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Abstract

This dissertation encompasses two papers. The first paper examines the impact of measure-

ment errors in potential experience and reported education on estimates of the Black-White wage

differential. I show that measurement error is not mean zero, is distributed differently for Black and

White males and, for experience, is correlated with the value of the variable measured with error.

Possible conditional distributions of the true values of education and experience, given reported

values, are estimated using auxiliary data. This paper introduces a Maximum Likelihood method

to deal with these errors, and evaluates this method as well as other methods currently used in the

gender wage differential literature. The use of the Maximum Likelihood estimation method along

with traditional Multi-Sample Two-Stage Least Squares reveals that a significant portion of the

estimated Black-White wage differential in a classic Mincer-style regression is due to measurement

error in reported educational attainment and (especially) potential experience. Use of predicted or

probabilistic measures in lieu of reported education and potential experience reduce the estimated

racial wage gap in the 2000 Census from 34 percent to less than 20 percent.

In the second paper, I examine how the introduction of competition from Southwest Airlines

affects airfares in a variety of market structures. While the consensus of the airline literature is that

entry by Southwest results in substantially reduced fares on the entered and nearby routes (known

as the Southwest Effect), little attention has been paid to the differing effects across routes. This

paper fills this hole in the literature in two ways. First, I use difference-in-difference estimates to

determine the causal effect of Southwest entry on fares using a natural experiment (the repeal of the

Wright Amendment) that allowed for competition from Southwest on routes where such competition

was previously illegal. I show that, consistent with the literature, the average effect on fares of

competition from Southwest is substantial. However, the per-route effect varies substantially, from

a fall in fares of roughly 40% to a slight increase in fares. A fixed-effects regression centered around
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the repeal uncovers some of the factors behind this difference. Specifically, the presence of existing

low-cost carriers and the presence of the ticketing airline in the origin and destination airports are

the most important factors behind the “Southwest Effect,” while the route Herfindahl and ticketing

airline’s share of passengers on the route matter little. These results illustrate the hazards of using

a small-scale case-study approach to estimating the fare effects of entry by Southwest, as well as a

need for a deeper understanding behind the mechanics of the Southwest Effect.
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Chapter 1

Measurement Error and the

Black-White Wage Differential

1.1 Introduction

This paper examines the consequences of using potential experience and reported education

on estimates of the racial wage differential1. It builds on three decades’ worth of work that investi-

gates the impact of errors in potential experience on the gender wage gap (e.g., Garvey and Reimers,

1980; Blau and Kahn, 2011). A handful of studies have documented measurement error present in

reported education, particularly in the Census (e.g., Black et al., 2003), or in potential experience

measures in the NLSY for White and minority men (e.g., Antecol and Bedard, 2004). This paper

adds to the existing literature by examining in detail the impact of these errors on the racial wage

gap using Census and auxiliary data. The analysis is aided by the use of an estimation technique

that formally accounts for data misreporting, through the use of auxiliary data, by estimating the

mapping between accurate variables and those measured with error and then building this mapping

into the likelihood function.

The goal of this paper, and the goal of most papers on either the gender or racial wage

differential (see Altonji and Blank, 1999 for a broad survey of this literature) are focused on the

conditional wage differential. There are actually two forms of differentials, as discussed in length

1Potential experience is defined as age minus years of education minus 6.
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by Cain (1986) – the conditional wage differential and the unconditional wage differential. The

unconditional (or long-run) racial wage differential simply measures the difference in average wages

between all Black and White males in the economy. Since, in the long run, if there are no inherent

differences between the races we would expect to see no differences in wages, even differences due to

differences in factors such as educational attainment and experience, as these should converge across

time. If there is any long-run difference in wages between the groups, that difference must be due

to outside factors (such as discrimination).

Focusing on the unconditional wage differential, of course, presents two problems. First,

the estimation of the unconditional wage differential is relatively straightforward – it’s just the

difference in mean wages, and can be obtained by summary statistics - and so a literature is unlikely

to form around the estimation thereof. Indeed, the unconditional wage differential for 22-to-44 year

old Black and White males can be inferred from the summary statistics table of this paper (Table

1.2), and is about 40%. The second and (in this author’s opinion) considerably more important

problem with focusing on the unconditional wage differential is the inability of the unconditional

wage differential to guide policy whose aim is the reduction of the differential. If we want to craft

policy that aims to cure either the wage differential itself or the underlying differences (such as

differences in educational attainment and experience accumulation) that the wage differential is a

symptom of, the unconditional wage differential does not guide us to the identification of these

underlying differences.

We must turn, then, to the conditional wage differential, which is the form of the wage

differential that is estimated in this and most of the other papers on this project. The conditional

wage differential is the difference in wages estimated after differences in “relevant” factors have been

accounted for (where, naturally, the factors that are relevant differ greatly across studies). Generally,

when factors like educational attainment and experience are used in the regression, the estimated

conditional wage differential falls is below, and often substantially below, the unconditional wage

differential. This is because, as numerous studies have shown (again, see Altonji and Blank, 1999),

white males tend to be more educated and have higher labor force attachment. Accounting for the

differences in education and experience, then, is able to, for lack of a better word, “explain” some of

the wage differential, and we see a lower conditional wage differential. The lower conditional wage

differential, however, does not mean that there is a lower difference in wages (or less discrimination

faced by Blacks or females) – we know that from the unconditional wage differential. What the

2



lower conditional wage differential instead says is that we have discovered some of the reason why

Black males (for example) get paid less. In a discrimination framework, even if, after accounting

for factors such as education and experience, we estimate a conditional wage differential of zero, we

have not shown that no discrimination exists. Instead, what we have shown is that no discrimination

of a specific type exists – in this example, there would be no discrimination in which two equally

skilled workers of different races get paid different amounts, on average. Instead, what we have

shown is that the discrimination takes place in forms other than pay directly, such as reduced access

to schooling compared to Whites, or through employers having a racial bias on decisions such as

layoffs and promotions.

So, what we can see is that estimating a conditional wage differential leads to very specific

policy prescriptions. If accounting for experience differences generates a conditional wage differential

that is half of the unconditional wage differential, then experience differences is a huge factor in the

equality of wages between the races, and is thus a prime target for policy. If, however, accounting

for experience leads to little reduction in the racial wage differential, then policy whose attempt is

to minimize the racial wage differential or wage discrimination is probably best directed elsewhere.

This ability to better correct policy is what lies at the heart of this paper. Past researchers

have used levels of education and experience in estimates of the Black-White wage differential2.

When precise measures of education and experience are not available, potential experience and re-

ported education are used in their place. I show that doing so is a mistake. The use of reported

education and (especially) potential experience to estimate the Black-White wage differential results

in an estimated differential that is substantially inflated compared to that obtained using better mea-

sures of education and experience. This inflated differential is, in turn, going to have consequences

on the importance of addressing differences in education and experience in our differential-reducing

policy prescription. Specifically, the use of reported education and potential experience makes differ-

ences in education and experience seem like considerably less important factors than they actually

are.

While some researchers object to the use of experience in analyses of the racial wage dif-

ferential (see Cain, 1986 for a discussion of the short-run and long-run wage differential, as well

as Neal and Johnson, 1996, and Bollinger, 2003), studies continue to find estimates of the racial

2to avoid redundancy, I will use the term wage differential from this point forward to indicate the conditional wage
differential
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wage gap conditional on experience important (e.g., Altonji and Blank, 1999; Antecol and Bedard,

2004). Given the amount of research that has been done on such errors for the gender wage gap, the

relative dearth of interest concerning the error introduced by using potential experience on the racial

wage gap is surprising. Antecol and Bedard (2004) present an explanation for this lack of interest:

“Although it has long been agreed that potential experience is a poor proxy for actual experience

for women, many view it as an acceptable approximation for men.” They proceed to show that this

is a poor assumption for individuals in the NLSY. This paper has similar findings: Black and White

males accumulate experience at different rates, especially for non-college graduates, and regardless

of the auxiliary dataset used. The difference in experience accumulation rates has an effect not just

on the estimated Black-White wage differential, but also on estimates of the correlation between

wages and both education and experience.

Current methods in the gender wage differential literature involve the use of auxiliary data

to predict actual experience using potential experience. I introduce a method that also focuses on

the use of auxiliary data. However, unlike previous methods which use an explicit first stage to

estimate a prediction equation for the mismeasured variables, I use the auxiliary data to estimate

the distribution of true values of education and experience given their observed values (equivalent

to calculating the distribution of the measurement errors). Once these distributions have been

obtained, they can be directly accounted for in the likelihood function.

The use of reported education and (especially) potential experience significantly biases es-

timates of the Black-White wage differential: the differential estimated in the Census falls from

34.5 percent when using potential experience and reported education to no more than 20 percent

when the more accurate approaches are used. This has several implications. First, using potential

experience as a proxy for accumulated experience can impact empirical results in a statistically and

economically significant way. Reported levels of educational attainment should also be viewed with

suspicion. Further, the results of this paper suggest that influential classic studies (e.g., Smith and

Welch, 1989) which estimate the wage gap using these measures in Census data likely overstate

the racial wage differential, and possibly miss important reasons for the wage convergence between

Black and White males between 1950 and 1980. Finally, these results illustrate the usefulness of an

estimation technique that allows for a general distribution of the measurement error. The ability to

bring more accurate measures of education and experience into the Census data allows for the use

of Census data in a wider range of analyses.

4



1.2 Empirical Methods

To estimate the Black-White wage differential in the Census, I use a basic Mincer regression

model:

ln(incomei) = α0 + α1EXPi + α2EXP2
i + α3EDUCi + α4Blacki + ei, (1.1)

where income is measured as total annual income, EXP and EXP 2 are an individual’s accumulated

experience level and its square, respectively, and EDUC measures the educational attainment level

of the individual. As I show later in this paper, the experience and education terms are measured

with error (through use of potential experience, denoted PE, and reported education), which leads to

bias in the estimated coefficients for education and experience. Further, these errors are distributed

differently for Whites and Blacks, leading to a biased estimator for the racial difference in wages.

As the measurement errors are correlated with the value of the variables being measured with error,

these errors cannot be corrected by using standard IV methods. Given the existence of auxiliary data

that give accurate measures of education and experience, three estimation procedures are considered

- a Multi-Sample Two-Stage Least Squares (2SLS) method, a regression technique introduced in

Regan and Oaxaca (2009), and a Maximum Likelihood method that relies on knowledge of the

distribution of the errors in the independent variables. The former two have been previously used

in the literature, and the third is novel to this paper.

Multi-Sample 2SLS has been used in a variety of applications (see Inoue and Solon, 2010

for a limited survey), including wage differentials (e.g., Filer, 1993). When used in wage differential

analyses, the first stage uses auxiliary data with measures of experience and variables that are

common to the database with out a reliable experience measure to create a prediction function (of

experience) which can then be used in the primary dataset to generate predicted values of experience.

In my analysis, three first-stage regressions are necessary – one for each of the three problematic

explanatory variables:

EXPi = α0 + α1PEi + α2PE
2
i + α3reported educationi + α4Blacki + ei (1.2)

EXP 2
i = β0 + β1PEi + β2PE

2
i + β3reported educationi + α4Blacki + ui (1.3)

5



EDUCi = γ0 + γ1PEi + γ2PE
2
i + γ3reported educationi + α4Blacki + εi. (1.4)

Avoiding the Forbidden Regression (discussed in Wooldridge, 2002, among other places) in the second

stage requires separately predicting experience and its square. The first-stage coefficients obtained

from these regressions are then used to predict experience, the square of experience, and education

in the Census, denoted as ÊXP , ÊXP 2, and ÊDUC, respectively, from reported education and

potential experience.

Note here that one of Equations 1.2 and 1.3 must be misspecified – if Yi = Xiβ + ei, where

ei is normally distributed, then Y 2
i = (Xiβ + ei)

2 6= Xiγ + ui, where ui is normally distributed.

Crucially, however, 2SLS does not depend on a correct first-stage specification. Instead, 2SLS simply

requires orthogonality between the instruments and the error term in the second stage.

The second stage regression simply consists of regressing log income on ÊXP , ÊXP 2, and

ÊDUC, as well as the racial indicator variable. The resulting coefficients give an asymptotically

unbiased estimate of the true coefficients. Because error is introduced through the first stage,

the standard errors of this estimator need to be corrected. The method by which I estimate the

standard errors is discussed in the next subsection. The properties of two-step estimators in general

are discussed in detail in Murphy and Topel (1985), with Two-Sample 2SLS specifically discussed

in Inoue and Solon (2010).

The second method is proposed by Regan and Oaxaca (2009), who express concerns about

negative predicted values of experience in linear first-stage regressions such as Equations 1.2-1.4

above. To bound predicted values of experience away from zero, they use a slightly different pro-

cedure. Instead of two first-stage regressions for experience, they have only one: ln(experience) re-

gressed on age and the remaining second-stage independent variables. Since my analysis is concerned

with measurement error in reports of educational attainment as well as in potential experience, the

two first-stage regressions of this method for this paper are then:

ln(EXPi) = α0 + α1agei + α2reported educationi + α3Blacki + ei (1.5)

EDUCi = γ0 + γ1agei + γ2reported educationi + α3Blacki + εi. (1.6)

6



Predicted values for the log of experience are obtained both in the Census and in the auxiliary data.

These predicted log-experience values can then be transformed into a predicted experience measure

by the transformation e(
̂ln(EXP )). Since the mean transformed predicted values in the auxiliary

data will not equal the sample mean of actual experience in the auxiliary data, a multiplicative

scalar, ζ, is calculated that equates these two means. This scalar can then be applied to the

transformed predicted values in the Census data, such that predicted experience in the Census

is equal to ζe(
̂ln(EXP )). From this, the predicted value for the square of experience can then be

calculated by squaring predicted experience for each observation.

The problem with the Regan-Oaxaca model is the following. Consider a simple model where

the truth is

yi = Xiβ + εi.

Xi is not observed, but is a function of an observed variable Zi that only affects yi through its effect

on Xi. Assuming that the first-stage proposed by Regan-Oaxaca is correct, it must be the case that

ln(Xi) = Ziγ + vi, and thus Xi = eZiγevi . We get estimates ln(Xi) = Ziγ̂ + v̂i. The true model for

yi, then, is

yi = α+ eZiγeviβ + εi = α+ eZiγ̂ev̂iβ + εi.

Unfortunately, we don’t observe γ or vi in the first stage. Instead, we use the estimate γ̂ to

predict ln(Xi) in the second stage. If the first and second stage are in different samples, the second

stage v̂i are unobservable, and so we need to make a correction when turning ̂ln(Xi) into X̂i. We

do this using the adjustment factor mentioned earlier. This adjustment factor, ζ = X/X̂, can be be

written as

ζ = E[eZiγevi ]/E[eZiγ̂ ].

Since Ziγ̂ = Ziγ + vi − v̂i, the adjustment factor can be simplified to

ζ = E[eZiγevi ]/E[eZiγevi/ev̂i ] = E[ev̂i ].

So, our second stage regression is

yi = α+ [eZiγ̂E[ev̂i ]]β̃ + εi.

7



Modifying the true model means to reflect what we are actually estimating reveals the following:

yi = α+ eZiγ̂E[ev̂i ]β + ηi,

where

ηi = [β(eZiγ̂ev̂i − eZiγ̂E[ev̂i ]) + εi].

So, when we get the estimate

yi = α̂+ eZiγ̂E[ev̂i ]β̂ + η̂i,

it is the case that E[β̂] = β only when cov(eZiγ̂ev̂i − eZiγ̂E[ev̂i ]) = 0. In general, heteroskedastic

errors will invalidate these assumptions.

If the true model for yi also contains a squared experience term,

yi = α+Xiβ1 +X2
i β2 + εi = α+ eZiγ̂ev̂iβ1 + e2Ziγ̂e2v̂iβ2 + εi,

then additional problems arise in the estimation of β̂2. Since X̂2
i = (X̂i)

2 by construction, instead

of

X2
i = e(Ziγ)

2

ev
2
i = e2Ziγe2vi ,

we use

X̂2
i = e2Ziγ̂E[ev̂i ]2.

Letting

yi = α+ eZiγ̂E[ev̂i ]β̂1 + e2Ziγ̂E[ev̂i ]2β̂2 + εi.

be the equation that we estimate and focusing just on β̂2, E[β2]− β2 = 0 only when

E[eZiγ̂E[ev̂i ]2 − eZiγ̂e2v̂i ] = 0.

Note, however, that even the terms involving vi are no longer equal in expectation (even assuming

independence of eZiγ̂ and ev̂i). For example, when φ is a normally distributed random variable,

eφ is log normal and has an expected value equal to e(
1
2σ

2
φ), where σ2

φ is the variance of φ. The

expected value of e2v̂i , then, is e
1
2 4σ

2
v = e2σ

2
v . The expected value of E[ev̂i ]2, on the other hand, is

8



(e
1
2σ

2
v )2 = eσ

2
v . As e2σ

2
v 6= eσ

2
v , E[β̂2] 6= β2.

It is worth noting that, while the estimated coefficients are unlikely to be correct using this

method, the predicted ŷi from the second stage will be the same as when Xi is directly observable.

However, if we are interested in the experience-earnings profile (as is the case with wage differentials,

since the shape of the experience-earnings profile will affect the estimated differential), this method

is likely to lead to biased estimates.

An additional way to incorporate the information gained from use of auxiliary data into the

Census is the through use of a different empirical method unique to this paper: a Maximum Like-

lihood technique that builds the uncertainty directly into the estimation. A typical OLS-equivalent

log-likelihood function using observed values and assuming normally distributed errors can be writ-

ten as

llfi = ln(φ(
yi −Xiβ

σ
))− ln(σ),

where φ is the standard normal density function. In the presence of measurement error in X, the

estimated coefficient, β̂MLE = β̂OLS , is biased.

If we know the distribution of measurement error in X, however, a correct conditional log-

likelihood can be written explicitly. Intuitively, suppose that observation i has, for X, an observed

value of 2. Conditional on this observed value there is a probability of 0.3 that the true value is 2

and a probability of 0.7 that the true value is 3. Assuming a normal error term and again letting y

be the dependent variable, the likelihood function of observation i is thus

lfi = 0.3 ∗ 1

σ
φ(
yi − 2β

σ
) + 0.7 ∗ 1

σ
φ(
yi − 3β

σ
).

This can be rewritten as

lfi =

3∑
m=2

pr(Xi = m|Xi,obs = 2)
1

σ
φ(
yi −mβ

σ
)

=

3∑
m=2

πim
1

σ
φ(
yi −mβ

σ
),

where m represents the possible true values of X. When the values of X are discrete, a general form
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can be written as (after taking logs)

llfi = ln(
∑
j

π(Xi,obs)ijφ(
yi −Xijβ

σ
))− ln(σ), (1.7)

where Xi,obs denotes the observed values for X for observation i. The π(Xi,obs)ij above represent

the probability of some set of values occurring for variables X given the observed values for X,

where the j term indexes each possible set of values. The π(Xi,obs)ij are obtained from an ex-

amination of the auxiliary datasets. In the estimation conducted later in this paper, the variables

in X are the same as in the previous two methods: education, experience, experience squared,

and a racial indicator variable. The π(Xi,obs)ij , then, represent the probability that an individual

has various true-education-experience-experience-squared values given the observed values of educa-

tion, potential experience and its square, and his race, which can then be integrated (or, if discrete,

summed) over. An advantage of this method is that it (like the Regan & Oaxaca method) eliminates

“predictions” of values outside of feasible ranges, which previous researchers have found appealing.

Further, if the measurement errors are known with certainty, then the probabilities can be calculated

with certainty and the MLE estimates are efficient (as it asymptotically achieves the Cramer-Rao

Lower Bound). A disadvantage is the necessity of observing (or estimating) the joint distribution

of the error terms, or, equivalently, the probabilistic relationship between observed and true values.

While this may be impractical in many situations, it is relatively straightforward here due to the

same auxiliary data that makes possible estimation of the Multi-Sample 2SLS and Regan & Oaxaca

approaches.

1.2.1 Estimating the Conditional Probabilities for the MLE

In general, the π(Xi,obs)ij will be unknown, and thus need to be estimated. In both the

Monte Carlo simulation and the empirical analyses conducted later, the probabilities are estimated in

the following manner. First, auxiliary samples containing both accurate measures of education and

experience as well as measures similar to those in the primary databases are obtained (the sample

for education and the sample for experience need not be the same).3 After the “true” experience

values have been calculated in the auxiliary data, I smooth the relationship between the true and

3The manner in which these auxiliary databases are generated are discussed in the appropriate sections of this
paper.
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reported values of experience using a hazard model described below. This smoothing process has the

advantage of using information from within-race groups with a large number of observations in the

assignment of probabilities for those groups with fewer observations. This helps eliminate observed

phenomena that seem unlikely, such as groups of individuals having a zero probability of 50-57 years

of experience, but a positive probability of 58 years of experience. Further, an examination of the

maximized log-likelihood function values obtained using smoothed and unsmoothed probabilities

show that the smoothed probabilities lead to a better “fit” of the data, as the maximized log-

likelihood function values are closer to zero.

The probabilities are smoothed in a process similar to Gilleskie and Mroz (2004). Each

individual is observed to have some true level of experience between 0 and 59 full-time equivalent

years. That individual is treated as being at risk of “failure,” where failure is defined as achieving

a specific level of true experience (i.e., his observed value). After failure, the individual leaves the

sample. The hazard function (that is, the probability of an individual having some level of experience

given that he does not have a lower level of experience) depends on the log age, race, and education

level of the individual, as well as the level of experience under consideration. To allow for a flexible

estimated hazard function, a total of 29 independent variables are used, consisting of the variables

mentioned above and interactions and exponents thereof.4

Once the hazard function is obtained, I calculate the survival and cumulative survival func-

tions. The predicted probability that an individual has a specific level of experience is then the

probability that he does not have a lower level of experience (obtained from the estimated cumula-

tive survival function) times the conditional probability that he has that level of experience (obtained

from the estimated hazard function).

For both databases that I use, this method was implemented as follows. First, each obser-

vation was duplicated 59 times. Each observation in the dataset, then, represents a candidate true

experience value from ranging from 0 to 59, inclusive. An indicator variable is created that equals 0

if the true experience value was greater than this candidate value, 1 if the true experience and can-

didate experience values were the same, and was “missing” otherwise (to represent the observation

4The exact specification was chosen using AIC, BIC, and cross-validation, all of which indicated that the same
model should be used. The 29 independent variables are, letting EXP and EDUC denote the true experience level under
consideration and the education level of the individual, respectively, log(age), log(age)2, log(age)3, log(age) ∗ EXP ,
log(age)∗EXP 2, log(age)∗EXP 3, EXP , EXP 2, EXP 3, Black, Black∗log(age), Black∗log(age)2, Black∗log(age)3,
Black∗EXP , Black∗EXP 2, Black∗EXP 3, Black∗log(age)∗EXP , Black∗log(age)∗EXP , Black∗log(age)∗EXP ,
EDUC, EDUC ∗ log(age), EDUC ∗ log(age)2, EDUC ∗EXP , EDUC ∗EXP 2, EDUC ∗EXP 3, EDUC ∗ log(age) ∗
EXP , EDUC ∗ log(age) ∗ EXP 2, EDUC ∗ log(age) ∗ EXP 3, and a constant term.
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having left the sample due to “failure”). A logit regression using all of the “outcomes” that are zero

or one is then estimated, where this indicator variable is the dependent variable and is regressed

on the 29 independent variables mentioned previously. I use these results to construct predicted

probabilities, which equal the estimated conditional hazard rates. I construct the cumulative sur-

vival probabilities for all experience levels using the estimated hazard rates. This is equal to 1 for

all people at zero years of experience (that is, no one could have achieved an experience level below

zero years). The cumulative survival probability for all experience levels greater than zero is equal

to the cumulative survival probability of the previous period times the conditional hazard rate of

the previous period. So, for example, the cumulative survival probability for one year of experience

is one (the cumulative survival probability of zero years of experience) times the probability, con-

ditional on having no less than zero years of experience, that the person has exactly zero years of

experience (the hazard rate of zero years of experience). The probability that a person has a level

of experience between 0 years and 58 years, then, is the cumulative survival probability times the

hazard rate. That is, the probability that a person has some level of experience x is equal to the

probability that he has no fewer years of experience than x times the probability that, conditional

on having no fewer years of experience THAN X, he has exactly x years of experience.

Formally, let Haz(Expi|Xi) denote the hazard function, Surv(Expi|Xi) denote the cumu-

lative survival function, and Prob(Expi|Xi) denote the probability density function. Estimating the

logit model using the set of explanatory variables X and the explanatory variable Exp results in

estimated coefficients α̂ for Xi and β̂ for Expi
5. The hazard function is calculated as

Haz(Expi|Xi) = eα̂Xi+β̂Expi/(1 + eα̂Xi+β̂Expi). (1.8)

The cumulative survival function, then, can be expressed as

Surv(Expi|Xi) = 1 if Expi = 0

= Surv(Expi − 1|Xi)−Haz(Expi − 1|Xi) if Expi > 0. (1.9)

5See Appendix A for these estimated coefficients using the NLSY data
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Finally, the probability density function can be expressed as

Prob(Expi|Xi) = Surv(Expi|Xi) ∗Haz(Expi|Xi). (1.10)

To ensure that the probabilities sum to one, the probability that he has 59 years of experience is

defined as one minus the sum of the other probabilities (which cannot exceed one by construction).

The first stage regression and select probabilities for the NLSY experience specification are

shown in Appendix A. Included in the appendix are the results from the hazard regression and

graphs illustrating the hazard function, cumulative survival function, and experience probabilities

for two very different pairs of individuals — 40-year-old college graduates and 22-year-old high school

dropouts. When examining the graphs, recall that the experience probability mapping is simply the

product of the hazard and cumulative survival functions. The graphs for the two groups are quite

different, as we would suspect: the mass of the experience distribution for the college graduates

(both Black and White) is considerably farther to the right than is that of the high school dropouts,

which is supported by the raw data from both the NLSY and PSID, which will be discussed in a

later section.

The true education probabilities are calculated in a more straightforward manner. Since

there are only four outcomes of interest, I use a simple multinomial logit model instead of a hazard

function to estimate the conditional education probabilities. In this multinomial logit, the four

possible true values are assumed to be a function of reported values for each race. Note that,

with the multinomial logit, the predicted probabilities will simply equal the empirically observed

conditional probabilities. However, use of the multinomial logit model will simplify the estimation

of the standard error for the MLE approach as I discuss shortly.

1.2.2 Calculation of the Standard Errors of the Estimates

Estimation of the standard error of both the Maximum Likelihood Estimation and Multi-

Sample 2SLS face the following problem. In each, I begin by minimizing some function to estimate

some parameters of interest, i.e., minβ1 F1(X1β1).6 This estimation yields estimates β̂1. These

estimates are then used in the estimation of other parameters of interest in a second-stage equation,

6Here, F is a generic function. We may be interested in minimizing the sum of squared residuals, for instance, or
minimizing the negative likelihood function.
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minβ2 F2(X1β2|β̂1).7 Neglecting to account for the estimation error inherent in the β̂1 results in

standard errors in the second stage that are too small. As such, these standard error need to be

adjusted, and are done so using the method described below.

The standard errors of the MLE estimation are obtained using the process described in the

appendix of Mroz (1987). The covariance matrix of a Maximum Likelihood estimate β can typically

be calculated using a sandwich estimator,

cov(β) = H−1[
∑
i

(
∂Fi
∂β

)(
∂Fi
∂β

)′]H−1,

whereH is the empirically estimated Hessian matrix, F is the vector of maximized likelihood function

values, and
∑
i(
∂Fi
∂β )(∂Fi∂β )′ is the matrix of outer partial derivatives. Since the estimation procedures

in this paper have two stages that are done in different databases, the formula for the standard errors

of the second-stage estimate of β2 is (letting subscripts 1 and 2 denote first-stage and second-stage

estimates, respectively):

cov(β2) = H−12 [
∑
i

(
∂F2i

∂β2
)(
∂F2i

∂β2
)′]H−12 +H−12 [

∑
i

∂2F2i

∂β2∂β1
]H−11 [

∑
i

∂2F2i

∂β2∂β1
]′H−12 . (1.11)

Here, ∂2F2i

∂β2i∂β1
is the derivative of the first derivatives from the second-stage estimation procedure

with respect to the first-stage coefficients used to get the conditional probabilities for observation i.

The difference between the manner in which the standard errors for the Multi-Sample 2SLS and the

Maximum Likelihood estimates are calculated lies in the estimation of this cross-partial derivative.

Because the first stage of the Multi-Sample 2SLS is a straight-forward linear equation, the cross-

derivative can be derived algebraically. The use of a hazard function (in the case of experience)

and a multinomial logit procedure (in the case of education) makes deriving this term algebraically

impractical. Instead, each of the cross-partial derivatives is approximated numerically in two parts.

First, the sum of the observation-level first derivatives of each of the six (including σ) estimated

second-stage coefficients are calculated using the likelihood function with the original education

and experience probabilities. Next, new education and experience probabilities are calculated by

deviating each of the 24 (in the case of education) or 29 (in the case of experience) first-stage

coefficients by a small amount. The sum of the observation-level first derivatives are then calculated

7In Multi-Sample 2SLS, the β̂1 represent predicted values of education and experience. In the MLE, they represent
predicted education and experience probabilities.
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using the the original estimated second-stage coefficients and the “new” probabilities. Formally,

letting π̃(β̂1) be the probabilities calculated using estimated first stage coefficients β̂1 and π̃(β̂1,i +

h, β̂1,−i) be the probabilities calculated when first stage coefficient for variable i, and only that

coefficient, is deviated by h, the formula for the numerical cross-derivatives of observation i is

∂2F2i

∂β̂2∂β̂1
=

(
∂F2i

∂β̂2

∣∣∣∣
π̃(β̂1,i+h,β̂1,−i)

− ∂F2i

∂β̂2

∣∣∣∣
π̃(β̂1)

)
/h. (1.12)

The value of h is chosen by trying multiple candidates8 until numerical stability in the estimated

derivatives is observed.

1.2.3 Monte Carlo Evidence

To examine the performance of the estimation techniques, I design a simulation study in

which education and experience are measured with error that is distributed differently for Blacks

and Whites. The setup of the simulation is as follows. I want to obtain β̂ from the estimation of

yi = xiβ + εi. (1.13)

However, instead of directly observing x, I only observe some vector of variables z which measure x

with error. In the simulation, I obtain values of z from randomly drawn subsamples of the Census

and use these to generate some “true” values of x according to the processes defined below. Once

the vector x is generated, I generate values of y using Equation 1.13 above, where β is known. I

then try to recover β through estimates, β̂, obtained by various estimation methods that use the

“observed” values of z instead of the true values of x. I repeat the process many times, and compare

the average β̂ to the (known) true value of β.

I randomly draw 1,000 datasets with 10,000 observations each from the 2000 Census. These

observations have values for race (Black or White), age (22-44 years), and reported education (10, 12,

14, or 16 years). I begin by generating “true” years of education based on the reported educational

8ranging from max(0.01, 0.01 ∗ |β1,i|) to max(0.00000001, 0.00000001 ∗ |β1,i|)
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attainment using the following:

White



true education equals reported education−4 years with 2.5% probability

true education equals reported education−2 years with 5% probability

true education equals reported education with 88.75% probability

true education equals reported education+2 years with 2.5% probability

true education equals reported education+4 years with 1.25% probability

Black



true education equals reported education−4 years with 5% probability

true education equals reported education−2 years with 10% probability

true education equals reported education with 77.5% probability

true education equals reported education+2 years with 5% probability

true education equals reported education+4 years with 2.5% probability.

True education equals reported education with the the probability necessary for the total probability

to sum to one. True experience, denoted EXP , is then calculated as

EXPi = αiγi(agei − true educationi − 6), (1.14)

where γi is randomly drawn from a uniform distribution ranging between 0 and 1 for each observa-

tion, and αi differs across race and true education levels as

αWhite =



1.7 if college graduate

1.6 if some college

1.5 if high school graduate

1.4 if high school dropout

αBlack =



1.6 if college graduate

1.45 if some college

1.35 if high school graduate

1.25 if high school dropout.

The product αiγi is used to mimic what is observed in the auxiliary data discussed in the next

section: true experience values at each age-education-race grouping vary substantially, and there

are generally individuals with experience values of zero as well as individuals who have accumulated

more years of full-time equivalent work experience than potential experience would indicate. This

latter effect seems to decline as education level falls. Finally, the square of experience is calculated

as EXP 2
i = (EXPi)

2.
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Once “true” EDUC, EXP , and EXP 2 have been generated, I use these variables, along

with the racial indicator variable from the Census, to generate “true” log(wages):

log(wagesi) = 7 + .15EXPi − .0025EXP 2
i + .15EDUCi − .2Blacki + εi. (1.15)

The εi are randomly drawn from a standard normal distribution.

Several estimators are tested in this simulation. OLS with the “true” values is used as a

benchmark, along with the known β. The first model tested is a näıve OLS estimation using potential

experience variables and reported education in place of the accumulated experience variables and

true education, respectively. The results of the näıve OLS estimation are shown in column 3 of

Table 1.1. Note that the estimate of the conditional Black-White wage differential is dramatically

larger (in absolute value) when reported education and potential experience are used instead of true

education and accumulated experience. Further, the estimates of the correlation between earnings

and both education and experience differ from the truth.

The next estimation method tested is the method proposed in Regan and Oaxaca (2009),

with the results shown in column 4 of Table 1.1. As the Regan & Oaxaca method, Multi-Sample

2SLS, and MLE all use a auxiliary data, 1,000 additional databases are constructed in the manner

discussed above. These additional databases serve as auxiliary databases in which the relationship

between reported and “true” variables can be measured. While the Regan & Oaxaca method does

much better than the näıve OLS estimation, the average point estimate of the primary coefficient of

interest (βBlack) is still overestimated by over one percentage point. This method is outperformed by

both the Multi-Sample 2SLS and the MLE method, shown in columns 5 and 6. The Multi-Sample

2SLS gives the most accurate average point estimate (-.201 compared to -.196), but the MLE has a

slightly lower standard deviation (at the fourth decimal place).

In summary, Table 1.1 shows that Multi-Sample 2SLS and the MLE method more accu-

rately estimate the true relationship than does a näıve OLS estimation using reported education and

potential experience. Further, the unadjusted Multi-Sample 2SLS procedure more accurately esti-

mates the correct values for the coefficients than does the Regan & Oaxaca procedure, even though

Multi-Sample 2SLS often predicts negative values for experience. The MLE method does slightly

worse at estimating the coefficients of interest than does Multi-Sample 2SLS (and performs better

than Regan & Oaxaca for each of the coefficients of interest), but the standard deviation of the
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estimates is lower. These simulation results indicate that Multi-Sample 2SLS and the MLE method

reduce much of the bias. As the Maximum Likelihood method also eliminates negative predicted

values of experience and the Regan & Oaxaca method performs poorly in the simulation, the Regan

& Oaxaca method is not used in the empirical analysis.

1.3 Data

I focus on young (aged 22-44) Black and White males in the 2000 Census. To make the

groups as similar as possible in composition, I look only at individuals who do not identify themselves

as Hispanic. Summary statistics of the relevant Census variables are shown in Table 1.2. White

males tend to be slightly older than their Black counterparts, and have on average, very similar years

of potential experience. When educational attainment is grouped into four categories (10 years for

high school dropouts, 12 for high school graduates, 14 for individuals with some college, and 16 for

college graduates), White males tend to have about a half-year more schooling than do Black males.

Several studies have either noted that Black males tend to have less experience on average

than do White males, and to a greater degree than differences in potential experience might indicate

(see Bratsberg and Terrell, 1998; Altonji and Blank, 1999; Antecol and Bedard, 2004), making use

of the Census variables in Table 1.2 inappropriate for conditional wage gap estimations that want to

hold account for experience differences. Further, Black et al. (2003) casts doubt on the accuracy of

self-reported educational attainment in the Census by comparing select reported college graduates

in the 1990 Census with the same individuals in an auxiliary database (the 1993 National Survey of

College Graduates, or NSCG)9. They find considerable evidence of misreporting errors in reports of

educational attainment that differ by gender and race.

For this analysis, I assume that the errors in education and potential experience are un-

correlated.10 This assumption is made because of sample-size issues, especially in the education

variables. If the data used to generate the sibling-reported education measure discussed below were

used to simultaneously estimate the relationship between potential and accumulated experience, for

example, I would either have to focus on a much narrower age range or omit age-specific differences

9The 1993 NSCG was a re-sampling of the pool of individuals who were reported as having obtained a college
degree in the 1990 Census.

10Although I use education-corrected potential experience in the MLE. That is, when I give an individual some
probability of having a high school diploma instead of their college degree, for example, I simultaneously increase
their potential experience up by four years.
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in education error. As an illustration, Table 1.8 shows that I observe 17 black college graduates who

meet the criteria for inclusion in that specific sample. It is implausible to use these 17 observations

to estimate the distribution of experience for 23 different ages — even with the first-stage smoothing

of experience probabilities, the resulting standard errors would likely render the estimates useless

in trying to make meaningful inference. For the sake of comparison, note that the “independent”

NLSY experience measure has just over 2400 observations for black college graduates. Even with

this “large” sample, the standard error on the estimated differential in both MLE and Multi-Sample

2SLS estimates that simultaneously account for education and experience errors is less than a quarter

of the size of the estimated differential only once.

The following two sections approach each of these issues in turn. First, the degree to

which potential experience fails to capture actual experience in the Census and other databases is

analyzed. I then construct possible relationships between reported and true educational attainment,

again making use of the auxiliary data.

1.3.1 Errors in Experience

This section presents two key findings. First, potential experience consistently fails to

capture actual experience, regardless of the database used to measure the relationship. Second,

Black males tend to accumulate experience at a slower rate than do White males, especially for

non-college graduates. In establishing these findings, I use three databases. First, the 1993 and

2003 NSCG databases are used to examine college graduates. I establish that traditional potential

experience does a poor job of measuring years since graduation for college graduates in the Census.

By construction, this is due entirely to differences in the average age at which White and Black

males obtain a Bachelor’s degree. In addition, the two NSCG databases show that Black males

accumulate self-reported professional experience at a lower rate on average than do White males.

Since the NSCG interviews only college graduates, the data contained in that survey are

not used as part of the main analysis of this paper, which requires information about all educational

attainment levels. However, as these individuals were interviewed in the Census three years prior

to being interviewed for the NSCG, the survey can be used to establish that the use of potential

experience in the Census has significant drawbacks for the Census sample. In additional to potential

experience (defined as age − 22 for individuals with a BA/BS), the NSCG has two variables of

interest: the age at which individuals obtained their Bachelor’s degrees, and self-reported part-
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time and full-time years of professional experience. The former can be used to construct a refined

potential experience measure, and the latter can be used to give an estimate of experience that the

individuals consider applicable to their current jobs.

Tables 1.3 and 1.4 show the average years since graduation for Black and White males in the

1993 NSCG and 2003 NSCG. Since potential experience attempts to measure possible out-of-school

working years, years since graduation is a more refined version of this variable. The last column

of Table 1.3 illustrates the main problem with using a single potential experience measure for each

race in 1993: the more accurate measure of potential experience results in a measure that varies

systematically by race and across time. For example, White males born between 1934 and 1937

obtained their college degree over four years sooner, on average, than did comparable Black males.

Note, however, that for cohorts born between 1962 and 1964, this difference has fallen to less than

a year. The last column of Table 1.4 shows similar results for 2003: older cohorts have average

differences of over 2 years, while younger cohorts have average differences that are often well less

than one half-year. In both databases the difference between the average age at which White and

Black males obtain their Bachelor’s degrees is larger for older cohorts.

Table 1.5 shows the average years of full-time and part-time professional experience using

the 1993 NSCG (professional experience measures are not available in the 2003 NSCG). Black males

tend to have more years of part-time professional experience and fewer years of full-time professional

experience than their White counterparts. The net effect is that, in general, Black males have fewer

total years of professional work experience than Whites.

In addition to the NSCG, I use the NLSY to establish the relationship between accumulated

experience and potential experience for individuals present in that survey. Unlike the NSCG, these

individuals have not necessarily been interviewed in the Census, and only a narrow band of birth

cohorts is available in the NLSY: all individuals in the NLSY are born between 1957 and 1965. The

PSID is used in a manner similar to that of the NLSY, and leads to qualitatively similar findings.

The use of the PSID in addition to the NLSY adds an additional sample to the analysis, as well as

different birth cohorts.

The NLSY contains alternative measures of accumulated experience. Following Regan and

Oaxaca (2009), I calculate actual years of experience as the accumulated lifetime total hours worked

by each individual for each sample year divided by 2080. This gives a measure of the Full-Time-

equivalent years worked. An appealing characteristic of hours worked in the NLSY is that the survey
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question asks for the respondent’s hours worked since their last interview. Thus, if a respondent

does not interview for two years, and then re-enters the sample, he should report total hours worked

during the previous three years. This can be used to calculate average hours worked for each year

that the respondent is not in the survey sample. When calculating the probabilities for the MLE

method, years of experience are rounded to the nearest year for tractability reasons (for both the

NLSY and the PSID).

Figure 1.1 displays key differences in the cumulative hours worked experience measure in

the NLSY by education level. Two implications of this figure stand out. First, the actual experience

gap between the races widens as potential experience increases. The accumulation of actual expe-

rience for each year of potential experience is lower for Blacks than for Whites, and is persistent.

Second, this gap appears to shrink as educational attainment rises. The difference between college

graduates and high school dropouts is especially marked. Black high school dropouts with roughly

30 years of potential experience appear, on average, to have accrued roughly seven fewer years of

actual experience than do their White cohorts. Conversely, the difference in projected accumulated

experience between Black and White college graduates is negligible.

To obtain an experience mapping from the PSID, I compute cumulative years worked (via

hours worked) for a subset of individuals. Because of the nature of the hours worked variable (“How

many hours have you worked in the past year?”), I focus on individuals that I observe for the vast

majority of their working life, with few to no breaks in survey response. To obtain this sample, I look

at individuals who first enter the survey at an age younger than twenty. I assume that individuals

may begin working at sixteen years of age. Since individuals (especially high school dropouts) may

have accumulated work experience by age seventeen, I impute the likely hours worked at age sixteen

for individuals who enter the sample between the ages of seventeen and nineteen.11

Because of the nature of the question about hours worked in the PSID, once an individual

is not interviewed in a survey year, he is dropped from the sample used in this analysis. This is

because, unlike the NLSY79 which asks for hours worked since the last survey, the PSID asks only

for hours worked in the last year. Thus, once a person drops out of the survey, even temporarily, I

am unable to recover the number of hours worked for the missing years. Further, once the survey

11For individuals who enter at seventeen, I simply regress accumulated experience at age sixteen on hours worked
at ages seventeen through nineteen, and then predict experience accumulated hours worked at age sixteen for these
individuals. A similar process is followed for individuals who enter the survey between the ages of seventeen and
nineteen.
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becomes biennial, similar issues arise, and thus I end my analysis at the last year of annual surveys

(this is another issue avoided in the NLSY because of the wording of the survey question).

Figures 1.3-1.6 show the distribution (via box-and-whisker plots) of experience, by level

of potential experience, for Black and White males across the four educational attainment levels.

Similar to Figures 1.1 and 1.2, college graduates seem to accrue experience at a higher rate than

do individuals with different levels of experience. Further, the distribution of experience given

potential experience is tighter for college graduates than non-college graduates (this is especially

stark when comparing college graduates to high school dropouts). Once the appropriate measures

of accumulated experience are obtained in each database, the probability that an individual has a

specific amount of experience given his education, age and race (the conditional πij) can be estimated

by the method discussed in Section 2.

1.3.2 Errors in Education

In addition to errors inherent in potential experience in the Census, error also exists in

reports of educational attainment. One study that looks at this issue specifically for the Census is

Black et al. (2003). They link college graduates in the 1990 Census to individuals in the 1993 NSCG

(uniquely), and argue that the educational attainment measure in the NSCG is likely more accurate

than that in the Census. Using the reported education levels in the Census and NSCG, they are

able to measure college degree over-reporting by race, and find that Black individuals in the NSCG

who report having a Bachelor’s Degree in the Census are just over twice as likely to have no college

degree than are Whites in the same category (13.2% compared to 6.4%)12. Due to the nature of the

survey’s focus, however, analyses using the NSCG are limited to individuals who reported having a

college degree in the Census.

An analysis of the errors present in self-reported educational attainment suffers from two

problems not present in the analysis of the error in potential experience: a lack of a consistently

misreported educational attainment variable, and a lack of a convincing validation or “correct”

variable. The former can be attributed to different questions and survey methods used in collecting

the educational attainment data in the various surveys. In this analysis, educational attainment is

assumed to be measured with error to an equal extent across all of the databases used. In reality, the

error is likely worse in the Census than in the auxiliary data since random errors are more likely to

12See Table 3 in Black et al. (2003).
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be caught and undetected intentional misreporting is more costly in a longitudinal dataset. Finally,

note that due to sample size limitations (especially in the sibling measure), I assume that education

reporting errors do not vary by age.

Measurement error exists in the educational attainment variable in the NLSY. 9.3% of all

individuals in the survey sample, at some point between 1979 and 1994, reported having a lower

number of years of education than had been reported in the previous year. Note that the NLSY

does provide a “revised” version of this variable that has the logical inconsistencies eliminated (for

the most part), but the purpose of this exercise is not to find the most consistent version of the

education report unless it is also likely to be completely accurate. Instead, it is to try to compare

error across responses for (essentially) the same variable in two different databases. As such, the

unrevised variable is treated as equivalent to reported educational attainment in the Census.

I focus on two potential measures of true educational attainment. First, I construct a

validation measure. Cumulative enrollment is used to expose some over-reporting of educational

attainment. The second is a measure that looks at the educational attainment level of an individ-

ual, as reported by his siblings. I then refine this sibling approach to greatly reduce the random

measurement error that results from random error in sibling responses (since siblings are less likely

to know an individual’s educational attainment level than is the individual himself). Since the

predicted conditional probabilities from the multinomial logit model are equal to the empirical con-

ditional probabilities, the discussion below focuses on the observed conditional probabilities for ease

of discussion.

Enrollment data is intuitively appealing because it allows the researcher to link educational

attainment responses to longitudinally observed years in school. The use of enrollment data allows

for the elimination of over-reporting in the educational attainment variables. The enrollment data

cannot be used to identify under-reporting, however, since over-enrollment is prevalent in the data,

as shown in Table 1.6. In years where individuals are not in the survey sample, a probit model is

used that predicts whether an individual was enrolled in school based on whether the individual was

enrolled in previous or subsequent periods, whether the individual did not respond in previous or

subsequent periods, and the age and race of the individual. The missing data are imputed instead

of the missing years being dropped outright because doing the latter is the same as imputing a value

of zero in a cumulative variable. That is, if I see someone enrolled in 1991 and 1993, but that person

is not in the sample in 1992, dropping 1992 results in two years of cumulative enrollment between
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1991 and 1993 — the same as cumulative enrollment would be were a value of zero imputed for

1992. Since, if I want to keep the individuals in the sample at all after the are not in the survey for

a year, the cumulative enrollment measure will have a small degree of measurement error, I choose

the impute the data using the probit regression to minimize this error. The results of this measure

can be seen in Table 1.7. Similar to Black et al. (2003), I find that Black males are more likely

over-report their education than are White males, although to a lesser degree than was reported in

their paper — the probabilities in Table 1.7 indicate that Black and White males who report having

a college degree actually have no degree with a 4.1% and 1.2% probability, respectively. We also see

that, using the cumulative enrollment measure, Black males are slightly more likely to over-report

having some college and a high-school diploma than are White males.

Another possible measure of educational attainment involves the use of a question in the

1993 NLSY that asks individuals to report the educational attainment of each of their siblings. If

these siblings are in the sample as well, then the self-reported educational attainment variable can

be compared to all of the sibling reports of that individual’s education level. Unlike the enrollment

measure, this measure enables observation of both over-reporting and under-reporting of educational

attainment. In an attempt to eliminate the random error introduced by the use of sibling reports

of and individual’s education level (since siblings are less likely to know the education level of a

person than the person himself), I look only at individuals who, in 1993, had at least two siblings

interviewed in the 1993 NLSY. Further, all of the siblings must agree on the education level of

the individual. When this occurred, I assumed that the siblings were correct with probability one,

and compared this “correct” educational attainment measure with that reported by the individual in

question. Note that, even with a large number of siblings (five, for example), if four siblings reported

an individual as having a college degree, and the fifth reported that the individual simply had some

college, then the individual in question was excluded from the subsample. Table 1.8 compares this

variable to self-reported educational attainment. An issue that arises in the use of this method is the

resulting small sample sizes- as Table 1.8 shows, the cell sizes ranged from 156 observations to 17.

As with the cumulative enrollment measure, the percentage of individuals who over-report having

obtained a college degree (5.8% for Blacks and 2.13% for Whites) is substantially lower than that

in Black et al. (2003) (13.2% for Blacks and 6.4% for Whites).
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1.4 Results

To estimate the Black-White wage differential, I focus on young (aged 22-44) Black and

White males in the 2000 Census. After eliminating individuals who do not meet the gender and

age criteria, the sample consists of 1,662,758 individuals, and is described in Table 1.2. Note that

there exist negative predicted values for experience and experience squared. Also, Table 1.2 shows

that Blacks have consistently lower predicted values of experience and education than do their

White counterparts. This contrasts with the results implied by the potential experience variables,

which indicate that Black males have as much (if not slightly more) experience on average than do

White males. Appendix A shows first-stage results from the Gilleskie and Mroz (2004) smoothing of

experience. Appendix B shows the first-stage results for the Multi-Sample 2SLS along with graphs

of the predicted values for experience.

The results of the Multi-Sample 2SLS and MLE methods are shown in Tables 1.9-1.11. For

many of the estimates, the standard errors tend to be large; however, I will show that all of the

point estimates tell a consistent story—the estimated black-white wage differential using reported

values is too large. Table 1.9 focuses solely on accounting for the error present in the potential

experience variable. Two key results emerge. First, the estimated conditional wage differential falls

considerably when either method is used. The most conservative of the four estimates (Multi-Sample

2SLS using PSID experience data) reduces the estimated wage differential to around 20 percentage

points, a reduction of well over a third. Other estimates suggest that the real conditional wage

differential is as low as 14.6 percent, a reduction of more than a half. A consistent story is told

by the four estimates- the estimated wage differential obtained when using potential experience is

much too large. Another result, and one consistent with the literature for gender wage gaps, is that

shifting from potential experience to predicted experience (or, here, probabilistic experience) results

in a reduction of the estimated returns to schooling and in increase in the returns to experience. This

is a result to be expected given the general trend observed in Figures 1 and 2: as educational level

increases, the amount of accrued experience per year of potential experience increases, especially for

Blacks. Thus, when potential experience is used, some of the returns that are due to higher levels

of actual experience are incorrectly attributed to education instead, as a higher level of education

will imply a high level of accumulated work experience which will not be captured by the use of

potential experience.
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Table 1.10 assumes that potential experience accurately measures accumulated experience,

and that only educational attainment is reported with error. Correcting for solely the error in

education13 results in a substantially smaller impact on the wage differential than does correcting

for solely the error in experience. The greatest reduction in the conditional wage differential is 5

percentage points, as opposed to the 14 percentage point minimum reduction obtained by correcting

solely on experience, found in Table 1.9. Even though the reductions in the estimates of the wage

differential are small, the use of predicted or probabilistic education results in point estimates that

are consistently smaller (in absolute value) than that provided by OLS.

Table 1.11 assumes errors exist in both potential experience and the reports of educational

attainment. When controlling for both mismeasured education and experience, the results suggest

that the gains from correcting for error in education and potential experience are approximately ad-

ditive. Using sibling reports of education to generate predicted and probabilistic education measures

results in a greater reduction in the wage differential than does using the cumulative enrollment vari-

able. This is not unexpected, since the cumulative enrollment measure is, at least in one dimension,

inferior to the sibling reports measure given that the latter can identify both over-reporting and

under-reporting while the former is limited to identifying over-reporting. Regardless of the measure

used, the largest (in absolute value) estimated conditional wage differential is 20 percent. The small-

est estimated differential is 9 percent. These results indicate that the use of potential experience and

reported education in a Census Mincer-style regression causes the estimated racial wage differential

to be overstated by between 14.5 and 25.5 percentage points.

The error also impacts other estimates. The results in Tables 1.9 and 1.11 show that

correcting for the error in education unilaterally decreases the estimated return to education obtained

from the uncorrected OLS. The reason for this decrease can be inferred from Figures 1.1 and 1.1:

the estimated returns to increasing education will no long also include the returns to higher levels

of accumulated experience that seem to accompany this education increase, but which cannot be

detected when using potential experience. Further, we see differences in the estimated returns

(marginal effects) to eduction when we use the corrected measures. As an example, Figure 1.7

shows the estimated returns to experience when we use the NLSY to correct experience and the

sibling measure to correct education. The MLE estimates essentailly show an upward vertical shift

in the returns to experience of roughly 3%. The estimated returns to experience from the Multi-

13The ML method adjusts potential experience appropriately for all possible educational attainment categories
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Sample 2SLS estimates, on the other hand, represent a significant departure from the shape of the

returns-to-experience curve suggested by OLS — the curve estimated by Multi-Sample 2SLS has

higher returns to additional experience when the stock of experience is low, but the decline is much

steeper.

These results also highlight a significant advantage of using the Maximum Likelihood method

instead of Multi-Sample 2SLS: when the errors in experience are accounted for, the standard errors

of the ML estimates are substantially smaller than are those of Multi-Sample 2SLS, especially when

the PSID auxiliary data is used. In fact, when PSID data is used, we cannot make meaningful

inference about the size of the Black-White wage differential, as the 95% confidence interval covers

a range of about 80 percentage points! This difference is evident for other estimates as well, and

is particularly prominent in the standard errors of the experience variables. The standard errors

exceed the coefficients for EXP and EXP 2 for all of the Multi-Sample 2SLS estimates that correct

for experience, but are generally no greater than about half of the value of the coefficients in the

MLE specifications.

1.5 Conclusion

Measurement error inherent in potential experience and reported education has a real and

substantial impact on estimates of the Black-White wage differential. I show this in the 2000 Census

first by estimating the racial wage differential using potential experience and reported education,

and comparing these results to those found when different measures of predicted or probabilistic

education and experience measures are used. The results are stark: the racial wage gap falls from

an estimated 34.5 percent to somewhere between 9 and 20 percent. This reduction is due purely to

correcting for measurement error, as the remaining independent variables are unchanged.

Use of potential experience and reported education causes an inflated wage differential due to

the nature of the measurement error in each. Potential experience, while appearing to be a reasonable

proxy for White males, overstates the accumulated experience for Black males. The magnitude of the

error increases across time, and it is especially pronounced for non-college-graduates. For example, a

Black high school dropout with 30 years of potential experience has, on average, seven fewer years of

accumulated experience than does a White high school dropout, as illustrated in Figure 1.1. Further,

Black males seem more likely to overstate their level of educational attainment than do comparable
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White males. Each of these results in part of the differential that is actually due to education

and experience to be attributed to part of the “unexplained” Black-White wage differential. The

fact that the accumulated experience gap between Black and White males narrows as educational

attainment increases makes estimation of a Mincer-style wage equation more problematic: not only

is the racial wage gap estimate biased, but the educational attainment and experience effects are

biased as well.

Since the distribution of measurement error can be reasonably approximated due to the

existence of auxiliary data, I introduce an estimation technique that assists with estimation of the

results discussed above. This Maximum Likelihood estimation method performs well in a simula-

tion study, and directly integrates the distribution of the measurement error into the estimation

procedure.

In addition to the introduction of the Maximum Likelihood estimation technique, the results

of this paper add to the existing literature in several ways. First, it integrates much of the knowledge

gained concerning measurement error in potential experience in estimates of the gender wage gap to

estimates of the racial wage gap in a more rigorous manner than has been done previously. Second,

it informs researchers using Census data of better ways to control for experience and education in

wage regressions. Finally, it also shows that using potential experience in situations where predicted

or accumulated experience are available should be avoided, as using these measures is likely to lead

to severely biased estimates.
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1.6 Tables and Figures

Figure 1.1: Relationship between Cumulative Work Hours and “Potential” Experience: Evidence
from the NLSY

29



Figure 1.2: Relationship between Cumulative Work Hours and “Potential” Experience: Evidence
from the PSID
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Figure 1.7: Returns to Experience: Comparing OLS, MLE, and Multi-Sample 2SLS
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Table 1.2: Census Summary Statistics

Variable Mean Mean
(σ) (σ)

White (N=1,472,555) Black (N=190,203)

Log Wages 10.3 9.9
(0.9) (1.0)

Age 34.0 33.4
(6.5) (6.5)

Reported Education 13.4 12.8
(1.9) (1.7)

Predicted Education 13.6 12.8
(Sibling) (1.7) (1.6)

Predicted Education 13.4 12.7
(Enroll) (1.9) (1.7)

Potential Experience 14.6 14.6
(6.7) (6.7)

Predicted Experience 14.8 11.7
(NLSY) (6.2) (6.2)

Predicted Experience 13.7 10.6
(PSID) (5.8) (5.8)
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Table 1.3: Evaluation of Potential Experience in the 1993 NSCG

Years Since Graduation
Potential

Birthyear Age Experience White Black Black − White

1929 64 42 38.10 35.32 −2.79

1930 63 41 37.32 32.77 −4.55

1931 62 40 36.36 32.92 −3.44

1932 61 39 35.31 31.59 −3.72

1933 60 38 34.25 31.86 −2.39

1934 59 37 33.16 28.30 −4.86

1935 58 36 32.62 28.22 −4.40

1936 57 35 31.60 27.56 −4.04

1937 56 34 30.42 26.38 −4.05

1938 55 33 29.64 25.68 −3.96

1939 54 32 28.40 26.52 −1.88

1940 53 31 27.81 22.69 −5.12

1941 52 30 26.92 24.72 −2.20

1942 51 29 26.13 23.43 −2.70

1943 50 28 25.39 23.24 −2.15

1944 49 27 24.48 21.38 −3.10

1945 48 26 23.52 21.25 −2.27

1946 47 25 22.42 21.59 −0.83

1947 46 24 21.68 19.67 −2.00

1948 45 23 20.74 18.60 −2.14

1949 44 22 19.89 18.65 −1.25

1950 43 21 19.12 17.67 −1.45

1951 42 20 18.16 17.22 −0.94

1952 41 19 17.04 16.70 −0.34

1953 40 18 16.17 15.23 −0.94

1954 39 17 15.29 14.15 −1.14

1955 38 16 14.34 13.42 −0.92

1956 37 15 13.30 12.62 −0.67

1957 36 14 12.48 12.14 −0.35

1958 35 13 11.73 10.78 −0.95

1959 34 12 10.70 10.24 −0.47

1960 33 11 9.71 9.39 −0.32

1961 32 10 8.85 8.38 −0.48

1962 31 9 7.95 7.68 −0.27

1963 30 8 7.00 6.84 −0.16

1964 29 7 6.16 6.02 −0.15

1965 28 6 5.26 5.34 0.07

1966 27 5 4.56 4.61 0.05
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Table 1.4: Evaluation of Potential Experience in the 2003 NSCG

Years Since Graduation
Potential

Birthyear Age Experience White Black Black − White

1939 64 42 38.51 33.99 −4.52

1940 63 41 37.84 34.24 −3.61

1941 62 40 36.71 33.16 −3.55

1942 61 39 36.21 31.21 −5.00

1943 60 38 34.76 32.68 −2.08

1944 59 37 33.85 30.45 −3.40

1945 58 36 33.00 27.73 −5.27

1946 57 35 31.77 29.09 −2.69

1947 56 34 31.43 30.62 −0.81

1948 55 33 30.23 28.69 −1.55

1949 54 32 29.41 28.40 −1.01

1950 53 31 28.68 27.43 −1.25

1951 52 30 27.15 23.98 −3.17

1952 51 29 26.17 24.32 −1.84

1953 50 28 25.31 22.37 −2.95

1954 49 27 24.43 22.25 −2.19

1955 48 26 23.17 21.89 −1.28

1956 47 25 22.31 20.53 −1.78

1957 46 24 21.49 19.56 −1.93

1958 45 23 20.45 19.00 −1.45

1959 44 22 19.59 18.38 −1.21

1960 43 21 18.80 16.99 −1.81

1961 42 20 17.51 15.79 −1.73

1962 41 19 16.90 15.45 −1.45

1963 40 18 15.83 14.68 −1.15

1964 39 17 14.88 14.16 −0.72

1965 38 16 13.89 13.37 −0.52

1966 37 15 13.29 12.70 −0.58

1967 36 14 12.09 11.31 −0.78

1968 35 13 11.27 11.02 −0.24

1969 34 12 10.34 9.37 −0.97

1970 33 11 9.46 9.13 −0.33

1971 32 10 8.58 8.28 −0.29

1972 31 9 7.73 6.69 −1.04

1973 30 8 6.85 6.54 −0.30

1974 29 7 5.94 5.80 −0.14

1975 28 6 5.31 5.25 −0.06

1976 27 5 4.58 4.57 −0.01
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Table 1.5: Years of Professional Experience in the 1993 NSCG

Black − White
Potential White Black

Birth Year Age Experience Experience Experience Full Time Only Total Experience

1929 64 42 33.71 29.51 −3.88 −4.20

1930 63 41 32.43 25.37 −6.89 −7.05

1931 62 40 32.89 29.61 −2.88 −3.28

1932 61 39 32.91 28.87 −4.55 −4.04

1933 60 38 31.37 27.19 −4.87 −4.17

1934 59 37 31.15 25.64 −6.32 −5.51

1935 58 36 31.44 28.75 −3.63 −2.69

1936 57 35 29.38 25.68 −4.45 −3.71

1937 56 34 28.69 27.25 −1.63 −1.44

1938 55 33 28.35 25.40 −3.42 −2.95

1939 54 32 27.20 25.92 −2.52 −1.29

1940 53 31 27.36 24.89 −3.58 −2.47

1941 52 30 25.73 23.72 −2.29 −2.01

1942 51 29 25.32 24.29 −0.99 −1.04

1943 50 28 24.55 20.61 −3.66 −3.94

1944 49 27 23.32 21.34 −2.93 −1.98

1945 48 26 21.90 21.41 −0.88 −0.48

1946 47 25 21.18 19.77 −1.45 −1.41

1947 46 24 20.53 19.22 −1.41 −1.31

1948 45 23 19.66 17.41 −2.69 −2.25

1949 44 22 18.60 18.61 −0.30 0.01

1950 43 21 18.00 17.85 −0.35 −0.15

1951 42 20 17.21 15.47 −1.71 −1.74

1952 41 19 16.15 15.77 −0.34 −0.38

1953 40 18 15.42 14.18 −1.32 −1.25

1954 39 17 15.13 13.71 −1.57 −1.42

1955 38 16 14.05 12.80 −1.19 −1.25

1956 37 15 13.33 12.73 −1.20 −0.60

1957 36 14 12.31 11.62 −0.71 −0.69

1958 35 13 11.45 11.21 −0.39 −0.24

1959 34 12 10.67 10.47 −0.47 −0.20

1960 33 11 9.77 9.54 −0.58 −0.23

1961 32 10 9.01 8.80 −0.28 −0.21

1962 31 9 8.25 7.98 −0.26 −0.27

1963 30 8 7.40 6.98 −0.28 −0.42

1964 29 7 6.72 6.74 −0.19 0.02

1965 28 6 5.81 5.85 −0.13 0.04

1966 27 5 5.11 4.82 0.11 −0.29

Here, experience is defined as years of full-time plus one-half years of part-time professional experience.
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Table 1.6: Enrollment and Reported Education in the NLSY, Percent Agreement

White Reported Education Group Black Reported Education Group

HS HS Some College HS HS Some College
Dropout Grad College Grad Dropout Grad College Grad

Years enrolled

<9 20.81 0.54 0 0 13.99 0.75 0 0

9 20.97 1.25 0 0 16.51 0.97 0 0

10 22.93 2.74 0.2 0 25.52 3.72 0.18 0

11 23.55 5.42 0.63 0 26.76 6.83 0 0

12 7.65 69.91 0.49 0 9.86 62.37 2.35 0

13 1.94 11.89 13.67 0 4.52 17.13 14.77 1.52

14 0.2 5.25 24.37 0 0.89 5.68 21.55 1.52

15 0.53 1.82 24.51 1.2 0.46 1.46 21.8 1.06

16 0.28 0.7 15.77 31.98 0.5 0.74 17.91 23.08

17 0.31 0.27 9.13 24.78 0.46 0.09 9.67 26.8

18 0.26 0.07 4.92 14.64 0.07 0.19 5.24 17.77

19 0.13 0.06 3.18 10.84 0.21 0.07 2.89 9.72

20 0.03 0.03 1.54 8.11 0.04 0 1.53 6.76

21 0.08 0.01 0.56 4.43 0.14 0 0.78 5.47

>21 0.33 0.03 1.05 4.02 0.07 0 1.32 6.3

N: 3911 13246 5917 6497 2810 6782 2803 1317
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Table 1.7: Education and Enrollment-Corrected Education the NLSY, Percent Agreement

White Reported Education Group Black Reported Education Group

HS HS Some College HS HS Some College
Dropout Grad College Grad Dropout Grad College Grad

Education from
enrollment

HS Dropout 100 9.96 0.83 0 100 12.27 0.18 0
HS Grad 0 90.04 0.49 0 0 87.73 2.35 0

Some College 0 0 98.68 1.2 0 0 97.47 4.1
College Grad 0 0 0 98.8 0 0 0 95.9
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Table 1.8: Education and Sibling-Corrected Education the NLSY, Percent Agreement

White Reported Education Group Black Reported Education Group

HS HS Some College HS HS Some College
Dropout Grad College Grad Dropout Grad College Grad

Education
from siblings

HS Dropout 100 4.2 0 0 86.67 14.1 0 0
HS Grad 0 89.51 28.57 0 11.11 83.33 57.69 0

Some College 0 4.2 69.39 2.13 2.22 2.56 42.31 5.88
College Grad 0 2.1 2.04 97.87 0 0 0 94.12

N: 21 143 49 94 45 156 26 17
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Table 1.9: Results: Correcting only for Experience Error

No Correction Multi-Sample 2SLS MLE

PSID exp NLSY exp PSID exp NLSY exp

Black −0.345 −0.146 −0.202 −0.185 −0.186
(0.002) (0.206) (0.057) (0.092) (0.013)

Education 0.169 0.117 0.120 0.137 0.130
(0.0004) (0.0790) (0.0381) (0.0071) (0.0020)

Experience 0.130 0.159 0.161 0.128 0.145
(0.0004) (0.3281) (0.2454) (0.0132) (0.0055)

Experience2 −0.003 −0.005 −0.004 −0.003 −0.003
(0.00001) (0.01323) (0.00883) (0.00024) (0.00012)

Constant 6.965 7.621 7.515 7.314 7.392
(0.006) (0.680) (0.645) (0.182) (0.047)

LLF −2018844 −2018844 −2018844 −1963833 −1950777

Standard errors are reported in parentheses. “No correction” estimation controls for potential experience and
reported education.
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Table 1.10: Results: Correcting only for Education Error

No Correction Multi-Sample 2SLS MLE

Enrollment Sibling Enrollment Sibling

Black −0.345 −0.340 −0.295 −0.339 −0.302
(0.002) (0.002) (0.012) (0.008) (0.058)

Education 0.169 0.167 0.188 0.168 0.176
(0.0004) (0.0004) (0.0044) (0.0027) (0.0046)

Experience 0.130 0.132 0.171 0.132 0.132
(0.0004) (0.0005) (0.0137) (0.0062) (0.0348)

Experience2 −0.003 −0.003 −0.005 −0.003 −0.003
(0.00001) (0.00002) (0.00052) (0.00019) (0.00104)

Constant 6.965 7.002 6.453 6.973 6.871
(0.006) (0.006) (0.084) (0.009) (0.317)

LLF −2018844 −2018844 −2018844 −2018131 −2017232

Standard errors are reported in parentheses. “No correction” estimation controls for potential experience and
reported education.
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Chapter 2

The Effect of Market Structure on

the Airfare Response to the Entry

of Southwest Airlines

2.1 Introduction

The “Southwest Effect” is a term used in the airline literature to describe the large airfare

reductions that occur in response to competition from Southwest Airlines. Studies estimating this

effect have ranged from case-study approaches (e.g., Dresner et al., 1996; Vowles, 2001; Bennett

and Craun, 1993) to more general analyses incorporating a broader range of entry occurrences (e.g.,

Morrison, 2001; Goolsbee and Syverson, 2008). The consensus in this literature is that the effect of

competition from Southwest is substantial, both in the routes in which entry actually occurs and

nearby in routes that are likely to compete for passengers with the entered route. What is missing

from the literature is an analysis of the extent to which the fare effects of Southwest entry varies

across routes, as well as the identification of factors that explain this variation in effects. This paper

addresses this gap in the literature.

My study is built around the repeal of the Wright Amendment, a natural experiment that

allowed for flights out of a major Southwest hub, Love Field, to a range of previously prohibited

destinations. I use data on flights to and from Dallas-Fort Worth International Airport to conduct
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two separate analyses. First, I treat each entered route as a separate case study and use a difference-

in-difference analysis to uncover the causal effects of entry by Southwest. I find a median route-level

reduction in fares of 11.2%. The route-level estimates vary greatly, however, from a fall of over 40%

to a roughly 2.5% increase in average fares. Second, I perform a fixed-effects analysis that uses

market characteristics to explain the variation in fare effects uncovered by the first analysis. I find

that the average airport presence of the ticketing airline and the presence of an existing low-cost

carrier are the most important determinants of the size of the Southwest Effect.

For all of the routes in my analysis, my discussion of Southwest entry is focused on entry

into a competing (nearby) route. These routes are important units of analysis for several reasons.

First, when operating out of multi-airport cities, Southwest often operates out of the smaller (less

congested) airport. Second, while Morrison (2001) shows an average fare reduction of 46.2% on

directly entered routes, he still finds an economically and statistically significant effect on two types

of nearby routes (an average fare reduction of 26.4% routes with one common endpoint and one

nearby endpoint, and an average fare reduction of 12.4% on routes with two nearby endpoints).

Finally, Goolsbee and Syverson (2008) show that while the threat of entry by Southwest reduces

fares before entry actually occurs in directly entered routes, they find no evidence of this effect on

nearby routes. Their findings support the use of the Wright Amendment as a natural experiement,

as even if the time between the partial and full repeal of the Wright Amendment was enough for

airlines operating out of threatened routes to make strategic pricing decisions, these strategic actions

were (according to their findings) unlikely to have actually occurred.

2.1.1 The Wright Amendment

The Wright Amendment was legislation introduced shortly before the deregulation of the

airline industry in the late 1970s that barred flights between Love Field in Dallas, Texas and airports

non-neighboring states.1 Southwest Airlines is based out of Love Field, and while Southwest was not

a significant force in the initial years of deregulation, by the mid-2000s, the Wright Amendment was

a powerful shield from competition from Southwest Airlines for carriers flying out of nearby Dallas-

Fort Worth International Airport (DFW). The likely importance of this shield to the profitability

1Passengers could legally only fly between Love Field and either airports in Texas or airports in neighboring
states. While passengers could theoretically create their own round-trip ticket from Love Field to an airport in a
non-neighboring state by booking a flight from Love Field to New Orleans and then from New Orleans to the final
destination, airlines flying out of Love Field were prohibited by law from advertising this fact and had to require
passengers to change planes. Empirically, few passengers are seen constructing such tickets before the repeal.
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on routes to and from DFW (via airfares) is implied in the above literature and will be explicitly

analyzed later in this paper.

In the mid-2000s, the Wright Amendment was repealed in two parts. First, an amendment

that allowed flights between Love Field and two airports in Missouri was introduced by a Missouri

legislator, and ultimately became law in late 2005. Southwest Airlines, American Airlines, Love

Field, and Dallas-Fort Worth International airport later mutually introduced a formal repeal of the

Wright Amendment. This repeal became law in late 2006, after which Southwest began service

between Love Field and an additional twenty previously prohibited destinations. This immediate

entry into a large number of routes is one of the factors that separates this study from the rest of

the literature. Likely selection into the most profitable routes will result in an average estimated

effect of competition from Southwest Airlines that will be higher than what the average effect would

be if Southwest could, at the same cost, enter every route in the country or if it entered routes

randomly. We expect this to be the case because airplanes are inherently mobile capital — each

airplane used on a Love Field route could have been used on not just a different Love Field route,

but potentially on any route in the country flown by Southwest. Thus, if we see Southwest Airlines

enter a route, that route must have been more profitable than the available alternatives. Further,

if we think that the most profitable routes are the ones on which fare markups are the highest,

then we would see Southwest enter routes where fares have the most “room to move.” However,

even given the sample selection problem, the removal of across-region and across-time differences

in the entered routes allows for the examination of market-level and airline-level characteristics on

the airfare response to competition from Southwest that would otherwise not be supported by the

available data. Because of the nature of the repeal, all of the analysis concerns the effect of entry

by Southwest on a “competing” route, where competing routes are defined as sharing one endpoint

while the other is geographically close. Here, all of the routes share a non-Texas endpoint, while

the other endpoints (Love Field for the entered routes and Dallas-Fort Worth International for the

analyzed routes) are separated by 11 miles.

2.2 Data

The data used in this paper come from the Department of Transportation’s Airline Origin

and Destination Survey (DB1B) which is a quarterly 10% random sample of all domestic flights in
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the United States. My analysis focuses on flights from the first quarter of 1999 to the fourth quarter

of 2009. Data is available at the (unique) ticket level, with a variable that indicates the number of

passengers that bought a specific ticket at a specific price. So, for example, if 253 passengers bought

identical tickets from Tampa to New York with a single stop in Charlotte on the same airline at the

same price, then that ticket would appear once in the data with a variable indicating that 253 people

purchased the ticket. Information about the tickets includes the origin airport, destination airport,

and any intermediate stops. Also included is the fare (price), ticket fare class (e.g., first class),

whether the ticket was a roundtrip ticket, the carrier under whose name the ticket was sold, the

carrier that actually operated the flight, and the year and quarter in which the flight was operated.

While the data are robust, there do exist a couple of limitations. First, each-way fare on

a roundtrip ticket is not recorded, so (following the literature) I divide the total fare by two on

roundtrip tickets to proxy for the fare for each one-way portion. I am also unable to observe the

specific day, time, or flight number of the flight. While this limits the ability to fully specify the fare

equation, it is also a problem faced by the majority of the literature.

I use the data from DB1B in two different forms. First, the case study approach uses ticket-

level observations for its difference-in-difference analyses for select routes.2 The data used in these

case studies include the log fare of the ticket and information on the origin and destination of the

flight. Each specific origin-destination pair constitutes a different route; so, for example, DFW-MDW

and MDW-DFW are considered different routes. Also included are two sets of variables involving

the airline for which the ticket was issued. The first set is simply a set of indicator variables that

identifies the airline. The second set is a series of airline-specific fare class variables. I also use

information on the year and quarter of the flight to identify time periods before and after the routes

were affected by the repeal of the Wright Amendment.

As the fixed-effects analysis requires within-group comparisons, I use the individual ticket

data to create route-level averages for each airline on the route, such as the log of average fare. I also

create two variables that indicate the time periods after the Wright Amendment has been repealed.

One variable indicates a post-repeal period on all routes, and another indicates a post-repeal period

only on the routes affected by the entry of Southwest Airlines on a competing route. For the general

post-repeal variable, the post-repeal period is defined as periods no earlier than the fourth quarter of

2006 for most routes. The exception is routes between DFW and the airports in Missouri, for which

2The process by which these routes are chosen is discussed in the next section.
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the post-repeal period is defined as any quarter-year after 2005.3 A “threatened entry” variable is

also created for the routes affected by the second stage of the repeal, and is an indicator variable for

the time period between the fourth quarters of 2005 and 2006 (when the Wright Amendment had

been repealed for only the Missouri routes).

I then create several other route-airline-level and route-level variables. First, I calculate

route share by measuring the fraction of total enplanements on a route carried by the airline.

Enplanements measure whether someone was on a plane that serviced that route and includes

individuals who fly the route as part, but not all, of a ticket. So, an ticket from Tampa to New

York with stops in Charlotte and Chicago would be included in the route share calculation of a

Charlotte-to-Chicago route. 4 To capture the overall presence of the carrier at the endpoints of

a route, I calculate the average airport share of a carrier. To obtain this average, I first calculate

the fraction of total enplanements (both arriving and departing) at an airport attributable to a

specific carrier. The carrier’s airport shares at the origin and destination routes are then averaged

to create the average share variable. Additional variables include the percentage of passengers flown

by low-cost carriers (other than Southwest Airlines) the route, and whether the carrier is a low-cost

carrier.

Finally, I create three route-level variables that capture route characteristics widely used in

the literature. The first route-level characteristic is an indicator variable that is equal to one when

a non-Southwest low-cost carrier is present on the route and zero otherwise. The second relevant

route-level characteristic is a measure of the route Herfindahl index by quarter, where the calculated

Herfindahl index is simply the sum of the squared route shares all for carriers on the route. Finally,

I create variable that indicates the presence of Southwest Airlines on the route. This variable is

necessary in the fixed-effects analysis to allow for accurate estimation of the correlation between the

presence of non-Southwest low-cost carriers, which will allow for accurate estimation of the presence

of such on the magnitude of the Southwest Effect.

Table 2.1 shows the summary statistics for all domestic routes in the United States between

3Southwest flights began on December 13, 2005 on routes affected by the first part of the repeal and on October
19, 2006 on routes affected by the second part of the repeal. In the strictest sense, the fourth quarters of 2005 and
2006 were quarters that had both pre-repeal and post-repeal tickets. However, the vast majority of these flights would
have occurred under just one of the regimes, so the quarter is defined using the definition applicable to the majority
of the tickets in that quarter.

4This ticket, while used to calculate route share in each of the Tampa-to-Charlotte, Charlotte-to-Chicago, and
Chicago-to-New York routes, would not be included as an observation for an analysis of fares in all three routes. It
would instead be an observation only for the Tampa-to-New York route since Tampa and New York are the listed
origin and destination, respectively.
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the first quarter of 1999 and the fourth quarter of 2009, where the unit of analysis is an airline on

a route in a specific quarter-year. The first half of the table displays variables from the time period

before the repeal, and the second half displays variables from the time period after the repeal. From

Table 2.1, we can see that there exists substantial variation in the market characteristics of domestic

routes. The route Herfindahl index ranges is around 0.7 on average, but has a standard deviation of

roughly 0.25. The route share variable has an average of roughly 0.5 with a standard deviation of

0.35. Average airport share is lower, and has an average of about 0.2 with a standard deviation of

roughly 0.17. There is a large change in the percentage of passengers flying on a low-cost carrier in

the pre-repeal and post-repeal time periods—from the first quarter of 1999 to the third quarter of

2006, the average passenger share of low-cost airlines rises from 18% to 29%. Finally, approximately

1% of my post-repeal sample consists of observations on a DFW route affected by entry due to the

repeal of the Wright Amendment.

2.3 Empirical Methods and Results

The empirical analysis has two parts. First, I estimate the impact of entry by Southwest in

a “nearby” route on fares in a total of 54 routes.5 I do so by treating each route as a separate case

study and using a difference-in-difference analysis to estimate the causal effect of Southwest’s entry

on fares in nearby routes. The results of these analyses show that the estimated Southwest Effect

differs substantially across routes. I then perform a fixed-effects analysis to uncover the market

characteristics that influence the size of this effect.

2.3.1 Case Study Methods

I use a difference-in-difference approach to estimate the size of the Southwest Effect on

each of the 54 affected routes. The general idea behind the difference-in-difference approach is the

following. Suppose that we want to estimate the impact of some event on airfares in a route. If we

look across time, there are two effects that we might see: a time effect and an event effect. The

time effect is simply what would have happened had no event occurred — fares might have risen as

a result of an increase in fuel prices, for example. The event effect is the effect that we really care

about: the change in airfares that directly resulted from the event. Simply looking at mean airfares

5Recall that DFW to Phoenix, for example, is considered a different route than Phoenix to DFW.
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in a route is going to be a problematic estimate of the event effect precisely because it will also be

contaminated with this time effect. As such, the difference in means will only give us the correct

event effect when the time effect is zero.

The problem that arises, then, is that we often have no reason to believe that the time effect

truly is zero. This is where the second difference in the difference-in-difference approach comes into

play: we can use routes that we think are likely to have the same time effect to estimate the time

effect for the route in question. That is, if we think that other routes are unaffected by the event and

behave in the same way that the affected route would have in the absence of the event, then we can

estimate the time effect by looking at the difference in means for these routes (the “control” routes).

If this difference accurately estimates the time effect for the route of interest, we can subtract it

from the difference in means of that route to isolate the event effect.

As the choice of appropriate controls is critical to the validity of the difference-in-difference

approach, I impose two criteria on possible controls. First, I stipulate that a control route must

have George Bush Intercontinental Airport (IAH) in Houston, Texas as one of its endpoints. This

criterion is imposed for two reasons. First, DFW and IAH are geographically close (around 4 hours

apart), and so will likely suffer from the same region-specific shocks. Second, both IAH and DFW

are served by a dominant carrier.6 The second imposed criterion is a historical similarity between

the changes in average fares in an affected route and its control routes. To find the routes that

most meet this criterion, I calculate in both the 54 affected routes and all possible control routes the

quarterly change in log average fares from the first quarter of 1999 to the fourth quarter of 2004.

Formally, for each of the DFW routes and all possible controls, I calculate the squared quarterly

fare change difference (SQFCD) as

SQFCD =

2004,Q4∑
Q=1999,Q1

[∆ln(avgfareQ+1(DFW ))−∆ln(avgfareQ+1(IAH))]2, (2.1)

where Q is the quarter between the first quarter of 1999 and the last quarter of 2004,

∆ln(avgfareQ+1(DFW )) is the change in log average fare in a specific DFW route between quarters

Q + 1 and Q, and ∆ln(avgfareQ+1(IAH)) is the change in log average fare in a specific potential

control route route between quarters Q+ 1 and Q. The three George Bush Intercontinental routes

with the lowest SQFCD values for a particular DFW route are assigned as the control routes for

6In my sample, Continental had a 62% market share at IAH in the first quarter of 2005 and Delta has a 71%
market share in DFW for the same time period.
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that DFW route.

Once the controls are chosen, I have 54 samples, each consisting of an affected route and

its three controls. In each sample, I formally estimate the Southwest Effect in that route using the

following difference-in-difference specification:

ln(farei) = α0 + α1 ∗ 1[Post Repeal]i ∗ 1[DFW route]i (2.2)

+ α2 ∗ 1[DFW route]i +

2∑
r=1

βr ∗ 1[Control ri]i

+

43∑
k=1

γk ∗ 1[Quarter year k]i + δ ∗Xi + εi,

where i denotes an individual ticket on the route, 1[Post Repeal] indicates a post-repeal quarter,

1[DFW route=1] indicates a DFW route, 1[Control ri] indicates a ticket on control route r (one

of the control routes is omitted), 1[Quarter year k] indicates that the ticket was purchased for a

flight flown in quarter year k, where the second quarter of 1999 is quarter 1, the fourth quarter of

2009 is quarter 43, and the first quarter of 1999 is omitted. Xi is a set of other control variables

consisting of whether the ticket was a roundtrip ticket and a set of airline-specific fare class indicator

variables. The coefficient of interest is α1, which reports the estimated Southwest Effect. α2, β1,

and β2 identify the difference in average fare levels of the DFW route and two of the control routes

(respectively) relative to the omitted control route. γk is the average difference in levels of fares in

quarter k relative to the (omitted) first quarter of 1999.

The coefficients on these sets of route and time indicator variables absorb differences in

mean fare levels as well as common shocks in specific time periods, neither of which should affect

the percentage change in fares resulting from entry by Southwest. The airline-specific fare class

indicator variables are included to account for any changes in fares resulting from a change in the

quality of tickets sold.7 Finally, since individual tickets are likely to be correlated within a specific

route in a quarter (some of the tickets likely belong to passengers on the same flight), the standard

errors are clustered on the route-year-quarter level.

7While this would be an interesting phenomenon, study of non-fare responses to the introduction of Southwest as
a competitor is outside the scope of this paper.
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2.3.2 Estimating the Size of the Southwest Effect on Individual Routes

The results from the estimation of equation (2.3) on each of the 54 affected routes are shown

in Table 2.2. Since the dual purposes of this part of the analysis are to give the reader a sense of

the general magnitude of the Southwest Effect and to illustrate the degree of dispersion in the size

of the effect across routes, only the estimated coefficients reflecting this effect are reported.

The estimated Southwest Effect is fairly large, with a median estimated percentage change

of -11.75%. The Missouri routes have among the largest fare responses (fare reductions between 26%

and 41%), which is perhaps unsurprising given that the ex-ante predicted gains from Southwest’s

entry into the competing route had to be large enough to convince the Missouri Congressman to

expend the political capital necessary to achieve the partial repeal. The most notable feature of this

table is the wide range of predicted effects, from a fall in fares of roughly 41% to a slight (statistically

insignificant) rise in fares of 2.5%. This range in predicted effects is similar to the range found by

Dresner et al. (1996) in his comparison of pre- and post-entry means. These should give pause

to researchers attempting to use a small number of case studies to make more general statements

about the impact of entry by Southwest—with a small number of routes, one could unknowingly get

estimates that are at just one end of what is estimated here to be a wide range of effects.

A sample of full estimates is shown in Table 2.3. This table displays results for routes for

which DFW is the destination, and is equivalent to the first ten estimates shown in the appropriate

column of Table 2.2. We see that fares for the DFW routes are typically higher than the fares of the

omitted control route. Further, fares on non-DFW routes generally do not change in a statistically

significant way before and after the time period surrounding the repeal. Finally, the one-way portions

of roundtrip tickets are generally substantially cheaper than an equivalent one-way only ticket.

The handful of precisely estimated non-responses in fares is particularly surprising given

the presumed bias arising from route entry selection on the part of Southwest—we would expect

that Southwest would choose to enter only the most profitable routes. Further, since planes are

inherently mobile, the planes being used on these routes were probably employed on non-Love Field

routes before the repeal. That I estimate Southwest Effects of essentially zero suggests that real

factors are causing variations in this effect even in the routes that Southwest finds most profitable

to enter. These results hint at the need for a deeper analysis of these factors, which I undertake in

the next section.
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2.3.3 Fixed-Effects Methods

The results in the previous section show substantial variation in the estimated Southwest

Effect across routes. The purpose of this section is to explain some of the causes of these variations.

An understanding of the drivers behind the fare response to entry by Southwest Airlines is a po-

tentially important factor in policy decisions. As the 2005 partial repeal of the Wright Amendment

shows, policymakers are willing to pass legislation with the goal of introducing competition from

Southwest. This part of the analysis will answer important questions such as whether competition

from Southwest still cause a reduction in fares if carriers already compete with a different low-cost

carrier.

The factors that I introduce as potentially relevant to the magnitude of the route-level

Southwest Effect are time-varying market-structure characteristics recognized by the literature as

being relevant to the levels of average fares on routes (e.g., Borenstein, 1989; Evans and Kessides,

1994; Borenstein and Rose, 1994). These three factors are the route share of the carrier operating

the flight, the route Herfindahl index, and the average airport share of the carrier operating the

flight. These three variables are intended to capture three different dimensions of competition that

might affect fares. The route Herfindahl index measures the level of competition in the route. The

route share variable measures the size the carrier for whose flight the ticket was sold and is thus,

to some degree, a measure of airline-specific pricing power. Finally, average airport share measures

the degree of airport-level market power held by the carrier in question. By themselves, we would

expect more market power to be correlated with higher prices since the route is presumably less

competitive. Since even under a simple Cournot framework we would expect entry to lower prices,

and to lower prices by a larger percentage when fewer firms are in the market, one might expect

a higher route Herfindahl index to be correlated with a larger observed “Southwest Effect,” for

example. Average airport share is used instead of origin share and destination share separately

because of concerns about the degrees of freedom in my estimation. While the regression has a large

number of observations in total, only a handful of those observations can be used to estimate the

causes of different magnitudes of the Southwest Effect. As Table 2.4 shows, the standard errors of

the coefficients for variables interacted with the Southwest Effect tend to be large even when a small

number of interactions are used.

Another market characteristic that I consider is whether a low-cost carrier is already present
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in the route at the time of Southwest’s entry. This is included to measure what effect, if any,

Southwest has on markets that have already adjusted to competition with a low-cost carrier. Since,

as stated below, I use all domestic routes in the United States for the fixed-effects analysis, I want

to accurately measure the effect of low-cost carrier presence on average fares on a route so that the

effect of the presence of a low-cost carrier on the Southwest Effect is accurately measured. As such, I

measure the effect on average fares of the presence of Southwest as a “direct” competitor to allow for

the possibility that the effect on average fares of Southwest’s presence is different than that of other

low-cost carriers. Finally, I also measure the Southwest Effect on fares charged by other low-cost

carriers.

To estimate these effects, I conduct a fixed-effects analysis on all routes in the United States

between the first quarter of 1999 and the fourth quarter of 2009. My unit of observation is the

carrier-route-quarter year, and the regression is weighted by the number of passengers flying on that

airline in that route during that quarter-year. The basic equation that I want to estimate is thus

ln(Avg. farecrt) = α0 + α1Route sharecrt + α2Route Herfcrt (2.3)

+ α3Avg. Airport Sharecrt + α4[PRAR]crt + β11[PRAR]crt ∗ Route sharecrt

+ β21[PRAR]crt ∗ Route Herfcrt + β31[PRAR]crt ∗Avg. Airport Sharecrt

+ γ1% LCC on Routecrt + γ21[Threatened Entry]crt

+ γ31[PRAR]crt% LCC on Routecrt + γ41[PRAR]crt ∗ 1[LCC]

+ ecrt

where c denotes the airline, r represents the route, and t represents the time, which is measured in

quarter-years. PRAR indicates a post-repeal affected route and 1[PRAR] is an indicator variable

that takes a value of 1 if the route is one of the affected DFW routes after the repeal of the Wright

Amendment. % LCC on Route measures the percentage of passengers on the route that are carried

by low-cost carriers. 1[LCC] equals 1 if the carrier is a non-Southwest low-cost carrier. Finally, the

Threatened Entry represents the time period between the first and second stages of the repeal for

the DFW routes that eventually experienced entry by Southwest Airlines.

A common concern in the literature is that route share is endogenous to the fare equation,

resulting in an endogenous route Herfindahl index as well, since the route Herfindahl index is a
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function of a carrier’s route share. The reasoning behind this concern is the likely impact of lower

fares on a carrier’s market share. As Borenstein (1989) discusses, the ideal instrument for route

share, given the data constraints faced by the majority of the literature, is one that measures the

presence of competing airlines at the endpoint routes. Borenstein notes that while airport dominance

effects will impact fares, these effects are not dependent on large-scale operations at both endpoints.

The probability of entry by other firms, however, would depend on both the degree to which the

observed airline has large-scale operations at both endpoints and the degree to which other airlines

do as well. The route share variable proposed as an instrument by Borenstein, then, is the geometric

mean of enplanements at the origin and destination of a route divided by the sum of the same for all

airlines serving that route. From equation (2.2) in Borenstein (1989), This geometric enplanement

share (GENPSH) is defined as

GENPSH =

√
ENPi1 ∗ ENPi2∑

j

√
ENPj1 ∗ ENPj2

, (2.4)

where i is the airline in question, j denotes each airline that services the route, and ENPj1 and

ENPj2 are the number of enplanements on airline j at the origin and destination airports, respec-

tively. Crucially, GENPSH will differ from the average airport share variable included in the second

stage analysis because it measures the “dual large-scale operations” effect. If the airline has a large

presence in one airport but a small presence in the other, the small presence at one endpoint will

affect route share simply by capping the feasible number of flights that the airline can make. Boren-

stein then includes another measure of potential competition in an attempt to absorb any direct

effects that this instrument might have on fares. The average airport share variable in this analysis

plays that role.8

As I am interested in the effect of route share on the magnitude of the “Southwest Effect,”

I estimate the effect of the interaction term 1[PRAR] ∗Route share as well. The instrument for this

variable is simply the interaction between the indicator variable for a flight on a post-repeal affected

route (1[PRAR]) and the geometric enplanement share (GENPSH). The first stage regressions for

8Borenstein admits, as I will do here, that this is not a perfect instrument. However, he (as well as the rest of
the literature) feels that using the instrument is better than ignoring the almost-certain endogeneity issues. Previous
instruments included such measures as the log of market share and the route Herfindahl index, but these instruments
are problematic as well because of the possibility of brand loyalty (induced by frequent flier programs, for example)
resulting in a causal effect of past market share and Herfindahl index level on current fares.
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route share and its interaction with Southwest’s entry are then

Route sharecrt = α1 + β11GENPSHcrt + β121[PRAR] ∗GENPSHcrt (2.5)

+ γ1Xcrt + ε1,crt

and

1[PRAR] ∗ Route sharecrt = α2 + β21GENPSHcrt + β221[PRAR] ∗GENPSHcrt (2.6)

+ γ2Xcrt + ε2,crt,

where again c denotes the airline, r represents the route, t represents the time period, and X denotes

the exogenous second-stage variables.

Once the predicted values of route share have been obtained, the instrument for the route

Herfindahl index can be generated. Borenstein suggests a “rescaled” route Herfindahl measure that

takes the predicted route share of the observed airline as fixed and then “rescales” the shares of the

other carriers such that the measure once again ranges from zero to one. From equation (2.3) in

Borenstein (1989), the instrument for the route Herfindahl index (IRUTHERF) is formally generated

as

IRUTHERF = ̂Route share
2

+
Route Herf - Route Share2

(1− Route Share)2
∗ (1− ̂RouteShare)2. (2.7)

Here, ̂Route Share is the predicted route share from the first stage regression. As Borenstein dis-

cusses, this instrument is valid if geometric enplanement share instrument is valid for route share

and if the price of an airline’s tickets does not affect the way in which consumers purchasing tickets

from rival airlines sort between these rivals.

Since, as with market share, I am interested in the effect of the route Herfindahl index on

the magnitude of the “Southwest Effect,” I generate an instrument for the post-repeal Herfindahl

index on affected routes (1[PRAR] ∗ Route Herf) by interacting IRUTHERF and the post-repeal

affected route indicator variable. The first-stage regressions for the route Herfindahl index and its
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interaction with the DFW routes affected by competition from Southwest are then

Route Herfcrt = α3 + β31IRUTHERFcrt + β321[PRAR] ∗ IRUTHERFcrt (2.8)

+ γ3Xcrt + ε3,crt

and

1[PRAR] ∗ Route Herfcrt = α4 + β41IRUTHERFcrt (2.9)

+ β421[PRAR] ∗ IRUTHERFcrt + γ4Xcrt + ε4,crt,

where again c denotes the airline, r represents the route, t represents the time period, and X denotes

the exogenous second-stage variables.

Using the first-stage regressions in equations (2.5)-(2.9) to generate predicted values of the

endogenous variables and then inserting these predicted values into equation (2.3) yields the second-

stage regression that I estimate:

ln(Avg. farecrt) = α0 + α1
̂Route sharecrt + α2

̂Route Herfcrt (2.10)

+ α3Avg. Airport Sharecrt + β11 ̂[PRAR]crt ∗ Route sharecrt

+ β21 ̂[PRAR]crt ∗ Route Herfcrt + β31 ̂[PRAR]crt ∗Avg. Airport Sharecrt

+ γ11[LCC on Route]crt + γ21[Southwest on Route]crt

+ γ31[PRAR]crt ∗ 1[LCC on Route]crt + γ41[PRAR]crt ∗ 1[LCC]

+ ecrt

where c denotes the airline, r represents the route, and t represents the time, which is measured

in quarter-years. Several sub-specifications of this equation are estimated, both for robustness and

to conserve degrees of freedom. While the database has a large number of observations, there are

only a few hundred observations that occur on the routes that are directly affected by the Wright

Amendment.
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2.3.4 The Effect of Market Structure on the Southwest Effect

Tables 2.4 and 2.5 shows the results of the estimation of equation (2.10) with and without

the “Threatened Entry” variable. As the results of the two tables are similar, I will focus on Table

2.4. Four specifications are shown. The first, in column (1), looks only at the estimated Southwest

Effect as well as the impact on fares of the route Herfindahl index, route share, and average airport

share. Fares decrease by roughly 25% due to increased competition from Southwest Airlines in a

nearby route. This number is very similar to the 26.4% effect predicted by Morrison (2001) on this

form of “nearby” competition. The route Herfindahl index and average airport share of the airline

have large positive estimated effects on the levels of fares in routes, meaning that lower observed

levels of competition are correlated with higher average fares. The estimated effect of route share is

actually negative, which is curious but not unheard-of in the literature—Evans and Kessides (1994)

find a small negative effect for this variable after accounting for average route share as well. Routes

with a higher share of passengers flying low-cost carriers tend to have lower fares — this sign is

expected since the % LCC on Route variable likely serves as a proxy for the extent to which airlines

must compete with low-cost carriers. Finally, the Threatened Enrty variable indicates that fares fell

in the affected routes by about 13.5% in the period between the first and second stages of the repeal

of the Wright Amendment. This magnitude is consistent across specifications, and contradicts the

predictions of Goolsbee and Syverson (2008), which would have suggested that “threatened” entry

would have no effect.

Column (2) of Table 2.4 uses the explanatory variables from column (1) and adds variables

indicating whether there is a (non-Southwest) low-cost carrier on the route, whether Southwest

services the route directly, and two variables that look at the impact of the presence of low-cost

carriers on the Southwest Effect.9 The first, the size of existing low-cost carriers on the affected DFW

routes, is positive and statistically significant. This estimate shows that changing the percentage of

passengers flying on low-cost carriers from 0% to 10% will reduce the estimated Southwest Effect by

about 5 percentage points. This dampening of the Southwest Effect is likely due to the lower fares

resulting from competition with the existing low-cost airlines. Further, the if a ticket is purchased

on a low-cost airline, the effect is dampened by another roughly four and a half percentage points,

9While I am now estimating the correlation between fares and Southwest’s presence on routes directly, I will still
refer to the “Post-repeal on an affected route” coefficient as the Southwest Effect since I am still using the Wright
Amendment as a natural experiment to try to get at causality, whereas the correlation between fares and the presence
of Southwest on a route is unlikely to be a causal relationship due to a host of other factors that affect the entry and
exit decisions of both Southwest and traditional airlines.

61



although this effect is not statistically significant.

Column (3) of Table 2.4 uses the explanatory variables from column (1) as well as estimating

the effects of route Herfindahl index, route share, and average airport share on the magnitude of

the Southwest Effect. Route Herfindahl index has an effect on the fare response that is statistically

significant but very small—changing the route from perfectly competitive to monopolistic will only

increase the size of the Southwest Effect by about one percentage point, holding route share and

average airport share constant. Since route share causes the effect to be slightly dampened, if we

change route share from 0 to 1 as we change route Herfindahl index from 0 to 1 (which would be

necessary to in a market served by a monopolist), the net effect on the magnitude of the Southwest

Effect is a roughly 3.5 percentage point mitigation of the effect, although this is not statistically

significant. Average airport share, on the other hand, is both statistically economically significant.

Changing the average airport share from 0 to 1 increases the magnitude of the Southwest Effect by

around 32 percentage points. So, this specification shows us that route Herfindahl index and route

share have negligible effects on the magnitude of the “Southwest Effect,” but average airport share

is a very important determinant.

Estimation of the full specification shown in equation (2.10) is reported in column (4) of

Table 2.4. In this specification, the factors that were shown in column (3) to have a relatively

insignificant effect on the size of the Southwest Effect are still estimated to have a relatively insignif-

icant effect. The presence of an existing low-cost carrier retains its estimated impact. The effect of

average share on the size of the “Southwest Effect,” however, falls by almost half and loses statistical

significance. The point estimate, however, still retains economic significance—a change in average

airport share from 0 to 1 increases the size of the estimated Southwest Effect by about 16 percentage

points.

These results, then, point to two important determinants of the size of the Southwest Effect:

the presence of a low-cost carrier and the average airport share of the airline servicing the ticket.

Intriguingly, two other factors (route share and route Herfindahl) that are generally found to impact

the level of fares are shown to have almost almost zero impact on the change in fares due to entry

by Southwest on a “nearby” route.
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2.4 Conclusion

This paper fills a gap in the literature by illustrating the dispersion in the estimated South-

west Effect across routes and by analyzing the factors that lead to this dispersion. Using a natural

experiment created by the repeal of the Wright Amendment in Dallas, Texas, I find that two factors

are especially important to the magnitude of the Southwest Effect. The first, the presence of a

low-cost carrier on a route, tends to dampen the effect by about 10 percentage points. The second,

average airport share, tends to magnify the effect by 18 to 32 percentage points for a 0 to 1 increase

in average airport share (that is, essentially by moving from an airline that enplanes only one passen-

ger in the two endpoint airports to one that flies all of the passengers in the two endpoint airports).

As the observed range of average airport market share is 0 (rounded to two decimal places) to 1,

this factor has the potential to account for large differences in the observed Southwest Effect. I also

find that route Herfindahl index and route share, two important factors in determining the average

fare on a route, seem to have little effect on the change in fares on a route due to the introduction

of Southwest as a competitor in a “nearby” route.

Since the first part of the repeal of the Wright Amendment was the result of legislative action

to allow Southwest Airlines to service airports in Missouri from Love Field, a better understanding

of the determinants of the magnitude of the Southwest Effect is relevant to policy makers. My

results have two important policy implications. First, even though the presence of low-cost carriers

mitigates the gains from competition from Southwest Airlines, passengers on routes with existing

low-cost carriers are still likely to benefit significantly from competition from Southwest Airlines.

Second, I find that the average airport share of the airline operating the ticket has a large impact on

the change in fares charged by that airline. Thus, legislation encouraging entry into routes operated

by airlines with high average airport shares is likely to lead to the largest reduction in fares.
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2.5 Tables and Figures

Table 2.1: Summary Statistics

Variable Mean Std. Dev. Mean Std. Dev.

Pre-Repeal Post-Repeal

Log Fare 5.184 0.376 5.214 0.337

Route Share 0.530 0.396 0.536 0.388

Route Herfindahl 0.719 0.244 0.686 0.264

Avg. Airport Share 0.212 0.162 0.213 0.175

% LCC Tickets on Route 0.183 0.291 0.290 0.335

Affected Route 0.012 0.107

N 308820 132349

The level of observations is a carrier-route-quarter-year. The reported statistics are
weighted by the number of passengers.
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Table 2.2: Route-Specific Estimates of the Southwest Effect

DFW as origin airport DFW as destination airport

Endpoint DD estimate S.E. % Change DD estimate S.E. % Change

St. Louis −0.446∗∗∗ 0.039 −35.98% −0.525∗∗∗ 0.035 −40.84%

Kansas City −0.302∗∗∗ 0.048 −26.07% −0.379∗∗∗ 0.042 −31.55%

Cleveland −0.064 0.044 −6.20% −0.235∗∗∗ 0.037 −20.94%

Columbus −0.091∗ 0.035 −8.70% −0.120∗∗ 0.039 −11.31%

Denver −0.264∗∗∗ 0.035 −23.20% −0.119∗∗∗ 0.024 −11.22%

Detroit −0.105∗ 0.048 −9.97% −0.264∗∗∗ 0.032 −23.20%

Ft. Lauderdale −0.087∗ 0.039 −8.33% −0.002 0.026 −0.20%

Indianapolis −0.065 0.054 −6.29% −0.208∗∗∗ 0.032 −18.78%

Jacksonville −0.064∗∗ 0.022 −6.20% 0.025 0.030 2.53%

Las Vegas −0.011 0.057 −1.09% −0.007 0.029 −0.70%

Los Angeles 0.022 0.039 2.22% 0.010 0.029 1.01%

Louisville −0.104∗∗ 0.036 −9.88% −0.228∗∗∗ 0.036 −20.39%

Nashville −0.356∗∗∗ 0.022 −29.95% −0.311∗∗∗ 0.032 −26.73%

Oakland −0.232∗∗∗ 0.036 −20.71% −0.182∗∗∗ 0.037 −16.64%

Omaha −0.196∗∗∗ 0.033 −17.80% −0.229∗∗∗ 0.032 −20.47%

Orlando −0.014 0.035 −1.39% −0.005 0.023 −0.50%

Philadelphia −0.103∗ 0.041 −9.79% −0.163∗∗∗ 0.031 −15.04%

Phoenix −0.169∗∗∗ 0.031 −15.55% −0.124∗∗∗ 0.029 −11.66%

Portland −0.038 0.038 −3.73% −0.065∗ 0.026 −6.29%

Sacramento −0.097∗∗ 0.035 −9.24% −0.043 0.028 −4.21%

Salt Lake City −0.239∗∗∗ 0.024 −21.26% −0.132∗∗∗ 0.024 −12.37%

San Diego −0.117∗ 0.048 −11.04% −0.118∗∗∗ 0.026 −11.13%

Seattle −0.079∗ 0.036 −7.60% −0.125∗∗∗ 0.028 −11.75%

Tampa Bay −0.133∗∗∗ 0.033 −12.45% −0.035 0.027 −3.44%

Tuscon −0.122∗∗∗ 0.036 −11.49% −0.127∗∗∗ 0.036 −11.93%

Washington −0.079∗ 0.037 −7.60% −0.064 0.034 −6.20%

Chicago −0.302∗∗∗ 0.035 −26.07% −0.233∗∗∗ 0.042 −20.78%

Standard errors are clustered by route-quarter-year. ***, **, and * represent statistical significance at the
.1%, 1%, and 5% levels, respectively. The dependent variable is log ticket fare. The reported coefficients
are estimates of the effect on fares of entry by Southwest in a “nearby” route. All regressions also include
route-specific and quarter-specific indicator variables, as well as variables indicating whether the ticket is a
roundtrip ticket and the airline-specific fare class of the ticket.
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Table 2.4: The Impact of Market Characteristics on the Size of the Southwest Effect

(1) (2) (3) (4)

Post-Repeal −0.293∗∗∗ −0.313∗∗∗ −0.216∗∗∗ −0.238∗∗∗

Affected Route (PRAR) (0.011) (0.011) (0.030) (0.033)

Route Herf 0.274∗∗∗ 0.286∗∗∗ 0.306∗∗∗ 0.307∗∗∗

(0.018) (0.015) (0.016) (0.016)

Route Share −0.125∗∗∗ −0.141∗∗∗ −0.125∗∗∗ −0.126∗∗∗

(0.017) (0.016) (0.016) (0.016)

Avg. Airport Share 0.474∗∗∗ 0.476∗∗∗ 0.450∗∗∗ 0.450∗∗∗

(0.021) (0.019) (0.020) (0.020)

% LCC on route −0.230∗∗∗ −0.211∗∗∗ −0.207∗∗∗ −0.208∗∗∗

(0.009) (0.008) (0.008) (0.008)

Threatened Entry −0.137∗∗∗ −0.134∗∗∗ −0.137∗∗∗ −0.135∗∗∗

(0.017) (0.015) (0.015) (0.015)

% LCC on route∗PRAR 0.519∗∗ 0.546∗∗

(0.136) (0.147)

LCC airline∗PRAR 0.044 −0.014
(0.065) (0.074)

Route Herf∗PRAR −0.016∗∗ −0.017∗∗

(0.004) (0.004)

Route Share∗PRAR 0.036 −0.018
(0.070) (0.073)

Avg. Airport Share∗PRAR −0.273∗∗ −0.158
(0.139) (0.141)

N 441169 441169 441169 441169
R2 0.208 0.209 0.209 0.210

Standard errors in parentheses. ***, **, and * represent statistical significance at the .1%, 1%, and
5% levels, respectively. The dependent variable is log average fare. PRAR indicates observations on
Post-Repeal Affected Routes, which are the 54 DFW routes that experienced immediate competition
from Southwest Airlines. Observations are weighted by number of passengers.
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Table 2.5: The Impact of Market Characteristics on the Size of the Southwest Effect Without Threat

(1) (2) (3) (4)

Post-Repeal −0.267∗∗∗ −0.292∗∗∗ −0.181∗∗∗ −0.206∗∗∗

Affected Route (PRAR) (0.011) (0.011) (0.030) (0.033)

Route Herf 0.271∗∗∗ 0.284∗∗∗ 0.302∗∗∗ 0.303∗∗∗

(0.018) (0.015) (0.016) (0.016)

Route Share −0.124∗∗∗ −0.140∗∗∗ −0.125∗∗∗ −0.126∗∗∗

(0.017) (0.016) (0.016) (0.016)

Avg. Airport Share 0.471∗∗∗ 0.473∗∗∗ 0.449∗∗∗ 0.449∗∗∗

(0.020) (0.019) (0.020) (0.020)

% LCC on route −0.229∗∗∗ −0.211∗∗∗ −0.206∗∗∗ −0.207∗∗∗

(0.009) (0.008) (0.008) (0.008)

% LCC on route∗PRAR 0.541∗∗ 0.567∗∗

(0.136) (0.147)

LCC airline∗PRAR 0.063 −0.003
(0.065) (0.074)

Route Herf∗PRAR −0.016∗∗ −0.016∗∗

(0.004) (0.004)

Route Share∗PRAR 0.040 −0.015
(0.070) (0.073)

Avg. Airport Share∗PRAR −0.318∗∗ −0.191
(0.139) (0.141)

N 441169 441169 441169 441169
R2 0.207 0.208 0.208 0.209

Standard errors in parentheses. ***, **, and * represent statistical significance at the .1%, 1%, and
5% levels, respectively. The dependent variable is log average fare. PRAR indicates observations on
Post-Repeal Affected Routes, which are the 54 DFW routes that experienced immediate competition
from Southwest Airlines. Observations are weighted by number of passengers.
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Appendix A

Hazard First-Stage Results for the
NLSY Experience Smoothing

Figure A.1: Hazard Predictions for 40-Year-Old White College Graduates
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Figure A.2: Hazard Predictions for 40-Year-Old Black College Graduates
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Figure A.3: Hazard Predictions for 22-Year-Old White High School Dropouts
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Figure A.4: Hazard Predictions for 22-Year-Old Black High School Dropouts
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Table A.1: Hazard Regression for NLSY

β̂ σ̂

ln(Age) −674.1 (41.91)

ln(Age)2 193.5 (12.10)

ln(Age)3 −18.43 (1.178)

ln(Age)∗Exp −0.152 (0.150)

ln(Age)∗Exp2 −0.0291 (0.0120)

ln(Age)∗Exp3 0.00106 (0.000340)

Exp 0.504 (0.509)

Exp2 0.113 (0.0434)

Exp3 −0.00398 (0.00127)

Black −200.4 (71.67)

Black∗ ln(Age) 184.7 (63.23)

Black∗ ln(Age)2 −56.93 (18.55)

Black∗ ln(Age)3 5.899 (1.810)

Black∗Exp 0.577 (0.172)

Black∗Exp2 0.0159 (0.0148)

Black∗Exp3 −0.000772 (0.000427)

Black∗ ln(Age)*Exp −0.211 (0.0506)

Black∗ ln(Age)*Exp2 −0.00213 (0.00410)

Black∗ ln(Age)*Exp3 0.000175 (0.000115)

Educ 2.513 (1.355)

Educ∗ ln(Age) −0.853 (0.821)

Educ∗ ln(Age)2 0.0236 (0.124)

Educ∗Exp 0.185 (0.0396)

Educ∗Exp2 −0.0171 (0.00337)

Educ∗Exp3 0.000302 (0.0000992)

Educ∗ ln(Age)∗Exp −0.0456 (0.0116)

Educ∗ ln(Age)∗Exp2 0.00469 (0.000930)

Educ∗ ln(Age)∗Exp3 −0.0000853 (0.0000266)

Constant 775.1 (48.79)

N 689420
LLF −160098.56

Standard errors in parentheses.
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Appendix B

First-Stage Results for
Multi-Sample 2SLS

Figure B.1: Predicted Experience for High School Dropouts from the NLSY Measure

75



Figure B.2: Predicted Experience for High School Graduates from the NLSY Measure
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Figure B.3: Predicted Experience for Some College from the NLSY Measure
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Figure B.4: Predicted Experience for College Graduates from the NLSY Measure
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Figure B.5: Predicted Experience for High School Dropouts from the PSID Measure
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Figure B.6: Predicted Experience for High School Graduates from the PSID Measure
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Figure B.7: Predicted Experience for Some College from the PSID Measure
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Figure B.8: Predicted Experience for College Graduates from the PSID Measure
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