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ABSTRACT 

The ultimate goal of tissue regeneration is to replace damaged or diseased tissue 

with a cell-based or biomaterial-based tissue that accurately mimics the functionality, 

biology, mechanics, and cellular and extracellular matrix (ECM) composition of the 

native tissue.  Specifically, the ability to control the architecture of tissue engineered 

constructs plays a vital role in all of these issues as scaffold architecture has an affect on 

function, biomechanics, and cellular behavior.  Many tissue engineered scaffolds focus 

on the ability to mimic natural tissue by simulating the ECM due to the fact that in each 

distinct tissue, the ECM serves as a structural component by providing unique 

mechanical strength as well as regions for cellular attachment or the storage of a variety 

of biomolecules.  Additionally, cellular behavior has the ability to be controlled based on 

the structure and composition of the ECM.   More specifically, matrix has the ability to 

modulate a variety of cellular behaviors such as: adhesion, morphology, migration, 

proliferation, and differentiation while also controlling the ability of cells to produce and 

synthesize ECM with similar characteristics to that of surrounding tissue.  Tissue matrix 

and structure plays an essential role during the process of tissue formation, remodeling, 

and regeneration.     

The ability to mimic native tissue ECM using various biofabrication-based 

techniques has become an emerging concept in the realm of tissue regeneration.  

Biofabrication utilizes automated computer-aided-design (CAD) and computer-controlled 

technologies to create reproducible biomaterial and cell-based scaffolds that have the 

ability to imitate native tissue ECM.  Of particular interest are strategies that employ 
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biofabrication with the aim of improving the overall control over scaffold architecture 

and microstructure while also providing reproducibility.    

Due to their versatility, a variety of promising biofabrication strategies exist, 

including rapid prototyping methods such as bioprinting and additive manufacturing, 

which rely on the deposition or extrusion of materials.  Using these methods, a multitude 

of materials can be easily used to fabricate scaffold structures with various morphologies.  

However, the potential of many biofabrication methods in tissue engineering applications 

is limited by the potential resolution of the structures that can be created.  It was our goal 

to investigate a unique biofabrication strategy with the aim of fabricating 3-D scaffolds at 

a high resolution with morphological, biological, and mechanical properties similar to 

those of natural intervertebral discs (IVDs).  

Initially, a CAD-based biofabrication approach was developed and systematically 

optimized. This method was selected to utilize a custom-designed computer interface 

with 3-D motion control that allowed for greater resolution and precision of the 

fabricated scaffold architecture. Furthermore, we incorporated a temperature controlled 

polymer collection stage, which proved advantageous in enhancing the resolution of the 

biofabrication technique.  By lowering the temperature of the collecting stage below the 

freezing point of the polymer solution, it was discovered that the extruded polymer 

solution could be solidified directly as it exited the micropipette extrusion tip through an 

increase in viscosity.  Results from initial studies provided valuable clues towards 

determining the relationship between motor speeds, polymer solution temperatures, 

micropipette size, extrusion rate, and polymer solution viscosity.  These results 
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encouraged the investigation of the ability to use this method to precisely control scaffold 

spatial orientation for the fabrication of IVD scaffolds.   

Since previous IVD scaffold fabrication methods have not effectively accounted 

for the inadequacies of spinal fusion and artificial disc replacement in the treatment of a 

degenerated disc, we addressed the significance of matching native tissue histology and 

biomechanics by using fabricated scaffolds that closely mimic natural IVD tissue.  The 

annulus fibrosus (AF), or outer region of the IVD, was the focus of this project due to 

current and previous challenges in recreating its discrete tissue architecture, which is not 

an issue for the inner nucleus pulposus (NP) region, as it is more commonly mimicked 

with the use of a hydrogel-based biomaterial.   

Multiple elastomeric materials, including biocompatible and biodegradable 

polyurethane (PU) and chitosan-gelatin (CS/GEL), were investigated to evaluate the 

usefulness of this biofabrication approach to create biomimetic IVD scaffolds utilizing 

various materials. It was determined that the biofabrication method enabled the use of 

multiple materials and that the fabricated scaffolds were able to mimic the kidney shaped 

structure of the IVD.  Additionally, the scaffolds exhibited ideal concentric lamellar 

thickness and spacing, accurately mimicking the native structure of the AF in the human 

IVD.  To the best of our knowledge, these accomplishments in recreating the native AF 

histological architecture within tissue engineered constructs have not been achieved 

elsewhere. Cells attached and aligned on the scaffolds in the direction of the concentric 

lamellar structure, emulating cell behavior comparable to the native AF. These 3-D 

scaffolds exhibited ideal elastic properties and did not experience permanent deformation 
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under dynamic loading.  Additionally, the scaffold mechanical properties showed no 

significant differences when compared with native human IVD tissue. The scaffolding 

promoted chondrocyte cell attachment and proliferation in alignment with the concentric 

lamellae, proving this method improves upon current IVD scaffold fabrication 

approaches, as it takes into account native tissue structure and cell response.   

To expand upon these findings, the biomimetic IVD scaffolds were investigated 

to analyze the formation of 3-D cellularized tissue.  3-D multicellular spheroids formed 

from chondrocytes were incorporated within the scaffold to fully cellularize the void 

spacing within the IVD scaffold lamellae.  The ability of this 3-D cellularized structure to 

emulate native IVD tissue was then further analyzed by evaluating the ability of the 

scaffolds to synthesize matrix that was structurally and compositionally similar to that of 

native tissue.  Our studies indicate that the 3-D cellularized IVD constructs accurately 

mimic native IVD tissue and provide not only a scaffold, but a cellularized platform to 

promote tissue regeneration.  Future studies will assess the biofabricted IVD structures 

for tissue regeneration and biostability using in vivo rodent subcutaneous animal models. 
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CHAPTER 1 
 

1. INTRODUCTION 

 
 
1.1 Intervertebral disc (IVD) Degeneration 

Intervertebral disc (IVD) degeneration is characterized by the deterioration of the 

disc tissue.  This deterioration is characterized by unique disorganization of extracellular 

matrix (ECM) within each portion of the IVD.  In the inner region of the disc, the nucleus 

pulposus (NP), proteoglycan (PG) content decreases.  In the outer disc region, the 

annulus fibrosus (AF), the organized lamellar collagenous structure begins to weaken.  

With a decrease in PG content, the inherent water content of the disc reduces.  This 

dehydration within the NP is accompanied by a loss in disc height, and a subsequent 

decrease in swelling pressure.  Further, as the organized AF structure deteriorates, it 

becomes less stable and begins to tear.  This tearing within the AF prevents the annulus 

from containing the swelling pressure from the NP.  The combination of a loss in PG 

content in the NP and a tearing of the collagenous lamellae in the AF, the disc 

degenerates and begins to fail in its duty to support spinal loading.  This degeneration is 

accompanied by a loss in disc height, resulting in compression of the spinal nerves, which 

causes intense back pain for patients, and is oftentimes the underlying cause for patients 

to seek medical intervention. 
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1.2 Clinical Intervention Strategies 

Initially, patients with a degenerated IVD are treated with rest, therapy, and medication.  

Usually, these therapeutic remedies ameliorate the pain and other issues such as resulting 

disabilities. However, when these therapies prove ineffective, surgical intervention is 

necessary.  Discectomy, or removal of the degenerated portion of the IVD, is often the 

first step towards relieving a patients symptoms.  Alternatively, patients can undergo 

spinal fusion to immobilize the degenerated region of the spine, which helps to 

temporarily relieve pain.  However, fusion does not restore disc function or patient 

mobility and prevents natural biomechanical forces on the spine, possibly leading to 

further disc degeneration. 

Recently, patients have also been given the option of replacing the IVD with a 

artificial disc replacement, which have been used in Europe for over a decade and are 

recently gaining interest and clinical approval in the United States.  However, there are 

some downfalls to these current disc replacements.  Though they aid in the preservation 

of motion as well as disc height, they do not replicate physiologic motion or absorb 

compressive forces as their composition is mostly rigid polymeric and metallic materials.  

Due to this composition, these implants may also produce wear particles and cause 

osteolysis.  Furthermore, current implants exhibit significant differences in compliance 

from that of the native tissue, which may cause stress shielding and subsequent implant 

migration into the vertebral bodies. Although these current clinical interventions alleviate 

some symptoms of disc degeneration, they do nothing to address the underlying cause of 

the degenerated disc tissue itself, and often lead to further disc degeneration at adjacent 
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vertebrae levels.  Due to the problems associated with these conventional approaches for 

IVD degeneration, tissue engineered constructs are now being investigated, as they offer 

exceptional opportunities to improve overall patient satisfaction and well being by 

promoting tissue repair. 

1.3 IVD Tissue Regeneration 

Tissue engineering, which is oftentimes referred to as regenerative medicine, is an 

interdisciplinary field that incorporates ideas from: biology, chemistry, materials science, 

engineering, and medicine.  Using a combination of these disciplines, therapeutic 

methods to promote regeneration of many tissues of the body, including the IVD, are 

being investigated by researchers worldwide, including cell-based therapies, signaling 

molecule therapies, and biomaterial-based therapies. These approaches are often used in 

combination, as biomolecule and cell-based therapies alone may prove ineffective in 

supporting spinal loading.  A biomaterial structure is likely necessary to provide 

mechanical stability and support loading throughout the IVD regeneration process, as 

well as provide guidance for cell growth and new ECM organization.  For these reasons, 

biomaterial scaffolds should have similar overall structures and mechanics to that of the 

native tissue.  Additionally, scaffolding constructs provide the ability to incorporate and 

deliver signaling molecules which often enhance the success of the regenerated construct.   

A major goal of tissue engineered constructs is to mimic the targeted tissue’s 

ECM structure and composition with a biomaterial scaffold.  Through mimicry of ECM, 

a biomaterial scaffold provides a platform for the guidance of cellular orientation.  As 

scaffolds with a defined structure can control cell morphology, they subsequently control 
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ECM deposition, including both the type and organization of the synthesized matrix.  

Further, desirable mechanical properties similar to that of native tissue can be achieved 

by controlling ECM composition and orientation on a tissue scaffold. 

1.4 Limitations  

Tissue engineering serves as a promising alternative to the current treatment 

options available for patients requiring surgical intervention due to a degenerated spinal 

disc.  Tissue engineered IVDs may offer the advantage of motion preservation and disc 

space restoration.  However, to date, researchers have not created an IVD tissue scaffold 

that accurately mimics the native tissue histology in combination with similar 

biomechanics of the natural IVD tissue.  In order to engineer a normal IVD structure, the 

materials and structures to be used for IVD tissue regeneration must mimic the 3-D 

histological architecture of the native IVD, which will promote the formation of 

organized cellular and extracellular structures similar to that of native IVD tissues. The 

close correlation between the biological functions and the molecular compositions of the 

disc structures strongly suggests that a major task of IVD regeneration is to create 

scaffolds that precisely reproduce the structural, biological, and mechanical functions of 

the disc structure and organize them in a spatial manner similar to that of the native disc. 

Many researchers have attempted to recreate the IVD, but the discrete tissue architectures 

of the NP and AF have posed great challenges. Furthermore, the biological functions, 

microstructures, and mechanical properties of current scaffolds are far from satisfactory, 

perhaps due to the poor ability to control scaffold architecture during fabrication.  

Although current approaches focused on IVD tissue regeneration are far from 
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satisfactory, the results from these studies help to provide a platform towards the creation 

of a successful and clinically-relevant approach to regenerate IVD tissue.  Based on the 

previous successes and failures in tissue engineering IVD scaffolds, we have developed a 

unique strategy attempting to further advance IVD tissue engineering. 

1.5 Project Objective, Significance, and Innovation 

The objectives of this research were to use bioengineering strategies to pursue the 

development of materials and methods to imitate the IVD and facilitate tissue 

regeneration.  To this end, our aims were to use a biofabrication technology to create 

reproducible scaffolds that mimicked the lamellar microstructure of the AF in native IVD 

tissues.  We believe that this biomimetic approach will promote the formation and 

synthesis of ECM more similar in composition, organization, and mechanics to that of 

native tissue, therefore providing a more feasible approach towards regenerating IVD 

tissue.   

The degenerated spinal disc is one of the most expensive medical issues currently 

encountered, as it results in the disability of many people within the aging population.  

This project has the potential to significantly impact worldwide healthcare goals 

involving the restoration of native IVD tissue by decreasing its economic burden and 

impact on society.  The ultimate goal in tissue engineering an IVD is to replace the 

degenerated disc tissue with a functional scaffold that will promote the growth of new 

tissue while also maintaining natural motion and load bearing abilities.  More 

specifically, the strategies described in this work may aid in the promotion of native 

tissue formation to ultimately treat the problems associated with IVD degeneration rather 
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than conventional clinical approaches, which focus only on relieving the symptoms.   The 

aims proposed within this project will generate conceptual advances in understanding 

IVD biomaterial and scaffold implant design criteria, leading to increased technical 

knowledge for the development of a new clinically relevant IVD replacement.   

1.6 Specific Aims and Rationale 

Aim 1: To develop a biofabrication approach that would allow for the creation of IVD 

scaffolds with precise control of scaffold structure. 

Rationale: Current methods focused on creating IVD scaffolds are limited in their ability 

to accurately mimic native IVD structure. To this end, we believe that utilizing a 

computer-controlled polymeric extrusion-based biofabrication approach will enable IVD 

scaffolds to be created with distinct architectures.  Our hypothesis is that this type of 

device, along with the incorporation of a temperature-controlled collection mechanism, 

would allow for the increase of the viscosity of the polymer solution in order to solidify 

precise structures directly upon deposition.   

 

Aim 2: To fabricate tissue engineered scaffolds with structural and mechanical properties 

highly similar to native IVD tissue. 

Rationale: We hope to use our biofabrication approach to create IVD scaffolds with the 

precise characteristics of the native IVD tissue.  Specifically, we want to mimic the IVD 

shape, concentric lamellar structure, lamellar spacing, and its biomechanical properties.  

It is our hypothesis that our unique biofabrication approach will facilitate in the 
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fabrication of complex scaffolds with highly similar biomimetic characteristics of the 

native IVD tissue. 

 

Aim 3: Evaluate the tissue regeneration capabilities of the biofabricated IVD tissue 

engineered scaffolds in vitro. 

Rationale: Elastic lamellar-based scaffolds will be assessed for their potential as suitable 

structures for IVD tissue regeneration.  It is our hypothesis that our constructs will exhibit 

desirable characteristics while demonstrating potential as functional IVD scaffolds for 

tissue regeneration. 

 

1.7 Organization of Dissertation 

The following manuscript is arranged into different chapters that showcase 

individual studies relating to the overall aims of the project.  In Chapter 2, a 

comprehensive literature review is presented.  This chapter focuses on the specifics of the 

IVD structure, the causes and results of disc degeneration, current methods available to 

repair a degenerated disc, and lastly, different methods and techniques that have been 

explored for tissue regeneration of the IVD.   Emerging tissue engineered scaffolds and 

techniques for IVD regeneration are discussed in detail.  Overall assessments of these 

current strategies to enhance IVD tissue regeneration are provided, specifically focusing 

on in vitro and in vivo analyses.  Chapter 3 provides the results from the first 

investigation into our unique biofabrication strategy, which was aimed at creating 

biomimetic IVD scaffold structures.  The results of this experiment proved the ability of 
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the biofabrication method to precisely control polymer extrusion at a high resolution 

while also providing the initial platform towards mimicking IVD shape and structure.  

Mechanical properties of the scaffolds were also investigated to ensure elasticity of the 

constructs.  In Chapter 4, the previous findings are further elaborated upon, showing that 

this novel IVD biofabrication method can utilize multiple polymeric biomaterials in the 

creation of IVD scaffolds.  The ability of the scaffolds to mimic lamellar and 

interlamellar spacing as well as the scaffolds’ ability to control cellular morphology 

similarly to native tissue is discussed.  Finally, it was demonstrated that the biomimetic 

scaffolds have similar mechanical properties when compared to native IVD tissue.  In 

Chapter 5, a 3-D cellularized version of the scaffold discussed in previous chapters was 

fabricated.  It was demonstrated that IVD constructs could be cellularized within the 

voids of their lamellar structure using multicellular spheroids.  Additionally, cellular 

morphology, as well as ECM synthesis were analyzed and compared to native IVD 

tissue.  Chapter 6 summarizes overall conclusions drawn from the body of work and 

discusses challenges and future directions related to the progress of the presented 

research. 
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CHAPTER 2 
 

2. INTERVERTEBRAL DISC (IVD): STRUCTURE, DEGENERATION, REPAIR, 

AND REGENERATION 

 
2.1 Introduction 

Over 80% of the adult population experiences low back pain at some point in their 

lives, resulting in $90 billion in annual costs to alleviate and treat this pain 1-4.  The 

degeneration of the intervertebral disc (IVD) is thought to be the primary cause of low 

back pain, causing compression of the spinal nerves and adjacent vertebrae. It is difficult 

to pinpoint the exact cause of degeneration, but it is thought that many confounding 

factors may play a significant role in the degenerative process. 

The IVD is a tough tissue structure sandwiched between the vertebral bodies 

(Figure 2.1). It has three functions including: 1) acting as a ligament to hold the vertebrae 

of the spine together; 2) a shock absorber; and 3) a “pivot point” that allows the spine to 

bend, rotate, and twist. There are three distinct structures in the IVD: the nucleus 

pulposus (NP), the water-rich gelatinous center that primarily bears the pressure; the 

annulus fibrosus (AF), the collagen-rich fibrous structure of ~15-25 concentric sheets of 

collagen (lamellae) that confines the pressurized NP; and the vertebral end-plates (VEP), 

which are cartilaginous plates that are interwoven into the AF at the disc-vertebrae 

interface and supply nutrients to the disc. All three of the IVD structures contain 

chondrocyte-like disc cells. The NP contains large concentrations of negatively charged 

proteoglycans (PGs), which cause the NP to retain water and maintain its swelling 
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pressure 5,6.  PGs help to maintain water content and swelling pressure in the IVD and 

intertwine in a lose network of collagen type II fibers 5,7,8. The AF has a lamellar 

structure composed of collagen type I and II fibers. This lamellar architecture helps 

maintain the tensile properties of the disc while providing structural support for PG 

synthesis 9.  

 

 
 

Figure 2. 1: MRI of IVD showing NP and AF in distinct regions (left). Schematic of 
spinal column (middle). Anatomy of normal disc with histological stain (right) 10-12. 

  
 

Current treatments to help alleviate low back pain due to IVD degeneration 

include rest and medication.  However, when these methods do not suffice, patients must 

undergo procedures for a spinal fusion or an artificial disc replacement.  Spinal fusion 

helps to temporarily relieve pain, but does not restore disc function and prevents natural 

biomechanical forces on the spine. This possibly leads to further degeneration at adjacent 

levels 13. Therefore, fusion is not ideal as it sacrifices natural motion and may exacerbate 

the problem of further degeneration down the road. An alternative to spinal fusion is an 



 11

artificial disc replacement, which has been used in Europe for over a decade and is 

recently gaining interest and clinical approval in the United States 14,15. Current disc 

replacements aid in the preservation of some natural motion as well as disc height, but 

they do not absorb compressive forces as their composition is mostly rigid metallic 

materials.  Also, these implants produce wear particles and may cause osteolysis 16.  In 

addition, current implants exhibit significant differences in compliance from that of 

native tissue, which may cause stress shielding and subsequent implant migration into the 

vertebral bodies. Because of the problems associated with these conventional approaches, 

tissue engineered constructs may help promote integration of natural tissue while 

preserving natural kinematics, disc height, and the ability to absorb compressive forces.  

Successfully tissue-engineered IVD tissue must have the native IVD histological 

and macro structures. Therefore, in order to engineer normal IVD structure, the materials 

and structures to be used for IVD tissue engineering must mimic the 3-D architecture of 

native IVD to promote the formation of organized cellular and extracellular structures 

similar to that of native IVD tissues. The scaffolds must allow the infiltration of nutrients 

and removal of wastes to maintain cell viability. The close correlation between the 

biological functions and the molecular compositions of the disc structures strongly 

suggests that a major task of IVD regeneration is to create scaffolds that precisely 

reproduce the structural and biological functions of disc structure and organize them in a 

spatial manner similar to that of native disc. Many researchers have attempted to recreate 

the IVD, but the unique composition and structure of the disc has posed great challenges. 

Furthermore, the biological functions, microstructures, and mechanical properties of 
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current scaffolds are far from satisfactory. The ultimate goal in tissue engineering an IVD 

is to replace the degenerated disc tissue with a functional scaffold that will promote the 

growth of new, healthy tissue while also maintaining the motion and load bearing 

abilities and preventing adjacent disc degeneration. 

2.2 IVD Structure 

 
The IVD is a complex joint which permits flexible motion within the spine while 

serving as a shock absorber. The purpose of the disc is to allow 3-D motion, but also to 

prevent excessive motion and maintain mechanical stability. There are 3 main 

components within the IVD: the NP, AF, and VEP. The NP consists of the soft center 

within the spinal disc, while the outer portion of the disc which surrounds the NP is 

referred to as the AF. The VEP is composed of fibrocartilage and surrounds the disc on 

the top and bottom and separates the IVD from the spinal vertebrae. 

IVDs are composed of cartilage, making regeneration difficult because it is an 

avascular tissue.  Due to its avascular nature, nutrient transport and waste removal is a 

much more complicated process relying solely on diffusion across the VEP and within 

the disc matrix 17-19. The IVD is the largest avascular tissue in the human body, with only 

the peripheral portion of the tissue containing a blood supply. Similarly, there is a lack of 

nerves as well. Some nerve extensions innervate the periphery of the spinal disc, but the 

majority of the disc is not innervated. It is thought that compression of the nerves on the 

periphery of the disc is responsible for a patient’s perceived pain as the disc degenerates. 

A large problem in nutrient and solute transport is the calcification of vertebral endplates 

which occurs as the disc degenerates. If nutrients are not provided to disc cells and waste 
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products are also not removed, then these waste products linger in the matrix of the disc 

preventing the maintenance of healthy IVD chondrocytes.  Decreased nutrition 

accompanied with a loss in PG and water content significantly depletes the ability of IVD 

cells to function properly. Subsequently, disc degeneration occurs if nutrition is depleted 

or impeded. Oxygen concentration gradients change across the cross section of the disc, 

decreasing towards the center as the peripheral cells use the oxygen first 20. Opposite the 

oxygen gradient is the lactate gradient, which is greater in the disc center 20.  The low 

oxygen and high lactate concentrations in the NP create an acidic environment where the 

amount of PG may be subsequently decreased 21. Because the IVD is in a nutrient 

deficient environment, only a small amount of cells can survive. By tissue standards, the 

IVD contains a low cell density, with most of the tissue composed predominately of 

ECM molecules. The main function of cells within the IVD is to constantly secrete ECM 

in order to maintain a stable tissue. As matrix is constantly synthesized, it is also being 

degraded which ensures that the ECM remains a structured environment. This ECM 

consists mostly of PGs, highly concentrated and negatively charged molecules that 

increase the water content, as well as a variety of different collagen molecules which 

promote the strength of the AF 5.  The most prevalent types of collagen are collagen types 

I and II, which make up 80% of the collagen composition within the disc. However, 

collagen types III, V, VI, IX, and XI are also present to help organize the disc into its 

lamellar structure 22. 
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2.2.1 Nucleus Pulposus (NP) 

 
The NP is a gelatinous structure consisting of a large amount of PGs or aggrecans 

with sparsely arranged collagen fibrils serving as supporting matrix (Figure 2.2).  PGs, a 

major matrix component, are glycoproteins containing a protein core and at least 1 

glycosaminoglycan (GAG) chain 22.  The PGs are similar to articular cartilage, also 

containing hyaluronan (HA) 23. Because PGs, and more specifically GAGs, are 

hydrophilic, they maintain a large quantity of water in the IVD. The high concentration of 

GAGs increases the osmotic pressure of the NP and allows it to swell and resist large 

compressive loads 24-26.  It is believed that decreasing the amount of GAGs will decrease 

the disc height and cause disc degeneration as the NP becomes more fibrous. Normal, 

healthy discs represent a changing profile of inhomogeneous material across the disc with 

GAG and water content increasing towards the disc center 27. The purpose of the NP is to 

resist compressive forces and evenly redistribute the forces within the spine. While PGs 

make up roughly 50% dry weight of the NP, the NP is also composed of 25% collagen 

22,28,29.  Collagen type II is highly prevalent in the NP as its concentration decreases 

towards the peripheral AF 22.  Each of these molecules aid in the regulation of growth 

factors, therefore controlling cellular metabolism.   
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Figure 2. 2: Schematic showing different regions of the IVD and their composition and 

structure (top). Fluorescent imaging showing different cell morphology in different 
disc regions (bottom) 11. 
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Though the ECM is the main component of the NP, it also contains around 4x106 

cells/ml 22.  The cells are mostly chondrocytes and are more rounded as compared to cells 

in the AF (Figure 2.2) 30.  NP cells also develop a larger cytoplasm and a more complex 

structure than AF cells 31.  Characteristic markers for chondrogenic expression of NPs 

include collagen types II and IX, aggrecan, and SOX9 32-35.  

2.2.2 Annulus Fibrosus (AF) 

 
The IVD is largely heterogeneous and exemplifies great differences between the 

NP and the AF (Table 2.1). The AF and NP are separated by what is called the transition 

zone 36.  The AF is present to withstand the tension created during NP deformation. The 

AF is composed of more than 2/3 collagen, where PGs make up only a small percentage 

of its composition 22,28,37. The AF can be separated into the inner AF and the outer AF. 

The outer AF contains an oriented lamellar array of densely packed collagen fibers, while 

the inner AF is similar to the outer portions except it is not as dense and the oriented 

lamellae are not as organized 22. Collagen type I is highly prevalent in the outer AF, while 

its concentration decreases towards the NP 22. The AF has a multilayered, oriented 

lamellar structure with concentric layers creating a regular pattern of collagen type I 

fibers (Figure 2.2) 38.  The collagen fibrils are oriented concentrically with each 

subsequent layer oriented 60° to the spinal column. As the outer AF moves inward and 

approaches the NP, the orientation of the concentric lamellae gradually changes from 

angles of 62° to 45° 39.  

The AF contains roughly 9x106 cells/ml. Cells within the AF resemble fibroblasts, 

showing a thin elongated structure oriented parallel to the collagen fibers within the 



 17

concentric lamellae (Figure 2.2). The NP and inner AF contain only chondrocytes, while 

the outer AF contains mostly fibrochondrocytes 40.  

 

Table 2. 1: Difference in IVD composition and mechanical properties between the 
annulus fibrosus and nucleus pulposus 41-50. 

 
 Outer AF Inner AF NP 
Water (per weight) 65-75% 75-80% 75-90% 
Collagen (per dry weight) 75-90% 40-75% 25% 
Proteoglycans (per dry weight) 10% 20-35% 20-60% 
Other Proteins (per dry weight) 5-15% 5-40% 15-55% 
 AF NP 
Compressive Modulus (MPa) 0.116-2.3 0.003-.031 
Tensile Modulus (MPa) 0.2-136 N/A 

 
 

As the majority of artificial disc replacements are performed on the lumbar spine, 

this review will focus on that region. Although, spinal disc composition does not seem to 

be significantly affected by the discs level within the spine, the size of the IVD increases 

inferiorly down the spine 51.  IVDs in the lumbar spine are the largest with a height of 

around 1 cm and a diameter of 4 cm 52.  For this reason, the lower back is the most 

common area for disc degeneration, since diffusion of nutrients to the cells is much more 

difficult and takes longer to occur. 

 

2.3 Disc Degeneration 

 
As we age, the disc degenerates. The incidence of low back pain increases with 

age, creating a relationship between age related disc degeneration and the frequency of 

low back pain 22,53. What is less understood are the mechanisms causing this degeneration 
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and the process through which the degeneration occurs.  Many researchers believe that 

the degeneration of the spinal disc is a natural aging process.  IVD degeneration involves 

tissue loss or destruction over time, which decreases disc height and ultimately sacrifices 

mechanical function of the vertebral body. However, evidence suggests other factors are 

involved with increasing disc degeneration such as cell nutrition and transport, the 

presence of degradative enzymes, mechanical loading, smoking, and exposure to intense 

vibrations 54-56.  Although many of these factors may contribute to the aging process, they 

cannot be ignored, leading to the term degenerative disc disease (DDD) which 

encompasses all of the degenerative effects of aging.  

Presumably, it is difficult to characterize the morphology of the degenerated disc. 

Many researchers have developed ways to grade disc degeneration, however, these 

methods do not deal with the entire disc and do not completely characterize all the levels 

of degeneration causing some ambiguity 57.  Clinically, disc degeneration and disc height 

are evaluated using magnetic resonance imaging (MRI).  MRI enables each portion of the 

IVD to be investigated and allows changes in the disc to be analyzed 58,59.  MRI is the 

most clinically effective way to analyze disc degeneration by comparing disc water 

content and height, and looking for tears or irregularities within the tissue 60.  When the 

disc loses height due to tears in the AF or the NP bursting, the compressed vertebrae may 

pinch spinal nerves or rub together, causing intense pain. Some pain from the IVD is 

thought to arise from nerve fiber growth into the degenerated disc 61.  

Disc degeneration may be influenced by calcification with calcium phosphate 

crystalline deposits, as the presence of these deposits increase as the disc ages, hindering 
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nutrient diffusion 62.  Also, the amount and size of PGs within the NP significantly 

decreases with as the disc degenerates 41,63-65.  Decreases in PG content are correlated 

with dehydration as these molecules are major contributors to the higher water content in 

the IVD 22.  At early stages of disc degeneration, the NP dehydrates and becomes more 

fibrous 66-68.  Desiccation of the NP is followed by tearing within the AF (Figure 2.3). 

These events may result in further disc matrix degradation, loss of hydration, and 

subsequently a decrease in disc height. Each of these events decreases the discs ability to 

properly function. 

 

 
 

Figure 2. 3: Picture of normal disc (left) and degenerated disc (right) where the 
degenerated disc is more disorganized and has a more fibrous appearance 69. 

 
As disc degeneration progresses, there is a significant loss in PGs, water, and 

collagen type II. Cellular microstructure may also be compromised during disc 

degeneration. An alteration from a differentiated chondrocyte phenotype to a more 

fibrotic phenotype in the NP occurs 70.  IVD shape and size are altered by changes in 

water content which lead to a hindrance in the discs ability to absorb loads. 
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Matrix turnover is common within the healthy IVD. During disc degeneration, 

matrix is both degraded and altered through a variety of biochemical processes. PGs and 

other ECM proteins are degraded by serine proteinases and matrix metalloproteinases 

(MMPs), cytokines (specifically IL-1 & IL-6), nitric oxide (NO), and prostaglandin E2 

(PGE2) 
22,71,72.  MMPs are catabolic enzymes which encourage matrix degradation and 

studies have shown degenerated discs to contain greater levels of MMPs. One goal to 

stop disc degeneration is to create an environment in which the disc is in a more anabolic 

state in order to increase matrix synthesis and decrease matrix degradation. A normal 

healthy disc inhibits MMPs by using tissue inhibitors of MMPs (TIMPs).  TIMP-1 can 

increase the amount of PG and matrix production.  MMPs 1,2,3,7,8 and 13 have all been 

found in the IVD, with the majority of these proven to be more active in the degenerated 

disc 73,74.  MMP-1 (collagenase), MMP-2 (gelatinase), and MMP-3 (stromelysin) have all 

been directly implicated in aggrecan and matrix protein degradation 75. MMPs 1-3 have 

shown to degrade aggrecan, collagen types I and II, and collagen types IV and V, 

respectively 22.  Interleukin 1 (IL-1) and tumor necrosis factor α (TNF-α) may also affect 

the disc metabolism.  IL-1 may increase the rate of matrix degradation through the 

release of MMPs and may also decrease PG production 76-78.  

The collagens’ organized lamellar structure deteriorates, as well, and the degraded 

matrix molecules become granular and evident within the NP 29,79.  Throughout the aging 

process, the presence of collagen remains the same 5.  However, the different collagen 

types and their ratios appear to change 80,81. Collagen crosslinking is also altered during 

degeneration, decreasing the ability of the disc to support mechanical loads 82.  The 
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increase of disorganized collagen type I with the corresponding loss of collagen type II 

and PGs in the disc matrix has been identified as a reason degenerated discs have inferior 

mechanical properties 83.  

Due to matrix degradation by enzymatic and structural changes, the disc and 

matrix undergo mechanical changes as well. It has been observed that degenerated discs 

have less height and are less stiff than normal discs 84.  Structural changes are thought to 

contribute to disc degeneration, in turn altering the ability of the disc to support 

mechanical loading.  During degeneration, the disc becomes less elastic, preventing its 

ability to absorb and dissipate spinal forces 22,85.  As the IVD is loaded, it loses water 

content. Studies have shown that excessive water movement caused by mechanical 

loading decreases the synthesis of ECM 86. Biomechanical changes in the disc likely aid 

in degeneration. IVD degeneration is identified by altered material properties, ECM, and 

morphology 87,88.  The lamellar morphology of the AF is highly disorganized in 

degenerated discs, while overall disc structure is also modified.  A degenerated disc has 

distorted architecture, responding to stresses differently and possibly causing patients 

perceived pain.  

Cartilage does not maintain the inherent ability to regenerate. As the disc 

degenerates and ages, there is a decrease in the number of viable cells 29,79.  This decrease 

along with a decrease in nutrient delivery have been implicated as important factors 

causing disc degeneration 89.  It is not well understood, but a decrease in cell viability 

may be due to apoptosis of the disc cells caused by mechanical loading of the AF. 

However, many cellular factors must be considered when determining causes of disc 
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degeneration.  Degeneration of the IVD causes a significant structural alteration in both 

regions of the disc, leading to a decrease in height, and ultimately resulting in pain. 

During normal daily life, patients with degenerated discs experience excrutiating pain, 

leading to a decline in their quality of life. The progression of disc degeneration leads to 

further instability in adjacent vertebral levels 90. 

 

2.4 Clinical Solutions to Disc Repair 

 

2.4.1 Discectomy/ Fusion 

 
Currently, it has proven difficult for clinicians to manage the low back pain 

implicated by a degenerated IVD. The majority of patients are treated with rest, exercise 

and/or medications 91. When these therapies are ineffective, surgery is required. The two 

most common surgical procedures for patients with degenerated spinal discs are 

discectomy and arthrodesis. Discectomy is a process in which the degenerated portion of 

the IVD is excised or removed. Arthrodesis is a process of fusing two adjacent vertebral 

bodies together and is often referred to as spinal fusion 92. 

Although removal of degenerated or damaged disc tissue is common, it typically 

leads to a loss in height of the IVD correlated with negative biomechanical changes and 

anatomical problems. Some patients benefit from a discectomy as it may offer temporary 

pain relief. However, postoperatively, the disc structure is highly compromised, leading 

to further degeneration and instability 87. After a discectomy, no regeneration of IVD 

tissue takes place, making further disc degeneration likely 93.  
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Due to the disadvantages and limited success of a discectomy, clinicians often 

turn to spinal fusion to aid in patient comfort and further stabilize the spine.  However, 

the rates of clinical success for spinal fusion are also low 94. The main purpose of spinal 

fusion is to prevent motion within the diseased spine segment. In turn, this loss in 

mobility should decrease a patient’s perceived pain 95. Problems with spinal fusion, 

however, include possible degeneration of adjacent segments and failure to completely 

immobilize the degenerated region of the spine 95. Spinal fusion has proven to increase 

stress concentrations on adjacent motion segments within the spine after analysis using 

biomechanical studies and finite element analysis 96,97. Because discectomy and spinal 

fusion result in a loss of function and may promote adjacent disc degeneration, new 

studies are being investigated to help alleviate a patients perceived back pain 98.  

 

2.4.2 Replacement 

 
Discectomy and spinal fusion are only short term solutions to recurring low back 

pain or a degenerative IVD. A total IVD replacement, or arthroplasty, has advantages 

over fusion, eliminating pain while increasing patient mobility 60,95. A primary advantage 

of a disc replacement over spinal fusion is the preservation of some spinal motion 99. 

Implants for disc replacements should be biocompatible, durable, and easily implantable. 

Disc replacements remove diseased tissue and reduce pain by restoring disc height. There 

are different types of disc replacements including a NP replacement and total disc 

replacements. 
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NP replacements are less invasive and promote natural forces on the spine 100.  NP 

implants often have high water contents and promote fluid movement during loading to 

enable nutrient delivery and mimic the native tissue environment. The prosthetic disc 

nucleus (PDN) is a NP replacement consisting of a hydrogel core constrained by a 

biodegradable woven fiber mesh to prevent excessive hydrogel swelling (Figure 2.4) 101.  

The PDN has passed FDA guidelines pertaining to cytotoxicity tests and biomechanical 

fatigue tests 102.  PDN is implanted in a dried form and absorbs fluid after implantation. 

Currently, NP replacements must be implanted through incisions in the AF. This surgical 

trauma, however, may compromise the integrity of the operated disc, resulting in an 

inflammatory response that may ultimately promote the degenerative process. The use of 

a NP replacement is not as widespread as the use of total disc replacement. 

A total disc replacement is used when the integrity of the native AF has been 

compromised or indicated as a cause of pain. Total artificial spinal discs also help re-

establish flexibility of the spine. There are a few commercially available artificial spinal 

discs that have been approved by the FDA. The SB Charitè® and ProDisc® are FDA 

approved in the US with another, the Maverick®, undergoing clinical trials (Figure 2.4) 

15,103-105. The SB Charitè® and ProDisc® have both been used for more than a decade in 

studies done mostly in Europe, and both disc replacements have shown a decrease in 

operative time, blood loss, and length of hospitalization as compared with spinal fusion 

106.  Patients implanted with the ProDisc® and the SB Charitè® reported significantly less 

pain than spinal fusion patients, indicating that the recovery time may be shorter 99,107.  
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Other studies have confirmed the findings that artificial replacements have proven to 

increase patient satisfaction compared with spinal fusion 108,109.  

The SB Charitè® consists of 2 cobalt chromium alloy endplates and a biconvex 

polyethylene (PE) spacer allowing for unlimited axial rotation, but only 20° flexion 

100,110. The endplates are coated with titanium and hydroxyapatite to promote 

osteointegration into the adjacent vertebrae. On the other hand, the ProDisc® consists of 

endplates composed of cobalt chrome molybdenum alloy with a fixed ultra-high-

molecular-weight PE (UHMWPE) bearing surface that articulates on the metal 111.  The 

metal implants contain porous coatings or screws to promote bone ingrowth 100.  The 

Maverick® is an all metal disc implant containing a ball and socket that offers high 

fatigue strength 112.  

  
 

Figure 2. 4: Current Food and Drug Administration approved implants: PDN, SB 
Charitè®, ProDisc® (left- right) 102,113,114. 

 

The use and necessesity of total disc replacements is debatable and comparison 

between different available implants is understudied. However, although there are 

improvements to conventional treatments with artificial discs, there are also drawbacks. 

Problems with current prosthetic devices include extrusion, infection, loosening, and 

cytotoxicity 115-117.  Long term survival and integrity of these implants is unknown 
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because the devices are quite new in clinical use. Problems with a metal on metal 

approach are a large compliance mismatch and the creation of toxic wear debris 100. This 

microscopic wear debris can cause foreign body reaction in the body, and possibly 

destruction of the tissue implant interface 100. As the implants are secured in the vertebral 

bodies, the metal endplates may dislocate or migrate out of the bone. Loosening and wear 

of the PE may occur in the SB Charitè® and ProDisc®, while the PE may also experience 

creep, or even fracture 118-120. Because there are problems with current disc replacements, 

and because they may fail, a revision may be required. Typically, revision operations 

require a removal of the artificial disc followed by spinal fusion to immobilize the 

affected tissue. Revision operations for artificial disc replacements are risky and 

dangerous as scar tissue makes it difficult for the surgeon to navigate the large vessels 

near the spine 121. Therefore, longevity studies analyzing the long term effectiveness of 

current implants are necessary. 

Disc replacements allow some motion, but restrict certain movements and do not 

replicate physiologic spinal motion or stability 118. Total disc replacement procedures do 

not provide an effective treatment method for all patients, as the results are not 

consistently reproducible 95. Other problems involving current disc replacement strategies 

include altered loading and compliance mismatch between the metal/polymer based 

implants and the native tissue 122. Often, current disc replacements do not absorb 

compressive forces. During procedures for discectomy, spinal fusion, and disc 

replacement, degeneration at other disc levels may be increased 123. Although implants 
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for disc replacement currently exist, no methodology has proven completely successful in 

improving the ability of native disc tissue to regenerate. 

 

2.5 IVD Regeneration  

 
An apparent need for an alternative to conventional IVD replacement or spinal 

fusion is obvious. Current artificial discs do not promote tissue remodeling. Tissue 

engineering offers an attractive method to design a biomaterial that will aid in the 

regeneration of natural IVD tissue. As current surgical procedures only focus on 

symptoms related to IVD degeneration, IVD tissue engineering offers multiple strategies 

to prevent and possibly cure degenerated discs by encouraging tissue repair. Tissue 

engineering promotes tissue regeneration by encompassing the use of biomaterial 

scaffolds, stem cells, and growth factors. 

Therapeutic strategies for tissue engineering are advantageous because they can 

be implanted simultaneously with a discectomy. Once removed, appropriate biomaterials 

that have been designed to possess the desired biological, chemical, physical and 

mechanical properties can then replace degenerated tissue. These biomaterial structures 

should not illicit an immune response, have a structure similar to native tissue, be 

biocompatible and biodegradable, and exhibit similar mechanical properties to those of 

the natural tissue after successful regeneration. Many biomaterials currently exist which 

have proven their biocompatibility, but newly developed materials must pass this 

requirement first and foremost 124. However, not all materials are suitable for every 

application, and when choosing materials for the IVD many factors should be considered. 
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An ideal scaffold would be porous to provide cell attachment and tissue ingrowth, while 

also allowing the diffusion of nutrients and waste. The porous structure should allow 

room for ECM to be secreted and ultimately form the tissue similar to normal native IVD 

tissue. 

Though biomaterial-free approaches do exist, in the spine, it may be necessary to 

use biomaterials, as they serve as a load bearing structure to support biomechanical forces 

while cells proliferate and create their own matrix. Biomaterials are important to provide 

a stable environment for disc tissue regeneration 125. Because the native disc has a low 

density of cells, there is great concern that without a biomaterial carrier the implanted or 

recruited therapeutic cells will have trouble synthesizing functional matrix to support 

IVD biomechanics. Biomaterial carriers or scaffolds are important because biomaterials 

offer cells a 3-D environment to guide cell behavior. Biomaterials can guide cell 

attachment and growth along a defined micro and macrostructure to better mimic native 

tissue structure. However, for tissue engineering purposes, it is important to note that 

seeding cells at a high density is not attractive due to the unique IVD environment, which 

is not conducive to maintain the viability of a large population of cells 11.  

A biomaterial structure or therapy for disc regeneration should be able to handle 

normal physiologic stresses on the IVD, which have been measured at around 1 MPa 47. 

Biomaterial supporting structures should also be able to handle continuous dynamic 

loading over time while proving fatigue resistant. Also, for tissue engineering, it is 

important for the biomaterial to degrade over time and allow natural cell and ECM based 

tissue to take its place. When designing biodegradable materials, it is important to control 
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the degradation time and alter it in order to allow for new tissue infiltration. It is also 

important to evaluate the degraded material and verify it to be non-toxic to prevent an 

adverse immune response. Many materials offer the advantage of being able to have their 

mechanical properties and degradation times specifically tailored by creating copolymers, 

varying molecular weights, and altering crosslinking density. These materials include 

both synthetic and natural biomaterials, with many of these polymers showing superb 

biocompatible properties. Natural materials offer an advantage of promoting cell 

attachment and cellular recognition of the material. However, it is much easier to tailor 

the mechanical and physical properties of synthetic materials. Each of these material 

types show promise for IVD tissue regeneration.  

One major hurdle in the development of a scaffold for IVD tissue engineering is 

the ability of researchers to mimic the lamellar organization of the AF 11. The native disc 

histology and dynamics should be mimicked in biomaterial structures for IVD 

regeneration. In this regard, the ability of a biomaterial structure to enable natural motion 

may help prevent tissue degeneration at adjacent disc levels while encouraging natural 

tissue regeneration. 

Tissue engineering techniques are mainly evaluated on the ability to increase 

ECM synthesis and restore disc height. When evaluating a biomaterial structure, cells in 

the NP region should be more morphologically rounded as this morphology has proven to 

synthesize more collagen type II, while cells in the AF region should be more elongated, 

as this morphology has proven to synthesize more collagen type I 11.  The majority of 

successes with tissue engineering approaches for IVD regeneration have focused on the 
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production of ECM and PGs which increase water content and mechanical stability. 

Qualitative studies such as staining with H&E, Alcian Blue, and Safranin-O are useful in 

evaluating specific cell behavior and matrix synthesis on scaffolds.  

 

2.5.1 Cell Based Therapy 

 
A large focus in the field of IVD tissue engineering is currently supported by cell 

based transplantation therapies. Mesenchymal stem cells (MSCs) are thought to halt IVD 

degeneration and possibly regenerate some tissue despite the degree of degeneration 126.  

MSCs can be found in bone marrow, adipose tissue and many other connective tissues 

and are a multipotent type of adult stem cell that are less susceptible to tumor formation 

than embryonic stem cells 126,127.  Stem cells can be differentiated down a chondrogenic 

pathway and may have the ability to express IVD cell phenotypes. Because MSCs lack 

HLA class II antigen expression, they may have the ability to be used for allogenic 

transplantations 128.  The delivery method of cell based therapies would be primarily 

through injection into the IVD.  

MSCs in hypoxic situations (2% O2) exhibit a tendency to differentiate towards a 

phenotype similar to that of NP cells 4.  Under hypoxic conditions MSCs increased the 

amount of surface receptors for matrix and integrins, specifically β1, β3, and α2 integrins 

while maintaining desired levels of CD44 (hyaluronan receptor), CD105, CD166 

(ALCAM) 4. When injected into the degenerated disc tissues, stem cells may naturally 

differentiate towards a chondrocyte phenotype based on the environmental cues. MSC 

transplantation has shown to restore native disc height, cellularity, and structure in animal 
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models (Figures 2.5 & 2.6) 123. Transplantation of human chondrocytes has proved 

effective in the therapeutic treatment of lesions within cartilage tissue 129.  However, 

chondrocytes are difficult to obtain for cell culture due to their limited availability in the 

adult human body.  

 

 
 
Figure 2. 5: Normal rabbit IVD, sham operated disc, MSC transplanted disc(left-right) 

123. 
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Figure 2. 6: MSCs transplanted (arrow shows injection site) into the NP region at 2 
weeks (a), and at 24 weeks (b) with circled region showing increased cell viability and 

expansion at 24 weeks 123. 
 

Autologous cells would likely be approved clinically as immune rejection would 

not pose a threat. Recent success has been shown in this field as injected autologous cells 

have reduced pain and maintained disc height 130.  Autologous disc chondrocyte 

transplantation (ADCT) is a procedure where patients’ own cells are transplanted into the 

disc region 12 weeks after a discectomy 130. A large scale, multicentered, randomized 

clinical trial called EuroDisc evaluated the effectiveness of ADCT 130. Two years after 

ADCT, patients showed a decrease in pain, with a significant increase in PG and fluid 

content as compared to patients who underwent discectomy alone 130.  The study was 

considered a success as one of the primary goals for IVD tissue engineering is to 

eliminate patient pain. 
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Cell therapy and injection based methods may have limitations because cell 

leakage could occur after injection 131.  Also, injected cells must be able to remain viable 

in vivo under high pressure and also must produce ECM to help increase disc height. This 

may prove very difficult without the use of a biomaterial carrier for initial mechanical 

support 132.  Another disadvantage for biomaterial-free methods is the inability to support 

in vivo biomechanical forces during tissue regeneration 125. Autologous cell based 

approaches are not efficient as they require multiple operations to retrieve the cells and 

then implant the expanded cells back. The use of autologous cells also appears to be an 

expensive and time costly procedure. Using allogenic transplantations may allow stem 

cells to be expanded in vitro to create a steady supply of on demand cells for therapy. 

Stem cell lines may also be readily accessible, but their future use clinically remains in 

doubt due to a lack of understanding and possibility of tumor growth.  

 

2.5.2 Signaling Molecule Based Therapy 

 
Different signaling molecules are also being investigated as therapeutic strategies 

for the treatment of disc degeneration. Molecular therapy offers a way to reduce disc 

degeneration and possibly prevent or reverse the entire process of degeneration. If 

signaling molecules were to be used alone, they would have to be injected into the 

degenerated portion of the disc using a needle. Using multiple molecules to signal more 

than one cell activity may be more effective than using a single signaling molecule 70, as 

each of these molecules may play a specific role in allowing the IVD to regenerate 70. 

Table 2.2 summarizes signaling molecules, and whether they function as mitogens or 
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chondrogenic morphogens. Certain signaling molecules can decrease the inflammatory 

response and therefore protect the disc from further degeneration. Signaling molecule 

therapy to regenerate the IVD may prove to be an especially important therapy in early 

stages of disc degeneration, where disc structure has not yet been compromised. 

 

Table 2. 2: Different categories of therapeutic molecules for the IVD.70 
 

Category Molecule 
Mitogens IGF-1, PDGF, EGF, FGF 

Chondrogenic 
Morphogens 

TGF-β, BMP-2, BMP-7 (OP-1), BMP-13 (GDF-6, CDMP-2), 
GDF-5 (CDMP-1) 

 
Signaling molecules and their expression patterns in the normal IVD are essential 

to understand the differentiation of IVD cells. Signaling molecules bind to specific 

receptors, activating signaling responses to control cell behavior 133. Signaling molecule 

therapy explores the idea that different signaling molecules may work together to allow 

tissue remodeling. In addition to the use of signaling molecules, matrix is continuously 

synthesized and degraded in the IVD, which provides the opportunity to use enzymes and 

inhibitors to increase matrix synthesis or slow degradation.  

Signaling molecule therapy may be a viable strategy for promoting the restoration 

of native disc matrix. Mitogens are molecules that help cells proliferate or increase the 

rate of mitosis. It has been shown that mitogens, such as insulin-like growth factor-1 

(IGF-1), epidermal growth factor (EGF), and fibroblast growth factor (FGF), increase the 

rates of disc cell mitosis 70. It also demonstrated that some mitogens, such as IGF-1 and 

PDGF, also upregulate PG synthesis 134. Further, some mitogens such as PDGF and IGF-
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1 have proven to help preventing the apoptosis of AF cells 135,136. Chondrogenic 

morphogens can differentiate cells to express a chondrocytic phenotype instead of a 

fibrotic phenotype. Transforming growth factor-β (TGF-β), bone morphogenic proteins 

(BMPs), and growth and differentiation factors (GDFs) are molecules characterized as 

chondrogenic morphogens. The synthesis of type II collagen, Sox9, aggrecan, and GAGs 

is associated with chondrogenic morphogens as well 70. Of these molecules, TGF- β1 was 

found to best maintain IVD chondrocyte viability 137. Some chondrogenic morphogens, 

such as TGF- β1, are able to increase disc cell proliferation and PG synthesis 138, and in 

the meantime to decrease the activity of MMP-2, which slows disc degeneration 138,139. 

Some chondrogenic morphogens, such as bone morphogenic protein (BMP-7), also called 

osteogenic protein-1 (OP-1), can increase the synthesis of multiple disc matrix proteins, 

such as PG, aggrecan, and type II collagen 140-142. Figure 2.7 demonstrates that OP-1 

significantly increased the production of PGs 142. Because that, BMP-7 has the 

therapeutic role to aid the regeneration of the NP after injection and increase disc height 

143,144. Interleukin-1 (IL-1) and MMPs have been found in degenerated discs, all of which 

increase matrix degradation 60,71,72,75,145. Therefore, activities of IL-1 and some MMPs 

should be inhibited to stop disc degeneration 146,147. BMP-7 inhibits the inflammatory 

cytokine IL-1 and prevents the matrix degradation while increasing matrix synthesis 148.   
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Figure 2. 7: PG content in the NP was significantly greater than the other IVD regions 
when treated with BMP-7. All regions showed significant difference in PG content 

when treated with BMP-7 when compared to controls 142. 
 
Many different signaling molecules have been implicated in IVD regeneration. 

BMP-2 provides evidence of a natural affinity to increase cellular differentiation towards 

a chondrocytic phenotype because it increases the expression of aggrecan, a PG, and type 

II collagen. BMP-13, also called GDF-6 or cartilage-derived morphogenetic protein-2 

(CDMP-2), has also proven to increase PG synthesis, though less effective than BMP-2. 

GDF-5, also called CDMP-1, which has been found in precartilaginous development of 

long bone formation, has worked better than TGF- β1, IGF-1, and FGF in restoring disc 

height in experiments. Similarly, FGF has shown to increase matrix production 

throughout the disc 70,138,149.  Walsh et al. have also analyzed the efficacy of different 

signaling molecules, including GDF-5, IGF-1, FGF, and TGF-β1, for IVD regeneration 

150.  Cell population increased in the NP and inner AF in response to GDF-5 while the NP 

of TGF-β1 treated discs also showed evidence of cell aggregates, suggesting that GDF-5 

and TGF-β1 promote disc regeneration 150. As many signaling molecule based studies 
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have not provided concrete evidence, more thorough examination on the effects of each 

biomolecule is needed. 

Cell and biomolecule based therapies will likely only be successful at the 

beginning stages of disc degeneration, before the disc composition and morphology have 

changed dramatically 126.  Drawbacks to growth factor therapy are that the degenerated 

portion of the disc cannot be removed and the disc height is not increased initially. 

Another major downfall is the biomolecules’ short half-life 151. If signaling biomolecule 

based therapy is to be successful, it should be coupled with a biomaterial carrier in order 

to avoid biomolecule denaturation. These biomolecule should have a temporal release 

profile in order to control the release amount. The ideal biomaterial could release 

desirable biomolecules into the IVD to promote successful tissue regeneration while also 

increasing the disc height and mechanical stability. One example using biomaterial to 

assist biomolecule based strategy is incorporating platelet-rich plasma (PRP) into gelatin 

microspheres, which allows injection of the material into the NP 152. PRP contains many 

signaling molecules that have been implicated to promote IVD tissue regeneration, while 

improving PG synthesis in the IVD (Figure 2.8) 152,153. These gelatin microspheres served 

as a delivery vehicle to enable the sustained release of growth factors from the PRP to 

promote tissue regeneration as the gelatin degrades 152.  
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Figure 2. 8: Optical density of PGs in the NP (A), and AF (B) showing that discs 
treated with PRP loaded gelatin microspheres showed a much higher presence of PGs 

in the NP and AF as compared to control groups and PRP-only groups 152. 
 

2.5.3 Hydrogels 

 
Biomaterials that crosslink and gel upon injection into the desired site may show 

promise in the application of IVD regeneration. Injectable biomaterials are important 

because they are less invasive than most conventional surgical techniques. Hydrogels, 

which are in this class of injectable biomaterials, absorb large quantities of water and will 

facilitate disc regeneration by acting as a temporary scaffold and increasing hydration 

while aiding nutrient transport. They can also serve as a carrier or delivery vehicle for 

cells and signaling molecules. These materials, however, may only aid in the regeneration 

of the NP as the materials are physically and mechanically most similar to this portion of 

the tissue. IVD cells in some hydrogels will take on a natural rounded morphology, 

similar to that in the NP. Replacing the degenerated NP with hydrogels is an attractive 

method for NP regeneration. As recently as 2005, the FDA has proposed the use of more 

non-invasive therapeutic strategies to prevent disc degeneration, such as hydrogel 

injection into the NP 154,155. Most of the hydrogels currently under investigation are 
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liquids at the time of injection, and undergo a gelation process after injection 123. Many 

hydrogel materials may be used for IVD tissue engineering.  

 Different hydrogel materials have been developed to mimic the NP of the natural 

IVD 11. Baer et al. used an alginate hydrogel to preserve the IVD cell phenotype. The 

IVD cells seeded in alginate demonstrated enhanced production of PGs, collagen types I 

& II, keratin sulfate, and chondroitin sulfate, all of which are constituents of the native 

disc 27. However, the alginates anionic traits may prevent the formation of collagen into 

its natural fibrillar structure. Chondrocytes cultured in agarose gel maintained a collagen 

and PG structure comparable to that of natural cartilage 27. 

Collagen hydrogels are attractive as they are constituents of native disc tissue. NP 

replacement with collagen gels has proven to restore disc height with advantageous 

mechanical properties in bovine animal models 156.  Also, collagen type I gels have 

proven to promote IVD cell proliferation while also expressing both anabolic and 

catabolic genes, signifying matrix synthesis and degradation, respectively 125. These 3-D 

gels were used to determine how cyclic strain and hydrostatic pressure affected cell 

behavior 125. Cyclic strain at a physiologic frequency of 1 Hz increased anabolic 

expression of collagen type II and aggrecan while also decreasing catabolic expression of 

MMP-3 125.  Hydrostatic pressure increased expression of collagen I and aggrecan while 

it decreased expression of MMP-2&3 125.  Therefore, moderate mechanical loading may 

aid in matrix synthesis while also decreasing matrix degradation 125. Collagen hydrogel 

has already been used to regenerate cartilage clinically 157. Collagen gel promotes IVD 

cell viability and the production of native matrix to prevent a significant loss in disc 
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height 158. Furthermore, collagen hydrogels loaded with MSCs helped preserve the NP 

and the structure of the AF in animal models, allowing for enhanced disc regeneration as 

compared to collagen alone 123. Some researchers are also investigating type II collagen 

hydrogel for IVD regeneration. Type II collagen is the dominant collagen type in native 

NP tissue and support NP cells very well. However, type II collagen degrades rapidly and 

only last for 2-3 weeks, which is not sufficient time to allow functional matrix to be 

synthesized to support physiologic loading 123,154. Most current studies on collagen gel 

are only focus on the regeneration of one region of IVD tissue 158. A better strategy 

would be using heterogeneous hydrogel for the regeneration of different regions of IVD 

tissues. 

Hyaluronan (HA) gel is another material often used in IVD regeneration because 

it is a natural component of the native disc matrix, as well as because it increases the 

water content within the scaffold to enhance the discs load bearing capacity 93,159,160. 

Injectable HA hydrogels have proven to prevent fibrotic tissue formation after removal of 

the NP in pig animal models 161. In one study, viscous HA hydrogels were used as 

biomaterial carriers for the delivery of MSCs into rat coccygeal discs 91.  Four weeks 

after injection, cell viability increased 91. However, after 4 weeks, the discs treated with 

the MSC therapy did not show a significant difference from the sham operated animals 91. 

This may be because sufficient matrix was not produced. 

Chitosan hydrogel has been proposed to serve as a NP replacement 162. Chitosan 

is especially attractive for IVD regeneration as it has shown to promote chondrocyte 

attachment and proliferation while having similar properties to extracellular matrix 
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(ECM) in native cartilage  163-166. Chitosan has the ability to self associate or form 

covalent cross links, which enables a more complete hydrogel network. This type of 

crosslinked hydrogel allows time for cells to manufacture ECM since polymer 

degradation time is increased. Chitosan hydrogels can enhance the viability of 

chondrocytes and aid in an increase of aggrecan synthesis 52. Cationic chitosan may be an 

ideal biomaterial hydrogel to use as a replacement for the NP portion of the IVD because 

it may aid in the attraction of anionic aggrecan molecules 52. This attraction would allow 

for the possible accumulation of PGs and subsequently an increase tissue hydration. In 

one particular study, lower molecular weight chitosan (2.5% Protasan UP G213) 

exhibited superior cell viability compared to higher molecular weights 162. Using 1% to 

1.5% cationic chitosan hydrogels seeded with NP cells, roughly 80% of the synthesized 

PG content was retained in the hydrogels 52.  

Synthetic hydrogels can be manipulated to provide different mechanical 

properties depending on their application.  Some of the synthetic hydrogels used in IVD 

regeneration include polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinyl 

pyrrolidone (PVP), and polyethylene oxide (PEO)-polypropylene oxide (PPO). PEG 

hydrogels have been used as biomaterial carriers to deliver MSCs into the NP in rat 

spines while maintaining cell viability 167. PVA/PVP hydrogels have also been developed 

to serve as minimally invasive, injectable NP replacements 168.  However, no evidence 

was provided proving the ability of a PEG hydrogel to withstand loading or aid in matrix 

retention while the PVA/PVP materials have not been proven to produce cell morphology 

similar to the native NP 167,168.  Pluronic F-127 , a PEO/PPO copolymer hydrogel allowed 
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the synthesis of cartilage tissue, however, it cannot retain its initial shape and is 

unsuitable for mechanical loading.169 Although few synthetic hydrogels are currently 

investigated for NP applications within the IVD, many synthetic biomaterials are being 

developed to mimic the AF structure which will be discussed later. 

Currently, most studies on hydrogels for IVD applications are focusing on natural 

based materials. Although synthetic materials and their properties are easier to control, 

natural hydrogels provide a better environment to mimic the NP of a disc implant. One 

issue with injectable hydrogels is their propensity to leak out of the injection site before 

completely curing/gelling. Because hydrogels are mostly used to mimic the NP, other 

biomaterial structures are investigated to better recreate the overall structure of the AF 

and the native disc as a whole.  

 

2.5.4 Biomaterial Scaffolding 

 
 A variety of solid biomaterial scaffolds have been investigated for IVD tissue 

regeneration. Because fibrochondrocytes may require chemical and mechanical signals in 

order to function and regenerate normal IVD tissue, scaffolding that has the ability to 

support physiologic loading is desirable 170. Given the unique structures of IVD tissue at 

different regions, it is important for scaffolding constructs to accurately address the 

structure and composition characteristics of each region. More specifically, the NP and 

AF structures need to be better mimicked to provide direction and guidance for cell 

alignment and matrix deposition.  
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Annulus Fibrosus Scaffolding 

Many different polymeric biomaterials have been used in attempts to regenerate 

the AF. PLA, PGA, and the copolymer PLGA appear attractive for tissue scaffolds 

because suture products based on these materials have been approved by the FDA for 

human use 171.  However, PLA and PGA alone are problematic for IVD applications 

because they are hydrophobic and do not promote cell adhesion 172. Therefore, they are 

often combined with other materials to enhance cell responses. Examples of these types 

of materials include small intestine submucosa (SIS), demineralized bone matrix (DBM), 

and gelatin, which have been combined with PLGA  to improve cell attachment and 

growth 171,173. Another downside to the use of PLA, PGA or its copolymers is that their 

acidic degradation products elicit an inflammatory response 171. 

SIS is an acellular material containing 80-90% oriented collagen fibers, GAGs, 

and growth factors, including bFGF, VEGF, and TGF-β 174,175. Biodegradable SIS 

scaffolds improve PLGA materials for IVD applications as they allow incorporation of 

growth factors to increase metabolic activity and matrix production of cells 176.  Further, 

positive gene expression proved that acellular SIS materials promoted ECM and GAG 

production (Figure 2.9) while improving cell migration into the material after 1 month 

176,177.  Also, SIS resorbs in 3 months, which is beneficial for IVD tissue regeneration as 

it allows time for the synthesis of ECM while supporting biomechanical loadings.  

However, a downside to SIS is that it has a rough and smooth side, and cells cannot 

attach to the smooth side 178. 
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Figure 2. 9: SIS cell seeded scaffolds show significant increase in GAG content in AF 
(A), and NP (B), as compared to non seeded scaffolds in vitro. *p< 0.001, **p< 0.01.176 

 

Studies investigating cell attachment for IVD scaffolds have proven the ability of 

DBM and gelatin to promote cell attachment as compared to PLA alone (Figure 2.10) 173.  

Materials similar to DBM, such as Bioglass®, were also incorporated into an IVD 

scaffold. 3-D PLA foams composed of 0, 5, and 30 wt% Bioglass® particles were tested 

to determine the constructs ability to satisfy the requirements for a tissue engineered IVD 

179. The 30% Bioglass®/PLA composites increased cell proliferation and exhibited 

significantly higher GAG and collagen production as compared to PLA alone 179. One 

downside to the use of DBM and Bioglass® materials, though, are the materials 

compliance and rigidity. This becomes an issue as the scaffold may not have the ability to 

absorb loads in vivo. Also, these biomaterials may not be able to be easily implanted, 

since they are not elastic enough to be press-fitted into the void disc space.  
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Figure 2. 10: Top: LIVE/DEAD imaging of cells on PLA (A), gelatin (B), and DBM 
(C) scaffolding with diameters of 0.7-1.1 mm, 100-150 µm, and 1-2 mm, respectively. 
Bottom: SEM after 1 month of culture showed that PLA was smooth (A), gelatin had 
interconnected pores (B), while the DBM consisted of an oriented structure (C) 173. 

 
 

Other degradable polyesters besides PLA and PGA, such as polycaprolactone 

(PCL), have also been combined with DBM to increase cell attachment. A scaffold with 

an outer DBM region and oriented layers of PCL in the inner region was used to recreate 

the AF structure (Figure 2.11) 180. The use of DBM improved the compressive and tensile 

strength of the scaffold 180.  However, this scaffold only mimics the AF region, and does 

not attempt to incorporate an integration within the scaffold for a NP region. Although 

cells infiltrated the scaffold and produced matrix, they did not elongate and align in an 

organized fashion like the native tissue (Figure 2.12) 180.  Also, as seen in previous 

studies, the biomechanical properties of the scaffolding construct are not elastic and do 

not match those of the native tissue.180 
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Figure 2. 11: Safranin-O staining of normal rabbit IVD (a,b). PCL scaffold fabrication 
technique showing concentric layers of scaffolding 180. 

 

 
 

Figure 2. 12: Scaffolding at different magnifications using safranin-O staining (P: 
PCL, C: Chondrocytes), and collagen type II fluorescent staining (right top: 

cells/scaffold, right bottom: control scaffold) after 4 weeks culture 180. 
 

PCL alone has also shown success in emulating the organized collagen fibers in 

the native AF. For instance aligned PCL nanofibers have been bundled together in order 

to create a single lamella with 1 mm thickness 181. AF cells seeded onto these PCL 

bundles oriented in alignment with the fibers and synthesized matrix 181. Though this 

scaffold provided accurate 3-D microstructure of a single lamellae, this technique needs 
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to be improved by fabricating multiple lamellae within the same scaffold to accurately 

mimic the native tissue architecture 181.  

As can be seen, there have been many materials and structures that have been 

investigated for AF tissue regeneration, yet there has been little evidence of how these 

materials will integrate with the vertebrae. Takahata et al developed a 3-D polymer fabric 

(3-DF), mimicking the shape of the IVD, which was composed of UHMWPE and coated 

the top and bottom surfaces with hydroxyapatite bioceramic granules in hopes of 

promoting vertebral body ingrowth. Animal studies using this 3-DF have demonstrated 

bone growth into the construct, as well as firm fixation to the vertebral body 182. 3-

DF/UHMWPE discs resisted fatigue and their mechanical properties remained constant 

after 2 million cycles of dynamic loading, proving the materials durability 183.  One 

problem with this scaffold design, though, is that it was too rigid and did not accurately 

replicate a biphasic NP and AF region. 

 

Nucleus Pulposus Scaffolding 

As mentioned above, many materials have been extensively used for AF tissue 

engineering applications. Some of these same materials have also been used as NP 

scaffolding materials. For example, PLGA (70:30) scaffolds were used to regenerate the 

NP tissue using a canine animal model 83. Evidence of tissue regeneration by chondrocyte 

type cells and increased ECM was observed after scaffolds completely degraded at 4 

weeks 83. Similarly, a NP replacement composed of biocompatible and incompressible 

polycarbonate urethane has shown to sustain biomechanical loading to maintain disc 
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height after a discectomy 184.  The material consists of a memory coiling spiral which can 

roll into shape after being implanted into the region of the removed NP (Figure 2.13) 184. 

A drawback to the use of polycarbonate urethane is that the AF must be intact and 

healthy to support spinal loads 184.  However, because these materials are not injectable, 

they may damage the AF, which may lead to further disc degeneration. Therefore, a 

material for NP regeneration combined with other scaffolding materials used in AF tissue 

engineering is a more attractive idea to mimic the biphasic IVD composition.  

 
 

Figure 2. 13: Human cadaveric IVD after NP removal (A), and after implantion of 
memory coiling spiral in the NP (B) 184. 

 

Biphasic IVD Scaffolding 

It has been shown that a variety of materials have been used to emulate one region 

of the IVD. However, these materials can be used in conjunction in order to create 

composite structures that mimic the biphasic structure of the natural IVD and 

simultaneously reproduce NP and AF tissue. Composites that use polymers such as PGA 

or PLGA to mimic the AF, and alginate to mimic the NP have been developed 185,186.  In 

one design, a radically oriented PGA mesh combined with an alginate hydrogel has been 

formed into a composite to emulate the AF and NP, respectively. Each of these materials 

maintained their distinct regions after 4 months implantation (Figure 2.14) 185.  Also, this 

scaffold allowed for newly formed NP and AF tissue, which possessed a high intensity 
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safranin-O staining after 12 weeks in vivo, proving the formation of cartilage tissue 186.  

Further, the GAG content and compressive modulus of the PGA-alginate scaffolds 

increased to values similar to native mice IVD levels (Figure 2.15) 185.  In another study, 

PLGA and alginate scaffolds had similar morphology and composition, as well as the 

structure of newly formed tissue, to that of the native tissue 186.  One limitation of these 

particular scaffolds, however, is that the AF region of these materials was not as lamellar 

and organized as the native tissue 186.  Another downside to the use of PLGA or PGA 

with alginate is that the mechanical properties are not as similar to human IVD tissue, 

which is necessary for IVD tissue engineering 185. 

 

 
 

Figure 2. 14: Top: Both regions of the scaffold encouraged GAG synthesis similar to 
native tissue in mice (left), while the modulus of the scaffolds also increased over time 

to reach values similar to native tissue. Bottom: PLA/PGA and alginate scaffolding 
before implantation (A), and implanted for 4 weeks (B), 8 weeks (C), and 16 weeks (D) 

showing two distinct IVD regions.185 
 

Like alginate, hyaluronan (HA) hydrogels have also been combined with PGA 

scaffolds. Absorbable PGA scaffolds have been combined with fibrin-HA solutions, 
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containing expanded human IVD chondrocytes, and formed IVD-like tissue after 2 weeks 

in culture 160.  In vitro, IVD cells assembled in 3-D on these scaffolds, while passing 

necessary biocompatibility requirements and showing no decrease in cell viability as 

observed by LIVE/DEAD staining (Figure 2.15) 160. Also, collagens and GAGs were 

produced in 3-D culture, on the PGA fibrin-HA materials, however, a more fibrous tissue 

was formed, as collagen type I expression was greater than collagen type II expression 

160. This response was unwanted as collagen type II is more desired in a healthy disc 

regeneration. To expand on the use of PGA and HA, certain groups have used cell free 

nonwoven PGA-HA resorbable scaffolds and immersed them in serum containing growth 

factors in order to attract cells and induce IVD regeneration in rabbit models 159,187.  After 

12 months of implantation, the animals with the scaffold treated discs exhibited extensive 

infiltration of ECM proteins, such as PGs and collagen type II, allowing for an enhanced 

disc height as compared to the controls. This study proved that long term success of 

PGA-HA materials is possible as chondrogenesis was observed, with an increase in PG 

and water content (Figure 2.16) 159,187. Also, the ECM synthesized had a similar 

composition to native tissue and were resorbed completely between 40 and 60 days with 

a 50% loss of mechanical integrity after 7 days 159,187.  
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Figure 2. 15: LIVE/DEAD staining of the cells within the PGA fibrin-HA scaffold at 1 
(A) and 2 (B) weeks. It can be seen in B, that live cells migrated into a more 3-D 

pattern. The red seen in part B is a staining of the PGA fibers 160. 
 
 
 

 
 

Figure 2. 16: H&E (A,C), and Safranin-O (B,D) staining 12 months after a discectomy 
(A,B) or PGA-HA treated materials(C,D) showing increased cellular infiltration 

(circles) in the implant treated discs and tissue necrosis (arrows) in the controls 187. 
 
 

It has been shown that HA may be an effective hydrogel for IVD regeneration 

when combined with appropriate scaffolds. For this reason, biphasic biodegradable PLA 

nanofiber scaffolds consisting of an HA center have been tested 103.  The electrospun 

nanofibers resemble the native lamellar structure of the AF 103.  During culture, cells in 

the PLA-HA construct elongated and aligned in a concentric fashion on the nanofibers 

while also increasing secretion of GAGs and other ECM content, as evidenced by H&E 
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and alcian blue staining (Figure 2.17) 103.  PG staining with alcian blue showed no 

distinct organization within the NP while the AF has a more organized structure, 

mimicking native IVD tissue architecture (Figure 2.17) 103.  One issue with the scaffold, 

though, is that it does not support necessary biomechanical loads 103.  The PLA fibers 

should also be more aligned in the periphery of the construct to better mimic native disc 

tissue.  

 

  
 

Figure 2. 17: Left: Staining of PLA/HA scaffold showing increase in cellularity and 
PG content in both the AF and NP over 28 days. Right: Quantitative assay showing 

increase in GAG synthesis over time 103. 
 
Natural polymers, such as collagen type I have also been used in conjunction with 

hydrogels in order to create a biphasic IVD scaffold. In one study, a HA hydrogel 

surrounded by collagen type I, at a ratio of 9:1, was used to make a composite scaffolding 

material, which promoted growth and attachment of functional IVD cells for 60 days in 

culture 137.  PGs including aggrecan, decorin, biglycan, fibromodulin, and lumican as 

well as collagen types I & II all accumulated on the scaffold, showing that cells were 

synthesizing matrix similar to that of the native IVD 137. The synthesized biomolecules, 

however, were not consistently retained within the scaffolds and often escaped into the 
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culture media 137.  For this reason, this particular biphasic construct is not effective, as the 

materials should retain and organize matrix molecules into functional ECM in order to 

properly function as an IVD scaffold. 

As evidenced by previous studies, mechanical properties of IVD scaffolds are far 

from satisfactory. Suitable mechanical properties can be achieved, however, with the 

proper design and materials. One group, Gloria et al, created a scaffold with mechanical 

properties that were very similar to those of the natural IVD122. The scaffold consisted of 

poly (2-hydroxyethyl methacrylate)/ poly (methyl methacrylate) (PHEMA/PMMA) 

(80/20 w/w) hydrogel combined with poly (ethylene terephthalate) (PET) fibers 122. The 

scaffolds showed a J-shaped stress-strain curve similar to most soft tissue, and did not 

experience signs of fatigue under dynamic loading 122. Furthermore, acrylate materials 

can maintain a desirable water content of about 75wt% which is comparable to natural 

IVD water content 188. Although the PHEMA/PMMA/PET construct showed superior 

mechanical properties as compared to other biomaterial structures, and is assumed to be 

biocompatible, no data was provided to prove the scaffolds ability to support cell growth 

and direct matrix synthesis 122. Further evidence may show that this material construct 

might be ideal for IVD regeneration. 

 

2.6 Animal Modeling 

 
In order to evaluate the effectiveness of the strategies developed for IVD tissue 

repair and regeneration, it is important to use appropriate animal models. Also, because 

the complete process of disc degeneration is not well understood in humans, animal 
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models have become increasingly important. Animal models can help determine cause 

and effect relationships of different factors that may relate to disc degeneration. For the 

purpose of creating a degenerated disc, induced injury can imitate a degenerated disc 84. 

Different methods have been used to simulate IVD degeneration with most models using 

spines and tails 84. Results from animal studies have suggested that abnormal mechanical 

loading conditions lead to symptoms of a degenerated disc. Using induced degeneration 

in animal models, therapeutic strategies for IVD regeneration can then be evaluated for 

success. If successful in smaller animals, tissue engineered strategies can be further tested 

in larger animals that better mimic nutritional, biomechanical, and surgical applications 

in humans 189. 

Rodent models are necessary to establish the initial success of an IVD treatment 

strategy. Rodent models help determine whether or not a specific regenerative therapy is 

promoting a desired cellular response. In order to evaluate treatment, degeneration must 

be induced. Research has proven that compressive forces can induce degeneration using 

in vivo mouse tail models 190. Degeneration can also be produced by using a needle to 

puncture the IVD 189. After induced degeneration, rat models have been used to test 

regenerative based growth factor therapy by evaluating changes in PG content and 

changes in disc morphology. 

Small animal models, such as rabbits, are used when strategies have proven 

successful in rodent models. Kroeber et al used axial mechanical loading on an in vivo 

rabbit model to produce a degenerated disc (Figure 2.18) 26. This method is the first 

method where disc degeneration was induced and then treatment methods were evaluated 
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in vivo 26. Rabbits spines that were mechanically loaded for 14 and 28 days exhibited a 

significant decrease in disc height, as well as an outer AF structure that became 

disorganized, proving that compression simulated IVD degeneration. PGA implants were 

then tested in the animals with degenerated discs 26. Abbushi et al were the first to 

remove the degenerated disc, using open surgery microdiscectomy, on rabbit animal 

models to test their implanted materials 159. This method is advantageous over other 

techniques as it is a more destructive resection of tissue, better simulating the clinical 

environment 159.   

 

 
 

Figure 2. 18: Rabbit animal model of IVD after dynamic compressive loading for 28 
days showed significantly less height (B) than normal (A) 26 

 

One inherent problem with modeling human IVDs is their size compared to 

animal models. Human IVDs are much larger than most rodents and smaller animals, and 

therefore transport of nutrients and wastes is much more difficult in human IVD 84. For 

this reason, more expensive, larger animal models (canines, sheep, porcine, goats) are 

necessary for in vivo studies as diffusion of nutrients to cells in these larger models more 

accurately mimics human IVD circumstances. Canine spines under large compressive 

loads have been used to model disc degeneration 191. Degeneration in sheep and goat 
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animal models has also shown to be advantageous for potential therapeutic strategies as 

their IVDs are similar in size to humans, and their tissue does not naturally repair 192,193. 

Researchers have also investigated porcine models by promoting degeneration and then 

evaluating the effectiveness of a hydrogel containing stem cells to promote viability and 

differentiation towards a chondrogenic phenotype 194. 

Animal modeling in its later stages needs to be geared more towards better 

mimicking a human spine size and biomechanics. The spines and IVD structures of 

primates is highly similar to humans 126. Also, because primates are bipedal, the forces 

acting on their spines better mimic human loading conditions 126. Although primates may 

be essential for studying IVD regeneration strategies in the future, to date most 

researchers have not used primates as models because of ethical issues and high costs.189 

 

2.7 Mechanical Properties 

 
Since animal studies have shown that compressive forces can induce 

degeneration, it seems there may be a correlation and a limit to the loads the IVD can 

support before experiencing degeneration. The ECM of the IVD consistently bears loads 

in the body, and these loads can be assumed to be primarily compressive 195. The IVD is 

a viscoelastic tissue having time dependent responses to loading and experiences 

nonlinear, anisotropic behavior 84,181. Therefore, static and dynamic compressive tests can 

be used as preliminary indicators for the behavior of devices and biomaterial structures 

for potential spinal disc applications.  
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Disc cells are influenced by a variety of mechanical factors such as mechanical 

stress, and osmotic pressure 27.  Mechanical influences that affect disc cell behavior 

include static compression, hydrostatic pressure, and tensile stretch. Each of these 

external stimuli changes the assembly of PGs, and collagen within the IVD. Atypical 

loading on a healthy disc can cause cellular alterations within the disc, which may be 

characteristic of a disease state 51. Though some evidence suggests that normal 

compressive spinal loads may encourage PG synthesis, loading may also alter the matrix 

composition by decreasing the matrix production and degradation, and decreasing cell 

activity 51. Extensive mechanical loads may cause cell death, decreasing the amount of 

cells available to synthesize and turnover stable ECM molecules 196. During extended or 

abnormal loading periods, the IVD may attempt to remodel to better support the loading, 

usually resulting in a degenerated disc 190. 

Because mechanical loading can be both implicated and compromised in a 

degenerated IVD, it is important for biomaterial structure to have similar mechanical 

properties compared to healthy, native tissue. Mechanical integrity, especially under 

compressive stresses, is important for IVD implants and tissue engineered IVD tissues. 

The compressive modulus of the IVD varies in each region.  In the AF, the compressive 

modulus has been reported to range from 0.116-2.3 MPa, while in the NP the 

compressive modulus has been reported to range from 0.003-0.31 MPa.  Therefore, a 

tissue engineered construct should be able to withstand these loads with some safety 

factor involved. It has been stated that the Young’s compressive modulus of IVD 

scaffolds should range from 0.5-5 MPa and the ultimate strength should be at least 8-10 
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MPa 11,38,197,198. The NP and inner AF are deformed less during compression. Because 

each of the IVD regions contains different matrix molecules, the disc has varied 

mechanical properties in each region. In this regard, IVD implants and tissue engineered 

IVD tissues should have distinct mechanical properties in each region. Mechanical 

properties of IVD constructs need to be better characterized as the mechanical properties 

are important for the IVD functions. Dynamic and static compression tests are 

recommended for IVD constructs as the forces on the spine are primarily compressive 131. 

However, for IVD regeneration using biomaterials, biomaterial structures should be able 

to temporarily support limited amount of spinal loads while promoting matrix synthesis, 

as the regenerating matrix will eventually bear the full spinal loads when the implanted 

biomaterial structure degrades. 

 

2.8 Conclusion 

 
Worldwide healthcare goals involve the restoration and maintenance of native 

IVD tissue to decrease its economic burden and impact. The degenerated spinal disc is 

one of the most expensive medical problems currently encountered today as it causes 

disability among many people in the aging population 130.  One major hurdle in creating a 

regenerative therapy for the IVD is that its structure is highly unique and has multiple 

distinct regions. The NP is a disorganized conglomeration of collagen type II and highly 

anionic PGs which help attract water to maintain the disc height. On the other hand, the 

AF consists of highly organized collagen type I based lamellar architecture which helps 

prevent bulging in the NP. The distinct structure of each region of the IVD enables the 
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disc to withstand the everyday dynamic forces placed on the spine. Both the AF and NP 

structures are avascular, meaning cellular nutrition is based solely on diffusion, and also 

making repair of the tissue difficult, inevitably resulting in age related disc degeneration. 

It is important to understand disc degeneration prior to determining an effective 

therapy, since a researcher must know which factors are causing the degeneration in order 

to stop it. All of the exact causes of disc degeneration have not been identified, although a 

variety of factors have been implicated, including loss of biomechanical stability, poor 

nutrition, genetic factors, and an increase in degradative enzymes. Disc degeneration is 

accompanied by a decrease in viable chondrocytes and a loss in PG content within the 

matrix followed by dehydration. During IVD degeneration, the disc structure of the NP 

and AF are highly compromised leading to a fibrous and disorganized structure. As disc 

degeneration progresses, the discs ability to support biomechanical forces on the spine 

become compromised. Eventually, the disc becomes unstable, causing an extensive 

perceived pain by the patient.  

Clinically, the only solutions to a patient’s pain resulting from a degenerated disc 

are therapy, rest, and medication. If these treatments are unsuccessful, a patient may 

require the removal of the degenerated portion of the disc, spinal fusion, or an IVD 

implant. Removal of the degenerated tissue does nothing to stabilize the spine and causes 

problems relating to the decrease in disc height which leads to increased disc 

degeneration.  A current solution to a disc removal is spinal fusion which stabilizes and 

restricts motion.  However, fusion creates its own problems as it increases stress 

concentrations on adjacent discs, causing further degeneration. Therefore, the 
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replacement of degenerated or damaged IVD tissue with a permanent implant is an 

attractive alternative to spinal fusion. Current implants help restore patient mobility and 

disc height. However, these implants have their own faults. Current NP replacements 

damage the native AF upon implantation, causing an inflammatory response that will 

eventually promote further tissue degeneration.  Total disc replacements also have 

problems in that they form wear debris and have a large compliance mismatch, leading to 

stress shielding on adjacent vertebral levels.  Another disadvantage to current disc 

replacements is that they do not replicate physiological motion or promote natural tissue 

repair. 

To improve upon current solutions, tissue engineered IVD structures are being 

developed to regenerate the native tissue. The necessity for the development of 

approaches to promote IVD repair and regeneration is evident in the fact that problems 

still exist with current therapies to disc degeneration. Researchers are currently 

investigating different therapeutic methods to promote IVD regeneration, including cell 

based therapies, signaling molecule based therapies, and biomaterial-based regenerative 

therapies. Cell and molecule therapies alone are unlikely to be effective as they will not 

be able to support in vivo spinal loads. Current NP hydrogel regeneration strategies are 

unlikely to be successful as they may damage the AF. Once the AF is compromised, 

some type of scaffold support structure will be necessary to support loads. Therefore, a 

biphasic structure mimicking both the AF and NP is more likely to have a long term 

impact in IVD tissue regeneration due to the inherent mechanical stability they would 

provide. These tissue engineered IVD structures should have a similar structure and 
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mechanical properties to that of the native tissue in order to properly integrate with the 

tissue and resist failure. Scaffolds also have the ability to be coupled with bioactive 

molecules in order to promote tissue regeneration or prevent an inflammatory response, 

while allowing for mechanical stability 133,199,200.   

Tissue engineering is the future for the treatment of IVD degeneration. 

Conventional treatments for IVD degeneration do not meet the requirements to restore 

patient satisfaction. Due to the failures of current therapies and techniques to prevent and 

treat IVD degeneration, new methods are needed. Novel ideas are necessary to propel 

IVD tissue engineering forward, starting with a basic understanding of design criteria. 

Using previous successes and failures in tissue engineering, the regeneration of the IVD 

is an achievable goal. 
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CHAPTER 3 
 

3. FABRICATION OF A BIOMIMETIC ELASTIC INTERVERTEBRAL DISC 

SCAFFOLD USING ADDITIVE MANUFACTURING  

 

3.1 Introduction 

 
 Over 80% of the adult population is affected by low back pain at some point in 

their lives. Surgical procedures are performed on roughly 5% of the population to 

alleviate this pain, amounting to nearly $90 billion in annual healthcare costs 1. 

Degeneration of the intervertebral disc (IVD) causes compression of the spinal nerves 

and adjacent vertebrae, proving to be a primary cause of low back pain. The exact causes 

of IVD degeneration are unknown, but it is thought that natural aging, excessive 

mechanical compression, and biological or genetic factors each play a significant role in 

the degenerative process 2-5. Current methods to alleviate the pain caused by a 

degenerated disc include spinal fusion and artificial disc replacement. Spinal fusion does 

not restore disc function and may cause further degeneration of adjacent IVDs by altering 

the biomechanics of the spine 6. Artificial IVD replacements have recently started to 

gather interest, with two IVD implants currently approved for use in the United States 7,8. 

These implants help replace the degenerated disc and restore some motion; however, they 

cannot sustain compressive forces due to their lack of elasticity. Additionally, current 

implants may produce wear debris and cause stress shielding on the vertebrae, resulting 

in further disc degeneration and eventually implant failure 9. Tissue engineered IVD 

scaffolds may offer advantages over current approaches, including preservation of disc 
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height and natural motion while encouraging formation of natural tissue. Additionally, an 

artificially engineered elastic polymeric disc offers a solution to the problems 

encountered with current disc replacements as it would be capable of supporting 

compressive forces on the spine without permanent deformation. 

Many researchers have attempted to fabricate an IVD scaffold, but none have 

completely satisfied critical requirements for both reproducing morphological and 

mechanical properties of native IVD tissue 10-12. However, creating a tissue engineered 

IVD has proven difficult, as its structure is highly unique, containing a highly aligned and 

lamellar annulus fibrosus (AF). Overall, the IVD is avascular with a bean shaped 

structure 13. The AF is a collagen-rich fibrous structure containing between 15-25 

multilayered, oriented concentric layers (lamellae) 14. This lamellar architecture helps 

support the biomechanics of the disc by preventing excessive tensile force from bursting 

the inner IVD while supporting compressive forces on the spine 15. Cells within the AF 

are highly oriented and parallel to the lamellar collagen fibers 16. To our best knowledge, 

no researchers have replicated the microstructure of the AF when designing a tissue 

engineered construct. Because it is vital that a tissue engineered structure closely mimics 

the native morphology of the disc, a scaffold with a similar structure to the native AF, 

containing concentric lamellar layers, would prove to be a significant advancement 

compared to current tissue engineering strategies.  Furthermore, the development of an 

IVD scaffold with mechanical properties similar to those of native tissue are rarely 

investigated. Therefore, a tissue engineered IVD construct that better emulates 

mechanical properties of the native disc will prove advantageous in the future. 
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 A lamellar disc scaffold formed from elastomeric polymers would offer a high 

compliance and allow restoration of natural three-dimensional spinal motions. A lamellar 

construct mimics the natural histological structure found in the outer region of natural 

IVDs and allows a greater surface area for cell adhesion, alignment, and growth. 

Currently, many different techniques have been used to create an IVD scaffold 12,17-20. 

However, none have been able to fabricate a lamellar structure mimicking the natural 

IVD histology. To this end, we created an additive manufacturing technique that 

combines ultra-fine pipettes for liquid polymer extrusion and a freezing stage for the 

solidification of the scaffolds. This scaffold fabrication method permits the use of many 

different polymers and is suitable for creating scaffolds with different three-dimensional 

configurations. This paper will primarily focus on the use of a biodegradable and elastic 

polyurethane (PU) for the application of IVD tissue regeneration, as polyurethane 

exhibits elastic properties similar to natural IVD tissue, and has shown to encourage 

cartilage growth in previous studies 21.  

 

3.2 Materials and Methods 

 

3.2.1 Scaffold Fabrication 

 
A custom-built computer aided manufacturing device integrated with a freezing 

stage was used for this study as shown in figure 3.1. Microsoft Visual Basic was used to 

program the device for three-dimensional scaffold designs. Scaffolds were designed by 

manually programming the device to resemble the native IVD tissue structure as seen in 
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the literature 22. The nozzle tip was made from a calibrated fire-pulled glass injection 

pipette to allow high resolution printing. Specifically, 5 µL glass capillary tubes 

(Drummond wiretrol, Drummond Scientific Company, Broomall, PA) were heated and 

pulled on a micropipette puller (Narishige PC-10, Japan) to have a well-controlled inner 

diameter varying between 5 µm and 50 µm.  
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Figure 3. 1: Schematic (A) and image (B) of the apparatus using CAD, a temperature 
controlled freezing stage, and micropipettes. The device allowed for control of the X-Y-

Z axes down to micron level resolution, while separately controlling the polymer 
solution extrusion rate. 
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Degradable lysine diisocyanate (LDI, Kyowa Hakko Kogyo Co., Japan) and 

polycaprolactone diol (PCL, Sigma-Aldrich, USA) based polyurethane was synthesized 

and purified similar to techniques used by others 23,24.  Briefly, 1:1 molar ratios of hard 

segment LDI and soft segment PCL were added dropwise into dimethylformamide 

(DMF, Sigma) and stirred for 3 hours.  The resulting polyurethane was then dissolved 

again in DMF at a concentration of 15% w/v under nitrogen gas flow protection and 

stirred overnight. This polymer solution was extruded out of a syringe through an ultra-

fine glass injection pipette. Polymer solution was fed at a flow rate of 0.005 ml/min onto 

a glass collection plate placed on the freezing stage (maintained at -4° C). The 

micropipette tip was positioned approximately 30 µm above the collecting substrate. The 

freezing stage maintained the scaffold resolution by increasing the polymer solution 

viscosity below its freezing point and causing the polymer to harden in place as it was 

extruded out of the pipette tip. Briefly, the scaffold material is solidified through 

temperature convection from the cold stage to the point where the material is extruded 

out of the pipette tip.  When the temperature is finely controlled, the polymer solution 

will solidify upon extrusion after reaching its freezing point and allow the structure to 

support subsequent layer by layer deposition. Thus, the device and freezing stage can 

precisely control the extrusion and resolution of the polymer, therefore allowing the 

creation of custom designed scaffolds.  The approximate build time for each IVD scaffold 

layer was approximately 3 minutes.  After the printing of each layer, the micropipette was 

raised 20-40 µm in the z-direction and the computer program continued to build the next 

layer of the structure. After the printing procedure was done, solidified scaffolds were 
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removed from the freezing stage and freeze-dried for 24 hours to extract the solvent. 

Large ice crystal formation on the freezing stage was avoided, by operating in a low 

humidity environment, because it alters the physical properties of the extruded polymer, 

thereby affecting polymer shape.  

 

3.2.2 Mechanical Properties of Scaffolds 

 
Mechanical testing was used to characterize the compressive properties of the 

scaffolds using unconfined compression experiments.  Scaffolds (5.75 mm in diameter × 

2 mm in height) were compressed at a rate of 1 mm · min-1 using a DMA Q800 system 

(TA Instruments, Delaware, U.S.A.) and stopped at roughly 50% strain (n=4).  

Engineering stress and strain were recorded and evaluated. The compressive tests were 

performed on hydrated samples at room temperature.  Dynamic compression tests were 

completed on the hydrated samples at room temperature at 0.008 Hz up to a compressive 

strain of 65%. Tests were not completed past 65% compressive strain, as previous studies 

have shown that the IVD only experiences roughly 15% compressive strain, and 

compressive testing to 65% ensured the scaffold would perform well under extreme 

conditions 25. Dynamic shear testing was also performed on the scaffolds similarly to 

previous studies on the IVD 26. Dynamic shear properties were measured for 12 samples 

each at 3 compressive strains (15%, 30%, and 45%) using an AR G2 dynamic rheometer 

(TA Instruments).  Briefly, each sample was subjected to a shear strain of 1.5% at 

oscillation frequencies ranging from 0.05 Hz to 1.05 Hz in 0.05 Hz intervals, similar to 

previous dynamic testing conditions on IVDs 27. These frequencies were chosen as they 
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are comparable to normal physiologic loading rates in the IVD 28. Dynamic shear 

properties were measured at 3 levels of compressive strain because the disc is always 

under some degree of compressive force, usually around 15%. Other levels of 

compressive strains, e.g., 30% and 45%, were also tested to account for severe loading 

circumstances.  

 

3.2.3 In vitro cell culture experiments 

 
Scaffolds used for cell culture were sterilized with 70% ethanol for 30 minutes and 

then rinsed 3 times with sterile PBS for 2 hours per rinse. Bovine IVD cells were seeded 

on the scaffolds at a density of 1x105 cells. RPMI 1640 Media with 10% FBS and 1% 

antibiotic/antimycotic solution was changed every other day throughout the study. Cells 

were cultured on the scaffolds for up to 19 days. An alamarBlue® assay to measure cell 

proliferation and viability (Invitrogen, Carlsbad, CA) was performed on every other day 

from day 1 to day 19 to examine the growth and cytocompatibility of IVD cells on 

printed elastic PU scaffolds versus a flat surface control. Briefly, cells were cultured in an 

alamarBlue® and media mixture at a ratio of 1:40, for 4 hours, after which the media was 

removed and absorbance at 570 nm and 600 nm was measured using spectrophotometry.  

 

3.2.4 Morphological Study 

 
Scanning electron microscopy (SEM, Hitachi TM-1000) was used to visualize the 

morphology of the printed scaffold.  All fluorescent and light microscope images were 
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taken using a Leica TCS SP5 AOBS Confocal Microscope (Leica Microsystems Inc., 

Exton, PA, U.S.A.). For fluorescent staining, cells were fixed with 4% paraformaldehyde 

after 3 weeks of culture, and phalloidin 488 and DAPI were used to stain the actin 

filaments and the nuclei of the chondrocytes within the scaffolds, respectively. The 

morphology of the IVD cells was observed to determine if cells were spread out and 

attached to the 3-D scaffolds.  

 

3.2.5 Statistical Analysis 

 
One-way ANOVA was performed on the values of G’(storage shear modulus) and 

G* (complex shear modulus) across the frequency range 0.05-1.05 Hz with a least 

significant difference (LSD) post hoc comparison set at p<0.05 using SPSS 17 statistical 

software (Chicago, USA). The results of the alamarBlue® assay comparing PU scaffolds 

with control samples were also analyzed using the methods described above. 

 

3.3 Results 

 

3.3.1 Scaffold Fabrication 

 
The method presented in this paper uses a freezing stage coupled with a custom-built 

additive manufacturing apparatus allowing for the creation of scaffolds with multiple 

layers and lamellar structures using solid freeform fabrication through the extrusion of 

polymer solutions onto a temperature controlled stage.  The freezing stage aided in the 

solidification of the structure at the time polymer solution was extruded out of the ultra-
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fine pipettes through convection of the cold temperatures from the stage to the extruded 

polymer solution. Ultra-fine pipettes allowed for fabrication of scaffolds with similar 

structure to native IVD tissue with the high resolution and reproducibility necessary for 

controlling the scaffold microstructure. Figure 3.2 shows SEM images of the scaffold, 

confirms the 3-D structure, and the ability of the scaffold to mimic native lamellar IVD 

structure. 

A BA B

 

Figure 3. 2: SEM images of a custom designed and layered PU 3-D scaffold structure 
mimicking the natural shape of the IVD and showing a lamellar structure (A), multiple 

layers of PU stacked in a 3-D structure, proving accuracy and effectiveness of the 
bioprinter, micropipettes, and freezing stage to maintain high resolution in three 

dimensions (B). 
 

3.3.2 Mechanical Properties of Scaffolds 

 
Elastic properties were determined with mechanical analysis of the scaffolds in 

compression and shear. The average compressive stress-strain curve is shown in figure 

3.3A. The scaffolds showed a J-shaped stress-strain curve, observed in soft tissues similar 

to the IVD. The initial compressive storage modulus (E’) in the toe region was 45.4 ± 5.6 
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KPa (mean ± the standard error of the mean), while the compressive modulus (E’) of the 

linear region was 350 ± 19.6 KPa. These values correspond to similar tests carried out on 

native IVD tissue 28,29. The shape of the curve indicates that the scaffolds significantly 

stiffen under large strains (greater than 40%). Elastic hysteresis was observed in the 

scaffold during dynamic compression (figure 3.3B). Scaffolds did not show permanent 

deformation after 5 cycles of compressive loading up to 65% strain, which is significantly 

more strain than native IVD tissue typically undergoes during loading, proving the 

scaffolds can handle deformation well 25. Aside from basic compressive testing, 

compressive shear testing to 1.5% strain was also carried out as the native IVD undergoes 

shear deformations 26. During compressive shear tests, compression at 15%, 30%, and 

45% strain were used, as compressive strains of around 15% are similar to normal 

physiologic compressive strains 25,30. The storage shear modulus (G’) represents the 

elastic stored energy of the scaffold material. The dynamic shear modulus (G*) is 

comprised of both G’ and G” (energy lost as heat) and can provide important information 

as a material property.  The printed PU IVD scaffolds displayed significant elastic 

responses, during shear tests, in which G* was primarily governed by G’. One-way 

ANOVA was performed across each frequency for G*, G’, and G’’ with compressive 

strain serving as the comparison factor. All of the dynamic shear properties were 

dependent both on the frequency and the compressive strain. Increases in compressive 

strain resulted in increases for G*, G’, and G’’. Increasing the frequency also increased 

the compressive dynamic shear properties, but this was not found to be significant. The 

compressive strain effect was found to be significant for G*, G’, and G’’ (p<0.05) as 
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shown in Table 3.1. Since the material displayed primarily elastic behavior, the trends for 

G’’ are not shown in figure 3.4 due to the minor contributions to G*. During shear 

testing, all recorded frequencies between 0.05-1.05 Hz were analyzed against the 

compressive strains and showed significant differences between all strains with p-values 

all below 0.02. At a frequency of 1.0 Hz, compressive dynamic shear moduli were 57 ± 

23.7 KPa, 97 ± 15.2 KPa, and 135± 12.6 KPa for 15%, 30%, and 45% compressive 

strains, respectively. At a frequency of 1.0 Hz, compressive storage shear moduli were 

56.7 ± 23.7 KPa, 96.5 ± 15.2 KPa, and 134± 12.4 KPa at 15%, 30%, and 45% 

compressive strains, respectively. Figure 3.4 validates that energy is primarily stored by 

the material during deformation, as G’ and G* are highly similar, proving the material 

has significant elastic behavior. Furthermore, our results were very similar to other 

compressive shear studies performed on native tissue 26. 
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Figure 3. 3: (A) Stress-strain curve showing average behavior of printed PU IVD 
scaffolds.  Scaffolds exhibited elastic behavior, showing a J-shaped stress-strain curve 
typically observed in soft tissues like the IVD. (B) Representative dynamic compressive 

testing on PU IVD scaffolds which exhibited elastic hysteresis, and did not show 
permanent deformation after multiple cycles of dynamic compressive loading. 
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Table 3. 1: Statistical analysis for Dynamic Shear Moduli at 1 Hz between Compressive 
Strains of 15%, 30%, and 45% (n=12). 

 
Variation Mean (KPa) The standard 

error of the mean 

(KPa) 

Significance 

15% 56.65 23.74 

30% 96.5 15.16 

Storage 

Modulus 

(G’) 45% 133.9 12.55 

p<0.05 

15% 6.51 1.97 

30% 9.55 1.27 

Loss 

Modulus 

(G’’) 45% 13.09 1.63 

p<0.05 

15% 57.03 23.77 

30% 96.96 15.2 

Dynamic 

Modulus 

(G*) 45% 134.55 12.62 

p<0.05 
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Figure 3. 4: Mean values of the storage modulus G’ (A), and the dynamic shear 
modulus G* (B) at a fixed shear strain of 1.5% over the frequency range of 0.05-1.05 
Hz.  Samples were tested at compressive strains of 15%, 30%, and 45%, and storage 

shear moduli was found to significantly increase with increasing strain. 
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3.3.3 In vitro evaluation 

 
The scaffold presented a structure which promoted IVD cell attachment and growth 

on the elastic lamellar scaffolds as shown in figure 3.5. Chondrocytes aligned along the 

concentric lamellae proving the ability of the scaffold to promote a desired cell response, 

as cells in the native IVD are highly aligned along the lamellae. The elastic materials 

used to create the scaffold were found to be biocompatible and promoted cellular 

proliferation. An alamarBlue® assay was used to determine cell viability on the scaffold 

constructs by measuring metabolic activity of the cells.  After 19 days in cell culture the 

cells proved to remain more viable on the PU scaffold constructs compared to the 2D 

culture (figures 3.5 & 3.6). The data presented shows the average of 12 samples ± 

standard error of the mean.  There was no negative effect on cell viability of the printed 

IVD scaffold as compared to the tissue culture polystyrene.  Additionally, scaffold 

degradation did not affect cell viability or proliferation since the material we developed 

has a degradation profile for 5-6 months.  Table 3.2 shows that on days 13, 17, and 19 

increased cell proliferation was observed on the PU scaffolds which was significantly 

different from the control wells (p<0.05). It should be noted that cell proliferation 

decreased after day 15. This is probably due to the fact that the cells had reached 

confluence.  In some of the control wells, the confluent cells contracted into ball like 

structures, possibly limiting the presence of adherent cells on substrates. 
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Figure 3. 5: Normalized % reduction graph using AlamarBlue cell metabolic assay 
showing cytocompatibility of PU scaffolds (n=12) compared to the control (n=12). 

Average of control wells was normalized to 1, and the PU scaffolds were compared at 
each day (Annotation ‘*’ indicates samples were statistically significant, p<0.05). 
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Figure 3. 6: Chondrocyte viability measured using metabolic AlamarBlue assay. 
Comparable proliferation and viability of chondrocytes were found on printed PU IVD 
scaffolds and tissue culture polystyrene wells (Annotation ‘*’ indicates samples were 

statistically significant, p<0.05). 
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Table 3. 2: Statistical analysis for Normalized % Reduction of AlamarBlue Metabolic 

Cell Assay for Cytotoxicity (n=12). 
 

Variation Mean (%) Standard Deviation (%) Significance

PU 106.39 3.97 
Day 13 

Control 100 4.19 
p<0.05 

PU 137.45 3.23 
Day 17 

Control 100 1.85 
p<0.05 

PU 119.45 4.05 
Day 19 

Control 100 13.41 
p<0.05 

 
 

3.3.4 Morphological Study 

 
 Using our device, elastic polymers were deposited onto a freezing stage using 

extrusion to form lamellar structures mimicking the natural structure of IVD tissue as 

shown in figure 3.7. Polymer extrusion can be controlled precisely up to a micron level 

resolution.  Figure 3.2 shows that concentric layers were created with spacing ranging 

from 20µm to 200µm for the accommodation of cells while allowing room for 

extracellular matrix proteins to be secreted. Additionally, cells preferentially aligned 

along the scaffold structure, showing comparable morphology to native IVD cell 

alignment within the concentric lamellae (figure 3.7) 22,31.  
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Figure 3. 7: Top view of the scaffold showing viable cells across the entire lamellar 
structure, with cells attaching to the entire scaffold (A), inside view of 3-D scaffold, 

proving cell infiltration into the inner lamellae (B). It can be seen that spacing can be 
accurately controlled to allow the migration of cells into the lamellae. Cells within the 

lamellae also aligned with the scaffold. (Scale bar = 100 µm). 

 

 

3.4 Discussion 

 
The bioprinting apparatus described permitted the use of multiple solution based 

polymers and showed the capacity to use both natural and synthetic materials. The 

freezing stage allowed for fast solidification of the polymer solution and could maintain 

temperatures from -40 °C to room temperature, allowing the rate at which the polymer 

solidified to be precisely controlled. The method used in this paper proved the capability 

to control both micro and macrostructure of material constructs using computer aided 

design. For comparison, the compressive storage moduli of the scaffolds appears to be 

sufficient for the repair of the outer region of the IVD as our experimental values (350 
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KPa) are within the range of 220-540 KPa previously reported in the literature for native 

IVD tissue 29.  However, compressive loads were on the low spectrum of physiologic 

values. We expect that when cells grow into the scaffold and will produce extracellular 

matrix to further improve the compressive loading capability.  The scaffold created 

provides elastic properties while mimicking the natural shape and morphology of the 

IVD, as the outer region of the scaffold consists of layered, elastic PU forming concentric 

lamellae.   

The scaffolds fabricated using this technique exhibited elastic properties which may 

help increase natural motion while also absorbing loads within the spine. Dynamic shear 

mechanical data was specifically analyzed at 1 Hz because this value is similar to 

frequencies observed during common everyday activities. Although frequencies may 

increase up to 10 Hz, this is highly uncommon 28,32.  Dynamic viscoelastic analysis of the 

scaffolds proved the elastic nature of the degradable PU.  For comparison, the 

experimental values of G’ (56.7 KPa) and G* (57 KPa) were slightly larger than the 

reported native IVD tissue values of 5.8 and 7.4 KPa, respectively 26.  However, the 

experimental value of G” (6.5 KPa) was almost identical to the reported value of 5.2 KPa 

26.  This analysis leads to the interpretation that the material used here is slightly more 

elastic than the native IVD tissue.  The cyclic compressive shear moduli of the material 

increased with compressive strain and also frequency, proving the effectiveness of the 

scaffold to respond to large loads. An increase in stiffness under large stresses is a 

common feature of the IVD, possibly preserving disc structure under larger loads to help 

maintain cell viability.  The primary effect of G’ during shear testing indicates that the 
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governing component of this scaffold material is the elastic portion. Values of the loss 

tangent (tan delta) were not significantly different between compressive strains, 

indicating that the ratio of stored energy to dissipated energy remained relatively constant 

at increased strain (data not shown). 

Many previous studies have attempted to fabricate a suitable IVD scaffold, but none 

have accounted for the complex lamellar structure of the annulus fibrosus in the outer 

IVD region. This study uses a specialized biofabrication method to create scaffolds with 

very similar structure and overall shape of native IVD tissue. This study also highlights 

the importance scaffold microstructure plays in guiding cell behavior through cell-matrix 

contact. Chondrocytes seeded onto the scaffolds directly infiltrated into the lamellae. 

Eventually, the cells began to elongate along the layers of the scaffold.  After 19 days in 

culture, the chondrocytes form an aligned cell structure similar to that observed in native 

IVD. Throughout this culture period, the scaffolding material did not yet begin to 

degrade. Results from cytotoxicity and cell viability assays indicate that this material is 

non-toxic and serves as an excellent scaffold choice for further investigations into IVD 

regeneration. In another study to evaluate the degradation of our LDI-based PU, we 

found that the degradation products are not toxic to cells. This study serves as proof that 

the future of IVD tissue engineering will rely on the ability and successes of researchers 

to properly design and fabricate scaffolds that satisfy the requirements of matching native 

tissue properties with the engineered materials. 
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3.5 Conclusion 

 
 This is the first study to use a freezing stage to control the resolution of a three 

dimensional additive manufacturing device for the fabrication of an IVD scaffold. An 

advantage of this technique is the ability to successfully reproduce large quantities of 

tissue scaffolds. By combining ultra-fine micropipettes and a freezing stage, the 

resolution of the apparatus can be greatly improved. The use of the freezing stage 

effectively allows a high resolution design down to the micron level. With the freezing 

stage, structure of the scaffold can be controlled precisely allowing for control over cell 

morphology. Multiple facets were investigated prior to the creation of the scaffold 

including: motor speed, polymer extrusion rate, polymer concentration, and freezing 

stage temperature. The spacing between the subsequent layers of the printed elastic 

scaffolds is mimetic to the natural IVD and the spacing allows room for cell attachment 

while providing space for ECM deposition within the scaffold and ultimately creating a 

favorable structure to promote IVD regeneration. The biodegradable PU scaffolds 

exhibited superb elastic properties under compression, proving the construct to be an 

ideal material for IVD tissue regeneration. Furthermore, during compressive shear testing 

at physiological frequencies, the scaffolding constructs behaved similarly to native IVD 

tissue, proving their effectiveness to emulate native IVD biomechanics.  Future studies 

will be carried out over a longer time period to determine how scaffold degradation 

affects both cell viability and mechanical properties. 
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CHAPTER 4 
 

4. FABRICATION OF AN ELASTIC LAMELLAR SCAFFOLD USING RAPID 

PROTOTYPING FOR INTERVERTEBRAL DISC REGENERATION 

 
4.1 Introduction  

 
Low back pain, which affects over 80% of the adult population at some point in 

their lives, accounts for 5% of all surgical procedures, amounting to nearly $90 billion in 

annual costs 1. One primary cause of low back pain is the degeneration of the 

intervertebral disc (IVD), which results in the compression of the spinal nerves and 

adjacent vertebrae 2.  Exact causes of degeneration are unknown, but it is thought that 

natural aging, biological and genetic factors, and mechanical stimuli may play a 

significant role in the degenerative process 3-6.  Conventional methods to alleviate this 

pain include spinal fusion and artificial disc replacement, neither of which restore natural 

kinematics within the spinal column 7-11.  As an alternative to these conventional 

approaches, tissue engineered IVD constructs offer the advantage of biointegration while 

preserving the essential attributes of natural motion and disc space restoration. The use of 

elastic polymeric artificial discs to mimic the mechanical properties of the native IVD 

offer a solution to some of the problems encountered with current disc replacements. 

The IVD is the soft and tough fibrocartilage disc that is sandwiched between 

adjacent vertebrae in the spine. This tissue functions as: 1) a ligament that holds the 

vertebrae of the spine together; 2) a shock absorber; and 3) a “pivot point” that allows the 

spine to bend, rotate, and twist.  The IVD is composed of three structures: the nucleus 
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pulposus (NP), the water-rich gelatinous center that primarily bears the pressure; the 

annulus fibrosus (AF), the collagen-rich fibrous structure of 15~25 concentric sheets of 

collagen (lamellae) that confines the pressurized nucleus; and the vertebral end-plates 

(VEP), which are cartilaginous plates that are interwoven into the annulus at the disc-

vertebrae interface and supply nutrients to the disc 12. Chondrocyte-like disc cells reside 

in all three of these structures. The disc is kidney shaped and avascular, making natural 

regeneration difficult 13.  

The current study focuses on the fabrication of structures that precisely mimic 

every facet of the AF, as the complex tissue architecture of this region has posed great 

challenges to researchers.  This is most likely due to their inability to closely match the 

biological function, microstructure, and mechanical properties of the intricate AF.  This 

region is a lamellar structure composed of collagen type I and II fibers, which maintain 

the tensile properties and prevent mechanical bulging of the disc, while also providing 

support for cell guidance and proteoglycan synthesis 14. Cells within the AF are oriented 

in alignment with the lamellar collagen fibers 15. It has been shown that cell alignment 

can be guided in accordance with a scaffold, as aligned substrates have been shown to 

influence cell morphology 16,17.  This is highly important for an IVD scaffold, in order to 

allow chondrocytes to spread out, align, and organize their cytoskeletons similar as in the 

native tissue 18,19. In addition, aligned cells usually generate highly organized ECM in the 

direction of cell orientation 18,20.  This increase in cell orientation and ECM production on 

aligned substrates has also been shown to significantly increase the mechanical strength 

of the scaffolds 21. From this data, it can be seen that a tissue engineered scaffold that 
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closely mimics the native architecture of the disc as closely as possible, which contains 

highly ordered lamellar layers, would demonstrate a major advancement compared to 

current IVD scaffold fabrication methods.  

Few scaffold fabrication techniques have allowed for the reproducibility and 

spatial control over IVD scaffold design that rapid prototyping permits. However, 

electrospun nanofibers and other materials have been created to mimic the AF 22,23.  

These scaffolds do not have the ability to be fabricated in a spatially controlled manner. 

Furthermore, few researchers have investigated the fabrication of IVD scaffolds with 

similar mechanical properties to the native disc.  The mechanical integrity of the IVD is 

very important because it aids in maintaining spinal column height.  The elastic nature of 

the IVD also allows the disc to absorb large compressive loads without permanent 

deformation. Therefore, we aim to reproduce an elastic IVD scaffolding material that 

better mimics natural IVD morphology and biomechanics. 

The scaffold fabrication technology presented here uses a freezing stage coupled 

with a custom-made rapid prototyping apparatus to fabricate scaffolds that mimic the 

native IVD microstructures with high reproducibility. Additionally, this rapid prototyping 

setup enables the creation of patient specific scaffolds to make the technique more 

clinically relevant.  The device extrudes polymer solution onto a freezing stage to create 

scaffolds through a layer-by-layer process, also termed “additive manufacturing” 24-27.  

The freezing stage increases the polymer viscosity and solidifies the solution as it is 

extruded out of ultra-fine micropipettes, allowing the device to maintain a high 

resolution. In this study, a degradable chitosan/gelatin (Chs/Gtn) solution was used to 
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create an IVD scaffold that provides elastic properties, and promotes IVD cell adhesion 

and proliferation in alignment with the lamellar region.  In addition to mechanical 

properties, the scaffold was designed in CAD to mimic the native AF, forming concentric 

lamellae in a kidney-like shape. Currently, we are not aware of any research claiming to 

have replicated IVD shape, microstructure, and the mechanical properties of the AF when 

fabricating an IVD scaffold or construct.  

There is a great need for the development of tissue engineered scaffolds that 

simulate the natural 3-D morphology and microenvironment of targeted tissues. Many 

researchers have investigated tissue engineering applications to fabricate IVD scaffolds. 

However, the majority of studies on IVD tissue regeneration fail to simultaneously 

account for both biomechanical properties and natural tissue morphology, both of which 

are imperative for the success of an IVD scaffold 28-30. The close correlation between the 

biological function and the molecular composition of the disc structures strongly suggests 

that a major task of IVD regeneration is to create scaffolds that precisely reproduce the 

structural and biological functions of disc structure. In this study, we aim to fabricate 

IVD scaffolds with the similar microstructures and mechanical properties as the native 

IVD tissue, and  prove that tissue regeneration of the IVD is possible. 
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4.2 Materials and Methods 

 

4.2.1 Rapid Prototyping Device  

 
A rapid prototyping instrument was developed in our lab in order to fit the 

specific needs of this study (Figure 4.1). The motion controlling hardware and software 

were specially designed to fabricate scaffolds that mimic the AF region of the IVD. 

Microsoft Visual Basic was used to program the controlling software and control the 

motors and dispensers. AutoCAD was used to design the scaffolds mimicking the 

patterns of IVD lamellae. Micropipettes with 25 µm inner diameter were used as printing 

tips. A freezing stage (model BFS-30MP, Physitemp Inc., Clifton, NJ) with a finely tuned 

temperature control was used for fast freezing of the dispensed polymer solution into 3-D 

structures through layer-by-layer fabrication.  
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Figure 4. 1: The home made computer-controlled rapid prototyping apparatus with 
temperature-controlled stage for 3-D IVD scaffold printing. 

 

4.2.2 Polymer Synthesis 

 
Light curable, biodegradable, and biocompatible chitosan/gelatin (Chs/GEL) 

materials were created using a method developed in our lab for cartilage tissue 

regeneration 31. Briefly, 5% gelatin was dissolved in dimethyl sulfoxide (DMSO) and 1% 

Irgacure 2959 (obtained from Ciba Specialty Chemicals) was dissolved separately in 

DMSO.  75 mg of methacrylate modified photocurable chitosan was mixed with 0.5 mg 

of Irgacure solution and added to 1.05 g of the gelatin/DMSO solution and dissolved for 
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10 minutes.  The resulting solution was then used to fabricate the IVD scaffolds using the 

homemade bioprinter.  

 

4.2.3 Scaffold Fabrication 

 
Scaffolds were designed to replicate the natural IVD shape and histological 

morphology, as detailed in the literature (Figure 4.2) 32.  The polymer solution was 

dispensed using a syringe pump (Kent Scientific, Torrington, CT) at a flow rate of 0.005 

ml/min.  The polymer solution was fed through a glass micropipette tip and deposited on 

the freezing stage, which was set at 0° C. The approximate build time for each scaffold 

layer was around 5 minutes.  After printing a layer, the micropipette was raised 50 µm in 

the z-direction and continued to lay the next layer.  After finishing printing the whole 

structure, the freezing stage was powered off and ultraviolet light was exposed to the 

printed structure for 10 minutes to further solidify the scaffolds. The scaffolds were then 

frozen again and subjected to freeze-drying for 24 hours to extract the solvent.  After 

lyopholization, scaffolds were rinsed with phosphate buffered saline (PBS) 3 times and 

then sterilized in 70% ethanol for 30 minutes, followed by 3 more rinses in sterile PBS. 

 

 

4.2.4 Isolation and Culture of Chondrocytes on the 3-D Scaffolds 

 
The IVDs of 4 to 5 month old calves were surgically removed and digested in 

order to isolate the IVD chondrocytes. The primary bovine IVD chondrocytes were 

cultured to passage 2 and then seeded on the scaffolds at a density of 1.25 x 104 
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cells/scaffold to examine their growth on the printed constructs. The IVD constructs were 

incubated at 37 °C and 5% CO2 for 10 days before fixing  in 4% paraformaldehyde and 

staining with AlexaFluor 488 Phalloidin (Invitrogen, Carlsbad, CA), for the actin 

filaments, and DAPI (Invitrogen, Carlsbad, CA), for the cell nuclei.  

 

4.2.5 Visualization 

 
Scanning Electron Microscopy (SEM, Hitachi TM-1000, Tokyo, Japan) was used 

to visualize the morphology of the fabricated scaffold. All microscope images of 

fluorescently labeled cells were taken using a Leica TCS SP5 AOBS Confocal 

Microscope (Leica Microsystems Inc., Exton, PA). The morphology of the cells was 

observed to determine if cells were attached, spread out, and aligned on the 3-D 

scaffolds.  Images were then compared to native IVD tissue structures from the literature.  

 

4.2.6 Mechanical Testing 

 
Mechanical properties of the scaffolds were characterized using unconfined 

compression tests on hydrated samples at room temperature. IVD scaffolds (5.75 mm x 

1.75 mm, diameter x height) were compressed at a rate of 1 mm/minute using a Dynamic 

Mechanical Analysis (DMA) Q800 system (TA Instruments, New Castle, DE) and 

discontinued at 45% strain.  As previous studies have shown the IVD to experience 

roughly only about 15% compressive strain 33-35,   compression to 45% accounted for 

loading of the scaffolds under extreme conditions. Afterwards, the engineering stress and 
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strain were evaluated while the compressive elastic modulus was calculated from the data 

of the stress-strain curves. Additionally, unconfined dynamic compression tests were 

completed for 7 cycles at a rate of 1 mm/minute over the range of 30-45% compressive 

strain. These strains were used as they simulate strains that are slightly larger than normal 

physiological loads, which prove the ability of the material to recover under abnormal 

conditions 36,37. Dynamic experiments were also performed on the scaffolds, similar to 

previous studies 37. Dynamic confined compression was used to compare the behavior of 

the scaffold material with native human IVD tissue at physiological frequencies. Briefly, 

5 mm diameter hydrated samples were compressed to 10% strain and then dynamically 

compressed with amplitude of 1 µm using a frequency sweep ranging from 0.25 Hz to 5 

Hz. This compressive strain and frequency range both simulate normal physiologic 

loading conditions within the IVD 33,38,39.  The values of G’ (storage moduli), G’’ (loss 

moduli), G* (complex moduli), and tan δ (phase angle) were all recorded and analyzed. 

All samples were tested in triplicate and represented as average ± standard deviation. The 

load cell readings were recorded on a computer and analyzed with TA Universal Analysis 

2000 Software (TA Instruments, New Castle, DE). 

 

4.2.7 Statistical Analysis 

 
One-way ANOVA was performed on the values of G’, G’’, G*, and tan δ across 

the frequency range of 0.25 Hz to 5 Hz to compare the IVD scaffolds with the native 

human IVD tissues. A least significant difference (LSD) post hoc comparison set at 
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p<0.05 was used. SPSS V17 software (Chicago, USA) was used to perform the statistic 

analysis. 

 

4.3 Results 

 

4.3.1 Scaffold fabrication  

 
 Using the customized 3-D bioprinter (Figure 4.1), elastic Chs/Gtn polymers were 

fabricated into lamellar structures mimicking the natural shape (Figure 4.2A) and 

microstructure (Figure 4.2B) of the IVD. The video for the high resolution IVD scaffold 

printing process can be viewed from the supplemental materials section. The custom 

micropipettes enabled the fabrication of scaffolds with high resolution and concentric 

layers, having a thickness of 50-100 µm, with spacing of 100-200 µm for the 

accommodation of cells (Figure 4.3 & 4.4) 40-42.  The freezing stage allowed for fast 

solidification of the polymer solution and maintained the polymer solution viscosity, 

making it ideal for scaffold shape retention. In figure 4.3 and 4.4, it can be observed that 

cells lined along the scaffold patterns and migrated into the voids between the concentric 

lamellae, demonstrating the efficacy of this scaffold in mimicking the structure of the 

ECM and guiding the cellular organization of the native IVD. This is confirmed by 

comparing the structure of our fabricated scaffolds (Figure 4.4 A&B) with native IVD 

tissues (Figure 4.4C). 
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A BA B

 
Figure 4. 2: Top-view image of the multilayered IVD scaffold, showing that the 

structure mimics the kidney shape and the organization of the concentric lamellar 
microstructures of the natural IVD (A).  High magnification SEM image of the 
Chs/Gtn scaffold lamellae stacked in multiple layers, proving the efficacy of this 

technique to create layered structures in 3-D while accurately controlling spacing 
between layers, similar to native tissue (B). 
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Figure 4. 3: Cells aligned along the 3-D Chs/Gtn IVD scaffold structure (A), higher 
magnification image showing cell elongation and alignment along lamellar scaffold 

(B). Actin filaments and nuclei stained in green and blue, respectively.  3-D rendering 
of cells on scaffold from Figure 4.3A (C). Cells and actin cytoskeleton are shown in 

grey, while the scaffold is where the empty lamellar channels are located. 
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Figure 4. 4: Top view of the 3-D scaffold showing aligned IVD chondrocytes inside the 
scaffold, demonstrating cell infiltration into the inner lamellae (A), higher 

magnification image of cells aligned along lamellae (B), and cells in natural IVD 
tissue for comparison  (C).  Actin filaments are stained green (A-C), while nuclei are 

stained blue (A,B), and orange (C). 32 
 

4.3.2 Culture of Chondrocytes on the 3-D Scaffolds 

 
The fabricated constructs resembled the native IVD architecture and shape, 

containing a highly ordered outer AF region, while emulating the elastic nature of the 

native IVD. Cells grew well on all of the scaffolds, confirming preliminary results 

demonstrating excellent biocompatibility 31.  Bovine IVD cells attached, migrated, and 

spread uniformly on and within the lamellar scaffolds, while proliferating in three 

dimensions (Figure 4.3 & 4.4).  The designed 3-D scaffold increased the surface area of 

the construct allowing cells to attach and conform to the native tissue architecture. The 

cells became elongated and became layered in a concentric fashion similar to the native 

AF (Figure 4.3 & 4.4).  This preferential cell alignment exhibited comparable cell 

morphology to the lamellae of native IVD tissue (Figure 4.3C) 32,43. 
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4.3.3 Biomechanical Analysis 

 
The average compressive elastic modulus for the toe region, at <5% strain, was 

0.101 ± 0.03 MPa, while the average elastic modulus for the elastic region, at >15% 

strain, was 0.31 ± 0.018 MPa (n=7).  A representative stress-strain curve of the scaffold 

can be seen in Figure 4.5. There was no evidence that sustained compressive forces 

negatively affected scaffold thickness, as no permanent deformation occurred in samples 

compressed to 45% strain. This larger strain, compared to the typical 15% compressive 

strain that the IVD normally experiences, was used to validate the efficacy of the Chs/Gtn 

scaffolds in maintaining its ability to support extreme or abnormal loading 33-35. The IVD, 

like other soft tissues, exhibits a J-shaped stress-strain curve similar to the curve shown in 

Figure 4.5, representing the Chs/Gtn scaffolds. Elastic hysteresis of the scaffolding 

material was observed after dynamic compressive loading, as seen in Figure 4.6. After 3 

cycles of preconditioning, repeatable cycles were achieved where the material showed 

elastic properties. Scaffolds demonstrated the ability to resist fatigue over time, therefore 

proving an excellent choice as a disc replacement material. These results confirm that the 

elastic scaffold has ideal properties to absorb forces and recover without experiencing 

significant deformation.  The Chs/Gtn scaffolds and native tissue were tested using 

dynamic physiological frequencies around 1 Hz across a range from 0.25 to 5 Hz (Figure 

4.7).  Specifically, G’, G’’, G*, and tan δ were analyzed for both samples, and the results 

indicated that the scaffolding material behaved very similar to native human IVD tissues. 

As seen in figure 4.7, energy is primarily stored by the material during deformation, as G’ 
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and G* values between the scaffold and tissue are very similar, demonstrating that native 

IVD tissue and the scaffolding material are significantly governed by elastic properties. 

No significant difference was seen between the mechanical properties of the native tissue 

and scaffolds (Table 4.1), indicating that the scaffolds are suitable for use as an IVD 

replacement.   
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Figure 4. 5: Representative compressive stress-strain curve showing a J-shaped curve 
of the Chs/Gtn IVD scaffold with an initial toe region followed by a linear elastic 

region. 
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Figure 4. 6: Representative dynamic compressive loading curve of the Chs/Gtn IVD 
scaffold. For the displacement of 30% to 45% (A), scaffold size was not altered after 

compressing (B), and the scaffolds were able to maintain constant forces, proving that 
the Chs/Gtn material is maintaining its elastic integrity (C). 
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Figure 4. 7: Graphs showing very similar average G’ (A), G’’ (B), G* (C), and tan δ 
(D) of human IVD tissues and IVD scaffolds (n=7). Samples were tested across a 

dynamic frequency range from 0.25 to 5 Hz. 
 
 
 
 
Table 4. 1: At a physiological frequency of 1 Hz, there was no significant difference in 

mechanical properties (G’, G’’, G*, and tan δ) between the scaffolds and the native 
IVD tissues. Data is shown as average ± standard deviation. 

 
 Storage 

Modulus   
(kPa) 

Loss Modulus 
(kPa) 

Complex 
Modulus 

(kPa) 

Tangent Delta 

Tissues 
(n=7) 

401.6 ± 191.8 77.3 ± 45.1 409.3 ± 196.1 0.188 ± 0.055 

Scaffolds 
(n=7) 

434.8 ± 214.5 85 ± 45.9 443 ± 219.3 0.192 ± 0.016 
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4.4 Discussion 

 
One hurdle in the field of regenerative medicine is to create a method to fabricate 

tissue scaffolds that can be translated clinically for a variety of patients.  The rapid 

prototyping technology developed here incorporates a customized scaffold design, 

enabling the creation of patient-specific tissue engineered constructs. Current disc 

replacement strategies do not account for biological growth or integration when 

compared to the native IVD. Furthermore, previous scaffold fabrication methods aimed at 

overcoming the shortcomings of spinal fusion and the current disc replacements fail to 

address the importance of replicating scaffold microstructure and biomechanics. 

Therefore, a rapid prototyping approach was developed in which 3-D scaffolds with 

morphological, biological, and mechanical properties similar to those of native IVDs 

could be produced. This method provides a way for 3-D scaffold formation through 

layer-by-layer fabrication in a reproducible and cost effective manner.  

A lamellar disc scaffold formed from elastomers would offer much better 

compliance and may allow the restoration of natural three dimensional spinal motions 

compared to current disc replacement options. The novel scaffold with lamellar structures 

closely mimics the histological structure found in the AF portion of native IVDs. 

Lamellar structures also allow a greater surface area for cell adhesion and growth. 

Currently, many different techniques have been used to fabricate scaffolds for IVD 

regeneration; however, few have been able to fabricate the complex lamellar structure 

that is unique to natural IVD architecture.  The ability of our bioprinted scaffold to mimic 

the lamellar pattern, thickness, as well as the spacing between the lamellae within the 
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native IVD, corresponds with data supported by the literature for both the layer thickness 

as well as the interlamellar spacing 40-42. Furthermore, this study shows the ability to 

guide cell organization on a scaffold mimicking IVD microstructure by controlling 

scaffold microstructures. To this end, we used a bioprinting-based rapid prototyping 

technique that combines ultra-fine micropipettes for liquid extrusion and a freezing stage 

for the fast solidification of the biomimetic scaffolds. As the polymer solutions solidify 

rapidly, the scaffold becomes self supporting and supports the addition of new layers and 

the creation of 3-D structures. This method is highly valuable as it allows for the use of 

many different polymer solutions and can reproducibly create scaffolds with varying 3-D 

configurations and definitive microstructures.  

The scaffolds created mimic the native IVD structure while promoting cell 

attachment and viability. Chondrocytes attached and aligned in the direction of the outer 

lamellae, similar as in the native structure of the IVD.  When mimicking the highly 

organized native IVD, it is important that the lamellar IVD scaffold transforms cells into 

an aligned configuration.  This aligned configuration will translate into the production of 

ECM in alignment with the fabricated scaffold as evidenced by other studies using 

oriented substrates to increase matrix deposition 18,19,44.  Scaffold images show a structure 

in which cells could attach, proliferate, and create ECM necessary for maintaining IVD 

function 45-47. Space for aggrecan production is extremely important in the IVD as their 

hydrophilic properties help the disc material retain water and remain healthy and 

functional.  In addition, cellular synthesis of aligned matrix within the material will 

further increase the mechanical properties of the scaffold 21.  
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The 3-D elastic Chs/Gtn scaffold showed superb deformability while having the 

ability to be press fitted in between the vertebrae. Large compressive stresses can be 

achieved without the polymer scaffold material failing.  Furthermore, the compressive 

moduli of the scaffold correlates with properties of normal IVD tissue reported in the 

literature, proving the efficacy of our scaffolds in satisfying native disc biomechanics 

requirements 39,48,49.  Dynamic testing proved that the scaffolds could handle large 

deformations, accounting for extreme physiologic circumstances. Additionally, the 

material remained elastic under higher physiological frequencies. Dynamic mechanical 

data was specifically analyzed at 1 Hz because this value is similar to frequencies 

experienced in humans during common everyday activities 50.  These dynamic loading 

tests validated these scaffolds as suitable IVD disc replacements, as both the native tissue 

and scaffolding material had similar properties as well as were both governed by the 

storage modulus (G’).   

The IVD has a limited potential to regenerate because it is avascular, making IVD 

degeneration a difficult therapeutic target and a challenging task for tissue engineering. 

Current surgical remedies to solve the problem of disc degeneration do not address the 

need for a regenerative therapeutic based material design. An elastic, degradable polymer 

based scaffold that is biocompatible and can preserve natural 3-D kinematics within the 

spine is needed. The novel biomaterial scaffold design discussed in this paper mimics the 

AF architecture of the native IVD by successfully reproducing the lamellar nature of the 

disc.  Furthermore, this scaffold is advantageous over other IVD therapies as it replicates 

natural IVD tissue biomechanical properties. The technique described utilizes a method 
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that may help regenerate the unique IVD structure for future applications by matching 

native tissue structure and biomechanics. Also, as this method of rapid prototyping does 

not use high temperatures, it allows for drug encapsulation and has the ability to use a 

broad variety of biomaterials, making it an ideal candidate for a wide variety of future 

applications.   

 

4.5 Conclusion 

 
The development of a computer-aided tissue engineering platform for IVD 

regeneration is a challenging task.  This study focused on using a rapid prototyping 

technique to fabricate IVD scaffolds with similar microstructures and biomechanics to 

the native IVD tissues. It was determined that the fabricated scaffolds, in combination 

with IVD cells, may be suitable to promote IVD tissue regeneration as they encouraged 

cell morphology and arrangement similar to native IVD tissues.  In addition, the lamellar 

scaffold design and materials exhibited the necessary mechanical properties to match 

natural IVD biomechanics.  
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CHAPTER 5 

5. FULLY CELLULARIZED 3-D TISSUE ENGINEERED CONSTRUCTS FOR 

INTERVERTEBRAL DISC (IVD) REGENERATION 

 
5.1 Introduction 

 
 Currently an understudied aspect within the tissue engineering realm, research 

focusing on intervertebral disc (IVD) degeneration and treatments, has fallen short in 

their aims to improve patients’ quality of life.  The degenerated IVD, which causes 

intense low back pain, has been implicated in significant economic strain throughout the 

world.1   Clinical attempts to alleviate this pain, such as discectomy, spinal fusion, and 

disc replacements, are far from satisfactory as they focus only on the alleviation of some 

symptoms, while failing to address the underlying causes of disc degeneration.  To 

improve upon conventional clinical strategies, some researchers have begun to 

investigate unique approaches towards slowing IVD degeneration or promoting IVD 

tissue regeneration.  In the long term, the most ideal approach should involve the 

regeneration of IVD tissue.  Some current strategies focused towards regenerating IVD 

tissue have proven successful in promoting the synthesis of extracellular matrix (ECM) 

proteins similar to those present in the native tissue.2,3  However, current attempts 

towards regenerating IVD tissue do not accurately mimic the IVD histological 

microstructure, specifically the organized lamellar structure within the outer region of the 

IVD.   
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In order to successfully regenerate IVD tissue, there is a pressing need to fabricate 

tissue engineered scaffolds with a similar histological architecture of native IVD tissue.  

This is of vital importance, as it is widely known that cells respond to their physical 

environment.4  A scaffold with a controlled microstructure has the ability to guide and 

control cellular orientation and morphology.5  This is especially important for scaffolds 

aimed at regenerating the outer annulus fibrosus (AF) region of the IVD, as it is highly 

organized and possesses a concentric lamellar structure.6  Therefore, a scaffold which can 

mimic the native lamellar orientation of the native AF region would be able to control 

cellular alignment and morphology in accordance with the scaffold structure.  

Furthermore, studies have shown that ECM synthesis is controlled by cellular 

morphology.7,8  ECM composition as well as its structure, have been demonstrated to be 

affected by cell behavior on a tissue scaffold.  Therefore, a biomimetic IVD scaffold 

should control cellular structure and promote synthesis of ECM with similar orientation 

and composition.  This ultimately promotes the formation of a tissue structure with 

similar characteristics to that of native IVD tissue.    

To further expand upon the ability to mimic native ECM tissue histology, a 

strategy to create fully cellularized IVD scaffolds would prove to be favorable for tissue 

regeneration.  The ability to successfully retain seeded cells within a scaffold plays a 

critical role in encouraging the formation of a 3-D tissue.9  Cellularized structures are 

important due to the fact that they provide a necessary platform to promote the formation 

of functionalized, living tissue.  Currently, the attempts that have been made to create a 

cellularized IVD tissue structure have focused primarily on bioreactor systems, magnetic 
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seeding, or stacking of singular layered cell-biomaterial constructs.9-11  However, few 

other platforms have been investigated to encourage cellular infiltration within a tissue 

scaffold.  Therefore, a major task in promoting tissue regeneration is the ability to couple 

functional cells within biomaterial scaffolds.  A cellularized structure promotes the living 

functionality of the biomaterial scaffold for tissue regeneration.  Furthermore, it is likely 

that cellularized scaffolds will improve tissue formation, as cellularizing a tissue 

engineered scaffold in 3-D is required to form 3-D tissues.12,13   Many advances have 

been made in creating cellularized tissue scaffolds.14,15  Further, the ability of cells to be 

seeded within a scaffold is vital for the creation of 3-D tissue constructs.9  3-D 

cellularization better emulates the native tissue environment, promoting regenerated 

tissue and synthesized matrix more similar to native tissue.16,17  In this study, we describe 

a biofabrication strategy to aid in the rapid formation of a 3-D cellularized tissue 

engineered construct.  A home-made computer-controlled scaffold bioprinter were used 

to fabricate a 3-D scaffold fully mimicking the outer region of native IVD tissue. 

Multicellular chondrocyte spheroids were formed robotically using our home-made 

multicellular spheroid maker and then patterned robotically within the lamellar voids of 

the fabricated IVD scaffold structures.  Spheroids were used as they have previously 

shown to increase ECM content when compared to singular cells.19  This allowed the 

rapid cellularization of the scaffolding construct.  The 3-D multicellular spheroids began 

to attach and spread within the scaffold lamellae while exhibiting a similar cellular 

morphology as in the natural tissue.  Additionally, synthesized ECM composition and 
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structure within the 3-D cellularized IVD scaffold proved similar to that of the native 

tissue.    

To address the current issues faced with IVD tissue engineering, we have 

developed a unique biofabrication strategy to accurately mimic the histological hierarchy 

as well as the biomechanics of native IVD tissue.18  This technique offers the advantage 

of computer aided design (CAD), allowing precise control over the shape, as well as the 

defined microstructure, of the biomimetic IVD scaffolds.  Using this biofabrication 

strategy, it was shown that the lamellar IVD tissue histology could be simulated with the 

biomimetic scaffolds.  Further, this approach enables high resolution fabrication of 

reproducible scaffolding constructs using a variety of polymeric biomaterials.  To take 

advantage of the automated process, custom-made robotics were used to fabricate 3-D 

multicellular spheroids.  These multicellular spheroids were patterned into the void 

lamellar regions of the biomimetic IVD scaffold to create a functional cellularized tissue 

structure.  It was found that the 3-D cellularized scaffold emulated native IVD cellular 

structure as well as ECM matrix composition and structure.   Ultimately, a strategy 

similar to the one described here may be used to create a tissue engineered IVD structure 

that may be directly implanted into patients to restore natural IVD tissue function. 
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5.2 Materials and Methods 

 

5.2.1 Scaffold Fabrication 

 
Scaffolds were fabricated using a home-made computer-controlled bioprinter.  

Medical grade polyurethane (PU) was dissolved in DMF at a concentration of 15%.  The 

solution was then extruded using a 3-D biofabrication device where the scaffold was 

designed using AutoCAD (Figure 5.1A).  Specifically, the polymer solution was extruded 

out through a micropipette-based needle (50 µm diameter) and onto a computer- and 

temperature-controlled collecting stage.  As the polymer solution was extruded through 

the tip, the solution viscosity drastically increased and it solidified instantly, as the 

temperature-controlled stage was set below the freezing point of the polymer solution, at 

-5° C. 

A B

 

Figure 5. 1: CAD design of the multilayered scaffold mimicking the overall shape and 
morphology of the native IVD tissue (A).  Software interface was developed to allow the 
designed scaffolds to be printed and monitored during the printing process in real-time 

(B). 
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5.2.2 Scaffold Characterization  

The dimensions and morphology of the printed scaffolds were analyzed using a 

JEOL LV-5610 scanning electron microscope (SEM) (JEOL Electronics Inc., Tokyo, 

Japan).  Specifically, the scaffolds lamellar layers and spacing were verified to match the 

lamellae size and spacing of native human IVD tissue.  Once this was confirmed, the size 

of the spacing between the lamellar layers was assessed. 

 

5.2.3 Multicellular Spheroid Fabrication 

In order to develop a truly 3-D, fully cellularized structure for IVD formation, we 

used multicellular spheroids as building blocks to seed into the scaffolds.  Using the data 

obtained from the SEM, it was determined that multicellular spheroids would need to be 

fabricated within a very specific size range in order to fit within the lamellae.  Bovine 

chondrocytes were used to create multicellular spheroids with uniform size using a home-

made spheroid maker.  The process can be seen in figure 5.2.  Briefly, a computer-

operated device was used to stamp molten 2% agarose PBS solution until the mold had 

hardened.  Cell suspensions were added into the agarose molds, and incubated at 37 °C 

and 5% CO2 for 48 hours.  Cell spheroids were then gathered for positioning into the 

scaffold.  
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Figure 5. 2:  (A) Plastic male-mold used to fabricate agarose microwells, (B-D) 
automated robotic stamping of agarose gel by the plastic male-mold, and thus (E) 

robotically produced agarose microwells. 
 

5.2.4 Scaffold Cellularization  

To seed the scaffolds, multicellular spheroids were pipetted into the prefabricated 

scaffolds using a custom-made computer-controlled robotic positioning system.  The 

chondrocyte spheroids were placed into the void lamellar scaffold spacing using precise 

positioning.  A schematic of this process can be seen in figure 5.3.  To compare the 

ability of spheroids to increase 3-D tissue formation, single cells were also seeded into 

the scaffolds as a control at the same cell number.  The scaffolds were cultured for 4 

weeks to create fully cellularized IVD scaffolding constructs.  Media was changed and 

collected throughout the culture period for further biochemical analysis of secreted ECM.  

An inverted microscope (Olympus Co., Tokyo, Japan) was used to monitor cell growth 

on the scaffolds.  
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Figure 5. 3: Schematic of spheroid deposition within IVD scaffold lamellae. 
 

5.2.5 Biochemical Analysis 

After 4 weeks in culture, the IVD tissue scaffolds were evaluated to determine the 

ECM content of the constructs.  Additionally, the molecules solubilized in the media 

supernatant were collected throughout the study to determine the amount of specific 

ECM released.  All colorometric assays were analyzed using a Synergy H1 Hybrid plate 

reader (Biotek, Winooski, VT, USA).  To determine the amount of ECM retained within 

the scaffolds, the samples were digested: in a papain solution 20  overnight at 60 °C for 

sulfated-glycosaminoglycan (sGAG) and hydroxyproline quantification, or in pepsin and 

elastase digest for 7 days at 4 °C for collagen I and II quantification.   In order to 

normalize the amount of newly formed ECM components, DNA content was quantified.  

The analyzed sGAG, hydroxyproline, and collagen types I & II quantities (µg) were 
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normalized by the average total DNA content (µg) to enable comparison between sample 

groups.  Additionally, the hydroxyproline content was normalized to sGAG to compare 

sample groups with values similar to native cartilage tissue.  The scaffolds seeded with 3-

D multicellular spheroids (experimental group) were compared to scaffolds seeded with 

single cells (control).    

 

5.2.5.1 DNA Quantification 

 In order to normalize the biochemical data between each test group, the DNA 

content within each scaffold group was analyzed using a DNA Quantitation Flourescent 

Assay Kit (Sigma-Aldrich, St.Louis, MO, USA).21  Briefly, 25 µL of cell digest solution 

in papain was combined with 200 µL of Hoeschst dye (2 µg/mL).  Standard curves were 

created using calf thymus DNA.  Fluorescence was read at 360 nm excitation and 460 nm 

emission. 

 

5.2.5.2 sGAG Synthesis 

Cellular production of sGAGs was analyzed using 1,9-Dimethyl-Methylene Blue 

(DMMB) salt (Sigma-Aldrich), similarly to techniques used by others.22  Briefly, 16 mg 

of DMMB was dissolved in 1 L of distilled water containing 3.04 g glycine, and 2.37 g 

NaCl and stirred overnight.  This was followed by the addition of 95 mL of 0.1 M HCl to 

give a pH of 3.0.  The solution was stored at room temperature and away from light.  50 

µL samples of cell digest solution in papain were then transferred into a flat bottom 96 
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well plate (Greiner Bio-One, Frickenhausen, Germany) containing 200 µL of DMMB 

reagent per well.  The absorbance was read at 525 nm.  Standard curves were created 

using chondroitin sulfate from shark cartilage (Sigma-Aldrich) with a linear 

concentration ranging from 0-100 µg/mL. 

 

5.2.5.3 Hydroxyproline Formation 

The total amount of collagen was analyzed using a hydroxyproline assay kit 

(Sigma-Aldrich), as hydroxyproline has been previously defined as a marker for overall 

collagen production.23,24  Briefly, 100 µL samples of cell digest solution in papain were 

hydrolyzed in the presence of 12 M HCl at 120 °C for 3 hours followed by evaporation of 

the samples.  Samples were reacted with Chloramine T for 5 minutes followed by an 

incubation with 4-(Dimethylamino)benzaldehyde (DMAB)for 90 minutes. Standard 

curves were created using the provided hydroxyproline standard. The absorbance was 

then read at 560 nm.   

 

5.2.5.4 Collagen Types I & II Synthesis  

After evaluating hydroxyproline content, additional biochemical analysis was 

needed to determine and quantify which types of collagen were present.  Specifically, 

collagen types I & II were chosen for an enzyme-linked immunosorbent assay (ELISA) 

analysis as they are the most prevalent collagens in the IVD.  Chondrex ELISAs for both 

collagen types I & II (Chondrex, Inc., Redmond, WA, USA) were used and the relevant 
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protocols were followed.  Briefly, capture antibodies were added to 96 well plates 

overnight, followed by a 2 hour incubation of the pepsin and elastase digested samples.  

Detection antibodies were then added for 2 hours followed by the addition of streptavidin 

peroxidase for 1 hour.  Then, the OPD chromagen was added for 30 minutes followed by 

the addition of 2N sulfuric acid to stop the reaction.  Collagen samples were compared 

against collagen standards and absorbance was read at 490 nm for both collagen types I 

& II.  

 

5.2.6 Immunohistochemistry 

Cellularized constructs were fluorescently analyzed to evaluate the presence and 

structure of collagen types I & II, and to visualize the cell nuclei.  Nuclei were stained 

with DAPI (blue), while collagens were stained using secondary antibodies (collagen 

type I: green, collagen type II: red).  Briefly, cellularized constructs were fixed in 4% 

paraformaldehyde and blocked using 4% goat serum.  Rabbit anti-bovine collagen type I 

polyclonal antibody (Millipore, Bedford, MA, USA) was added overnight followed by 

rinsing three times and the addition of Cy2-conjugated goat anti-rabbit IgG (Jackson 

ImmnoResearch, West Grove, PA, USA) and subsequent washing.  This was repeated for 

the mouse anti-collagen type II monoclonal primary antibody (Millipore) and the Cy3-

conjugated goat anti-mouse IgG (Jackson ImmnoResearch) followed by washing.  DAPI 

(Invitrogen, Carlsbad, CA, USA) was then used similarly to fluorescently label cell 

nuclei within the scaffold constructs.  Samples were observed using a Fluoview-FV1000 
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laser scanning confocal microscope (Olympus) to qualitatively analyze 3-D 

cellularization of the scaffolds and subsequent ECM formation. 

 

5.2.7 Statistical Analysis 

Data were expressed as mean ± standard error of mean.  An independent-sample 

t-test was performed on all biochemical analyses to compare the two IVD scaffold 

groups: 1) control scaffolds seeded with single cells, 2) experimental scaffolds seeded 

with multicellular spheroids. Significance was determined at p<0.05. SPSS V17 software 

(Chicago, IL, USA) was used to perform the statistic analysis. 

 

5.3 Results 

 

5.3.1 Scaffold Structure 

 
 Utilizing our layer-by-layer and temperature controlled biofabrication strategy, 

reproducible multilayered 3-D scaffolds mimicking native IVD structures were easily 

fabricated.  The overall shape and structure of the native IVD was extensively studied in 

order to design biomimetic scaffolds with similar properties using AutoCAD.   A unique 

concentric lamellar structure was created, with each layer having a thickness of 50 µm 

and the spacing between each concentric lamellae at 175 µm.  This structure can be 

observed in the SEM image in figure 5.4, where the uniform and layered structure is 

highly apparent.   
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A BA B

 

Figure 5. 4: Overall image showing scaffold size and shape (A). SEM image showing 
multilayered scaffold structure with highly uniform and concentric lamellar layers 

mimicking native IVD structure (B). 
 

5.3.2 Spheroid Properties 

 
Using the robotic spheroid maker, highly uniform spheroids were fabricated with 

precise diameters of 125 µm using cell seeding densities of 1.3 x 104 cells/agarose mold 

(Figure 5.5).  This size proved optimal as it enabled the spheroids to be easily extruded 

into the lamellar voids of the scaffolds, which were slightly larger than the spheroid 

diameter. 
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250 µm250 µm
 

Figure 5. 5:  Multicellular chondrocyte spheroids in culture within microwells, 
demonstrating a highly uniform diameter of 125 µm. 

5.3.3 Scaffold Cellularization  

 
After seeding, spheroids appeared to fully integrate within the scaffold lamellae.  

The multicellular spheroids began to fuse days after initial seeding.  After 1 week, the 

spheroids are fused and fully integrated with the scaffolds and formed 3-D tissues.   The 

single cells attached to the scaffolds and covered the entire structure, however, they failed 

to fully cellularize the lamellar voids as compared to the multicellular spheroids.  In the 

case of both the single cells and the multicellular spheroids, the cells within the lamellar 

voids oriented themselves in alignment with the lamellar scaffold structure.   

 

5.3.4 Biochemical Analysis 

 
The production of ECM by the tissue engineered constructs was identified by 

evaluating the amount of sGAG, hydroxyproline, and collagen types I & II in each 

sample after 4 weeks. A summary of the synthesized ECM composition retained within 
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the scaffolds can be seen in Table 1.  Additionally, a summary of ECM released within 

the media supernatant is given in Table 2.  The data is normalized to mean DNA content. 

 

Table 5. 1: Synthesized ECM within Scaffold after 4 weeks (Mean ± Standard Error of 
Mean). *p<0.05 

 GAG (µg) 
/ DNA (µg) 

Hydroxyproline 
(µg) / DNA (µg) 

GAG (µg) / 
Hydroxyproline (µg) 

Col I (µg) / 
DNA (µg) 

Col II (µg) 
/ DNA (µg) 

Spheroids 119.8 ± 
2.7* 

8.4 ± 1.1* 11.9 ± 1.4* 4.6 ± 0.9* 3.8 ± 0.1* 

Single Cells 54.4 ± 3.6 5.5 ± 0.4 8.3 ± 0.6 1.6 ± 0.2 1.8 ± 0.1 

 

 

Table 5. 2: Synthesized ECM Released in Supernatant after 4 weeks (Mean ± Standard 
Error of Mean). *p<0.05 

 GAG (µg) / DNA (µg) Col I (µg) / DNA (µg) Col II (µg) / DNA (µg) 

Spheroids 141.4 ± 11.1* 3.74 ± 1.0* 2.6 ± 0.3* 

Single Cells 108.9 ± 6.0 1.0 ± 0.3 1.1 ± 0.1 

 

5.3.4.1 sGAG Synthesis 

The amount of sGAG (spheroids 119.8 ± 2.7 µg/µg, versus single 54.4 ± 3.6 

µg/µg) retained within the construct was significantly greater in the scaffolds seeded with 

multicellular spheroids compared to the single cell controls, as shown in Figure 5.6A 

(n=7 per group, p<0.05).   Additionally, as shown in Figure 5.7A, the quantity of sGAG 

(spheroids 141.4 ± 11.1 µg/µg, versus single 108.9 ± 6.0 µg/µg) released into the 

supernatant was also significantly greater in the scaffolds seeded with multicellular 

spheroids compared to the single cell controls (n=7 per group, p<0.05).   
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5.3.4.2 Hydroxyproline Formation 

Hydroxyproline (spheroids 8.4 ± 1.1 µg/µg, versus single 5.5 ± 0.4 µg/µg) 

quantity was significantly greater in the scaffolds seeded with spheroids versus the single 

cells as seen in Figure 5.6B (n=7 per group, p<0.05). Additionally, the 

GAG/hydroxyproline ratio (spheroids 11.9 ± 1.4 µg/µg, versus single 8.3 ± 0.6 µg/µg) 

was also significantly greater in the scaffolds seeded with multicellular spheroids as seen 

in Table 1 (n = 7 per group, p<0.05). 

 

5.3.4.3 Collagen Types I & II Synthesis 

The amount of collagen type I (spheroids 4.6 ± 0.9 µg/µg, versus single 1.6 ± 0.2 

µg/µg) retained within the construct was significantly larger in the scaffolds seeded with 

spheroids versus the single cell control as seen in Figure 5.6C (n = 7 per group, p<0.05).  

Similarly, as shown in Figure 5.6D, the amount of collagen type II (spheroids 3.8 ± 0.1 

µg/µg, versus single 1.8 ± 0.1 µg/µg) preserved within the scaffold was significantly 

larger in the experimental group with multicellular spheroid seeded scaffolds (n = 7 per 

group, p<0.05).  Figure 5.7B shows that the quantity of collagen type I (spheroids 3.74 ± 

1.0 µg/µg, versus single 1.0 ± 0.3 µg/µg) released into the supernatant was significantly 

greater in the scaffolds seeded with spheroids versus the single cell control (n = 7 per 

group, p<0.05).  This was also observed for the amount of collagen type II (spheroids 2.6 

± 0.3 µg/µg, versus single 1.1 ± 0.1 µg/µg) released into the media was significantly 

larger in the experimental group with multicellular spheroid seeded scaffolds compared 

to the single cell controls as shown in Figure 5.7C (n = 7 per group, p<0.05). 
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Figure 5. 6:  Results from biochemical analysis of ECM within the scaffolds 

cellularized with cell suspension and spheroids after 4 weeks.  Statistical analysis 
comparing groups showed significant differences for all study groups   (n =7 for each 

group, *p<0.05).   The sGAG (A), hydroxyproline (B), collagen type I (C), and collagen 
type II (D) content was all significantly greater in the scaffolds cellularized with 

sperhoids than with the same number of cells seeded in the format of cell suspension. 
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Figure 5. 7:  Results from biochemical analysis of ECM released from scaffolds 
cellularized with cell suspension and spheroids over 4 weeks.  Statistical analysis 

comparing groups showed significant differences for all study groups   (n =7 for each 
group, *p<0.05).   The sGAG (A), collagen type I (B), and collagen type II (C) release 
was all significantly greater in the scaffolds cellularized with sperhoids than with the 

same number of cells seeded in a single cell suspension. 
 
 

5.3.5 Immunohistochemistry 

 
Image analysis provided qualitative evidence that the synthesized collagenous 

ECM was fully integrated within the voids of the lamellar structure in a similar fashion to 

native IVD tissue.  Further, cells as well as ECM, were organized in a 3-D configuration.    

The cell suspension (control) seeded into the biomimetic scaffolds synthesized some 

collagenous ECM, but cells only attached to the scaffold surface and failed to synthesize 

enough ECM to fill in the lamellar void (Figure 5.8A-D).  A side projection view 

showing that the seeded cells in suspension attached to the scaffold surface and secreted 
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extracellular molecules, but failed to secrete biomolecules occupying the lamellar void 

space as the matrix only accumulated on the scaffold surface as shown in figure 5.8E-H.  

On the other hand, the multicellular spheroids fully infiltrated the scaffold lamellae and 

grew in a 3-D fashion that enabled the creation of a completely cellularized IVD 

construct.  Further, staining of collagenous ECM within the lamellae appeared to be 

much greater in the scaffolds seeded with spheroids versus single cells, as synthesized 

matrix can be seen throughout the entire lamellar voids (Figure 5.8I-L).   A side 

projection view proving that the multicellular spheroids fully cellularized the lamellar 

void and synthesized a 3-D collagenous matrix throughout the construct can be seen in 

figure 5.8M-P. 
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Figure 5. 8: Fluorescent images showing chondrocyte growth and ECM synthesis in 
the scaffolds.  An overview of the cell suspension controls seeded onto the scaffold 

after 4 weeks can be seen in: (A) nuclei, (B) collagen type II, (C) collagen type I, and 
(D) merged image.  A side projection view of the single cells on the scaffold shows that 
the cells were superficially adhered to the scaffold surface and did not cellularize the 
lamellar region while only producing ECM along the scaffold surface: (E) nuclei, (F) 

collagen type II, (G) collagen type I, and (H) merged image. 
In comparison, an overview of the spheroids seeded onto the scaffold shows that the 

entire construct is cellularized with large quantities of ECM produced : (I) nuclei, (J) 
collagen type II, (K) collagen type I, and (L) merged image.   A side projection view of 
the spheroids within the scaffold further validates that the spheroids have cellularized 
the lamellar void and have produced ECM in a 3-D manner: (M) nuclei, (N) collagen 

type II, (O) collagen type I, and (P) merged image.  The dotted zone in (H) and (P) 
shows the lamellar scaffold structure. 
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5.4 Discussion 

 
           The field of tissue engineering aims to regenerate living tissue that possesses a 

similar structure and function to the natural healthy tissue, with the ultimate goal of 

replacing the targeted diseased tissue.  Tissue engineering often utilizes scaffolds as a 

template to guide cell growth and tissue formation.  The structure of tissue engineered 

scaffolds is important as it not only dictates the mechanical integrity of the construct, but 

also guides cell behavior and function as well as new ECM organization.  For these 

reasons, it is important for the scaffold structure to closely mimic the native tissue 

architecture in order to successfully regenerate the native tissue.  The corresponding 

structure will control cell behavior, and ultimately cellular function.  Due to current 

limitations in achieving a cell-based functional scaffold that simulates the native tissue, 

an approach was developed to provide a fully cellularized-construct for IVD tissue 

regeneration. 

 First, biomimetic IVD scaffolds were fabricated using a novel biofabrication 

approach that allowed for the creation of a scaffold with an overall morphology and 

microstructure which strongly resembles the architecture of the native IVD tissue. 

Advantages of our scaffold over other methods currently being investigated is the use of 

an organized lamellar structure, which is more similar to native collagen fibril structure 

present in the IVD.25   Our fabricated scaffold had the ability to mimic the structure, layer 

thickness, and interlamellar spacing of the native human IVD, as similar values have 

been reported in the literature for these characteristics.26-28  As discussed above, by 

closely mimicking this structure we believe we will be able to more effectively 
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regenerate a tissue construct that is highly similar to native IVD tissue, which has been 

identified as a major challenge in tissue engineering the IVD.29  Further, the interlamellar 

spacing provided by our scaffolds will allow for cell infiltration and ECM organization. 

 The novel biofabrication approach discussed above, along with a robotic seeding 

strategy, allowed for the ability to organize cell density and distribution within the tissue 

scaffold, directly controlling the capacity to form 3-D tissue engineered constructs.  

Typically, after seeding cells onto a 3-D scaffold, it is difficult for cells to further fill up 

the whole volume of the scaffold and the cells end up adhering only to the scaffold 

surface.20,30  This results in a tissue engineered scaffold that is not entirely or 

homogenously cellularized due to the decreased cell content within the void regions.  

Furthermore, the majority of studies involving cell-biomaterial constructs use single cells 

or cell suspensions where cells are only able to adhere to the surface of the scaffold 

material and pore walls.  Therefore, these seeding techniques are not able to actually 

cellularize the whole pores or voids themselves within the constructs.  A major issue with 

the use of single cells in these applications is a low cell retention within the constructs.31  

To circumvent these issues, 3-D multicellular spheroids were fabricated to have a slightly 

smaller diameter than the lamellar voids of the fabricated IVD scaffolds.  The 

chondrocyte spheroids were then deposited into the lamellar voids where they attached to 

the scaffold lamellae and aligned along the structures in a 3-D fashion similar as in the 

native tissue.  Single cells were seeded onto the IVD scaffold as controls.  It was found 

that this unique strategy of incorporating spheroids within the scaffold provides an 

efficient and quick 3-D cellularization of the construct, which has been described as a 



 150

major challenge.9  Further, after initial seeding, cell spheroids began to fuse together 

followed by cellular adhesion to the scaffold.  Eventually, the spheroids formed a 3-D 

cell layer which was entirely homogenous, avoiding challenges met by others attempting 

to cellularize 3-D scaffolds.32  Furthermore, the spheroids synthesized ECM throughout 

the scaffold voids, comparable to the matrix formed within the natural IVD, while the cell 

seeded by suspension only produced matrix on the scaffold surface.   

Multicellular spheroids showed excellent ingrowth within the lamellar voids of 

the IVD scaffolds, which led to a more uniform distribution of cells within the 3-D 

structure.  Further, it appears that these spheroids encouraged organized tissue formation, 

with the production of ECM such as collagens and GAGs, within the lamellar spacing of 

the scaffold. As expected, larger values for retained ECM components were obtained 

with the cellular spheroids as they aided in the preservation of more ECM components.  

This is similar to what others have observed.33,34  Specifically, the values we observed for 

GAG content within the spheroid cellularized scaffold are within values reported by 

others for native cartilage tissues and also tissue engineered constructs.33,35-40  

Additionally, our data regarding the GAG/Hydroxyproline ratio correlates well with other 

studies involving cartilage and IVD tissue, with values between 2:1 and 27:1.41  Based on 

the observed hydroxyproline levels, indicative of overall collagen content, and further 

biochemical analysis of specific collagen types, it is evident that collagen types I & II are 

the major constituents of the collagenous ECM within the IVD constructs.  Further, the 

collagen content within our structures is also similar to what others have reported for 

tissue engineered constructs.42   Our results showed similar amounts of collagen types I & 
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II, though, there were larger overall quantities of collagen type I as compared to collagen 

type II.  This ratio is similar to that seen in the AF region of the IVD tissue, which this 

scaffold aims to replace.43  

We believe that the reason the scaffolding constructs seeded with spheroids 

retained more matrix is because they provided a 3-D platform for cell growth while 

promoting the synthesis and entrapment of matrix more similar to that of native tissue.  

As seen in the results, there was not only a significant increase in the amount of ECM 

production within the scaffolds cellularized with spheroids, but also a significant increase 

in the amount of ECM released into the supernatant.  We believe that the scaffolds seeded 

with spheroids produced and released more ECM due to the 3-D cell morphology of the 

spheroids within the scaffold lamellae, which better mimics the native tissue atmosphere.  

The 3-D cellular and matrix interactions provided by the spheroids more closely emulates 

the native tissue environment.44 However, the increase in matrix production in the 

spheroid cellularized scaffolds may be due to the fact that a more hypoxic environment 

was created, as nutrient diffusion to the cells within the spheroids may be decreased.  

Many studies have shown an increase in ECM synthesis (GAGs and collagens) when 

chondrocytes are placed in a hypoxic environment, more similar to that of native IVD 

tissue.45-49  

Upon further examination of the 3-D tissue engineered constructs, 

immunostaining showed uniform cell distributions throughout the entire thickness of the 

spheroid cellularized scaffolds when compared with the single cell scaffolds.  

Subsequently, ECM deposition was also found throughout the scaffold thickness in the 
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spheroid seeded scaffolds. Collagen type I staining appeared to mimic the scaffold, 

especially in the scaffold cellularized with spheroids, perhaps proving that the ECM was 

indeed mimicking the scaffold structure.  Further, collagen type II showed up throughout 

the voids within the lamellar scaffold.  These results show that multicellular spheroids 

better integrate within the IVD scaffold than cells from suspension and synthesize 

functional tissue in a similar fashion to native IVD tissue.  

 

5.6 Conclusion 

 
This study is the first of its kind attempting to fabricate a fully cellularized 3-D 

tissue construct for IVD tissue regeneration.  The purpose of this study was to create a 

unique IVD scaffold which provided the ability to create a homogenous cell distribution 

throughout the structure. This improved upon current cell seeding methods by creating a 

fully cellularized scaffold environment with similar matrix compositions to that of native 

IVD tissue.  The techniques described in this paper are not limited to an IVD scaffold, 

and have the ability to be applied to various tissue scaffold technologies.  It is our hope 

that in the future this approach could be used, in certain applications, to replace 

conventional 2-D culture methods by providing a more native 3-D physiological 

environment for cells.   
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CHAPTER 6 
 

6. OVERALL CONCLUSIONS AND FUTURE DIRECTIONS  
 
 
6.1 Conclusions 

The major impact of this work is in the development of a new technology useful in the 

biofabrication of tissue engineering scaffolds, especially for the fabrication of scaffolds 

for IVD tissue regeneration.  This technology is based upon a custom-made additive 

manufacturing platform which enables the precise deposition of polymeric biomaterials 

to form structures with similar microstructures and mechanical properties to the targeted 

native tissue.  Preliminary studies revealed the potential of the fabricated scaffold 

structures to improve upon current IVD scaffold fabrication technologies.  Detailed 

conclusions are summarized below, by chapter. 

 

Chapter 3: A novel technology was developed which utilized unique additive 

manufacturing techniques.  This technology allowed for the extrusion of polymeric 

solutions into 3-D scaffold structures that more closely mimicked the morphology and 

structure of native IVD tissue.  This was accomplished by extruding a polymeric solution 

through micropipettes onto a temperature-controlled collecting platform.  By precisely 

controlling the temperature of the solution, the device enables the precise control of the 

polymeric deposition and allows the solution to be directly solidified due to the drastic 

decrease in temperature and subsequent increase in polymer solution viscosity.   

Evidence was provided for the ability of this biofabrication platform to utilize various 
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polymer solutions.  Biocompatible and biodegradable polyurethane (PU) was used for 

this study.  It was determined that the fabricated IVD scaffolds had a unique shape and 

microstructure, which was highly similar to the native tissue structure, and unlike any 

tissue scaffold developed to date.  Further, scaffolds demonstrated favorable 

biocompatibility and mechanical properties, indicating that they could serve as an 

excellent approach for use in IVD tissue regeneration applications. 

 

Chapter 4:  Within this chapter, an extension of the previous study is presented.  It was 

demonstrated that the custom-developed biofabrication strategy could be used with 

multiple polymeric solutions to broaden its impact on the ability to create clinically 

relevant scaffolds for IVD tissue regeneration.  Specifically, an ultraviolet (UV) curable 

chitosan-gelatin (Chs/Gtn) material developed in our lab was extruded using the same 

fabrication method previously described.  The scaffolds’ overall shape and microstructure 

proved to mimic the native IVD tissue and histological ECM structure.  Further, it was 

shown that the IVD scaffolds’ lamellar size and spacing could be accurately controlled to 

fabricate biomimetic IVD scaffolds.  Cellular behavior, specifically cell alignment in 

accordance with the scaffold, was analyzed and compared to native tissue.  Results 

indicated that the scaffolds had the capability to control cellular morphology similar to 

that of native tissue.  Additionally, the mechanical properties of the scaffold were 

evaluated.  It was demonstrated that the scaffolds’ elasticity as well as dynamic stability 

were highly similar to that of native IVD tissue.  
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Chapter 5:  In this experiment, the biofabricated IVD scaffold structures were 

extensively evaluated in vitro.  To further validate the advances in our scaffold 

fabrication process, the ability to create 3-D cellularized IVD scaffolds was thoroughly 

investigated.  The unique aspects of biofabrication were fully utilized within this study, 

as 3-D multicellular spheroids were first created using a novel robotic approach, followed 

by their positioning within the biofabricated scaffolds’ lamellae.  The spheroids provided 

a 3-D platform for the cells to adhere and grow within the scaffold material.  Further, the 

newly formed ECM was analyzed and proven to exhibit a highly similar structure and 

composition to native IVD tissue.  This study shows the potential of biofabrication to 

provide unique solutions towards the creation of a 3-D cellularized structure for tissue 

regeneration. 

 

6.2 Limitations & Challenges 

Biomimetic IVD scaffolds for tissue regeneration were successfully created using novel 

biofabrication technologies presented in this dissertation.   These scaffolds demonstrated 

very promising in vitro results.  However, several challenges had to be overcome, with 

some still remaining, before having the ability to develop a more functional and clinically 

relevant engineered IVD scaffold for tissue regeneration.  Some of these challenges are 

discussed and arranged by chapter below. 

 

Chapter 3:  A biofabrication method was presented revealing the ability to successfully 

create lamellar scaffolds for IVD tissue regeneration.  The major challenge that had to be 
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overcome when fabricating the scaffolds was troubleshooting and optimizing the 

fabrication parameters of the custom-made device.  We needed to investigate motor 

speeds, polymer solution viscosity, polymer extrusion rate, freezing temperature, and 

micropipette extrusion diameter.  Once these parameters were determined, issues 

involving ambient humidity and solvent evaporation still arose as the scaffold fabrication 

process depends on precisely controlled conditions.  During mechanical testing of the 

fabricated structures, it was determined that the mechanical properties of the PU scaffolds 

were far from ideal.  Even though the elastic modulus was within the lower values 

reported for the human IVD, it is our belief that the scaffolds may need to be altered to 

improve their mechanical strength. 

 

Chapter 4:  Different polymeric solutions were utilized in this study to prove the ability 

of the biofabrication method to take advantage of the beneficial properties of various 

biomaterials.  However, in order to ensure the effectiveness of using the new biomaterial 

solutions, the biofabrication parameters had to be optimized once again.  Although the 

mechanical properties were significantly improved using the Chs/Gtn material compared 

to the PU used in chapter 3, there is still room for improvement of the mechanical 

stability of the structure in order to create a clinically relevant IVD tissue replacement. 

 

Chapter 5:  3-D multicellular spheroids were used as building block to form a fully 

cellularized tissue structure. While the spheroids were easily positioned into the voids of 

the lamellar spacing and providing a feasible 3-D platform for 3-D tissue formation, the 
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cells were not able to migrate into the lamellar scaffold material due to the low porosity. 

We plan to advance the fabrication process by incorporating a porogen during the 

scaffold fabrication process so that cells can penetrate into the whole scaffold. 

 

6.3 Future Goals 

The ultimate goal of this project was to develop a unique biofabrication based 

technology for use in the creation of advanced functional scaffolds for IVD tissue 

regeneration.  The immediate goals will be to address the challenges listed above while 

expanding upon the technologies developed here to improve the scaffolds.  In the larger 

scheme, this biofabrication technology can be elaborated upon to fabricate better IVD 

scaffolds as well as other types of scaffold structures for various types of tissue in the 

body.  Future plans and goals are summarized below. 

One future objective is to advance the biofabrication platform to improve cellular 

response.  The aim is to aid in the adhesion of the multicellular spheroids to each other, 

which may be accomplished by coating the spheroids in ECM protein or ECM-derived 

peptides, such as fibronectin, prior to extrusion within the scaffold lamellae.  This would 

aid in cell fusion and create an entirely cellularized structure.   

As for improving the tissue regeneration response to the biofabricated IVD 

strategy, we plan to control the differentiation of mesenchymal stem cells (MSCs) into 

IVD cell phenotypes by incorporating signaling molecules into and within the scaffold 

using nano-layer-by-layer (nanoLBL) technology as well as nanoparticle-based delivery.  

These techniques can be used to create a spatial and temporal release profile from the 
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IVD scaffold.  Therefore, MSC differentiation can be regionally controlled using 

different combinations of biomolecules to produce specific cell lineages within the IVD. 

We have already discovered candidate signaling molecules to encourage stem cell 

migration and proliferation within the scaffold. In vitro studies analyzing the release 

kinetics of these molecules will then be performed.  This will enable optimized 

differentiation cocktails to be created for each IVD region which support gene expression 

similar to native IVD tissue.  The current challenges discussed above are being addressed 

to improve the biofabrication strategy. 

Finally, the ultimate goal of this project is to assess in vivo growth of IVD tissue 

by using these signaling molecules in combination with the biomimetic IVD scaffold to 

recruit endogenous stem cells and control their proliferation and IVD phenotypic 

differentiation.  With the proper combination of signaling molecules, the scaffolds will 

recruit endogenous stem cells and encourage proliferation, chondrogenic differentiation, 

and synthesis of ECM similar to that of native IVD tissue. Scaffolds will first be created 

with immobilized signaling molecules, followed by implantation and histological 

evaluation in subcutaneous rodent models.  We also aim to assess the regenerated tissue 

by evaluating the mechanical properties and comparing those values to native IVD tissue.  
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