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Abstract

To expand the design envelope and supplement the materials library available
to biomaterials scientists, the copper(I)-catalyzed azide-alkyne cycloaddition (Cu-
CAAC) was explored as a route to design, synthesize and characterize bio-functional
small-molecules, nanoparticles, and microfibers. In each engineered system, the use of
click chemistry provided facile, orthogonal control for materials synthesis; moreover,
the results provided a methodology and more complete, fundamental understanding
of the use of click chemistry as a tool for the synergy of biotechnology, polymer and
materials science.

Fluorophores with well-defined photophysical characteristics (ranging from UV
to NIR fluorescence) were used as building blocks for small-molecule, fluorescent
biosensors. Fluorophores were paired to exhibit fluorescence resonant energy trans-
fer (FRET) and used to probe the metabolic activity of carbazole 1,9a-dioxygenase
(CARDO). The FRET pair exhibited a significant variation in PL response with
exposure to the lysate of Pseudomonas resinovorans CA10, an organism which can
degrade variants of both the donor and acceptor fluorophores. Nanoparticle sys-
tems were modified via CuCAAC chemistry to carry affinity tags for CARDO and
were subsequently utilized for affinity based bioseparation of CARDO from crude cell
lysate. The enzymes were baited with an azide-modified carbazolyl-moiety attached
to a poly(propargyl acrylate) nanoparticle. Magnetic nanocluster systems were also
modified via CuCAAC chemistry to carry fluorescent imaging tags. The iron-oxide
nanoclusters were coated with poly(acrylic acid-co-propargyl acrylate) to provide a
clickable surface. Ultimately, alternate Cu-free click chemistries were utilized to pro-
duce biohybrid microfibers. The biohybrid microfibers were synthesized under benign
photopolymerization conditions inside a microchannel, allowing the encapsulation of
viable bacteria. By adjusting pre-polymer solutions and laminar flow rates within the
microchannel, the morphology, hydration, and thermal properties of the fibers were
easily tuned. The methodology produced hydrogel fibers that sustained viable cells
as demonstrated by the encapsulation and subsequent proliferation of Bacillus cereus
and Escherichia coli communities.
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CHAPTER 1

Introduction

Click chemistry is a paradigm of organic synthesis, in which new compounds or

combinatorial libraries are constructed from primary, chemical building blocks with

“built-in high-energy content drive a spontaneous and irreversible linkage reaction

with appropriate complementary sites in other blocks.”[1, 2] Directed by natural

synthetic routes for building macromolecules from elementary blocks, Nobel Laureate

Karl B. Sharpless et al. conceived this synthetic philosophy and described a set of

stringent criteria for a reaction to qualify as click chemistry; a click reaction must be

(1) stereospecific (not necessarily enantio-selective), (2) wide in scope, (3) modular,

and result in (4) high-yield products and (5) inoffensive by-products if any at all,

where these byproducts should be easily removable by non-chromatographic methods

like crystallization and or distillation. In addition, the synthetic process must include

simple reaction conditions, i.e. the reaction should be insensitive to oxygen and water,

use readily available starting materials and reagents, and if necessary, use a benign,

easily removable solvent.[2] These guidelines delineate an organic reaction which is

essentially modular, and employs small molecules that can be quickly joined together

to form complex functional compounds, mimicking the natural production of nucleic
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acid chains, proteins and complex carbohydrates.

Click chemistry has affected diverse applications, from drug synthesis and poly-

mer chemistry, to materials and surface science. Click chemistry gained immediate

attention in the biomedical sciences, as a route for bioconjugation.[3–6] Bioconjuga-

tion is the process of covalently linking a synthetic label, e.g. fluorophores, ligands,

chelates, or radioisotopes, to a biomolecule, e.g. proteins and nucleic acids; fur-

thermore, bioconjugation has recently incorporated methods for the fusing of two

or more biomolecules.[4, 5, 7–9] Because biosystems contain an array of inherent

chemical functionalities, bioconjugation requires orthogonality and benign reaction

conditions (tenets of click chemistry). For biochemists, click chemistry is a route to

label and detect biomolecules in a live cell or a complex cell lysate with greater se-

lectivity and specificity.[10, 11] For diagnosticians, click chemistry allows a physician

or a radiologist to label biomarkers to track the progression of disease or the efficacy

of a treatment.[12]

The continuing success of click chemistry as a biochemical strategy has in-

creased the desire for tightly defined, engineered materials and surfaces to mimic

natural products. The controlled synthesis of materials, at the molecular scale of

natural products, introduces new synthetic challenges; materials chemists have strug-

gled to achieve the elaborate structural and functional properties of natural macro-

molecules, such as complex carbohydrates, proteins and DNA. These challenges have

become a beacon, calling materials scientists. Between 2005-2009, materials science

publications citing click chemistry have outpaced biochemical and pharmaceutical

applications, nearly 3:1.[13]

Designer materials produced via click chemistry are constantly under develop-

ment to modify and mimic natural materials; however, it is the position of this work,

that the click chemistry paradigm should be slightly altered when examining its role
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and application to materials synthesis. Although efforts to recreate natural materials

have been fruitful, there may be greater success in the juxtaposition of click chemistry

and materials science to harness and directly repurpose biosystems. Recognizing the

limitations for recreating natural materials, the role of click chemistry in materials

science can be focused on the development of materials to monitor (biosensors), ex-

tract (bioseparation) and harness (cell encapsulation/immobilization) the complexity

of biosystems for engineering applications.

1.1 Cu(I)-catalyzed cycloaddition of azides and ter-

minal alkynes

Since 2001, click chemistry has highlighted a series of reactions with different

reaction mechanisms but commonly high efficiency and modular nature. Figure 1.1

presents a selection of reactions that have qualified as click chemistry. Initially, three

classes of reactions were identified as candidates for the label, “click reactions”: 1)

nucleophilic opening of highly-strained electrophiles, e.g. epoxides and aziridines, 2)

mild condensation reactions of carbonyl compounds, e.g hydrazones and oximes from

aldehydes, and 3) cycloaddition reactions.[2] The mechanisms for each of these reac-

tions can be envisioned as “spring-loaded” for single trajectory because they are driven

by a high thermodynamic driving force (≥ 20 kcal·mol−1), resulting in rapid comple-

tion and regio-selective synthesis of a single product. Ultimately, K.B. Sharpless et al.

championed the copper-(I) catalyzed variant of Huisgen’s 1,3-dipolar cycloaddition of

azides and terminal alkynes (CuCAAC), which has become the archetype of click

chemistry reactions (Figure 1.2).[1, 2, 14] The CuCAAC reaction is regio-selective,

forming only 1,4-substituted triazoles, insensitive to solvents, can be performed at
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Figure 1.1: Common reaction mechanisms that meet the requirements for classification as “click
reactions”. Click chemistry is not limited to a specific type of reaction, but comprises of a range
of efficient, modular reactions. ***The Cu(I)-catalyzed cycloaddition and thiol-ene reactions are
explored in this work.
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Figure 1.2: The traditional Huisgen 1,3-dipolar cycloaddition and “click” Cu(I)-catalyzed cycload-
dition of azides and terminal alkynes.

room temperature, and proceeds with high yields.[14]

The CuCAAC reaction was developed from Huisgen’s cycloaddition of azides

and terminal alkynes (Figure 1.2). This 1,3-dipolar cycloaddition reaction was ex-

tensively studied in early 1960’s by Rolf Huisgen.[15] In 2002, a more reliable Cu(I)-

catalyzed stepwise variant was independently discovered by Valery V. Fokin with

K.B. Sharpless, and Morten Meldal. M. Meldal et al. first reported a method for

triazole synthesis on solid phases, closely followed by the report of V.V. Fokin and

K.B. Sharpless describing a water-based catalyzed reaction with copper (II) sulfate

(Cu(II)SO4) and sodium ascorbate.[14, 16] The Cu(I) catalyst accelerates the reac-

tion to minutes at room temperature, and the catalyzed process was found to have

an unprecedented level of regio-selectivity, producing an isolated 1,4-triazole product.

A mechanistic picture of the Cu(I)-catalyzed reaction (Figure 1.3) was first proposed

by M. Meldal and later verified by computational methods.[17] The proposed cat-

alytic mechanism (calculated by density functional theory (DFT) calculations) relies
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on the initial formation of a Cu-acetylide between the Cu(I) species and the terminal

alkyne, which subsequently proceeds with an initial p-complex formation between

the Cu(I) and the alkyne, lowering the pKa of the terminal acetylene and enabling

the attack of the C-H bond. A variety of copper-based catalytic systems have been

used to affect the 1,3-dipolar cycloaddition process. Methods can use Cu(I) salts,

generate the copper(I) species by reduction of Cu(II) salts using a reducing agent,

or direct incorporation of metallic copper. Many functional groups are compatible

with the CuCAAC process, excluding those that are a) either self reactive, or b) able

to yield stable complexes with the Cu(I) during catalyst deactivation. Interfering

functional groups are strongly activated azides (i.e., acyl- and sulfonyl azides) as well

as cyanides, which are able to compete in purely thermal cycloaddition processes.

With the exception of the aforementioned inhibitory functional groups, this catalytic

mechanism results in a 100x rate acceleration and absolute regio-selectivity.[18, 19]

It is noted that other metals which catalyze the dipolar cycloaddition of ter-

minal alkynes and azides have been reported. K.B. Sharpless et al. found that a

variety of Ru complexes (CpRuCl(PPh3), [CpRuCl2]2, CPRuCl(NBD), and CPRuCl-

(COD)) promote this click reaction.[20] The type of Ru-catalyst also determines the

preferred triazole variant, where the 1,4-adduct is favored by Ru(OAc)2(PPh3)2 and

other catalysts result in the the 1,5-adducts.[21, 22] A catalytic cycle that relies on

a pathway similar to the cyclo-trimerization reaction of alkynes via a six-membered

Ru-cycle has been proposed.[23, 24] Krzysztof Matyjaszewski also reported the use

of Ni, Pd, and Pt salts to catalyze this reaction.[25] The considerable flexibility of

the catalyzed variant of Huisgen’s 1,3-dipolar cycloaddition of azides and terminal

alkynes has led to the broad application in materials science and biotechnology.
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Figure 1.3: Mechanism for the catalysis of the 1,3-dipolar cycloaddition of azides and terminal
alkynes with Cu(I) as determined by DFT.[17]
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1.2 Building Soft Materials with Click Chemistry

Despite some noteworthy restrictions of CuCAAC, such as the need for metal

catalysts and the limitation to terminal alkynes, a wide range of novel materials were

realized soon after the adoption of the CuCAAC click reaction by materials scientists.

Figure 1.4 illustrates the most common scenarios in which click chemistry has made an

impact in materials science. By highlighting specific examples of click chemistry being

employed in macromolecular synthesis and functionalization, the following sections

will give context to the application and particular utility of click chemistry as a

materials synthesis paradigm.

1.2.1 Polymer Synthesis

The synthesis of complex macromolecules often requires the use of efficient

and specific post-polymerization modification techniques to incorporate functional-

ity, potentially incompatible with the polymerization, characterization, or processing

conditions. Click reactions are especially suited for advanced macromolecular de-

sign. Numerous reviews have describe the application of click chemistry, specifically

the CuCAAC reaction, for the synthesis of dendrimers, brushes, branched, linear,

or cyclic polymers.[26–32] Early examples of materials synthesis via click chemistry

were demonstrated by the research groups of Craig J. Hawker, V.V. Fokin and K.B.

Sharpless.[31, 33] In their approach, triazole-based dendrons were divergently synthe-

sized using the CuCAAC as the dendrimer-growth step; these dendrons were then

anchored to a variety of poly(acetylene) cores to generate dendrimers.[30, 34] Jean

M.J. Fréchet also constructed dendrimers by side-chains cycloadditions.[35] The ap-

plication of click strategies for the preparation of dendrimers proved highly benefi-
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Figure 1.4: Common applications of the Cu(I)-catalyzed cycloaddition of azides and terminal
alkynes by materials scientists: (a) polymer synthesis, (b) polymer crosslinking/gel formation, (c)
nanoparticle and surface modification.
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cial, as there is perhaps no other area of polymer synthesis that relies so heavily on

near-quantitative reaction conversions. Accordingly, the CuCAAC reaction has been

employed to synthesize or modify various polymer systems.

Efficient monomer conversion is a fundamental requirement for obtaining high

molecular weight polymer by routine step-growth polymerization; therefore, many

applications of click chemistry to polymer synthesis exploited the high-yield of the

CuCAAC reaction by polymerization of azide- and alkyne-containing monomers to

form high-molecular weight linear polymer.[35, 36] In these cases, the resulting struc-

tures contain multiple triazole repeating units formed by difunctional azide and alkyne

monomers (Figure 1.4a). Due to the efficient kinetics of the CuCAAC, linear poly-

merizations of aliphatic-backbone difunctional azide and alkyne monomers are driven

by high activation energy, Ea ≈ 45 kJ mol−1.[37] In addition to polymerization of low

molecular weight azides and alkynes, the high activation energy, rapid polymeriza-

tion, and the remarkable functional-group tolerance of click reactions enable the facile

introduction of reactive groups, such as hydroxyl and carboxyl groups, by monomer

or polymer modification. K. Matyjaszewski et al. demonstrated that linear poly-

mers with alkyne or azide end groups could be further polymerized, with the chain

extension leading to high molecular weight homopolymers, multi-block copolymers

and crosslinked gels.[38] Interestingly, the rate of azide-alkyne coupling of these poly-

mers was significantly higher than that for the corresponding monomers, an effect at-

tributed to auto-acceleration by anchimeric assistance, a beneficial by-product of the

rapid kinetics of the CuCAAC reaction. These reports demonstrated poly(triazoles)

to be excellent ligands for Cu(I); thus, triazoles formed along the polymer backbone

complex with the catalyst, leading to a higher local catalyst concentration in the

immediate vicinity of neighboring unreacted azide groups.[39, 40]

The high yield and specificity of click chemistry have not only allowed the
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quantitative introduction of various functional groups onto polymer backbones, but

also enabled both simultaneous and cascade functionalization of a variety of macro-

molecules. The relative rates of polymerization and click functionalization can be

conveniently tuned by varying the catalyst concentration, solvent and temperature.

Triblock copolymers of poly(ethylene glycol), polystyrene, and poly(methyl methacry-

late) have been synthesized in a one-pot method by a combination of Diels-Alder and

the CuCAAC reaction, where block-arrangement was controlled by the differing reac-

tion rates.[41] Click strategies are also fruitful when applied as complements of living

polymerization techniques, such as ring-opening polymerization (ROP), ring-opening

metathesis polymerization (ROMP), cationic polymerization, atom transfer radical

polymerization (ATRP), and reversible addition fragmentation chain transfer poly-

merization (RAFT).[42–44] Whether isolated as co-monomers of a linear polymer-

ization or as conjugates of sequential polymerizations, azide- and alkyne-terminated

monomers and polymers have been utilized in an array of polymer synthesis methods.

1.2.2 Surface Functionalization

Building in scale from polymer synthesis, click chemistry has been applied to

the chemical functionalization of surfaces and interfaces by preparing azide- or alkyne-

modified surfaces. Because of the high surface:volume ratio inherent in nanomaterials,

the control of appropriate surface chemistry (precise engineering of location, ordering,

and self-assembly of surface moieties) is a critical component of nanoparticle design.

Accordingly click chemistry has been applied to the engineering of the surface of

nanoparticles, including Au, CdSe, FexOy, SiO2, carbon nanotubes, and biopartic-

ulates (whole viruses and capsids).[45–51] A plethora of methodologies have been

used to address surface modifications of nanoparticles, often metal complexation-

11



based and covalent-modification methodologies; however, none of these methods is

universal in that a preliminary surface modification step allows the attachment of

small molecules (polar and non-polar molecules), polymers (either via grafting-from

and grafting-to methods) and complex ligands, such as biological recognition ele-

ments (proteins, carbohydrates, DNA, RNA); therefore, click chemistry represents a

valuable contribution to affect universal modification of nanoparticle surfaces. The

presence of the alkyne or azide groups at the material surface enables highly specific

post-synthesis modification. Surface functionalization via click chemistry provides a

greater level of control over the orientation and the density of the moiety attached to

the surface, while reducing the risk of side reactions (Figure 1.4c). Stephen H. Foulger

reported the development of a standard alkyne-incorporating nanoparticle platform

and illustrated the application of the CuCAAC to modify alkyne-terminated nanopar-

ticle surfaces with photoluminescent moieties. S.H. Foulger et al. demonstrated the

attachment of azide-modified chromophores to ordered poly(propargyl acrylate) par-

ticles (crystalline colloidal arrays) afforded loading levels of nearly 105 dye molecules

per nanoparticle, resulting in improved optical gain.[52, 53]

In addition to nanoparticles, the CuCAAC reaction has proven to be an excel-

lent tool for functionalizing inert polymer, gold, silicon and quartz substrates.[54–58]

Joerg Lahann combined the efficiency of the CuCAAC reaction with high-throughput

printing techniques and reported the spatial control of click cycloadditions on flat sur-

faces using microcontact printing. Defined biotin functional surface patterns were pre-

pared using a poly(dimethylsiloxane) (PDMS) stamp that was inked with Cu(II)SO4.

The stamp was used to locally catalyze the CuCAAC of an adsorbed alkyne-modified

polymer and azide-modified biomacromolecule.[59, 60] The CuCAAC reaction has also

been used to pattern the surface of bulk materials (microbeads and thick films) by

post-processing modification.[61] Overall, a very wide variety of functional molecules

12



(synthetic or biological) have been attached to surfaces using a the CuCAAC reaction

and click strategies, opening a wide range of opportunities for materials applications

such as molecular optoelectronics, catalytic systems and biosensors.

1.2.3 Bio-functional Materials

Structural and surface design capabilities afforded by click chemistry have pro-

vided materials scientists a platform to explore an array of biotechnological challenges.

The application of click chemistry in drug discovery, ranges from lead finding through

combinatorial chemistry and target-templated in situ chemistry, to proteomics and

gene therapy, using bioconjugation reactions.[12, 62] The reactions used for biosys-

tems modification must not only fulfill the criteria of an efficient click reaction, such as

high yields, selectivity and compatibility with an aqueous environment, but the reac-

tion must also be bio-orthogonal to avoid interruption or modification of the biomacro-

molecules’ native function. Bio-orthogonality refers to the necessity of exploiting reac-

tants that are non-interacting towards the functionalities present in biological systems.

These properties, inherent in the CuCAAC reaction, have been highlighted for the

development of potent inhibitor drugs of acetylcholineesterases, carbonic anhydrase,

HIV-protease and chitinase.[63–66] Benjamin F. Cravatt et al. most notably intro-

duced a method to label enzymes in vivo and in vitro with an activity-based protein

profiling probe and detect the labelled proteins in whole proteomes by the CuCAAC

reaction with an alkyne-modified fluorophore.[67, 68] The CuCAAC reaction was

also demonstrated for viable DNA coupling, and oligonucleotides have been labelled

with fluorescent dyes, sugars, peptides and other reporter groups through modified

nucleobases and phosphate backbones.[13, 69, 70] Most amazingly, researchers have

succeeded in performing site-specific, fast, reliable and irreversible bioconjugation by
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the genetic incorporation of azide and alkyne-containing non-natural amino acids into

proteins, resulting in the direct CuCAAC modification of live cells.[6, 71, 72]

The introduction of bioactive moieties, which can both be tracked and de-

tected in vivo as well as in vitro conditions are also a popular technique for modifica-

tion of synthetic materials, such as tailor-made biopolymers and bio-functional sur-

faces. Polymer-block-oligopeptide bioconjugates have been prepared by click-ligation

of azido-modified poly(ethylene glycol) (PEG) and alkyne-modified oligopeptides.[73]

A number of mannose- and galactose-containing polymers with protein-binding stud-

ies have also been prepared by reacting different azide-modified sugars onto into the

biopolymer backbone; “clickable” sugars were later exploited in the design of pro-

tein biohybrid materials by adding azide-modified mannopyranoside and galactopy-

ranoside to poly-alkyne peptide scaffolds.[74] The CuCAAC reaction also offers mild

reaction conditions that circumvent the biodegradation of aliphatic polyesters by hy-

drolysis or trans-esterification, when attempting to modify with biomacromolecules.

These polyester can be generated by the use of azide- or alkyne-modified cyclic

monomers that can be polymerized by ROP, e.g. azido-caprolactone and propyn-

1-yl-valerolactone, and many bioactive moieties, such as maltose and glucose, could

be attached onto these functionalized polyesters by the CuCAAC reaction. The ap-

plication of CuCAAC click chemistry has also been used for the synthesis of several

rotaxanes, catenanes and molecular shuttles using passive as well as active template

strategies with biological applications in mind.[45, 75] The practical ligation under

neutral reaction conditions and the fact that several compounds containing 1,2,3-

triazole displayed a broad spectrum of biological activities, such as antibacterial, her-

bicidal and fungicidal, anti-allergenic and anti-HIV, have been emphasized in recent

reviews.[76–78]

As more “clickable” bio-functional moieties are developed, novel nanomate-
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rials are also being explored as scaffolds to carry bio-functional moieties through

biosystems. Self-assembled protein capsids are a promising class of nanoparticles for

biomedical applications due to their uniform (monodisperse) nature and versatile ge-

netic and chemical design.[79] The tobacco mosaic virus (TMV) surface was employed

as a scaffold when an alkyne was introduced by chemo-selective modification of the

tyrosine residue on the surface of the viral capsid. The CuCAAC reaction was then

used to couple azide-functionalized compounds including small molecules, peptides

and polymers onto the TMV surface with a variety of groups that promote or inhibit

cell binding. Synthetic nanoparticles have also be utilized as carriers for bio-functional

moieties.[80] When nanoparticles are surface-functionalized with contrast agents or

ligands, they can become imaging platforms for the tissue of interest or highly spe-

cific targeted therapies to a disease site. S.H. Foulger has reported on the prepara-

tion of CuCAAC-modified nanoparticles which were used as biocompatible carriers

both imaging and therapeutic delivery. Nanoparticles were prepared with surface-

attached indocyanine green (ICG) and PEG by the CuCAAC reaction. Proteins

complexed with the surface-attached moieties, resulting in fluorescence enhancement.

The surface-attached ICG also provide a photodynamic therapeutic, resulting in a sta-

tistically significant reduction in tumor cell growth.[81] Click-nanoparticles have also

been developed as targeted delivery vehicles, for both synthetic and gene therapeutics.

Molly S. Shoichet et al. reported the attachment of nearly 400 targeting-peptides per

poly(lactide) nanoparticle by the CuCAAC reaction, and Theresa M. Reineke uti-

lized a similar approach to attach DNA-harboring β-cyclodextrins to nanoclusters

for targeted-delivery.[75, 82–84]

From these few selected examples, it is apparent why click reactions have

been so popular and successful for the synthesis and modification of macromolecules

and nanomaterials. The need to effectively decorate biomaterials and biointerfaces,
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the ability to drive covalent reactions inside living organisms and the promise of

constructing large macromolecules through complimentary junctions present in their

constituents will be important materials science and biotechnology drivers for decades

to come.

1.3 Overview

Although click chemistry was introduced as a synthetic route to expand drug

libraries, its application to materials synthesis and biotechnology have been a re-

sounding success. After a decade of developing basic polymeric materials by click

chemistry and in light of the increasing synergy between the physical and life sciences,

it is necessary to rethink the use of click chemistry in materials sciences as the ideal

methodology for engineering “bio-hybrid tools” Bio-hybrid tools are materials

that are designed and engineered to be utilized as specific sensors within

biosystems or traps to harness and convert biosystems complexity into

commercial technologies; thus, the work presented in the following chap-

ters explores the basic science required to develop a series of bio-hybrid

tools, by joining click chemistry and materials science in a paradigm

which materials are developed to extract and harness the inherent com-

plexity and efficiently of biosystems.

The chapters of this dissertation can be summarized as follows:

• Chapter 1 offered an introduction to the concept of click chemistry and its cur-

rent uses as a materials synthesis strategy; moreover, examples were provided

in which click chemistry has been employed to either recreate or modify biosys-

tems. The proceeding chapters present work conducted to examine the extent

of click materials as a strategy for developing biotechnologies at various scales,
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in which the engineered material is designed to exploit a specific component of

a complex biosystem.

• Chapter 2 explores a direct correlate to the early uses of click chemistry as

a combinatorial drug development strategy. Small-molecule chromophores are

modified and combined to form a library of energy transfer dyads with spectral

characteristics ranging from the ultraviolet to near infrared. Energy trans-

fer systems were modeled by ab initio and semi-empirical calculations to esti-

mate optimal geometries, synthesized, characterized, and ultimately used as an

biosensor of a bioremediation enzyme.

• Chapter 3 and 4 explore click chemistry as a surface ligation tool by modifying

both polymer and organic/inorganic composite nanoparticles. The function-

alized polymer and magnetic nanoparticles were utilized as bioseparation and

bioimaging devices, respectively.

• Chapter 5 culminates in the synthesis of materials via click chemistry to en-

capsulate and repurpose an entire biosystem (bacteria). The rapidly emerging

field of copper-free click chemistry is explored, and an old reaction is rebranded

as a member of the click family. This reaction is employed for the design and

production of a biohybrid, hydrogel fiber with a microfluidic shaping system.

The click hydrogel chemistry and microfluidic production process allowed for

the encapsulation of viable bacteria in situ.
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CHAPTER 2

Single-molecule FRET: Bridging chromophores via click

chemistry

2.1 Introduction

Photobiological sensing is often affected by either a native photoreceptor pro-

tein or an exogenous molecule introduced by bioconjugation, which then undergoes a

photochemical reaction, e.g. photoisomerization or excitation transfer, signaling the

biological event. Bioconjugation techniques are often applied to selectively modify

cellular components with signaling probes for in vivo imaging, proteomics, cell biol-

ogy and functional genomics. A multistep procedure is usually required: 1) the in

vivo target is tagged with a detectable chromophore, 2) purification of the ligated

target and 3) the detection of the chromophore-target pair. Commercially available

fluorogenic probes are able to tag biomacromolecules containing an array of func-

tional groups, e.g. primary amines, thiols or carbonyls; however, since amine, thiol

and carbonyl groups are the most abundant functional units in biosystems, these

reagents can hardly provide selective modification of a targeted species under the

complicated intracellular conditions. Genetically encoded tags such as green fluores-
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cent protein (GFP) and its variants are routinely applied as fluorescent probes, but

GFP is perturbative because its size (238 amino acids) is often larger than the target

of interest. Small-molecule fluorogenic devices are required for more accurate probing

of biosystems, specifically the analysis of the array of small-molecule ligating proteins.

To date, a wide variety of fluorescent sensors and switches have been synthe-

sized to probe environmental and biological events. For example, selective ligands and

ionophores for cations and anions are well established, commercial products for in vivo

sensing. More recently, excimer, exciplex, and FRET fluorescent probes have offered

a number of advantages over common single-emitter designs.[85–89] As an alternative

to genetically-incorporated fluorophores, i.e. in leiu of GFP, RFP, and Sanger nu-

cleobases, small-molecule energy transfer probes can be introduced to biosystems by

click chemistry. Alkyne and azide groups are very small in size, highly energetic, and

have a particularly narrow distribution of reactivity; furthermore, they can be conve-

niently introduced to organic compounds and are quite insensitive to solvent and pH.

A pertinent example is the development of fluorogenic “clickable” coumarins, where

upon formation of a triazole between azide-modified coumarins and alkyne-modified

reagents, the fluorescence increased because the quenching effect of the electron-rich

azides is reduced.[90, 91]

Similarly, the organic chromophores explored in Chapter 2 are combinato-

rially paired by azide and alkyne-modification to display the appropriate spectral

characteristics to act as a permanent donor:acceptor pair in an energy transfer mech-

anism when the triazole-linkage is formed. Energy transfer can take place through

a Coulombic interaction (Förster) or electron exchange (Dexter) mechanism and oc-

curs when an excited donor (a higher energy fluorophore) transfers energy over to

a ground state acceptor (a lower energy fluorophore). In order to be an effective

means of energy transfer, both the Förster and Dexter mechanisms are dependent on
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spatial separation between the donor and acceptor and the spectral characteristics

of the donor’s emission and the acceptor’s absorption. A Förster-type transfer can

be potentially effective up to ≈ 10 nm, while a Dexter-type transfer, though highly

dependent on the electronic configuration of the donor-acceptor, is roughly limited

to distances ≈ 2 nm. The distance dependance of both energy transfer mechanisms

make Förster and Dexter energy transfer very precise “molecular rulers.” Any pertur-

bation at the molecular scale would cause decay in the energy transfer mechanism,

signaling a molecular event. In addition, both modes of energy transfer require a high

level of spectral overlap of the donor’s emission and the acceptor’s absorption. Being

able to modify, enhance or suppress the molecular mechanisms that modulate the re-

sponse of the energy transfer would provide a route to produce orthogonal, exogenous

bioprobes.

2.1.1 Energy transfer: Förster resonance mechanism

The simplified process of photon emission by excited state relaxation involves

exciting an electron in an atom from the valance band to the conduction band by in-

troducing enough energy into the ground-state electron. The excited electron and its

corresponding hole are electrostatically bound, forming an exciton. Entropic forces

dictate the excited electron’s return the ground state, recombination with its corre-

sponding hole, and release of excess energy, as a photon, phonon or other non-radiative

decay.

For organic small-molecule or polymeric systems, excitation and emission oc-

curs in the electron orbitals of the molecules. Electrons found in the highest occupied

molecular orbitals (HOMO), can be excited to the lowest unoccupied molecular orbital

(LUMO), corresponding to the valence and conduction band of single-crystal mate-
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rials, respectively. Figure 2.1 is the Jablonski diagram illustrating the excitation,

fluorescence and Förster resonance energy transfer (FRET) processes. S0, S1, and S2

correspond to the ground, first, and second electronic singlet states, respectively. T1

is the first excited triplet state. The corresponding 0-5 bands are the vibronic states

at each energy level. In the case of fluorescence, absorption of a photon induces an

electronic transition from the S0 to a high-energy vibronic band in either, S1 or S2.

In organic molecules, an electron is promoted from the HOMO to the LUMO. The

fastest relaxation mechanism is vibrational relaxation, a non-radiative process that

allows the relaxation of an excited electron from a higher vibrational level within the

same excited state. Internal conversion is a similar non-radiative transition, which

occurs when an excited electron relaxes between two excited states of the same mul-

tiplicity. Intersystem crossing is a slower non-radiative transition, which occurs when

an electron relaxes from an a singlet to triplet state. Ultimately, a radiative transition

(fluorescence) can be achieved, i.e. relaxation to S0 causing the emission of a photon.

FRET is an alternate, intersystem relaxation mechanism; it is a virtual Coulom-

bic interaction between an emissive excited-state donor molecule and an absorptive

ground-state acceptor molecule resulting from long range dipole-dipole or quadripole-

quadripole interaction. The transfer arises from the resonance between donor and

acceptor and is largely dependent on the alignment of the dipole moments of the two

molecules. This form of non-radiative energy transfer is relatively slow, suggesting

there is a weak coupling between the transition dipole moments of both molecules.

From Theodor Förster’s kinetic expressions, the FRET rate (kD) can be described

as a function of inter-molecule donor/acceptor distances (2.1), where R is the inter-

molecular distance, R0 is the idealized FRET distance when the rate of the energy

transfer becomes the same rate as the decay of the excited state donor, and τ0 is the

fluorescence decay time of the excited-state of the donor. Equation 2.1 illustrates
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Figure 2.1: Jablonski diagram illustrating electronic excitation (black arrow) when a ground-state
electron absorbs energy and is excited to a higher singlet state, internal conversion (blue arrow) when
the excited electron relaxes to a vibronic state within the S1 or S2 levels, intersystem conversion
(cyan arrow) when the excited electron relaxes to a triplet state, and fluorescence (magenta arrow)
when the excited electron relaxes to a ground state. FRET relaxation is also pictured, when the
excited electron transitions to the excited state of the acceptor molecule and consequently relaxes
to the ground state.
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FRET’s extreme sensitivity to any distance changes between 1 - 10 nm. Equations

2.2 and 2.3 define the critical donor/acceptance distance based on the absorbance

and emission spectral overlaps of the interacting molecules, where κ is the orientation

factor of the dipole moments, N is Avagadro’s number, q is the quantum efficiency

of the donor, n is the refractive index of the matrix, and λ is the wavelength in nm,

and εa is the molar extinction coefficient of the acceptor. Since FRET is a resonant

transfer and does not rely on charge propagation, the critical Förster radius is prac-

tically taken as when the transfer efficiency is ≈ 50% and is typically in the range

of 2-10 nm. Additionally, the transition dipole moments of the interacting molecules

play a significant role in the transfer efficiency, though an average orientation factor

(0.66) is often used for calculations.

kFRET =
1

τ0

(
R0

R

)6

(2.1)

R0 =

[
9000(ln10)κ2q

128π5n4N

∫
f(ν)εA(ν)

dν

ν4

]1/6
(2.2)

The expression,
∫
f(ν)εq(ν)dν

ν4
, is defined as the integrand J (M−1cm−1nm4):

J =
∫

FD(λ) · εA(λ) · λ4dλ (2.3)

The integral J is the spectral overlap of the donor and acceptor, where FD(λ) is the

normalized spectrum and εA is the maximum molar extinction coefficient.

2.2 Results and Discussion

The chromophores presented in Figure 2.2 were synthesized and combined to

produce permanent FRET dyads. Absorbance and photoluminescence spectra were
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experimentally analyzed to predict possible energy transfer pairs; moreover, to better

design click chromophores quantum chemistry calculations were performed to model

intra-chromophore spacing and placement of the chromophore band gap.

2.2.1 Calculated geometries and molecular orbitals of single-

molecule FRET systems

FRET dyads were modeled and characterized by quantum chemical calcu-

lations. The first principle for calculations of the molecular states is the general

time-dependent Schrödinger Equation (2.4, where Ψ(R,r,t) is the wavefunction of

nuclei positions (R = (R1,. . .,Rn)) and electron positions (r = (r1, . . ., rn). The

Hamiltonian operator, Ĥ, accounts for the kinetic and potential energy operators for

all nuclei and electron interactions. Ultimately, the complete set of solutions for the

Schrödinger wave equation would provide the ground state geometry and expected

electron distributions for both absorbance and fluorescence of the FRET dyads.

i~ ∂
∂t

Ψ(R, r, t) = ĤΨ(R, r, t) (2.4)

In the reported calculations, the following assumptions are made:

• The Born-Oppenheimer approximation is inherently assumed. The approxima-

tion posits that the motion of electrons or infinitely faster that the motions of

the nuclei do to their mass difference and the electrons instantaneously follow

the nuclei, thus the nucleus position becomes a parameterized value.

• Relativistic effects are neglected. The momentum operator is assumed to be

classical.
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Figure 2.2: Spectral range of organic chromophores spanning from the Ultraviolet, through the
visible, to the NIR. By pairing chromophores with conjugate click functionality, single-molecule
FRET dyads can be synthesized by the CuCAAC reaction.
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• The basis set is composed of a finite number of orthogonal functions. (In reality,

the wave function is a linear combination of functions from an infinite basis set.

• The energy eigenfunctions are assumed to be products of one-electron wave

functions.

• The effects of electron correlation are neglected.

The simplest type of ab initio calculation is the Hartree-Fock (HF) method,

in which the instantaneous Coulombic electron-electron repulsion is not specifically

taken into account and the Schrödinger Equation is treated as a simple eigenvalue

equation of the Hamiltonian operator, with a discrete set of solutions. This is a vari-

ational procedure; therefore, the obtained approximate energies, expressed in terms

of the system’s wave function, are always equal to or greater than the exact energy,

and tend to a limiting value called the HF-limit as the size of the basis is increased.

The simplest approach for the description of a system of N interacting electrons is

the the Hartree-Fock (HF) method, where the ground-state many-body wavefunction

is approximated as the optimal non-interacting solution, i.e. a Slater determinant of

single-particle spin-orbitals {Φi}:

ΨHF (x1, ..., xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(x1) Φ1(x2) ... Φ1(xN)

Φ2(x1) Φ2(x2) ... Φ2(xN)

...
...

...
...

ΦN(x1) ΦN(x2) ... ΦN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.5)

The optimal molecular orbitals are determined by minimizing the interacting Hamil-

tonian operator on the wavefunction, ΨHF , and if the spin-orbitals are written as the

product of a spatial and a spin components (Eq. 2.6), the spatial orbitals must satisfy
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the solutions of ΨHF .

Φi(x) = φi (r) χsi (σ) (2.6)

Each orbital experiences the external potential, the Hartree electrostatic component,

and the non-local HF exchange potential. The HF potential cancels the interaction

of the electron with itself, that is the self-interaction contribution coming from the

the Hartree potential, and keeps the electrons of the same spin apart so that each

electron has a hole around it, known as the exchange hole, containing unit positive

charge. For molecular systems, the orbitals are expanded as a linear combination of

atomic orbitals (LCAO) centered on the nuclear positions:

φi(r) =
nuclei∑
µ

∑
j

aµijηjµ(r− rµ) (2.7)

where rµ denotes the position of a nucleus. The LCAO coefficients, aµij and ηjµ, are

optimized to yield the lowest variational energy. In general, the HF operators will be

input with a Gaussian atomic basis set:

η(r) = xmynzke−αr
2

(2.8)

as this set allows all integrals to be computed analytically. Since relativistic effects

are neglected and the Born-Oppenheimer approximation is applied, it is assumed that

a non-relativistic system of N interacting electrons is described by the Hamiltonian:

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

νext(ri) +
N∑
i<j

1

|ri − rj|
(2.9)

where the atomic units apply (~ = m = e = 1). The external potential νext(r) is

given either by the bare electron-ion Coulomb potential Z/r where Z is the charge of
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the ion, or by a pseudopotential describing the ion plus the core electrons which have

been eliminated from the calculation, r is the 3N particle coordinates with x = (r, σ)

(the 3 spatial and 1 spin coordinates of one electron where σ = ±1).

Initially, the performance of the theoretical basis and available computational

power was tested on simplified molecular models. The quantum chemical investi-

gation of the FRET systems was initialized with the computation of the electronic

excitations of discrete chromophores in vacuo since the lower level of complexity of

these systems allow us to push the limits of the available computational tools and

better understand their limitations. Moreover, calculations using highly-correlated

techniques are available for discrete chromophore models; whereas, the FRET dyads

will require un-correlated, small-basis set calculations. Calculations began with a HF

model and subsequently were corrected for electron-electron repulsion. Möller-Plesset

perturbation theory was the utilized post-HF methods. Second order Möller-Plesset

(MP2) calculations are standard levels used in calculating small systems and were

implemented in these simulations. The density matrix for the first-order and higher

MP2 wavefunction is of the type known as response density, which differs from the

more usual expectation value density. The eigenvalues of the response density matrix

(which are the occupation numbers of the MP2 natural orbitals) can therefore be

greater than 2 or negative, but unphysical numbers are a sign of a divergent pertur-

bation expansion.

Figure 2.3 shows the calculations of the HOMO and LUMO for the isolated

chromophores paired to produce the FRET dyads, within an all-electron HF, 6-

311+G(d,p) basis set and the MP2 correlation. As discrete chromophores, many of

these pairs have been exploited for FRET.[92] The resultant HOMO and LUMO ac-

curately predicted the maximum absorbance energy for each chromophore; however,

it is apparent in the calculation is lacking for the fluorescein moiety, The HOMO
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and LUMO should mirror each other, as represented in Figure 2.3 carbazole and an-

thracene, but for the fluorescein calculation the HOMO is shifted toward the higher

electron density of the double-bonded oxygen which is a common error produced by

small basis set ab initio calculations.[93] The clicked models were analyzed for both

geometry optimization, excited states and molecular orbitals by ab initio, where pos-

sible, and semi-empirical calculations (MOPAC) for charged chromophores (to reduce

calculations costs). Theoretical calculations of the optical properties of the FRET

dyads complement spectroscopic characterization by providing an atomistic descrip-

tion of the molecules’ ground and excited states. Quantum chemical calculations

should provide an accurate quantum-mechanical description of the ground state and

electronic excitations; furthermore, the relative positions of the donor and acceptor

frontier molecular orbitals is a predictor of the preferred energy transfer mechanism.

When the HOMO and LUMO of the acceptor are located within the energy level of the

donor’s band gap, FRET dominates; whereas, if the acceptor’s HOMO or LUMO lies

outside the donor’s band gap a Dexter or nonradiative mechanism is observed.[93, 94]

Table 2.1 summarized the HOMO/LUMO and molecular bandgap calculations for

the discrete chromophores. Accordingly the carbazole HOMO/LUMO levels bracket

the HOMO/LUMO levels of anthracene, suggesting they can be donor and acceptor,

respectively. The same is true for C6 and Cy3; however, the LUMO of Cy3 falls above

the LUMO of Fl suggesting their FRET efficiency may be diminished.

For ab initio simulations of the larger FRET dyads, electron-electron correla-

tion needed to be scaled for computational efficiency. Ground state properties of large

systems can be reliably and efficiently computed from first principles by density func-

tional theory (DFT). In the FRET dyad calculations, high-dimensionality problems

are circumvented by employing one-electron Kohn-Sham DFT, which replaces the

electron-electron interactions by an effective potential. In the KohnSham system, elec-
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Figure 2.3: The HF/6-311+G(d,p)/MP2 calculations of HOMO and LUMO for the discrete chro-
mophores utilized to build the FRET dyads. Shown are the HOMO (red+/blue−) and LUMO
(green+/yellow−) orbitals which are responsible for molecular fluorescence.
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chromophore HOMO LUMO bandgap (∆E) λabs (nm)
carbazole -0.284 -0.105 0.179 255

antrhacene -0.218 -0.087 0.131 348
coumarin 6 -0.277 -0.151 0.125 364
fluorescein -0.206 -0.106 0.100 456
cyanine-3 -0.198 -0.113 0.085 537

*** energy reported in Hartree

Table 2.1: Highest occupied molecule orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) calculations for individual components of the FRET dyads. The molecular bandgap is
reported as the energy differential from the ground state to first excited state.

trons are non-interacting fermions, so the KohnSham wavefunction is a single Slater

determinant, unlike the series required for HF-models. Geometry optimization and

molecular orbital models for the FRET dyads were calculated with the B3LYP corre-

lation The B3LYP hybrid functionals are approximations to the exchange-correlation

energy functional that only incorporate a portion of exact exchange from HF methods.

Figures 2.4, 2.5, and 2.6 show the calculated HOMO/LUMO for the ATBC, C6Cy3

and FlCy3 FRET dyads, respectively. The HOMO/LUMO positions of C6Cy3 and

FlCy3 are expected for the donor and acceptor interactions of a FRET pair; the

HOMO is located on the donor, C6 and Fl, while the LUMO is located on the ac-

ceptor, Cy3. In the ATBC model, both the HOMO and LUMO are located at the

anthracene component, suggesting direct stimulation of the anthracene molecule may

be the dominant energy transfer mechanism, as opposed to FRET.

In summary, the HF calculations of discrete chromophores suggested the pair-

ing carbazole/anthracene, C6/Cy3, and Fl/Cy3, and corresponding DFT calculations

of the FRET dyads showed differing HOMO/LUMO locations that will need to be

defined experimentally. While the FRET features will also be largely dependent on

structural features of the dyads in solution, the molecular orbital calculations suggest

the resultant photoluminescent response will come from the acceptor chromophore.
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Figure 2.4: The B3LYP(DFT)/6-31G(d) orbitals for the ATBC chromophore. Shown are the
HOMO (red+/blue−) and LUMO (green+/yellow−) orbitals which are responsible for molecular
fluorescence.
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Figure 2.5: The B3LYP(DFT)/6-31G(d) orbitals for the C6Cy3 chromophore in vacuo. Shown are
the HOMO (red+/blue−) and LUMO (green+/yellow−) orbitals which are responsible for molecular
fluorescence.
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Figure 2.6: The B3LYP(DFT)/6-31G(d) orbitals for the FlCy3 chromophore in vacuo. Shown are
the HOMO (red+/blue−) and LUMO (green+/yellow−) orbitals which are responsible for molecular
fluorescence.
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donor acceptor quantum yield, φD molar extinction, εA J R0

(M−1 cm−1) (A6 mol−1) (A)

AC ABC 0.41 9.7 x 104 1.08 x 1015 4.34
C6 Cy3 0.78 1.5 x 105 5.6 x 1015 6.36
Fl Cy3 0.79 1.5 x 105 5.93 x 1015 6.44

Table 2.2: Spectral constants for donor and acceptor, quantum yield (φD) and molar extinction
(εA), respectively. Calculated spectral overlap (J) and critical Förster radii for FRET dyads utilizing
dipole orientation factor, κ=0.66, and refractive index, n = 1.4.

As will be reported in the following sections, the calculated geometry and molec-

ular orbitals are promising harbingers for the critical FRET distance and spectral

characteristics, the J -integral.

2.2.1.1 Spectral properties of single-molecule FRET systems

As an initial approach to experimentally examine the FRET efficiency in the

small-molecule dyads, FRET is assumed to be the dominant transfer mechanism and

the spectral overlap integrals are used to calculate the FRET parameters. The FRET

efficiencies dependent on the spectral characteristics of the donor and acceptor can

be calculated from Eq. 2.1 and Eq. 2.2. The dipole orientation factor, κ, can adopt

any value between 0 and 4, and its value is often chosen as 0.666666. This limiting

situation is valid when the molecular dipoles are rapidly rotating at a speed much

faster than the FRET rate.[95] The refractive index, n, of the medium is taken at

n = 1.4, which can be idealized as buffer salts dissolved in water. The quantum

yield of the donor, φD, and molar extinction coefficient of the acceptor, εA, are values

taken from the literature.The output of Eq. Table 2.1 and Eq. 2.2, i.e. the FRET

efficiencies of the synthesized FRET dyads are summarized in 2.2.
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Figure 2.7: Calculated spectral overlap of ATBC dyad.

Figure 2.8: Calculated spectral overlap of C6Cy3 dyad.
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Figure 2.9: Calculated spectral overlap of FlCy3 dyad.

2.2.2 Engineering and application of a single-molecule FRET

system as an enzymatic biosensor

The most widely utilized technique for the detection and targeting of endoge-

nous proteins through fluorescence relies on the labeling of the protein with a primary

antibody and subsequent attachment of a complementary, emitting dye, protein, or

particle.[96] For decades, employing a chromophore pair that can participate in fluo-

rescence resonance energy transfer (FRET) has been the operational basis for studying

protein dynamics. For example protein conformational changes, protein-protein in-

teractions, and protein synthesis are measurable due to the dependence of the FRET

efficiency on the separation distance and orientation of the donor and acceptor.[97]

Recently, techniques employing FRET have been employed in metabolomics, which

focuses on the collection of metabolites (metabolome) in a biological cell, tissue, or-

gan or organism, which are the end products of cellular processes.[98] Establishing
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Figure 2.10: Absorbance and photoluminescence spectra of (a) azide-modified carbazole (ABC)
(λex = 295 nm), (b) alkyne-modified anthracene (EA) (λex = 360 nm), and (c) carbazole/anthracene
FRET dyad (ATBC)(λex = 295 nm). All samples in 90:10 water:DMSO solution.
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Figure 2.11: Absorbance and photoluminescence spectra of (a) azide-modified coumarin (C6) (λex
= 425 nm), (b) alkyne-modified cyanine (Cy3) (λex = 550 nm), and (c) coumarin/Cy3 FRET dyad
(λex = 425 nm). All samples in 90:10 water:DMSO solution.
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Figure 2.12: Absorbance and photoluminescence spectra of (a) azide-modified fluorescein (Fl) (λex
= 425 nm), (b) alkyne-modified cyanine (Cy3) (λex = 550 nm), and (c) Fl/Cy3 FRET dyad (λex =
425 nm). All samples in 90:10 water:DMSO solution.
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Figure 2.13: Schematic of the biotransformation of 9-4-[4-(9-anthryl)-1H-1,2,3-triazol-1-yl]butyl-
9H-carbazole (ATBC), a coupled donor and acceptor pair, with exposure to the lysate of P. resinovo-
rans CA10. FRET between moieties of ATBC is interrupted by enzymatic breakdown of ATBC by
carbazole 1,9a-dioxygenase.

the processes that generate the metabolome provides insights into the biochemical di-

versity of cell populations. To achieve this level of understanding requires a method

for single-cell metabolomic studies.[99] To this end, a donor/acceptor pair were cova-

lently linked and their FRET characteristics employed in the detection of a metabolic

transformation. Enzymes are traditionally considered remarkably specific catalysts;

nonetheless, promiscuity is the inherent ability of an enzyme to catalyze multiple

reactions. Recent experimental evidence suggests that promiscuity, in the actual

protein function, is not as rare or detrimental as was previously thought [100–102].

Promiscuous activity, substrate ambiguity and cross reactivity, in an existing protein

can cause a selective advantage, resulting in survival and further evolution; thus, gene

duplication would drive the divergent evolution of a new protein.[103–107] Studies on

enzyme evolvability have given convincing evidence that the mechanism of functional

evolution is due to the fact that many proteins have promiscuous functions in addition

to their native functions. In the proposed mechanism, a weak promiscuous function

arises due to neutral evolution, the ability of proteins to tolerate mutations without

compromising fitness and plasticity. Under the right selection pressure, natural selec-

tion can improve the new function once it has arisen until, at some point, the protein
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may become specialized for the new function.[105, 106, 108–111] In many cases, the

pairing of native and promiscuous function is smaller than expected. This allows for

several generations of “generalist” proteins that are able to perform both functions

and suggests that gene duplication acts after the new function has appeared.[103, 112]

These “generalist” proteins lead to the promiscuous enzymes capable of degrading

multiple primary metabolites through different pathways.

Specifically, Pseudomonas spp. are the most predominant group of soil mi-

croorganisms that degrade carbazole[113] and were utilized in this effort. Differing

species of carbazole degraders all appear to follow a similar carbazole degradation

pathway that begins with the oxidative cleavage of the heterocyclic nitrogen ring

of carbazole, catalyzed by carbazole 1,9a-dioxygenase (CARDO); subsequent break-

down of carbazole requires the degradation of one of the aromatic rings, meaning

Pseudomonas spp. also produces a meta-cleavage enzyme, 2-aminobiphenyl-2,3-diol-

1,2-dioxygenase.[113] Previous studies indicate that CARDO can catalyze diverse

oxygenation reactions and has a broad substrate range including polyaromatic com-

pounds, such as dibenzothiophene, biphenyl, and polycyclic aromatic hydrocarbons

and is attributed to flexibility in binding of the substrates to the active site of

CARDO.

The focus of this study was to modulate the Förster energy transfer of coupled

fluorophores through their biotransformation (Figure 3.1).

Specifically, an alkyne-functionalized anthracene and azide-functionalized car-

bazole derivative were employed as the donor/acceptor pair and linked through a

copper-catalyzed azide/alkyne cycloaddition (“click” transformation) performed in

a water:isopropanol (5:4) mixture.[2] CARDO catalyzes the angular dioxygenation

of carbazole to yield an unstable dihydroxylated intermediate which is considered

to be instantly converted to 2’-aminobiphenyl-2,3-diol, while CARDO transforms
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anthracene into cis-1,2-dihydroxy-1,2-dihydroanthracene[113]. Figure 2.14 presents

the photoluminescence (PL) spectra and structures employed in this effort. Specifi-

cally, Figure 2.14a presents the emission characteristics of both 9-(4-azidobutyl)-9H-

carbazole (ABC) and 9-ethynylanthracene (EA) in a water:DMSO (90:10) mixture.

The carbazole containing moiety (ABC) exhibits an emission that is characteristic of

9H-carbazole containing compounds with two major peaks at 351 nm and 363 nm

and a shoulder at ≈380 nm.[114] Similarly, the anthracene containing moiety (EA)

indicates vibronic bands in the region 410 - 500 nm typically seen with this chro-

mophore when excited at 360 nm.[115] In contrast to these isolated chromophores,

Figure 2.14b presents the emission characteristics under various excitation energies

of the resulting molecule when ABC and EA have undergone a click transformation

to form 9-4-[4-(9-anthryl)-1H-1,2,3-triazol-1-yl]butyl-9H-carbazole (ATBC). With an

excitation energy at a wavelength of 295 nm, there is only a small emission contri-

bution attributed to the carbazole moiety, while with an excitation at 360 nm, all

contributions of the carbazole are absent. Nonetheless, at both excitation energies,

the emission of the linked carbazole/anthracene molecule is similar and reminiscent

of an aggregated anthracene.[115] The lack of a significant carbazole signature in the

linked moiety with an excitation of 295 nm is indicative of energy transfer from the

carbazole to anthracene.

For the current system, the Förster radius was calculated to be ≈ 19 Å, while

a similar system composed of 9-phenyl carbazole and 9-cyano anthracene fabricated

into Langmuir-Blodgett films with interlayers of stearic acid indicated a Förster radius

of 12.5 Å[116].The calculated Förster radius is comparable to the ≈13 Å maximum

separation distance of the linked chromophores in ATBC. A molecular dynamics sim-

ulation of ATBC was performed in vacuo utilizing the MM2 force field and indicated

that the most probable conformations for ATBC at room temperature result in a
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Figure 2.14: Photoluminescence of (a) 9-(4-azidobutyl)-9H-carbazole (ABC) (—) (λex = 295
nm) and 9-ethynylanthracene (EA) (©) (λex = 360 nm); (b) 9-4-[4-(9-anthryl)-1H-1,2,3-triazol-1-
yl]butyl-9H-carbazole (ATBC) with λex = 295 nm (—) and λex = 360 nm (©). All samples in 90:10
water:DMSO solution.
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Figure 2.15: Spectral photoluminescence images of neat (a,e) ABC, (b,f) EA, (c,g) ATBC and
(d,h) ATBC after exposure to the lysate of Pseudomonas resinovorans CA10. Upper band of images
(a-d) corresponds to an excitation at a wavelength of 300 nm, while the lower band (e-h) corresponds
to 360 nm.
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slightly folded back configuration that puts the anthracene and carbazole ring centers

within a separation distance 5 - 8 Å, indicating that energy transfer from carbazole

to anthracene should dominate at this temperature. A serial dilution of ATBC was

also performed which indicated the concentrations of ATBC used in this study were

sufficiently dilute that the observed PL spectra was due to individual chromophores,

i.e. PL at λex = 295 nm and λex = 360 nm. The normalized serial dilution spectra

are provided in Fig. 2.17.

Figure 2.15 presents the PL spectral image at differing excitation energies of

the initial compounds and the variation in emission of ATBC with exposure to the

lysate of Pseudomonas resinovorans CA10. As was indicated previously (Figure 2.14),

ABC and EA emit at differing excitation wavelengths, 295 nm and 360 nm, respec-

tively (Figures 2.15a,b,e,f). Initially, the PL spectrum of ATBC exhibits no signature

from the carbazole moiety by the absence of any appreciable emission between 340 nm

and 400 nm with either excitation energy in Figure 2.15c,g, but with the introduction

of the lysate, the characteristic PL signature of the carbazole moiety re-emerges as a

high energy band in Figure 2.15d. As a simple diagnostic tool, the reappearance of

this band in the PL image is a clear indication that some of the coupled chromophores

have been separated. This was confirmed in Figure 2.16a which presents the spec-

tral characteristics of this emission and indicates a carbazole emission coupled with a

shoulder at ≈ 420 nm and an enhancement of emission intensity of the peak at ≈ 440

nm. These latter changes are suggestive of the reemergence of the isolated anthracene

emission being coupled to the ATBC emission, likely due to the separation of linked

carbazole and anthracene moieties with the lysate degradation of the triazole linking

unit.

The solution utilized in Figures 2.15 and 2.16a includes both the reactants

(proteins and ATBC) and products (residues of ABC and EA) of the enzymatic
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Figure 2.16: Photoluminescence of (a) ATBC (λex = 295 nm) initially (©) and after a one hour
exposure to lysate (•) in 90:10 Tris-HCl aqueous buffer (50mM) : DMSO and of (b) supernatant
(product residues) with excitation of λex = 295 nm (©) & λex = 360 nm (•) and 4-(9-anthryl)-1H-
1,2,3-triazole (structure in inset) with excitation of λex = 360 nm (4). Samples in DMSO.

47



Figure 2.17: Normalized serial dilution photoluminescence spectra of ATBC at (a) λex = 295
nm and (b) λex = 360 nm which indicated the concentrations of ATBC used in this study were
sufficiently dilute that the observed PL spectra was due to individual chromophores.
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degradation and was centrifuged and redispersed multiple times in an attempt to iso-

late moieties. The PL spectrum of the supernatant produced in this cleaning process

is presented in Figure 2.16b under various excitation energies. The use of 295 nm

and 360 nm excitation wavelength was an attempt to isolate the contributions from

the various chromophores that may be present in the solution after the enzymatic

degradation of ATBC. With an excitation at 295, it is apparent that the supernatant

incorporates a significant quantity of a carbazole containing residue by the appear-

ance of the signature 9H-carbazole PL emission, with peaks at 351 nm and 366 nm.

In addition, in Figure 2.16b, the carbazole PL emission has a small shoulder at 393

nm, a peak attributed to the anthracene moiety. With an excitation wavelength of

360 nm, the PL characteristics of the supernatant exhibit characteristics of ATBC as

well as an aggregated anthracene. For comparison, in Figure 2.16b, the PL spectra

of 4-(9-anthryl)-1H-1,2,3-triazole (AT) is presented. This compound serves as a ref-

erence acceptor assuming that the carbazole moiety was cleaved from ATBC in the

biotransformation. This reference acceptor and supernatant have closely matched PL

characteristics when excited at 360 nm. The separated reaction products were also

subject to mass spectroscopy analysis. ATBC incubated with P. resinovorans CA10

lysate and resultant metabolites were extracted from the incubation medium and

products were identified by comparing mass peaks with those of pure ATBC, ABC

and EA. The former showed significant fragments at m/z 167, 205, and 200. These

metabolites can be tentatively identified as 9-H carbazole, EA, and ATBC fragment

respectively. A comparative plot of mass spectra is provided in Figure 2.18. Results

verified the biotransformation of ATBC by P. resinovorans CA10 ; however, there

was no overt preference indicated for the degradation of either ABC or EA moieties.

In order to further identify the contributing components to the PL signatures

in Figure 2.16, the photoluminescence excitation (PLE) at various emission wave-

49



Figure 2.18: Mass spectroscopy comparison for donor-acceptor system (ATBC), paired moieties
(ABC, EA) and biotransformation residues of ATBC (CA10 Biotransformation).
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Figure 2.19: Photoluminescence excitation of supernatant with emission at λem = 360 nm (•),
λem = 410 nm (©), λem = 450 nm (4), and λem = 495 nm (5). All samples in 90:10 Tris-HCl
aqueous buffer (50mM) : DMSO.
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lengths was studied and is presented in Figure 2.19. Setting the emission wavelength

to 360 nm results in an excitation profile, as expected, that is indicative of the ab-

sorbance spectrum of carbazole with two main peaks centered at ≈ 332 and 343 nm.

Raising the emission wavelength to 410 nm results in a enhanced contribution from

residues containing the carbazole moiety, as well as residues that incorporate an an-

thracene fluorophore. The anthracene signature, as indicated by the two peaks at

381 nm and 403 nm, is significantly less than the contribution from carbazole con-

taining residues, which occurs at wavelengths under 360 nm. This indicates that

the emission at 410 nm can be efficiently achieved by exciting the carbazole moiety

and transferring energy over to the anthracene moiety, suggesting that the super-

natant has a mixture of residues that incorporate ABC and EA, as well as ATBC.

Increasing the emission wavelength to 450 nm is sufficient to remove contributions

that are directly attributed to the carbazole moiety, though this wavelength is in

the middle of the emission spectrum for both EA and ATBC. Nonetheless, the PLE

spectrum at this emission wavelength indicates a contribution from the carbazole

fluorophore, suggesting that either the supernatant contains (1) ATBC and/or (2)

carbazole and anthracene flourophores that are not chemically linked but spatially

within the Förster radius for energy transfer. Extending the emission wavelength to

495 nm verifies that the the supernatant must contain ATBC since this fluorophore

would be the dominating emitter at this wavelength.

2.3 Conclusions

In summary, a simple diagnostic tool was presented that employed a coupled

donor/acceptor pair that was formed through a click transformation. The FRET

pair exhibited a significant variation in PL response with exposure to the lysate of
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Pseudomonas resinovorans CA10, an organism which can degrade variants of both the

donor and acceptor fluorophores. This general approach can be tailored for a range of

metabolic processes and be employed as a method for single-cell metabolomic studies.

2.4 Experimental Details

2.4.1 Synthesis of “clickable” fluorophores and FRET dyads

2.4.1.1 Synthetic scheme for synthesis of ATBC

Compounds (1) and (5) were synthesized according to published methods.[117,

118]

2.4.1.2 4-(9H-carbazol-9-yl)butyl methanesulfonate (2)

To a cooled solution of 4-(9H-carbazol-9-yl)butan-1-ol (1) (3.0 g, 12.5 mmol)

and triethylamine (2.53 g, 25.0 mmol) in dichloromethane (30 ml) was added drop-

wise to the solution of methanesulfonyl chloride (2.01 g, 17.6 mmol) in dichloromethane

(2 ml). The solution was stirred for 8 hours at room temperature and then washed

with water. The organic layer was separated, dried with Na2SO4 and then filtered.

The solvent was removed under reduced pressure to give a clear-brown oil (3.3 g).

Yield 83%. This product was used in the next step without further purification.

1H NMR (CDCl3) δ 1.76 (m, 2H, 3JHH=6.3 Hz), 2.00 (m, 2H, 3JHH=6.8 Hz), 2.88

(s, 3H), 4.13 (t, 2H, 3JHH=6.3 Hz), 4.36 (t, 2H, 3JHH=6.8 Hz), 7.22-7.28 (m, 2H,

3JHH=7.9 Hz), 7.37-7.51 (m, 4H), 8.12 (d, 2H, 3JHH=7.9 Hz).
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Figure 2.20: Reaction scheme for synthesis of ATBC and starting compounds.

2.4.1.3 9-(4-azidobutyl)-9H-carbazole (3)

A mixture of 3-(9H-carbazol-9-yl)butyl methanesulfonate (2) (3.3 g, 10.4 mmol)

and sodium azide (1.35 g, 20.8 mmol) in dimethylformamide (10 ml) was heated and

stirred at 80 ◦C for 7 hours. After cooling, the mixture was quenched with water

and extracted with dichloromethane. The organic solution was washed with wa-

ter, dried with Na2SO4, filtered and filtrate was evaporated under vacuum to give

a red-brown oil. After purification by flash column chromatography (silicagel, hex-
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ane : dichloromethane 9:1, Rf=0.2) was obtained 1.8 g of clear oil. Yield 65%. 1H

NMR (CDCl3) δ 1.65 (m, 2H), 1.98 (m, 2H), 3.27 (t, 2H, 3JHH=6.9 Hz), 4.36 (t,

2H, 3JHH=7.2 Hz), 7.21-7.27 (m, 2H, 3JHH=7.9 Hz), 7.38-7.51 (m, 4H), 8.10 (d, 2H,

3JHH=7.9 Hz). 13C NMR (CDCl3) δ 26.44, 26.86, 42.56, 51.32, 108.65, 119.08, 120.57,

123.01, 125.85, 140.41. EI-Mass (m/z; rel. intensity %): 265 (M++1; 5), 264 (M+;

25), 193 (90), 180 (100), 167 (46), 152 (48), 139 (11).

2.4.1.4 4-(anthracen-10-yl)-2-methylbut-3-yn-2-ol (4)

9-Bromoanthracene (2 g, 7.8 mmol), 2-methyl-but-3-yn-2-ol (1.3 g, 15.6 mmol),

Pd(PPh3)2Cl2 (55 mg, 0.078 mmol), PPh3 (20 mg, 0.076 mmol) and CuI (15 mg, 0.079

mmol) were dissolved in piperidine (20 ml). This mixture was refluxed for 24 h under

N2 atmosphere, then cooled to room temperature. The residue was extracted with

dichloromethane and washed with water. Organic layer was separated and dried with

Na2SO4, filtered and evaporated. The crude product was purified by flash column

chromatography (silicagel, hexane : dichloromethane 1:2, Rf=0.4) to give 1.32 g of

yellow solid, m.p. 116-117 ◦C. Yield 65%. 1H NMR (CDCl3) δ 1.85 (s, 6H), 2.26

(s, 1H), 7.47-7.60 (m, 4H, 3JHH=8.5 Hz, 3JHH=6.6 Hz 4JHH=1.4 Hz, 4JHH=1.7 Hz),

8.00 (d.m, 2H, 3JHH=8.5 Hz), 8.42 (s, 1H), 8.50 (d.m, 2H, 3JHH=8.5 Hz).

2.4.1.5 9-4-[4-(9-anthryl)-1H-1,2,3-triazol-1-yl]butyl-9H-carbazole (6)

Compound (3) (157 mg, 0.59 mmol) and compound (5) (120 mg, 0.59 mmol)

were dissolved in mixture of isopropanol (5 ml) and water (3 ml). A water solution

(0.5 ml) of CuSO4*5H2O (8 mg, 0.03 mmol) was added to this solution under N2

atmosphere. After 5 min of stirring at room temperature sodium L-ascorbate (20 mg,

0.1 mmol) in water (0.5 ml) was added to the reaction. Obtained mixture was stirred

at 50 ◦C for 17 h. After cooling to the room temperature, the mixture was extracted
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Figure 2.21: Reaction scheme for synthesis of proposed metabolite residue 4-(9-anthryl)-1H-1,2,3-
triazole.

with dichloromethane and washed with water. Organic layer was separated and dried

with Na2SO4, then filtered and evaporated. The residue was crystallized with diethyl

ether, filtered and dried to give 147 mg of white solid, m.p. 182-183 ◦C. Yield 53%.

1H NMR (DMSO-d6) δ 1.85 (m, 2H), 2.08 (m, 2H), 4.52 (t, 2H, 3JHH=7.0 Hz ), 4.62

(t, 2H, 3JHH=6.8 Hz), 7.2 (m, 2H, 3JHH=7.2 Hz), 7.36-7.47 (m, 4H, 3JHH=7.2 Hz,

3JHH=8.3 Hz), 7.54 (m, 2H, 3JHH=7.2 Hz), 7.66 (m, 4H, 3JHH=7.2 Hz, 3JHH=8.3

Hz), 8.15 (m, 3JHH=7.2 Hz, 3JHH=8.3 Hz), 8.45 (s, 1H), 8.73 (s, 1H). 13C NMR

(CDCl3) δ 26.1, 28.2, 42.4, 50.1, 108.6, 119.2, 120.6, 123.0, 124.5, 124.7, 125.3, 125.9,

126.0, 126.2, 128.4, 128.6, 131.3, 131.4, 140.6 EI-Mass (LC/MS) (m/z; rel. intensity

): 267.27 (M++1; 100), 222.27 (80), 180.20 (28).

2.4.1.6 4-(9-anthryl)-1H-1,2,3-triazole

4-(9-anthryl)-1H-1,2,3-triazole was obtained from 9-ethynyl-anthracene (5) and

TMSN3 according to the literature.3 The product was purified on column with sil-

icagel, CH2Cl2, then MethOH. Rf=0.1 in CH2Cl2. m.p. 243-244 ◦C. Yield 59%. 1H

NMR (DMSO-d6) δ 7.47-7.58 (m, 4H, 3JHH=8.3 Hz), 7.66 (m, 2H), 8.17 (d, 2H,

3JHH=8.3 Hz), 8.76 (s, 1H). 13C NMR (DMSO-d6) δ 125.5, 126.4, 128.5, 130.6, 130.8

EI-Mass (ESI) (m/z; rel. intensity %): 246.27 (M++1; 100), 215.33 (9).
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Figure 2.22: Reaction scheme for synthesis of C6Cy3.

2.4.1.7 Synthetic scheme for synthesis of C6Cy3 and starting compounds

2.4.1.8 1,2,3,3-Tetramethyl-3H-indolium iodide (1)

2,3,3-Trimethyl-3H-indole (0.5 g, 3.14 mmol) and iodomethane (1.34 g, 9.42

mmol) were dissolved in acetonitrile (5 ml) and refluxed for 5 hours. After cooling,

the precipitated solid was filtered and washed with acetone then dried to give white

crystalline product (940 mg). Yield 99%. 1H NMR (DMSO-d6) δ 1.53 (s, 6H), 2.76

(s, 3H), 3.97 (s, 3H), 7.60-7.64 (m, 2H), 7.81-7.84 (m, 1H), 7.90-7.93 (m, 1H).

2.4.1.9 1-(3-Azido-propyl)-2,3,3-trimethyl-3H-indolium iodide (2)

2,3,3-Trimethyl-3H-indole (1 g, 6.28 mmol) and 1-azido-3-iodo-propane (2 g,

9.48 mmol) were dissolved in acetonitrile (10 ml) and refluxed for 14 hours. Solvent

was evaporated and the residue was dissolved in dichloromethane (4 ml), obtained

solution was added drop-wise to the stirred diethyl ether solution. Precipitated dark

solid was separated and the same purification was done one more time. Obtained

hygroscopic solid was dried under reduced pressure to give 1.85 g of product. Yield
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Figure 2.23: Reaction scheme for synthesis of Cy3 and starting compounds.
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80%. 1H NMR (CDCl3) δ 1.65 (s, 6H), 2.32 (m, 2H, 3JHH=5.7 Hz, 3JHH=7.2 Hz),

3.19 (s, 3H), 3.73 (t, 2H, 3JHH=5.7 Hz), 4.91 (t, 2H, 3JHH=7.2 Hz), 7.54-7.62 (m,

3H), 7.83-7.86 (m, 1H).

2.4.1.10 2-[2-(Acetyl-phenyl-amino)-vinyl]-1,3,3-trimethyl-3H-indolium io-

dide (3)

1,2,3,3-Tetramethyl-3H-indolium iodide (1) (0.65 g, 2.16 mmol) and N,N’-

diphenyl-formamidine (0.51 g, 2.60 mmol) were mixed with acetic acid (8 ml) and

acetic anhydride (4 ml). Obtained mixture was refluxed and stirred for 1 hour. After

cooling, the solvent was evaporated, the residue was dissolved in dichloromethane (2

ml) and added to diethyl ether solution. Precipitated dark solid was separated by

centrifugation. This crude product was dissolved in dichloromethane and washed with

water. Organic layer was separated and evaporated, obtained residue was dissolved

in dichloromethane and precipitated with diethyl ether once again. The dark-brown

solid was filtered and dried to give 0.87 g of product. Yield 90%. 1H NMR (CDCl3)

δ 1.83 (s, 6H), 2.11 (s, 3H), 3.85 (s, 3H), 5.59 (d, 1H, 3JHH=14.3 Hz), 7.46-7.50 (m,

4H, 3JHH=5.2 Hz, 4JHH=1.4 Hz), 7.53-7.55 (m, 2H, 3JHH=5.2 Hz, 4JHH=1.4 Hz),

7.63-7.73 (m, 3H, 3JHH=7.4 Hz, 4JHH=1.4 Hz), 9.17 (d, 1H, 3JHH=14.3 Hz).

2.4.1.11 2-3-[1-(3-Azido-propyl)-3,3-dimethyl-1,3-dihydro-indol-2-ylidene]-

propenyl-1,3,3-trimethyl-3H-indolium iodide (4), (5)

Compound (2) (0.16 g, 0.43 mmol) and compound (3) (0.175 g, 0.39 mmol)

were dissolved in pyridine (4 ml) and stirred at 50 ◦C for 2.5 hours. After cooling,

the solution was extracted with dichloromethane and washed with water. Organic

layer was separated and solvent was evaporated under reduced pressure. Obtained

dark-red residue was dissolved in minimum of dichloromethane (1 ml) and added
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drop-wise to diethyl ether solution to precipitate a brown solid, which was separated

by centrifugation. Separated solid was purified by precipitation from ether once again.

Obtained brown solid (0.12 g) is the mix of compounds (4) and (5) with ratio 2:1

correspondingly. This mix is id difficult to separate by column chromatography be-

cause two compounds have very similar structure and usually go together on silica gel.

Obtained mixture was used for the next click reactions without further purification.

1H NMR (CDCl3) δ 1.70 (s, 12H), 2.16 (m, 2H, 3JHH=6.0 Hz), 3.81 (s, 3H), 3.81 (t,

2H, 3JHH=6.0 Hz), 4.36 (t, 2H, 3JHH=7.7 Hz), 7.13 (d, 1H, 3JHH=7.7 Hz), 7.22-7.27

(m, 3H), 7.34-7.43 (m, 4H), 7.53-7.58 (d.d, 2H, 3JHH=13.4 Hz, 4JHH=3.2 Hz), 8.44

(t, 1H, 3JHH=13.4 Hz). 13C NMR (CDCl3) δ 26.93, 28.20, 28.29, 32.88, 42.22, 48.89,

48.92, 48.95, 104.90, 105.58, 110.89, 110.97, 122.14, 122.24, 125.38, 125.52, 129.01,

129.13, 140.55, 140.64, 142.10, 142.77, 151.03, 173.59, 174.48. EI-Mass (ESI) (m/z;

rel. intensity %): 426.33 (M+ +1; 68), 277.33 (100).

2.4.1.12 Synthetic scheme for synthesis of FlCy3

Figure 2.24: Reaction scheme for synthesis of FlCy3.
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2.4.1.13 5-Amino-2-[3-(3-azido-propoxy)-6-hydroxy-9H-xanthen-9-yl]-benzoic

acid 3-azido-propyl ester

The mixture of 5-aminofluorescein (0.2 g, 0.58 mmol.) and K2CO3 (0.16 g,

1.15 mmol.) in DMF (5 ml.) was stirred at 80 ◦C for 10 minutes, then 1-azido-3-

Iodopropane (0.3 g, 1.42 mmol.) was added and obtained mixture was stirred at 80 ◦C

for 4 hours. After cooling, the mixture was added drop-wise to diethyl ether solution

(30 ml) to precipitate a crude product. Precipitated residue was mixed with water

(20 ml) and acidified with hydrochloric acid (2 ml), extracted with dichloromethane.

Organic extract was dried with Na2SO4, filtered and evaporated to give a crude

product (orange oil). Crude product was crystallized from diethyl ether, filtered and

dried. 0.265 g was obtained. Orange oil. Yield 90%. 1H NMR (CDCl3) δ 1.67 (m,

2H, 2JHH=6.5 Hz, 2JHH=6.1 Hz), 2.15 (m, 2H, 2JHH=6.5 Hz, 2JHH=6.1 Hz), 3.16

(t, 2H, 2JHH=6.5 Hz), 3.56 (t, 2H, vJHH=6.5 Hz), 4.02 (t, 2H, 2JHH=6.1 Hz), 4.28

(t, 2H, vJHH=6.1 Hz), 6.98-7.06 (m, 3H, 3JHH=2.5 Hz) 7.11-7.15 (m, 2H, 3JHH=2.2

Hz), 7.18 (d, 1H, 3JHH=2.2 Hz), 7.34 (d.d, 2H, 2JHH=6.5 Hz), 7.57 (d, 1H, 3JHH=2.2

Hz).

2.4.1.14 2-[3-(3-Azido-propoxy)-6-hydroxy-9H-xanthen-9-yl]-5-(3-carboxy-

acryloylamino)-benzoic acid 3-azido-propyl ester

To the solution of compound 5-Amino-2-[3-(3-azido-propoxy)-6-hydroxy-9H-

xanthen-9-yl]-benzoic acid 3-azido-propyl ester (120 mg, 0.23 mmol) in dichloromethane

(8 ml) was added maleic anhydride (40 mg, 0.41 mmol). Was obtained 0.14 g of orange

solid which was used without further purification. Yield 98%. 1H NMR (DMSO-d6)

δ 1.51 (m, 2H, 2JHH=6.6 Hz, 2JHH=6.1 Hz), 2.02 (m, 2H, 2JHH=6.1 Hz), 3.06 (t, 2H,

2JHH=6.6 Hz), 3.52 (t, 2H, 2JHH=6.6 Hz), 3.99 (m, 2H, 2JHH=6.1 Hz), 4.22 (t, 2H,
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2JHH=6.1 Hz), 6.26 (d, 1H, 3JHH=1.9 Hz), 6.39 (m, 1H, 3JHH=1.9 Hz), 6.43 (d, 1H,

3JHH=1.9 Hz), 6.55 (d, 1H, 2JHH=12.1 Hz), 6.93 (m, 3H), 7.26 (d, 1H, 3JHH=2.2

Hz), 7.45 (d, 1H, 2JHH=8.3 Hz), 8.10 (d.d, 1H, 2JHH=8.3 Hz, 3JHH=2.2 Hz), 8.50

(d, 1H, 3JHH=2.2 Hz), 10.81 (b.s, 1H). 13C NMR (DMSO-d6) δ 27.25, 27.86, 47.14,

47.60, 62.37, 65.90, 101.03, 104.64, 113.93, 114.53, 117.01, 121.10, 123.13, 128.03,

129.13, 129.42, 130.19, 130.37, 130.55, 131.47, 131.84, 140.18, 149.88, 153.58, 158.33,

163.06, 163.96, 164.84, 166.95, 183.85. EI-Mass (ESI) (m/z; rel. intensity %): 610.07

(M±1; 100), 604.33 (12), 384.87 (11), 326.87 (5).

2.4.2 Preparation of CA10 lysate

Pseudomonas resinovorans CA10 was grown in minimal media M9 minus glu-

cose at 30◦C for 48 hrs. The cells were harvested using a Beckman JLA 16.250 at

10000Xg at 4◦C. The cell pellet (20 g) was resuspended in five volumes of the lysis

buffer (20 mM K2HPO4 (pH 7.4), 0.5 mM DTT, 10% sucrose, 0.250 M KCl, protease

inhibitors: pepstatin, leupeptin, chymostatin and aprotinin 5 µg/ml final concentra-

tion, 1 mM PMSF and 1 mM EDTA) and incubated with 1 mg/ml lysozyme at 4◦C.

The resuspended cells were sonicated and subjected to ultracentrifugation using a

T-1270 Sorvall rotor for 45 min at 100,000xg. The clarified supernatant was frozen

in aliquots using liquid nitrogen and stored at -80◦C. The total protein concentration

was measured using Bradford’s assay.[119]

2.4.3 Degradation of ATBC with CA10 lysate

The functionality of CARDO present in CA10 lysate to transform ATBC was

confirmed by the reaction of ATBC with CA10 lysate. ATBC (75 µmol) in DMSO and

NADH (100 µmol) were used in the sonicated lysate (500 µL) with 50 mM Tris-HCl
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buffer (pH 7.5). DMSO was added to aid the dispersion of ATBC in water. NADH

was added to ensure CARDO reactivity was the limiting factor in the metabolism of

ATBC. PL measurements were taken after 1 h of incubation at 30◦C.

2.4.4 Separation and analysis of product residues

After exposure to lysate for 72 h, samples were centrifuged using the Sor-

vall Legend Micro21 at 14800 rpm for 30 min. Pellet was removed and decanted

supernatant was redispersed in DMSO to separate ATBC degradation residues. PL

measurements were taken of the resultant supernatants at 295 and 360 nm excitation

wavelengths. The ATBC, ABC, EA and biotransformation residues were assayed by

gas chromatography-mass spectroscopy (model Shimadzu Q2010). GC-MS samples

were dissolved in tetrahydrofuran and clarified by centrifugation (5 min at 10,000 x

g). The inlet temperature was 200 ◦C. The injection volume was 1 µL with a 1:1

split and helium flow of 1 mL/min. The temperature program was 60 ◦C, 3 min; 20

◦C/min, 300 ◦C, 5 min.

2.5 Attributions

The synthesis of the azide and alkyne modified chromophores was conducted or

aided by Dr. Iurii Bandera at Clemson University. CA10 Lysate was prepared by Dr.

Deepti Sharma and Dr. Michael G. Sehorn at Clemson University. Portions of this

chapter have been published as Daniele et al., Manipulation of Förster energy transfer

of coupled 1 fluorophores through biotransformation by Pseudomonas resinovorans

CA10. Photochemistry and Photobiology (39), 2012. Content has been reproduced

with permission from Wiley Publishing Co.
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CHAPTER 3

Clickable Platforms I: Polymer nanocarriers for

bio-functional moieties utilized for bioseparations

3.1 Introduction

As materials engineers design materials with molecular precision, materials

are exhibiting properties very distinct from their bulk counterparts. At 100 nm and

below, scientists qualify materials as nanostructures; the surface:volume-ratio dra-

matically increases and properties are dominated by quantum and interfacial effects.

These effects lead to the well known characteristics of quantum dots, superparamag-

netic nanoparticles, and Pickering emulsions. Click transformations, specifically the

CuCAAC reaction, have found widespread acceptance in the nanoparticle commu-

nity. Through this facile method of modifying the surface of aqueous-phase particles,

a range of potential substrates and metabolites can be attached to particles at high

grafting densities that are only limited by the steric interactions of the attached

moieties.The novel properties afforded by nanoscale engineering with the CuCAAC

reaction are a driving force for the use of nanoparticles in basic fields of chemical and

molecular biology; moreover, designer nanomaterials will play a larger role in applied
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fields of bioanalytics and bioprocessing.

Biological systems exhibit astounding chemical complexity, which is harnessed

for the production of biochemicals, biopharmaceuticals, foods, nutraceuticals, and

agrochemicals. A single bacterial or mammalian cell contains thousands of proteins,

DNA, RNA, glycans, lipids, a myriad of small-molecule metabolites, and metal ions,

all in varied aqueous environments. Each of these components displays many chem-

ical functionalities, including nucleophiles, electrophiles, oxidants, and reductants.

Within this environment, enzymes choreograph the innumerable chemical transfor-

mations that together constitute the life of the cell: catabolic conversion of metabo-

lites into energy, biosynthesis and post-translational modification of proteins, repli-

cation of DNA, and many other biochemical processes.[120] Chemical biologists have

attempted to study the molecular intricacies of living systems by labeling and ex-

tracting individual components or groups of components, within the complexity of

the living system, with fluorophores and affinity assays. A critical aspect of any strat-

egy for labeling a target biomolecule inside a living cell or organism using a chemical

reaction is that the reaction must be exquisitely chemoselective; thus, click chemistry

provides an ideal platform for analysis of cellar constituents. Click approaches per-

mit both the tracking of biomolecules within the living cell by imaging and also the

determination of their exact molecular identities and compositions after purification

from a cell lysate; nonetheless, bioprocessing is often tedious and inefficient. Click

nanomaterials now allow a route for up-processing biomolecule extraction and library

building.
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3.1.1 Bioseparations and nanoparticles

The ability to exploit metabolomics and develop novel technologies from an

advanced repertoire of genomic data requires the evolution of high-throughput biosep-

aration techniques. Bio-derived products need to be extensively purified before they

can be used for their respective applications, so bioseparation technology requires

both target-specific sensors and target-extraction materials. Bioseparation is largely

based on chemical separation processes. A plethora of well established separation

techniques is used in the chemical industry.[121] A number of these techniques were

found to be suitable for carrying out biological separations; however, while borrowing

from chemical separations, the fundamental differences between synthetic chemicals

and biological substances need to be kept in mind. Some biologically derived sub-

stance such as antibiotics and other low molecular weight compounds such as vitamins

and amino acids are purified using conventional separation techniques such as liquid-

liquid extraction, packed-bed adsorption, evaporation and drying with practically

no modifications being necessary.[122] Substantially modified separation techniques

are required for purifying more complex molecules such as proteins, lipids, carbohy-

drates and nucleic acids; moreover, an unprecedented level of gentility and specificity

is required for extracting multicomponent systems, e.g. antibodies, enzymes, and

organelles.[123]

After sensing, of a targeted biomolecule, extraction and concentration would

provide unlimited opportunities for both chemical and biological analysis. Biolog-

ical products are present in very low concentrations in the starting material from

which they are purified. For example, monoclonal antibodies are typically present

in concentrations around 0.1 mg/ml in the mammalian cell culture; therefore, large

volumes of dilute product streams have to be processed for obtaining even modest
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amounts of pure products.[124] Impurities or by-products frequently have chemical

and physical properties similar to those of the target product, so bioseparation has to

be very selective in nature. Biological products are susceptible to denaturation and

other forms of degradation, so bioseparation techniques have to be gentle in terms of

avoiding extremes of physicochemical conditions such as pH and ionic strengths, hy-

drodynamic conditions such as high shear rates, and exposure to gas-liquid interfaces.

Organic solvents also have relatively limited usage in bioseparation due to their ten-

dency to promote degradation of many biological products. Many biological products

are thermolabile and hence many bioseparation techniques are usually carried out at

sub-ambient temperatures.

Because biochemical pathways are often distributed between several compart-

ments and even neighboring cells, non-destructive sensing is an imperative start

to bioseparation, so current biotechnology trends use functionalized nanoparticles

to study the metabolism of large microbial communities, compare enzymes present

in different strains, and recognize metabolic compounds with niche specificity.[125–

131] Fluorescence nanoparticles are non-destructive and capable of imaging spa-

tial heterogeneity. To provide a set of tools for real-time, sub-cellular measure-

ments of metabolite levels, fluorescent nanoparticles for various metabolites have

been developed.[132, 133] Fluorescent nanoparticle assays allow for diverse function-

alization, metabolic substrate specificity, and photosensitivity, which enhances the

ability to visualize a number of cellular processes and the decouples often convoluted

metabolic pathways and extracts enzymes.[134, 135]

In a 2009 study, researchers attempted to produce fluorescence sensors to probe

bacterial metabolic pathways by extracting active enzymes with a synthetic cobalt-

thiol trap. Ana Beloqui et al. produced metabolite “fingerprints” for different or-

ganisms by probing, extracting and cataloguing metabolic enzymes, but this method
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resulted in a collective of greater than 1500 metabolites, that needed to synthesized

and attached to particles.[136] Although this technique showed promise, the capabil-

ity to produce an entire metabolomic set of nanosensors is unwieldy and commercially

impractical. Due to the generalized metabolite functionality of the particles, decou-

pling the series of metabolic pathways and environmental variants present ultimately

proved to be impossible. As opposed to proteomic data sets, metabolic databases,

which can predict metabolite structure from a genome sequence, are not available;

therefore, introduction of a deduced metabolome does not account for metabolites re-

sulting from promiscuous function or adaptation. Specific metabolite recognition and

pathway determination is essential to understand the capabilities of flexible enzyme

metabolism by combining sub-cellular sensing and metabolomics. Consequently, a

reduction in the scope of metabolites introduced may be required to better recognize

and characterize flexible enzyme behavior.

3.2 Results and Discussions

3.2.1 Catch and release strategy for bioseparation

The isolation of a single type of protein from a complex mixture is vital for the

characterization of the function, structure, and interactions of the protein of interest

and is typically the most laborious aspect of the protein purification process. A model

system was utilized to show the efficacy of synthesizing a “baited” nanoparticle to

capture and recycle enzymes (proteins that catalyze chemical reactions) from crude

cell lysate. Enzyme trapping and recycling was illustrated with the CARDO system,

an enzyme important in bioremediation and natural product synthesis. The enzymes

were baited with azide-modified carbazolyl-moieties attached to poly(propargyl acry-
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Figure 3.1: Schematic illustration of the baited-particle enzyme extraction method: (a) the
nanoparticles consist of poly(propargyl acrylate) (PA) and their surface modification with 9-(3-
azidopropyl)-9H -carbazole (AC); (b) after adding particles to the protein solution, the CARDO
enzyme is attracted and binds to the bait; (c) centrifugation is used to remove the particles with
immobilized enzyme. After decanting and resuspension of the particles, the enzyme can be (d)
separated by decanting, (e) released and assayed for its carbazole-degrading activity by elevation of
temperature and introduction of cofactors.

late) nanoparticles through a click transformation. MALDI-TOF and SDS-PAGE

analysis indicated the single step procedure to immobilize the enzymes on the par-

ticles was capable of significantly concentrating the protein from raw lysate and se-

questering all required components of the protein to maintain bioactivity. These

results establish a universal model applicable to concentrating and extracting known

substrate protein pairs, but it can be an invaluable tool in recognizing unknown

protein-ligand affinities.

There is widespread interest in developing robust, flexible platforms which can

be employed in both the verification of proposed metabolic pathways for specific en-

zymatic chemical reactions and as a means to harvest these specific enzymes from a

mixture. Ligand-immobilization techniques represent a powerful tool for downstream

processing of enzyme biotechnologies, both in terms of enzyme identification and

recovery.[137–139] However, the most common methods to concentrate and deliver

these enzymes use covalent immobilization of the enzyme to a bulk surface.[140–142]

Covalent binding of enzymes to the substrate aids in immobilization, but it hinders

the recovery & recycling of the enzymes.[143] Core-shell particles are also a common
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covalent-immobilization filter for low molecular weight proteins, but these methods

require complex chemistries and fine control of shell porosity to allow proteins to

access their specific ligand.[144, 145] In addition, many of these covalent immobiliza-

tion methods employ an indiscriminate binding chemistry, e.g. thiol-reactivity, which

results in a non-specific enzyme immobilization, resulting in the neglect of unknown

members of the proteome.[146] An alternative approach would employ substrate or

metabolite infused particles which would be capable of treating dilute solutions or

mixtures containing only minute amounts of target molecules in the presence of other

accompanying compounds. The only report employing a metabolite-surface modi-

fied particle utilized commercial amine-reactive linkers with agarose beads to probe

metabolic pathways.[147]

Expanding on that effort, a general strategy is presented that employs sub-100

nm particles on which a substrate for a unique protein is “tethered”. These “baited”

nanoparticles can immobilize a specific protein type then release them for subsequent

analysis without a loss of bioactivity. The principle of this substrate-baited separation

method is general and applicable to many systems. Particulate carriers bearing a

general substrate or metabolite are mixed with a solution or mixture, e.g., crude cell

lysates, plasma, cultivation media, or environmental samples, containing the target or

unknown metabolic enzymes. Following an incubation period during which the target

compounds bind to the decorated particles, the particles with the immobilized target

compounds are easily removed from the mixture using centrifugation. After washing

out the contaminants, the isolated target protein can be eluted or reactivated from the

particles and used for further work. Due to the simple synthesis and rapid decoration

of the particles employed in this approach, this process can be tailored for a range of

primary substrate/metabolites and their corresponding target proteins and produced

in quantities appropriate for applications in large scale separation technologies, e.g.,
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fluidized-bed systems.

3.2.2 Carbazole 1,9a-dioixygenase (CARDO)

Because of the large pathway deviations and network combinations inherent

in metabolism, it is imperative to focus on a simple metabolic pathway and well-

characterized genome of value. Metabolic enzymes are a large class of proteins in

which their biochemical functions are often veiled behind flexible reaction kinetics

and a myriad of applicable substrates, yet there is a critical need to establish their

proposed functions as well as discover unforeseen activities, as metabolic enzymes

link biological structure to ultimate function.[146, 148, 149]

Xenobiotic metabolism is a good example of a complicated, unknown metabolic

network that would elucidate the complications of metabolomics, specifically the in-

ordinate number of metabolites as compared to metabolic enzymes.[150, 151] Xeno-

biotic metabolism includes microbial biodegradation pathways and drug metabolism

in mammals.[152, 153] Xenobiotics, such as polycyclic aromatic hydrocarbons and

heterocyclic aromatics (HCAs), play a unique role in environmental science and

current biotechnology. As common environmental pollutants HCAs are prime can-

didates for bioremediation, and in pharmaceutics, they supply a unique substrate

for drug development.[154–157] Given HCAs’ robust structures, conventional syn-

thetic approaches have given way to biological methods, and a series of microor-

ganisms have the capacity to degrade HCAs. This property results from exposure

to foreign substances that instigate new metabolic pathways.[158, 159] In recent

decades, HCA-degrading gene clusters have been characterized, and in a few cases,

the genes are located on plasmids [113, 160–166]. For example, bacterial degrada-

tion of a HCA, 9H-carbazole (CAR), has proven its worth in both fields of biore-
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Figure 3.2: Degradation pathway of carbazole by Pseudomonas sp. strain CA10. Gene des-
ignations: (carA) carbazole 1,9a-dioxygenase; (carB) 2,9-amino-biphenyl-2,3-diol 1,2-dioxygenase;
(carC) 2-hydroxy-6-oxo-6-(29-aminophenyl)-hexa-2,4-dienoic acid (meta-cleavage compound) hy-
drolase. Compounds: (a) carbazole; (b) 29-aminobiphenyl-2,3-diol; (c) 2-hydroxy-6-oxo-6-(2,9-
aminophenyl)-hexa-2,4-dienoic acid; (d) anthranilic acid.

mediation and biotransformation.[155, 157, 167, 168] Pseudomonas spp. bacteria

are able to survive with catabolic activity necessary to degrade carbazole at a suffi-

cient rate, but often, the expressed carbazole degrading enzymes have multiple and

distinct functionalities ex vivo.[169] One strain, Pseudomonas resinovorans CA10

(CA10) has the capability to use CAR as its sole source of energy, but the en-

zyme of interest, carbazole 1,9a-dioxygenase (CARDO), also catalyzes a variety of

HCA metabolisms.[113, 160, 162, 170–173] CARDO’s successful adaptation to multi-

ple metabolic niches requires extraordinary physiological capabilities and reflects the

broad technological capacity of this organism and enzyme.

The model system employed to demonstrate this strategy for extraction of

xenobiotic metabolizing enzymes utilized Pseudomonas resinovorans CA10. This

specific bacterial strain is a source of heterocyclic aromatic degrading enzymes, a

critical biotransformation for numerous bioremediation and natural product synthesis

processes.[174–181] CARDO has been identified as a multicomponent enzyme system

which consists of three components: CARDO-O (terminal oxygenase), CARDO-F

(ferredoxin), and CARDO-R (ferredoxin reductase).[182]

To verify the CAR degradation activity of CARDO, the purified enzyme was

exposed to CAR and required cofactors. The degradation of carbazole fluorescence

signals, shown in Figure 3.3. The decrease in the characteristic carbazole fluorescence
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Figure 3.3: Photoluminescence spectra (λex = 295 nm) of 9H-carbazole incubated with CARDO
complex for 60 minutes at 30 ◦C. Decrease in PL intensity coincides with enzymatic breakdown of
9H-carbazole.

signaled the degradation of carbazole by the purified CARDO complex. Like many

ligating enzymes, the CARDO complex activity can be controlled by temperature

deactivation. The activity of the CARDO complex to degrade carbazole was explored

by monitoring carbazole fluorescence at various incubation temperatures; at 5 ◦C, the

conversion of carbazole was significantly retarded as shown in Figure 3.4.
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Figure 3.4: Normalized absorbance at 295 nm (peak absorbance of 9H-carbazole) after exposure
to purified CARDO complex. Samples were incubated at 30, 23, 15, and 5 ◦C.
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3.2.3 Preparation and testing of affinity-based bioseparation

nanoparticles

An azide-modified carbazole was attached to crosslinked, inert poly(propargyl

acrylate) (PA) particles following a previously presented procedure.[53] Briefly, the

preparation of aqueous-phase nanoparticles that are surface-functionalized with a

carbazole substrate was achieved through the CuCAAC reaction.[2, 33, 183] The

carbazole decorated particles (PA/AC) were utilized to bind and harvest CARDO

from P. resinovorans CA10 lysate. The specificity of the PA/AC method was then

compared to traditional nickel-bead extraction methods. This method illustrates the

power that can be harnessed from the diversity of a “clickable” protein harvesting

substrate. The subsequent steps of the enzyme recognition and harvesting can then

take place in a single test tube, in which the immobilization of the enzyme on the

particle and release is studied to assess the affinity of the enzyme for the substrate

and the ability to ultimately harvest and recycle the enzyme.

Figure 3.1 presents the schematic of the “catch and release” strategy for pro-

tein harvesting. The PA colloids were prepared using a standard aqueous emul-

sion polymerization technique. The copper catalyzed click transformations with the

azide-terminated carbazole (AC) were done in water. Moieties which incorporate

carbazolyl groups are blue emitters, which allows for spectroscopic measurement of

their constitution.[184, 185] The biotransformation of the small molecule 9H-carbazole

(CAR) by P. resinovorans CA10 results in non-fluorescing intermediate metabolites

which include 2’-aminobiphenyl-2,3-diol (ABP), 2-amino-benzoic acid (ABA), and

pyrocatechol (PC).[113, 162, 170, 174] These characteristics were utilized to monitor

the degradation of carbazole by P. resinovorans CA10 and to analyze the interaction

of PA/AC particles with P. resinovorans CA10 lysate. Figure 3.3 shows the idealized
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the loss of 9H-carbazole fluorescence during incubation with the purified CARDO

complex.

Detailed synthesis procedures of the AC molecule and PA/AC particles are

presented in the experimental section (Figure 3.1a). The PA/AC particles underwent

a 48 hour click transformation, which results in a surface grafting density of ≈ 3.5

AC groups/nm2 and corresponds to a 100 % coverage if the distance of a carbazole

ring at its widest point (≈7 Å) can be assumed to define the diameter of a cylinder

enclosing the moiety and attached to the PA surface; each particle (diameter = 83 ±

12 nm) has then ≈76k AC moieties.[186] The modified particles underwent multiple

methanol and water washes with centrifugation to remove any remaining reactants

or copper catalyst. The cleaned PA/AC colloids were then incubated at 5 ◦C for 1

hour with the lysate of P. resinovorans CA10 (Figure 3.1b).

Differing species of carbazole degraders (such as P. resinovorans CA10) all ap-

pear to follow a similar carbazole degradation pathway that begins with the oxidative

cleavage of the heterocyclic nitrogen ring of carbazole, catalyzed by CARDO.[113]

This reaction results in the cleavage of one of the two carbon nitrogen bonds; how-

ever, subsequent biodegradation of carbazole by all characterized cultures involves

the degradation of one of the aromatic rings, meaning these degraders also contain

a carbon-carbon cleavage capabilities.[187] For example, P. resinovorans CA10 has

the capability to utilize carbazole as its sole source of carbon, nitrogen and energy,

but the CARDO, present in all carbazole-degrading bacteria, also catalyzes diverse

oxygenations of a variety of aromatic compounds, e.g. dioxin and fluorene, at reduced

efficiency.[113] These enzymes typically consist of two or three components that com-

prise an electron-transfer chain that mobilizes electrons from NADH or NADPH by

flavin and the [2Fe-2S] redox center of the oxygenating activation site.The activation

of this catalytic chain can be slowed by temperature reduction. This was verified by
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an enzyme activity assay measuring 9H-carbazole degradation with purified CARDO

at various temperatures (Fig. 3.4). Thus, low temperature incubation allows for the

immobilization of the enzyme onto the particles through the bioaffinity of CARDO

for the attached carbazole but reduces the kinetic rate in which this enzyme catalyzes

the biotransformation.[147]

First, the enzymatic degradation of the attached carbazole was performed at 30

◦C. Figure 3.5 presents the change in the photoluminescence (PL) spectra of PA/AC

particles after a 12 hour incubation with various concentrations of P. resinovorans

CA10 lysate. Initially, the spectral characteristics of the modified particles exhibit

peaks at ≈350 nm and 366 nm which are attributed to the monomeric emission of

the carbazole rings. In addition, the particles exhibit two additional peaks centered

at 405 nm and 430 nm and are routinely attributed to excimer emission stemming

from carbazole ring dimers.[114, 188] The appearance of these lower energy peaks

in the PL spectra suggest that the carbazolyl groups are in close proximity and can

energetically couple. When the particles are incubated at a ratio less than 6.12 x 109

particles : 1 µg P. resinovorans CA10 lysate, the PL signature is completely destroyed

and replaced by a broad & weak peak centered at 360 nm. Like the degradation of

9H-carbazole by CARDO, this enzymatic degradation can be slowed by reducing the

incubation temperature. Figure 3.6 shows the fluorescence characterization of the

degradation of PA/AC by CA10 lysate at different temperatures. There is ≈50%

decrease in the 351 nm peak at 25 ◦C, as compared to ≈13% at 12 ◦C, and only ≈5%

decrease at 5 ◦C over 12 h. At 5 ◦C, significant AC degradation was slowed beyond

1 h, allowing enough time for incubation and extraction of the CARDO enzyme.

The advantage of the slowed reaction can then be exploited to extract immobilized

enzymes. The bioavailability of the hydrophobic metabolites is also critical to under-

standing metabolic enzymes that bind to them.[189] Prior efforts have indicated that
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Figure 3.5: Change in photoluminescence spectra of PA/AC particles after 12 hour incubation
at 30 ◦C with various concentrations of P. resinovorans CA10 lysate. Particle density was 3.43 x
1013cm3 (diameter = 83 ± 12 nm) and (100 µL in 2.9 mL water) were combined with P. resinovorans
CA10 lysate (5.6 µg/µL). Excitation wavelength at 295 nm.
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Figure 3.6: Fluorescence at λex = 295 nm for PA/AC incubated with CA10 lysate for 12 h at
various temperatures to illustrate the slowing of degradation by temperature decrease. From left to
right, 25, 12, and 5 ◦C.

P. resinovorans CA10 can degrade the small molecule H-carbazole.[174, 190, 191]

The modification of this small molecule with an aliphatic chain attached to the ni-

trogen (9-(3-azidopropyl)-9H-carbazole) does not alter the ability of CA10 to employ

it as a substrate.

Figure 3.7 presents the proliferation of P. resinovorans CA10 with both 9H-

carbazole and PA/AC particle based media during a 96 hour incubation. The con-

sistent growth between free carbazole and PA/AC shows the flexibility of CA10 to

degrade carbazolyl moieties sequestered to particles. The growth curves show that

attachment of metabolites to PA colloids did not hinder bioavailability or activity.

The low temperature incubation of the particles with the lysate of P. resinovorans

CA10 allows for the immobilization of the protein on the particle (Figure 3.1b). Once

immobilized, the particles can be centrifuged and effectively capture the enzymes, fil-

tering them from non-specific proteins (Figure 3.1c). To assess the specificity of the

immobilization on the particles, the centrifuged particles were washed with a mild

NaCl solution to remove non-specifically bound proteins and then were subjected
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Figure 3.7: Proliferation of P. resinovorans CA10 with small molecule CAR (©) and PA/AC
particle (•) based media during a 96 hour incubation at 23 ◦C. Control growth performed with
glucose medium (4).

to matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass

analysis in order to identify the sequestered enzymes.

Figure 3.8 presents the predicted mass spectrum of the neat CARDO protein

constituents and the observed PA/AC particles with immobilized protein.[137, 192]

The components CARDO-F (12-kDa monomer) and CARDO-R (37-kDa monomer)

function as a ferredoxin and a ferredoxin reductase, respectively, to transport elec-

trons from NADH to terminal oxygenase. The CARDO-O is a 132-kDa homotrimeric

terminal oxygenase made up of 44-kDa monomeric units. The experimentally ob-

served mass spectrum (Figure 3.8 (b)) exhibits high intensity peaks at 12, 24, 37,

and 44 kDa, as well as two lesser peaks at 49 and 74 kDa. These majority peaks
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Figure 3.8: (a) Predicted matrix-assisted laser desorption/ionization (MALDI) time-of-flight
(TOF) mass spectrum of neat CARDO protein and (b) observed PA/AC particles with immobi-
lized protein.
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are consistent with the predicted mass spectrum, while the peaks at masses over 74

kDa are in the noise level of the instrument. To further demonstrate that correla-

tion between the observed and predicted mass spectrum, the component proteins of

CARDO were purified employing traditional multistep affinity purification methods

using a polyhistidine-tag/nickel pair and their mass spectrum acquired. Figure 3.9

presents the MALDI mass spectrum of CARDO-O, CARDO-F, and CARDO-R. All

of the peaks observed in these component proteins are observed in Figure 3.8 (b)

except for the masses greater than 74 kDa due to the signal to noise ratio in the

spectrum.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was

employed in order to assess the molecular weights of the immobilized proteins and vi-

sually confirm the extraction of the CARDO components from whole-cell P. resinovo-

rans CA10 lysate. In Figure 3.10, the proteins immobilized on the PA/AC particles is

presented in lane 3 while the raw lysate is presented in lane 2 (lane 1 is the molecular

weight markers). The immobilized proteins produced two distinct bands correspond-

ing to a molecular mass of 44 and 37 kDa. These molecular masses correspond to

CARDO-O and CARDO-R respectively.[182] This identification was corroborated by

comparison with the electrophoretic mobility of purified CARDO-O and CARDO-R

as shown in lanes 4 and 5. The high intensity of the bands indicates that this method-

ology has advantages in the selective harvesting and concentrating of these proteins

from the crude lysate in a single step. The purified CARDO-F protein (Figure 3.10

lane 6) exhibits multiple bands and appears to run slower than its actual molecular

weight, characteristics which have been presented in previous reports.[182, 193] Faint

bands similar to the purified CARDO-F are present in the immobilized proteins. The

presence of this protein can be verified by a bioactivity assay with the immobilized

proteins because in the CARDO P. resinovorans CA10 system, CARDO-F is essential
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Figure 3.9: Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spec-
trum of purified (a) CARDO-R (b) CARDO-F, and (c) CARDO-O.
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Figure 3.10: Sodium dodecyl sulfate polyacrylamide gel electrophoresis of whole cell lysate from P.
resinovorans CA10 (2) and PA/AC particle immobilized proteins (3). For comparison, the purified
CARDO components of CARDO-O (4, 1 µg), CARDO-R (5, 1.5 µg), and CARDO-F (6, 2 µg)
obtained through traditional multistep affinity purification methods using a polyhistidine-tag/nickel
pair is presented. Lane 1 is the molecular weight marker.
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for electron transfer to CARDO-O and must be present for bioactivity.[182]

To assess the bioactivity of the proteins attached to the particles, a modi-

fied affinity assay was carried out in which the addition of NADH, FAD, and Fe2+

reconstituted the enzyme electron transport system and activity was promoted by

the addition of carbazole and an increase in temperature to 30 ◦C.[182] Figure 3.11

presents the measurement of activity with incubation time for these harvested pro-

tein as well as CA10 lysate incubated with PA/AC particles, neat CA10 lysate, and

non-specific proteins.

The ability of PA/AC particles to harvest desired enzymes was assessed by

the conversion of NADH to NAD+. This conversion was monitored through the

loss of an absorption peak at 340 nm of the supernatant over a specified incubation

period. Under all activity studies, the carbazole concentration was kept constant.

As was expected, the neat lysate exhibited the fastest conversion, with the NADH

oxidized to NAD+ within a 2 hour incubation period. This is due to the high protein

content of the neat lysate relative to the substrate concentration. Similarly, the

lysate incubated with the PA/AC particles exhibited a high level of NADH to NAD+

conversion, confirming the PA/AC’s ability to trap and remove carbazole degrading

enzymes. The proteins immobilized on the particles were released and capable of the

biotransformation of carbazole as determined through the oxidation of NADH (Figure

3.1 (e)). The degradation of carbazole by extracted proteins verifies the PA/AC

particles capabilities to extract the entire CARDO complex, including CARDO-O,

CARDO-R, and CARDO-F. Without each component of the enzyme, bioactivity

could not be restored. Although, the activity of the proteins sequestered on the

particles was similar to the neat lysate, it was reduced in rate due to the lower ratio

of protein to substrate. In contrast, the non-specific proteins exhibited no activity

towards the carbazole.
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Figure 3.11: Measurement of activity with incubation time for proteins immobilized on PA/AC
particles (•), CA 10 lysate incubated with PA/AC particles (5), neat CA 10 lysate (4), and non-
specific proteins (◦). Activity measured by the oxidation of NADH to NAD+ and assessed through
the change in absorption of the supernatant at 340 nm.
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Clearly, the immobilization of the CARDO proteins on the particles still al-

lows them to function as a carbazole degrader once removed from the particles. In the

CARDO P. resinovorans CA10 system, an unrelated reductase can be substituted

for CARDO-R and still maintain activity, but CARDO-F is indispensable for elec-

tron transfer to CARDO-O.[182] The observed activity of the sequestered proteins

indicates that all three components have been harvested.

3.3 Conclusions

In this effort, a model system was utilized to show the efficacy of synthesizing a

“baited” nanoparticle to capture and recycle enzymes from lysate. Enzyme trapping

and recycling was illustrated with the CARDO systems, an enzyme important in

bioremediation and natural product synthesis. The enzymes were baited with an

azide modified carbazolyl-moiety attached to a PA nanoparticle. The bait products

is well dispersed in water and buffers, a property that is independent of selected ligand,

but a result of their attachment to PA particles. These results establish a universal

model applicable to concentrating and extracting known substrate protein pairs, but

it can be an invaluable tool in recognizing unknown protein-ligand affinities. Despite

the widespread availability of genome sequences, according to the shear multitude of

metabolites the selectivity of many metabolic enzymes are still veiled, this procedure

goes a long way toward cultivating large banks of recyclable metabolic enzymes and

probing enzyme selectivity.
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3.4 Experimental Details

3.4.1 Reagents and solvents

All the commercial reagents were used without further purification. All the

solvents were dried according to standard methods. Deionized water was obtained

from a Nanopure System and exhibited a resistivity of ≈18.2x1018 ohm−1cm−1.

3.4.2 Characterization

1H and 13C NMR spectra were recorded on JEOL ECX 300 spectrometers

(300MHz for proton and 76MHz for carbon). Chemical shifts for protons are reported

in parts per million downfield from tetramethylsilane and are referenced to residual

protium in the NMR solvent (CDCl3: δ 7.26 ppm, DMSO-d6: δ 2.50 ppm). Chemical

shifts for carbons are reported in parts per million downfield from tetramethylsilane

and are referenced to the carbon resonances of the solvent (CDCl3: δ 77.16, DMSO-d6:

δ 39.52 ppm). Electron impact (EI) (70 eV) ionization mass spectra were obtained

using Shimadzu GC-17A mass spectrometer. LC/MS mass spectra were obtained

using Finnigan LCQ spectrometer and HP 1100 (HPLC). Photoluminescence (PL)

spectra were collected using a Jobin-Yvon Fluorolog 3-222 Tau spectrometer.

3.4.3 Materials

3.4.4 Synthesis of 9-(3-azidopropyl)-9H -carbazole (AC)

3-(9H -Carbazol-9-yl)propyl methanesulfonate (2) Methanesulfonyl chlo-

ride (0.84 g, 7.32 mmol) was added dropwise at room temperature to a stirred solution

of 3-(9H -carbazol-9-yl)propan-1-ol (1.5 g, 6.66 mmol) (1) (synthesized according to
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Figure 3.12: Reaction scheme for 9-(3-azidopropyl)-9H -carbazole (AC).

Ref. [117]) and triethylamine (0.74 g, 7.32 mmol) in dichloromethane (25 mL). The

solution was stirred for 8 hours and then washed with water two times. The organic

layer was separated, dried with Na2SO4 and then filtered. The solvent was removed

under reduced pressure to give the clear-yellow oil. Yield: 1.96 g (97%). 1H NMR

(CDCl3) 2.36 (m, 2H, J 6.5, 5.9), 2.86 (s, 3H), 4.14 (t, 2H, J 5.9), 4.50 (t, 2H, J 6.5),

7.25 (m, 2H), 7.40-7.52 (m, 4H), 8.10 (d, 2H, J 7.9).

9-(3-Azidopropyl)-9H -carbazole (AC) (3) A mixture of 3-(9H -carbazol-

9-yl)propyl methanesulfonate (2) (1.96 g, 6.46 mmol) and sodium azide (0.46 g,

7.14 mmol) in dimethylformamide (25 mL) was heated and stirred at 90 ◦C for 4

hours. After cooling to room temperature, the mixture was quenched with water

and extracted with dichloromethane. The organic solution was washed with water,

dried with Na2SO4 and filtered. The solvent was removed under reduced pressure

to give the clear-brown oil, which was purified by flash chromatography (10% ethyl

acetate/hexane; Rf=0.4). A clear-yellow oil was obtained. Yield: 1.34 g (82%). 1H

NMR (CDCl3) 2.13 (m, 2H, J 6.5, 6.2), 3.30 (t, 2H, J 6.2), 4.42 (t, 2H, J 6.5), 7.24

(m, 2H), 7.41-7.50 (m, 4H), 8.10 (d, 2H, J 7.6). 13C NMR (CDCl3, 75.6 MHz) δ 28.3,

39.8, 48.8, 108.6, 119.2, 120.6, 123.1, 126.0, 140.4. EI-Mass (m/z; rel. intensity%)
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251 (M++1; 5), 250 (M+; 35), 194 (12), 180 (100), 167 (65), 152 (46), 139 (21).

3.4.5 Preparation of baited particles

Monodisperse poly(propargyl acrylate) (PA) particles were prepared using a

modified emulsion polymerization procedure. The propargyl acrylate (PA) (4.6 ml)

and divinylbenzene (DVB) (0.8 ml) were passed through a packed alumina column

while all other materials were used as-received. A 500 mL three necked jacketed

reactor was charged with 140 mL of deionized water and 0.08 g of sodium dodecyl

sulfate (SDS, 99% Aldrich) was added and the solution was stirred for 1 h at 83 ◦C

under a nitrogen atmosphere. The PA and DVB were mixed and slowly dropped

into the reaction vessel. Once the addition of the PA:DVB mixture was completed,

0.2 mL of 3-alloxy-2-hydroxy-1-pro- panesulfonic acid sodium salt (COPS-1, 40wt %

soln. Aldrich) in 5mL deionized water was added drop-wise to the solution. After

the COPS-1 was completely added, the solution was stirred for an additional 5 min

before 0.16 g potassium persulfate (KPS, 99+ % Aldrich), that was mixed with 5

mL deionized water, was added to the solution. The emulsion polymerization was

carried out under a nitrogen atmosphere for at least 2 h. The resulting PA latex

was dialyzed against deionized water for 5 days at 60 ◦C using a dialysis bag with

a molecular weight cut-off of 50,000. The dialyzed dispersion was then shaken with

an excess of mixed bed ion-exchange resin (Bio-Rad Lab AG 501-X8, 20-50 mesh)

to remove excess electrolyte. After the cleaning procedures, the particle diameter

was measured to be 83 ± 12 nm (average and standard deviation) with a Coulter

N4Plus dynamic light scatter (DLS). Reported DLS diameters are based on intensity

distribution. Drying a known mass of the suspension in an oven at 90 ◦C overnight

and then in a vacuum oven for 2 days, resulted in a particle density of 3.43 x 1013
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particles/mL.

For a typical surface modification of the particles, for example, the grafting

of AC onto the particles, 1 mL PA particles and 4.5 mg AC were added to a 2 mL

deionized water. Solutions of 0.0644 g copper(II) sulfate (99.999% Aldrich) in 10

mL deionized water and 0.17 g sodium ascorbate (99% Aldrich) in 10 mL deionized

water were made. Initially, 0.2 mL of the Cu2SO4 solution was added to the PA/AC

solution, followed by 0.3 mL of the sodium ascorbate solution. The resulting mixture

was maintained at a temperature of 28 ◦C for 48 h. The resulting clicked particles

were dialyzed against deionized water for 3 days at 60 ◦C using a dialysis bag with a

molecular weight cut-off of 50,000.

3.4.6 Preparation of P. resinovorans CA10 lysate

P. resinovorans CA10 was grown in minimal media M9 minus glucose at 30

◦C for 48 hrs. The cells were harvested using a Beckman JLA 16.250 rotor at 10000

x g at 4 ◦C. The cell pellet (20 g) was resuspended in five volumes of Buffer A (20

mM K2HPO4 (pH 7.4), 0.5 mM DTT, 10% sucrose, 0.250 M KCl, protease inhibitors:

pepstatin, leupeptin, chymostatin and aprotinin 5 µg/ml final concentration, 1 mM

PMSF and 1 mM EDTA) and incubated with 1 mg/ml lysozyme at 4 ◦C. The re-

suspended cells were sonicated and subjected to ultracentrifugation using a T-1270

Sorvall rotor for 45 min at 100,000x g. The clarified supernatant was frozen in aliquots

using liquid nitrogen and stored at -80 ◦C. The total protein concentration was mea-

sured using Bradford’s assay.[119]
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3.4.7 Purification of CARDO proteins

All the resins and chemicals were from GE healthcare and American Bioana-

lytical, respectively, unless otherwise mentioned.

3.4.7.1 Expression of CARDO-F, CARDO-O and CARDO-R

Each plasmid was transformed separately in the BL21(DE3) Rosetta strain of

Escherichia coli. The transformed bacterial cells were grown in 2X LB media (yeast

extract 5 g/L, tryptone 10 g/L and NaCl 5g/L) supplemented with kanamycin (50

µg/ml) at 37 ◦C to an OD of 0.8. Isopropyl-D-1-thiogalactopyranoside (IPTG) was

added to the cultures (final concentration of 0.4 mM) and the culture was further

incubated for 16 hrs. The cells were harvested by centrifugation at 6000 rpm at 16

◦C for 10 min in a Beckman 8.1000 rotor.

3.4.7.2 Purification of CARDO-F, CARDO-O and CARDO-R

Lysate from bacterial cell pellets for each of CARDO-F, CARDO-O and CARDO-

R was separately prepared using the same protocol at 4 ◦C. A 30 g cell pellet of each

bacterial culture was resuspended separately in 150 ml Buffer A and incubated at 4 ◦C

for 30 min in the presence of lysozyme (1 mg/mL) followed by sonication. Each indi-

vidual lysate was centrifuged at 40,000 rpm in a Beckman Ti-45 rotor for 1 hr at 4 ◦C.

The supernatant from each lysate was further subjected to affinity and conventional

column chromatography as described below.

3.4.7.3 CARDO-F purification

The supernatant from the CARDO-F lysate was incubated with Ni-NTA

sepharose (GE Healthcare) for 1 hr. The supernatant-Ni-NTA slurry was collected
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and poured into a column (0.7 cm inner diameter X 0.5 height). The Ni-NTA column

was washed with Buffer B (20 mM K2HPO4 pH 7.4, 300 mM KCl, 10% glycerol, and

1 mM EDTA) followed by elution of CARDO-F with Buffer B containing 500 mM

imidazole. Peak fractions were diluted to match conductivity of Buffer C (20 mM

K2HPO4 pH 7.4, 10% glycerol, and 1 mM EDTA) containing 100 mM KCl and loaded

on a 1 mL Source 15Q column (GE Healthcare). The bound protein was fractionated

using Buffer C containing 100 mM - 800 mM KCl. The peak fractions containing

the protein (∼700 mM KCl) were pooled, diluted to match conductivity of Buffer C

containing 100 mM KCl and loaded onto a 1 mL Source 15S column (GE Healthcare).

The bound protein was fractionated using Buffer C containing 100 mM 800 mM KCl.

The peak fractions (∼150 mM KCl) containing CARDO-F were pooled, concentrated

and stored at -80 ◦C.

3.4.7.4 CARDO-O purification

The supernatant containing CARDO-O was subjected to Ni-NTA affinity chro-

matography as described for CARDO-F. The eluent from the Ni-NTA column was

diluted to match conductivity of Buffer C containing 100 mM KCl then loaded on

a 1 mL Source 15Q column. The bound protein was fractionated as described for

CARDO-F. Peak fractions containing the CARDO-O (∼360 mM KCl) were pooled,

diluted to match conductivity of Buffer C containing 100 mM KCl and loaded onto

a 1 mL Source 15S column. The bound protein was fractionated as described for

CARDO-F. The peak fractions (∼100 mM KCL) containing CARDO-O were pooled,

concentrated and stored at -80 ◦C.
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3.4.7.5 CARDO-R purification

The supernatant containing CARDO-R was subjected to Ni-NTA affinity chro-

matography as described for CARDO-F. The eluent from the Ni-NTA column was

diluted to match conductivity of Buffer C containing 100 mM KCl then loaded on

a 1 mL Source 15Q column. The bound protein was fractionated as described for

CARDO-F. Peak fractions containing the CARDO-R (∼400 mM KCl) were pooled,

diluted to match conductivity of Buffer C containing 100 mM KCl and loaded onto

a 1 mL Source 15S column. The bound protein was fractionated as described for

CARDO-F. The peak fractions (∼100 mM KCL) containing CARDO-R were pooled,

concentrated and stored at -80 ◦C.

3.4.7.6 Denaturing polyacrylamide gel electrophoresis

The protein samples (whole cell lysate, 5 µg; purified lysate, 1 µg; CARDO-O,

1µg; CARDO-R, 1.5µg; and CARDO-F, 2µg) were loaded on a 12% SDS-polyacrylamide

gel and subjected to electrophoresis for 50 min at 200V. The gel was stained using

Commassie Brilliant Blue. The image was taken using Gel-Doc (Bio-Rad).

3.4.7.7 Fluorescence measurement of 9H-carbazole degradation by puri-

fied CARDO complex

The purified enzymes CARDO-F, CARDO-O and CARDO-R were incubated

in 500 µL buffer (50 mM Tris-HCl pH 7.5, 100 nmol/µL Mohrs Salt, 200 pmol/µL

FAD+ and 100 nmol/µL NADH) at 30 ◦C. All buffer cofactors were in excess as

suggested by previous reports.[182] The reaction was started with the addition of

50 nmol/µL 9H-carbazole dissolved in DMSO. The sample was incubated in a water

jacketed cuvette to maintain a constant temperature. Samples were gently stirred
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with a magnetic stir plate. The photoluminescence spectra were collected λex = 295

nm.

3.4.8 Temperature dependence of CARDO catalysis on 9H-

Carbazole and PA/AC

Purified CARDO complex activity was monitored using a modified enzymatic

assay previously described.[194] The purified enzymes CARDO-F, CARDO-O and

CARDO-R were incubated in 20 µL Buffer D (25 mM Tris-HCl pH 7.5 and 1 mM

NADH) containing 1 mM carbazole dissolved in DMSO at varying temperatures from

30 ◦C to 5 ◦C. An aliquot was removed from the reaction at the indicated times and

the absorbance of the reaction was determined with a NanoDrop spectrophotometer

(Thermo Scientific) at 295 nm.

CA10 lysate interaction with PA/AC was monitored by fluorescence. CA10

lysate (1 mL at 5.6 µg protein/µL) and 100µL PA/AC (3.43 x 1013 particles/mL) was

incubated in a water jacketed cuvette to maintain a constant temperature. Samples

were stirred with a magnetic stir plate. Temperature dependence was evaluated at

25 ◦C, 12 ◦C, and 5 ◦C. Fluorescence measurements were made at t = 0, 30, 60, 120,

180, and 720 min. The PL spectra were collected at λex = 295 nm.

3.4.9 Enzyme trapping and affinity activity assay

The enzyme trapping and affinity of the bound proteins were assessed through

the following procedures. Initially, 100 µL PA/AC particles in an aqueous buffer

(3.43 x 1013 /cm3 and (100 µL in 0.8 mL water)) were added to 100 µL neat lysate

of CA 10 and incubated at 5 ◦C for 1 hour. This solution of particles and lysate

was centrifuged (10,000 x g, 5 ◦C, 10 min.) and the supernatant was decanted. The
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particles were washed with 1 mL of a 100 mM NaCl solution and the tube was inverted

10 times followed by incubation for 30 min at 5 ◦C. After the incubation, the particles

were centrifuged (10,000 xg, 5 ◦C, 10 min) (PA/AC particles with bound proteins)

and the salt solution decanted. To assess the activity of the various components

(PA/AC particles with bound proteins, incubated lysate, non-specific proteins, and

neat lysate), each was individually added to an aqueous buffer in which 5 µL of a

10 nmol carbazole / DMSO solution was added.To initiate bioactivity, 1 nmol flavin

adenine dinucleotide (FAD), 100 nmol ammonium iron(II) sulfate, and 100 nmol

NADH, were added, resulting in a total buffer volume of 1 mL, and the temperature

raised to 30 ◦C. All cofactors were added in excess. After either 30, 60, 120, 240, 320,

or 960 min., the temperature of the samples was lowered to 5 ◦C, the tubes centrifuged

(10,000 x g, 5 ◦C, 10 min), and the supernatant decanted and the oxidation of NADH

to NAD+ assessed through the change in absorption of the supernatant at 340 nm.

3.4.10 MALDI/TOF measurements

All samples were analyzed in a saturated 3,5-dimethoxy-4-hydroxycinnaminic

acid solubilized in 1:1 water:acetonitrile, 0.1% TFA. A sandwich method of 1 µL

matrix, followed by 1 µL acid solubilized sample, capped with 1 µL matrix was

prepared on the plate. A desalting step of 1 µL water was utilized for all samples.

The samples were analyzed with the Bruker OmniFlex III.

3.5 Attributions

The synthesis of the azide-modified chromophores was conducted or aided by

Dr. Iurii Bandera at Clemson University. Production of CARDO enzymes and tradi-

tional purification was conducted by Dr. Deepti Sharma and Dr. Michael G. Sehorn
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at Clemson University. Plasmids harboring genes for CARDO-F-(HIS)6, CARDO-

O-(HIS)6 and CARDO-R-(HIS)6 vectors were a kind gift from Hideaki Nojiri at the

University of Tokyo.The results presented in Chapter 3.3.2 were previously published:

Daniele et al., Substrate-baited nanoparticles: A catch and release strategy for enzyme

recognition and harvesting. Small, 2012.
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CHAPTER 4

Clickable Platforms II: Magnetic field-affected composite

carriers for bio-functional moieties

4.1 Introduction

As introduced in Chapter 3, nanomaterials have unique properties because

of exaggerated surface: volume ratio and quantum effects realized at the nanoscale.

Comparable to polymer nanoparticles, inorganic nanoparticles have many surprising

characteristics, ranging from novel optical response and semiconducting properties

to superparamagnetic behavior. Quantum dots (CdS, CdSe, InAs) have semicon-

ducting properties due to quantum confinement of excitons, resulting in partially

formed valence and conduction bands. The QD electronic bandgap is directly pro-

portional to the size of the nanocrystal. Adjusting the bandgap tailors the absorption

and emission wavelengths, where larger QD reduce the band gap for a bathochromic

shift and smaller QD increase the band gap for a hypsochromic shift. The continu-

ous, tailored absorption and emission spectra of QD have led to their popularity as

multiplex imaging, cell targeting and FRET sensors. At the orthogonal-end of the

electromagnetic spectrum, nano-sized magnetic materials (Fe, Co, Ni) have unique
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characteristics based on the size of the nanocrystals. Iron oxide nanoparticles, Fe3O4

and γ-Fe2O3, have attracted interest due to their superparamagnetic properties de-

pendent on particle size. Applications include magnetic storage devices, catalysts,

sensors and magnetic resonance imaging(MRI) contrast agents, but unlike QD, iron

oxide nanoparticles require organic coatings for stability, such as synthetic polymers

or biomacromolecules.[195–197] The requirement of well-defined surface chemistries,

tailored at the nanoscale, make iron oxide nanoparticles a prime platform for the

application of click chemistry and the topic of Chapter 4.

4.1.1 Magnetism and nanomaterials

Magnetic materials can be classified into three classes based on their suscepti-

bility to external magnetic fields: 1) diamagnetic, 2) paramagnetic, and 3) ferromag-

netic. Diamagnetism is dominant in materials with unpaired electrons. Paramagnetic

materials have unpaired electrons, but there is no coupling between their spins. Ferro-

magnetic materials also have unpaired electrons, but all spins are coupled and parallel.

Diamagnetic materials have a very small repulsion to external fields. Paramagnetic

materials have exhibit small attraction response to applied fields, and ferromagnetic

materials have strong attraction upwards of 100x paramagnetic response. More im-

portantly, ferromagnetic materials show a permanent magnetic moment after removal

of the applied field.

The most common materials formed into nanoparticles are magnetite and

maghemite (Fe3O4 and γ-Fe2O3, respectively) which in the bulk form are a unique

type of ferromagnetic; they are ferrimagnetic. Ferrimagnetic materials have unpaired

electrons with paired spins; however, their pairs have some anti-parallel arrange-

ments. When these ferrimagnetic materials are confined to <50 nm, they exist as
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Figure 4.1: Diagrams illustrate the arrangement of magnetic dipoles in (a) paramagnetic, (b)
ferromagnetic, (c) anti-ferrimagnetic and (d) ferrimagnetic materials.

single-domain magnets. Each ferrimagnetic nanoparticle has a permanent magnetic

moment which can be reoriented in an applied field, but due to thermal energy at am-

bient temperatures, the magnetic moment is perturbed and the magnetic moment of

each nanoparticle can constantly switch orientation. On the macroscopic scale, there

is no net magnetization, and these nanoparticles are considered superparamagnetic

(SPION).The difference in magnetization in response to an applied field is significant

between different magnetic materials as shown in Figure 4.2. In the presence of an

applied field, SPION are readily and strongly attracted to the field because of reorien-

tation of each nanoparticle, but unlike ferromagnetic materials, there is not remnant

magnetization or coercive field realized, i.e. hysteresis in the magnetization curve.

Superparamagnetism results from the confined magnetic domain in the SPION can

be easily inverted by thermal energy great enough to overcome an energy barrier,

resultant from the magneto-crystalline and shape anisotropy of the material. Both

magneto-crystalline and shape anisotropy are dependent on SPION volume, as is the
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Figure 4.2: Diagrams illustrate the Magnetization response to external field in (a) diamagnetic,
(b) paramagnetic, (c) ferromagnetic and (d) superparamagnetic materials.

superparamagnetic behavior.

4.1.2 Magnetic nanoparticles and biotechnology

Superparamagnetism allows SPION to be utilized in biosystems because they

display colloidal stability absent of an applied magnetic field. Accordingly, SPION

with designer surface chemistries are candidates for the next-generation of cancer

theranostics, including diagnostic assays, MRI contrast agents, cell-tracking, immune-

stimulation, hyperthermia, and drug delivery; however, agglomeration of nanoparti-

cles with a large surface-to-volume ratio inside biosystems of varying pH and ionic

concentration.[198–205] Any agglomeration of SPION will result in the loss of super-

paramagnetic characteristics, decrease of surface activity, short blood half-life and

rapid elimination from circulation. In light of the aforementioned benefits and hur-

dles, a major challenge in medical applications is to devise a methodology to maintain
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superparamagnetism which avoids ferrimagnetic agglomeration, stabilize SPION to

prevent surface-energy agglomeration, and include sufficient functionality on the sur-

face of these nanodevices.

Immobilization of enzyme, antibodies, oligonucleotides and other bio-functional

moieties onto SPION are an efficient tool for bioseparation by the application of an

external magnetic field. SPION have been covalently coupled with lectins, enzymes

or antibodies using thiol chemistry. Dextran-coated SPION have been commercially

produced with covalently immobilized antibodies and fluorescent moieties. SPION

have also found a promising role in applied biomedical sciences, specifically as MRI

contrast agents and and cancer therapeutics. MRI results depend on the variation

in proton density and magnetic relaxation times of various tissues; therefore, local-

ization of SPION in targeted-tissue would produce increased contrast against native

tissue. Hyperthermia is a promising cancer therapy based on the heating of tumor

tissue to temperatures between 40-50 ◦C, reducing the viability of the cancerous cells.

Magnetic fluid hyperthermia results from subdomain magnetic particles that produce

heat through energy loss during the application of an external, alternating current

(AC) magnetic field. From these few examples, SPION represent an extremely inter-

esting group of nanomaterials for biotechnology applications, but in vitro applications

require designer particles for bioseparation and in vivo applications require uniform

surface coatings to prevent agglomeration and cloak particles from natural immune

response.

The most common route to SPION surface-functionalization includes ligand-

exchange reactions, but due to the inconsistencies and difficulties associated with

ligand exchange, researchers have also explored click chemistry routes. In an early

example, researchers coated the surface of maghemite SPION with azide-functional

ligands, which were evidenced to be highly versatile platforms for further function-

102



alization with alkyne-terminated organic moieties.[48] More recently, azide-modified

SPION have been coated with short-chain peptides and massive biomacromolecules,

e.g. enhanced green fluorescent protein (EGFP), maltose binding protein (MBP) and

human serum albumin (HSA), by the CuCAAC reaction.[198] Although, the ultimate

functionalization step utilizes the rapid and efficient CuCAAC reaction, conversion

of the SPION surface to be amenable to click chemistry requires complex reaction

schemes similar to ligand-exchange methods. An alternate approach to synthesizing

“click-ready” SPION utilizing alkyne-functionalized polymer stabilizers is reported

herewith.

4.2 Results and Discussion

To synthesize SPION, Fe3O4 nanoparticles smaller than 20 nm are commonly

produced by co-precipitation of ferric and ferrous salts (Eq.4.1).[206] Unfortunately

broad polydispersity and aggregation result from the co-precipitation process; never-

theless, recent efforts have utilized this method to synthesize biocompatible ferrofluids.[207,

208] A wide variety of surfactants have been utilized to stabilize the materials in both

polar and non-polar media. Although these discrete particles are superparamagnetic,

the force acting on a nanoparticle in a magnetic field is proportional to the particle

size; thus, smaller particles result in smaller forces that can be reasonably affected

on the SPION. To generate high applied forces for magnetic steering, nanoclusters

can be formed. Nanoclusters are packed particles of adjacent SPION. This leads to

a superparamagnetic material that will exhibit a significant mechanical response in

the presence of a magnetic field. To stabilize and functionalize the SPION, poly-

mers are often attached to the surface. The size and shape of polymer stabilized

nanoclusters have been controlled with block copolymers, and proteins; however, the
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degree of functionality has been limited because of the need for a large amount of

stabilizing agents. To attain novel surface chemistries, discrete nanoparticles are

usually treated with sophisticated ligand exchange reactions to modify the surface

moiety for subsequent covalent immobilization of desired molecules. Ligand exchange

reactions commonly require non-aqueous solvents, harsh conditions, and multi-step

protection sequences that are not amenable to high-efficiency functionalization and

high-throughput production. Unlike direct covalent attachment to the nanoparticles,

polymer coatings have the potential to incorporate a myriad of of surface functional

groups in a single step by designing novel copolymers. An ideal magnetic nanocluster

functionality that has been difficult to achieve is to modify the surface of SPION for

ready use in the CuCAAC reaction. Few efforts have been made to modify magnetic

nanoparticles for click chemistry without direct ligand-exchange on the surface of

the particles. In an early example, researchers coated individual nanoparticles with

poly(acrylic acid) (PAA) and proceeded with EDC coupling to exchange carboxy-

lates for polymer-stabilized, alkyne-functionalized SPION. Although, they required

numerous synthesis steps to develop an alkyne functionality, this work is harbinger

for our methodology.[209] To meet the demand for the rapid development and po-

tential clinical application of SPIONs, high-throughput surface coating procedures,

like attachment of poly(acrylic acid), and functionalization can be synchronized into

one-pot methods.

5NaOH + 2FeCl3 + FeCl2 = Fe3O4 + 5NaCl + 5H2O (4.1)

Herein, a one-pot route to synthesize stable superparamagnetic nanoclusters

that deliver a functional surface is developed and the resultant nanoclusters are char-

acterized . Although PAA-capped nanoparticles have been previously reported, this
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study is the first to prepare functional, magnetic nanoclusters in one-pot; moreover,

the frequency dependent susceptibility is utilized to characterize the cluster forma-

tion. Unlike previous studies which covalently decorate the SPION surface, CuCAAC

functionality is achieved through the design of the copolymer stabilizer. The nan-

ocluster characteristics are tuned through the design of copolymers based on a PAA

chemisorbed stabilizer with an alkyne-bearing, propargyl acrylate comonomer. The

nanoclusters are modified by the control of molecular weight, comonomer concentra-

tion, and the use of a chain transfer agent. Acrylic acid binds to the SPION surface,

and propargyl acrylate was utilized as the functional comonomer due to its general

application in the click reactions, including the CuCAAC reaction and thiol-yne ad-

dition. The nanoclusters are described by common characterization techniques (DLS,

TEM, TGA), and the complex susceptibility of the nanoclusters, which provides a

simple measurement of the magnetic cluster size and an insight into the packing of

SPION in the nanocluster. Due to the applicability of this technique for generating

particles useful in biomedical imaging or drug delivery applications, the nanoclusters

were ultimately surface modified with a NIR theranostic moiety, indocyanine green.

Recently, S.H. Foulger et al. proposed a method for the click functional-

ization of nanoparticles by concurrent co-polymerization of a “clickable” copolymer

shell onto a polystyrene core.[210] To this end, a functional copolymer is utilized to

form functional magnetic nanoclusters. Figure 4.3(a1) presents a schematic of the

procedure employed to synthesize fluorescent, magnetic nanoclusters. The iron ox-

ide nanoparticles were prepared using a modified chemical co-precipitation of iron

salts with a strong base. To form stable nanoclusters, the synthesized copolymers

were incorporated as aqueous solutions with the iron salts. Subsequently, the surface

of the nanoclusters were modified via the CuCAAC reaction between the alkyne-

functionalized surface of the nanoclusters and the azICG fluorophore. Due to the
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Figure 4.3: (a1) Schematic of the production of polymer-stabilized nanoclusters by chemisorption
of poly(acrylic acid-co-propargyl acrylate) to Fe3O4 nanoparticles and functionalized with an azide-
modified indocyanine green derivative (azICG) attached by CuAAC. (a2) Attachment of azICG
provides absorption (©) and photoluminescence (•) response in the NIR wavelengths (aqueous,
λex = 725 nm). (b1, b2) Subsequent fluorescence enhancement is exhibited after incubation and
complexation with bovine serum albumin, (b2, inset) reaching a 2x increase in peak fluorescence.
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mild reaction conditions, high conversion rate and chemoselectivity, click reactions are

a powerful strategy for magnetic-fluorescent nanocomposite preparation. We there-

fore carried out the attachment of a popular theranostic agent, indocyanine green

(ICG). The CuCAAC click reaction offers a good alternative to other more conven-

tional SPION functionalization schemes that often rely on the reactivity of amide,

ester, or thio-ether with naturally abundant carboxyl, amine, and thiol groups. The

azICG-conjugated nanoclusters were characterized using absorption and fluorescence

measurements. Figure 4.3(a2) shows the absorption and fluorescence (λex = 725 nm)

spectra of the azICG-conjugated nanoclusters suspended in PBS (pH = 7.4, 0.1 M).

The inset shows the convoluted absorbance spectrum of azICG-nanoclusters with a

significant response from particle-induced light scattering. Both spectra indicate the

presence of conjugated azICG. The absorption spectra of the azICG-nanoclusters in-

dicate an absorption maximum at a wavelength of 800 nm. The emission peak is at

a wavelength of 827 nm, with a resulting Stokes shift for the nanocluster-attached

dyes of 27 nm. The fluorescent nanoclusters show a bathochromic shift from the ab-

sorbance and emission of solvated ICG. This shift is expected from surface-conjugated

azICG.[81] These results demonstrate that the CuAAC reaction successfully coupled

azICG to the stabilizing polymer, yielding a novel fluorescent nanocluster complex.

These results clearly confirm the potential of our method to produce stable, functional

magnetic nanoclusters for multimodal theranostic applications.

Figure 4.3(b1) illustrates the subsequent fluorescence bio-activation by bind-

ing of bovine serum albumin to the surface attached azICG. It has been well es-

tablished that the fluorescence of high concentration of ICG, whether aggregated in

aqueous media or on a surface, is greatly diminished;[211] however, the fluorescence

quantum yield of ICG can be promoted by the adsorption of the molecule onto a

macromolecule or the analogous binding of ICG to a protein.[81, 212] Accordingly,
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Figure 4.4: Synthetic scheme for production of for poly(acrylic acid-co-propargyl acrylate) stabi-
lizer. The same reaction conditions were used to synthesize all stabilizers with the addition of a chain
transfer agent (1-nonanethiol) or for acrylic acid, the absence of propargyl acrylate comonomer.

the az-ICG modified nanoclusters were mixed with bovine serum albumin (BSA) at

increasing concentrations, and the fluorescent response was monitored after a 12 h in-

cubation period. The observed fluorescence intensity increased with additional BSA,

with the rate of increase slowing at [BSA] > 0.25 mM (cf. Figure 4.3 (b2)). The

inset of Figure 4.3 (b2) presents the intensity ration (I/I0) for the azICG-modified

nanoclusters at different BSA concentrations. The nanoclusters exhibit a long term

2x increase in fluorescence, where the ultimate fluorescence intensity was monitored

after 60 h. The observed fluorescence enhancement with BSA is attributed to the

ability of the protein to isolate the hydrophobic azICG moiety from the aqueous envi-

ronment. The enhancement of the NIR fluorescence by the ubiquitous serum albumin

protein greatly increased the potential of utilizing the azICG-modified nanoclusters

for directed in vivo imaging.

4.2.1 Synthesis and characterization of polymers

In the design of functional copolymers to form iron oxide nanoclusters, both

the adsorption properties, integration of bi-functional monomers and, most impor-

tantly, the ability to form particle clusters was considered. The intelligent incor-

108



poration of functional moieties into copolymer coatings will short cut the multistep

ligand exchange reactions, while providing a biocompatible, stable surface. It has

been established that the carboxylates strongly complex with metal atoms in metal

oxides through bidentate resonance bonding. [213–215] Adsorption of acrylic acid-

based copolymers have been vetted as nanocluster stabilizers, but to date there has

been no efforts to incorporate a functional moiety.[216, 217] Copolymer containing

a carboxylic acid groups (acrylic acid) were chosen to serve as anchors which will

complex with the Fe atoms at the surface of the Fe3O4 nanoparticles. Figure 4.4

shows the general synthetic scheme for producing copolymer stabilizers. Poly(acrylic

acid) (AA) and poly(acrylic acid-co-propargyl acrylate) (AA-PA) polymers were syn-

thesized to form stable, magnetic nanoclusters. To incorporate an alkyne function-

ality, the simple free-radical copolymerization of acrylic acid with propargyl acrylate

(PA), an acrylic monomer containing alkyne functionality was exploited; however,

this copolymerization proved challenging because the use of even small amounts of

PA can result in crosslinked gels, since PA is able to act as a bifunctional monomer

in free radical polymerizations.[218] Crosslinking during co-polymerization is avoided

by balancing the amount of the bifunctional PA monomer, polymerization time and

concentration of an incorporated chain transfer agent (CTA), 1-nonanethiol, which

curtailed the molecular weight of the copolymers. The synthesized polymers were an-

alyzed by FTIR spectroscopy in order to verify the presence of the polymer stabilizer

and incorporated alkyne functionality. The characteristic stretching frequencies of

PAA at include O-H stretching at 3431 cm−1; C=O stretching at 1728 cm−1, and the

C-O stretching at 1100-1200 cm−1. Figure 4.5 shows the FTIR spectra for stabilizer

used in this study: citric acid and the variants of AA and AA-PA. All spectra show

the series of broad peaks between 2500 and 3500 cm attributed to the O-H stretching

and bound water. The defined, strong peak at 1750 cm−1 is directly attributed to
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Figure 4.5: FTIR spectra of (a) citric acid, (b) poly(acrylic acid), (c) poly(acrylic acid-co-propargyl
acrylate), and (d) poly(acrylic acid-co-propargyl acrylate)CTA. Inset shows expanded view of spec-
tra (2500-1000 cm−1) to emphasize presence of 2130 cm−1 peak attributed to the alkyne functionality
of propargyl acrylate. Spectra are shifted for clarity.

the C-O stretching in the carboxylates of each polymer. The Figure 4.5 inset clearly

shows the peak at 2130 cm−1, attributed to the alkyne functionality and is present in

the copolymer that used CTA ( AA-PA3%,CTA), while the signal in AA-PA without

CTA (AA-PA3%) was within the noise level and diffcult to discern.

Gel permeation chromatography (GPC) was performed on synthesized poly-

mers used to form nanoclusters and molecular weights are presented in Table 4.1.

Polymers that did not employ CTA (AA, AA-PA1% and AA-PA3%) exhibited num-

ber averaged molecular weights that range from 16,000-29,000 and have a polydis-
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Mw/Mn PDI
AA 16.6k/12.6k 1.32
AACTA 12.8k/4.3k 2.97
AA-PA1% 22.7k/13.9k 1.64
AA-PA1%,CTA 17.1k/4.5k 3.79

AA-PA3% 29.1k/13.0k 2.23
AA-PA3%,CTA 14.3k/3.2k 4.48

Table 4.1: Molecular weight characteristics of synthesized poly(acrylic acid) (AA) and poly(acrylic
acid-co-propargyl acrylate) (AA-PA) determined by gel permeation chromatography. Subscript de-
notes molar percent PA and use of chain transfer agent (1-nonanethiol).

persity index (PDI) between 1.32-2.23. In contrast, the polymers which employed

the CTA exhibited significantly lower molecular weights of 12,800-17,100 and broader

PDIs between 2.97-4.48. These results are expected from the incorporation of the

CTA.[219] In reference to the seminal work by Robert Ditsch et al., the molecular

weights were tailored to produce polymer-stabilized nanoclusters that would form

by bridging between polymer coated particles; moreover, the broader PDI will al-

low for the uniform coating and stabilization of the magnetic nanoparticles.[217] A

high-percent of polymer incorporation and uniform coating is critical for maintaining

colloidal stability and to achieve an accessible alkyne functionality.

4.2.2 Preparation and characterization of nanoclusters

Iron oxide nanoparticles were synthesized by a standard co-precipitation tech-

nique, modified to include the addition of the nanocluster stabilizing polymers. As a

reference, iron oxide nanoclusters were also prepared with citric acid, which acts as

a small-molecule stabilizer with analogous carboxylate complexation with the Fe3O4

nanoparticles.[220–222] Figure 4.6 shows the bare Fe3O4 nanoparticles and citric acid

formed nanoclusters. HR-TEM was utilized to examine the crystallinity of the Fe3O4

nanoparticles and Figure 4.6(c) shows the expected lattice spacing for the [311] plane
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Figure 4.6: TEM micrographs of (a) bare Fe3O4 particles, (b) citric acid formed nanoclusters, and
(c) AA-PA3%,CTA formed nanoclusters.

of Fe3O4. To form larger nanoclusters and explore the copolymer coatings, both AA

and AA-PA replaced citric acid to stabilize the Fe3O4 particles and form functional

nanoclusters.The prepared nanoclusters were analyzed with FTIR spectroscopy in

order to verify the presence of the AA or AA-PA polymers. Figure 4.7 shows the

FTIR spectra for the prepared nanoclusters. The peaks between 400 and 600 cm−1

can be associated with the stretching and torsional vibration modes of the Fe3O4;

these assignments are concordant with Keiser et al. who described two broad bands

at 580 and 400 cm−1 associated with magnetite.[223] All nanoclusters show peaks at

2900 cm−1 (the stretching vibration of C-H groups), 1442-1400 cm−1 (the bending vi-

bration of C-H groups and asymmetric stretching of C-O groups). The broad, intense

band at 3500 cm−1 is exhibited by the citric acid and polymer-stabilized nanoclusters

and is attributed to structural -OH groups and incorporated water. The 1700 peak

is attributed to the CanalO vibration (symmetric stretching) of the COOH group

present in the stabilizers, which shifts to broader band at 1600 cm−1 revealing the

binding of a carboxylate to the magnetite surface.[213, 214] In both cases, the po-

sition of the carboxylate asymmetric and symmetric stretching frequency exhibits a
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dDLS
a polymer dX

b f max τeff τBwater

(nm) (w/w)% (nm) (kHz) (s) (s)

Citric Acid 59 ± 9 - 35.16 15.62 0.00001 0.00001
AA 278 ± 17 18.0 233.78 0.013 0.01136 0.00487
AACTA 225 ± 19 37.6 213.18 0.015 0.01224 0.00369
AA-PA3% 162 ± 10 11.7 124.46 0.206 0.00077 0.00073
AA-PA3%,CTA 136 ± 6 31.3 92.36 1.330 0.00012 0.00030

Table 4.2: Clustering characteristics of magnetite nanoparticles synthesized in the presence of
citric acid, poly acrylic acid, and poly (acrylic acid-co-propargyl acrylate). Subscript denotes molar
percent PA and use of chain transfer agent (CTA). (a) Dynamic light scattering derived hydrody-
namic diameter of nanoclusters. (b) Complex susceptibility derived magnetic volume diameter. (c)
Maximum absorption frequency of imaginary component of complex susceptibility.

hypsochromic shift when attached to the magnetite particle surface compared to the

un-adsorbed PAA. Non-significant differences between the IR spectra of the nanoclus-

ters were observed, suggesting a uniform mechanism of carboxylate complexation for

both citric acid, AA, and AA-PA polymer-particle binding.

The polymer content of the nanoclusters is also a critical parameter in tailoring

the stability and size of the nanoclusters. The polymer content of the AA and AA-PA

nanoclusters was determined by thermogravimetric analysis (TGA). Figure 4.7 shows

the thermograms of polymer stabilized nanoclusters. The degradation between 200

and 400 ◦C is attributed to the documented thermal degradation of poly(acrylic acid).

The polymer content ranged between 11 and 38 (w/w)%, with the highest polymer

content in systems that utilized CTA. Both the lower molecular weight and higher

polydispersity of polymers containing CTA contributed to higher polymer content of

the nanoclusters. It is suggested that the lower molecular weight and polydispersity

forms a more uniform, denser coating of the nanoparticles and nanoclusters.[217]

The control of the polymer coating and nanocluster size also effects the nan-

ocluster’s stability in an array of aqueous environments. The stability of the nan-

oclusters is dependent on them remaining strongly charged over a range of pHs,
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Figure 4.7: (a) FTIR spectra of bare iron oxide nanoparticles and stabilized nanoclusters. (b)
Thermogravimetric analysis of bare magnetite nanoparticles (-), poly(acrylic acid-co-propargyl acry-
late) (N), poly(acrylic acid) (•), poly(acrylic acid-co-propargyl acrylate)CTA (4), and poly(acrylic
acid)CTA (◦).
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which would be encountered for both in vitro and in vivo applications. SPION, while

capable of being suspended in water, are better dispersed in organic solvents; thus,

we investigated the stabilizing effects of the copolymer for nanoclusters suspended in

a range of aqueous buffers. The stability of the nanoclusters formed with different

molecular polymer stabilizers was assessed by ζ-potential analysis. The nanoclus-

ters were considered stable, due to the mutual electrostatic repulsion of the particles,

when the absolute ζ-potential is greater than 30 mV. In the case of the nanoclusters,

the acid groups of all stabilizers would provide a negative surface charge and parti-

cle repulsion. Figure 4.8 presents the ζ-potential of the citric acid, AA, and AA-PA

formed nanoclusters. Salt concentration was maintained at a relatively high level,

0.01 M, to ensure a high ionic strength at the extremes of the pH range. Excellent

stability is exhibited for all nanoclusters at 5<pH<9, with the ζ-potential values in

this range of pH falling below -30 mV. An isoelectric point is clearly realized for citric

acid formed nanoclusters (Figure 4.8a) at pH<2. At pH < 6, there is a sharp increase

in the ζ-potential for the citric acid stabilized nanoclusters. The destabilization is

caused when the carboxylate group in the citric acid nanoclusters is protonated at pH

≤ 5.5.[213] The polymer coated nanocluster show a similar effect at pH < 5.5, how-

ever the abundance of polymer maintains ζ-potential values less than -30 mV until a

pH<3 is reached. Being highly stable in a range of aqueous buffers due to high poly-

mer loading, these nanoclusters are suitable for any number of surface-conjugation

reactions and applications.

4.2.3 Characterization of Cluster Formation

Fe3O4 nanocluster formation can be initiated by two mechanisms: (1) reduc-

tion of surface energy of the nanoparticles followed by the chemisorption polymer to
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Figure 4.8: ζ-potential of (a) citric acid, (b) AA, and (c) AA-PA formed magnetic nanoclusters,
polymerized with and without chain transfer agent. The samples used 2 mol% PA in the polymer-
ization, and polymers were synthesized with (filled) or without (open) CTA.
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Figure 4.9: (a1) HR-TEM micrographs of AA-PA stabilized nanoclusters showing the the crys-
tallinity of the Fe3O4 particles and the [3 1 1] plane with lattice spacing 2.54 Å, and (a2) the
copolymer stabilizer coating on the surface of the nanocluster. (b1, b2) AC susceptibility measure-
ments in the range 1-100 kHz, X′(ω) (filled) and X′′(ω) (open), versus for (b1) bare-SPION (©,
purple), citric acid stabilized nanoclusters (�, green) and (b2) AA-PA (4, pink) and AA-PACTA

(5, green) nanoclusters.
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the nanocluster surface or (2) bridging of an extended network of hydrated polymers

between individually coated nanoparticles. The predominant bridging effects is de-

pendent on molecular weight, where a minimum in nanocluster size is exhibited by

individually coated nanoparticles, followed by a sharp rise in nanocluster diameter as

molecular weight increases and bridging occurs.[217]

The clustering of the iron oxide nanoparticles was studied with TEM, DLS

and frequency dependent susceptibility measurements. The characteristic cluster size

and susceptibility is summarized in Table 4.2. Figure 4.6 shows TEM micrographs of

an illustrative AA-PA3%,CTA nanocluster. TEM micrographs show the nanoclusters

were composed of primary crystals between 5 - 20 nm (well within the superparam-

agnetic regime ) and a 5-10 nm stabilizing cap of copolymer. Figure 4.9(a1) presents

HR-TEM micrographs of an illustrative AA-PA3%,CTA nanocluster. The stabilized

nanoclusters are comprised of densely aggregated Fe3O4 nanoparticles, as illustrated

in Figure 4.9-a1 (the characteristic 2.54 Å lattice spacing corresponds to the d-value

of the [3 1 1] plane of Fe3O4).

DLS was utilized to determine the hydrodynamic radius of the stabilized nan-

oclusters. The mean hydrodynamic diameter and standard deviation are provided in

Table 4.2. The nanoclusters ranged from 50-300 nm dependent on molecular weight

of the agent used for stabilization and cluster formation. The citric acid stabilized

nanoclusters showed the smallest hydrodynamic diameter of 59 nm. The clustering

of citric acid coated nanoparticles is solely due to minimization of surface energy.

The small-molecule stabilizer does not form bridges between particles. The mean hy-

drodynamic diameter was 278 and 189 nm for PAA and PAA-co-PA polymer coated

clusters, respectively; whereas the average diameter for nanoclusters formed with

AACTA and AA-PACTA was significantly smaller, 228 and 136 nm. The hydrody-

namic radius of the nanoclusters incorporates both the size of the clustered particles
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and polymer cap. The changes in stabilizer molecular weight and PDI most signifi-

cantly affect the hydrodynamic radius. The larger molecular weight polymers show

a larger hydrodynamic radius which is commensurate with the coating solvated to a

higher degree in the water. More of the small molecular weight polymer is attached

to the iron surface, reducing its solubility and subsequent hydrodynamic radius. Use

of CTA generates polymers with higher PDI, where the smaller chains may rapidly

coat the nanoparticles, resulting in enhanced steric stabilization and minimization of

cluster formation. As the molecular weight increases, and PDI decreases, the bridging

predominates between the unstable nanoparticles and the hydrodynamic diameter of

AA and AA-PA nanoclusters approach 300 nm.

The magnetization properties, specifically characteristic relaxation times, can

be a useful signal for recognizing SPION interactions and surface properties.[198, 204]

There are two distinct mechanisms by which the magnetization of the nanoclusters

may relax after an applied magnetic field has been removed:1) bulk rotation of the

particle within the carrier liquid (Brownian relaxation) or by rotation of the magnetic

vector within the particle (Néel relaxation). The former relaxation process is char-

acterized by a Brownian rotational diffusion time given by Eq. 4.2, and the latter is

characterized by an internal Néel relaxation given by Eq. 4.3:

τB = 4πηr3/kT (4.2)

τN = τ 0e
σ (4.3)

where the magnetic anisotropy is assumed uniaxial, η is the kinematic viscosity, r

is the hydrodynamic radius, σ is the anisotropic energy constant, and a damping
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constant, τ 0, is approximated as 10−9 s.[224, 225] In a ferrofluid with a distribu-

tion of particle and nanocluster size, both relaxation mechanisms will contribute to

the magnetization, with an effective relaxation, τ eff , defined in Eq. 4.4.[226] If the

nanoclusters are formed by surface energy minimization of particles clustering before

polymer stabilization minimally sized clusters will form and, due to tight packing

of the nanoparticles, the magnetic properties of the particles will affect each other

and Néel relaxation would dominate.[227] Otherwise, the iron oxide nanoparticles

would be stabilized within the polymer matrix, not interfere with each other and the

nanocluster would relax through a Brownian mechanism.[228–230] In the case of the

reported nanoclusters, the polymers coat particles, then form clusters which would

results in a Brownian relaxation at low frequency.

τ eff = τNτB/(τN+τB) (4.4)

The frequency dependent susceptibility of the nanoclusters was measured at

low frequency , 1 Hz - 250 kHz. The frequency dependent susceptibility may be

written in terms of its real and imaginary components (Eq. 4.5).

X (ω) = X′(ω) - iX′′(ω) (4.5)

Accordingly, the complex susceptibility has a frequency dependence modeled from

Debye’s form on dielectric dispersions,[231] as given by Eq. 4.6,

X(ω) - X∞ = (X0 - X∞)/(1 + i(ω)τ eff) (4.6)

where

τeff = 1/2πfmax (4.7)
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and

X0 = nm2/3kTµ0. (4.8)

In Eq. 4.7, τeff is the effective relaxation time and f max is the frequency at

which X ′′(ω) is a maximum. In Eq. 4.8, X 0 is the static complex susceptibility at ω

= 0, n is the particle number density, m is the magnetic moment, k is Boltzmann’s

constant, T is absolute temperature and µ0 is the absolute permeability. In the ideal

case, the predicted intersection of the real and imaginary components occurs at the

maxima of X′′, when ωτ = 1. In the real case,the polydispersity of the particles

results in a significant shift of the frequency dependent susceptibility which accounts

for the distribution of particle sizes, Brownian, and Néel relaxation.

When Fe3O4 nanoclusters are formed by surface-energy minimization of nanopar-

ticles prior to polymer stabilization, the proximity of the nanoparticles cause non-

discrete magnetic response, the nanoparticles become confined and Néel relaxation

dominates.[227] However, the polymer stabilized nanoclusters would exhibit segre-

gated magnetic propertes, where the nanoclusters would relax by the Brownian

mechanism.[229, 230] The effective relaxation times were calculated from Eq. 4.7

and summarized in Table 4.2. The effective relaxation times for polymer stabilized

nanoclusters are within the expected range for Brownian relaxations (0.00005-0.02 s).

Brownian relaxation dominates due to the size and mobility of the nanoclusters.[229]

The bare nanoparticles show minimal clustering due to surface energy minimization,

and they clearly exhibit a much faster relaxation time, with a distribution measur-

able at higher frequencies, attributed to Néel relaxation of individual particles (Fig.

4.9c1). The citric acid stabilized nanoclusters also exhibit a fast relaxation time,

suggesting the distribution of relaxation mechanism is skewed toward characteristic

Néel relaxation; however, a particle size distribution could be attained at the mea-
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sured frequencies.. This distribution can be expected from the large gap between

real and complex susceptibility, suggesting the imaginary component may peak at a

higher frequency (Fig. 4.9(c1, c2). Upon the addition of the stabilizing polymers

and copolymers, the imaginary absorption peak is shifted toward lower frequencies

as shown in Figure 4.9(c2). The shift toward low frequency absorption is indicative

of larger nanocluster diameter and desired cluster formation.

To verify the effect of Brownian relaxation in the polymer stabilized nanoclus-

ters, the complex susceptibility was measured at an increased viscosity, by changing

the carrier liquid from water (0.00088 Pa·s) to glycerol (50 (v/v)%, 0.00669 Pa·s) at

25 ◦C.[228] The AA-PA stabilized nanoclusters show a significant shift in the fmax

due to viscosity change (Fig.4.10b). All Brownian relaxation times are within the

expected time domain, confirming that the nanoclusters are discrete nanoparticles

coated by polymer, which do not effect their neighboring particles magnetic proper-

ties. This also explains the comparably high loading of polymers in the nanoclusters,

i.e. the polymers penetrate throughout the nanocluster. As a comparison, non-

stabilized clusters and citric acid stabilized nanoclusters were suspended in glycerol

and show little to no change in fmax in relation to viscosity. Brownian relaxation is

directly proportional to viscosity and this confirms that Brownian relaxation is re-

sponsible for relaxation in the polymer stabilized clusters; whereas, in citric acid and

bare particles, Néel relaxation may be the dominate mechanism. The large difference

between real and imaginary susceptibility in the citric acid and bare nanoparticles

suggests there is a high frequency absorption peak that is not monitored. The ideal

maximum susceptibility is 0.5 relative to a real susceptibility maximum of 1.[229, 230]

Our measurements show that in primary agglomerates of nanoparticles the magnetic

coupling between crystallites is quite low and the agglomerates can retain the su-

perparamagnetic character of individual crystallites in combination with much larger
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Figure 4.10: Plot of normalized magnetic susceptibility, X′(ω) (filled) and X′′(ω) (open), versus
frequency for (a) citric acid and (b) AA-PACTA nanoclusters in water (©, black) and glycerol
solution (4, red).

density of magnetic material and higher magnetic force compared to the individual

crystallite. This has beneficial consequence for applications like magnetic hyperther-

mia or magnetic drug delivery where superparamagnetic particles are preferred but

larger particles could improve magnetic steering and heat generation.

4.3 Conclusions

In this effort, a general methodology for producing magnetic nanoclusters with

an elevated alkyne functionality was demonstrated and the production of SPIOn

in the presence of different chelating-copolymers was studied to better understand

nanocluster formation behavior. The functional nanoclusters were formed by the

adsorption of poly(AA-co-PA), which provides both colloidal stability and surface

functionality. Complicated synthesis routes previously required for the surface func-
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tionalization of SPIONs are circumvented by designing the copolymer stabilizer prior

to nanocluster formation. By copolymerizing acrylic acid with propargyl acrylate, a

click-ready coating was synthesized, that would anchor itself to the SPION. The size

of the nanoclusters and thickness of the polymer coating was controlled by tailoring

the molecular weight of the adsorbed polymer with the use of a chain transfer agent

during synthesis. For the first time, the complex susceptibility measurements of the

particles was utilized to investigate the nanoparticles clustering formation. Nanoclus-

ters exhibited a relaxation time dominated by Brownian relaxation, confirming that

the particles coat with polymer and then bridge to form clusters. The availability

of accessible alkyne groups on the surface of the aqueous-phase nanocluster allowed

for the surface modification of the particles CuCAAC click reaction with an azide-

modified ICG. It is predicted that this method can be extended to the synthesis of

clinically viable hyperthermia nanoclusters, which exploit the CuCAAC click reaction

for the targeting of nanoclusters, and direct delivery of therapeutic agents.

4.4 Experimental Details

4.4.1 Materials

Ferrous chloride tetrahydrate (FeCl2), ferric chloride hexahydrate (FeCl3), am-

monium hydroxide, copper (II) sulfate (Cu(II)SO4), sodium ascorbate, azobisisobu-

tyronitrile (AIBN), 1-nonanethiol, acrylic acid (99%) and propargyl acrylate (98%)

were purchased from Sigma-Aldrich (St. Louis, MO). Inhibitor was removed from all

monomers with a column of Alumina Basic (60-325 Mesh). Tetrahydrofuran (THF)

(HPLC grade) and dialysis tubing (SPECTRA, 10000 and 50000 MWC) were pur-

chased from Fisher Scientific (Waltham, MA). THF was dried using a Innovative
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Technologies Inc. Pure Solv MD-2 solvent purification system prior to use. Deion-

ized water was obtained from a Thermo Scientific Barnstead Nanopure System and

exhibited a resistivity of ∼1018 ohm−1cm−1.

4.4.2 Synthesis of poly(acrylic acid) and poly(acrylic acid-

co-propargyl acrylate)

Standard acrylic acid and propargyl acrylate incorparating copolymers were

synthesized by solution, free-radical polymerization. All polymerizations were per-

formed in dry THF (2 mL) under a nitrogen atmosphere.An amount of monomer (2 g)

and initiator (AIBN, 2 mg) was charged into the reaction vessel, and polymerization

was allowed to proceed for 8 hrs. A chain transfer agent (CTA), 1-nonanethiol, was

used in the polymerization reaction to tailor the molecular weight and polydispersity

of the polymers. Polymers were precipitated in cold methanol, filtered and collected.

The precipitation cleaning was repeated 3x in order to remove all excess monomer,

initiator and CTA.

4.4.3 Preparation of magnetic nanoclusters

Iron oxide nanoparticles were synthesized by a modified co-precipitation method.

Aqueous solutions of ferric chloride (FeCl3) and ferrous chloride (FeCl2) were mixed

in a 2:1 molar ratio in a three-necked round bottom flask, fitted with a paddle stir-

ring mantle, thermocouple and nitrogen purge. FeCl3 (2.703 g) and FeCl2 (0.9946 g)

were dissolved in deionized water (50 mL), then vigorously stirred and purged with

nitrogen for 10 min. The solution was purged with nitrogen to prevent unwanted oxi-

dation. The solution was heated to 80 ◦C before the drop-wise addition of ammonium

hydroxide (20 mL) until the solution reached pH ∼13. Stirring continued for 30 min.
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and the solution turned from brown to black, before the reaction was stopped by

cooling and magnetic precipitation of the nanoparticles. For nanocluster formation,

0.5 g (∼13 (w/w)%) citric acid or polymer stabilizer was added to the suspension of

nanoparticles and the mixture was stirred for 90 minutes before cooling and cleaning.

The formed nanoparticles or nanoclusters were removed from solution by repeated

magnetic separation and dispersion in deionized water. The final concentration of

nanoparticles and nanoclusters was prepared at ∼50 mg/mL.

4.4.4 Surface modification of magnetic nanoclusters

Synthesis of an azido-modified ICG (azICG) was reported elsewhere.[81] For

a typical surface modification of the nanoclusters, azICG (5 mg), sodium ascorbate

(15 mg), AA-PA formed nanoclusters (10 mg) and deionozed water (10 mL) were

combined in a round bottom flask. The solution was purged with nitrogen for 10

min. before the addition of Cu(II)SO4. The resulting mixture was maintained at a

temperature of 28.8 ◦C for 1 hr. The reaction was stopped by the removal of unre-

acted azICG, sodium ascorbate, and Cu(II)SO4 through a repeated particle washing

procedure consisting of magnetic collection and dispersion in water. The resulting

particles were dialyzed against deionized water for 48 hrs. at 4 ◦C using a dialysis

bag with a 10,000 MWCO.

4.4.5 Characterization methods

Molecular weights of the polymers (diluted to 1 mg/mL in chloroform) were

determined by gel permeation chromatography (GPC) (chloroform at 1.0 ml/min),

using a Waters 515 pump, four 7.8 x 300 mm Styragel columns (HR 2, 3, 4, 6), a Wa-

ters 2414 refractive index detector and a Waters 2487 tunable absorbance detector.
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Reported molecular weights are relative to narrow distribution polystyrene standards

(Mw = 2,330 - 980,000). Transmission electron microscopy was conducted with a

Hitachi H7600T TEM. Hi-resolution TEM (HR-TEM) was conducted with a Hitachi

9500. The infrared spectra were recorded at room temperature in the wavenumber

range of 400-4000 cm−1 and referenced against air with a Nicolet 6700 FTIR spec-

trometer. Thermogravimetric analysis was conducted with a TA Hi-res TGA 2950

Thermogravimetric Analyzer. Dried powder samples were heated at a constant rate

of 20◦C/min from 30-700◦ under a nitrogen purge. The loss in mass after heating

indicated the polymer component of nanoclusters. Hydrodynamic diameter was mea-

sured using a Coulter N4 Plus dynamic light scattering (DLS) analyzer. ζ-potential

measurements were made with a Brookhaven Instruments Corporation ZetaPlus Zeta

Potential Analyzer. Complex susceptibility measurements were made using an Imego

DynoMag AC Susceptometer. UV/Vis/NIR absorbance spectra were collected using

a Perkin-Elmer 900 spectrometer. Photoluminescence (PL) spectra were collected

using a Thermo Oriel xenon arc lamp (Thermo Oriel 66-902) mated with a Thermo

Oriel Cornerstone 7400 1/8m monochromator (Thermo Oriel 7400) and a Horiba

Jobin-Yvon MicroHR spectrometer coupled to a Synapse CCD detector.

4.5 Attributions

The synthesis of the azide-modified ICG and PAA-PA was conducted by Dr.

Iurii Bandera and Ryan D. Roeder, respectively, at Clemson University. Magnetic

susceptibility measurements were made with the aid of Dr. Olin Thompson Mef-

ford IV and Steven R. Saville at Clemson University. Portions of this work are in

preparation for publication as Daniele et al., Copolymer stabilizers as a facile route

to functional nanocluster surfaces exhibiting bio-activated fluorescence, 2012.
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CHAPTER 5

Microfluidic Micromaterials: A “photo-click” route to

hydrogel fibers for cell encapsulation

5.1 Introduction

Biosensors are self-contained devices which utilize biological elements, e.g pro-

teins, DNA, or whole cells, in conjunction with a transducer to convert biological ex-

pressions into an electronic signal.[232–234] Biosensors need to be rugged, incorporate

a large number of sensing components to ensure a large signal, and operate remotely

with little maintenance. Cellular immobilization is the key to the complex design and

integration problems of viable biosensors. Immobilization schemes need to be tailored

for structural, biological, and chemical stability in the presence of environmental con-

ditions, and designed to transport analytes rapidly enough to allow for short response

times.[232] Immobilization schemes must also co-localize the biological element with

the transducer to ensure proper signal output. Common immobilization methods are

physical adsorption to a surface, covalent binding to a surface, and entrapment in

hydrogels.[235, 236] The goal of the work in this chapter was to design and produce

viable hydrogel scaffolds for use in whole-cell biosensors. Presented and compared is
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a new technique for high-throughput production of cell-containing hydrogel fibers by

a benign method which does not adversely affect the viability of entrapped cells.

The choice of biological element used in a biosensor depends on the analytes

being monitored, the storage capacity of the element, and the environmental and oper-

ational stability of the element. Biological elements include enzymes, DNA, antibod-

ies, antigens, and whole cells.[232, 234] Whole-cell biosensing, unlike small-molecule

and protein-based detectors, are capable of detecting an array of general upsets in

their environment. Viable whole cells are particularly valuable as they utilize respi-

ratory and metabolic functions to sense analytes. They also have the capability of

demonstrating the potential effects of certain analytes to living organisms.[237] Cell

signal expression can be positive as in the case of cell growth or mitosis; adverse

expressions can also be observed as in the case of protective responses or cell death.

Microbial cells are low cost, have large population sizes, grow rapidly, and require lit-

tle maintenance.[238] Most importantly, microbial communities easily adapt to their

environment, metabolize a wide range of chemicals, and can be genetically engineered

to produce a desired signal.

Applications for immobilized bacteria include controlled delivery of biofertil-

izers or biopesticides, bioreactors, bioremediation, environmental sensors, and mi-

crobial fuel cells.[239–244] A popular method for bacterial attachment is the growth

of biofilms on suspended particles or solid substrates.[245, 246] However, biofilm-

mediated immobilization does not protect the cells from mechanical or chemical dam-

age; consequently, sustaining high levels of viable bacterial cells within these systems

for extended periods is tenuous at best.[239, 247] Synthetic materials that encapsulate

cells offer more protection from damage during use than immobilizing the cells on a

surface, but may block transport of nutrients or targeted chemicals to the cells. Hy-

drogels have been widely explored for encapsulation because of biocompatibility and
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facile control of analyte transport; bioactive constituents encapsulated in hydrogels

include complementary enzymes, bacterial, and mammalian cells.[248–250]

The combination of hydrogel chemistry and fiber morphology provides an ideal

platform for the encapsulation of cells for many large-scale applications, e.g. biofer-

tilizers and biopesticides. While the surface area-to-volume ratio (SA:V) of the hy-

drogels is inherently high, organizing the hydrogels into fibers can be used to promote

the spatial distribution of cells and flux of liquids containing essential nutrients or

chemical targets to the cells. Depending on the application, the fibers can be used

as individually as tubes or in concert as woven mats for applications such as sensing,

filtration, tissue engineering or wound healing.

5.1.1 Copper-free click chemistry

In spite of the success of click chemistry within the past decade, there are

limitations associated with its application when designing biosensors. The CuCAAC

reaction employed extensively in the various biomedical materials may show cytotoxic

side-effects attributed to residual copper; therefore, much effort has been devoted to

copper-free click cycloaddition reactions in chemical biology. For click reactions to be

used in contact with living systems, the copper catalyst must be completely removed

or alternatives, such as Staudinger ligation, strain-promoted hetero-cycloadditions,

or thiol-based reactions must be employed. One feasible solution is the introduction

of a strained cyclo-octyne as a source of the alkyne as originally enveloped and re-

cently reviewed by Carolyn R. Bertozzi; the review also reminds of the importance

of bio-orthogonality to applications in vivo and in vitro.[251, 252] These chemical

modifications of course add to the complexity of the introduction of alkyne but this

presently seems to be an unavoidable payload if copper-free click cycloaddition is
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Figure 5.1: Free-radical or catalyst mediated thiol-ene click reaction.

necessary. Alternate reactions, avoiding cycloaddition, have been promoted as click

reactions, most favorably the thiol-based addition reactions.

5.1.1.1 Thiol-ene Click Reactions

The favored Cu-free click reaction are radical or catalyst mediated thiol-based

polymerizations.[253, 254] The thiol-ene reaction, used industrially since the 1970’s,

has recently demonstrated its importance[255] employed as a click method between

small molecules and larger biomacromolecules, such as collagen and proteins.[256, 257]

This approach has also been used to build complex nanostructures such as dendrimers,

star polymers, and inorganic composites.[258–260] The thiol-ene process is also attrac-

tive for making bulk materials because it is insensitive to oxygen, gives low shrinkage,

imparts high thermo-stability, and proceeds to relatively high conversion, all while

crosslinking at a rate that is as rapid as traditional UV-crosslinking.[254, 261, 262]

The thiol-ene (Figure 5.1) reaction was first explored by Theodor Posner in

1905.[263] An ideal thiol-ene reaction revolves around the alternation between thiyl

radical propagation across the -ene functional group and the chain-transfer reaction,

which involves abstraction of a hydrogen radical from the thiol by the carbon-centered

radical.[264] The addition of the thiol across the -ene double bond is exothermic,

with reaction enthalpies ranging from 10.5 kcal·mol−1 for the electron-rich vinyl-

ether double bond to 22.6 kcal· mol−1 for the electron-poor double bond of an N-

alkyl maleimide.[265, 266] For a given thiol, electron-rich enes polymerize much more
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rapidly than electron-poor -enes. Reduced rates and conversions are obtained for

1,2-substituted internal -enes, which is presumably due to steric considerations and

a reversible addition of the thiyl radical to the internal -ene. For ideal thiol-ene

reactions, such as those observed for norbornenes and vinyl ethers,no homopolymer-

ization or chain growth is observed, thus implying that the overall rates of chain

transfer and propagation must be essentially identical.[267] The thiol-ene reaction is

the only known free-radical addition reaction in which various chemical groups (e.g.

phenolic rings, ethylene glycol groups, ester groups) can be incorporated into the

main chain backbones, potentially allowing for a greater amount of property varia-

tion. The thiol-ene polymer is not restricted by the presence of pure carbon-carbon

chains, though these can be included if needed. The thiol-ene free radical addition

polymerization reaction, assuming the thiol-ene cannot homopolymerize. Termina-

tion is generally thought to occur by radical recombination, and shows how inhibi-

tion by oxygen is avoided in this reaction by the peroxy radical still shows significant

affinity for hydrogen abstraction from the thiol group, propagating the radical and

allowing the reaction to continue. In the ideal purely step-growth thiol-ene reaction,

no homopolymerization, in which the carbon-centered radical propagates through the

-ene moiety occurs, and conversion approaches 100%. The net reaction is the com-

bination of the thiol and -ene functional groups, which causes the molecular weight

and network structure to evolve in a manner that is identical to other step-growth

polymerization reactions whilst simultaneously enabling all of the benefits of a rapid,

photoinitiated radical mediated process.[255]

Acrylates can be incorporated into the thiol-ene system because the acrylate

group contains pendant unsaturated carbons. These, too, must be difunctional in or-

der to avoid premature chain termination, but acrylates can homopolymerize, adding

another step to the above reaction scheme. This added step increases the complica-
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Figure 5.2: Free-radical initiated thiol-ene reaction mechanism.

tion of both the kinetics, because the -ene and acrylate compete for thiyl radicals,

and the network structure, since methacrylate carbon-centered radicals can abstract

a hydrogen from a thiol in the normal fashion or it can homopolymerize as illustrated

in Figure 5.3. The relative rates of these cycles, which are dictated by the chemical

properties of the thiol and acrylate, the component concentrations tailor the final net-

work structure and mechanical/physical properties. Some of the most comprehensive

studies on the photopolymerization of the thiol-ene system determined how various

neighboring groups to both the -ene and the thiol affect their reactivities. It was found

that an -ene with a neighboring vinyl ether is much more reactive than one with an

allylic structure, which itself is more reactive towards hydrogen abstraction from a

thiol than a plain alkene. Also, methacrylates are less reactive than acrylates due to

the methyl group. The most reactive thiol type is mercaptopropionate esters followed

by mercaptoacetates, and the least reactive type is alkane thiols. Some researchers

have even investigated the unique ability of thiols to radicalize without photoinitia-

tors, creating polymers without potential contaminants. By combining methacrylates
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Figure 5.3: Thiol-ene/acrylate polymerization mechanism, showing the additional reaction step
for homopolymerization of acrylates.

and thiols, a broad range of material properties are accessible from the large number

of commercial methacrylates that are available.

5.1.1.2 Acrylate photo-flow : Another Click Reaction from Old Parts and

a New Process

A practical limitation of developing thiol-click reactions for viable biosensors,

and the excessive supply of thiols in biological systems renders them non-orthogonal in

biological applications. As the click chemistry philosophy continues to spread through

the area of materials science, polymers and biotechnology, more and more clickable

building blocks can be expected to become easily available; nonetheless, there is a

common constituent of materials repository that can be viewed as a click reaction.

Traditional polymer science offers a potential click reaction: acrylate photopolymer-

izations.

Acrylate photopolymerizations are high yield, modular, produce no bi-products,
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can be conducted in benign or no solvent (depending on starting ligands); however,

to be considered click reactions, acrylate photopolymerizations must overcome the

apparent oxygen sensitivity. Acrylate polymerizations are free-radical, solvent-less,

radiation induced, and are step or chain growth reactions, very similar to the thiol-

ene click reactions. In the free-radical polymerization scheme, an initiator sensitive

to the wavelength of incident radiation, such as the ultraviolet (UV) initiator 2,2-

dimethoxy-2-phenylacetophenone (DMPA), is cleaved into free radicals which begin

the polymerization reaction. The free radical from the initiator then breaks a nearby

double bond, creating a new covalent bond to the nearby molecule and propagating

the radical further along the newly-forming chain. The propagation step involves

the newly propagated radical attacking other nearby double bonds in succession, and

termination involves various pairs of radicals interacting with each other to cause

mutual extinction by either coupling, where two small chains meet up to become

one larger chain, or disproportionation, resulting in the two smaller chains remaining

separate and in the regeneration of a double bond. Free radical photopolymerization

is popular because of it relatively low energy requirements, ability to be performed at

ambient temperatures, and rapid speed. They are popular because of their relatively

low cost, ready availability, rapid polymerization kinetics, optical clarity, toughness,

the broad range of achievable properties, and the relative ease of monomer synthesis

and polymer manufacture and processing. Methacrylates are popular materials for

biomedical engineering because of their potential biocompatibility, the ability to pho-

topolymerize them in situ, and the ability to tune the mechanical and degradative

properties of the network.

To achieve click status, the acrylate materials need to be cured without the

need for a nitrogen atmosphere, expensive initiator combinations, or the extremely

high light intensities that are frequently required to overcome oxygen inhibition in
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purely methacrylate polymerizations. This report will show that at relatively small

volumes, methacrylate photopolymerization can be considered a click reaction. The

enhanced ability to overcome oxygen inhibition and the control over the network

structure facilitates the implementation of methacrylate polymerization in the for-

mation of hydrogels and tissue engineering matrices, for which polymerizations in the

presence of oxygen are necessitated by the clinical environment and the requirement

for cell viability.Thereby reducing the photoinitiator concentration required to obtain

a fast, high-conversion polymerization process with a rate acceleration of a factor of

about 10. The structure of methacrylate polymers can vary from a thermoplastic to a

thermoset, depending on the concentration and structure of the monomers added. A

copolymer of purely mono-functional monomers results in a thermoplastic by defini-

tion, while the addition of di- or higher-functionality monomers results in thermosets

ranging in behavior from lightly-crosslinked elastomers to highly-crosslinked, three-

dimensional networks.

5.1.2 Poly(ethylene glycol) hydrogels and click-gels

Although the biological element can be spared the the cytotoxic effects of

Cu(I)-catalyzed reactions by exploiting either thiol-ene or acrylate photopolymeriza-

tion, developing an inert encapsulation medium is critical to ensure the benign im-

mobilization of the bacterial community. Immobilization matrices must prevent cells

from dislodging from the matrix during production and transport, yet still enable

cellular trafficking and analyte diffusion with the environment and signal transduc-

tion. An ideal immobilization matrix would be functional at ambient temperatures,

survive harsh environmental conditions including contaminated zones and turbidity,

and allow the flow of cells, nutrients, oxygen and analytes through the matrix along
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with wastes and signals out.

Hydrogels are applicable immobilization matrices due to their high water con-

tent, pliability, biocompatibility, and easily controlled diffusion characteristics.[268,

269] Common immobilization matrices include naturally occurring alginates, copoly-

mers consisting of (1-4) linked D-mannuronic acid and L-guluronic acid.[270] Algi-

nates are ionically crosslinked between the carboxylic acid elements through divalent

ions, usually Ca+2. Natural immobilization hydrogels typically have poor structural

stability; their crosslinks are ionic as opposed to covalent, which are easily broken

apart by cationic scavengers such as sodium citrate and chelators such as ethylene-

diaminetetraacetic acid (EDTA).[271] In addition to the weak bonding structure,

natural hydrogels are also susceptible to biodegradation, making their use some-

what limited depending upon the cell type being immobilized. Alternative synthetic

hydrogels include poly(ethylene glycol, poly(vinyl alcohol), poly(methacrylic acid),

and poly(2-hydroxyethyl methacrylate). Poly(ethylene glycol) (PEG)-based hydro-

gels have attracted broad interest as a scaffold material for biohybrid applications

because PEG is well hydrated in an aqueous environment, minimizing minimizes

the adsorption of proteins and cell-scaffold interactions.[272] A variety of approaches

have been utilized to form PEG hydrogels, including radiation cross-linking, modifi-

cation with fumarate, acrylate, or methacrylate groups followed by free radical pho-

topolymerization, and linking sulfone terminated multiarm-PEG with di-sulfhydryl

cross-linkers by click Michael’s addition.[73, 272–274] In particular photopolymeriza-

tion using a suitable free radical photoinitiator allows hydrogels to be formed into a

variety of shapes in situ under relatively mild polymerization conditions and aque-

ous environments compatible with living cells. Photopolymerization, including pho-

tolithography, of PEG dimethacrylate (PEGDMA) has been employed specifically for

tissue engineering applications.[275–278]
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The unique design parameters for viable biohybrid scaffolds have garnered

attention for the use of click chemistry as a route to novel gels and polymer net-

works. Multivalent azide and alkynes can be directly reacted, generating networks

with a high level of cross-linking density due to the high efficiency of the azide-alkyne

click reaction. By appropriate choice of the corresponding building block (exam-

ples of small monomer, oligomeric or polymeric) azides-alkynes, the corresponding

properties of the networks, such as swelling character, hydrophobic/hydrophilic prop-

erties, density or functionality, can be controlled. An early example was the produc-

tion of crosslinked polymeric adhesives synthesized from polyvalent azide and alkyne

building blocks, which owe their adhesiveness to the strong affinity of triazoles for

metal ions and surfaces. Jöns Hilborn et al. first reported the synthesis of “clicked”

poly(vinyl alcohol) (PVA)-based hydrogels by combining azide-modified PVA and

acetylene-modified PVA in the presence of a Cu(I) catalyst.[279] Well-defined PEG-

based hydrogels with improved properties were later prepared by C.J. Hawker et

al., also using the CuCAAC reaction.[280] Because of their tolerance towards a wide

range of unprotected chemical groups, the CuCAAC formation of hydrogels has been

widely used to immobilize sugars, proteins, DNA, and even cells, and this capabil-

ity is owed to the relatively controllable network densities afforded by the precision

of click reactions.[281] The robustness and simplicity of the thiol-ene, thiol-yne, and

thiol-acrylate photopolymerizations have also led to their widespread use in a number

of hydrogel applications, particularly in controlled drug delivery and tissue engineer-

ing. At the fore-front of thiol-click hydrogels is the photopolymerizations of either

thiol-ene or thiol-acrylate components. Both reaction types are generally performed

in aqueous media, with one or both components in the reaction frequently containing

poly(ethylene glycol) (PEG) cores modified to contain thiol and vinyl groups.[281–

283] The utilization of the thiol-acrylate reaction to form hydrogel biomaterials was
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pioneered by Jeffrey Alan Hubbell; these hydrogels were readily formed in an aque-

ous environment from PEG-containing multi-acrylates or vinyl-sulfones and a variety

of thiols, and particularly those from cysteine units in peptide sequences.[73, 273]

Most recently, the the thiol-click reaction has been popularized by the reported ef-

forts of Robert S. Lange and K.S. Anseth, both researchers having reported on the

post-funcitonalization of hydrogels by incorporating remnant thiol sites [284, 285]

5.1.3 Microfluidic production of materials

Flow microreactors gained popularity through the efforts of George M. White-

sides and his use of poly(dimethylsiloxane) (PDMS) to create inexpensive microfluidic

devices.[286] More recently, microfabrication techniques have been used to generate

hydrogel microparticles and microfibers with various sizes and shapes.[287–289] Poly-

meric microparticles have been developed by in situ photopolymerization techniques.

Immiscible fluids were merged at the entrance of a microfluidic device, droplets were

formed and subsequently crosslinked by a UV light exiting the microchannel. Mi-

crofluidic microparticles are formed by the surface tension and shear forces generated

at the junction of the microfluidic channel. This process results in the formation

of monodisperse microparticles that could be manipulated by controlling the flow

rates. As the sheath flow rates increased, the resulting particles were smaller.[249]

Microcapsules can also be similarly generated in a continuous flow by introducing

alternate immiscible fluids, and given their ability to encapsulate various chemicals

and cells in monodisperse and shape-controlled particles, these microfluidic platforms

hold great potential for generating delivery vehicles for various types of applications.

In addition to photocrosslinkable microparticles, monodisperse hydrogel (alginate)

microparticles have been chemically crosslinked in a microfluidic device, where cells
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were encapsulated inside the microparticles with higher cell viability.[249] Hydrogel-

based microfibers have also been created by laminar flow-based multiple phase coax-

ial flowing systems and are of benefit for creating biohybrid materials. To generate

hydrogel-based microfibers, conventional wet spinning techniques are commonly used.

For example, a triple-orifice spinneret was employed to generate hollow and solid fibers

of gelatin-hydroxyphenylpropionic acid.[290, 291] Hollow microfibers have also been

created using a similar spinning method. In this approach, the inner diameter of

the alginate hollow fibers was controlled by a coaxial triple fluid flow. Furthermore,

heterogeneous hydrogel microfibers have been produced by converging coaxial flows,

and cells seeding and growth were monitored within the hollow alginate microfibers

to mimic the formation of tubular tissue constructs.[292] However, the conventional

spinning methods have some limitations, such as the inability to generate symmetric

or asymmetric Janus microfibers containing different pore size or mechanical stiffness.

To address the limitations imposed by the conventional spinning techniques, new mi-

crofluidic devices will be presented here in, and have been recently used to fabricate

hydrogel microfibers and provide an optimal platform for generating biohybrid fibers.

5.2 Results and Discussion

5.2.1 Microfluidic device design and flow simulations

Figure 5.4 illustrates the production method for biohybrid microfibers infused

with bacteria that utilizes hydrodynamic focusing and rapid UV polymerization. A

pre-polymer solution including the cells was introduced into the microchannel ad-

jacent to the sheath fluid. Five diagonal grooves recessed into the top and bottom

surfaces of the microchannel at 45◦ angles directed the sheath fluid across the channel;
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Figure 5.4: An illustration of the method for the fabrication of fibers. Sheath and core solutions
are introduced in parallel to the channel. Recessed grooves hydrodynamically shape the sheath fluid
(blue) around the core fluid (red). A detailed schematic of the microchannel is provided in Figure
5.20. (inset) Simulation of fluid shaping by recessed diagonal geometries.

thereby, enveloping and shifting the core fluid toward the center of the microchannel,

allowing for continuous in-flow polymerization and production of microfibers. The

concept of geometric shaping of core-sheath laminar flow was developed by Frances

S. Ligler et al., and was initially utilized to affect micro-mixing and produce novelty

nanofibers. To design a version of this device capable of producing fibers with desired

size and shape for cell encapsulation, microchannel flow simulations were carried out

with the COMSOL Multiphysics modeling tool. Taking advantage of the device’s

symmetry, only half of the microchannel was modeled (Figure 5.4, inset). Figure

5.5 shows a simulation of the vertical cross-section down the length of the 5-groove
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Figure 5.5: COMSOL Multiphysics simulations of the different flow-rate ratios. A vertical cross-
section down the length of the channel showing the fluid shape after passing through the geometric-
shaping zone. The core component (red) is surrounded by a diffusion layer (yellow/green) and the
sheath fluid (blue). The dimensions of the microchannel were 2.54 x 1.68 mm. All scale bars: 500
µm.

channel. The simulation indicated the formation of an elliptical core flow. By varying

the number and geometry of the shaping grooves, different fiber morphologies can be

produced.[17] A detailed description of the design, fabrication and operation of the

microchannel device, simulation procedure and additional models are provided in the

Experimental Details. Photoinitiated polymerization of the core fluid was achieved by

irradiating the fluid in situ with a UV curing lamp (λpeak = 365 nm, 100 mW/cm2) as

it traversed the microchannel. The residence time of the fluid within the microchan-

nel was dependent on flow rate and ranged from 1.50-1.59 s. The production of fibers

was continuous with consistent shape, and the sheath fluid was easily removed using

an aqueous collection bath.

5.2.1.1 Photopolymerization models

In the presence of a photoinitiator and a suitable light source, photopoly-

merization of PEG-acrylates proceeds by a chemistry analogous to the free radical

polymerization of any vinyl monomer. However, the kinetics of this process are com-

plex and have two distinct phases because the viscous and diffusive properties of the

system rapidly change after the onset of gelation.[293, 294] Immediately after the

onset of polymerization, the viscosity of the solution rapidly increases resulting in a
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phenomenon known as autoacceleration, where diffusion of propagating centers, which

act as terminators by coupling with other centers, becomes much slower than diffusion

of smaller PEG-based macromers, leading to an increased rate of reaction. As the net-

work becomes more robust throughout the polymerization eventually the diffusion of

monomer also becomes limited, leading to a decreased polymerization rate known as

autodeceleration. Since this polymerization is occurring at low concentrations in an

aqueous environment exposed to atmospheric oxygen, other termination/inhibition

processes are also likely affecting the polymerization.[295]

For high crosslink-density, i.e. monomer conversion in flow, cure depth was

analyzed by modified photolithography equations.[296] The kinetics of the photo-

hydrogel systems have been studied extensively in recent years. Several parameters

are found to influence the final monomer-to-polymer conversions of these systems,

such as temperature, light intensity, monomer functionality and reactivity, and pho-

toinitiator concentration. However, the roles of these exact same parameters on cure

depth, as opposed to overall bond conversion, have not been fully examined specif-

ically with thiol-ene hydrogels. The pre-production analysis of both methacrylate

photopolymerization and thiol-ene photopolymerization helped narrow the tested

flow rate ratios, energy dose and polymer concentrations. It is the effect of pho-

toinitiator concentration and light intensity on cure depth will definitively determine

whether or not cells can viably undergo the in-flow photopolymerization process. Sev-

eral hydrogels that are used in tissue engineering are non-toxic derivatives of acry-

lates, and the cross-linking abilities of multifunctional acrylates are often exploited

in these scenarios.[297] When designing the immobilization matrices, the initiation of

the polymerization must be carefully considered. For instance, excessive heat during

immobilization processing could kill bacteria, as could exposure to certain chemicals;

ultraviolet light (UV) can cause intracellular mutations or death in high doses or

143



energies. Any of these issues could cause bacterial stress, causing false positive sig-

nals in the biosensor. Most photopolymers utilize visible light or UV to crosslink the

monomers used in the formation of the encapsulation matrices; therefore, it was crit-

ical to examine the photopolymerization process to minimize both the UV exposure

and photoinitiator chemical concentration.

Multifunctional acrylate are used in a range of applications from lithogra-

phy to surface coatings, so their photopolymerization kinetics have been extensively

studied.[298–300] In photopolymerization, radicals are generated from the initiator

through photodisassociation. A photon from the light source separates the photoini-

tiator into groups of highly energized radicals. The radicals then react with the

resident monomer in solution and initiate the thermoset polymerization. This ini-

tiation procedure is commensurate to the typical thermal initiation of free radical

polymerization, so the conversion of monomer-to-polymer can be analyzed by simple

kinetic equations, Eq. 5.1 and Eq. 5.2:

-d[M ]
dt

= Ri + Rp ≈ Rp (5.1)

and

Rp = kp[M][M*] (5.2)

where Rp is the rate of polymerization, Ri is the rate of free radical initiation, [M]

is the monomer concentration, [M*] is the radical chain concentration, and kp is the

kinetic rate constant for propagation. Assuming the steady-state approximation:

Rp = kp[M ]
(
Ri
2kt

)1/2
(5.3)

where kt is the kinetic rate constant for termination.
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For bifunctional initiators, the initiation rate is related to the photonic flux

and concentration of initiator. According to Einstein’s photonic flux and the Beer-

Lambert law, the rate of photodissociation and consequently the rate of initiation is

determined as [301]:

Ri = 2φε[PI]Iz (5.4)

where

Iz = I0(10−ε[PI]z), (5.5)

φ is the quantum yield of the photoinitiator, ε is the molar extinction coefficient

(M−1l−1), [PI] is the photoinitiator molar concentration (M), and Iz is the photonic

intensity at depth, z related to the laser intensity at the surface, I0 by Eq. 5.5. Thus,

the combination of Eq. 5.3 and Eq. 5.4 can be rewritten as:

−d[M ]
dt
≈ Rp = kp[M ]

[
φεI0[PI](=I0(10−ε[PI]z)

kt

]1/2
. (5.6)

Assuming no time dependence of UV penetration depth and by integrating Eq. 5.6,

the resultant equation determines the degree of polymerization, xn[296]:

ln [M ]0
[M ]

=
[
k2pφεI0[PI](=I0(10

−ε[PI]z)

kt

]1/2
t, (5.7)

where

[M ]0
[M ]

= xn. (5.8)

The degree of polymerization, xn, is related to the extent of polymerization:

xn = 1
1−p , (5.9)
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where p can be considered the gel point, the critical threshold of monomer conversion

where an insoluble gel is formed. By reorganizing, Eq. 5.7 and Eq. 5.8 the constants

of the chemical system can be grouped, and the UV dose parameters are coupled into

the maximum exposure such that:

[
kt[ln(1−pc)]2chNPL
k2pφελW

2
0 (2π)

1/2

] [
1
E2

]
= [PI](10−ε[PI]z), (5.10)

where c is the speed of light (m/s), h is Planck’s constant, N is Avogadro’s number,

PL is the photocuring light power, W0 is the width of the photocuring beam, E is the

maximum energy exposure, and λ is the wavelength of the initiating photon. Ulti-

mately, Eq. 5.10 organizes the chemical and photo constants to determine both the

required photoinitiator concentration to achieve a specific extent of polymerization.

The chemical constants have been previously determined, and a photoinitiator

known to be non-toxic to mammalian cells, 4-(2-hydroxyethoxy) phenyl-(2-propyl) ke-

tone (HEPPK, Irgacure 2959) was used both for modeling and in the later experiments

as the photoinitiator for the polymerization of poly(ethylene glycol) dimethacrylate

(PEGDMA). The dissociation of HEPPK is illustrated in Figure 5.8. HEPPK is an

ultraviolet light activated photoinitiator, but it is sensitive to visible light, which

makes it a good candidate for curing in the violet spectral region of the electro-

magnetic spectrum.[302–304] Curing times are typically longer when using the lower

frequencies, but they are less detrimental to the overall well-being of the cells being

encapsulated, so the peak wavelength used for modeling and photocuring was λ =

365 nm. For determination of the ideal photoinitiator concentration and UV does,

the extent of polymerization will be considered at a gel point xn , which Paul Flory

described as the monomer conversion dependent on the functionality of the monomer

as:
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parameter value reference

φ 0.6 radicals
photon

[302, 304]

ε365nm 6.7 m−2 · mol−1 [303]
I0 0.1 W/cm2 -
kp 400 (l / mol · s) [298, 299]
kt 5 x 105 (l / mol · s) [299]
xl−diacrylate 0.33 -
xc−diacrylate 0.57 -

Table 5.1: Parameters used in determining optimized photoinitiator concentration and cure depth.

xl ≈ 1
(f−1) , xc ≈

√
1

(f−1) , (5.11)

where f is the functionality of the monomer, xl assumes no cyclization and xc assumes

cyclization of monomers. The kinetic parameters and experimental constants are

summarized in Table 5.1. The rates of propagation and termination are affected by

diffusion limitations and thus they may vary at different times during the reaction;

however, for simplification, the rate of diffusion is deemed negligible under laminar

flow of the microfluidic device, therefore rate constants can be held constant. Loss

of radicals to oxygen, known as oxygen inhibition, is a problem that is pervasive in

polymerization involving radicals; however, oxygen inhibition is also diffusion limited.

Making the same limited diffusion assumption for laminar flow, there should be little

consumption of radicals by oxygen. By applying the simplifying assumptions that

there is continuous irradiation with no oxygen, and the total live radical concentration

is at steady state.

By applying Eq. 5.10, optimized gel depth can be determined as a function

of photoinitiator concentration and UV-dosage. The rate constants and conversion

cut-off value for HEPPK have been previously determined and provide the neces-

sary parameters for predicting a critical gel depth. Figures 5.6a is a plot of critical
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Figure 5.6: Critical cure depth as a function of (a) photoinitiator concentration [HEPPK] and
energy dose and (b) an expanded plot illustrating the local maxima effect due to photoinitiator
absorbance. The minimal applied energy dose at low [HEPPK] is only realized at cure times > 0.5s.

148



gel depth as a function of initiator concentration for varied energy doses (negligi-

ble oxygen termination is assumed). A similar plot was reported by Ilhan Aksay et

al. for a deoxygenated acrylate system using the stead- state model and reported

a similar peak in the cure depth located at lower photoinitiator concentrations.[296]

Figure5.6b shows an expanded plote of the reaction simulation of a dimethacrylate

curing photopolymerization utilizing HEPPK initiator concentrations in the range of

0.25-8 wt%. The varying energy doses shown are the product of the incident intensity

of 0.1 W/cm2 and varied exposure time. In general, the values of k p for free-radical

polymerizations are between 101 and 103 l / mol · s, and those for kt are in the range

of 103 to 105 l / mol · s.[293, 298, 299] For each energy dose in Figure 5.6b, as the

initiator concentration is increased, the cure depth reaches a clear maximum; this is

caused by the absorptivity of HEPPK at increased concentrations and shows a trend

that the typical stereolithography models cannot provide without experimental data

for each one of the experimental conditions.[296, 305, 306] By confining the dimen-

sions of the volume of monomer by microfluidic shaping, the smaller microflow results

in a a smaller critical cure depth (zc), so the system can operate at both lower initiator

concentration and lower energy doses. The resultant gel is a polymer structure that

should be fully crosslinked, allowing the capture of many cells inside a robust fiber.

5.2.2 Acrylate fibers

Common polymer fiber production methods include melt extrusion, casting,

and electrospinning. The methods often require cytotoxic chemicals, procedures in-

compatible with maintaining cell viability, or complex processing tools. The melt ex-

trusion process produces unique fibers with intricate dies; however, highly-crosslinked,

physically robust hydrogels are incompatible with melt processing. Casting fibers us-
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Figure 5.7: Structure of poly(ethylene glycol) dimethacrylate (PEGDMA).

ing fused silica capillaries as molds is limited by its poor reproducibility and small

batch production. Electrospinning has been adopted as a popular method to produce

biohybrid fibers; however, electrospinning is not suitable for the in situ encapsulation

of viable cells. Electrospinning with post-fabrication crosslinking has been reported

to induce bacterial cell death of up to 50% of the cells, and has also been shown to

be incompatible with maintaining any viability of mammalian cultures post encapsu-

lation Recent alternatives for fabrication of polymer fibers utilize in-flow processing,

e.g. hydrodynamic extrusion or microfluidic casting. Although hydrodynamic ex-

trusion circumvents the cytotoxic parameters of melt extrusion, this process is still

restricted by complex dies, and limited chemistries. Microfluidic casting provides

a facile route for producing complex shaped fibers, but this process utilizes cyto-

toxic organic solvents. For a viable, microfluidic production route of cell-laden fibers,

the microsystem must avoid organic solvents, harsh polymerization conditions, and

large concentration gradients. The pre-gel solution utilized as the core fluid was

composed of poly(ethylene glycol dimethacrylate) Mn = 750 (PEGDMA), and the

biocompatible, water-soluble photoinitiator Irgacure 2959 (HEPPK).[297, 303] Struc-

tures of PEGDMA and HEPPK are shown in Figure 5.7 and Figure 5.8, respectively.

PEGDMA was chosen as the initial hydrogel due its rapid polymerization kinet-

ics and the breadth of literature on its synthesis, previously reviewed in Chapter

5.1.2.[268, 307–309] PEGDMA is appropriate for the systematic exploration of cell
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Figure 5.8: Photodisassociation of HEPPK.

response to specific alterations in the methods for fabricating the hydrogel scaffold.

In addition, pure PEGDMA hydrogels function as blank slates in biological systems;

they are resistant to nonspecific adsorption of plasma proteins, and minimal cell in-

teractions between the hydrogel and the mesh occur unless reactive functional groups

are incorporated.[275, 310] In this case, cell immobilization is strictly based on physi-

cal encapsulation within the hydrogel matrix. The sheath was an aqueous solution of

poly(ethylene glycol) Mn = 400, selected to approximately match the viscosity and

hydrophilicity of the pre-gel solutions.

Fibers were produced from pre-gel solutions of 75, 50 and 25% (w/w) PEGDMA.

Varying the ratio of the sheath-to-core flow rates controlled the dimensions of the

fiber. Optical and scanning electron microscopies were employed to characterize the

size and morphology of the hydrogel fibers (Figure 5.9). An illustrative, intercon-

nected network of pores was observed on the surface of the fibers (Figure 5.9d-f).

Evaporative drying of hydrogels causes internal pore collapse; therefore, to accurately

quantify the mesh size, laser scanning confocal microscopy was used to visualize the

internal mesh in the water-swollen state (Figure 5.22). Reducing the concentration

of PEGDMA increased the observed mesh size from 3.0 ± 1.9 µm to 31.4 ± 6.3

µm. Table summarizes the porosity analysis of the PEGDMA data. The dependence

of mesh size on the ratio of PEGDMA:water is indicative of phase separation dur-

ing polymerization.[311, 312] Consequently, both the flow rates of the fluids and the

concentrations of the pre-gel solution can be used to tune the final morphology and
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PEGDMA mean pore area Feret diameter
% (w/w) (µm2) (µm)

75 5.3±3.7 2.4 - 7.8
50 205.1±48.5 12.0 - 20.1
25 1002.3±284.3 21.7 - 43.4

Table 5.2: Porosity determined by laser scanning confocal microscopy.

porosity of the fibers.

Syringe pumps were used for injection of both the sheath and the sample fluid.

The core (75, 50 or 25 % (w/w) PEGDMA/PBS) and sheath solution (PEG400 di-

luted with water) were prepared to have the similar viscosity and to be entirely

miscible. The flow of sheath solution was initiated first in order to minimize contact

of the acrylate with the channel walls. Into this flow, a steady stream of the acrylate

solution was introduced, and focused by the 5 grooves. The outlet was submerged

inside a beaker filled with water, such that the microfluidic device was normal to the

collection bath surface. Three light-guides (diameter = 3 mm) of the UV lamp (Blue-

wave 200 UV Light Curing Spot Lamp, Dymax) were aligned along the microchannel

approximately 1 inch away from the surface of the channel. The lamp provided an

intensity of 100 mW/cm2 at the centroid of the microchannel. The light intensity

was calibrated with a UV Intensity Radiometer (Accu-Cal 50 Radiometer, Dymax).

Optical micrographs of the produced fibers are shown in Figure5.10. By decreasing

the flow rate of the core fluid and holding the sheath flow rate constant, the long axis

of the ribbon-like fibers was decreased from ≈500 µm to ≈100 µm, as shown with

optical micrographs in Figure 5.10.

For the fibers to be effectively used for applications, they must be physically

and thermally robust, confine the cells, and permit both transport of nutrients/targets

and the egress of waste.[275, 313] For biohybrid applications, the PEG length and the
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Figure 5.9: Optical and scanning electron micrographs of PEGDMA fibers. (a-c) During the
fabrication process, the dimensions of the fiber are controlled by varying the sheath:core flow rate
ratios (16:1, 32:1, 80:1). Increasing the sheath:core flow rate ratio decreases the cross-sectional
area. Fibers shown were produced from a pre-gel solution of 75% (w/w) PEGDMA. Scale bars:
100µm (a-c). Hydrogel porosity was controlled by varying the concentration of PEGDMA in the
pre-gel solution. (d-f) Increasing concentrations of PEGDMA decreases mesh size. The mean Feret
diameters and standard deviation (n=6) for 75, 50, and 25% (w/w) PEGDMA fibers were 3.0 ±
1.9, 16.7 ± 2.8 and 31.4 ± 6.3 µm, respectively. Inset images are representative fibers at sheath:core
flow rate of 800:25 µL/min. Scale bars: 20 µm (d-f).
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Figure 5.10: Optical micrographs of PEGDMA fibers are shown at 2x magnification. (a-d) Fibers
synthesized from a polymer solution of 75% (w/w) PEGDMA. (e-h) Fibers synthesized from a
polymer solution of 50% (w/w) PEGDMA. Fibers were produced at different sheath:core flow rates,
from 800:50 to 800:5 µL/min. All scale bars indicate 500 µm.
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initial concentration of pre-gel are used most commonly to alter the network structure.

Increasing the initial macromer concentration or decreasing PEG length results in

higher cross-linking, decreased swelling, increased mechanical modulus, and decreased

apparent diffusivity of molecules within the gels. These properties alone can affect

the behavior of cells within hydrogel.[314, 315] The thermal and hydration properties

of the PEGDMA hydrogel fibers were determined using thermogravimetric analysis

(TGA) and differential scanning calorimetry (DSC). After fabrication, fibers were

immersed in water overnight to swell with water and remove unreacted prepolymer.

For TGA, the initial weight loss of samples corresponds to the evaporation of water

from the fibers. For pre-gel concentrations of 75, 50, and 25 % (w/w) PEGDMA and

sheath:core flow rates of 800:50 µL/min (flow-rate ratio = 16:1), the water contents

were 38%, 50%, and 77%, respectively (Figure 5.11).

The network structure of PEGDMA hydrogels is distinct from traditional

polymer networks that are formed by cross-linking preformed polymer chains or by

copolymerizing monomer with a small fraction of a cross-linker. PEGDMA hydrogels

are formed typically from a single component that serves both as cross-linker and

crosslinked chain. The resulting network consists of PEG chains esterified to dense,

multifunctional cross-link regions; physical chain entanglements also contribute to the

network. Numerous studies have attempted to develop effective strategies to control

PEGDMA gel properties, including increasing the ratio of PEGDMA to water at the

time of polymerization or decreasing the PEG chain length. These approaches result

in decreased hydrogel swelling, increased mechanical modulus, and decreased effec-

tive transport of non-gaseous molecules through the hydrogel.[316–319] Researchers

have also attempted to estimate the molecular weight between cross-links and the

mesh size from swelling and mechanical data using variations on the Flory-Rehner

model.[320, 321] These models provide estimates that generally correlate well with
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Figure 5.11: Original data from fiber characterization: (a) TGA thermogram of 800:50 µL/min
fibers produced from different concentration of PEGDMA pre-polymer solutions show increased
concentration of PEGDMA in the pre-polymer solutions decreases water uptake. (b) Differential
thermograms with respect to temperature. (c) DSC thermograms of fibers produced from different
concentrations of PEGDMA in the pre-polymer solution show a single Tg, which decreases with
decreasing amounts of PEGDMA. (d) EWC v. time plot shows lower PEGDMA concentrations
increase the rate of hydration.

156



observed physical properties; however, by using equations derived for networks formed

with long polymers with tetra-functional junctions these analyses neglect the complex

nature of the PEGDA network. For PEGDMA macromers, the net result of this com-

plicated polymerization process is the formation of an interconnected PEG-network.

This network contains poly(PEG-esterified) kinetic chains that form multifunctional

cross-linking nodes bridged by PEG cross-link chains, and these cross-linking points

aggregate into dense microdomains.[322] During polymerization, PEG chains can en-

tangle to form additional cross-link nodes. The network also contains other defects,

including partially unreacted macromer and cyclic structures, that do not contribute

to the effective network.[323] The difficulty in accurately predicting PEGDMA hy-

drogel properties lies in the the inherent heterogeneity of dimethacrylate networks

caused by the aforementioned polymerization kinetics. The heterogeneity stems from

many factors, including self-cyclization (where a growing chain crosslinks with a pen-

dant functional group from the main chain), the stochastic nature of polymerization

and functional group distribution. To better understand the hydrogel microstucture,

a battery of thermal analysis was applied to examine degradation, glass transition,

swelling and porosity of the produced hydrogel microfibers.

The thermal degradation temperature of fibers indicates their stability in

the common temperature range for biological use. After the evolution of water

(>100◦C), TGA showed no weight loss until temperatures between 375◦C and 400◦C

were reached. This matched the expected temperature range for decomposition of a

crosslinked network of poly(ethylene glycol).[311, 324] Accordingly, differential ther-

mograms showed proportionally increasing decomposition rates for higher concentra-

tions of PEGDMA. DSC confirmed the uniformity of gelation of the fibers. Dried

fibers exhibited a single glass-transition temperature (Tg) dependent on the concen-

tration of PEGDMA in the pre-gel solution. The corresponding Tg were -37.9, -40.4,
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and -41.9 ◦C for 75, 50, and 25% (w/w) PEGDMA, respectively. By increasing the

concentration of PEGDMA in the pre-gel solution, the Tg was increased. The data

corroborated previous reports that water acts as a plasticizer/extender in the hydro-

gel network: during polymerization, water increases the free volume between polymer

chains and causes increased chain mobility.[312] Figures 5.12a and 5.12c are the ther-

mograms of fibers produced from sheath:core flow rate ratios of 800:25 and 800:10

µL/min, respectively. Figures 5.12b and 5.12d are the differential thermograms of

fibers produced from sheath:core flow rate ratios of 800:25 and 800:10 µL/min, re-

spectively. The increased rate of the evolution of water from the fibers, as shown in the

differential thermograms (Figures 5.12b, 5.12d) is attributed to increased mesh size

in fibers produced from solutions of lower concentration of PEGDMA. It was possible

to tune the Tg and hydration of the fibers by controlling the relative concentration

of pre-gel to carrier fluid. It is foreseen that Tg and hydration can also be tailored by

controlling the PEG molecular weight between methacrylate end groups. Monomers

with long chains tend to exhibit lower Tg than those with n-methyl groups or other

bulky groups adjacent to the unsaturated bond in the monomer. The higher relative

concentration of ethylene-oxide would also increase hydration. By carefully exploiting

the interplay of these two effects, the Tg and hydration of PEGDMA networks can

be adjusted.

The concentration of PEGDMA in the pre-gel solution and corresponding

morphology of the derived fibers will also affect EWC (Figure 5.13). To analyze

EWC, fibers were lyophilized for 24 h, transferred to a buffer solution, and incubated

at 25◦C for periods of up to 2 hours. Aqueous solutions of 0.1 M phosphate and 0.15

M saline were adjusted to pH 4, 7 and 10. The fiber samples were blotted with wet

filter paper to remove excess water and weighed. EWC was calculated from Equation

5.12 where m0 and mt are the mass of the sample after drying and after hydration,
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Figure 5.12: (a,c) Thermograms of fibers produced with sheath:core flow rates of 800:25 µL/min
and 800:10 µL/min. (b,d) Differential thermograms of fibers produced with sheath:core flow rates
of 800:25 µL/min and 800:10 µL/min.
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respectively.

EWC = mt−m0

m0
(5.12)

Fibers produced from a pre-gel solution containing 25% (w/w) PEGDMA reached

EWC of 400% in less than 10 min. Fibers produced from a pre-gel solution containing

50% (w/w) and 75% (w/w) PEGDMA achieved EWC of 120% and 60%, respectively,

in as little as 5 min. The pH of the hydrating solution caused no significant effect on

EWC. Poly(ethylene glycol) is a neutral polymer at low molecular weights; therefore,

pH should not affect its hydration properties.[317] The rate of hydration is critical

for providing a uniform and equilibrium state for the encapsulated cells. Either

exceedingly rapid or slow hydration of the fibers would ultimately prove detrimental

to the encapsulated cells.

5.2.3 Thiol-ene and Thiol-yne fibers

Thiol-click chemistries were also explored as Cu-free routes to biohybrid fibers.

Three-systems were investigated: 1) a poly-thiol PEG (PEG4SH) with PEGDMA, 2)

a poly-thiol (pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) with a poly-

alkyne PEG (PEG4yne), and 3) PEG4SH with PEG4yne. Thiol- based PEG fibers were

produced in a similar manner to the PEGDMA fibers; however, the sheath solution

was 100% PEG400 to maintain miscibility with PETMP. The chemical structures of

these constituents are shown in Figure 5.14.

The PEG4SH/PEGDMA system is a traditional thiol-ene photopolymeriza-

tion, as previously discussed. The PETMP/PEG4yne is derived from a newer click

chemistry, the radical mediated thiol-yne reactions.[325] The thiol-yne reaction and

mechanism is shown in Figure 5.15. Thiol-yne reactions exhibit attributes typically

associated with highly efficient thiol-ene chemistry, and investigators have explored
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Figure 5.13: Fibers produced from different concentrations of PEGDMA were equilibrated at
pH = 4, 7, 10. The fibers were produced from solutions of (a) 75%, (b) 50%, and (c) 25% (w/w)
PEGDMA at sheath:core flow rates of 800:50 µL/min. Data points are the mean and error bars are
the standard deviations of the samples (n=3).
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Figure 5.14: (a)Thiol-ene and (b) thiol-yne click components utilized to produced hydrogel mi-
crofibers. The thiol-ene reaction contained a thiol-ated PEG and PEGDMA. The thiol-yne reaction
contained an alkyne-PEG and PETMP or a PEG-based system of PEG4SH) with PEG4yne.
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thiol-yne reactions as a chemical platform for materials synthesis involving polymer

functionalization and hydrogel synthesis.[259, 326–328] Each -yne moiety reacts first

with a single thiol to form a vinyl sulfide followed by subsequent reaction of the vinyl

sulfide with a second thiol to yield the 1,2-disubstituted adduct. Under stoichiometric

(2 thiols: 1-yne) conditions the reaction was found to give rise to the mono-substituted

vinyl sulfide moiety (a 1,2-disubstituted -ene) which, after being formed, was approx-

imately three times more reactive with the thiols than the -yne moiety from which

it was formed. When thiols were present in a stoichiometric excess, no vinyl sulfide

reactant was found. However, when the alkyne was in stoichiometric excess, varying

amounts of homopolymerization of the -yne and vinyl sulfide moieties were observed.

The initial polymerization kinetics exhibited nearly first order (0.8 power) depen-

dence on the thiol concentration and nearly zero-order dependence on the alkyne

concentration (0.1 power), indicative of the chain transfer step being slower than

the propagation step and rate limiting in this alternating, cyclical process.[325, 327]

Clearly, the capability of each alkyne moiety to form 1,2-sulfide linkages rather than

a single one as with each -ene has a dramatic impact on the potential of these re-

actions to yield highly crosslinked polymeric materials, which significantly enhances

the maximum possible crosslink density and degree of substitution in these polymers

as compared to more traditional thiol-ene reactions.

Illustrative SEM images of the produced from the PEG4SH-PEGDMA, PETMP-

PEG4yne, and PEG4SH-PEG4yne systems are shown in Figure 5.16a, b and c, respec-

tively. The PEGDMA incorporated fibers showed a predicted, large-open porosity

that may be present due to the homopolymerization of the PEGDMA component

(Figure 5.16a). In the thiol-yne systems, the porosity is reduced, and unexpectedly is

completely absent in the PEG4SH-PEG4yne system (Figure 5.16c). Although the lack

of visible porosity may be due to pore collapse during drying, examination of the net-
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Figure 5.15: Thiol-yne polymerization mechanism.

work formation in thiol-click fibers is still necessary. Reaction of purely difunctional

monomers results in a linear polymer system (thermoplastic), while the inclusion of

monomers with higher functionality results in crosslinked network polymers, or ther-

mosets. Mono-functional monomers simply act as chain terminators. However, the

majority of the studies typically analyze one or two mechanical properties at most,

generally with DMA. But since the thermo-mechanical properties of a material are a

critical parameter in the design of a device for any application, a fuller understanding

of the total behavior of thiol-ene polymers is necessary. To achieve full monomer con-

version, a stoichiometric ratio of thiol and -ene functional groups is necessary. At this

point, thiol-click fibers need to be further explored for their capabilities as biohybrid

scaffolds, specifically their hydration and porosity components. Accordingly, biohy-

brid fibers would be produced utilizing the methacrylate-based PEGDMA system
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seeing as it fit all the requirements as a click reaction.

5.2.4 Production of biohybrid fibers

Before encapsulation of cells in the hydrogel fibers, the effects of long-wave UV

irradiation and photoinitiator on cell viability (Figure 5.17) were examined. Gram-

positive Bacillus cereus (B.cereus) and Gram-negative Escherichia coli (E.coli) bacte-

ria were chosen as models for biohybrid fiber fabrication. They are well-characterized

organisms and have been reported as viable candidates for genetically engineered

whole-cell sensors, a potential application for these biohybrid fibers.[329, 330] The

effects of the photoinitiator (HEPPK) and the UV radiation (λpeak = 365 nm, 100

mW/cm2, 10s) on the viability and subsequent growth rate were evaluated. In multi-

well plate growth experiments, B.cereus and E.coli cells were irradiated with UV in

the presence and absence of the photoinitiator, and optical density (OD) readings were

taken periodically over 15 hours at 600 nm. The growth curve in the absence of any

treatment served as a reference. Timed comparisons of B.cereus cell growth as deter-

mined by OD600 measurements after treatment demonstrated that the photoinitiator

and UV exposure have no significant effect on B.cereus viability and growth profile.

In contrast, consistent with a previous report by Hollaender et al.,[331] UV-treated

E.coli grew at a decelerated rate and to a 17% lower cell density than untreated

or photoinitiator-treated E.coli. The prolongation of the “lag-phase” of E.coli, and

the decreased cell density indicate a slight impact on the growth of E.coli after UV

irradiation.

To evaluate bacterial encapsulation efficiency of the hydrogel photopolymeriza-

tion process, B.cereus cells were pre-stained with Invitrogen LIVE/DEAD BacLight

fluorescent dyes (L-7012) (Figure 5.18) and suspended directly in a PEGDMA pre-
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Figure 5.16: Thiol-click fibers produced from (a) a poly-thiol PEG (PEG4SH) with PEGDMA,
(b) a poly-thiol (pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) with a poly-alkyne PEG
(PEG4yne), and (c) PEG4SH) with PEG4yne.
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Figure 5.17: Exponential growth of (a) Gram-positive Bacillus cereus and (b) Gram-negative
Escherichia coli in the presence of photoinitiator (+I*) or UV irradiation (+UV). Samples absent
of photoinitiator or UV irradiation are labeled -I* and -UV, respectively.
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polymer solution (6 x 106 cells/mL). For all biohybrid fibers, the core fluid contained

PEGDMA diluted with PBS (pH=7.4). The fluid was injected at 800:50 µL/min

sheath:core flow rates. The labeled bacteria were imaged post-fiber production on

an inverted confocal microscope. Fluorescence micrographs of the fibers showed that

bacterial cells were uniformly dispersed throughout the length and breadth of the

hydrogel microfibers (Figure 5.18b, c).

As it is critical that the encapsulation process does not compromise cell viabil-

ity, metabolic activity and growth assays were performed with different bacterial cell

populations to determine not only the biocompatibility of the hydrogel scaffold but

also the impact of both the chemistry and processing on cell viability and proliferation.

B.cereus and E.coli bacteria were each encapsulated into hydrogel microfibers, and

the number of viable cells within the 3-D scaffold was visualized with the vital stain

5-cyano-2,3-ditolyl tetrazolium chloride (CTC). In contrast to LIVE/DEAD stains

that indicate the status of membrane integrity as opposed to “true” viability, CTC

dyes react with electrons produced from redox reactions of actively respiring bacteria

to form a red fluorescent formazan product signaling a working metabolism.[332] A

green fluorescent probe (SYTO24) was used as a counterstain to identify all cells.

Figure 5.18d-i shows representative images of the bacteria in the pre-gel solution and

post-fiber production. E.coli and B.cereus, in solution and in fibers, show active cel-

lular respiration as indicated by the red fluorescent formazan precipitation. A small

population (<10%) of the cells of either species exhibited the green fluorescence of

SYTO24 (Figure 5.18e, f, h, and i), indicating that both Gram-positive and Gram-

negative cells survive the fiber production processing and retain metabolic activity.

Micrographs showed >90% viable cells, which is highly significant in contrast to elec-

trospinning, which generates <50% cell survival rate.

To further demonstrate the suitability of the hydrodynamically shaped fibers
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Figure 5.18: (a,d,g) Confocal micrographs of pre-stained bacteria in the pre-gel solutions and
(b,c,e,f,h,i) encapsulated in fiber. (a-c) Bacillus cereus were pre-stained with green fluorescent
SYTO9 (all bacteria) and propidium iodide (PI; non-viable cells only) to evaluate encapsulation
efficiency and distribution of cells in the fiber. (d-f) B. cereus and (g-i) Escherichia coli treated with
CTC to determine metabolic activity, as indicated by red fluorescent formazan product. SYTO24
was used as counterstain. (b,e,h) Images are z-stack confocal images of the entire thickness of the
fibers. (c,f,i) Images are z-stack compressions of approximately half the fiber thickness to illustrate
the density and uniformity of encapsulated cells. Scale bars: (a,d,g) = 50µm; (c,f,i) = 100µm.
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as hosts for the bacterial cells, a recombinant E. coli strain harboring pRSET-B/mCherry

was encapsulated into the hydrogel fibers, and confocal images were taken immedi-

ately after fiber production and after four hours of incubation in growth media. The

expression of fluorescent protein (λex/λem = 587/610) was used to monitor cell growth

within fibers. The number of bacteria increased more than three times the initial den-

sity within the fiber after four hours of incubation in growth media, indicating that the

fibers were sufficiently porous for efficient nutrient diffusion and waste exchange. To

determine if the bacteria were inhibited from movement through the fibrous scaffold,

fibers containing the cells were plated and cultured on standard agar plates. Sig-

nificant bacterial colony formation about the fibers (Figure 5.19c, d) was observed.

Furthermore, the spreading of a mass of cells (Figure 5.19a) to a more uniform dis-

tribution through the fiber (Figure 5.19b) suggests bacterial migration within the

hydrogel scaffolding. Taken together, these results demonstrate that the morphology

and hydration properties of these PEGDMA fibers not only support efficient nutrient

exchange to promote cell growth and proliferation, but also allow cell mobility within

the microfibers.

5.3 Conclusions

A simple one-step strategy using a single microfluidic device that continu-

ously produces hydrogel fibers of various sizes containing viable cells is reported.

Compared to nozzle-in-channel devices that create core-sheath flow to control fiber

diameter, hydrogels and cells passing through the nozzle are subjected to cytotoxic

shear forces.[333] Such shear stress was significantly reduced during fiber shaping by

employing a core and sheath laminar flow using grooves in the channel walls to hy-

drodynamically focus the core within the sheath fluid. This approach enables the
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Figure 5.19: Confocal micrographs show the proliferation and distribution of fluorescent recombi-
nant E.coli cells that are encapsulated in a fiber. (a) Image of cells immediately after fiber production,
(t = 0 h) and (b), after incubation in liquid growth media (t = 4 h). Scale bars = 100 µm. Fibers
with encapsulated (c) B.cereus and (d) E.coli show outgrowth from within the hydrogel fibers onto
the surrounding agar surface. Inset is an image of the whole plate, diameter = 100 mm. Images (c)
and (d) are magnification of the inset images. Scale bars: 10 mm.
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injection of viscous pre-polymer reagents infused with biological constituents with

minimal clogging. Compared to microfluidic casting approaches, the rapid photoini-

tiated polymerization in the microfluidic channel avoids the cytotoxicity caused by

organic solvents as well as osmotic pressure changes. In the continuous single-step

process reported here, cells are localized in the hydrodynamically constrained core

flow, and upon exposure to light, the core forms a crosslinked biohybrid fiber. In

addition, the sheath stream can shape the fibers prior to polymerization; this pro-

vides the ability to fabricate larger flat fibers that may have increased strength and

higher surface area:volume than round fibers with the same cross-sectional area. The

laminar flow and photopolymerization conditions maintain the viability of the cells

during the fiber fabrication process.

By adjusting pre-polymer solutions and flow rates within the microchannel,

the morphology, hydration, and thermal properties of the fibers were tuned. The

methodology produced hydrogel fibers that sustained viable cells as demonstrated

by the encapsulation and subsequent proliferation of B. cereus and E. coli. The de-

scribed method differs from other hydrodynamic methods by removing the problem-

atic needle-in-channel or “concentric annuli” form factors. Using integrated, shaping

features and laminar flow reduces common fabrication problems like clogging or ax-

ial diffusion. Moreover, the hydrodynamic focusing within the microfluidic channel

can provide a continuous process for in situ gelation. The flexibility in fiber size,

shape and composition, coupled with benign photopolymerization conditions, sur-

passes other reported biohybrid fiber fabrication methods in terms of ease of the

fabrication and resultant cell viability.
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5.4 Experimental Details

5.4.1 Materials

PEGDMA and Irgacure 2959 (2-Hydroxy-4-(2-hydroxyethoxy)-2-methyl-propiophenone

(HEPPK)) were purchased from Sigma Aldrich (St. Louis, MO). Prior to mixing pre-

gel solutions, the hydroquinone inhibitor was removed from the PEGDMA using an

inhibitor removal column (column SDHR-4 from Scientific Polymer Products, Inc.,

Ontario, NY). Deionized water was obtained from a Millipore Sapphire System and

exhibited a resistivity of 1 x 1018 ohm−1 cm−1.

5.4.2 Microfluidic channel production and microfluidic sim-

ulations

The microchannel was direct-milled into a cyclic-olefin-copolymer (COC) to

the dimensions, 2.54 mm x 1.68 mm (width x height). The dimensions of the 5

diagonal grooves were 0.64 mm x 0.84 mm (width x depth) and were spaced 3 mm

apart.

5.4.2.1 COMSOL fluid dynamic simulations

All simulations of fluid flow in the microchannel were carried out using COM-

SOL Multiphysics (COMSOL, Inc.). Steady-state solutions of incompressible Navier-

Stokes flow were solved first for each simulation, and the solution obtained was then

used to calculate the convection and diffusion concentration profile of the fluids in the

system. Simulations were carried out for different flow-rate ratios between the sheath

and sample streams. An adaptive meshing technique was applied for the simulation
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Figure 5.20: An illustration of the microchannel device. (a) Half the microchannel device. (b)
Expanded view of the shaping features of the microfluidic device.
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Figure 5.21: Example fluid-shaping in microfluidic device from (a) simulation (b) dyed-core fluid.

of the concentration profile. Due to the device’s symmetry, only half of the fluid was

modeled. A non-slip boundary condition was applied to the channel walls, and the

symmetry condition was applied at a horizontal symmetry plane through the center

of the channel. A diffusion coefficient of 1 x 10−9 m2s−1 was used, and the fluid

was modeled with the density (1.1 g/mL) and viscosity blend index (≈3.6 cP) for the

PEGDMA 50% (w/w) pre-polymer solution. The diffusion coefficient of PEGDMA in

water was estimated from the diffusion coefficients of precise PEG oligomers in pure

water.[334, 335] Simulations were carried out at the following sheath:core flow rates

(µL/min): 800:50, 800:25, 800:10, and 800:5 (corresponding to flow-rate ratios of 16:1,

32:1, 80:1, and 160:1). Cross-sectional images were obtained at ≈20 mm downstream

from the last shaping groove. This is the approximate start of the UV-exposure win-

dow. Cross-sectional images were mirrored along the horizontal symmetry plane to

provide visualization of the entire channel as presented in Figure 5.5 and Figure 5.21.

The sheath flow device had two inlets, adjacent to the channel, for the sheath

and sample fluid. The device footprint was 151.72 x 50.42 mm. The channel was

2.54 mm x 1.68 mm (width x height). The width and depth of the grooves were 0.64
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mm and 0.84 mm, respectively. The grooves penetrated the wall 0.64 mm, and they

were spaced 3 mm apart. The halves of the microchannel were clamped together with

aluminum plates. The inlets for sample and sheath fluids were integrated on the base

aluminum clamp connected with flat bottom PEEK nuts (P-283) with corresponding

ferrules.

5.4.2.2 Confocal imaging of porosity

An inverted laser scanning confocal microscope with transmission detector was

used to image the interior of the fibers. Confocal images were processed with ImageJ

software (Bethesda, MD).[336] First, a fast Fourier transform bandpass filter was

applied to the images to delineate edge features. Afterward, a minimum bandpass

filter was used to smooth the image. The thresholding function was used to create

a binary image of the layer of the fiber in which the PEGDMA appeared white and

pores appeared black. The watershed function was used to separate merged pores.

The particle analysis function in ImageJ was used to count and measure the pore

area and Feret diameter. The mean Feret diameter is the range of means across the

sample (n=6) (Table 5.2). Z-stack images were acquired at 0.5 µm intervals at 60x

magnification, scanned from the bottom up, and compiled.

5.4.3 Microbe encapsulation in hydrogel fibers

E. coli XL-1 Blue (Agilent Technologies, Santa Clara, CA) was cultured in

Luria-Bertani broth (Difco BD Microbiology Systems, Sparks, MD) containing 12

ug/mL tetracycline at 37 ◦C. E. coli XL-1 Blue/pRSET-B mCherry was cultured in

LB broth containing 100µg/mL ampicillin at 37 ◦C. B. cereus (ATCC, Manassas,

VA) was cultured in Tryptic Soy Broth (Difco BD) at 30 ◦C. For growth profiles, cells
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Figure 5.22: Confocal z-stack through a fiber produced from a solution of 75% (w/w) PEGDMA.
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overnight cultures were inoculated in multi-well plates at a final OD600 ≈0.10. Indi-

vidual wells were treated with photoinitiator, irradiated with UV, or both. Growth

profiles were obtained over a 15 h period. For encapsulation studies, overnight cul-

tures were washed three times in phosphate buffered saline (PBS) and suspended in

PBS prior to fiber production. Final concentrations of cells in the pre-gel solution

were ≈106 cells/mL. The pre-gel solution was prepared in PBS by mixing PEGDMA

(75, 50, 25% (w/w)) and I2959 (0.1% (w/w)). For the encapsulation of cells, a sus-

pension of cells in PBS (6 x 106 cells/mL) was incorporated into the core solution.

The sheath solution was prepared by mixing PEG Mn = 400 and water (50% (v/v)).

Sheath and core fluids were injected into the microchannel via syringe pumps. Cel-

lular activity of bacteria was determined by the BacLight RedoxSensor CTC vitality

assay (Molecular Probes, Eugene, OR) following manufacturer’s instruction. This

fluorometric assay is based on the ability of cells to convert 5-cyano-2,3-ditolyl tetra-

zolium chloride (CTC) into an insoluble, red fluorescent formazan product, and is an

indicator of the level of respiratory activity of bacterial populations. Green fluores-

cent SYTO 24 was used as a counterstain. Fibers containing cells were incubated in

the solution for 30 minutes and visualized under a confocal microscope. A cell count

comparison for Figure 5.197a and Figure 5.197b was calculated with the ImageJ soft-

ware. The thresholding function was used to create a binary image. The watershed

function was used to separate cell masses. The particle analysis function in ImageJ

was used to count cells.

5.4.4 Thermal analysis

Thermogravimetric analysis was performed at a heating rate of 10 ◦C/min in

a nitrogen atmosphere up to 600 ◦C with a Thermal Analysis 2900 TGA instrument.
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The mass of the samples varied from 5 to 9 mg. The water/polymer content was

determined at the onset of the first derivative of weight loss with respect to tempera-

ture reaching zero. Thermal degradation temperature values reported were taken at

the peak maximum of the first derivative of weight loss with respect to temperature.

Differential scanning calorimetry was performed from -65 ◦C to 20 ◦C at a rate of 5

◦C/min with a Thermal Analysis 2920 DSC equipped with R40 refrigerant cooling

accessory. The carrier gas was nitrogen at a flow rate of 50 mL/min. All DSC samples

were hermetically sealed and cycled thrice, with reported values taken from the third

cycle. Reported Tg values were taken at the peak maximum in the curve of the first

derivative of heat flow.
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CHAPTER 6

Concluding Remarks

6.1 Summary

The objective of the presented work was to explore a new paradigm in the

synergy of materials science, biological sciences and engineering technologies via click

chemistry. This paradigm posits that the application of click chemistry to materials

science is an ideal platform in which new materials can be built to harness biosys-

tems to produce materials capable of sensing, isolating, and converting biosystems

into applicable technologies. To this end, novel materials and techniques have been

developed on the small-molecule, nanoscale and microscale. The following summary

of results illustrates the potential capabilities of employing click chemistry and ma-

terials science to harness biosystems:

Building small-molecule bioprobes. In the vein of the original purpose for the

CuCAAC reaction, small-molecule FRET pairs were built and utilized as an enzyme

probe. a simple diagnostic tool was presented that employed a coupled donor/acceptor

pair that was formed through a click transformation. A thorough examination of

the optoelectronic properties of the different FRET pairs was undertaken by rigor-
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ous simulations and photoluminescence spectroscopy to explicate the energy transfer

mechanism between lobes of the clicked FRET dyads. Both ab initio HF and DFT

calculations allowed predicted the spectral response of the FRET pairs and aided in

designing the optimal FRET pairs.The FRET pair exhibited a significant variation in

PL response with exposure to the lysate of Pseudomonas resinovorans CA10, an or-

ganism which can degrade variants of both the donor and acceptor fluorophores. This

general approach can be tailored for a range of metabolic processes and be employed

as a method for single-cell metabolomic studies.

At the design stage, increased computational power would allow for precise

calculations of molecular orbitals and more accurate predictions of both electron ex-

citation and emission energies. Time-dependent density-functional theory (TDDFT)

would provide a rigorous formalism for the calculations of excitation energies. The

excitation energies can be readily obtained from a TDDFT calculation by knowing

how the system responds to a small time-dependent perturbation. Despite the suc-

cesses of DFT in describing the electronic structure of complex molecular systems,

the treatment of electronic correlation within DFT is only approximate. Therefore,

one needs to resort to alternative approaches as the more costly wave function based

methods. Most importantly, transitional dipole calculations, which would be benefi-

cial in analyzing the dipole-dipole or quadripole-quadripole interactions present in a

FRET system and would provide a “real” orientation factor.

Quantum chemical calculations can also provide a valuable tool in describing

the experienced interactions between ATBC and the CARDO enzymes. The unreli-

ability of density-functional-based approaches to accurately describe photoexcitation

of biomolecules means any computational approaches would rely on expanding the

wave function in Slater determinants and, as the system size increases and the ener-

gies of the single-particle orbitals become closely spaced, the space of orbitals which
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must be included to recover a significant fraction of electronic correlation grows enor-

mously. Therefore, when these approaches are applied to large biomolecules, com-

promises must be taken as in the use of a small atomic basis or a reduced space of

active orbitals. Consequently, while highly-correlated quantum chemical approaches

are accurate for small systems where these techniques can be pushed to their limits,

the same level of accuracy cannot in general be guaranteed when going to a large

biosystem.

Functionalization of nanoparticles as bio-active ligand carriers. Nanopar-

ticles were efficiently modified with bioactive moieties as tools to harvest enzymes.

Functionalized nanoparticles can be utilized in an array of biotechnologies, e.g. med-

ical assays, therapeutics, and diagnostics. In this case, a tool was developed and

presented for a critical component of commercialized biotechnologies for biosepara-

tion. The ability to target and extract biomolecules of interest from a natural source

with ease and efficiency is critical for understanding and ultimately developing useful

technologies from these systems.

Initially, a model system was utilized to show the efficacy of synthesizing a

“baited” nanoparticle to capture and recycle enzymes from lysate. Enzyme trapping

and recycling was illustrated with the CARDO systems, an enzyme important in

bioremediation and natural product synthesis. The enzymes were baited with an

azide modified carbazolyl-moiety attached to a PA nanoparticle. The bait products

is well dispersed in water and buffers, a property that is independent of selected ligand,

but a result of their attachment to PA particles. These results establish a universal

model applicable to concentrating and extracting known substrate protein pairs, but

it can be an invaluable tool in recognizing unknown protein-ligand affinities. Despite

the widespread availability of genome sequences, according to the shear multitude of
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metabolites the selectivity of many metabolic enzymes are still veiled, this procedure

goes a long way toward cultivating large banks of recyclable metabolic enzymes and

probing enzyme selectivity.

The ability to create a clickable nano-surface was easily achieved with propar-

gyl acrylate nanoparticles because of the inherent presence of alkynes; however, the

addition of click functionality to inorganic nanoparticles seemed like a sizable chal-

lenge. By again employing propargyl acrylate, that addition of a clickable copolymer

to an inorganic surface was successfully demonstrated and characterized as a general

methodology for producing magnetic nanoclusters with an elevated alkyne function-

ality. The functional nanoclusters were formed by the adsorption of poly(AA-co-PA),

which provides both colloidal stability and surface functionality. Complicated syn-

thesis routes previously required for the surface functionalization of SPIONs are cir-

cumvented by designing the copolymer stabilizer prior to nanocluster formation. By

copolymerizing acrylic acid with propargyl acrylate we synthesized a clickable coating,

that would be anchored to the SPION. We also showed the size of the nanoclusters

and thickness of the polymer coating was controlled by tailoring the molecular weight

of the adsorbed polymer with the use of a chain transfer agent during synthesis. For

the first time, the complex susceptibility measurements of the particles was utilized

to investigate the nanoparticles clustering formation. Nanoclusters exhibited a relax-

ation time dominated by Brownian relaxation, confirming that the particles coat with

polymer and then bridge to form clusters. The availability of accessible alkyne groups

on the surface of the aqueous-phase nanocluster allowed for the surface modification

of the particles CuCAAC click reaction with an azide-modified ICG. We expect to

extend this method to the synthesis of clinically viable hyperthermia nanoclusters,

which exploit the CuAAC click reaction for the targeting of nanoclusters, and direct

delivery of therapeutic agents.
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Although both the bioseparation colloids and clickable-SPION demonstrate

routes to clickable biofunctionality, they are a mere drop in the bucket of opportunities

that the convergence of nanomaterials and biotechnology present. Even within the

CARDO system, the bioseparation colloids can be further developed to incorporate

targeting ligands to generate in vivo bait particles. Comparatively, the clickable-

SPION were evaluated only for their fluorescence imaging capabilities; a more in-

depth analysis of their magnetic properties would provide for a better understanding

of the the additional imaging (MRI contrast) and therapeutic (hyperthermia, drug

delivery) properties afforded by superparamagnetic particles.

Production of cell encapsulating materials in-flow. Microfluidics and hydro-

dynamic focusing provided a method for the continuous production of biohybrid

fibers. By adjusting pre-polymer solutions and flow rates within the microchan-

nel, we were able to tune the morphology, hydration, and thermal properties of

the fibers. The methodology produced hydrogel fibers that sustained viable cells

as demonstrated by the encapsulation and subsequent proliferation of B.cereus and

E.coli. The described method differs from other hydrodynamic methods by removing

the problematic needle-in-channel or “concentric annuli” form factors. Using inte-

grated, shaping features and laminar flow reduces common fabrication problems like

clogging or axial diffusion. Moreover, the hydrodynamic focusing within the microflu-

idic channel can provide a continuous process for in situ gelation. The flexibility in

fiber size, shape and composition, coupled with benign photopolymerization condi-

tions, surpasses other reported biohybrid fiber fabrication methods in terms of ease

of the fabrication and resultant cell viability.

The view that continuous flow processing is only useful for commodity prod-

ucts has changed over the last 20 years as the advent of nano- and biotechnology has
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scaled production methods down to the lab bench and smaller. Flow processing not

only provides low-end assembly-line benefits but also has value for high-margin prod-

ucts because of the heat-transfer, mixing, and flow-alignment attributes conveyed

by micro-reactors. Compared to nozzle-in-channel devices that create core-sheath

flow to control fiber diameter, hydrogels and cells passing through the nozzle are

subjected to cytotoxic shear forces.[333] The presented microfluidic device negates

such shear stress during fiber shaping by employing a core and sheath laminar flow

using grooves in the channel walls to hydrodynamically focus the core within the

sheath fluid. This approach enabled the injection of viscous pre-polymer reagents

infused with biological constituents with minimal clogging. Compared to microflu-

idic casting approaches, the rapid photoinitiated polymerization in the microfluidic

channel avoids the cytotoxicity caused by organic solvents as well as osmotic pressure

changes. In the continuous single-step process reported here, cells are localized in the

hydrodynamically constrained core flow, and upon exposure to light, the core forms

a crosslinked biohybrid fiber. In addition, the sheath stream can shape the fibers

prior to polymerization; this provides the ability to fabricate larger flat fibers that

may have increased strength and higher surface area:volume than round fibers with

the same cross-sectional area. The laminar flow and photopolymerization conditions

maintain the viability of the cells during the fiber fabrication process.

Since the requirement of a Cu(I)-catalyst precludes the use of the CuCAAC re-

action within living systems, many copper-free alternatives to CuCAAC exist. Along

with the thiol-ene and thiol-yne reactions, the Staudinger ligation of phosphines with

azides and strain-promoted cycloaddition of cyclo-octynes with azides, may provide

alternative click routes to producing hydrogels for biohybrid materials. Initially, the

thiol-ene and thiol-yne PEG fibers can be explored as cell immobilization materials,

and future results will dictate the most suitable polymer chemistry for producing
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biohybrid fibers in flow.

6.2 Theoretical implications and recommendations

for future research

Since the renaissance of Huisgen’s 1,3-dipolar cycloaddition of azides and ter-

minal alkynes catalyzed by Cu(I), this reaction has become a favorite ligation tool

of polymer and materials scientists, proving particularly useful in areas as diverse as

polymer synthesis, molecular biology and nanoelectronics. Far beyond the selected

examples included here, click chemistry has developed into an important tool set for

materials scientists, and it is not difficult to predict that the range of potential ap-

plications, especially in the life sciences, will continue to grow. On the other hand, it

can be expected that the continuous push for designer materials will lead to the iden-

tification of additional chemical reactions that can be reframed within the concept of

click chemistry; a framework of chemical versatility and control. Nevertheless, there

are still limitations of the CuCAAC reaction that must be considered for biological

applications. The further development of metal-free reactions or ”click-methods,” like

microfluidic reactors, are potential solutions.

Click chemistries provide a future for materials science, that will be required

to address the gap between sophisticated material function and the limited chemi-

cal control offered by many of the currently available synthetic processes. Current

synthetic macromolecules are randomly and haphazardly combined in comparison to

many proteins or nucleic acids. The more complex a macromolecular structure is, the

more important it is to have a simple pathway for its preparation. And since Nature

has optimized its chemistry via evolution, it is hubris to attempt duplication; rather,
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it is the discovery and selection of the proper tools to harness and exploit Nature’s

methods that is essential for the rapid advancement of our philosophy.
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Appendix A Glossary

◦C degrees Celsius
β The second letter of the greek alphabet
ε molar absorptivity
η viscosity
µm micrometer
π transcendental number (≈ 3.1415)
φ quantum efficiency
τB Brownian relaxation time (s)
τN Néel relaxation time (s)
AA acrylic acid
AA-PA poly(acrylic acid-co-propargyl acrylate)
ABA 2-amino-benzoic acid
AIBN 2,2’-azobisisobutyronitrile
−→
B magnetic field induction
B.cereus Bacillus cereus
BSA bovine serum albumin
E energy
EA 9-ethyl anthracene
c speed of light (2.99792458 m/s)
C6 coumarin-6
CA10 Pseudomonas resinovorans CA10
CAR 9H-carbazole
CARDO carbazole 1,9a-dioxygenase
CuCAAC Cu(I)-catalyzed azide-alkyne cycloaddition
CTA chain transfer agent
DET Dexter energy transfer
DFT density functional theory
DLS dynamic light scattering
E.coli Escherichia col
EGDMA ethylene glycol dimethacrylate
f frequency (Hz)
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FRET Förster resonance energy transfer
FT-IR Fourier transform infrared spectroscopy
h Planck’s constant (6.626068 x 10−34 m2kg/s)
−→
H magnetic field
HF Hartree-Fock
ICG indocyanine green
m meter
M magnetization
MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy
MeOH methanol
MRI magnetic resonance imaging
MPn Müller-Plesset correlation with n degrees
N Avogadro’s number (6.02 x 1023)
nm nanometer
NMR nuclear magnetic resonance
PA propargyl acrylate
PAAC poly(propargyl acrylate)-mod -AC nanoparticles
PC pyrocatechol
PEG poly(ethylene glycol)
PEG4yne 4-star poly(ethylene glycol) with alkyne functionality
PEG4SH 4-star poly(ethylene glycol) with thiol functionality
PEGDMA poly(ethylene glycol) dimethacrylate
PETMP pentaerythritol tetrakis(3-mercaptopropionate)
PL photoluminescence
RAFT reversible addition-fragmentation chain transfer polymerization
ROMP ring-opening metathesis polymerization
s second
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM scanning electron microscopy
SPION superparamagnetic iron oxide nanoparticle
TEM transmission electron microscopy
THF tetrahydrofuran
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