value at different times. Instead of representing each time t with a different random variable, it is

more convenient to write Xt and Xt+1 to represent the random variable X at times t and t + 1

respectively.

2.1.4 Bernoulli Distribution

The Bernoulli distribution is the simplest discrete probability distribution and is used to

measure a success or a failure. Let a random variable X take on two values: 0 or 1. The probability

distribution function for a Bernoulli distribution is

Pr(X = 1) = p(x) = p

Pr(X = 0) = 1− p
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where p is the probability of a one occurring. The expected value and variance of the Bernoulli

distribution are µ = p and σ2 = p(1− p), respectively. As an example of this distribution, consider

an unfair coin where heads occurs with probability 0.75. Let a random variable X represent a head

occurring on a toss, then Pr(X = 1) = 0.75 and P (X = 0) = 0.25. With the Bernoulli distribution,

we can see the individual probability of an event, but we cannot determine trends.

2.1.5 Geometric Distribution

The geometric distribution is used to determine the probability that one success occurs

given a series of failed repeating tests. Assume that we conduct n Bernoulli trials with probability

of success p. Let a random variable X represent the first trial where the first success is recorded.

The probability distribution function for a geometric distribution is

Pr(X = n) = p(n) = p(1− p)n−1

The expected value and variance of the geometric distribution are, respectively:

E(X) =
1
p

V (X) =
1− p
p2

To demonstrate the geometric distribution, we continue the previous example with the unfair

coin. Using a geometric distribution, we can determine the probability that the first tail occurs on

the third toss

Pr(X = 3) = (0.25) · (0.75)2 = 0.141

2.1.6 Binomial Distribution

The binomial distribution is used to determine the probability of a number of successes

occurring in a number of trials. Assume we conduct n Bernoulli trials with probability of success p.

Let a random variable X represent the number of times that k successes are registered in n trials.

The probability distribution function for a binomial distribution is

Pr(X = k) = p(k) =
(
n

k

)
pk(1− p)n−k =

n!
k!(n− k)!

pk(1− p)n−k
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The expected value and variance of the binomial distribution are µ = np and σ2 = np(1 − p),

respectively. The cumulative distribution function for a binomial distribution is

Pr(X ≤ k) =
k∑
i=0

(
n

i

)
pi(1− p)n−i

We will write B ∼ (n, p) to refer to a binomial distribution B with a specific n and p.

To demonstrate the binomial distribution, we expand upon the previous example with the

unfair coin. Using the binomial distribution, we can determine the probability of four heads occurring

out of five tosses

p(4) =
(

5
4

)
(0.75)4 · (0.25)1 = 0.396

2.1.7 Multinomial Distribution

The previously discussed Bernoulli, geometric, and binomial distributions are univariate

(i.e. are represented with only one random variable). The multinomial distribution is similar to

the binomial distribution but is multivariate. The multinomial distribution is used to determine the

probability that a number of distinct outcomes occur in a number of trials. Assume we have an

experiment where m distinct outcomes are possible, each with probability pi for i = 1, 2, . . . ,m. If

we conduct n trials of the experiment, let ki for i = 1, 2, . . . ,m represent the number of times that

outcome i occurs such that
∑
i ki = n, and let Xi for i = 1, 2, . . . ,m be the random variable for

outcome i. The probability distribution function for the multinomial distribution is

Pr(X1 = k1, X2 = k2, . . . , Xm = km) =
n!

k1!k2! · · · km!
pk11 p

k2
2 · · · pkm

m

where ∑
i

pi = 1 for i = 1, 2, ...,m

Due to its multivariate nature, the multinomial distribution does not have a singular expec-

tation or variance. Instead, each outcome is treated individually with expected value µi = kipi and

variance σ2
i = kipi(1− pi). With a multivariate distribution, we determine the relationship between

the random variables with the covariance. The covariance between random variables X1 and X2
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can be calculated with one of the forms in Equation (2.4).

cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] = E(X1X2)− µ1µ2 (2.4)

If X1 and X2 are directly proportional (i.e. X1 is small when X2 is small, and vice versa), the

covariance is positive. If X1 and X2 are inversely proportional, the covariance is negative. We

will write M ∼ (ni, k1, · · · , km, p1, · · · , pm) to refer to a multinomial distribution with m random

variables.

To demonstrate the multinomial distribution, we continue our example with the unfair coin.

In addition to heads and tails, let us assume that the coin can also land on its side (S), all with

probabilities Pr(H) = 0.6, Pr(T ) = 0.35, Pr(S) = 0.05. Using the Multinomial Distribution, we

can find the probability that in five tosses, we see two heads, two tails, and one side with

Pr(XH = 2, XT = 2, XS = 1) =
5!

2!2!1!
0.620.3520.051 = 0.066

2.1.8 Student’s t-distribution

All previously discussed distributions are discrete where the random variable(s) can only

map to values in a discrete set. The t-distribution is a continuous distribution where the random

variable maps to any real number. The t-distribution is heavily used in statistics to provide estimates

on the confidence of the mean of a data set. The probability distribution function of the t-distribution

is complex and is rarely used in calculations. Tables of values produced by the t-distribution are

included in most statistics textbooks. Throughout this work, when we discuss reference variables

for statistical comparison, we refer the reader to a statistics textbook, such as [43], for the desired

reference value.

The degrees of freedom and a confidence value, α, are required to find a value for the

distribution from a reference table. The degrees of freedom of a t-distribution are the number of

data points n minus one and α is a user-defined value for the level of confidence desired. In this

work, we typically use α = 0.05 for a 95% confidence level in our calculations.
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2.1.9 Normal Distribution

Like the t-distribution, the normal distribution is a continuous distribution. The normal

distribution is one of the most widely used probability distributions and is the most recognizable

due to its Gaussian curve or “bell” shape. The probability distribution function for the normal

distribution is

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

The cumulative distribution function for the normal distribution is

Pr(X ≤ b) =
1

σ
√

2π

∫ b

−∞
e−(x−µ)2/2σ2

dx

The expected value µ and variance σ2 are contained in the distribution function and are either

known or calculated from the data. To estimate the mean, one should test the data for normality

using a Quantile-Quantile plot [44] or Shapiro-Wilk test [45]. If the data passes either test, the

sample mean can be calculated using Equation (2.5) and the sample variance can be found using

either Equation (2.6) for an unbiased estimator or (2.7) for a maximum likelihood, where xi are the

data values for all i, n is the number of data values, and s2 is the estimated variance found using

Equation (2.8) [42].

µ =
∑
i xi
n

(2.5)

σ2 =
ns2

n− 1
(2.6)

σ2 = s2 (2.7)

s2 =
1
n

∑
i

(xi − µ)2 (2.8)

Due to the Central Limit Theorem [40], the normal distribution with mean µ = np and

variance σ2 = np(1− p) may be used to approximate a binomial distribution as the number of trials

n→∞ and p± 2
√
p(1− p)/n ∈ [0, 1] [40]. In practice, the normal distribution can usually be used
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Figure 2.2: Example of a normal distribution N ∼ (8, 4) approximating a binomial distribution
B ∼ (16, 0.5)

if n > 30. Figure 2.2 shows an example of the normal approximation to the binomial distribution

B ∼ (16, 0.5). Note that the normal distribution does not equal the binomial at every value of k.

A continuity correction must be applied to correct and account for the discrepancies. Typically a

correction of 0.5 is added to each k when calculating Pr(X < k) with the normal distribution [40].

If a t-distribution is symmetric about its mean and the degrees of freedom are sufficiently

large, n > 30 is a standard rule, the normal distribution may also be used to approximate the

t-distribution with µ = 0 and σ2 = 1. We will write N ∼ (µ, σ2) to refer to a normal distribution

with mean µ and variance σ2.

2.2 Models

Most situations and scenarios are too complex to model with a single probability distribution

or may not fit the probability distribution function for any known distributions. For example,

consider a line for the cash register at a vendor. For simplicity, we artificially limit the line to hold

at most two people and represent the situation with the model in Figure 2.3.

Figure 2.3: Example Markov model with three states and seven transitions

In our example, three observations are possible
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1. J : a customer joins the line;

2. C: a customer is serviced at the register; and

3. N : no action is taken.

We let the vertices or states represent the number of individuals in line and the edges or transitions

represent the probability of the length of the line changing. From the figure, we see if the line is

empty, it is likely that a customer will enter the line. If there is one customer in line, we are equally

likely to handle the customer and return to a line of zero or see the line grow to multiple customers.

Modeling the situation in this manner is advantageous because we have the ability to represent the

deterministic components of the situation (the number of customers the line supports) as states and

the stochastic components (the probability of the line changing length) as transitions between the

states. In these models, states with no outgoing transitions to other states are called absorbing.

States with no incoming transitions from other states are called emitting.

A model consisting of states and probabilistic transitions is called a Markov model. Markov

models and their various extensions are used heavily in many applications across engineering disci-

plines. We now introduce the concept of discrete sequences, which are used to describe the func-

tionality of Markov models and, as we will see, to construct Markov models.

2.2.1 Sequences

Let alphabet A be a finite set of symbols representing observable events. For an individual

sequence χ ∈ A, we use χ = χ1χ2 . . . χn to denote the elements that compose χ. By A∗, we refer to

the set of all sequences in A. This notation is consistent with formal language theory [46]. Let λ be

the empty sequence.

If χ is a sequence, then γ is a subsequence if

1. γ is a sequence in A; and

2. There exist indices i and j such that γ = χiχi+1 · · ·χi+j .

2.3 Markov Models

A Markov model G is a tuple G = (V,E,A, φ, δ) where V is a set of vertices of a graph, E

is a set of directed edges between the vertices, A is an alphabet, φ : A → E is a mapping function
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of a symbol a ∈ A to an edge e ∈ E, and δ is a probability function such that

∑
a∈A,vj∈V

δ(vi, a, vj) = 1 ∀vi ∈ V

The current definition of φ maps symbol outputs to the edges. Models with observable outputs on

edges are similar to Mealy models from finite state machine literature [47]. An alternate definition

of φ : A → V maps symbols to states, which is a Moore machine representation [48]. Both are

valid Markov model interpretations. It is possible for any given state machine to construct an

equivalent state machine that switches the role of states and transitions [49]. In the upcoming

section on hidden Markov models, we will discuss both Mealy and Moore representations in more

detail. In our experiments and all future chapters, we only consider Markov models following the

Mealy machine mapping. We also note that Markov models may be unlabeled, where φ does not

exist. In these models, there are no symbols corresponding to the edges or states in the model. The

models that we use in this work are labeled Markov models.

A path through G following a sequence χ is an ordered set of vertices (v1, v2, . . . , vn+1) such

that for each pair of vertices (vi, vj):

1. (vi, vj) ∈ E and

2. φ(vi, vj) = χi for χi ∈ A.

In Markov models, the vertices of G are referred to as states and the edges are referred to

as transitions. V is the state space of size n and P is the n × n transition matrix for the model.

Each element pi,j ∈ P expresses the probability the model transitions from state i to state j. If

(vi, vj) ∈ E, then

1. pi,j = δ(vi, a, vj) for a ∈ A;

2. pi,j 6= 0; and

3. For any i,
∑
j pi,j = 1.

Our definition of pi,j does not allow for a state vi to have multiple transitions to state vj ,

i.e. δ(vi, a, vj) and δ(vi, a′, vj) both exist. Adding states to models with multiple edges between two

states is typically sufficient to alter the model to be consistent with our definition of pi,j .
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We require that Markov models be deterministic in transition label; i.e., if there is a pair

(vi, vj) with φ(vi, vj) = χi, then φ(vi, vk) 6= χi for ∀k 6= j. Therefore, the probability that a

particular symbol will occur next is the probability pi,j of moving to the next state using a transition

associated with that symbol. If no transition exists between state i and state j, pi,j = 0.

2.3.1 Properties of Markov models

A necessary but not sufficient condition for a model to be Markovian is the satisfaction of

the Markov property. Let random variable Xt represent the state of the model at time t. Assuming

that (vi, vj) ∈ E, the Markov property is as follows

Pr(Xt+1 = vj |Xt = vi, . . . , X0 = v0) = Pr(Xt+1 = vj |Xt = vi) = pi,j

The Markov property simply states that given all previous states the system has entered, the prob-

ability to transition to a new state is only dependent on the current state, not on the path taken to

reach the current state. If this property is satisfied, the model is said to be memoryless.

A Markov model is said to be irreducible if any state vj is reachable from every other state

vi within a finite number of time steps. A model where states cannot be reached is reducible. More

formally, the model is irreducible if a sequence χij with length k exists such that

Pr(X0 = vi, Xk = vj) = 1 ∀vi, vj ∈ V (2.9)

Figures 2.3 and 2.4 show examples of an irreducible model and reducible model, respectively. States

that can and cannot be reached are recurrent and transient, respectively [50]. If a state vi is recurrent

and the expected value for the number of time steps needed before returning is finite, then vi is said

to be positive recurrent.

Figure 2.4: Example reducible Markov model

A Markov model is said to be periodic if there exists at least one state that is visited
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every ck-time steps for c ∈ N1. If no states exist with this property, the model is said to be

aperiodic. More formally, a state is periodic if indices i, j, and k exist such that given a sequence

χ = χ1 · · ·χi · · ·χj · · ·χk where at times i, j, and k, the current state is vi and

gcf{i, j, k} > 1

where gcf{·} is the greatest common factor of the indices [41]. Figure 2.5 shows an example of a

periodic Markov model.

Figure 2.5: Example periodic Markov model

If all states in a Markov model are both aperiodic and positive recurrent, the model is said

to be ergodic. The ergodic property is extremely important because it allows us to make predictions

about Markov models representing systems where time steps k trend toward infinity.

2.3.2 Stationary Distribution

Recall that for a Markov model with state space size n, the probability matrix P is a square

matrix where each constituent element pi,j ∀i, j ∈ [0..n], represents the probability of the model

transitioning from state vi to state vj . Let random variable Xk represent the current state of the

system at time step k and π be a vector of size n with each element πi representing the probability

that X0 = vi and
∑
i πi = 1. The vector π is referred to as the initial probability vector. Unless

otherwise specified, we assume that all states are equally likely to be the starting state at time 0,

{πi ∈ π : πi = 1/n ∀i ∈ [0 . . . n]}.

We can calculate the probabilities for Xk using P and π using

x = πP(k)

where x is a vector of size n whose elements xi represent the probability of the model being in state
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vi at time step k. P(k) is called the power matrix of P. Interestingly, if the model is ergodic, then

S = lim
k→∞

P(k) (2.10)

where S eventually stabilizes such that each row is equivalent [41]. At this point, a row s of S is said

to be the stationary distribution for the model. Each element si ∈ s is the asymptotic probability

that the model is in state vi, regardless of the initial probability vector π. Solving Equation (2.10),

however, can be computationally intensive for large matrices.

Theorem 1 (modified from [41]). The calculation of Equation (2.10) can be simplified by determin-

ing vector s such that

s = sP (2.11)

Proof. By definition,

P(k+1) = P(k)P (2.12)

From Equation (2.10), P(k) → S as k → ∞. Consequently, since k is monotonically increasing,

P(k+1) → S. Combining this with Equation (2.12) gives

S = SP (2.13)

for a trend of k → ∞. Since all rows in S are equivalent, selecting any one row s ∈ S reduces

Equation (2.13) to Equation (2.11).

Remark 1. The solution to Equation (2.11) can be found by computing the solution to

s = (P̂− Î)−10̂

P̂ is a modified form of P where the ith column is a vector of ones. Î is a modified n × n identity

matrix where the ith column is a vector of zeros. (·)−1 is the inverse operation for matrices. 0̂ is a

n × 1 vector where the first i − 1 elements are zero and the ith element is one. i can be any value

up to n but must be kept constant when creating the modified matrices and vectors.
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2.3.3 Generating Sequences

Given a Markov model, the following procedure may be used to generate a sequence of

length l:

i. Choose an initial state vi = v0

ii. Randomly select a transition (vi, vj) ∈ E weighting the transitions by their probability δ(vi, χi, vj)

to move to state vj from state vi

iii. Record the label χi = φ(vi, vj) associated with transition (vi, vj)

iv. Repeat steps ii and iii until l symbols have been recorded

v. Record the sequence χ = χiχi+1χi+2 · · ·χl

We note that if the model contains at least one absorbing state, depending on how symbols are

recorded, it is possible for the model to be unable to generate a sequence of length l.

2.4 Hidden Markov Models

Markov models are used to model situations where the state and transition structure are

directly observable or known a priori. In most real-world situations, the model structure that is

generating output sequences is “hidden” and only events produced by the model are known. Hidden

Markov models (HMMs) are a useful extension to Markov models that allow us to represent these

situations by estimating the model and transition probabilities from observation data sequences.

In Markov models, we know the entire alphabet A, whether or not all symbols in A are

observed. In HMMs, we assume that the alphabet only consists of the symbols that we have collected

in observations. Therefore, all symbols in paths through the HMM are associated with a known

symbol alphabet [1, 51]. From this point forward, we will not acknowledge this difference between

an observed alphabet and the actual alphabet; both will be referred to as the alphabet A.

The generic HMM is represented as a random process Xt that produces observations in the

form of another random process Yt. This is depicted graphically in Figure 2.6. The generic model

does not represent repeatable observations since it is a one-dimensional ordering of states with each

state representing a single observation. Therefore, a fundamental question that all users of HMMs

must answer is: what model structure should be used to represent the situation?
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Figure 2.6: Generic representation of a HMM

Rabiner in [1] provides one of the best surveys of HMMs. The values that must be specified

before a HMM can be used are given in Table 2.2. In classical HMM construction, the only value

that is not user defined is |A|, which is simply the size of the alphabet. The initial value for the

number of states is extremely important because it sets the size of P and π. The initial values

for B,P, and π can be set in any manner deemed appropriate, whether constructed or random1.

We note that the Moore representation has two probability matrices for the model to represent the

underlying process. Mealy machines are less complex, but at the sacrifice of model versatility.

Table 2.2: Values required for HMM construction

Moore
Representation

Mealy
Representation

• |A|: Number of observable
symbols

• |V |: Number of states

• B: Initial observation
probability matrix

• P: Initial state transition
probability matrix

• π: Initial probability vec-
tor

• |A|: Number of observable
symbols

• |V |: Number of states

• φ: Symbol to edge map-
ping function

• P: Initial state transition
probability matrix

• π: Initial probability vec-
tor

Once the initial structure is set, observation sequences used to refine or train the observation

probabilities B and transition probabilities P in order for the model to represent the observations.

The Baum-Welch Algorithm is the standard expectation maximization algorithm used to estimate

the transition matrix P of a hidden Markov model [52, 1]. The algorithm is iterative and the stopping

1Provided that all rules of probability are followed, e.g. all outgoing transition probabilities must sum to one.
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criteria may be given in terms of the convergence of the solution in any number of metrics.

Once the model is created and the different probability distributions are trained, the HMM

can be used to answer three fundamental questions about the situation [1]:

1. Given an observation sequence χ, which HMM G best fits the sequence and what is the

likelihood G generated χ;

2. What is the most likely path an observed sequence χ took through G; and

3. Which parameters should be altered to maximize Pr(χ|G).

We now discuss the Forward-Backward Procedure, which is used to find the answers to these ques-

tions.

2.4.1 Forward-Backward Procedure

Given a model G, the maximum likelihood of a sequence χ can be calculated by iteratively

exploring all possible paths and finding the probability that sequence χ occurs for each path [53, 15].

The Forward-Backward Procedure [54, 55, 56, 57] applies dynamic programming and induction to

calculate the probability, Pr(χ|G), reducing the algorithm complexity from exponential time to

polynomial time.

The Forward-Backward Procedure is:

1. Initialization: α1(i) = πi, 1 ≤ i ≤ n

2. Induction: αt+1(j) =
∑n
i=1 αt(i)pi,j , 1 ≤ t ≤M − 1

3. Termination: Pr(χ|G) =
∑n
i=1 αM (i)

The α-values are called “forward” variables and the above three steps are considered the

“forward” or maximum likelihood (ML) part of the algorithm. The “backward” or expectation

maximization (EM) portion of the Forward-Backward Procedure calculates the “backward” variables

and is used to find:

1. the path most likely taken to produce a sequence χ and

2. how the parameters of G can maximize Pr(χ|G) [1].
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In the case of EM, to find the path through G, the Viterbi Algorithm [58, 1] is the procedure

designed to most efficiently find the state ordering. Maximum mutual information (MMI) [59, 60]

and minimum classification error (MCE) [61, 62] are alternatives to EM to determine the optimal

parameters. In our experiments, the most likely path is not considered nor do we train any models

to more adequately match the observations. We refer the reader to [1] or the previous references on

MMI and MCE for a discussion on these topics.
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Chapter 3

Zero Knowledge ε-machines

3.1 Construction

ε-machines are an extension to HMMs and are used to generate a Markov structure from

a series of observations. HMMs require an initial Markov structure and initial probability matrix.

The Causal State Splitting and Reconstruction (CSSR) Algorithm [25] infers the state and transi-

tion structure given a sequence of symbolic output sequences and a string length L. This output

model, called an ε-machine, is the minimum entropy estimation of the true underlying process dy-

namics. States are defined as conditional probability distributions over the next symbol that can be

generated by the process. Defining the states in this manner allows the system to tolerate random

noise in the observation sequence and still maintain the deterministic behavior of the system. The

CSSR Algorithm has useful information-theoretic properties in that it maximizes the mutual infor-

mation among state structure and the next output symbol and minimizes the remaining uncertainty

(entropy).

The CSSR Algorithm requires two inputs: a series of observation data χ and a string length

variable L. The parameter L defines the number of symbols in the past that are necessary to find

the proper state structure of the model. In other words, a given symbol χi ∈ χ is dependent on

symbols χi−1, χi−2, . . . , χi−L.

Assume we are given a sequence χ ∈ A∗, and we select a value L ∈ N. For each value of

{i : 0 ≤ i ≤ L}, we determine the set W of all subsequences γ that have length i. W then contains

all subsequences of χ from length 0 (the empty string λ) up to and including length L. For each
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subsequence γ in W we prepend a symbol a to create a new sequence aγ. Using simple counting (see

Equation (3.1)) we can compute the probability of seeing another symbol a′ after seeing subsequence

aγ conditioned on the provided sequence χ. This yields a probability distribution function faγ|χ over

A. A similar distribution function can be computed for each state of the ε-machine (see Equation

(3.2)). Using a two-parameter nonparametric statistical comparison test, such as the Kolmogorov-

Smirnov test or χ2 test (see [44]), we cluster the conditional distributions based on their similarity.

The level of confidence chosen for the comparison affects the type I error rate [43] of matching the

distributions. The state with the best p-value is assigned the new subsequence aγ. If no state has a

sufficiently low p-value to be declared a match, a new state with subsequence aγ is created and the

process continues for the next string in W .

Once all subsequences are clustered and the states are defined, the splitting function divides

clusters to ensure that each state has a deterministic probability function δ. Shalizi and Crutchfield

state that there are more efficient algorithms for determinizing a finite state machine. However,

these algorithms do not take into account a statistical structure associated to the state machine. To

determinize, the states are further split apart based on antecedent; i.e., suppose subsequences γ and

γ′ are associated to state v. If γa is associated to state v′ while γ′a is associated to state v′′, then

any transition structure defined from the states would be non-deterministic. Reconstruction simply

breaks the states apart so that the resulting antecedent states are the same for all subsequences

associated to a state given a specific input symbol. Algorithm 3.1.1 shows Shalizi’s and Crutchfield’s

procedure.

Note in a typical run of this algorithm, there may be transient states remaining after de-

terminization. A final step could be added that removes these states if only the recurrent system

behavior is desired. In this case, the resulting Markov model is irreducible. Crutchfield and Shalizi

execute a step like this as described in [25].

The complexity of CSSR is O(kL+1)+ O(N), where k is the size of the alphabet, L is the

maximum subsequence length considered, and N is the size of the input symbol sequence. Given a

stream of symbols γ, of fixed length N , from alphabet A, the algorithm is linear in the length of the

input data set, but exponential in the size of the alphabet.

Note that [25] estimates conditional probabilities by analyzing grouped sets of outputs from

a stochastic process. As long as Shalizi’s assumption [25] that the volume of training data is sufficient,

the law of large numbers dictates that this is almost surely true. This would not be the case if one
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Algorithm 3.1.1 – CSSR Algorithm from [25]
Input: Observed sequence χ; Alphabet A, Integer L;
Initialization:

1. Define state v0 and add λ (the empty string) to state v0. Set V = {v0}.
2. Set N := 1.

Splitting (For each i : 0 ≤ i ≤ L)

1. Let W = {γ|∃v ∈ V(γ ∈ v ∧ |γ| = i− 1)}, where W is the set of strings in states of the current model
with length equal to i− 1.

2. Let N be the number of states.

3. For each γ ∈W , for each a ∈ A, if aγ is a subsequence of χ, then

(a) Estimate faγ|χ : A → [0, 1], the probability distribution over the next input symbol.

(b) Let fvj |χ : A → [0, 1] be the joint state conditional probability distributions; that is, the prob-
ability given the system is in state vi, that the next symbol observed will be a. For each j,
compare fvj |χ with faγ|χ using an appropriate statistical test with confidence level α. Add aγ
to the state that has the most similar probability distribution as measured by the p-value of the
test. If all tests reject the null hypothesis that fvj |γ and faγ|χ are the same, then create a new
state vN+1 and add aγ to it. Set N := N + 1.

Reconstruction

1. Let N0 = 0.

2. Let N be the number of states.

3. Repeat while N0 6= N :

(a) For each i ∈ 1, . . . , N : Set k := 0. Let M be the number of sequences in state vi. Choose a
sequence γ0 from state vi. Create state vik and add γ0 to it. For all sequences γj (j > 0) in state
vi:

i. For each a ∈ A γja produces a sequence that is resident in another state vk. Let (γj , a, vk) ∈
δ.

ii. For l = 0, . . . , k, choose γ from sequences within vik. If δ(γj , a) = δ(γ, a) for all a ∈ A, then
add γj to vik. Otherwise, create a new state vik+1 and add γj to it. Set k := k + 1.

(b) Reset V = {vik}; recompute the state conditional probabilities fv|χ for v ∈ V and assign
transitions using the δ functions defined above.

(c) Let N0 = N .

(d) Let N be the number of states.

4. The model of the system has state set V and transition probability function computed from the δ
relations and state conditional probabilities.
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were considering only one instance of an output string. As noted in [63], the dependencies in any

single trace of a Markov process go back further than L states. In the same work, it is made clear

that this is not true for the dependencies of the states themselves and therefore not true for the

distributions that we estimate.

3.1.1 Computing fvi|χ and fγ|χ

The following formulas can be used to compute fvi|χ and faγ|χ in Algorithm 3.1.1. Let

#(γ, χ) be the number of times the sequence γ is observed as a subsequence of χ.

fγ|χ(a) = Pr(a|γ, χ) =
#(γa, χ)
#(γ, χ)

(3.1)

fvi|χ(a) = Pr(a|vi, χ) =

∑
γ∈vi

#(γa, χ)∑
γ∈vi

#(γ, χ)
(3.2)

3.2 The Main Problem

One limitation to the CSSR Algorithm is the dependence on parameter L, which defines

the maximum subsequence length considered when inferring the model. The model assumes that at

time t, symbol χt+1 is a random function of symbols χt, χt−1, . . . , χt−L. Currently, the choice of L

is either ad hoc or arbitrary.

When inferring models with the CSSR Algorithm, if L is too small, the state structure of

the inferred machine is incorrect because we do not capture all the statistical dependencies in the

data. The number of states is incorrect and symbols are incorrectly assigned to states. Examples

of this will be shown in Section 3.4. Since the parameter L defines the exponent of the algorithm

complexity, it is imperative that L not be larger than absolutely necessary. This motivates our work

in finding the correct value of L.

To identify incorrect state structures, we define a symbol-to-state mapping, which we observe

as L increases. We show that this symbol-to-state mapping stabilizes once the correct string length

is found. This occurs because the construction method has access to all the statistically relevant

information. At which point, adding additional information by using a larger L simply reproduces

the same correct model.
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We note that this problem is quite different from the order problem discussed in [63]. Order

estimation is a difficult problem that occurs when using the standard HMM. Since that model has

two different sets of probability distributions (states and outputs), it is desirable to find the smallest

number of states that can be used to express properly the set of output distributions. The smallest

number of states is called the model order. Since the model we use has one set of probability

distributions, where state transitions output symbols, the question of order does not arise. [18]

proves that CSSR finds the most compact representation of the statistical dependencies in the data

analyzed.

3.3 Solution to the Main Problem

To find the correct string length L, we check to see that the HMM inferred using CSSR with

string length L is consistent with the model structure inferred using string length L+ 1. We verify

the consistency of the models by seeing if their interpretation of the symbolic dataset χ output by

the process being analyzed is consistent.

Algorithm 3.3.1 works iteratively. We start by inferring HMM G2 by using the CSSR

Algorithm with parameter L = 2. The training data is then input to G2. For each symbol, we

record the state in G2 that is associated with the symbol. Since the HMM is deterministic, this

mapping is unique. Since there is no specified start state, we perform this process for each state in

G2. If this process fails at some point for a specific start state, we do not store that information.

We then compute HMM G3 using CSSR with L = 3 and calculate the mappings of states

to symbols in exactly the same way it was done for G2. For each pair of start states (i.e. each state

in G2 paired with each state in G3), we determine how many times they agreed on the mapping of

symbols to states. Since there is no clear start state, we keep the largest value m3.

This value m3 measures how similar state machines G2 and G3 are. (It is technically similar

to the concept of bisimulation used in model checking literature [64].) Determining if two graphs

are isomorphic is computationally challenging. Determining the equivalence of two Markov chains

would be more difficult, since that would also require comparing probability distributions. We avoid

that issue with this step; what is important in this process is the mapping of symbols to states. If

two machines assign the symbols in the training data to the same states, then their interpretations

are identical.
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The process repeats with increasing values of L producing a new machine GL and value mL

with each iteration. Informally, as L increases, the CSSR Algorithm has more information regarding

the history of the system. The CSSR Algorithm monotonically improves the ability of the HMM

GL to explain the training data. As the HMMs asymptotically approach the true structure of the

process that produced the data, the amount of agreement between GL and GL−1 increases. When

the correct value of L is found, there is no new information to be gained by using L + 1. At this

point, the mapping of symbols to states will remain stable (i.e. mL == mL+1 == mL+2 . . . ) and

the process can terminate. We present these steps more formally in Algorithm 3.3.1.

Algorithm 3.3.1 – Zero Knowledge HMM Identification Algorithm
Input: Observed sequence χ; Alphabet A;
Initialization:

1. Set L = 1.
2. The set VL−1 = {v0} and GL−1 = 〈VL−1,A, δL−1, pL−1〉, where (v0, χ, v0) ∈ δL−1 for all χ ∈ A and

pL−1(v0, χ, v0) is the proportion of times symbol χ occurs in sequence χ. (This is the ε-machine that
results when Algorithm 3.1.1 is run with L = 0.)

3. Let the length of N = |χ|.
Main Loop:

1. Let GL = 〈VL,A, δL, pL〉 be the ε-machine output of Algorithm 3.1.1 with χ, A and L;
2. For every state v0 ∈ VL, record the path vv0L = {v1, v2, . . . , vN} that occurs when δ̂L is recursively

applied with input χ starting at state v. That is, v1 = δ̂L(v0, χ1), v2 = δ̂L(v1, χ2) etc. If there is some
i ≤ N for which vi =↑, then we discard sequence vv0L as undefined.

3. Each sequence qq0L defines a partial function fv0L : [N ]×A → VL. If vk is the kth element of sequence
vv0L , then fv0L (k, χk) = vk. That is, position k with symbol χk is associated to state vk. Let FL be
the set of functions fv0L defined in this way.

4. Compare the functions in FL to the elements of FL−1: We will use these sets to define a matching
problem whose optimal solution will be used to define a stopping criterion.

(a) Let I be a set of indices corresponding to elements of VL−1 and J be a set of indices corresponding
to elements of VL.

(b) Define binary variables xij (i ∈ I, j ∈ J ). We will declare xij = 1 if and only if state vi of VL−1

is matched with state vj of VL.
(c) Define the following coefficients:

rij =
X

v0L
∈VL,v0L−1∈VL−1

˛̨̨
(f
v0L
L )−1(vi) ∩ (f

v0L−1
L−1 )−1(vj)

˛̨̨
.

(d) Solve the Matching Problem:

max
xij

mL =
X
ij

rijxij

s.t.
X
j

xij = 1

xij ∈ {0, 1}

to obtain a matching between states in GL−1 and states in GL.

5. If |mL −mL−1| = 0, then stop. The current value of L is the correct value.
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Theorem 2. For a model with correct string length Lmax, the runtime operation of Algorithm 3.3.1

is

O(kLmax+1) +O((Lmax − 1)N)

Proof. For each iteration of Algorithm 3.3.1 using string length L, the runtime operation [18] is

O(kL+1) +O(N)

Each iteration of Algorithm 3.3.1 increases L by one unit. For L starting at length 2 and proceeding

to Lmax, the runtime operation is

Lmax∑
i=2

O(ki+1) +O(N) = O(k2+1 + · · ·+ kLmax+1) +O((Lmax − 1)N)

Taking the largest exponential term results in the provided runtime operation.

3.3.1 Proof of Correctness

We now prove the correctness of the proposed algorithm. We use H(X) to denote the

entropy of random variable X. By H(X|Y ), we denote the conditional entropy of random variable

X given Y [18]. First we list the results from [18] that are used in our proofs:

Lemma 1 (Theorem 1 [18]). Let χ be an observed sequence of symbols and let G∗ be the model

of χ. Let G be any other Markov model for χ. Let χn+1 ∈ A be a random variable denoting the

“next” symbol to be observed after χ. Then H[χn+1|G] ≥ H[χn+1|G∗]. (That is, inferred HMMs are

maximally prescient of the next symbol to be observed.)

Lemma 2 (Theorem 3 [18]). Let χ be an observed sequence of symbols and assume χ is not drawn

from a set of measure zero in the sample space. Then there is a unique Markov model that is minimal

in the number of states and obeys Lemma 1. (That is, there is one and only one model representation

for each sequence χ with minimal entropy.)

Theorem 3 (Stopping criteria). If Algorithm 3.3.1 is executed with a sufficiently long observation

sequence χ, then the stopping criteria will be satisfied when the string length is correct.

Proof. The proof is a consequence of Lemma 2 in [18]. Since Shalizi proves that the causal archi-

tecture is unique in Theorem 3, the set of mappings FL of [N ] × A to states VL are unique and

33



correctly summarize the statistical relationships in the data when L has the correct value.

The nature of the CSSR Algorithm ensures that the correctness of this assignment will

not be changed by increasing the string length. Note that all subsequences of χ up to size L are

evaluated in the Splitting step of Algorithm 3.1.1. Therefore, no additional information is obtained

by considering strings of size L + 1 and no additional states will be constructed assuming that χ

is of sufficient length and that it is not drawn from a set of measure zero in the sample space;

i.e., correlations among symbols that are not in the string length are not statistically significant).

Hence, the inferred HMM found by CSSR using string length L+ 1 must correspond to the causal

architecture found using string length L.

Theorem 4 (Insufficiency). If Algorithm 3.3.1 is executed with a sufficiently long observation se-

quence χ, then the stopping criteria will not be satisfied for L < L∗ when L∗ is the true value of the

CSSR Algorithm parameter.

Proof. This theorem is a direct consequence of combining the Pumping Lemma [46] and Lemmas 1

and 2. The Pumping Lemma states that for any word in a regular language, there is a constant value

n such that any word in that language of length greater than n can be written in the form uviw such

that all uviw belong to the language for any i. In other words, any word of length greater than n

can be expressed as an instance of u followed by an arbitrary number of repetitions of instances of v

followed by w. We recall that finite state machines are acceptors for the class of regular languages.

In this case, u and w refer to transient parts of the finite state machine and v refers to the recurrent

part of the finite state machine. The CSSR Algorithm removes u and w from the system, since they

are transient states. In which case L∗ is the same as max(|v|). Any path through the recurrent

portion of the finite state machine can be expressed as system substrings of length L∗ or less.

The Pumping Lemma explicitly states that the value L must exist. Lemma 1 proves that

the correct state machine is optimal in the sense of the mutual information the states share with

the next output symbol. If a value less than L∗ is used then there are historical dependencies that

will not have been used in constructing the HMM. An HMM constructed using a value less than L∗

can not satisfy Lemma 1 and is not correct. HMMs constructed using values using any value L∗ or

greater contain all the history information in the regular language. Lemma 2 therefore proves that

those HMMs must be equivalent.
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3.4 Experimental Demonstration of Algorithm 3.3.1

We now illustrate our results using models where we are certain of the value of L which is

necessary for finding the true state structure of the input process.

Using the Markov model provided in Figure 3.1a, we generated a sequence of 2000 symbols.

The model in Figure 3.1a is the “unknown” underlying process and the generated sequence is the

observation data. Note that the underlying process should only produce two types of subsequences:

“ACDY” and “BCDZ.” We applied Algorithm 3.3.1 to the generated sequence for values of L varying

from 1 to 36. We used an α value of 0.01 for the Kolmogorov-Smirnov test used to execute Step 2

of Algorithm 3.1.1.

Starting with L = 2, the CSSR Algorithm (Algorithm 3.1.1) was used to create the model

in Figure 3.1b. The CSSR Algorithm constructed a model that will produce both subsequences from

the original model and two additional subsequences: “ACDZ” and “BCDY.” Rerunning the CSSR

Algorithm using L = 3 and L = 4 produces models shown in Figures 3.1c and 3.1d, respectively.

These models capture the structure of the input system perfectly.

(a) (b)

Figure 3.1: (a) A model that generates a sequence of random concatenations of two subsequences
(ACDY and BCDZ). (b) The model generated with L = 2. c©Elsevier 2009.

A conclusive illustration presenting the validity of the assertion made in Theorem 4 is
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(c) (d)

Figure 3.1: (c) The model generated with L = 3. (d) The model generated with L = 4. c©Elsevier
2009.
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provided by the Markov model depicted in Figure 3.2a. Figures 3.2b, 3.2c, and 3.2d show models

inferred using L = 2, 6, and 7 respectively. Following the same procedure as the previous example,

the best metric values (number of symbols in the sequence string mapped to the same symbol) it

finds as L increases are:

• L = 3 and L− 1 = 2 — CSSR (872) (Figure 3.2b)

• L = 4 and L− 1 = 3 — CSSR (1119)

• L = 5 and L− 1 = 4 — CSSR (1366)

• L = 6 and L− 1 = 5 — CSSR (1613) (Figure 3.2c)

• L = 7 and L− 1 = 6 — CSSR (1860) (Figure 3.2d)

• L = 8 and L− 1 = 7 — CSSR (1979).

• ...

• L = 35 and L− 1 = 34 — CSSR (1979).

For this specific instance, Figure 3.3 shows the general behavior of m∗L in this problem. As

is evident from the plot, m∗L levels off once the correct L is detected and at the stopping point,

m∗L −m∗L−1 = 0.

3.5 Summary

In this chapter, we explained how to construct ε-machines from observation data and a string

length value L using Shalizi’s and Crutchfield’s approach. With our extension, we showed how L

can be determined dynamically during the construction process, allowing models to be constructed

using zero knowledge. We continue our work on model construction in the next chapter with an

analysis of confidence in the constructed models.
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(a) (b)

Figure 3.2: (a) A model used to validate result in Theorem 4. (b) The model generated with L = 2.
c©Elsevier 2009.
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(c) (d)

Figure 3.2: (c) The model generated with L = 6. (d) The model generated with L = 7. c©Elsevier
2009.
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Figure 3.3: Plot showing the values of m∗L for various values of L. Clearly at the optimal value of
L, m∗L+1 −m∗L = 0. c©Elsevier 2009.
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Chapter 4

Model Confidence

4.1 Introduction

Models are used extensively in science and engineering to explain and predict natural pro-

cesses. When using models, it is useful to ensure the models accurately represent the observations

and the underlying process. The procedure to infer models is an open problem for many different

applications, such as network modeling [65], traffic simulation [66], tumbling mill design [67], and

crane simulation [68].

When models are dynamically constructed from observations, three questions are raised:

1. is a sufficient amount of observation data available for model creation/training;

2. does the model closely match the observations (model fidelity); and

3. are we confident that the model and observations represent the actual underlying process.

In this chapter, we present two approaches that address the third issue. To determine

the model confidence, we consider the observation gathering and model construction procedure

outlined in Figure 4.1. An underlying process is observed at some time interval, creating an ordered

sequence of observations. The first question corresponds to the size of the observation sequence.

The observations are used to construct a minimum entropy HMM. In model fidelity literature, the

observations are assumed to completely represent the underlying process. Model fidelity is therefore

a measure of how well the constructed model matches the observations. We propose model confidence
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Figure 4.1: Hierarchy of the process, observations, and model showing the relationship between
model fidelity and model confidence

to address when the observations may or may not completely represent the underlying process. In

this case, model confidence is a measure of how well the model is believed to match the underlying

process.

4.2 Current Research

A large body of research across many disciplines proposes solutions to finding a sufficient

amount of training data and calculating model fidelity. Lack of training data is a common problem in

pattern recognition. Recognition applications typically extract a finite set of features from the data

in an attempt to detect known behaviors. If the training data is insufficient, the model parameters

may only be representative of the small-scale data set, not the large-scale situation [69]. For speech

recognition, [70] creates a definable weight and uses maximum likelihood to select features that are

more likely to be representative of the situation instead of special training set cases. Zhu in [71] and

Liwicki in [72] merge known, processed data sets with new, unprocessed data to increase the training

set size. Yang in [73] generates synthetic data for gait recognition models to perform large-scale gait

analysis. Fang in [69] proposes an elastic distortion model to generate more training samples from

previously collected data, and a method to stabilize the covariance matrix of the training data.

While these approaches enable the models to more effectively recognize a larger spectrum of input

data streams, it is important to recognize that artifacts may be introduced into the model due to

the artificiality of the data.

As stated in Chapter 1, an assumption for model fidelity is that the collected data is fully

representative of the process under observation. Given a model that is believed to represent the

situation, we desire a value to ensure that it matches sequential observations. We are not suggesting

that high-fidelity models are the only models of value. Rather, our view coincides with [74], which
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explains the need for using both low and high-fidelity systems depending on the requirements. Lee

in [75] and Nechyba in [76] use a hidden Markov model (HMM) to generate a similarity value

between the situation model and the observations. In their examples, continuous observation data

is discretized and used to train a five-state HMM such that the HMM is the most likely model to

represent the data. Given a model that exactly matches the data and the situation model, which

is able to handle probabilistic variations, the similarity value is the ratio of the probabilities that

the observation data was generated by both models. Nemirovsky in [77] proposes an approach that

uses the frequencies of the deterministic components and the correlation between the stochastic

components to produce a fidelity value.

In this chapter, we propose a solution to finding model confidence. The fidelity of a model

is a measure of the similarity between the resulting model and the observed data, while accounting

for probabilistic variations in the data stream and issues with over-training the model. In this work,

we generate the model directly from the data, and consequently, produce the best match for the

observations. We therefore must consider the confidence in the resulting model given the data that

we have seen. While similar, this definition is slightly different from the definition of model fidelity.

In system reliability, [78] phrases this as an optimization problem. Using the probabilities that

different modules of a complex system will fail, [78] uses linear programming to find the number of

input tests that should be performed on a module to ensure that the probability of failure is not above

a defined threshold. To represent the Markov model in the linear program, Poisson distributions

are used to simplify the representation by approximating the multiple binomial distributions of the

system.

The approach that we present here is similar in purpose to that in [78] except we solve

the binomial distribution directly. To use the Poisson approximation, [78] assumes the probabilities

trend to zero as the number of samples increases to infinity. Over the long term with many large

samples, this approximation is valid because the probabilities are typically significantly smaller

than the number of samples. In pattern recognition, however, we assume that the probabilities are

stationary and we may not have a sufficiently large number of samples for the approximation to

hold. We also wish to find the amount of data needed to be confident that no unexpected events

will occur with a defined probability. From the knowledge in the probability that no unexpected

events will occur, we can derive our confidence in the model. Furthermore, as behavior models are

not well-defined, we must also consider the model construction process in deriving any concept of
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model confidence.

4.3 Determining Model Confidence

Assume we have collected a sequence of observations χ of length Z from a process that is

representable by a Markov model. We also assume that we have a complete alphabet A representing

all possible observations. We do not know if all symbols in A are found in χ.

Theorem 5. Given an underlying process and a finite sequence of discrete observations χ, it is

impossible to be absolutely certain that the process is completely encapsulated by χ.

Proof. The proof is intuitive. Consider an event E where P (E) = c where 0 < c � 1 is a small,

non-negligible constant. By the geometric distribution, a random variable R representing when E

first occurs is P (R = r) = c(1− c)r−1. As r →∞, P (R = r)→ 0 but P (R = r) 6= 0. Extending this

to situations where we do not know if any events E exist or there are multiple events E1, E2, . . . , to

determine if χ contains all events of the underlying process requires knowledge of future events or

an infinite knowledge source [79].

Let Kvi
be the set of outgoing transitions from state vi. As an example using the model

in Figure 4.2a, Kv1 = {(v1, A), (v1, C)}. Let Uvi be the set of unobserved outgoing transitions

from vi. For the model in Figure 4.2b, Uv1 = {(v1, B)} and Uv2 = {(v2, B), (v2, C)}. Obviously,

Kvi ∩ Uvi = ∅ ∀vi ∈ V . Our goal is to determine the total number of samples, Z, such that the

probability that a transition in Uvi
exists is less than a user defined threshold.

If the model was not constructed with a sufficient amount of data, then as data is collected

and the model is traversed, each state will be exited using either a transition from Kvi or from Uvi .

For the current model to be ruled insufficient to represent the underlying process, a transition in

Uvi
for any vi need only be taken one time. Let the probability that a transition in Uvi

is taken be

represented as βvi . We first consider a bound when determining values for βvi .

Lemma 3. For β∗vi
< βvi

, the expected number of samples needed to predict within a given level

of confidence that a transition in Uvi
exists with probability βvi

may not be sufficient to predict a

transition existing with probability β∗vi
.

Proof. We represent the situation with two geometric distributions. Let R1 represent the number

of samples needed to detect if a transition exists with probability βvi
and R2 represent the same for
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(a) (b)

Figure 4.2: Example of known and unknown transitions for alphabet A = {A,B,C}. Solid transi-
tions are known and given probabilities calculated from input data. Dashed transitions are possible,
but not yet seen. (a) Model generated using CSSR; (b) Model with unobserved transitions.

β∗vi
. Since β∗vi

< βvi
, we use the expectation of the geometric random variables:

E[R1] = 1/βvi

E[R2] = 1/β∗vi

E[R1] < E[R2]

As β∗vi
→ βvi , the expectations become equal, then intuitively the probability that the number of

samples needed for βvi
will work for β∗vi

increases. In the general case, however, this is unlikely to

occur.

By Lemma 3, we show that as a value is calculated for βvi
, we cannot provide any certainties

about values of β∗vi
< βvi

. Furthermore, as a probability, βvi
is bounded between [0, 1].

We define joint event J to be the joint occurrence the system is currently in state vi and

will exit the state using a transition in Uvi
.

Definition 1.

P (J) = siP (e ∈ Uvi) = siβvi

where si ∈ s is the asymptotic state probability for vi and βvi = P (e ∈ Uvi) is the probability of an

unobserved outgoing transition e being taken to leave vi for another state vj . P (J) represents the
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Figure 4.3: Relationship between the asymptotic state probability and the probability of an unknown
transition for different levels of κ. κ equals (diamond) 0.001; (square) 0.005; (triangle) 0.01; (circle)
0.05.

probability that the system is in state vi and takes a transition in Uvi to leave the state.

The probability that the system will take a transition in Uvi is unknown. We could set

βvi
as a user-defined value, but with different values for si, P (J) would potentially hold a different

value for each state. An alternative is to let the probability of the joint event be a user-defined

threshold κ = P (J). A larger value of κ decreases the amount of data needed for confidence that

χ represents the underlying process but increases the risk of an event e ∈ Uvi
occurring. A smaller

joint probability decreases this risk but may require significant amounts of data. We can determine

the value of βvi needed to meet the selected value of κ by rewriting Definition 1

βvi
=
κ

si
(4.1)

If the model was not constructed with a sufficient amount of data, then as data is collected

and the model is traversed, each state will be exited using either a transition from Kvi
or from Uvi

.

For the current model to be ruled insufficient to represent the underlying process, a transition in

Uvi
for any vi need only be taken one time. We propose two different algorithms for addressing this

46



problem.

Both approaches calculate the number of samples required for each state, ni, to have a

desired level of confidence that a transition Uvi
does not exist. We must scale up the maximum ni

to find the length of χ.

Z = max
vi∈V

⌈
ni
si

⌉
(4.2)

We make assumptions about the observation data and knowledge about the underlying

process. First, the alphabet A is complete and contains all expected observations. By assuming

this, our approach is restricted to finding “known unknowns” [80] within a given level of statistical

confidence. If an observation is not in the alphabet, i.e. is an “unknown unknown,” [80] the event

does not factor into the confidence in or probability of an unknown event. In addition, if Kvi = A

and Uvi
= ∅, the state does not have any possible untaken outgoing transitions. No more transitions

are available to exit the state and testing the state does not change the confidence in the model. We

reference state 0 in both models of Figure 4.2 as an example.

4.3.1 Confidence that e ∈ Uvi does not occur

To determine if the amount of data collected is statistically sufficient, we use a one-sided

binomial test on βvi
. The one-sided binomial test allows us to find the smallest number of samples

needed for the probability of a transition in Uvi existing is nonzero. The null hypothesis of H0 :

βvi
= 0 is tested against H1 : βvi

6= 0. We reject H0 for H1 when z is greater than the reference

statistic, zα. At this point, if no transitions in Uvi
for all vi are observed, the model is assumed to

be with a user-defined level of confidence.

Definition 2. The z-statistic for each state vi ∈ V is determined by

zvi
=

βvi√
βvi

(1−βvi
)

ni

where ni is the number of times state vi is entered. The reference normal distribution statistic, zα

with confidence α can be found in a statistics textbook, such as [43].

Lemma 4. For given z-statistics zv1 and zv2 , the statistic satisfying min{zv1 , zv2} may be compared

to the reference z-statistic in lieu of testing zv1 and zv2 individually.
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Proof. βvi is held constant for the experiment and is the same for zv1 and zv2 . Therefore from

Definition 2, zvi
∝ 1/

√
ni. Without loss of generality, let us assume that zv1 = min{zv1 , zv2}. Since

ni ∈ I+ and
√
ni > 1, in order for zv1 < zv2 to hold, n1 > n2. The objective of comparing to the

reference statistic is to find the amount of data needed for a specified level of confidence. If zv1 > zα

then consequently zv2 > zα. Since more data is required for zv1 to meet this condition, the minimum

of zv1 and zv2 satisfies both the statistical and application requirements.

Lemma 5.

zexp = min
vi

zvi

Proof. The proof is a simple extension of the proof for Lemma 4 which accounts for more than two

z-statistics and is omitted.

Definition 3. Using the calculation for familywise error [81], the model confidence can be determined

by

αf = 1−
∏
vi∈V

(1− P (Z < zvi
))

where P (Z < zvi
) is the probability that a normal distribution has the value of at least zvi

.

To use the binomial test in this manner, we propose a simple algorithm to perform on-line

testing of the observation sequence. The algorithm determines if a constructed model statistically

represents a data stream in the process of being collected. We first collect a sequence of observation

data χ and construct a model from the collected data. If |χ| is not sufficiently long, we will be unable

to construct a model from the data; additional data should be gathered. If a model is constructed,

we determine the z-statistics and find if the experimental statistic provides 100 · (1−α)% confidence

that a transition with probability βvi does not occur. The algorithm is provided in Algorithm 4.3.1.

Once the value of ni is determined using Algorithm 4.3.1, Equation (4.2) can be used to

find the total amount of data required for the model.

4.3.2 Probability that e ∈ Uvi does not occur

This approach determines the amount of data needed to be certain the probability a transi-

tion in Uvi
occurs is less than αp. While similar to the previous approach, we note that confidence
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Algorithm 4.3.1 – Proposed Algorithm: z-test
Input: Recurring observation yt for time t; Alphabet A; User defined κ, α;
From time t = 1:

1. Construct model Gt from sequence χ = χ1 · · ·χt
2. Calculate the asymptotic state probabilities s

3. Use Equation (4.1) to determine the values for βvi

4. Calculate the experimental statistics for each state using Definition 2

5. Find zexp using Lemma 5

6. If zexp > zα, conclude Gt and χ sufficiently represent the underlying process with the desired level of
confidence

uses the cumulative distribution function in comparisons with a user defined error rate. In this

approach, we use the probability mass function of the binomial distribution for comparison.

Definition 4. For a given state vi, the probability βvi that the state is exited using a transition from

Uvi
is

Pr(X = 1) =
(
ni
1

)
β1
vi

(1− βvi
)ni−1 = niβvi

(1− βvi
)ni−1

where ni is the frequency state vi is entered.

Due to the symmetry of the binomial distribution, this is equivalent to finding Pr(X = ni−1)

using β∗vi
= 1 − βvi

. If the state is not exited by a transition in Uvi
, then as ni increases, the

probability of such an exit decreases similarly. βvi is the probability of an unknown transition

calculated using the user-defined threshold κ.

Definition 5. The probability that a state vi is exited using a transition in Uvi
can be bounded by

a user-defined threshold αp such that

Pr(X = 1) < αp

Combining Definitions 4 and 5 and rewriting the result provides

ni ln(1− βvi)e
ni ln(1−βvi

) <
αp(1− βvi) ln(1− βvi)

βvi

(4.3)

Theorem 6. For state vi, the number of samples needed for the probability that an unobserved
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transition in Uvi occurs is at most αp is

ni >

⌈
1

ln(1− βvi)
·W

(
αp(1− βvi

) ln(1− βvi
)

βvi

)⌉
(4.4)

Proof. Using the Lambert W function [82], we isolate ni from Equation (4.3). Due to the fact that

1 − βvi
< 1 and ln(1 − βvi

) < 0, we reverse the inequality. Furthermore, ni ∈ N+; we incorporate

the ceiling function for this restriction.

Remark 2. We note that the probability mass function for the binomial distribution is symmetric

about the mean, and as such, two values of ni exist that fulfill the condition in Definition 5. Of the

two real-valued branches, the 0 branch of the Lambert W family corresponded to the lower of the

ni values, while the -1 branch produced the maximum value of the two possible values that solve

Equation (4.4).

Like the previous approach, once ni is determined by Equation (4.4), we use the asymptotic

state probabilities and Equation (4.2) to find the total amount of data required for the model.

Equation (4.2) gives the amount of data needed to be confident in one state. If Definition 4

is used for a given βvi
for each state, the confidence in the model can be determined for an increasing

amount of data Z. We use the combination of the experimentwise error to produce the familywise

error [81].

Definition 6.

αf (Z) = 1−
∏
vi∈V

(1− Zsiβvi
(1− βvi

)Zsi−1) (4.5)

where for state vi, si is the asymptotic state probability and βvi
is determined from Equation (4.1).

Remark 3. If a specific model confidence is desired, Definition 6 can be rewritten as the Sidak

equation [81] with the assumption that the same level of confidence is desired across all states:

αp = 1− (1− αf )
1
|V |

where |V | is the size of the state space. Using the value of αp calculated in this manner, we use

Equations (4.4) and (4.2) to find the amount of data required for a determined level of model

confidence αf .
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To use the proposed equations, we present a simple algorithm to perform on-line testing of

the observation sequence. The algorithm determines if a constructed model sufficiently represents

a data stream in the process of being collected. We begin by creating a sequence χ from the

observations. We construct a model from the gathered data. If |χ| is not sufficiently long, we will

be unable to construct a model from the data set, therefore additional data should be gathered. If

a model is constructed, we determine if the predicted amount of data is greater than the amount of

observations. This procedure is described in Algorithm 4.3.2.

Algorithm 4.3.2 – Proposed Algorithm
Input: Recurring observation χt for time t; Alphabet A; User defined κ, αp;
From time t = 1:

1. Construct model Gt from sequence χ = χ1 · · ·χt
2. If Gt the state or transition space of G is of measure zero, collect next observation χt+1

3. Else, given Gt, use Equations (4.4) and (4.2) to find Z

4. If Z > |χ|, continue to the next χt+1

5. Else, the probability of a transition in Uvi occurring is less than αp for all states and model Gt
represents χ with confidence specified in Definition 6

4.4 Algorithm Demonstrations

We demonstrate the utility of confidence in the model with an illustrative example. Consider

the model shown in Figure 4.4a with asymptotic state probabilities given in Table 4.1. Our alphabet

for this experiment was A = {A,B,C,D}. We varied the value of p = Pr(D) = {0.1, 0.01, 0.001}

to produce three different models. From each of the three models, we selected a random start state

(occurring at time 0) and, using the probabilities of the transitions, stepped through the model to

generate a series of observations. Each step represented an integer increase in time, i.e. the first

symbol occurred at time 1, etc. With the series of observations, we used Algorithms 4.3.1 and 4.3.2

to find the value of Z predicted to be needed for selected values of κ. We set αc = αp = 0.05

for all tests for a model confidence of 81.45%. The sequence χ generated was kept constant for

all values of κ to allow us to compare the results across κ. The amount of data predicted to be

necessary for a 95% confidence per state is given in the two final columns of Table 4.2 for various

selections of κ. As expected, the predicted amount of data increases as κ decreases. We also note

that statistical confidence from Algorithm 4.3.1 does not require as many samples as the direct

probability calculation from Algorithm 4.3.2.
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(a) (b)

Figure 4.4: Models observed in illustrative tests; (a) Initial model; (b) Model without “D” transition.

Table 4.1: Asymptotic state probabilities for models with structure in Figure 4.4a
State p = 0.1 p = 0.01 p = 0.001

0 0.33 0.333 0.3333
1 0.3 0.33 0.333
2 0.03 0.003 0.0003
3 0.33 0.333 0.3333

Table 4.2: Predicted Z and calculated βvi
for various κ

κ βvi
Z (Alg 4.3.1) Z (Alg 4.3.2)

0.05 0.15 49 87
0.036 0.11 67 118
0.03 0.10 76 131
0.03 0.09 85 146
0.01 0.03 265 447
0.005 0.015 535 897
0.0036 0.011 733 1223
0.003 0.01 805 1346
0.003 0.009 895 1496
0.001 0.003 2701 4496
0.0005 0.0015 5404 8996
0.00036 0.0011 7372 12268
0.0003 0.001 8110 13495
0.0003 0.0009 9013 14995

Our selections for κ were primarily based on their relationship with βvi
. Using a variation

of Equation (4.1), we can determine the κ necessary for a specific βvi and an asymptotic state

probability of 0.33 (the maximum from Table 4.1). Column two of Table 4.2 provides a list of βvi

values and their corresponding κ values. Note that we chose values of κ such that βvi was equivalent,
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Table 4.3: Number of matches of models in Figure 4.4 using Algorithm 4.3.1 (out of 50 trials)
p = 0.1 p = 0.01 p = 0.001

κ Fig. 4.4a Fig. 4.4b Fig. 4.4a Fig. 4.4b Fig. 4.4a Fig. 4.4b
0.05 39 11 0 50 0 50
0.036 42 8 0 50 0 50
0.03 48 2 0 50 0 50
0.03 48 2 0 50 0 50
0.01 50 0 28 22 6 44
0.005 50 0 42 8 9 41
0.0036 50 0 44 6 14 36
0.003 50 0 46 4 16 34
0.003 50 0 47 3 16 34
0.001 50 0 50 0 30 20
0.0005 50 0 50 0 37 13
0.00036 50 0 50 0 45 5
0.0003 50 0 50 0 46 4
0.0003 50 0 50 0 48 2

just greater than, and just less than the values of p for our three models. We chose additional values

of κ arbitrarily to provide a more uniform list.

As the defined value for κ decreased, the smallest βvi
values decreased correspondingly. The

smallest κ (0.0003) predicted an extremely large amount of data was needed to be 95% confident

that each state independently did not have a transition greater than 0.0009. Based on probability,

we expected to be unable to detect the transitions p = {0.1, 0.01, 0.001} using values of κ greater

than 0.03. When the “D” transition is not detected, the model takes on the structure in Figure

4.4b. We recorded the number of times the constructed models matched those in Figure 4.4 from

fifty independent tests for each experiment. Tables 4.3 and 4.4 present the summary values when

using Algorithms 4.3.1 and 4.3.2, respectively.

A cursory analysis of Table 4.3 reveals that when a value of κ is selected such that βvi
is

equivalent to a value of p, Algorithm 4.3.1 fully reconstructs the underlying process in approximately

95% of the cases. This supports our choice of αc. For the smaller selections of p, the algorithm

is also able to reconstruct the underlying process for many of the sequences when βvi
is slightly

larger than p. When βvi
is considerably larger than p (i.e. the chosen κ is large, the sequences do

not contain a “D” symbol. The “D”-loop is hidden from the constructed model because it had not

yet occurred. We provide a statistical analysis of the generated sequences for the three models in

Section 4.5.

Analyzing Table 4.4, we observe similar results to those discussed previously. When a

53



Table 4.4: Number of matches of models in Figure 4.4 using Algorithm 4.3.2 (out of 50 trials)
p = 0.1 p = 0.01 p = 0.001

κ Fig. 4.4a Fig. 4.4b Fig. 4.4a Fig. 4.4b Fig. 4.4a Fig. 4.4b
0.05 0 50 0 50 0 50
0.036 23 37 0 50 0 50
0.03 50 0 9 41 2 48
0.03 50 0 12 38 3 47
0.01 50 0 40 20 8 42
0.005 50 0 47 3 16 34
0.0036 50 0 49 1 18 32
0.003 50 0 50 0 20 30
0.003 50 0 50 0 21 29
0.001 50 0 50 0 33 17
0.0005 50 0 50 0 48 2
0.00036 50 0 50 0 50 0
0.0003 50 0 50 0 50 0
0.0003 50 0 50 0 50 0

Table 4.5: Asymptotic state probabilities for models with structure in Figure 4.5
State p = 0.1 p = 0.01 p = 0.001

0 0.25 0.25 0.25
1 0.225 0.2475 0.24975
2 0.025 0.0025 0.00025
3 0.225 0.2475 0.24975
4 0.025 0.0025 0.00025
5 0.225 0.2475 0.24975
6 0.025 0.0025 0.00025

value of κ is selected such that βvi is equivalent to a value of p, Algorithm 4.3.2 fully reconstructs

the underlying process in all fifty independent tests, an improvement over Algorithm 4.3.1. The

algorithm is also able to reconstruct the underlying process for many of the sequences when βvi

is slightly larger than p. When βvi is considerably larger than p (i.e. the chosen κ is large, the

sequences do not contain a “D” symbol. We note, however, that Algorithm 4.3.2 states more data

is required than Algorithm 4.3.1 and thus should produce better results.

We now consider a second example demonstrating the functionality Algorithms 4.3.1 and

4.3.2. Using the model in Figure 4.5, with asymptotic state probabilities given in Table 4.5, to

represent the underlying process, we let p = {0.1, 0.01, 0.001} for three independent experiments.

Table 4.6 provides a summary of values for κ, their corresponding βvi values, and the number of

samples predicted by the algorithms.

We followed the same procedure as in the previous demonstration and generated fifty se-
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Figure 4.5: Model used in second illustrative test to represent the underlying process

Table 4.6: Predicted Z and calculated βvi
for various κ

κ βvi
Z (Alg 4.3.1) Z (Alg 4.3.2)

0.05 0.2 44 84
0.0275 0.11 88 158
0.025 0.10 100 174
0.0225 0.09 112 194
0.01 0.04 260 444
0.005 0.02 532 894
0.00275 0.011 976 1630
0.0025 0.01 1072 1794
0.00225 0.009 1192 1994
0.001 0.004 2696 4494
0.0005 0.002 5404 8994
0.000275 0.0011 9828 16357
0.00025 0.001 10812 17993
0.000225 0.0009 12016 19993

quences of 50,000 symbols. Information and summary statistics about the sequences can be found

in Section 4.6. Due to the larger state space of the model, a greater number of variations were

generated by the CSSR Algorithm when an insufficient number of samples were used to construct

the model. We recorded the number of times when the CSSR Algorithm reconstructed the model de-

picted in Figure 4.5 and when it did not. Furthermore, as p decreased, a smaller number of sequences

contained occurrences of “B,C,D,Z” to an extent that allowed reconstruction. When p = 0.1, the
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Table 4.7: Number of matches of models in Figure 4.5 using Algorithm 4.3.1 (out of 50 trials)
p = 0.1 p = 0.01 p = 0.001

κ Fig. 4.5 Not Fig. 4.5 Not Fig. 4.5 Not
0.05 0 50 0 39 0 10
0.0275 0 50 0 39 0 10
0.025 3 47 0 39 0 10
0.0225 5 45 0 39 0 10
0.01 23 27 2 37 0 10
0.005 39 11 3 36 0 10
0.00275 46 4 3 36 0 10
0.0025 48 2 3 36 0 10
0.00225 49 1 3 36 0 10
0.001 50 0 4 35 1 9
0.0005 50 0 8 31 1 9
0.000275 50 0 13 26 3 7
0.00025 50 0 14 15 3 7
0.000225 50 0 14 15 4 6

CSSR Algorithm was able to reconstruct the model representing the underlying process in all fifty

sequences. The total sequences decreased to 39 and 10 for p = 0.01 and p = 0.001, respectively.

Tables 4.7 and 4.8 list our results when using Algorithms 4.3.1 and 4.3.2, respectively.

Analyzing the results, we see that both algorithms correctly predicted the amount of data

for large p. As with the previous example, Algorithm 4.3.2 produced slightly better results because it

predicted additional data would be necessary to meet the defined value for αp. Neither algorithm was

able to reconstruct the model representing the underlying process for the latter two values of p. This

was most likely due to the decreased occurrence of the subsequence “B,C,D,Z” in the observation

data. This subsequence only had a chance of occurring every fourth symbol. In observation data of

50,000 symbols, this equates to 12,500 chances for the “B” transition to be taken. As the probability

of the transition decreased, the number of samples needed to determine if the “B” branch of the

model was statistically significant had not been gathered. This does not mean that the algorithms

are incorrect. Rather it means that given the observation data, the minimum-entropy Markov model

to represent the data did not include a separate “B” branch from the “A” branch.

4.5 String Information for model in Figure 4.4a

For each of the fifty sequences generated using the model in Figure 4.4a, we determined the

amount of data to fully reconstruct the model by visually checking the constructed models. Table
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Table 4.8: Number of matches of models in Figure 4.5 using Algorithm 4.3.2 (out of 50 trials)
p = 0.1 p = 0.01 p = 0.001

κ Fig. 4.5 Not Fig. 4.5 Not Fig. 4.5 Not
0.05 0 50 0 39 0 10
0.0275 12 38 1 38 0 10
0.025 14 36 1 38 0 10
0.0225 17 33 1 38 0 10
0.01 36 14 3 36 0 10
0.005 45 5 3 36 0 10
0.00275 49 4 4 35 0 10
0.0025 50 0 4 35 0 10
0.00225 50 0 4 35 0 10
0.001 50 0 8 31 1 9
0.0005 50 0 11 31 3 7
0.000275 50 0 19 20 5 5
0.00025 50 0 24 15 5 5
0.000225 50 0 25 14 5 5

Table 4.9: Summary of results from visual inspection
p = 0.1 p = 0.01 p = 0.001

Minimum 109 125 128
Median 119 232 1782

Maximum 129 1314 9738
Mean 118.6 337.44 3105.24

St. Dev. 5.01 276.27 2897.07

4.9 provides a summary of statistical results for the visual inspection. Figure 4.6 shows the amount

of data required for each sequence as determined visually. Note that the minimums for all three

models are roughly equivalent. The minimum cases occurred when the symbol “D” appeared near

the beginning of the observations. The high variation in the amount of data needed is the reason

why methods that are too dependent on the data stream are inaccurate.

We next considered the statistics for the first occurrence and number of occurrences of “D” in

the sequences. Summary statistics are provided in Table 4.10. The first occurrence column provides

the index number of the first time “D” is observed in the sequence. The number of occurrences

column shows the number of times that “D” occurred in the subsequence γ = γ0 · · · γk where

k = {129, 1314, 9738} for p = {0.1, 0.01, 0.001}, respectively. The values of k are the maximum

values from the visual inspection in Table 4.9. This data shows that “D” occurred very early in

some sequences, but the first occurrence tended to have high variability. Using the values of k,

the number of times we expect to see the symbol “D” for the three models is 4.3, 4.4, and 3.2,
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(a)

(b)

(c)

Figure 4.6: Minimum number of symbols needed to recreate model from Figure 4.4a using visual
inspection for all 50 generated sequences. (a) p = 0.1; (b) p = 0.01; (c) p = 0.001
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Table 4.10: Summary information about generated sequences
p = 0.1 p = 0.01 p = 0.001

First occur. # occur First occur. # occur First occur. # occur
Minimum 0 1 0 1 20 1
Median 15 5 224 4 1779 3

Maximum 110 8 1311 10 9735 8
Mean 26.66 4.52 319.28 4.42 3099.3 3.08

St. Dev. 27.11 1.71 289.11 2.01 2900.2 1.72

respectively, for the different values of p. The mean values for the number of occurrences in Table

4.10 are similar. This shows that the sequences are behaving as we would expect in the number of

occurrences that “D” is observed.

4.6 String Information for model in Figure 4.5

For each of the fifty sequences generated using the model in Figure 4.5, we determined the

amount of data to fully reconstruct the model by visually checking the constructed models. Table

4.11 provides a list of some statistics about the visual inspection results. The count data provides

the number of sequences that we could visually determine matched the underlying process. For the

latter two models (p = 0.01 and p = 0.001), sequences that did not return a model matching the

underlying process within 50,000 symbols were not included in the statistics. For observation data

of 50,000 symbols, the amount of variability increased considerably as the probability of observing

“B,C,D,Z” decreased. We believe that the variability is due to the extreme commonality between the

two observed sequences. The last symbol of a subsequence of four depended only on the preceding

three symbols (in many cases only on the first symbol, e.g. Z had a 1:1 correlation with B). Figure

4.7 shows the variability in the visual inspection results. Points shown as zero were sequences where

we could not determine the value through visual inspection.

Table 4.11: Summary of results from visual inspection
p = 0.1 p = 0.01 p = 0.001

Count 50 39 10
Minimum 94 136 2024
Median 312 16510 17744.5

Maximum 1739 48590 45417
Mean 392.08 18462.36 21725.5

St. Dev. 324.08 13678.7 16150.14
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We next considered the statistics for the first occurrence and number of occurrences of

“B,C,D,Z” in the sequences. Summary statistics are provided in Table 4.12. As in the previous

section, the first occurrence column provides the index number when the first subsequence is observed

in the sequence. The # occurrences column shows the frequency that “B,C,D,Z” occurred in the

subsequence γ = γ0 · · · γk where k = {1739, 48590, 45417} for p = {0.1, 0.01, 0.001}, respectively.

The values of k are the maximum values from the visual inspection in Table 4.11. This data shows

that “B,C,D,Z” occurred very early in some sequences, but the first occurrence tended to have high

variability. Using the values of k, the number of times we expect to see the symbol “B,C,D,Z” for

the three models is 43.5, 121.5, and 11.4, respectively, for the different values of p. The mean values

for the number of occurrences in Table 4.12 are similar with the exception of p = 0.001. In this case,

the subsequence “B,C,D,Z” occurred more frequently than expected in slightly more than 45,000

symbols.

Table 4.12: Summary information about generated sequences
p = 0.1 p = 0.01 p = 0.001

First occur. # occur First occur. # occur First occur. # occur
Minimum 1 32 3 99 3 39
Median 26 41 223.5 123 635.5 55

Maximum 134 59 1705 154 4379 77
Mean 35.50 42.38 403.96 122.52 966.08 55.44

St. Dev. 33.55 5.97 433.45 12.14 936.82 8.44

4.7 Summary

In this chapter, we explained two algorithms that we used to develop a level of confidence in

the constructed models. The algorithms run in parallel with data collection. When the number of

samples gathered causes different calculations to exceed user-defined thresholds, the expected level

of confidence is achieved. This concludes our work on model construction. In the next chapter, we

discuss a new method to solve the problem of matching constructed models and new observation

sequences.
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(a)

(b)

(c)

Figure 4.7: Minimum number of symbols needed to recreate model from Figure 4.5 using visual
inspection for all 50 generated sequences. A value of zero indicates that more than 50,000 symbols
were needed. (a) p = 0.1; (b) p = 0.01; (c) p = 0.001
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Chapter 5

Pattern Detection

5.1 Introduction

Given a set of Markov models {Gk} = G∗ for k = 1, 2, . . . , Pr(χ|Gk) is a conditional

maximum likelihood estimate for all Gk ∈ G∗, and the Markov model Gk associated with the largest

probability is the HMM most likely to have generated the observation [83].

If multiple HMMs have the same Pr(χ|G) value, the estimator may return either the set of

HMMs or an individual HMM. All of the experiments we demonstrate returned an individual HMM.

It is somewhat unlikely, in realistic applications, that more than one HMM in a set returns the same

value because of floating point precision.

The Forward-Backward Procedure discussed in Chapter 2.4.1 computes a weighted average

of products of probabilities. As the observation sequence length increases, the probability that any

given HMM generated the observation decreases monotonically. This has the following drawbacks:

• When the observed output sequence is short, the Forward-Backward approach ignores the

uncertainties associated with making decisions based on a small number of data samples.

• When the number of data samples is large, the Forward-Backward Procedure makes decisions

by comparing the values of progressively shrinking floating point values (see Figure 5.1). It is

counterintuitive that the metric for matching observations to HMMs decreases as the number

of samples used increases. In addition, the number of valid significant digits in the answer

decreases with each multiplication. This makes comparison of the infinitesimal values produced
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suspect, when considering long output sequences. This can be mitigated through the use of

scaling factors by normalizing (Equation (5.1)) and calculating a scaling factor ci (Equation

(5.2)) for each α-value found in the Forward-Backward Procedure. The Forward-Backward

Procedure can then be modified to account for the modified α-values [84].

α̂i =
αi

Pr(χ1 . . . χi)
(5.1)

ci = Pr(χi|χ1 . . . χi−i) (5.2)

New Induction: ct+1α̂t+1(j) =
n∑
i=1

α̂t(i)pi,j , 1 ≤ t ≤M − 1

New Termination: Pr(χ|G) = Πn
j=1cj

The scaling modification does not address the issue of uncertainty with small sample sizes and

cannot indicate whether a sequence is adequately represented by any models in a dictionary.

Additionally, if used in actual behavior recognition software, errors will be magnified due to the

increased number of multiplications and the inherent inaccuracies with computer floating-point

calculations leading to potential instability of the final result [85].

5.2 The Main Problem

We look at the problem of identifying the presence of a behavior in the data stream that

is modelable as a Markov model. We accomplish this by matching the data stream with a set of

existing Markov models. We calculate a confidence interval for each of the transitions in the model

and determine when the model sufficiently matches the input data. Our approach is not concerned

with maximizing the performance of the model with additional data streams. Therefore, no training

or tuning of the model parameters is performed.

Our problem is subtly different from the problems discussed above and previously in Chapter

2.4.1. The first two tasks are typically performed using the “forward” portion of the Forward-

Backward Procedure. The Forward-Backward Procedure uses a maximum likelihood algorithm that

determines the model that best matches the input data stream. The “backward” portion of the

Procedure automatically adjusts the model parameters to maximize the performance of the model
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Figure 5.1: Maximum Likelihood Probabilities (y axis) for multiple Markov models versus the length
of the string considered (x axis). The data sets used are generated using the models described in
Section 5.4, with parameters: (Square) Markov model p = 0.8. (Diamond) Markov model p = 0.7.
(Triangle) Markov model p = 0.9. (Circle) Markov model p = 0.2. Image reproduced with permission
from [21]. c©IEEE 2009.

with additional input data streams.

The confidence interval based approach does not have the drawbacks associated with the

Forward-Backward Procedure. The decisions made consider the number of samples used and be-

come more certain as the number of samples considered increases. For short observation sequences,

uncertainty in the decision is reflected by a larger variance and, correspondingly, a larger confidence

interval. Furthermore, as the observation sequence increases in length, the number of multiplications

necessary to calculate the confidence interval remains constant, alleviating the floating point value

issue.

The problem we address is slightly different from the one solved by the Forward-Backward

Procedure. Strictly speaking, ML solves a classification problem where an observation is mapped to

one of a number of known classes. EM, MMI, and MCE then alter the parameters of the model to

give the highest number of true positives and the lowest number of false positives. Our approach

solves a detection problem where the behavior described by a HMM is either found or not found in

a given data stream. In practice, as we will show, the two algorithms can be used for many of the

same applications.
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5.3 Confidence Interval Analysis

This section presents our approach that uses confidence intervals to identify HMM described

behaviors in sensor streams. First, we explain how to calculate confidence intervals for HMM

transitions. We then explain how to use them for identifying behaviors in sensor streams.

5.3.1 Calculating Confidence Interval Bounds

Given a Markov model and a sequence of observations χ = χ1χ2 · · ·χn, we construct ap-

proximations of the transition probability matrix P for every possible start state v0.

Starting at state v0, follow the transitions (vi, vj) associated with each symbol χi ∈ χ in

turn, giving the path taken by the output sequence through the HMM. Since our HMMs are all

deterministic, this path is unique. First initialize all counters to zero, and then, starting with i = 0,

for each χi:

1. If the probability associated with transition (vi, vj) in P is zero, then the sequence could not

have been generated by the HMM starting at v0. The mapping is rejected and the process stops.

When using HMMs, we must consider all possible starting states using an initial probability

vector π. By eliminating the states that cannot produce the observed sequence, we limit the

number of results.

2. Else, add one to the counter ci for state vi and add one to the counter ci,j for transition (vi, vj).

3. The current estimate for pi,j is: p̂i,j = ci,j

ci
.

4. Since ci is the number of observations of the system in state vi, the confidence interval around

pi,j is (where Zα/2 is from the standard normal distribution or student’s t-distribution with

degrees-of-freedom ci − 1):

[
pi,j − Zα/2

√
pi,j(1− pi,j)/ci, pi,j + Zα/2

√
pi,j(1− pi,j)/ci

]
(5.3)

We use the value pi,j from matrix P instead of the estimated value p̂i,j . Although either value

could be used, the variance pi,j(1− pi,j) is typically less subject to sampling errors. Note that

these values are constrained to remain within the set [0, 1] and the interval is the asymptotic

limit of the binomial, decreasing in size as the data length increases. We note Equation (5.3)
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is the Wald confidence interval. Other confidence intervals may be substituted for the Wald

interval [86, 87]. For greater accuracy in the representation, multinomial confidence intervals

may be used [88]. This allows the system to account for the covariance and will most likely

decrease the size of the confidence intervals calculated.

5. If p̂i,j is within the confidence interval, we accept the null hypothesis that p̂i,j = pi,j with

the probability of a type I error for that transition equal to α [43]. The observed sequence is

consistent with the HMM model for that transition.

5.3.2 Using Confidence Interval Bounds

We use the following procedure to determine if the observed sequence matches Markov

models:

1. Select a HMM to match with the observed sequence.

2. Use ROC curves [89, 90] to find the optimal threshold for accepting or rejecting the HMM

mapping1.

3. Use frequency counting to estimate the transition probabilities and calculate the confidence

interval bounds as described in Section 5.3.1.

4. Determine the percent of transition probabilities from the originally selected Markov model

that fall within their respective confidence interval.

5. If the percentage of transitions taken by the observed sequence that fall within the confidence

interval is greater than the threshold value from step 2, reject the hypothesis that the observed

sequence is not an occurrence of the HMM, and register a detection event.

This approach can either analyze the entire sequence or consider windows of the observed

sequence. Windowing selects w symbols starting at a given symbol in the observation sequence.

For example, the first window covers the subsequence [χ0 . . . χw] and the second window covers

subsequence [χ1 . . . χw+1]. In our application, objects may change their behavior during observation.

As we increase the window size w, the confidence interval around each transition tightens causing a

decrease in the false positive rate. A larger w also increases the amount of time needed to recognize a
1This step is done off-line. Example ROC curves are in Section 5.4
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transition between behavior modes. A more complete description of windowing with Markov models

is given in Chapter 6.

5.3.3 Discussion

Each transition taken by an HMM can be viewed as a set of Bernoulli trials. The asymptotic

statistics describing confidence intervals of random variables are one of the best established aspects

of probability theory. The HMM provides a state space structure uniting a set of independent

Bernoulli distributions.

Given the a priori transition probability pi,j , 95% of the randomly chosen samples of size

ci will be within the confidence interval asymptotically when the value 1.96 is used for constant

Zα/2. This provides us with a metric for accepting or rejecting mappings that has a firm theoretical

grounding.

We can analytically determine a threshold for any desirable false negative rate from this

fact alone. This analytical threshold compensates for issues due to using simultaneous confidence

intervals. When the 95% confidence interval is used, data generated by the correct HMM process will

fall within any of the confidence intervals 95% of the time. It will therefore be within the confidence

intervals of n transitions:

(0.95)n · 100

percent of the time.

Unfortunately, decisions cannot be based solely on the false negative rate. We want to

make the decision that best separates true positives from false positives. The threshold is therefore

sensitive to the set of samples being treated. If the data streams to be rejected are from processes

quite different from the HMM model, a very high threshold can be used. If they are generated

by processes quite similar to the HMM model, a lower threshold value will have to be used and

a higher false negative rate tolerated. This is why ROC analysis is needed to empirically find the

proper threshold value for a given detection problem. We note that the use of ROC curves implicitly

compensates for issues related to using simultaneous confidence intervals.
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5.4 Illustrative Example

To illustrate our approach, we present a simple example using nine artificially generated

Markov models with the structure depicted in Figure 5.2. Our approach does not require a bound

on the size of the state or transition space. Increasing the number of transitions simply increases the

number of confidence intervals that must be calculated. For each model, the probability of remaining

in the same state and repeating the last symbol, p, has one of the values: 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9. From each of these nine models, we generated forty sequences of 100 symbols.

We generated the sequences from the model for illustrative purposes only. The confidence interval

approach works equivalently with a set of training data to determine the thresholds.

We used both our proposed algorithm and the Forward-Backward Procedure to determine

which model generated the observation sequence. If the correct mapping is accepted, we have a true

positive. If an incorrect mapping is accepted, we count that as a false positive. We compare the

performance of our approach with the ML portion of the Forward-Backward Procedure (although

the ML approach solves a slightly different problem in that it chooses one model from a set of

possible mappings). We did not employ the scaling approach discussed in Chapter 2.4.1.

Figure 5.2: Our test Markov model. Note how the self-looping and state change probabilities for
both state 0 and state 1 are equivalent, respectively.

For both approaches, we calculated results from windows of the observed sequence. If the

window size is too small, the false positive rate will be too high. Conversely, window sizes that are

too large react too slowly when the target under observation switches behavior modes. Since these

data sets do not include data streams that modify their behavior, larger window sizes will have an

advantage in this example. We arbitrarily chose a maximum window size of 30 symbols to maintain

a sufficiently large number of samples.
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5.4.1 Confidence Interval Bounds

We performed our analysis by using different window sizes on the observed sequence to

determine the optimal threshold. We considered each window size independently and calculated

true and false positive rates for each window size. For each of the 40 valid sequences, we found the

percent of valid transitions for each subsequence. We kept a running average at each window by

summing the percent of valid transitions and dividing by the number of windows analyzed. At any

given window, we used the running average to determine if the portion of the sequence analyzed

thus far could be considered to be a match by being greater than or equal to a desired threshold.

To calculate the true positive rate, we counted the number of valid sequences and divided by the

total number of possible valid sequences. Note that the number of possible valid sequences varies

with the size of the window. We calculated the false positive rate in a similar fashion except we

considered invalid sequences and their respective subsequences.

To find the optimal threshold we constructed ROC curves. We varied the window size from

10 to 30 symbols and the threshold from 0% to 100%. A subset of the ROC curves from these tests

is provided in Figure 5.3. To find the optimal point on the ROC curves, we calculated the Euclidean

distance between each point on the curve and the optimal value of (0, 1) where there are neither

false positives nor false negatives. We used the threshold with the minimum Euclidean distance

across all window sizes and thresholds for a particular Markov model as the optimal threshold. The

window size and threshold value for the minimum Euclidean distance for each Markov model is in

Table 5.1.

Table 5.1: Optimal Thresholds of ROC Curves
MM Min TP FP Window Threshold @

p, (1− p) Distance Rate Rate Size window size
0.1, 0.9 0.0578 0.974 0.051 30 70
0.2, 0.8 0.2061 0.948 0.199 20 86
0.3, 0.7 0.2783 0.872 0.247 30 82
0.4, 0.6 0.2156 0.889 0.185 29 92
0.5, 0.5 0.2425 0.883 0.212 27 91
0.6, 0.4 0.2774 0.841 0.227 29 89
0.7, 0.3 0.2222 0.867 0.178 26 89
0.8, 0.2 0.1861 0.891 0.151 30 84
0.9, 0.1 0.0837 0.951 0.068 30 71
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(a)

(b)

Figure 5.3: ROC curves used to find the optimal threshold values for the Markov models given in
Table 5.1. (a) curve for MM 0.3-0.7; (b) curve for MM 0.5-0.5. All ROC curves are shown with 95%
confidence intervals around selected threshold values. Images reproduced with permission from [21].
c©IEEE 2009.
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(c)

(d)

Figure 5.3: ROC curves used to find the optimal threshold values for the Markov models given in
Table 5.1. (c) curve for MM 0.8-0.2; (d) curve for MM 0.9-0.1. All ROC curves are shown with 95%
confidence intervals around selected threshold values. Images reproduced with permission from [21].
c©IEEE 2009.
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5.4.2 Maximum Likelihood Results

To provide a baseline result for our confidence interval approach, we analyzed the 360 se-

quences and determined which Markov model had the highest probability of matching each sequence.

We used different window sizes on the output sequence and considered all window sizes from 10 to

30. This maintained consistency in our results. We calculated true and false positive rates for each

window size.

To calculate the true positive rate for window size w, we considered only the valid sequences

for each Markov model. We counted the number of times the model generating the subsequence

had the largest probability of matching when using the Forward-Backward Procedure. Summing

across all nine models, we had the total number of true positive results from all valid subsequences

of window size w. Dividing by the total possible number of true positives gave us the true positive

rate.

The false positive rate was calculated in a similar fashion. We counted the number of times

a model, that did not generate the subsequence, had either the largest probability or belonged to

the set of Markov models that had the largest probability. (In our tests, the process always chose a

single HMM). We again summed across all nine models and divided by the total possible number of

false positives for window size w to find the false positive rate at each subsequence length.

Table 5.2 provides the true and false positive rates at the optimal window sizes from Table 5.1

when using the ML approach. The ML approach has a lower false positive rate than the confidence

interval approach at all window sizes, which is desirable for applications. Unfortunately, the true

positive rate rises above 50% in only three cases. Since a set of Markov models can be returned by

the maximum likelihood estimator, it is possible for a true positive and multiple false positives to

correspond to the same subsequence (we note that this never occurred in our tests).

5.4.3 Comparisons

Table 5.1 provides the true and false positive rates at the optimal thresholds for each HMM

with the confidence interval approach. All HMMs have high true positive detection rates.

The HMMs in Table 5.1 have relatively high false positive rates compared to the ML results.

Further analysis showed that the false positive rates increase when the HMMs considered have similar

distributions. Note that the false positive rates are higher for HMMs with 0.2 ≤ p ≤ 0.8 and higher

72



Table 5.2: Maximum Likelihood Rates
MM Window TP FP

p, (1− p) Size Rate Rate
0.1, 0.9 30 0.826 0.043
0.2, 0.8 20 0.415 0.073
0.3, 0.7 30 0.394 0.072
0.4, 0.6 29 0.438 0.071
0.5, 0.5 27 0.437 0.089
0.6, 0.4 29 0.440 0.078
0.7, 0.3 26 0.336 0.054
0.8, 0.2 30 0.508 0.057
0.9, 0.1 30 0.897 0.039

than when p = 0.1 or p = 0.9. This is because sequences from the first set of HMMs can be confused

with two other HMMs with similar parameters. It is more difficult to differentiate between two

data sets when they are generated by subtly different processes. If we ignore sequences generated

by HMMs when the p parameters differ by less than 0.2, the false positive rate for all nine Markov

models drops to at most 5%.

Table 5.2 provides the true and false positive rates of the ML approach at the optimal

window sizes of the confidence interval approach. All models maintain low false positive rates but

the true positive rate is only greater than 80% for the models when p = 0.1 and p = 0.9. The

ML approach performs better for those two data sets for the same reasons that we found for the

confidence interval approach.

This comparison illustrates the difference between the two approaches. In our tests, the

confidence interval approach performs better for the identification task. Maximum likelihood may

be better for some classification tasks, since it is more likely to provide a single response than the

confidence interval approach. We recognize that the confidence interval method will be the better

solution for many applications, since it provides clearer criteria for rejecting a detection event.

5.5 Use on Consumer Activity Data

The previous example illustrated our approach. We now apply our approach to data models

that we extracted from the Netflix challenge data set [91]. Each state vi ∈ V represents a portion

of the consumer’s rental history classified by movie genres, and each transition pi,j ∈ P represents

the probability of a rental of a specific genre. Each observation χi is a type of rental from the
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set of rental categories χ. The goal is to identify classes of behaviors for clients. We generated

the models using the CSSR Algorithm outlined in Chapter 3 and a data stream from the Netflix

dataset. Alternatively, one could use the Baum-Welch algorithm on the data stream to find the

conditional probabilities and create a HMM. Both approaches are equally valid with the confidence

interval approach.

The two models for this test are shown in Figure 5.4. We followed a similar procedure

as the previous example to calculate the thresholds and the true and false positive rates for both

the confidence interval approach and the maximum likelihood approach. From each behavior, we

generated 200 sequences of 1000 symbols to determine the threshold necessary for each model. Our

results are given in Tables 5.3 and 5.4. The ROC curve for each model is shown in Figure 5.5.

The confidence interval approach had a high true positive rate and a high false positive

rate. This is consistent with the results in Section 5.4. The ML approach had a high true positive

rate and a higher false positive rate than the confidence interval approach. The Euclidean distance

between the ROC curve and point (0, 1) can be used to measure the quality of a detection method.

In this example, the confidence interval approach outperforms maximum likelihood (0.289 vs. 0.394

and 0.271 vs. 0.401).

We also note that it is possible to tune the threshold for the confidence interval approach.

Decreasing the threshold to 93 for model 1 allows us to achieve a 100%-true positive rate. Increasing

the threshold to 95 for model 1 eliminates all false positives. The true positive and false positive

rates for these thresholds for model 1 are given in Table 5.5. Tuning the detection threshold makes

the confidence interval approach attractive for a wide range of applications.

Table 5.3: Consumer Activity Results
Threshold Window TP FP Distance

Size Rate Rate
Model 1 94 25 0.930 0.280 0.289
Model 2 96 15 0.855 0.229 0.271

Table 5.4: Consumer Activity Maximum Likelihood Results
ML TP ML FP ML

Rate Rate Distance
Model 1 0.973 0.394 0.394
Model 2 0.958 0.399 0.401
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(a)

(b)

Figure 5.4: Behavior models extracted from the Netflix data set. (a) Model 1; (b) Model 2. Images
reproduced with permission from [21]. c©IEEE 2009.
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(a)

(b)

Figure 5.5: ROC curves depicting the thresholds for each model. (a) ROC curve showing the true
positive and false positive rate for a window size of 25 for model 1; (b) ROC curve showing the true
positive and false positive rate for a window size of 15 for model 2. 95%-confidence intervals are
shown in both images. Images reproduced with permission from [21]. c©IEEE 2009.
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Table 5.5: Alternate Thresholds
Threshold Window Size TP Rate FP Rate

Model 1 93 25 1.0 0.44
95 25 0.70 0.0

5.6 Summary

In this chapter, we showed how to apply confidence intervals to Markov models and solve the

pattern detection problem. We noted how pattern detection is slightly different from classification.

Our experimental results demonstrate how window size impacts the results by changing the amount

of data analyzed, and consequently, changes the size of the confidence intervals. We discuss the

importance of and how to calculate the window size in the next chapter.
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Chapter 6

Determining the Window Size

6.1 Current Approaches

Windowing is often used in signal processing. In audio signal analysis, speech is classified

into three frequency categories: formants, plosives, and fricatives. Each class has a finite length

and the proper window size is critical to accurate identification of speech [92]. In audio signal

processing, windows that are too small do not capture enough information to positively identify

the speech category. Likewise, windows that are too large, capture too much information and are

also unable to identify the category. Researchers have created methods to determine window sizes

based upon discrete segments of the data stream [93] and also upon analysis of the analog signal

stream [94]. Windowing issues faced by behavior recognition systems are slightly different than

signal processing. Larger window sizes do not affect the accuracy of the system, but instead affect

the processing time.

The conventional method of selecting a window size is to arbitrarily choose a value and

empirically determine if the selected window size provides the desired true and false positive rates.

If the window size does not provide an acceptable level of recognition, a new value is chosen to

improve the results and the process is repeated. A number of works illustrate the initial selection

of the window size when performing behavior recognition [95, 96, 97, 98, 99]. Zhou in [34] uses

simulations to demonstrate the effectiveness of selecting the proper window size for the application.

While this method is acceptable to find a working window size, it is inefficient to search all possible

window sizes in order to determine the optimal window size necessary for the application to function
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with minimum errors and delay. Allowing the target to change from one behavior to another is not

discussed.

Baillie in [35] uses a modified Bayesian Information Criterion algorithm called BICseg to

determine the amount of data that finds statistically likely change points in the data. Baillie specif-

ically finds the change points in audio data where the change is from a distinct type of noise to

another type of noise. Our work is slightly different in that we do not require a distinct charac-

teristic to differentiate between the two data processes. The BICseg algorithm sets the minimum

window size to be one frame (1/30th of a second) and the maximum to be the entire data stream. It

iteratively determines the best window size to use on the data stream using a maximum likelihood

approach. This approach can be used to determine the window size best able to detect changes in

a specific input data stream and determine when noise levels have changed. The algorithm must be

rerun for additional data streams.

Other methods to find the window size involve dynamically determining the window size

from the input data stream. Sarma in [100] finds the largest window size needed to improve the

performance of a detector using the statistical properties of the input data. If the window size passes

a two-sided parametric rank based statistical significance test, then the maximum needed window

size to properly analyze the data is found. If the test fails, the window size is reduced and the

significance test is performed again. The minimum window size is defined to be the smallest number

of samples needed for statistical significance of a pre-specified α.

Yu in [101] proposes an algorithm to set window sizes proportional to measurable distances

in radar images to reduce noise. Smaller distances in the contours of the image result in smaller

window sizes being used to filter the data. Their algorithm is a combination of selecting an arbitrary

maximum value to limit the amount of information processed but allowing the window size to be

dynamically chosen below the maximum value. The topic of the minimum window size needed was

not discussed explicitly. The window size found is dependent on the data stream being analyzed.

The approaches used by [100] and [101] set the minimum and/or maximum bounds on the

window size from the data stream with limits chosen a priori. The window sizes determined by

these algorithms are data dependent, requiring new calculations for a new window size for new data

streams. In behavior recognition, the dependency of the window size on the data stream is not

practical due to the variability and inconsistency of the data. Selecting a window size solely on a

positive match of the data to a model limits the usefulness of the recognition system. In this chapter,
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(a) (b)

Figure 6.1: Illustrative models. (a) Model 1: 3-states, 8 transitions; (b) Model 2: 4 states, 10
transitions

our techniques calculate window sizes that are independent from the input data. We calculate the

window size using only the models.

6.2 The Main Problem and Solutions

Our goal is to determine the window size needed to differentiate between two Markov models

G1 and G2, with structure (V1, E1,P1) and (V2, E2,P2), respectively. We use two approaches to

calculate the window size. The first approach calculates the statistical power of each binomial

distribution representing a transition in the model. The algorithm iterates through possible window

sizes until the desired statistical power is reached. An alternate approach uses the confidence interval

method defined in Chapter 5 to find a closed form solution that determines the window size needed to

prevent the transition probabilities from approximating one another. Both approaches are designed

to consider only two models at a time. We note that window sizes calculated to differentiate between

G1 and G2 can only be determined if P1 6= P2.

A special case exists where G1 and G2 have the same structure (V1 = V2 and E1 = E2).

To differentiate between two models with the same structure, we directly compare the matching

transitions. In later sections, we provide an example of our approach working on models with the

same structure. We do note that finding matching transitions is a graph matching problem, and in
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worst case is in NP [102]. We omit discussion about graph matching as it is beyond the scope of

this dissertation.

In the general case, G1 and G2 have a different state and transition structure (V1 6= V2 and

E1 6= E2). If V1 6= V2 and E1 = E2, we simply ignore the transitions that do not have matches and

only use transitions that have corresponding matches in E1 and E2.

To differentiate between two models, we compare the transitions that have the same con-

ditional probability distributions. Each transition can be described by its associated label and the

label associated with the previously taken transition. For example, using the model in Figure 6.1a,

we consider the transition Pr(A|A), meaning that the transition taken previously had label A and

the transition to take has a label A. Given a second model of any structure, we find all transitions

with the conditional distribution Pr(A|A) (in Figure 6.1b, there are two), to compare against the

transition from the first model. We calculate window sizes using the approaches defined below and

use the maximum window size as the window size necessary to differentiate conditional distributions

with the selected labels. By selecting the maximum window size to represent the set of equivalent

conditional probability distributions, we guarantee that the window size is able to differentiate be-

tween all transitions in the set. We note that in considering only the conditional probabilities, we

ignore the state structure of the Markov model and assume that higher order effects in the data

stream do not affect the calculated window sizes. We can use longer histories of previous transitions

(such as Pr(A|A,B,A,A,A)) to incorporate the higher order effects. This has the potential to make

the problem intractable, however.

6.2.1 Binomial Distribution Approach

Upon entering a state vi ∈ V , a state is exited through one of j-outgoing transitions. We

generalize for all transitions, including those that exit and enter the same state. Each state can

be modeled with a multinomial distribution Mi ∼ (ni, ci,1, · · · , ci,j , pi,1, · · · , pi,j), where ni is the

number of times state vi is entered, ci,j is the number of times the edge (vi, vj) is taken, and pi,j

is the probability of the transition between (vi, vj). Each transition can be individually modeled

as a binomial distribution Bi,j ∼ (ni, pi,j). To determine ni for each state, we first calculate the

asymptotic state probability vector s for G, where si ∈ s is the asymptotic state probability for state
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vi. For a given window size N , we can calculate the expected number of times we are in state vi by

ni = bsi ·Nc (6.1)

Note that this infers that the asymptotic state probability vector s must have stabilized for ni to be

valid.

For binomial distributions B1:i,j and B2:i,j with respective means µ1 and µ2 and variances

σ2
1 and σ2

2 , we make the following claims.

Lemma 6.

lim
N→0

|µ1 − µ2| = 0

Proof. This proof is a consequence of Equation (6.1). Since µ1 = n1:ip1:i,j = Ns1:ip1:i,j and µ2 =

nip2:i,j = Ns2:ip2:i,j , then |Ns1:ip1:i,j−Ns2:ip2:i,j | = N |s1:ip1:i,j−s2:ip2:i,j |, N ∈ N0. A substitution

of N = 0 completes the proof.

Lemma 7.

lim
N→0

|σ2
1 − σ2

2 | = 0

Proof. This proof is a consequence of Equation (6.1). Since σ2
1 = n1:ip1:i,j(1−p1:i,j) = Ns1:ip1:i,j(1−

p1:i,j) and σ2
2 = nip2:i,j(1−p2:i,j) = Ns2:ip2:i,j(1−p2:i,j), then |Ns1:ip1:i,j(1−p1:i,j)−Ns2:ip2:i,j(1−

p2:i,j)| = N |s1:ip1:i,j(1 − p1:i,j) − s2:ip2:i,j(1 − p2:i,j)|, N ∈ N0. A substitution of N = 0 completes

the proof.

Corollary 1. The function f(N) = |µ1 − µ2| = |Ns1:ip1:i,j −Ns2:ip2:i,j | is an increasing function

with growth |s1:ip1:i,j − s2:ip2:i,j | for each unit increase in N .

Proof. From Lemma 6, this can be proven using mathematical induction to show that f(N) <

f(N + 1).
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Trivial Case: f(0) < f(1)

|0 · s1:ip1:i,j − 0 · s2:ip2:i,j | < |1 · s1:ip1:i,j − 1 · s2:ip2:i,j |

0 < |s1:ip1:i,j − s2:ip2:i,j |

Case: f(N) < f(N + 1)

f(N) = |N · s1:ip1:i,j −N · s2:ip2:i,j | = N · |s1:ip1:i,j − s2:ip2:i,j |

f(N + 1) = |(N + 1) · s1:ip1:i,j − (N + 1) · s2:ip2:i,j |

= |N · s1:ip1:i,j + s1:ip1:i,j − (N · s2:ip2:i,j + s2:ip2:i,j)|

= N · |s1:ip1:i,j − s2:ip2:i,j |+ |s1:ip1:i,j − s2:ip2:i,j |

N · |s1:ip1:i,j − s2:ip2:i,j | < N · |s1:ip1:i,j − s2:ip2:i,j |+ |s1:ip1:i,j − s2:ip2:i,j |

0 < |s1:ip1:i,j − s2:ip2:i,j |

By definition, p1:i,j and p2:i,j must be greater than zero in order for B1:i,j and B2:i,j to exist.

Likewise, members of s cannot be zero in order for ni to exist. Therefore, the proof is as given.

To compare the binomial distributions of matching transitions, we find the value of k where

the probability distributions overlap. Figure 6.2 shows an example of distribution overlap using

normal distributions to approximate the binomial distributions. The amount of overlap βi,j for the

transition with probability p1:i,j indicates the probability of an error because it is a measure of

the amount of similarity in the probability distribution functions of the binomial distributions. We

postulate the proper window size is one where the overlap is less than a chosen significance value α.

The selection of α affects the type II error rate. We can make the following determinations about

the overlap values βi,j .

Lemma 8.

lim
N→0

βi,j = 1
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Proof. βi,j is the probability of making an incorrect decision and, as overlap, is a measurement of the

similarity between B1:i,j and B2:i,j . By Lemmas 6 and 7, the difference between the distributions

approaches zero with the window size. The probability of an error being made while differentiating

between the two distributions (uncertainty) will approach the maximum as the distributions become

increasingly similar.

Theorem 7.

lim
N→∞

βi,j → 0

Proof. The proof for this theorem is provided in Section 6.5.

Theorem 8.

lim
N→∞

∂βi,j
∂N

→ 0

Proof. The proof for this theorem is provided in Section 6.5.

With the computed overlap values βi,j , we may establish the bounds on an algorithm using

the overlap values to calculate the window sizes needed to differentiate between two Markov models

and find the level of certainty with our result.

Theorem 9. For a state space of size m and a maximum window size of N , the algorithm has a

complexity of

O(m2N2 logN)

Proof. For one transition, the algorithm must compute siN overlap values using the binomial dis-

tribution, which contains a factorial. The worst case complexity of the factorial is O(n2 log n) [103].

If this occurs for all m2 possible transitions, complexity is as given.

Theorem 10. Given all βi,j values for a model calculated for a given N , the level of certainty for

the result is

βcert = 1−
m∏
i=1

(1− (siβi,j)) ∀j

84



Proof. By Lemma 8, the βi,j values are the probability of making an incorrect decision for a given

transition. The equation is produced by weighting each βi,j value by the probability of being in the

state vi to take the transition from state vi to state vj and using the inclusion-exclusion principle

[40] to find the total probability of making an incorrect decision. This equation is a computationally

simpler form of the inclusion-exclusion principle.

As the tested window size increases and/or the size of the model increases, the amount

of computations needed to determine the binomial overlap increases correspondingly. Due to this

complexity, heuristics are necessary to enable the algorithm to find an appropriate window size and

not perform an exhaustive search. We select key window sizes according to the following heuristics:

the first window size when

• At least one transition in the first model has less than (100 ·α)% overlap with its corresponding

transition in the second model

• A majority of transitions in the first model have less than (100 · α)% overlap with their corre-

sponding transitions in the second model

• All of the transitions in the first model have less than (100·α)% overlap with their corresponding

transitions in the second model

The third condition is the worst case bound discussed above. We demonstrate how this

bound becomes impractical for larger Markov models in Section 6.4. We note that in all three of

these heuristics, the algorithm can be adjusted to include both models, instead of one model (e.g.

all of the transitions from both models are less than (100 ·α)% overlap). Without this enhancement,

only the dark grey area in Figure 6.2 is required to be less than α. If the enhancement is included,

both the light and dark grey areas must each be less than α for the window size to meet the criteria.

This approach is equivalent to two one-sided statistical tests. In this case, the selection of α also

affects the type I error rate. We did not use this enhancement in our work.

Recall in Chapter 2.1.9 that the normal distribution may be used to approximate the bino-

mial distribution, with a proper continuity correction. We used the normal approximation in place

of the binomial distributions when ni and pi,j were such that the rule specified in Chapter 2.1.9 held

and used the binomial distribution when not.
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Algorithm 6.2.1 – Binomial Algorithm
Input: Observed sequence χ; Markov model G1 with state space V1 and transition matrix P1; Markov
model G2 with state space V2 and transition matrix P2; Significance level α
Initialization:

1. Set None = −1 // At least one transition has less than α overlap

2. Set Nmaj = −1 // Majority of transitions have less than α overlap

3. Set Nall = −1 // All transitions have less than α overlap

Execution:

1. Set N = 2

2. Set βerr = 1

3. For model G1:

(a) Calculate the steady state probabilities s1

(b) Calculate n1:i for each state v1:i ∈ V1 using Equation (6.1)

(c) Create a binomial distribution B1:i,j with mean µ1 = n1:i ·p1:i,j and variance n1:i ·p1:i,j(1−p1:i,j)
for each transition p1:i,j ∈ P1

4. For model G2:

(a) Calculate the steady state probabilities s2

(b) Calculate n1:i for each state v2:i ∈ V2 using Equation (6.1)

(c) Create a binomial distribution B2:i,j with mean µ2 = n2:i ·p2:i,j and variance n2:i ·p2:i,j(1−p2:i,j)
for each transition p2:i,j ∈ P2

5. For each pair of matching transitions p1:i,j and p2:i,j :

(a) Find the k-value where B1:i,j and B2:i,j intersect

(b) If µ1 > µ2 then

i. Calculate: βi,j = Pr(B1:i,j < k)

ii. Mark transition p1:i,j if βi,j < α holds

(c) Else if µ1 < µ2 then

i. Calculate: βi,j = Pr(B1:i,j > k)

ii. Mark transition p1:i,j if βi,j < α holds

(d) Else no intersection between the two distributions

6. If at least one transition is marked

(a) Set None = N if None == −1

7. If a majority of transitions are marked

(a) Set Nmaj = N if Nmaj == −1

8. If all transitions are marked

(a) Set Nall = N if Nall == −1

9. If Nall 6= −1 terminate the program

10. Else increment N
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Figure 6.2: Example of overlap using normal distributions. The dark grey area indicates the βi,j
(overlap) value from the first distribution B1. The light grey area indicates the βi,j (overlap) value
from the second distribution B2. With binomial distributions, the intersection point would be the
value of k where Pr(B1 = k) ≈ Pr(B2 = k).

6.2.2 Confidence Interval Approach

(a) (b)

Figure 6.3: Illustration of confidence interval intersection. (a) Confidence intervals intersect and
confusion between the intervals is possible; (b) Confidence intervals do not intersect and there can
be no confusion between the intervals.

With the previous approach, we illustrated how to decrease the overlap between the transi-

tion binomial probability distributions to be less than a pre-determined value of α. We now consider

the confidence interval that can be calculated for the transition probability pi,j in the binomial

distribution Bi,j ∼ (ni, pi,j) [21]. Our goal in this approach is to determine window sizes that elimi-

nate the intersection between the confidence intervals. We compare the transition probabilities and

their confidence intervals from matching transitions. In Figure 6.3a, we show what we mean by

confidence interval intersection. An intersection in coverage of the real number line exists between

the upper half of the confidence interval for transition with probability p1:i,j and the lower half of

the confidence interval for transition with probability p2:i,j . Appropriately selecting the window size

decreases the size of the confidence intervals and removes any intersection, shown in Figure 6.3b.
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Building upon the work in Chapter 5 and [21], confidence intervals are used to match input

data streams to Markov models representing behaviors. The confidence interval is created using the

model and the observations, where the range of the confidence interval is given by

pi,j − Zα/2
√
pi,j(1− pi,j)

ni
, pi,j + Zα/2

√
pi,j(1− pi,j)

ni

 (6.2)

where Zα/2 is from either the normal or t-distribution, pi,j is the probability of the transition, and

α is the level of confidence. Note that these values are constrained to remain within the range [0,

1] and the interval is the asymptotic limit of the binomial, decreasing in size as the ni increases. In

this work, we use α = 0.05 for 95% confidence intervals.

Theorem 11. If the confidence intervals for transitions p1:i,j ∈ P1 and p2:i,j ∈ P2 have statistical

significance α1 and α2, respectively, then the level of certainty for N calculated with the confidence

interval approach is:

αcert =
α1

2
+
α2

2
− α1α2

4

Proof. From Equation (6.2), the confidence interval is calculated with a two-sided test. The intervals

may only overlap on one side (see Figure 6.3a for a visual depiction). The level of certainty is the

probability that a tested value falls outside the confidence interval. We use the inclusion-exclusion

principle to calculate this probability and the fact that the confidence intervals are calculated inde-

pendently to find the value of αcert.

From Equation (6.2), we know that the size of the confidence interval for a transition with

probability p1:i,j ∈ P1 is:

CI = Zα/2

√
pi,j(1− pi,j)

ni
(6.3)

The range of the confidence interval is then p1i,j ±CI. The confidence interval represents the range

about a particular probability within which another probability p2:i,j ∈ P2 must fall to be considered

an acceptable approximation for the given significance α. Therefore, the absolute difference between

the two probabilities must be:

|p1:i,j − p2:i,j | ≤ CI (6.4)
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If we want to guarantee enough input data is present, then we rewrite Equation (6.4)

|p1:i,j − p2:i,j | > CI (6.5)

Combining Equations (6.3) and (6.5) provides us with

|p1:i,j − p2:i,j | > Zα/2

√
p1:i,j(1− p1:i,j)/ni (6.6)

Rewriting Equation (6.6) to calculate the amount of data samples present in calculating the confi-

dence interval results in

ni > (Zα/2)2 · p1:i,j(1− p1:i,j)
|p1:i,j − p2:i,j |2

(6.7)

The minimum amount of data needed for a particular confidence interval to be constructed

with enough information to be able to differentiate between a match and a failure to match is

inversely proportional to the square of the absolute difference of the transition probabilities. Note

that p1:i,j 6= p2:i,j is required or it is not possible to differentiate between p1:i,j and p2:i,j using

confidence interval intersection.

Calculating all values of ni, we then use the asymptotic state probability vector s to deter-

mine the window size Ni needed in order for Equation (6.7) to hold for the transition.

Ni =
⌈
ni
si

⌉
∀i (6.8)

The minimum (maximum) window size needed in order for one transition (all transitions)

to not fall within the confidence interval is either the minimum (maximum) Ni, respectively. An

extension for this approach is to also consider when a majority of the transitions do not intersect

with matching transitions from a second model. We did not use this enhancement in this work.

6.2.3 Establishing Bounds on the Window Size

There are two cases where the approaches described previously break down, and it is not

possible to find the window size that can adequately differentiate between the transition probabilities.

Theorem 12. If µ1 = µ2, neither approach will be able to differentiate between matching transitions

(v1:i, v1:j) ∈ E1 and (v2:i, v2:j) ∈ E2.
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Proof. By definition, µ1 = Ns1:ip1:i,j ; the equation for µ2 is similar. If using the binomial approach,

Lemma 6 results in zero and there is no statistical difference between the means of the binomial

distributions. The overlap βi,j cannot be calculated. If using confidence intervals, Equation (6.7)

is undefined and the minimum number of samples to differentiate between transition probabilities

cannot be calculated.

Remark 4. For the means to be equivalent, either s1:i = s2:i and p1:i,j = p2:i,j or s1:ip1:i,j =

s2:ip2:i,j . If the asymptotic state probabilities and transition probabilities are equivalent, state vi

is equivalent in both G1 and G2 and it is not possible to differentiate at this state. For complex

multiple state models, it is unlikely for the combination of the asymptotic state probabilities and

transition probabilities to be equivalent. Our approaches cannot differentiate between the transitions

if this occurs.

Theorem 13. If σ2
1 = σ2

2, neither approach will be able to guarantee matching transitions (v1:i, v1:j)

and (v2:i, v2:j) can be differentiated.

Proof. By definition, σ2
1 = Ns1:ip1:i,j(1−p1:i,j); the equation for σ2

2 is similar. If using the binomial

approach, Lemma 7 results in zero and there is no statistical difference between the variances of the

binomial distributions. For the variances to be equivalent, s1:i = s2:i and either p1:i,j = p2:i,j or

p1:i,j = (1− p2:i,j). The case of p1:i,j = p2:i,j is covered by the proof for Theorem 12. For the latter,

p1:i,j is the opposite probability of p2:i,j . This will result in the overlap βi,j decreasing to some

constant value, most likely near zero, and the rate of change decreasing to zero. This is confirmed in

the proofs of Theorems 7 and 8. As N increases, a point exists where the overlap will not decrease.

If the transitions cannot be discriminated before this point, it is not possible to differentiate between

the transitions by further increasing N . If p1:i,j is the opposite probability of p2:i,j , the confidence

interval approach is not affected.

Remark 5. We note that these limitations affect the ability for the system to differentiate between

specific transitions in the models. While unlikely, it is possible for all transitions to fall within the

above two limitations. The system would be completely unable to discriminate between G1 and

G2. In the general case, some transitions will be ignored because they suffer from one of the above

limitations. Transitions where µ1 6= µ2 and σ2
1 6= σ2

2 would then be used to calculate the window

size needed for differentiation.
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Assuming that transitions of G1 and G2 exist that can be used to differentiate the models,

we desire bounds on the window size. We first show how the window sizes found using Algorithm

6.2.1 and Equation (6.8) can be used to differentiate at the transition level and then generalize the

result to differentiate between G1 and G2.

Corollary 2. (Necessary Condition) If Ni,j is the smallest window size able to differentiate between

B1:i,j and B2:i,j with a given statistical significance α, then any window size N∗i,j < Ni,j will not be

able to differentiate between B1:i,j and B2:i,j with statistical significance α.

Proof. We consider a window size Ni,j able to differentiate between transitions when βi,j < α. For

window sizes ranging from {0, ...,∞}, Ni,j is the first window size for this condition to hold. A

consequence of Theorems 7 and 8 is that β∗i,j will be greater than α for N∗i,j < Ni,j .

Corollary 3. (Sufficient Condition) If Ni,j is the smallest window size able to differentiate between

B1:i,j and B2:i,j with a given statistical significance α, then any window size N∗i,j > Ni,j will be able

to differentiate between B1:i,j and B2:i,j with statistical significance α.

Proof. The proof is similar to the proof of Corollary 2 and is omitted.

Theorem 14. Given the set {Ni,j} that expresses calculated window sizes for all matching transi-

tions in P1 and P2, then any window size N∗ < min{Ni,j} will not be able to differentiate between

G1 and G2 and any window size N∗ > max{Ni,j} will be able to differentiate between G1 and G2

with significance level α.

Proof. By Corollary 2, the minimum window size of the set can differentiate between one transition

pair and window sizes below this cannot differentiate between any transition pairs because there is

no statistical difference between any of the transitions in G1 and G2. By Corollary 3, the maximum

window size of the set can differentiate between every transition pair and window sizes above this

amount maintain this property.

The mathematical derivations do not consider the true and false positive rates or the delays

associated with the choice of the window size. Furthermore, there is no mathematical verification

whether window sizes occurring between these bounds are able to differentiate between G1 and G2

with a desired level of accuracy. Heuristics and iterative algorithms that account for the true and

false positive rates and delays are the method we use to determine if the window sizes are appropriate
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Figure 6.4: Example of windowing a data stream. White blocks represent data from the first model;
grey blocks represent data from the second model. (Top) The last “pure” window of data from the
first model for a window size of four. (Bottom) The first “mixed” window (the “change point”) for
a window size of four.

for the application. We illustrate this with experimental results of an illustrative model and models

from a consumer behavior dataset.

6.3 Illustrative Example

Using Equation (6.8) and Algorithm 6.2.1, we determine the window sizes necessary to

differentiate between two models with the structures shown in Figure 6.1. The calculated window

sizes are shown in Table 6.1. To test the window sizes, we generate a sequence of 1000 symbols from

each model and concatenate the sequences together (i.e. 1000 symbols from Model 1 immediately

followed by 1000 symbols from Model 2. The goal is to use a sliding window to maximize the true

positive rate while minimizing the false positive rate and the delay. We calculate the true positive

rate by counting the number of windows correctly matching the model that generated the sequence

divided by the total number of possible correct matches. We use the confidence interval approach

defined in Chapter 5 and [21], to match behaviors with the data stream. We do not include windows

that contain symbols from both the first and second model; for example, windows that contain

symbols 999 and 1000 from the first sequence and symbols 1 and 2 from the second sequence of

symbols. These “mixed” windows are the unstable portion of the system where the results cannot

be predicted. We consider the first “mixed” window to be the “change point.” Figure 6.4 shows an

example of “pure” and “mixed” windows. We calculate the false positive rate in a similar fashion

except we count the number of matching windows containing only symbols from the set of 1,000

symbols the model did not generate. In this work, we only look at the true and false positive rates
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for Model 1. We generated the sequences from the model for illustrative purposes only. The window

size approach works equivalently with a set of training data to determine the proper window sizes.

Each model has an associated threshold value. We calculate the delay by calculating the

average acceptance value for each model at each window. When the acceptance value falls below

the threshold for the model, the matching between the sequence and the model is rejected. If the

acceptance value is greater than the threshold, the matching is accepted. We measure rejection delay

by measuring the number of symbols required after the first “mixed” window until the acceptance

value from the first model is lower than its threshold. Likewise, the acceptance delay is measured by

finding the number of symbols required after the first “mixed” window until the acceptance value

from the second model is higher than its threshold. We calculated the thresholds for Models 1 and

2 using the procedure specified in [21]. This process was repeated fifty-one times and the results

averaged.

For example, with a window size of four, we use “pure” windows starting with the first

through the 997th symbol to calculate the true positive rate for Model 1. When the 998th symbol

from the sequence is the first symbol in the window, the window now contains one symbol from the

second sequence. When the 1001st symbol is the first symbol in the window, the window contains

only symbols from the second sequence and this and all consequent windows are used to calculate

the false positive rate for Model 1. For a visual reference of symbols and their positions in this

example, see Figure 6.4. We measure the rejection delay of the first model by finding the number

of symbols after the 997th symbol until its acceptance value falls below the threshold of 91. The

acceptance delay of the second model is the number of symbols after the 997th symbol until its

acceptance value is greater than 92 for Model 2. The average true and false positive rates are shown

in Figure 6.5a, and delays are shown in Figure 6.5b. The results from the different window sizes are

given in Table 6.2.

The true positive rate in both tests does not drop below 0.9 and, as expected, tends toward

1.0 as the window size increases. The false positive rate in both tests decreases at an exponential

rate as the window size increases. The initial decrease of the true positive rate is likely due to the

asymptotic state probability vector being incorrect for small window sizes. The asymptotic state

probability vector stabilizes as N increases. For Models 1 and 2, the vector stabilized at N = 10 and

N = 45, respectively. This decrease is not observed in the more complex models described in Section

6.4. Our hypothesis that larger window sizes incur increasing delay is confirmed when considering
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the results from Figure 6.5b. The high delay for small window sizes is due to the inability of the

system to discriminate between the models when using a small number of data samples.

Similar to how the threshold of Receiver Operating Characteristic (ROC) curves [89, 90] is

calculated, we find the window size that simultaneously has the highest true positive rate, lowest

false positive rate, the minimum acceptance delay, and the smallest rejection delay. This corresponds

to the minimum Euclidean distance to the point (100,0,0,0). We scale the true and false positive

rates by 100 to place them on a similar scale to the delay values. An acceptance delay of zero means

that the second model was incorrectly matched with the data from process one. This indicates

the window size is too small. A rejection delay of zero indicates that the first model was matched

with all of the data from the second process. We chose to stop testing the calculated window

sizes after 170 samples because the true and false positive rates were virtually ideal (100% and 0%

respectively) and increasing the window size only increased the delay values. The distances are

shown in Table 6.2. Window sizes marked with a “*” indicate non-calculated experimental values

to contrast performance of calculated window sizes.

After reviewing the data, window sizes with an acceptance delay of zero accepted the second

model well before the “change point” and thus do not meet the criteria specified in Chapter 1.4. We

disregard all window sizes that have an acceptance delay of zero because of the inability of the system

to distinguish between the first and second model when only data from the first model is present in

the window. For completeness, window sizes with a rejection delay of zero are unable to eliminate the

first model well after the “change point” and are disregarded as well. Tested window sizes under 20

suffer from a high false positive rate, but this is overshadowed in the distance calculation by the very

low delay in both acceptance and rejection. The distance metric is not a valuable evaluation tool

with the illustrative models shown here because the low delays overshadow the high false positive

rates for small window sizes. All window sizes had extremely high true and false positive rates,

again confirming the hypothesis that small window sizes are unsuitable for differentiating between

models.

6.4 Consumer Data Example

We now test the approaches on data collected from the Netflix consumer data set [91]. A

portion of the consumer’s movie rental history classified by movie genres is represented by each state
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Table 6.1: Illustrative model window sizes: different model structure
Model 1 vs. Model 2 Window size

At least one transition 2
α = 0.05 Majority transitions 37

All transitions 78,924
At least one transition 2

α = 0.01 Majority transitions 170
All transitions 157,512

CI Minimum 8
Maximum 979

Table 6.2: Summary of results for illustrative tests: different model structure
Model 1 vs Model 2

Window TP Rate FP Rate Acc. Rej. Distance
Size Delay Delay

2 100 100 0.0 0.0 100
8 97.0 50.4 7.82 25.27 56.99

20* 99.2 14.9 45.64 7.73 48.64
37 99.9 5.8 63.64 24.36 68.39
50* 100 1.9 97.45 18.18 99.15
75* 100 0.14 142.64 43.91 149.25
100* 100 0.40 197.18 44.45 202.13
140* 100 0.58 279.73 46.0 283.49
170 100 0.09 342.64 60.45 347.93

vi ∈ V . The probability of a rental of a specific genre is represented by each transition pi,j ∈ P.

Each observation χi is a type of rental from the set of rental categories χ. The goal is to identify the

number of previous rentals to consider when matching rental data to consumers. We generated the

models using the Causal State Splitting and Reconstruction (CSSR) Algorithm [26, 32] presented

in Chapter 3 and data streams from the Netflix dataset. Other methods to derive Markov models,

such as the Baum-Welch algorithm [52] to find Hidden Markov models [1, 51] may be used instead

with no change to our approaches in this paper. The models tested in this section have the same

structure with 8 states and 70 transitions.

The two models for this experiment are shown in Figure 6.6. We followed a similar procedure

to the previous experiment by first calculating the window sizes according to the two approaches.

The window sizes are shown in Table 6.3. We chose to terminate Algorithm 6.2.1 after 500,000

iterations. It is unlikely that a consumer would have a history of rentals greater than 500,000 and

the window size would not make sense. This also shows the impractical nature of using the sufficient

window size for general applications.
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(a)

(b)

Figure 6.5: 95% confidence intervals are shown in both images. (a) True and false positive results
at selected window sizes for Model 1 vs Model 2; (b) Delay at selected window sizes for accepting
and rejecting Models 1 and 2 as matches to the data stream.

To test the window sizes, we followed a similar procedure to the one used in Section 6.3.

Thresholds of 94 and 96 were used for Models A and B, respectively. The true and false positive

rates and the delays for the small window sizes are given in Table 6.4. We chose to discontinue

testing above a window size of 192 because a window size of 192 has a 100% true positive rate
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Table 6.3: Consumer data model window sizes
Model A vs. Model B Window size

At least one transition 7
α = 0.05 Majority transitions 119

All transitions > 500,000
At least one transition 13

α = 0.01 Majority transitions 192
All transitions > 500,000

CI Minimum 15
Maximum 17,369

Table 6.4: Summary of results for consumer data tests
Model A vs Model B

Window TP Rate FP Rate Acc. Rej. Distance
Size Delay Delay

7 92.6 61.8 0.45 403.0 407.77
13 93.0 37.4 12.64 92.91 101.19
15 94.1 28.3 20.0 54.73 65.06
50* 98.2 3.3 131.91 26.36 134.57
75* 99.8 1.5 164.18 42.0 169.48
96* 100 0.4 221.64 46.55 226.47
119 100 0.2 237.45 70.45 247.69
192 100 0.0 309.91 111.45 329.34

and 0% false positive rate. Larger window sizes only increase the delay of recognition because the

true and false positive rates are at their ideal bounds. A window size of seven causes the average

acceptance delay to be near zero indicating that more than seven rentals must be considered when

matching the consumer behavior against the models to avoid a crippling false positive rate. The

true and false positive rates are shown in Figure 6.7a, and the delays are shown in Figure 6.7b.

The distance metric shows us that for our calculated window sizes, we should consider the

consumer’s fifteen previous choices when matching the data against these particular behavior models.

Window sizes of seven and thirteen had high rejection delays, while window sizes of fifty or greater

had significantly high acceptance delays. We note that in both this example and the illustrative

example, it is possible to tune the window size. A window size of fifteen provides the maximum

true positive rate while simultaneously minimizing the false positive rate and delays. Increasing the

window size to fifty significantly decreases the false positive rate and the rejection delay at a cost

of increasing the acceptance delay. Tuning the window size makes our approaches attractive for a

variety of applications.
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(a)

(b)

Figure 6.6: Behavior models extracted from Netflix data. (a) Model A; (b) Model B. Images
reproduced with permission from [21]. c©IEEE 2009.

98



(a)

(b)

Figure 6.7: 95% confidence intervals are shown in both images. (a) True and false positive results
at selected window sizes for Model A vs Model B; (b) Delay at selected window sizes for accepting
and rejecting models A and B as matches to the data stream.

6.5 Proofs

Define β as a measure of overlap between two binomial distributions corresponding to the

occurrence or non-occurrence of a specific transition in a Markov chain. Refer to the probability
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of the first transition as p1 and the probability of the second transition as p2. Define n1 = bNs1c

and n2 = bNs2c, where N is an integer window size and 0 ≤ s1, s2 ≤ 1 are the stationary state

probabilities for some state of the prescribed Markov chains.

From this we may define:

π1(j, n1) =
(
n1

j

)
pj1(1− p1)n1−j (6.9)

π2(j, n2) =
(
n2

j

)
pj2(1− p2)n2−j (6.10)

(6.11)

From these two terms, we may define β as:

β(n1, n2) =
max{n1,n2}∑

j=0

min{π1(j, n1), π2(j, n2)} (6.12)

This value is the over-lapping area under the discrete curves corresponding to the two binomial

distributions.

Our objective is to prove the following theorems:

Theorem 7: As N approaches infinity, β(n1, n2) approaches 0.

Theorem 8: As N approaches infinity, the discrete derivative of β as a function of N approaches 0.

6.5.1 Proof of Theorem 7

We begin by showing that the theorem holds in the case when s1 = s2 = 1. Hence, we may

replace β(n1, n2) by the function β(N). Then we have:

β(N) =
N∑
j=0

min{π1(j,N), π2(j,N)} (6.13)

Assuming that p1 6= p2 and p2 > p1, then there is an integer r(N) such that:

β(N) =
r(N)∑
j=0

π2(j,N) +
N∑

j=r(N)+1

π1(j,N) (6.14)

To prove Theorem 7 in this special case, we require two key facts: first, simple algebra tells
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us that the point at which the two functions π1(r,N) and π2(r,N) occurs at:

r(N) =
N (− ln (1− p1) + ln (1− p2))

ln (p1)− ln (1− p1)− ln (p2) + ln (1− p2)
(6.15)

Second, we use a relation between the tails of the F -distribution and the tails of the Binomial

distribution [104]:

FB(s; p,N) = FF ((s+ 1)(1− p)/p(N − s); 2(N − s), 2(s+ 1)) (6.16)

where FB and FF are the cumulative distribution functions of the Binomial and F -distribution

respectively and the degrees of freedom of the F -distribution are 2(n− s) and 2(s+ 1).

Without loss of generality, assume that p2 > p1. Then when r(N) is an integer (or we

replace it by its floor), we may evaluate:

r(N)∑
j=0

π2(j,N) = FF ((r + 1)(1− p2)/p2(N − s); 2(N − r), 2(r + 1)) (6.17)

It is clear from the structure of the expressions that as N approaches infinity, 2(N − r) and

2(r+ 1) both approach infinity. It is also known that as the degrees of freedom of an F -distribution

approach infinity, the cumulative distribution function (CDF) approaches H(t− 1) where H is the

Heaveside step function. That is, the CDF is zero on the left side of 1 and 1 on the right side of 1.

Now, consider (r + 1)(1− p2)/p2(N − s) as N approaches infinity. This is the input to the

F -distribution in Equation (6.17) and this value approaches:

ln
(

1−q
1−p

)
(1− q)

ln
(
p
q

)
q

(6.18)

When p1 < p2, this quantity is strictly less than 1 but approaches 1 as p1 → p2, as is illustrated by

its graph in the region p1 ∈ [0, 1] and p2 > p1:

Applying this fact, together with the knowledge that the F -distribution approaches the

Heaveside step function, demonstrates that the contribution to β(N) by π2 approaches 0 as N

approaches infinity. Since this argument holds in a completely symmetric fashion for π1, it follows

at once that when s1 = s2 = 1, then limN→∞ β(N) = 0. We can now prove Theorem 7.
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Figure 6.8: A plot of the coordinate input to the F -distribution as N approaches infinity.

Proof of Theorem 7. Suppose now that s1, s2 6= 1. It is still the case that n1 and n2 both approach

infinity as N approaches infinity. Using this fact, we may simply apply the results demonstrated

above to argue that
r(n1,n2)∑
j=0

π2(j, n2)→ 0

as N approaches infinity where r(N) has been replaced by an increasing function of n1 and n2. By

symmetry it follows that
maxn1,n2∑

j=r(n1,n2)+1

π1(j, n1)→ 0

whenever p1 6= p2 and hence β(n1, n2) approaches 0 as N approaches infinity as required.

6.5.2 Proof of Theorem 8

We again proceed by showing that the theorem holds in the case when s1 = s2 = 1. From

Equation (6.14), we may compute β(N + 1)− β(N) as:

min{r(N),r(N+1)}∑
j=0

{[π1(j,N + 1)− π1(j,N)] + [π2(j,N)− π2(j,N + 1)]}+ t(N) (6.19)

where t(N) is a term whose value approaches zero as N approaches infinity. That is, t(N) is the finite

number of terms missing from the sum because we sum only from j = 0 to min{r(N), r(N + 1)};
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hence t(N) has binomial probability form. Clearly, t(N) approaches zero as N approaches infinity.

Thus, we are interested in evaluating: π1(j,N+1)−π1(j,N). Algebraic manipulation allows

us to see that:

π1(j,N + 1)− π1(j,N) =
(
N

j

)
pj1(1− p1)(N−j)

(N + 1)(−p1) + j

N + 1− j
(6.20)

π2(j,N)− π2(j,N + 1) =
(
N

j

)
pj2(1− p2)(N−j)

(N + 1)(p2)− j
N + 1− j

(6.21)

Substituting these results into Equation (6.19) yields:

β(N + 1)− β(N) = t(N) +
r∑
j=0

{(
N

j

)
pj1(1− p1)(N−j)

(N + 1)(−p1) + j

N + 1− j
+(

N

j

)
pj2(1− p2)(N−j)

{
(N + 1)(p2)− j
N + 1− j

}
(6.22)

Evaluating the sum yields:

β(N + 1)− β(N) = t(N)−
(r + 1) (−1 + p1)

(
N
r+1

)
p1
r+1 (1− p1)N−r−1 (−p1 (N + 1) + r + 1)

(p1N + p1 − r − 1) (N − r)

−
(r + 1) (−1 + p2)

(
N
r+1

)
p2
r+1 (1− p2)N−r−1 (p2 (N + 1)− r − 1)

(p2N + p2 − r − 1) (N − r)
(6.23)

Taking the limit as N approaches infinity in the previous equation allows us to see that β(N + 1)−

β(N) approaches zero as N approaches infinity. Hence, when s1 = s2 = 1, we have proved Theorem

8. We can now prove Theorem 8 in the general case.

Proof of Theorem 8. As in the proof of Theorem 7, both n1 and n2 approach infinity asN approaches

infinity. We may apply the same set of arguments in this case to show that β(n1+k, n2+k)−β(n1, n2)

approaches 0 as N approaches infinity and for some large positive k.

6.5.3 Interpretation of the Proofs

Theorem 7 shows us that if we choose an arbitrarily large value of N , then the value of

β measuring the overlap between our two binomial distributions will collapse to zero. Likewise,

Theorem 8 shows that the rate at which β approaches zero is decreasing. Hence we have a measure

of Type I error (β) that approaches zero at a rate approaching zero. This suggests a natural point
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of diminishing returns for allowing N to become larger. That is, there will be a point at which the

amount of time we have to wait for each additional unit of window size N is not justified by the

amount of decrease in the value of β we see. This fact justifies our hypothesis that ROC curves

should be used to determine appropriate parameters for identifying model change-points. The ROC

curves are used to empirically identify the point of diminishing returns. Once this point is identified,

we have optimized the trade-off between decreasing the value of β and increasing the amount of time

that must pass before a change-point is identified.

6.6 Summary

In this chapter, we showed how to determine bounds on the window size using two different

methods. The proper window size affects the true and false positive rate of detection events and

influences the delay of the system. Our experimental results demonstrate how the window size can

be tuned for specific applications.
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Chapter 7

Conclusion

7.1 Concluding Summary

This dissertation presented a complete set of work from model construction through optimal

model detection given observation sequences of an underlying process. Our work focused on hidden

Markov models (HMMs) and ε-machines, a type of Markov model created by J.P. Crutchfield and

C.R. Shalizi. We examined four questions and demonstrated how solutions to these questions enabled

applications to increase efficiency in analysis or to develop new models.

Our work covered two issues that affect model construction. Markov models are important

tools for pattern recognition. In our opinion, the fact that expectation maximization methods require

the initial state structure to identify a HMM has been a traditional weakness of this approach. The

CSSR Algorithm has alleviated much of this problem. Unfortunately, this approach still depends

on the a priori knowledge of the parameter L. We extended the CSSR Algorithm to identify the

parameter L and consequently, a Markov model of the dynamics of a process that generated an

observation sequence. With this extension, we can now generate a Markov model of a stochastic

process from a sequence of symbolic observations with zero knowledge. Thus, we have provided a

method of going from symbol stream to an optimal Markov model of that stream that requires zero

knowledge by the user.

The second issue with model construction dealt with the quality of the models. Traditional

model fidelity work assumes that any sequence of observations fully encapsulates the variability of the

underlying process. Many researchers have found ways to mitigate the issues caused by insufficient
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observation data, and have developed methods to determine if the situation model appropriately

matches the data. We have added to this body of work by developing two methods that find level

of confidence such that the model and data are representative of the actual underlying process

under observation. We have shown how to determine within a given level of statistical confidence

if a “known unknown” transition does not occur given two user-defined thresholds. Bounding the

probability of an unknown transition to a specific threshold produces better results than statistical

confidence but also requires more data. Used in conjunction with the zero knowledge extension,

models can be constructed to the user’s desired levels of confidence without user involvement.

Once the model is constructed from an observation sequence, we explained how the models

can be matched against observation sequences. The maximum likelihood (ML) approach is frequently

used to find which HMM most likely generated a data sequence. Calculating the probability that a

data stream was generated by a Markov model has the unfortunate property that long data streams

are always found to be less likely than short data streams unless scaling factors are included in the

algorithm. When scaling factors are used, the algorithm is subject to instability due to accumulating

floating point errors. Furthermore, ML gives no intuition in the case when available HMMs do not

provide a good fit for the observed data stream.

We presented a new method for finding HMM patterns in data streams by using confidence

intervals. We compared our method to the maximum likelihood approach and demonstrated how

receiver operating characteristic (ROC) curves can be used to find an optimal detection threshold.

The proposed approach is useful in that it considers the number of data samples used in determining

whether or not a data stream could match a given HMM. It is also capable of determining when a

given data set matches none of the available HMMs. As a result of this research, we were able to

provide examples in which the confidence interval approach we derived gave a better true positive

rate than the existing maximum likelihood method for assigning observed output streams to HMMs.

We also provided an example using our approach on consumer activity datasets. This example shows

that our approach can out perform maximum likelihood methods in recognizing behaviors.

From the illustrative examples, the fact that our confidence interval based approach yields

a high true positive rate and combined with the fact that other more traditional HMM assignment

methods have low false positive rates, suggests that it may be attractive to combine the two methods

and benefit from the advantages of both. This requires reconciling conflicts when the two approaches

disagree. If we accept detections only when both approaches agree (logical-AND), this would keep
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the low true positive rate from the ML approach. Accepting detections from either approach (logical-

OR) would keep the high false positive rate of the confidence interval approach. We therefore expect

combined methods to perform worse than either of the two individual methods.

It is not surprising that the confidence interval approach performs better with large window

sizes, since more data is available for making decisions. We concluded the experimental work of this

dissertation with an explanation of how to determine window size values analytically. Representing

the transitions in a Markov model as binomial distributions allows us to use statistical analyses to

find the probability of making an error for each transition and allows us to calculate an error value

for the model. We described how to determine both the necessary and sufficient window sizes to

be able to differentiate between two Markov models with a level of statistical significance. Window

sizes greater than the minimum necessary and less than the sufficient window size cannot be shown

mathematically to differentiate between the models. We demonstrated our heuristics and how the

choice of the window size affects the true and false positive rates and the acceptance and rejection

delays. We explained how this approach is able to calculate window sizes for Markov models with any

structure. This was accomplished by operating on sets of transitions instead of matching to a single

transition. We matched transitions with the set having the same conditional probability distribution

and found the window size that represented all the transitions in the set. For the special case when

the models have the same structure, we match transitions with the same conditional probability

connecting matching states. We noted that we only used the single previous transition to perform

the match.

7.2 Future Research

Many topics for further research exist. We did not address an issue, mentioned in [18], with

model construction. When determining the correct value for L, how large data sets need to be for

reliable estimation is unknown. This is a different but similar problem to the one we addressed with

model confidence. We considered how the size of the observation sequence can provide a confidence

level that the model represented the underlying process. This asks how to calculate a statistical

confidence value on whether or not L is correct. This confidence value would be determined in a

similar fashion as our approach with model confidence: by considering if the size of the observation

sequence is sufficient.
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In our demonstrations of the model confidence algorithms, we specifically looked to see if

the constructed model matched the model acting as the underlying process. It is possible that

other models with different state and transition structures would produce equivalent sequences to

the underlying process. Future work could look at using inexact graph matching to determine if

the constructed models are in fact equivalent to the initial model. Additional future directions for

this work could extend the approach for use on other processes that handle finite state automata.

It would be interesting to see if this approach could be adapted to provide a level of confidence to

probabilistic context free grammars generated from observations. A possible extension to refine this

approach is to create a second user-defined threshold on the asymptotic state probabilities. If the

asymptotic state probability is less than a given threshold, then we would have the algorithm ignore

the state.

In the confidence interval approach, we stated that we used the Wald confidence interval

because of our representation of the transitions as binomial distributions. We noted when discussing

the bounds on the window size that the state could be represented as a multinomial distribution

because the transitions are not completely independent. The Wald confidence interval and the

binomial assumption are valid and produce fairly good results, but we note that incorporating a

multinomial distribution and multinomial confidence interval will produce better results. A multi-

nomial confidence interval should be smaller in range and will represent the relationships between

the outgoing transitions with greater accuracy.

In our approaches to find bounds on the window size, we stated that if the model structure

is different, we use the conditional probabilities and ignore higher order effects. Future work should

be performed to determine if our assumption about higher order effects is accurate. While our

approach is designed to operate dynamically, to allow for the time necessary to determine the

proper window sizes, several improvements could be made to increase the efficiency. We believe that

adding additional limits into the algorithm to set N would decrease the time needed to calculate

the different window sizes. Additionally, when the model state structure is different, we use the

maximum window size from each set of equivalent conditional probability distributions. It is possible

that this limit is too strict and an adjustable limit, such as a majority of the set is covered with

the window size, would be more efficient. We also show how the window size calculation depends

on the asymptotic state probability vector stabilizing. Other options, such as work decreasing the

number of samples needed for the vector to stabilize, could allow for smaller window sizes to be
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considered. We also demonstrated how our simple Euclidean distance calculation did not produce

meaningful results because we equivalently weighted the factors of true positive rate, false positive

rate, acceptance delay, and rejection delay. As we stated in the proofs, the trends support the

use of a distance metric. We still believe that the distance metric could be modified to provide a

meaningful, consistent value to find the proper window size. One possible way to alter the distance

metric is to adopt variable weights for the different factors. Future research could explore this and

determine if there is an optimal weighting for specific applications.

Our work focused on discrete Markov models, which are a form of a probabilistic finite

state machine. Another interesting extension would be to see if similar approaches could be found

for more complex processes, such as probabilistic pushdown automata that generate probabilistic

context free languages. These models have a memory by incorporating a stack. We believe that our

approaches could be modified to work with these types of state machines.
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