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ABSTRACT 

 

 

Previous general aviation (GA) accident studies showed that decision errors were 

more associated with fatal GA accidents than other kinds of human errors, and weather-

related accidents, especially continued visual flight rules (VFR) flight into instrument 

meteorological conditions (IMC), remained the major cause of fatal GA accidents. Thus, 

finding the underlying causes of GA pilots’ decision errors and continued VFR flight into 

adverse weather conditions are needed to reduce weather-related GA accidents as well as 

fatal GA accidents. 

Causal factors and hypotheses of weather-related GA accidents show that 

knowledge, experience, motivation, and weather information frequently have been 

referred as causal factors of weather-related GA accidents. Among causal hypotheses, 

situation assessment and risk assessment hypotheses have been cited frequently as the 

causes of weather-related GA accidents. 

The purpose of this study is to evaluate the effects of weather recognition training 

on GA pilots’ situation assessment and tactical decision making under gradually 

aggravating weather conditions. To meet this purpose, WeatherWise and an X-Plane 9 

flight simulation program has been used. WeatherWise is a computer-based weather 

training program developed by Wiggins et al. (2000) to improve GA pilot weather-related 

decision making, and was approved by the Federal Aviation Administration (FAA) for 

free public use. 

Pilot situation assessment is a pilot’s understanding of a current flight state, and 

was evaluated in terms of weather assessment and risk assessment. Weather assessment is 
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the pilot’s ability to recognize or estimate the changes in visibility, ceiling, and weather 

condition. Risk assessment is the understanding of the risks associated with flying in 

adverse weather conditions, and was measured in terms of risk perception and risk 

tolerance using the Hazardous Event Scale, personal weather minimums, and the 

Aviation Safety Attitude Scale. Pilot situation assessment was measured by a post-

experiment questionnaire. 

Pilot tactical decision making is in-flight judgment, and was evaluated in terms of 

decision accuracy and decision confidence. Decision accuracy was evaluated by 

measuring the distance that a pilot has flown from an optimal divert point to an actual 

divert point, and the distance a pilot has flown into adverse weather conditions. Decision 

confidence is the pilot’s confidence level in making diverting decisions when the pilot 

encounters adverse weather, and was measured by subjective rating method. 

Findings of the study indicated that the WeatherWise training group exhibited 

significantly higher weather assessment as measured by ceiling estimation ability and 

decision accuracy as measured by flown distance into adverse weather condition than the 

control group, but no significant differences were found in their risk assessment and 

decision confidence. Although the effects of weather training on the risk assessment were 

not significantly different between the two groups, participants in the WeatherWise 

training group was more conservative toward flying into adverse weather condition than 

the control group. 

It was hypothesized to find a positive relationship between pilots’ situation 

assessments and their tactical decision-making because situation assessment forms a basis 
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for decision making; however, positive relationship was found only between pilots’ 

ceiling estimation and flown distances into adverse weather in this study. Thus, it can be 

concluded that the weather training was effective at least in part to pilot situation 

assessment and tactical decision making. In addition, considering the weather training 

was just one-time 30 minute training, long-term effects of weather training should be 

conducted to find further relationship between pilot situation assessment and tactical 

decision making. 

The results of this study can be expanded not only to GA pilots but also to 

commercial airline pilots and military pilots for various reasons. First, all pilots are 

expected to acquire weather recognition skills and knowledge to ensure a safe flight 

regardless of their flight types because the nature of weather condition changes is 

dynamic and hard to predict during the flight. Second, although those aircrafts are well 

equipped with navigation aid systems and weather display radar, they do not provide real-

time weather information, and they sometimes malfunction. 

In conclusion, it is expected that this study will be helpful for GA pilots to 

understand the effects of weather recognition training on weather decision-making, and 

eventually help them assess a situation correctly and make a timely in-flight decision. It 

is believed that this study will help to establish a sound foundation for weather training 

program and has the potential to reduce weather-related GA accidents by implementing 

weather training during flight training. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Overview of General Aviation (GA) Accidents 

 

General aviation (GA) accidents represented 70 to 90% of all aviation accidents 

(ATSB, 2007; Lenne et al., 2008; Li & Baker, 2007), as well as 73% of the fatal 

accidents that occurred in 2007 (AOPA, 2008). However, little attention has been paid to 

GA accidents as compared to commercial aviation accidents and military aviation 

accidents (Shappell & Wiegmann, 2003b), because the majority of the world’s air traffic 

fall into the GA category, and most GA operations were for personal flight (39.4%). 

  

Figure 1.1 Annual Numbers of General Aviation Accidents (NTSB, 2010) 
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 2 

The development of aviation industry technology and navigational aid systems 

enabled pilots to fly safer when compared with pilots who flew 50 years ago, and the 

portion of GA accidents has decreased slightly during the last 10 years. However, the rate 

of fatal GA accidents is almost the same (Figure 1.1; AOPA, 2008; NTSB, 2010). 

According to the National Transportation Safety Board (NTSB) report (2005), 6% 

of all GA accidents were weather-related, and 70% of them were fatal accidents that led 

to approximately 25% of all GA pilot fatalities (Ball, 2008). This finding was similar to 

what Li and Baker (2007) found, as they showed that even though the portion of adverse 

weather conditions caused only 9% of GA accidents, it claimed 28% of pilot fatalities. 

Most often, these weather-related fatal GA accidents resulted from pilots’ decision to 

continue visual flight rules (VFR) flight into instrument meteorological conditions (IMC) 

(Figure 1.2; AOPA, 2009). Thus, the causes of GA accidents as well as weather-related 

GA accidents need to be understood clearly to reduce GA pilot fatalities. 

 

Figure 1.2 Types of Weather Accidents in 2008 (AOPA, 2009) 
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Causes of GA Accidents 

 

Previous GA accident studies were focused mostly on either human error or the 

causal factor approaches. Human errors have been deemed to be contributing factors to 

70-80% of all aviation accidents (Adams & Thompson, 1987; Dinges, 1995; Nagel, 1988; 

Wiegmann & Shappell, 2007), as well as 70-85% of the GA crashes (Sawyer & Shappell, 

2009; Li et al., 2001; Li and Baker, 2007; Shappell & Wiegmann, 2003b), and can be 

classified into skill-based errors, decision errors, perception errors, and violations. 

Shappell and Wiegmann (2003b) analyzed 14,571 GA accidents that occurred 

between 1990 and 1999 in the United States, and found that skill-based errors (80%) were 

the most prevalent, followed by decision errors (36%), violations (32%), and perceptual 

errors (less than 10%) (Figure 1.3). Although the portion of skill-based errors were the 

highest, decision errors were related more to fatal GA accidents (Adams & Thompson, 

1987; Jensen & Benel, 1977; O’Hare, 1990). 

 

Figure 1.3 Percentages of GA Accidents by Each Unsafe Act 
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The Australian Transportation Safety Bureau (ATSB) accident data analysis 

(2007) from 1993 to 2002 showed similar results. The portions of the aviation accidents 

were the highest in skill-based errors (87%), followed by decision errors (30%), 

violations (6%) and perception errors (5%). However, the portion of decision errors and 

violations in the fatal accidents were much higher than that of non-fatal accidents. 

Overall, reducing skill-based errors might be the most effective way to reduce the entire 

accident rate; however, decision errors and violations appeared to be more related to the 

fatal aviation accidents and continued VFR flight IMC (Giffin & Rockwell, 1987). Thus, 

it can be assumed that pilot’s good decision making and judgment is crucial to reducing 

fatal aviation accidents (Barnett et al., 1987; O’Hare, 1992). 

Besides the human error approaches, there have been causal factor approaches to 

understand GA accident studies. Giffin and Rockwell (1987) asserted that pilots’ 

continued VFR into adverse weather conditions ranked as the highest cause for all GA 

accidents, and often led to spatial disorientation, which is the second major cause of the 

fatal accidents. Surveys of GA pilots (Hunter, 1995; O’Hare & Chalmers, 1999) also 

showed that VFR flight into IMC is a major safety concern in GA, and revealed that 

approximately one out of four GA pilots experienced VFR into IMC, with 4% having 

done so multiple times (Pauley et al., 2008). 

Using NTSB statistics from the timeframe of 1982 to 1999, Craig (2001) found  

12 frequent causes of GA accidents, three of which coincided with studies done by other 

researchers. The three factors are: continued VFR flight into IMC (AOPA, 2008; Coyne 

et al., 2005; Crognale & Krebs, 2008; Goh & Wiegmann, 2001a; Knecht et al., 2003; 
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O’Hare & Smitheram, 1995; Pauley et al., 2008; Wiggins & O’Hare, 2003a), loss of 

situation awareness (SA) (Adams & Thompson, 1987; Endsley & Garland, 2000; 

Molesworth et al., 2006), and pilot health and physiology (Higdon, 2009; Salazar, 2007; 

Taneja & Wiegmann, 2002).  

Beard and Geven (2005) assessed 68 Aviation Safety Reporting System (ASRS) 

reports between 1995 and 2005, and found that poor weather assessment, distraction, and 

overestimation of piloting capabilities were the major factors to aircraft upset. Among 

them, poor weather assessment was the major causal factor that led to GA ASRS reports.  

 
 

Figure 1.4 Types of Pilot-Related GA Accidents (AOPA, 2008) 

 

The Aircraft Owners and Pilots Association (AOPA) accident trends and factors 

(2008) also showed that weather caused the highest portion of the fatality in GA 

accidents (Figure 1.4), and continued VFR flight into IMC was the main cause of 
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fatalities among weather-related accidents (Batt & O’Hare, 2005; Coyne et al., 2008; 

Craig, 2001; Li & Baker, 2007; Wiggins, 1999). 

In summary, previous GA accident studies showed that decision errors were 

associated more with fatal GA accidents than other kinds of human errors, and weather-

related accidents, especially continued VFR flight into IMC, remained the major cause of 

fatal GA accidents (Figure 1.5). Thus, finding the underlying causes of GA pilots’ 

decision errors and continued VFR flight into adverse weather conditions are needed to 

reduce weather-related GA accidents as well as fatal GA accidents. 

 
 

Figure 1.5 GA Accident Studies 

 

Weather-Related GA Accidents 

 

Previous human error studies and causal factor studies of GA accidents showed 

that decision errors and weather-related accidents were the two main causes of fatal GA 

accidents. Therefore, it is important to learn why GA pilots commit such frequent 
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weather-related accidents. Specifically, do pilots’ decision errors affect weather-related 

accidents? 

Pilots need to follow flight rules to fly an aircraft in a certain weather condition. 

The Federal Aviation Regulations (FARs) established guidelines for pilots about what the 

predominant flight visibility should be, and how far the airplane should remain away 

from the ceiling. The ceiling is the lowest layer of clouds, and is reported as above 

ground level (AGL) (Coyne et al., 2008). Visibility is the greatest distance at which an 

object can be seen and is reported as status mile (SM) (International Civil Aviation 

Organization , 2002). Cloud ceiling and visibility minimums vary, depending on the 

airspace in which the pilots are flying. In general, if the ceiling is more than 1,000 feet 

AGL, and the visibility is three miles or more, the weather is VFR. However, if the 

ceiling is less than 1,000 feet AGL, and the visibility are less than three miles, the 

weather is instrument flight rules (IFR). This classification can be further categorized into 

marginal visual flight rules (MVFR) and low instrument flight rules (LIFR), according to 

the weather minimums. Table 1.1 shows the weather minimums by flight category (FAA, 

2006). 

Table 1.1 Ceiling and Visibility Minimums by Flight Category 
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However, because of the limitations of time and money required to get the IFR 

qualification, many GA pilots are only VFR qualified. Thus, when VFR-only qualified 

GA pilots encounter IMC, they are not allowed to fly into IMC. Still, many GA pilots 

continue VFR flight into instrument flying weather condition for various reasons, and 75% 

of pilots who were involved with VFR into IMC accidents were not qualified for IFR 

flight (AOPA Air Safety Foundation, 1996). Many factors and hypotheses have been 

suggested to explain such pilots’ behaviors. 

Burian et al. (2000) analyzed 276 ASRS incident reports involving in-flight 

encounters with weather, and asserted that even though pilots notice deteriorating 

weather cues early, they tend to stick to their original flight plan. These authors termed 

such behaviors as plan continuation events (PCE), and suggested four factors that could 

cause such actions as lack of weather knowledge and experience, lack of correct weather 

information, time pressure, and organizational or social pressure. 

Capobianco and Lee (2001) examined 1,520 GA accidents’ data from 1995 to 

1998, and found that ―VFR into IMC‖ and ―flight into adverse weather‖ were two 

common causes of weather-related GA accidents. They also found that the weather-

related causal factors associated with the fatal accidents were low ceiling, fog, wind, and 

night. 

O’Hare and Owen (2002) examined the GA air crash data in New Zealand 

between 1988 and 2000, and proposed over-confidence, faulty risk perception, lack of 

awareness, and sunk costs as the causes of fatal GA crashes. The sunk cost hypothesis 

predicts that pilots who encounter adverse weather late in the flight are more likely to 
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continue flying than pilots who encounter adverse weather early in the flight, because the 

former might have spent more time, money, and effort. Thus, the greater the sunk cost, 

the further pilots will fly through adverse weather (Knecht et al., 2005). In their study, 

pilots who were involved in weather-related GA crashes flew closer to the destination 

airport as compared with pilots who were involved in non-weather-related crashes, which 

indicated that the sunk cost hypothesis can be more explanatory of weather-related GA 

accidents. 

Weather-related GA accidents were not only associated with an individual causal 

factor, but multiple causal factors and their interaction effects. Knecht et al. (2003) 

investigated the effects of ground visibility (three levels), cloud ceiling (two levels), and 

financial incentive (two levels) on GA pilots’ voluntary takeoff into adverse weather. 

Sixty participants were instructed to fly under VFR weather conditions, but there were no 

statistically significant main effects between the three factors. Instead, there were 

significant interaction effects between the three factors, which indicated that 

combinations of these factors might drive a pilot to make a decision. Knecht et al. (2005) 

tested 60 GA pilots’ willingness to takeoff into adverse weather conditions using a high-

fidelity flight simulator. These authors classified the causal factors of weather-related 

decision errors into interior factors and exterior factors. Interior factors were related to 

the pilot’s perceptual and cognitive factors, such as knowledge, risk perception, 

overconfidence, and the sunk cost effect. Exterior factors included environmental factors 

such as visibility, ceiling, and financial incentive. The results indicated that a pilot’s 

takeoff in adverse weather conditions was more predictable when the interactive effect of 
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visibility and ceiling was considered together than when the linear effect of each factor 

was considered separately. 

Wiegmann et al. (2008) also asserted that many accidents were not associated 

with a single factor alone, but with a combination of factors. They analyzed previous 

aviation accidents and incidents involving VFR into IMC, and found that weather-related 

causal factors were involved with a lack of weather knowledge and experience to fly 

safely in adverse weather, failure to complete pre-flight planning, limited weather 

evaluation skills, poor risk assessment, overconfidence, and poor in-flight planning. 

Some researchers suggested hypotheses to explain the causes of weather-related 

GA accidents. Goh and Wiegmann (2001b; 2002a) conducted a comprehensive review of 

the NTSB GA accident statistic data between 1990 and 1997, and suggested four 

hypotheses to explain a pilot’s continued VFR flight into IMC: situation assessment, risk 

perception, decision framing, and social pressure. They also found the top 10 causal 

factors of VFR flight into IMC, three of which were weather conditions (70%), terrain 

conditions (25%), and spatial disorientation (24%). 

Beard and Geven (2005) suggested three reasons for the pilot’s risky behavior of 

taking off in adverse weather conditions: underestimation of the risk level, lack of 

experience, and frequency gambling. Frequency gambling refers to one’s expectant 

attitude of success in a risky situation. In aviation, pilots sometimes are motivated to fly 

in an adverse weather after seeing other pilots’ success in taking off, although one pilot’s 

successes do not guarantee another’s success in takeoff. 
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Sawyer and Shappell (2009) divided 60 participants into three equal groups of 20 

based on their flight experience: non-pilots (no flight experience), low-time pilots (less 

than 500 flight hours), and high-time pilots (greater than 500 flight hours). They assessed 

how experience and training affect pilot weather decision-making accuracy, response bias, 

and visual scan paths. To meet this purpose, the authors showed all participants 10 

randomly-chosen weather pictures taken in the sky, and asked them whether they would 

continue to fly, or divert the flight if they encountered the weather condition in the 

pictures. Participants then completed the WeatherWise training program, and measured 

visual scan paths using an eye tracker while seeing another 10 randomly-selected weather 

pictures. Finally, all participants viewed the first 10 weather pictures again, and were 

asked the same questions. The findings showed that weather training did not improve 

participants’ decision accuracy, but there was significant shifts of conservation bias 

towards not continue flying into adverse weather. 

In summary, many causal factors and hypotheses of weather-related GA accidents 

have been suggested in previous studies (Table 1.2). It can be seen that interior factors, 

such as knowledge, experience, and motivation, and exterior factors, including weather 

information, frequently have been referred as causal factors of weather-related GA 

accidents. 

Among causal hypotheses, situation assessment and risk assessment hypotheses 

have been cited frequently as the causes of weather-related GA accidents. This 

classification is in line with Coyne et al.’s (2008) study, which presented situation 

assessment and improper motivation as the major causes of GA accidents. Improper 



 12 

motivation or misplaced motivation can be classified as the lack of risk assessment of 

pilots, in that pilots sometimes are overconfident in their abilities and do not fully 

consider the associated risks of flying in bad weather conditions. Most of the causal 

factors and hypotheses mentioned were suggested from accident analysis studies, and 

only a few were suggested from empirical studies. 
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Table 1.2 Causes of Weather-Related GA Accidents 

           Causes 

Authors 

Factors Hypotheses 

Knowledge Skills Experience Motivation Personality 
Flight 

Planning 
Weather 

Information 
Situation 

assessment 
Risk 

assessment 
Decision 
framing 

Sunk 
cost 

O’Hare (1990) O O      O O   

Burian et al. (2000) O  O O   O O    

Latorella & 

Chamberlain (2001) 
  O  O  O O    

Goh & Wiegmann 
(2002a) 

   O    O O O  

O’Hare & Owen 

(2002) 
       O O  O 

Adams et al. (2002) O   O    O O   

Wiggins & O’Hare 

(2003b) 
 O O O      O  

Beard & Geven (2005) O O O O   O O O   

Coyne et al. (2005)   O     O O O  

Knecht et al. (2005) O   O     O  O 

Ball (2008)   O O   O O O   

Wiegmann et al. 

(2008) 
O O    O O O O   

Sawyer & Shappell 
(2009) 

O  O O  O O O O  O 
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Purpose 

 

This study addresses issues concerning the effects of weather recognition training 

on GA pilots’ situation assessment and tactical decision making when encountered 

adverse weather conditions. For this purpose, WeatherWise was used as a weather 

training program and the X-Plane 9 flight simulation program was used to measure the 

pilots’ situation assessment and in-flight judgment in a dynamic and uncertain flight 

environment. 

WeatherWise is a computer-based weather decision-making training program 

developed Wiggins et al. (2000), and the program was approved for free public use by the 

Federal Aviation Administration (FAA). The validity of WeatherWise was examined by 

Wiggins and O’Hare’s empirical study (2003b), in which the authors found that those 

who received training with the WeatherWise program could improve timely weather-

related decision making during VFR flight. 

However, previous studies dealing with the WeatherWise training program had 

several limitations. First, the weather conditions used in WeatherWise were clearly 

different from each stage, and quite easy for a pilot to find the optimal divert point. Thus, 

it is not clear whether WeatherWise is effective in a gradually aggravating weather 

condition. Second, pilots did not actually control the flight, but just saw the weather 

conditions, and chose an optimal divert point. This might lack the reality of flying, and 

truly may not represent the workload imposed on pilots. Including Wiggins and O’Hare’s 

(2003b) study, previous studies using the WeatherWise program showed participants 

short video clips (Coyne et al., 2008) or static images (Ball, 2008; Sawyer & Shappell, 
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2009; Wiggins & O’Hare, 2003a) to simulate flight environment, and participants were 

asked to choose either to continue or to divert the flight at seeing the video clips or static 

images. Third, the concept of situation assessment was not defined clearly, and was used 

interchangeably with situation awareness (Fracker, 1988), decision accuracy (Sawyer & 

Shappell, 2009), self-assessment of hazard attitude (Wiggins et al., 1995), or estimation 

of the weather conditions (Wiggins & O’Hare, 2003b; Wiegmann et al., 2002). To solve 

the above-mentioned limitations and simulate one step close to the real flight 

environment, pilots’ situation assessment and tactical decision making were measured 

using a questionnaire and the flight simulation program in a gradually aggravating 

weather condition. Table 1.3 shows detailed measurement methods of situation 

assessment and tactical decision making. 

 

Table 1.3 Situation Assessment and Tactical Decision Making 

 

 Categories Explanation Method 

Situation 

Assessment 

Weather Assessment 
Estimation of visibility, ceiling, and 

weather condition 
Questionnaire 

Risk Assessment Risk perception and risk tolerance 

Tactical 

Decision 

Making 

Decision Accuracy 

Distance from an optimal divert point to an 

actual divert point Flight 

simulation 

program Distance flying into adverse weather 

condition 

Decision Confidence Confidence level in making divert decision Questionnaire 

 

Pilot situation assessment is the pilot’s understanding of a current state, and was 

measured in terms of weather assessment (Coyne et al., 2008; Goh & Wiegmann, 2001a; 
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Sawyer & Shappell, 2009) and risk assessment (Coleman & Marks, 1999; Hunter, 1995; 

2002b; Latorella & Prabhu, 2000). 

Weather assessment is the pilot’s ability to recognize or estimate the changes in 

visibility, ceiling, and weather condition, and was considered to measure pilots’ situation 

assessment because pilots may not fly into adverse weather if they have read the weather 

conditions correctly. Risk assessment is the understanding of the risks associated with 

flying in adverse weather conditions, and was measured in terms of risk perception and 

risk tolerance. Risk assessment was included in the pilot situation assessment categories 

because poor risk assessment may lead pilots to press on into adverse weather (Jensen & 

Benel, 1977; O’Hare, 1990). Risk assessment was measured using the Hazardous Event 

Scale (HES; Hunter, 1995), personal weather minimums, and the Aviation Safety 

Attitude Scale (ASAS; Hunter, 1995). Situation assessment and tactical decision making 

were measured by a post-experiment questionnaire. 

Pilot tactical decision making is associated with pilot’s in-flight decision to 

continue flight (Coyne et al., 2008), and was evaluated in terms of decision accuracy and 

decision confidence (Bliss et al., 2005; Wiggins & O’Hare, 2003). Decision accuracy was 

evaluated by measuring the distance that a pilot has flown from an actual divert point to 

an optimal divert point, and the distance a pilot has flown into adverse weather condition. 

Decision confidence is the pilot’s confidence level in making diverting decision when he 

encounters adverse weather. Decision confidence was considered because pilots’ 

situation assessment and decision confidence are required to improve pilot decision 

making (Lichacz & Farrell, 2005). Decision confidence was evaluated using subjective 
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rating method after the experiment. It was expected that the pilots’ confidence level in 

making the decision to divert in adverse weather conditions will be high if they receive 

weather recognition training and correctly recognize the deteriorating weather condition. 

Whereas strategic decision making is forward thinking made on the ground in pre-

flight planning, tactical decision making is real-time judgment made in-flight. It was 

assumed that this study will find a positive relationship between a pilot’s situation 

assessment and his tactical decision making. 

In this study, using the flight simulation program, GA pilots made a simulated 

cross-country flight from the North Central West Virginia Airport (KCKB) in West 

Virginia to the Louisa County/ Freeman Field Airport (KLKU) in Virginia as long as they 

assumed that they did not violate VFR conditions in gradually deteriorating weather 

conditions. When pilots encountered IMC, they were not allowed to continue the flights, 

and should divert to the alternative airports that they think optimal. The experiment was 

terminated when a pilot began to divert to an alternative airport, lost control of the 

aircraft, or crashed on the terrain. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

General Aviation (GA) 

 

GA Classification 

 

The Federal Aviation Administration (FAA) classifies civil aviation into three 

groups (Figure 2.1): GA, major airlines, and commuter air carriers and air taxis. The GA 

classification includes all non-commercial aircraft flying under Title 14, Code of Federal 

Regulations Part 91 (14 CFR Part 91). The major airlines include commercial aircraft 

operating under 14 CFR Part 121, and the commuter air carriers and air taxis consist of 

scheduled and on-demand commercial flights of aircraft with 30 or fewer seats operated 

under 14 CFR Part 135 (Li et al., 2003; Shappell & Wiegmann, 2003b). 

The NTSB (2006, p.2) defined GA as, ―any civil aircraft operation that is not 

covered under 14 CFR Parts 121, 129 (foreign air carriers and foreign operators of U.S 

registered aircraft), and 135, commonly referred to as commercial air carrier operations.‖ 

 
 

Figure 2.1 Aviation Classification 
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In short, GA refers to all flight other than military and scheduled airline flights, 

both private and commercial (AOPA, 2008). The GA flights range from gliders and 

helicopters to non-scheduled cargo jet flights, and comprise the largest part of aviation 

activities (Li & Baker, 2007). 

 

  Phases of Flight 

 

Phases of flight can vary according to the mission of the airplane. Roskam (1998) 

and the FAA (1999) categorized flight phases of GA flight into takeoff, climb, cruise, 

descent, and landing. Detwiler et al. (2006) categorized GA flight phases into taxi, 

takeoff, climb, cruise, descent, approach, and landing. The AOPA (2008) categorized the 

flight phases into takeoff, climb, cruise, maneuvering, descent/approach, and landing. 

Table 2.1 shows the previous categorization of GA flight phases. 

 

Table 2.1 Categorization of GA Flight Phases 

Authors Categorization 

AOPA (2008) Takeoff, climb, cruise, maneuvering, descent/approach, landing 

Detwiler et al. (2006) Taxi, takeoff, climb, cruise, descent, approach, landing 

Schvaneveldt et al. 

(2001) 
Takeoff, climb, cruise, transition to cruise, descent, approach, landing 

FAA (1999) Takeoff, climb, cruise, descent, landing 

Roskam (1998) Takeoff, climb, cruise, descent, landing 
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Summarizing previous studies, GA flight phases can be broken down into five 

sequential phases, which are takeoff, climb, cruise/maneuvering, descent/approach, and 

landing (Figure 2.2).  

 
Figure 2.2 Flight Phases for General Aviation 

 

Previous aircraft accident studies mostly focused on the takeoff and landing 

phases because a pilot’s mental workload is the highest during them, and accordingly, 

many aircraft accidents happen (Dambier & Hinkelbein, 2006; Detwiler et al., 2006; Di 

Nocera, 2007; Wilson, 2002). However, GA accident data (Adams & Thompson, 1987; 

Benbassat et al., 2005; O’Hare, 1999) showed that cruise and maneuvering phases took 

most of the fatal aircraft accidents, and should be regarded as more important than other 

flight phases (Figure 2.3). 

Cruise phase is a condition of flight in which pilots maintain constant heading, 

altitude, and speed (FAA, 1999). The GA pilots’ attention might decrease as they fly in 

cruise phase for a long time while hearing loud and monotonous engine noise. Also, GA 

pilots generally spend most of the time in the cruise flight phase checking navigation 
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information, and weather information, and accordingly, the cruise flight phase has a high 

chance of aircraft accidents for GA pilots (Coyne, 2004). 

The vulnerability of the cruise phase in GA was shown in GA accident analysis 

studies. Capobianco and Lee (2001) analyzed 1,520 instances of GA accidents from 1995 

to 1998 and found that 63% of fatal weather accidents occurred during the cruise phase. 

 

Figure 2.3 Mean Total and Fatal GA Accidents during 1995 to 1998 
 

Similarly, Taneja and Wiegmann (2001) analyzed 70 civil aviation mid-air 

collision accidents that occurred between 1994 and 1999, and they found that the 

maximum damages of mid-air collisions occurred during cruise phase. The AOPA (2008) 

data also showed that cruise and maneuvering phases were among the highest safety-

critical flight phases. 
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This was not different in questionnaire studies. O’Hare and Wiggins (2004) 

defined critical flight event as any situation in which unplanned action is needed to 

prevent incidents or accidents. They analyzed 162 surveys from Australia, New Zealand, 

and the United States, and found that pilots reported the cruise phase as the most frequent 

flight phase (45.6%) in which incidents or accidents occurred during critical flight event. 

Previous weather-related empirical studies found that weather also began to deteriorate in 

the cruise phase to simulate the real-world flying environment (Ball, 2008; Baron, 2011; 

O’Hare & Owen, 2002; Wiegmann et al., 2002). 

 

GA Accident Studies 

 

In general, GA accident rates are higher than commercial aviation accident rates 

or military aviation accident rates, because GA pilots have more exposure to risk. The 

GA pilots flew in and out of airports that are less equipped with navigation aids and 

emergency equipment (Craig, 2001), and they generally are less experienced than 

commercial airline pilots or military pilots. The causes of GA accidents have been 

examined by accident data analysis studies, empirical studies, and questionnaire studies. 

 

Data Analysis Studies 

 

Goh and Wiegmann (2001b) analyzed the data from 409 VFR into IMC GA 

accidents between 1990 and 1997, and found 10 contributing factors that were associated 

with GA pilots’ continued VFR flights into adverse weather. They categorized the GA 

causes into aircraft, facility, environment, flight crew, and other person. The analysis 
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showed that the top three causes were weather conditions, terrain conditions 

(environment category), and spatial disorientation (flight crew category). 

Li et al. (2001) examined around 30,000 aviation accidents that occurred between 

1983 and 1996, and found that the IMC were associated more with pilot error regardless 

of operation type (commercial aviation, commuter/air taxi, and GA). These authors 

asserted that external factors such as weather or terrain are more associated with pilot 

error than internal factors such as experience. 

Shappell and Wiegmann (2003a) analyzed 16,510 GA accidents that occurred 

between 1990 and 1998 using the Human Factors Analysis and Classification System 

(HFACS), and found that skill-based errors (73.5%) encompassed the highest portion of 

human errors in controlled flight into terrain accidents followed by decision errors (35%), 

violations (14.3%), and perception errors (7.7%). Wiegmann et al. (2005) analyzed 

14,436 GA accidents that occurred between 1990 and 2000, and found similar results. 

These authors found that the odds ratio of violations associated with fatal accidents was 

four times higher than that of nonfatal accidents (Wiegmann et al., 2005).  The results are 

quite consistent with Goh and Wiegmann’s (2002a) study, which showed that 76% of 

VFR flight into IMC accidents involved pilots’ intentional violations to continue flights 

into adverse weather. 

 

Empirical Studies 

 

Goh and Wiegmann (2001a) conducted an empirical study to find factors that lead 

to pilots’ continued VFR flights into IMC. Based on Jensen’s judgment model (1995), 



24 

they examined factors including situation assessment, risk perception, motivation, and 

decision framing. These authors divided the participants into two groups (continue/divert 

VFR flight into IMC), and compared the possible contributing factors of continued VFR 

flight into IMC. The results showed that visibility estimate, risk-taking behavior 

frequency, skill, and judgment ratings were the most important factors in predicting pilots’ 

continued VFR flights into IMC. Pilots who continued flying showed higher ratings of 

their skill and judgment, and they were more willing to take risks than those who diverted 

in IMC. 

Wiggins and O’Hare (2003b) recruited 66 GA pilots and divided them into two 

groups. One group took a cue-based decision-making training called WeatherWise, and 

the other group did not. The authors assessed the self-reported ratings of the perceived 

importance of weather cues and the performance in terms of timely decision making after 

the experiment. The results showed that both the perceived importance of critical weather 

cues and the performance level were higher for the WeatherWise training group than the 

control group, which indicated that WeatherWise could improve pilots’ timely decision-

making ability during simulated cross-country flights. 

Wiggins (2006) assessed GA pilots’ performance on various dimensions in a 

simulated cross-country flight. Thirty-four pilots flew five legs of flight in visual 

meteorological conditions (VMC). Pilot performance was measured in terms of pilot self-

report, experimenter observation, and flight simulator data. Performance dimensions were 

composed of aircraft control, track, altitude, fatigue management, and communication. 

The results suggested that performance differences between pilots were not due to recent 
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flight experience, nor qualifications, but due to the stages (leg 1 to 5) of flight. In this 

study, pilot performance was lowest in the fifth leg of flight, which indicated that the 

combination of fatigue and mental demands may affect the pilots’ capacity to precisely 

control the aircrafts. 

Inadvertent VFR flight into IMC was not just a major problem of fixed-wing GA. 

Crognale and Krebs (2008) investigated 20 civilian helicopter pilots’ flight performance 

using a flight simulator in an inadvertent VFR flight into IMC. In their scenario, the 

visibility rapidly decreased near zero, with ceilings less than 100 feet, and participants 

were allowed to take whatever actions they needed to cope with the changing weather 

conditions. Each participant flew six missions at given speeds and altitudes, and 

performance data were collected regarding aircraft attitude, flight performance, and pilot 

efforts. The findings showed that there were significant differences in pilots’ performance 

when flying in VMC and IMC. 

 

Questionnaire Studies 

 

O’Hare (1990) developed the Aeronautical Risk Judgment Questionnaire (ARJQ) 

to assess GA pilots’ perceptions of their abilities, willingness to take a risk, hazard 

awareness, and risk judgment. Forty-four licensed pilots flew a VFR flight into a 

marginal VFR weather condition. The ARJQ showed that young and currently active 

pilots showed a higher likelihood of accident involvement when compared with other 

pilots. The results implied that age and experience are associated with high risk and 

personal invulnerability. 
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Hunter (2002b) developed two instruments to measure pilots’ risk-taking behavior: 

risk perception and risk tolerance. Each instrument consisted of a series of short scenario 

descriptions that represent risky situations and activities. In his study, 402 pilots 

completed the study exercises on the FAA-sponsored website. The findings showed that 

higher levels of experience and qualifications are related to lower levels of risk 

perception. These results support the zero risk theory (Summala, 1988), which suggested 

that as self-confidence increases, perceived risk diminishes to the point of zero. In other 

words, experienced pilots may feel that there is no risk at all. 

 

Frequent Causes of GA Accidents 

 

Weather-related 

 

According to the NTSB report (2009), there were 4,159 weather-related accidents 

(21.3%) out of the 19,562 accidents between 1996 and 2005, and 3,617 of them (86.6%) 

were GA operations. The NASA ASRS report (2007) analysis showed that the major 

weather factors related to the GA accidents were ceiling lowering ceiling, reduced 

visibility, and deteriorating weather conditions (Figure 2.4). 

Latorella and Chamberlain (2001) classified GA pilots into three groups 

according to their cross-country experience, and presented them with three weather cues, 

respectively: VMC, IMC, and Graphical Weather Information System (GWIS)-

augmented IMC. The results showed that the GA pilots who were faced with VMC and 

GWIS-augmented IMC had better confidence ratings, perceived performance, and 

information sufficiency than those who were faced with IMC. Overall, this study 
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emphasized the benefits of the GWIS to improve pilots’ SA. However, there were some 

limitations to their study. First, the numbers of participants were too small. The authors 

classified six GA pilots into three groups, and only two pilots were assigned to each 

group. This small number of participants could lower the power of the data, and may lack 

representativeness for each group. Second, the participants did not perform flights by 

themselves; a NASA test pilot served as the pilot in command (PIC). Considering the fact 

that flying is complex and dynamic task, assessing pilots’ decision making and SA while 

they are seated in passenger’s seat could weaken the reality of flying environment. 

 

 

 

Figure 2.4 Types of GA Weather Encountered (NASA ASRS, 2007) 
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Adams (2002) developed a Decision Making Styles (DMS) instrument, a next-

generation aeronautical decision-making training material, to identify the characteristic of 

high-risk pilots. The DMS is a simplified five-variable model that is composed of 

information resource management, influence of somatic or negative inner signals, 

reliance on gut reaction, less military training, and strong feeling of time pressure. The 

author analyzed 4,000 pilots’ surveys, and found that high-risk pilots are more likely to 

feel time pressure, expose themselves to unsafe flying situations, misdiagnose their 

abilities, and not review alternative options. Adams et al. (2002) also suggested that the 

aforementioned variables should be used to do an initial screening test for high-risk pilots. 

Wiegmann et al. (2002) studied the relationship between GA pilots’ situation 

assessment and flight experience, and measured the time and distance a pilot traveled 

before diverting to an alternative airport. The GA pilot encountered IMC either early or 

late in the flight, and the authors studied how the location at which the pilot encounters 

adverse weather could affect the pilot’s decision to continue the flight into adverse 

weather. The authors found no significant correlations between pilots’ flight experience 

and their situation assessments in terms of estimates of visibility and cloud ceilings. 

Although the authors wanted to adopt the situation assessment hypothesis, they could not 

reveal the exact role that experience played in affecting a pilot’s weather decision, and 

failed to examine the situation assessment hypothesis. 

Wiggins and O’Hare (2003b) examined the validity of the WeatherWise program 

by using both a self-report assessment and a performance assessment. Participants were 

allowed to see short video clips and choose an optimal divert stage to an alternative 
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airport. For the self-report assessment, pilots were asked to choose as many weather cues 

as they thought affected the continuation of the flight. For the flight performance 

assessment, pilots selected either to continue or divert the flight within ten seconds after 

seeing a short video clip. The findings showed that participants who were trained with the 

WeatherWise made better, timelier decisions when compared with control group. 

Coyne et al. (2008) focused on pilot weather assessment study, because pilots’ 

assessments of weather conditions are related to their decisions to continue flight or not. 

The authors conducted weather assessment in terms of estimation of the ceiling (height 

AGL), visibility (statute miles), and distance to the airport, using the short video clip. 

They showed participants five seconds of out-the window video using an overhead 

projector. The findings indicated that there were interaction effects between a pilot’s 

estimate of ceiling and visibility in making a decision to continue flight. 

Ball (2008) assessed the impact of training and graphical weather display on GA 

pilots’ weather-related decisions. The author measured the time to the initial/final 

decision for a pilot to encounter a storm, the proximity to the storm, the number of 

weather inquiries, and the post-experiment ratings. He classified the participants into 

tactical users and strategic users (Beringer & Ball, 2004). Tactical users were those who 

attempted to fly to the destination, and strategic users were those who navigated at a safe 

distance. The results showed that both training and graphical weather display enabled 

pilots to make a decision sooner and maintain a safe distance from the storm. 

Sawyer and Shappell (2009) conducted a study to understand the effects of 

experience and training on pilots’ ability to identify adverse weather conditions using eye 
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tracking method. The authors divided pilots into three groups: non-pilots, low-time pilots, 

and high-time pilots, and showed participants static pictures, and asked them whether 

they would continue the VFR flight when they encountered the weather in the picture. 

The authors assessed pilots’ weather identification accuracy, response bias, and visual 

scan paths. The results showed that the WeatherWise training group showed a significant 

conservative response bias toward not to continue flying when they were confronted with 

adverse weather after being trained with the WeatherWise program, which indicated that 

the weather training program is related positively with weather decision making. 

However, the role of experience on weather decision making was not clear in their 

study. Although eye tracking data showed a decrease in the number of fixations and 

fixation durations as expertise increased, the authors did not find a significant effect 

between flight experience and weather identification accuracy. Overall, WeatherWise 

was deemed useful in preventing pilots from flying into adverse weather conditions. 

However, what is required of GA pilots to assess weather conditions is to earn the skills 

to perceive and distinguish VFR conditions from IMC precisely, rather than to divert 

upon encountering the adverse weather. 

 

Loss of Situation Awareness (SA) 

 

Pilots may fly into an adverse weather because they may not perceive the 

deteriorating weather condition precisely (Batt & O’Hare, 2005). The SA of a pilot helps 

him to know and understand the current situation as well as predict how things will 

change in the future. Situation awareness was first introduced in the aviation domain, 

which is involved in the operation and control of a complicated system in a dynamic 
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environment (Uhlarik, 2002), and has been extended to other domains, such as air traffic 

control (Endsley, 1998), driving (Kass et al., 2007, Ma & Kaber, 2005), command and 

control (Salmon et al., 2006), and the health care system (Gaba et al., 1995; Wright et al., 

2004). Although SA is a difficult concept to define, there have been studies defining SA 

in aviation domains (Table 2.2; Adams et al., 1995; Gaba et al., 1995; Sarter & Woods, 

1991; Vidulich, 1995). 

 

Table 2.2 Definition of Pilot Situation Awareness 

Authors Definition 

Adams & Thompson 

(1987) 

The accurate perception of the factors and conditions that affect the 

aircraft and the flight crew during a specific period of time 

Regal et al. 

(1988) 

An integrated understanding of factors that will contribute to the safe 

flying of the aircraft under normal or abnormal conditions 

Sarter & Woods 

(1991) 

All accessible knowledge which can be integrated into a coherent picture, 

and if required, assess and cope with a situation 

Endsley 

(1995a) 

The perception of the elements in the environment within a volume of 

time and space, the comprehension of their training, and the projection of 

their status in the near future 

ICAO 

(2002) 

One’s ability to accurately perceive what is in the cockpit and outside the 

aircraft 

 

Adams and Thompson (1987) defined SA as, ―the accurate perception of the 

factors and conditions that affect the aircraft and the flight crew during a specific period 

of time,‖ and asserted that pilots who have a high level of SA are safer than those who 

have a low level of SA (p.11). Similarly, the International Civil Aviation Organization 
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(ICAO) (2002) defined SA as, ―one’s ability to accurately perceive what is in the cockpit 

and outside the aircraft‖ (p.9). Regal et al. (1988) asserted that SA means that a pilot has 

an integrated understanding of factors that will contribute to the safe flying of the aircraft 

under normal or abnormal conditions. Sarter & Woods (1991) emphasized the 

significance of temporal dimension of SA, and defined SA as, ―all accessible knowledge 

which can be integrated into a coherent picture, and if required, assess and cope with a 

situation‖ (p.55).  

Endsley (1995a) conducted a comprehensive study on SA, and defined SA as ―the 

perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near future‖ 

which is by far the most widely-cited definition of SA (p.36). According to her SA model 

(1995b; Figure 2.5), there are three hierarchical levels for achieving SA: perception of the 

element (Level 1), comprehension of the current situation (Level 2), and projection of 

future status (Level 3). Level 3 SA can be achieved through Levels 1 and 2. To achieve 

SA, an individual must rely on perception and pattern recognition abilities (Durso & 

Gronlund, 1999; Kass et al. 1991), attention and working memory (Gugerty, 1997), and 

long-term memory (Endsley, 1995b). 

Perception of element (Level 1 SA) is fundamental. Basic perception of important 

information increases the chances of forming a picture of the situation. For example, a 

pilot should perceive weather cues correctly to understand what those weather cues mean. 

Comprehension of the current situation (Level 2 SA) involves more than perception, and 

includes multiple pieces of information and the determination of their relevance to the 
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goal. For a GA pilot, his goal might be a timely and safe arrival to the destination. 

Projection of future status (Level 3 SA) is the highest level of understanding of the 

situation. This ability allows for timely decision making, something on which 

experienced operators heavily rely. When a pilot suddenly encounters severe weather, he 

should decide whether to divert or to continue into the adverse weather to meet the goal. 

 

Figure 2.5 SA Model in Dynamic Decision Making (Endsley, 1995b) 

 

In general, previous SA studies in the aviation domain have shown that pilots who 

have high level of SA showed better decision making and higher performance (Doane et 

al., 2004) than pilots who have low level of SA. Bustamante et al. (2005) examined pilots’ 

workload, SA, and trust, in weather systems during critical weather events. The authors 
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used the NASA Task Load Index (NASA-TLX; Hart & Staveland, 1988) to measure the 

workload, and the Situation Awareness Rating Technique (SART; Jones, 2000) to 

measure the SA. The results showed that the pilots’ workload increased significantly and 

SA decreased as they flew closer to the weather event. Overall, previous SA studies tried 

to enhance pilots’ SA to improve pilots’ decision making. 

 

Pilot Health and Physiology 

 

Most causal factors studies related to pilot health and physiology entailed fatigue, 

alcohol or drug use, and pilot incapacitation (Craig, 2001). Among them, fatigue was 

regarded as the most influential physiological factor of aviation accident. Fatigue is an 

expected and ubiquitous aspect of life, and can be resolved with a nap or by stopping the 

activity that caused the fatigue. However, if the person is involved in critical safety 

activities such as operating a motor vehicle, piloting an aircraft, performing surgery, or 

running a nuclear reactor, the consequences of fatigue can be disastrous. 

Fatigue was defined as, ―a condition characterized by increased discomfort with 

lessened capacity to respond to stimulation, and is usually accompanied by a feeling of 

weariness and tiredness‖ (Salazar, 2007, p.1).  Causes of fatigue range from boredom to 

circadian rhythm disruption to heavy physical exertion (Caldwell & LeDuc, 1988; 

Caldwell, 2004). Symptoms of fatigue include irritability, impatience, impaired 

communication and decision making, forgetfulness, increased reaction times, reduced 

attention, diminished memory, and withdrawn mood (Dinges, 1995; Taneja, 2007). 

Akerstedt (2000) indicated that fatigue is the largest identifiable and preventable 

cause of accidents in transport operations. A review of data from mishaps and hazard 
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reports between 1990 and 2008 showed that fatigue was the highest aeromedical causal 

factor in naval aviation (Figure 2.6; Davenport & Lee, 2007; Davenport, 2009). The 

NTSB also has cited fatigue as a significant contributing factor in aviation accidents, and 

has included it on their ―Most Wanted List‖ of actions needed by federal agencies 

(Galloway & Hanks, 2008). Accident statistics, reports from the pilots themselves, and 

operational flight studies all showed that fatigue is a growing concern within aviation 

operations (Caldwell, 2005). 

 
 

Figure 2.6 Aeromedical Causal Factors (Davenport, 2009) 

 

Decision Making Models 

 

People make decisions every day. Those decisions could be related to routine 

tasks, such as eating breakfast, or complex tasks, such as a pilot choosing an alternative 

airport when confronted with adverse weather conditions. Medin and Ross (1992) 
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asserted that decision making involves risk, and a good decision maker effectively 

assesses the risks associated with each option. In other words, decision making is to 

select one option from a number of alternatives while considering the risks involved with 

them. In making a decision, people use multiple strategies that depend on a wide variety 

of task demands (Castellan, Jr., 1993). 

The decision-making process generally can be represented in three phases: 

acquiring and perceiving relevant cues, generating and selecting situation assessments 

about the meaning of the cues, and planning and selecting choices based on the costs and 

values of different outcomes (Goh & Wiegmann, 2002b; Wickens et al., 2004). These 

three phases are similar to Endsley’s (1995a) dynamic decision-making process, in which 

the three phases are awareness of the situation, making the decision, and performance of 

the action (Figure 2.5). However, in each phase, limited human cognitive resources can 

bring out biases. 

In the first phase, primary cue and anchoring bias can occur. In general, pilots put 

more weight on the first cues they receive than cues that they receive later. This often 

leads pilots to anchor on situation assessment. In short, information processed early could 

be the most influential to pilots’ decision making. 

In the second phase, overconfidence can take place. Pilots tend to believe that 

they are correct more than they actually are, and they make decisions quickly. As a result, 

pilots might be less likely to prepare for the alternative choices in pre-flight planning and 

in-flight planning. 
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Finally, framing bias can happen in the action selection phase. Framing bias 

explains that a pilot makes a decision depending on, ―how the problem is represented and 

what frame is used to interpret the situation‖ (Goh & Wiegmann, 2002a, p. 818). A well-

known framing bias is sunk cost bias (Arkes & Hutzel, 2000). Sunk cost bias predicts that 

pilots who encounter adverse weather late in their flights will be more likely to continue 

flying than pilots who encounter adverse weather early, because people tend to incur 

greater risk when losses are involved; this is why sunk cost bias is also called escalated 

commitment bias (Bailey, III, et al., 2007). 

The decision making model can be categorized into the classical decision making 

model, the naturalistic decision making model, the information processing model, and the 

recognition-primed decision making model, which is a kind of naturalistic decision 

making model. 

 

Classical Decision Making Model 

 

The traditional approach to understanding individual decision making is the 

classical decision making model, which is also known as the rational economic model 

(Huczynski & Buchanan, 2001). This model assumes that a decision maker is completely 

rational and has available all the information needed, as well as all of the alternatives, and 

both are considered when making a decision. A decision maker will select the optimum 

choice through the following strictly-defined sequence of steps in the classical decision 

making model: problem identification, identification of objectives with respect to 
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problem, identification of alternative course of action, evaluation of alternatives, 

selection of the best alternative, and implementation (Figure 2.7; Heracleous, 1994). 

 
Figure 2.7 Classical Decision Making Model 

 

However, this model has several limitations to its use in the field. First, the 

classical decision making model is based on the assumptions that decision makers are 

objective and consider all the possible alternatives, which is quite unrealistic in practice 

(Li, 2008), because it may take too much time to consider all the alternatives. 
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Additionally, a decision maker’s emotions also may influence his behavior and choices 

(Barnes & Thagard, 1996). Second, this model does not consider the contextual factors, 

such as domain knowledge or experience in the decision-making process (Bailey, III, et 

al., 2007), which have been regarded as important human competence factors that can be 

acquired through training.  

 

Information Processing Model 

 

Wickens and Flach (1988) proposed an information processing model to explain 

the flow of information within the human brain (Figure 2.8). This four-stage model 

(Parasuraman et al., 2000) consists of short-term sensory store (STSS), perception, 

decision and response selection, and response execution stages. 

 

Figure 2.8 Information Processing Model (Wickens & Flach, 1988). 
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The STSS is a temporary mechanism for prolonging the representation of the raw 

stimulus evidence for a short period of time after the stimulus has terminated physically. 

It is pre-attentive stage and decays rapidly. Raw STSS relayed to the brain is then 

interpreted through the perception stage. Perception is the awareness of the elements 

through physical sensation, and includes the stimulus of the sensory organs through the 

identification of that stimulus. The decision and response selection stage is also known as 

the cognitive stage, and this determines the appropriate action. This stage generally 

requires greater time and attention when compared to the perception stage, because 

cognitive operations are carried out by working memory and long-term memory. 

Working memory is a system that must maintain information until its translation into 

action. Long-term memory is our storehouse of facts about the world and about how to do 

things. In the cognitive stage, processes begin to operate with the goal of determining the 

appropriate action. Finally, the response execution stage requires the coordination of the 

muscles for controlling motion to assure that the chosen goal is obtained correctly 

(Wickens & Hollands, 2000). 

 

Naturalistic Decision Making (NDM) Model 

 

The NDM model was first introduced in 1989, when researchers began to wonder 

how experienced people make decisions in natural environments or in simulations 

(Zsambok, 1997). Unlike the classical decision making model, the NDM model 

considered real-world settings that often are uncertain in regard to time constraints. For 

example, natural flight environments are mostly dynamic in their characteristics and 
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aeronautical decisions are made under time pressures and uncertain situations (Orasanu & 

Connolly, 1993). The NDM model asserts that decision makers rely on their experience 

to rapidly assess the situation, and generally do not consider all the alternatives and make 

their responses accordingly (Bailey, III, et al., 2007). This aspect makes the NDM model 

different from the classical decision making model. Kaempf and Orasanu (1997) 

concluded that situation assessment is important to make correct and timely decisions, 

and needs to be supported through decision aids and training. 

 

Recognition-primed Decision Making (RPD) Model 

 

Similar to the NDM model, Klein (1995) suggested a recognition-primed decision 

making (RPD) model to know how people, especially experts, make quick and effective 

decisions when faced with complex situations. In this model, the decision maker is 

assumed to generate a possible course of action, compare it to the constraints imposed by 

the situation, and select the first course of action that is not rejected (Klein, 1998). The 

RPD model highlights three aspects of operation settings: the quality of the decision 

maker’s situation assessment, his/her experience level, and the use of recognition rather 

than an analytical decision process (Mosier & Fischer, 2010). Thus, the RPD model 

explains that experts do not go through an exhaustive evaluation of all the possible 

solutions, but rather focus on shortcuts or workable options that produce fast results using 

their domain knowledge. Thus, according to the RPD model, the options that experts 

choose may not necessarily be the best option (Klein, 1995). 
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Experts also draw on a vast background of experience to avoid typical decision-

making bias (Wickens et al., 2004). On the contrary, non-experts rely on more deliberate 

decision-making processes, and go through exhaustive searches and comparisons of 

alternatives (Orasanu, 1997). For these reasons, the RPD model functions well under time 

pressure and when there is only partial information, and goals are poorly defined. 

Klein (1995) asserted that the RPD model, focused on situation assessment rather 

than deciding on one option, is superior to other decision making models. He also 

asserted that people use situation assessment to generate a possible course of action, and 

they use mental simulation to evaluate that course of action. 

The RPD model assumes that time pressure does not affect performance, because 

experts can use rapid pattern matching induced from past experience (Wickens et al., 

2004). Thus, the RPD model is used to explain expert pilots’ decision-making processes 

in naturalistic environments, and could be adopted to explain pilots’ weather-related 

decision making when considering the uncertainty and dynamic weather changes of 

flying environments. 

 

Decision Errors 

 

Pilot Decision Errors 

 

Aviation accident analysis showed that about half of the civil aviation accidents 

were attributed to pilots’ faulty decision making (Jensen, 1982). Driskill et al.’s (1997) 

study also suggested that pilots’ decision errors are one of the two most frequently cited 

causes of GA accidents. Pilots’ decision errors result from a variety of breakdowns, 
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biases, or tendencies in human information processing (i.e., faulty aerial situation 

assessments, aircraft status assessments, environment assessments), and they are more 

likely to produce fatalities in aviation (Wickens et al., 2005). 

Pilots’ decision making should be considered different from general decision 

making, because most pilots’ decisions are made in three-dimensional space under 

uncertainty and with time-constraints. To reduce pilots’ decision error, decision aid 

devices, such as GPS or navigation systems, have been developed and widely utilized 

among pilots. 

It can be assumed that a single-pilot operated GA flight might be more dangerous 

than a multi-crew operated GA flight. Considering most GA pilots flew without the 

presence of a co-pilot, it is important to know which factors cause a GA pilot’s decision 

errors, especially under adverse weather conditions. 

 

Weather-Related Decision Errors 

 

Weather decisions involve judgmental decisions, which are a knowledge-based 

activity as opposed to skill or rule-based activity (Giffin & Rockwell, 1987). Beringer 

and Ball (2004) conducted a study on how varied Next-Generation Radar (NEXRAD) 

weather display data resolution could affect a pilot’s visual performance data (how long 

he assessed the data), and the flight performance data (the distance to the severe weather, 

and the deferred decision time to continue the flight). The findings indicated that the 

high-resolution NEXRAD images are more likely to encourage pilots to navigate 

between adverse weather areas than the low-resolution NEXRAD images, which left 
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pilots with the expectation that they could fly around or between heavy precipitation 

areas. 

Ball (2008) assessed the impact of training and graphical weather display on GA 

pilots’ weather-related decisions. The training consisted of 38 pages of guidance of the 

proper usage of the Flight Information Systems Data Link. The weather display was 

presented with NEXRAD systems and the Meteorological Aerodrome Report (METAR). 

The NEXRAD is a network of Doppler weather radar systems and is provided by the 

National Weather Service (NWS), and METAR is the international standard code format 

for hourly surface weather observations. The author classified participants into tactical 

users and strategic users. Tactical users were those who attempted to fly to destinations 

through small holes in the storm, and strategic users were those who avoided hazardous 

weather by navigating at a safe distance. He measured a time to the initial/final decision 

at encountering the storm, the proximity to the storm, the number of weather inquiries, 

and the post-experiment ratings. The results implied that both training and graphical 

weather displays would enable pilots to make decisions sooner and maintain safe 

distances. 

 

Causal Factors 

 

Previous studies on the causes of weather-related GA accidents showed that 

frequently-cited individual causal factors are interior factors, such as knowledge, skills, 

experience, motivation, and personality, and exterior factors, such as flight planning and 

weather information (Table 1.2). Foushee and Helmreich (1988) also listed knowledge, 
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skill, attitude, personality characteristics, and physical states as individual factors that 

affect performance. 

Group causal factors of weather-related GA accidents have been studied by 

researchers as well. Baron (2011) conducted an empirical study on the effects of social 

pressure and team communication on GA pilots’ decision making to determine the group 

factors. However, only individual factors were considered in this study, because this 

study is focused on a single-pilot controlled cross-country GA. 

 

Knowledge 

 

To accurately diagnose the salient weather cues in the operational environment, 

weather knowledge is important (Wiggins & O’Hare, 2003b), and a lack of weather 

knowledge frequently has been cited as the cause of weather-related GA accidents. 

According to the situation assessment hypothesis, a lack of knowledge about weather 

conditions might cause GA pilots to risk entering into adverse weather conditions. 

Giffin and Rockwell (1987) conducted an empirical study using a computer aided 

weather test (CAWT), and found that the poor decision making group had low quiz 

scores in weather knowledge items. 

Wiggins and O’Hare (2003b) investigated the effect of cue-based weather training 

on the GA pilots’ perceived importance of weather cues and flight performance. The 

results showed that those who received weather training initiated a diversion at or before 

the optimal decision point during the flight when they encountered IMC. 

 

Skills 
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Although recently built airplanes are equipped with weather display radar such as 

NEXRAD, it does not provide real-time weather information (Bailey, III, et al., 2007) 

and sometimes may not function correctly. Additionally, pilots are expected to acquire 

weather recognition skills through weather decision-making training, to ensure a safe 

flight regardless of the flight type, because weather condition changes so dynamic and 

hard to predict during in-flight. Decision skills can be trained (Kaempf & Orasanu, 1997), 

and Hunter et al. (2000) developed a computer-based training program to improve pilots’ 

cue recognition skills in weather-related decision making. 

 

Experience 

 

Experience long has been known to have a positive relationship with pilots’ SA 

(Doanne et al., 2004; Endsley, 1999) and decision making (Beringer & Ball, 2004; 

Chamberlain & Latorella, 2001; Wiggins et al., 2002). In previous empirical studies, 

pilots were classified either experts or novices based on their total flight hours (Table 2.3; 

or cross-country flight hours (Table 2.3). 

In empirical studies, dealing with pilot weather decision making, however, 

classifying pilots based on cross-country flight experience was regarded more as 

representative of evaluating experience in decision-making tasks (O’Hare & Wiggins, 

2004; Wiggins et al., 2002), because pilots who flew only the local area may not have 

had many chances to make decisions when they encountered adverse weather, despite 

that their overall flight time may have been high. 
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Table 2.3 Classification of Pilots Based on Flight Experience 

 

Authors Classification Criteria 

Latorella & Chamberlain 

(2001) 
Low (135) – Medium (379) – High (738) 

Cross-Country 

Flight Hours 

Wiggins et al. 

(2002) 

Novice (less than 100) – Intermediate (100 

to 1000) – Expert ( more than 1000) 

Wiggins & O’Hare 

(2003a) 

Novice (less than 1000) – Expert (more than 

1000) 

Coyne et al. 

(2008) 

Novice (less than 1000) – Expert (more than 

1000) 

Wiggins & Henley 

(1997) 

Inexperienced (less than 300) – Experienced 

(more than 300) 

Overall Flight 

Hours 
Beringer & Schvaneldt 

(2002) 

Novice (less than 500) – Experienced (more 

than 500) 

Sawyer & Shappell 

(2009) 
Low(less than 500) – High (more than 500) 

 

In Wiggins and Henley’s (1997) study, notable differences in pre-flight decision 

making were found between experienced and inexperienced flight instructors as to 

whether to authorize a student pilot to conduct an initial, solo, and/or cross-country flight. 

The findings showed that the inexperienced flight instructors were more cautious than 

experienced instructors in decision making. Whereas the experienced flight instructors 

changed their decisions according to the accessibility of weather information, there were 

no changes among the inexperienced flight instructors. Goh and Wiegmann (2001a) also 

found that pilots with lower amounts of flying time made more VFR into IMC accidents. 
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However, some studies did not show a positive relationship between pilots’ 

experience and their decision making. Sawyer and Shappell (2009) measured a pilot’s 

decision accuracy and eye tracking data to learn the effects of experience and training on 

a pilot’s ability to identify adverse weather. Pilot situation assessment was measured in 

terms of an estimation of visibility, cloud ceilings, and decision accuracy, and the authors 

did not find a significant relationship between pilot experience and situation assessment. 

Beringer and Schvaneldt (2002) categorized expert and novice pilots using 1,000 

hours of overall flight experience as the criterion, and made them rate the important 

weather factors along phases of flight. Although there were no significant differences 

between their weather ratings, expert pilots tended to rate the majority of weather factors 

as more important than did the novice pilots. 

 

Motivation 

 

In general, motivation is related to behavior changes and the factors that direct the 

changes (Cantor et al., 1986). In aviation, the motivational approach asserts that a pilot 

continues the VFR flight into IMC because of misplaced motivation (Wiggins & O’Hare, 

2003b), such as social pressure or Get-home-itis. Thus, social pressure and time pressure 

can be included in the motivation category in Table 1.2. 

Social pressure has been shown to affect a pilot’s decision making (Goh & 

Wiegmann, 2001b). In their retrospective study, Goh and Wiegmann (2002a) found that 

around 55% of VFR into IMC GA accidents had passengers whereas the other 45% of 

GA accidents did not. Although the exact effect of passenger presence on a GA pilot’s 
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decision making is not clear, it is assumed that pilots may feel pressure to continue VFR 

flight into IMC so as not to disappoint the passengers aboard. 

The effect of time pressure on decision making is well known, too (Adams et al., 

2002; Beard & Given, 2005; Craig, 1998). Under severe time pressure, people tended to 

accelerate their processing (e.g., less time was spent per item of information acquired), 

selectively focus on a subset of the more important information, and change their patterns 

of processing in the direction of relatively more attribute-based processing. This general 

pattern of results is consistent with the simulator results, which suggested that an efficient 

strategy under severe time pressure would involve selective and attribute-based 

processing (Wickens et al., 1993). 

It is also possible that pilots are motivated to fly into adverse weather by seeing 

other pilots’ successes in taking off in adverse weather conditions. Beard and Geven 

(2005) termed this behavior as frequency gambling, and suggested it is one of a pilot’s 

frequent risky behaviors, to takeoff in adverse weather conditions. Frequency gambling 

refers to one’s expectant attitude of success in a risky situation. 

 

Personality 

 

One’s personality is relatively stable over time and consistent across situations 

(Chidester et al., 1991), and this could affect a pilot’s decision making (Loewenstein et 

al., 2001). McGrath (1964) suggested that individual factors such as skill, knowledge, 

and personality could affect group performance. Additionally, Helmreich (1986) explored 

the structure of men’s and women’s personality and found that personality is a valid 

performance determinant in a variety of environments. 
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Thus, personality has been regarded to affect pilots’ behavior, although the 

concept of accident proneness as a personality type has not been accepted widely (Hunter, 

2005; McKenna, 1988). However, together with motivation, personality is difficult to 

measure objectively. Knecht et al. (2005) measured the effects of visibility, cloud ceiling, 

incentive, and personality on a pilot’s willingness to takeoff in adverse weather. However, 

the findings showed that personality could not predict whether a pilot would fly into 

adverse weather or not. 

To assess how personality affects pilots’ risk-taking behavior, Holt et al. (1991) 

developed a new Hazard Attitude Scale (New-HAS), and Hunter (1995) developed the 

Aviation Safety Attitude Scale (ASAS). Hunter (2005) also compared several kinds of 

hazardous assessment tools (e.g., the ASAS, the Old Hazardous Attitude Scale [Old-

HAS], the New Hazardous Attitude Scale [New-HAS], the Situational Judgment Test 

[SJT], the Thrill and Adventure Seeking Scale, the Locus of Control [LOC], the Risk 

Perception and Tolerance, and the Hazardous Event Scale [HES]), and found that the 

Likert-scale assessment tools (New-HAS) showed superiority to the previous ipsative 

scale (Old-HAS). 

 

Flight Planning 

 

Previous aviation accident analysis studies revealed that a lack of pre-flight 

procedures have been related to the VFR into IMC GA accidents (Sawyer & Shappell, 

2009; Wiegmann et al., 2008). Knecht (2008a) conducted interviews with 221 GA pilots 

across five states in the United States, and investigated the pilots’ weather information 

usage patterns. The author measured the time that participants spent in pre-flight planning, 
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and found that many GA pilots preferred convenient, simple, and comprehensive forms 

of weather information (e.g., METARS) to understand and acquire needed weather 

information in their pre-flight briefing stage. 

 

Weather Information 

 

There have been studies conducted as to how the type and format of weather 

information display would affect pilots’ situation assessment, but they did not show how 

the displayed information actually reduced pilot’s willingness to continue VFR flight into 

IMC. 

Latorella and Chamberlain (2001) classified GA pilots into three groups 

according to their cross-country flight experience, and presented them with three weather 

cues separately: VMC, IMC, and Graphical Weather Information System (GWIS)-

augmented IMC. They found that participants who were faced with the VMC and GWIS-

augmented IMC display had better confidence ratings, perceived performance, and 

information sufficiency than those who were faced with the IMC display. This study 

emphasized the benefits of the graphical weather information display to improve pilots’ 

situation awareness. 

Bustamante et al. (2005) examined the relationship between pilots’ SA and trust 

in weather systems when they fly in adverse weather. The authors showed participants 

static images of the onboard weather radar and static images of NEXRAD. As expected, 

participants’ trust significantly increased when the weather information in the two 

sources coincided. 
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Bliss et al. (2005)’s study showed similar results. The authors conducted a 

simulated study with 24 pilots to examine how weather display agreements affect a flight 

crew’s weather deviation decision accuracy. These authors combined a captain and a first 

officer as one team, and showed them the onboard weather display and NEXRAD. Using 

a questionnaire, the authors measured the team’s deviation accuracy, deviation 

confidence, and overall decision confidence. The results showed that a team’s confidence 

level and deviation decisions were highest when both weather display systems were in 

agreement, which indicated the importance of flight display redundancy (Selcon et al., 

1995) and agreement. 

Bailey, III, et al. (2007) conducted an empirical study to assess pilots’ decision 

confidence as a function of distance, display agreement, communication, leadership, and 

experience. Participants were presented with a real-time on-board weather system and a 

delayed NEXRAD weather system. The results showed that pilots’ decision confidence 

was high when there were display agreements between the weather display systems. Also, 

pilots tended to commit sunk cost bias when the outcome was uncertain or the weather 

update was not outstanding. 

Thus, the weather information display might be better to provide real-time 

weather information in an integrated and redundant way if there are additional weather 

displays to support the pilot’s decision. Also, providing an auditory display when the 

weather severity reaches a certain level might be a good way to prevent VFR only 

qualified pilots from continuing flying in IMC. Finally, the weather information might be 
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better displayed in a simple and comprehensive form to reduce pilot workload, because 

pilots may make decisions in an uncertain and time-constrained flying environment. 

 

Causal Hypotheses 

 

Situation Assessment 

 

Together with pilots’ situation awareness (SA) studies, studies have been 

conducted regarding pilots’ situation assessment (Fracker, 1988; Gaba et al., 1995; 

Wiegmann et al., 2002) and weather assessment (Coyne et al., 2008; Wiggins et al., 

1995). Although SA and situation assessment concepts are different, those concepts often 

have been used interchangeably. Whereas SA refers to an operator’s understanding of a 

situation as a whole, which forms a basis for decision making (Endsley, 1995), situation 

assessment is referred to as problem recognition in the cognitive process model (Gaba et 

al., 1995; Patterson, 2009), and emphasizes the operator’s understanding of a current state. 

According to the situation assessment hypothesis, pilots fly into adverse weather 

because they do not know they are doing so, or fail to recognize the severity of the 

weather (Coyne et al., 2008; Goh & Wiegmann, 2002a; Pauley et al., 2008). The situation 

assessment hypothesis also proposes experience as a key factor in diagnosing adverse 

weather. This is in accordance with Klein’s (1995) RPD model, which asserts that 

experienced decision makers can find and identify good options better than those less-

experienced decision makers when under time pressure and ambiguous conditions 

(Burian et al., 2000). Previous weather-related pilot decision error studies were successful 
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in correlating pilot experience with the NDM model or the RPD model (Bailey et al., 

2007). 

Wiggins et al. (1995) examined the relationship between pilot self-assessment and 

performance. They divided forty one participants into three groups according to their 

total cross-country flight hours (Table 2.2), and used a self-assessment questionnaire to 

measure pilots’ skill, judgment rating, and willingness to take risks. The findings 

indicated that the inexperienced pilots were influenced by a combination of both their 

self-perceived ability and their risk taking behavior. Goh and Wiegmann (2002a) 

analyzed accident data from between 1990 and 1997, and found that there is a significant 

relationship between the type of aviation accidents and pilot certifications. About 70% of 

pilots who committed VFR-IMC accidents had only a private license, whereas 42% of 

pilots who were involved in other GA accidents had commercial certifications. However, 

not all studies showed a positive relationship between pilot experience and situation 

assessment. 

Unlike the previous accident analysis study (Goh & Wiegmann, 2002a), 

Wiegmann et al.’s (2002) empirical study did not find a positive relationship between 

pilots’ experience and their situation assessments (estimates of visibility and cloud 

ceilings) for the short-flying group, and negative correlations were found between the 

pilots’ experience and the time and distance that the pilots flew into adverse weather for 

the long-flying group. The authors examined the relationship between pilots’ situation 

assessment and flight experience, and studied how the location at which a pilot 

encounters adverse weather could affect the pilot’s decision to continue the VFR flight 
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into IMC. The results showed that there was no significant relationship between the 

pilot’s situation assessment (estimation of visibility and cloud ceiling) and flight 

experience for the short-flying group, but negative correlations were found for the long-

flying group. Thus, the exact role that experience plays in a pilot’s decision to continue or 

divert the flight was not revealed. Instead, they found that the location at which a pilot 

encountered adverse weather could affect the pilot’s decision to continue the flight or not. 

Coyne et al.’s (2008) study showed similar results. The authors investigated a 

pilot’s ability to estimate the ceiling and visibility in a VFR flight into IMC. The results 

showed that instrument-rated pilots did not estimate the ceiling and visibility better than 

non-instrument-rated pilots. On the contrary, non-instrument-rated pilots outperformed 

instrument-rated pilots in estimating the visibility, and there were no significant 

differences between the two groups in estimating the ceiling. Although these authors tried 

to adopt the situation assessment hypothesis, they failed to examine the hypothesis. 

While the same situation assessment hypothesis was considered, it can be seen 

that the results from accident analysis studies and empirical studies were different. Part of 

this result might be that the concept of situation assessment was not defined clearly in the 

previous studies. Situation assessment is knowing the current situation, and does not 

include a prediction of the future situation. In adverse weather conditions, pilots’ 

situation assessments may include weather assessments and risk assessments. 

Orasanu and Fischer (1997) measured GA pilots’ situation assessment in a similar 

manner. The authors measured a commercial pilot’s three major decisions while he was 

conducting a missed approach due to bad weather. The three decisions were: a go-no go 
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decision, the selection of an alternate airport, and a coordination of the flap and gear 

extension procedures due to hydraulic failure during the final approach. 

The best way to increase situation assessment or situation awareness is training 

(Gaba et al., 1995), and the salient cue is related to high level of SA (Endsley, 1999). 

Thus, Wiggins and O’Hare (2003b) developed the cue-based training program, 

WeatherWise, to enhance pilots’ weather-decision making. The validity of the program 

proved helpful in timely decision making to divert when pilots were confronted with 

adverse weather. 

 

Risk Assessment 

 

Pilots may correctly assess the weather conditions, but incorrectly determine the 

potential risks associated with the weather conditions. Risk assessment is defined as a 

structured process to estimate the likelihood and severity of all risks (Coleman & Marks, 

1999; Latorella & Prabhu, 2000), and poor risk assessment is a leading factor that causes 

poor decision making (Hunter, 2002b; Molesworth et al., 2006). In the aviation domain, 

risk assessment means an understanding of the risks associated with flying in adverse 

weather conditions. Risk assessment includes the processes of risk perception and risk 

tolerance, and can be measured by the Hazardous Event Scale (HES; Hunter, 2002a), 

personal weather minimums (Hunter, 1995), and the Aviation Safety Attitude Scale 

(ASAS; Hunter, 2002a; Pauley et al., 2008). 

Risk perception involves the ability to detect, perceive, and assess the risk 

associated with a situation or a traffic hazard (Hunter, 2002b), and can be influenced by 
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personal experience and ability (Goh and Wiegmann, 2001b). Risk perception can be 

measured by the number of incidents and hazardous events a pilot reports using the HES. 

Risk tolerance relates to the amount of risk an individual is willing to accept in a 

situation (Hunter, 2002b), and can be measured using personal minimums and attitudes 

toward flying (Hunter, 1995). Other factors that area associated with risk assessment are 

overconfidence and violation. Violation is a willful disregard of established rules, and can 

increase the probability or error and the likelihood that the error results in a negative error 

(Reason et al., 1998). Pilots occasionally violate flight rules because they are 

overconfident and think they have less of a chance of encountering bad weather, and they 

do not fully assess the associated risks when continuing VFR flights into IMC. Goh and 

Wiegmann (2002a) examined the causes of GA accidents associated with VFR flights 

into IMC using the NTSB statistic data, and found that around 76% of the VFR flights 

into IMC accidents were involved with the pilot’s intentional flight into adverse weather. 

O’Hare (1990) conducted a questionnaire study with 44 licensed pilots using 

Aeronautical Risk Judgment Questionnaire (ARJQ), and found that young and currently-

active GA pilots were most likely to take the marginal VFR flight. He also found that 

they showed a low level of risk awareness as well as high optimistic self-appraisals of 

their abilities and judgment (Hunter, 2002b; Goh & Wiegmann, 2001b). Similarly, 

Hunter (2006) measured 630 GA pilots’ risk perceptions using a response scale of one 

(low risk) to 100 (high risk), and found that participants who rated higher self-confidence 

and risky behavior tended to assess their situations as less risky. 



58 

Wiggins et al. (1995) examined the relationship between three levels of 

experience (inexperienced, intermediate, and experienced pilots) and pilot self-perceived 

risk-taking behavior, pilot judgment, and aeronautical ability. Participants rated their own 

skills and judgment in comparison to other pilots of similar experience. Although the 

authors failed to find main effects across the three factors, they found significant 

interaction effects from inexperienced pilots between self-perceived abilities and their 

risk-taking behaviors. The results also indicated that inexperienced pilots are more likely 

to be influenced by their risk-taking behaviors than their abilities. 

 

Decision Framing 

 

Minsky (1975, p.246) defined a frame as, a ―collection of questions for 

representing a stereotyped situation.‖ and asserted that there are some kinds of 

information related to each frame. He explained that some information is related to how 

to use the frame, while other information is about what one can expect to happen next, 

and still other information is related to what to do if expectations are not confirmed. 

In summary, pilots’ decision making depends on how the problem is represented, 

and what frame is used to interpret the situation (Goh & Wiegmann, 2002a). For example, 

if pilots frame their decisions in terms of gains in a continued VFR flight into IMC, they 

are prone to continue flying to the adverse weather. Similarly, when pilots frame their 

decisions in terms of losses or put priority in safety, they are more likely to divert early in 

an adverse weather condition. Prospective theory (Kahneman & Tversky, 1984), one of 

the risky decision making models, also asserts that a person chooses either a risky or safe 

action depending on how he/she frames an option (as a gain or loss), and also on ―the 
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norms, habits, and personal characteristics of the decision maker‖ (p. 341). A well-known 

decision framing bias is sunk cost bias /effect (Arkes & Hutzel, 2000). 

 

Sunk Cost Effect 

 

Sunk cost explains that pilots who have flown further are motivated to continue 

flying to the destination, despite adverse weather conditions, because they might have 

spent more time and money to get there. Batt and O’Hare (2005) examined 491 weather-

related GA occurrences from data drawn from the Australian aviation accidents and 

incidents of the Australian Transport Safety Bureau (ATSB), and divided occurrences 

into VFR into IMC, precautionary landing, and weather avoidance groups. The authors 

found that the VFR into IMC occurrences group showed an increasing tendency to 

continue flying as they flew closer to the destination. This result was in contrast with the 

weather avoidance group, whose portion of weather-related GA occurrences was highest 

in the early flight. 

 

Decision Confidence 

 

Good situation assessment is important to make good decisions. However, good 

situation assessment itself is not sufficient for making a good decision (Artman, 2000). 

Decision confidence plays an important role in the decision-making processes that guide 

our everyday activities (Griffin & Tversky, 1992; Lichacz & Farrell, 2005), and is found 

to be a valid predictor of recognition (Costermans et al., 1992). 

Wiggins and O’Hare (2003a) showed 577 pilots 10 randomly-selected weather 

pictures taken in the air, and then asked them to choose whether they would continue the 
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VFR flight or not. Pilots accessed the questionnaire through the Internet, and expert pilots 

showed higher confidence levels than novice pilots. 

However, Goh and Wiegmann (2002b) found different results. Using pre-

experimental questionnaires, the authors asked pilots to rate how good they were at 

monitoring, recognizing, diagnosing, generating, and implementing solutions when 

compared with average GA pilots. The results showed that experienced pilots rated 

themselves better at recognizing problems and implementing solutions than average GA 

pilots, but they did not feel more confident in diagnosing the underlying causes of the 

problems. Experienced pilots also were conservative in their self-perceptions of their 

diagnostic skills, which suggest that confidence in diagnosing situations does not 

necessarily come with more flight experience, and should be enhanced within flight 

training curricula. 

O’Hare (1989)’s study showed similar results. The author recruited 18 licensed 

pilots and asked them to conduct a cross-country flight task while referring to weather 

information. Participants rated their risk-taking behaviors, skill, and judgment after the 

experiment. The author found that the more confident pilots were willing to accept higher 

risk levels than the less confident pilots. 

 

Pilot Decision Making Training 

 

Aeronautical Decision Making (ADM) Training 

 

Telfer (1986) conducted an empirical study with 20 student pilots using the 

Australian Pilot Judgment Training (PJT) materials. He divided participants into three 
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groups: experimental (trained with manual and special instruction), academic (trained 

with manual), and control groups (no training). Participants conducted pre and post-

written tests of manuals, followed by a flight simulation test. The written test results 

showed that there were no significant differences in knowledge among each group.  

However, in the flight simulation test, the experimental and academic groups 

outperformed the control group in overcoming hazards and interferences. Overall, the use 

of the Australian PJT materials from the beginning of the flight training was regarded as 

essential for pilot judgment training. Nevertheless, there are some limitations in 

Australian PJT study (Telfer, 1989). First, there was a delay in completing the material 

between each group. Because participants were not divided into each group randomly, 

participants’ motivation to finish the materials was different in each group. Such 

differences in motivation caused a performance difference among groups. Second, the 

validity of the PJT program was not examined, because no construction testing had been 

done to examine the effectiveness of this training program. 

Adams and Thompson (1987) asserted that judgment errors are the major causal 

factors of aircraft mishaps, and developed an ADM manual to improve helicopter pilots’ 

decision making. The authors found that pilots who received ADM training showed 

better performance than control groups. However, the ADM manual had never been 

tested for its effectiveness on reducing pilots’ decision errors. Jensen et al. (1987) found 

that instrument pilots who receiving aeronautical decision making training showed 

reduced pilot error rates. 
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WeatherWise 

 

Previous aviation accident analysis studies revealed that weather comprised the 

highest portion of fatalities in GA accidents (AOPA, 2008), and continued VFR flight 

into IMC was the main cause of fatalities among weather-related GA accidents (Batt & 

O’Hare, 2005; Wiggins, 1999). Currently, the FAA has 17 documents that cover weather-

related topics, but VFR into IMC is dealt with in only a few of these documents 

(Wiegmann et al., 2008). Thus, there has been an increasing need to develop a GA pilot 

weather decision-making training program to reduce weather-related accidents. 

Various stressors (i.e., time pressure, noise, ambiguity, etc.) during the flight can 

narrow a pilot’s attention field by systematically reducing the cue utilization range (Hiel 

& Mervielde, 2007). Thus, recognizing a weather cue appropriately is vital in order for a 

pilot to make a correct decision. For this purpose, Drs. Hunter, Wiggins, and O’Hare 

(2000) developed WeatherWise, a computer-based training program, to improve pilot 

weather cue recognition skills. WeatherWise was produced by the Federal Aviation 

Administration (FAA) and the Office of Aerospace Medicine for the Aviation Safety 

Program of the Flight Standards Service with the assistance of the Ohio State University, 

the University of Western Sydney, the University of Otago, and King Schools (Sawyer, 

2009). WeatherWise was approved by the FAA for free public use. As WeatherWise was 

produced and distributed in the form of a CD, pilots can acquire weather cue recognition 

skills without the help of an instructor. WeatherWise is easy to install and does not 

require a flight simulator to use. 
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WeatherWise is composed of three parts: the WEATHER TO FLY, the DECIDE 

TO FLY, and the TAKE A FLIGHT. In the WEATHER TO FLY section, a user is asked 

to rate the given weather condition as either above or below the minimum requirements 

for VFR flight. This test is to alert a user as to how he/she is not clearly aware of the 

differences between VFR and IFR conditions. At the end of the section, the program 

shows the score for the total correct answers, but does not show which answers were 

correct. Then, WeatherWise provides a list of weather cues, such as cloud base, visibility, 

cloud coloring, cloud density, terrain clearance, rain showers, and cloud type, and briefly 

explains how each cue can be recognized in a given image. After that, the program asks a 

user to find weather cues that are present in the image. Once answers are submitted, the 

program provides feedback as to the actual features present and the correct decision to 

make. 

The DECIDE TO FLY is composed of accident investigation, diverting during 

flight, and a summary. The program asks a user to identify factors that might lead to the 

aircraft’s accident in the scenario. Then, WeatherWise asks a user to choose one 

alternative airport to divert to among three alternative airports, and asks why the user 

chose that airport. It aims to tell a user how difficult it is for a pilot to make a weather-

related decision during flight. Once the answers are submitted, the program provides 

feedback about the correct alternative airport and reasons for that selection. 

Finally, in the TAKE A FLIGHT section, a user completes a flight with the given 

flight scenario by seeing short video clips simulating a series of flights from a departing 

airport to the destination airport in Australia. The weather was VFR on departure, and a 
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user is expected a smooth flight. Among the five flight stages, a user is asked to choose 

one stage in which to divert, and one alternative airport (Figure 2.9). Once a decision to 

divert has been made, the user will land at the alternative airport, and feedback about 

divert decision to divert is provided. At the end of the program, WeatherWise provides 

the total points for decision timing out of 100, and for the decision option of the 

alternative airport out of 100. Thus, a user can learn his score after the training. The GA 

pilots are required to score at least 80 out of 100 in each category, and it takes around 20 

minutes to finish the training program. 

 

Figure 2.9 Screenshot of WeatherWise 

 

Wiggins and O’Hare (2003b) examined the validity of the WeatherWise program 

through self-report assessments and performance assessments. These authors categorized 

the decision points into five stages, and asked participants to fly VFR into IMC and divert 

at the optimal decision point. The participants were composed of 66 licensed pilots who 

had accumulated less than 150 hours of cross-country flight experience. The result 

showed that those who were trained with the WeatherWise training program recognized 
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more weather cues, and tended to use those weather cues during flight. They also showed 

better performance in finding the divert stage than the control group. The results 

indicated that the WeatherWise can be helpful for novice pilots to build up weather cue 

recognition skills. However, there was no significant increase of an expert pilot’s flight 

performance, which indicated that WeatherWise may not be so helpful for the expert pilot. 

 

Computer-Aided Weather Test (CAWT) 

 

The CAWT is a computer-aided weather testing software developed from a 

process model (Rockwell & Giffin, 1987). It is composed of four elements: the pilot’s 

biographical questionnaire, a simulated flight involving weather information acquisition 

and decision making, a computer-aided debriefing, and a computer-presented quiz about 

pilot knowledge and judgment of weather (Giffin & Rockwell, 1984). Quiz questions 

were generated from publications such as How to Obtain a Good Weather Briefing 

(FAA-P-87840-30A), Aviation Weather (FAA and NWS AC-00-6), and Weather Flying 

(Buck, 1970). 

Giffin and Rockwell (1987) conducted an empirical study with 454 pilots about 

the value of computer aided testing, CAWT, and found that pilots who had fewer cross-

country hours, fewer IFR ratings, fewer average number of weather inquiries, and lower 

quiz scores had poor weather information-seeking strategies. The authors suggested the 

use of different weather scenarios to examine the validity of the software, and the 

development of a training module to improve the pilot’s weather information search and 

decision behavior. 
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Human Competency Model 

 

Many factors have been suggested as causes of weather-related GA accidents in 

Table 1.2. Among them, knowledge, skills, and attitudes are components of human 

competencies and have been known to be important components in training (Salas et al., 

2000). However, a focus on some factors does not necessarily affect pilots’ overall 

decision making. Previous studies showed that knowledge and skills do not necessarily 

change people’s behavior (Feuerstein et al., 2004). McClellend (1971) asserted that 

knowledge and skills generally are easy to train because they are located in the outer 

layer of the human competence model. Inner competence factors, such as personality 

traits, attitude, and motivation are hard to train, because they are hard to measure and are 

affected easily by specific situations and environments (Figure 2.10). However, they also 

have been known to be the causal factors of weather-related GA accidents (Table 1.2). 

The WeatherWise program focused on developing weather knowledge and the 

weather cue-recognition skills of pilots to improve their weather decision-making 

abilities, but do not consider overall human competence factors that affect performance. 

Cantor et al. (1986) asserted the effect of motivation, and suggested that motivation 

cannot be fully understood without considering the self-concept: people’s understanding 

on themselves. Thus, future weather decision-making training programs might do better 

to consider all human competence factors to maximize their training effects. 
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Figure 2.10 Structure of Human Competence Model (Kim, 2002) 

 

Flight Simulator 

 

Benefits of Simulation Studies 

 

Human factors engineers analyze and interact with people, the work environment, 

and technology systems. Simulation is a commonly deployed method for the study and 

analysis of human behavior (Drury, 2005; Laughery, 2005) in complex environments 

such as aviation (Dahlstrom et al., 2009; Sarter et al., 2007), driving (Lee et al., 2007), 

and healthcare (Gardiner et al., 1998; Thompson et al., 2004), to name a few. Simulations 

allow all participants to experience the same set of controlled tasks and conditions, and 

make it possible to collect performance data in simulated environments that may be occur 

only rarely in the real world. Thus, a flight simulator has been used to train pilots and to 

measure their performance and workloads because it can provide high degrees of realism 

in the environment with no more than minimal risk (Bradley & Abelson, 1995). 
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However, simulation studies have their limitations as well. For example, a desk 

top flight simulator provides sufficient visual cues, but auditory cues and motion cues are 

not sufficient to influence the vestibular system. Additionally, delayed visual feedback 

and a lack of aerodynamic force transmission lower the reality of flying compared to an 

in-cockpit study. Simulation fidelity also may influence pilots’ decision-making training, 

although previous studies asserted that there are no significant differences between using 

a high-fidelity simulation and a low-fidelity simulation. Nevertheless, there are more 

strengths than limitations in simulations, and many studies have been conducted using a 

simulator. 

 

Applications of Flight Simulator to Assess Pilot Behavior 

 

Flight simulator has been used for pilot training because it can provide high 

degrees of realism in the environment (Bradley & Abelson, 1995) as well as experimental 

control (Chidester et al., 1991). 

Molesworth et al. (2006) suggested that interactions with hazards during 

simulated flight training could increase pilots’ situation assessments and eventually 

develop decision making. In either immersive high-fidelity simulations or lower-fidelity 

simulations, flight simulators provide methodological benefits for research and training. 

Dahlstrom and Nahlinder (2009) investigated the mental workloads of civil 

aviation pilots using physiological measures, including heart rates and eye movements, 

and subjective measures. The results showed that there were no significant differences in 

heart rates and mental workloads between the simulator flights and aircraft flights. This 
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would hold true in this study, as the type of aircraft used will be GA. The motion cues, 

which were regarded as critical factors in military aircrafts, almost can be overcome by 

providing frequent visuals of moving environments (Bradley & Abelson, 1995). 

However, in weather decision-making training, the fidelity of simulation is not 

negligible, in that pilots clearly should recognize weather cues such as the visibility, 

ceiling, and cloud movement upon seeing the display. If the displayed weather 

information does not provide a moderate level of fidelity, a pilot may have difficulty in 

correctly assessing the weather and making a decision in a gradually aggravating weather 

conditions. 
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CHAPTER THREE 

METHODS 

 

 

Participants 

 

A total of 40 GA pilots participated in this study. They were recruited from local 

flight club, flight schools, and airports in Upstate South Carolina throughout 

advertisement (Appendix A). They were divided randomly into one of two groups of 20: 

a WeatherWise training group, and a control group. The control group received fatigue 

training as a non-weather-related training. Table 3.1 provides the details of 40 

participants’ demographic and flight experience information. 

 

Table 3.1 Participants’ Demographic and Flight Experience Information 

 
 

 Age 
 

 

Total flight  

hours 

 

 

Last 90 days  

flight hours 

 

 

Total cross  

country flight  

hours 

 

Last 90 days 

cross country 

flight hours 

 M SD  M SD  M SD  M SD  M SD 

WeatherWise 

group 
 41.8 14.9  1708.5 3144.2  27.7 31.8  866.5 2191.9  13.8 15.6 

Control 

group 
 45.7 17.0  2537.2 3260.6  20.3 26.8  1474.8 2789.2  12.4 19.8 

Total  43.8 15.9  2122.9 3189.3  24.0 29.3  1170.7 2495.1  13.1 17.6 

 

Thirty eight pilots were male, and two were female pilots. Twenty six pilots got 

married, and 14 were single. Pilots’ ages ranged from 20 to 78 years, with an average of 

17 years of flight experience. Pilots’ total flight time ranged from 53 to 13,000 hours 

(Mean: 2123, SD: 3189). Thirty of them were IFR-qualified, and 10 were VFR-only 
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qualified pilots. Pilots were classified to either experienced or inexperienced pilots based 

on their total cross-country flight hours (Table 2.2; cut-off 500 hours), and 15 were 

experienced pilots and 25 were inexperienced pilots. On average, the control group was 

slightly older and had slightly less recent flight experience than the WeatherWise training 

group although the mean of the control group’s total flight hours and total cross-country 

flight hours were higher than the WeatherWise training group (Table 3.1). There were no 

significant differences in age (F (1, 38) = 0.58, p = 0.45), and flight experiences (F (1, 38) 

= 1.19, p = 0.29) between the two groups. 

 

Apparatus 

 

All experimental data were collected in the Human Factors Laboratory on the 

Clemson University campus (Figure 3.1). A desktop computer with a flat-panel display 

and a projector were used to run the experiment. The desktop computer is a Dell OptiPlex 

745, with a 2.4 GHz Intel dual-core processor and 3,072 MB RAM. The addition of extra 

RAM and an updated video card, the GeForce 8500, were added to support the high-

resolution settings used in the X-Plane 9 flight simulation program developed by Laminar 

Research Inc. A 17‖ Dell monitor was used to view the instrument panel. A Panasonic 

PT-FW300 projector was used to project a large image of the cockpit view in front of the 

pilot, and the size of the projected image will be 98.5" * 62", with a resolution of 

1,280*2,048 pixels. 
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Figure 3.1 Human Factors Laboratory Flight Simulator 

 

The X-Plane program has add-ons that can be adapted for either home use for the 

PC-gamer, or as a high-tech training tool for pilot certification. In this study, the home 

version was used, with the addition of a yoke equipped with a throttle, mixture controls, 

and rudder pedals to interact with the flight simulation program. The X-Plane has 

advanced capabilities to design and manipulate flight scenarios, and used widely 

throughout flight simulation studies. The program allowed for the collection of flight 

parameters (e.g., altitude, time traveled, distance traveled, airspeed, etc.), and 

programmed weather conditions were plugged in to ensure that the weather specifications 

of the scenario could be enacted as designed. 
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The specifications used in the weather scenario in this study (Table 3.2) were 

created with the assistance of meteorologists, and the weather was gradually aggravated 

as participant approaches to the destination airport (KLKU). 

WeatherWise, the CD-ROM weather-training product sponsored by the FAA, was 

used as the weather-training program, and Garmin GPS (GNS 430) was installed to the 

flight simulator to help pilots navigate to the destination airport. 

 

Table 3.2 Airport and Weather Information 

Airport 

ID 
Wind Visibility Ceiling 

Weather  

Category 
Distance ETA 

KCKB 180/10 KT 10 SM SCT 10.0 M’ VFR ---- ---- 

KEKN 180/20 KT 6 SM SCT 8.0 M’ VFR 31 NM :17 

W99 180/20 KT 5 SM BKN 6.0 M’ MVFR 54 NM :30 

KVBW 180/20 KT 4 SM BKN 5.0 M’ MVFR 82 NM :45 

KCHO 180/20 KT 2 SM BKN 4.0 M’ IFR 109 NM 1:00 

KLKU 180/15 KT 1 SM 
BKN 3.0 M’ 

OVC 1.0 M’ 
LIFR 132 NM 1:12 

 

Hypotheses 

 

Although Wiggins and O’Hare (2003b) and Saywer and Shappell (2009) 

investigated the effects of weather training on pilots’ decision making, their studies were 

not conducted using flight simulators, nor were there any significant differences in 

decision accuracy between expert and novice pilots. However, according to the situation 

assessment hypothesis, expert pilots showed higher situation assessment abilities than 
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novice pilots, and training was regarded as the best method to increase their situation 

assessments. Thus, it is expected that the WeatherWise training would improve pilots’ 

situation assessments (i.e., weather assessments, risk assessments), and eventually their 

tactical decision making (i.e., decision accuracy, decision confidence) in gradually 

aggravating weather conditions. To meet the purposes, the following hypotheses were 

tested by this study: 

 

Hypothesis 1: The WeatherWise training group will estimate the visibility better than the 

 control group. 

Hypothesis 2: The WeatherWise training group will estimate the ceiling better than the  

control group. 

Hypothesis 3: The WeatherWise training group will estimate the weather condition better 

than the control group. 

Hypothesis 4: The WeatherWise training group will assess risks better than the control  

group. 

Hypothesis 5: The WeatherWise training group will be more confident in their decisions  

to divert than the control group. 

Hypothesis 6: The WeatherWise training group will divert at or before the IMC more  

often than the control group. 

Hypothesis 7: There will be a positive relationship between pilots’ situation assessments  

and tactical decision making. 
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Experimental Design 

 

This study used a single factor between-subjects design. The independent 

variables were two levels of weather decision-making training (i.e., the WeatherWise 

training and the fatigue training). The dependent variables were pilot’s situation 

assessment and tactical decision making. Pilot situation assessments were composed of 

weather assessment and risk assessment, and were measured using the post-experiment 

questionnaire. The post-experiment questionnaire was designed by modifying previous 

studies (Hunter, 1995; Knecht, 2008b; Shappell et al., 2010) to increase study validity. 

Weather assessment questions were composed of participants’ estimations of the 

visibility, ceiling, and weather condition (e.g., VFR, MVFR, IFR, and LIFR). Weather 

assessment was measured by calculating the visibility proportional error (VPE; Coyne et 

al., 2008), ceiling proportional error (CPE; Coyne et al., 2008), and weather condition 

estimation frequency. The CPE was computed as [(Estimated ceiling-Actual 

ceiling)/Actual ceiling]. Similarly, the VPE was computed as [(Estimated visibility-

Actual visibility)/Actual visibility]. Negative values of CPE and VPE indicate that a 

ceiling estimation is below the actual depicted ceiling, and visibility estimation is below 

the actual depicted visibility. The CPE and VPE data were analyzed using a single factor 

analysis of variance (ANOVA). 

Risk assessment was conducted in terms of risk perception and risk tolerance 

using the Hazardous Event Scale (HES; Hunter, 1995), personal minimums, and the 

Aviation Safety Attitude Scale (ASAS; Hunter, 1995). The validity of these 

questionnaires was examined by Hunter in 2006. Risk assessment questions are 
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composed of previous hazard accidents or events, personal weather minimums for VFR 

local and cross-country flights, and pilots’ attitudes toward flying. 

Using the flight simulation program and post-experiment questionnaire, tactical 

decision making was evaluated in terms of decision accuracy and decision confidence. 

Decision accuracy was evaluated by measuring the proximity from an actual divert point 

to an optimal divert point. Decision confidence question represented participants’ 

confidence levels in making divert decision, and was measured by the subjective rating 

method by asking participants assess themselves on a scale ranging from zero (not at all 

confident) to 100 (extremely confident). Subjective rating scales have been frequently 

used to measure participants’ workload or decision making because they are easy to 

administer, and have high face validity (Bustamante et al., 2005; Weirwille & Eggemeier, 

1993). 

 

Procedures 

 

Participants were briefed on the study upon arrival in the laboratory. They were 

told that the purpose of the study was to understand GA pilot behavior during cross-

country flight. They signed a consent form (Appendix B), and filled out a background 

questionnaire (Appendix C). The questionnaire included demographic information and 

flight experience such as total flight time, recent three month flight time, cross-country 

flight time, certificate, license, etc. Then, participants were divided randomly into two 

groups: the WeatherWise training group and the control group. The WeatherWise 

training group went through the WeatherWise program using the desktop computer in the 
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lab. The control group did not receive any weather-related training, but watched an 

aviation-related video file from the Internet (Physiology of Flight: fatigue in aviation, 

2010) using the desktop computer in the lab. In both groups, the training session lasted 

approximately 20 minutes. 

Prior to the real experiment, participants flew a short practice flight to familiarize 

themselves with the flight controls and dynamics of the simulator, and the cockpit 

displays they would use during the cross-country flight. There was no time limitation in 

practice flight. 

Participants were provided with a weather briefing (Appendix D), sectional chart, 

the Cessna 172 owner’s manual, the Cessna flight computer, a navigation log, and the 

relevant weather information (Terminal Aerodrome Forecasts (TAFs), METARS, and 

Temporary Flight Restrictions (TFRs)). 

Then, participants were given instruction about the detail flight procedures. They 

were told that the aircraft (Cessna 172) was not certified for instrument flight, and they 

were the pilot in command and had to be aware of possible aircraft mechanical failures, 

weather changes, rising terrains, and other aircraft throughout the flight. When 

participants were ready to fly, they flew a simulated VFR solo cross-country flight from 

the North Central West Virginia Airport (KCKB) to the Louisa County/ Freeman Field 

Airport (KLKU), as long as they deemed they did not violate the VFR in a gradually 

deteriorating weather condition. 

The flight path distance was around 132 nautical miles, and consisted of a route 

with six points along it (KCKB, KEKN, W99, KVBW, KCHO, and KLKU) where 
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weather deteriorated. This deterioration included decreased visibility, cloud ceiling, and a 

terrain that crossed over several points of higher elevation (Figure 3.2). 

 

Figure 3.2 Screenshot of Simulated Cross-Country Flight 
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As shown in Figure 3.3, the rising terrain occurred early into the flight (around 

30NM), and continued until marginal conditions encountered. 

 
 

Figure 3.3 Sectional Chart of Flight Path (fltplan.com) 

 

The visibility and cloud ceiling specifications of six points along the flight path 

can be found in Table 3.2, which details the progression from visually clear to instrument 

conditions. The weather conditions around the departing airport, KCKB, indicated high 

visibility and cloud ceiling, in contrast to the area around the destination airport, KLKU, 

which exhibited severely deteriorated visibility and a lowered cloud ceiling. 

The cross-country flight is either an IFR or VFR flight, for which the distance to 

the nearest airport is more than 20 nautical miles (Wiggins et al., 1995). Participants were 
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allowed to maintain a cruise speed of 110 knots indicated air speed (KIAS) and altitude 

range between 6,000’ mean sea level (MSL) and 8,000’ MSL. It took approximately 

twenty minutes to get in MVMC, and forty minutes to get in IMC, and this period 

allowed for ample time for the pilot to become accustomed to the aircraft prior to 

experiencing any adverse weather. 

When participants encountered IMC, they were allowed to make a divert turn to 

an alternative airport. The study was terminated immediately when the pilot either began 

to divert to an alternative airport, lost control of the aircraft, or crashed on the terrain. 

Then, participants went through the post-experiment questionnaire (Appendix F), 

received compensation of 50 dollars for their participation, and were debriefed. The 

amount of time required for the study was about 90 minutes, and the study results were 

saved for later analysis of situation assessment and tactical decision making. 
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CHAPTER FOUR 

RESULTS 

 

 

To evaluate the effects of weather training on pilots’ situation assessments and 

tactical decision making in gradually aggravating weather conditions, the following 

hypotheses were tested by this study: 

 

Hypothesis 1: The WeatherWise training group will estimate the visibility better than the 

 control group. 

Hypothesis 2: The WeatherWise training group will estimate the ceiling better than the  

control group. 

Hypothesis 3: The WeatherWise training group will estimate the weather condition better 

than the control group. 

Hypothesis 4: The WeatherWise training group will assess risks better than the control  

group. 

Hypothesis 5: The WeatherWise training group will be more confident in their decisions  

to divert than the control group. 

Hypothesis 6: The WeatherWise training group will divert at or before the IMC more  

often than the control group. 

Hypothesis 7: There will be a positive relationship between pilots’ situation assessments  

and tactical decision making. 
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Situation Assessment 

 

Weather Assessment 

 

Estimation of Visibility 

 

Participants were asked to estimate the visibility when they were confronted with 

adverse weather conditions. The visibility is the greatest distance at which an object can 

be seen, and is reported as status mile (SM) (ICAO, 2002). The visibility proportional 

error (VPE) was computed as [(Estimated visibility - Actual visibility) / Actual visibility] 

and analyzed using a single factor ANOVA (Coyne et al., 2008). The results showed that 

there were no significant differences in the estimation of visibility between the two 

groups, F (1, 38) = 0.79, p = 0.38 (Figure 4.1). Interestingly, the VPEs of 36 participants 

out of 40 were negative, which indicated that most participants underestimated the 

visibility (visibility was higher than participants estimated). 

 
Figure 4.1 Main Effect of Training on Visibility Estimation 

Note: Negative values of VPE indicate that visibility was higher than participants estimated. Error bars 

reflect the standard error of the mean. 
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Estimation of Ceiling 

 

Participants were also asked to estimate the ceiling when they would like to 

discontinue the flight. The ceiling is the lowest layer of clouds and is reported as above 

ground level (AGL). Similarly, the ceiling proportional error (CPE) was computed as 

[(Estimated ceiling - Actual ceiling) / Actual ceiling] and analyzed using a single factor 

ANOVA (Coyne et al., 2008). Actual ceiling was computed as [programmed ceiling 

height – terrain height] to calculate in AGL. Unlike the negative values of the VPE, the 

CPE of 32 participants out of 40 was positive, which indicated that most participants 

overestimated the ceiling (ceiling was lower than participants estimated). In addition, the 

WeatherWise training group showed better ceiling estimation accuracy than the control 

group, and there were significant effects of training on the estimation of ceiling between 

the two groups, F (1, 38) = 4.65, p = 0.03 (Figure 4.2). 

 
Figure 4.2 Main Effect of Training on Ceiling Estimation 

Note: Positive values of CPE indicate that ceiling was lower than participants estimated. Error bars  

reflect the standard error of the mean. 
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Estimation of Weather Condition 

 

Finally, participants were asked to estimate the weather conditions (e.g., VFR, 

MVFR, IFR, LIFR) when they were confronted with adverse weather conditions. The 

Mann-Whitney U test was used as a nonparametric method because participants’ weather 

condition estimations were ordinal (rank-ordering) data. The purpose of this test was to 

examine whether there were significant differences in the medians of weather condition 

estimation between the control group and the WeatherWise training group. The findings 

indicated that there were no significant differences in the medians of weather condition 

estimation between the two groups (the Mann-Whitney       = 161.5, nonsignificant, see 

Appendix G for calculation). Frequency analysis on the weather condition estimation of 

the control group and the WeatherWise training group are presented in Figure 4.3. 

 

Figure 4.3 Frequency Analysis on Weather Condition Estimation 

Note: There was no response for LIFR among the WeatherWise training group, and no response for VFR 

among the control group. 
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The weather assessments of the seven outlier participants in each group (Figure 

4.4) were compared to see whether there were distinct differences in the estimation of 

visibility, ceiling, and weather conditions due to weather training. The findings again 

showed that here were no significant differences in the estimation of visibility (F (1, 12) 

= 1.19, p = 0.29) and estimation of weather conditions (the Mann-Whitney       = 10.5, 

nonsignificant, see Appendix G for calculation), but there were significant differences in 

the estimation of ceiling (F (1, 12) = 9.22, p = 0.01) between the two groups. 

 

Figure 4.4 Outlier Participants’ Divert Points 

 

In summary, the WeatherWise training group and the control group were not 

significantly different in the estimation of visibility and weather conditions. However, 
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there were significant differences in the estimation of ceiling between the two groups. 

Furthermore, the comparison of seven outlier participants in each group clearly showed 

that the control group tended to overestimate the ceiling whereas the WeatherWise 

training group tended to underestimate the ceiling (Figure 4.5). It can also be seen that 

the WeatherWise training group showed higher ceiling estimation accuracy than the 

control group. 

 

Figure 4.5 Main Effect of Training on Ceiling Estimation of Outlier Participants 

Note: Positive values of CPE indicated that ceiling was lower than participants estimated, and negative 

values of CPE indicated that ceiling was higher than participants estimated. 

 

Risk Assessment 

 

Risk Perception 

 

Participants’ risk assessment was measured in terms of risk perception and risk 
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incidents and hazardous events a pilot reported (Hazardous Event Scale: Hunter, 2002a). 

The HES is a ten-item scale, and has a possible range of 0 to 21. Higher scores indicated 

that the participants had experienced more hazardous events (Hunter, 2005). 

There were no significant differences in the risk perception between the control 

group (Mean: 7.65, SD: 4.27) and the WeatherWise training group (Mean: 7.85, SD: 

6.60), F (1, 38) = 0.01, p = 0.91). The mean numbers of hazardous events between the 

two groups are presented in Figure 4.6. 

  

Figure 4.6 Mean Numbers of Hazardous Events 

 

Risk Tolerance 

 

Risk tolerance is the amount of risk an individual is willing to accept in a specific 

situation (Hunter, 2002b), and was measured using personal minimums and the Aviation 

Safety Attitude Scale (ASAS; Hunter, 1995). 
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Personal minimums represent participants’ visibility and ceiling minimums, and 

the percentage of the common practices under which they would fly. Thus, when the 

given scenario ceiling was lower than their ceiling minimum or the visibility was less 

than this minimum, participants would not continue flying. The results showed that there 

were no significant differences in the weather minimums and common practices between 

the two groups (Figures 4.7 to 4.10; see Appendix H for calculation). Table 4.1 

summarizes the details of personal minimums of the control group and the WeatherWise 

training group. 

 

Table 4.1 Personal Minimums 

 Personal Minimums 

Visibility (SM) Ceiling (Feet) Common Practices (%) 

Control group 

7.14 

2.23 

3487.5 

772.1 

74.21 

23.89 

WeatherWise 

training group 

7.10 

2.012 

3437.5 

912.3 

80.33 

24.75 

Note: Upper values represent mean, and lower values represent standard deviation. 
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Figure 4.7 Personal Visibility Minimums 

 

 

Figure 4.8 Personal Ceiling Minimums 
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Figure 4.9 Percentages of Common Practices in a VFR Local Flight 

 

 

Figure 4.10 Percentages of Common Practices in a Cross-Country Local Flight 
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ASAS represents pilots’ attitudes about flying and consists of questions regarding 

weather, the risks encountered in aviation, the likelihood of experiencing an accident, and 

self-perceived skill (Hunter, 2005). The ASAS is a 27-item scale, and response choices 

range from 1(strongly disagree) to 5 (strongly agree). Higher scores indicated that the 

participants had safer attitudes toward flight. 

The findings showed that there were no significant differences in the ASAS 

response between the control group (Mean: 2.86, SD: 0.94) and the WeatherWise training 

group (Mean: 2.91, SD: 0.94), F (1, 52) = 0.04, p = 0.85 (Figure 4.11). 

 

Figure 4.11 Mean Responses of Aviation Safety Attitude Scale 

 

Overall, the personal minimum and ASAS analyses showed that there were no 

significant differences in the risk tolerance between the control group and the 

WeatherWise training group although the WeatherWise training group was more 

conservative toward flying into adverse weather conditions than the control group. 
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Tactical Decision Making 

 

Decision Accuracy 

 

In this study, four weather conditions were deployed along the flight path, which 

passed by six airports (KCKB, KEKN, W99, KVBW, KCHO, and KLKU) (Figure 4.12). 

The weather conditions were chosen in order to simulate gradually worsening weather 

conditions: VFR (blue circled area), MVFR (red circled area), IFR (green circled area), 

and LIFR (purple circled area). 

 

Figure 4.12 Weather Conditions along the Flight Path 

 

Pilot tactical decision making is in-flight judgment and was evaluated in terms of 

decision accuracy and decision confidence. Decision accuracy was evaluated by 
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measuring the distance that a pilot has flown from an optimal divert point to an actual 

divert point, and the distance that a pilot has flown into adverse weather conditions. A 

coordinate distance calculator was used to measure the distance. An optimal divert point 

was judged by three expert pilots, who chose stage #10 out of 15 screenshots of divert 

points along the flight path (Figure 4.13; see Appendix I for 15 screenshots of divert 

points along the flight path). 

 

Figure 4.13 Participants’ Divert Points 
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In Figure 4.13, green dots represent divert points of the WeatherWise training 

group, red dots represent divert points of the control group, and yellow dots represent 15 

screenshots of weather conditions along the flight path. 

The distances between the optimal divert point and the actual divert point were 

not statistically significant, but approached significance, F (1, 38) = 3.43, p = 0.07 

(Figure 4.14). 

 

Figure 4.14 Main Effects of Training on Decision Accuracy 

Note: Decision accuracy represents the distance between an optimal divert point and an actual divert point. 
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there was significant main effect of training between the WeatherWise training group and 

the control group, F (1, 38) = 13.04, p = 0.001. As can be seen from Figure 4.15, the 
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training group (Mean: 26.62, SD: 9.47) when they encountered adverse weather 

conditions.  

 

Figure 4.15 Main Effects of Training on Distances Flying into Adverse Weather 

 

Decision Confidence 

 

The decision confidence represents participants’ confidence levels in making the 

divert decision. It was measured using a subjective rating method by asking participants 

assess themselves on a scale ranging from zero (not at all confident) to 100 (extremely 

confident). 

The findings showed that the confidence level of the control group was higher 

than the WeatherWise training group. However, there was no significant difference in 

decision confidence between the two groups (Figure 4.16), F (1, 38) = 1.79, p = 0.19. 
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Figure 4.16 Main Effects of Training on Decision Confidence 

 

When compared in terms of their flight experience, (Table 2.2; cut-off 500 hours 

of cross-country flight), however, the expert group showed significantly higher decision 

confidence than the novice group (Figure 4.17), F (1, 38) = 9.13, p = 0.004. 

 

Figure 4.17 Main Effects of Flight Experience on Decision Confidence 
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CHAPTER FIVE 

 

DISCUSSION 

 

 

The purpose of this study is to evaluate the effects of weather recognition training 

on GA pilots’ situation assessment and tactical decision making under gradually 

worsening weather conditions. The discussions are composed of pilot situation 

assessment, tactical decision making, significance and academic contribution of the study. 

The tests for seven hypotheses are also discussed. 

 

Situation Assessment 

 

Pilot situation assessment is a pilot’s understanding of a current flight state and 

was evaluated in this study in terms of weather assessment and risk assessment. 

Participants’ weather assessment was measured in terms of the estimation of visibility, 

ceiling, and weather conditions. One of the hypotheses was that the WeatherWise training 

group would estimate the visibility, ceiling, and weather conditions better than the control 

group. Tests of the hypotheses showed that the estimation of visibility and weather 

conditions of the WeatherWise training group was not better statistically than the control 

group; however, there was a significant main effect of training on the ceiling estimation 

between the two groups. Overall, there were no statistical differences in the weather 

assessment abilities between the WeatherWise training group and the control group. 

The results indicated that pilots may have difficulties in estimating weather 

conditions correctly, and that they often consider multiple factors when estimating 
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weather conditions. This finding is consistent with Knecht et al.’s (2003) results. The 

authors investigated the effects of visibility, ceiling, and financial incentives on pilots’ 

decisions to take off in marginal weather conditions. There were no significant 

differences for the separate main effect (i.e., visibility, ceiling, and financial incentive), 

but there were significant differences in the interaction effect between visibility and 

ceiling, which implied that pilots might make weather-related decisions based on the 

simultaneous consideration of multiple factors. Similarly, Coyne et al. (2008) 

investigated pilots’ ability to estimate the visibility and ceiling in a VFR into IMC 

scenario. They found that pilots tended to overestimate the ceiling, and this trend 

increased as visibility increased. The authors asserted that an interaction effect of 

visibility and ceiling might impact a pilot’s weather condition estimation. 

The weather assessment findings in this study were contrary to Wiegmann et al.’s 

(2002) findings. In their study, there were no differences in the ceiling assessment, but 

there were differences in the visibility assessment between the ―continue group‖ (pilots 

who chose to continue the flight after encountering the adverse weather) and the ―divert 

group‖ (pilots who chose to divert the flight after encountering the adverse weather). As 

expected, the continue group was less accurate in estimating visibility than the divert 

group. 

In this study, the visibility and ceiling were initially designed as VFR conditions, 

but the rising terrain that occurred about 16 minutes into the flight might have influenced 

the participants’ estimation of ceiling more than visibility. As a result, the perceived 
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ceiling height as measured by AGL might be lowered, and this could enable participants 

to underestimate the weather condition as MVFR when it was actually VFR. 

While pilot weather estimation as measured by visibility and weather condition 

revealed no difference between the two groups, the findings did suggest that the 

WeatherWise training might be helpful for GA pilots to enhance ceiling estimation ability 

when they encountered adverse weather conditions. The comparison of seven outlier 

participants in each group clearly showed that the WeatherWise training group showed 

higher ceiling estimation accuracy than the control group. Furthermore, the control group 

overestimated the ceiling, whereas the WeatherWise training group underestimated the 

ceiling. This indicates that WeatherWise was successful in enabling pilots to make safer 

weather-related decisions. Considering that GA-controlled flight into terrain (CFIT) 

accidents account for 17 percent of all GA fatalities (FAA, 2003), it should be noted that 

the WeatherWise training might be helpful to reduce CFIT accidents that occur when a 

pilot tries to continue flight beneath a low ceiling and hits an obstacle or terrain. 

Risk assessment was measured in terms of risk perception and risk tolerance. As 

expected, there were no significant differences in the risk perception between the two 

groups because participants were randomly divided into the WeatherWise training group 

and the control group. Unlike the questionnaire studies with more than 400 participants 

(Hunter, 2001; 2006), it was difficult to find significant differences in the number of 

accidents between two groups of 20 participants in this empirical study. Specifically, 

accidents are relatively rare events and any differences between the groups were unlikely 

to have occurred because of sample size and power. 
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Risk tolerance was measured by personal minimums and aviation safety attitude 

scale. Although there was no statistical difference in the risk tolerance between the two 

groups, there was a tendency for the WeatherWise training group to be more conservative 

than the control group in terms of higher visibility minimums and percentages of 

common practices. Thus, the hypothesis that the WeatherWise training group would 

assess risks better than the control group was not supported, the WeatherWise training 

group was slightly more conservative. 

These findings were in line with Knecht et al.’s (2005) study. The authors 

measured the effects of visibility, cloud ceiling, incentive, and personality on a pilot’s 

willingness to takeoff in adverse weather. The findings indicated that personality could 

not predict whether a pilot would fly in adverse weather or not. 

To summarize, the WeatherWise training group exhibited higher weather 

assessment with regard to ceiling estimation than the control group: however, there were 

no statistical differences in the risk assessment between the two groups. 

 

Tactical Decision Making 

 

Pilot tactical decision making was evaluated in terms of decision accuracy and 

decision confidence. The findings showed that the distance from an optimal divert point 

to an actual divert point, as judged by three experienced pilots, between the two groups 

was not statistically different. However, when compared with the flown distances into 

adverse weather, significant differences were found between the two groups. Given that 
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the WeatherWise training group would divert at or before the IMC more often than the 

control group, this hypothesis was supported. 

This result was in accordance with Sawyer and Shappell’s (2009) study. The 

authors showed pilot participants 10 randomly ordered weather images and asked them 

whether they would continue flying in the weather condition in the images. Participants 

then completed the WeatherWise training program and were asked the same questions 

again with randomly ordered weather images. There were no significant differences in 

the decision accuracy between pilot groups, but all groups showed a significant shift in 

bias, with pilots becoming more conservative (i.e., tended to view weather as more 

adverse and would not fly into it) after receiving training. This suggests that while 

weather training did not necessarily make pilots more accurate in their weather 

assessment, it was effective in making pilots more conservative/safer in their weather-

related decision making. 

In this study, the confidence level of the control group was higher than the 

WeatherWise training group, but the differences were not significant. Therefore, the 

hypothesis that the WeatherWise training group would be more confident in their 

decisions to divert than the control group was not supported. Notably, however, when 

flight experience was considered, decision confidence of the expert group was 

significantly higher than that of the control group. 

Although the hypothesis on participants’ decision confidence between the two 

groups was not supported, the results indicated that the decision confidence data is still 

reliable because expert pilots generally show higher confidence levels than novice pilots 
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(Goh & Wiegmann, 2002b; Wiggins & O’Hare, 2003a). In Goh & Wiegmann’s (2002b) 

study, for example, the authors asked pilot participants to rate how good they were at 

making VFR into IMC decisions during a dynamic simulation of a cross-country flight. 

The results suggested that the experienced pilots were more confident in recognizing 

problems and generating and implementing solutions than the inexperienced group. 

To summarize, the WeatherWise training group demonstrated better decision 

accuracy as measured by the flown distance into adverse weather conditions than the 

control group. However, there were no significant differences in decision confidence 

between the two groups. 

 

Significance and Academic Contribution 

 

This study clarified the concept of pilot situation assessment and tactical decision 

making and comprehensively evaluated the effects of weather training on pilots in an 

empirical study. In general, situation assessment is referred to as problem recognition in 

the cognitive process model (Gaba et al., 1995; Patterson, 2009). In this study, pilot 

situation assessment was defined as a pilot’s understanding of a current flight state and 

was evaluated in terms of weather assessment and risk assessment. In previous studies, 

the concept of situation assessment was used interchangeably with situation awareness 

(Fracker, 1988), decision accuracy (Sawyer & Shappell, 2009), and self-assessment of 

the weather conditions (Wiggins & O’Hare, 2003b; Wiegmann et al., 2002) and was 

often measured only from weather assessment. Because poor weather assessment was the 

major causal factor that led to the GA Aviation Safety Reporting System (ASRS) report 
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(Beard & Geven, 2005), there is no doubt that weather assessment must be considered. 

However, the risks associated with flying into adverse weather should also be considered 

to measure pilot situation assessment (Wiggins et al., 1995) because even though pilots 

correctly assess the weather conditions, they may incorrectly determine the potential risks 

associated with the weather conditions. In addition, although inner competence factors 

such as personality traits, attitude, and motivation are hard to train and measure 

(McClellend, 1971), they also have been known to be the causal factors of weather-

related GA accidents (Table 1.2). In contrast, pilot tactical decision making is in-flight 

judgment, and was evaluated in terms of decision accuracy and decision confidence. 

Another important finding was that pilots’ thinking and attitude might be 

disconnected when they encountered adverse weather. In this study, the control group 

flew farther into adverse weather and showed lower decision accuracy than the 

WeatherWise training group (Figure 4.4; Figure 4.5). This may have been because the 

control group overestimated the weather conditions more than the WeatherWise training 

group. However, in the post-experiment questionnaire, the control group tended to 

underestimate the weather conditions whereas the WeatherWise training group tended to 

overestimate the weather conditions (Figure 4.3). 

The disagreement between participants’ thinking (situation assessment) and 

attitude (tactical decision making) is known from a previous study (Endsley, 2000). For 

example, it is entirely possible that a pilot thoroughly understands the weather condition, 

yet makes inappropriate decisions (i.e., penetrates a hole between clouds to fly the 
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shortest path). When a pilot is exposed to a dynamic environment, this trend can be more 

frequently found. 

Another possible reason for this disagreement might be the lack of experience or 

training. In this study, the WeatherWise training group received a one-time half hour 

computer-based training, which may not be sufficient to change their attitude because 

one’s attitude is relatively stable and consistent across situations (Chidester et al., 1991). 

To measure the effects of weather training thoroughly, the WeatherWise training group 

would need to replicate the training for a long period (e.g., 6 month) and then investigate 

whether there are significant differences in their risk taking behavior and decision 

confidence with the control group. 

It should also be noted that this study proceeded one step further to understand the 

effects of weather training on pilot weather decision making in a VFR into IMC. In 

previous studies, the weather conditions used in WeatherWise were clearly different in 

each stage; hence it was not clear whether the weather training program is effective in 

gradually worsening weather conditions (Wiggins & O’Hare, 2003b). In addition, pilots 

did not actually control the flight, but just saw the weather conditions presented either 

through static images (Ball, 2008; Sawyer & Shappell, 2009; Wiggins & O’Hare, 2003a) 

or short video clips (Coyne et al., 2008). Participants then chose an optimal divert point, 

which lacks the reality of flying, and may not represent the workload imposed on pilots. 

Thus, it is necessary to use a more ―real-world‖ simulation of VFR flight to understand 

the underlying effects of weather recognition training on GA pilot situation assessment 

and tactical decision making (Goh & Wiegmann, 2001b). 
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In this study, participants flew to the destination airport as long as they did not 

violate the VFR condition using the flight simulator. This is the latest study investigating 

the effects of weather training on pilots’ weather-related decision making. 
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CHAPTER SIX 

 

CONCLUSIONS 

 

 

This study explored how pilots’ situation assessment and tactical decision making 

were affected by weather recognition training when they were confronted with adverse 

weather conditions. The findings showed that the WeatherWise training group exhibited 

better weather assessment with regard to ceiling estimation and decision accuracy, as 

measured by flown distance into adverse weather conditions, than the control group, but 

there were no significant differences in the risk assessment and decision confidence 

between the two groups. However, the WeatherWise training group did demonstrate a 

conservative tendency toward flying into adverse weather conditions. 

Thus, it can be concluded that the weather training was somewhat effective in 

altering pilot situation assessment and tactical decision making when pilots encounter 

adverse weather conditions. 

The findings of this study also answered the research question whether pilots’ 

decision errors are associated with weather-related accidents. The findings of pilot 

tactical decision making showed a positive relationship between pilots’ decision errors 

and continued VFR into IMC in that flown distances of the control group were 

significantly longer than the WeatherWise training group in gradually worsening weather 

conditions in this study. 

This study also had limitations, the first of which was that a desktop flight 

simulator used in this study may not provide sufficient visual cues and simulation fidelity, 



107 

which might influence pilots’ weather assessment. In previous empirical studies using 

low-fidelity flight simulators (Coyne et al., 2008; Crognale & Krebs, 2008), pilots had 

difficulty in correctly assessing weather conditions. In this study, this limitation was 

partially overcome by projecting a large image of the cockpit view in front of the pilot. A 

second limitation was the short length of weather training period. Participants received a 

one-time half-hour weather training due to time and budget limitations, which may not be 

sufficient to change pilots’ attitude toward flying into adverse weather conditions. To 

fully investigate the effect of weather training, its the long term effects (e.g., 6 months) 

should be explored in the following study. 

The results of this study can be expanded not only to GA pilots but also to 

commercial airline pilots and military pilots for various reasons. First, all pilots are 

expected to acquire weather recognition skills and knowledge to ensure a safe flight, 

regardless of their flight types, because the nature of changing weather conditions is 

dynamic and hard to predict during the flight. Second, although those aircraft are 

generally well-equipped with weather display radar or navigation systems that include a 

weather map, they do not provide real-time weather information, and they sometimes 

malfunction. Finally, commercial airline pilots and military pilots are more prone to press 

into adverse weather conditions due to organizational culture, although the impact of 

resultant accidents is more tragic than GA accidents. 

In conclusion, it is expected that this study will be helpful for GA pilots to 

understand the effects of weather recognition training on weather decision-making, and 

eventually help them to assess a situation correctly and make a timely in-flight decision 
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when they encounter adverse weather conditions. This study described causal factors (e.g., 

skill, experience, and personality) and causal hypotheses (e.g., situation assessment, risk 

assessment) of weather-related accidents. Thus, it is believed that this study will help to 

establish a sound foundation for weather training programs and has the potential to 

reduce weather-related GA accidents by implementing weather recognition training 

during basic flight training courses as well as periodic qualification training courses. 
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Appendix A 

Participant Recruitment Flyer 
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Appendix B 

Informed Consent Form 

Information Concerning Participation in a Research Study 

Clemson University 

 

A study on the behaviors of general aviation pilots when fly a cross-country 

flight using a flight simulator 

 

Description of the Research and Your Participation 

 

You are invited to participate in a research study conducted by Dr. Scott Shappell and Mr. 

Chansik Kim. The purpose of this research is to understand the decision making of 

general aviation pilots when they fly a cross-country flight using a flight simulator. 

 

Experimental procedures 

 

You will be briefed on the study upon arrival in the laboratory. You will sign a consent 

form and will go through a background questionnaire. The questionnaire includes 

information such as age, total flight time, recent flight time, cross-country flight time, 

certificate, license, etc.  

 

Your will fly a Cessna 172 on a Visual flight rules (VFR) solo cross-country flight from 

the North Central West Virginia Airport (KCKB) to the Louisa County/ Freeman Field 

Airport (KLKU). You will then complete a post-experiment questionnaire, be 

compensated with fifty dollars for your participation, and debriefed. 

 

The amount of time required for your participation will be about one and half hours. 

 

Risks and Discomforts 

 

There are no known psychological risks associated with this research. However, there is a 

slight risk of low level of motion sickness due to the flight simulation. To minimize the 

potential risk of motion sickness, you are allowed to discontinue the experiment 

whenever you feel discomfort without any penalty. A debriefing will follow the study to 

respond to any questions or concerns you might have. In addition, this time can be used 

to determine the effect that the study had on you, and to deal with any problem that may 

arise. 
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Potential Benefits 

 

There are no known benefits to you that would result from your participation in this 

research apart from enhanced safety in overall general aviation. 

 

Incentives 

 

You will be compensated with fifty dollars for the participation in the study. 

 

Protection of Confidentiality 

 

We will do everything we can to protect your privacy. The captured data will be stored 

on a password-protected computer in the Industrial Engineering Department’s Human 

Computer Systems Laboratory (Freeman Hall 147). The survey questions will be kept in 

a locked cabinet. The documents will be accessible only to the principal investigator and 

co-investigators. Your identity will not be revealed in any publication that might result 

from this study. 

 

In rare cases, a research study will be evaluated by an oversight agency, such as the 

Clemson University Institutional Review Board or the federal Office for Human 

Research Protections, that would require that we share the information we collect from 

you. If this happens, the information would only be used to determine if we conducted 

this study properly and adequately protected your rights as a participant. 

 

Voluntary Participation 

 

Your participation in this research study is voluntary. You may choose not to participate 

and you may withdraw your consent to participate at any time. You will not be penalized 

in any way should you decide not to participate or to withdraw from this study. 

 

Contact Information 

 

If you have any questions or concerns about this study or if any problems arise, please 

contact Dr. Scott Shappell at (864)-656-4662 or Chansik Kim at (864)-784-3598 at 

Clemson University. If you have any questions or concerns about your rights as a 

research participant, please contact the Clemson University Office of Research 

Compliance (ORC) at 864-656-6460 or irb@clemson.edu. If you are outside of the 

Upstate South Carolina area, please use the ORC’s toll-free number, 866-297-3071. 

 

mailto:irb@clemson.edu
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Consent 

 

I have read this consent form and have been given the opportunity to ask questions. 

I give my consent to participate in this study. 

 

Participant’s signature: _________________________  Date: _________________ 

 

 

A copy of this consent form will be given to you. 
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Appendix C 

Pilot Background Questionnaire 

Subject ID #: 
 

Please fill out the following information to the best of your ability. This information will 

only be used to analyze data in this study. Any personal, identifying information that is 

collected will be kept confidential. Only your subject identification number should be 

included on this form. Your identity will not be revealed in any publication that might 

result from this study. 

 

I. Demographic Information 

1. Age                ________ 

2. Gender           Male □ / Female □ 

3. Marital status:   Married □ / Single □ / Other □ 

4. Primary occupation:               ___________          Full time □ / Part time □ 

5. Other current occupation(s): ___________          Full time □ / Part time □ 

6. When was the date of your last airman medical certificate?         ____________ 

7. What class of medical certificate do you currently hold?    I   /  II  /  III  /  None 

8. How many hours do you sleep in general? ________ 

9. How many hours did you sleep last night? ________ 

10. Did you take any kind of medicine during the last week? ____________ 

If yes, specify in detail.   ___________________________________ 
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II.  Flight Experience 

 
1. Place where you learned to fly (ex: Miami, FL)               ___________________ 

2. Which year did you receive your private pilot’s license? ________ 

3. What certificates and ratings do you currently hold? Check all that apply. 

 

Sport □ Airplane Single-Engine □ 

Recreational □ Airplane Multiengine □ 

Private □ Rotorcraft □ 

Commercial □ Balloon □ 

ATP □ Airship □ 

Instrument □ Glider □ 

Flight Insructor □ Powered Lift □ 

 

4. What type of aircraft do you typically fly? Please list primary and secondary aircrafts you 

have flown. 

Primary aircraft: Make / Model                        _____________ 

Primary aircraft: Hours of time in aircraft       _____________ (estimate) 

Secondary aircraft: Make / model                    _____________ 

Secondary aircraft: Hours of time in aircraft  _____________  (estimate) 
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II. Flight Experience (continued) 

 
5. Total flight hours:          ________ (estimate) 

6. Total VFR flight hours:  ________  

7. Total IFR flight hours:   ________ (if you are IFR qualified) 

8. Total cross-country flight hours:      ________ 

9. Total recent 3 months cross-country flight hours: ________  

10. Total recent 3 months flight hours: ________  

11. Did you have experience with flying a Cessna 172? If so, please list the approximate flight 

hours. ________________ 

12. Check which of the following categories best describe your current flying activities: 

Training □ Self-transport □ Agriculture/ aerial work □ 

Recreational □ Commercial □ Flights for hire □ 

 

13. Did you get any weather training before? If yes, specify in detail. 

_______________________________________________________________ 

14. Have you ever used X-Plane 9 flight simulation before? If so, how many hours? 

Yes  □                       No  □                      Number of hours ______  

15. Have you ever heard of the WeatherWise program before? 

Yes  □                       No  □ 

16. Have you viewed the WeatherWise CD or on-line training program? 

Yes  □                       No  □ 
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Appendix D 

Pre-Flight Weather Briefing 

Flight Weather Briefing 
Flight Path: KCKB (North Central West Virginia) – KLKU (Louisa County/ Freeman Field) 

ETD: 1:00EDT/ 1700Z 

ETA: 3:00EDT/ 1900Z 

 

Adverse Conditions:  

 

No current SIGMET/AIRMETs, PIREPs 

 

Synopsis:  

 

Surface Map 1:00EDT/1700Z 

 
 

Current Conditions:  

 
KCKB 081653Z 18010KT 10SM SCT100 05/M10 A2997 RMK AO2 

SLP120 T00540101   
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Area Forecast (FA) 
000 

FAUS41 KKCI 081653 

FA1W   

BOSC FA 081653 

SYNOPSIS AND VFR CLDS/WX 

SYNOPSIS VALID UNTIL 091200 

CLDS/WX VALID UNTIL 090600...OTLK VALID 090600-091200 

. 

SYNOPSIS...LOW PRES SYSTEM CNTRD OVR CNTRL CANADA COLD FRNT MVG TWD OH 

VLY.  HIGH PRES SYSTEM DOMNATG ESTRN SBRD. COLD FRNT FRCST ARV 09/12Z. 

. 

MD DE DC WV VA 

APLCNS WWD... 

  NRN HLF.. SCT050-070. WND S 10KT. 02Z BKN040. TOPS 120. WND S 10G15KT. 

OTLK...VFR. 

  SRN.. BKN090. TOPS 100. WND S 10G15KT. 02Z SCT-BKN090. TOPS 150. 

    OTLK...VFR. 

E OF APLCNS... 

  CSTL PLAINS.. 

    NRN HLF..SKC. WND S 7KT. OTLK...VFR. 

    SRN HLF..SCT-BKN090. TOPS 100. SCT -RA. WND S 10G20KT. OTLK...VFR. 

 

 

Visible Satellite Image: 12:30EDT/1630Z 

 
 

Destination Forecast:  

KLKU 081653Z 0816/0912 18015KT P2SM BKN035 

 TEMPO 0818/0820 4SM -RA OVC035 
 FM091100 22025G20KT 4SM BKN035 
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Winds Aloft:  

 

850 mb Chart: 

 
 

No current NOTAMS/TFRs 
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Appendix E 

Additional Pertinent Information to Use 

Additional Pertinent Information 

Permission to Use Data Collected in a Research Study 

Clemson University 

 

A study on the effects of weather recognition training on general aviation pilot situation 

assessment and tactical decision making when confronted with adverse weather 

conditions. 

 

Thank you for participating in this study. You were told at the beginning of the study that 

the purpose of this research is to understand the decision making of general aviation 

pilots when they fly a cross-country flight using a flight simulator. Now that you have 

completed your participation, we want to let you know that the true purpose of this study 

was to measure the effects of weather recognition training on general aviation pilot 

situation assessment and tactical decision making when confronted with adverse weather 

condition using a flight simulator. We did not tell you the true purpose of this study 

because it might have biased your performance. 

 

If you would like a copy of the results of the study once it is completed, you may contact 

Dr. Scott Shappell, the principal investigator, at hfes@clemson.edu or Mr. Chansik Kim, 

a co-investigator, at ckim@clemson.edu. 

 

Because we did not tell you the truth at the beginning of this study, you now have the 

option to have us destroy the data we just collected or you can give permission for us to 

keep your data and use it for research purposes.  Please initial below to indicate your 

choice. 

 

_______ You may not use the data collected from me. Please destroy all data 

collected from me immediately. 

 

_______ I give permission to have my data used in this research project. 

 

Please remember that some of your acquainted pilots also may be signed up for this study.  

If they knew this study is about weather decision making, that could negatively affect the 

results of this study, thereby wasting your time and ours.  Therefore, we would appreciate 

it if you would not share this additional information with others who may be participating 

in this study. 

 

Thank you again for your participation in this study! 

 

mailto:hfes@clemson.edu
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Appendix F 

Pilot Post-Experiment Questionnaire 

Subject ID #: 
 

Please fill out the following information to the best of your ability. This information will 

only be used to analyze data in this study. Any personal, identifying information that is 

collected will be kept confidential. Only your subject identification number should be 

included on this form. Your identity will not be revealed in any publication that might 

result from this study. 

 

I. Weather Assessment 

 

1. What do you estimate the visibility was when you made a divert decision?  _____ 

2. What do you estimate the ceiling was when you made a divert decision?     _____ 

3. What do you estimate the weather condition was when the program ended? 

VFR  □                  MVFR  □                   IFR  □                  MVFR  □ 

 

II.  Decision Confidence 

 

1. How confident were you in making your divert decision? Mark on the scale. 
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2. Risk Assessment 

This part is composed of critical aviation accidents (10), your personal minimums (34), 

and attitudes about flying (27). Please respond to below questions based on your 

previous flight experience. 

1. Critical Aviation Incidents 

 0 1 2 3 4 5 6+ 

1. How many aircraft accidents have you been in (as a 

flightcrew member)? 
□ □ □ □ □ □ □ 

2. How many times have you run so low on fuel (NOT 

because of equipment failures) that you were 

seriously concerned about making it to an airport 

before you ran out? 

□ □ □ □ □ □ □ 

3. How many times have you made a precautionary or 

forced landing as an airport other than your original 

destination? 

□ □ □ □ □ □ □ 

4. How many times have you made a precautionary or 

forced landing away from an airfield? 
□ □ □ □ □ □ □ 

5. How many times have you inadvertently stalled an 

aircraft? 
□ □ □ □ □ □ □ 

6. How many times have you become so disoriented 

that you had to land or call ATC for assistance in 

determining your location? 

□ □ □ □ □ □ □ 

7. How many times have you had a mechanical failure 

which jeopardized the safety of your flight? (i.e., nav 

failure while on a cross-country; engine quitting). 

□ □ □ □ □ □ □ 
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1. Critical Aviation Incidents (continued) 

 0 1 2 3 4 5 6+ 

8. How many times have you had an engine quit 

because of fuel starvation, either because you ran 

out of fuel or because of an improper pump or fuel 

tank selection? 

□ □ □ □ □ □ □ 

9. How many times have you flown into areas of 

instrument meteorological conditions, without an 

instrument rating or an instrument-qualified 

aircraft? 

□ □ □ □ □ □ □ 

10. How many times have you turned back or diverted 

to another airport because of bad weather while on 

a VFR flight? 

□ □ □ □ □ □ □ 
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2. When and how do you fly? 

If you wanted to make a VFR flight for some personal or business reason (not involving life 

or death), what are the minimum conditions under which you would begin that flight? 

Assume that you are flying from the airport you normally use and that these are the current 

conditions at the departure airport and along the route of flight for a cross-country flight and 

that your aircraft is not equipped for IFR operations. If the ceiling was lower than this value 

or the visibility was less than this value, you would not takeoff. 

 

Visibility (Miles) 

1 2 3 4 5 6 8 10 15 

11. A local (30 minute) day flight. □ □ □ □ □ □ □ □ □ 

12. A local (30 minute) night flight. □ □ □ □ □ □ □ □ □ 

13. A cross-country (200 mile) day flight. □ □ □ □ □ □ □ □ □ 

14. A cross-country (200 mile) night flight. □ □ □ □ □ □ □ □ □ 

 

 

Ceiling (Feet) 

1000 1500 2000 3000 4000 5000 

15. A local (30 minute) day flight. □ □ □ □ □ □ 

16. A local (30 minute) night flight. □ □ □ □ □ □ 

17. A cross-country (200 mile) day flight. □ □ □ □ □ □ 

18. A cross-country (200 mile) night flight. □ □ □ □ □ □ 
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2. When and how do you fly? (Continued) 

If you are making a VFR LOCAL FLIGHT in a general aviation aircraft (e.g., Cessna 172), 

what percentage of the time do you do the following? 

 
PERCENTAGE 

0 10 25 50 75 90 100 N/A 

19. I get a briefing on the weather before I takeoff. □ □ □ □ □ □ □ □ 

20. I top off and/or check my fuel before I takeoff. □ □ □ □ □ □ □ □ 

21. I compute my weight and balance before I 

takeoff. 
□ □ □ □ □ □ □ □ 

22. I perform a complete pre-flight inspection. □ □ □ □ □ □ □ □ 

23. I use a checklist for before-takeoff and before 

landing checks. 
□ □ □ □ □ □ □ □ 

24. I compute my expected fuel consumption 

before I takeoff. 
□ □ □ □ □ □ □ □ 

25. I file a flight plan. □ □ □ □ □ □ □ □ 

26. I request weather updates during flight. □ □ □ □ □ □ □ □ 

27. I fly under VFR above overcast cloud layers. □ □ □ □ □ □ □ □ 

28. I fly at less than 1000 feet AGL to maintain 

cloud clearance. 
□ □ □ □ □ □ □ □ 

29. I fly at less than 500 feet AGL to maintain 

cloud clearance. 
□ □ □ □ □ □ □ □ 

30. I verify my fuel consumption rate in flight. □ □ □ □ □ □ □ □ 

31. I use my shoulder harness. □ □ □ □ □ □ □ □ 
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2. When and how do you fly? (Continued) 

If you are making a VFR CROSS-COUNTRY FLIGHT in a general aviation aircraft (e.g., 

Cessna 172), what percentage of the time do you do the following? 

 
PERCENTAGE 

0 10 25 50 75 90 100 N/A 

32. I get a briefing on the weather before I 

takeoff. 
□ □ □ □ □ □ □ □ 

33. I top off and/or check my fuel tanks before I 

takeoff. 
□ □ □ □ □ □ □ □ 

34. I compute my weight and balance before I 

takeoff. 
□ □ □ □ □ □ □ □ 

35. I perform a complete pre-flight inspection. □ □ □ □ □ □ □ □ 

36. I use a checklist for before-takeoff and before-

landing checks. 
□ □ □ □ □ □ □ □ 

37. I compute my expected fuel consumption 

before I takeoff. 
□ □ □ □ □ □ □ □ 

38. I file a flight plan. □ □ □ □ □ □ □ □ 

39. I request weather updates for my route and 

destination during flight. 
□ □ □ □ □ □ □ □ 

40. I fly under VFR above overcast cloud layers. □ □ □ □ □ □ □ □ 

41. I fly at less than 1,000 feet AGL to maintain 

cloud clearance. 
□ □ □ □ □ □ □ □ 

42. I fly at less than 500 feet AGL to maintain 

cloud clearance. 
□ □ □ □ □ □ □ □ 

43. I verify my fuel consumption rate in flight. □ □ □ □ □ □ □ □ 

44. I use my shoulder harness. □ □ □ □ □ □ □ □ 
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3. Attitudes About Flying 

1: Strongly Disagree,  2: Disagree,  3: Neither agree nor disagree, 4: Agree,  5: Strongly Agree 

 
1 2 3 4 5 

SA A N D SD 

45. I would duck below minimums to get home. □ □ □ □ □ 

46. I am capable of instrument flight. □ □ □ □ □ 

47. I am a very careful pilot. □ □ □ □ □ 

48. I never feel stressed when flying. □ □ □ □ □ 

49. The rules controlling flying are much too strict. □ □ □ □ □ 

50. I am a very capable pilot. □ □ □ □ □ 

51. I am so careful that I will never have an accident. □ □ □ □ □ 

52. I am very skillful on controls. □ □ □ □ □ 

53. I know aviation procedures very well. □ □ □ □ □ 

54. I deal with stress very well. □ □ □ □ □ 

55. It is riskier to fly at night than during the day. □ □ □ □ □ 

56. Most of the time accidents are caused by things beyond the 

pilot’s control. 
□ □ □ □ □ 

57. I have a thorough knowledge of my aircraft. □ □ □ □ □ 

58. Aviation weather forecasts are usually accurate. □ □ □ □ □ 

59. I am a very cautious pilot. □ □ □ □ □ 

60. The pilot should have more control over how he/she flies. □ □ □ □ □ 

61. Usually your first response is the best response. □ □ □ □ □ 

62. I find it easy to understand the weather information I get 

before flights. 
□ □ □ □ □ 

63. You should decide quickly and then make adjustment later. □ □ □ □ □ 
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3. Attitudes About Flying (continued) 

1: Strongly Disagree,  2: Disagree,  3: Neither agree nor disagree,  4: Agree,  5: Strongly Agree 

 
1 2 3 4 5 

SA A N D SD 

64. It is very unlikely that a pilot of my ability would have an 

accident. 
□ □ □ □ □ 

65. I fly enough to maintain my proficiency. □ □ □ □ □ 

66. I know how to get help from ATC if I get into trouble. □ □ □ □ □ 

67. There are few situations I couldn’t get out of. □ □ □ □ □ 

68. If you don’t push yourself and the aircraft a little, you’ll 

never know what you could do. 
□ □ □ □ □ 

69. I often feel stressed when flying in or near weather. □ □ □ □ □ 

70. Sometimes you just have to depend on luck to get you 

through. 
□ □ □ □ □ 

71. Speed is more important than accuracy during an 

emergency. 
□ □ □ □ □ 
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Appendix G 

Weather Condition Estimation 

1. All the Participants 

Participant Estimated weather condition Assigned score Weather training Adjusted rank 

1 MVFR 2 No 16.5 

2 MVFR 2 Yes 16.5 

3 MVFR 2 Yes 16.5 

4 MVFR 2 No 16.5 

5 MVFR 2 No 16.5 

6 MVFR 2 Yes 16.5 

7 MVFR 2 Yes 16.5 

8 MVFR 2 No 16.5 

9 IFR 3 Yes 35.5 

10 MVFR 2 Yes 16.5 

11 LIFR 4 No 40 

12 MVFR 2 No 16.5 

13 MVFR 2 Yes 16.5 

14 IFR 3 No 35.5 

15 IFR 3 No 35.5 

16 MVFR 2 Yes 16.5 

17 IFR 3 No 35.5 

18 IFR 3 Yes 35.5 

19 IFR 3 Yes 35.5 

20 MVFR 2 Yes 16.5 
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Participant Estimated weather condition Assigned score Weather training Adjusted rank 

21 MVFR 2 No 16.5 

22 VFR 1 Yes 1 

23 MVFR 2 Yes 16.5 

24 MVFR 2 Yes 16.5 

25 MVFR 2 No 16.5 

26 MVFR 2 No 16.5 

27 MVFR 2 No 16.5 

28 MVFR 2 Yes 16.5 

29 MVFR 2 No 16.5 

30 MVFR 2 No 16.5 

31 MVFR 2 Yes 16.5 

32 MVFR 2 Yes 16.5 

33 MVFR 2 Yes 16.5 

34 MVFR 2 No 16.5 

35 MVFR 2 Yes 16.5 

36 MVFR 2 Yes 16.5 

37 IFR 3 No 35.5 

38 IFR 3 No 35.5 

39 MVFR 2 No 16.5 

40 MVFR 2 No 16.5 
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Participants’ weather condition estimat2ions were calculated using the Mann-Whitney U 

test. 

H0: The median of weather condition estimation between the two groups are equal. 

H1: The median of weather condition estimation between the two groups are not equal. 

 

Participants were assigned to a rank according to their weather condition estimation as 

bellow (VFR: 1, MVFR: 2, IFR: 3, LIFR: 4). 

∑  (   ) = 16.5(16) + 35.5(3) + 1(1) = 371.5                                                     

∑  (  ) = 16.5(14) + 40(1) + 35.3(3) = 448.5 

  = 20,   =20 

Employing below equations, the values of    and    are computed. 

  =      
  (    )

 
  - ∑   = 20*20 + 

     

 
 – 371.5 = 238.5 

  =      
  (    )

 
  - ∑   = 20*20 + 

     

 
 – 448.5 = 161.5 

Critical U value for                in the Mann-Whitney U Statistic table. 

Since the test statistics of U = 161.5 is greater than the critical U value of U = 127,    is 

retained. 
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2. 14 Outlier Participants 

Participant Estimated weather condition Assigned score Weather training Adjusted rank 

2 MVFR 2 Yes 5.5 

3 LIFR 4 Yes 5.5 

6 IFR 3 Yes 5.5 

8 IFR 3 No 5.5 

11 IFR 3 No 14 

14 MVFR 2 No 12 

15 MVFR 2 No 12 

16 MVFR 2 Yes 5.5 

17 MVFR 2 No 12 

26 MVFR 2 No 5.5 

28 MVFR 2 Yes 5.5 

31 MVFR 2 Yes 5.5 

33 MVFR 2 No 5.5 

36 MVFR 2 Yes 5.5 

 

Participants’ weather condition estimations were calculated using the Mann-Whitney U 

test. 

H0: The median of weather condition estimation between the two groups are equal. 

H1: The median of weather condition estimation between the two groups are not equal. 

 

Participants were assigned to a rank according to their weather condition estimation as 

bellow (VFR: 1, MVFR: 2, IFR: 3, LIFR: 4). 
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∑  (   ) = 5.5(7) = 38.5 

∑  (  ) = 5.5(3) + 12(3) + 14(11) = 66.5 

  = 7,   =7 

Employing below equations, the values of    and    are computed. 

  =      
  (    )

 
  - ∑   = 7*7 + 

   

 
 – 38.5 = 38.5 

  =      
  (    )

 
  - ∑   = 7*7 + 

   

 
 – 66.5 = 10.5 

Critical U value for              in the Mann-Whitney U Statistic table. 

Since the test statistics of U = 10.5 is greater than the critical U value of U = 8,    is 

retained. 

 

 

 

 

 

 

 

 

 

 

 

 



160 

Appendix H 

Personal Minimums 

1. Visibility (Status Miles) 

 Control group WeatherWise training group 

A local (30 minutes) 

day flight 
4.35 4.6 

A local (30 minutes) night 

flight 
6.95 7.8 

A cross-country (200 mile) 

day flight 
7.45 6.4 

A cross-country (200 mile) 

night flight. 
9.8 9.6 

Mean 7.14 7.10 

Standard Deviation 2.23 2.12 

Standard Error 1.12 1.06 

 

ANOVA: Single Factor      

       
SUMMARY 

     
Groups Count Sum Average Variance 

  
Column 1 4 28.55 7.1375 4.997292 

  
Column 2 4 28.4 7.1 4.493333 

  

       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 

Between Groups 0.002812 1 0.002812 0.000593 0.981367 5.987378 

Within Groups 28.47188 6 4.745313 
   

       
Total 28.47469 7         

 

F (1, 6) = 0.0006, p = 0.98, nonsignificant. 
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2. Ceiling (Feet) 

 Control group WeatherWise training group 

A local (30 minutes) 

day flight 
2475 2200 

A local (30 minutes) night 

flight 
3625 3600 

A cross-country (200 mile) 

day flight 
3500 3550 

A cross-country (200 mile) 

night flight. 
4350 4400 

Mean 3487.5 3437.5 

Standard Deviation 772.04 912.3 

Standard Error 386.02 456.15 

 

ANOVA: Single Factor      

       
SUMMARY 

     
Groups Count Sum Average Variance 

  
Column 1 4 13950 3487.5 596041.7 

  
Column 2 4 13750 3437.5 832291.7 

  

       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 

Between Groups 5000 1 5000 0.007001 0.936038 5.987378 

Within Groups 4285000 6 714166.7 
   

       
Total 4290000 7         

 

F (1, 6) = 0.007, p = 0.94, nonsignificant. 
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3. Common Practices in a VFR Local Flight (%) 

 Control group WeatherWise training group 

Get weather briefing 

before take off 
79 87.75 

Top off/check fuel tanks 98.25 100 

Compute weight/balance 51.25 55.25 

Perform complete pre-

flight inspection 
95 99.5 

Use a checklist for landing 

& take off 
85.5 92.75 

Compute expected fuel 

consumption 
84.5 94 

File a flight plan 28 31 

Request weather updates 32.5 32.5 

Fly VFR above clouds 79 84.75 

Fly below 1,000 AGL 

under clouds 
83.75 90.25 

Fly below 500 AGL under 

clouds 
99 98.75 

Verify fuel consumption in 

flight 
59.5 77.75 

Use shoulder harness 89.5 100 

Mean 74.21 80.33 

Standard Deviation 23.89 24.75 

Standard Error 6.63 6.86 
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ANOVA: Single Factor 

       
SUMMARY 

     
Groups Count Sum Average Variance 

  
Column 1 13 964.75 74.21154 570.613 

  
Column 2 13 1044.25 80.32692 612.629 

  

       

       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 

Between Groups 243.0865 1 243.0865 0.410882 0.527596 4.259677 

Within Groups 14198.9 24 591.621 
   

       
Total 14441.99 25         

 

F (1, 24) = 0.41, p = 0.53, nonsignificant. 
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Common Practices in a VFR Cross-Country Flight (%) 

 Control group WeatherWise training group 

Get weather briefing 

before take off 
89.5 99.5 

Top off/check fuel tanks 94.5 99.5 

Compute weight/balance 65.5 90 

Perform complete pre-

flight inspection 
95 100 

Use a checklist for landing 

& take off 
86.5 95.25 

Compute expected fuel 

consumption 
93.25 92 

File a flight plan 58.5 70 

Request weather updates 60 59 

Fly VFR above clouds 70.75 76.5 

Fly below 1,000 AGL 

under clouds 
81.5 88.25 

Fly below 500 AGL under 

clouds 
98.75 97.5 

Verify fuel consumption in 

flight 
75.25 82.5 

Use shoulder harness 89 100 

Mean 81.38 87.69 

Standard Deviation 13.94 13.23 

Standard Error 3.87 3.67 
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ANOVA: Single Factor 

       
SUMMARY 

     
Groups Count Sum Average Variance 

  
Column 1 13 1058 81.38462 194.4856 

  
Column 2 13 1140 87.69231 175.137 

  

       

       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 

Between Groups 258.6154 1 258.6154 1.399348 0.248419 4.259677 

Within Groups 4435.471 24 184.8113 
   

       
Total 4694.087 25         

 

F (1, 24) = 1.40, p = 0.25, nonsignificant. 
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Appendix I 

Screenshots of Weather Conditions along the Flight Path 

1. 
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2. 
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3. 

 

 
 



169 

4. 
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5. 
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6. 
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7. 
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8. 
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12. 
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