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 ABSTRACT 

 
  

 Land-use practices in Mongolia lead to habitat degradation and consequently 

affect the structure and function of biological communities. There is no accepted 

bioassessment technique for determining the ecological consequences of habitat 

degradation on biological communities and water quality in Mongolia, such that a 

monitoring and management program suitable for Mongolia is sorely needed.  

Both a trait-based approach and the North American Rapid Bioassessment 

Protocol (RBP) metrics were tested with macroinvertebrates to determine the 

performance and applicability of these approaches for predicting general ecological 

responses of freshwater and terrestrial communities to habitat variation due to 

overgrazing and mining in northern Mongolian streams. Significant declines in functional 

diversity were observed by TBA with greater levels of land use intensity (more grazing 

and mining), and 13 of 16 traits (such as reproduction, life stages, resistant form, 

dissemination method, locomotion and substrate relation, feeding habit, food, saprobity, 

temperature, trophic level, current velocity, and substrate preferendum) varied 

significantly among different levels of land-use intensity. There were no significant 

differences observed among traits associated with an r/K reproductive strategy among the 

sites.  

In addition, complying with the RBP protocols, taxonomic richness and diversity 

and the number of taxa deemed intolerant to disturbance were significantly lower in sites 

with more grazing and mining than in more natural sites. However, despite the fact that 
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mayflies are generally associated with low levels of disturbance, the abundance of 

mayflies (Ephemeroptera) and the percentage of taxon richness and abundance of 

mayflies was higher in sites with greater land-use intensity. Also, the RBP biotic index 

classification system for water quality was not well suited for use with Mongolian taxa.  

To determine the level of taxonomic resolution needed for accurate functional 

description, I compared functional diversity and trait responses from a coarse taxonomic 

level and from species-level resolution in one genus of macroinvertebrates (Simulium). 

Species-level resolution provided more information than genus-level resolution for some 

traits related to habitat association, but species-level resolution did not improve 

discrimination of land-use impacts substantially.  

Furthermore, I assessed land-use effects on terrestrial communities. Crane flies 

(Diptera: Tipuloidea) are a diverse group and vulnerable to habitat destruction because of 

their semi-terrestrial habit. Livestock grazing effects on crane fly diversity were tested 

among sites with different levels of grazing intensity. Species richness and diversity of 

crane flies were lower for moderately and highly grazed valleys than for the lightly 

grazed valleys. Soil moisture, plant biomass, and livestock number were the most 

significant predictors of variation in crane fly diversity across the grazing gradient. 

Overall, my study showed a strong relationship between functional and taxonomic 

structure of the macroinvertebrate community and habitat conditions. Generally, TBA 

and taxonomic approaches discriminated seminatural sites from sites with greater levels 

of land-use intensity. However, TBA provided a more direct explanation for 

macroinvertebrate responses to land-use and therefore may be more reliable for a future 
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freshwater biomonitoring program in Mongolia. Species-level resolution may not be 

necessary for discriminating intensities of grazing and mining. Semiterrestrial crane fly 

community responses accurately reflected intensities of grazing in northern Mongolia.  

Among the results, there is a strong relationship between community structure and 

habitat condition. Habitat filtering determines variability of macroinvertebrate 

community observed among sites. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

Freshwater systems of Mongolia 

Mongolia is a landlocked country in north central Asia far from oceanic influences 

and comprises a high plateau surrounded by mountain ridges in the transition 

between Siberian taiga forest and Central Asian desert (Nandintsetseg et al. 2007). 

Mongolia has a severe continental climate with large daily and seasonal temperature 

amplitudes and low precipitation. The increase of aridity from north to south causes 

an uneven development of river networks. Rivers are concentrated in the northern 

part of the country (Hilbig 1995). 

There are over 4000 rivers in Mongolia originating from the Central Asian 

high mountain ranges and over 3500 lakes located mainly in the mountains and 

intermountain depressions belonging to three international river basins: the Arctic 

Ocean Basin, the Pacific Ocean Basin, and the Central Asian Internal Drainage 

Basin (Hilbeg 1995; Davaa 2007) (Fig.1.1). The Arctic Ocean Basin covers about 68 

percent of Mongolia’s territory including the Selenge River, Hövsgöl Lake, and Tuul 

River basins; the Pacific Ocean Basin covers 20 percent of Mongolia’s territory 

including the Kherlen, Onon, Ulz, and Khalkh River basins; the Central Asian 

Internal Drainage Basin covers 12 percent of Mongolia’s territory including the 

Great Lakes, Northern Gobi, and Southern Gobi basins (Asia Foundation 2009).  

The total volume of surface water in Mongolia has been estimated as 599 

km3 per year and includes 83.7% in lakes, 10.5% in glaciers and 5.8% in rivers 
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(Batnasan 2003). Mongolia is one of 60 countries with limited water resources and 

total water consumption is approximately 540 million m3 per year, with over 80% 

percent consumed by industrial and agricultural uses and 20% by domestic uses 

(UNEP 2011). 

Major land use issues 

At present, both the aquatic and terrestrial ecosystems are being degraded by 

anthropogenically induced impacts of overgrazing, irresponsible mining, 

deforestation, urbanization, inefficient water management, and climate change (Asia 

foundation 2009). In recent years, mining activities have increasingly affected water 

quantity and quality by using large amounts of ground and surface water (Javzan et 

al. 2004); using outdated extraction methods such as dredging or diverting rivers, 

resulting in dry or intermittent small streams (Byamba and Todo 2011); and by 

contaminating waterways with toxic substances including heavy metals (Inam et al. 

2010). In addition, overgrazing has decreased plant biomass and diversity and tends 

to shift grassland to more desert like conditions (Altanbagana and Chuluun 2010) 

with impacts to surface waters.  Major land use impacts on freshwater ecosystems 

result especially from overgrazing, and mining throughout Mongolia. 

Mongolians have practiced a nomadic lifestyle for over 3000 years. 

Livestock husbandry is the mainstay of the Mongolian economy and accounts for 

80% of agricultural output; pasturelands cover 75% of the total Mongolian territory 

(1,565,000 km2). A total of 40.9 million livestock were counted at the end of 2012 

(Info Mongolia 2013).  
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During Communist rule, the government strictly regulated the allocation of 

pasture, the size and type of herds, and the rotation of pastures. After the collapse of 

the Communist system in Mongolia in 1991 and the resulting privatization of 

livestock, the number of pastoral households doubled and the animal stocking rate 

has been increasing over time significantly. As a result, the traditional rotation 

pattern of grassland use and pasture management practices has been abandonded 

because of a number of economic, political, social, and environmental factors 

(MoMo Consortium 2009). Traditional herd composition has also shifted, and the 

number of goats has almost doubled due to the increased price of cashmere (Lise et 

al. 2006). Uniquely among all Mongolian livestock, goats uproot vegetation; for this 

reason, they have the most negative impact on pastures of all of the livestock 

(Batnasan 2003). The combination of overstocking, overgrazing, and changes in 

traditional livestock herding practices have increased the ecological vulnerability of 

Mongolian grasslands (Altanbagana and Chuluun 2010). 

Mining has been a rapidly growing industry for the last two decades in 

Mongolia, accounting for 30% of the gross national product and 81% of exports, 

with the most important commodities being copper, molybdenum, gold, coal, and 

fluorspar concentrates. The majority of Mongolia’s mines are placer, or surface 

mines, which mine alluvial deposits of minerals—primarily in the sand and gravel of 

rivers and streams. Mongolia has issued 4,706 valid mineral licenses, of which 3,610 

are exploration permits and 1,096 are mining licenses (Mining technology 2010). 

Many smaller mining activities, including illegal mining activities, are being 
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undertaken, particularly in stream and river beds (Tumurchudur and Davaa 2012). 

Mining industries consume water chiefly for the washing of deposits; 63% of this is 

from groundwater and 37% from surface water (Mun et al. 2008). 

Effects of overgrazing and mining on freshwater ecosystems 

Overgrazing. Livestock grazing can have direct effects on watersheds, such 

as plant biomass reduction, alteration of plant species composition, increased nitrates 

from dung and urine, soil erosion, soil compaction, habitat diversity reduction and 

water turbidity resulting from livestock trampling (Reeves and Champion 2004). 

Overgrazing has significant consequences for stream ecosystems, including flooding, 

loading of sediments and nutrients such as nitrogen and phosphates (Quinn and 

Stroud 2002, Maasri and Gelhaus 2011), and alteration of stream food webs through 

changing light, nutrient, and organic-matter dynamics (Dolédec et al. 2006). 

Overgrazing can affect either negatively or positively the densities of certain taxa 

associated with habitat modifications (Quinn 1992), community structure 

(Scrimgeour and Kendall 2003), and functional traits of macroinvertebrates (Dolédec 

et al. 2006). Sensitive aquatic organisms can be eliminated by eutrophication, 

substrate simplification, algal mat formation, bacterial pollution, acute toxicity, 

increased insolation, loss of riparian vegetation and other harborage for adults, 

dominance of burrowing taxa due to burying of solid substrate habitat, increase of 

suspended solids, and burial of hyporheic zone (Strand and Merritt 1999).  

Mining. In placer mining operations, vegetation and fertile topsoil are 

removed and river-bed morphology is changed (Tumurchudur and Davaa 2012). 
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Mining increases turbidity (by input of suspended mineral particles), sediment 

deposition (Wagener et al. 1985), introduction of nutrients especially phosphorus 

(Stubblefield et al. 2005), contamination with heavy metals (Inam et al. 2010), all of 

which degrade habitat quality (Wood and Armitage 1997). Fine sediment loads 

affect benthic macroinvertebrate communities in several different ways, such as 

altering suitability of substrate for some taxa (Richard and Bacon 1994), increasing 

drift (Culp et al. 1986), affecting respiration due to low concentrations of oxygen 

(Erikson 1968), and interfering with feeding activities by impeding filter feeding 

(Aldridge et al. 1987) or reducing food availability (Graham 1990). However, 

positive effects of increases of fine sediments have been observed for some taxa 

such as Chironomidae midges (Dudgeon 1994), Oligochaeta worms, and Sphaeriidae 

fingernail clams (Armitage 1995). Metal can have toxic effects on aquatic organisms 

through absorption from heavy metal contaminated water, sediments, or food 

(Rainbow 1996). Furthermore, the increased suspended solids, fine sediments, and 

heavy metal contamination reduce density, biomass, diversity, and taxonomic 

composition of invertebrates (Wagener et al. 1985, Quinn et al. 1992, Avlyush 

2011). 

Water quality monitoring perspectives 

Mackie (2004) stated, “Bioassessment is the evaluation of water quality 

based on analysis of species assemblages of communities of aquatic organisms, or of 

their products (e.g., chlorophyll a).” Biomonitoring is a biological assessment of 

environmental changes, due mainly to anthropogenic causes, in order to keep under 
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systematic review the quality of the environment over a period of time. Traditional 

physical-chemical and more modern biomonitoring approaches have their own 

strengths and weakness. While the physical-chemical approach can identify the type 

of stressor, biomonitoring can detect cumulative or synergetic effects of multiple 

stressors and magnitude of the effects (Mackie 2004). Rosenberg and Resh (1993) 

made the analogy that a physical-chemical approach is like a photographic snapshot, 

describing instantaneous conditions when the sample is collected, whereas 

biomonitoring is more like a continuous video because resident organisms “sample” 

conditions continuously over long periods of time.  

The most commonly used groups of organisms for biomonitoring are benthic 

macroinvertebrates (Mackie 2004). Benthic macroinvertebrates are a useful group of 

organisms for biomonitoring because they are ubiquitous, diverse (with a wide range 

of environmental requirements), and abundant (providing statistically meaningful 

numbers of individuals in samples); they are relatively sedentary (unable to avoid 

unfavorable environmental changes); they have long life cycles relative to other 

aquatic organisms (thereby reflecting environmental conditions over longer periods 

of time), and they are highly responsive to environmental stress (Rosenberg and 

Resh 1993). Biomonitoring can be accomplished by (1) surveillance before and after 

an impact (Smith 1993), (2) comparing a test site with water quality standards 

(Yoder and Rankin 1998), or (3) comparing a test site with a reference (control) site 

(Charvet et al. 2000, Dolédec et al. 2006).  
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There are two main bioassessment approaches using benthic 

macroinvertebrates: a taxonomic approach including single metric and multimetric 

indices and a trait-based approach. 

The taxonomic approach is derived from the “niche concept.” An ecological 

niche is a multi-dimentional hypervolume, and it includes all of the factors that a 

species needs to survive, grow and reproduce (Hutchinson 1957). According to the 

niche concept, each species has special abilities to exploit resources (Schmidt-

Kloiber and Nijboer 2004). 

Single Metric Indices: Many different single metrics and indices as well as 

multimetric indices have been developed and used for biomonitoring programs based 

on the benthic macroinvertabrate community in different countries. They include the 

saprobic system, Biological Monitoring Working Party Score, the Average Score per 

Taxon and biotic index. Each is described below. 

Saprobic System: This is based on an organism's tolerance limits to organic 

pollution within different saprobic levels or gradually self-purifying habitat zones 

downstream of a pollution source: The polysaprobic zone (most polluted), the α -

mesosaprobic zone, the β -mesosaprobic zone, and the oligosaprobic zone (least 

polluted). The sum of saprobic values multiplied by the number of individuals for 

each of the indicator taxa (identified at family or genus or species level) at the 

sampling point is divided by the sum of the frequency (percentage of occurrence) for 

the indicator taxa, providing a mean saprobic value for the sample (Mackie 2004).  



 8 

 Biological Monitoring Working Party Score (BMWP, 1978): A score system 

between 1 and 10 based on an organism's tolerance value to organic pollution was 

developed in the UK and has been adjusted for the different faunas of many different 

countries (Birk and Hering 2006). The greater the tolerance of a taxon for pollution, 

the lower the BMWP scores.  

The Average Score per Taxon (ASPT): The average tolerance score of all 

taxa (family level) within the community ranges from 0 to 10 and is calculated by 

dividing the BMWP by number of taxa represented in the sample (Armitage et al. 

1983).  

Biotic index (BI): classifies the organisms according to their tolerance to 

water pollution. The Biotic Index provides a single ‘tolerance value’, which is the 

average of the tolerance values of all taxa within the community. The Biotic Index 

was subsequently modified and expanded by many workers to provide, for example, 

The Trent Biotic Index (Woodiwiss 1964); Chandler’s Biotic Score (Chandler 1970); 

Hilsenhoff’s Family Biotic Index (Hilsenhoff 1988); Biotic Index (genus/species 

level) (Lenat 1993). 

Multimetric Index: provides a score that represents the overall relationship 

between the combined values of multiple metrics observed in a given site and 

expected values under reference conditions. A variety of metrics can be used, such as 

taxa richness, composition, and functional feeding group metrics (Barbour and 

Yoder 1999, Hering et al. 2006, Stoddard et al. 2008, Angradi et al. 2009). 
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A number of standardized biomonitoring techniques are in common use and 

most of them are multimetric or mulvariate predictive models based on the 

taxonomic composition of communities. Rapid Bioassessment Protocols (RBPs; 

RBP I, II and III), which are based on benthic macroinvertebrates, were developed in 

the USA. They allow rapid screening of a large number of sites. Several candidate 

metrics including taxon richness, taxon composition, tolerance, and functional 

feeding group metrics are recommended by the US Environmental Protection 

Agency (Barbour et al. 1999). The United Kingdom River Invertebrate Prediction 

and Classification System (RIVPACS), with standardized biomonitoring protocols, 

implements multivariate models to compare the observed fauna of 

macroinvertebrates at a test site with the expected fauna of reference sites, such that 

discrepancies between the two can be used to assess the biological impairment of 

that site. Often this comparison is made in terms of one or more metrics that 

summarize the community composition (Wright et al. 2000). The Australian River 

Assessment System (AUSRIVAS) is a rapid bioassessment protocol used to evaluate 

the biological health of Australian rivers; it incorporates water chemistry, physical 

form, hydrology, stream side vegetation, and aquatic organism assessments. 

AUSRIVAS is a predictive model based on RIVPACS (Simpson and Norris 2000).  

European Union Water Framework Directive (WFD).  RIVPACS provided the basic 

principles of the WFD, which adjusts the national programs of EU member countries 

into an integrated framework and assesses the water quality status of water bodies 
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based on multivariate and multimetric quantification of aquatic organisms, including 

phytoplankton, macroalgae, macroinvertebrates and fish (Furse et al. 2006).  

 A Trait-Based Approach (TBA) is an alternative to traditional taxonomic 

approaches and is based on the functional differences among the species in a 

community associated with habitat characteristics; it is a potential method to reveal 

changes in communities due to disturbance and define structure of biological 

communities (Dolédec et al. 1999, 2008; Charvet et al. 2000; Usseglio-Polatera et al. 

2000; Statzner et al. 2001; Gayraud et al. 2003; Bady et al. 2005; Poff et al. 2006). 

TBA was developed in Europe and has been an increasingly applied biomonitoring 

practice there (Dolédec et al. 1999, 2000, 2008; Charvet et al. 2000, Usseglio-

Polatera et al. 2000; Statzner et al. 2001; Gayraud et al. 2003; Bady et al. 2005; and 

Díaz et al. 2008). TBA has also been explored in North America (e.g., Poff et al. 

2010; Vieira et al. 2006), Australia (Chessman and Royal 2004), and New Zealand 

(Dolédec et al. 2006, 2011).  

TBA was derived from a “habitat template” concept (Southwood 1977, 

Towsend and Hildrew 1994).  Southwood (1977) outlined the habitat template 

concept, which states that ecological strategies of a species have evolved in response 

to the characteristics of habitat, and that these strategies are reflected in quantifiable 

life-history and biological traits. Towsend and Hildrew (1994) made the a priori 

prediction (hypothesis) of expected species traits in terms of autoecological 

interaction between organism and their abiotic environment. The main hypothesis 
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was that present-day habitat conditions should be matched by present-day traits in 

the organisms. The habitat template concept specifies two basic dimensions: 

Temporal heterogeneity indicates frequency of disturbance, and spatial heterogeneity 

indicates the provision of refugia for buffering against disturbance. The general 

prediction is that traits conferring population resilence (promoting refuge use and 

recolonization success, such as r- selected traits including many descendants per 

reproductive cycle, short generation time, small body size, short life span, parental 

care, or presence of relatively invulnerable life stages, asexual reproduction, etc.) or 

resistance (related to survival, such as firm attachment to substrates, high body 

flexibility, streamlined or flattened body form, dormancy or diapause, housing 

against desiccation, etc.) would be more common in temporally variable and 

spatially homogeneous habitat (Towsend and Hildrew 1994). Poff (1997) described 

the function of trait filters across hierarchical landscape scales ranging from 

microhabitat to watershed or basin for a mechanistic understanding of species-

environment relationship.  Only species possessing appropriate traits are likely to 

filter into certain environmental conditions at different scales (Poff 1997).  

 Species traits can also be used as measures of community functional 

diversity (Petchey & Gaston 2006). The Functional Diversity index (FD) is a 

functional trait measurement usually described by three indices: functional richness, 

evenness, and divergence that can describe how much volume of functional space is 

occupied by species, how much space is filled, and how traits deviate from the center 

of trait space (Mason et al. 2005). A number of different FD indices have been 
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proposed to quantify different aspects of functional diversity (Mouchet et al. 2010, 

Schleuter et al. 2010, Casanoves et al. 2011).  

Mongolian bioassessment status 

There is no Asian-specific bioassessment technique for water quality 

assessment. Some Asian countries have adjusted North American or European 

bioassessment methods for water quality (Morse et al. 2007). Hydrobiological 

studies have been conducted by several Russian and Mongolian cooperative 

expeditions since the late 1800s and these have focused mostly on faunistic 

discovery. In the late 1900s, with the introduction of courses on aquatic insects 

taught by J Morse at the Mongolian National University and Mongolian State 

Pedagogical University (Morse et al. 2007), bioassessment methods that are used in 

Mongolia, including aquatic insect species tolerance indices and water quality 

classifications, were developed based on North American protocols (Yadamsuren 

2001, Erdene 2010). In recent years, Mongolian researchers and institutions have 

been focused on biomonitoring methods to evaluate water quality in an effort to 

develop a management program suitable for Mongolia.  

The following research projects have been carried out and still continue with 

respect to water resource management and biodiversity inventory in Mongolia: The 

Mongolian Aquatic Insect Survey project (MAIS), in cooperation with the Institute 

of Meteorology, Hydrology and Environment of Mongolia (IMHE), conducted 

substantial work to inventory the country’s aquatic insect diversity, biology, and 

geographical distributions and to report impacts of livestock grazing on biodiversity 



 13 

through a series of field expeditions between 2003 to 2011(MAIS 2011). The Asia 

Foundation promoted responsible mining and natural resource management and 

enhanced public awareness for environmental protection (Asia Foundation 2013). 

The Integrated Water Resources Management (IWRM) project implemented by the 

Water Authority of Mongolia developed water resource plans at the national level 

between 2007-2012 (Deltares 2007). Surface water monitoring has been conducted 

through the IMHE at a total of 142 gauging stations (Fig. 1.2) on 75 streams and 12 

lakes throughout Mongolia since the late 1900s. Water regime measurements are 

being recorded from 120 stations; water chemical samples are being taken from all 

142 stations on a regular schedule (Davaa 2007), with water quality monitoring 

mostly relying on hydrological and chemical monitoring. For biomonitoring, benthic 

and planktonic samples are taken each month from April to October by staff from 64 

of the 142 stations and sent to the IMHE office in Ulaanbaatar. There are two 

permanent, full-time aquatic biologists at the Water Division of IMHE who are 

responsible for processing biological samples and providing annual reports to IMHE; 

IHME then compiles an integrated report that is sent to the Ministry 

of Environment and Green Development of Mongolia for future regulatory 

decisions. In 2009, in order to improve the national biomonitoring program, MAIS 

and The Asia Foundation organized training for local IMHE field staff regarding 

benthic macroinvertebrate sampling techniques and provided modern field 

equipment.  
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Currently, biomonitoring results are mostly limited to taxon surveys and 

application of family-level (Hilsenhoff 1987) and genus-level (Lenat 1993) biotic 

indices (Erdene 2010). Although, Mongolia already has established a water quality 

monitoring system, the country is not using a national biomontoring protocol 

suitable for the geographical region of Mongolia.  

Structure of the dissertation 

The dissertation is subdivided into five chapters. This Chapter 1 provides 

background information of the land use practice of Mongolia and its major effects on 

ecosystems and then introduces bioassesment methods and Mongolian 

bioassessment status. Chapter 2 examines land-uses with regard to livestock grazing 

and mining by comparing a trait-based and taxonomic approach. A total of 86 trait 

categories of 16 traits related to morphology, life history, and habitat association, in 

a mixture of genus or higher taxonomic levels, were used for estimating functional 

structure of macroivertebrate community among three different levels of land-use 

intensity. Also, taxonomic richness, composition, tolerance and diversity measures 

were used for estimating taxonomic structure of macroinvertebrate communities. 

Chapter 3 presents a species-level resolution of TBA for a genus of 

macroinvertebrate (Simulidae: Simulium) to test accuracy of community description 

and discrimination of land-use intensity at the species level of resolution in 

comparison with results from use of more inclusive taxa. The same set of traits and 

site categories was used in this comparison. Chapter 4 uses a taxonomic approach to 

determine the effects of livestock grazing on the semi-terrestrial crane fly 
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community, comparing sites with different levels of grazing intensity. In this study, I 

did not consider mining effects. Crane fly species diversity was measured through 

species richness, evenness, and diversity indices. Sample-based rarefaction analysis 

was performed to predict rarified and estimated species richness. Finally, chapter 5 

includes a brief summary of the study and summarizes overall findings of this 

research, limitations, and future directions.   
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FIG. 1.1 Map of Mongolia showing major river basins and elevation range. 
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FIG. 2.2 Map of Mongolia showing the location of water quality monitoring stations 

of Mongolia. 
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CHAPTER TWO 

MACROINVERTEBRATE COMMUNITY RESPONSES TO LAND USE 
IMPACTS: COMPARISON TRAIT-BASED AND TAXONOMIC APPROACHES 

FOR FRESHWATER BIOMONITORING IN MONGOLIA 
 
 

Abstract 

There is no accepted bioassessment technique for determining ecological 

consequences on freshwater biological communities in Mongolia, such that a water 

quality and management program suitable for Mongolia is sorely needed.The study 

aim was to examine macroinvertebrate community responses to grazing and mining 

in order to determine land-use effects on macroinvertebrate communities, to 

compare trait-based and taxonomic approaches, and to evaluate the applicability of 

these bioassessment approaches in northern Mongolia. The functional structure of 

macroinvertebrate communities was examined using 86 categories of 16 traits. 

Significant declines in functional diversity were observed with increased land-use 

(grazing coupled with mining) intensity. Functional diversity was highest for 

seminatural sites, intermediate for moderate land-use intensity, and lowest for high 

land-use intensity. A total 13 of 16 traits varied significantly among different levels 

of land-use intensity. There were no significant differences observed among traits 

associated with r/K reproductive strategy (body size, life span and number of 

reproductive cycles) among the sites. A majority of variation of community traits 

was explained by local environmental variables. The study results showed a strong 

relationship between the functional structure of the macroinvertebrate community 

and habitat conditions. 
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 The taxonomic structure of macroinvertebrate communities was examined 

using taxonomic richness, composition, and percentage of tolerance taxa, biotic 

index, an exponential of the Shannon diversity index, and an evenness index.  

Overall taxonomic richness and diversity decreased with greater levels of land-use 

intensity. Intolerant taxa were generally significantly lower with increased land-use 

intensity, but taxonomic diversity and abundance of the insect order Ephemeroptera 

were higher in the greater levels of land-use intensity sites than in the seminatural 

sites. Three different taxa belonging to Ephemeroptera were the most dominant taxa 

in each of the three levels of land-use intensity. There were no differences in 

abundance of tolerant taxa among sites. The study sites were classified into four 

levels of water quality (excellent, good, good-fair, fair) according to the North 

American biotic index classification system, but the three levels of land-use intensity 

in this study were mixed among those categories for water quality; thus, this 

classification system was not well suited for Mongolian taxa. 

Generally both TBA and the taxonomic approach discriminated seminatural 

sites from sites with greater levels of land-use intensity, but TBA was a more 

reliably consistent indicator of land use according to trait responses and, because 

traits are specifically correlated with environmental conditions, their presence and 

frequency provided a more direct explanation for macroinvertebrate responses to 

land-use. Therefore, TBA may be a more applicable and effective approach for 

freshwater biomonitoring in Mongolia. 
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Introduction 

At present, the quality and quantity of Mongolia’s water resources are being 

degraded by certain land uses, especially overgrazing and mining (Asia Foundation 

2009). Biodiversity is an important component of the ecosystem and higher diversity 

maintains ecosystem processes (Cardinale 2002). Land-use modification is the major 

force of environmental change that affects the structure and function of biological 

communities (Vitousek et al. 1997, Dolédec et al. 2011). Along with physical and 

chemical assessment, bioassessment is required to manage ecosystem health and 

conserve biodiversity.  

 Freshwater biomonitoring programs using benthic macroinvertebrates are 

usually more reliable and more cost-effective for assessing water quality than 

traditional physical-chemical analyses (Barbour et al. 1999; Dolédec et al. 1996, 

2006).  Bioassessment with living organisms has several other advantages over 

traditional physical-chemical methods, such as (1) reacting to all biologically 

relevant environmental conditions, (2) detecting cumulative or combined effects of 

multiple stressors, and (3) responding to relevant conditions continuously over long 

periods of time (Mackie 2004; Rosenberg and Resh 1993; Morse et al. 2007). In 

contrast, physical-chemical analyses demonstrate conditions only for the time of 

sampling. Benthic macroinvertebrates are a useful group of organisms for 

biomonitoring because they are ubiquitous, diverse and abundant, they are relatively 

sedentary, they have long life cycles relative to other aquatic organisms, and they are 

highly responsive to environmental stress (Rosenberg and Resh 1993). 
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 So-called taxonomic approaches have been widely used in many countries, 

including Australia (Simpson and Norris 2000), the European Union (Furse et al 

2006), United Kingdom (Wright et al. 2000), and the US (Barbour et al. 1999). 

These approaches identify certain groups of freshwater organisms generally to 

family or genus and then characterize that part of the community with a single 

metric, such as a biotic index (mean organic pollution tolerance value for a sample), 

or with multiple metrics, such as measures of taxa richness, percent of  

Ephemeroptera/Plecoptera/Trichoptera composition, numbers or percent of 

tolerant/intolerant taxa, percent of selected feeding strategies, and percent of selected 

habitat optima (Barbour et al. 1999). 

 In recent years, the trait-based approach has been described as an alternative 

to the traditional taxonomic approach for assessing disturbance responses in stream 

communities (Dolédec and Statzner 2010) and has been identified as one of the most 

promising tools for biomonitoring freshwater ecosystems (Menezes et al. 2010). A 

trait-based approach (TBA) is based on ecological theory, the River Habitat 

Template Concept, which provides a mechanistic framework for relating community 

responses to environmental characteristics (Southwood 1977, Townsend and 

Hildrew 1994). While taxonomic biomonitoring approaches focus on changes in 

community structure, trait-based approaches focus on function (functional diversity 

and trait composition) related to altered environmental conditions. In a given 

environment, only taxa possessing certain traits pass through the habitat filter 

(Keddy 1992), and those traits can be diagnostic of the stressors (Vieira et al. 2006). 
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Species traits can also be used as measures of community functional diversity 

(Petchey & Gaston 2006). In biomonitoring programs, multiple traits are being used 

to determine expected biological conditions under reference conditions (Vieira et al. 

2006). Most traits are affected in predictable ways by various types of stressors 

(Dolédec et al. 2006, Dolédec and Statzner 2008). Thus, TBA should be able not 

only to determine intensities of disturbance (Gayraud et al. 2003), as do taxonomic 

approaches, but also to discriminate the effects of different stressors on 

macroinvertebrate communities (Dolédec et al. 1999). Also, species traits are less 

constrained by biogeography (Dolédec et al. 2011) and are more stable among 

seasons than species composition (Culp et al. 2010) because species traits should 

vary across environmental gradients but trait patterns will be similar in different 

spatial scales (Statzner et al. 2001).  

The current surface water-quality monitoring system in Mongolia mostly 

relies on hydrological and chemical monitoring. There is no widely accepted 

biomonitoring method for Mongolia. Therefore, it is necessary to develop a national 

biomontoring protocol suitable for the geographical region of Mongolia.  

The main objectives of this study were 1) to examine community responses 

to land use disturbances and to determine land use effects on macroinvertebrate 

communities comparing taxonomic and trait-based approaches and 2) to evaluate 

whether TBA can provide a more reliable means for discriminating the effects of 

different land use intensities on Mongolian streams than a taxonomic approach. My 

basic hypotheses were that 1) macroinvertebrate functional structure would differ in 



 23 

predictable ways in streams with different levels of land-use intensity according to 

the river habitat template a priori predictions. Specifically, I predicted that species 

traits associated with resilience and resistance to fine sediment loading and nutrient 

enrichment would become more common as grazing and mining land-use intensity 

increased (Table 2.1). 2) Macroinvertebrate taxonomic structure would differ in 

streams with different levels of land-use intensity. I predicted that there would be 

lower taxon richness with greater levels of land-use intensity, as only taxa that are 

pollutant tolerant will persist (Table 2.2). To test this hypothesis, I examined 

functional and taxonomic structure of benthic macroinvertebrate communities 

among north-central Mongolian stream sites in areas spanning a range in land-use 

intensities. 

 

Material and Methods 

Study sites 

The field sampling occurred in north central Mongolia at 42 sites (Fig. 2.1, 

Appendix A) from the Orkhon, Kharaa, Yeroo, and Tuul Rivers and their tributaries 

in the Selenge River Basin, which flows northward into Russia and Lake Baikal. The 

Selenge River Basin belongs to the Central Asian Internal Basin and is surrounded 

by the Khentii, Khangai, and Sayan mountain chains, where the average altitude is 

1500–2500 m asl. The Selenge Basin includes 30.6 percent of the water resources 

for Mongolia, with a 425,245 km2 catchment area, and covers a wide range of 

ecoregions including taiga, high mountains, forest-steppe, and steppe (Tumurchudur 
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and Jadambaa 2012). Grazing sites were impacted by free-ranging horses and 

ungulates (cattle, sheep, goats, camels), which were often quite dense. Because 

Mongolian herders are nomadic, and there are no fences to exclude animals from 

riparian zones or surface waters, grazing sites were variously impacted by these 

megafauna. Mining sites are sites with mining activity in the watershed. Sites were 

chosen downstream of the mining. Most mines are surface, placer mines, which use 

stream water or groundwater resources to sort and extract target minerals (Javzan et 

al. 2004). 

Study sites were categorized in relation to levels of land-use in the watershed 

as seminatural, moderate, and high land-use intensity sites. Seminatural sites were 

those with no evident land use activities (no grazing or mining) or with only light 

grazing. Moderate and high levels of land-use intensity had grazing or grazing 

coupled with mining impacts except that one site had mining activity but no grazing 

(Appendix A). Suspended solids, turbidity, and ammonium were significantly higher 

in high level intensity sites than in moderate level intensity sites (Fig. 2.2).  

Macroinvertebrate sampling 

Forty-two macroinvertebrate samples were taken using a semiquantitative D-

net (500µ) sampling method within a 50-m reach from each site during late-June to 

mid-July 2011. In order to reduce time and effort for sorting and identification, I 

used a fixed-count approach that is the preferred subsampling method for Rapid 

Bioassessment Protocols (RBPs) (Barbour et al. 1999). Subsamples of 200 

organisms were taken from a composite of 20 kicks or jabs taken from the different 
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macrohabitats (riffle, run, and pool) in accordance with their percentage 

representation within a reach (modified Barbour et al. 1999). Samples were 

preserved in 80% ethanol and invertebrates identified to the lowest possible 

taxonomic levels. Most insect groups of macroinvertebrates were identified to the 

genus-level except that some water boatmen (Hemiptera: Corixidae), predaceous 

diving beetles (Coleoptera: Dytiscidae), flies (Diptera), and the non-insect groups 

were identified only to family level (Appendix B).  

Environmental variables 

The following physico-chemical parameters were measured using a 

spectrophotometer Hach DR 2800 Field Water Quality Lab in accordance with 

procedures described in its accompanying manual (Hach 2008): suspended solids 

(mg/l), sulfate (mg/l), phosphate (mg/l), nitrite (mg/l), nitrate (mg/l), ammonium 

(mg/l), salinity (mg/l), water temperature (°C), pH, dissolved oxygen in ppm (DO), 

conductivity (µS), and turbidity in Nephelometric Turbidity Units (NTU) (Appendix 

E).  Flow rate was measured at the water surface and at middle and bottom depths at 

each meter across a stream transect using a FLO-MATE Electromagnetic Flow 

Meter. 

A visual habitat assessment (habitat type, substrate type, stream gradient, 

stream order, erosion and land use type) was made according to a modified US EPA 

Rapid Bioassessment Protocol (Barbour et al. 1999). To estimate grazing intensity, a 

visual assessment of ground cover percentage and a measurement of vegetation 

height were taken in the riparian zone at 0, 10, and 20 meter distances from the 

http://bugguide.net/node/view/195
http://bugguide.net/node/view/195
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stream bed along 20-meter perpendicular transects using a randomly tossed 1 m2-

frame (Daubenmire 1959). This provided a mean estimate of ground cover 

percentage and vegetation height for each site.  

Trait selection 

Species possess biological traits, which are morphological, physiological, 

behavioral, and ecological features. Two general types of traits are distinguished in 

current bioassessment programs: biological traits related to life history, mobility, and 

morphology and ecological traits related to habitats (Charvet et al. 2000, Dolédec et 

al. 2000, Statzner et al. 2001, and Gayraud et al. 2003).  

For 90 taxa, I selected 86 trait categories of 16 traits (Table 2.1) that are 

related to life history, mobility, morphology, and ecology and that were obtainable 

from available sources (Bis and Usseglio-Polatera 2004, Schmidt-Kloiber and 

Hering 2012). The trait matrix was based on European taxa, and since Mongolia has 

a high proportion of species and genera with widespread Palearctic distributions, it 

made sense to adopt the already existing European trait database. These traits were 

associated with the resilience, resistance, and habitat optima relevant to the 

environmental gradients of interest. Traits were compiled at the family level for non-

insect groups and for a few specimens of Corixidae, Dytiscidae, and Ephydridae. 

There was no complete trait information available for some insect genera; thus traits 

were recorded at the subfamily level for Palpomyia and all Chironomidae (order 

Diptera); and at the family level for Acanthametropus and Cynigma (order 

Ephemeroptera); Alloperla, Paraperla, and Haploperla (order Plecoptera); 
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Chaetopteryx (order Trichoptera); and Anisogomphus (order Odonata) and at the 

genus level for all other insect taxa (Appendix C).  

Trait-based analytical approaches have categorized traits into categories that 

are coded in a “fuzzy” manner for each species, as described by Chevenet et al. 

(1994). Fuzzy coding accommodates trait variation within a species by recording 

intermediate affinities. Affinity scoring ranges from 0 to 3 where 0 indicates no 

affinity of a species to a given state and 3 indicates that a species has that particular 

state exclusively. 

Affinity scores were treated as frequency distributions to give the same 

weight to each taxa and trait so that affinity scores are each equal to 1 for a given 

trait and taxon (Chevenet et al. 1994). 

 

𝑞𝑘 =
𝑎𝑘

∑ 𝑎𝑘ℎ
𝑘=1

 𝑤𝑖𝑡ℎ 𝑞𝑘 ≥ 0 𝑎𝑛𝑑 � 𝑞𝑘
ℎ

𝑘=1
= 1 

 

k - a trait category 

𝑞𝑘 - frequency of a trait category 

𝑎𝑘 - assigned affinity of a trait category 

h - total number of categories in a given trait 
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Taxonomic metrics 

The presence of the generally most sensitive groups of macroinvertebrates, such as 

Ephemeropera, Plecoptera and Trichoptera (EPT), indicate the cleanest waterways 

(Lenat 1993). In contrast, generally pollution tolerant groups of macroinvertebrates 

such as the segmented worms (Oligochaeta) and midges (Insecta: Diptera: 

Chironomidae) indicate polluted waterways (Myslinski and Ginsburg 1977). 

Quantifing taxa richness, abundance of intolerant and tolerant organisms, and their 

proportions in a community are commonly used for bioassessment. Certain stresses 

may increase or decrease population sizes of certain taxa and their species richness 

(Resh and Jackson 1993). The most reliable taxonomic candidate metrics of the 

Rapid Bioassessment Protocol (RBP; Barbour et al. 1999), including taxonomic 

richness, taxonomic composition, trophic relationship, habit, and tolerance metrics 

(Table 2.2), were used to examine taxonomic structure of macroinvertebrate 

communities. 

A Biotic Index was calculated based on North American genus-level 

tolerance values to water pollution. A Biotic Index (BI) is a mean tolerance value 

that is weighted by abundance for each taxon and its particular tolerance value to the 

total number of organisms in the sample. The tolerance values for the taxa were 

assigned mainly with respect to eutrophication, so that this index relies on only a 

niche dimension-oxygen level. A family-level tolerance value was used for some 

genera that are not found in North America.  

BI =
∑ TV𝑖 ∗ N𝑖)

∑N
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BI- biotic index 

TVi- tolerance value of ith taxa 

Ni- individual number of ith taxa 

N-total individual number in the sample 

In addition to these metrics, an exponential of the Shannon Diversity Index 

and an evenness index were computed (Table 2.2). The Shannon Diversity Index 

accounts for both the number of species and their proportional abundances within a 

community. It is assumes individuals are randomly sampled from an infinitely large 

community and all species are represented in the sample (Shannon 1948).  

 
Exp [H'= -∑ (pi*lnpi)] 

 
Exp-exponential 

 
H'-Shannon Diversity Index 
 
pi –proportion of invividual in ith taxa 
 
Ln-natural logrithm 
 

Shannon evenness can be calculated from the Shannon Diversity Index 

(Pielou 1975) as follows: 

 
J= H'/lnS 

 
J-Shannon evenness 
 
S-species number 
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Statistical analysis 

Principle Components Analysis (PCA) is a variable-reduction technique and 

reorganizes a larger set of variables into smaller set of components that account most 

of the variance in the original variables (Manly 2004). Environmental variables met 

assumptions (linear relationship, multiple normality, and no significant outlier) for 

PCA. PCA was performed using a correlation matrix of environmental variables to 

discriminate primary environmental gradients and co-varying components among 

sites. A linear combination of an Eigen value of the correlation matrix among the 

variables was taken to calculate each principle component. The Eigen values 

indicated the variability of each component (SAS institute 2012).   

Functional diversity (FD) was quantified within each site using a functional 

richness index (Petchy and Gaston 2002, 2006) based on trait incidence 

(present/absent). This index is most commonly used and gives a meaningful measure 

of functional diversity (Pla et al. 2012). The functional diversity index is defined as 

the sum of branch lengths linking species belonging to the same community on the 

functional dendrogram built on a regional species pool based on incidence data 

(Petchy and Gaston 2002, 2006).   

𝐹𝐷=i' ∙h2 

i' - branch presence/absence row vector 

h2- branch length vector 

Canonical correspondence analysis (CCA) was used to compare trait 

composition of macroinvertebrate communities to variation in the environment 
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among sites. CCA is a constrained-ordination technique defined by best explanatory 

variables (Ter Braak 1986). The frequencies of each trait category per trait were 

multiplied by the relative abundance of taxa at the site and summed by sites to create 

a trait-by-site array and this array was used for CCA analyses (Dolédec et al. 2011). 

CCA was run for all traits together and each trait category separately. Permutational 

multivariate analysis of variances (MANOVA), based on a dissimilarity matrix using 

a Euclidean distance measure, was used to test for significance of trait variation 

explained by environmental variables among land use intensity gradients. It 

partitions dissimilarities among any objects and uses permutation tests to explore 

significance of those partitions (Oksanen 2013). The site scores derived from the 

CCA was used in permutational MANOVA.  

Individual trait category differences across the land-use intensity gradients 

were determined by a community-weighted mean (CWM) trait value. It is a mean 

trait value weighted by relative abundance (Díaz et al. 2007) and represents the 

expected functional value of a random community sample (Casanoves et al. 2011). 

 

 

𝑝𝑖-relative abundance of ith species 

𝑥𝑖  - trait value of ith species.  

A one-way analysis of variance (ANOVA) was conducted to test whether 

functional diversity, CWM and taxonomic metrics varied significantly among the 

land use categories. For pair-wise post hoc comparisons, a t-test was used.  

𝐶𝐶𝐶 = �𝑝𝑖 𝑥𝑖

𝑆

𝑖=1
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I used JMP software version 9.0.2 (SAS Institute Inc. 2010) for PCA, f-

diversity software (Casanoves et al. 2011) for computing functional diversity 

indices, and R software version 3.0.1 for conducting a vegan package (R 

Development Core Team 2010) for CCA analysis and permutational MANOVA. 

 

Results 

The sites clustered into three areas of the PCA (Fig. 2.2), which corresponded with 

the low (seminatural), moderate and high levels of land-use intensity. Generally land 

use intensity segregated by grazing intensity for moderate and heavy grazing, either 

alone or coupled with mining impacts. The Eigen values of the first two axes 

accounted for most of the variability and are used for graphical representation. The 

first axis of the PCA explained 21.9% of the variation, and the second axis explained 

14.7% (Fig. 2.2). Greater altititude, coarser substrate type, dissolved oxygen, 

vegetation height, and vegetation cover correspond with seminatural sites. Greater 

conductivity, salinity, sulfate, and temperature were associated with a moderate level 

of land-use intensity. Also, a site with recent mining activity and no grazing had 

greater vegetation height, vegetation cover, and dissolved oxygen with moderate 

land-use intensity. Mining activity in the watershed had started recently, such that 

impacts may not have happened yet. Greater values of turbidity, suspended solids, 

ammonium, and stream depth were associated with a high level of land-use intensity 

(Fig. 2.2).   
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Functional structure 

Overall functional diversity was significantly different (P<0.02) among the levels of 

land-use intensity (Fig. 2.3). Functional diversity was highest for seminatural sites, 

intermediate for moderate land-use intensity, and lowest for high land-use intensity 

(Fig. 2.3).  

CCA showed that overall traits were significantly explained by land-use 

intensity (permutations=2000, F=1.7, P<0.0005). Constrained variance, which is trait 

composition explained by environmental variables, represented 63% of total 

variance (Table 2.3). The first two canonical components of CCA accounted for 48% 

of the constrained variance (Fig. 2.4). For individual traits, 54–77% of total 

variability was captured in the CCA. A total of 12 of 16 traits varied significantly 

among the sites. Aquatic stages, reproduction, dissemination, locomotion and 

substrate relationship, food, feeding habit, substrate, velocity, trophic level, 

temperature optima, and saprobity showed significant deviance across land-use 

intensity gradients (Table 2.3, Fig. 2.4).  

Individual traits responded differently to the different levels of land-use 

intensity. The CWM of 19 trait categories for 11 traits was significantly different 

among sites (Fig. 2.5).  

With increased land-use intensity, there was a tendency for greater frequency 

of ovoviviparity and lower frequency of non-holometabolous taxa, aquatic-active 

dissemination, and predators. The frequency of taxa with deposit feeding, detritus 

food, aerial respiration, slow water velocity optima, mesotrophic-level optima, 
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eurythermic temperature regime, and mesosaprobism increased directly with greater 

land-use intensity. In contrast, frequency of coarse-substrate habitat, living-

macrophyte food, and oligotrophic level, fast-water-flow, cold-adapted, and 

xenosaprobic taxa decreased with increased land-use intensity (Fig. 2.5). 

The CWM results supported the outcomes of CCA except with respect to two 

traits (resistant form, locomotion and substrate relations). In the CCA, resistant 

forms, such as housing against desiccation, pupal cocoons, and dormancy or 

diapause, were more common in sites with grazing and mining. Also, traits 

associated with mobility and dispersion, such as flying, surface swimming, fully 

submerged swimming, use of interstitial habitats, and burrowing and permanent 

attachment were common in sites with greater levels of land-use intensity. 

Respiration method differences were not captured by CCA, but in CWM, frequency 

of aerial respiration was significantly higher in sites with the highest levels of land-

use intensity.  

There was no significant difference observed in reproductive strategy traits 

(body size, life span and potential number of reproductive cycle) among the sites 

with either CCA or CWM. 

Taxonomic structure 

Overall macroinvetebrate taxa richness (P<0.002) and diversity (P<0.01) 

were significantly different among the levels of land-use intensity (Figs. 2.6, 2.7). 

Taxon richness and the exponential of the Shannon Diversity Index were highest in 

the seminatural sites, intermediate in moderate level of land-use intensity and lowest 
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in the high level of land-use intensity (Figs. 2.6, 2.7). Evenness was not significantly 

different among the sites (Table 2.2).  

EPT richness was significantly higher (P<0.04) in the seminatural sites and 

lowest in the high land-use intensity sites (Fig.2.6). Taxon richness for Diptera and 

non-insect groups was significantly higher (P<0.01) in seminatural sites than in those 

with greater levels of intensity (Fig. 2.6, Table 2.2), and their percentage in total taxa 

and total number of organism was not different among the sites (Table 2.2). The 

percentage of EPT taxa and abundance was not significantly different among sites, 

but the percentage and abundance of Ephemeroptera taxa was significantly higher in 

the greater levels of land-use intensity. The dominant taxa were three different 

genera of Ephemeroptera, with Hexagenia spp. (17% TV=6) dominant at sites with 

high level of land use intensity, Serratella spp. (10% TV=2) in the moderate level of 

land use intensity, and Drunella spp. (8% TV=6) in seminatural sites.   

The percentage of intolerant taxa with tolerance values 0–4.9 was 

significantly higher in seminatural sites than in those with greater levels of land-use 

intensity, whereas the percentage of tolerant taxa with tolerance values of 8–10 did 

not differ significantly among the sites. 

The Biotic Index varied significantly among levels of land-use intensity (Fig. 

2.9). According to the Biotic Index criteria for the North Carolina mountain 

ecoregion in the USA, which recognizes 5 categories of impairment (excellent, good, 

good-fair, fair, poor; Lenat 1993), the Mongolian study sites were classified into four 
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levels of water quality, but the three levels of land-use intensity in this study were 

mixed among those categories (Table 2.4), and suggesting that the tolerance values 

for the same genera in Mongolia and North Carolina may differ because of different 

tolerances of the different species in those regions. Biotic indices ranged between 

1.47 and 6.37, and no site was classified as “poor.”    

 

Discussion 

Functional structure 

Macroinvertebrate communities in the seminatural sites were functionally more 

diverse than sites with high levels of land use intensity. Previous studies showed 

substantial loss in functional diversity of biological communities for taxa such as 

macroinvertebrates, fish, birds, and mammals associated with higher land use 

intensity (Flynn et al. 2009, Carmona et al. 2012, Colzani et al. 2013, Zhang et al. 

2013, and, Wiedmann et al. 2014,).  

My study results were consistent with the habitat template concept 

(Townsend and Hildrew 1994) and habitat filtering (Poff 1997), which predicted that 

traits associated with population resilience and resistance would be correlated with 

higher land-use intensity. Most individual traits had a predictable response related to 

altered environmental conditions, and some of the results supported my predictions 

that greater population resilience and resistance would be evident in the greater 

levels of land-use intensity (Table 2.3; Figs. 2.3, 2.4). 
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Resilience features include high mobility, prolonged presence of relatively 

invulnerable life stages, and the ability to regenerate after damage (Townsend and 

Hildrew 1994). With increased levels of land-use intensity, I observed increased 

ovoviviparity, decreased aquatic-active dissemination, and non-holometabolous 

aquatic stages, resulting from their increased vulnerability to increased 

environmental fluctuation. Traits associated with mobility and dispersion, such as 

flying, surface swimming, fully submerged swimming, use of interstitial habitats, 

and burrowing, were common in greater land-use intensity sites.  

Decreased frequency of predators in the sites with greater levels of land-use 

intensity is possibly explained by biomagnification of toxic substances. 

Concentrations of toxic substances may have been higher in the sites as evidenced 

by increased conductivity in those sites. Also, reduced predator frequency may relate 

to decreased species diversity and reduced prey abundances of macroinvertebrates in 

the sites with greater land-use intensity. The current study did not test this possibility 

because of the subsampling method I used.  

According to the r/K reproductive strategy model, r-selected species with 

traits of small body size, short life span and rapid growth rate thrive in temporally 

unstable environments (McArthur and Wilson 1967). There was no trade-off 

between r and K reproductive strategies among the sites. This may possibly be 

explained as a consequence of climate change.   

Ecological traits such as food, feeding habit, saprobity, temperature, current 

velocity, substrate, and trophic level association all responded in a predictable 
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manner to land-use impacts. A majority of community variation in terms of trait 

composition was explained by local environmental variables (Table 2.3, Fig. 2.4).  

Consequently, it can be concluded that fine-sediment deposition, suspended 

solids, and nutrient enrichment increased with land-use intensity and resulted in 

higher temperatures, stagnant conditions, organic pollution, and more detritus food 

resources in the moderate and high land-use intensity sites based on the ecological-

trait responses. TBA clearly discriminated seminatural sites from sites with greater 

levels of land-use intensity using mixed genus- and family-level resolution and 

provided a mechanistic interpretation for the underlying changes in community 

structure due to land use. Another advantage of TBA that this study has shown 

includes detection of different types of stressors and intensities of land use and 

consistent community descriptors less constrained by biogeography (Menezes et al. 

2010), a distinct benefit for bioassessment across an area with such a large spatial 

scale as Mongolia.  

There are several challenges for TBA, including inconsistency of trait terms, 

a need for descriptions of trait modalities applicable for all taxa, and inadequate 

knowledge of trait differences (Culp et al. 2010). Lack of ecological and biological 

knowledge has resulted in incomplete trait information, requiring extrapolation of 

traits from confamilials (Lenat and Resh 2001) or from a few representative species 

or genera, generalizing those traits for entire genera or families. The “trait-

syndrome” or inferring the co-occurrence of phylogenetically constrained traits in 
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closely realted taxa  is another issue (Poff et al. 2006); phylogenetically decoupled 

and more plastic traits are more robust for bioassessment (Vieira et al. 2005). 

Not all trait patterns matched habitat conditions. It may take time for 

environmental drivers to influence the fitness of organism and filter less fit taxa from 

the community. Also, organisms with higher dispersal abilities may occur randomly 

in certain habitats and not neccesarily indicate a trait-habitat relationship. Dispersal 

ability also commonly can be included among biological traits to predict changes in 

a community. Finally, natural variation in habitat (e.g., minerals, acidity in water or 

rainfall) rather than land-use modification may affect community assembly (Heino. 

2007). Natural habitats may differ depending on climate, altitude and geology 

among cachments, ecoregion or basins. Thus natural habitat variability is needed to 

be considered. 

Taxonomic structure 

Higher taxonomic diversity was supported in spatially hetergeneous environments 

with higher niche space than habitats that had become more homogeneous as the 

level of disturbance increased. EPT are sensitive groups of organisms that usually 

inhabit cleaner waterways and give early warning of water pollution like “canaries in 

a coal mine.” Generally, most individuals in the communities were EPT for all levels 

of land-use intensity. There were no differences for relatively tolerant Diptera and 

non-insect groups among the sites. Higher taxa richness, abundance, and dominance 

of Ephemeroptera were observed in the greater levels of land-use intensity. 

However, tolerance values are variable among Ephemeroptera species and some 
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genera are relatively tolerant to pollution, with medium tolerance values. Many 

species of the Ephemeroptera genus Hexagenia are relatively tolerant and dominated 

in the highest level of land-use intensity; species of Ephemeroptera genera Serratella 

and Drunella dominated in moderate and low levels of land-use intensity.   

The three levels of land-use intensity were not reliably segregated by the 

water quality classification of the North Carolina Biotic Index and most study sites, 

including some with a high level of land use intensity, were classified as having 

excellent water quality (Table 2.4). Generally the Biotic Index varied among levels 

of land-use intensity within a smaller range (Fig. 2.9), which may indicate that there 

was a low level of organic pollution overall at the study sites. Tolerance values may 

vary among Mongolian genera more than among North American genera because 

tolerance values are highly variable among species within the same genus (Resh and 

Unzicker 1975; Resh and Lenat 2001), or the Biotic Index categories for the 

mountains of North Carolina are not well suited for Mongolia. The tolerance values 

of the organisms are based primarily on their oxygen requirements to indicate 

organic pollution (Bonada et al. 2007). Thus, a Biotic Index is not able to indicate 

levels of land-use intensity when oxygen is not highly variable.  In contrast, 

according to results of the trait-based approach, there was an indication of lower 

oxygen levels in sites with a high level of land-use intensity evidenced by a higher 

frequency of aerial respiration. In summary, with the taxonomic approach, 

macroinvertebrate taxa richness and diversity, including EPT, decreased in 

association with increased land use intensity and discriminated three levels of land-
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use intensities. However, it did not provide any explanation for the changes in 

macroinvertebrate communities.  

Overgrazing has significant consequences for stream ecosystems, including 

flooding and loading of sediments and nutrients such as nitrogen and phosphate 

(Quinn and Stroud 2002, Maasri and Gelhaus 2011). Mining caused increased 

turbidity (from suspended mineral particles), increased sediment deposition 

(Wagener et al. 1985), and transfer of nutrients, especially phosphorus (Stubblefield 

et al. 2005), and metal contamination (Inam et al. 2010). In this study, major impacts 

of livestock grazing and mining were increased suspended particles, fine sediments, 

and eutrophication (primarily ammonia in the chemical measurements), all of which 

were detected by the trait-based analysis. Mining may also have resulted in some 

metal contamination as indicated by higher conductivity, but that possibility needs 

further analysis. 

Overall findings suggest that macroinvertebrate communities were affected 

by land use. Seminatural sites had a greater diversity of habitats supporting 

functionally diverse communities, whereas sites with greater land-use intensity 

tended toward communities that were more tolerant of eutrophication and fine 

sediment deposition and less functionally diverse. Trait-based patterns of 

macroinvertebrate community were defined by local habitat conditions; in other 

words, habitat filtering determines variability of the macroinvertebrate community. 

Generally both TBA and the taxonomic approach discriminated seminatural sites 

from sites with greater levels of land-use intensity, but TBA was a reliably consistent 
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indicator of land-use changes. Traits responded in a predictable way in accordance 

with the “habitat template concept’s” a priori prediction. Presence of particular traits 

and their frequency indicate particular habitat conditions and they provide a more 

direct explanation for macroinvertebrate responses to land-use. Therefore, TBA may 

be a more applicable and effective approach for freshwater biomonitoring in 

Mongolia. 
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FIG.2.1 The location of the study sites in the Selenge River basin, Mongolia. 
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Table 2.1 Biological and ecological traits (Bis and Usseglio-Polatera 2004), with trait rationale (Bonada et al. 2007, 

Statzner and Bêche 2010, and Maasri and Gelhaus 2012).  

Traits Code Trait categories Explanation  Rationale 

Maximal potential 
body size 

Size-1 ≤ .25 cm 

Body length from tip of the head to the 
tip of the abdomen 

Smaller sizes provides better 
resilience capacity after disturbances 

Size-2 > .25-.5 cm 
Size-3 > .5-1 cm 
Size-4 > 1-2 cm 
Size-5 > 2-4 cm 
Size-6 > 4-8 cm 

Life span Life-1 ≤ 1 year Life cycle duration  Shorter life cycles provides better 
resilience capacity after disturbances.  Life-2 > 1 year 

Voltinism 
Volt-1 Semivoltine < 1 reproductive cycle per year  Frequent reproduction provides better 

resilience capacity after frequent 
disturbance  

Volt-2 Univoltine 1 reproductive cycle per year  
Volt-3 Bivoltine > 1 reproductive cycle per year  

Aquatic stages 

Aqua-1 egg 

presence of the life stage Presence of life stages in relatively 
invulnerable condition 

Aqua-2 larva 
Aqua-3 nymph 
Aqua-4 adult 

Reproduction 

Repr-1 ovoviviparity produce hatched larvae 

Ovoviviparity and asexual 
reproduction provide better resilience 
after disturbance.  

Repr-2 isolated eggs, free free eggs 
Repr-3 isolated eggs, cemented stick eggs  on the substrate 
Repr-4 clutches, cemented or fixed egg mass stick on substrate 
Repr-5 clutches, free egg mass on water surface 
Repr-6 clutches, in vegetation egg mass on vegetation in water 
Repr-7 clutches, terrestrial egg mass on vegetation edge of the water 
Repr-8 asexual reproduction produce egg without fertilization 

Dissemination 

Desi-1 aquatic passive disperse passively via drift 
Aquatic passive and areal dispersal 
will increase with increased 
disturbance 

Desi-2 aquatic active 
disperse actively via swimming or 
crawling   

Desi-3 aerial passive disperse passively via wind in the air 
Desi-4 aerial active disperse actively via flying 
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Traits Code Trait categories Explanation  Rationale 

Resistant form 

Resi-1 eggs, statoblasts Resisting in the egg stages 

Resistent form will be more common 
against nutrient inrichment and fine 
sediment loading 

Resi-2 cocoons Case for prepupal and pupal stage  
Resi-3 housings against desiccation Protective layer against desication 

Resi-4 diapause or dormancy Phisiological suspension of growth and 
development 

Resi-5 none No resistance strategy 

Respiration 

Resp-1 tegument Respire through tegument 

Oxygen uptake will require a 
specialized technique in higher 
temperature and stagnant condition.  

Resp-2 gill Using gills 

Resp-3 plastron/aeral 
Using thin layer of air around the body or 
alternative respiration with atmospheric 
oxygen  

Resp-4 spiracle Using small opening on the body surface 
Resp-5 hydrostatic vesicle Using air within a small blister 

Locomotion and 
substrate relation 

Habi-1 flier Fly in adult stage 

High mobility provides better 
resilence capacity and subsrate 
attachment tend to be common. 

Habi-2 surface swimmer Swim in the surface of water 
Habi-3 full water swimmer Swim in water column 

Habi-4 crawler Crawling to aquatic vegetation or 
substrates  

Habi-5 burrower Burrow very fine sediment 

Habi-6 interstitial Crawling between small minerals and 
coarser substrate 

Habi-7 temporarily attached Temporarily attached to the substrate 
Habi-8 permanently attached Permanently attached to the substrate 

Feeding habits 

Trop-1 absorber Absorb plant fluid 

Response to more-abundant food 
source 

Trop-2 deposit feeder Feed on sedimented fpom 

Trop-3 shredder Shred fallen leaves, plant tissue and 
cpom 

Trop-4 scraper Scrape algal tissue biofilm, partially pom 

Trop-5 filter-feeder Food is filtered from water column such 
as suspended fpom and cpom  

Trop-6 piercer Pierce and suck plant or animal tissue 
Trop-7 predator Feed on prey  
Trop-8 parasite Feed on host  
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Traits Code Trait categories Explanation  Rationale 

Food 

Food-1 microorganisms 

Optimal food source Response to more-abundant food 
source 

Food-2 detritus (< 1mm) 
Food-3 dead plant (>= 1mm) 
Food-4 living microphytes 
Food-5 living macrophytes 
Food-6 dead animal (>= 1mm) 
Food-7 living microinvertebrates 
Food-8 living macroinvertebrates 
Food-9 vertebrates 

Substrate 
(preferendum) 

Subs-1 flags/boulders/cobbles/pebbles 

Optimal substrate relation 
Taxa adapted to fine sediment will 
increase with increased fine sediment 
loading 

Subs-2 gravel 
Subs-3 sand 
Subs-4 silt 
Subs-5 macrophytes 
Subs-6 microphytes 
Subs-7 twigs/roots 
Subs-8 organic detritus/litter 
Subs-9 mud 

Current velocity 
(preferendum) 

Velo-1 null Optimal water flow range 

Response to water flow Velo-2 slow (< 25 cm/s) Optimal water flow range 
Velo-3 medium (25-50 cm</s) Optimal water flow range 
Velo-4 fast (> 50 cm/s) Optimal water flow range 

Trophic level 
(preferendum)  

Tro_p-1 oligotrophic Having low levels of nutrients and high 
levels of dissolved oxygen (DO) 

Mesotrophic and eutrophic taxa will 
increase with increased nutrient 
enrichment  

Tro_p-2 mesotrophic Having intermediate levels of nutrients 
and intermediate levels of DO 

Tro_p-3 eutrophic Having high levels of nutrients and 
negligible DO 

Temperature 
(preferendum) 

Temp-1 cold Optimal temperature range  (< 10°c) Eurytermic taxa will increase with 
increased water temperature and 
stagnant condition 
 

Temp-2 warm Optimal temperature range (10-18°c) 

Temp-3 eurythermic Wide temperature range 
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Traits Code Trait categories Explanation  Rationale 

Saprobity 

Sapr-1 xenosaprobic Unpolluted with high do content 

Meso and polysaprobic taxa will 
increase with increased nutrient 
enrichment  

Sapr-2 oligosaprobic 
Adapted to clear, with no or only slight 
pollution and still relatively high DO 
content 

Sapr-3 β-mesosaprobic Tolerant to moderately polluted with still 
medium DO  

Sapr-4 α-mesosaprobic Tolerant to polluted with not low DO  

Sapr-5 polysaprobic Tolerant to strongly polluted, with 
negligible DO  
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Table 2.2 Description of taxonomic metrics and predicted response to increased 

land-use intensity (compiled from EPA RBP Barbour et al. 1999). P values of 

ANOVA are included. Significance was marked by*.   

Taxonomic metrics Description Predicted 
response 

P value 
of 
ANOVA 

Taxonomic richness measure  
Total taxonomic richness Total number of taxa in the community  Decrease 0.002* 

EPT richness  Number of taxa in the Ephemeroptera, 
Plecoptera and Trichoptera (EPT) Decrease 0.04* 

Dipera and non-insect taxa 
richness 

Number of taxa in the diptera and non-
insect groups considered tolerant Increase 0.01* 

Taxonomic composition measure  
% EPT taxa Percent of the composite of EPT taxa  Decrease 0.78 

% EPT abundance Percent of the composite of EPT 
abundance Decrease 0.62 

% Ephemeroptera taxa Percent of the ephemeroptera taxa  Decrease 0.02 

% Ephemeroptera abundance Percent of the ephemeroptera 
abundance Decrease 0.005* 

% diptera and noninsect taxa Percent of the composite of diptera and 
non-insect taxa  Increase 0.44 

% diptera and noninsect 
abundance 

Percent of the composite of diptera and 
non-insect taxa abundance Increase 0.63 

% Dominant taxon Percent of the dominant taxa  Increase  
Tolerance/intolerance measure  
% intolerant taxa with TV 0-4.9 Percent of intolerant 

macroinvertebrates Decrease 0.4 

% tolerant taxa with TV 8-10 Percent of tolerant macroinvertebrates Increase 0.07 



 

49 
 

 

FIG. 2.2. Principle Component Analysis ordination of the 42 study sites. Biplot 

vectors showing which environmental variables (right) discriminate among land use 

intensity groups (left). Eigenvalues of the first axis= 5.48 and second axis=3.51. Veg 

cover= average vegetation cover, veg height= average vegetation height, veg max 

height= average maximium vegetation height, DO= dissolved oxygen, and T°C = 

temperature. The value gets closer to 1 indicate greater effect of the component on 

the variable. 
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Fig. 2.3 Functional diversity indices among the three levels of land-use intensity. 

Standard error of mean taxa richness and pair-wise post hoc comparison results are 

shown with different letters denoting significantly different values. 
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Table 2.3. Decomposition of the variance of overall trait composition and individual 

trait composition by canonical correspondence analysis. Significance was marked 

by*.  

Traits 
Total 
variance 

Constrained 
variance % P value  

Overall trait composition  0.242 0.63 0.001* 
Maximal potential size 0.315 0.66 0.1 
Life cycle duration 0.085 0.62 0.2 
Potential number of reproductive 
cycles per year 0.229 0.77 0.1 
Aquatic stages 0.120 0.67 0.001* 
Reproduction 0.638 0.60 0.005* 
Dissemination 0.070 0.47 0.001* 
Resistant form 0.261 0.54 0.001* 
Respiration 0.140 0.63 0.2 
Locomotion and substrate relation 0.422 0.55 0.031* 
Food 0.254 0.70 0.001* 
Feeding habits 0.516 0.63 0.006* 
Substrate (preferendum) 0.206 0.66 0.004* 
Current velocity (preferendum) 0.211 0.70 0.003* 
Trophic level (preferendum)  0.144 0.65 0.001* 
Temperature (preferendum) 0.122 0.54 0.001* 
Saprobity 0.125 0.69 0.001* 
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FIG. 2.4. Sample score ordination plot of canonical correspondence analysis on 

overall trait composition and constraining environmental variables. Axes 1 and 2 

from CCA of the trait data set with significant land use gradient sites. Traits are 

shown as red crosses and sites as black circles.  
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FIG. 2.5. Comparison of the community weighted mean and standard error of 

individual trait categories among three levels of land use intensity. Only significantly 

different trait categories among sites are shown pair-wise post hoc comparison 

results are shown with different letters denoting significantly different values. 
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FIG. 2.6. Mean taxa richness of total taxa, EPT taxa, Diptera and non-insect taxa 

among three levels of land use intensity. Standard error of mean taxa richness and 

pair-wise post hoc comparison results are shown with different letters denoting 

significantly different values. 
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FIG. 2.7. Mean macroinvertebrate diversity among three levels of land use intensity. 

Standard error of mean diversity (exponential of Shannon diversity index) and pair-

wise post hoc comparison results are shown with different letters denoting 

significantly different values. 
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FIG. 2.8. Mean percentage of EPT, Ephemeroptera, Diptera and non-insect 

abundance among three levels of land use intensity. Standard error of mean 

percentage of macroinvetebrate abundance and pair-wise post hoc comparison 

results are shown with different letters denoting significantly different values. 

NI=non-insect group of macroinvertebrates. 
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FIG. 2.9. Mean percentage biotic index among three levels of land use intensity. 

Standard error of mean percentage of macroinvetebrate abundance and pair-wise 

post hoc comparison results are shown with different letters denoting significantly 

different values.  
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Table 2.4 Water quality classification for 42 sites based on North American biotic 

index (Lenat 1993). Biotic index range 0 to 10 and greater value indicate greater 

tolerance. Water quality classified as Excellent<4.17; Good=4.18-5.09; Good-fair= 

5.10-5.91; Fair=5.92-7.05; Poor=>7.05 in the mountain ecoregion.  

Land-use 
intensity 

Biotic 
index 

Water quality 
classification  

Land-use 
intensity 

Biotic 
index 

Water quality 
classification  

High 2.51 Excellent Seminatural 2.58 Excellent 
High 3.75 Excellent Seminatural 2.60 Excellent 
High 3.85 Excellent Seminatural 2.61 Excellent 
High 3.91 Excellent Seminatural 2.66 Excellent 
High 4.10 Excellent Seminatural 2.71 Excellent 
Moderate 1.55 Excellent Seminatural 3.10 Excellent 
Moderate 2.49 Excellent Seminatural 3.15 Excellent 
Moderate 2.54 Excellent Seminatural 3.17 Excellent 
Moderate 2.75 Excellent Seminatural 3.27 Excellent 
Moderate 3.02 Excellent Seminatural 3.32 Excellent 
Moderate 3.14 Excellent High 4.26 Good 
Moderate 3.27 Excellent Moderate 4.22 Good 
Moderate 3.80 Excellent Moderate 4.80 Good 
Moderate 4.08 Excellent Moderate 5.09 Good 
Moderate 4.11 Excellent Seminatural 4.28 Good 
Moderate 4.11 Excellent Seminatural 4.32 Good 
Seminatural 1.47 Excellent Seminatural 4.54 Good 
Seminatural 1.55 Excellent High 5.15 Good-fair 
Seminatural 1.59 Excellent Moderate 5.39 Good-fair 
Seminatural 1.95 Excellent Seminatural 5.67 Good-fair 
Seminatural 2.29 Excellent High 6.37 Fair 
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CHAPTER THREE 

SPECIES-LEVEL RESOLUTION FOR A TRAIT-BASED APPROACH TO 

BIOMONITORING USING A GENUS OF BLACK FLIES (Simulidae: Simulium) 

 

Abstract 

Determining a proper taxonomic resolution is important for bioassessment 

methods to balance the assessment needs most effectively against effort and funding. 

I compared efficiencies of species-level versus genus-level resolution to distinguish 

land use gradients based on the the functional structure of black fly assemblages. 

Black fly qualitative samples were collected from 25 sites and identified to the 

species level. A total of 86 trait categories of 16 biological and ecological traits were 

compiled for 16 black fly species. Overall functional diversity distinguished semi-

natural sites from the impaired sites. For individual trait categories, no biological 

traits differed significantly, but some ecological traits related to habitat association 

and saprobity were significantly different among different level of land-use intensity 

sites. Species-level resolution provides more information than genus-level, but does 

not improve discrimination of levels of land-use impacts.   

 

Introduction 

Taxonomic resolution of macroinvertebrates has been a controversial topic in 

stream bioassessment (Lenat and Resh 2001).  The main reason for the debate on 

taxonomic resolution regards possible information loss and accurate biological 
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assessment versus taxonomic identification difficulty and bioassessment cost 

(Bouchard et al. 2005). Lower taxonomic levels of identification (i.e. genus or 

species) are more likely to detect subtle changes in environmental quality than 

higher taxonomic levels (family or higher) (Hilsenhoff 1988, Bailey et al. 2001, 

Waite et al. 2004). In particular, some studies have concluded that species-level 

identification provides a higher predictive success and may be more appropriate for 

bioassessment (e.g., Giagrande 2003, Schmidt-Kloiber and Nijboer 2004, Drew 

2011). Other studies reported that family-level assessment differed only slightly 

from genus- or species-level assessments in their ability to detect different levels of 

anthropogenic impacts and may be sufficient for bioassessment (e.g., Ferraro and 

Cole 1995, Vanderklift et al. 1996). Determining an appropriate level of taxonomic 

resolution depends on the purpose of the study, the sensitivity required, the type of 

assessment, and the group of organisms being used (Waite et al. 2004).  

For the various taxonomic approaches to bioassessment, species-level 

resolution is needed for the most accurate description of community structure at 

large spatial scales while genus- or family-level resolution may be sufficient at a 

local scale (Dolédec et al. 2000). Taxonomic structure of communities affected by 

local physical habitat and ecoregional conditions thus produce different results when 

different levels of taxonomic resolution are used. In contrast, the functional structure 

of communities varies across environmental gradients but patterns of ecological 

function are similar in different spatial scales (Statzner et al. 2001).   
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According to some authors, for a trait-based approach (TBA), species-level 

assessment is likely not required and genus- or family-level identifications provide a 

realistic functional description of the stream invertebrate community regardless of 

spatial scale (Dolédec et al. 2000, Gayraud et al. 2003). Organisms within a family 

usually possess similar traits, which provide redundancy of ecological function, such 

that no more information would be contributed by further taxonomic resolution 

(Bouchard at al. 2005). In contrast, other authors have noted that environmental 

requirements, trophic status and tolerance to anthropogenic disturbances are often 

variable among species (Cranston 1990, Lenat and Resh 2001), such that coarser 

taxonomic assessment may lead to a wrong classification of ecological quality 

because of loss of auto-ecological information (Cranston 1990, Schmidt-Kloiber and 

Nijboer 2004, Jones 2008). These contradicting results raise a question about 

whether species-level assessment is needed to identify ecological conditions 

accurately for TBA.  

 Few studies have examined species-level resolution (Dolédec et al. 2000, 

Gayraud 2003) because of limited trait information at the species level. In Chapter 2, 

I examined trait responses to three levels of land-use intensity with a mix of genus- 

and family-level resolutions; in this chapter, I investigate the importance of 

taxonomic resolution in TBA to distinguish land use gradients based on the 

functional structure of black fly assemblages identified to species level. 
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Material and methods 

Black fly samples were obtained from 25 sites in the Orkhon drainage of the 

Selenge River Basin, northcentral Mongolia, during late June to mid-July 2011 (Fig. 

3.1). The Selenge River Basin is surrounded by the Khentii, Khangai, and Sayan 

Mountain mountain chains and has an average altitude of 1500-2500 MASL. The 

Selenge Basin includes 30.6% of the water resources for Mongolia with a 425,245 

km2 catchment area and covers a wide range of ecological regions including taiga, 

high mountains, forest-steppe and steppe zones (Tumurchudur and Jadambaa 2012 ). 

Study sites were categorized in relation to levels of land-use in the watershed as 

seminatural, moderate, and high land-use intensity sites. Seminatural sites were 

those with no evident land use activities (no grazing or mining) or with only light 

grazing present. Moderate and high levels of land-use intensity had grazing or 

grazing coupled with mining impacts except that one site had mining activity but no 

grazing. Suspended solids, turbidity, and ammonium were significantly higher in 

high level land-use intensity sites than in moderate level intensity sites.  

Twenty-five qualitative samples were taken using a D-net (500µ) or by hand 

sampling from the different microhabitats including rocks, logs and vegetation 

within a 50-m reach from each site during late June to mid-July 2011. Samples were 

preserved in Carnoy’s solution (one part glacial acetic acid: three parts absolute 

ethanol) and the fixative was changed twice during the subsequent 12 hours. 

Simulids were identified by P.H. Adler to the species level based on polytene 

chromosome maps (Appendix B).   
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I compiled 86 trait categories of 16 traits related to life history, mobility, and 

morphology for 16 black fly species of the single genus Simulium based on experts’ 

experience (Table 3.1, Appendix C). Trait-based analytical approaches have 

categorized traits into categories, which are coded in a “fuzzy” manner for each 

species as described by Chevenet et al. (1994). Fuzzy coding characterizes the 

affinity of each state to account for trait variation within a species. Affinity scoring 

ranges from zero to three, where zero indicates no affinity of a species to that state 

and the highest affinity level indicates that a species has that particular state 

exclusively. 

Affinity scores were treated as frequency distributions to give the same 

weight to each species and trait so that affinity scores are equal to 1 for a given trait 

and species (Chevenet et al. 1994). 

𝑞𝑘 =
𝑎𝑘

∑ 𝑎𝑘ℎ
𝑘=1

 𝑤𝑖𝑡ℎ 𝑞𝑘 ≥ 0 𝑎𝑛𝑑 � 𝑞𝑘
ℎ

𝑘=1
= 1 

k- a trait category 

𝑞𝑘- frequency of a trait category 

𝑎𝑘 - assigned affinity 

h- total number of categories in a given trait 

Statistical analysis 

Functional diversity was measured by computing a functional diversity index 

(Petchy and Gaston 2006) within land use intensity gradients. This index is the most 

commonly used and gives a meaningful measure of functional diversity (Pla et al. 
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2011). Functional diversity was defined as the sum of the branch lengths linking 

species belonging to the same community on the functional dendrogram built from a 

regional species pool based on incidence data (Petchy and Gaston 2002, 2006).   

𝐹𝐷=i' ∙h2 

i' - branch presence/absence row vector 

h2- branch length vector 

A one-way analysis of variance (ANOVA) was conducted to test whether 

functional diversity varied significantly between the sites with different levels of 

land-use intensity. In pair-wise post hoc comparisons, Fisher’s exact test was used 

(Table 3.2).  

Pearson’s Chi square test was used to test how the frequency of each trait 

category differed among the levels of land-use intensity.   

Correspondence analysis (CA) is an indirect ordination technique commonly 

used to explore trait composition across a set of sites (Heino et al. 2013). CA is a 

graphical method exploring the relationship between categorical variables based on 

Chi squared distance and is a favorite tool for present and absent data (Borcard et al. 

2011). CA was used to test the variation in trait composition of black fly species 

among the levels of land-use intensity (Figs. 3.3). The frequencies of each trait 

category per trait were multiplied by the incidence of each species at the site to 

create a trait-by-site array. 

I used FDiversity software (Casanoves et al. 2011) for computing functional 

diversity indices and JMP software version 9.0.2 (SAS Institute Inc. 2010) for 
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ANOVA and Pearson’s Chi square test and and R software version 3.0.1 for 

conducting a vegan package (R Development Core Team 2010) for CA. 

 

Results 

Functional diversity indices were significantly different between semi-natural 

sites and sites with greater levels of land-use intensity (P<0.004), but there were no 

differences between moderate and high levels of land-use intensity (Fig. 3.2). A total 

of 13 trait categories were used to compute the functional diversity indices, as 73 of 

the 86 traits were excluded from the analysis because of a lack of range of traits 

among the species in the genus. 

Only five ecological traits belonging to trophic-level (mesotropic, eutrophic 

level), temperature (warm temperature), and saprobity (oligosaprobic and β -

mesosaprobic) were significantly different (Pearson’s chi-square <0.001) along the 

land-use intensity gradient. (Table 3.1) 

The CA analysis shows the pattern of trait distribution among three levels of 

land-use intensity. Species more commonly found in warm temperatures and 

eutrophic conditions occurred more frequently in sites with moderate and high land-

use intensity than in seminatural sites (Figs. 3.3). Oligosaprobic species were more 

common in seminatural sites than in moderate land-use intensity sites while no 

oligosaprobic species were found in high land-use intensity sites (Fig. 3.3). In 

contrast, species more commonly occurring in mesotrophic conditions occurred 

more frequently in seminatural sites than in moderate land-use intensity sites while 
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none occurred in high land-use sites (Fig. 3.3). Also, mesosaprobic species were 

more common in high and moderate land-use intensity sites than seminatural sites 

(Fig. 3.3). 

 

Discussion 

Different levels of taxonomic resolution for samples of a biological 

community may affect the ability of a bioassessment method to detect changes in 

ecological quality. It is necessary to determine a meaningful compromise for the 

level of taxonomic resolution by considering all aspects of bioassessment, including 

potential information loss, accurate biological assessment, species level 

identification difficulty, and bioassessment cost (Resh and Jackson 1993). This study 

examined the extent to which species-level resolution can be informative and its 

potential to discriminate environmental change. 

Among my findings, overall functional diversity was significantly different 

among black fly (Simulium) assemblages identified to species along the land use 

gradient. Also, species-level resolution provided some additional ecological trait 

information, including differences in saprobity, trophic level, and temperature, 

capable of discriminating impacted sites from relatively unimpacted sites. According 

to the niche concept, each species has evolved special abilities to exploit resources 

and the occurrence of a species indicates the presence of its particularly adapted 

environmental conditions (Schmidt-Kloiber and Nijboer 2004). Tolerance values to 

pollution, for example saprobic values or tolerance values as used in Biotic Index 
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calculations, can be highly variable among species within a genus (Resh and 

Unzicker 1975). Stubauer and Moog (2000) found a wide range of saprobic values 

among species of the black fly genus Simulium. However, there were no significant 

differences in biological traits among species of Simulium. Closely related species 

generally have similar biological trait designations (Dolédec et al. 2000) because of 

phylogenetic constraints (Vieira et al. 2006).  

Species-level assessment of species in the black fly genus Simulium provided 

more information related to their habitat association than only genus-level Simulium 

trait information, but these details provided no additional discrimination ability for 

land-use impact as compared to the results of higher taxonomic resolution (Chapter 

2).  Genus-level and coarser levels of identification for other macroinvertebrate 

groups have shown that habitat traits responded similarly to species-level 

identification, both of which distinguished differences among land-use intensity 

gradient (Chapter 2). The functional description of the macroinvertebrate community 

and its potential to discriminate anthropogenic impacts were similar between the 

genus- or family-level resolutions and the finest taxonomic resolution (Gayraud et al. 

2003). Taxonomic resolution for traits had less effect on predictive power than for 

quantative information of taxa (Dolédec et al. 2000). Nevertheless, higher taxonomic 

resolution might be useful to reduce noise derived from environmental heterogeneity 

(Warwick 1993, Dolédec et al. 2000).  

The study result showed that phylogenetically constrained traits co-occur in 

closely related species while relatively plastic ecological traits vary among species. 
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Congeneric species may possess similar traits (Poff et al. 2006) or species-level trait 

information may not be available. Using coarse taxonomic level resolution may 

reduce “trait syndrome” which is an intercorrelation between phylogenetically 

constrained traits among closely related taxon.  

Species-level resolution may be required depending on study objectives. 

Species-level resolution may be necessary if a study focuses on adaptive radiation in 

a highly heterogeneous habitat, if environmental differences occur among only a few 

species when the overall fauna is poor (Vieira et al. 2006), if ecological specialists 

are represented at only the species level, or if functional redundancy is being 

investigated (Bouchard et al. 2005).   

This study assessed the importance of species-level analysis for only a single 

genus. If trait variability in such a restricted sample is low or unknown, it can be 

problematic to conclude whether species-level resolution is required to assess 

ecological conditions. Consequently, most successful applications of TBA have been 

based on genus-level resolution (e.g., Charvet et al. 2000, Díaz et al 2008, Bonada et 

al. 2007, Dolédec et al. 2006, 2008, 2011, Maasri and Gelhaus 2012). Perhaps the 

best choice now based on taxonomic knowledge (i.e. ability to identify the 

macroinvertebrate stages to species) and our knowledge of individual species 

characteristics (which isn’t good) is at genus or family level.  
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FIG. 3.1. The location of black fly sampling sites in the Selenge basin, Mongolia.  
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FIG. 3.2 Mean functional diversity among the levels of land use intensity. Standard 

error of mean functional diversity and pair-wise post hoc comparison results are 

shown with different letters denoting significantly different values. 
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Table 3.1. Pearson’s Chi square test on the trait categories among the levels of land-

use intensity and associated P values. Significance was marked by*. There were no 

variance for all other trait categories.  

Traits Trait categories 
Pearson's Chi 
square P value 

Voltinism univoltine 0.09 
bivoltine 0.09 

Reproduction 
isolated eggs, free 0.07 
clutches, cemented 
or fixed 0.07 

Trophic level 
(preferendum)  

mesotrophic 0.001* 
eutrophic 0.001* 

Temperature 
(preferendum) 

cold 0.09 
warm  0.001* 
eurythermic 0.1 

Saprobity 

xenosaprobic 0.09 
oligosaprobic 0.001* 
β-mesosaprobic 0.001* 
α-mesosaprobic 0.07 
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FIG. 3.3 Ordination plot of correspondence analysis showing distribution of 

temperature, trophic level association and saprobity among the levels of land use 

intensity. SN=seminatural, MD= moderate, and HI= high level of land-use intensity. 

Warm T= warm temperature and Cold T=cold temperature. Trait categories scaled 

proportional to Eigen value. Sites were weighted by averages of trait category 

scores.  Eigen value for first axis=0.26second axis=0.1. The first axis accounted 52% 

of total variance and second axis 19% of total variance. 
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CHAPTER FOUR 

DECLINES IN DIVERSITY OF CRANE FLIES (DIPTERA: TIPULOIDEA) 

INDICATE IMPACT FROM GRAZING BY LIVESTOCK IN THE HÖVSGÖL 

REGION OF MONGOLIA 

 

Abstract 

Threats to biodiversity are not studied equally among species, leaving some groups, 

like insects, typically understudied in conservation and management research.  Crane 

flies (Diptera: Tipuloidea) are diverse and important members of the aquatic and 

terrestrial biotic communities. Increased grazing by livestock in the Hövsgöl region 

of Mongolia has impacted both the terrestrial and aquatic ecosystems. The purpose 

of this study was to document biodiversity of crane flies along the east shore of Lake 

Hövsgöl, Mongolia, and to test whether crane fly diversity differs between valleys 

with different grazing intensity. Ninety- five species of Tipuloidea were found in this 

study, nine of these newly recorded for Mongolia, with 21 new records for the 

Hövsgöl region. Rarefaction curves indicated that predicted diversity is less for 

moderately and highly grazed valleys than for the less grazed valleys in this region.  

Results of an analysis of variance indicated that the exponential of Shannon’s 

diversity index was significantly higher in the less grazed valleys. Finally, linear 

regression analysis indicated that soil moisture, plant biomass, and livestock number 

were the strongest predictors of variation in crane fly diversity across the grazing 

gradient.  
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Introduction 

Loss of biological diversity threatens many regions of the globe (Dirzo and 

Raven 2003), but this threat is not studied equally amongst species, populations, or 

communities.  Insects and other invertebrates are typically understudied groups that 

may face even greater threats to biodiversity than do vertebrates (McKinney 1999; 

Strayer 2006).  Although some true flies (Diptera) have been studied (e.g. Haslett 

2001; McCreadie and Adler 2008), many Diptera are overlooked in biodiversity and 

conservation research. At just over 15,000 species, crane flies (Tipuloidea) are one 

of the most diverse groups of Diptera. Crane flies are important members of the 

aquatic and terrestrial biotic communities (de Jong et al. 2008). Crane fly larvae are 

are fully aquatic to semi-terrestrial and semi-terrestrial species generally associated 

with humid environments, such as the margins of ponds and streams, but are also 

found in forests and grasslands (Alexander 1920; de Jong et al. 2008).  

In the past two decades, overgrazing has exceeded pasture carrying capacity 

and has degraded natural habitats of Mongolian grasslands due to increased livestock 

number and decline of traditional herding practices (Altanbagana 2010). Degradation 

of grasslands has been accelerated by global climate change leading to a shift from 

grassland to more desert-like conditions (Batima 2005), and often results in the loss 

of biodiversity (Watkinson and Ormerod 2001). Grazing along riparian zones can 

result in habitat modifications such as reduction of vegetative cover, erosion, and 

stream bed sedimentation (Belsky et al. 1999) which can subsequently lead to a 

decrease in the density of certain taxa (Quinn et al. 1992) and changes in community 
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structure (Scrimgeour and Kendall 2003). Overgrazing negatively impacts riparian 

range health for Mongolia and has been shown to impair dipteran diversity (Hayford 

and Gelhaus 2010). 

Tipulidae are particularly susceptible to soil compaction, drying, and loss of 

vegetative cover caused by grazing because the larvae generally consume dead 

organic matter (e.g., usually decaying plant material) and adults have weak flight 

capabilities  (Service 1973, Alexander  and Byers 1981) such that they nearly always 

remain near natal habitats (Barnes 1925, Rogers 1933, Freeman 1968). Crane flies 

have high levels of endemism in the Hövsgöl region of Mongolia (Gelhaus and 

Podenas 2006), a region characterized as a biogeographic and ecological transition 

zone from taiga forest to mountain steppe and Central to East Asia (Lkhagva et al. 

2013). Six valleys along the east shore of Lake Hövsgöl exhibit a gradient in 

conservation management resulting in varying amounts of livestock grazing and thus 

provide an ideal field laboratory to study the effects of grazing on crane fly diversity.  

The purpose of this study is to document biodiversity of crane flies along the 

east shore of Lake Hövsgöl, Mongolia, to determine whether crane fly diversity 

differs between valleys with different grazing intensity, and specifically test whether 

species diversity is inversely related to grazing intensity. More grazing in this study 

area has been shown to change the dominant plant species and reduced plant cover. 

The loss of plant cover allows increased evaporation with increased soil temperature 

and loss of soil moisture (Batkhishig 2004, Lkhagva et al. 2013). I expected these 

impacts to the plant community and edaphic conditions to lead to lower crane fly 
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species diversity.  

 

Materials and Methods  

Study Area 

 The Hövsgöl region is located in north central Mongolia, about 200 km 

southwest of Lake Baikal, Russia. It is part of the southern-most zone of the tectonic 

basins of the Baikal Rift system (Goulden et al. 2006), and its dominant feature is 

Lake Hövsgöl, a large, deep, ancient lake (Kozhova 1989). The region is 

characterized by mountain taiga forest and forest steppe plateau in the Lake Hövsgöl 

watershed.  

Six valleys along the northeastern shore of the lake were selected for study 

by the Hövsgöl Global Environmental Facility (GEF) project, ranging from the 

heavily grazed northern valleys of Turag (TRG) and Shagnuul (SHL) south of Hanh, 

the Noyon (NYN) and Sevsuul (SVL) valleys with moderate grazing, and the Dalbay 

(DLB) and Borsog (BRG) valleys in the south with light or no grazing pressure 

(Table 4.1; Fig. 4.1).   

Livestock number was variable ranging from about 50 to about 3000 

livestock (in sheep units) between 2002 and 2005, with the highest density in the 

Turag and Shagnuul valleys and lowest in the Borsog valleys. Pasture carrying 

capacity estimates suggested that the two northern valleys were overgrazed, the 

middle two valleys were beyond their carrying capacity, and the southern two 
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valleys had low to no grazing (Bayasgalan 2005). Further details about the study 

area were reported in Puntsag et al. (2010). 

Sampling 

  Sampling for adult crane flies was accomplished through monthly timed 

sweeps (1 hr) and weekly samples from permanent Townes-style Malaise traps in 

each valley from June to August 2002–2005. Adult crane fly samples were taken by 

two methods from the six stream valleys in 2002, 2003, 2004, and 2005: (1) by 

monthly, timed aerial sweep netting in the riparian zone of three sites (upper, middle, 

lower reach) in each valleys in 2002, 2003, 2004, and 2005, and (2) by weekly 

collections from Malaise traps set in two positions (riparian and steppe-forest edge) 

at middle reach of each valley in 2003, 2004, and 2005 (Table 4.1). The position of 

the middle site of timed sweep and malaise trap in riparian zone was overlapped. A 

total of 129 sweep net samples and 286 Malaise-trap samples were collected. Sample 

sizes for the two methods were unequal in the six study valleys. A total of 17 to 24 

timed sweep net samples and 38 to 54 Malaise trap samples were taken in each of 

the six study valleys. These two sampling methods were analyzed separately because 

different sampling methods lead to different sets of individuals being observed for 

the sampling units and the species diversity of each set may be different (Tuomisto 

2010). 

In addition to insect collections, associated data on vegetative cover and soil 

moisture were taken regularly at the middle sites in each valley. All plants within a 

randomly chosen quadrant were harvested at ground level and used to estimate the 
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total above-ground plant biomass during 2002–2005 (Lhagva et al. 2013). Soil 

moisture and temperature were measured using a Time-Domain Reflectometer 

(TDR), soil moisture and temperature probes at 20 cm soil depth in all sampling 

quadrants during 2003-2004 (Lkhagva et al. 2004). Air temperature, relative 

humidity, and precipitation were measured in the six valleys every hour with mini-

meteorological stations and Hobo data loggers (company, location) during 2003-

2005 (Nandintsetseg 2004).  

Identification  

Crane fly species identifications were accomplished in the laboratories of the 

Institute of Meteorology and Hydrology, Hövsgöl GEF offices, the University of 

Vilnius, Lithuania, and the Academy of Natural Sciences, Philadelphia, USA (now 

Academy of Natural Sciences of Drexel University), using standard taxonomic 

references (Savchenko 1972; Alexander and Byers 1981; Brodo 2000; Gelhaus et al. 

2000; Gelhaus 2001; Podenas and Gelhaus 2001; Oosterbroek 2007). 

Voucher collections of crane flies were deposited in the Mongolian Insect 

Survey Project Laboratory at the Institute of Meteorology and Hydrology and 

Mongolian Academy of Sciences, Ulaanbaatar. Representatives of selected taxa were 

also deposited in the Academy of Natural Sciences of Drexel University.   

Statistical analysis  

Principle Component Analysis (PCA) was performed using plant biomass, 

soil moisture, and livestock number to discriminate primary grazing gradients 

(Fig.4.2). A variety of richness estimates were used to describe variation of crane fly 
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diversity between the sites under different levels of grazing as discriminated by the 

PCA (Fig.4.2). Crane fly species diversity was measured through species richness, 

evenness, and diversity indices. Sample-based rarefaction analysis was performed to 

predict rarefied species richness. Estimated species richness (Chao 1 estimator) was 

used to demonstrate the asymptotic relationship between the increase in sample size 

and cumulative number of species. EstimateS v.8.20 software (Colwell 2009) was 

used to calculate the diversity indices; Mau Tao rarefaction was based on 50 runs 

considering the number of singletons, doubletons, and unique species; and the Chao 

1 asymptotic estimator of species richness was calculated from two datasets 

collected by the different methods. Species evenness in the assemblages was 

quantified by Simpson’s evenness (Simpson 1949) and the Berger-Parker dominance 

index (Berger and Parker 1970). The exponential of Shannon’s index (Shannon 

1948) provides a meaningful measure of true diversity (Jost 2006) and is popular in 

scientific literature (Maurer and McGill 2011). For this reason, we used the 

exponential of Shannon’s index of diversity for ANOVA and regression analysis.  

Diversity values were pooled within the high grazed, medium grazed, and 

low grazed sites (Fig. 4.2), and a one-way analysis of variance (ANOVA) was used 

to test whether crane fly diversity varied significantly between these grazing 

regimes. In pair-wise post hoc comparisons, Tukey’s HSD test was used. We ran a 

stepwise multiple linear regression analysis to model response of crane fly diversity 

to a suite of environmental variables related to grazing (Table 4.2). The middle sites 

collected in each valley represented the most evident grazing and so were used in the 
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analysis. We only had field data from two years, 2003 and 2004, for the entire suite 

of environmental variables (Table 4.2).  We pooled these data and used means in the 

linear regression analysis. Variables met assumptions of normality and 

heteroskedasticity prior to analysis and in post hoc tests for the regression analysis.  

ANOVA and linear regression analyses were performed using the JMP statistical 

software package version 9.0.2 (SAS Institute Inc. 2010). Statistical significance was 

set at P < 0.05. 

 

Results 

A total of 5829 specimens were identified and comprised 95 species of crane 

flies (Tipuloidea) from the six study valleys of this study. Nine of these were new 

records in Mongolia, and 22 were new records for the Hövsgöl region (see Appendix 

F). Observed species richness was higher in lightly grazed sites than in moderately 

grazed and heavily grazed sites in both sweep-net and Malaise-trap datasets (Table 

4.3, Fig. 4.3). The difference between the observed and estimated number of species 

was greatest for moderately grazed sites. Based on the Chao 1 estimator of species 

richness, moderately grazed sites were predicted to have more species than other 

sites in both datasets. A significant number of rare species (singleton, doubleton, and 

unique species) occurred at all sites but more singletons and unique species were 

observed at moderately grazed sites, which contributed to the greater Chao 1 value at 

moderately grazed sites. Rarified species richness was greatest at the low-grazed 

sites in the sweep net and Malaise-trap datasets (Table 4.3). In the combined sweep 
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net and Malaise-trap data set, 8 unique species were found from each low-grazed or 

moderately grazed site, 10 species were recorded from both low-grazed and 

moderately grazed sites, and a total of 26 species were found only at low-grazed and 

moderately grazed sites. In contrast, two species were unique for heavily grazed sites 

(Appendix F).    

Species diversity of crane flies (the exponential of Shannon’s index) was 

significantly different among the sites (P<0.001) with the highest number of species 

in the low-grazed sites. The post hoc test showed that the species diversity of crane 

flies from the low-grazed sites was significantly higher (P<0.001), whereas there 

were no significant differences (P<0.8) between moderately and heavily grazed sites 

(Fig. 4.4).  

Three variables, soil moisture (P<0.04, R2=0.68), plant biomass (P<0.02, R2=0.79) 

and livestock number (P<0.01, R2=0.82), were strong, significant predictors of 

variation in crane fly diversity in the linear regression model (Table 4.4, Fig. 4.5). 

There were no relationship between the cranefly diversity and soil temperature, air 

temperature, relative humidity and precipitation (Table 4.4). 

 

Discussion  

A total of 95 species of crane flies have been identified from this study 

making a total of over 134 species from Hövsgöl region of Mongolia (this study, 

Gelhaus and Podenas 2006, Gelhaus et al. 2007, Boldgiv 2006). For this study, 9 

species are new records for Mongolia, and 22 are new records for the Hövsgöl 
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region of Mongolia (Appendix E). After extensive sampling, the estimated species 

richness approached the predicted asymptotic species richness in all sites except one 

moderately grazed site. Overall, the crane fly fauna in Hövsgöl region was not 

highly diverse compared to the global fauna in relation to the region’s continental 

location, high elevation, and latitude (Gelhaus and Podenas 2006). However, crane 

fly diversity was high relative to other insects surveyed in the region that have been 

sampled over larger areas or longer periods of time. For example, 118 species of 

non-biting midges (chironomidae) were identified from the Hövsgöl region over 30 

years of sampling (Hayford et al. 2006, Erbaeva et al. 2006), and 101 species of 

caddisflies (trichoptera) were identified from 156 sites across central Mongolia 

(Chuluunbat and Morse 2007). Crane flies were more diverse than grasshoppers 

(give scientific name), of which only 20 species of grasshoppers were sampled at the 

same sites as this study. As a group, crane fly larvae inhabit a wide range of aquatic 

to moist terrestrial environments and can be found in a variety of soils including 

muddy, sandy, gravely and loamy soil, such as those found in the study sites 

(Alexander and Byers 1981; Podenas et al. 2013). Some species of crane flies were 

also found at nearly every one of the hundreds of aquatic site sampled in Mongolia 

during recent MAIS studies (Hayford and Gelhaus, 2010) indicating that the group is 

a common and characteristic faunal element in Mongolian riparian zones. While 

crane fly diversity relatively high, it appeared to decline with greater grazing 

intensity in this study, despite the relatively high diversity.   

Over-grazing by livestock has been shown to affect terrestrial and aquatic 
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ecosystems along the six study valleys of this study (Nandintsetseg et al. 2007, 

Sharkhuu et al. 2007; Otgonsuren et al. 2008; Puntsag et al. 2010).  Lower diversity 

of crane flies was associated with higher soil moisture, plant biomass and livestock 

number (Table 4.4), which are the first two variables affected by grazing (Batkhishig 

2004 and Lkhagva et al. 2013). Livestock grazing resulted in a decrease of the total 

plant biomass along the grazing gradients (Lkhagva et al. 2013) and consequently 

soil microclimate alteration caused surface soil temperature to increase and soil 

moisture content to decrease in the same sites as this study (Batkhishig 2004).  

The most important habitat requirement is moisture for both immature and 

adult (Rogers 1933). Experimental manipulation has shown that high soil moisture is 

a necessary condition for crane fly population growth because it reduces 

susceptibility of immature cranefly to dessication in England (Carroll et al. 2011). 

Another field experiments have indicated that abundance and distribution of larval 

crane flies were affected by soil moisture and organic content (Merritt and Lawson 

1981). The main cause of mortality of many crane fly species is desiccation of their 

immature stages (Pritchard 1983). Resistance to desiccation of immature crane fly is 

generally correlated to the moisture and temperature of both soil and air (Freeman 

1967; Jackson and Campbell 1975). Adults crane flies have weak flight capabilities  

(Alexander et al. 1981, Gelhaus 2006) nearly always remaining near natal habitats 

(Rogers 1933). Other studies have shown a direct relationship between the impact of 

grazing by livestock on vegetative structure, plant diversity, and plant biomass and 

the subsequent impact on grassland insects (Shiemann et al. 1998, Kruess and 
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Tscharntke 2002, Yoshihara et al. 2008). However, most of these studies examined 

herbivorous insects impaired by loss of food abundance and quality. Crane flies are 

short lived as adults (Byers and Gelhaus 2008) and eat little or not at all living 

vegetation (Hofsvang 1997; Newton 2005), possibly sheltering under vegetation to 

avoid dessication during the heat of the day is explaining why plant biomass was a 

strong or significant driver of variation in crane flies diversity in the linear 

regression model. Presence of a suitable habitat determines whether a crane fly 

species can persist in a given area (Roger 1933). Larvae of many species of crane 

flies inhabit moss (Alexander and Byers 1981). Moss biomass was a significant 

portion of total plant biomass in lightly grazed sites and was significantly reduced at 

moderately grazed sites and lost in heavily grazed sites (Lkhagva et al. 2013). 

Mosses form a thick layer on the soil, which restricts soil evaporation and permafrost 

thaw, leading to high soil moisture content (Lkhagva et al. 2013) and consequently 

low soil temperature (Batkhishig 2004). As mosses were degraded by grazing, soil 

temperature increased, which impaired crane fly communities and specifically 

destroyed larval habitat for some of the species found in this study. Livestock can 

have direct effects on watersheds soil erosion, soil compaction, and habitat diversity 

reduction resulted from livestock trampling besides plant biomass reduction (Reeves 

and Champion 2004). Trampling pressure from grazing increases soil bulk density, 

decreases water infiltration rate, and increases surface runoff (Rieterk et al. 2000; 

Savadogo et al. 2007).  

 Our results corroborate research showing that semi-aquatic fly diversity 
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(including crane flies) decreases with increased livestock grazing in the Selenge 

River basin in Central Mongolia (Hayford and Gelhaus 2010).  

The ecological effect of habitat destruction and degradation cause species decline, 

extirpation, and possibly extinction (Lande 1999). Loss of species diversity may also 

impair ecosystem function (Brussaard et al. 1997, Balvanera et al. 2006).  Like many 

other species of insects, crane flies serve as bioturbators by turning over, aerating, 

and cycling nutrients as they move through the soil (Brussaard et al. 1997) and are 

important decomposers, particularly of leaf litter (Pritchard 1983, Cheshire and 

Griffiths 1989). The results of our study indicate that crane flies are being lost as a 

result of increased grazing. The loss of crane fly bioturbators and decomposers may 

exacerbate these physical impacts of grazing on the soils in the Hövsgöl region.   
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FIG. 4.1. Map of the Hövsgöl region, north central Mongolia. Filled colored 

triangles indicate upper, middle, and lower sampling sites along the six valleys of 

this study. 
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Table 4.1. Six study valleys and sites of the eastern shore of Lake Hövsgöl, their 

altitudes, coordinates, and collection methods employed.   

Valley Subsites Altitude 
(m) 

Longitude (N) Latitude (E) Collection method 

Borsog Upper 1725 50.56 100.45 Timed sweep 

Borsog Middle 1662 50.58 100.44 Timed sweep 

Borsog Lower 1656 50.58 100.44 Timed sweep 

Dalbay Upper 1727 51.00 100.50 Timed sweep 

Dalbay Middle 1662 51.01 100.45 Timed sweep 

Dalbay Lower 1660 51.02 100.44 Timed sweep 

Sevsuul Upper 1674 51.09 100.47 Timed sweep 

Sevsuul Middle 1634 51.10 100.45 Timed sweep 

Sevsuul Lower 1631 51.10 100.46 Timed sweep 

Noyon Upper 1756 51.13 100.52 Timed sweep 

Noyon Middle 1635 51.13 100.47 Timed sweep 

Noyon Lower 1649 51.12 100.46 Timed sweep 

Shagnuul Upper 1856 51.17 100.56 Timed sweep 

Shagnuul Middle 1729 51.15 100.51 Timed sweep 

Shagnuul Lower 1668 51.15 100.47 Timed sweep 

Turag Upper 1696 51.17 100.51 Timed sweep 

Turag Middle 1664 51.17 100.48 Timed sweep 

Turag Lower 1637 51.18 100.48 Timed sweep 

Borsog Riparian Zone 1681 50.96 100.73 Malaise trap 

Borsog Edge of Forest 1689 50.96 100.73 Malaise trap 

Dalbay Riparian Zone 1662 51.02 100.76 Malaise trap 

Dalbay Edge of Forest 1717 51.26 100.78 Malaise trap 

Sevsuul Riparian Zone 1656 51.16 100.75 Malaise trap 

Sevsuul Edge of Forest 1687 51.16 100.75 Malaise trap 

Noyon Riparian Zone 1626 51.20 100.81 Malaise trap 

Noyon Edge of Forest 1709 51.20 100.81 Malaise trap 

Shagnuul Riparian Zone 1732 51.26 100.86 Malaise trap 

Shagnuul Edge of Forest 1757 51.25 100.86 Malaise trap 

Turag Riparian Zone 1667 51.29 100.83 Malaise trap 

Turag Edge of Forest 1681 51.28 100.83 Malaise trap 
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FIG. 4.2. Principle component analysis of six valleys based on three environmental 

variables. Soil moisture (SM), total aboveground plant biomass (PB) and livestock 

number (LS).  Lines with arrows indicated direction of increasing value for the 

variables. Sites were segregated by grazing intensity from light (green circle), 

moderate (blue circle) to heavy (red circle). 
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Table 4.2. Environmental variables related to grazing in the six valleys of this study 

for use in the linear regression analysis. 

Environmental variable Units Notes about when/how measured 
Total Plant Biomass g/0.25m2  Harvested ground level, classified into 

functional groups dried and weighted. 
Livestock Number Sheep unit  A measurement based on the grazing equivalent 

of one adult sheep. 
Soil Moisture %  Time-Domain Reflectometer (TDR) in 20 cm 

depth 
Soil Temperature °C  Soil Temperatute probe in 20 cm depth 

Atmospheric temperature °C 
 Campbell CR10X Meteorological Stations, 
Hobo Data logger with temperature and relative 
humidity sensors 

Precipitation mm  Campbell CR10X Meteorological Stations, 
Standard precipitation gauge 

Relative Humidity % 
 Campbell CR10X Meteorological Stations,  
Hobo Data logger with temperature and relative 
humidity sensors 
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FIG. 4.3. Sample-based species accumulation curves for the six study valleys for a) 

the sweep-net dataset and b) the malaise-trap dataset. The curves were derived from 

the Mau Tao function in EstimateS (Colwell 2009). Lightly grazed= dashed, 

moderately grazed= dotted line, heavily grazed= solid lines. 
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Table 4.3. Diversity metrics of crane fly assemblages among six study valleys between 2002 and 2005. Sites were ranked by 

grazing intensity from light (LG), moderate (MG) to heavy (HG). N= total number of animal, Sobs =observed species richness, 

Chao 1 =estimated species richness/asymptotic estimator, S(E#) = rarified species richness (species richness where number of 

individuals was standardized), S1 = number of singletons, S2 = number of doubletons,  Su = number of unique species, eH = 

exponential of Shannon’s diversity index, E1/D = Simpson’s evenness, and EBP =Berger-Parkerdominance index). Most 

common species 

Site N Sobs Chao1 S(E 574) S1 S2 SU  eH E1/D EBP Most common species 

Timed sweep dataset 
LG 982 68 69 60 3 4 11 39 0.36 14% Dicranomyia modesta 
MG 1077 57 70 45 12 4 20 25 0.28 14% Dicranomyia incisurata 
HG 574 49 51 49 6 7 18 25 0.48 11% Dicranomyia modesta 

Malaise trap dataset 
LG 1226 67 70 60 7 7 14 32 0.3 12% Tipula trispinosa 
MG 1108 65 71 51 12 10 19 25 0.23 15% Dicranomyia incisurata 
HG 862 50 51 45 5 13 11 24 0.33 10% Dicranomyia incisurata 
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FIG. 4.4 Species diversity of crane flies (exponential of Shannon diversity index) 

among the valleys along the levels of grazing intensity 2002–2005. Different letters 

(a and b) represent significant differences in species diversity between the localities. 

The two datasets from the sweep net and Malaise-trap samples are combined. LG = 

lightly grazed, MG = moderately grazed, HG = heavily grazed. 
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FIG. 4.5 Linear regression analysis between the crane fly diversity by the 

exponential Shannon’s index and, A) soil moisture content, B) plant biomass and C) 

livestock number among the valleys mean 2003-2004.   
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CHAPTER FIVE 

SYNTHESIS 

 

Mongolia has historically had a nomadic culture so that our lives rely on 

shared reliance on nature and a substantial part of our economy is based on livestock 

husbandry. Thus, ecosystem health is a critical theme for politics and public policy 

of Mongolia. Recently the quantity and quality of water resources and riparian 

habitats have been degraded dramatically as a consequence of current land use 

practices coupled with climate change and weak management. To improve water 

resource management, we need to upgrade the national water quality monitoring 

program, including development of an appropriate biomonitoring technique for 

Mongolia.   

Why is biological assessment important?  Biodiversity has been indentified 

one of the best descriptor of ecosystem condition as well as playing an important 

role for ecosystem processes. Hence, alteration of the biological community due to 

anthropogenic activity may affect the provision of ecosystem goods (e.g., food, 

timber, clean air, fresh water) and services (e.g., purification of air and water, ground 

water recharge, soil fertilization, decomposition waste, and soil and vegetation 

renewal or regeneration) and ultimately will cause negative feedback to our human 

well-being. Therefore, bioassesment will enhance our understanding of the effects of 

land use on biological communities and it provides valuable information to any 
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water quality monitoring programs of Mongolia and to establish appropriate water 

resource management.  

 Bioassessment techniques are widely used in water quality monitoring 

programs all over the world, and environmental policy and management decisions 

are usually made based on bioassessment results, especially in the USA and other 

developed countries. Biomonitoring has advantages that detect cumulative or 

combined effects of multiple stressors and measures their magnitude.  

Aquatic and terrestrial ecosystems have been influenced by land use practices 

in Mongolia thus it is important to examine their effect on both aquatic and 

terrestrial communities. This study examined land use effects on both aquatic and 

terrestrial macroinvertebrate communities using traditional taxonomic and trait-

based approaches and compared effectiveness and performance of these approaches 

in Mongolia.  

Overall findings demonstrated that diversity of both aquatic and terrestrial 

macroinvertebrate communities were affected by land-use intensity. Seminatural 

sites supported more diverse macroinvertebrate communities with a wider range of 

traits found, indicating a greater diversity of habitats present.  Sites with greater 

land-use intensity had less diverse communities more tolerant of eutrophication and 

fine sediment deposition and showing less range of traits. The species and functional 

diversity of macroinvertebrate communities declined with increased land-use 

intensity; and that decline may result in further loss of ecological function and 

degradation of ecosystem services and goods. 
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Generally, major impacts of livestock grazing and mining increased 

suspended particles and fine sediment loading and eutrophication in the stream 

ecosystem and caused loss of vegetation cover and soil moisture in terrestrial 

ecosystem. Loss of soil moisture in the watershed correlated with low diversity of 

crane flies in the heavily grazed areas. Therefore, from this single study it suggests 

that crane flies are good indicators of undisturbed habitat including high soil 

moisture and vegetation cover. 

Metal contamination may be another major impact, but that needs further 

analysis. In this study, greater land-use intensity sites had grazing or grazing coupled 

with mining impacts, except for one site that had mining activity but no grazing.  

Hence, it was difficult to distinguish separate impacts of overgrazing and mining, but 

they are both known to contribute increased fine sediment deposits, suspended 

solids, and nutrient transfer into streams. A specific effect of mining may be metal 

contamination in streams. The types of study sites should be expanded in future 

applications of TBA for biomonitoring in Mongolia, potentially helping to 

discriminate effects of mining and grazing.  

Among the results, there is a strong relationship between community 

structure and habitat condition. Habitat filtering determines variability of 

macroinvertebrate community observed among sites.  Finally, the study results 

provide additional support for a habitat template concept and for confirming that the 

TBA is free of biogeographic constraints. Also, it helped to understand changes in 
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taxonomic and functional structure of macroinvertebrate communities due to 

grazing.  

Comparison of taxonomic and TBA showed that both approaches 

discriminated seminatural sites from sites with greater levels of land-use intensity, 

but TBA was a reliably consistent indicator of land-use changes. As well as TBA 

provided a mechanistic explanation for macroinvertebrate responses to land-use by 

presence of particular traits and their frequency indicating particular habitat 

conditions. The North American biotic index classification for water quality was not 

well suited for Mongolian taxa. A taxonomic approach is constrained by geography 

and not applicable for a large spatial scale. This approach can detect overall land-use 

effects but cannot discriminate different type of stressors (Bonada et al. 2007).   

Advantages of TBA include the following: 1) it is derived from ecological 

theory; 2) it provides an a priori prediction for assessment results; 3) it is able to 

discriminate overall as well as specific types of impacts and their intensity; 4) it is 

less constrained by biogeography; 5) species-level resolution is not necessary, and 6) 

it provides mechanistic explanations for changes in community.  

There are several challenges for TBA: 1) inconsistency of trait terms; 2) lack 

of trait information; 3) “trait-syndrome,” inferring the co-occurrence of 

phylogenetically constrained traits in tandem among closely related taxa; 4) not all 

trait patterns match habitat conditions because environmental filtering may not have 

occurred yet; 5) organisms may occupy suboptimal habitat; and 6) certain trait 

occurances may be related to the organism’s dispersal ability.   
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As shown in the single study here looking at the 16 species of Simulium, 

species-level resolution provides more accurate information of community response 

than genus-level, but does not improve discrimination of land use impacts 

substantially. The sample size was not enough to conclude whether species-level 

resolution is required to assess ecological conditions. For future biomonitoring in 

Mongolia, genus-level resolution may be the best choice, considering the difficulty 

and cost of species-level identification and general lack of trait information at the 

species level.  

Sinse Mongolia has a high proportion of species and genera with widespread 

Palearctic distributions; we can access the European trait database, which includes 

most of the aquatic invertebrate genera of Europe. Also, Mongolians should continue 

to improve their knowledge of the Mongolian macroinvertebrate fauna and its life 

histories and create their own trait database, starting with the available literature. 

Quantitative data are also important to predict patterns of community structure as 

well as to improve the power of multivariate statistical analysis. A modified 

subsampling method using random grids rather than fixed count approach (EPA 

2012) needs to be used with future subsampling.  

My study results demonstrated that TBA is applicable in further development 

of the water quality monitoring program currently implemented by the Mongolian 

Institute of Meteorology, Hydrology and Environment (IMHE). The IMHE already 

has a well-established system and personnel. Local rangers (macroinvertebrate 

samplers) at 64 local stations have been trained on sampling technique and and have 
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been supplied with appropriate nets, but they need additional training for 

subsampling and sampling supplies. Mongolian benthologists already have been 

trained by the Mongolian Aquatic Insect Survey (MAIS) project so that they are able 

to identify macroinvertebrates adequately. These benthologists have good 

microscopes, identification literature, and other supplies in the IMHE lab that were 

provided by the MAIS but need to be trained for statistical analysis. Implementing 

TBA will make our bioassessment results productive and meaningful. TBA 

implementation will not require a lot of money from the Mongolian government, but 

it will make the money already being spent more helpful for producing assessments 

that can be used to revise and administer water management policy.  
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APPENDICES 

Appendix A 

Study site descriptions 

(Referred to chapter 2 and 3)  

Site ID Land use type 
Land-use 
intensity 

level 
GPS N GPS E Altitude 

m Province County Stream name 

MAISOY2011062201 Grazing High 47.70055 106.28814 1166 Tov Altanbulag Tuul gol 
MAISOY2011062202 Grazing Moderate 47.86233 105.20364 992 Tov Lun Tuul gol 
MAISOY2011062301 Grazing High 47.52788 105.01108 1017 Tov Ondorshireet Tuul gol 
MAISOY2011062302 Grazing Moderate 47.99865 104.39651 956 Bulgan Bayannuur Tuul gol 
MAISOY2011062303 Grazing+mining High 48.28412 104.40328 937 Tov Zaamar Tuul gol 
MAISOY2011062401 Grazing Seminatural 46.79082 101.93123 1819 Ovorkhangai Bat-Olziit Orkhon gol 
MAISOY2011062501 Seminatural Seminatural 46.78355 101.95715 1817 Ovorkhangai Bat-Olziit Ulaan gol 
MAISOY2011062502 Grazing Moderate 46.87449 102.33871 1667 Ovorkhangai Bat-Olziit Tsagaan gol 
MAISOY2011062601 Seminatural High 48.10776 102.57946 1284 Arkhangai Olziit Orkhon gol 
MAISOY2011062602 Grazing High 48.54952 103.27224 1129 Bulgan Orkhon Orkhon gol 
MAISOY2011062701 Grazing High 48.8315 104.80691 846 Selenge Orkhontuul Tuul gol 
MAISOY2011062801 Grazing+mining High 48.48739 104.55048 939 Tov Zaamar Tuul gol 
MAISOY2011062802 Grazing High 49.75772 106.16899 705 Selenge Javkhlant Shariin gol 
MAISOY2011062901 Seminatural Seminatural 49.75416 106.61455 669 Selenge Eroo Eroo gol 

MAISOY2011062902 Seminatural Seminatural 49.43592 107.26868 776 Selenge Eroo 
Eroo gol/Buganatai 
gol confluence 

MAISOY2011063001 Seminatural Seminatural 49.09894 107.08746 878 Selenge Mandal Eroo gol 
MAISOY2011063002 Seminatural Seminatural 49.08269 107.04478 910 Selenge Mandal Yalbag gol 
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Site ID Land use type 
Land-use 
intensity 

level 
GPS N GPS E Altitude 

m Province County Stream name 

MAISOY2011063003 Seminatural Seminatural 49.25584 107.19463 845 Selenge Eroo  Eroo gol 
MAISOY2011063004 Mining Moderate 49.50716 107.23051 804 Selenge Khuder Jargalant gol 
MAISOY2011070101 Grazing+mining Moderate 49.61433 106.92656 751 Selenge /Khuder Bayan gol 
MAISOY2011070102 Grazing+mining Moderate 49.6298 107.01804 820 Selenge /Khuder Bayan gol 
MAISOY2011070103 Grazing High 49.80436 106.06383 653 Selenge Orkhon  Orkhon gol 
MAISOY2011070201 Grazing Moderate 49.4888 105.89484 682 Darkhan-Uul Darkhan hot Kharaa gol 
MAISOY2011070202 Grazing Moderate 49.30375 105.90598 710 Darkhan-Uul Khongor Kharaa gol 
MAISOY2011070204 Grazing Moderate 48.91156 106.07141 795 Selenge Bayangol  Kharaa gol 
MAISOY2011070301 Grazing Moderate 48.57511 105.87609 962 Tov Jargalant  Jargalant gol 
MAISOY2011070302 Grazing+mining Moderate 48.77391 106.28207 859 Selenge Mandal Boroo gol 
MAISOY2011070303 Grazing Moderate 48.83078 106.45015 811 Selenge  Mandal  Kharaa gol 
MAISOY2011070401 Grazing+mining Moderate 48.6241 106.65965 1124 Selenge Tunkhel  Gatsuurtiin gol 
MAISOY2011070402 Grazing Moderate 48.60446 106.75922 1008 Selenge Tunkhel Kharaa gol 
MAISOY2011070403 Seminatural Seminatural 48.65079 106.80056 1030 Selenge Tunkhel Tunkhel gol 
MAISOY2011070501 Seminatural Seminatural 48.40872 106.91883 1171 Tov Batsumber Sognogor gol 
MAISOY2011070502 Seminatural Seminatural 48.35418 106.8383 1145 Tov Batsumber Bayangol 
MAISOY2011070503 Seminatural Seminatural 47.87445 106.78634 1300 Tov UB Tuul gol 
MAISOY2011070601 Seminatural Seminatural 47.82217 107.39628 1383 Tov UB-Terelj  Tuul gol 
MAISOY2011070602 Seminatural Seminatural 48.02728 107.44657 1540 Tov UB-Terelj Terelj gol 
MAISOY2011070603 Seminatural Seminatural 48.07718 107.63927 1544 Tov Erdene Baruunbayan gol 
MAISOY2011070701 Seminatural Seminatural 48.04708 107.74532 1517 Tov Erdene Tuul gol 
MAISOY2011070702 Seminatural Seminatural 48.08181 107.7776 1528 Tov Erdene Zuunbayangiin gol 
MAISOY2011070703 Seminatural Seminatural 48.13485 107.92422 1565 Tov Erdene Galttayn gol 
MAISOY2011070704 Seminatural Seminatural 48.18108 107.91869 1573 Tov Erdene  Tuul gol 
MAISOY2011070801 Seminatural Seminatural 47.83612 107.4855 1414 Tov Erdene Tuul gol  
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Appendix B 

Macroinvertebrate taxon occurrence 

HI=high land use intensity, MD=moderate land-use intensity, SN=semi-natutal 

(reffered to Chapter 1 and chapter 2). A new species was marked by* 

Order Family Subfamily/Genera Species HI MD SN 
Amphipoda Gammaridae 

 
  0 1 0 

Gastropoda Physidae 
 

  0 0 1 
Gastropoda Planorbiidae 

 
  0 1 1 

Gastropoda Sphaeriidae     1 1 1 
Hirudinea Glossiphoniidae     1 1 1 
Oligochaeta Tubificidae     1 1 1 
Coleoptera Hydrophilidae Crenitis   1 0 0 
Coleoptera Dytiscidae Agabus   0 1 0 
Coleoptera Dytiscidae Copelatus   0 0 1 
Coleoptera Dytiscidae Dytiscidae   0 1 1 
Coleoptera Dytiscidae Nebrioporus   0 1 1 
Coleoptera Dytiscidae Stictotarsus   0 1 1 
Coleoptera Haliplidae Haliplus   0 1 1 
Coleoptera Hydraenidae Ochthebius   0 1 0 
Coleoptera Hydrophilidae Helophorus   1 0 0 
Ephemeroptera Acanthametropodidae Acanthametropus   0 1 1 
Ephemeroptera Ameletidae Ameletus   0 0 1 
Ephemeroptera Baetidae Procloeon   0 1 0 
Ephemeroptera Baetidae Baetis   1 1 1 
Ephemeroptera Baetidae Cloeon   1 1 1 
Ephemeroptera Caenidae Brachycercus   1 1 1 
Ephemeroptera Ephemerellidae Drunella   0 1 1 
Ephemeroptera Ephemeridae Ephemera   0 1 1 
Ephemeroptera Ephemeridae Hexagenia   1 1 1 
Ephemeroptera Ephemerellidae Acentrella   1 1 1 
Ephemeroptera Ephemerellidae Ephemerella   1 1 1 
Ephemeroptera Ephemerellidae Serratella   1 1 1 
Ephemeroptera Heptageniidae Ecdyonurus   1 1 1 
Ephemeroptera Heptageniidae Epeorus   0 1 1 
Ephemeroptera Heptageniidae Heptagenia   1 1 1 
Ephemeroptera Heptageniidae Cinygma   0 0 1 
Ephemeroptera Heptageniidae Rhithrogena   0 0 1 
Ephemeroptera Isonychiidae Isonychia   1 1 1 
Ephemeroptera Leptophlebiidae Leptophlebia   0 0 1 
Ephemeroptera Leptophlebiidae Paraleptophlebia   1 1 1 
Ephemeroptera Metretopodidae Metretopus   0 1 1 
Ephemeroptera Oligoneuridae Oligoneuriella   1 1 0 
Ephemeroptera Polymitarcyidae Ephoron   0 1 1 
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Order Family Subfamily/Genera Species HI MD SN 
Ephemeroptera Siphlonuridae Siphlonurus   0 1 1 
Hemiptera Corixidae Corixini   0 0 1 
Hemiptera Corixidae Micronecta   1 1 0 
Hemiptera Corixidae Sigara   1 0 1 
Hemiptera Gerridae Gerris   1 1 0 
Hemiptera Mesoveliidae Mesovelia   0 1 0 
Hemiptera Nepidae Nepa   0 1 0 
Neuroptera Sialidae Sialis   0 1 1 
Odonata Corduliidae Somatochlora   0 0 1 
Odonata Gomphidae Anisogomphus   0 1 1 
Odonata Gomphidae Ophiogomphus   1 1 1 
Odonata Lestidae Lestes   1 0 0 
Plecoptera Chloroperlidae Alloperla   0 0 1 
Plecoptera Chloroperlidae Haploperla   0 1 0 
Plecoptera Chloroperlidae Paraperla   0 1 0 
Plecoptera Chloroperlidae Suwallia   0 1 1 
Plecoptera Nemouridae Amphinemura   0 1 1 
Plecoptera Nemouridae Nemoura   0 1 0 
Plecoptera Perlidae Agnetina   1 1 1 
Plecoptera Perlidae Perla   1 0 0 
Plecoptera Perlodidae Arcynopteryx   0 0 1 
Plecoptera Perlodidae Diura   0 0 1 
Plecoptera Perlodidae Isoperla   1 1 1 
Plecoptera Perlodidae Skwala   0 0 1 
Trichoptera Lepidostomatidae Lepidostoma   0 0 1 
Trichoptera Apatanidae Apatania   0 0 1 
Trichoptera Brachycentridae Brachycentrus   1 1 1 
Trichoptera Glossosomatidae Agapetus   0 1 1 
Trichoptera Glossosomatidae Glossosoma   0 1 1 
Trichoptera Goeridae Goera   0 1 1 
Trichoptera Hydropsychidae Hydropsyche   1 1 1 
Trichoptera Leptoceridae Ceraclea   1 1 1 
Trichoptera Leptoceridae Mystacides   0 1 0 
Trichoptera Limnephilidae Anabolia   0 1 1 
Trichoptera Limnephilidae Chaetopteryx   0 0 1 
Trichoptera Polycentropodidae Neureclipsis   0 1 0 
Trichoptera Psychomyiidae Psychomyia   0 0 1 
Trichoptera Rhyacophilidae Rhyacophila   0 1 1 
Diptera Athericidae Atherix   0 0 1 
Diptera Blephariceridae Blepharicera   0 1 1 
Diptera Ceratopogoniidae Bezzia   1 1 1 
Diptera Ceratopogoniidae Palpomyia   0 0 1 
Diptera Chaoboridae Chaoborus   0 1 0 
Diptera Chironomidae Tanypodinae   1 1 1 
Diptera Dixidae Dixa   0 1 0 
Diptera Ephydridae Ephydridae   1 1 1 
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Order Family Subfamily/Genera Species HI MD SN 
Diptera Pedicidae Dicranota   0 1 1 
Diptera Tabanidae Hybomitia   1 1 1 
Diptera Tipulidae  Hexatoma   0 1 1 
Diptera Tipulidae Limnophila   0 1 1 
Diptera Tipulidae Tipula   0 1 1 
Diptera Chironominae Cryptochironomus   0 1 1 
Diptera Chironominae Chironomini 

 
0 1 1 

Diptera Chironominae Microtendipes  
pedellus 
group 0 1 1 

Diptera Chironominae Polypedilum 
 

0 1 1 
Diptera Chironominae Paracladopelma 

 
0 1 0 

Diptera Chironominae Glyptotendipes 
 

1 0 0 
Diptera Chironominae Micropsectra 

 
0 1 1 

Diptera Chironominae Robackia 
 

0 0 1 
Diptera Chironominae Saetheria 

 
0 1 0 

Diptera Chironominae Stictochironomus 
 

1 0 0 
Diptera Chironominae Tanytarsus 

 
0 1 1 

Diptera Diamesinae Diamesa 
 

0 1 1 
Diptera Diamesinae Pagastia 

 
0 1 1 

Diptera Diamesinae Pseudodiamesa 
 

0 1 0 
Diptera Orthocladinae Cardiocladius 

 
0 0 1 

Diptera Orthocladinae Cricotopus 
 

0 1 1 
Diptera Orthocladinae Epoicocladius 

 
0 0 1 

Diptera Orthocladinae Euryhapsis 
 

0 0 1 
Diptera Orthocladinae Hydrobaenus 

 
0 0 1 

Diptera Orthocladinae Orthocladius 
 

0 1 1 
Diptera Orthocladinae Paracladius 

 
0 1 1 

Diptera Orthocladinae Nanocladius 
 

0 1 0 
Diptera Orthocladinae Paratrichocladius 

 
0 0 1 

Diptera Orthocladinae Potthastia 
 

0 0 1 

Diptera Orthocladinae Potthastia  
longimani 
group 0 0 1 

Diptera Orthocladinae Tvetenia 
 

0 1 1 
Diptera Prodiamesinae Monodiamesa 

 
0 1 0 

Diptera Tanypodinae Thienemannimyia 
 

0 0 1 
Diptera Simulidae Helodon alpestris alpestris 0 0 1 

Diptera Simulidae 
Prosimulium 
hirtipes group hirtipes group 0 0 1 

Diptera Simulidae 
Metacnephia 
edwardsiana edwardsiana 0 0 1 

Diptera Simulidae Simulium bicorne 0 0 1 
Diptera Simulidae Simulium curvans 0 0 1 
Diptera Simulidae Simulium meigeni 0 0 1 
Diptera Simulidae Simulium maculatum 1 0 1 
Diptera Simulidae Simulium acrotrichum 0 1 1 
Diptera Simulidae Simulium cholodkovskii 1 0 1 
Diptera Simulidae Simulium decimatum 1 1 1 
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Order Family Subfamily/Genera Species HI MD SN 
Diptera Simulidae Simulium malyschevi 0 0 1 
Diptera Simulidae Simulium malyschevi*  0 0 1 
Diptera Simulidae Simulium murmanum 0 1 1 
Diptera Simulidae Simulium noelleri 0 1 1 

Diptera Simulidae Simulium 
ornatum 
complex 0 1 1 

Diptera Simulidae Simulium transiens 1 1 1 
Diptera Simulidae Simulium subvariegatum 0 1 1 
Diptera Simulidae Simulium vulgare 0 1 1 
Diptera Simulidae Simulium aemulum 0 1 1 
Diptera Simulidae Simulium rubtzovi 0 1 0 
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Appendix C 

Macroinvertebrate trait matrix 
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Acanthametropus 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Acentrella 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Agabus 0.0 0.0 0.6 0.4 0.0 0.0 0.0 1.0 0.0 0.8 0.3 0.4 0.4 0.0 0.3 
Agapetus  0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.3 0.3 0.0 
Agnetina  0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 
Ameletus  0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Amphinemura  0.0 0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Anabolia 0.0 0.0 0.0 0.4 0.6 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.0 
Apatania 0.0 0.0 0.8 0.3 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.3 0.4 0.4 0.0 
Arcynopteryx 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 
Atherix  0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.3 0.3 0.8 0.0 0.0 1.0 0.0 0.0 
Baetis  0.0 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 0.4 0.6 0.5 0.5 0.0 0.0 
Bezzia 0.0 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.0 0.5 0.5 0.2 0.4 0.4 0.0 
Blepharicera 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.4 0.3 0.0 
Brachycentrus 0.0 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.0 
Brachycercus 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Ceraclea 0.0 0.0 0.4 0.6 0.0 0.0 0.8 0.3 0.0 0.8 0.3 0.3 0.3 0.3 0.0 
Ceratopogoninae 0.0 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.0 0.5 0.5 0.2 0.4 0.4 0.0 
Chaoborus 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.4 0.4 0.0 
Chironominae 0.0 0.0 0.2 0.5 0.3 0.0 1.0 0.0 0.0 0.3 0.8 0.0 0.5 0.5 0.0 
Chloroperlidae  0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.8 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Cloeon  0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.3 0.8 0.5 0.5 0.0 0.0 
Copelatus 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.3 0.4 0.4 0.0 0.3 
Corixidae 0.0 0.0 0.4 0.6 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.4 0.4 0.0 0.3 
Crenitis  0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.8 0.3 0.4 0.4 0.0 0.3 
Dicranota 0.0 0.0 0.0 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.2 0.3 0.3 0.3 0.0 
Diura 0.0 0.0 0.0 0.3 0.7 0.0 0.3 0.8 0.6 0.4 0.0 0.5 0.5 0.0 0.0 
Dixa 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.4 0.3 0.0 
Drunella  0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.5 0.5 0.0 0.0 
Dytiscidae 0.0 0.0 0.0 0.0 0.8 0.3 0.0 1.0 0.0 1.0 0.0 0.4 0.4 0.0 0.3 
Ecdyonurus 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.5 0.5 0.0 0.0 
Epeorus 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Ephemera  0.0 0.0 0.0 0.0 1.0 0.0 0.3 0.8 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Ephemerella 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.5 0.5 0.0 0.0 
Ephoron 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Ephydridae 0.0 0.1 0.4 0.4 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.5 0.3 0.0 
Gammaridae 0.0 0.0 0.0 0.5 0.5 0.0 0.3 0.8 0.0 0.0 1.0 0.3 0.3 0.0 0.3 
Gerris  0.0 0.0 0.3 0.8 0.0 0.0 0.4 0.6 0.0 0.4 0.6 0.2 0.4 0.0 0.4 
Glossiphoniidae 0.0 0.0 0.0 0.5 0.5 0.0 0.3 0.8 0.0 1.0 0.0 0.4 0.4 0.0 0.3 
Glossosoma 0.0 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.3 0.3 0.3 0.0 
Goera 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.0 
Gomphidae 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 
Haliplus 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.3 0.8 0.4 0.4 0.0 0.3 
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Helophorus 0.0 0.5 0.5 0.0 0.0 0.0 0.3 0.8 0.0 0.8 0.3 0.3 0.3 0.0 0.5 
Heptagenia 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.5 0.5 0.0 0.0 
Heptageniidae/ 
Cinygma 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.5 0.5 0.0 0.0 
Hexagenia 0.0 0.0 0.0 0.0 1.0 0.0 0.3 0.8 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Hexatoma 0.0 0.0 0.0 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.2 0.3 0.3 0.3 0.0 
Hydropsyche 0.0 0.0 0.2 0.6 0.2 0.0 1.0 0.0 0.0 0.5 0.5 0.3 0.3 0.3 0.0 
Isonychia 0.0 0.0 0.4 0.6 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Isoperla 0.0 0.0 0.3 0.8 0.0 0.0 0.3 0.8 0.4 0.6 0.0 0.5 0.5 0.0 0.0 
Lepidostoma 0.0 0.0 0.8 0.3 0.0 0.0 0.8 0.3 0.0 0.8 0.3 0.3 0.3 0.3 0.0 
Leptophlebia 0.0 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Lestes 0.0 0.0 0.0 0.3 0.8 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.0 
Limnephilini 0.0 0.0 0.0 0.6 0.4 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.0 
Limnophila 0.0 0.0 0.0 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.2 0.3 0.3 0.3 0.0 
Mesovelia 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.2 0.4 0.0 0.4 
Metretopodidae 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Micronecta 0.8 0.3 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.3 0.3 0.0 0.3 
Mystacides  0.0 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.0 
Nebrioporus 0.0 0.5 0.5 0.0 0.0 0.0 0.3 0.8 0.0 0.3 0.8 0.4 0.4 0.0 0.3 
Nemoura 0.0 0.3 0.8 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.0 0.5 0.5 0.0 0.0 
Nepa 0.0 0.0 0.0 0.6 0.4 0.0 0.8 0.3 0.0 1.0 0.0 0.4 0.4 0.0 0.3 
Neureclipsis  0.0 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.3 0.3 0.3 0.0 
Ochthebius 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.8 0.3 0.6 0.0 0.0 0.4 
Oligoneuriella  0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Ophiogomphus 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Orthocladiinae/ 
Diamesinae 0.0 0.2 0.6 0.2 0.0 0.0 1.0 0.0 0.0 0.3 0.8 0.2 0.3 0.5 0.0 
Paraleptophlebia 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Perla 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 
Physidae 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.5 
Planorbiidae 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.5 0.0 0.0 0.5 
Procloeon 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.3 0.8 0.5 0.5 0.0 0.0 
Psychomyia  0.0 0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.0 0.3 0.8 0.3 0.3 0.3 0.0 
Rhithrogena 0.0 0.0 0.3 0.8 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.5 0.5 0.0 0.0 
Rhyacophila 0.0 0.0 0.2 0.5 0.3 0.0 0.6 0.4 0.3 0.5 0.3 0.3 0.3 0.3 0.0 
Serratella 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.5 0.5 0.0 0.0 
Sialis 0.0 0.0 0.0 0.6 0.4 0.0 0.0 1.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 
Sigara 0.0 0.3 0.8 0.0 0.0 0.0 0.6 0.4 0.0 0.5 0.5 0.4 0.4 0.0 0.3 
Simulium  0.0 0.4 0.6 0.0 0.0 0.0 0.8 0.3 0.0 0.4 0.6 0.3 0.4 0.4 0.0 
Siphlonurus 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Skwala 0.0 0.0 0.0 0.3 0.7 0.0 0.3 0.8 0.6 0.4 0.0 0.5 0.5 0.0 0.0 
Somatochlora 0.0 0.0 0.0 0.4 0.6 0.0 0.0 1.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 
Sphaeriidae 0.0 0.0 0.0 0.8 0.3 0.0 0.3 0.8 0.0 0.5 0.5 0.3 0.3 0.0 0.3 
Stictotarsus  0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.8 0.0 0.3 0.8 0.4 0.4 0.0 0.3 
Suwallia 0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.8 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Tabanidae 0.0 0.0 0.0 0.0 0.8 0.3 1.0 0.0 0.0 1.0 0.0 0.3 0.7 0.0 0.0 
Tanypodinae 0.0 0.2 0.5 0.3 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.5 0.5 0.0 
Tipula 0.0 0.0 0.0 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.2 0.3 0.3 0.3 0.0 
Tubificidae 0.0 0.0 0.0 0.2 0.2 0.6 0.0 1.0 0.0 0.0 1.0 0.3 0.3 0.0 0.3 
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Helophorus 0.0 0.5 0.5 0.0 0.0 0.0 0.3 0.8 0.0 0.8 0.3 0.3 0.3 0.0 0.5 
Heptagenia 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.5 0.5 0.0 0.0 
Heptageniidae/ 
Cinygma 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.5 0.5 0.0 0.0 
Hexagenia 0.0 0.0 0.0 0.0 1.0 0.0 0.3 0.8 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Hexatoma 0.0 0.0 0.0 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.2 0.3 0.3 0.3 0.0 
Hydropsyche 0.0 0.0 0.2 0.6 0.2 0.0 1.0 0.0 0.0 0.5 0.5 0.3 0.3 0.3 0.0 
Isonychia 0.0 0.0 0.4 0.6 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Isoperla 0.0 0.0 0.3 0.8 0.0 0.0 0.3 0.8 0.4 0.6 0.0 0.5 0.5 0.0 0.0 
Lepidostoma 0.0 0.0 0.8 0.3 0.0 0.0 0.8 0.3 0.0 0.8 0.3 0.3 0.3 0.3 0.0 
Leptophlebia 0.0 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Lestes 0.0 0.0 0.0 0.3 0.8 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.0 
Limnephilini 0.0 0.0 0.0 0.6 0.4 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.0 
Limnophila 0.0 0.0 0.0 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.2 0.3 0.3 0.3 0.0 
Mesovelia 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.2 0.4 0.0 0.4 
Metretopodidae 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Micronecta 0.8 0.3 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.3 0.3 0.0 0.3 
Mystacides  0.0 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.0 
Nebrioporus 0.0 0.5 0.5 0.0 0.0 0.0 0.3 0.8 0.0 0.3 0.8 0.4 0.4 0.0 0.3 
Nemoura 0.0 0.3 0.8 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.0 0.5 0.5 0.0 0.0 
Nepa 0.0 0.0 0.0 0.6 0.4 0.0 0.8 0.3 0.0 1.0 0.0 0.4 0.4 0.0 0.3 
Neureclipsis  0.0 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.3 0.3 0.3 0.0 
Ochthebius 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.8 0.3 0.6 0.0 0.0 0.4 
Oligoneuriella  0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Ophiogomphus 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Orthocladiinae/ 
Diamesinae 0.0 0.2 0.6 0.2 0.0 0.0 1.0 0.0 0.0 0.3 0.8 0.2 0.3 0.5 0.0 
Paraleptophlebia 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Perla 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 
Physidae 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.5 
Planorbiidae 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.5 0.0 0.0 0.5 
Procloeon 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.3 0.8 0.5 0.5 0.0 0.0 
Psychomyia  0.0 0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.0 0.3 0.8 0.3 0.3 0.3 0.0 
Rhithrogena 0.0 0.0 0.3 0.8 0.0 0.0 0.8 0.3 0.3 0.8 0.0 0.5 0.5 0.0 0.0 
Rhyacophila 0.0 0.0 0.2 0.5 0.3 0.0 0.6 0.4 0.3 0.5 0.3 0.3 0.3 0.3 0.0 
Serratella 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.5 0.5 0.0 0.0 
Sialis 0.0 0.0 0.0 0.6 0.4 0.0 0.0 1.0 0.8 0.3 0.0 0.0 1.0 0.0 0.0 
Sigara 0.0 0.3 0.8 0.0 0.0 0.0 0.6 0.4 0.0 0.5 0.5 0.4 0.4 0.0 0.3 
Simulium  0.0 0.4 0.6 0.0 0.0 0.0 0.8 0.3 0.0 0.4 0.6 0.3 0.4 0.4 0.0 
Siphlonurus 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 
Skwala 0.0 0.0 0.0 0.3 0.7 0.0 0.3 0.8 0.6 0.4 0.0 0.5 0.5 0.0 0.0 
Somatochlora 0.0 0.0 0.0 0.4 0.6 0.0 0.0 1.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 
Sphaeriidae 0.0 0.0 0.0 0.8 0.3 0.0 0.3 0.8 0.0 0.5 0.5 0.3 0.3 0.0 0.3 
Stictotarsus  0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.8 0.0 0.3 0.8 0.4 0.4 0.0 0.3 
Suwallia 0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.8 0.8 0.3 0.0 0.5 0.5 0.0 0.0 
Tabanidae 0.0 0.0 0.0 0.0 0.8 0.3 1.0 0.0 0.0 1.0 0.0 0.3 0.7 0.0 0.0 
Tanypodinae 0.0 0.2 0.5 0.3 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.5 0.5 0.0 
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Tipula 0.0 0.0 0.0 0.0 0.6 0.4 0.4 0.6 0.2 0.6 0.2 0.3 0.3 0.3 0.0 
Tubificidae 0.0 0.0 0.0 0.2 0.2 0.6 0.0 1.0 0.0 0.0 1.0 0.3 0.3 0.0 0.3 
Acanthametropus 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0 1.0 0.0 0.0 
Acentrella 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.2 0.2 0.3 0.0 0.0 0.0 
Agabus 0.0 0.0 0.0 0.8 0.0 0.3 0.0 0.0 0.2 0.2 0.0 0.6 0.0 0.0 0.0 
Agapetus  0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.4 0.2 0.2 0.0 0.5 0.0 
Agnetina  0.0 0.0 0.6 0.0 0.4 0.0 0.0 0.0 0.3 0.5 0.0 0.3 0.5 0.0 0.0 
Ameletus  0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4 0.5 0.0 0.0 
Amphinemura  0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.2 0.2 0.0 0.0 
Anabolia 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.4 0.0 0.0 0.0 
Apatania 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.4 0.3 0.0 0.3 0.0 0.0 0.0 
Arcynopteryx 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.2 1.0 0.0 0.0 
Atherix  0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 
Baetis  0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.3 0.2 0.1 0.3 0.5 0.0 0.0 
Bezzia 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.5 0.2 0.0 0.3 0.3 0.0 0.0 
Blepharicera 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.5 0.3 0.0 0.3 0.0 0.0 0.0 
Brachycentrus 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.5 0.0 0.0 0.0 
Brachycercus 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 1.0 0.0 0.0 
Ceraclea 0.0 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.3 0.1 0.1 0.4 0.0 0.0 0.0 
Ceratopogoninae 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.5 0.2 0.0 0.3 0.3 0.0 0.0 
Chaoborus 0.0 0.3 0.0 0.0 0.8 0.0 0.0 0.0 0.3 0.7 0.0 0.0 0.5 0.0 0.0 
Chironominae 0.2 0.0 0.0 0.2 0.6 0.0 0.0 0.0 0.3 0.1 0.4 0.1 0.0 0.0 0.0 
Chloroperlidae  0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.3 0.0 0.2 0.0 0.0 0.0 
Cloeon  0.6 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.3 0.0 0.0 0.0 
Copelatus 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0 
Corixidae 0.0 0.0 0.3 0.5 0.0 0.3 0.0 0.0 0.0 0.4 0.1 0.4 0.0 0.0 0.0 
Crenitis  0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0 
Dicranota 0.0 0.8 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 
Diura 0.0 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.3 0.5 0.0 0.3 0.6 0.0 0.0 
Dixa 0.0 0.0 0.0 0.6 0.2 0.0 0.2 0.0 0.6 0.2 0.2 0.0 0.0 0.0 0.0 
Drunella  0.0 0.2 0.6 0.0 0.0 0.2 0.0 0.0 0.2 0.3 0.1 0.3 0.5 0.0 0.0 
Dytiscidae 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0 
Ecdyonurus 0.0 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.4 0.1 0.1 0.4 0.4 0.0 0.0 
Epeorus 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.4 0.2 0.0 0.0 
Ephemera  0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.5 0.4 0.0 0.0 
Ephemerella 0.0 0.2 0.6 0.0 0.0 0.2 0.0 0.0 0.2 0.3 0.1 0.3 0.5 0.0 0.0 
Ephoron 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4 1.0 0.0 0.0 
Ephydridae 0.0 0.0 0.2 0.2 0.0 0.3 0.3 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
Gammaridae 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 
Gerris  0.0 0.0 0.2 0.3 0.0 0.0 0.5 0.0 0.2 0.3 0.0 0.5 0.3 0.0 0.0 
Glossiphoniidae 0.7 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 
Glossosoma 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.4 0.2 0.2 0.0 0.5 0.0 
Goera 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.0 0.0 0.0 
Gomphidae 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.6 1.0 0.0 0.0 
Haliplus 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.2 0.2 0.0 0.6 0.0 0.0 0.0 
Helophorus 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.2 0.2 0.0 0.6 0.0 0.0 0.0 
Heptagenia 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.4 0.1 0.1 0.4 0.2 0.0 0.0 
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Heptageniidae/ 
Cinygma 0.0 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.4 0.1 0.1 0.4 0.4 0.0 0.0 
Hexagenia 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.5 0.4 0.0 0.0 
Hexatoma 0.0 0.8 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 
Hydropsyche 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.2 0.1 0.3 0.0 0.0 0.0 
Isonychia 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 
Isoperla 0.0 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.3 0.5 0.0 0.0 
Lepidostoma 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.0 0.0 0.0 
Leptophlebia 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.4 0.0 0.0 0.0 
Lestes 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.3 0.0 0.8 0.8 0.0 0.0 
Limnephilini 0.0 0.0 0.0 0.8 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.7 0.5 0.0 0.0 
Limnophila 0.0 0.8 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 
Mesovelia 0.0 0.0 0.3 0.0 0.0 0.8 0.0 0.0 0.0 0.7 0.0 0.3 0.8 0.0 0.0 
Metretopodidae 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0 1.0 0.0 0.0 
Micronecta 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 
Mystacides  0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.0 0.0 0.0 
Nebrioporus 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.5 0.0 0.0 0.0 
Nemoura 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.3 0.0 0.0 0.0 
Nepa 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.2 0.5 0.0 0.3 0.5 0.0 0.0 
Neureclipsis  0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.1 0.1 0.3 0.0 0.0 0.0 
Ochthebius 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.2 0.2 0.0 0.6 0.0 0.0 0.0 
Oligoneuriella  0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.4 0.1 0.1 0.3 1.0 0.0 0.0 
Ophiogomphus 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.6 1.0 0.0 0.0 
Orthocladiinae/ 
Diamesinae 0.0 0.0 0.0 0.4 0.2 0.0 0.4 0.0 0.4 0.2 0.2 0.2 0.0 0.0 0.0 
Paraleptophlebia 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.4 0.0 0.0 0.0 
Perla 0.0 0.0 0.6 0.0 0.4 0.0 0.0 0.0 0.3 0.5 0.0 0.3 0.5 0.0 0.0 
Physidae 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 
Planorbiidae 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.7 0.3 0.0 0.0 0.0 0.0 0.5 
Procloeon 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.3 1.0 0.0 0.0 
Psychomyia  0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.0 0.0 0.0 
Rhithrogena 0.0 0.2 0.2 0.6 0.0 0.0 0.0 0.0 0.3 0.2 0.1 0.3 0.5 0.0 0.0 
Rhyacophila 0.0 0.0 0.8 0.0 0.3 0.0 0.0 0.0 0.4 0.3 0.1 0.3 0.2 0.0 0.0 
Serratella 0.0 0.2 0.6 0.0 0.0 0.2 0.0 0.0 0.2 0.3 0.1 0.3 0.5 0.0 0.0 
Sialis 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.7 0.0 0.3 0.0 0.0 0.0 
Sigara 0.0 0.0 0.2 0.5 0.0 0.3 0.0 0.0 0.2 0.3 0.2 0.3 0.0 0.0 0.0 
Simulium  0.0 0.2 0.0 0.5 0.2 0.0 0.2 0.0 0.3 0.3 0.4 0.1 0.5 0.0 0.0 
Siphlonurus 0.0 0.2 0.6 0.0 0.0 0.2 0.0 0.0 0.1 0.3 0.1 0.4 1.0 0.0 0.0 
Skwala 0.0 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.3 0.5 0.0 0.3 0.6 0.0 0.0 
Somatochlora 0.0 0.6 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0 
Sphaeriidae 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.2 0.2 0.0 0.0 0.0 0.0 
Stictotarsus  0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.6 0.0 0.0 0.0 
Suwallia 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.3 0.0 0.2 0.0 0.0 0.0 
Tabanidae 0.0 0.0 0.0 0.6 0.0 0.0 0.4 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0 
Tanypodinae 0.0 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.4 0.2 0.2 0.2 0.0 0.0 0.0 
Tipula 0.0 0.8 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 
Tubificidae 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.3 1.0 0.0 0.0 0.0 0.0 0.3 0.0 
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Acanthametropus 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.4 0.0 
Acentrella 0.0 1.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Agabus 0.0 1.0 0.3 0.0 0.0 0.8 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Agapetus  0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.8 0.0 
Agnetina  0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Ameletus  0.0 0.5 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.8 0.2 0.0 0.0 0.0 0.0 
Amphinemura  0.4 0.4 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Anabolia 0.8 0.3 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Apatania 0.7 0.3 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.2 0.0 
Arcynopteryx 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Atherix  0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 
Baetis  0.0 0.5 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.4 0.5 0.0 0.1 0.0 0.0 
Bezzia 0.0 0.8 0.0 1.0 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4 0.0 0.0 0.0 
Blepharicera 1.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 
Brachycentrus 0.0 1.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.6 0.0 
Brachycercus 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Ceraclea 0.5 0.5 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Ceratopogoninae 0.0 0.8 0.0 1.0 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.4 0.0 0.0 0.0 
Chaoborus 0.5 0.0 0.8 0.0 0.0 0.0 0.3 0.0 0.1 0.7 0.1 0.0 0.0 0.0 0.0 
Chironominae 0.3 0.8 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.2 0.1 0.2 0.0 
Chloroperlidae  0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 
Cloeon  0.0 1.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 
Copelatus 0.0 1.0 0.3 0.0 0.0 0.8 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Corixidae 1.0 0.0 0.2 0.0 0.3 0.5 0.0 0.2 0.0 0.8 0.0 0.0 0.0 0.0 0.0 
Crenitis  0.0 1.0 0.2 0.0 0.2 0.6 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Dicranota 0.0 0.5 0.3 0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 
Diura 0.4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Dixa 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.5 0.2 0.2 0.0 0.0 0.2 0.0 
Drunella  0.3 0.3 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Dytiscidae 0.0 1.0 0.3 0.0 0.0 0.8 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Ecdyonurus 0.2 0.4 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Epeorus 0.2 0.6 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Ephemera  0.6 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 
Ephemerella 0.3 0.3 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Ephoron 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
Ephydridae 0.5 0.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.0 
Gammaridae 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.5 0.0 0.2 0.0 0.0 
Gerris  0.5 0.2 0.0 0.0 0.0 1.0 0.0 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 
Glossiphoniidae 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 0.0 
Glossosoma 0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.8 0.0 
Goera 0.0 1.0 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.2 0.0 
Gomphidae 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 
Haliplus 0.0 1.0 0.5 0.0 0.0 0.5 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Helophorus 0.0 1.0 0.0 0.0 0.3 0.8 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Heptagenia 0.4 0.4 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Heptageniidae/ 
Cinygma 0.2 0.4 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
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Hexagenia 0.6 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 
Hexatoma 0.0 0.5 0.3 0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 
Hydropsyche 0.0 1.0 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.6 0.0 
Isonychia 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.4 0.0 
Isoperla 0.3 0.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 0.0 
Lepidostoma 0.0 1.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Leptophlebia 0.0 1.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.3 0.6 0.0 0.1 0.0 0.0 
Lestes 0.0 0.3 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Limnephilini 0.0 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Limnophila 0.0 0.5 0.3 0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 
Mesovelia 0.3 0.0 0.0 0.0 0.0 1.0 0.0 0.2 0.7 0.0 0.2 0.0 0.0 0.0 0.0 
Metretopodidae 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.4 0.0 
Micronecta 1.0 0.0 0.3 0.0 0.3 0.3 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 
Mystacides  0.0 1.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Nebrioporus 0.0 1.0 0.3 0.0 0.0 0.8 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Nemoura 0.3 0.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Nepa 0.0 0.5 0.2 0.0 0.2 0.6 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Neureclipsis  0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.6 0.0 
Ochthebius 0.0 1.0 0.0 0.0 0.4 0.6 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Oligoneuriella  0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Ophiogomphus 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0 0.0 
Orthocladiinae/ 
Diamesinae 0.0 1.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.1 0.3 0.1 0.0 
Paraleptophlebia 0.0 1.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.2 0.0 0.0 0.0 
Perla 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Physidae 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Planorbiidae 0.5 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.3 0.0 0.7 0.0 0.0 0.0 0.0 
Procloeon 0.0 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 
Psychomyia  0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.2 
Rhithrogena 0.0 0.5 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.0 0.1 0.0 0.0 
Rhyacophila 0.3 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.3 0.5 0.0 0.0 0.2 0.0 
Serratella 0.3 0.3 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 
Sialis 0.0 0.0 0.0 0.8 0.0 0.3 0.0 0.0 0.0 0.1 0.5 0.4 0.0 0.0 0.0 
Sigara 1.0 0.0 0.2 0.0 0.3 0.5 0.0 0.2 0.0 0.8 0.0 0.0 0.0 0.0 0.0 
Simulium  0.5 0.0 0.4 0.1 0.0 0.4 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.6 0.0 
Siphlonurus 0.0 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 
Skwala 0.4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Somatochlora 1.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 0.0 
Sphaeriidae 1.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 0.0 0.3 0.0 
Stictotarsus  0.0 1.0 0.3 0.0 0.0 0.8 0.0 0.1 0.0 0.4 0.4 0.0 0.0 0.0 0.0 
Suwallia 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 
Tabanidae 0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.0 0.3 0.6 0.0 0.0 0.0 
Tanypodinae 0.0 1.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.4 0.3 0.1 0.1 0.0 0.0 
Tipula 0.0 0.5 0.3 0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 
Tubificidae 0.0 0.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 
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Acanthametropus 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Acentrella 0.0 0.3 0.1 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 
Agabus 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.2 0.0 0.0 0.5 0.0 0.0 0.5 
Agapetus  0.0 0.2 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 
Agnetina  0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.8 0.0 0.0 0.0 
Ameletus  0.1 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.5 0.0 0.0 
Amphinemura  0.0 0.3 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.0 0.0 
Anabolia 0.0 0.1 0.3 0.3 0.3 0.0 0.0 0.1 0.0 0.0 0.1 0.4 0.3 0.0 0.0 
Apatania 0.0 0.1 0.1 0.5 0.1 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.6 0.0 0.0 
Arcynopteryx 0.1 0.1 0.2 0.1 0.2 0.0 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 
Atherix  0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Baetis  0.0 0.2 0.2 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 
Bezzia 0.0 0.1 0.0 0.2 0.0 0.1 0.4 0.2 0.0 0.0 0.2 0.2 0.0 0.0 0.0 
Blepharicera 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
Brachycentrus 0.0 0.1 0.1 0.2 0.3 0.0 0.2 0.0 0.0 0.0 0.0 0.3 0.3 0.4 0.0 
Brachycercus 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Ceraclea 0.0 0.4 0.1 0.1 0.2 0.0 0.0 0.2 0.0 0.0 0.1 0.4 0.1 0.0 0.0 
Ceratopogoninae 0.0 0.1 0.0 0.2 0.0 0.1 0.4 0.2 0.0 0.0 0.2 0.2 0.0 0.0 0.0 
Chaoborus 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Chironominae 0.0 0.5 0.0 0.2 0.2 0.0 0.1 0.1 0.0 0.0 0.3 0.2 0.1 0.2 0.0 
Chloroperlidae  0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.5 0.0 0.0 0.2 0.5 0.2 0.0 0.0 
Cloeon  0.0 0.3 0.1 0.3 0.1 0.0 0.1 0.0 0.0 0.0 0.4 0.1 0.4 0.0 0.0 
Copelatus 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0 
Corixidae 0.0 0.0 0.1 0.2 0.1 0.2 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.6 
Crenitis  0.0 0.0 0.0 0.4 0.0 0.0 0.4 0.1 0.0 0.0 0.0 0.8 0.0 0.0 0.0 
Dicranota 0.0 0.2 0.3 0.2 0.2 0.0 0.1 0.2 0.0 0.0 0.3 0.4 0.0 0.0 0.0 
Diura 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dixa 0.0 0.4 0.0 0.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.6 0.0 
Drunella  0.0 0.1 0.3 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dytiscidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.5 0.0 0.0 0.5 
Ecdyonurus 0.1 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 
Epeorus 0.0 0.2 0.0 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 
Ephemera  0.0 0.4 0.3 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.1 0.4 0.0 0.4 0.0 
Ephemerella 0.0 0.1 0.3 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.2 0.3 0.3 0.0 0.0 
Ephoron 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.8 0.0 
Ephydridae 0.0 0.2 0.1 0.4 0.2 0.1 0.0 0.2 0.0 0.0 0.1 0.1 0.3 0.3 0.1 
Gammaridae 0.0 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.8 0.3 0.0 0.0 
Gerris  0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 
Glossiphoniidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 
Glossosoma 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
Goera 0.0 0.2 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.0 
Gomphidae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Haliplus 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 
Helophorus 0.0 0.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.0 
Heptagenia 0.1 0.2 0.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.5 0.0 0.0 
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Heptageniidae/ 
Cinygma 0.1 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 
Hexagenia 0.0 0.4 0.3 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.1 0.4 0.0 0.4 0.0 
Hexatoma 0.0 0.2 0.3 0.2 0.2 0.0 0.1 0.2 0.0 0.0 0.3 0.4 0.0 0.0 0.0 
Hydropsyche 0.0 0.2 0.1 0.3 0.0 0.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.8 0.0 
Isonychia 0.1 0.4 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.6 0.0 
Isoperla 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.6 0.0 0.0 0.0 0.6 0.2 0.0 0.0 
Lepidostoma 0.0 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 
Leptophlebia 0.1 0.4 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.0 0.0 0.0 
Lestes 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Limnephilini 0.0 0.1 0.6 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
Limnophila 0.0 0.2 0.3 0.2 0.2 0.0 0.1 0.2 0.0 0.0 0.3 0.4 0.0 0.0 0.0 
Mesovelia 0.0 0.0 0.0 0.0 0.0 0.1 0.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Metretopodidae 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Micronecta 0.0 0.0 0.0 0.3 0.3 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.4 
Mystacides  0.0 0.2 0.0 0.2 0.4 0.0 0.0 0.1 0.0 0.0 0.2 0.5 0.3 0.0 0.0 
Nebrioporus 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.5 0.0 0.0 0.5 
Nemoura 0.0 0.3 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
Nepa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.8 
Neureclipsis  0.0 0.0 0.1 0.1 0.1 0.0 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.5 0.0 
Ochthebius 0.0 0.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.0 
Oligoneuriella  0.2 0.3 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 0.4 0.0 
Ophiogomphus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Orthocladiinae/ 
Diamesinae 0.0 0.3 0.0 0.5 0.1 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.5 0.2 0.0 
Paraleptophlebia 0.0 0.4 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.2 0.0 0.0 
Perla 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.8 0.0 0.0 0.0 
Physidae 0.0 0.0 0.2 0.3 0.3 0.1 0.0 0.1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
Planorbiidae 0.0 0.0 0.4 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0 
Procloeon 0.0 0.3 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.7 0.0 0.0 
Psychomyia  0.0 0.1 0.0 0.6 0.1 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.5 0.3 0.0 
Rhithrogena 0.0 0.2 0.0 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.8 0.0 0.0 
Rhyacophila 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Serratella 0.0 0.1 0.3 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.2 0.3 0.3 0.0 0.0 
Sialis 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sigara 0.0 0.0 0.3 0.3 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.3 
Simulium  0.0 0.6 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 
Siphlonurus 0.1 0.2 0.1 0.1 0.2 0.2 0.0 0.2 0.0 0.0 0.3 0.1 0.4 0.0 0.0 
Skwala 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Somatochlora 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sphaeriidae 0.0 0.3 0.0 0.5 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
Stictotarsus  0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.0 0.0 0.5 0.0 0.0 0.5 
Suwallia 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.5 0.0 0.0 0.2 0.5 0.2 0.0 0.0 
Tabanidae 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.3 0.0 0.0 0.8 
Tanypodinae 0.0 0.0 0.1 0.1 0.0 0.1 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tipula 0.0 0.2 0.3 0.2 0.2 0.0 0.1 0.2 0.0 0.0 0.3 0.4 0.0 0.0 0.0 
Tubificidae 0.2 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.0 0.0 0.0 
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Acanthametropus 1.0 0.0 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.4 
Acentrella 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
Agabus 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.0 0.3 0.3 0.8 0.3 0.0 0.0 
Agapetus  0.0 0.0 0.5 0.2 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.4 0.4 0.2 
Agnetina  0.3 0.0 0.4 0.3 0.1 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.3 0.8 
Ameletus  0.0 0.0 0.3 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.2 0.2 0.2 0.5 0.2 
Amphinemura  0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.0 0.3 0.5 0.3 
Anabolia 0.1 0.0 0.3 0.0 0.2 0.0 0.5 0.0 0.0 0.1 0.0 0.2 0.5 0.3 0.0 
Apatania 0.2 0.0 0.2 0.2 0.2 0.1 0.2 0.0 0.0 0.2 0.1 0.0 0.4 0.3 0.3 
Arcynopteryx 0.7 0.0 0.6 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.2 
Atherix  0.0 0.0 0.3 0.2 0.0 0.0 0.3 0.0 0.1 0.1 0.1 0.0 0.4 0.6 0.0 
Baetis  0.0 0.0 0.3 0.1 0.1 0.0 0.3 0.0 0.2 0.1 0.0 0.0 0.3 0.4 0.3 
Bezzia 0.6 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.0 0.2 0.6 0.2 0.2 0.0 
Blepharicera 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Brachycentrus 0.1 0.0 0.3 0.1 0.0 0.1 0.3 0.0 0.2 0.0 0.0 0.0 0.3 0.5 0.2 
Brachycercus 0.0 0.0 0.0 0.0 0.3 0.2 0.1 0.0 0.0 0.0 0.3 0.0 1.0 0.0 0.0 
Ceraclea 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.5 0.2 0.2 
Ceratopogoninae 0.6 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.0 0.2 0.6 0.2 0.2 0.0 
Chaoborus 1.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.5 0.8 0.3 0.0 0.0 
Chironominae 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.0 0.1 0.0 0.2 0.8 0.3 0.0 0.0 
Chloroperlidae  0.2 0.0 0.2 0.3 0.0 0.1 0.2 0.0 0.1 0.3 0.0 0.0 0.4 0.4 0.2 
Cloeon  0.0 0.0 0.1 0.0 0.1 0.1 0.5 0.0 0.0 0.2 0.1 0.8 0.3 0.0 0.0 
Copelatus 0.4 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.3 0.3 1.0 0.0 0.0 0.0 
Corixidae 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.4 0.0 0.8 0.3 0.0 0.0 
Crenitis  0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.0 0.3 0.3 1.0 0.0 0.0 0.0 
Dicranota 0.3 0.0 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.1 0.5 0.3 0.2 0.0 
Diura 1.0 0.0 0.2 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.4 
Dixa 0.2 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.1 0.3 0.0 0.0 0.2 0.6 0.2 
Drunella  1.0 0.0 0.2 0.1 0.1 0.1 0.2 0.0 0.2 0.1 0.1 0.0 0.4 0.4 0.1 
Dytiscidae 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.3 0.3 1.0 0.0 0.0 0.0 
Ecdyonurus 0.0 0.0 0.5 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.3 0.4 0.3 
Epeorus 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 
Ephemera  0.1 0.0 0.0 0.3 0.3 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.5 0.3 0.0 
Ephemerella 0.2 0.0 0.2 0.1 0.1 0.1 0.3 0.0 0.2 0.1 0.1 0.0 0.4 0.4 0.1 
Ephoron 0.0 0.0 0.1 0.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 
Ephydridae 0.0 0.1 0.2 0.1 0.1 0.0 0.3 0.0 0.1 0.1 0.2 0.3 0.3 0.3 0.0 
Gammaridae 0.0 0.0 0.2 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.0 0.1 0.3 0.4 0.1 
Gerris  0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.4 0.1 0.1 
Glossiphoniidae 0.0 0.3 0.4 0.3 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.3 0.3 0.3 0.1 
Glossosoma 0.0 0.0 0.6 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.3 0.5 0.2 
Goera 0.0 0.0 0.4 0.2 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.1 
Gomphidae 1.0 0.0 0.2 0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.2 0.2 0.3 0.5 0.0 
Haliplus 0.0 0.0 0.1 0.1 0.1 0.3 0.3 0.0 0.0 0.0 0.2 0.5 0.3 0.2 0.0 
Helophorus 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.3 0.3 0.8 0.3 0.0 0.0 
Heptagenia 0.0 0.0 0.5 0.2 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.3 0.4 0.3 
Heptageniidae/ 
Cinygma 0.0 0.0 0.5 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.3 0.4 0.3 
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Hexagenia 0.1 0.0 0.0 0.3 0.3 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.5 0.3 0.0 
Hexatoma 0.3 0.0 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.1 0.5 0.3 0.2 0.0 
Hydropsyche 0.3 0.0 0.3 0.1 0.1 0.0 0.2 0.0 0.3 0.0 0.0 0.0 0.2 0.6 0.2 
Isonychia 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.5 0.3 0.0 0.0 0.2 0.6 0.2 
Isoperla 0.2 0.0 0.2 0.2 0.2 0.0 0.2 0.0 0.1 0.2 0.0 0.0 0.2 0.5 0.3 
Lepidostoma 0.0 0.0 0.2 0.1 0.1 0.0 0.3 0.0 0.2 0.0 0.0 0.2 0.5 0.2 0.2 
Leptophlebia 0.0 0.0 0.2 0.1 0.1 0.0 0.3 0.0 0.2 0.3 0.0 0.6 0.4 0.0 0.0 
Lestes 1.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.2 0.0 0.8 0.3 0.0 0.0 
Limnephilini 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.2 0.2 0.1 0.4 0.4 0.1 0.0 
Limnophila 0.3 0.0 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.1 0.5 0.3 0.2 0.0 
Mesovelia 0.0 0.0 0.3 0.0 0.0 0.0 0.5 0.0 0.1 0.0 0.1 0.8 0.3 0.0 0.0 
Metretopodidae 1.0 0.0 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.4 
Micronecta 0.0 0.0 0.2 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.2 0.5 0.3 0.3 0.0 
Mystacides  0.0 0.0 0.2 0.1 0.1 0.1 0.2 0.0 0.2 0.1 0.1 0.3 0.5 0.2 0.0 
Nebrioporus 0.0 0.0 0.1 0.3 0.3 0.1 0.1 0.0 0.0 0.1 0.0 0.5 0.3 0.2 0.0 
Nemoura 0.0 0.0 0.2 0.0 0.0 0.1 0.4 0.0 0.1 0.3 0.0 0.2 0.2 0.3 0.3 
Nepa 0.3 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.3 0.3 0.6 0.4 0.0 0.0 
Neureclipsis  0.5 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.1 0.4 0.3 0.1 
Ochthebius 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.8 0.3 0.0 0.0 
Oligoneuriella  0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.3 0.0 0.0 0.0 0.0 0.4 0.6 
Ophiogomphus 1.0 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.3 0.0 0.1 0.0 0.4 0.4 0.2 
Orthocladiinae/ 
Diamesinae 0.0 0.2 0.3 0.2 0.1 0.1 0.2 0.1 0.0 0.1 0.1 0.2 0.3 0.2 0.2 
Paraleptophlebia 0.0 0.0 0.2 0.2 0.1 0.0 0.2 0.0 0.2 0.2 0.0 0.0 0.3 0.8 0.0 
Perla 0.3 0.0 0.4 0.3 0.1 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.3 0.8 
Physidae 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 
Planorbiidae 0.0 0.0 0.2 0.1 0.1 0.1 0.3 0.1 0.0 0.1 0.2 0.8 0.3 0.0 0.0 
Procloeon 0.0 0.0 0.0 0.0 0.5 0.2 0.3 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.0 
Psychomyia  0.0 0.0 0.4 0.1 0.1 0.0 0.2 0.0 0.3 0.0 0.0 0.1 0.4 0.3 0.1 
Rhithrogena 0.0 0.0 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.4 0.6 
Rhyacophila 1.0 0.0 0.5 0.1 0.1 0.0 0.1 0.0 0.2 0.1 0.0 0.0 0.2 0.5 0.3 
Serratella 0.2 0.0 0.2 0.1 0.1 0.1 0.3 0.0 0.2 0.1 0.1 0.0 0.4 0.4 0.1 
Sialis 1.0 0.0 0.1 0.2 0.2 0.2 0.1 0.0 0.0 0.1 0.1 0.4 0.4 0.3 0.0 
Sigara 0.0 0.0 0.0 0.1 0.2 0.1 0.3 0.0 0.0 0.3 0.0 0.6 0.4 0.0 0.0 
Simulium  0.0 0.0 0.3 0.1 0.0 0.0 0.4 0.0 0.2 0.1 0.0 0.0 0.2 0.4 0.4 
Siphlonurus 0.1 0.0 0.0 0.0 0.1 0.1 0.6 0.0 0.0 0.0 0.1 0.5 0.5 0.0 0.0 
Skwala 1.0 0.0 0.2 0.3 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.4 
Somatochlora 1.0 0.0 0.1 0.0 0.1 0.1 0.2 0.0 0.0 0.4 0.2 0.8 0.3 0.0 0.0 
Sphaeriidae 0.0 0.0 0.1 0.0 0.3 0.1 0.1 0.1 0.0 0.0 0.3 0.5 0.3 0.2 0.0 
Stictotarsus  0.0 0.0 0.0 0.0 0.2 0.2 0.4 0.0 0.0 0.2 0.0 0.8 0.3 0.0 0.0 
Suwallia 0.2 0.0 0.2 0.3 0.0 0.1 0.2 0.0 0.1 0.3 0.0 0.0 0.4 0.4 0.2 
Tabanidae 0.0 0.0 0.0 0.1 0.2 0.0 0.2 0.0 0.0 0.3 0.3 0.4 0.4 0.2 0.0 
Tanypodinae 1.0 0.0 0.1 0.1 0.2 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.2 0.4 0.4 
Tipula 0.3 0.0 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.1 0.5 0.3 0.2 0.0 
Tubificidae 0.0 0.0 0.1 0.2 0.2 0.2 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.2 
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Acanthametropus 0.0 0.5 0.5 0.5 0.0 0.5 0.0 0.4 0.4 0.1 0.0 
Acentrella 1.0 0.0 0.0 0.0 0.0 1.0 0.2 0.6 0.2 0.0 0.0 
Agabus 0.1 0.4 0.4 0.0 0.0 1.0 0.0 0.4 0.4 0.3 0.0 
Agapetus  0.8 0.3 0.0 0.3 0.0 0.8 0.3 0.4 0.4 0.0 0.0 
Agnetina  1.0 0.0 0.0 0.2 0.2 0.6 0.3 0.5 0.3 0.0 0.0 
Ameletus  1.0 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.0 0.0 0.0 
Amphinemura  1.0 0.0 0.0 1.0 0.0 0.0 0.2 0.6 0.2 0.0 0.0 
Anabolia 0.3 0.5 0.2 0.0 0.0 1.0 0.0 0.2 0.6 0.2 0.0 
Apatania 0.8 0.3 0.0 1.0 0.0 0.0 0.5 0.3 0.2 0.0 0.0 
Arcynopteryx 1.0 0.0 0.0 0.8 0.0 0.3 0.8 0.3 0.0 0.0 0.0 
Atherix  0.6 0.4 0.0 0.0 0.0 1.0 0.1 0.3 0.4 0.1 0.0 
Baetis  0.3 0.3 0.3 0.0 0.0 1.0 0.1 0.3 0.4 0.1 0.0 
Bezzia 0.3 0.3 0.3 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.1 
Blepharicera 1.0 0.0 0.0 1.0 0.0 0.0 0.5 0.3 0.2 0.0 0.0 
Brachycentrus 0.5 0.3 0.3 0.0 0.0 0.0 0.1 0.3 0.4 0.1 0.0 
Brachycercus 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.2 0.5 0.3 0.0 
Ceraclea 0.3 0.3 0.5 0.0 0.0 1.0 0.0 0.2 0.5 0.3 0.0 
Ceratopogoninae 0.3 0.3 0.3 0.0 0.0 1.0 0.0 0.3 0.3 0.3 0.1 
Chaoborus 0.1 0.4 0.4 0.3 0.0 0.8 0.0 0.2 0.5 0.3 0.0 
Chironominae 0.0 0.4 0.6 0.2 0.3 0.5 0.0 0.1 0.3 0.3 0.3 
Chloroperlidae  0.8 0.3 0.0 0.5 0.0 0.5 0.2 0.5 0.3 0.0 0.0 
Cloeon  0.0 0.5 0.5 0.0 0.3 0.8 0.0 0.0 0.6 0.4 0.0 
Copelatus 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.0 0.5 0.5 0.0 
Corixidae 0.2 0.5 0.3 0.0 0.0 1.0 0.0 0.2 0.3 0.5 0.0 
Crenitis  0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.0 
Dicranota 0.5 0.3 0.2 0.3 0.0 0.8 0.2 0.3 0.3 0.1 0.0 
Diura 1.0 0.0 0.0 0.3 0.0 0.8 0.5 0.5 0.0 0.0 0.0 
Dixa 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
Drunella  0.4 0.6 0.0 0.0 0.3 0.7 0.1 0.3 0.4 0.1 0.0 
Dytiscidae 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.2 0.3 0.5 0.0 
Ecdyonurus 0.4 0.6 0.0 0.2 0.2 0.6 0.1 0.4 0.4 0.1 0.0 
Epeorus 0.8 0.3 0.0 0.5 0.0 0.5 0.3 0.5 0.2 0.0 0.0 
Ephemera  0.3 0.5 0.3 0.0 0.0 1.0 0.2 0.2 0.5 0.2 0.0 
Ephemerella 0.4 0.6 0.0 0.0 0.3 0.7 0.1 0.3 0.4 0.1 0.0 
Ephoron 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.0 
Ephydridae 0.3 0.5 0.3 0.2 0.2 0.6 0.0 0.0 0.6 0.4 0.0 
Gammaridae 0.5 0.5 0.0 0.3 0.0 0.8 0.1 0.3 0.4 0.3 0.0 
Gerris  0.3 0.3 0.4 0.0 0.0 1.0 0.0 0.2 0.4 0.4 0.0 
Glossiphoniidae 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.2 0.5 0.3 0.0 
Glossosoma 0.8 0.3 0.0 0.0 0.0 1.0 0.3 0.5 0.3 0.0 0.0 
Goera 0.4 0.6 0.0 0.0 0.0 1.0 0.0 0.2 0.5 0.3 0.0 
Gomphidae 0.5 0.3 0.2 0.0 0.0 1.0 0.0 0.2 0.5 0.3 0.0 
Haliplus 0.1 0.4 0.4 0.0 0.0 1.0 0.0 0.2 0.6 0.2 0.0 
Helophorus 0.2 0.2 0.6 0.0 0.0 1.0 0.0 0.1 0.4 0.4 0.0 
Heptagenia 0.0 0.8 0.3 0.0 0.0 1.0 0.0 0.2 0.6 0.2 0.0 
Heptageniidae/ 
Cinygma 0.4 0.6 0.0 0.2 0.2 0.6 0.1 0.4 0.4 0.1 0.0 
Hexagenia 0.3 0.5 0.3 0.0 0.0 1.0 0.2 0.2 0.5 0.2 0.0 



118 
 

Taxa 

Tr
o_

p-
1 

Tr
o_

p-
2 

Tr
o_

p-
3 

Te
m

p-
1 

Te
m

p-
2 

Te
m

p-
3 

Sa
pr

-1
 

Sa
pr

-2
 

Sa
pr

-3
 

Sa
pr

-4
 

Sa
pr

-5
 

Hexatoma 0.5 0.3 0.2 0.3 0.0 0.8 0.2 0.3 0.3 0.1 0.0 
Hydropsyche 0.2 0.5 0.3 0.2 0.2 0.6 0.1 0.3 0.4 0.3 0.0 
Isonychia 0.0 0.5 0.5 0.5 0.0 0.5 0.0 0.4 0.4 0.1 0.0 
Isoperla 0.6 0.4 0.0 0.7 0.0 0.3 0.3 0.5 0.2 0.0 0.0 
Lepidostoma 0.6 0.4 0.0 0.0 0.0 1.0 0.0 0.3 0.7 0.0 0.0 
Leptophlebia 0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.2 0.6 0.2 0.0 
Lestes 0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 
Limnephilini 0.0 0.5 0.5 0.0 0.0 1.0 0.3 0.3 0.4 0.1 0.0 
Limnophila 0.5 0.3 0.2 0.3 0.0 0.8 0.2 0.3 0.3 0.1 0.0 
Mesovelia 0.3 0.5 0.3 0.0 0.0 1.0 0.0 0.3 0.5 0.3 0.0 
Metretopodidae 0.0 0.5 0.5 0.5 0.0 0.5 0.0 0.4 0.4 0.1 0.0 
Micronecta 0.5 0.3 0.2 0.0 0.0 1.0 0.0 0.4 0.4 0.2 0.0 
Mystacides  0.1 0.4 0.4 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.0 
Nebrioporus 0.5 0.5 0.0 0.3 0.0 0.8 0.0 0.3 0.8 0.0 0.0 
Nemoura 0.3 0.5 0.2 0.7 0.0 0.3 0.3 0.5 0.3 0.0 0.0 
Nepa 0.2 0.6 0.2 0.0 0.0 1.0 0.0 0.0 0.8 0.3 0.0 
Neureclipsis  0.2 0.4 0.4 0.0 0.0 1.0 0.0 0.2 0.6 0.2 0.0 
Ochthebius 0.0 0.3 0.8 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
Oligoneuriella  0.0 1.0 0.0 0.0 0.3 0.8 0.0 0.3 0.8 0.0 0.0 
Ophiogomphus 0.3 0.3 0.3 0.3 0.0 0.8 0.0 0.3 0.5 0.2 0.0 
Orthocladiinae/ 
Diamesinae 0.4 0.4 0.2 0.5 0.0 0.5 0.2 0.3 0.3 0.1 0.0 
Paraleptophlebia 0.4 0.4 0.2 0.0 0.0 1.0 0.0 0.5 0.3 0.2 0.0 
Perla 1.0 0.0 0.0 0.2 0.2 0.6 0.3 0.5 0.3 0.0 0.0 
Physidae 0.0 0.8 0.3 0.0 0.4 0.6 0.0 0.0 0.3 0.5 0.2 
Planorbiidae 0.0 0.6 0.4 0.0 0.3 0.8 0.0 0.2 0.6 0.2 0.0 
Procloeon 0.0 0.6 0.4 0.0 0.0 1.0 0.0 0.2 0.4 0.4 0.0 
Psychomyia  0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.2 0.5 0.3 0.0 
Rhithrogena 0.8 0.3 0.0 0.7 0.0 0.3 0.3 0.4 0.3 0.0 0.0 
Rhyacophila 0.6 0.4 0.0 0.2 0.2 0.6 0.3 0.4 0.3 0.1 0.0 
Serratella 0.4 0.6 0.0 0.0 0.3 0.7 0.1 0.3 0.4 0.1 0.0 
Sialis 0.3 0.5 0.2 1.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 
Sigara 0.4 0.4 0.3 0.0 0.0 1.0 0.0 0.4 0.4 0.3 0.0 
Simulium  0.2 0.6 0.2 0.3 0.3 0.4 0.1 0.3 0.4 0.1 0.0 
Siphlonurus 0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.4 0.4 0.1 0.0 
Skwala 1.0 0.0 0.0 0.3 0.0 0.8 0.5 0.5 0.0 0.0 0.0 
Somatochlora 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.3 0.5 0.2 0.0 
Sphaeriidae 0.2 0.6 0.2 0.0 0.0 1.0 0.0 0.2 0.5 0.3 0.0 
Stictotarsus  0.3 0.8 0.0 0.0 0.0 1.0 0.0 0.2 0.6 0.2 0.0 
Suwallia 0.8 0.3 0.0 0.5 0.0 0.5 0.2 0.5 0.3 0.0 0.0 
Tabanidae 0.0 0.5 0.5 0.0 0.3 0.8 0.0 0.3 0.4 0.3 0.0 
Tanypodinae 0.2 0.3 0.5 0.4 0.0 0.6 0.1 0.3 0.3 0.2 0.0 
Tipula 0.5 0.3 0.2 0.3 0.0 0.8 0.2 0.3 0.3 0.1 0.0 
Tubificidae 0.0 0.4 0.6 0.0 0.3 0.8 0.0 0.0 0.3 0.5 0.2 
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Appendix D 

Black fly(Simulium) species trait matrix 
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Size-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Size-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Size-3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Size-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Size-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Size-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Life-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Life-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Volt-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Volt-2 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Volt-3 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Aqua-1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Aqua-2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Aqua-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Aqua-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Repr-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Repr-2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 
Repr-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Repr-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 
Repr-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Repr-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Repr-7 0.0 0.0 0.0 0.0 0.0   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Repr-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Desi-1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Desi-2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Desi-3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Desi-4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Resi-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Resi-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Resi-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Resi-4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Resi-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Resp-1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
Resp-2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
Resp-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Resp-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Resp-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Habi-1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
Habi-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Habi-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Habi-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Habi-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Habi-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Habi-7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
Habi-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Food-1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Food-2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Food-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Food-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Food-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Food-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Food-7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Food-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Food-9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Trop-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Trop-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Trop-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Trop-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Trop-5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Trop-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Trop-7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Trop-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dist-1 0.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.3 0.5 
Dist-2 0.0 0.5 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.5 0.5 0.0 0.0 0.3 0.5 
Dist-3 0.5 0.0 0.0 0.3 0.3 0.5 0.5 0.5 0.3 0.5 0.0 0.0 0.5 0.0 0.3 0.0 
Dist-4 0.5 0.0 0.0 0.3 0.3 0.5 0.5 0.5 0.3 0.5 0.0 0.0 0.5 0.0 0.3 0.0 
Dist-5 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dist-6 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
Dist-7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dist-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Alti-1 0.5 0.5 0.0 0.5 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Alti-2 0.5 0.5 0.0 0.5 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Alti-3 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subs-1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Subs-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Subs-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subs-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subs-5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Subs-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subs-7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subs-8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Subs-9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Velo-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Velo-2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Velo-3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Velo-4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Tro_p-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tro_p-2 0.5 0.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.5 1.0 0.5 
Tro_p-3 0.5 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.5 0.0 0.5 
Sali-1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Sali-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Temp-1 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Temp-2 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 
Temp-3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
Sapr-1 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sapr-2 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 1.0 0.0 1.0 0.5 
Sapr-3 1.0 0.5 0.0 0.5 0.0 0.5 0.5 0.5 0.0 0.5 0.3 0.3 0.0 1.0 0.0 0.5 
Sapr-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 
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Appendix E 

Environmental variables 

 
Semi-natural      Moderate land-use intensity                High land-use intensity 

  Data range MIN AVR MAX MIN AVR MAX MIN AVR MAX 
Suspended solid (mg/l) 0.006 15.9 142 4 43.5 105 31 183.9 355 
Nitrite (mg/l) 0.005 0.1 1.4 0.007 3.8 57 0.003 0.04 0.1 
Ammonia (mg/l) 0 0.05 0.3 0.02 0.06 0.16 0.15 0.3 0.4 
Nitrate (mg/l) 0.5 1.7 4.5 0 2.0 12 0.4 3.7 8 
Sulfate (mg/l) 1 19.3 90 9 36.7 77 14 28.5 47 
Phosphate (mg/l) 0.1 0.6 3.9 0.2 1.2 2.9 0.5 1.1 3.3 
Turbidity (NTU) 1.2 13.9 87.4 6.1 29.1 64.5 65.5 156.1 203 
Conductivity (µS) 24.4 62 151.2 95.9 230.8 405.5 141.1 221 325.6 
Salinity (mg/l) 0 0.03 0.1 0.1 0.1 0.3 0.1 0.1 0.2 
Temperature (°C) 0 12.2 18.8 11.4 17.4 22.3 15.4 20.9 24.7 
PH 7.1 7.9 8.9 7.2 8.3 9.4 7.8 8.3 8.8 
Dissolved oxygen (ppm) 9.1 11.3 13.0 8.5 11.3 13.4 7.8 9.2 12.3 
Velocity (m/sec) 0.7 1.5 2.3 0.3 0.8 1.5 1.3 1.8 2.5 
Depth (cm) 10.2 25.1 47.5 0.2 19.7 38.6 23.1 39.5 57.4 
Altitude (m) 669 1257.3 1817 682 1013.7 1819 653 924 1166 
Average vegetation height (cm) 4.9 9.7 19.8 3.7 9.6 36.6 4.6 5.7 7.7 
Maximum vegetation height (cm) 7.8 17.1 34.9 5.1 16.4 63.4 6.7 8.5 10.4 
Bedrock/Boulder (%) 0 0.06 0.4 0 0.04 0.3 0 0.01 0.05 
Cobble (%) 0.2 0.31 0.5 0 0.07 0.3 0 0.1 0.4 
Gravel (%) 0.1 0.28 0.4 0 0.2 0.4 0.2 0.4 0.5 
Sand (%) 0 0.16 0.4 0 0.2 0.5 0.05 0.3 0.6 
Silt (%) 0 0.04 0.1 0 0.06 0.2 0 0.04 0.08 
Clay (%) 0 0.03 0.08 0 0.04 0.2 0 0.3 2 
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Appendix F 

The species of crane flies (Tipuloidea) in the six study valleys of the eastern shore of Lake Hovsgol.   

New records were determined by accessing Oosterbroek (2007). Sweep sample=1, Malaise trap river bank=2, Malaise trap 

steppe-forest edge=3, new record for Hovsgol region. 

Species name BRG DLB SVL NYN SHL TRG 
Tipulinae       
Angarotipula tumidicornis (Lundstrom, 1907)     1 1 
Nephrotoma aculeata (Loew, 1871) 1 1,3   1,2 2 
Nephrotoma erebus Alexander, 1921* 2,3 1,2 1,2,3 1,2 1,2,3 1,2,3 
Nephrotoma lundbecki (Nielsen, 1907) 1,2,3 1,2,3  2 2,3 1,2,3 
Nephrotoma lunulicornis (Schummel, 1833)**  2 2,3 1  1 
Nephrotoma minuticornis Alexander, 1921**  2     
Nephrotoma quadristriata (Schummel, 1833) 2,3 1,2  1  1 
Nephrotoma ramulifera Tjeder, 1955 1,2,3 1,2,3 1 3  2 
Nephrotoma stackelbergi (Savchenko, 1957) 1,2,3 1,2,3 2,3 2,3 2,3 2,3 
Nephrotoma sublunulicornis (Savchenko, 1957) 2 2,3 3 2 3 2,3 
Prionocera ringdahli Tjederi, 1948**   1    
Prionocera serenicola Alexander, 1945 1 1 1  1  
Prionocera subserricornis (Zetterstedt, 1851) 1,2 2 2 1 1  
Prionocera chosenicola Alexander, 1945** 2  3 2 1  
Prionocera turcica (Fabricius, 1787) 1,2 1,2,3 1,2,3 1,2,3 2 1,2,3 
Tipula (Arctotipula) caliginosa Savchenko, 1961 2 2  2 2 2 
T.(Arctotipula) excelsa Savchenko, 1961 1   1 1  

T.(Arctotipula) hovgolensis Gelhaus, Podenas, & Brodo, 2000 
1,2 1,2  1,2 1,2 2 

T.(Arctotipula) quadriloba Savchenko, 1967 1,2 1 1  2 2 
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Species name BRG DLB SVL NYN SHL TRG 
T. (Arctotipula) salicetorum Siebke, 1870 1 1 1 1 1,2 1 

T. (Beringotipula) unca amuriensis Alexander, 1925 
1,2,3 1,2,3 2,3 1,2,3 1,2,3 1,2,3 

T. (Lindnerina) dershavini Alexander, 1934 1,3 2,3  1,3 1  
T. (Lunatipula) lunata Linnaeus, 1758 1,2 1,2,3 1,3 1,2 1  
T. (Lunatipula) recticornis Schummel, 1833 2,3 1,2,3  2,3  2 
T. (Lunatipula) trispinosa Lundstrom, 1907 1,2,3 1,2,3 1 1,2  1 
T. (Lunatipula) turanensis Alexander, 1934 1,2,3 1,2,3  1,2  2,3 
T. (Odonatisca) kamchatkensis Alexander, 1918 1  1 1   
T. (Odonatisca) nodicornis longicauda Matsumura, 1906 1,2 1,2 1,2,3 1,2,3 3 2,3 
T. (Odonatisca) nodicornis platyglossa Alexander, 1936 1 2,3  1,2,3 2 1 
T. (Odonatisca) subarctica Alexander, 1919 2,3 2 2    
T. (Odonatisca) timptonensis Savchenko, 1956 1   3   
T. (Pterelachisus) luridirostris Schummel, 1833*  2     
T. (Pterelachisus) winthemi Lackschewitz, 1932 2      
T. (Savtshenkia) gimmerthali Lackschewitz, 1925**  1     
T. (Savtshenkia) invenusta Riedel, 1919* 1 1 1 1 1  
T. (Savtshenkia) persignata tofina Alexander, 1945**  1 1 1   
T. (Savtshenkia) postposita Riedel, 1919 1,2,3 2,3 2,3 2 2 3 

T. (Tipula) subcunctans Alexander, 1921    1  1 
T. (Triplicitipula) justa Alexander, 1935  1 1 1   
T. (Vestiplex) kamchatkana Alexander, 1934 2,3      
T. (Vestiplex) kiritshenkoi Savchenko, 1960 1 1,2,3   1  
T. (Vestiplex) laccata Lundstrom & Frey, 1916  2,3 1,2 2   
T. (Vestiplex) longitudinalis Nielsen, 1929 1,2,3 1,2,3 2 1,2,3 2,3 1,3 
T. (Vestiplex) scripta Meigen, 1830**    3   
T. (Vestiplex) subcentralis Alexander, 1818* 1 1,3 1  2,3 3 
T. (Vestiplex) virgatula Riedel, 1913 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,3 
T. (Yamatotipula) anceps Savchenko, 1965 1,3 1,2 1 2,3 1 1 
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Species name BRG DLB SVL NYN SHL TRG 
T. (Yamatotipula) freyana Lackschewitz, 1936** 1,2 1,2 1    
T. (Yamatotipula) pierrei Tonnoir, 1921 1,3 1,2,3 1,3 1,2 1,2,3 1,2,3 
T. (Yamatotipula) pruinosa Wiedemann, 1817 1,2,3 1,2,3 1,2,3 1,2 1 1,3 
T. (Yamatotipula) quadrivittata cinifera Savchenko, 1961  2,3 2 2,3 2  

T.(Yamatotipula) quadrivittata subsulphurea Alexander, 1934* 
1 1     

Limoniinae       
Dicranomyia  (Dicranomyia) aperta Wahlgren, 1904 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2 

D. (Dicranomyia) didyma (Meigen, 1804) 1,2,3 1,2,3 1,3 2,3 1 1,2,3 

D. (Dicranomyia) distendens Lundstrom, 1912* 1 1     
D. (Dicranomyia) frontalis (Staeger, 1840) 3 1,2,3 2,3 2 2,3 2,3 
D. (Dicranomyia) halterata Osten-Sacken, 1869 1 1 1 1,2 2,3 1 
D. (Dicranomyia) hyalinata (Zetterstedt, 1851)  1,2,3 1,2,3 1,2,3 2,3 2,3 1,2,3 
D. (Dicranomyia) incisurata Lackschewitz, 1928 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 
D. (Dicranomyia) longipennis (Schummel, 1829) 1 1 1 1 1 1 
D. (Dicranomyia) modesta (Meigen, 1818) 1,2,3 1,3 1,2 1,2 1,2,3 1,2,3 
D. (Dicranomyia) omissinervis De Meijere, 1818 1 1 1 1  1 
D. (Dicranomyia) patens Lundstrom, 1907* 2 1 1 1,2   

D. (Dicranomyia) reductissima (Alexander, 1952) 1 1 1 1,2 1 1 

D. (Dicranomyia) sera (Walker, 1848)   1,2 1 1 1 
D. (Dicranomyia) tessulata (Savchenko, 1974)  1,2,3  2 1  
D. (Glochina) schineriana (Alexander, 1964)  3 3 2 3  
D. (Glochina) tristis (Schummel, 1829)  3 2 3   
D. (Idiopyga) ctenopyga (Alexander, 1943)  1 1,3 1 1  
D. (Idiopyga) halterella Edwards, 1921* 1 1 1,3 1,2 1,2 1 
D. (Idiopyga) stigmatica (Meigen, 1830)* 1 1 1 2,3 1  
Limonia annulata Lackschewitz, 1940*  2  3  3 
Limonia episema Alexander, 1924   2    
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Species name BRG DLB SVL NYN SHL TRG 
Metalimnobia bifasciata (Schrank, 1781) 1,3 1,2,3 1,3 1,2,3 3 3 
Metalimnobia quadrimaculata (Linnaeus, 1761)*  2 2,3 2,3  1,2,3 
Metalimnobia quadrinotata (Meigen, 1818) 1,2,3 1,2,3 2,3 1,2,3 2,3 1,2,3 
Rhipidia maculata Meigen, 1818  3    3 

Chioneinae       
Arctoconopa zonata (Zetterstedt, 1851) 1 1     
Cheilotrichia (Empeda) areolata (Lundstrom, 1912) 3      
Erioptera lutea fuscohalterata Alexander, 1925  1,2  2  1,3 
Erioptera (Mesocyphona) testacea (Lackschewitz, 1964) 2 2,3 2,3 2 2  
Gonomyia (Teuchogonomyia) horribilis Alexander, 1941** 1,2,3 1,2,3  2,3 2,3 2,3 

Hoplolabis (Parilisia) estella (Alexander, 1955)* 1 1,2 1,2,3   2 
Rhabdomastix (Sacandaga) laeta (Loew, 1873) 1,2,3 1,2,3 1,2,3 2 1,3 1,3 
Symplecta (Symplecta) hybrida (Meigen, 1804) 1,2 1 2 1 1 1 
S. (Symplecta) scotica (Edwards, 1938) 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 
Limnophilinae       
Idioptera linnei Oosterbroek, 1992  1 1    
Limnophila chinggiskhani Podenas & Gelhaus, 2001 1 1,2,3 1,2 1,2,3 2 1,2 

Dicranophragma (Brachylimnophila) nemorale (Meigen, 1818)    2   
Phylidorea (Macrolabina) temelskin Podenas & Gelhaus, 2001 1 1  1,2 1,2 1 
P. (Phylidorea) longicornis pietatis (Alexander, 1950)    2   
P. (Phylidorea) squalens (Zetterstedt, 1838)    2   
Cylindrotomidae       
Cylindrotoma distinctissima (Meigen, 1818) 1      
Cylindrotoma nigriventris (Loew, 1849 )      3 
Ptychopteridae       
Ptychoptera scutellaris Meigen, 1818* 2 2,3 2  2  
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