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ABSTRACT 

 

This dissertation contains two subjects: further development of numerical 

technique for the analysis of magnetically induced subsequent fault (MISFault) in 

overhead power lines and its implementation into a software upgrade; and first-phase of 

study on the electromagnetic scattering from objects buried below a random rough 

surface making use of the multidomain pseudospectral time domain (PSTD) method and 

Monte-Carlo simulation. 

An initial electric fault can result in strong magnetic torque on the overhead 

power line conductors, which will make them swing and may bring them to close 

proximity or in contact with one another, causing a subsequent fault. In Chapter 2, 

Computer simulations for the analysis of the subsequent fault in transition spans, which 

are often required in power line topology, are developed. A dynamic analysis of swing 

movement of power line conductors subsequent to an initial fault is presented to track the 

smallest distance between the conductors. In Chapter 3, the simulation is implemented 

into the upgrade of the MISFault analysis software. Its functions are depicted in details. 

The MISFault software is being used by Duke Energy Company and is expected to be 

useful to a utility for eliminating the magnetically induced subsequent faults. 

The multidomain pseudospectral time domain (PSTD) method has been 

developed and successfully applied to solve a variety of electromagnetic scattering 

problems in the past decade. It is a novel algorithm with improvement over traditional 
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FDTD method. In Chapter 4, a multidomain PSTD algorithm is developed to investigate 

the scattering from a 2-D cylinder in free space. Sample numerical results are presented 

and validated. Then, the theoretical derivations are extended for the analysis of scattering 

from 2-D objects buried below a random rough surface.  
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CHAPTER 1 

INTRODUCTION 

 

The work of this dissertation is composed of two research projects that the author 

has been involved in. The first one focuses on further development and application of 

numerical techniques in the analysis of overhead power lines under the influence of 

strong magnetic field when an initial fault occurs and then the software implementation 

based on the numerical techniques. The second one is to investigate the electromagnetic 

scattering from a buried object below a random rough surface. 

Recently, the subject of magnetically induced subsequent fault (MISFault) in 

overhead power lines has drawn attention from power industry and researchers. To 

identify the probability of the magnetically induced subsequent faults, computer 

simulations have been developed and are presented in [1] for level spans and in [2] for 

inclined spans. The computer simulations are based on a dynamic analysis tracing the 

smallest distance between the power lines as they are swinging after the initial fault 

occurs, to determine whether or not they would touch each other causing a subsequent 

fault. However, in practice, a power transmission/distribution line topology may require a 

transition from one power line structure to another or to a dead end of a circuit. Such a 

required transition can be realized by a span called transition span. Since the transition 

spans, in addition to level spans and inclined spans, are often used in power line topology, 

it is also necessary to study the probability of the magnetically induced subsequent fault 

in transition spans. Therefore, in the next two chapters of this dissertation, a dynamic 
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analysis, based on fundamental electromagnetics and mechanics, of the swing movement 

of overhead power line conductors in a transition span subsequent to an initial fault is 

presented to track the smallest distance between the conductors, which is an important 

element useful for predicting the probability of the subsequent fault. Then, this analysis is 

implemented into the upgrading of the MISFault analysis software. 

Analysis of electromagnetic scattering of buried objects has been widely used in 

sensing and remote-sensing applications. Research has been reported on this subject for a 

buried perfect electric conducting (PEC) sphere [3], for an object above a rough surface 

[4], [5], for a buried penetrable and/or PEC spheroid [6], [7], and for multiple objects 

buried beneath a rough surface [8]. In all the works cited above, the earth was assumed to 

be homogeneous. Meanwhile, the scattering from a 3-D target embedded in a two-layered 

half-space medium has been investigated using the method of moments (MoM) [9], but 

the interfaces were assumed to be flat. However, in reality, the earth is of layered 

structure, which adds more complexity to the analysis. As pointed out in [10] and [11], it 

is important to incorporate the roughness of the interface involved in the scattering 

because of its significant impact on the scattered signature. In [10], the scattering from 

two-layered random rough surfaces with and without buried objects has been analyzed 

using the steepest descent fast multi pole method (SDFMM). This analysis was limited to 

the case that the depth of the underground interface must be less than one free-space 

wavelength to satisfy the quasi-planar structure constraint of the SDFMM. In [11], the 

scattering from a buried cylinder in layered media with rough interfaces has been studied 

based on extended boundary condition method (EBCM).   
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In the past, the Monte-Carlo finite difference time domain (FDTD) technique has 

been used to study the scattering by a random rough surface (without buried objects) [12] 

and that from a 3-D object over a random rough surface [13]. As indicated in [12], in 

contrast to surface integral equation formulation,  the FDTD approach is more effective 

for modeling inhomogeneous objects and complex geometries, and is less expensive for 

the analysis of 3-D problems. In addition, either pulsed or CW illumination can be used 

in the FDTD approach, propagation of both the total and scattered fields can be observed 

in the time domain. The FDTD approach based on the classical Yee scheme requires a 

large number of points per wavelength to ensure that it produces acceptable results. 

However, the FDTD has drawbacks as pointed out in [14] and [15].  

Recently, the multidomain pseudospectral time-domain (PSTD) method has been 

presented for simulations of scattering by objects embedded in lossy media [15] – [17]. 

The idea of the PSTD method is to use polynomials to express the unknown solution and 

its spatial derivatives to achieve more accurate representation of the solution as compared 

with the classical FDTD approach. The multidomain PSTD can deal with complex 

geometry with a great flexibility. It only requires  cells per minimum wavelength, and 

has potential for parallel implementations [15]. Therefore, most recently, a research 

project has been proposed and funded by NSF to develop an efficient numerical 

technique, based on the multidomain PSTD method, instead of the classical FDTD, for 

investigating the scattering from 3-D objects buried in a layered structure with random 

rough surface.  In the PSTD-based formulation, the random rough interfaces can be 

treated by Monte Carlo simulations. This research project is being carried out in the 
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Applied Electromagnetic Group at Clemson University. In this dissertation, we complete 

the first part of this multi-year research project. In Chapter 4, a multidomain PSTD 

algorithm is formulated for investigating the electromagnetic scattering of a 2-D cylinder 

placed in free space. The formulation is validated by comparing its numerical data with 

the analytical results. Then, the theoretical formulation is extended for the analysis of a 

cylinder buried below a random rough surface, in which special attention is paid to the 

treatment of the random rough surface and a few important issues are addressed.  
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CHAPTER 2 

MAGNETICALLY INDUCED SUBSEQUENT FAULT (MISFAULT) IN A 

TRANSITION SPAN OF OVERHEAD POWER LINES 

 

1. Introduction 

As introduced in Chapter 1, when an electrical fault occurs, the power line 

conductors briefly carry a fault current, which is much higher than the normal current 

level, resulting in a much stronger magnetic force and torque exerted on the power line 

conductors. Under the influence of the magnetic torque, the conductors will start 

swinging, which may bring them to close proximity or even contact one another, causing 

a subsequent fault. This subsequent fault condition may be difficult to identify, but will 

cause reduced service reliability and poor power quality. Being able to predict and 

eliminate these subsequent faults will be beneficial to a utility. To identify the probability 

of the magnetically induced subsequent faults, computer simulations have been 

developed and are presented in [1] for level spans and in [2] for inclined spans. However, 

in practice, a power transmission/distribution line topology may require a transition from 

one power line structure to another or to a dead end of a circuit. Such a required transition 

can be realized by a span called transition span.  

As an example of transition spans, a crossarm to vertical construction and a 

double circuit to single circuit pole used by Duke Energy [18] are shown in Fig. 2.1. 

From the figures, one observes that the structure of a transition span is much more 

complex than that of a level span and inclined span. Due to their complex structures, the 
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analysis of transition spans must address two major challenges. First, different from level 

spans and inclined spans studied in [1, 2], the swing axes of the three power lines are not 

parallel to each other, making it difficult to use one single coordinate system to calculate 

and then trace the smallest distance between the power lines, which is required for 

determining the probability of the subsequent fault.  Second, the smallest distance 

between two adjacent power line conductors may occur between any two points, not only 

the lowest points as the cases studied in [1, 2]. To address these challenges, in this 

research, we first employ a series of coordinate system transformations and establish a 

common coordinate system, using which we can calculate the distances between the 

power line conductors as they are swinging after the initial fault occurs. Then, in a 

dynamic analysis based on fundamental electromagnetic and mechanics, we trace the 

distances between any two points on the two adjacent conductors during their swing 

procedure, and then extract the smallest one, from which we can tell whether or not the 

power line conductors would touch one another, causing a subsequent fault. 
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Fig. 2.1 An example of transition span: Crossarm to vertical construction. 

 

2. Coordinate System Transformations 

As the first step of the analysis, we make a series of coordinate transformations. 

The crossarm to vertical construction depicted in Fig. 2.1 is used as an example to 

illustrate the coordinate transformation procedure. First, we set up a common (x, y, z) 

coordinate system in such a way that its origin O is set to be at the center of the top 

surface of the left pole, the xz plane is a horizontal plane parallel to level ground, and the 

x-axis in the xz plane is along a line that connects the axes of the two poles. A top view of 

such established (x, y, z) coordinate system is shown in Fig. 2.2, where Ls is the span 

length. Also, Fig. 2.2 shows three individual coordinate systems ( ' , ' , ' )i i ix y z  (i = a, b, c), 

each of them is set up for one phase. In each of the three coordinate systems, its origin '
iO  

is set to be at the lowest point of the phase i conductor (i = a, b, c) with sag when it is at 

rest, the ' 'i ix z  plane is a horizontal plane parallel to level ground, and the 'ix -axis is 

formed by the projection in the ' 'i ix z  plane of a line connecting the two supporting 

points of phase i conductor. To relate the common coordinate system (x, y, z) with each of 

the three individual coordinate systems ( ' , ' , ' )i i ix y z , three more coordinate systems (xi, yi, 

zi) (i = a, b, c) are introduced and their top views are also shown in Fig. 2.2. As shown in 

Fig. 2.2, in each of the three coordinate systems (xi, yi, zi) (i = a, b, c), the origin Oi 

coincides with '
iO , its xi-axis and zi-axis are parallel to the x-axis and z-axis, respectively. 
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Fig. 2.2 Top view of a complex power line topology. 

 

 After setting up these three coordinate systems, we use ( ' , ' , ' )a a ax y z and (xa, ya, 

za) coordinate systems for phase a as an example to illustrate their relationships. As 

depicted in Fig. 2.3, the ( ' , ' , ' )a a ax y z coordinate system can be viewed as a rotation of 

the (xa, ya, za) coordinate system by an angle Ψa.   
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Fig. 2.3 Top view of coordinate transformation for phase a  

from ( ' ' '
a a ax y z ) to ( xyz ) system. 

 

Then, in the ( ' , ' , ' )a a ax y z coordinate system, the phase a line can be viewed as an 

inclined span. As indicated in [2], for an inclined span, the swing axis of the power line 

conductor would be a line through its supporting points. Therefore, for convenience of a 

dynamic analysis of the power line swing, we set a new (Xa, Ya, Za) coordinate system in 

such a way that the X-axis is parallel to the swing axis of the power line as shown in Fig. 

2.4. And the new (Xa, Ya, Za) coordinate system can be viewed as a rotation of the 

( ' , ' , ' )a a ax y z coordinate system by an angle θa . 
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Fig. 2.4 Front view of coordinate transformation for phase a  

from ( ' ' '
a a ax y z ) to ( a a aX Y Z ) system. 

 

So far, we have set up three individual coordinate systems ( , , ),  i i ix y z ' ' '( , , )i i ix y z , 

and ( , , )i i iX Y Z  (i = a, b, c) for each phase, as well as the common coordinate system (x, y, 

z).  As shown in Figs. 2.2 – 2.4, the first three coordinate systems share the same origin 

Oi but with different orientations; hence their relationship can be represented by 

coordinate system rotations. Mathematically, a coordinate system rotation can be 

performed using a rotation matrix with Euler rotation angles as described in [19, 20], and 

the rotated coordinate system can be expressed as  

,rotated rotated rotated old old oldX Y Z X Y Z Rotation Matrix          
      (2.1) 
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where       Rotation Matrix    x y zR R R ,  in which Rx, Ry, Rz  are for the rotation about 

x-axis, y-axis, z-axis, respectively and are given by  

1 0 0
0 cos sin ,  
0 sin cos

 
 

 
   

  
xR

cos 0 sin
0 1 0 ,

sin 0 cos

 

 

 
   
  

yR     
cos sin 0
sin cos 0 ,
0 0 1

 
 

 
   
  

zR                   (2.2) 

where ,   and  are the rotation angles measured clockwise when looking at the origin 

from a point on the +x, +y and +z axes, respectively.  As shown in Figs. 2.2 – 2.4, the 

rotation from ( , , )i i ix y z  to ' ' '( , , )
i i i

x y z system is about y-axis at an angle i  measured 

clockwise; and then from ' ' '( , , )
i i i

x y z  to ( , , )i i iX Y Z system is a rotation about z-axis at an 

angle i also measured clockwise. Therefore, making use of equations (2.1) and (2.2) for 

the coordinate system rotations, we can perform the transformation from ( , , )i i ix y z  to 

( , , )i i iX Y Z  system and arrive at        

     
cos cos sin cos sin
sin cos cos sin sin ,

sin 0 cos

i i i i i i i

i i i i i i i

i i i i

X x
Y y
Z z

    
    

 

     
          

          

                 (2.3)                    

In addition to the transformation from ( , , )i i ix y z  to ( , , )i i iX Y Z  coordinate system 

completed above, the other thing we need to do is to relate the ( , , )i i ix y z system to the 

common coordinate system (x, y, z). As illustrated in Figs. 2.2 and 2.3, in these two 

coordinate systems, the corresponding axes are parallel; the only difference is the 

locations of their origins Oi and O. Such a difference can be determined after several 
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steps as presented in [21], we obtain the transformation from ( , , )i i ix y z  to ( , , )i i iX Y Z  

system as  

cos cos sin cos sin
sin cos cos sin sin

sin 0 cos

i i i i i i xi

i i i i i i yi

i i i zi

X x O
Y y O
Z z O

    
    

 

         
                 
                

,                              (2.4) 

or          
cos cos sin cos sin

sin cos 0
cos sin sin sin cos

i i i i i i xi

i i i yi

i i i i i i zi

x X O
y Y O
z Z O

    
 

    

       
                
              

                             (2.5) 

where Oi (i = a, b, c) is the location of the origin in the common coordinate system. 

Equations (2.4) and (2.5) can be used to perform the coordinate system transformations 

between the ( , , )i i iX Y Z  (i = a, b, c) coordinate and the common (x, y, z) coordinate 

system, which is needed for calculating the smallest distance between the power line 

conductors and  in a dynamic analysis to be presented in the next section.  

    

3.  Dynamic analysis on power line swinging caused by an initial fault 

When an initial fault occurs, the three-phase power line conductors of a transition 

span carry a high-level fault current, resulting in a strong magnetic field and magnetic 

force exerted on the power lines.  Under the influence of the magnetic force and the 

resulting torque, the power lines will start swinging. A dynamic analysis of the power line 

swinging is presented in this section.  
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The dynamic analysis of the swinging phase i (i = a, b, c) conductor of a 

transition span is carried out in the ( , , )i i iX Y Z  (i = a, b, c) coordinate system. After the 

initial fault occurs, the magnetic force exerted on phase i power line conductor can be 

calculated by a line integral along the conductor as 

                         
( ) ( ) ( )i i i iF t I t d l B t 

 
                                                              

(2.6) 

in which Ii(t) is the current flowing in the phase i conductor, idl


is the differential length 

vector in the direction of the current flow, which is given in Eq. (A3) in the Appendix.  

Also, in equation (2.6) ( )iB t


is the magnetic flux density produced by the power line 

currents, as a function of time t. The magnetic flux density iB


observed at a point on 

phase i (i = a, b, c) conductor is produced by the current Ii in itself and the currents Ij 

(   ,  ,  , )j a b c j i   in the other two phase conductors, and 

                           
, ,i ii ij i

j
B B B 
  

                                                                      
(2.7) 

where iiB


is due to its own current and can be calculated in the ( , , )i i iX Y Z  coordinate 

system as presented in [2]. But ,ij iB


 counts the contributions from the other two phase 

currents and it must be computed in a different way as described below. First, we use 

Biot-Savart’s law to compute the magnetic flux density,  

                             0
, 34

j j ij
ij j

ij

I dl R
B

R





 

 


 ,                                                            (2.8) 
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where the integral is performed along the phase j power line, and jdl


 is the differential 

length vector along the phase j power line in the ( , , )j j jX Y Z coordinate system. Note that 

such calculated magnetic flux density ,ij iB


is a vector in the ( , , )j j jX Y Z coordinate system 

(   ,  ,  , )j a b c j i  . To make it addable to iiB


in equation (2.7), we must convert the 

vector ,ij jB


 to a vector ,ij iB


 in the ( , , )i i iX Y Z  coordinate system. Such a conversion can 

be performed by using vector component transformation twice, the details of which is 

presented in the Appendix. 

To compute the magnetic flux density and then the magnetic force on the power 

line conductor, it is partitioned into N small segments in the ( , , )i i iX Y Z  (i = a, b, c) 

coordinate system. Each segment is made so small that the magnetic flux density and the 

magnetic force can be considered as constant over the segment. Note that both ( )iI t and  

( )iB t


appearing in Eq. (2.6) are functions of time, the magnetic force and the resulting 

torque must vary as functions of time t as well when the power lines are swinging. To 

take the variation into account, we divide the whole swinging procedure into many very 

short time steps. The duration Δt of each of them is taken to be much shorter than the 

period T of the ac current at power frequency 60 Hz. Within such a short time interval Δt, 

( )iI t , ( )iB t


and hence  F t


can all be assumed to be invariant as a good approximation. 

Then, starting from t = 0 and using a recursive procedure, we can find out the movement 

of the power lines during each time interval Δt step by step. Finally, the smallest distance 

between the power lines, as the result of their movement, can be determined, from which 
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we can predict the probability of the subsequent fault. As shown in Fig. 2.5, after the 

phase i power line (i= a, b, c) starts swinging, both the Yi- and Zi- component of the 

magnetic force iF


, as well as a component of gravity, mgcos i , contribute to the torque   

that makes the power line swing. 

 

Fig. 2.5 A cross sectional view of the power line phase i in motion, the forces and 

torque exerted on it. 

 

At an arbitrary location after an angular movement ,i n of the phase i power line 

conductor, the torque exerted on it can be determined by  
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, , , ,

1

N

i n i n m i m
m

F R


 ,                                                                         (2.9) 

in which Fi,n,m is the vector sum of the magnetic force and the gravity exerted on the mth 

segment of the conductor along its swinging path, and 

       , , , , , ,cos ( cos )sini n m i mZ i n i mY m i i nF F F m g     .                                (2.10) 

In equation (2.10), ,i mZF  and ,i mYF  are the Z- and Y- component of the magnetic force 

, ( )i mF t


 on the thm  segment of the conductor, which can be calculated by 

          , , ,( ) ( ) ( )i m i i m i mF t I t dl B t 
 

.                   (2.11) 

in which , ( )i mB t


 is the time-domain expression of the magnetic flux density evaluated at 

the thm  segment centered by , , ,( , , )i m i m i mX Y Z , which can be readily found from its phasor 

,i mB


. One should notice that after the power lines start swinging, their positions vary as 

time progresses. Hence, at any specific time, ,i mB


 must be re-calculated corresponding to 

the new locations of the power lines. Then, making use of equation (2.11), we can 

determine the varying magnetic force ,i mF


 exerted on each of the power lines as time 

progresses. 

After obtaining the total torque ,i n  exerted on the phase i power line conductor, 

we can find out the angular acceleration during its nth  angular movement by  
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                ,
,

,

i n
i n

i mI


  ,                                                      (2.12) 

where ,i mI  is the moment of inertia of the power line. Then, based on knowledge of the 

angular acceleration ,i n , the angular velocity i  and the angular movement of the phase i 

power line can be determined by a recursive procedure described below. 

When the phase i (i = a, b, c) power line is at rest (corresponding to t  0 ,), an 

arbitrary point on the line is located by ,0 ,0 ,0( , , )i i iX Y Z , the initial angular velocity ,0i  is 

equal to zero, and the initial angular acceleration is ,0
,0

,

i
i

i mI


  , where ,0i  is the initial 

torque computed when the power line is at rest. After a short time step t , the angular 

velocity increases to ,1 ,0i i t    and each of the power lines completes its first angular 

movement ,1i , and  

                                    2
,1 ,1 ,0

1
2i i i t      .                               (2.13) 

The angular movement ,1i  specifies the new location of the power line after t , and a 

point on the line can be expressed by  

                                 

 
,0

,1 ,0

,1 ,0 ,1

,1 ,0 ,1

( ) cos

sin
i

i i

i i i i i

i i i i

X X
Y d d Y

Z Z d Y





 
   


  

.        (2.14) 
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Also, by the end of t , the angular acceleration becomes ,1
,1

,

i
i

i mI


  , where ,1i  is the 

torque computed for the power line at its new location  after the first movement. Then, 

after another time step t , the angular velocity further increases to ,2 ,1 ,1i i i t     , 

and the power line completes its angular movement 

                       ,2 ,1 ,2i i i      ,           (2.15) 

where 

                         2
,2 ,1 ,1

1
2i i i t      .                  (2.16) 

By the end of 2t , the angular acceleration becomes ,2
,2

,

i
i

i mI


  , in which ,2i is the 

torque calculated for the power line at its new locations after its second movements. 

Based on the analysis above, we can formulate the general equations. After n time steps 

n t , the angular velocity is , , 1 , 1i n i n i n t      , and the power line completes its 

angular movement 

                           , ,1 ,2 ,......i n i i i n          ,         (2.17) 

where 

                           2
, , 1 , 1

1
2i n i n i n t       .                (2.18)  
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The angular movement ,i n  specifies the new location of the power line at the moment of 

n t ,  and a point on the line can be expressed by  

       

 
,0

, , 1

, , 1 , 1

, , 1 , 1

( )cos

sin
i

i n i n

i n i i i n i n

i n i i n i n

X X
Y d d Y

Z Z d Y







 

 

 
   


  

.         (2.19) 

At the moment of n t , the angular acceleration of the power line becomes 

,
,

,

i n
i n

i mI


  , where ,i n  is the torque calculated for the power lines at their new locations 

after the nth  movement. Then, such calculated ,i n  is used for the computation of the next 

movement. This procedure is repeated over a specified time interval of interest, or until 

two of the power line conductors touch each other. This procedure is repeated over a 

specified time interval of interest, or until two of the power line conductors touch each 

other. In this procedure, we need to compare the time consumed t n tn    with the 

duration of the initial fault t f . The initial fault duration t f  can be determined from the 

time-current curves of the recloser, corresponding to various fault current levels. Only 

within t f , the total force is the sum of the magnetic force due to the fault current and the 

gravity. After t f , the magnetic force is negligible and the gravity becomes the major 

contribution to the torque, which tends to make the power lines to swing back.  

Employing the recursive procedure described above, we can determine the 

possible maximum movement of the power lines and the smallest distance between them, 
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from which we may predict whether or not the power lines would touch each other, 

causing a subsequent fault. 

 

4. Results and Discussion 

Making use of the computer simulation, based on the coordinate transformations 

and the dynamic analysis presented above, we study the probability of the magnetically 

induced subsequent fault in various types of commonly used transition spans. Sample 

numerical results for a commonly used transition span are presented and analyzed. More 

results will be presented later in the dissertation.  

As the first example, we present the numerical results for line-to-line fault 

between phase a and phase b conductors in an intermediate span connecting a 54”- 

spacing flat construction on its left side and a 56”-spacing construction on its right side. 

It is of span length Ls = 250’ and sag s=52”. The initial fault current is 3447Amperes and 

the fault duration is 0.26 seconds. The dimensions of such an intermediate span are 

illustrated in side view and top view in Fig. 2.6. In this figure, a circle is used to represent 

the horizontal/vertical position of the installation point of each of the three power line 

conductors on the left and right side of the span. For the purpose of a partial check, we 

vary the vertical distance d and the horizontal distances l1 and l2 between the phase 

conductors on the right side of the intermediate span and study its effect on the numerical 

results of the smallest distances between the power line conductors summarized in Table 

2.1. In part (a) of this table we present the numerical results for this intermediate span 
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using the actual dimension of  a 54”- spacing flat construction on its left side and that of 

a 56”-spacing construction on its right side; then we alter the horizontal distances l1 and 

l2 between the phase conductors on the right side and show the corresponding results in 

part (b); finally in part (c), we change both the horizontal distances l1 and l2 and the 

vertical distance d in the right-side construction to make it the same as the left side 

structure, so that the span becomes a level span; the numerical results of which can be 

compared with that presented in part (d) of this table, obtained using the computer codes 

for level spans [1]. From the comparison, one observes that as the dimension of the right-

side construction gradually reduces to be the same as that on the left-side structure, that is, 

the intermediate span is changed to a level span, the numerical results of the smallest 

distances between the power line conductors gradually reduce to be about the same as 

that obtained from the computer codes for level spans. This is exactly what one would 

expect, and can be used as a partial check for the computer codes developed for transition 

spans. 
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Fig. 2.6 Geometry of an intermediate span. 
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Table 2.1 

The smallest distance between the axes of power conductors when  

line-to-line fault occurs with 0.26-s initial fault duration at 3447A fault  

current in an intermediate span with various dimensions of its 

 right-side construction. 

 

Smallest distance between the axes of two power lines (m) 
(a) l1 = l2 =1.12m (44”), d = 0.36m (14”) 

Phase a - b 0.06102609 
Phase b - c 0.6632119 
Phase a - c 1.478569 

(b) l1 = 0.89m (35”), l2 = 1.27m (50”), d = 0.36m (14”) 
Phase a - b 0.05517985 
Phase b - c 0.7106671 
Phase a - c 1.396123 

(c) l1 = 0.74m (29”), l2 = 1.50m (59”), d=0 
Phase a - b 0.01664014 
Phase b - c 0.6764782 
Phase a - c 1.373760 

(d) Level span results 
Phase a - b 0.0166264 
Phase b - c 0.659232 
Phase a - c 1.356055 

 

The sample numerical results presented next are for three-phase fault in a 

crossarm to vertical construction, depicted in Fig. 2.1, with span length Ls = 255’ and sag 

s=52”. The initial fault current is 3980 Amperes and the fault duration is 0.24 seconds. 

The dimensions of this transition span are illustrated in Fig. 2.7, where the conductor 

clearances d1 and d2 on the right side are taken to be variable and all the other dimensions 

are fixed. The smallest distance between the power line conductors, resulting from the 

magnetically induced subsequent fault, is presented in Table 2.1. From the data shown in 
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parts (a) – (d) of Table 2.2, one sees that as the conductor clearances d1 and d2 vary from 

48” to 38”, then 28”, and finally 15”, the smallest distances between the axes of the 

power line conductors gradually decrease.  In particular, as d1 and d2 reduce to 15”, the 

smallest distance between the axes of phase a and b conductors decreases to 0.036 meters, 

making them almost touch each other. This result makes sense because for the power 

lines with smaller conductor clearance, they have more chance to touch each other as an 

initial fault occurs, resulting in higher probability of the subsequent fault.  

 

Fig. 2.7. Geometry of a crossarm to vertical construction. 



25 

 

Table 2.2 

The smallest distance between the axes of power line conductors  

when three-phase initial fault occurs in a crossarm to vertical  

construction with different dimensions of its right-side construction. 

 

Smallest distance between the axes of two power lines (m) 
(e) Conductor clearance d1 = d2 = 1.2 m (48”) 

Phase a - b 0.4856511 
Phase b - c 1.007162 
Phase a - c 0.6182858 

(f) Conductor clearance d1 = d2 = 0.97 m (38”) 

Phase a - b 0.3611948 
Phase b - c 0.8795002 
Phase a - c 0.4886659 

(g) Conductor clearance d1 = d2 = 0.71 m (28”) 
Phase a - b 0.2294606 
Phase b - c 0.6728333 
Phase a - c 0.3586329 

(h) Conductor clearance d1 = d2 = 0.38 m (15”) 
Phase a - b 0.03616398 
Phase b - c 0.2432642 
Phase a - c 0.1656313 

 

The third example is for three-phase fault in a span guy pole double circuit, the 

dimensions of which are shown in Fig. 2.8. The initial fault current is 3980 Amperes and 

the fault duration is 0.24 seconds. The span length is Ls = 250’; the sag is taken to be 

s=52” for all the three phase conductors first, and then the sag of phase c conductor is 

changed to sc=40” while the sags of phase a and b conductors remain to be sa =sb=52”. 
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The numerical results corresponding to these two cases are presented in part (a) and (b) 

of Table 2.3, respectively. As shown in this table, for the case that all the three phase 

conductors are of the same sag, phase a and c conductors touch each other, causing a 

subsequent fault. But when the sag of phase c conductor is changed to sc=40”, different 

from that of phase a conductor, the power line conductors do not touch. This is because 

for the case that phase a and c conductors have different sags, the corresponding points 

on these two conductors are separated farther, making them more unlikely to touch each 

other, thus decreasing the probability of subsequent fault. 

 

Fig. 2.8 Geometry of a double circuit to single circuit structure. 
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Table 2.3 

The smallest distance between the axes of power conductors when three-phase 

fault occurs with 0.24-s initial fault duration at 3980.2A fault current in a double circuit 

to single circuit pole structure with different sags. 

 

Smallest distance between the axes of two power lines (m) 
(a) sa = sb = sc = 1.32m (52”) 

Phase a - b 0.3041216 
Phase b - c 0.2945455 

Phase a - c 0.01667625 (touch) 

(b) sa = sb = 1.32m (52”), sc = 1.02m (40”) 

Phase a - b 0.5676664 

Phase b - c 0.2390401 

Phase a - c 0.1125081 (no touch) 

 

To check the accuracy of the numerical results, we substitute them into the 

equation of energy conservation law to see if this equation is satisfied. The energy 

conservation law requires that the work done by the external force F along the movement 

path of an object must be equal to the sum of the increment of its potential energy and 

kinetic energy 

                      
21

2
F ds mgh mv 
  ,                                                                (2.20) 
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which is used to check the power line at the moment when the fault currents are cut off. 

The integral appearing in equation (2.20) is performed along the locus of the power line 

movement. Also, in equation (2.20), v  is the power line swinging velocity, h is its height 

increment as the result of swinging.  A comparison of the work done by the magnetic 

force and the increment of the total energy of the power line for a typical transition span 

studied in the third example and presented in Table 2.3 is shown in Table 2.4. 

 

Table 2.4 

Comparison of the work done by the magnetic force with increment of energy of the 

power lines. 

 

From this table one observes that the numerical results well satisfy the energy 

conservation law. Using Eq. (2.20), all the other cases of the transition spans have been 

investigated, and the same phenomena are observed. 

 

 

Phase Total 
work J) 

Potential 
energy (J) 

Kinetic energy 
(J) 

Total energy  
Increment (J) 

Relative 
error (%) 

a 27.35 3.60 23.75 27.36 0.017 
b 0.001649 0.00164 0.00002 0.001653 0.233 
c 27.60 3.77 23.84 27.61 0.0168 
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CHAPTER 3 

UPGRADE OF MAGNETICALLY INDUCED SUBSEQUENT FAULT (MISFAULT) 

ANALYSIS SOFTWARE 

 

1. Introduction 

As described in Chapters 1 and 2, an electric initial fault can result in a much 

stronger magnetic force and torque exerted on the power line conductors, which may 

cause a subsequent fault.  Being able to predict and eliminate these subsequent faults will 

be beneficial to a utility. Under the sponsorship of Duke Energy Company, computer 

simulations of the magnetically induced subsequent fault (MISFault) of three-phase 

power lines has been developed for predicting the probability of the subsequent faults for 

level spans [1], inclined spans [2], and transition spans [21], and for determining the 

allowed span length range based on consideration of eliminating the MISFault [22]. 

Based on the numerical techniques presented in [1, 2, 21, 22], one user-friendly computer 

software for the analysis of MISFault is developed and upgraded to meet the power 

quality needs of power industry [23]. 

The opening screen of the software is shown in Fig. 3.1. It is capable of  

(1) predicting the probability of magnetically induced subsequent fault in 

utility topology for level span, inclined spans, and transition spans. 
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(2) determining the non-touch span length range/allowed operating span 

length range from consideration of eliminating the subsequent fault for level spans and 

inclined spans. 

 

Fig. 3.1 Opening screen of MISFault analysis software. 

The software is upgraded to handle a single case or a sequence of multiple case 

investigations. It has the following modules:  

 General options setting;  

 Single-case/ Multiple-case mode selection 

 Data input  
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 Structure geometry viewer; 

 Pre-test based on the power line structures and its mechanical parameters; 

 Computation  

  Computation progress viewer;  

 Data display and report file creation 

In particular, the analysis of magnetically induced subsequent fault in transit 

spans, presented in Chapter 2, is implemented in the upgrading of MISFault software.  

 

2. Upgrade for Transition Span Investigations 

A.    General settings 

The upgraded software can accept single case entry and multiple case scenario 

entries. After the user clicks the “Start a computation” button on the opening screen, a 

dialog box (Fig. 3.2) will pop up for the user to choose either single entry or multiple 

entries, by which a certain command that defines a few different functions, such as 

different displaying interfaces, will be assigned to the software. In this section, we choose 

a single case investigation of transition spans as an example to show the functionality of 

the software.  The “General Settings” page for this demonstration is shown in Fig. 3.3.  
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Fig. 3.2 Dialog box for selecting single- or multiple case entries. 

 

 

Fig. 3.3 General settings page. 
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B1.  Input for Power Line Structure Geometry 

In the initialization page (Fig. 3.4) of the upgraded software, the user can select 

one of the four types of transition spans framed in “Different Types of Transition Spans” 

for investigation, and then click the “submit” button. The first three types are typical 

transition spans listed in the “Primary Line Construction” manual of Duke Energy.  The 

forth one is more general and is to be used to cover the other types of transition spans.  

 

Fig. 3.4 The structure geometry setting for transition span. 

Input/select a name 
for a complex 

Select a type of structure 
for input  
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If “Crossarm to vertical construction” is selected, an input form as shown in Fig. 

3.5 will appear. Different from the level span and inclined span, which only need a planar 

side-view, the transition span structures must be shown in top view and side view to 

illustrate its complex geometry.  In the top/side view, a circle is used to show the 

horizontal/vertical position of an installation point of each of the three power line 

conductors on the left and right side of a span. The two circles of the same color on one 

side (for example, the two green circles on the left side) represent one installation point of 

a power line conductor in top view and side view. Also, the color of the circles is used to 

illustrate the line construction of a span, that is, the two circles with the same color on the 

two sides are actually connected by a power line conductor. The geometry of the 

transition span can be input to the software by filling out 

(1) the text boxes besides the circles for the horizontal/vertical distance 

between the power lines and their locations relative to the reference lines, which are 

defined as the local grounds in the side view, and the line connecting the two pole axes in 

the top view, respectively;  

(2) the text box at the most bottom for input of the span length, which must be 

consistent with the span length input on the span length/sag page;  

(3) the text box in the frame of “Ground Inclination” for the height difference 

between the two ends of a transition span due to the ground inclination, when it is 

constructed in mountainous areas.  The two option boxes embraced in the frame are for 

the user to select depending on which side, the left side or the right side is higher. The 

default value of the height difference is zero, which corresponds to level ground. 
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Fig. 3.5 Input form for a transition span from cross arm to vertical construction. 

 

B2.  Input for Power Line Conductor/Span Length/Sag Parameters 

As shown in the initialization page of Fig. 3.6(a), the user may select the 

conductor type of the power line to be investigated from a pull-down list, then the 

diameter and line density of the conductor will appear. Also, in this page, the ambient 

temperature and the span length can be chosen from the corresponding combo box. Then, 

select one of the multiple sag values in the combo box of final sag.  The upgraded 
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software can also be used to investigate the power line structures that have different sags. 

For this case, the user should check “The power lines have different sags” box to enable 

the input of three different sags in three combo boxes as shown in Fig. 3.6(b). 

 

 

(a) 
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(b) 

Fig. 3.6 Initialization page - Conductor/Span/Sag parameters: (a) with the same sags, 

(b) With different sags. 
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B3.  Input for Initial Fault Information 

In the initialization page (Fig. 3.7), the user can click the “Fault information” 

button; select the fault type to study from a pull-down list, then input the fault duration 

and the recloser interval, as well as the magnitude of the initial fault currents. After 

completing all the input and clicking the “Save” button, the input will be checked by the 

Visual Basic error-capturing scheme. Once any error or invalid input is captured, an error 

message will be sent to the user and the current process will be suspended until the user 

corrects the input. 
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Fig. 3.7 Initialization page - Initial fault information 

C. Computation 

After the input data are saved and the user clicks the “compute” button from 

the main menu bar in the initiation page, the upgraded software will start a single-

case or a sequence of multiple-case computation.  Then, the time when the 

computation starts will be shown and the progress bar will be activated displaying the 
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progress of the computation, as shown in Fig. 3.8. When the computation is 

completed, a message box will pop up informing the user of the completion of the 

computation. And the data display as well as the report file creation will be activated. 

 

Fig. 3.8 Progress of a single case computation 

 

D. Data Display and Report File Creation 

(1) Graphical Display 
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Going through the same steps as those for level span and inclined spans, the user 

can view the variation of the torque exerted on the power lines of a transition span, the 

angular velocities of the power lines, and the smallest distance between their axes with 

respect to time as they are swinging.  

(2) Report Document 

 Going through the same steps as those for level span and inclined spans, using 

“Output” or “View”, the user may access to the report document and graphical 

displays for transition spans. A sample report document is displayed in Fig. 3.9.   

 To review the structure of the transition span investigated, the user can click the 

“Structure geometry” in the “View” pull-down menu, then the structure will be 

displayed in an image form as illustrated in Fig. 3.10, in which the color of the 

circles is used to illustrate the line construction of a span, that is, the two circles 

with the same color on the two sides are actually connected by a power line 

conductor.  

 Similar to the other two types of structures, validation of the computation results 

using the energy conservation law is also available from the “Output” pull-down 

menu for transition spans. 
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Fig. 3.9 Report document for a transition span. 
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Fig. 3.10 Structure review for a transition span. 

 

In addition to the major modifications mentioned above, the MISFault software is 

upgraded in other respects to meet the needs of Duke Energy Company [24]. The 

software is capable of predicting the smallest distance between the power line conductors 

after an initial fault occurs, from which one can predict the probability of the 

magnetically induced subsequent fault; and determine the allowed span length range from 

consideration of eliminating the subsequent fault. It has been tested and the accuracy of 
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its computation results has been validated by checking with the energy conservation law 

requirement. It is currently used by Duke Energy for the power quality analysis of 

overhead transmission/distribution lines and is expected to be useful to a utility for 

eliminating the magnetically induced subsequent fault. 
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CHAPTER 4 

ELECTROMAGNETIC SCATTERING OF CYLINDER BURIED BELOW A 

RANDOM ROUGH SURFACE 

 

4.1. Introduction 

As the first step of the execution of the NSF-sponsored research project described 

in Chapter 1, in this chapter, a multidomain pseudospectral time-domain (PSTD) [15][26] 

algorithm is formulated for investigating the scattering of a two-dimensional (2-D) object 

placed in free space first. The formulation is validated by comparing its numerical data 

with the analytical results, for example, the scattering problem from a circular PEC. Then, 

the theoretical formulation is extended for the analysis of a cylinder buried below a 

random rough surface, as illustrated in Fig. 4.1. Special attention is paid to the treatment 

of the random rough surface and a few important issues are addressed. 

Fig. 4.1   A 2-D object buried below a random rough surface. 
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The PSTD technique is known as a pseudospectral method used in time-domain, 

which is formulated on the nodal representations of the spatial derivatives [25]. That is, 

instead of approximating a function f(x) by a series of basis functions in traditional 

spectral method [28]-[30], it expands the unknown f(x) by basis functions m̂f  at a set of 

fixed grid points (x0, x1,…, xN  ) as 

 
0

ˆ( ) ( ),
N

m m
m

f x f g x


  (4.1) 

where gm(x) is the Lagrange interpolation polynomial,  and 

 
0,

( )( ) .
( )

N
i

m
i i m m i

x xg x
x x 




  (4.2) 

The spatial derivatives are thereby evaluated by 

 
0

( ) ( )ˆ .
N

m
m

m

f x g xf
x x

 


   (4.3) 

As pointed out in [26], the Fourier PSTD, which is based on the fast Fourier transform 

algorithm, is simple to implement and requires only two points per minimum wavelength 

in homogeneous and smoothly varying inhomogeneous regions; but its accuracy is lower 

when it is applied to more complex problems. The multidomain PSTD can deal with 

complex objects with great flexibility, at the cost of slightly increased computational 

burden since it requires  cells per minimum wavelength [26][27]. Hence, it is employed 

in this research and its general formulation is presented in the next section. After 
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validating the multidomain PSTD algorithm formulated through a few numerical 

examples of the scattering in free space in Section 4.3, we extend the formulation to the 

analysis of scattering of a cylinder buried below a random rough surface in Section 4.4, 

where special attention is paid to the treatment of the random rough surface. 

 

4.2. The Multidomain PSTD Algorithm 

The general formulation of the multidomain PSTD algorithm is presented in this 

section.  It contains the following major components. 

4.2.1. Division of the Computational Domain 

 The computational domain, for determining the scattering of a 2-D cylinder 

buried below a random rough surface, is divided into non-overlapping subdomains 

conforming to the problem geometry, as shown in Fig. 4.2.  
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Fig. 4.2 Division of the computational domain into  
non-overlapping subdomains. 

 

4.2.2 Coordinate Mapping 

Each subdomain, which is in general a curved quadrilateral in (x, y) coordinates, 

is mapped to a unit square ([-1, 1] x [-1, 1]) in () coordinates by means of the 

coordinate transformation [27] as shown in Fig. 4.3. For a subdomain of rectangular 

shape, we employ a linear transformation making use of the maxima and minima of x and 

y as 

  

   
   

max min max min

max min max min

0.5 ,

0.5 .
i i

i j

x x x x x

y y y y y





   

     
                                           (4.4) 



49 

 

And for a curved quadrilateral, a curvilinear transformation, in terms of Lagrange 

polynomials based on knowledge of the anchor points, is used. If we denote these anchor 

points as ( , )pq pqx y for (0 ,  0 )p P q Q    , then 

   

   

0 0

0 0

QP
P Q

p q p q
p q

QP
P Q

p q p q
p q

x x

y y

   

   

 

 





 

 
                                                            (4.5) 

For a subdomain, the boundaries of which include a rough surface, numerical tests have 

been performed. Based on results of the numerical tests, we observed that upon a proper 

identification of the local maxima and minima of x and y, the linear transformation can 

yield the same coordinate mapping as that obtained by the curvilinear transformation. 

Hence, we may use the linear transformation with properly identified local maxima and 

minima of x and y for coordinate mapping of a subdomain, the boundaries of which 

include a rough surface.  

 

 

Fig. 4.3 Subdomain mapping from a curved quadrilateral to a unit square. 
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Then, making use of the coordinate transformation ( , ), ( , ),x y x y    
 
the 2-D 

Maxwell’s equations for TMz polarization in the (x, y) coordinates,  

1 , 

1 , 

1 ,

x z

y z

y xz
z

H E
t y

H E
t x

H HE E
t x y






 

 
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 

 
      

                                                 (4.6) 

can be rewritten in the ) coordinate system in matrix form as 
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                                                      (4.7) 

where ( , , )T
x y zq H H E , A, B, and C are the coefficient matrix, 
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          

   

                         (4.8) 

,   x yx y
       etc. 
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4.2.3   Chebyshev Spectral Collocation Procedure 

After the coordinate mapping, the Chebyshev spectral collocation procedure [26-

32] is performed for treating the electromagnetic field quantities and their spatial 

derivatives in the transformed () coordinates. First, the grid points in the transformed 

coordinates are chosen as the tensor-product Chebyshev-Gauss-Lagrange (CGL) points,   

cos ,     0,1,...

cos ,    0,1,... .

i

j

i i N
N
j j M
M






    
 
    
                        

                                         (4.9) 

Then, the electromagnetic field quantities are represented by a tensor-product Chebyshev-

Lagarange polynomial 

              
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N M

i j i j
i j

q q g g     
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                                                       (4.10) 

where the Lagrange interpolation polynomials are defined by 
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                                                      (4.11)                                                              

in which   0, ,   1 ,  i i iNc        and  NT x  is the N
th

-order Chebyshev polynomial

  1cos( cos )NT x N x .   

Finally, the spatial derivatives of the field quantities at the grid points are obtained 

in terms of the derivatives of the Lagrange polynomials as 
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where the differentiation  matrix ikD  is given by   
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                                    (4.13) 

 

4.2.4 Implementation of Well-Posed PML 

In order to truncate the unbounded medium and confine the solution in a finite 

computational domain, an absorbing boundary condition (ABC) is introduced. The ABC 

is introduced by implementing a well-posed perfectly matched layer (PML) [33-39] 

surrounding the “regular” region. In the PML region, the complex coordinate-stretching 

variables  

           
( )( )1 ,   1 ,yx i yi xx x y y


 

              
                                        (4.14) 

are applied to rewrite the Maxwell’s equations for the electromagnetic field in the PML 

region. Defining new field variables for the PML region,  
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           ˆ ˆ,    ,x x x x y y y yH H Q H H Q                                                           (4.15) 

the Maxwell’s equation in the PML region can be written as  
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Appropriate profiles of x and y are selected for the complex coordinate-stretching 

variables, which will result in the desired absorbing boundary condition. 
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4.2.5 Subdomain Patching 

In the multidomain PSTD algorithm, after the solution in each individual 

subdomain, the fields at the interfaces between adjacent subdomains do not naturally 

satisfy the boundary conditions. And we need to pass information between the 

subdomains to recover the global solutions. This is done by means of the subdomain 

patching, [26, 27], that is, at an interface separating two subdomains, we enforce the 

physical boundary conditions that require continuity of the tangential components of the 

electric and magnetic field at a dielectric interface; and zero tangential electric field 

component and normal magnetic field component on a perfect electric conductor (PEC) 

surface.  

 

4.2.6 Plane Wave Excitation and TF/SF Formulation 

In the past, the total field/scattered field (TF/SF) formulation [26, 40, 41] and the 

pure scattered field method [42, 43] have both been employed to implement a plane wave 

incidence in the PSTD algorithm for the solution of scattering problems. However, as 

pointed out in [27], the pure scattered field method is potentially complicated if a 

complex surface shape is involved. Since our goal is to solve the scattering problem of an 

object buried below a random rough surface, which is of complex surface shape, the 

scattered field method is not a good choice. Therefore, we select employing the TF/SF 

formulation to enforce the plane wave excitation. The total field is calculated in the 

interior region and the scattered field is computed in exterior region. Then, the boundary 
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condition requirements of continuity of the tangential components of the electric and 

magnetic field are enforced at the interfaces between these two regions. 

 

4.2.7 Time Stepping 

The 2-D Maxwell’s equations formulated in the () coordinates contain both 

spatial derivatives and time derivatives. The spatial derivatives of the field quantities at 

the grid points are obtained in terms of the derivatives of the Lagrange polynomials, in 

the Chebyshev spectral collocation procedure presented in Section 4.2.3. To take care of 

the time derivatives, we use a fourth order, five-stage Runge-Kutta method [26, 27, 44-46] 

for the time integration to advance the solution to the next time step as 
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and denoting 1( )nq t   as 1nq   where nt n t   and t  is the time step size. The Runge-

Kutta method procedure is described as  
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In equation (4.23), t is the time step length and is determined from the stability criterion, 

2 ,c t
x D





                                                                    (4.24) 

where D is the dimensionality of the problem. 

 

4.3. Numerical Results of the Scattering of a Cylinder in Open Space 

The multidomain PSTD algorithm formulated in the previous section is 
implemented into computer programming. The program flow chart is shown in Fig. 4.4. 
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Fig. 4.4 Program flowchart of Multidomain PSTD algorithm. 
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Using the multidomain PSTD algorithm and the computer codes, sample 

numerical results are obtained and shown in this section. For the numerical results 

presented, the time-domain function of  the incident plan wave is taken to be the first 

derivative of Blackman-Harris window function, 
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11
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( ) ,

0,                                     
st

n
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n n ta t T
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otherwise

 
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

                                     (4.25) 

where a1=-0.488, a2=0.145, a3=-0.01022222 and T=1.55/f,  f is the central frequency, 

which is taken to be 50MHz for the numerical results presented in this section.  

First, we consider the plane wave propagation in an open space – no scatterer is 

there, the geometry of which is shown in Fig. 4.5(a). The multidomain PSTD algorithm is 

employed to calculate the total electric field at a point (-2.1036, 2.1036), its plot is 

compared with that of the incident filed there. From the comparison depicted in Fig. 

4.5(b), one observes that the two curves fall on top of each other as expected. 
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(a) 

 

(b) 

Fig. 4.5 Plane wave propagation in free space (a) Computation domain, (b) Comparison 

of Einc and Etotal. 
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Second, we compare the tangential component of the magnetic field at the center 

point on the illuminated side of a rectangular PEC cylinder with that of the incident 

magnetic field, under a plane wave normal incidence. The geometry and the numerical 

result are presented in Figs. 4.6(a) and 4.6(b). As shown in Fig. 4.6(b), the magnitude of 

the tangential component of the total magnetic field observed at the center of the 

illuminated side of the regular PEC cylinder is about equal to that of the incident field 

doubled, as one would expect. 

 

 

(a) 
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(b) 

Fig. 4.6 The computed tangential components of the magnetic fields 

(a) Geometry, (b) Comparison of Htotal and Hinc at the center of the illuminated 

surface of the rectangular PEC cylinder. 

 

The third sample numerical result is for the scattering of a circular PEC cylinder 

under a plane wave normal incidence. The geometry of the computation domain is 

depicted in Fig. 4.7(a). The numerical result is compared with the analytical solution, 

which is obtained by transferring the frequency domain solution [47] 
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to time-domain. Fourier transformation and inverse Fourier transformation are applied.  

The comparison between these two sets of data illustrated in Fig. 4.7(b) shows an 

excellent agreement. 

 

 

(a) 

PEC 
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(b) 

Fig. 4.7 Plane wave scattering from a circular PEC cylinder in free space  

(a) Geometry, (b) Comparison of the PSTD numerical result with analytical 

solution.   
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4.4 Formulation of the Numerical Method for Determining 

Electromagnetic Scattering of Buried Cylinder below a Random Rough Surface 

The multidomain PSTD algorithm presented above is further developed and then 

combined with the Monte-Carlo method in this section, for studying the scattering of a 2-

D object buried below a random rough surface.  In the development, special attention is 

paid to the random rough surface separating two semi-infinite homogeneous spaces, and 

a few important issues are addressed blow. 

 

4.4.1 Generation of Random Rough Surface Profile and Its Matching with CGL Points 

A random rough surface with Gaussian spectrum profile y = f(x) [48] can be 

generated as the follows. First, a set of uniformly distributed sampling points is selected 

by 

                                          / ,mx mL N                                                                            (4.27)                                             

where L is the length of the random rough surface, N is the number of the sample points. 

Then the rough surface profile can be obtained using the inverse Fourier transform 
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where the inverse Fourier transform coefficients are given by 
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in which r and r are random numbers and  
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where h and l are the rms height and the correlation length of the random rough surface. 

The roughness of generated surface can be adjusted by changing the combined values of 

h and l.  The derivative of the rough surface profile can be approximated by means of 

finite difference as  
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m m
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f x
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 

                                                                     (4.31) 

A sample random rough surface with Gaussian spectrum profile is depicted in Fig. 

4.8 in blue color. Note that the random rough surface profile y = f(xm) is generated as a 

function of xm.  But in a PSTD subdomain that is partially bounded by the rough surface, 

the profile ymapped is a function of xmapped. Both xmapped and ymapped are related to the CGL 

points in the () coordinate by the coordinate transformation. Since xm are uniformly 

distributed but xmapped are not, they are normally different; hence the two profiles of y = 
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f(xm) and ymapped in general do not coincide. However, for each point xmapped, there is a 

point xm adjacent to it; and since the profile of the rough surface is a one-dimensional 

function, a polynomial can be found to interpolate between the two set of data [xprofile, 

yprofile] and [xmapped, ymapped], and  a Cubic Spline Interpolation polynomial is used for the 

interpolation.  A comparison of the random rough surface profile with Gaussian spectrum 

and that obtained using the mapped CGL points is presented in Fig. 4.8, from which we 

observe that these two profiles almost fall on top of each other. Then, using the values of 

y = f(xm) (or equivalently ymapped) on the random rough surface profile, the other grid 

points within a subdomain that is partially bounded by the random rough surface can be 

determined.       

 

Fig. 4.8 Comparison of the random rough surface profile with Gaussian spectrum 

and that obtained using the mapped CGL points. 
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4.4.2 Determination of the Time-Domain Composite Fields in a Two-Half-Space Region 

and Its Implementation in the TF/SF Formulation 

The incident wave driving the scattering of a buried object is different from that 

of an object in an open space. It should be determined by a “Three-wave approach”, 

which was used in FDTD analysis for the scattering of an object buried below planar 

interfaces [49] – [51]. The driving composite field determined from the “Three-wave 

approach”, is extended for the analysis of the scattering of a cylinder buried below a 

random rough surface. As shown in Fig. 4.9, a virtual planar interface is placed at y=0 

along the rough surface for the calculation of the driving composite field. The random 

rough surface just causes additional inhomogeneties above/below the virtual planar 

interface; and these inhomogeneities can be treated as “additional scatterers” touching the 

virtual surface, illuminated by the composite fields. 
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Fig. 4.9 A cylinder buried below a random rough surface and a virtual planar 

interface placed along the rough surface. 

 

As pointed out in [49], the driving incident wave impinging on an object near the 

media interface is the composite of the initial incident, reflected, and transmitted waves. 

In the upper half space, the driving composite field is the sum of the initial incident field 

plus the reflected field  
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,

,

,

;
inc initial inc ref

inc initial inc ref

E E E

H H H

 

 

  

  
                   (4.32) 

and in the lower half space, the driving composite field (the driving incident field to the 

buried cylinder) is the transmitted field 

    

,
.

inc trans

inc trans

E E
H H





 
                     (4.33) 

The initial incident field, the reflected and the transmitted field can be calculated 

analytically in absence of the scatterer in time domain, taking into account the time delay 

for the fields to reach a point on the TF/SF interface separating the TF and SF regions. 

Such calculated driving composite fields can be readily enforced on the TF/SF interface 

in the multidomain PSTD algorithm. Assume that a TMz initial plane wave impinges at 

(x0, y0) located by 0r
 , as shown in Fig. 4.10.  In the upper half space, at an arbitrary point 

(x, y) on the TF/SF interface, the initial incident field is 

                  

ˆ sin cos( ) [ ],i i ik r x yf t f t
c c

       
 

                                       (4.34)  

where ˆ ˆ ˆsin cosi i ik x y    , in which i is the incident angle. For the reflected field, 

from (x, y) draw a line parallel to r̂k and intersecting the x axis at ' '( , )r rx y as illustrated in 

Fig. 4.10, where ˆ ˆ ˆsin cosr i ik x y    , ' 'tan ,  and 0r i rx x y y   . The time needed for 

the reflected wave to travel from ' '( , )r rx y to (x, y) is 
 'cos sini r ir

r

y x xdt
c c

  
 

. 
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From eq. (4.33), the travel time for the initial incident wave to reach ' '( , )r rx y can be 

calculated by 
'

' sinr i
inc

xt
c


  . Thus, in the upper half space, the composite incident field, 

as the sum of the initial incident field and the reflected field, to be enforced on the TF/SF 

interface can be obtained by 

                   
 'sin cos[ ] ,i i

e inc r
x yf t f t t t

c
        

 
                             (4.35)                          

where the reflection coefficient, 0

0

cos cos
cos cos

b i t
e

b i t

   
   


 


, 0  and b are the characteristic 

impedance of the upper and lower half space respectively.  

Finally, the composite incident electric field can be computed by  

 '
0 0

sin cos .i i ii i
z e inc r

x yE E f t E f t t t
c

             
                   (4.36) 

To get the composite incident magnetic field Hinc, we apply  
0

1 ˆ ˆzH k E z


 


 and then 

obtain 

 

 

'0 0

0 0

'0 0

0 0

sin coscos cos ,

sin cossin sin .

i i
i i i
x i e i inc r

i i
i i i
y i e i inc r

E x y EH f t f t t t
c

E x y EH f t f t t t
c

 
 

 

  
 

             
            

             (4.37) 
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Fig. 4.10  Geometry for the calculation of the composite field in the upper half space. 

 

Similarly, in the lower half space, the composite incident field to the buried 

cylinder, which is the transmitted field, to be enforced on the TF/SF interface can be 

determined by 
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 

 

 
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0

"
0

0
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0

0

,

cos ,

sin ,

i i
z e inc trans

i ir
x e t inc trans

i ir
y e t inc trans

E E f t t t

H E f t t t

H E f t t t




 




 



  

   

  

                                         (4.38)  

where the transmission coefficient 
0

2 cos
cos cos

b t
e

i b t

 


   



, t”inc  and ttrans can be 

determined from the geometry shown in Fig. 4. 11. 

 

Fig. 4.11 Geometry for the calculation of the composite field in the lower half 

space. 
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A similar procedure can be developed for determining the TEz composite incident 

wave. 

 

4.4.3 Subdomain Patching for Subdomains Separated by a Random Rough Surface 

As presented in Section 4.2.5, in the multidomain PSTD algorithm, after the 

solution in each individual subdomain, the subdomain patching is necessary and is 

executed by enforcing the physical boundary conditions. For this purpose, we need to 

decompose each field component into the tangential and normal component on the 

subdomain interface. Obviously, for the analysis of an object buried below a random 

rough surface, part of a subdomain interface could be a rough surface. As shown in Fig. 

4.12, at a grid point on the random rough surface, the unit vector normal to the surface 

can be found by 

  
2

ˆ ˆ'( )ˆ ,
1 '( )
f x x yn

f x
 




                        (4.39) 

and the unit vector tangential to the surface is  

     
2

ˆ ˆ'( )ˆ .
1 '( )

x f x yt
f x





             (4.40) 

In equations (4.39) and (4.40), f ’(x) is the slope of the random rough surface at that point 

and can be found from equation (4.31) in section 4.4.1. Using these two equations, we 
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can extract the normal and tangential component of the fields by taking dot products of n̂

or t̂ with the corresponding fields.  

               1 1 1
2 2 2

1 1 1
2 2 2

,
ˆ ˆ ˆ( ),

ˆ ˆ ˆ( ).

z z

t x y

n x y

E E
H t H x H y

H n H x H y



 

 





                                                                   (4.41) 

 

Fig. 4.12 The tangential and normal unit vector on a random rough surface. 

 

Then, by enforcing the boundary condition that the tangential components of the 

fields must be continuous and the normal components of the fields are left unchanged on 

a random rough surface separating two dielectric media, we have                                       
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 ' ' '
1 2 1 2

' '
1 1 2 2

1 ,   
2

and
 and .

t t t t t

n n n n

H H H H H

H H H H

   

   

                                                                    (4.42) 

Combining equations (4.39)--(4.42), the updated electric field for TMz polarization can be 

determined by 

1
2

1 2
1' ( ),
2z z zE E E                       (4.43) 

and the updated magnetic field components are found to be 

1 1 2 1 2 1 12 2
1 1 '( )' [ '( )( )] [ '( ) ],
2 1 '( ) 1 '( )x x x y y x y

f xH H H f x H H f x H H
f x f x

      
 

         (4.44) 

1 1 2 1 2 1 12 2
1 '( ) 1' [ '( )( )] [ '( ) ],
2 1 '( ) 1 '( )y x x y y x y

f xH H H f x H H f x H H
f x f x

      
 

       (4.45) 

in region 1 and  

2 1 2 1 2 2 22 2
1 1 '( )' [ '( )( )] [ '( ) ],
2 1 '( ) 1 '( )x x x y y x y

f xH H H f x H H f x H H
f x f x

      
        (4.46)

 

2 1 2 1 2 2 22 2
1 '( ) 1' [ '( )( )] [ '( ) ],
2 1 '( ) 1 '( )y x x y y x y

f xH H H f x H H f x H H
f x f x

      
        (4.47)

 

in region 2.  
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4.4.4 Monte-Carlo Statistic Average 

Due to the random nature of the rough surface involved in this research, a statistic 

average of the scattering of buried object needs to be determined. As pointed in [52], the 

Monte-Carlo method (MCM) is also known as the method of statistical trials. It is a 

method of approximately solving problems using sequences of random numbers. This 

method has been used in the past together with an integral equation formulation in the 

frequency domain [53, 54] and with FDTD method in the time domain [55, 56] for the 

analysis of electromagnetic scattering involving a random rough surface. In this work, the 

Monte-Carlo analysis is carried out by the following steps. First, a set of random rough 

surfaces with Gaussian spectrum is generated. Then, the multidomain PSTD algorithm 

formulated in the previous sections is employed to determine the scattering of a buried 

object below each of the rough surfaces generated. And finally, the statistic average of the 

scattering is determined after a series of numerical tests to make sure that it converges.  
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CHAPTER 5  

CONCLUSIONS 

 

Studies on two subjects are presented in this dissertation. In Chapter 2, a 

computer simulation is presented for tracking the smallest distance between the overhead 

power line conductors in transition spans that are often required in practical power line 

structures. Information of the smallest distance between the power line conductors is 

useful for predicting the probability of the magnetically induced subsequent fault. The 

simulation is based on coordinate transformations and a dynamic analysis. Sample 

numerical results are presented, analyzed, and validated. From the numerical results 

presented, we observe that the construction/structural geometry of the transition spans as 

well as their sags may significantly affect the probability of the subsequent fault. 

The numerical technique developed has been implemented into the upgrade of 

software for the analysis of magnetic induced subsequent fault (MISFault) in utility line 

topologies. As shown in Chapter 3, the software is capable of predicting the smallest 

distance between the power line conductors during their swing procedure, from which 

one can predict the probability of the magnetically induced subsequent fault; and 

determine the allowed span length range from consideration of eliminating the 

subsequent fault, which is anticipated to be useful for a utility in long span design. It has 

been tested and the accuracy of its computation results has been validated by checking 

with the energy conservation law requirement. The MISFault software is being used by 
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Duke Energy Company and is expected to be useful to a utility for eliminating the 

magnetically induced subsequent fault. 

A multidomain pseudospectal time domain (PSTD) algorithm is developed and 

presented in Chapter 4 for the analysis of scattering of a 2-D cylinder located in free 

space. The algorithm has been validated by comparing its numerical result with the 

analytical solution. After the validation, the theoretical derivations are extended for the 

analysis of objects buried below a random rough surface and a few important issues have 

been addressed. In the future work, the analysis will be carried out for the analysis of a 2-

D cylinder, then a 3-D object buried below a random rough surface, and finally a 3-D 

object buried in a layered structure with a random rough surface. 
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APPENDIX  

COMPUTATION OF THE MAGNETIC FLUX DENSITY 

 

The magnetic flux density iB


observed at a point on phase i (i = a, b, c) conductor 

is produced by the current Ii in itself and the currents Ij (   ,  ,  , )j a b c j i   in the other 

two phase conductors, and 

       , ,i ii ij i
j

B B B 
  

              (A1) 

where iiB


is due to its own current and can be calculated in the ( , , )i i iX Y Z  coordinate 

system as presented in [2]. But ,ij iB


 counts the contributions from the other two phase 

currents and it must be computed in a different way as described in the following two 

major steps. First, we use Biot-Savart’s law to compute the magnetic flux density,  

          

0
, 34

j j ij
ij j

ij

I dl R
B

R





 

 


 ,                                                                                            (A2) 

where the integral is performed along the phase j power line, and jdl


 is the differential 
length vector along the phase j power line in the ( , , )j j jX Y Z coordinate system and can 

be found from [2]  

       , ,
ˆ ˆ ˆ(cos ) ( sin )j j

j j j n j j n j j
j j

dY dY
dl X Y Z X

dX dX
 

 
     
  


,         (A3) 

in which ,j n is the angular movement of the phase j power line while it is swinging,  

given in equation (2.17), and the derivative j

j

dY
dX

 can be determined from geometry. Also 
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in equation (A2), ijR


 is a vector from the source point in the ( , , )j j jX Y Z coordinate 

system to the observation point in the ( , , )i i iX Y Z coordinate system.  To determine ijR


 

that involves these two coordinate systems, we must locate both the source point and the 

observation point in one system, by performing coordinate transformation twice. First, we 

use equation (2.5) to transform the location of the observation point in the ( , , )i i iX Y Z

coordinate system to that in the common coordinate system (x, y, z). Then, the 

observation point location in the common coordinate system is transformed to that in the 

( , , )j j jX Y Z coordinate system, making use of equation (2.4). After the coordinate system 

transformations, the filed point and the source point are both located in one coordinate 

system - the ( , , )j j jX Y Z  system, so that the distant vector ijR


 can be calculated. Then, 

substituting jdl


 and ijR


 into equation (A2) as the integrand, ,ij jB


 can be obtained by a 

numerical integration as shown in the appendix of [1].  

Note that such obtained magnetic flux density ,ij jB


 is a vector in the ( , , )j j jX Y Z

coordinate system and can be expressed as 

      , ˆ ˆ ˆ
j j j

ij j ijX j ijY j ijZ jB B X B Y B Z  


.  (A4)  

To make it addable to iiB


in equation (A1), we must convert the vector ,ij jB


 to a vector 

,ij iB


 in the ( , , )i i iX Y Z  coordinate system. Such a conversion can be performed by using 

vector component transformation twice. First, we convert the vector ,ij jB


 in the 
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( , , )j j jX Y Z coordinate system to a vector ,ij commonB


 in the common coordinate system (x, y, 

z) as 

      , ˆ ˆ ˆij common ijx ijy ijzB B x B y B z  


,            (A5) 

in which the vector components ijxB , ijyB , and ijzB can be found by a vector component 

transformation  

cos cos sin cos sin
sin cos 0

cos sin sin sin cos

j

j

j

ij Xijx j j j j j

ijy j j ijY

ijz j j j j j ij Z

BB
B B
B B

    
 

    

                          

.                                    (A6) 

Then, we convert the vector ,ij commonB


 in the common coordinate system (x, y, z) to ,ij iB


in 

the ( , , )i i iX Y Z coordinate system as 

        , ˆ ˆ ˆ
i i i

ij i ijX i ijY i ijZ iB B X B Y B Z  


,            (A7) 

where the vector components
iijXB , 

iijYB , and 
iijZB can be found by another vector 

component transformation  

       
cos cos sin cos sin
sin cos cos sin sin

sin 0 cos

i

i

i

ijX i i i i ij x

ijY i i i i i ij y

i i ij zijZ

B B
B B

BB

    
    

 

    
        
         

.                                              (A8) 

Finally, substituting such calculated ,ij iB


 back into equation (A1), the total 

magnetic flux density iB


observed at a point on phase i (i = a, b, c) conductor can be 
obtained. 

 

 



82 

 

REFERENCES 

 

[1] X.-B. Xu, X. Cheng, and K. Craven, “An analysis on magnetically induced 

subsequent fault in utility line topologies,” Electric Power Systems Research, Vol. 63/3, 

pp. 161-168, October 2002. 

[2]  X.-B. Xu, Y. Yu, and K. Craven, “Magnetically induced subsequent fault in utility 

line topology with inclined spans,” Electric Power System Research, Vol. 68/3, pp. 268-

274, March 2004. 

[3] G. Zhang, L. Tsang, and K. Pak, “Angular correlation function and scattering 

coefficient of electromagnetic waves scattering by a buried object under a two-

dimensional rough surface,” Journal of Optical Society America, A, vol. 15, no. 12, pp. 

2995-3002, Dec. 1998. 

[4] J.T. Johnson and R.J. Burkholder, “Coupled canonical grid/discrete dipole 

approach for computing scattering from objects above or below a rough interface,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 39, pp. 1214-1220, June 2001. 

[5]   J.T. Johnson, “A numerical study of scattering from an object above a rough 

surface,” IEEE Transactions on Antennas and Propagation, vol. 48, pp. 1361-1367, Oct. 

2002. 

[6]  M. El-Shenawee, C. Rappaport, E. Miller, and M. Silevitch, “3-D subsurface 

analysis of electromagnetic scattering from penetrable/PEC objects buried under rough 

surface: use of the steepest descent fast multipole method (SDFMM)”, IEEE 

Transactions on Geoscience and Remote Sensing, vol. 39, pp. 1174-1182, June 2001. 



83 

 

[7]  M. El-Shenawee, C. Rappaport, and M. Silevitch, “Mote Carlo simulations of 

electromagnetic scattering from random rough surface with 3-D penetrable buried objects: 

mine detection application using the SDFMN”, Journal of Optical Society America, A, 

Dec. 2001. 

[8]  M. El-Shenawee, “Scattering from multiple objects buried beneath two-

dimensional random rough surface using the steepest decent fast multipole method,” 

IEEE Transactions on Antennas and Propagation, vol. 51, no. 4, pp. 802-809, April 2003. 

[9]  J.Q. He, T.J. Yu, N. Geng, and L. Carin, “Method of moments analysis of 

electromagnetic scattering from a general three-dimensional dielectric target embedded in 

a multilayered medium,” Radio Science, vol. 35, no. 2, pp. 305 – 313, March-April, 2000. 

[10] M. EL-Shenawee, “Polarimetric scattering from two-layered two-dimensional 

random rough surfaces with and without buried objects,” IEEE Transactions on 

Geosciences and remote sensing, vol. 42, no. 1, pp. 67 – 76, January 2004. 

[11]  C.-H Kuo and M. Moghaddam, “Electromagnetic scattering from a buried 

cylinder in layered media with rough interfaces,” IEEE Transactions on Antennas and 

Propagation, vol. 54, no. 8, pp. 2392 – 2401, August 2006. 

[12]   F.D. Hastings, J.B. Schneider, and S.L. Broschat, “A Monte-Carlo FDTD 

technique for rough surface scattering,” IEEE Transactions on Antennas and 

Propagation, vol. 43, no. 11, pp. 1183-1191, November 1995. 

[13]   L. Kuang and Y-Q Jin, “Bistatic scattering from a three-dimensional object over 

a randomly rough surface using the FDTD algorithm,” IEEE Transactions on Antennas 

and Propagation, vol. 55, no. 8, pp. 2302-2312, August 2007. 



84 

 

[14]   K.H. Dridi, J.S. Hesthaven, and A. Ditkowski, “Staircase-Free finite-difference 

time-domain formulation for general materials in complex geometries,” IEEE 

Transactions on Antennas and Propagation, vol. 49, no. 5, pp.749 – 756, May 2001 

[15]  G.X. Fan, Q. H. Liu, and J. S. Hesthaven, “Multidomain pseudospectral time-

domain simulations of scattering by objects buried in lossy media,” IEEE Transactions 

on Geoscience and Remote sensing, vol. 40, no. 6, pp. 1366 - 1373, June 2002. 

[16]  J.S. Hesthaven, “High-Order accurate methods in time-domain computational 

electromagnetics: a review,” Advances in Imaging and Electron Physics, vol. 127, pp. 59 

– 117, 2003. 

[17] Y. Shi and C.-H. Liang, “A strongly well-posed PML with unsplit-field 

formulations in cylindrical and spherical coordinates,” Journal of Electromagnetic 

Waves and Applications, vol. 19, no. 13, pp. 1761 – 1776, 2005. 

[18] Primary Line Construction Customer Operations Distribution Standards, 2 ed., 

Duke Engergy Company 1998. 

[19] H.A. Burger, “Use of Euler-rotation angles for generating antenna patterns,” 

IEEE Transactions on Antennas and Propagation, vol. 37, no. 2, pp.56 – 63 April 

1995 

[20] T. Milligan, “More applications of Euler angles,” IEEE Transactions on Antennas 

and Propagation, vol. 41, no. 4, pp.78 – 83, August 1999 

[21]  X.-B. Xu, H. Yang and K. Craven, “Magnetically induced swing movement of 

overhead power line conductors in a transition span subsequent to an initial fault,” 

Electrical Power System Research, vol. 79, pp. 809-817, 2009 



85 

 

[22]  X.-B. Xu, Y.Yu and K. Craven, “Determination of maximum span length of 

utility lines based on consideration of eliminating magnetically induced subsequent 

fault,” Electric Power Systems Research, Vol.69, no.1, pp. 1-6, April 2004 

[23]  X.-B.Xu, H.Yang and K.Craven, “Magnetically induced subsequent fault 

(MISFault) analysis software, “Electric Power Systems Research, (Submitted under 

review) 

[24]  “MISFault Analysis Software Operation Guide”, Presented to Duke Energy, June 

2008 

[25]   D. Gottlieb, J.S. Hesthaven, “Spectral Methods for Hyperbolic Problems,” 

J.Comput. Appl. Math., vol. 128, pp.83-131, 2001. 

[26]  G.-X. Fan, Q. H. Liu, and J.S. Hesthaven, “Multidomain pseudospectral time-

domain simulations of scattering by objects buried in lossy media,” IEEE 

Transactions on Geoscience and Remote Sensing, Vol. 40, No. 6, June 2002. 

[27]  A. Taflove and S.C. Hagness, Computational Electrodynamics, The Finite-

Difference Time-Domain Method, Third Edition, “Chapter 17 Advances in PSTD 

Techniques” by Qing. Liu and Gang Zhao, Artech House, 2005. 

[28]  C. Canuto, M.Y Hussani, A.Quarteroni, and T. Zang, Spectral Methods in Fluid 

Dynamics, Springer-Verlag, New York, 1988. 

[29]   D. Gottlieb, M.Y. Hussani, and S.A. Orszag, “Theory and application of spectral 

methods,” in Spectral Methods for Partial Differential Equations, Edited by R.G. 

Voigt, D. Gottlieb, and M.Y. Hussani, pp. 1-54, 1984. 



86 

 

[30]   D. Gottlieb and J.S. Hesthaven, “Spectral methods for hyperbolic problems,” 

Journal of Computational and Applied Mathematics, Vol. 128, Issues 1-2, pp. 83-131, 

March 2001. 

[31]   J.S. Hesthaven, “High-Order accurate methods in time-domain computational 

electromagnetic: a review,” Advances in Imaging and Electron Physics, Vol. 127, pp. 

59-117, 2003. 

[32]  S.A. Nielson and J.S. Hesthaven, “A multidomain pseudospectral formulation for 

the simulation of elastic wave scattering,” Journal of Acoustic Society Am, 2001. 

[33] J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic 

waves,” Journal of Computational Physics, Vol. 114, pp. 185-200, 1994. 

[34]  W.C. Chew and W.H. Weedon, “A 3D perfectly matched medium from modified 

Maxwell’s equation with stretched coordinates,” Microwave and Optical Technology 

Letters, Vol. 7, No. 3, pp. 599-604, 1994. 

[35]  Q.H. Liu, “An FDTD Algorithm with perfectly matched layers for conductive 

media,” Microwave and Optical Technology Letters, Vol. 14, No. 2, pp. 134-137, 

1997. 

[36] G.-X. Fan and Q.H. Liu, “A well-posed PML absorbing boundary condition for 

lossy media,” Proceedings of IEEE Antennas and Propagation Society International 

Symposium, Vol. 3, pp. 2-5, 2001. 

[37] G.-X. Fan and Q.H. Liu, “A strongly well-posed PML in lossy media,” IEEE 

Antennas and Wireless Propagation Letters, Vol. 2, pp. 97-100, 2003. 



87 

 

[38] G. Zhao and Q.H. Liu, “The 3-D multidomain pseudospectral time-domain 

algorithm for inhomogeneous conductive media,” IEEE Transactions on Antennas and 

Propagation, Vol. 52, No. 3, pp. 742 -749, March 2004. 

[39]  Y. Shi and C.H. Liang, “A strongly well- posed PML with unsplit-field 

formulation in cylindrical and spherical coordinates,” Journal of Electromagnetic 

Waves and Application, Vol. 19, No. 13, pp. 1761-1776, 2005. 

[40]  X. Gao, M.S. Mirotznik, and D.W. Prather, “A method for introducing soft 

sources in the PSTD algorithm, IEEE Transactions on Antennas and Propagation, Vol. 

52, No. 7, pp. 1665-1671, July 2004. 

[41] Y. Shi, L. Li, and C.H. Liang, “Two dimensional multidomain pseudospectral 

time-domain algorithm based on alternating-direction implicit method,”  IEEE 

Transactions on Antennas and Propagation, Vol. 54, No. 4, pp. 1207-1214, April 

2006. 

[42]  Q. Li, Y. Chen, and D. Ge, “Comparison study of the PSTD and FDTD methods 

for scattering analysis,” Microwave and Optical Technology Letters, Vol. 25, No. 3, 

pp. 220-226, May 5 2000. 

[43]  X. Liu and Y. Chen, “Applications of transformed-space non-uniform PSTD 

(TSNU-PSTD) in scattering analysis without the use of the non-uniform FFT,” 

Microwave and Optical Technology Letters, Vol. 38, No. 1, pp. 16-21, July 5 2003. 

[44]  M.H. Carpenter and C.A. Kennedy, “Fourth order 2N-storage Runge-Kutta 

schemes,” NASA Technical Memorandum 109112, 1994. 



88 

 

[45] D.W. Zingg and T.T. Chrisholm, “Runge-Kutta methods for linear orfinary 

differential equations,” Applied Numerical Mathematics, Vol. 31, Issue 2, pp. 227-238, 

October 1999. 

[46] J.S. Heathaven, P.G. Dinesen, and J.P. Lynov, “Spectral collocation time-domain 

modeling of diffractive optial elements,” Journal or Computational Physics, Vol. 155, 

pp. 287-306, 1999. 

[47] R.F. Harrington, Time-Harmonic Electromagnetic fields, 2nd edition, Wiley-

IEEE Press, 2001 

[48] A Papoulis, Probability, Random Variables, and Stochastic Processes, Second 

Edition, McGraw-Hill Book Company, New York, 1984. 

[49] P. Bill Wong, G. Leonard Tyler, and John E. Baron etc., “A Three-wave FDTD 

approach to surface scattering with application to remote sensing of geophysical 

surfaces,” IEEE Transactions on Antennas and Propagation, Vol. 44, No. 4, pp. 504-

514, April 1996. 

[50] Yun Yi, Bin Chen, Da-Gang Fang and Bi-Hua Zhou, “A new 2-D FDTD method 

applied to scattering by infinite object with oblique incidence,” IEEE Transactions on 

Electromagnetic compatibility, Vol. 47, No. 4, pp. 756-762, November 2005. 

[51] Xianyang Zhu, Lawrence Carin, “Multiresolution time-domain analysis of plane-

wave scattering from general three-dimensional surface and subsurface dielectric 

targets,” IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, pp. 1568-

1578, November 2001. 

[52]  M.N.O. Saodiku, Numerical Techniques in Electromagnetics, CRC Press, 1992. 



89 

 

[53] M. El-Sheenawee, C. Rappaport, and M. Silevitch, “Monte Carlo simulations of 

electromagnetic wave scattering from a random rough surface with three-dimensional 

penetrable buried object: mine detection application using the steepest descent fast 

multiple method,” Journal of Optical Society of America, Vol. 18, No. 12, pp. 3077-

3084, December 2001. 

[54] S.H. Lou, L. Tsang, C.H. Chen, and A. Ishimaru, “Monte Carlo simulations of 

scattering of waves by a random rough surface with the finite element method and the 

finite difference method,” Microwave and Optical Technology Letters, Vol. 3, No. 5, 

pp. 150-154, May 1990. 

[55] F.D. Hastings, J.B. Schneider, and S.L. Broschat, “A Monte-Carlo FDTD 

technique for rough surface scattering,” IEEE Transactions on Antennas and 

Propagation, Vol. 43, No. 11, pp. 1183-1191, November 1995. 

[56]  R.L. Wagner, J.M. Song, and W.C. Chew, “Monte Carlo simulation of 

electromagnetic scattering from two-dimensional random rough surfaces,” IEEE 

Transactions on Antennas and Propagation, Vol. 45, No. 2, pp. 235-245, February 

1997. 


	Clemson University
	TigerPrints
	5-2012

	FURTHER INVESTIGATION ON MAGNETICALLY INDUCED SUBSEQUENT FAULT AND STUDY ON ELECTROMAGNETIC SCATTERING OF OBJECTS BURIED BELOW A RANDOM ROUGH SURFACE
	Haiyan Yang
	Recommended Citation


	Microsoft Word - Dissertation submission.docx

