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ABSTRACT

For those who design, operate, and troubleshoot industrial processes, electric
power quality is a subject that requires much consideration. Processes that use elec-
tronic sensors, actuators, and computation devices are heavily reliant on a stable,
consistent input power source. When a power quality event such as a voltage fluctu-
ation occurs, automation equipment often behaves unpredictably and causes process
malfunction or failure.

Because industrial power consumers often blame their electric utility for these
events, some utilities offer process susceptibility studies as a service for their cus-
tomers. During a typical study, utility technicians and engineers perform in-house
tests on suspect components or systems using voltage sag generating equipment.
These tests determine device malfunction thresholds and establish an event failure
timeline. Test results provide data for applying mitigation solutions, where the most
critical or susceptible loads receive a higher priority for improvement. While effective,
this approach often requires the addition of costly hardware.

This study presents novel software algorithms that coordinate and improve process
ridethrough capabilities of network connected industrial processes. An add-on PC in-
terfacing with an automation network executes a routine that detects voltage sags,
performs a fast measurement of sag parameters, and determines an expected process
response. Rather than implement a ‘cure all’ reaction for every disturbance scenario,
mitigation routines are executed based upon the expected response. Underlying de-
sign constraints of this study are to minimize or avoid the installation of conventional
ridethrough hardware and adhere to a software architecture that is unintrusive to
existing controllers.

Voltage sag detection is performed with a real-time analysis of incoming voltages
and is triggered from RMS voltage derivative threshold crossings. Having recognized

the presence of a voltage sag, the algorithm determines the sag magnitude with a
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peak detection method, and can associate the measured magnitude/phase combina-
tion with previously recorded process data. Either the sag characteristics or historical
process response data is then analyzed to determine the expected process response.
Sags that can potentially force motor drives to trip offline cause the process to re-
spond to an expected shutdown. Voltage sag magnitude/phasing combinations that
have been shown to cause no process disruption are ignored. Combinations which
have caused only instrument signal corruption and significant process variable devi-
ations trigger the mitigation routine to address faulted control signals only. Drive
fault mitigation responses consist of a software-only drive coast routine and an im-
proved drive coast routine requiring the addition of basic switching hardware. Out
of tolerance process errors are mitigated with output control command substitution
or input signal substitution routines.

Verification of software functionality is achieved with an experimental automated
process -- a textile unwind/rewind system that operates at a controlled linespeed
and tension. Detailed analysis and simulation is performed on both component and
system-wide levels. Unmitigated and mitigated process voltage sag responses are
recorded and matched with the theoretical process model. Although customization is
required to apply the algorithms to the specific design of the textile tension control
process, experimentation with this test bed system serves as a satisfactory proof of
concept for the software routines. As a result, the methods developed in this study
can improve the task of process power quality mitigation by customizing solutions for
individual processes, avoiding the application of power quality mitigation solutions
where they are not required, coordinating corrective actions by utilizing existing au-
tomation network functionality, and ultimately reducing the need for costly hardware

installation and maintenance.
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CHAPTER 1
INTRODUCTION
AND INVESTIGATION SUMMARY

Power Quality Background

As electronics become increasingly prevalent in many applications, effective device
or process operation becomes more dependent on the quality of incoming electric
power. Test studies have shown that even commonplace devices such as digital clocks
[1,2] and personal computers [3,4] are susceptible to malfunctions caused by power
source magnitude and waveform disturbances. For some consumers of electricity,
power quality issues may not be more than an annoyance. However, because of
their scale and dependence on electronics, commercial and industrial consumers face

potentially large losses of time and money caused by power quality events.
Events and Effects

The effects of power quality events are widely dependent on their characteris-
tics. IEEE Standard 1159-1995 defines and categorizes power quality events into
three major categories of transients, waveform distortions, and voltage variations [5].
Transients are brief distortions in a waveform that do not occur periodically. A com-
mon example of a power system transient is a brief supply overvoltage caused by
utility capacitor switching, that in turn can cause equipment to fail or malfunction
[6]. Waveform distortions occur on a periodic basis, and are identifiable as a consistent
deviation from a true sine wave in a supply voltage. Waveform distortions include DC
offsets, waveform notching, harmonics, interharmonics, and electrical noise [5]. Their
effects, such as clock drift [1] and premature equipment failure due to overheating
[7] are more evident in the long term. Voltage variations occur in the steady state
as sustained undervoltages and overvoltages, and on a transient basis as voltage sags

and swells [5].



Consumers are susceptible to power quality events in numerous ways. For facili-
ties such as hospitals, uninterrupted power is of critical importance. This mandates
backup generation and smooth source transfer capabilities as part of the site power
distribution design [8]. Customers who are heavily reliant on information technology
equipment generally find that wiring and grounding errors are the principal causes
of their power quality problems, yet experience additional losses due to interruptions
and deep voltage sags [9]. Computers and process control equipment often utilize
internal protection against low operating voltages, which increases their sensitivity
to brief disturbances [10], and in turn leaves their users vulnerable to incur the costs
associated with their malfunctions. These costs can include factors such as lost raw

materials, lost production time, and even damaged equipment [11].

Voltage sags

Voltage sags receive close attention as troublesome power quality events, and
are considered among the most important power quality problems facing industrial
and commercial customers today [12]. Voltage sags are defined as a drop in voltage
magnitude from between 10% to 90% of the nominal value, for a duration of one-half
cycle to one minute [5]. Figure 1.1 shows an example of a 20%, 300ms voltage sag
waveform. Most frequently, voltage sags are caused by lightning induced single line
to ground faults [13]. They may also be caused by other factors such as high current
motor starting [14] and miscellaneous power system faults due to traffic/construction
accidents, animal contact, or tree contact [15]. Voltage sags have many quantifiable
characteristics, which can be influenced by factors such as loading conditions, power
system network topologies, and the presence of embedded generation [16]. In addition
to magnitude and duration, voltage sags possess characteristics such as phase angle
shift, point of wave of inception, and point of wave of recovery [17]. Furthermore,
dynamic loads such as motor operation during and after a voltage sag can influence
a sag’s transient magnitude [18]. Even though many factors contribute to voltage
sag properties, they are sometimes predictable when caused by certain events such as

remote distribution fault clearing [19].
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Figure 1.1 Example voltage sag waveform (20%, 300ms).

Voltage Sags and Process Manufacturing

Because of their complexity, industrial processes are particularly vulnerable to
voltage sags. When a process has no response to a voltage sag, it is said to ‘ride
through’ the event. Otherwise, one of three scenarios will generally occur: the process
may shut down even though operating parameters remain within specification, the
process may shut down by exceeding process parameter failsafe levels, or the process
does not shut down but instead produces an out of specification product [20].

Many types of processes behave in this manner. Textile handling systems, for
example, are highly susceptible to voltage sag disturbances. A review of over 60
textile facilities performed by the Electric Power Research Institute (EPRI), Duke
Power, Carolina Power and Light, Georgia Power, and Northeast Utilities showed
that every segment of the textile industry is susceptible to power quality problems

[21]. Furthermore, an increased need to compete in global markets has fueled the



need to increase textile automation, which in turn increases vulnerability throughout
the industry [21]. Other industries that rely heavily on processes, such as electronics
manufacturing and paper production, are also highly vulnerable to voltage sags [22,
23]. In industries that rely on extrusion operations, where cleanup and restarting
are complicated procedures, costs per event can be on the order of $10,000, with 20-
25 events occurring per year [24]. Even non-continuous processes such as computer
numerical control (CNC) operations can fault or produce out of tolerance products
due to voltage sags [20].

Some commonly used devices are often blamed for process malfunctions. Ad-
justable speed drives can decrease their output speed during a voltage sag, and reac-
celeration times may be lengthened by current limitations intrinsic to the drive [25].
AC contactor motor starters can cause complete process shutdowns because of their
susceptibility to voltage sags, and are sometimes the weakest link in an entire process
[26]. Their ridethrough behavior is also sensitive to the point on wave of voltage sag
inception [27], which makes identifying their dropout threshold a complicated task.
Programmable logic controllers (PLC) have several aspects of sag vulnerability. A
PEAC study of PLC susceptibility showed that a PLC power supply can cause PLC
dropout (and subsequent process shutdown), and standard 120VAC discrete inputs
can be misinterpreted as false control signals [28]. False output signals can also be
issued by a PLC that is stricken by a voltage sag [29].

Evaluating a process’s susceptibility to voltage sags requires knowledge of both
the process mechanics and the equipment in use. Understanding process variables
and how they are affected by voltage disturbances is a critical part of an overall
study of system susceptibility [20]. For process equipment, it is recommended that
susceptibility studies establish a device dropout hierarchy, and compare that hierarchy
to the number of times per year sags of a particular magnitude and duration will occur
[30, 31]. This approach encourages troubleshooters to consider the likelihood that a
device will fail along with the economic factors that are involved in improving that

device’s ridethrough capabilities.



Studies of common information technology equipment have been performed by
the Information Technology Industry Council (ITI, formerly Computer & Business
Equipment Manufacturers Association), and have yielded information regarding typi-
cal responses to voltage disturbances of varying magnitudes and durations. These are
graphically represented in the ‘ITI Curve’, which is shown in figure 1.2. This curve
defines different regions of operation for disturbances of varying magnitude and dura-
tion. For voltage sags, where the nominal voltage decreases below 90%, tolerance of
at least one cycle for even the deepest sags is common. At higher magnitudes, equip-
ment can often ride through sustained sags. When a device does not ride through, it
is said to operate in the ‘no damage region’, which indicates dropout or malfunction,
but leads to no lasting damage [32].

Using a graphical representation similar to that seen in the I'TI Curve, test results
on process equipment may be plotted to indicate their voltage sag susceptibility in
relation to other process devices. The availability of high power output, on-demand
voltage sag generators makes process-wide sag testing now possible. This test equip-
ment employs specialized field excitation of a synchronous generator, or connects
an intermediate tap switching transformer between source and load under test [33].
Using sag generators to test equipment is an effective way to determine device sen-
sitivity, and repeated testing over a range of magnitudes and durations can define a
device’s dropout thresholds as they relate to other devices or standards [34].

For complex processes such as those found in the textile industry, determining the
sensitivity of component parts is considered an effective method of establishing overall
process susceptibility. Solutions first aim at improving the voltage sag tolerance of
the weakest and most critical process components, with each solution implemented
following an analysis of its economic viability [35]. Device interaction can also yield
important information about process susceptibility. For example, sag response case
studies have been successful in predicting a process sag response by breaking down a
process into interconnected subsystems, then tracking the disturbance as it propagates
through them [36,37]. This helps determine each subsystem’s contribution to the

response without treating components as isolated entities.
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Service, Education, and Research

Electric utilities face both challenges and opportunities when addressing power
quality issues. In a deregulated electric power industry, customer service is increas-
ingly important for utility business. This provides motivation for utilities to actively
address customer power quality issues [38]. Customer complaints may be handled by
power quality service programs that offer diagnostic and repair services that operate
on both the utility and customer sides of the power system. Additionally, promotion
of research and development is considered a valuable aspect of a utility power quality
program because laboratory results may be regularly transferred to utility technicians
to provide them with a stronger knowledge base to work from [39].

Even in a service environment hospitable to addressing customer complaints, there
exists a growing understanding that solving power quality problems is the shared
responsibility of utilities, electrical systems designers, installers, equipment manufac-
turers, and end users [40]. Equipment manufacturers must understand the power
quality environment so they may effectively comply with specified ridethrough re-
quests, or simply improve product ridethrough in general [41]. When constructing
and upgrading facilities, systems designers and process integrators who are aware of
power quality issues may alter purchasing decisions by weighing the added cost of
built-in equipment ridethrough against projected downtime costs [42]. When imple-
menting a mitigation solution, end users must take economics into consideration by
accounting for factors such as purchase costs, installation costs, maintenance costs,

and remaining unsolved downtime costs [43].

Conventional Mitigation Solutions

Power quality mitigation solutions may be implemented in many ways. From the
utility side, the number of customer voltage sags can be reduced by improving fault
prevention practices and modifying fault clearing methods [24]. Use of equipment
such as electronic tap changers can compensate for loss of voltage, but these devices
often have an operational delay which exceeds the ridethrough times of sensitive loads

[10]. A utility end approach to power quality mitigation does have limitations. For



example, mitigation of sags caused by faults at transmission voltages is considered im-
practical on the utility side because it requires protecting transmission lines that may
be extremely long or outside a utility’s property. For these types of sags, mitigation
solutions are best implemented on a customer or device specific level [44].

Customers may install specialized equipment to improve the quality of their power.
For very critical loads, devices such as static transfer switches (STS) or uninterruptible
power supplies (UPS) may be used. Static transfer switches can compensate for a
complete loss of power by switching to a secondary source using electronic switching
[45]. STS use requires a reliable backup power source that is capable of meeting
its downstream load demands. This source may be a standby power generator or
battery bank. Uninterruptible power supplies use battery banks for their backup
energy source, and may be switched online using an STS scheme, or remain online at
all times [46]. UPS protection works well for low power requirements, but becomes
economically unfeasible as the power demands and subsequent battery maintenance
costs increase [10].

Devices designed for voltage sag mitigation are not required to supply power
during a sustained interruption, and therefore only require stored energy to supply
loads briefly. A simple ridethrough technology is the motor-generator (MG) set, which
has relatively high efficiency and low initial cost [24]. The energy stored in a large
rotating mass keeps momentary voltage disturbances from significantly affecting the
mass’s rotational speed, and hence the output power produced by the generator. An
additional advantage of MG set usage is that clean power is produced on-site, which
blocks waveform distortions from being passed through from the utility. Even though
MG sets can provide significant ridethrough, their use is primarily seen in industrial
environments because of their size, maintenance requirements, and noisy operation
[10].

Series voltage controllers (SVC), also called dynamic voltage restorers (DVR),
use capacitive energy storage rather than mechanical. These devices are inserted up-
stream of a sensitive load, and inject variable additive voltage to compensate for drops

from nominal voltage [10]. An alternative DVR design allows for series compensation



at existing distribution transformers, which eliminates the need for purchasing and
installing insertion transformers [47]. SVC/DVR is an attractive means of mitiga-
tion to large customers with many sensitive loads, but are costly and cannot protect
against interruptions or against sags generated within a plant [10].

Other mitigation techniques use magnetic characteristics to mitigate power qual-
ity disturbances. Superconducting magnetic energy storage devices (SCMES) use
cryogenically cooled superconducting magnets to store energy, and deliver it in a
manner similar to a UPS. They take less space than their UPS equivalents, but are
expensive because of their cooling requirements [12]. Magnetic synthesizers, which
are typically used for large loads, convert electric energy into magnetic energy through
nonlinear chokes, then synthesize an output waveform using stored energy in satura-
tion transformers and capacitors [46]. Advanced static var compensators, which are
used for reactive power management, may also be used for voltage sag mitigation.
They employ existing equipment that is used for other purposes, but require com-
plicated controls and are adversely affected by phase angle jumps in a voltage sag
[48]. Constant voltage transformers (CVT), also called ferroresonant transformers,
use magnetic saturation properties to lessen the effects of voltage disturbances. They
are tuned to specific load requirements, and are best suited for steady loads [10]. They
can also help mitigate waveform disturbances such as harmonics and notching [49].
In practice, CVTs have been shown to be effective in protecting control equipment
and PLCs in a coordinated process [50].

On a device level, solutions may be implemented to reduce the occurrence of volt-
age sags or improve device ridethrough. High motor starting currents can be limited
by ‘soft start’ devices, or by programming a motor drive to slowly accelerate a load.
Ridethrough of induction motor drives may be improved with advanced pulse width
modulation techniques in the presence of a voltage sag [51]. Addition of extra ca-
pacitance in power supplies can improve ridethrough performance at low costs, but
requires internal modifications to existing equipment, and may cause premature rec-
tifier diode failure [52]. Process contactors in a may have their ridethrough improved

by making modifications to their magnetic circuits [26].



Software Mitigation Solutions

Software based solutions for avoiding a detrimental voltage sag process response
are also possible, and form the central issue of this dissertation. Upon detection
of a voltage sag, a process may switch to an alternate control algorithm, and then
return to normal operating conditions afterward [36]. This solution requires detailed
knowledge of process mechanics and controls. Additionally, a fast acting voltage sag
detector must be integrated into the process controls. Recent developments in sag
detection technology have shown that detectors may be economically manufactured
and implemented in a process to serve as a trigger for alternate control [53]. Newer
sag detector designs even utilize microprocessor controls for increased reaction times
and tolerance to steady state waveform disturbances [54]. Voltage sag detection using
dq input voltage analysis has also been shown to have fast response times, but has a
poor tolerance to waveform disturbances such as harmonics [55].

Control in the presence of sensor failure is addressed in [56-58|, but requires re-
dundant sensors and a control algorithm designed to accommodate the redundancy.
Here methods such as weighting functions or majority decision are used to determine
an adopted value to feed back into a control algorithm. These involve identifying and
responding to faulted sensor outputs, yet do not account for input parameters such
as supply voltage characteristics. Examples of observer control for complex processes
are shown in [59] and [60]. This diminishes the possibility of signal corruption by volt-
age sags by reducing an overall sensor count, but requires computationally expensive

calculations and reliable input signals for implementation.
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Research Summary

Motivation and Purpose

In recent years, manufacturers have increased their use of sensor/actuator bus
systems in factory processes. Before the advent of this technology, automated sys-
tems typically consisted of a PLC or computer controller connected to multiple input
and output signal lines, where each line is dedicated to carrying status or control
information between the controller and a single device. As process complexity grows,
the number of required input and output signal lines increases as well. System instal-
lation and maintenance costs are consequently increased due to the large number of
connections and lines that exist. These characteristics gave rise to the introduction
and widespread use of sensor/actuator communications bus systems, which use net-
working technology to connect multiple factory devices to a single communications
cable.

Access to a process communications bus creates an opportunity for developing
improved software-based voltage sag mitigation methods. The conventional approach
to improving process ridethrough focuses on adding voltage sag compensation equip-
ment to critical hardware, or issuing ‘cure-all’ commands to a process when a voltage
sag or its effects are detected. The presence of a data bus allows for the creation of
monitoring and control software that may easily interface with the communications
bus and issue alternate control and override commands in the presence of a voltage
sag. This software may also interface with the incoming power supply for inclusion of
voltage sag detection and measurement routines. In this environment, a customized
approach to voltage sag mitigation may be used, where measured voltage sag charac-
teristics influence the method of mitigation response. Connections with the data bus
also help facilitate recording a voltage sag response history for use in determining an

expected process response.

Voltage Sag Ridethrough Software

In this investigation, coordinated voltage sag response software is designed and

implemented in a test bed process. The software design calls for avoiding the addition
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of conventional ridethrough hardware and minimizing modifications to existing con-
trol algorithms. It resides on a standalone PC that interfaces with both the process
communications bus and the incoming power supply. The software performs the

following functions:

1. Continuously monitors critical process signals and three phase line voltages.

2. Detects voltage sag inception and extinction using a fast detection algorithm.
3. Performs sag measurements (magnitude, duration) while the sag is in progress.
4. Records unmitigated process responses for future reference.

5. Uses voltage sag measurements to determine an expected process response by
either accessing recorded process data or calculating an expected response using

mathematical models of process behavior.

6. Determines an appropriate mitigation response based on both the expected

response and preselected user input.

7. Issues commands to the process controller (PLC) that override the existing

control algorithm and mitigate the process voltage sag response.

8. Returns the process to normal operating conditions after the voltage sag has

ended.

For the purposes of experimental verification, the software is applied to a dedi-
cated test bed process. This process is an integrated textile tension control system.
Implementation of the software in an experimental environment requires a high level
of customization, and therefore calls for analysis and simulation of the unmitigated
and mitigated process responses. Understanding individual device behavior is also
critical when implementing a process-wide mitigation strategy. This requires the de-
velopment of subsystem device behavior models for use in a simulation environment

and in the software mitigation routines themselves.
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The details of this investigation are divided into three main sections. First, the
experimental textile tension controller design and modeling is presented. In this fo-
rum, mathematical models and simulation are discussed. The unmitigated voltage
sag process response is matched with the theoretical model obtained from simulation.
This is followed by an explanation of the design and theoretical operation of the soft-
ware routines used to mitigate the tension controller’s voltage sag responses. Lastly,
an experimental evaluation of the effectiveness of the software algorithms is presented

as they are applied to the process.
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CHAPTER 2
OPERATION AND RESPONSE
OF EXPERIMENTAL PROCESS

This chapter describes the design, construction, and response of a model textile
tension control process that is used for applications of software based ridethrough
algorithms. A thorough mathematical analysis is included, followed by a discussion
of process simulation. An investigation into the unmitigated voltage sag response of

both individual components and the entire process ensues.

Topology and General Overview

A textile handling workstation was constructed for the purposes of determining
process responses to power quality events and experimentating with mitigation strate-
gies. The system is a multiple input-multiple output (MIMO) textile winding and
tension controller, with a design philosophy of being self-contained and dedicated to
research experiments. Textile was chosen as the process medium because of the preva-
lence of textile manufacturing plants in North and South Carolina and the associated
possibility of nearby industry implementation of methods developed in this research.
Because it does not function as a critical part of an existing manufacturing facility,
the textile tension controller may be altered and experimented with in greater detail
than a production-level process.

The mechanical layout of the textile tension controller is shown in Figure 2.1.
Two AC motors actuate the payoff and takeup reels where the textile is accumulated.
A stationary load cell measures web tension, tachometers measure reel speeds, and
discrete proximity sensors determine end of cycle package accumulation on the takeup
and payoff reels. Secondary analog instruments are included to measure process values
when a primary analog instrument is affected by a voltage sag. The secondary load
cell tension sensor and spool tachometers are not connected to the control system

and serve solely as a source of backup measurement.
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Figure 2.2 details the electrical interconnections of the textile tension controller.
The 0-10VDC primary instrument feedback signals are connected to an I/O block
which samples the analog signals and converts them to signed word data values. The
data is transferred along a Siemens Profibus DP network into a Siemens PLC. The
PLC receives user defined start/stop and setpoint commands from a standalone PC
running a LabView human-machine interface (HMI) program. The PLC executes
the main control algorithm and feeds the output commands back into the Profibus
network, where they are received by two Siemens AC motor drives. The drives each
control an AC induction motor, which is directly connected to the drive reels. A
Siemens AS-I bus transfers end of cycle signals generated by the spool accumulation
sensors and operates independent of the Profibus network. Programming and data
bus monitoring interfaces are also connected to the system. For a complete system
equipment list the reader is referred to Appendix A.

Textile tension control stand design is based on duplicating elements commonly
found in industrial processes. The use of load cell tension measurement was chosen
over a dancer arm system because of its mechanical simplicity. A comparison of dancer
arm and load cell control strategies is presented in [61], and states that although
differences exist in modeling and control of each system, there are no significant
advantages of employing either method. A Profibus DP data bus network was chosen
for device interconnection because of its prevalence in industry. This is supported
by results of a 1998 study performed by Venture Development Corporation which
indicated that Profibus DP was among the top three industrial communications buses
in popularity and usage [62].

Control strategies and mechanical modeling methods for web processes vary based
on the web characteristics. Strategies for controlling web tension using observers are
presented in [59] and [60], but are often unique to a process and involve tension state
calculation beyond the abilities of a typical PLC. Ultimately, spring-damper dynamic
models similar to those described in [63] and [64] were chosen as the modeling method
for the textile mechanics because they require fewer constants and calculation to

determine web tension in a PLC environment. Control of the textile tension control
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Figure 2.2 Equipment configuration of experimental textile tension control system.

system is achieved by using two proportional-integral (PI) controllers with additive

state gain terms to compensate for variations in linespeed and tension.
Mathematical Subsystem Models

The tension controller signal flow diagram is shown in Figure 2.3. The mechanical
system is represented by a linear time-invariant state space system, with inputs of
motor torque, and outputs of linespeed and web tension. The state space plant model

derivation is provided in Appendix B.
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Figure 2.3 Tension control system block diagram.

Feedback instruments under normal operating conditions are modeled as linear
first order systems, where the measured mechanical value serves as an input, and an
analog 0-10VDC signal the output. The A/D converter block is also modeled in this
way, except the output is a signed 16-bit word, and the input an instrument signal

voltage. In its generic form, the first order relationship is described by

d
T%y(t) +y(t) = Kz(t) + B, (2.1)
where z(t) is the system input, y(¢) is the system output, K is a gain constant, B a
constant output offset, and 7 a time constant. To determine a first order subsystem
output, we solve for the system output y(¢) in terms of a sum of integrals. Rearranging

Equation 2.1 gives us

% (t) = Ex(t) - l<y(t> - B), (2.2)

T T

and integrating both sides yields

o) = & / ) dt— | ‘(y(t) - B) dt. (2.3)

T
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Equation 2.3 may then be used to determine y(t), provided that the initial conditions
of the integrals are known.

The variable speed AC drives are modeled as systems that deliver a three phase
sinusoidal voltage to the induction motors. The issued frequency, f., varies as a first
order system with a signed word reference input and an electrical frequency output.
The AC drives operate using a constant V/Hz control scheme, which decreases the
output voltage magnitude with decreases in output frequency. At very low frequen-
cies, the voltage is increased slightly from the constant V/Hz line, and at zero Hertz
output frequency, the voltage is held above zero Volts at a constant level. This entire

scheme creates a frequency-RMS voltage relationship which may be described by

‘/out = ‘/ebaseem(ifea (fe <6 HZ) (24)

V;)ut = mlfe + V;)ffseb (fe 2 6 HZ) (25)

where f. is the motor output frequency, m, is the exponential multiplier for low
frequency operation, V.. is the zero Hertz base RMS voltage, m; is the linear
segment V/Hz slope, V,ffse: is the linear segment V/Hz offset, and V,,: the RMS
line-line motor output voltage.

The motors are modeled using direct-quadrature (dg) motor theory [65], where
the motor inputs are sinusoidal three phase voltages, and the output is the developed
motor torque. To determine the developed motor torque, we calculate the dg voltages
from the drive output frequency and RMS line-line voltage magnitudes. The first step

is to determine the instantaneous three phase stator voltages using

Vgs = V2V, cos(0), (2.6)
2
Vbs = V2Vous cos(f — %), (2.7)
and
2
Vs = V2Vout cos(f + ?), (2.8)
where 6 = w.t. These voltages are then used to calculate the stationary dq voltages
with
2 1 1
V= —Uas — =Uhs — =Vgs, (2.9)

s 37 3 3
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and

1 1
’U;S = —%U()S + %ch- (210)

The stationary voltages are then transformed into the synchronously rotating frame

voltages by
Vgs = Vg, €OS(0) — v, sin(6), (2.11)

and

Vas = Vg, sin(f) + vy, cos(6). (2.12)

Additionally, for a shorted squirrel-cage induction motor the dg rotor voltages are
Vgr = Vgr = 0. (2.13)

The motor flux relationships in the dq model are

d
Vgs = Rslgs + E\Iqu + we Vs, (2.14)
, d
Vds — Rdes + E\I[ds — we\qu, (215)
, d
Vgr = Ryigr + a\Ifq,q + (We — wr) Yy, (2.16)
and
d
Var = Rptgr + aqjdr — (we — wr)\I/qr. (2.17)

Equations 2.14-2.17 may be rearranged and integrated to solve for the dgq fluxes, which

gives
t t t
\Iqu = / UVgs dt —/ Rsiqs dt _/ we\des dta (218)
0 0 0
t t t
Vs = / Vgs dt —/ Rgigs dt _/ We\I]qs dt, (219)
0 0 0
t t t
Vo = / Vgr dt — / Ryig dt _/ (We — wy) Vg, dt, (2.20)
0 0 0
and
t t t
\der = / Vdr dt _/ Rridr dt — / (we - (_,(_)T,)\Ijqr dt’ <221)
0 0 0
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which again may be easily calculated, provided that the initial conditions are known.

Having determined the flux components, the flux-current transform

1

s (Lis + Lun) 0 Lnm 0 o,
ids _ 0 (Lls + Lm) 0 Lm \I]ds
iw | | Lm 0 (Lis+Ln) O v, | 2
idr 0 Lm 0 (Lls + Lm) \der

is used to calculate the dg currents in the machine. From these currents, the developed

torque is calculated by

3\ /[P
£ 2) (€) st o

where P is the number of poles in the machine. For a detailed derivation of dg motor
theory, the reader is referred to [65].

Figure 2.4 illustrates the control algorithm that the PLC executes. The linespeed
controller is essentially a takeup reel speed controller. The desired linespeed is divided
by the takeup reel radius to obtain the desired takeup reel speed. The actual takeup
reel speed is then subtracted from the desired value to create an error signal (SP-PV
operation). The error signal is then fed into a proportional-integral (PI) controller.
The load torque caused by tension is calculated using the takeup reel radius and
the tension feedback signal. This is multiplied by a gain constant and added to the
PI controller output as a tension compensation term. Finally, a gain intrinsic to PI
control in the Siemens PLC is applied, and the reference motor frequency signal is
sent to the takeup motor drive.

The tension control loop behaves similarly. The desired tension is multiplied by the
payoft reel radius to calculate a desired payoff tension torque. This is subtracted from
the actual payoff tension torque to create an error signal (PV-SP operation), which
is delivered to another PI controller. A state gain term to compensate for linespeed
variations is added to the output of the PI controller, which is then multiplied by the
intrinsic PI control gain and sent to the payoff drive.

Extensive testing of the textile tension controller was essential when determining
the constants used in the plant and instrument mathematical models. Appendix C

describes test procedures and provides tables of the determined values.
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Figure 2.4 Controller for textile tension control system.

Simulation of Test Stand Behavior

The environment chosen for tension controller simulation was a line code imple-
mentation in Matlab. The use of line code was preferred over the graphical Matlab
Simulink environment because the system’s complexity makes a Simulink implemen-
tation unnecessarily complex and unwieldy. Furthermore, complete control over a
model’s behavior is more attainable in a line code environment. In a Simulink imple-

mentation, the ability to manipulate many built-in function blocks is limited.
General Overview

A flowchart for the code simulation is shown in Figure 2.5. A large main program
with no use of subfunctions was favored over many small subfunctions under a main
control program. This approach requires no variables to be passed between functions
and maintains all variable assignments in memory during program execution. The
duration of simulation was chosen to be a maximum of three seconds, which provides

adequate time to analyze prefault, faulted, and postfault conditions. For limited
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‘staircasing’ of system signals, a resolution of 10,000 points per second was chosen,
or one evaluation point every 100us. Altogether, the simulation may calculate 30,000
data points for each signal. Arrays of every intermediate (non-output) variable are

stored during simulation to help facilitate signal analysis throughout the system.

Variable Initialization

Setting the initial conditions of all variables is essential for establishing the starting
points of system signals. This requires both forward and backward calculation of
variables based upon the initial conditions of linespeed and tension.

The mechanical system initially requires all of the states in x and % to be defined.
These consist of values for all 6;, éi, and 01 Given that the linespeed is constant at

t = 0, we calculate the values of 9, and 9, as

0, = =, (2.24)

and

f; = 0. (2.25)

Calculations for the initial values of #; requires arrangement of Equations B.25, B.§,
B.9, and B.10 in matrix form, where the values of 6; are unknown quantities. To
square the constants matrix, the value of 65 is set to 107 (a value that would not lead

to a negative initial value for ¢;). This arrangement creates the matrix equation

2fpi=o 0 ro K93 —r3Ko3 + 133
Bs0, T2 K12 —7“§K12 - 7”§K23 To13 K33
B3é3 = 0 7’27’3K23 —T%Kgg — T§K34 cee
B0, 0 0 374 K34
107 0 0 1
—7”4K34 O 91
0 0 0
7‘3T4K34 0 03 y (226)
—T2K34 - 7”ZK45 T475 K45 04
0 0 05

where the solution for matrix € is found by multiplying the inverse of the constants
matrix by the left hand side of Equation 2.26. Once values for x and % were deter-

mined, the input torques, u are determined using Equation B.1.
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Figure 2.5 Flowchart of tension controller voltage sag simulation program.
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The instrument output initial conditions were determined by multiplying the phys-
ical input by the instrument gain, then adding the instrument offset. This operation
was also performed for the A/D inputs. Note that this is a steady state interpreta-
tion of Equation 2.1. The initial conditions of the integral sums used to calculate the
outputs of these devices were then assigned a value of the output at ¢ = 0.

Calculation of the initial dq voltage, flux, and current conditions for the motors
could not be done in reverse using the output torques because several unique combi-
nations of dg currents could lead to the same developed torque. Therefore, for each
motor an iterative scan and forward calculation through multiple electrical frequency
setpoints was performed, and the resulting output torque compared to the actual ini-
tial torque. The input electrical frequency that yielded an output torque equal to the
actual initial output torque was then stored as the initial condition for the motor’s
desired electrical frequency. Calculation of initial line voltages were determined using
the V/Hz drive scheme described by Equations 2.4 and 2.5. The initial dq voltages
were calculated using Equations 2.6 through 2.13, and dq currents were calculated

assuming steady state operation by

-1

lgs R, welg 0 WeLy, Vgs

ids _ _weLs Rs _weLm 0 Uds

Qgr 0 (We — wy) Ly, R, (We — wy) Ly Vgr

idr _(we - wr)Lm 0 _(we - wT)LT Rr Vdr
(2.27)

Initial motor fluxes were then calculated using the flux-current transform in Equation
2.22, and the initial values of the corresponding integral sums were assigned the values
of the fluxes at t = 0.

Some control signals also required calculation of their initial conditions. The
outputs of the integral controllers were calculated assuming that the controller errors
at t = 0 are zero, and the proportional contributions to controller output are zero as
well. With these values set, the integral sums were back calculated using the initial

electrical frequency outputs and the initial feedback signal values.
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Numeric Evaluation of Integrals

The first order solution in Equation 2.3 is obtained numerically, where the value of
the integrals at t = t — dt is calculated and multiplied by dt, then added to the stored
integral sum to yield the output value. Since the integrals are calculated using values
from the previous step in time, any error in this calculation can be decreased by using
smaller dt time step. This evaluation method was used for the feedback instruments,

A /D converter, first order drive setpoint transitions, and the dq flux calculations.

Data Sampling

The data sampling that occurs in the PLC, data bus, and I/O modules is modeled
by the inclusion of zero order holds in the simulation. This is achieved by referencing

signals at previous times which are determined by

t

trey = T, bJ (2.28)

where T is the zero order hold sampling period, and ¢, is the previous time reference.

Process Response to Voltage Sags

The textile tension control stand’s overall response to voltage sags is dependent
on the individual hardware sag responses. Because of this, the analysis of process

behavior must initially concentrate on the component devices.
Analog Instrumentation

Assessment of instrument voltage sag responses may take a pass/fail approach,
where device responses are described with terms such as ‘immune’ or ‘tolerant’ to volt-
age sags [66]. More clearly specified are voltage sag tolerances described by CBEMA
or I'TT curves where magnitude and duration thresholds are defined in order to deter-
mine device compliance with a particular specification [46]. Meeting these standards
is open to interpretation for analog process sensors because during some sags the
device will continue to operate, but may not be considered as surviving the event due

to an erroneous output signal.
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In 2000, a study performed by EPRI Solutions (formerly EPRI PEAC) examined
the voltage sag response characteristics of a wide range of process sensors. The
findings from this study offer some insight into general sensor behavior which we
aim to analyze. It was shown that sensor responses were not sensitive to the point-
on-wave characteristic of voltage sags, which suggests that point-on-wave variations
would be an unnecessary addition to an instrument sag response model. On the other
hand, the sensor output level at the time a voltage sag is applied must be taken into
consideration because the output level affects the device loading, which in turn affects
the ridethrough time [67].

Figure 2.6 shows the response of the payoff roller tachometer, takeup roller tachome-
ter, and tension sensor to a 0% sag (interruption) for a duration of 450ms. Our initial
goal is to model the output response of each sensor so that they may be implemented
in the Matlab process simulation routine. In the past, models of corrupted sensor out-
puts have focused on injecting a subtractive disturbance [68] or a variable gain [69]
to describe the initial decays seen in Figure 2.6. The shortcomings of these models,
however, are that erratic device discharge and gradual recovery are not accounted for.
The improved instrument sag response model aims at including these factors, while
viewing the instruments as ‘black boxes’, whose internal circuitry is of less importance
than the overall input-output characteristics.

To develop a generic analog instrument sag response model, we begin by examining
the interconnections that are most frequently used for these devices. Figure 2.7
shows common topologies for both AC and DC powered instruments. DC powered
instruments are typically fed by a separate AC to DC converting power supply, which
may also feed other DC loads. In this case, it is important to note that the presence of
additional loads will affect the sag response of the instrument because of the energy
demands these loads place on the supply. The physical input to the device also
affects the response because it places varying demands on the instrument’s stored
energy during the sag. AC supplied instruments behave similarly, only without the

presence of additional DC loads.
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Figure 2.6 Textile tension control stand instrumentation voltage sag responses.
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Figure 2.7 Instrument input-output topologies for a) DC sensor fed through separate
power supply and b) AC supplied sensor.
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Figure 2.8 illustrates the output response of several instruments when a 10%
voltage sag is applied for a duration of 450ms. Each response may be divided into
a series of operating segments. The prefault segment occurs before any disturbances
have been applied to the sensor. During this condition, the instrument behaves
normally. Similarly, the postfault segment occurs after the supply disturbance and all

of its effects have cleared, and is also treated as an undisturbed instrument response.
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Figure 2.8 Instrument voltage sag responses divided into segments of operation.

Ridethrough Segment

The ridethrough segment of the voltage sag response occurs from the time of sag
inception to the time at which the output signal begins to deteriorate, and is consid-
ered a general indication of the energy stored in a device’s power supply. During this

segment the instrument functions normally. The duration of the ridethrough segment
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is dependent on both sag magnitude and the physical input level, as illustrated in
Figure 2.9. The magnitude of the voltage sag has an effect on the ridethrough times
because different amounts of energy are drawn at various supply magnitudes, while
the physical input level places varying demands on the instrument’s stored energy.
When describing the ridethrough segment, sag duration is only a consideration
if it is less than the ridethrough time given a certain magnitude and physical input
level. If the sag duration is shorter, then the ridethrough time is equal to the sag
duration. Under these circumstances, the instrument may be considered immune to

a voltage sag, and the deviation and recovery segments are not present.
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Figure 2.9 Effects of variations in sag magnitude and physical input level on ride-
through segment of instrument voltage sag response.

30



Deviation Segment

The deviation segment of the instrument voltage sag response begins at the point
where the output signal begins to deviate from its prefault and ridethrough values.
It terminates at the time of sag extinction. Often this response takes on the form
of a decaying exponential signal, but it can also contain spikes and transients when
components in the instrument de-energize. Again, both the voltage sag magnitude
and physical input level have an effect on the nature of this response. Figure 2.10
exemplifies this for several cases. The duration of the voltage sag only defines the time
at which the segment ends, and does not affect the nature of the deviated waveform.
Figure 2.11 demonstrates the effects of duration changes given constant magnitude

and physical input conditions.
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segment of instrument voltage sag response.

Recovery Segment

The recovery segment begins at the time of sag extinction. Typically this involves
an exponential rise from the output at the time of sag extinction to the unfaulted
instrument output level. Previous models have treated this as a simple step function,
which implies that the output immediately returns to normal when the sag ends.
Figure 2.12 illustrates the exponential nature of device recovery, and that factors of
sag magnitude and physical input affect recovery times. Sag duration also has an
effect on the recovery time, since the duration plays a part in determining initial

conditions at the time of recovery.
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Figure 2.11 Effects of variations in sag duration on deviation segment of instrument
voltage sag response.

An important property of device recovery is that the output signal gradually
transitions from a corrupted signal to an uncorrupted one. When the device is fully
recovered, the output is expected to be an accurate representation of the physical
input. A mathematical description of this behavior must account for changing input
levels during the recovery process, rather than use a constant to describe the final

signal value. This may be modeled as

—(t—trec) —(t—trec)

Output(t) = (Outputi—,,,) (€™ mec )+ F(Input(t))(l —e™ e ), (2.29)

where t,.. is the time of sag recovery, 7., the recovery rise time constant, F' the

transfer function for the undisturbed instrument, and Input(t) the device physical
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Figure 2.12 Effects of variations in sag magnitude and physical input level on recovery
segment of instrument voltage sag response.

input as a function of time. This representation of the recovery response is a sum of
the corrupted signal final value scaled to become less significant with time and the
uncorrupted signal scaled to become more significant with time. Figure 2.13 shows
a comparison of the theoretical output when applied to an actual recovery signal

assuming a linear undisturbed instrument response and constant physical input.

Implementing Results in Simulation

The observed ridethrough times, maximum recovery time, and deviation segment
trace data for a particular sag magnitude and device physical input combination may
be applied in a simulation environment. To implement in the Matlab simulation of

the textile tension control stand, an if-then structure is used to output each segment
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Figure 2.13 Application of mathematical recovery response model to instrument using
constant physical input level.

response at a specific time. Figure 2.14 shows a flowchart for instrument sag response
simulation and Table 2.1 describes the event schedule that controls the segment tran-
sitions. For prefault conditions, the normal instrument output is delivered to the
remainder of the control system. The same is true for the ridethrough segment, up to
the point where ¢ = tqrt + tridethro. This point marks the beginning of the deviation
segment.

Because of the variety of deviated waveforms that may be produced by a particu-
lar instrument during the deviation segment, the program references the appropriate
output to deliver from a sampled waveform obtained during sag testing. This avoids
the impractical task of calculating output values based on a customized instrument

response model, and meets the requirement of being able to simulate a value that cor-
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Table 2.1 Event schedule for implementation of improved instrument voltage sag
response model in simulation.

SEGMENT | TIME FRAME

Prefault tstart <t < tincep
Ridethrough | tineep <t < (tincep + tridethru)
Deviation (tincep + tridethru) <t < trec
RGCOVGI‘y bree <1< (text + 107—rideth7’u)
Postfault (trec + 10T ridethru) < t < tend

rectly represents an erratic output waveform. In this step, it is important to maintain
consistency between sample times in simulation and in sag testing. Furthermore, it
is preferable to use a high sampling frequency to avoid waveform ‘staircasing’ during
the deviation segment simulation. The duration of the theoretical sag may be varied
by switching from the sampled waveform in the deviation segment to the recovery
segment before the entire sampled waveform is sent as an output.

When the sag has ended at t,.., the program outputs an implementation of Equa-
tion 2.29. Here the value of 7., the recovery time constant, is equal to one fifth of
the maximum recovery time measured for the device. The equation is calculated and
delivered as a device output until ten recovery time constants have elapsed following
text, at which point the normal operating conditions are again restored as the device
transfer function. The process simulation Matlab code, including the instrument sag
response models, are included in Appendix D.

Results for instrumentation voltage sag tests are shown in Appendix E. Each
sensor was tested to determine ridethrough times at varying physical input levels.
The physical levels used were taken over a range from the lowest allowable process
physical input level to the highest, and did not use the output limits of 0-10VDC
as the test limits. Sag magnitudes ranged from 0% to 80% in 20% increments and

durations were adjusted to determine the maximum recovery time.

AC Motor Drives

Both of the AC motor drives operate using rectifier/inverter topology. The main

effect that voltage sags have on the AC motor drives is to lower the DC bus magnitude
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between the rectifier and controlled inverter below their nominal prefault levels. Both
the magnitude and phasing combination of the incoming voltage sags have an effect
on the DC bus level. Figure 2.15 shows the DC bus response for two different events.
The left column shows a 60%, three phase voltage sag of 450ms duration and the
corresponding DC bus response. For this sag, the DC bus level drops below the
trip level of approximately 200VDC, where the drive halts its output to the motor.
Afterward, the DC bus magnitude continues to decline, but at a lower rate because
energy is no longer consumed by the running motor. After an output trip and sag
recovery, the DC bus returns to its nominal magnitude, but experiences a brief period
of ripple that matches the peaks of the incoming sinusoidal voltages.

The right column of Figure 2.15 shows the DC bus magnitude of the same drive
when it is stricken by an 80%, three phase voltage sag of 450ms duration. In this
case, the DC bus magnitude drops sharply after the sag inception, but remains above
the 200VDC trip level. The motor does not trip offline, and the DC bus does not

ripple after sag recovery.
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Figure 2.15 DC bus levels during three phase sags of magnitude 60% (left) and 80%
For unbalanced sags, the response is similar. Maintenance of the DC bus above
Figure 2.15 illustrated the difference in the DC bus magnitude for both trip and

(right).
same fashion as in the balanced case. For sag magnitude and phasing combinations

combinations that do not cause a dropout, increased ripple can occur during the sag
ridethrough conditions, but assumed a sag duration long enough for the magnitude
and phasing combination to be the most significant factors in determining the drive’s

that cause an output trip, significant DC bus ripple can occur after the dropout. For

when the DC bus has reached its steady state depressed level.

the trip level defines its ability



ability to withstand the sag. Figure 2.16 shows the effects that shortened durations
can have on the drive DC bus magnitude. The left column shows the response to
varying durations for a sag magnitude/phase combination that causes an output trip,
and shows the rapid decay of the DC bus under these conditions. During the sag,
the drive briefly continues to run the motor, but quickly reaches the dropout voltage
and halts the output. This suggests that while the duration of the incoming sag is a
factor in determining drive tolerance, it is only critical during the first few cycles of
the sag. The right column of Figure 2.16 shows the effects of varying sag duration
for a magnitude/phasing combination that does not cause a drive output trip. Here
these effects are even less significant, as sag duration only determines the length of
time that the DC bus stays at a depressed level.

The rate of decent of the DC bus is also a variable characteristic, and is dependent
on motor loading. Figure 2.17 demonstrates this effect. For the sag shown in the top
waveform, the DC bus is shown for various loading conditions. The second waveform
shows the steep decent in the DC bus during heavily loaded conditions, and the third
waveform shows a more gradual decay when the motor is lightly loaded. The last
waveform shows the no load rate of DC bus decay, which was measured when the
motor output was de-energized. During a sag magnitude and phasing combination
that will ultimately cause a drive trip, the DC bus magnitude is clearly dependent
on the motor load, and decays at a far slower rate when the motor output is off
altogether.

Several variables have been shown to affect the ridethrough characteristics of the
textile tension control stand’s AC motor drives. While motor loading and sag duration
are factors, they are overshadowed by the influence of sag magnitude and phasing
combinations. In the case of the experimental process, dropout characteristics were
tested for a range of magnitude and phasing combinations. These results are listed
in Appendix F. Each test was conducted by delivering a 450ms sag of a certain
magnitude and phasing combination. During the tests, the motors were energized
and running in the textile process. The recorded response is the drive’s ability to ride

through the event without dropping out and requiring a user restart.
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Figure 2.16 Sag duration effects on the motor drive DC bus levels.
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Figure 2.17 Loading effects on the motor drive DC bus decay rates.

Simulation of these effects are implemented in the main Matlab simulation pro-
gram by forcing drive output voltages to zero after calculations for the DC bus levels
indicate that the dropout threshold has been crossed. In the simulation, the measur-
able sag characteristics are not considered. Instead, the observed DC bus decay rate

is inserted directly into the routine to simulate a sag that causes drive dropout.

Additional Immune Hardware

Additional hardware present in the textile tension control stand (see Figure 2.2)
was tested with a sag generator for a 450ms, 0% sag (interruption) and rode through

the test events without disturbance. These devices are listed in Table 2.2. Addition-
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ally, all AC contactors present in the system were bypassed for system-wide voltage
sag tests, since their ridethrough characteristics can be mitigated with inexpensive

hold-in devices.

Table 2.2 Tension stand hardware that showed no dropout response.

DEVICE NOTES

Siemens PLC power supply 24VDC, feeds PLC only

Siemens PLC fed by dedicated supply

5A, 24VDC supply supplies I/O block, AS-I converter, limit sensors
AS-T network power converter | 24VDC to 30VDC converter

AS-I network master fed by 5A, 24VDC supply through converter
Profibus I/0O block fed by 5A, 24VDC supply

Combined Process

Once individual device voltage sag responses are understood, the integrated process
is examined as a whole. If we initially consider the process as one entity, then the volt-
age sag tolerance may be visualized as shown in Figure 2.18. Each axis of this graph
represents the line-neutral voltage magnitude of an incoming power supply phase.
Voltage sags that fall within the shaded region cause the process to malfunction,
while sags that fall outside the region have no effect.

All sags that were delivered to the textile tension controller to generate Figure 2.18
were 450ms in duration, which allowed ample time for the AC motor drives to trip
offline, and for the instrumentation to deviate from their prefault values significantly.
The boundary between regions falls at the midpoint between a sag test magnitude
point which yielded a disruption and one that did not. Figure 2.18 therefore represents
the 450ms process disturbance/no disturbance test results with 20% sag magnitude
increments, for a total of 216 tests.

The response may be further divided into regions of specific malfunction. The
most catastrophic of these regions is shown in Figure 2.19. This region indicates the
sag magnitude and phasing combinations where the AC drives drop offline, which
constitutes a complete process shutdown. This type of failure requires user input to

restart the process and manually rethread the machine.
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Figure 2.18 Region of voltage sags for any process disturbance in textile tension
control system.
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Figure 2.19 Region of voltage sags for AC motor drive dropout in textile tension
control system.
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The AC drive dropout region boundaries may be described mathematically. Figure
2.20 shows a scatter plot of AC drive voltage sag dropout points in two phases. Here
phase C is held at a constant 0% magnitude, while phases A and B are variable.
Using the magnitude midpoints between tests that caused a dropout and those that

rode through, a threshold is established with the line
A+ B =15, (2.30)

where A and B are the per unit phase voltage magnitudes. This threshold is similar
for plots of phases B versus C and C versus A with the missing phase voltage held
at zero. Three inequality statements result from these boundary lines. The logical
AND of the inequalities form an expression to indicate a sag’s presence in the AC

drive dropout region. This may be expressed by
01=(A+B<15) AND (B+C<15) AND (C+ A<15), (2.31)

where ()7 is a Boolean term indicating sag presence in the AC drive dropout region.

A comparison of actual and simulated behavior for this case is shown in Figure
2.21. An immediate loss of tension occurs when the drives drop offline, and the process
linespeed slowly decelerates. Only slight differences exist between the experimental
and simulated waveforms. The experimentally recorded tension waveform shows a
slightly slower rate of decent to the zero tension state than its simulated counterpart,
which may be attributed to the first order delay of the tension cell. In the simulated
linespeed waveform, the decay experiences a momentary reversal that is not seen in
the measured linespeed. This is caused by the mechanical modeling of the rollers
remaining coupled during the zero tension state, while the actual system experiences
decoupled rollers with web slack between them.

Although the AC drive dropout region accounts for the majority of possible process
malfunctions, another region exists that requires attention. This malfunction region
is shown in Figure 2.22, and represents the voltage sags that cause process variables
to go out of tolerance. In this region, the AC drives do not trip offline due to a DC

bus undervoltage. Instead, the instrumentation delivers erroneous process feedback
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information to the controller. This in turn causes the controller to call for a change
in the process that is not required, which results in a deviation from desired process
values. Some sags that affect the instrumentation are outside the indicated region, but
still exist within the AC drive dropout region. They are therefore neglected because
AC drive dropout is the more dominant, catastrophic variety of process malfunction.

Sag presence in the faulted instrumentation region may also be described in math-
ematical terms. By inspection of Figure 2.22, we observe that the faulted instrumen-
tation region is present where the Phase C magnitude is below 70%, and the sag
magnitude and phasing combination falls outside the AC drive dropout region. This

is expressed as

Q2= (Qy = FALSE) AND (C <0.7), (2.32)

where ()5 is a Boolean value indicating a sag’s presence in the faulted instrumentation
region.

Simulation of an instrumentation level malfunction is compared with measured
values in Figure 2.23 using the Matlab simulation. A single phase, 0% voltage sag
(interruption) is delivered to Phase C, and both the tension cell and tachometers
are driven into a faulted state. Their feedback values are misinterpreted as physical
disturbances, and compensated for by the PLC control algorithm. The actual web
tension is driven to over double its prefault value, and the linespeed sees a significant
disturbance as well. The ridethrough, deviation, and recovery segments in the in-
strument responses are all clearly visible, and their theoretical models follow closely.
Discrepancies between the measured and simulated responses can be attributed to
slight differences in measured component gains, unmodeled roller imbalance effects,

and noise.

Summary

A network connected textile tension control system was constructed with the
intended purpose of serving as a test bed for developing software based voltage sag

mitigation algorithms. After mathematical analysis and detailed measurement of
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Figure 2.23 Comparison of actual and simulated textile tension controller response to

450ms, 0% sag (interruption) affecting the instrumentation only.
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constants, a Matlab based program was written to simulate the tension controller’s
dynamic behavior.

During analysis of individual device behavior, it was found that an improved
instrumentation voltage sag response model was required to effectively predict the
process voltage sag output response. This model improves upon previous mathemati-
cal instrument response models by accounting for erratic device output and modeling
gradual instrument recovery characteristics. The developed model was implemented
in the Matlab simulation. AC motor drive voltage sag responses were found to fol-
low a ride through or trip dichotomy, the result of which is highly dependent on sag
magnitude and phase combinations. Other devices such as DC power supplies were
found to have no effect on the process voltage sag response due to their preexisting
ridethrough and light loading.

Using a series of voltage sag tests at 450ms durations, varying forms of the com-

bined process response were observed. These consist of three distinct regions:

1. an AC drive dropout region, which was found to be the most catastrophic

because of the required user input to remedy;

2. a faulted instrumentation region, which causes corrupted feedback signals to

force the existing control algorithm to call for unnecessary corrective action;

3. a no disruption region, where the process behaves normally and rides through

the voltage sag.

Simulations of the AC drive dropout region and the faulted instrumentation region
were performed and matched with experimental results.

Using the textile tension control stand as a research test bed, our focus now turns
to the software architecture and algorithm development used to mitigate the voltage

sag responses observed in this system.
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CHAPTER 3
SOFTWARE DESIGN

Introduction

A coordinated voltage sag mitigation software suite was designed and implemented
for use with the textile tension control stand. This program aims at minimizing the
addition of hardware and being unintrusive to existing process controllers.

The software resides on a standalone PC, termed ‘Ridethrough PC’, and interfaces
with both the existing Profibus automation network and the process main three-phase
power supply. The Ridethrough PC executes a single program which continually
monitors the incoming power supply, detects voltage sags, performs fast sag parameter
measurements, determines an expected process response, and executes a mitigation
routine based on user input and the expected process voltage sag response. Historical
process data can also be stored in the Ridethrough PC. Process control changes are

executed in the existing PLC, but are called upon by override commands originating

from the Ridethrough PC.

Communications and Interfacing

Figure 3.1 shows the general interfacing topology of the Ridethrough PC. Inter-

facing details are described in terms of its component subsystems.
PC Specifications

The Ridethrough PC contains a 2.66 GHz Pentium 4 processor, 512 MB of RAM,
and runs the Windows XP Professional operating system. LabView version 6.1 is
the main software environment for programming and execution of the detection and
mitigation routines. LabView was chosen because of its data acquisition interface and
analysis capabilities. During the software development process, LabView’s graphical
programming environment allowed for extensive variable monitoring and analysis,

thereby decreasing troubleshooting time.
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Figure 3.1 Ridethrough PC interface structure.
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RIDETHROUGH PC

Profibus Interface

The Profibus interface card used in the Ridethrough PC is a Woodhead/SST
automation network interface card, model SST-PFB3-PCI. It is capable of performing
as both a Profibus network master or a network slave device. In the case of the
Ridethrough PC, it is programmed as a slave device with 16 bytes of transferred
input data and 16 bytes of output data. It can function at Profibus baud rates of up
to 12Mbps, but is set to operate at the process network’s baud rate of 1.5Mbps.

Function calls to the Profibus interface card were performed in LabView by calling
individual functions in a dynamic link library (.dll) file. Upon startup, the LabView
program calls a subroutine that opens the card for communications, defines network
and node parameters, and switches to an online state. During the mitigation pro-
gram, read and write functions are performed during every scan cycle of the monitor
program. The speed at which data is passed to the PLC from the LabView program is
therefore defined by the scan cycle time of the ridethrough program and the Profibus

network scan cycle time. When execution of the ridethrough program is terminated,
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a sequence to switch the card offline from the Profibus network is executed. LabView

code for Profibus card initialization, I/O, and shutdown is provided in Appendix G.

PLC Communications

The PLC received basic programming modifications to accommodate an additional
node on the Profibus network. The additional Ridethrough PC slave node was added
to the network using the .gsd messaging configuration file provided by the Profibus
card manufacturer. A user-defined setting of 16 input bytes and 16 output bytes was
defined in the network configuration environment.

Addition of another node in the Profibus slave scan list added approximately
650us to the network scan time, and averages 5.9ms per scan with the additional
node. Memory requirements of the Ridethrough PC did not constitute an appreciable
change in PLC memory usage, with the existing controller utilizing only 10% of the

available 98,304 bytes of memory space.

Data Acquisition

A National Instruments PCI-1200 data acquisition card was used for power supply
signal monitoring. This card allows up to eight analog inputs (0-10V or £5V), and
samples inputs with 12 bit resolution at a maximum rate of 100kS/s. The Ridethrough
PC uses four of these analog input channels. Three are for each supply voltage, and
the fourth is used for a trigger signal during testing. Sampling rates are set at 6kHz
for each channel, which yields 100 data points per cycle of 60Hz voltage. Analog and
digital outputs are also available with the PCI-1200.

Initialization and access to the data acquisition card is accomplished through
functions provided with LabView. Parameters of device identification, desired input
channels, and sampling rates are user defined inputs to these functions. Outputs of

these functions are raw data, actual sampling times, and scan buffer backlog levels.
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Power Supply Interface

The data acquisition card is connected to the main three phase power supply
through separate voltage dividers that output 9.24V peak-to-peak for a 120VAC RMS
input. The signals are then isolated with a Gould voltage isolation amplifier set to a

1:1 attenuation. These signals are then fed directly into the data acquisition card.

User Interface

After calling initialization functions for the Profibus and data acquisition cards,
the ridethrough program executes a user-terminated while loop in which user com-

mands may dictate the following;:

1. Read historical process response information into memory.

2. Write recorded response information in a data file after program termination

(for use in subsequent program executions).
3. Associate incoming sags with those recorded during process data accumulation.
4. Calculate the process expected voltage sag response.

5. Execute ridethrough algorithms based on user algorithm selection and the ex-

pected process response.

Indicators of sag magnitude and phasing are available through the user interface.
The graphical environment also allows for a ‘virtual oscilloscope’ display of incoming

voltage waveforms. The user interface is shown in Figure 3.2.
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Figure 3.2 Screenshot of Ridethrough PC user interface.

Existing System Modifications

Changes to the existing system consist of an additional subroutine inserted at the
end of the main PLC ladder program, and a series of switching commands included
in the main program. The existing PLC program is modified to continuously output
critical process data and node status information to the Ridethrough PC, and also
accept alternate control commands dictated by the Ridethrough PC during and after

a voltage sag.
Signal Switching

Under normal operation, the main PLC program transfers process data from the
Profibus input buffer to the PLC memory area. Interrupt switches were inserted in
all of the main signal transfer commands, which is achieved with a ‘normally closed
contact’ operation. This enables the move command to execute if the transfer bit

is low. Transfer bits are defined in the Ridethrough PC control word, and their
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corresponding signals are listed in Table 3.1. The main PLC ladder logic code is
listed in Appendix H.

Also included in the control word is a drive coast command, which sends motor
drive output disable commands on a rising edge and drive restart commands on a

falling edge.

Table 3.1 Ridethrough PC control word structure.

BIT(S) COMMAND
0 Drive coast command
1-7 unused
8 Replace bit - tension value
9 Replace bit - payoff tachometer value
10 Replace bit - takeup tachometer value
11 Replace bit - payoff drive output
12 Replace bit - takeup drive output
12 Replace bit - linespeed setpoint
14 Replace bit - tension setpoint
15 unused

PLC Subroutine

The added PLC subroutine transfers raw process data to the Ridethrough PC
for analysis and storage along with a word for motor drive and I/O node status
data (Table 3.2). Ladder code for the subroutine is listed in Appendix H, while
functionality is described in the flowchart in Figure 3.3. The subroutine is called
during every PLC scan cycle, and adds approximately 4ms to the total program

execution time.

Table 3.2 Ridethrough PC status word structure.

BIT(S) STATUS
0 Payoft drive active
1 Takeup drive active
2 I/O block active
3-15 unused
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START PLC
SUBROUTINE

MOVE INSTRUMENT SIGNALS,
DRIVE REFERENCE SIGNALS,
STATUS INFORMATION
TO DATA BUS

MOVE REPLACEMENT
SIGNAL i INTO CONTROL
LOOP

FOR ALL REPLACE BITS:
IS REPLACE BIT i TRUE?

DRIVE HALT COMMAND YES
FROM RIDETHROUGH PC

RISING?

DRIVE ENABLE BITS =
FALSE

DRIVE HALT COMMAND YES
FROM RIDETHROUGH PC

FALLING?

DRIVE ENABLE BITS = TRUE,
DRIVE START BITS = TRUE

A

NO
Y

CONTROL INTEGRATOR
HOLD = TRUE

ANY DRIVE REPLACE BIT = TRUE OR
DRIVE COAST COMMAND = TRUE

A 4

SEND REPLACEMENT

NO |« REFERENCE SIGNALS TO
04 DRIVES
FOR ALL BUS NODES: YES NODE ACTIVE BIT i =
. ——
NODE i ACTIVE? TRUE

END PLC SUBROUTINE
(RETURN TO MAIN)

Figure 3.3 Flowchart of added PLC subroutine.
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Additional Commands
Additional commands introduced into the PLC program were minimal. Integral
control hold bits were added to the PI control blocks for the linespeed and tension
controllers. Provisions for these commands already existed in the PI control blocks,
but were unused before the addition of the Ridethrough PC. Lastly, the Ridethrough
PC subroutine call command was added. This executes during every program cycle

of the main PLC program

Voltage Sag Detection

Figure 3.4 shows a flowchart for the method of voltage sag detection and measure-
ment. The Ridethrough PC accepts three phase voltage signals and samples them
at a rate of 100 sample points per input voltage cycle (6kHz). The sampled data
is delivered to the main program and subjected to a sag detection algorithm which
generates a Boolean detect signal for each phase. Detection is performed by analysis
of RMS voltage derivatives. Sag detect signals are then used by the main program to
initiate data recording or process mitigation routines.

For each while loop cycle of the ridethrough program, five voltage data points are
sampled from each phase. After scaling the input signals to compensate for the input
voltage dividers, the data points are inserted into an existing voltage data array of 100
elements, where the oldest five samples are discarded and the newly sampled points
are shift-inserted. After the discard and insert operation, the 100 element array is

used to calculate the present RMS voltage with

1 n—1
Vrus, = - > 0, (3.1)
=0

where the array size n = 100, k is the cycle index for the ridethrough program, and

v; the voltage sample data points. The RMS derivative is then calculated using

d Vems, — Vems,_
= Vs, = M8 & 3.2
dt - MS dt (3:2)

where dt is the time differential between Ridethrough PC cycles, or

dt = >

B f sample

= 0.833ms. (3.3)
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Figure 3.4 Flowchart of voltage sag measurement and detection routine.
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In the prefault and postfault cases, the RMS derivative remains at zero. Sag inception
is detected when the RMS derivative crosses a negative threshold, and recovery is
detected when the RMS derivative crosses a positive threshold.

After initializing all detect signals to logic ‘false’, the detection algorithm performs
an invert operation to the detect signal when the first below-threshold RMS derivative
voltage occurs. Subsequent crossings of the negative threshold are ignored. The
detect signal is inverted back to the logic ‘false’ state upon the first above-threshold
RMS derivative voltage seen while in the ‘true’ state. Initial conditions are of critical
importance, as unpaired inception or recovery triggers could potentially lead to a false

detect signal.
Theoretical Response

The voltage sag algorithm was implemented in Matlab to simulate its performance.
Figures 3.5-3.9 show several theoretical sag detection responses. Detection thresholds,
set at £2kV/s, are shown as bold lines that intersect with the RMS voltage deriv-
ative signal. The point on wave effect on response time is evident when comparing
Figures 3.5 and 3.6. Here, the low magnitude sag of 20% shows a difference of 1.7ms
in triggering times between 0° and 90°. Nevertheless, the sag detection algorithm
triggers in less than a quarter cycle - a significant improvement from using a basic
RMS calculation. Figures 3.7 and 3.8 show the theoretical sag detection algorithm
response when applied to higher magnitude sags of 80%. Detection times are still
below one quarter cycle, but are slightly increased for the 0° point on wave case.

RMS derivative threshold levels are critical in adjusting the detection response.
This is evident in Figure 3.9, where a sag of 89% does force the RMS voltage derivative
signal below its detection threshold. This case of a missed detection for shallow sags
may be alleviated by decreasing the detection thresholds, but at the cost of increased

sensitivity to transients and noise.
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Data Manipulation

Transferred Data

Data is transferred from the PLC to the Ridethrough PC in 16 byte (8 word)
blocks. Tables 3.3 and 3.4 detail the structure of these data blocks. A transfer occurs
during every Profibus network scan cycle, but the data updates to the PLC occur
asynchronously. The PLC program and peripheral scan rates contribute to the actual
update times for data sent to the Ridethrough PC, and the main Ridethrough PC

loop execution time contributes to the update rate for the data sent to the PLC.

Event Data

Event data is stored in a multidimensional array that increases its main index once
for each recorded event. Process signal data is stored in a series of subarrays that
are updated in a shift/discard technique similar to the array update method used to

monitor line voltages. In addition to these signal arrays, values of event length in
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Table 3.3 Data transferred from PLC to ridethrough PC.
WORD DESCRIPTION

Tension
Status word

Takeup tachometer

Payoff tachometer
Takeup output reference
Payoff output reference

Linespeed setpoint

Tension setpoint

|| T | W N+~ O

Table 3.4 Data transferred from ridethrough PC to PLC.

WORD DESCRIPTION
Tension replacement value
Control word

Takeup tachometer replacement value

Payoff tachometer replacement value
Takeup output reference replacement value
Payoff output reference replacement value

Linespeed setpoint replacement value

Tension setpoint replacement value

N[O TY =W N —|O

iterations and seconds is stored. Minimum RMS voltages and minimum RMS voltage
derivatives for each phase are also measured for storage in the main array. Lastly, a
Boolean array that indicates the phase combination of the sag is stored. Table 3.5
summarizes the values stored for each event. The storage trigger command occurs
1.110s after the beginning of a voltage sag, and captures 278ms of prefault data
along with 1.110s of fault/postfault data. These lengths were determined in practice
to be of sufficient length to capture all relevant process event data, while not affecting
program execution by placing excessive demands on system resources. This operation
only stores the data in memory; a file storage command is executed after the program
has terminated.

The goal of creating a large process history is for future reference in the event of an
incoming voltage sag. If measured reactions to sags are known, then the Ridethrough

PC may access the data and determine the expected response to an incoming sag. A
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mitigation solution may then be applied to match the expected response. The final
size of the event data array is 216 elements. With a magnitude step size of 20%, this

stores an event for every allowable magnitude and phasing combination.

Table 3.5 Process data storage array elements.

ITEM DESCRIPTION
0 Tension subarray (1667 elements)
1 Status subarray (1667 elements)
2 Takeup tachometer subarray (1667 elements)
3 Payoff tachometer subarray (1667 elements)
4 Takeup output subarray (1667 elements)
5 Payoff output subarray (1667 elements)
6 Linespeed setpoint subarray (1667 elements)
7 Tension setpoint subarray (1667 elements)
8 Length of event in iterations
9 Minimum phase A RMS voltage (%)
10 Minimum phase B RMS voltage (%)
11 Minimum phase C RMS voltage (%)
12 Minimum phase A RMS derivative voltage (V/s)
13 Minimum phase B RMS derivative voltage (V/s)
14 Minimum phase C RMS derivative voltage (V/s)
15 Length of event in seconds
16 Phasing combination Boolean array

Storage and Retrieval

Upon termination of the main program loop, event data may be recorded in a
text file. The file grows to a size of approximately 23MB for the desired 216 stored
events. Retrieval is performed at the beginning of program execution, and requires
a user input to access the data file. The text file data is parsed into memory in
single-event sized blocks. After completion of the read-in process, the original event
data array is rearranged into a 6 x6x6 array, where each dimension of the new data
array represents an input voltage phase with varying magnitude (20% increments).
Process historical data is later retrieved through this array, where the indexing terms

correspond to the measured RMS phase voltage magnitudes.
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Event Analysis and Association

Event characteristics are computed and stored using the procedure detailed in
Figure 3.10. Among these calculations are minimum sag magnitude, minimum RMS
voltage derivative values, sag length, and prefault signal averages. They are stored
after the event has ended, but are updated every program cycle.

When a voltage sag is detected, a magnitude and phasing analysis is performed.
This analysis takes one-quarter of a 60Hz cycle to complete. Once the sag magnitude
and phasing characteristics are determined, association with a recorded event and

response region identification may take place.
Sag Measurement

Sag magnitudes are measured with a peak detection routine. This is performed

with an analysis of the input power data arrays. Given that
Vo (t) = Vi, sin(wt), (3.4)

and

d
£V¢(t) = Vw cos(wt), (3.5)

we may be assured that the peak magnitude of the incoming voltage is present in either
a one-quarter cycle sample set of the raw voltage data or the rescaled derivatives
calculated with the same one-quarter cycle set. The aim is therefore to find the
maximum magnitude amongst two sets of data. The first is a 25 sample set of the

most recently acquired raw input voltage data,
Vo1(k) = Va(k), k=0..24, (3.6)

where k is the array index. The second set contains 25 scaled derivatives determined

by

Vo (k) — Va(k —1)
wT ’

Vo (k) = k=1..25. (3.7)

where w is the frequency in rad/s and T is the sampling period. The index k in

Equation 3.7 exceeds that of Equation 3.6 by one, which makes the overall required
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Figure 3.10 Flowchart of event analysis in ridethrough PC.
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sample time one sample greater than a quarter cycle. The peak magnitude is then
determined with

V,, = max(|Vaa| , [Vas|). (3.8)

Figures 3.11 and 3.12 show the theoretical response to the peak detect routines

given sags of 20% depth and 0° and 90° point on wave, respectively.

Event Association

After the phase voltage magnitudes have been determined, they are each divided
by their nominal value to determine the per unit voltage sag magnitude. These are
converted into integer array indices used to access the process history array. The

array indices are generated using a nearest integer function of the form

we = |22 (39)

where we is an array dimension index, V,, the per unit voltage magnitude, and p,
the per unit voltage step size of indexed sag magnitudes. With the Ridethrough PC
using 20% increments, the output range of this function is 0 < wg < 6.

After indices are generated for each phase, they are used to access the 6 x6x 6 data
array to yield a process response recorded prior to the present voltage sag. Analysis

of this data may then be used to determine the mitigation method.

Identification of Response Region

In the previous chapter, three different voltage sag response regions were identified
for the textile tension control stand. They consist of an AC drive dropout region, a
faulted instrumentation region, and a no disruption region. The measured magnitude
and phasing combination is used to determine the response region of an incoming sag.

The user selects one of two possible identification methods.

Identification Using Unmitigated Process History

After retrieving unmitigated process response data that corresponds to an in-
progress voltage sag, the historical data is analyzed to determine the response region

in which it lies. For determining membership in the AC drive dropout region, the
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Figure 3.11 Theoretical response of peak detect routine to 40%, 0° point on wave
voltage sag.
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Figure 3.12 Theoretical response of peak detect routine to 40%, 90° point on wave
voltage sag.
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recorded status word from the PLC is scanned for fault bits indicating drive dropout.
Membership in the faulted instrumentation region requires analysis of the recorded
fault /postfault signal data and comparison to the average prefault value. Upper
and lower tolerance thresholds are established, and the present sag is said to be
in the faulted instrumentation region if any of the critical signals fall outside these
thresholds. Upper and lower tolerance thresholds were set between +5%-15% of
their recorded prefault values. Steady state operating conditions are assumed, and
the thresholds are left as user defined quantities. Identification of the no disruption
region is unnecessary because it requires no mitigation response. This determination
algorithm requires a fair amount of memory to store the history data block, but holds
the distinct advantage of not requiring mathematical models to identify response

regions. Figure 3.13 shows the flowchart for this method.

Identification Using Region Boundary Definitions

The region boundary definitions described in Equations 2.30, 2.31, and 2.32 may
be implemented in code to perform a less computationally expensive expected re-
sponse identification. This method does not require referencing historical process
data, but instead requires an estimation of device thresholds and region boundaries.
The flowchart for region boundary response identification is shown in Figure 3.14.
Again, specific identification of the no disruption region is unnecessary, as it does not

mandate a mitigation response.
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Figure 3.13 Flowchart for identification of expected process voltage sag response using
process history.
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Figure 3.14 Flowchart for identification of expected process voltage sag response using

threshold calculations.
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Mitigation Routines

Once the expected response region of the incoming voltage sag is identified, then
one of four ridethrough routines may be executed. Two routines aim at mitigating
AC drive dropout faults and two address faulted instrumentation responses. When an
incoming sag falls into the no disruption region, then the process is left undisturbed

by the Ridethrough PC.

AC Drive Dropout Routines

Software Momentary Drive Coast

In the AC drive dropout region, the drives halt their output when their DC bus
magnitude crosses its trip threshold. As shown in the unmitigated response study of
the previous chapter, the rate of decent from the prefault magnitude to the trip level
is significantly less when the motor is disconnected than when the motor is energized.
The AC drive mitigation routines take advantage of this effect. Their aim is to switch
the drives to a coast condition if a sag is expected to cause a DC bus trip, then re-
energize them after the sag has completed. The flowchart of Figure 3.15 shows the
procedure for the software momentary drive coast.

When the voltage sag has ended, the average prefault control values are substi-
tuted for the output control signals. Using the prefault values is a means of gradually
returning the process to its normal state, instead of using feedback control which risks
an extreme process variable overshoot upon recovery. After 1.5 seconds has elapsed
on a postsag timer (a time sufficient enough to allow the process to return to normal
operation), the standard feedback control conditions are restored. During the coast
command, the PL.C subroutine also calls for a PI control integrator hold. This allows
feedback control to restore to prefault conditions without any signal drift occurring
during the sag and process restart steps. The restarting algorithm flowchart is shown
in Figure 3.16.

Naturally, this approach is expected to cause a process disturbance. In the case

of the textile tension controller, the expected outcome is to experience a momentary
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Figure 3.15 Flowchart of software momentary drive coast mitigation routine.

loss of tension along with changes in linespeed. Figure 3.17 illustrates the simu-
lated process response to this mitigation method. The expected process disturbance,
however, is a significant improvement over the unmitigated response. Without the
ridethrough routine, the process shuts down, requires rethreading, and calls for a user
issued restart.

The software momentary drive coast routine requires that the coast command
reaches the drives before the DC bus crosses the trip threshold. Therefore, the
effectiveness of the software coast is highly dependent on the system latency. Im-
provements in execution times will allow more time for the DC bus to decay at the
de-energized rate before it crosses the trip threshold. The second AC drive dropout

mitigation routine explores improving coast command performance in this manner.

76



START RESTART /
RESET

RESTARTING = TRUE OR
HOLD CONTROLS = TRUE
ORHOLD COAST = TRUE?

CONTROL SIGNAL
REPLACE BITS =
TRUE

CONTROL SIGNAL
REPLACE BITS =
FALSE

<
4

RESTARTING = TRUE VES
AND ITERATION = END RESTARTING =

ITERATION + 1800 FALSE
(1.5 SEC)?

NO

A

EXPECTED FAULTED

INSTRUMENTS =TRUE AND

ITERATION = END ITERATION
+400 (1/3 SEC)?

YES | EXPECTED FAULTED
—%  INSTRUMENTS =
FALSE

END RESTART /
RESET

Figure 3.16 Flowchart of process restarting sequence following coast mitigation rou-
tine.
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Figure 3.17 Theoretical process response to AC drive coast mitigation routines.

Hardware Assisted Momentary Drive Coast

The hardware momentary drive coast routine bypasses the Profibus network and
PLC when performing an output halt to the payoff and takeup reel motors. This
is accomplished by using an output channel available on the data acquisition card.
When the halt command is given, the data acquisition card issues an output voltage
which drives a bank of relays that physically disconnect the motors from the drives.
In effect, this method performs the same operation as the software coast routine, but
does not require a coast and restart command to the PLC. The output control signal
replacement commands and the PI control integrators are controlled as they were in
the software routine. The algorithm flowchart is shown in Figure 3.18 and the add-on
circuit for this method is shown in Figure 3.19. This relay configuration was chosen

for its ability to be driven entirely by the data acquisition card’s analog output and
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available power supply. The data acquisition card sends a OVDC or 5VDC signal
from an analog output channel, which closes or opens an optical solid state relay.
Operation of the solid state relay in turn operates a bank of 5VDC electromechanical
relays that open and close the connection between the AC drives and the motors.
Excitation voltage for the electromechanical relays is provided by a 5VDC, 1A supply
from the data acquisition card. When the analog output is set to 0VDC, the drive-
motor connection is closed. For the 5VDC analog output, the connections are opened,

and the drive DC buses are prohibited from losing energy in the motors.

START HARDWARE
COAST

USER SELECTED HARDWARE COAS YES HOLD COAST = DISCONNECT
AND EXPECTED DRIVE DROPOUT = TRUE ~ 3 MOTOR OUTPUT
TRUE AND IS_ANY_SAG = TRUE? RELAYS

NO

A

USER SELECTED HARDWARE COAS HOLD COAST = FALSE,
AND ITERATION = END ITERATION +2 EXPECTED DRIVE DROPOUT = FALSE,
AND HOLD COAST =TRUE? RESTARTING = TRUE

|

RECONNECT MOTOR
OUTPUT RELAYS

NO ¢
v

END HARDWARE
COAST

Figure 3.18 Flowchart of hardware assisted momentary drive coast mitigation routine.
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Figure 3.19 Add-on circuit for hardware assisted momentary drive coast mitigation
routine.
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The benefit of this method is that the coast command may reach the drives sooner
than with the software routine, but at the cost of adding hardware. With a halt
occurring sooner, the DC bus is given extra time to decay at the de-energized rate
before the trip level is crossed. Improvements gained with this routine must therefore
be weighed against the effort required to install the add-on circuit, along with the

ability of the motor drives to permit an open-circuited motor output.

Faulted Instrument Mitigation Routines

Because responses in the faulted instrumentation region involve the propagation
of erroneous system signals, the mitigation routines in this section concentrate on

substitution of these signals with temporary values.

Control Signal Substitution

In this algorithm, if an incoming voltage sag is found to be in the faulted instru-
mentation region and the user selects the control signal substitution routine, then
the Ridethrough PC selects the payoff and takeup control words to be replaced with
their average prefault values. After a postsag delay of 1.5 seconds, the output signals
are switched back to originate from the PLC controllers. During the execution of
this routine, the PI integrators are held to allow for a smooth transition back to the
original control conditions. This method is similar to the open loop method proposed
in [68], but is only triggered for sags that fall into the faulted instrumentation region.
The instruction flowchart for this mitigation method is shown in Figure 3.20.

As with the AC drive dropout routines, original conditions are restored a fixed
amount of time after sag recovery. As shown in Figure 3.21, the expected response of
this routine keeps the physical quantities of linespeed and tension constant, assuming
steady state prefault operating conditions. This method does not take into account
the variations in ridethrough and recovery times that are present with different sen-
sors, for different sags, and for varying physical inputs. With increased specification
of individual sensor responses, signal replacement may be a more customized affair,

and allow the PI control loops to operate through a sag in this region.
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Figure 3.20 Flowchart of control signal substitution mitigation routine.

Selective Instrument Signal Substitution

In the selective instrument signal substitution routine, the average prefault values
of each sensor are determined and used along with the incoming sag magnitude to
access an array of ridethrough times for each instrument. The values in these arrays
are determined from previously stored sag testing results as recorded in Appendix E.

Array indices are generated using Equation 3.9 and the equation

Pi

where w,, is the physical input level array index for accessing the ridethrough time,

wy = [—ng — ymi"] , (3.10)

Yavg 1s the average prefault value of the physical input, Y, is the minimum physical
value for the process, and p; the step size in units of the physical input that instrument
i measures (m/s, N). With a physical input and sag magnitude known, the accessed

ridethrough time is used as a delay time for the instrument signal to be replaced with
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Figure 3.21 Theoretical process response to control signal substitution and selective
signal substitution routines.

the average prefault value. In cases where the instrument rode through an event,
an arbitrarily large delay time is stored in the array, which effectively prohibits the
instrument signal from being replaced. Maximum recovery times are also accessed for
each instrument, and after the sag is completed, the instrument signal is not routed
back to the control algorithm until the postsag timer has elapsed the instrument
maximum recovery time. A flowchart for this algorithm is shown in Figure 3.22.
The significant improvement this mitigation method makes over control signal
substitution is that the instrument signals are allowed to pass into the control algo-
rithm if their value is expected to be undisturbed. This allows for closed loop control
while the instruments are in the ridethrough segment of their sag response. For sags
of a shorter duration than the ridethrough times, the control algorithm is unaffected

and the inherent instrument ridethrough is used to its full capacity. Also eliminated
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Figure 3.22 Flowchart of selective instrument signal substitution mitigation routine.
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is the need to hold the PI control integrals for a smooth transition following recovery.
The theoretical response of this method as it is applied to the textile tension control
stand is the same as the theoretical control signal substitution response as shown in

Figure 3.21.

Summary

A software ridethrough coordination and mitigation program was developed to
interface with a three phase power supply and the Profibus network used on the
experimental textile tension control stand. Interfacing hardware consists of voltage
isolators and a National Instruments data acquisition card for the power supply, and
a Woodhead/SST Profibus interface card for the automation network. Additions to
the existing PLC ladder program were minimal, consisting of an add-on subroutine to
manage data transfer and a series of signal switching commands in the main ladder
program. Implementation and execution of the main ridethrough program occurs in
the LabView graphical programming platform.

Voltage sag detection is triggered by RMS derivative threshold crossings, with
a theoretical detect time of less than one-quarter cycle. Sags are measured in an
additional quarter cycle, and are either associated with historical process data corre-
sponding to the incoming sag or applied to logic functions that determine the expected
process response. The program monitors selected process data from the automation
network, and in the event of a sag stores signals and status data for future reference.
Voltage sag measurements are also taken and included in the event history.

Mitigation routines are executed based on preselected user input and the expected
disruption region of the incoming sag. Sags that are categorized in the AC drive
dropout region are mitigated by either a command driven coast routine or a contactor
driven coast routine. Command driven coasting is entirely software based, but is
potentially limited by data transfer rates. Contactor coasting can increase response
time by functioning outside the PLC and data network, but requires the addition of

motor contactors and switching relays.
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Sags that are expected to cause instrumentation faults are addressed in one of
two ways. In the control signal substitution method, the motor drive control signals
are immediately replaced with their prefault values and the PI control integrators are
held. After the sag and a fixed waiting period have expired, the PI control outputs are
redirected to their original locations. In the selective substitution method, timers are
set to the ridethrough times for a given instrument. This timer setting is determined
by the present voltage sag magnitude and instrument physical input. Expiration of
a ridethrough timer triggers the instrument signal to be replaced with its average
prefault value. This is an improvement over the control signal substitution method
because it takes advantage of each instrument’s inherent ridethrough capabilities.
Detailed sag testing is, however, required to determine the appropriate delay times.
Instrument recovery times are also referenced to determine the optimal times for
switching the original signal back into the control loop.

Additional flowcharts for the Ridethrough PC programming is given in Appendix
I, and the LabView code is provided in Appendix J.
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CHAPTER 4
EXPERIMENTAL RESULTS

The Ridethrough PC software as described in the previous chapter was applied to

the experimental textile tension control stand. This chapter provides an assessment

of software mitigation algorithm effectiveness, along with analysis of the interfacing,

sag detection, and event analysis/association subsystems.

Execution Times

The latency, or stimulus-to-response timing of the Ridethrough PC software may

be assessed in terms of component execution times. These components are detailed

in Figure 4.1, which shows the order of operational delays for each mitigation routine.

The measured times are listed in Table 4.1.

VOLTAGE

SOFTWARE MOMENTARY VFD COAST ROUTINE

PROFIBUS DATA| PLC LOOP | PROFIBUS DATA | DRIVE SHUTOFF
TRANSFER EXECUTION TRANSFER DELAY

DONE

HARDWARE ASSISTED MOMENTARY |
VFD COAST ROUTINE

SAGIN
—>

PC DATA
TRANSFER

SPC LOOP TIME
(MULTIPLE INSTANCES)

PC DATA
TRANSFER

DATA
ACQUISITION
CARD OUTPUT

RELAY OPENING
TIME

DONE

CONTROL SIGNAL
SUBSTITUTION ROUTINE |

PROFIBUS DATA DONE

TRANSFER

PLC LOOP
EXECUTION

Figure 4.1 Order of operations for analysis of execution times.
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Table 4.1 Individual operation execution times.

OPERATION EXECUTION TIME
PC data transfer 6us
Ridethrough PC loop time 0.833ms
Profibus data transfer 5.912ms
PLC loop execution 8.7ms
Drive shutoff delay 25ms
Data acquisition card output time 204pus
Drive output relay opening time 3.61ms

Timing Measurements

Measurement of the values in Table 4.1 were performed by the following methods:

1.

PC data transfer. The delay time was determined by executing a program that
sends an incremental variable to the Profibus network. Examination of the
Profibus data stream for data value transitions yielded increment numbers and
their corresponding time stamps. For each data point, the increment number
and time increment was recorded. The average length per increment was de-
termined to be 6us and is attributed to PC data transfer delays from the data

acquisition card or to the Profibus interface card.

Ridethrough PC loop time. This is defined by the sampling period for the
voltage signal inputs. Five data points are sampled for each loop increment at

a sampling frequency of 6kHz, yielding a loop time of 0.833ms.

Profibus data transfer. Loop cycle times were measured using Scope Profibus
software, and were determined to vary from an experimental low of 5.418ms to

a high of 7.722ms, with an average of 5.912ms.

PLC loop execution. Determination of PLC execution times were made by ac-
cessing the PLC through Siemens Step 7 programming and diagnostic software.

Scan cycle times varied between 6ms and 11ms, with an average of 8.7ms.

Drive output shutoff delay. The time required for the drive to respond to a
direct (non-network issued) shutoff command was determined to lie between

18ms and 31ms with an average response time of 25ms.
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6. Data acquisition card output time. This time is determined by a executing loop
containing an analog output command only. The average time is calculated
using the number of loop iterations over a fixed period of time, which yielded a
value of 210us. The PC data transfer delay is subtracted from this value, which

results in a delay time of approximately 204 s

7. Drive output relay opening time. Experimentally this delay time varied from

3.48ms to 3.90ms with an average of 3.61ms.

Combined Routine Execution

The collective propagation and execution delays itemized in Table 4.1 may be
used to estimate the execution times for the software mitigation algorithms. These
estimated times are listed in Table 4.2. For each value, 12 Ridethrough PC program
cycles are included to account for sag detect and measurement times. Profibus net-
work delays and PLC loop execution times are each multiplied by 1.5 times their
measured average, which accounts for the full cycle where a response is computed
plus an average of one-half cycle when the stimulus arrives but is not recognized until
the beginning of the next full computation cycle. The selective signal substitution
execution times are not listed due to the variation caused by built-in time delays,
though the time-invariant components are identical to the control signal substitution
method.

Comparison of the estimated execution times in Table 4.2 with their experimental
counterparts in Table 4.3 reveals several differences. In the software momentary drive
coast algorithm the estimation falls above the experimental range, but the hardware
assisted drive coast algorithm is predicted to be faster than the experimental val-
ues. This may be attributed to unmeasured variation in the Ridethrough PC data
transfer times resulting from increased demand of system resources that the complete
mitigation program has over the experimental timing measurement program. Such
variations serve as an indicator that a computationally inexpensive software platform
is a key component of a software-based mitigation system. When comparing the

coast mitigation algorithms to one another, the improvement in execution time that
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the hardware assisted method offers over the software-only method emphasizes the
dependence that algorithm effectiveness has on network communication throughput
and execution timing. The measurements made for the control signal substitution
method are made without the Profibus data transfer and PLC loop execution compo-
nents, but include the data acquisition card output component. For this algorithm,
if the experimental value in Table 4.3 is compensated with the average measured
component values to account for the measurement method, the execution time range
lies between 33.4ms and 35.4ms, which is a closer match to the predicted value, but

remains slightly longer.

Table 4.2 Mitigation routine predicted execution times.

MITIGATION ROUTINE APPROX. EXECUTION TIME
Software momentary drive coast 65.9ms
Hardware assisted momentary drive coast 13.9ms
Control signal substitution 32.0ms

Table 4.3 Mitigation routine experimental execution times.

MITIGATION ROUTINE ACTUAL EXECUTION TIME
Software momentary drive coast 56ms <t < 64ms
Hardware assisted momentary drive coast 20ms < t < 4bms
Control signal substitution 19ms <t < 21ms
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Performance of Sag Detection, Sag Measurement, and Event Association

Sag Detection

Experimental performance of the voltage sag detection method is shown in Figures
4.2-4.5 and summarized in Table 4.4. In several cases, the actual detect times are
one to two execution cycles of the Ridethrough PC program (multiples of 0.833m.s)
longer than is predicted by MATLAB simulations (Figures 3.5-3.8). When comparing
the experimental and simulated cases, the RMS voltage derivative deviates from its
prefault value more rapidly in the simulated case. This result is caused by slight
differences in nominal voltage magnitude and distortions from a true sine wave in
the experimentally captured input waveform. The distortion’s effects are evident in
the experimental prefault RMS voltage derivative waveforms, where a slight ripple
can be observed. Differences between actual and predicted response times are also
caused by the time at which the sag is initiated relative to the execution cycles of
the Ridethrough PC. In the experimental cases, the sag is initiated at a random time
relative to the Ridethrough PC execution. This asynchronous behavior leads to RMS
voltage derivative threshold crossings that are detected at slightly different times,
which can lead to a single Ridethrough PC execution cycle difference of 0.833ms.

Cases of 89% magnitude, 90° point in wave (Figure 4.6) and 89% magnitude,
0° point in wave voltage sags were also observed. In both examples, no detection
signal is generated, which matches the simulated prediction (Figure 3.9 shows the
89%, 0° simulation). This result can be alleviated using RMS voltage derivative
detection thresholds lower than the settings of +2kV/s. This change must take into
consideration the balance between fast sag measurement and low susceptibility to line
noise and voltage transients. If these tolerance bands were narrowed, the resulting
increase in sag detection performance would come at the cost of increased sensitivity
and false sag detection signals.

Experimentally, the voltage sag detection method proves to be a satisfactory solu-
tion for the system to which it is applied. It is computationally inexpensive and will
reliably detect events delivered by the voltage sag generator that supplies the tex-

tile tension control process. Detections occur within 5.0ms of voltage sag inception,
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which provides adequate time for measurement and expected response identification

to occur before the process is disrupted.

Table 4.4 Actual and theoretical voltage sag detection times.

SAG MAG. / P.O.W. | THEORETICAL TIMES | ACTUAL TIMES
20% / 0° 2.50ms on, 1.67ms off 3.33ms on, 2.50ms off
20% / 90° 0.83ms on, 0.83ms off 0.83ms on, 0.83ms off
80% / 0° 3.33ms on, 3.33ms off 5.00ms on, 4.17ms off
80% / 90° 0.83ms on, 0.83ms off 2.50ms on, 1.67ms off
89% / 0° No detections No detections
89% / 90° No detections No detections
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Figure 4.2 Experimental detection response to 20%, 90° point on wave voltage sag.
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Figure 4.5 Experimental detection response to 80%, 0° point on wave voltage sag.
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Sag Measurement

Graphs of the experimental voltage sag measurement output are shown in Figures
4.7 and 4.8. In the example for a 40%, 0° point in wave voltage sag, the resulting
magnitude measurement possesses the expected time delay of one-quarter cycle be-
fore the measurement settles to a reliable value. The experimental case verifies the
simulated case (Figure 3.11), where the sole difference between experimental and the-
oretical cases is a slight deviation in the experimental sag magnitude measurements
at the points of inception and recovery. Despite this difference, the measurement is
reliable for the application of utilizing the sag magnitude calculation after allowing
the one-quarter cycle delay to elapse.

For the 40%, 90 ° point in wave case shown experimentally in Figure 4.8 and
theoretically in Figure 3.12, both cases show the resulting magnitude measurement
spike caused by abrupt voltage transitions applied to the calculation of Equations
3.7 and 3.8. This underscores the criticality of allowing a one-quarter cycle delay to
elapse before applying the measurement towards identifying the voltage sag’s likely
process effects. Naturally, line noise present in the system will contribute towards
errors in measurement of the voltage peak using this method. This issue may be
alleviated with hardware or software filters, the application of which should involve
specific consideration of the filter performance versus the delays that they introduce.
Nevertheless, this measurement method proves to be a simple and effective means of

determining a voltage sag’s magnitude shortly after it is detected.
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Event Association

The event association methods are executed seven Ridethrough PC cycles after a
detect signal is given, which allows sufficient time for the peak voltage measurement
to reach its final value. The method of identifying the expected response region is
preselected by user input. For the process history identification method, the history
is read into memory before the program begins executing, which avoids the delays
associated with opening and accessing a data file while the sag is in progress.

The method for process response identification using a recorded process history
functions properly; for the magnitude and phasing combinations delivered by the
voltage sag generator (in 20% increments), the detection and measurement routines’
application towards identifying a recorded event using Equation 3.9 reliably calculate
array indices to reference a detailed process voltage sag response history. Similarly,
identification of the expected process response using Boolean response region esti-
mations as described in Equations 2.31 and 2.32 performs properly and matches the
expected responses predicted using the process history. Under both of these meth-
ods, expected response determination occurs in less than one cycle of 60Hz incoming
voltage, which is significantly less than the delay time between voltage sag inception
and any unmitigated process response.

With a complete process response history using voltage sag magnitude increments
of 20%, the history file size is 23MB. For the identification of an expected drive
dropout, much of this data is unused. Only the state of the takeup and payoft drives
is scanned to determine membership in the drive dropout region and as such may be
reduced if only an expected drive dropout is to be determined. However, for identifi-
cation of expected faulted instrumentation, the recorded process instrumentation and
control signals are also scanned to determine out of tolerance conditions and therefore
require more detailed process history recording. In contrast, the memory requirement
of a process history is eliminated when using Boolean response boundary estimation,

but requires a clear definition of these boundaries to be effective.
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Mitigation Algorithms

Each software mitigation algorithm was implemented and applied to the textile
tension control stand. This section describes the performance of each routine under

various test conditions.
Momentary Drive Coast Routines

The drive dropout routines aim at mitigating the dropout response as shown in
Figure 4.9. This is accomplished by entering a coast state in order to prevent or delay
the drive DC bus from crossing the trip level. Tests performed for these routines used

equal magnitude voltage sags on all three supply phases.

Software Momentary Drive Coast

Successful execution of the software momentary drive coast algorithm is shown
in Figure 4.10. Process setpoints are maintained at 1.0m/s line speed and 30N web
tension. In this case, the drive DC bus voltages are held above the trip level of
200V by temporarily stopping the drive output starting approximately 56ms after
sag inception. The DC bus decays at a slower rate, which provides additional time
for sag recovery to occur. After the sag has ended, both drives resume their output,
but are set to their prefault average setpoints (Figure 4.11). Product spillage and
manual restart are avoided, and the process line speed and tension return to their
prefault values and ultimately transition back to standard control at ¢ = 1.95s. The
theoretical model predicts this behavior generally, but suggests a faster recovery than
in the experimental case. This difference is caused by the slack condition present in
the mechanical system that is not included in the theoretical model.

Figures 4.12 and 4.13 show the behavior of the software momentary drive coast
algorithm when recovery is not successful. In this case, the coast commands are
executed later than in the successful case because of variation in voltage sag detec-
tion times and command execution latency. The DC buses do not remain above the
dropout level of 200VDC for the entire duration of the interruption. Because of the
drive undervoltage faults, the restart and restore commands are executed with no ef-

fect. The unsuccessful execution of this algorithm ultimately mirrors the unmitigated
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response and reveals the limitations of this method for sags of longer duration. This
scenario underscores the need for fast execution, but reveals that the unsuccessful
case is the inevitable result as the voltage sag duration approaches infinity, regardless
of the mitigating effort applied.

Altogether this mitigation strategy meets expectations — the process sees a dis-
turbance similar to a shutdown, but the shutdown is one that is intentionally caused
so that it can be brought back online in a controlled fashion. Process variables are
not continuously maintained, yet are restored without manual operator intervention.
Success of the software momentary drive coast routine requires that the coast com-
mand reaches the drives before the DC bus crosses the trip threshold and that the
voltage sag or interruption is of a reasonably brief duration such that the DC bus
voltages do not cross over their trip thresholds, even while decaying at a slower rate.

Despite its experimental success, the response times of this mitigation routine do
leave room for improvement. The effectiveness of this method is highly dependent on
Profibus network latency and PLC execution time. Faster coast executions will cause
DC buses to begin the de-energized rate of decay at a higher level and therefore allow
more time before the trip thresholds are crossed. If this method were implemented
such that its performance were less reliant on the propagation of coast commands over
the Profibus network from Ridethrough PC to PLC and then back to the VFDs, then
the momentary coasting routine would be tolerant to voltage sags of longer duration
and hence reduce the occurrences of unsuccessful execution. This reliance on network
and PLC timing gives rise to the hardware assisted momentary drive coast mitigation

routine.
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Figure 4.9 Experimental and simulated unmitigated process response resulting in
drive dropout (1.0m/s, 30N process setpoints; 0%, 450ms, 3¢ voltage interruption).
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Hardware Assisted Momentary Drive Coast

Figure 4.14 shows an experimental case of the hardware-assisted drive coast rou-
tine for a three-phase voltage interruption of 0% magnitude applied for 450ms du-
ration. Both linespeed and tension responses are similar in form to the software
coast routine. The slack condition again causes a difference between the experimen-
tal and simulated recovery responses. For the 450ms sag in Figure 4.14, the difference
between the beginning of experimental and theoretical tension recovery is approxi-
mately 650ms, whereas the difference for the shorter sag duration case of Figure 4.15
is approximately 250ms. This indicates that for greater durations of zero tension
and coasting linespeed, more slack is created between the payoff and takeup reels.
Because of this, a delayed recovery occurs because the textile slack must be taken up
before tension is restored.

This difference reveals noteworthy characteristics of the process dynamics while
recovering from the coasting state. Substitution of prefault average control signals
lead to an overshoot in measured line speed while the slack is taken up, followed
by a return to the desired line speed while the web tension rises to its desired value
and gradually applies load to the motors. When slack is not accounted for, the
theoretical test runs will predict an overshoot in tension instead of line speed because
the mechanical coupling between rollers and reels is considered to be always present.

For the hardware momentary drive coast algorithm, the coasting state response
times were found to lie between 20ms and 45ms. The execution of the drive halt
operation is improved over the software momentary coast cases, where the successful
case response time is 56ms and the unsuccessful case response time is 64ms. The DC
bus voltage magnitude is held higher than in the software case, thereby allowing more
time to elapse before the undervoltage trip level crossover. Because of the difference
in DC bus decay rates between the energized motor and de-energized motor, the
improvement in response time pays off greater increases in allowable sag duration.

This improvement may be quantified as

A
2
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where Al and A2 are linearly approximated slopes of the DC bus decay rates for
the energized and de-energized motor, and At; and At, are time delay intervals as
shown in Figure 4.16. When the software coast algorithm is used, the improvement in
voltage sag duration susceptibility increases by At,. Additional improvements gained
using the hardware coast algorithm over the software coast algorithm may also be
quantified with Equation 4.1, where the value of At; instead represents the additional
improvement in response time over the software coast method.

Another remarkable outcome is that of the unnecessary operation case, as shown
in Figure 4.17. In this scenario, the momentary drive dropout mitigation routines
(both software and hardware-assisted) cause a brief coast condition, but the incoming
voltage sag recovers before the DC buses would cross the undervoltage trip level if
the routine were not applied. The observed process disturbance is therefore caused
entirely by the mitigation algorithm and creates a less desirable result than a process
voltage sag ride through. Though this condition will occur for a small set of possible
voltage sag durations, potential fixes such as building delay times into the mitigation
algorithms to minimize occurrences of the unnecessary case would be done at the
expense of any gains in sag duration tolerance that the mitigation routines seek to

achieve.
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Figure 4.14 Experimental and simulated process response using hardware assisted
momentary drive coast algorithm (1.0m/s, 30N process setpoints; 0%, 450ms, 3¢
voltage interruption).
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Figure 4.17 Experimental and simulated process response unnecessarily using hard-
ware assisted momentary drive coast algorithm (1.0m/s, 30N process setpoints; 20%,
200ms, 3¢ voltage sag).

110



Faulted Instrumentation Routines

The faulted instrumentation routines mitigate the process deviation response by
interrupting and substituting feedback and control signals in the PLC controller. The
characteristic unmitigated faulted instrumentation response is shown in Figure 4.18,
where the applied fault is a single phase voltage interruption on Phase C of the power

system.

Control Signal Substitution

The control signal substitution routine replaces the drive setpoint control signals
with their prefault averages when faulted instrumentation is expected. Integral com-
ponents of the PI controllers are held to avoid accumulation of controller error. The
experimental and theoretical responses of the textile tension control stand using this
algorithm are shown in Figure 4.19. In this case, the AC motor drives do not drop
offline, but instead the tension sensor and tachometer produce faulted, erratic signals.
In response, the control signal replace bits are set (Figure 4.20) 19ms into the event
and for a delay of 333ms following the sag. The transition back to standard control
occurs at t=805ms. Algorithm execution results in the maintenance of both linespeed
and textile tension for the voltage sag event and hence a process ride through response.
Substituted signal transitions occur without any resulting disturbance in the process
outputs. However, during the open loop/signal substitution period, it is important
that no mechanical disturbance requiring closed loop control occurs in the process.
If this condition is met, the control signal substitution algorithm demonstrates an
effective means of improving process ridethrough in cases of faulted instrumentation.

As Figure 4.21 illustrates with a 50ms, 1¢ interruption, there exists an unneces-
sary case response when applying this method. In this scenario, all instrumentation
rides through the event because the incoming voltage sag is not of sufficient dura-
tion to exhaust the instruments’ ridethrough for the applied voltage sag depth and
process physical conditions. No misoperation occurs in either the tachometer or the
tension cell, yet detection and measurement of the sag triggers the algorithms’s ex-

ecution. Signal substitution occurs between t = 21ms and t = 395ms. Unlike the
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unnecessary case seen with momentary drive coasting routines, no resulting process
disturbance occurs. While occurrences of such a scenario are limited to voltage sags
of brief duration, they demonstrate the absence of customization with regard to in-
dividual instrument voltage sag characteristics. Therefore, while the functionality of
this routine is sound, room for improvement exists to the extent that variations in
instrument voltage sag responses may be accounted for when determining the need

to substitute process signals.
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Selective Signal Substitution

The selective signal substitution algorithm is designed to minimize the replacement
of instrument feedback signals in cases where fault and process conditions will not
cause an instrument error. The input variables of physical instrument inputs and
voltage sag magnitude are used to index arrays where the appropriate ridethrough
time is found and used as a signal switching delay.

The textile tension controller unmitigated case for 1.0m/s, 10N process inputs was
shown in Figure 4.18, where the faulted tension and tachometer inputs are shown to
produce a process disturbance for both linespeed and tension. Using the selective
signal substitution algorithm, the mitigated response for these conditions is shown in
Figure 4.22. Here both the experimental and theoretical responses indicate faulted
instrumentation signals, yet no appreciable linespeed or tension disturbances result.
The signal replace intervals are shown in Figure 4.23 and illustrate different delay
times for the initial signal substitutions as well as different delay times for restoring
the original signal feeds.

A test case for different physical input levels of 2.5m/s linespeed and 50N tension
is shown in Figures 4.24 through 4.26. The unmitigated response of Figure 4.24 shows
a significant disturbance for a single phase voltage interruption of duration 450ms.
Figures 4.25 and 4.26 show the selective signal substitution method functioning as
predicted, with no resulting process disturbance and signal transition times that are

customized to the input disturbance and process prefault characteristics.
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Figure 4.23 Experimental and simulated faulted instrument signals and replace bits
for selective signal substitution algorithm (1.0m/s, 30N process setpoints; 0%, 450m.s,
1¢ voltage interruption).
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Figure 4.24 Experimental and simulated unmitigated process response resulting in
faulted instrumentation (2.5m/s, 50N process setpoints; 0%, 450ms, 1¢ voltage in-
terruption).
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Figure 4.25 Experimental and simulated process response using selective signal sub-
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A case where only a single instrument is substituted is shown in Figures 4.27
through 4.29. In the unmitigated case, the tension cell measures a web tension of
10N and throughout the event provides a reasonable measurement that does not con-
tribute to the process disturbances. The tachometer, however, does deliver a faulted
signal and hence calls for replacement during the 40%, 450ms, 1¢ supply voltage sag.
Upon applying the selective signal substitution algorithm, the linespeed and tension
disturbances are eliminated, as shown in Figure 4.28. The instrument signals and
switching signals shown in Figure 4.29 indicate that this particular execution of the
selective signal substitution algorithm did not include substitution of the tension cell
signal, thereby allowing it to function in the control loop in its normal capacity. A
noteworthy aspect of this test case is that at first inspection of the unmitigated re-
sponse it might seem that the tension cell misoperates and contributes to the process
disturbance. However, the instrument ridethrough time arrays indicate a ridethrough
condition for the given fault scenario and therefore prove themselves a more reliable
means of determining the appropriate signals to replace.

Experimentation indicates that the selective signal substitution method functions
adequately and is an improvement over the control signal substitution method because
the process controller is not bypassed unless absolutely necessary. The inherent ride-
through that exists in each device is used to its full advantage, which optimizes the
amount of time the PLC controller may be left unassisted before intervention. The
three salient test cases are compared in Figure 4.30, which illustrates the variation in
signal substitution intervals for each process response scenario.

Trivial cases of selective signal substitution algorithm execution also exist. When
the incoming voltage sag is determined to cause a possible faulted instrumentation
response, but the voltage sag duration and process variable conditions do not lead to
any signal replacement, the routine nonetheless executes, begins timing for replace-
ment commands, but never sends them. In these trivial case executions, closed loop
control is maintained throughout the duration of the incoming voltage sag event. This
ultimately leads to no mitigating action, no process disturbance, and maintenance of

all instrument signal feedback paths into the process controller.
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Figure 4.27 Experimental and simulated unmitigated process response resulting in
faulted instrumentation (1.0m/s, 10N process setpoints; 40%, 450ms, 1¢ voltage

sag).
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Summary

An analysis of the Ridethrough PC operation was performed as it applies to the
test bed textile tension control system. Execution times were evaluated and found to
be strongly dependent on network delay and process controller cycle times. Detection
methods were found to trigger slightly longer than predicted, yet still prove effective
when used for the Ridethrough PC application. Measurement methods were found
to function as predicted, yet show sensitivity to waveform distortions and voltage
transients.

The software and hardware coast mitigation routines perform properly in their
mitigation of voltage sags and interruptions that would cause AC motor drive dropout.
The software momentary drive coast method shows a strong dependence on network
latency and processing delays. Execution times for the hardware coast mitigation
method showed a significant improvement over the software coast method, but at the
cost of minor hardware additions. Both coast methods halt the motor outputs in
order to prevent the decaying DC bus from crossing its trip threshold, and cause a
brief loss of tension and linespeed decay. Recovery occurs in a gradual fashion and
eliminates extreme overcompensation caused by the accumulation of integral control
error. In cases of extended sag duration, a trip threshold crossover will occur even if
the mitigation routine is applied. Therefore, the effectiveness of the coast routines’
mitigating efforts may be quantified by the additional time the algorithms provide
before a drive DC bus undervoltage fault occurs. Unnecessary uses of the drive coast
routines were shown to exist, but their presence is restricted to sags that are of shorter
duration than the unmitigated dropout time.

When applied to the textile tension control system, the signal substitution rou-
tines were shown to improve the faulted instrumentation process response and agree
with their predicted outcomes. In tests of the control signal substitution method,
faulted instrument signals were blocked from propagating to the process drives at the
output stage. Arbitrarily substituting the output controls proves effective, but reveals
an unnecessary case of operation at times when a voltage sag recovers before instru-

ment ridethrough times elapse, or when physical input and voltage sag magnitude
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conditions do not produce instrument faults. The unnecessary case is minimized by
the case of the selective signal substitution algorithm, which shows variation in the
use of and timing of switching prefault average instrument outputs into the process
controllers. This method is an improvement over control signal substitution for all
expected faulted instrumentation cases, as it allows the instrumentation to remain
in service when its misoperation is not anticipated. Trivial cases of selective signal

substitution were found to occur, but do not result in any corrective action.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

Investigation Conclusions

This dissertation presents novel software based means of mitigating the effects of
voltage sags on network connected industrial processes. Underlying design criteria
are to avoid the use of conventional mitigation hardware and to minimize disturbing
the existing system to which the solution is applied.

A dedicated textile tension control process is used as a test bed for applying the
software algorithms. Voltage sag testing on this process indicated that one of three
distinct responses can occur: AC drive dropout leading to process shutdown, faulted
instrumentation leading to process variable deviation, or no observed response (ride
through). Expressions for mathematically predicting the process response are derived,
where inputs are voltage sag magnitudes for three input power phases and outputs
are Boolean variables indicating an expected response.

The mitigation algorithms are applied using an add-on PC, or ‘Ridethrough
PC’, that interfaces with the supply voltages and the Profibus automation network.
Through monitoring and recording of network traffic during a voltage sag, a de-
tailed process history is established as an additional means of identifying the expected
process response. This history may be used independently of the mathematical ex-
pected process identification.

Using the Ridethrough PC, voltage sags are detected using an analysis of RMS
voltage derivatives and their magnitudes are measured using modified peak detection.
The expected process response is determined either through analysis of the process
history or Boolean calculation of the expected response.

Four voltage sag mitigation algorithms are proposed. A coast algorithm that is
exclusively software controlled addresses the AC drive dropout response. This method

preemptively forces the motor drives to coast in order to delay an undervoltage trip
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condition. An anticipated temporary loss of tension and drop in linespeed results,
but the process recovers after the sag has ended, thus avoiding significant downtime,
product spillage, and user restart/reset of the process.

The software coast algorithm provides improved ridethrough for the process, but is
nevertheless susceptible to incoming sags of longer duration. Decreasing susceptibility
to longer duration voltage sags is achieved with the hardware assisted momentary
coast algorithm, which forces motor drive output contactors to an open circuit state
as a means of forcing the process to coast. Additional ridethrough beyond the software
coast algorithm is provided by an increased response time that stems from eliminating
the automation network and PLC delay times.

The faulted instrumentation process response is mitigated by one of two algo-
rithms. In the control signal substitution method, the output controls are held to
their prefault average values for the duration of the sag plus a postfault delay time.
During this time, the PI controller integrals are held to prevent an unnecessary ac-
cumulation of integral error before the signal routing is restored. This algorithm
performs well in maintaining process conditions during expected faulted instrumen-
tation voltage sags, but often performs unnecessary executions when the combination
of voltage sag magnitude, sag duration, and device physical input conditions will not
cause an instrument fault.

Improvements in faulted instrumentation methods are made in the selective sig-
nal substitution mitigation algorithm, which accesses stored ridethrough times as a
function of voltage sag magnitude and instrument physical input for use as signal sub-
stitution switching delays. Maximum recovery times are also used as times to switch
the signals back to their original routing. Experimentation with this algorithm proved
successful; signal substitutions are made after an instrument’s ridethrough time has
expired and are not made when instrument disturbances are not anticipated by the
event conditions. This algorithm effectively mitigates cases of expected faulted in-
strumentation up to the maximum test sag length of 450ms, maximizes the amount
of time an instrument feedback signal may remain in a feedback path, and reduces

instances of unnecessary signal substitution.
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Development of the Ridethrough PC and the software-based voltage sag mitiga-
tion algorithms combined with experimental verification applied to a test bed textile

tension control workstation yields the following conclusions:

1. Use of software algorithms that execute in the presence of voltage sags can be

an effective means of mitigating process disturbances caused by voltage sags.

2. A recorded process response history or a mathematical response estimation may
be used to determine the appropriate course of action for software based voltage

sag mitigation.

3. AC drive dropout failures may be mitigated by application of software issued
coast commands. This solution increases the allowable time that an AC drive
dropout sag may last. Maintenance of process parameters during the coast state
is dependent on the specific process mechanics, but the ability to automatically

restore these parameters is enhanced by application of the coast routines.

4. Use of external contactors to force the coast state, as in the hardware assisted
momentary drive coast algorithm, improves the sag duration tolerance of the
process by eliminating the coast command delays of the automation network,
PLC program, and AC drive. This would not be the case if the latency of the

command path was less than the operating time of the external contactor.

5. Cases of unnecessary drive coast algorithm execution will occur when incoming
voltage sags are of a magnitude that will ultimately cause a dropout condition,
but are of a sufficiently brief duration such that the undervoltage fault would

not result. These cases produce process disturbances rather than mitigate them.

6. Arbitrary substitution of control signals during an incoming voltage sag that is
anticipated to cause a faulted instrumentation condition may lead to unneces-
sary substitution of control signals and excessive instances of forced open loop

control.
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7. Implementation of predetermined instrument ridethrough and recovery times in
the decision making process for signal substitution can decrease the instances
where feedback signals are unnecessarily ignored and help preserve closed loop

process control in the presence of supply voltage sags.

8. Ridethrough improvements made with these strategies are constrained by com-
munication network latency and controller execution delays. These delays may

be reduced if execution bottleneck paths are bypassed.

Research Contribution

This investigation has focused on several topics that to date remain unexplored:

1. Existing software ridethrough solutions use only the presence of a voltage sag
as a means of triggering alternate control. The methods herein use measurable

sag characteristics as criteria for determining a required action.

2. A process history is utilized for the purposes of voltage sag mitigation. Process
variables and voltage sag event data are recorded and stored together. The
unmitigated process response is analyzed during an incoming event to determine

an expected response.

3. Process voltage sag response boundaries are expressed mathematically. These
expressions are then evaluated during in-progress voltage sags to determine the

expected process response for mitigation purposes.

4. Measured variations in instrumentation responses are used in determining the
need for momentary open loop control. Sag magnitude and physical input
levels serve as inputs in determining the allowable delay time before substituting
feedback signals. This approach utilizes the available ridethrough in each device

and minimizes the time open loop control is used.
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Future Research Opportunities

System Implementation

Future work in this area should initially aim at improvements in implementation.
Programming the Ridethrough PC in a high-level programming language can reduce
the computational expense of the graphical LabView software. Faster and higher
resolution data acquisition hardware may be used to improve voltage sag detection
and sag measurement. To the extent that process controllers will permit, the software
may reside primarily in a process PLC to reduce the dependency on supervisory
systems.

More advancements may be found in the application of fuzzy logic or neural net-
work control that functions in a secondary or backup controller capacity in the pres-
ence of a supply voltage sag. It is likely that these solutions are more feasible in a
process that does not include a PLC and exclusively uses PC control. In this modified
architecture, the additional Ridethrough PC may be unnecessary, making application

of software mitigation algorithms less reliant on fieldbus network traffic.

Application of Commercially Available Equipment

Complexity of the Ridethrough PC can be reduced by using available measure-
ments from commercial metering or protective relaying equipment. This modification
would potentially eliminate the requirement for data aquisition hardware in the Ride-
through PC and the task of constructing custom voltage sag detection and measure-
ment subsystems. Use of equipment with advanced sag detection and measurement
capabilities would provide additional benefits by increasing the ability to respond
to sags greater than the 450ms boundary of this study, sags of varying magnitude,
and successive sags such as those seen during recloser operation. Implementation of
advanced monitoring functionality may also allow the Ridethrough PC to perform
multiple decision-making operations rather than respond to a single event at a time.

For this modification to be successfully introduced, several equipment character-
istics must be considered. Voltage sag detection and measurement functionality must

be comparable or superior to the methods shown in this study in their sensitivity,
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accuracy, and response times. Effects of device placement on voltage measurements
must also be considered. A general preference should exist for devices in close proxim-
ity to the process under analysis to minimize compensation related to power system
configuration and connection schemes. Additionally, locally placed devices are favor-
able because they are more likely to respond to locally generated voltage sags (as with
high current motor starting) and represent fewer challenges in establishing a commu-
nication link to a software mitigation system. Network communication capabilities
are also of concern. In order for detection and measurement data to initiate response
identification and mitigation routines in a timely fashion, communication latency be-
tween the metering/protective relaying device and the mitigation system should be
minimal. Other specifications such as network protocol compatibility, network traffic
burdens, and communication methods (master/slave or peer-to-peer) should also be
assessed to determine the feasibility of applying commercially available hardware.
Microprocessor-based power quality or system protection relays offered by man-
ufacturers such as Schweitzer Engineering Laboratories, GE, ABB, or Siemens are
potentially suitable for such an application. For some equipment offerings, system
power quality information, including voltage sag data, is gathered and may be quickly
accessed from system data registers [74,75]. These devices are typically furnished
with network interfaces such as DNP, Modbus, Modbus Plus, Ethernet, or Profibus
(Siemens) that can facilitate communications with external systems. If supported by
the device, time synchronization technologies such as synchrophasor measurements
[76,77] may be employed as a means of accounting for data transfer delays. With
these features available, application of commercially available protection or metering

equipment may be realized in a software-based process voltage sag mitigation system.

Response Identification and Mitigation Routines

Both methods of identifying an expected process response are applied in an envi-
ronment that assumes either a completed process voltage sag history or knowledge of
the expected process response boundaries. Future development of response identifica-

tion should focus on determining an expected response when only a sparse data set,

135



either in the historical record or in response region boundary estimation, is available.
In this scenario, a combination of process history and boundary estimation can be
used, where a more clearly defined outcome is given a greater weight in suggesting
the expected response. Improved process response history management may be im-
plemented in an effort to fill the historical record with sags that are of the greatest
available duration, so that for equal magnitude and phasing combinations, recorded
effects under longer sags overwrite those of shorter ones. Combining these methods
may also permit automatic generation and adaptation of Boolean response identifi-
cation equations from the process history. On a system database level, traditional
SCADA process historian systems may be implemented in future studies. By ac-
cessing a global process event history, a condensed voltage sag event history may be
assembled for use in anticipated response identification. This approach can ultimately
eliminate the task of creating a separate process sag response history.

Specific mitigation algorithms may be further developed in several ways. Coast
algorithms may be improved by further optimizing algorithm response times or elim-
inating the coast state altogether by incorporating intelligent management of stored
energy injection or kinetic buffering/inertia ridethrough methods. Future signal sub-
stitution methods should account for variables that change over the course of a process
run such as package accumulation or setpoint profiling. Hybrid routines that simulta-
neously address AC drive dropout and faulted instrumentation are also possible, and
are likely to be necessary in cases where the AC drive dropout response is completely

mitigated but a faulted instrumentation response remains.

Simulation and Experimentation

Improvements in process simulation methods may involve more detailed modeling
of hardware sag responses, with the goal of entering sag characteristics or recorded
fault waveforms as inputs to create a simulated process response. By doing so, sim-
ulated results may be added to a process sag response history. If computational
expense will not affect system performance, the process dynamic model may also be

used to predict the voltage sag response to eliminate reliance on event history access.
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Experimental verification may also be enhanced by the application of the methods
proposed in this study to a full scale industrial process. In its present or supple-
mented form, implementation and application to a variety of automation networks,
equipment, and processes can further demonstrate the advantages and limitations of

software-based voltage sag mitigation solutions.

137



APPENDICES

138



Appendix A

Textile Tension Controller Equipment List

This appendix contains tables of hardware used on the textile tension control test
stand and software used for programming and interface purposes. Ridethrough PC

equipment is not included in this Appendix.

Table A.1 Tension control system hardware information.

ITEM DESCRIPTION MANUFAC. | PART OR ID NO.
Load cell tension transducer Electromatic FLN-14-50-6
Tension signal conditioner Electromatic TI-17A-800
Pulse tach transducer Electro-Sensors 255, 906
Pulse tach signal conditioner Electro-Sensors SA420
Tachometer generators Servo-Tech SB740A-7
Discrete photo sensors Banner Q45BB6D
Profibus I/O base Siemens IM151-1
Analog input block Siemens 2AT U
Discrete input block Siemens 2DI DC24V
I/O power supply Siemens PM-E DC24V
24VDC power supply Siemens PS307 5A
24VDC power supply Siemens PS307 2A
S7-300 PLC/Profibus master Siemens CPU 315-2DP
ASI bus master Siemens CP 342-2
ASI power converter Siemens 6EP1632-1AL01
ASI interface block Siemens ZU. NR. 17101
Micromaster Vector AC drive Siemens 6SE3213-6CA40
Profibus drive interface Siemens CB15
1HP 3ph. duty master ind. motor Reliance S2000 - P56H0441P
Serial PC/PLC interface Siemens SVPL 0303891
Profibus/PC interface card Applicom PCI 150087

Table A.2 Programming and monitoring software.

SOFTWARE VERSION

Microsoft Windows 98 Second Ed.
National Instruments LabView 5.1
Siemens Step 7 NA
National Instruments Applicom drivers 1.1
TMG-Itec Scope Profibus 5.1
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Appendix B

Textile Tension Controller Mechanical Analysis

The mechanical portion of the tension control system consists of two drive reels
and three idle reels (Figure B.1). For analysis, each reel is treated as a rolling mass
system, and each connecting segment of textile is treated as a spring-damper system
that exerts forces on the reels it connects to. Of critical importance in this analysis is
the assumption that no idler reel slippage or web slack conditions occur in the system.
If slack or slippage were to occur, the spring-damper and rolling mass systems would
decouple, causing the system equations to become nonlinear. The constants and
variables used in this analysis are graphically shown in Figure B.2, and listed in

Table B.1. The analysis will determine the matrices for the state space relationship

x = Ax + Bu (B.1)
and
y = Cx + Du, (B.2)
where
u=| o (B.3)
Tapp5
and
Ut
Up
= B.4
y £ (B.4)
fs
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Figure B.1 Mechanical configuration of web tension control system.
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Figure B.2 Mechanical constants for web tension control system.

Table B.1 Tension control system mechanical constants.

CONSTANTS | DESCRIPTION UNITS
01,605,053, 04,05 reel angles unitless
01,605,053, 04,05 reel angular velocities 1/ sec
01,605,053, 04,05 reel angular accelerations | 1/sec?
Tappl> Tapps drive reel applied torques | N -m

By, By, B3, By, Bs | reel rolling frictions (kg - m?)/ sec
Cla, Co3,C34,Cys | textile damping constants | (N - sec)/m
Ior [s textile tensions N

Ji, Ja, I3, Ju, Js reel inertias kg-m?
Ko, Ko3, K3y, K45 | textile spring constants N/m
T1,72,73, 74,15 reel radii m

v1, Us line speeds m/ sec
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Dynamic Analysis

We begin by evaluating the dynamic conditions for the takeup reel. Newton’s
Second Law is

Force = mass - acceleration (B.5)

and for a system in dynamic equilibrium [70],
> Forces = 0. (B.6)

Since these are rolling mass systems, we sum the torques on each reel and set the
sum equal to zero. Figure B.3 graphically shows all of the torques for the takeup reel

(#1). The dynamic equation is therefore

0= Tappl — Blél — Jlél — 7“1K12(7’191 — 7’292) — Tlclg(rlél — Tgég). (B?)

REFERENCE Tappi
+0,

B,6,, J,6,, 1,K,,(r,8,-1,9,), 1,C ,(r,8,-1,8,)

171 Y1ere

Figure B.3 Free body diagram of forces on reel #1 (takeup).

The idler reels are similar in their form. Figure B.4 graphically shows the torques
that contribute to the dynamic behavior for reel #2. Again we sum the torques to

obtain

0 = T2K12(7’191 — 7’292) + 7’2012(7’191 - 7’292) - Bgég — Jgég

—7”2K23(7“292 - 7“393) - T2023(T292 - T393)- (B-8)
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The equations for rollers #3 and #4 are the same as Equation B.8, with the exception

of subscript differences, which gives

0 = 7“3K23(7’292 — 7’393) + 7”3023(7”292 — 7”393) — 3393 — Jgég

—7‘3K34(’l“393 — 7“494) — 7“3034(7“393 — 7“494) (Bg)
and

0 = 7“4K34(7’393 — 7’494) + 7”4034(7”393 — 7”494) — 3494 — J4é4

—7‘4K45(’l“494 — 7“595) — 7“4045(7“494 — 7“595). (BlO)

The payoff reel (#5) free body diagram is shown in Figure B.5. Summing these

torques yields the equation

0= 7‘5K45<T404 - 7”505) + 7’5045(7’404 - 7’585) - 3585 - J585 + Tapp5- (Bll)
REFERENCE nK,(r0,-1,8,),
+0, r,C(r,8,-1,9,)

~_

Bzéz’ Jz-e-z’ I’ZK23(I'2927I'393), rZCB(I’Z.OZfr}é})

Figure B.4 Free body diagram of forces on reel #2 (idler).
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NS

B, J.

Figure B.5 Free body diagram of forces on reel #5 (payoff).

Forming the State Equations

The state equations are formed by rearranging Equations B.7 through B.11 for

the highest order derivative, which yields

o (e ()
1

Jo Ja ) Ja
(G, (i), (),
- e (e (i)
n (‘7”?%023 —23034 - B3> b+ (@3534) b, (7”37;534) s,
b, — (7“37“;4}(34) 0 (7”37“(26'34) fs + (—TiK34J4 7“4K45> 0,
N <—7“ng4 —7r2Cy5 — B4> by + <r4r5K45> . (r4r56’45> 6.
Jy Jy Ja

and

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)



These equations may be represented in matrix form, where the state vector is
. . . . . T
x=[0 6 6 6 05 05 04 0, 05 65, (B.17)

the state derivative vector is

X = { 91 91 92 92 93 93 04 04 05 05 } y <B18)
and the input vector is
u= [ Tappl 1 . (B.19)
Tapp5

The state matrix is formed from the state variable coefficients of equations B.12
through B.16, and by recognizing the derivative equalities amongst the elements of

Equations B.17 and B.18. Assembling this matrix gives us

0 1 0 0 0
—r2 12 —r2 12— D1 LT rir
(52 (5 () (m352) 0
0 0 0 1 0
riraK1o r172C1o —r2K12-r2Ko3 —r2C12—r2C23—Bs ror3 Ko
N ( 7 ) : ) 7 ) ( ; ) (‘ug )
8 8 (TQTJ%KQB) (Tzr%c’ga) (—T32K230;T32K34)
o : : N
i 0 0 0 0 0
0 0 0 0 0 |
0 0 0 0 0
0 0 0 0 0
(naaCas) 0 0 0 0
—7’2023—71"2034—33 T rOK T rOC ’ ’
(=) (e) (B5) 0 0
r n?C 4 —TiK34O—TiK45 —TiC34—1iC45—B4 r4r0K4 1"47‘004
(%fof) ( ; ) ( ; )(3045) (a5
0 (rersice) (pmscs) (7)) ()

(B.20)
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The input matrix is formed from the applied torque coefficients of Equations A.12

and A.16. All other values are zero, which when assembled is

s [0 0000000 o]

0 0 0000000(}5)

(B.21)

Next we form an expression to describe the process outputs of line speed and
tension in state space terms. Each process output will be computed by two avenues
to accurately reflect the redundant instrumentation found on the tension controller.
The output matrix contains line speed measured from both payoff and takeup reels,
and web tension measured by idler reels #3 and #4. Again, this matrix is

Ut
y = T}Z . (B.22)
[s
Line speed may be expressed as the product of a reel’s angular velocity times the

radius. For the takeup and payoff reels, this is

V¢ = 7’191 <B23)
and

Up = 7’595. <B24)

Each tension cell measures the average of the tension in the approaching and retreat-
ing web segments. In terms of the state variables, this is

[Ko3(r2fe — 1r363) + C'23(7“29.2 — T393)] + [K34(r3bs — 1404) + 034(T393 - T494)]

fp = 9
(B.25)
and
o= [K34(r363 — r464) + 034(7‘3é3 - T4é4)] + [Ku5(r40s — 1505) + 045(T494 — 7‘595)]
s 2
(B.26)
Again we combine state variables, giving us
f = <T2K23> 0y + (7“2023> by + <—7‘3K23 +7‘3K34>6,3
2 2 2
[ nCu () (RO
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and

2 2

N (—7’40342—1— 7’4045> 0+ <—7’52K45> 0 + <—r52045> Os. (B.28)

K . —r K K
£ o= (7”3 34)03_'_(7”3034)03_1_( T4 34;—7“4 45)64

Finally, Equations B.23, B.24, B.27, and B.28 are combined into the matrix form

y = Cx + Du (B.29)
where
0 r 0 0 0 0
0 0 0 0 0 0
C = 0 (r212(23> (T2§23> *T3K232+T3K34 *T30232+7"3C34
00 0 0 (rakas) (nsG)

0 0 0 0

0 0 0 r5
(—7’42K34) (—7‘42034) 0 0 5 (BBO)

(—T4K34+T4K45> (—T4C34+T4C45) (—T5K45) (—T5C45)
2 2 2 2

D= (B.31)

o O O O
o O O O

and the matrices y, x, and u are defined in Equations B.22, B.17, and B.19, respec-
tively.

The state matrices that include values of r; and r5 are time variant, since r; and r5
vary throughout the unwinding and winding process. For the purpose of our analysis,
however, their values are considered to change negligibly during the timespan of sag
simulation. Therefore they are held at fixed values during simulation, causing the
state space model to remain linear and time invariant. Experimentation with the
tension control stand accounts for this as well. Voltage sags are applied during the
same point in the wind /unwind process, keeping the payoff and takeup radii consistent

for all tests.
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Appendix C

Determination of Physical Constants

This appendix details the procedures used to determine the physical constants in

the textile control stand.

Reel Radii

Simple calipers were used to measure the reel diameters. Table C.1 shows the

resulting radii measurements.

Table C.1 Measured roller radii.

CONSTANT | DESCRIPTION VALUE
r1 takeup reel radius with accumulated web | 0.072 m
T'1base takeup reel core radius 0.038 m
T idler reel radius 0.038 m
T3 primary tension cell radius 0.044 m
T4 secondary tension cell radius 0.044 m
5 payoff reel radius with accumulated web | 0.072 m
T'5base payoff reel core radius 0.038 m

Reel Inertia

To measure reel inertia, we first refer to the standard motor-load rotating system
equation

dw
Tapplied = JE + Bw + Tload- (Cl)

We may experimentally isolate the inertia component from the system by removing
the load torque, Tj,.q, and by experimenting at low rotational speeds to keep the

rolling friction component, Bw, negligible. This gives us

dw
Tapplied = JE (02)

By using calibrated weights to apply a constant torque of known value, we may

measure the rate of change of the system’s rotational speed. With these values known,

the value of J is easily solved for.
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The final value of J is determined by assembling the results of n test runs into a
set of matrices in the form

y = Ax (C.3)

where

Tapplied,1
Tapplied,2
y = Tapplied,3 R (04)

Tapplied,n

e
dt 1
dw

dt 2

A= %,3 ) (CS)

and

x = [J]. (C.6)

The value of x = [J] is found using an overdetermined case solution, as outlined in

[71]. This solution is found with the equation
x = (ATA) ATy, (C.7)

The idler and tension reels do not have speed measurement instruments directly
attached to them, and may be referred to as being ‘unmeasurable’. Therefore, to
determine the inertia of an unmeasurable reel, a belt was attached between the un-
measurable reel and the nearest measurable (takeup or payoff) reel. Constant torques
were again applied to the measurable reel, and the two-roller system inertia was cal-
culated using the overdetermined case solution. Since the measurable reel inertia is
known from previous experiments, the unmeasurable reel inertia is the only unknown

quantity in the expression

(C.8)

2
T'measurable )
)

J2rollersystem = Jmeasurable + Junmeasurable
Tunmeasurable
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which is rearranged to give

J2rollers - J,
o ystem measurable
Junmeasu’r‘able — ( . (Cg)

2
T"measurable )
Tunmeasurable

Table C.2 summarizes the results obtained from these procedures.

Table C.2 Bare roller inertias.

CONSTANT | DESCRIPTION VALUE

Jibase takeup reel inertia without accumulated web | 0.0140 kg - m?
Jo idler reel inertia 0.0040 kg - m?
Js primary tension cell inertia 0.0082 kg - m?
Ju secondary tension cell inertia 0.0089 kg - m?
Jsbase payoff reel inertia without accumulated web | 0.0126 kg - m?

Additive Inertia of Coiled Web

Added to the base inertia of the payoff and takeup reels is the inertia of the
coiled web. This may be expressed as a function of the reel radius, including the
accumulated web. The inertia of the accumulated web is the difference between the
inertia of a coiled web of radius r,., and the inertia of the theoretical center of the

coiled web whose space is take up by the reel core. This is expressed by

Jaccumulatedweb,r:rweb - Jcoiledweb,r:rweb - Jcoiledweb,'r’:rbas,6 . (C 10)

To determine an expression for Equation C.10 in terms of radius, we begin with the

mass, m of a tightly coiled web, which is
m = prrl 4w, (C.11)

where the density p, and width w are

kg
p=216.6— (C.12)
and
w=10.185m (C.13)
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respectively. Using these values, we calculate the inertia of the theoretical center to
be
1 1

Jeoiledweb r=ryye. = §m7’2 = §p7rr§asewrgase = 0.000262 kg - m? (C.14)

Similarly, the mass of the solid web cylinder of radius . is

1 1
Jeoiledwebr=ry., = §mr2 = §p7r7’iebwrieb = 62.943r% , kg -m? (C.15)

Substituting values from C.14 and C.15 into C.10 yields

Jaceumulatedwebr—ry, = (62.9437r% , —0.000262) kg - m? (C.16)

web

Equation C.16 is evaluated for 71, then added to Jipqs to obtain the total takeup reel

inertia, J;. The same operation is performed for the payoff reel to determine Js.

Rolling Friction

Having calculated the inertia J for each reel, we again refer to Equation C.1 for the
rolling mass system. For higher speeds the component Bw cannot be neglected. To
determine B, we observe the deceleration characteristics from an appreciable speed

under no load and no applied torque conditions. The time response takes on the form
(C.17)

where the value B/J is the inverse of the decay time constant, and wy is the initial
speed. The time constant 7 was measured by curve fitting the deceleration response,
and B was calculated using

B = Z (C.18)

T

For the idler and tension reels, a belt was again attached between an ‘unmeasur-
able’ roller and a roller with measurable speed. The two reel system’s rolling friction
constant was determined, and the unknown rolling friction constant was calculated

with

B2rollers - B

ystem measurable

Bunmeasurable - ( ) (019)
Tmeasurable )

Tunmeasurable

which is similar in form to Equation C.9. Table C.3 shows the measured rolling

friction constants.
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Table C.3 Rolling friction constants.

CONSTANT | DESCRIPTION VALUE

B takeup reel rolling friction 0.0018 (kg - m?)/ sec
B, idler reel rolling friction 0.0008 (kg - m?)/ sec
Bs primary tension cell rolling friction | 0.0022 (kg - m?)/ sec
B, secondary tension cell rolling friction | 0.0023 (kg - m?)/ sec
Bs payoff reel rolling friction 0.0015 (kg - m?)/ sec

Textile Constants

The textile spring and damper constants were measured using an Instron tensile
test machine in accordance with ASTM 5035 [72]. The tensile test machine grips
onto a segment of textile and slowly pulls it apart at a constant crosshead speed.
During this operation, the force exerted by the textile on the grips is measured and
recorded as a force vs. elongation curve. From this curve, the spring constant K can
be determined as the rate of change of force per unit elongation. The value of the
spring constant was determined for several test runs at varying crosshead speeds, and
the results averaged.

The damper constant, however, was not clearly evident. If an appreciable damper
constant were present, then an appreciable initial force would be exerted at the time of
initial extension. This was not the case. Since the damper constant offers a negligible
contribution to the force exerted by the textile, it would seem reasonable to neglect
it in modeling and simulation. If it is neglected, then a high frequency component
exists in tension waveforms during simulation. Therefore, the damper constant C'
was assigned a value of 1% of the spring constant, which is negligible when compared
to the spring constant, but nonzero to damp high frequency tension oscillations in

simulation. Table C.4 lists the textile spring and damper constants.

Table C.4 Textile constants.
CONSTANT DESCRIPTION VALUE
K9 = Ko = K34 = Ky5 | textile spring constants | 79010 N/m
Cig = Cy3 = O34 = Cy5 | textile damper constants | 790.10 N/(m - sec)
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First Order Device Responses

The first order input-output relationships were determined for the analog instru-
mentation, A/D converter, and drive frequency setpoint. These relationships are
described in Equations 2.1 through 2.3. For each device, a series of steady state

outputs were determined for corresponding input, and formed into the matrices
y = Ax (C.20)

where
outputy

outputs

y — | outputs (C.21)

output,

mput; 1
mputy 1
A= | inputs 1 | (C.22)

| input, 1
and

o Kde'uice
X = [ By ] . (C.23)

The overdetermined case solution in Equation C.7 was then calculated for each device
to yield the values for the device gain, K and offset, B. Device time constants were
determined from manufacturer step response or construction specifications. Table

C.5 lists the first order gain, time constant, and offset results.
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Table C.5 First order device constants.

CONSTANT | DESCRIPTION VALUE

Kinent tachometer 1 gain 0.1966 V/(rad/ sec)
Ttachl tachometer 1 time constant 0.0266 sec

Biocnt tachometer 1 offset -0.0804 V

Kiaens tachometer 5 gain 0.1918 V/(rad/ sec)
Trachs tachometer 5 time constant 0.0266 sec

Biocns tachometer 5 offset 0.0216 V

Kiiachi backup tachometer 1 gain 0.0250 V/(rad/ sec)
Totachl backup tachometer 1 time constant | 0.0006 sec

Biiaent backup tachometer 1 offset -0.0016 V

Kiiachs backup tachometer 5 gain 0.0253 V/(rad/ sec)
Thtachs backup tachometer 5 time constant | 0.0006 sec

Bitachs backup tachometer 5 offset -0.0220 V

Kpten primary tension cell gain 0.0989 V/N

Tpten primary tension cell time constant 0.0028 sec

Bpien primary tension cell offset 0.0746 V

Ken secondary tension cell gain 0.1023 V/N

Toten secondary tension cell time constant | 0.0028 sec

Bgten, secondary tension cell offset 0.2829 V'

Kap A/D converter gain 2765.1 bits/V

TAD A /D converter time constant 0.120 sec

Bap A /D converter offset -4.4997 bits

Kpri drive 1 setpoint gain 0.01943 (rad/ sec)/bit
TDR1 drive 1 setpoint time constant 0.015 sec

Bpr1 drive 1 setpoint offset 0 (rad/ sec)

Kprs drive 5 setpoint gain 0.01943 (rad/ sec)/bit
TDR5 drive 5 setpoint time constant 0.015 sec

Bprs drive 5 setpoint offset 0 (rad/ sec)
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To determine their equivalent circuit parameters, the induction motors were tested

with a DC stator resistance test, no-load test, and locked-rotor test, as described in

Induction Motor Tests

[73]. The determined equivalent circuit parameters are listed in Table C.6.

Table C.6 Induction motor equivalent circuit parameters.

CONSTANT DESCRIPTION VALUE
R stator resistance, motor 1 3.02 Q

R, rotor resistance, motor 1 1.88

L stator leakage inductance, motor 1 | 0.006477 H
Ly rotor leakage inductance, motor 1 | 0.009713 H
L magnetizing inductance, motor 1 0.181 H
Ly = Lig1 + L,,1 | total stator inductance, motor 1 0.187477 H
L1 = Ljy1 + Ly, | total rotor inductance, motor 1 0.190713 H
Rs stator resistance, motor 5 2.85 0

R, rotor resistance, motor 5 1.92 Q

Ligs stator leakage inductance, motor 5 | 0.007207 H
L5 rotor leakage inductance, motor 5 | 0.010810 H
L5 magnetizing inductance, motor 5 0.181 H
Ly = Ligs + L5 | total stator inductance, motor 5 0.188207 H
L.5 = L5 + Ly,5 | total rotor inductance, motor 5 0.191810 H
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V/Hz Drive Behavior

The V/Hz output relationship of the motor drives may be modeled in two segments

by the functions

‘/:)ut - V;baseemEfa (f <6 HZ) (024)

‘/out = mlf+‘/()ffset7 (f 26 HZ) (C25)

which accounts for the low frequency voltage boost, followed by linear V/Hz output.
The relationship of output voltage versus output frequency was measured and plotted
for each drive, and the resulting curves fitted to the model in Equation C.24 using

the values listed in Table C.7.

Table C.7 Volts/Hertz drive constants.

CONSTANT | DESCRIPTION VALUE
Viasel low freq. base voltage, drive 1 26.0 Vs
Meq low freq. exponential multiplier, drive 1 | 0.0541 1/Hz
Vo fset1 linear segment voltage offset, drive 1 3.4799 Vaurs
mi linear segment V/Hz gain, drive 1 15.0871 V/Hz
Viases low freq. base voltage, drive 5 22.5 Vrus
Mes low freq. exponential multiplier, drive 5 | 0.0728 1/H z
Vot fsets linear segment voltage offset, drive 5 3.3971 Vaus
mis linear segment V/Hz gain, drive 5 14.4466 V/Hz
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Appendix D

Matlab Process Response Simulation Code

This appendix lists the Matlab code used to simulate the textile tension controller’s

behavior in the presence of voltage sags.

fhm T h
hsagsim.m

o

%Simulates the output response of a textile tension controller when
%hsubjected to voltage sags.

o

JWritten by Owen Parks

%#Clemson University PQIA Laboratories

S b
=TT b
Jinitialize memory

clear all;
=TT b
fhm T b

%load sag data
load instsagdata;’%101000;

hsag recovery data
tau_rec=rectime/5;
tau_rec2=rectime2/5;
tau_rec3=rectime3/5;

o %
- %

Jdefine time parameters

hevaluation points/sec
ptspersec=10000;

Y%simulation duration
numsecs=3;

%htotal calculation points (+1 for t=0)
numpts=(ptspersec*numsecs)+1;

Jtime array
time=linspace(0,numsecs,numpts) ;

%time differential
dt=time(3)-time(2);

%isag inception time
t_sagstart=0.5;
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%isag extinction time
t_sagend=0.5+0.050;

%»dt for sampled waveform used in sag simulation

dt2=0.1/250;
e %
o %

%define measured physical constants

%radii in meters
r1=0.072;
r2=0.038;
r3=0.044;
r4=0.044;
r5=0.072;
rilbase=0.038;
rb5base=0.038;

%additive inertia due to accumulated web
J1lweb=62.943%(r1°4)-0.000262;
J5web=62.943*%(r5°4)-0.000262;

Jinertia in kgxm~2
J1=0.0140+J1web;
J2=0.0040;
J3=0.0082;
J4=0.0089;
J5=0.0126+J5web;

%rolling friction in (kg*m~2)/sec
B1=0.0018;
B2=0.0008;
B3=0.0022;
B4=0.0023;
B5=0.0015;

htextile spring constant in N/m
K12=79010;
K23=79010;
K34=79010;
K45=79010;

htextile damping constant in Nxsec/m
C12=K12x0.01;
C23=K23%0.01;
C34=K34x%0.01;
C45=K45x%0.01;

hassemble state space matrices
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%state matrix

A(1,:)=[01 0000000 O0];
A(2,1)=(-r1xr1xK12)/(J1);
A(2,2)=(-r1*r1*C12-B1)/(J1);
A(2,3)=(r1*r2%K12)/(J1);
A(2,4)=(r1*r2%C12)/(J1);

A(2,5)=0;

A(2,6)=0;

A(2,7)=0;

A(2,8)=0;

A(2,9)=0;

A(2,10)=0;

A(3,:)=[0 00100000 O0];
A(4,1)=(r1*r2xK12)/(J2);
A(4,2)=(r1*r2%C12) /(J2);
A(4,3)=(-r2*r2xK12-r2*r2xK23) / (J2) ;
A(4,4)=(-r2*%r2xC12-r2*xr2*C23-B2) / (J2) ;
A(4,5)=(r2*r3*K23)/(J2);
A(4,6)=(r2xr3%C23)/(J2);

A(4,7)=0;

A(4,8)=0;

A(4,9)=0;

A(4,10)=0;

A(5,:)=[0 00001000 0];
A(6,1)=0;

A(6,2)=0;

A(6,3)=(r2*r3*xK23)/(J3);
A(6,4)=(r2*r3*C23)/(J3);
A(6,5)=(-r3*xr3*xK23-r3*xr3*xK34) /(J3) ;
A(6,6)=(-r3*xr3*xC23-r3*xr3*C34-B3)/(J3);
A(6,7)=(r3*r4xK34)/(I3);
A(6,8)=(r3*r4*C34)/(J3);

A(6,9)=0;

A(6,10)=0;

A(7,:)=[0 00000010 0];
A(8,1)=0;

A(8,2)=0;

A(8,3)=0;

A(8,4)=0;

A(8,5)=(r3*r4*K34)/(J4);
A(8,6)=(r3*xr4xC34)/(J4);
A(8,7)=(-r4*r4*xK34-rd*xrdxK45) /(J4) ;
A(8,8)=(-r4*r4*C34-r4*r4*xC45-B4) /(J4);
A(8,9)=(r4*r5%K45)/(J4);
A(8,10)=(r4*r5%C45)/(J4);

A(9,:)=[0 00000000 1];
A(10,1)=0;

A(10,2)=0;

A(10,3)=0;

A(10,4)=0;

A(10,5)=0;

A(10,6)=0;
A(10,7)=(r4*r5%K45) /(J5);
A(10,8)=(r4*r5%C45)/(J5);

159



A(10,9)=(-r5*r5%K45) /(J5) ;
A(10,10)=(-r5*r5%C45-B5) /(J5) ;

hinput matrix
B=[0 0; (1/J1) 0; 0 0; 0 0; 00; 00; O0O; O0O0; 00; O (1/J35)1;

Jhoutput matrix

C(1,:)=[0r1 0000000 O0];
C(2,:)=[0 00000000 r5];
C(3,1)=0;

C(3,2)=0;
C(3,3)=(r2xK23)/(2);
C(3,4)=(r2%C23)/(2);
C(3,5)=(-r3%K23+r3*K34) /(2) ;
C(3,6)=(-r3*C23+r3*C34)/(2);
C(3,7)=(-1r4%K34)/(2);
C(3,8)=(-r4*C34)/(2);
C(3,9)=0;

C(3,10)=0;

Cc(4,1)=0;

Cc(4,2)=0;

Cc(4,3)=0;

C(4,4)=0;
C(4,5)=(r3%K34)/(2);
C(4,6)=(r3%C34)/(2);
C(4,7)=(-r4*xK34+r4*K45) /(2) ;
C(4,8)=(-r4*C34+r4*C45) /(2);
C(4,9)=(-r5%K45)/(2);
C(4,10)=(-r5%C45)/(2);

%feedthrough matrix
D=zeros(4,2);
N —

%define control constants

Jproportional, integral, and state gain for linespeed
P_linespeed=0.3025;

I_linespeed=1/0.566;

K_state_linespeed=0.005;

Jproportional, integral, and state gain for tension
P_tension=0.3;

I_tension=1/0.090;
K_state_tension=0.02;

%setpoints for speed and tension - held constant

%linespeed set in m/s
linespeed_set=1.0;
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%tension set in N
tension_set=30;

J#define gain and time constant for first order hardware

Jhtakeup speed sensor
K_tach1=0.1966;
tau_tach1=0.0266;
offset_tach1=-0.0804;

hpayoff speed sensor
K_tach5=0.1918;
tau_tach5=0.0266;
offset_tach5=0.0216;

Jbackup takeup speed sensor
K_btach1=0.0250;
tau_btach1=0.0006;
offset_btachl1=-0.0016;

Jbackup payoff speed sensor
K_btachb5=0.0253;
tau_btach5=0.0006;
offset_btachb5=0.0220;

Jprimary tension sensor
K_pten=0.0989;
tau_pten=0.0028;
offset_pten=0.0746;

%secondary tension sensor
K_sten=0.1023;
tau_sten=0.0028;
offset_sten=0.2829;

%input A/D block
K_ad=2765.1;
tau_ad=0.120;
offset_ad=-4.4997;

hdrive 1 output frequency - convert to rad/sec, not Hz
K_DR1=0.01943;

tau_DR1=0.015;

Jno drive 1 output offset

hdrive 5 output frequency - convert to rad/sec, not Hz
K_DR5=0.01943;

tau_DR5=0.015;

Jno drive 5 output offset

= %
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%define AC induction motor constants

Jmotor 1

Rs1=2.77;

Rr1=1.999;

L1s1=0.00617;

L1r1=0.00925;

Lm1=0.1731;

Ls1=Lls1+Lmi;

Lr1=Llri+Lmi;

Lmat1=[(L1ls1+Lml) O Lml O0; O (Llsi+Lml) O Lmi;...
Lml 0 (Llri+Lmi) O; O Lmil O (Llri+Lmi)];

Jmotor 5

Rs5=2.756;

Rr5=1.831;

L1s5=0.006903;

L1r5=0.010354;

Lm5=0.17070;

Ls5=L1s5+Lm5;

Lr5=L1r5+Lm5;

Lmat5=[(L1s5+Lm5) O Lm5 0; O (L1s5+Lm5) O Lmb5;...
Lmb 0 (L1r5+Lm5) O; O Lm5 O (Llr5+Lmb5)];

it yA

s %

%define constants for motor drives

Jhvolts per hertz constants >= 6Hz
VpHzgainl1=3.4799;
VpHzgainb=3.3971;
VpHzoffset1=15.0871;
VpHzoffsetb=14.4466;

hvolts per hertz constants < 6Hz

VpHzegainl1=26.0;

VpHzegainb=22.5;
VpHzexpl=log((VpHzgainl*6+VpHzoffsetl) /VpHzegainl)/6;
VpHzexp5=log ((VpHzgainb*6+VpHzoffsetb5) /VpHzegainb) /6;

Jrotor voltages - shorted for squirrel cage induction motor
vqrl=0;
vdr1=0;
vqr5=0;

T %
o %

hinitialize integration sums and output signals at t=0
hinitialize linespeed and tension outputs

initialspeed=1linespeed_set;
initialtension=tension_set;
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hassign array inital values
linespeed(1)=initialspeed;
pten_actual(l)=initialtension;

%calculate initial matrix states - x and u

xdot=[linespeed(1)/rl; 0; linespeed(1)/r2; 0; linespeed(1)/r3; O;...
linespeed(1)/r4; 0; linespeed(1)/r5; 0];

x=[0; linespeed(1)/rl; 0; linespeed(1)/r2; 0; linespeed(1)/r3;...
0; linespeed(1)/r4; 0; linespeed(1)/r5];

hcalculate angles thetal-thetab
findthetamatrix=zeros(5,5);
findthetamatrix(1l,2)=r2xK23;
findthetamatrix(1l,3)=-1r3*%K23+r3*xK34;
findthetamatrix(1,4)=-r4*K34;
findthetamatrix(2,1)=ri1*r2*K12;
findthetamatrix(2,2)=—r2*r2*xK12-r2*r2+K23;
findthetamatrix(2,3)=r2*r3*K23;
findthetamatrix(3,2)=r2*xr3*xK23;
findthetamatrix (3, 3)=-r3*r3+*K23-r3*r3*K34;
findthetamatrix(3,4)=r3*xr4+K34;
findthetamatrix(4,3)=r3*r4+xK34;
findthetamatrix(4,4)=-r4*r4*xK34-rd*xr4*K45;
findthetamatrix(4,5)=r4*xr5%K45;
findthetamatrix(5,3)=1;
findthetavalues=[2*initialtension; B2xx(4); B3*x(6); B4*x(8); 10*pil;
findthetas=inv(findthetamatrix)*findthetavalues;

x(1)=findthetas(1);
x(3)=findthetas(2);
x(5)=findthetas(3);
x(7)=findthetas(4);
x(9)=findthetas(5);

X_intsum=x;

initialtorques=(xdot-(A*x));
torque_1(1)=initialtorques(2)*J1;
torque_5(1)=initialtorques(10)*J5;

yinit=Cxx;

Jinstrument output signals at t=0; w=1
thetadot_1(1)=1linespeed_set/r1;
out_tachl(1)=thetadot_1(1)*K_tachl+offset_tachl;
out_tachlB(1)=thetadot_1(1)*K_tachl+offset_tachil;
thetadot_5(1)=1linespeed_set/r5;
out_tachb5(1)=thetadot_5(1)*K_tachb5+offset_tachb;
out_tach5B(1)=thetadot_5(1)*K_tachb+offset_tach5;
out_btachl(1)=thetadot_1(1)*K_btachl+offset_btachil;
out_btachb5(1)=thetadot_5(1)*K_btachb+offset_btachb;
pten_actual(1)=yinit(3);
out_pten(1l)=pten_actual(1)*K_ptent+offset_pten;
out_pten2(1)=out_pten(1l);
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sten_actual(1)=yinit(4);
out_sten(1l)=sten_actual (1)*K_sten+offset_sten;
out_adl(1)=out_tachl(1)*K_ad+offset_ad;
out_ad2(1)=out_tach5(1)*K_ad+offset_ad;
out_ad3(1)=out_pten(1)*K_ad+offset_ad;
out_ad1B(1)=out_ad1(1);
out_ad2B(1)=out_ad2(1);
out_ad3B(1)=out_ad3(1);
out_adlA(1)=out_adl(1);
out_ad2A(1)=out_ad2(1);
out_ad3A(1)=out_ad3(1);

%find linespeed integral control initial value
hiterative application of dq theory required

hsearch above thetadot for motoring
sweeppts=100000;
omegaesweep=linspace(2*thetadot_1(1),2*thetadot_1(1)+20,sweeppts);

q=1;

for z=1:sweeppts

if abs(omegaesweep(z))<(6*2*pi)
11volts=VpHzegainl*exp (VpHzexpl* (omegaesweep(z)/(2*pi)));
voltmag=11lvolts/sqrt(3);

elseif abs(omegaesweep(z))>=(6x2*pi)
11lvolts=VpHzgainl* (omegaesweep(z)/(2*pi))+VpHzoffsetl;
voltmag=11lvolts/sqrt(3);

end

vas=voltmag*sqrt(2)*cos(0);
vbs=voltmag*sqrt (2)*cos(0-2%pi/3) ;
vcs=voltmag*sqrt (2)*cos(0+2%pi/3) ;

vgss=(2/3) *vas-(1/3) *vbs-(1/3) *xvcs;
vdss=(-1/sqrt(3))*vbs+(1/sqrt(3))*vcs;

vgs=vgss*cos (0)-vdss*sin(0) ;
vds=vgss*sin(0)+vdss*cos(0);

vmat=[vqgs; vds; 0; 0];

initmat=[Rs1 omegaesweep(z)*Lsl 0 omegaesweep(z)*Lml;...
-1*omegaesweep(z)*Lsl Rsl -1xomegaesweep(z)*Lml O;...
0 (omegaesweep(z)-2*thetadot_1(1))*Lml ...
Rrl (omegaesweep(z)-2*thetadot_1(1))*Lrl;...
-1*(omegaesweep(z) -2*xthetadot_1(1))*Lml O ...
-1*(omegaesweep(z)-2*thetadot_1(1))*Lrl Rri];

i_init=inv(initmat)*vmat;

igs=i_init(1);

ids=i_init(2);

iqr=i_init(3);

idr=i_init(4);

testtorque=3*Lml* (igs*idr-ids*iqr);

if abs(testtorque-torque_1(1))<0.001
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initialomegal(q)=omegaesweep(z) ;

qQ=q+1;
end

end

helectrical frequency that yields the desired speed-torque point
omegaefound=mean (initialomegal) ;

Jback calculate to integral output
intsum_Ilinespeed=(((omegaefound/(K_DR1%276.4)) ...
-K_state_linespeed*rb5*xyinit(3))/P_linespeed)/I_linespeed;

%find tension integral control initial value
hiterative application of dq theory required

%search below thetadot for braking
sweeppts=100000;
omegaesweep=linspace(2*thetadot_5(1) ,2*thetadot_5(1)-20,sweeppts);

q=1;

for z=1:sweeppts

if abs(omegaesweep(z))<(6*2*pi)
11volts=VpHzegainb*exp (VpHzexp5* (omegaesweep(z)/(2*pi))) ;
voltmag=11lvolts/sqrt(3);

elseif abs(omegaesweep(z))>=(6x2*pi)
11lvolts=VpHzgainb* (omegaesweep(z)/(2*pi))+VpHzoffset5;
voltmag=11lvolts/sqrt(3);

end

vas=voltmag*sqrt (2)*cos(0) ;
vbs=voltmag*sqrt (2)*cos(0-2%pi/3) ;
vcs=voltmagxsqrt (2) *cos (0+2xpi/3);

vgss=(2/3) *vas-(1/3) *vbs-(1/3) *xvcs;
vdss=(-1/sqrt (3))*vbs+(1/sqrt (3))*vcs;

vgs=vgss*cos (0)-vdss*sin(0) ;
vds=vqss*sin(0)+vdss*cos(0);

vmat=[vqgs; vds; 0; 0];

initmat=[Rs5 omegaesweep(z)*Ls5 0 omegaesweep(z)*Lm5;. ..
-1xomegaesweep(z)*Ls5 Rsb -1kxomegaesweep(z)*Lmb O;. ..
0 (omegaesweep(z)-2*thetadot_5(1))*Lm5 ...
Rr5 (omegaesweep(z)-2*thetadot_5(1))*Lr5;. ..
-1*(omegaesweep(z) -2*xthetadot_5(1))*Lm5 O ...
-1*(omegaesweep(z) -2*thetadot_5(1))*Lr5 Rr5];

i_init=inv(initmat)*vmat;

igs=i_init(1);

ids=i_init(2);

iqr=i_init(3);

idr=i_init(4);

testtorque=3*Lmb* (igs*idr-ids*iqr) ;
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if abs(testtorque-torque_5(1))<0.001
initialomegab(q)=omegaesweep(z) ;
qQ=q+1;

end

end

helectrical frequency that yields the desired speed-torque point
omegaefound=mean(initialomegab) ;

Jback calculate to integral output
intsum_Itension=(((omegaefound/(K_DR5*276.4))...
-K_state_tension*x(2))/P_tension)/I_tension;

hcontrol signals at t=0; w=1

linespeed_err(1)=0;

tension_err(1)=0;

linespeed_ctrl_out(1)=(P_linespeed*I_linespeed*intsum_Ilinespeed. ..
+K_state_linespeed*r5xyinit (3))*276.4;

tension_ctrl_out(1)=(P_tension*I_tension*intsum_Itension...
+K_state_tension*x(2))*276.4;

%hcontrol integrator initialization
w_integral=1;
linespeed_I_cont=I_linespeed*intsum_Ilinespeed;
tension_I_cont=I_tension*intsum_Itension;

Ymotor 1 and drive 1 values at t=0; w=1
omegael(1)=linespeed_ctrl_out(1)*K_DR1;
drivel_thetas(1)=0;

if abs(omegael(1))<(6%2*pi)
11volts=VpHzegainl*exp (VpHzexpl* (omegael(1)/(2xpi)));
voltmag_1=11volts/sqrt(3);

elseif abs(omegael(1))>=(6*2*pi)
11lvolts=VpHzgainl* (omegael (1) /(2*pi))+VpHzoffsetl;
voltmag_1=11lvolts/sqrt(3);

end

vasl=voltmag_1*sqrt(2)*cos(0);
vbsl=voltmag_1*sqrt(2)*cos(0-2%pi/3);
vcsl=voltmag_1*sqrt(2)*cos(0+2%pi/3);

vgss1=(2/3)*vas1-(1/3)*vbs1-(1/3) *vcs1;
vdss1=(-1/sqrt(3))*vbs1+(1/sqrt(3))*vcsl;

vgs1(1)=vgssl*cos(0)-vdssi*sin(0);
vds1(1)=vgssl*sin(0)+vdssl*cos(0);

vmatl=[vqgs1(1); vds1(l); vqrl; vdrill;

initmat_1=[Rsl omegael(1)*Lsl O omegael(1)*Lmil;...
-1xomegael(1)*Lsl Rsl -1*omegael(1)*Lml O;...
0 (omegael(1)-2xthetadot_1(1))*Lml ...
Rrl (omegael(1)-2*thetadot_1(1))*Lri;...
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-1*(omegael (1)-2*thetadot_1(1))*Lml O ...
-1*(omegael (1)-2*thetadot_1(1))*Lrl Rri];

i_initl=inv(initmat_1)*vmatl;
igs1(1)=i_init1(1);
ids1(1)=i_init1(2);
igr1(1)=i_init1(3);
idr1(1)=i_init1(4);

psi_initl=Lmatl*i_initl;
psi_gs1(1)=psi_init1(1);
psi_ds1(1)=psi_init1(2);
psi_qri(1)=psi_init1(3);
psi_dr1(1)=psi_init1(4);

%motor 5 and drive 5 values at t=0; w=1
omegaeb(1)=tension_ctrl_out(1)*K_DR5;
driveb5_thetas(1)=0;

if abs(omegaeb5(1))<(6x2*pi)
1lvolts=VpHzegainb*exp (VpHzexp5* (omegae5(1) /(2xpi)));
voltmag_5=11volts/sqrt(3);

elseif abs(omegaeb5(1))>=(6*2*pi)
11volts=VpHzgainb5* (omegaeb5(1)/(2*pi))+VpHzoffset5;
voltmag_5=11volts/sqrt(3);

end

vasb=voltmag_b6*sqrt(2)*cos(0);
vbsb=voltmag_b5*sqrt(2)*cos(0-2*pi/3);
vcsb=voltmag_b*sqrt(2)*cos(0+2*pi/3);

vqgssb=(2/3)*xvas5-(1/3) *vbsb5-(1/3) *xvcs5;
vdssb=(-1/sqrt(3))*vbs5+(1/sqrt(3))*vcsb;

vqgsb(1)=vgssb*cos(0)-vdssb*sin(0) ;
vds5(1)=vqgss5*sin(0)+vdss5*cos(0) ;

vmat5=[vqs5(1); vds5(1); vqrb5; vdr5];

initmat_5=[Rsb5 omegaeb5(1)*Ls5 O omegae5(1)*Lm5;. ..
-1*omegaeb5(1)*Ls5 Rsb -1*xomegae5(1)*Lm5 O;. ..
0 (omegaeb5(1)-2xthetadot_5(1))*Lm5 ...
Rr5 (omegaeb5(1)-2xthetadot_5(1))*Lr5;. ..
-1x(omegaeb (1) -2*thetadot_5(1))*Lm5 0 ...
-1*(omegaeb(1)-2*thetadot_5(1))*Lr5 Rr5];

i_init5=inv(initmat_5)*vmat5;
igs5(1)=i_init5(1);
ids5(1)=1i_init5(2);
igr5(1)=i_init5(3);
idr5(1)=i_init5(4);

psi_initb=Lmatb*i_inith;

psi_qgs5(1)=psi_init5(1);
psi_ds5(1)=psi_init5(2);
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psi_qr5(1)=psi_init5(3);
psi_dr5(1)=psi_init5(4);

Jback calculate initial integral values - several use w=1 values
intsum_tachl=out_tach1(1);

intsum_tachb5=out_tach5(1);

intsum_btachl=out_btachl(1l);

intsum_btachb=out_btach5(1);

intsum_pten=out_pten(1);

intsum_sten=out_sten(1);

intsum_adl=out_ad1(1);

intsum_ad2=out_ad2(1);

intsum_ad3=out_ad3(1);

intsum_omegael=omegael (1) ;
drivel_thetas_int=0;
psi_gsl_int=psi_gs1(1);
psi_dsl_int=psi_ds1(1);
psi_qrl_int=psi_qri(1l);
psi_drl_int=psi_dri(1);

intsum_omegaeb5=omegae5(1) ;
driveb_thetas_int=0;
psi_qgsb_int=psi_qgs5(1);
psi_ds5_int=psi_ds5(1);
psi_qr5_int=psi_qr5(1);
psi_dr5_int=psi_dr5(1);

hcreate arrays for signal substitution and control substitution
tension_replace(1:numpts)=0;

tachl_replace(1:numpts)=0;

tachb_replace(1:numpts)=0;

control_substitution(l:numpts)=0;

display(’INITIAL CONDITIONS SET’)
clock

hinstrument sag simulation - reset variables for recovery
intreset=1;
intreset2=1;
intreset3=1;

hindices for referencing sampled waves
9=0;
r=1;
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__________________________________________________________________ %

hdrive variables for trip / no trip
dcbus1(1:numpts)=280;

dcbus5(1:numpts)=280;

dcdecayA=975; %v/sec dc bus decay rate: energized motor
dcdecayB=46.6; %v/sec dc bus decay rate: nonenergized motor
drivetrip1=199.5;

drivetrip5=199.5;

trip1=0;

tripb=0;

driveoutl(1l:numpts)=1;

driveout5(1:numpts)=1;

coastcommandl (1:numpts)=0;

coastcommand5 (1 :numpts)=0;

= - /
R /
henter loop for each point in time and run calculations
for w=2:numpts %loop for number of evaluation points
== - /
%feedback instruments - all first order
e /

Jmain tachometer - roller 1
%input: thetadot_1(w-1)
%output: out_tachlB(w)

%standard operation - prefault, ridethrough, and postfault

hstandard first order for instrument

tachl_integral=dt*((K_tachl/tau_tachl)*thetadot_1(w-1))...
-dt*((1/tau_tachl)*(out_tachl(w-1)-offset_tachl));

intsum_tachl=tachl_integral+intsum_tachl;

out_tachl(w)=intsum_tachl;

out_tachlB(w)=out_tachl(w);

hsagged operation - deviation segment
if time(w)>t_sagstart+ridetime2 & time(w)<=t_sagend
Jroutine to handle dissimilar sampling
timeindex=time (w)-time(w-q2) ;
if timeindex < (time(w)-time(w-4))
q2=q2+1;
out_tachilB(w)=wave2(r2) ;
elseif timeindex >= (time(w)-time(w-4))
q2=1;
r2=r2+1;
out_tachlB(w)=wave2(r2);
end
end

%hsagged operation - recovery segment
if time(w)>t_sagend & time(w)<t_sagend+10*tau_rec2
%initial value set
if intreset2==
intreset2=0;
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initval2=out_tachilB(w-1);
end

Jicalculate gradual sweep multipliers
dec_multiplier2=exp(-(time(w)-t_sagend)/tau_rec2);
inc_multiplier2=1-exp(-(time(w)-t_sagend)/tau_rec2);

%signal definition - equation 2.29
out_tachiB(w)=initval2*dec_multiplier2+out_tachl(w)*inc_multiplier2;

J%main tachometer - roller 5
%hinput: thetadot_5(w-1)
%output: out_tach5B(w)

%standard operation - prefault, ridethrough, and postfault

%standard first order for instrument

tachb5_integral=dt*((K_tach5/tau_tachb)*thetadot_5(w-1))...
-dt*((1/tau_tach5)*(out_tach5(w-1)-offset_tachb5));

intsum_tachb=tachb_integral+intsum_tachb;

out_tachb(w)=intsum_tachb5;

out_tachbB(w)=out_tachb5(w);

%hsagged operation - deviation segment
if time(w)>t_sagstart+ridetime3 & time(w)<=t_sagend
Jroutine to handle dissimilar sampling
timeindex=time (w)-time(w-q3);
if timeindex < (time(w)-time(w-4))
q3=q3+1;
out_tachbB(w)=wave3(r3);
elseif timeindex >= (time(w)-time(w-4))
q3=1;
r3=r3+1;
out_tachbB(w)=wave3(r3);
end
end

%sagged operation - recovery segment
if time(w)>t_sagend & time(w)<t_sagend+10*tau_rec3
%initial value set
if intreset3==
intreset3=0;
initval3=out_tachb5B(w-1);
end

Jicalculate gradual sweep multipliers
dec_multiplier3=exp(-(time(w)-t_sagend)/tau_rec3);
inc_multiplier3=1-exp(-(time(w)-t_sagend)/tau_rec3);

%signal definition - equation 2.29

out_tachbB(w)=initval3*dec_multiplier3+out_tach5(w)*inc_multiplier3;
end
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Jbackup tachometer - roller 1
%hinput: thetadot_1(w-1)
%houtput: out_btachl(w)

btachl_integral=dt*((K_btachl/tau_btachl)*thetadot_1(w-1))...

-dt*x((1/tau_btachl)*(out_btachl(w-1)-offset_btachl));
intsum_btachl=btachl_integral+intsum_btachl;
out_btachl (w)=intsum_btachl;

%backup tachometer - roller 5
hinput: thetadot_5(w-1)
Joutput: out_btachb(w)

btach5_integral=dt*((K_btachb5/tau_btachb)*thetadot_5(w-1)).

-dt*((1/tau_btachb)*(out_btachb5(w-1)-offset_btachb));
intsum_btachb=btach5_integral+intsum_btachb;
out_btachb(w)=intsum_btach5;

Jprimary tension cell
%input: pten_actual(w-1)
Jhoutput: out_pten2(w)

%standard operation - prefault, ridethrough, and postfault
hstandard first order for instrument
pten_integral=dt*((K_pten/tau_pten)*pten_actual(w-1))...
-dt*((1/tau_pten)*(out_pten(w-1)-offset_pten));
intsum_pten=pten_integral+intsum_pten;
out_pten(w)=intsum_pten;

out_pten2(w)=out_pten(w) ;

hsagged operation - deviation segment
if time(w)>t_sagstart+ridetime & time(w)<=t_sagend
Jroutine to handle dissimilar sampling
timeindex=time (w)-time (w-q);
if timeindex < (time(w)-time(w-4))
qQ=q+1;
out_pten2(w)=wave(r) ;
elseif timeindex >= (time(w)-time(w-4))
q=1;
r=r+1;
out_pten2(w)=wave(r) ;
end
end

%hsagged operation - recovery segment
if time(w)>t_sagend & time(w)<t_sagend+10*tau_rec
hinitial value set
if intreset==
intreset=0;
initval=out_pten2(w-1);
end

hcalculate gradual sweep multipliers
dec_multiplier=exp(-(time(w)-t_sagend)/tau_rec);
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inc_multiplier=1-exp(-(time(w)-t_sagend)/tau_rec);

%signal definition - equation 2.29
out_pten2(w)=initval*dec_multiplier+out_pten(w)*inc_multiplier;
end

T b

%secondary tension cell

%input: sten_actual (w-1)

%houtput: out_sten(w)

sten_integral=dt*((K_sten/tau_sten)*sten_actual(w-1))...
-dt*x((1/tau_sten)*(out_sten(w-1)-offset_sten));

intsum_sten=sten_integral+intsum_sten;

out_sten(w)=intsum_sten;

e %
e %

%instrument input block - three instances

hzero order hold for sampling
timeindex1=0.1*(floor (time(w)/0.1));
oldwi=floor((timeindex1/(1/10000))+1);

stachl input signal
%input: out_tachl(w-1)

%output: out_adl(w)
ad_integrall=dt*((K_ad/tau_ad)*out_tachiB(w-1))...
-dt*x((1/tau_ad) *(out_adl(w-1)-offset_ad));
intsum_adl=ad_integrall+intsum_adl;

out_adlA(w)=intsum_adil;
out_adl(w)=out_ad1A(oldwl);
out_adi1B(w)=out_adl (w);

%stachb input signal
%hinput: out_tachb(w-1)

%output: out_ad2(w)
ad_integral2=dt*((K_ad/tau_ad)*out_tach5B(w-1))...
-dt*x((1/tau_ad) *(out_ad2(w-1)-offset_ad));
intsum_ad2=ad_integral2+intsum_ad2;

out_ad2A(w)=intsum_ad2;
out_ad2(w)=out_ad2A(oldwl);
out_ad2B(w)=out_ad2(w) ;

Jprimary tension input signal

%hinput: out_pten2(w-1)

houtput: out_ad3(w)

ad_integral3=dt* ((K_ad/tau_ad)*out_pten2(w-1))...
-dt*((1/tau_ad) *(out_ad3(w-1)-offset_ad));

intsum_ad3=ad_integral3+intsum_ad3;

out_ad3A(w)=intsum_ad3;

out_ad3(w)=out_ad3A(oldwl);

out_ad3B(w)=out_ad3(w);

%INTERRUPT SIGNALS IF RIDETIMES EXCEEDED - SELECTIVE SUBSTITUTION
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o
o
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o
o
o
o
o
o

T

%3 IF STATEMENTS REASSIGN OUT_AD*B VALUES
if time(w)>=0.5+ridetime2 & time(w)<=0.5+0.450+rectime?
out_ad1B(w)=mean(out_ad1B(10:4000));

intsum_adl=out_adiB(w);
tachl_replace(w)=1;
end

if time(w)>=0.5+ridetime3 & time(w)<=0.5+0.450+rectime3
out_ad2B(w)=mean (out_ad2B(10:4000)) ;

intsum_ad2=out_ad2B(w) ;
tach5_replace(w)=1;
end

if time(w)>=0.5+ridetime & time(w)<=0.5+0.450+rectime
out_ad3B(w)=mean(out_ad3B(10:4000));

intsum_ad3=out_ad3B(w) ;
tension_replace(w)=1;
end

%control calculations
hscale feedback signals

%tachl signal

tachl_sig=(((out_adiB(w)-offset_ad)/K_ad)-offset_tachl)/K_tachl;

%tachb signal

tachb5_sig=(((out_ad2B(w)-offset_ad)/K_ad)-offset_tachb)/K_tachb

Jiprimary tension signal

pten_sig=(((out_ad3B(w)-offset_ad)/K_ad)-offset_pten)/K_pten;

%hcalculate PVs from scaled feed back signals

linespeed_PV=tachl_sig;
tension_PV=pten_sig*rb;

hcalculate control SPs from scaled feedback signals and
%desired values of linespeed and tension

linespeed_SP=linespeed_set/r1;
tension_SP=tension_setx*r5;

%calculate control signal errors

linespeed_err(w)=1linespeed_SP-linespeed_PV;
tension_err(w)=tension_PV-tension_SP;

hcalculate integral contribution to control

hcalculated every PLC cycle

dt_PLC=0.01; %PLC cycle interval

%IF STATEMENT MANAGES INTEGRAL HOLD, ELSE IS FOR NORMAL OPERATION

if time(w)>=t_sagstart+0.006 & time(w)<=t_sagend+1.5
intsum_Ilinespeed=intsum_Ilinespeed;
intsum_Itension=intsum_Itension;
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else
if time(w)-time(w_integral)>=dt_PLC-0.000001
w_integral=w;
intsum_Ilinespeed=intsum_Ilinespeed+linespeed_err (w)*dt_PLC;
linespeed_I_cont=I_linespeed*intsum_Ilinespeed;
intsum_Itension=intsum_Itension+tension_err (w)*dt_PLC;
tension_I_cont=I_tension*intsum_Itension;
end
end

hrecord integral sums for reference
I_line(w)=intsum_Ilinespeed;
I_ten(w)=intsum_Itension;

%calculate proportional contribution to control
linespeed_P_cont=P_linespeed*linespeed_err(w);
tension_P_cont=P_tension*tension_err (w);

%sum proportional and integral terms
linespeed_PIsum(w)=linespeed_P_cont+P_linespeed*linespeed_I_cont;
tension_PIsum(w)=tension_P_cont+P_tension*tension_I_cont;

Y%calculate state feedback terms
linespeed_state_cont (w)=rb*pten_sig*K_state_linespeed;
tension_state_cont(w)=tach5_sig*K_state_tension;

%sum state feedback term and PI sum
linespeed_control (w)=linespeed_PIsum(w)+linespeed_state_cont (w);
tension_control(w)=tension_PIsum(w)+tension_state_cont(w);

Jmultiply by intrinsic constant used in Siemens PLC
linespeed_ctrl_out(w)=1linespeed_control (w)*276.4;
tension_ctrl_out(w)=tension_control (w)*276.4;

Jhdrive maximum and minimum saturation at +-15Hz
if linespeed_ctrl_out(w)>((15%2*pi)/K_DR1)
linespeed_ctrl_out(w)=((156%2*pi)/K_DR1);
elseif linespeed_ctrl_out(w)<((-15%2xpi)/K_DR1)
linespeed_ctrl_out (w)=((-15%2*pi) /K_DR1) ;
end

if tension_ctrl_out(w)>((15*%2xpi)/K_DR5)
tension_ctrl_out (w)=((156%2*pi) /K_DR5) ;
elseif tension_ctrl_out (w)<((-15%2*pi)/K_DR5)
tension_ctrl_out(w)=((-15%2*pi) /K_DR5) ;
end

%CALCULATE AND OUTPUT PREFAULT AVERAGE VALUES FOR

%CONTROL OUTPUTS

if time(w)>=t_sagstart+0.006 & time(w)<=t_sagend+1.5
linespeed_ctrl_out(w)=mean(linespeed_ctrl_out(10:4000));
tension_ctrl_out (w)=mean(tension_ctrl_out(10:4000));
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control_substitution(w)=1;

Jmotor drives

%inputs: linespeed_ctrl_out(w),tension_ctrl_out(w)
houputs: torque_1(w),torque_5(w)

heach drive done separately

Jxx*xdrive 1

Jdetermine rotating field frequency

omegael_integral=dt*((K_DR1/tau_DR1)*linespeed_ctrl_out(w-1))...
-dt*((1/tau_DR1) *omegael (w-1)) ;

omegael (w)=omegael_integral+intsum_omegael;

intsum_omegael=omegael (w) ;

Jdetermine angles
drivel_thetas(w)=drivel_thetas_int+dt*omegael (w);
drivel_thetas_int=drivel_thetas(w);

if abs(omegael (w))<(6%2*pi)
11volts=VpHzegainl*exp (VpHzexpl* (omegael (w)/(2*pi)));
voltmag_1=11lvolts/sqrt(3);

elseif abs(omegael(w))>=(6*2*pi)
11lvolts=VpHzgainl* (omegael (w)/(2*pi))+VpHzoffsetl;
voltmag_1=11volts/sqrt(3);

end

%COAST COMMAND

if time(w)>=t_sagstart+0.025 & time(w)<=t_sagend+0.002
coastcommandl (w)=1;

end

%DRIVE DROPOUT SEQUENCE AND DC BUS DECAY
%SECOND CONDITIONAL INCLUDED IN RECOVERY
if time(w)>=t_sagstart & time(w)<=t_sagend
if dcbusi(w-1)>=drivetripl
dcbus1(w)=dcbusl(w-1)-dcdecayAx*dt;
end
if dcbusl(w-1)<drivetripl | coastcommandl (w)==
dcbus1 (w)=dcbusl(w-1)-dcdecayB*dt;
driveoutl(w)=0;
voltmag_1=0;
psi_gs1(w-1)=0;
psi_qri(w-1)=0;
psi_ds1(w-1)=0;
psi_dri(w-1)=0;
end
end

if tripl==0 & dcbusl(w)<drivetripl

tripl=1;
end
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%if driveoutl(w-1)==0 %maintains trip for no mitigation
if tripl==1;

driveoutl(w)=0;

voltmag_1=0;

psi_qs1(w-1)=0;

psi_qri(w-1)=0;

psi_ds1(w-1)=0;

psi_dr1(w-1)=0;
end

vasl=voltmag_1x*sqrt(2)*cos(drivel_thetas(w));
vbsl=voltmag_1*sqrt(2)*cos(drivel_thetas(w)-2*pi/3);
vesl=voltmag_1*sqrt(2)*cos(drivel_thetas(w)+2*pi/3);

vgss1=(2/3)*vas1-(1/3)*vbs1-(1/3)*vcsl;
vdss1=-(1/sqrt(3))*vbs1+(1/sqrt(3))*vcsl;

vgsl(w)=vgssl*cos(drivel_thetas(w))-vdssl*sin(drivel_thetas(w));
vdsl(w)=vgssix*sin(drivel_thetas(w))+vdssi*cos(drivel_thetas(w));

%hcalculate dq fluxes
psi_gs1(w)=psi_qgsl_int+dt*(vgsl(w-1)-Rsl*igqsl(w-1)...

-omegael (w-1)*psi_ds1(w-1));
psi_gsl_int=psi_qgsl(w);

psi_dsl(w)=psi_dsl_int+dt*(vdsl(w-1)-Rsl*ids1(w-1)...
+omegael (w-1) *psi_qsi(w-1));
psi_dsl_int=psi_ds1l(w);

psi_qri(w)=psi_qri_int+dt*(vqri-Rri*iqri(w-1)...
-(omegael (w-1)-2xthetadot_1(w-1))*psi_dri(w-1));
psi_qgrl_int=psi_qri(w);

psi_dri(w)=psi_drl_int+dt*(vdri-Rrixidri(w-1)...
+(omegael (w-1)-2*thetadot_1(w-1))*psi_qri(w-1));
psi_drl_int=psi_dri(w);

%hcalculate dq currents
psil=[psi_gs1(w);psi_dsi(w);psi_qri(w);psi_dri(w)];
I1=inv(Lmatl) *psil;

igs1(w)=I1(1);

ids1(w)=I1(2);

iqri(w)=I1(3);

idr1(w)=I1(4);

%calculate developed torque
torque_1(w)=(3/2)*(2)*(Lml) ...
*x(igs1(w)*idrl(w)-ids1(w)*iqri(w));

J¥x*xdrive 5

hdetermine rotating field frequency

omegaeb_integral=dt*((K_DR5/tau_DR5)*tension_ctrl_out(w-1))...
-dt*((1/tau_DR5) *omegaeb5(w-1)) ;
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omegaeb (w)=omegaeb_integral+intsum_omegaeb;
intsum_omegaeb5=omegaeb (w) ;

%develop pwm voltage signals
driveb_thetas(w)=drive5_thetas_int+dt*omegaeb(w) ;
driveb5_thetas_int=drive5_thetas(w);

if abs(omegaeb(w))<(6%2%pi)
1lvolts=VpHzegain5*exp (VpHzexp5* (omegaeb(w) / (2xpi)));
voltmag_5=11volts/sqrt(3);

elseif abs(omegaeb(w))>=(6%2*pi)
11volts=VpHzgainb* (omegaeb (w)/(2*pi))+VpHzoffset5;
voltmag_5=11volts/sqrt(3);

end

%COAST COMMAND

if time(w)>=t_sagstart+0.025 & time(w)<=t_sagend+0.002
coastcommandb (w)=1;

end

#DRIVE DROPQUT SEQUENCE AND DC BUS DECAY
%SECOND CONDITIONAL INCLUDED IN RECOVERY
if time(w)>=t_sagstart & time(w)<=t_sagend
if dcbusb(w-1)>=drivetripb
dcbusb (w)=dcbus5(w-1)-dcdecayAxdt;
end
if dcbusb(w-1)<drivetripb | coastcommand5(w)==
dcbusb (w)=dcbus5(w-1)-dcdecayB*dt;
driveoutbh (w)=0;
voltmag_5=0;
psi_gs5(w-1)=0;
psi_qr5(w-1)=0;
psi_ds5(w-1)=0;
psi_dr5(w-1)=0;
end
end

Jpermanent trip after loss of drive

if trip5==0 & dcbusb(w)<drivetripb
tripb=1;

end

%hif driveout5(w-1)==0; Ymaintains trip for no mitigation
if tripb==1;

driveout5(w)=0;

voltmag_5=0;

psi_qgsb(w-1)=0;

psi_qr5(w-1)=0;

psi_ds5(w-1)=0;

psi_dr5(w-1)=0;
end

vasb=voltmag_b*sqrt(2)*cos(driveb5_thetas(w));
vbsb=voltmag_5*sqrt(2)*cos(driveb5_thetas(w)-2*pi/3);
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vcsb=voltmag_b6*sqrt(2)*cos(driveb_thetas(w)+2*pi/3);

vqssb=(2/3) *vas5-(1/3) *vbs5-(1/3) *vcs5;
vdss5=(-1/sqrt (3) ) *vbsb+(1/sqrt (3))*vcs5;

vqgsb (w)=vgssb*cos(driveb5_thetas(w))-vdssb*sin(drive5_thetas(w));
vdsb (w)=vgssb*sin(driveb5_thetas(w))+vdssb*cos(drive5_thetas(w));

%calculate dq fluxes
psi_qgsb(w)=psi_gs5_int+dt*(vgs5(w-1)-Rsb*iqsb(w-1)...

-omegaeb (w-1) *psi_ds5(w-1));
psi_gsb_int=psi_qs5(w);

psi_ds5(w)=psi_ds5_int+dt*(vds5(w-1)-Rsb*ids5(w-1)...
+omegaeb (w-1) *psi_qgs5(w-1));
psi_dsb5_int=psi_ds5(w);

psi_qrb5(w)=psi_qr5_int+dt*(vqr5-Rrb5*iqr5(w-1) ...
- (omegaeb (w-1)-2*thetadot_5(w-1))*psi_dr5(w-1));
psi_qr5_int=psi_qr5(w);

psi_dr5(w)=psi_dr5_int+dt*(vdr5-Rrb5*idr5(w-1). ..
+(omegaeb (w-1) -2*thetadot_5(w-1) ) *psi_qr5(w-1));
psi_drb_int=psi_dr5(w);

%calculate dq currents
psib=[psi_qgs5(w) ;psi_ds5(w) ;psi_qr5(w);psi_dr5(w)];
I56=inv(Lmat5)*psib;

iqs5(w)=I5(1);

ids5(w)=I5(2);

iqr5(w)=I5(3);

idr5(w)=I15(4);

%hcalculate developed torque
torque_5(w)=(3/2)*(2)*(Lmb) . ..
* (iqsb(w) *idr5(w)-idsb (w)*iqr5(w)) ;

Jmechanical system

hassemble input matrix from motor developed torques
ul=torque_1(w);
u2=torque_5(w) ;

%hcalculate output matrix y=Cx+Du
%x is initialized for w=1, recalculated for next iteration later
y=C*x+D* [ul;u2];

%determine linespeed and tension variables from output matrix
linespeed(w)=y(1);

thetadot_1(w)=y(1)/r1;

thetadot_5(w)=y(2)/r5;

pten_actual (w)=y(3);
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sten_actual (w)=y(4);

Y%slack

if pten_actual(w) < 0
pten_actual(w) = 0;

end

if sten_actual(w) < O
sten_actual(w) = 0;
end

Y%calculate x for next iteration
x=x_1intsum+dt* (A*x+B* [ul;u2]);
X_intsum=x;

Jprogress messages
if rem(w,10000)==0

w
clock

%END PROGRAM SAGSIM.M
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Appendix E

Instrumentation Voltage Sag Response Data

This appendix contains the raw data obtained from sag testing the textile tension
controller analog instrumentation..
durations for ridethrough time tests were fixed at 450ms. Magnitudes were varied
from 0% to 80% in 20% increments. When the sensor rode through the event without
an observable disturbance, ‘RT’ is indicated. Maximum recovery times found during

the test session were also recorded. Sag durations were varied up to 450ms to ensure

All values are given in seconds.

the maximum recovery time was obtained.

Table E.1 Ridethrough times obtained from sag testing of tension sensor.

PHYS. INPUT | V=0% | V=20% | V=40% | V=60% | V=80%
5N 0.085 0.074 0.074 0.074 RT
14N 0.274 0.274 RT RT RT
23N 0.150 0.147 0.136 0.124 RT
32N 0.078 0.075 0.072 0.076 RT
41N 0.060 0.060 0.064 0.064 RT
50N 0.060 0.060 0.060 0.060 RT

Table E.2 Ridethrough times obtained from sag testing of payoff tachometer.

PHYS. INPUT | V=0% | V=20% | V=40% | V=60% | V=80%
500 mm/s 0.096 0.096 0.096 RT RT
1000 mm/s 0.090 0.090 0.090 RT RT
1500 mm/s 0.086 0.086 0.086 RT RT
2000 mm/s 0.080 0.080 0.080 RT RT
2500 mm/s 0.076 0.076 0.076 RT RT

Table E.3 Ridethrough times obtained from sag testing of takeup tachometer.

PHYS. INPUT | V=0% | V=20% | V=40% | V=60% | V=80%
500 mm/s 0.094 0.094 0.094 RT RT
1000 mm/s 0.086 0.086 0.086 RT RT
1500 mm/s 0.080 0.080 0.080 RT RT
2000 mm/s 0.080 0.080 0.080 RT RT
2500 mm/s 0.076 0.076 0.076 RT RT
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Table E.4 Maximum recovery times obtained from instrument sag tests.

INSTRUMENT | MAX RECOVERY TIME
tension cell 0.088

payoff tachometer 0.246

takeup tachometer 0.246
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Appendix F
AC Motor Drive Voltage Sag Response Data

This appendix contains AC motor drive ridethrough results for sags of varying
magnitudes and phasing combinations, at a duration of 450ms. Sag magnitudes
are expressed as percentages in phase order A-B-C. Combinations marked with a *’

indicate a dropout, where the drive halted its output during the sag.
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Table F.1 AC motor drive sag response data.

(0,0,0)% (20,0,0)* (40,0,0)%
(0,0,200% | (20,0,200% | (40,0,20)%
(0,0,40)% | (20,0,40)% | (40,0,40)F
(0,0,60)F | (20,0,600* | (40,0,60)
(0,0,80)* | (20,0,80)% | (40,0,80)*
(0,0,100* | (20,0,100)* | (40,0,100)
(0,20,00F | (20,20,0)* | (40,20,0)%
(0,20,20% | (20,20,20)% | (40,20,20)
(0,20,40)* | (20,20,40)% | (40,20,40)
(0,20,60)% | (20,20,60)% | (40,20,60)*
(0,20,80)* | (20,20,80)* | (40,20,80)*
(0,20,100)* | (20,20,100)* | (40,20,100)*
(0,40,00* | (20,40,0)* | (40,40,0)*
(0,40,20)% | (20,40,20)% | (40,40,20)
(0,40,40)% | (20,40,40)* | (40,40,40)
(0,40,60)% | (20,40,60)* | (40,40,60)*
(0,40,80)% | (20,40,80)% | (40,40,80)*
(0,40,100)* | (20,40,100)* | (40,40,100)*
(0,60,00* | (20,60,00* | (40,60,0)F
(0,60,20% | (20,60,20)% | (40,60,20)
(0,60,40)* | (20,60,40)% | (40,60,40)
(0,60,60)* | (20,60,60)F | (40,60,60)
(0,60,80)% | (20,60,80)% | (40,60,80)*
(0,60,100) | (20,60,100) | (40,60,100)
(0,80,00* | (20,80,0)* | (40,80,0)%
(0,80,20% | (20,80,20)% | (40,80,20)
(0,80,40)* | (20,80,40)* | (40,80,40)
(0,80,60)% | (20,80,60)F | (40,80,60)
(0,80,80) | (20,80,80) | (40,80,80)
(0,80,100) | (20,80,100) | (40,80,100)
(0,100,0% | (20,100,0* | (40,100,0)*
(0,100,20)* | (20,100,20)* | (40,100,20)*
(0,100,40)* | (20,100,40)* | (40,100,40)*
(0,100,60) | (20,100,60) | (40,100,60)
(0,100,80) | (20,100,80) | (40,100,80)
(0,100,100) | (20,100,100) | (40,100,100)
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Table F.2 AC motor drive sag response data (continued).

(60,0,0)* (30,0,0)* (100,0,0)*
(60,0,20)% | (80,0,20)* | (100,0,20)*
(60,0,40)* | (80,0,40)* | (100,0,40)*
(60,0,60)* | (80,0,60)* | (100,0,60)
(60,0,80)* | (80,0,80) (100,0,30)
(60,0,100) | (80,0,100) | (100,0,100)
(60,20,00F | (80,20,0)* | (100,20,0)F
(60,20,20% | (80,20,20)% | (100,20,20)*
(60,20,40)% | (80,20,40)% | (100,20,40)*
(60,20,60)* | (80,20,60)* | (100,20,60)
(60,20,80)* | (80,20,80) | (100,20,80)
(60,20,100) | (80,20,100) | (100,20,100)
(60,40,00 | (80,40,0)* | (100,40,0)F
(60,40,20F | (80,40,20)% | (100,40,20)*
(60,40,40)F | (80,40,40)% | (100,40,40)*
(60,40,60)* | (80,40,60)* | (100,40,60)
(60,40,30)* | (80,40,80) | (100,40,80)
(60,40,100) | (80,40,100) | (100,40,100)
(60,60,00* | (80,60,00* | (100,60,0)
(60,60,20)% | (80,60,20)% | (100,60,20)
(60,60,40)* | (80,60,40)F | (100,60,40)
(60,60,60)* | (80,60,60)* | (100,60,60)
(60,60,30)* | (80,60,80) | (100,60,80)
(60,60,100) | (80,60,100) | (100,60,100)
(60,80,00* | (80,80,0) (100,80,0)
(60,80,20)F | (80,80,20) | (100,80,20)
(60,80,40)F | (80,80,40) | (100,80,40)
(60,80,60)* | (80,80,60) | (100,30,60)
(60,80,80) | (80,80,80) | (100,80,80)
(60,80,100) | (80,80,100) | (100,80,100)
(60,100,0) | (80,100,0) | (100,100,0)
(60,100,20) | (80,100,20) | (100,100,20)
(60,100,40) | (80,100,40) | (100,100,40)
(60,100,60) | (80,100,60) | (100,100,60)
(60,100,30) | (80,100,80) | (100,100,80)

(60,100,100)

(80,100,100}

(100,100,100)
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Appendix G
LabView Code For Data Read and Profibus Functions

This appendix contains LabView code for the data file read and Profibus interface

functions used in the Ridethrough PC.

DDDDDDDDDDDDDDDDDDDDDDI‘D0”1 vtﬂDDDDDDDDDDDDDDDDDDDDDD

PIT CARD OFFLINE FUNCTION:
PFE_Command (OFFLINE) |

ommand 2
[abck

0000000000000 000000000000000000000000000000000000010

OO0 0000 00000000 0000000k {[g,.1] vppd00000000000000o0ooo0on

FREE HARDWARE DRIVER DLL FUNCTION: PFE_FreeDriver

Oo000000000000000000000000000000000000000000000000070

Figure G.1 Labview subroutine to close Profibus interface.
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Figure G.2 Labview subroutine to read in data file for ridethrough PC (part 1 of 2).
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Figure G.3 Labview subroutine to read in data file for ridethrough PC (part 2 of 2).
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Alm o mmam s aaxaaxamxanaax s sPFTENGE{T S SRR R R E A Eaan an nn s s

|L0£\D HARDWARE DRIVER DLL FUMCTION: PFE_LoadDriver |

(o 0 o e e  w  w  w w  w  w w w w w

DDDDDDDDDDDDDDDDDDDDDDDDDDDEI‘1[0_5]vtIDDDDDDDDDDDDDDDDDDDDDDDDDDDD

|OPEN CARD CONMECTION FUMCTION: PFE_OpenCard |

[CardHandle
ardhiame]

ardiame
[T

| CardHandle

OO0 00000000000 000000000000 00000000000 00000000000 00000000000 00L0:

D000 00000000000 000000000000 70 5] vp0 0000000000000 00000000000000

(CLEAR. COMFIGURATION BUFFERS FUNCTION:
FFE_Command (REIMIT)

ardHandle

abc B

OO0 00000000000 000000000000 0000000000000 000000000000 000000000050

Figure G.4 Labview subroutine for Profibus open interface (part 1 of 2).
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OO0 00000000000 0000000000000 G5 vpI000000000000000000000 000000

PFE_PutshvCfg

SLAYE CONFIGURATION FUNCTION: ‘

3000
Rx Tx Lengths | 1< 1010

—_

OO0 00000000000 000 00000000000 00000000000 00000000000 000000000000

O0000000000000000 00000000000 45g 5] »el000000000000000000000000000L
“4[0 5]

MNetCongif

MET COMNFIGURATION FUMCTION:
PFE_PutNetCfg

OO0 0O00 00000000000 00000000000 00000000000 0000000000000 00000000

o O O O B B s W w W ~p[0000000000000000000000 00000,

FLUT CARD OMLIME FURNCTION:
FFE_Command {OMLINE)

[abeH

OO0 0O0000000000 000 00000000000 00000000000 0000000000000 0 000000000

Figure G.5 Labview subroutine for Profibus open interface (part 2 of 2).
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Appendix H
PLC Ladder Code

This appendix contains the ladder code used in the textile tension control process

PLC and the added subroutine used to interface with the Ridethrough PC.

Block: OB1 MAIN WEBSTAND PROGRAM

SECTION ONE - GENERAL I/O AND DIRECTION DETERMINATION

Network: 1 Create 'always high' bit: on if 1=1
"PLC RUN T
o Lv"
SN
L
Network: 2 Create always off bit
"PLC RUN T "ALWAYS OF
o Lv" F BIT"
%
‘Network: 3 Send initialize word to drives
"INITIALIZ
E FROM LV" MOVE
| | EN ENO
WH16#47E —IN "MEM FRONT
ouT CONTROL"
MOVE
EN ENO
WH16H#447E —IN "MEM REAR
OUT— CONTROL"
Network: 4 Move ASI input to appropriate location
MOVE
EN ENO
"ASI IN" —IN "MEM ASI I
OUT—N"
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Network: 5

Front spool state affect on direction

When front triggers,
and front becomes payoff

Rear then becomes takeup

high)

front is full.
(PO=1low, TU

"FRONT PHO
TO"

"FRONT PHO
TO TO LV"

/

( —
"REAR DIR
MEM"

(s —]

"FRONT DIR
MEM"

(R)—]

Network: 6

Rear spool state affect on direction

When rear triggers,
and front becomes takeup

Rear then becomes payoff,
TU=high)

rear is full.
{PO=1low,

"REAR PHOT "REAR PHOT
o" o TO LV"
| O
"FRONT DIR
MEM"
S —
"REAR DIR
MEM"
(R>—]
Network: 7 Set integral reset bit on reversal
"INT RESET
"FRONT PHO T1 TIMING BI
To" s pULsE | T
| s Q O—
"REAR PHOT S5T#2S —TV BIl-
on
|| R BCD
Network: 8 Set integral reset bit on reversal
"START STO
"START/STO T2 P TIMING B
P FROM IV" ["5 BULSE | IT"
S E— o (—
S5T#25 —TV BI—
—R BCD—
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Network: 9 Set LV reset bit while timer is on

"INT RESET "INTEGRATO
TIMING BI R RESET TO
o V"
N O
"START STO
P TIMING B
IT"
Network: 10 Move front status into memory location

"PBUS FRON "MEM FRONT
T STATUS" OUT— STATUS"

Network: 11 Determine front drive state
"FRONT RUN "FRONT RUN
" TO LV"

[ @)

Network: 12 Move rear status into memory location

MOVE
EN ENO
"PBUS REAR "MEM REAR
STATUS" —IN OUT— STATUS"
Network: 13 Determine rear drive state
"REAR RUN
"REAR RUN" TO LV"
R O—
Network: 14 Move discrete input word
MOVE
EN ENO
"PBUS DISC "DISCRETE
RETE INPUT INPUT 1 WO
i —IN OUT—RD"
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Network: 15 Move tach and radii into memory location - forward

If rear is takeup and front is payoff, move tachs and radii
to appropriate locations (running forward)

"REAR DIR "FRONT DIR "PAYOFF TA
MEM" MEM" CH SUB" MOVE
(. | /1 g
| /1 e EN ENO|
"PBUS FRON "MEM PAYOF
T TACH" —IN OUT—F TACH"
"TAKEUP TA
CH SUB" MOVE
/4 EN ENO|—
"PBUS REAR "MEM TAKEU
TACH" —IN OUT—P TACH"
Network: 16 Move tach and radii into memory location - reverse

If front is takeup and rear is payoff, move tachs and radii
to appropriate locations (running reverse)

"FRONT DIR "REAR DIR "TAKEUP TA

MEM" MEM" CH SUB" MOVE
[ L /1 EN ENO
"PBUS FRON "MEM TAKEU
T TACH" IN OUT— P TACH"
"PAYOFF TA
CH SUB" MOVE
¥ EN ENO
"PBUS REAR "MEM PAYOF
TACH" —IN OUT—F TACH"
Network: 17 Move tension value into memory location
"TENSION S
uB" MOVE
—| 5N ENO
"PBUS TENS "MEM TENSI
ION" IN OUT|- ON"
Network: 18 Start/stop drives
"START/STO "FRONT STA
P FROM LV" RT/STOP"
| (5)—
"REAR STAR
T/STOP"
(9)
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Network: 19

Move control word to front drive

EN

"MEM FRONT
CONTROL" —IN

MOVE

ENO

"PBUS FRON
OUT—T CONTROL"

Network: 20 Move control word to rear drive
MOVE
EN ENO
"MEM REAR "PBUS REAR
CONTROL" —IN OUT— CONTROL"
Network: 21 Move linespeed setpoint
"LINESPEED
SET SUB" MOVE
— ENO
"MEM LINSP
EED SETPOI "LSPEED SE
NT" IN OUT- T MEM"
Network: 22 Move tension setpoint
"TENSION S
ET SUB" MOVE
—/—FEN ENO
"MEM TENSI
ON SETPOIN "TENSET ME
™ —IN OUT—M"
Network: 23 Convert payoff tach to real

SECTION TWO - CONVERT CRITICAL VARIABLES TO REAL,

SCALE TO APPROPRIATE UNITS

I DI DI R
EN ENO EN ENO|
"MEM PAYOF "PAYOFF TA "PAYOFF TA "PAYOFF TA
F TACH" —IN OUT— CH DOUBLE" CH DOUBLE" —|IN OUT— CH REAL"
Network: 24 Convert takeup tach to real
I DI DI R
EN ENO EN ENO]
"MEM TAKEU "TAKEUP TA "TAKEUP TA "TAKEUP TA
P TACH" —IN OUT— CH DOUBLE" CH DOUBLE" —IN OUT—CH REAL"
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Network: 25 Convert tension to real

I DI DI_R
b EN ENO EN ENO
"MEM TENSI "TENSION D "TENSION D "TENSION R
ON" IN OUT- OUBLE" OUBLE" IN OUT— EAL"
Network: 26 Convert linspeed setpoint to real
I DI DI R
ENO EN ENO
"LSPEED SE "LINSPEED "LINSPEED
T MEM" SET DOUBLE SET DOUBLE "LINSPEED
oUTL " " OUT}- SET REAL"
Network: 27 Convert tension setpoint to real
I DI DI R
— FN ENO EN ENO
"TENSET ME "TENSET DO "TENSET DO "TENSET RE
M" IN OUT- UBLE" UBLE" IN OUT—AL"
Network: 28 Scale tension input to newtons
SCALING STARTS HERE
SUB_R DIV R
——EN ENO EN ENO
"TENSION R "TENSION S "TENSION S "TENSION S
EAL"™ —IN1 CALED REAL CALED REAL CALED REAL
ouT—" " —IN1 ouT—"
-4.499700e
+000 IN2 2.765100e+
003 —IN2
SUB_R DIV R
EN ENO EN ENOF————
"TENSION S "TENSION S "TENSION S "TENSION S
CALED REAL CALED REAL CALED REAL CALED REAL
" IN1 OouUT| " " IN1 ouTR "
7.460000e- 9.890000e-
002 —IN2 002 —{IN2
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Network: 29 Scale PO tach input to radians per second (PO=FRONT)
DIV R
EN ENO
"PAYOFF TA "PO TACH 3 "PO TACH S "PO TACH S
CH REAL" IN1 CALED REAL CALED REAL CALED REAL
ouT-—" " —IN1 ouT—"
-4.499700e
+000 IN2 2.765100e+
003 —IN2
_ -
SUB_R DIV_R
EN ENO EN ENO
"PO TACH S "PO TACH S "PO TACH S "PO TACH S
- CALED REAL CALED REAL  CALED REAL CALED REAL
" —IN1 OUT|- " " —IN1 OUT| "
2.160000e- 1.918000e-
002 —IN2 001 —IN2
Network: 30 Scale TU tach input to radians per second (TU=REAR)
DIV R
EN ENO
"TAKEUP TA "TU TACH 3 "TU TACH S "TU TACH S
CH REAL" IN1 CALED REAL CALED REAL CALED REAL
ouT-—" " —IN1 ouT—"
-4.499700e
+000 IN2 2.765100e+
003 —IN2
-
SUB R DIV R
EN ENO EN ENO
"TU TACH S "TU TACH S "TU TACH S "TU TACH 3
CALED REAL CALED REAL  CALED REAL CALED REAL
" —IN1 OuT" " —IN1 ouT—"
-8.040000e 1.966000e-
-002 —IN2 001 —IN2
b
Network: 31 Convert linspeed set to meters
MUL_R
EN ENO
"LINSPEED "LINSPEED
SET REAL" —IN1 SET SCALED
OUT— REAL"
1.000000e-
003 —IN2
Network: 32 Create takeup angspeed setpoint value

SECTION THREE - CONTROL CALCULATIONS
Takeup control starts here

"LINSPEED
SET SCALED
REAL"

7.200000e-
002

DIV R
EN ENO
"TU OMEGA
IN1 OUT- SET"
IN2
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Network: 33

Takeup PID block

"PLC RUN T

o Lv"

4444% }4444,

"INTEGRATO
R RESET TO
Lv" —

"ALWAYS OF
F BIT"

"ALWAYS OF
F BIT" —

"INTEGRATO
R HOLD" -

TH#5MS —

"TU OMEGA
SET" —

"TU TACH S
CALED REAL

"CONT_C"

EN

COM_RST

MAN_ON

PVPER ON
P SEL

I _SEL

INT_HOLD
I ITL ON
D SEL

CYCLE

SP_INT

PV_IN

PV_PER

GAIN
TI

TD
TM_LAG
DEADB_W
LMN_HLM
LMN LLM
PV_FAC
PV_OFF
LMN_FAC
LMN_OFF
I_ITLVAL

DISV

ENO

LMN

IMN PER
QLMN_ HLM
QLMN_LIM
IMN_P
IMN_I
LMN_D|

PV

ER|

"TAKEUP PI
ouT"

196



Network: 34 Convert takeup PI output to real

DI R
EN ENO
"TAKEUP PI "TAKEUP PI "TAKEUP PI
ouT" IN OUT DOUBL OUT DOUBL "TAKEUP PI
OUT-—E" E" IN ouT OUT REAL"™
Network: 35 Divide real takeup PI out by intrinsic constant
DIV R
EN ENO
"TAKEUP PI "RESCALED
OUT REAL" —IN1 TAKEUP PI
ouT-—ouT"
2.764000e+
002
Network: 36 Takeup state variable manipulation

Multiply takeup radius by tension feedback, to obtain torque
Multiply torque value by state feedback gain value

MUL_R MUL_R
EN ENO EN ENO
"TENSION S "TU STATE "TU STATE
CALED REAL "TU STATE FEEDBACK" —IN1 OUT— FEEDBACK"
" —IN1 OUT— FEEDBACK"
5.000000e-
7.200000e- 003 —IN2
002 —IN2
Network: 37 Create takeup output value

Add real scaled takeup PI out to scaled takeup state feedback
Multiply result by intrinsic constant

ADD R MUL R
EN T ENO EN T ENO
"TU STATE "TAKEUP CO "TAKEUP CO "SCALED TA
FEEDBACK" —{IN1 OUT NTROL SUM" NTROL SUM" —{IN1 KEUP OUTVA
OUT— LUE"
"RESCALED 2.764000e+
TAKEUP PI 002 —IN2
ouT" —IN2
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Network: 38 Convert takeup ocutput value to double integer

Output rung will use the low order word of this value

ROUND
EN ENO

"SCALED TA "SCALED TA
KEUP OUTVA KEUP OUTVA
LUE" —IN OUT— LUE"

Network: 39 Multiply tension setpoint by payoff radius

Payoff control starts here

MUL_R
EN ENO
"TENSET RE "PAYOFF PI
ALM —IN1 OUT— SETPOINT"
7.200000e-
002 —IN2
Network: 40 Multiply tension feedback by payoff radius
MUL_R
EN ENO
"TENSION S
CALED REAL "PAYOFF PI
" —IN1 OouT— pv"
7.200000e-
002 —IN2
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Network: 41

Payoff PID block

"PLC RUN T

DB2

o Lv"
4444% }4444,

"INTEGRATO
R RESET TO
V"

"ALWAYS OF
F BIT" —

"ALWAYS OF
F BIT" —

"INTEGRATO
R HOLD" —

T#5MS —

"PAYOFF PI
PV" -

"PAYOFF PI
SETPOINT"

"CONT C"
EN

COM_RST

MAN_ON

ENO

LMN

LMN_PER

QLMN HLM

PVPER_ON

QLMN LILM

P_SEL

I_SEL

INT HOLD
I_ITL_ON
D_SEL

CYCLE

SP_INT

PV_IN
PV_PER
MAN

GAIN

TI

TD

TM LAG
DEADB W
LMN_ HLM
LMN LIM
PV_FAC
PV_OFF
LMN_FAC
LMN OFF
I ITLVAL

DISV

IMN P
IMN I

LMN_D

PV}

ER|

"PAYOFF PI

ouT"
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Network: 42 Convert payoff PI output to real
I DI DI R
EN ENO EN ENO
"PAYOFF PI "PAYOFF PI "PAYOFF PI
ouT" —IN OUT DOUBL OUT DOUBL "PAYOFF PI
OUT—E" E" —IN OUT— OUT REAL"
Network: 43 Divide real payoff PI out by instrinsic constant
DIV_R
EN ENO
"PAYOFF PI "RESCALED
OUT REAL" —IN1 PAYOFF PI
OuUT—ouT"
2.764000e+
002 —IN2
Network: 44 Payoff state variable manipulation

Multiply payo

ff speed by state feedback gain value

MUL R
EN ENO
"PO TACH S
CALED REAL "PO STATE
" IN1 OUT|- FEEDBACK"
2.000000e-
002 —IN2
Network: 45 Create payoff output value

Add real scaled payoff PI out to scaled payoff state feedback
Multiply result by intrinsic constant

ADD R MUL_R
EN ENO EN ENO
"PO STATE "PAYOFF CO "PAYOFF CO "SCALED PA
FEEDBACK" IN1 OUT- NTROL SUM" NTROL SUM" —IN1 YOFF OUTVA
OUT— LUE"
"RESCALED 2.764000e+
PAYOFF PI 002 —IN2
ouT" IN2
Network: 46 Convert payoff output value to double integer

Output rung will use the low order word of this value

"SCALED PA
YOFF OUTVA
LUE"

ROUND
EN ENO
"SCALED PA
YOFF OUTVA
IN OUT— LUE"
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Network: 47 Drive stop command for normal use
"START/STO T3 "STOP TIMI
P FROM IV" ["5 BULSE | NG BIT"

s Q (—

S5T#25 —TV BI—
—R BCD—

Network: 48 Zero setpoint before normal stop command
"STOP TIMI
NG BIT" VMOVE

|| EN ENO|

0 —IN "PAYOFF RE
F LOW WORD

OUT—"

MOVE
EN ENO

0 —IN "TAKEUP RE
F LOW WORD

OUT—"

Network: 49 Stop drives with timing bit reset
"STOP TIMI "ONE SHOT "FRONT STA
NG BIT" STOP™ RT/STOP"

K (1) (R
"REAR STAR
T/STOP"
(R)—
Network: 50 Move references to drives - forward operation

If rear is takeup and front is payoff, move drive references
to appropriate locations (running forward)

"REAR DIR  "FRONT DIR "PAYOFF RE
MEM" MEM" F SUB" MOVE
|| 11 Y EN ENO|
"PAYOFF RE "PBUS FRON
F LOW WORD T SETPOINT
" IN OUT|- "
"TAKEUP RE
F sUB" MOVE
A EN ENO|—
"TAKEUP RE
F LOW WORD "PBUS REAR
" —IN OUT| SETPOINT"
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Network: 51 Move references to drives - reverse operation

If rear is takeup and front is payoff, move drive references
to appropriate locations (running forward)

"FRONT DIR "REAR DIR "PAYOFF RE

MEM" MEM" F SUB" MOVE
| V1 /) BN ENO
"PAYOFF RE
F LOW WORD "PBUS REAR
" —IN OUT|- SETPOINT"
"TAKEUP RE
F SUB" MOVE
A EN ENOH-
"TAKEUP RE "PBUS FRON
F LOW WORD T SETPOINT
" —IN ouTR—"
Network: 52 Move control word to front drive
MOVE
EN ENO
"MEM FRONT "PBUS FRON
CONTROL" —IN OUT—T CONTROL"
Network: 53 Move control word to rear drive
MOVE
EN ENO
"MEM REAR "PBUS REAR
CONTROL" —IN OUT— CONTROL"
Network: 54 Call RTPC add-on code
FC1
( CALL —|
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Block: FC1

ADDITIONAL PLC FUNCTION FOR RIDETHROUGH PC

‘Network: 1

Move status word to RTPC

MOVE
EN ENO
"STATUS TO "PBUS STAT
MONITOR" IN US TO MONI
OUT— TOR"
Network: 2 Move tension word to RTPC
MOVE
EN ENO
"PBUS TENS "PBUS TENS
ION" —IN ION MONITO
OUT— R"
Network: 3 Move payoff tach word to RTPC
MOVE
EN ENO
"PBUS FRON "PBUS POTA
T TACH" —IN CH MONITOR
ouT—"
Network: 4 Move takeup tach word to RTPC

TACH"

"PBUS REAR

"PBUS TUTA
CH MONITOR

ouT

Network: 5

Move payoff reference word to RTPC

"PAYOFF RE
F LOW WORD

"PBUS POCO
NT MONITOR

IN ouT
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Network: 6 Move takeup reference word to RTPC

"TAKEUP RE "PBUS TUCO

F LOW WORD NT MONITOR

" IN ouTH "

Network: 7 Move linespeed setpoint word to RTPC

"MEM LINSP "PBUS LS S
EED SETPOI ET MONITOR
NT" ouT- "
Network: 8 Move tension setpoint word to RTPC
MOVE
EN ENO
"MEM TENSI "PBUS TEN
ON SETPOIN SET MONITO
T OUT|- R"
Network: 9 Move control word from RTPC
MOVE
EN ENO
"PBUS CTRL "CONTROL F
FROM MONI ROM MONITO
TOR" —IN OUT—R"
Network: 10 Move tension replace word from RTPC
"TENSION S
UB" MOVE
|| EN ENO
"PBUS TENS
ION REPLAC "MEM TENSI
E" OUT-— ON"
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Network: 11 Move payoff tach replace word from RTPC

"PAYOFF TA
CH SUB" MOVE

|| EN ENO

"PBUS POTA
CH REPLACE "MEM PAYOF
" OUT— F TACH"

Network: 12 Move takeup tach replace word from RTPC
"TAKEUP TA
CH SUB"

.

"PBUS TUTA
CH REPLACE "MEM TAKEU
" IN OUT— P TACH"
Network: 13 Move payoff reference replace word from RTPC
"PAYOFF RE
F SUB" MOVE
—— ——FEN ENO
"PBUS POCO "PBUS FRON
NT REPLACE T SETPOINT
" —IN OUT— "
Network: 14 Move takeup reference replace word from RTPC
"TAKEUP RE
F SUB" MOVE
—f ——FEN ENO
"PBUS TUCO
NT REPLACE "PBUS REAR
" —IN OUT— SETPOINT"
Network: 15 Move linespeed set replace word from RTPC
"LINESPEED
SET SUB" [ MovE |
— ——FEN ENO
"PBUS LS S
ET REPLACE "LSPEED SE
" IN OUT—T MEM"
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Network: 16

Move tension set replace word from RTPC

"TENSION S
ET SUB"

4444% }4444,

"PBUS TEN
SET REPLAC
E" _

MOVE
EN ENO

"TENSET ME

IN OUT—M"

Network: 17

Disable drives on software coast command

"SOFTWARE
COAST"

"FRONT DRI
VE DISABLE

|
1/

"

( —
"REAR DRIV
E DISABLE"

O—

Network: 18

Hold integrator and output new control words

"SOFTWARE "INTEGRATO
COAST" R HOLD"
[ | )
"PAYOFF RE
F SUB" MOVE
- EN ENO[-
"TAKEUP RE| “MEM REAR "PBUS REAR
F SUB CONTROL" IN OUT|- CONTROL"
MOVE
EN ENO|-
"MEM FRONT "PBUS FRON
CONTROL" —IN OUT|~T CONTROL"
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Network: 19

Front drive dropout status bit

"FRONT DIS
ABLED"
|l

"FRONT STA "FRONT STA
RT/STOP" TUS"

|l /N
1T N/

Network: 20

Rear drive dropout status bit

"REAR DISA
BLED"
[

"REAR STAR "REAR STAT
T/STOP" us"

| O—

Network: 21

I/0 block dropout status bit

"I/0 BLOCK "I/0 BLOCK
ENABLED" STATUS"
L1 CO—

Network: 22

Return to main program

"PLC RUN T
o LV"

|

(RET )
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Appendix |
Additional Ridethrough PC Software Flowcharts

This appendix contains additional flowcharts detailing the software structure for
the Ridethrough PC program. They are provided as an addendum to the flowcharts

given in Chapter 3, “Software Design”.

START MAIN

-

DEFINE INSTRUMENT DEFINE:
RIDETHROUGH AND DATA ACQUISITION
RECOVERY TIME CARD ID,
ARRAY VALUES INPUT CHANNELS,
INPUT BUFFER SIZE,
l SCAN RATE,
NUMBER OF SCANS PER
PROGRAM CYCLE=5
INITIALIZE PROFIBUS
INTERFACE l
l MAIN WHILE
LOOP
INITIALIZE EVENT
HANDLING ARRAY l
l CLOSE PROFIBUS
INITIALIZE: INTERFACE
3 MIN RMS=1,
3 MIN dRMS=0,
START ITERATION=0, l

END ITERATION=0,
EVENT LENGTH=0,

8 REPLACEMENT SIGNALS=0,
VOLTAGE SIGNAL ARRAYS,
IS_SAG=FALSE,

WAS_SAG=FALSE

WRITE / APPEND
DATA FILE
SUBROUTINE

USER SELECTED WRITE
TO DATAFILE?

DATA FILE INPUT

USER SELECTED READ AND
FROM DATA FILE? RESTRUCTURING END MAIN
SUBROUTINE

{

EVENT COUNTER=
SIZE(STORED ARRAY)

EVENT COUNTER=-1

Figure 1.1 Flowchart for main program of ridethrough PC.
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START OPEN
INTERFACE

LOAD DRIVER

v

OPEN CARD
COMMUNICATIONS

v

RESET INTERFACE
CARD

v

CONFIGURE CARD
AS SLAVE DEVICE

v

CONFIGURE
NETWORK
INTERFACE

v

GO ONLINE WITH
NETWORK

END OPEN
INTERFACE

Figure 1.2 Flowchart for Profibus open interface routine.

START CLOSE
INTERFACE

GO OFFLINE WITH
NETWORK

v

UNLOAD DRIVER
FROM MEMORY

END CLOSE
INTERFACE

Figure 1.3 Flowchart for Profibus close interface routine.
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START DATA
FILE READ

OPEN TEXT
DATA FILE

&
<

A 4
READ DATA FOR
SINGLE
RECORDED
EVENT

END OF FILE
REACHED?

INTITIALIZE 6X6X6
EVENT ARRAY

&
€

\ 4
CALCULATE ARRAY
INDICES FOR NEXT

EVENT IN RAW DATA

ARRAY

y

PLACE EVENT DATA
IN APPROPRIATE
6X6X6 ARRAY
LOCATION

END OF RAW
DATA REACHED?

END DATA
READ

Figure 1.4 Flowchart for data file read routine.
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START DATA
FILE WRITE

<
<
A

A

WRITE DATA FOR
SINGLE EVENT IN
TEXT FILE

END OF RAW
DATA REACHED?

END DATA FILE
WRITE

Figure 1.5 Flowchart for data file write routine.

211



START MAIN
WHILE LOOP

USER TERMINATED

PROGRAM?

VOLTAGE
MEASURE AND
SAG DETECT

!

DATA BUS READ
AND WRITE

!

EVENT
ANALYSIS

'

HISTORY
RESPONSE ID

'

MEASUREMENT|
RESPONSE ID

TERMINATE
LOOP

v

SOFTWARE
COAST

'

HARDWARE
COAST

y

CONTROL
SIGNAL
SUBSTITUTION

!

SELECTIVE
SIGNAL
SUBSTITUTION

;

RESTART/
RESET

!

END MAIN WHILE
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LOOP

Figure 1.6 Flowchart for main loop of ridethrough PC software.




START BUS
READ / WRITE

READ 16 BYTE
PROFIBUS
DATA - STATUS
AND SIGNALS

|

INSERT NEW
PROFIBUS DATA
INTO ARRAYS

|

DISCARD OLDEST
BUS DATA POINT
FROM ARRAYS

|

WRITE 16 BYTE
PROFIBUS DATA -
CONTROL AND
REPLACEMENT
SIGNALS

END BUS READ /
WRITE

Figure 1.7 Flowchart for Profibus read and write routine.
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Appendix J
Main LabView Code For Ridethrough PC

This appendix contains the main LabView code used in the Ridethrough PC.
Structure windows that appear to be disconnected are secondary cases of the con-

nected windows immediately adjacent to them.

0.085 0.096
0.274 Ulugu 0.034
H| Tension ridethroughs : - - 0,056
0.150 = 0,036 o Potach ridethroughs] =R Utach ridethroughs
0.078 ; oo o g ; 0.080 o o
0.060 —— - o 0.060 = i
0.060 D'Dgs 0,076
074 : 0,094
0.050 0,086
0.274 [= . -
0,056 o o a0 o
0.147 = o
0.080 o- 0,080 o
0.075
0.060
0.036 0.094
0.060
0.030 0,086
o :
0.074 0,036 g.. o080
100,000 o
0.080} |- o
0.136 0076 O
0.064
100.000 100,000
0.060 [== -
100,000 o 100.000
0.074 o
100,000 o+l 100,000
100.000 00000
: » 100,000
R 0,246 »
0.076
0.064
i »
0.050 E—|| PG control replace]
letark E—|| [ru Contral replace]
Leration -
fnin dRMS 4] fnin RMS &) E_ 0]
E_'h: : | h: | End i | U Tach replace
in dRMS E in RM3 B Leration
- PO Tach replace
E_» p E_ :
foin dRME ¢ foin RM5 ¢ fenatt] E—|| [Tension set replace|
E—” ’ 0,00 ¥ EI—|| Linespeed set replace]

Figure J.1 Main Labview code - variable initialization before main loop.
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TO MAIN LOOP
INITIALIZE — READMWRITE
PROFIBLS Bk FLRCTION CALL

COMMUNTCATIONS T 4

P |

I o
;

1667

<] L
INITIALIZE EVENT | —ea]
ARRAY =2

I

!

=
Eh 1e3) iritizlized event arra
I ———

i READWRITE ARRAYS |

0.00 o= I I ¢ To MAIN LOGP
| ']

MlTrue ~ o
umnber

—_——

BT |event number w

]
EVENT MUMEER. HAMNDLER.
M| False 't g

=
23|
(X

IMITIAL YOLTAGE DATA
120.00
ARRAYS TO MAIN LOOR =+ BB
o ma e ooy —
L3 FASSES) 100 L W

IMITIAL PREVIOUS SAG
STATE FOR 3 PHASES
TO MAIN LOOP

[[Tiey
e oo

nput channels] [Tabokeeey

ERROR HANDLER.
FOR MAIN LOP

C

Figure J.2 Main LabView code - data read, array initialization, and hardware setup
before main loop.
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COAST COMMAND |f-
B

replace POkach
replace TUkach

ASSEMBLE COMTROL WORD

onkrol Word

Linespeed set replace

I

——

—=
)

DATA ARRAYS TO
STORE OPERATION,
PREFALILT CALCLILATION,
AMD LOOP SHIFT REGISTER
cardhandle cardhandle
DATA ARRAYTS FROM \WRITE ¥ALUES [READ VALLES
LOOP SHIFT REGISTER
— | —
Tension replace l%l - {briE]|
5 s
—
Control Word || o = Btatus word
I I_IEI == BTTE ] [T Tach monitor]
T Tach replace = = ‘I-
—
PO Tach replace l%l = FO Tach monitar
55 e
—
TU Control replace I—l%l = Ul Contral manitar
Lo PROFIBUS WRITE AND READ =
—
FO control replace l%l = FO Control monitor
5 & g0
—
Tension set replace I— I%I =
55 i s

KL

]-

[SHIFT-IMNSERT YALUES

Figure J.3 Main LabView code - Profibus I/O and data monitoring.
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CATA ARRAYS FROM SHIFT
OPERATION - NETWORK TRAFFIC

True ¥

Inl
FLC DATA ARRAYS IN] E
[data array |l={E B

| E L

"event niurnber || ||data array|| L’:{
+ went number

I

||1:

Al

start iteration

[

Al

n

-—‘it
E [=5
skart iteration

start iteration b

\/
o[z

[

m

=

ELTET
|

[RECORD PROCESS DATA - FALSE CASE EMPTY]

Figure J.4 Main LabView code - event data capture.
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i
132 TU Tach replace g
PO Tach replace

a5 oo
H+EEh
Gh ™ L

n-t

H

TU Contral replace

P contral replace

[FREFAULT AVERAGE CALCULATIONS - FALSE CASE EMPTY]

Figure J.5 Main LabView code - prefault average calculation.
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WVOLTAGE ARRAYS R3S WOLTAGES
TO PEAK DETECT TO SaG DETECT

AMND EVENT AMNALYZE

HH
RIS
WOLTAGE ARRATS CALCILATE
;Eggfggﬁ B-f RMS YOLTAGES
= [ e anmawe |
=====| ‘P- WL I Aal SRS TD
= = ; T SHIFT REGISTER
B RIS
B-f
EEH-+EB) N =
i e RHS

37,45 & =]

[DISCARD-SHIFT-INSERT]

ACQUIRED WOLTAGE
SIGMAL DATA

: L
DATA ACQUISITION
DATA ACQUISITION SETUP i
| o | | FUMCTION CALL

SIS ______ptan |
L =l
[E== . — |J e [75] [TERMINATE LOOP ON ERROR|
|feeration]  [Jiceration] : |OR UISER COMMAND

u shafus

ERROR STATUS TO
QUTSIDE LOOP

Figure J.6 Main LabView code - data acquisition and voltage data handling.
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.
(A

11s.301="

115,30 |>

MIMIMUIM RMS WOLTAGE
(CALCULATION FOR EVENT
(FALSE CASES EMPTY)

115,30

PREVIOUS SAG
STATUS IN

ANY SAG PREYIOUS

D

|—|dRMS Thresholds DETECTION LOGIC

3500,00 | -3500.00

Eag phase 4

e I T =

G AG DETECT
EOOLEAN

SIGMALS

: ouT

i E

0.00 ﬁ%

L Al]

2[g]
AAAAA

CERIVATIVE |

CALCULATION

MIMNIMUM dRMS
CETERMINATION
(FALSE CASES EMPTY)

RIS
WOLTAGES
In

Figure J.7 Main LabView code - voltage sag detection, minimum RMS voltage, and
minimum RMS voltage derivative determination.
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LENGTH YARIABLE
[FALSE CASE EMPTY)

CREATE START AMND
EMD ITERATION ¥ARIABLES
[FALSE CASES EMPTY)

=
ANY SAG PREYIOUS [True_v

PHASIMG DATA

CLIJSTER. {FALS
CASE EMPTY

EE Wy 53

..............

Figure J.8 Main LabView code - event analysis instructions.
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B2
65 >

167,30

PEAK DETECT PHASE C

>
1.1170 |>

oL TAGE ARRAYS

FROM DISCARD-SHIFT- INSERT|

Figure J.9 Main LabView code - peak voltage detection instructions.

M(True =

False ~
] - 5| ' o DETERMINE EXFECTED
=

FAULTED IMNSTRUMENTATION

eshaped Anay [5CAN FOR DRIVE DROPOU
[N HISTORY

[
I)
T
i<
EISTOR‘(’ -2 F| 22000 E
O el R "
Any sag 12 g@
iteration I I @ N N‘S_TEUEE
B (> e
350,00 |> i
%11 E«}
100.00 Ili
B
g4 |100.00 |>
b S TRUE CASE SETS
E EXPECTED DRIVE
R OPCLT HIsH

Figure J.10 Main LabView code - expected process response identification using
recorded process history.
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start iteration - L-
—_— i

AV

=
EF

Figure J.11 Main LabView code - expected process response identification using for-

mal region boundary definitions.

stark iteration

=

Figure J.12 Main LabView code - software coast agorithm instruction set.

FALSE CASES EMPTY

FOFTWARE

7]

g Wl True vk}

[E&l-{|orive oroPoUT

] [ 1)

@l {[coasT commann

|
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FALSE CASES EMPTY

[ezvec]

HARDWARE COAST || e
8
DRIYE DROPOLT |- 2,00

iteration
A0
OME FT
end iteration Eml Bym
5

0.00
~
0] [E1E]-{[orive DROPOUT

- old

Figure J.13 Main LabView code - hardware coast algorithm instruction set.

| False "t[

Oref switch

hald controls

Uref switch

FALSE CASE EMPTY

Figure J.14 Main LabView code - restarting instruction set.
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EONTROL -
IGHAL SUE.

llFauLTED sTRUMENT |-

----- hold contrals

p—1
|| iteration |

M True =

end iteration 2
I—ml—l—_|>_'_v 5 --||F.C'.LILTED INSTRLIMENT”

[Faucren mstRumenT]}

FALSE CASE EMPTY

Figure J.15 Main LabView code - control signal substitution and status clearing
instruction set.

™ True Vt
[FALSE CASE EMPTY
B e
0.20
FELECTIVE Tension replace
EIGNAL SUE. (Femsion epioce | D |> |> l>
ORI 0.09590 I> |> |§> TU%)
276510000 —
FALLTED INSTRUMENT |- o 07460 9.00 AN
-4.49970 } I> I>D Toeen I> Ridethrough index
276510000 -
: 72.00000 I> |> D>
-0, 08040 o000
o b 500,00 :
PO Tach replace
g > >
-4.49970 >
0.19180
2765.10000 T l> I> D> 1ug)
0.02160 : 500.00
500,00

Figure J.16 Main LabView code - generation of ridethrough time index for selective
signal substitution algorithm.
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™ True t[ 4

g FALSE CASES EMPTY

Ridethrough indes: |fmpe

EEEE
|

[[FauLTED NSTRUMENT -

|lsELECTIVE S1EMAL SUE. ||

[SET SELECTIVE REPLACE BITS]

RESET SELECTIVE
REFPLACE EITS

replace POtach ||

M True "t
------------------- replace TUkach

replace TUkach ||

[ True - t[
"""""""""" replace kension

FALSE CASES EMPTY

replace tension [f-

Figure J.17 Main LabView code - selective signal substitution algorithm replace bit
set and reset instructions.
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| [,
[CARDHANDLE FROM
PROFIBUS READ{WRITE
(COMMAND TN MAIN LOOP =
- | | [CLOSE PROFIEUS
=] Imrerrace FALSE CASE EMPTY
P -
[True ~P
| data array H
Jleste arrav
ooo0oo0oooon o[o..1]1~ gooooooooocC
[WRITE FIRST & ARRAY YALUES
—,f. %
L | 1777 bedtly .
B Ei; ’ s
s
Lid
00000000000 00000000000000000¢C
O0o0o0o0o0o0nn 1[0..1] ~ ogooooooooonr
RITE
= [WRITE LAST 9 ARRAY YALUES - SINGLE LINE]
: [WRITE SEQUENCE TERMINATION] )
#
O1E
L
DATA FILE I
WRITE? 00000000000 0000000000000000
i ERROR HBNDLER | &
[FrOM mam Loop
JER—
ﬂ | 5 Errnr ouk

Figure J.18 Main LabView code - data file write and Profibus interface close function
call after termination of main loop.
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