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ABSTRACT 

Nowadays, biomedical researchers publish thousands of papers and journals every 

day. Searching through biomedical literature to keep up with the state of the art is a task 

of increasing difficulty for many individual researchers. The continuously increasing 

amount of biomedical text data has resulted in high demands for an efficient and effective 

biomedical information retrieval (BIR) system. Though many existing information 

retrieval techniques can be directly applied in BIR, BIR distinguishes itself in the 

extensive use of biomedical terms and abbreviations which present high ambiguity.  

First of all, we studied a fundamental yet simpler problem of word semantic 

similarity. We proposed a novel semantic word similarity algorithm and related tools 

called Weighted Edge Similarity Tools (WEST). WEST was motivated by our discovery 

that humans are more sensitive to the semantic difference due to the categorization than 

that due to the generalization/specification. Unlike most existing methods which model 

the semantic similarity of words based on either the depth of their Lowest Common 

Ancestor (LCA) or the traversal distance of between the word pair in WordNet, WEST 

also considers the joint contribution of the weighted distance between two words and the 

weighted depth of their LCA in WordNet. Experiments show that weighted edge based 

word similarity method has achieved 83.5% accuracy to human judgments. 
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Query expansion problem can be viewed as selecting top k words which have the 

maximum accumulated similarity to a given word set. It has been proved as an effective 

method in BIR and has been studied for over two decades. However, most of the previous 

researches focus on only one controlled vocabulary: MeSH. In addition, early studies find 

that applying ontology won’t necessarily improve searching performance. In this 

dissertation, we propose a novel graph based query expansion approach which is able to 

take advantage of the global information from multiple controlled vocabularies via 

building a biomedical ontology graph from selected vocabularies in Metathesaurus. We 

apply Personalized PageRank algorithm on the ontology graph to rank and identify top 

terms which are highly relevant to the original user query, yet not presented in that query. 

Those new terms are reordered by a weighted scheme to prioritize specialized concepts. 

We multiply a scaling factor to those final selected terms to prevent query drifting and 

append them to the original query in the search. Experiments show that our approach 

achieves 17.7% improvement in 11 points average precision and recall value against 

Lucene’s default indexing and searching strategy and by 24.8% better against all the other 

strategies on average. Furthermore, we observe that expanding with specialized concepts 

rather than generalized concepts can substantially improve the recall-precision 

performance. 

Furthermore, we have successfully applied WEST from the underlying WordNet 

graph to biomedical ontology graph constructed by multiple controlled vocabularies in 

Metathesaurus. Experiments indicate that WEST further improve the recall-precision 

performance. 
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Finally, we have developed a Graph-based Biomedical Search Engine (G-Bean) 

for retrieving and visualizing information from literature using our proposed query 

expansion algorithm. G-Bean accepts any medical related user query and processes them 

with expanded medical query to search for the MEDLINE database. 
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Chapter 1  

Introduction 

1.1. Problem Statement 

Nowadays, biomedical researchers publish thousands of papers and journals every 

day. Searching through biomedical literature to keep up with the state of the art is a task 

of increasing difficulty for many individual researchers. The challenge is ever increasing 

in the scope of topical coverage as well as the fast-growing volume of biomedical 

literature [1, 2]. There is a high demand from the biological and medical community for 

an efficient and effective biomedical information retrieval (BIR) system. Though many 

existing information retrieval techniques can be directly used in BIR, BIR distinguishes 

itself in the extensive use of biomedical terminology as well as the high ambiguity those 

terms may present. One of the biggest challenges in BIR is to increase the recall and 

precision performance in searching MEDLINE database. MEDLINE [3] is the world’s 

largest medical bibliographic database that contains more than 18.9 million citations (by 

July 2011) from approximately 5000 medical journals and articles. NCBI’s PubMed [4] 
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system is the most widely used web interface for accessing MEDLINE, generally uses 

Boolean expressions to search the indexed documents. 

However, effectively querying MEDLINE by PubMed is not an easy task for 

ordinary users. Due to the complexity of the query language for accurate searching result, 

the literature searching is usually performed by experienced search expert such as 

librarians [5]. It is widely reported [6, 7] that normal users, including those regularly use 

the PubMed system over the web, do not utilize the system as effectively as experts. 

Those inexperienced searchers either fail to employ the best query terms or fail to 

effectively apply Boolean expressions in the query statement [8]. In addition, since there 

is no one “correct” way to index an item, the disagreement between searchers and 

indexers under the Boolean systems can make inexperience searchers frustrated. One 

previous study [8] showed that the average novice searcher (third year medical student) 

requires 14 separate queries to attain their objective. In addition, users are often 

overwhelmed by the long list of search results: over one-third of PubMed queries result in 

100 or more citations [2]. 

MEDLINE based information retrieval has been studied for more than two 

decades [9-11]. Those early studies observed that using controlled vocabularies such as 

MeSH offer no advantages in retrieval performance over free-text. The poor performance 

is caused by a number of potential reasons such as missing concepts and incomplete 

synonym sets [12].  

Nevertheless, query expansion has been confirmed as an effective way to improve 

search performance. Srinivasan [13, 14] observed that pseudo relevance feedback (PRF) 
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based query expansion on MeSH vocabulary improved the retrieval performance. Yoo 

[15] and Abdou [16] re-designed the terms weight scheme found by PRF. However, since 

PubMed doesn’t sort matched documents by relevance, the PRF strategy might not apply 

properly into PubMed.  

There are two limitations for previous studies in query expansion: (1) only small 

amount of biomedical terms are used in indexing. Metathesaurus 2010AB covers total 2.3 

million biomedical concepts, while most of the previous research only use MeSH along 

which only contains 26K terms in indexing. (2) Early studies did not consider the context 

information presented in the query. Expansion based on individual term may lead to the 

problem of query drifting. 

Since the search mechanism in PubMed is not efficient for average users and 

existing methods have various drawbacks and limitations, a novel and better index and 

search approach is always desired in the biomedical community to overcome the 

shortcoming of the Boolean logic operation based PubMed system.  

In recent years, we have continuously developed several original index strategies 

[17-21] in information retrieval and text mining and we applied them into MEDLINE 

[22, 23] based information retrieval and we have achieved great performance 

improvement over existing methods. 

1.2. Dissertation Summary 

This dissertation is dedicated to an original hybrid query expansion method in 

biomedical information retrieval by exploring ontology graph.  
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We first studied a relevant simple problem in natural language processing: word 

semantic similarity problem, which aims to compute the semantic similarity between two 

nodes in an ontology graph. We proposed a novel weighted edge word semantic 

similarity algorithm called WEST. We discovered an important human judgment 

difference between ‘categorization’ pair and ‘specification’ pair that humans are more 

sensitive to the semantic difference caused by the categorization than by specification. In 

other words, people view word pair separated by specification more similar than those 

separated by categorization. Base on this observation, we designed a set of strategies to 

measure word similarity considering that factor. Our proposed weighted edge distance 

model considers the specification level difference of a word pair and the specification 

level of its least common ancestor together. Based on this new model and a set of 

improved non-linear transfer functions, our method’s result reaches a very good 

correlation against Miller-Charles’s human similarity judgment. 

The word semantic similarity gives us a hint that the similarity value 

exponentially decreases while the number of hops increases between two nodes. It also 

helps us abstract the query expansion problem into a mathematical model that we want to 

expand the user query with additional terms with the top accumulated similarity values, 

while preventing the problem of query drifting. 

Our ontology graph exploration methodology applies personalized PageRank 

algorithm to the ontology graph. The original user query is used as the teleportation 

vector to compute a corresponding PageRank vector which is later used to construct the 

expanded query. As of our knowledge, this is the first personalized PageRank application 
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in text processing in biomedical information retrieval area. We hope this approach can 

bring interests and further studies from other researchers on personalized PageRank in 

biomedical information retrieval. 

In addition, we applied this WEST word similarity algorithm from WordNet to 

multiple ontologies from Metathesaurus. The WEST algorithm is used to further filter the 

low similar personalized PageRank vector in order to provide screened expanded query. 

Finally, we implement a web application of the biomedical search engine using 

our hybrid query expansion approach. The web application is open to the public and free 

to use, providing a better way for biomedical researchers to search for latest publications.  

1.3. Research Contributions 

New approach to query the MEDLINE database is always desirable in the 

biological and medical community. In this dissertation, we first studied a preliminary 

problem of word semantic similarity. Then, we extended the word semantic similarity 

into query expansion problem and proposed to apply Personalized PageRank to compute 

get the expansion candidates. We also apply the similarity algorithm to verify the 

confidence of these expanded terms. 

Weighed Edge Word Semantic Similarity: first, we made an important 

observation that humans are more sensitive to the word semantic difference caused by the 

categorization than by specification. In another word, people view word pair separated by 

specification more similar than those separated by categorization. Our proposed weighted 

edge distance model merges the specification level difference of a word pair and the 



6 
 

specification level of its least common ancestor together. Based on this new model and a 

set of improved non-linear transfer functions, our method’s result reaches a very good 

correlation against Miller-Charles’s human similarity judgment. 

Ontology Graph based Query Expansion: First of all, our proposed 

personalized PageRank based query expansion algorithm is conceptually novel and is 

very different from previous query expansion methods in information retrieval as of our 

knowledge. Unlike most of the previous ontology based studies which utilize only MeSH 

as their solo ontology, our personalized PageRank approach can employ multiple 

controlled vocabularies from Metathesaurus during the process. In this way, our system 

provides user with the ability to customize the underlying ontologies as they wish so that 

different user might be able to search the biomedical database using different underlying 

ontologies. For example, a biology scientist who is working on gene experiments can use 

the ontologies constructed by the single Gene Ontology (GO). To make the personalized 

PageRank algorithm work effectively, we have designed a systematic method to eliminate 

the mapped generalized biomedical concepts and populate closely related specialized 

concepts resulting in significant increase in the relevance of retrieval results. Our 

experimental analysis showed that eliminating generalized biomedical concepts in the 

search query may greatly improve the recall-precision performance. Finally, we 

demonstrate that query expansion based on ontology graph is more stable than that based 

on pseudo relevance feedback because sorting the retrieved documents by relevance is 

found to be often inaccurate. 
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Hybrid Approach: We have successfully explored and combined two different 

yet effective approaches to take advantages of the multiple biomedical ontologies into 

bioinformatics information retrieval. The final hybrid approach has further improved the 

performance of the search engine. 

1.4. Dissertation Organization 

The rest of the dissertation is organized as follows. In chapter 2 the background 

information of the ontology graph and biomedical information retrieval are presented. It 

also discusses existing query expansion methods, such as pseudo relevance feedback. In 

chapter 3, Weighted Edge Similarity Tools (WEST) is introduced to compute word 

semantic similarity on WordNet graph. The WEST method considers the difference of 

specification and generalization of a word pair in their positions in WordNet hierarchy. In 

chapter 4, the method and experimental results of query expansion using personalized 

PageRank algorithm is presented. In chapter 5, a hybrid query expansion algorithm is 

presented. The WEST algorithm is applied to the biomedical ontology graph and the 

expanded query from the personalized PageRank algorithm is further examined by the 

WEST algorithm to filter those concepts with low semantic similarity against the original 

query concepts. In chapter 6, a prototype of web application of the proposed query 

expansion biomedical information retrieval system is presented. Finally, conclusion and 

future work are presented in chapter 7. 
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Chapter 2  

Background 

2.1. Ontology 

In philosophy, ontology is the study of being or existence and forms the basic 

subject matter of metaphysics. It seeks to describe the basic categories and relationships 

of being or existence to define entities and types of entities within its framework [24]. 

Ontology can be used to reason about the entities within that domain, and may be used to 

describe the domain. In computer science, an ontology represents an effective means of 

knowledge sharing within controlled and structured vocabulary [25]. Ontology provides a 

shared vocabulary, which can be used to model a domain — that is, the type of objects 

and/or concepts that exist, and their properties and relations. It is the structural 

framework for organizing information and is used in artificial intelligence, the Semantic 

Web, systems engineering, software engineering, biomedical informatics, library science, 

enterprise bookmarking, and information architecture as a form of knowledge 

representation about the world or some part of it. The creation of domain ontologies is 

also fundamental to the definition and use of an enterprise architecture framework [26]. 
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In the following sections of this chapter, we are going to introduce several 

different ontologies for various purposes. First of all, WordNet [27] is a general English 

lexical ontology covering most of the common English concepts that supporting various 

purposes. In biomedical domain, the Metathesaurus of Unified Medical Language System 

(UMLS) framework [28, 29] includes many biomedical ontologies and terminologies 

such as Medical Subject Headings (MeSH) [30] and Medicine Clinical Term (SNOMED-

CT) [31, 32]. NCBI Taxonomy [33] is another example of ontology to organize species 

where species in “is-a” relationships are grouped together using standard vocabulary. 

2.2. WordNet 

WordNet [27] is a lexical taxonomy database, widely used in many research fields 

such as artificial intelligence, natural language processing, information retrieval, and 

semantic web. WordNet provides a fine-grained structure ordering semantic word senses, 

called synsets, in a Directed Acyclic Graph (DAG). Senses/synsets of different “part-of-

speech” are organized in different DAGs. All relationships form the edges in WordNet 

while the synsets, consist of the nodes in WordNet. Though WordNet 3.0 includes total 22 

relationships between senses in its relationship hierarchy, the main relationship is still the 

“hypernym/hyponym (is-a)” relationship. The hypernym relationships of senses are 

shown in Figure 1 (only showing synset senses rather than synset ids for demonstration). 
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Figure 1: WordNet hierarchy 

In WordNet, synsets and their relationships are used to model the polysemy and 

synonymy phenomena in English language. Polysemy means that one word has different 

meanings, while synonymy indicates different words represent the same concept/sense. If 

several words represent the same concept, it means they are synonymous and a single 

synset ID is assigned to them. For example, ‘lumber’ and ‘timber’ share the same 

concept, that is, “the wood of trees cut and prepared for use as building material”. Thus, 

these two words have the same synset ID in WordNet. As of the latest version 3.0 in 

2006, the WordNet database contains 155,287 words organized in 117,659 synsets for a 

total of 206,941 word-sense pairs, and there are 101,863 monosemous and 60,384 

polysemous noun words and senses. 

Similarity of word senses obtained by WordNet-based methods closely matches 

the human perception because WordNet has coded the semantic relationships of word 

senses, as perceived by humans, into its hierarchical structure. 
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2.3. Medical Subject Headings  

Medical Subject Headings (MeSH) [30], a subset of Unified Medical Language 

System (UMLS) [28, 29], is the U.S. National Library of Medicine’s (NLM) controlled 

vocabulary thesaurus consisting of sets of terms naming descriptors in a hierarchical 

structure that permits searching at various levels of specificity. It is the main source 

vocabularies used with the primary purpose of supporting indexing, cataloging, and 

retrieval of medical literature articles stored in NLM MEDLINE database. MeSH 

terminology provides a consistent way to retrieve information that may use different 

terminology for the same concepts and imposes uniformity and consistency in the 

indexing of biomedical literature. It is also used in the query-parser portion of PubMed's 

information retrieval system to map a user's query to MeSH descriptors in order to 

retrieve medical text that have been also indexed with the same MeSH descriptor. 

There are three basic types of MeSH Records [34]: Descriptors, Qualifiers, and 

Supplementary Concept Records (SCRs). MeSH Descriptors, also known as Main 

Headings (MH), are used to index citations in NLM's MEDLINE database, for cataloging 

of publications, and other databases, and are reachable in PubMed as [MH]. Most 

Descriptors indicate the subject of an indexed item, such as a journal article, that is, what 

the article is about. Descriptors are generally updated on an annual basis but may, on 

occasion, be updated more frequently. MeSH descriptors are arranged in both an 

alphabetic and a hierarchical structure. At the most general levels of the hierarchical 

structure are very broad headings such as “Anatomy” or “Mental Disorders”. More 

specific headings are found at more narrow levels of the twelve-level hierarchy, such as 
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“Ankle” and “Conduct Disorder”. There are 26,142 descriptors in 2011 MeSH, and over 

177,000 entry terms that assist in finding the most appropriate MeSH Heading, for 

example, “Vitamin C” is an entry term to “Ascorbic Acid”. 

There are 83 different Qualifiers, also known as subheadings, used for indexing 

and cataloging in conjunction with Descriptors. Qualifiers afford a convenient means of 

grouping together those citations which are concerned with a particular aspect of a 

subject. For example, a “Liver/drug” effect indicates that the article or book is not about 

the “liver” in general, but about the effect of drugs on the “liver” Qualifiers are 

searchable in PubMed as MeSH Subheadings [SH]. Not all descriptor/qualifier 

combinations are allowed since some of them may be meaningless. 

Supplementary Concept Records (SCRs) does not belong to the controlled 

vocabulary as such and are not used for indexing MEDLINE articles; instead they enlarge 

the thesaurus and contain links to the closest fitting descriptor to be used in a MEDLINE 

search. Many of these records describe chemical substances. SCRs are searchable by 

Substance Name [NM] in PubMed. Unlike Descriptors, SCRs do not have Tree Numbers; 

however, each SCR is linked to one or more Descriptors. SCRs are updated weekly, 

unlike Descriptor and Qualifier records, which are generally updated on an annual basis. 

There are currently over 199,000 SCR records within a separate thesaurus [3]. 

MeSH includes 16 high-level categories shown in the MeSH Tree Structure [35] 

where each category is assigned a letter: A for Anatomy, B for Organisms, C for Diseases, 

and so on. Each category is then repeatedly divided by a set of subcategories. When 

PubMed searches a MeSH term, it will automatically include narrower terms in the 
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search, if applicable. This is also called automatic explosion. Some terms occur in more 

than one place in the hierarchy. For example, “Eye” appears under the Anatomy branch, 

but also under the Sense Organs branch. Automatic explosion will include narrower terms 

from all instances of the term in the hierarchy. 

2.4. Metathesaurus 

The Metathesaurus [36] of Unified Medical Language System (UMLS) [28, 29] is 

a large, multi-purpose, and multi-lingual vocabulary database containing information 

about biomedical related concepts, their various names, and their inter-relationships.  

The MeSH ontology we described in the previous section is also a part of the 

Metathesaurus ontology. Each biomedical concept is identified by a distinctive id called 

Concept Unique Identifier (CUI), which is an eight character alpha-numeric string. We 

use CUI to represent each biomedical concept in this dissertation. Each CUI is associated 

with a set of lexical variants strings, called concept name. The concept name may refer to 

medical conditions, appendages, diseases, drugs, and others; it may be single term, 

phrase, or a string of terms.  Each concept is accompanied by an associated set of lexical 

variants cumulatively numbering over 1.7 million terms with 2 million strings 

representing a variation in concept spelling identified by a string identifier.  

A depiction of concept organization as used in the Metathesaurus is shown in 

Figure 2. A concept is a grouping of synonymous terms; furthermore, each synonymous 

term listed for a concept contains acceptable spelling variations. These variations are 
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depicted as String 1 to String 4, while the synonymous terms are depicted as Term1 and 

Term 2. 

 

Figure 2: Metathesaurus concept organization 

 

Figure 3: Metathesaurus MRCONSO table 

The MRCONSO table in Figure 3 stores the entire CUIs and concept names. The 

MRCONSO table in consists of several data columns but the two of interests are concept 

name and CUI.  

The Metathesaurus includes many inter-concept relationships as well. Most of 

these relationships come from individual vocabularies. The others are either added by 

NLM during Metathesaurus construction or contributed by users to support certain types 
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of applications. The inter-concept relationships are stored in the MRREL table depicted in 

Figure 4. Many types of relationships are included such as parent/child, immediate 

siblings.  

 

Figure 4: Metathesaurus MRREL table 

2.5. Biomedical Information Retrieval  

In computer science field of study, information retrieval (IR) [37] refers to finding 

material (usually documents) of an unstructured nature (usually text) that satisfies an 

information need from within large collections (usually stored on computers). IR can also 

cover other kinds of data and information problems beyond that specified in the core 

definition above. The term “unstructured data” refers to data which does not have clear, 

semantically overt, easy-for-a-computer structure. It is the opposite of structured data, the 

canonical example of which is a relational database, of the sort companies usually use to 

maintain product inventories and personnel records.  

Nowadays, hundreds of millions of people engage in information retrieval every 

day when they use a web search engine such as Google or Bing. Information retrieval is 

fast becoming the dominant form of information access, overtaking traditional database-

style searching.  
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The continuously increasing amount of biomedical information has resulted in 

higher demands for an efficient and effective biomedical information retrieval (BIR) 

system. This requires the ability to systematically compare large data sets with all the 

knowledge that is derived from the published data, which allows the biological relevance 

of the data set to be interpreted. The information, which is measured in terms of the 

numbers of articles and journals that are published, is increasing at a considerable rate, so 

that it is no longer possible for a researcher to keep up to date with all the relevant 

literature manually, even on specialized topics.  

Figure 5 shows the numbers of journals, papers (as represented by MEDLINE 

abstracts), papers on the cell cycle and papers on Cdc28 that were published each year 

from 1950 to 2005 [1]. An average for 3 years was calculated for the Cdc28 curve 

because of much lower numbers. The number of new papers that were published each 

year continues to increase, especially on certain topics such as the cell cycle, for which it 

is no longer possible to read all new papers that are published. By contrast, specific 

proteins that are “hot” at one point in time tend to lose their popularity later, as 

exemplified by Cdc28.  

Though many existing information retrieval techniques can be directly used in 

biomedical information retrieval, BIR distinguishes itself in the extensive use of 

biomedical terminology which contains many uncommon terms and ambiguous 

abbreviations.. 
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Figure 5: Increasing trend of publications containing gene “Cdc28”     

 

2.6. MEDLINE and PubMed database 

Advances in biotechnology, together with the widespread use of high-throughput 

methods for gene analysis, have helped shifting the focus of biological research from 

specific genes and proteins to a more systemic analysis of the underlying biological 

problem. Researchers now face the increasing need to plan their experiments and analyze 

(cited from Jenson 2005 [1]) 



18 
 

the resulting datasets in view of the quickly expanding biomedical information available 

[38]. 

Medical Literature Analysis and Retrieval System Online (MEDLINE) [3] is the 

National Library of Medicine’s premier database that hosts medical journals and articles 

in the life sciences with a concentration in biomedicine. It includes bibliographic 

information for articles from academic journals covering medicine, nursing, pharmacy, 

dentistry, veterinary medicine, and health care. MEDLINE also covers much of the 

literature in biology and biochemistry, as well as fields such as molecular evolution [39]. 

It also leverages a controlled vocabulary, meaning that there is a specific set of terms 

used to describe each stored article; describing each article is generally known as 

indexing. Records in MEDLINE are indexed with the MeSH vocabulary to facilitate 

retrieval by regular users, researchers, students, and doctors.  Users who are familiar 

with the MeSH vocabulary are typically better searchers then those users who are 

unfamiliar with the specialized vocabulary. The records in MEDLINE are covered from 

1946 to present, with some even older materials. 

PubMed [4], as the most popular biomedical information retrieval system, gives 

researchers access to over 17 million citations from a broad collection of scientific 

journals, indexed by the MEDLINE literature database. PubMed is a web-based 

information retrieval system developed by the National Center for Biotechnology 

Information (NCBI) to provide access to citations from biomedical literature. PubMed 

facilitates access to the biomedical literature by combining the MeSH based indexing 

from MEDLINE, with Boolean and vector space models for document retrieval, offering 
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a single interface from which these journals can be searched [40]. The result of a 

MEDLINE/PubMed search is a list of citations (including authors, title, source, and often 

an abstract) to journal articles and an indication of free electronic full-text availability. 

Searching is free of charge and does not require registration. Searching 

MEDLINE/PubMed effectively is a learned skill; untrained users are sometimes 

frustrated with the large numbers of articles returned by simple searches.  

The weaknesses of the PubMed information retrieval system are made manifest 

when indexing medical articles and resolving users search queries to indexes.  In an 

effort to build an information retrieval system based on semantic retrieval, PubMed has 

heavily utilized the MeSH vocabulary in its indexing and user-querying components.  

There are 26,142 descriptors, 83 qualifiers, over 177K assisting entry terms and over 

199K supplementary concept records in MeSH 2011; but only descriptors and qualifiers 

are used in indexing MEDLINE. In comparison, NLM Metathesaurus 2010AB covers 2.3 

million biomedical concepts.  The primary disadvantage of the MEDLINE/PubMed 

system is that it indexes millions of documents with less than 1.1% of the available 

biomedical vocabulary. This disadvantage is obvious when retrieving results from 

PubMed that are semantically close to the information requested, but not sufficiently 

narrow resulting in very low precision and recall and requiring multiple searches by 

users. 
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2.7. Query Expansion 

Previous sections introduced biomedical related information retrieval. The next 

two sections discuss the related techniques we will use in this dissertation. 

Query Expansion (QE) is the process of reformulating an original query to 

improve retrieval performance in information retrieval. In the context of web search 

engine, query expansion involves evaluating a user's input (what words were typed into 

the search query area and sometimes other types of data) and expanding the search query 

to match additional documents. Search engines invoke query expansion to increase the 

quality of user search results assuming that users do not always formulate search queries 

using the best terms [41]. 

The goal of query expansion is to increase recall, but precision can potentially 

increase as well, by including those records which are more relevant or at least equally 

relevant into the query result set. Those records which have the potential to be more 

relevant to the user’s desired query would be included by applying query expansion. At 

the same time, many of the current commercial search engines use Term Frequency – 

Inverse Document Frequency (TF-IDF) to assist in ranking. By ranking the occurrences 

of user’s input as well as synonyms and alternate morphological forms, documents with a 

higher density (high frequency and close proximity) tend to migrate higher up in the 

search results, leading to a higher quality of the search results near the top of the results, 

despite the larger recall. 

Query expansion techniques can broadly be classified into three categories: 
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(1) Collection based or global analysis: use context global of terms in collection 

to find out similar terms with query terms [42]. 

(2) Query based or local analysis: the context of terms is reduced to smaller 

subsets of information which is given from relevance feedback or pseudo 

relevance feedback [43] and collaboration information like user profile, query 

logs [44]. 

(3) Knowledge based approach: the exploration of the knowledge in external 

knowledge sources, mostly with general domain thesaurus like WordNet. 

They explore semantic links in the ontology graph in order to find out in the 

related terms of query concepts to expand. 

In this dissertation, our proposed query expansion approach is knowledge based 

approach. 

2.8. Pseudo Relevance Feedback 

In information retrieval systems, relevance feedback (RF) is an effective query 

expansion technique. It takes the results that are initially returned from a given query and 

it relies on user interaction to identify the relevant results to build and perform a new 

query.  

Pseudo Relevance Feedback (PRF) automates the manual part of relevance 

feedback, so that the user gets improved retrieval performance without an extended 

interaction. The method performs normal retrieval to find an initial set of most relevant 
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documents; it then assumes that the top “k” ranked documents are relevant; and it finally 

performs relevance feedback as before under this assumption [45]. 

The success of relevance feedback depends on certain assumptions [37]: Firstly, 

the user has to have sufficient knowledge to be able to make an initial query which is at 

least somewhere close to the documents they desire. This is needed anyhow for 

successful information retrieval in the basic case, but it is important to see the kinds of 

problems that relevance feedback cannot solve alone. Cases where relevance feedback 

alone is not sufficient include:  

• Misspellings. If the user spells a term in a different way to the way it is spelled 

in any document in the collection, then relevance feedback is unlikely to be effective. 

This can be addressed by the spelling correction techniques. 

• Cross-language information retrieval. Documents in another language are not 

nearby in a vector space based on term distribution. Rather, documents in the same 

language cluster more closely together.  

• Mismatch of searcher’s vocabulary versus collection vocabulary. If the user 

searches for laptop but all the documents use the term notebook computer, then the query will 

fail, and relevance feedback is again most likely ineffective. 

Secondly, the relevance feedback approach requires relevant documents to be 

similar to each other. That is, they should cluster. Ideally, the term distribution in all 

relevant documents will be similar to that in the documents marked by the users, while 

the term distribution in all non-relevant documents will be different from those in 

relevant documents. Things will work well if all relevant documents are tightly clustered 
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around a single prototype, or, at least, if there are different prototypes, if the relevant 

documents have significant vocabulary overlap, while similarities between relevant and 

non-relevant documents are small. Implicitly, the Rocchio relevance feedback model 

treats relevant documents as a single cluster, which it models via the centroid of the 

cluster. This approach does not work as well if the relevant documents are a multimodal 

class, that is, they consist of several clusters of documents within the vector space. This 

can happen with:  

• Subsets of the documents using different vocabulary, such as Burma vs. 

Myanmar 

• A query for which the answer set is inherently disjunctive, such as Pop stars who 

once worked at Burger King. 

• Instances of a general concept, which often appear as a disjunction of more 

specific concepts, for example, felines. 
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Chapter 3  

Weighted Edge Similarity Algorithm and Tools 

3.1. Motivation 

Determining the semantic similarity of two words is useful yet challenge. The 

measure of the semantic similarity of words is a building block in many important 

applications, such as word sense disambiguation, clustering, embedding, ranking, and 

spell-checking. However, polysemy and synonymy phenomena widely exist in natural 

language, and psychologists have demonstrated that the human perception of the 

similarity between words is subject to the context. Therefore, it is extremely difficult to 

model the human perspective on the semantic similarity of words.   

In recent two decades, researchers have tried to solve this hard problem through 

different approaches. Existing methods can be divided into two categories:  

Thesaurus-based methods rely on a human-built thesaurus, such as WordNet. Wu 

and Palmer[46] consider the specification level of two word senses and their least 

common ancestor, but their linear similarity function is simple, which is not accurate with 

human judgments. Li et al. [47] proposed an efficient non-linear method and achieved 
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significant performance improvement over other studies [48-51]. Information 

content,[49-52], statistical word distribution of text corpus, is used as supplemented 

information. Several corpuses, including Brown corpus, Semcor, and Treebank, are used 

to acquire the information content. However, if two words are well annotated near the 

root of the thesaurus, called shallow annotation, their semantic distance will always be 

computed close to zero, thus causing abnormal high similarity result.  

Knowledge-based Methods take advantage of human knowledge base. Cilibrasi et 

al. [53] proposed Normalized Google Distance, which assumes that the semantic 

similarity of two words is associated to the number of web pages returned by Google 

search engine. However, Normalized Google Distance only reflects the concurrency in 

textural document. It is not really a concept distance since it doesn’t preserve triangle 

property ESA [54] maps each word into a vector of a set of articles derived from 

Wikipedia corpus by traditional Vector Space Model. Then, relatedness is measured by 

the cosine of the angle of two Wikipedia-article vectors. Personalized PageRank [55] is 

used on WordNet graph. 

To address the drawbacks of these existing methods, we propose WEST, a new 

method to consider the co-locations of word pairs with their Least Common Ancestor 

(LCA): when two different word pairs that share the same LCA and have the same graph 

distance, the similarity value of one word-pair should not always be the same of the other. 

Actually, it should be decided by the specification levels of each individual word. The 

advantages of this new method are two folds: (1) the semantic similarity of words 

measured by this method closely matches the human perspective; (2) the measure of the 
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semantic similarity relies only on co-location information of words within the WordNet, 

thus more computation effective than those requiring the computation of corpus statistics. 

Experimental studies show that our proposed method outperforms all existing methods. 

The rest of this chapter is organized as follows. We introduce the background 

knowledge of word similarity in section 3.2. In section 3.3, we observe the difference 

between word pair’s inheritance and categorization relations. Then, we propose the 

weighted edge method to model the semantic distance of words in section 3.4. We discuss 

the benchmark, dataset, methods of the experimental studies. We discuss experimental 

result in section 3.5. Section 3.6 shows the architecture and implementation of WEST -- a 

set of web tools for public use. Finally, we have our conclusion in section 3.7. 

 3.2. Semantic Similarity of Words 

Many recent studies have employed WordNet as their knowledge base to study 

the semantic relationships between words. WordNet [56] is a lexical taxonomy database, 

widely used in many research fields such as natural language processing, data mining, 

and information retrieval. It provides a fine-grained structure ordering semantic word 

senses or synsets, in a Directed Acyclic Graph (DAG) hierarchy, as shown in Figure 6. 

Words of different “part-of-speech” are organized in different DAGs. Although WordNet 

3.0 includes total 22 relationships between words in its relationship hierarchy, the main 

relationship is still the “hypernym/hyponym” inheritance relationship. All relationships 

form the edges in WordNet, and the word senses, or synsets, consist of the nodes in 
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WordNet. Synsets and their relationships are used to model the polysemy and synonymy 

phenomena in English language. 

Polysemy means that one word has different meanings, while synonymy indicates 

different words represent the same concept. The statistics show that there are 101,863 

monosemous and 60,384 polysemous noun words and senses in WordNet 3.0. If several 

words represent the same concept, it means they are synonymous and a single synset ID 

is assigned to them. For example, ‘lumber’ and ‘timber’ share the same concept, that is, 

“the wood of trees cut and prepared for use as building material”. Thus, these two words 

have the same synset ID in WordNet. 

Previous studies [47] have identified two critical factors influencing semantic 

similarity: graph distance, and specification level (SpecLev) of their Least Common 

Ancestor (LCA). Graph distance counts the number of hops on the shortest path between 

two synsets, and specification level (SpecLev) is the number of hops on the shortest path 

from the synset to its root, or the depth of synset in WordNet. If a synset is closer to the 

root in the WordNet, it has a lower SpecLev, thus has a more general meaning.  

 
Figure 6: WordNet specification level 
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3.3. Inheritance vs. Categorization 

If only the graph distance and the SpecLev of their LCA are used to measure the 

semantic similarity of two words, when two different word pairs share the same LCA and 

the graph distance between the words in one pair is the same as that in another pair, the 

semantic similarity of one word pair is measured to be the same as the semantic similarity 

of another word pair using existing methods. Does this match the human perspective? 

None of the existing studies have investigated this issue.  

To study how human beings judge the semantic similarity of words in the 

aforementioned situations, we select two word-pairs that share the same LCA and the 

words within each pair have the same graph distance. In one word-pair, called 

categorization pair, the words are both descendants of their LCA, since they are 

separated into different categories. In another word pair, called inheritance pair, one 

word is descendant of another word. We put these two word-pairs together as a 

comparison group. In Figure 6, “bread-cake” is a categorization pair; “baked goods-

cookie” is an inheritance pair. These two pairs have the same LCA “baked goods”, and 

the graph distance of “bread-cake” and “baked goods-cookie” are 2. 

We collect 20 groups of such comparison pairs. The graph distance of the word-

pairs in the first 10 groups is 2 in Table 1. The graph distance of the word-pairs in the 

second 10 groups, shown in Table 2, is 4. Then we randomly stop people in Clemson 

University campus and ask them to judge which pair in each comparison group is more 

similar semantically. 51 individuals finished the questionnaire anonymously. In Table 1 

and Table 2, each row contains a group of word-pairs. The left is the inheritance pair and 
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the right is the categorization pair.  The number in the second column represents the 

number of people who think the inheritance pair is more similar semantically. The 

number in the last column represents the number of people who feel the categorization 

pair is more similar. For those who feel both pairs are semantically equal or who cannot 

tell which pair is more similar, no number is added to any column. The survey results in 

Table 1 shows that in 68.41% of cases of graph distance at 2, people think the inheritance 

pairs are more similar, and in 31.59% of cases, people think the categorization pairs are 

more similar. The results in Table 2 demonstrate that in 76.67% of cases of graph distance 

at 4, people think that the inheritance pairs are more similar, and in 23.33% vice versa. 

 Table 1: Comparison groups with graph distance equal to 2 in each pair 

Inheritance Word-Pair  Categorization Word-Pair 

baked-goods :: cookie 30 � bread :: cake 19 

beef :: food 48 � meat :: chocolate 2 

brownie :: cake 44 � cookie :: fruitcake 5 

ground beef :: meat 24 � pork :: mutton 25 

apple pie :: pastry 42 � pie :: puff 8 

stove :: device 41 � comb :: fan 8 

engine :: machine 18 � computer :: calculator 33 

hunting dog:: canine 27 � wolf :: fox 22 

minicab :: car 29 � jeep :: sedan 21 

gold :: metal 37 � aluminum :: zinc 14 

Total 340  157 
  



30 
 

Table 2: Comparison groups with graph distance equal to 4 in each pair 

Inheritance Word-Pair  Categorization Word-Pair 

apple pie :: food 44 � cake :: beef 3 

clementine :: fruit 36 � apple :: almond 15 

chicken :: food 47 � octopus :: pastry 0 

dynamo :: machine 45 � engine :: abacus 4 

abbey :: building 26 � hostel :: mansion 23 

tabloid :: medium 8 � broadcasting :: journalism 43 

laptop :: computer 51 � workstation :: chatroom 0 
American football :: athletic 
game 

36 � golf :: basketball 14 

cliff diving :: sports 44 � hunting :: swimming 6 

collegiate dictionary :: book 41 � atlas :: bestseller 7 

Total 378  115 
 

Our survey results have revealed an interesting observation that people are more 

sensitive to the semantic difference caused by categorization than by the 

inheritance/specification. They think two words in different categories are less similar 

than two words separated only by specification levels when graph distances are the same.  

This is more obvious when the graph distance of the words becomes longer. This 

important fact has never been discovered in any previous studies. To reflect the true 

human perception in measuring the semantic similarity of words, we have to include this 

critical factor in our measurement model. We define Specification Level Difference (SLD) 

as absolute difference of the SpecLev of two word senses. Given two word senses

( , )i jws ws , ,i jslev slev  are their corresponding SpecLev, the SLD is measured as 

Equation (1): 
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( , ) | |i j i jSLD ws ws slev slev= −                       (1) 

  
                  

SLD models the impact factor of the inheritance and the categorization on the 

semantic similarity of two synsets with the same graph distance and the same LCA. 

3.4. Our Weighted Edge Semantic Similarity Approach 

3.4.1. Weighted Edge 

Since WordNet architecture is ordered by word sense, we assume the semantic 

similarity of a word-pair is the highest semantic similarity value measured from all its 

sense-pairs. The semantic similarity of a senses pair ( , )i jws ws can be determined by 

three factors in the WordNet Hierarchy:  

(Factor 1) Specification Level of its LCA lcaslev on the shortest path linking the 

sense-pair;  

(Factor 2) The shortest graph distance ( , )gd i jl ws ws  between the sense-pair; 

(Factor 3) Specification Level Difference ( , )i jSLD ws ws  between the sense-pair. 

An intuitive approach to measure the semantic similarity of a sense pair is to 

summarize these three factors under proper scaling parameters. However, it is very hard 

to determine three proper scaling parameters due to their correlations.  In this section, 

we propose a simple yet effective method to measure the semantic similarity of sense pair 

based on the combined effect of these factors.  



32 
 

We propose a simple yet effective method to measure the semantic similarity of 

sense pair based on the previous observation. 

Given a word pair, we query WordNet for all its sense pairs to find which LCA on 

the path has the highest SpecLev, since SpecLev of LCA is the most decisive factor in 

similarity measurement. If more than one sense pairs are found, the sense pair with the 

shortest graph distance in WordNet is selected. Then, we can focus on measuring the 

similarity of corresponding sense-pair. This process is similar to the “disjunctive 

concepts” method by Rada [48] and Resnik [49] respectively, but the difference in our 

method is that, during the sense-pair selection, we consider the SpecLev of LCA in the 

first place rather than graph distance in previous studies. This adjustment is based on the 

observation that the SpecLev of LCA plays the most vital role. 

Given a synset pair( , )i jws ws with SpecLev( , )i jslev slev , and the SpecLev of their 

LCA ( )lcaws  be lcaslev , we can represent the graph distance( , )gd i jl ws ws between iws  

and jws  as the sum of ( , )i lcaSLD ws ws and ( , )j lcaSLD ws ws in Equation (2):  

 

( , )

( , ) ( , )

| | | |

2

gd i j

i lca j lca

i lca j lca

i j lca

l ws ws

SLD ws ws SLD ws ws

slev slev slev slev

slev slev slev

= +

= − + −

= + − ⋅  

                     (2) 

We assume each edge in the WordNet hierarchy has a weighted value, which is an 

exponential decreasing value associated to its SpecLev. A coefficient (0,1]α∈  is used 

to represent the weight decreasing rate α along the edge of WordNet.  
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Figure 7: Weighted Edge Decreases along its SpecLev 

As shown in Figure 7, we define the edge weight ke be k
ke α= for the edge 

connecting two neighboring synsets at levelk and 1k + respectively. Thus, the edge 

linking the root node( 0)k = and first level nodes( 1)k = has an edge weight0 1α = . The 

more specific or deeper an edge locates in the WordNet hierarchy, the smaller weight it 

has.  

Using our weighted edge model, we define weighted edge distance���� between 

a sense pair( , )i jws ws , as a function � of the three SpecLev values ���	
��, ��	
� ,

��	
��. That is,  
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                              (3)
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Weighted edge distance is the sum of all the edge weights along its shortest path 

to its LCA. Given a weight decreasing rate � � �0,1�, we substituteke with ka in Equation 

(3), we have 

11

0 0

( , , , )

( )
j lcai lca

lca

w lca i j

slev slevslev slev
slev m n

m n

l f slev slev slevα

α α α
− −− −

= =

=

= ⋅ +∑ ∑
                    (4) 

Our approach generalizes the traditional graph distance. When 1α = , the weighted 

edge distance turns into the traditional graph distance. When (0,1)α∈ , the edge value 

exponentially decreases with the increase of SpecLev along the hierarchy. 

We can pre-compute weighted edge distance for each SpecLev to its root 

(SpecLev 0) to accelerate the computation for any sense pair in constant time. The 

measurement of Weighted Edge Distance wl for sense pair ( , )i jws ws with LCA ( )lcaws

can be optimized as: 

( , )

( , ) ( , ) 2 ( , )
w i j

w i root w j root w lca root

l ws ws

l ws ws l ws ws l ws ws= + − ⋅    
  (5) 
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Figure 8: Increasing Specification Level Difference from 0 in (a) to 2 in (b) 

Next, we’ll show how our weighted edge model and the proposed Equation (6) 

reflect the human perception difference between inheritance and categorization. As 

illustrated in Figure 8, given two sense-pairs 1 2( , )ws ws  and 3 4( , )ws ws , which have the 

same graph distance and share the same LCA, but the SpecLev difference of 1 2( , )ws ws   

is zero and the SpecLev difference of 3 4( , )ws ws is two. According to definition of 

Weighted Edge Distance, we have: 

1 2 3 4

1

( , ) ( , )

(1 ) 0, (0,1]
w w

k k k

l ws ws l ws ws

α α α α α+

−

= − = − ≥ ∈
                                (6) 

Thus, 1 2 3 4( , ) ( , )w wl ws ws l ws ws≥  denotes sense-pair 3 4( , )ws ws is more similar 

than 1 2( , )ws ws which is coherent with human judgments. We can conclude that given a 

sense-pair with a fixed graph distance, the increase of their Specification Level 

Difference from Figure 8 (a) to (b) reduces its Weighted Edge Distance, meaning the 
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sense-pair has a higher similar value. This result conforms to our discovery that humans 

are more sensitive to the semantic difference caused by categorization than that caused by 

specification/inheritance. 

3.4.2. New Transfer Function 

Now, we need to design a transfer function  to convert the Weighted Edge 

Distance to semantic similarity value. We define the semantic similarity between sense 

pair iws  and jws  or ( , )i jsim ws ws be a function of its weighted edge distancewl : 

( , ) ( )i j wsim ws ws g l=                        (7) 

To efficiently calculate ( , )i jsim ws ws , an approximation function that should 

demonstrate the following three features: 

(1) It should be a continuous function with variable range �0, �∞� and value 

range �0,1�; 

(2) When the Weighted Edge Distance is 0, the similarity value should be 1. It 

means the two word sense share the same synset/concept; 

(3) When the Weighted Edge Distance approaches the positive infinite, the 

similarity should be 0, meaning the two words are far away with each other conceptually. 

Li’s method [47] used both linear and non-linear functions to approximate the 

traditional graph distance to the similarity value between 0 to 1. His result showed that 

the non-linear function performs remarkably better than linear function. We further 

g
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extend his experimental studies with six different non-linear functions and found that the 

similarity values obtained by hyperbolic functions best match human judgments. 

Two hyperbolic functions are used as our approximate functions. One is 

Hyperbolic Secant (Sech) and the other is Hyperbolic Tangent Cardinal (Tanhc). Both 

hyperbolic functions are monotonically decreasing functions of x with the value range 

from 0 to 1. 

3.5. Validation of Weighted Edge Similarity Approach 

3.5.1. Benchmark Datasets 

It is ideal that the semantic similarity of words measured by our method matches 

perfectly with the human perception. Therefore, it is reasonable to compare the semantic 

similarity values obtained by our method with human judgments. Correlating the 

computed semantic similarity measures with human judgments is a common practice in 

evaluating the similarity measurement techniques. 

In 1965, German scientists Rubenstein and Goodenough [57] presented 51 human 

subjects with 65 noun pairs (called RG set) and asked them to scale the similarity from 

0.0 to 4.0 for “no similarity” to “perfect synonymy”. 25 years later, Miller and Charles 

[38] in USA divided the RG Set into three semantic similar parts with high, medium, and 

low similar level. They choose 10 word pairs from each level and repeated the 

Rubenstein-Goodenough procedures with 38 undergraduate students. The 30 word pairs 

are named Miller-Charles (MC) set. It is worth noting that the correlation between the 
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two experimental results is as high as 0.97, indicating that human judgment is quite stable 

under little influence from time span and language difference. Again, Resnik [49] 

replicated the same experiment on the MC set, presenting them to 10 graduate students or 

postdoctoral researchers at the University of Pennsylvania. The correlation between 

Resnik rating and Miller-Charles rating was 0.96, quite close to the 0.97 correlation in the 

earlier study. Resnik computed average correlation between individual subjects’ rating 

with MC rating to be 0.88, with a standard deviation of 0.08. He claimed the correlation 

value 0.88 represents an upper bound from a computational attempt to perform the same 

task. 

Many previous studies [49-51] used Miller and Charles [38] MC set as the 

comparison baseline. Since the earlier version of WordNet missed word “woodland” from 

the MC set, only 28 word pairs were used in these studies. Li et al. utilized all 65 pairs of 

the original Rubenstein-Goodenough set. Since MC set is a subset of RG set, Li applied 

the 28 pairs of MC set as testing set0D , and the rest 37 pairs of words as training set1D .  

He tried ten different strategies, obtained the optimal parameters on training set 1D  and 

evaluated the performance of his strategies on testing set 0D dataset. 

In this section, we conduct similar experiments using our proposed scheme on 

different strategies and calculate the correlation between our computed similarities and 

the human judgments. Due to Li’s method [47] being regarded as “particularly effective, 

best and fastest” according to Varelas [58], we also repeated Li’s experiments with his 

best strategy, using the same training set and testing set respectively. As in Li’s study, we 

obtain the optimal parameter values using the training set 1D , then we run the testing set 
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0D with these optimal parametric value. Finally, we compare the experimental results 

obtained by our method with those by Li’s method.  

We list the complete information of testing dataset 0D  as well as training dataset 

1D in Table 3 and Table 4 respectively. 

Table 3: Testing data of MC dataset 

Word1  Word2  
Graph 

Distance 
SpecLev 

LCA 
SpecLev 
Word1 

SpecLev 
Word2 

cord  smile  10 1 6 6 
rooster  voyage  23 0 13 10 
noon  string  11 1 9 4 
glass  magician  9 3 7 8 
monk  slave  4 6 9 7 
coast  forest  5 2 5 4 
monk  oracle  7 6 9 10 
lad  wizard  4 6 8 8 
forest  graveyard  8 2 4 8 
food  rooster  15 1 4 13 
coast  hill  4 3 5 5 
car  journey  18 0 9 9 
crane  implement  4 5 8 6 
brother  lad  4 6 8 8 
bird  crane  3 9 9 12 
bird  cock  1 9 9 10 
food  fruit  9 2 5 8 
brother  monk  1 9 10 9 
asylum  madhouse  1 9 9 10 
furnace  stove  9 4 9 8 
magician  wizard  0 8 8 8 
journey  voyage  1 9 9 10 
coast  shore  1 4 5 4 
implement  tool  1 6 6 7 
boy  lad  1 8 8 9 
automobile  car  0 11 11 11 
midday  noon  0 9 9 9 
gem  jewel  0 8 8 8 



40 
 

Table 4: Training data of MC dataset 

Word1  Word2  
Graph 

Distance 
SpecLev 

LCA 
SpecLev 
Word1 

SpecLev 
Word2 

autograph  shore  9 0 5 4 
automobile  wizard  12 3 11 8 
mound  stove  7 5 9 8 
grin  implement  12 0 6 6 
asylum  fruit  6 4 7 7 
asylum  monk  10 3 7 9 
graveyard  madhouse  14 2 8 10 
boy  rooster  11 5 8 13 
cushion  jewel  6 4 6 8 
asylum  cemetery  11 2 7 8 
grin  lad  11 0 6 8 
shore  woodland  4 2 4 4 
boy  sage  5 6 8 9 
automobile  cushion  8 5 11 8 
mound  shore  9 5 9 10 
cemetery  woodland  8 2 8 4 
shore  voyage  14 0 4 10 
bird  woodland  9 2 9 4 
furnace  implement  7 4 9 6 
crane  rooster  7 9 12 13 
hill  woodland  5 2 5 4 
cemetery  mound  10 2 8 6 
glass  jewel  7 4 7 8 
magician  oracle  6 6 8 10 
sage  wizard  5 6 9 8 
oracle  sage  5 7 10 9 
hill  mound  0 9 9 9 
cord  string  1 6 6 7 
glass  tumbler  1 7 7 8 
grin  smile  0 6 6 6 
serf  slave  3 7 10 7 
autograph  signature  1 6 7 6 
forest  woodland  0 4 4 4 
cock  rooster  0 13 13 13 
cushion  pillow  1 6 6 7 
cemetery  graveyard  0 8 8 8 
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3.5.2. Experiments on Different Strategies 

We propose eight different strategies to calculate semantic similarity in this 

section. The first two strategies is replication of Li’s 3rd and 4th Strategy for comparison 

purpose, then we conduct six new strategies combining weight edge distance and new 

transfer functions.  

Li’s strategy uses graph distance (lgd) and SpecLev of their LCA (slevlca) to 

calculate the similarity value between two synsets.  In our strategies, only the Weighted 

Edge Distance wl  is used to calculate the semantic similarity of words. 

To ensure the computed similarities obtained by transfer function matches with 

human judgments as closely as possible, we need to find an optimal Weighted Decreasing 

Rateα . For each strategy, we use the training set 1D  to obtain the optimal α  value. 

We varyα from 0.05 to 1 with an increment of 0.05, and calculate the correlation between 

the computed similarities and human judgments on training set 1D . Theα value that 

yields the highest correlation between computed similarities and human judgments is 

selected as the optimal parameter.  

We note that Li’s second transfer function requires two tuning factors ( , )α β . For 

this function, we vary α  from 0.05 to 1 with an increment of 0.05 and β  between 0.1 

and 1 with an increment of 0.1. Values of α  and β yielding the highest correlation 

between computed similarities and 0.20α =  human judgments will be selected as the 

optimal parameters. The optimal parameters obtained by training set 1D  will then be 

used to calculate the semantic similarity values for word-pairs in testing set0D . Finally, 



42 
 

we calculate the correlations between the computed similarity values and Miller and 

Charles’s human judgments on these word-pairs.  

Strategy 1: We repeat Li et al. [47]’s Strategy 3rd as our first strategy.  Li 

showed that non-linear function greatly improves the semantic similarity measure.  A 

monotonically decreasing function 1( ) xg x e−=  is used to approximate the similarity by 

graph distancegdl . Li use a factor � to tune the graph distance. The transfer function is 

defined as: 

1 1( , ) ( ) gdl

i j gdsim ws ws g l eα− ⋅= =                  (8) 

In Figure 9, S1 shows when 0.20α = , computed similarities achieve the highest 

correlation with human judgments on training set1D . Using as the optimal parameter the 

similarities of word pairs in testing set 0D  are calculated and their correlation with the 

human judgments is found to be 0.7972. 
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Figure 9: Correlation of one parameter strategies with MC human judgments 

 

Strategy 2: We repeat Li’s best strategy (Strategy 4) as our second strategy for 

comparison. This strategy considers both the shortest graph distancegdl and SpecLev of 

their LCA lcaslev . It introduces a monotonically increasing function with respect to the 

Specification Level:  

2( )
x x

x x

e e
g x

e e

−

−

−
=

+
 

Thus, the similarity function is defined as: 
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2 1 2( , ) ( ) ( )

lca lca
gd

lca lca

i j gd lca

slev slev
l

slev slev

sim ws ws g l g slev

e e
e

e e

β β
α

β β

⋅ − ⋅
− ⋅

⋅ − ⋅

= ⋅

−
= ⋅

+
                 (9)

 

This strategy has two tuning factorsα andβ . Factorα is used to model the impact 

of the graph distance to the similarity of words, and factorβ is used to model the 

influence of the SpecLev of LCA. As shown in Figure 10, when 0.20, 0.3α β= = , the 

computed similarities attain the highest correlation with the human judgments on training 

set 1D . Using these optimal parameters, we calculated the semantic similarities of word 

pairs in 0D  and found the correlation with the human judgments to be 0.8078.   

 

Figure 10: Correlation of Li’s Best Method Strategy2 
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Strategy 3: This strategy is our first trial of weighted edge distance. We still use 

the monotonic increasing function 1g  from Strategy 1, but we replace the graph distance 

gdl with our weighted edge distance wl . It is worth noting that Li uses one specific 

factor α to tune the graph distance gdl , but our method doesn’t need the tuning factor 

because the value of weighted decreasing rate α  is used for the tuning task.  

3 1( , ) ( ) wl
i j wsim ws ws g l e−= =                        (10) 

Differing from Strategy 1, our weighted edge approach naturally adopts the non-

linear mechanism, without needing an additional parameter to adjust the graph distance. 

As shown in Figure 9 S3, computed similarities have the highest correlation with the 

human judgments on training set1D when 0.80α = . Using this parameter, the similarities 

for word pairs in testing set0D are calculated and their correlation with the human 

judgments is 0.8181. Clearly the result is better than both Strategy 1&2, especially 

Strategy 2 is Li’s best strategy. This experimental study shows that our weighted edge 

approach model the human perception better than existing methods. 

Strategy 4: To further compare with Li’s Strategy 2, we replace the graph 

distancegdl with our weighted edge distancewl . The similarity function is as follows:  

4 1 2( , ) ( ) ( )

lca lca

w

lca lca

i j w lca

slev slev
l

slev slev

sim ws ws g l g slev

e e
e

e e

β β

β β

⋅ − ⋅
−

⋅ − ⋅

= ⋅

−
= ⋅

+
               (11)

 

When 0.8, 1α β= = , this strategy yields the highest correlation between the 

computed similarities and the human judgments on training set 1D shown in Figure 11. 
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Using these parameters to calculate the similarities of word pairs in testing set0D , their 

correlation with the human judgments is found to be 0.8182.   

Both Strategy 3 and Strategy 4 use the sameα value. However, adding an extra 

parameter in Strategy 4 does not show much performance gain in terms of the correlation 

with human judgments. It confirms that with the weighted edge approach, it is 

unnecessary to use two parameters to calculate the semantic similarity. 

 

Figure 11: Correlation of Strategy 4 
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Strategy 5: This strategy uses hyperbolic secant (Sech) function to calculate the 

similarity: 

5

2
( ) sec ( )

x x
g x h x

e e−
= =

+
 

5 5

2
( , ) ( )

w wi j w l l
sim ws ws g l

e e−
= =

+
              (12)     

As illustrated in Figure 9 S5, when 0.85α = , the computed similarities have the 

highest correlation with human judgments on training set1D . Using this parameter to 

calculate the similarities of word-pairs in testing set0D we found their correlation with the 

human judgments to be 0.8111. Again, this strategy is better than Li’s strategy. 

Strategy 6:  In this strategy, we use the Hyperbolic Tangent Cardinal (Tanhc) 

function as our non-linear transfer function: 

             6

, 0
( ) tanh ( ) ( )

1, 0

x x

x x
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(13) 

 

As shown in Figure 9 S6, when 0.9α = , the computed similarities have the 

highest correlation with human judgments on training set 1D . Using this parameter to 

calculate the semantic similarities of word pairs in testing set 0D , we found their 
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correlation with human judgments to be 0.8247, highest achieved so far. This confirms 

that a better non-linear function can improve the semantic similarity measure. 

Strategy 7: This strategy is used to test whether combining the effects of two 

transfer functions can improve the performance. Here, the semantic similarity is 

measured by the linear combination of Strategy 5 and Strategy 6. That is, 

7 5 6( , ) ( ) (1 ) ( )i j w wsim ws ws g l g lβ β= ⋅ + − ⋅
               (14)

 

An additional parameter β  is used to weigh the values obtained by Strategy 5 

and Strategy 6 respectively. 

As shown in Figure 12, when 0.85, 1α β= = , the computed similarities have the 

highest correlation with human judgments on training set 1D . Using these parameters to 

calculate the similarities of word pairs in testing set 0D , their correlation with human 

judgments is found to be 0.8111. It means a linear combination of Strategy 5 and Strategy 

6 cannot improve the performance of semantic similarity measure. Actually, since the 

optimal β value is 1, this strategy is essentially the same as Strategy 5. 
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Figure 12: Linear combination of sech and tanhc in Strategy 7 

Strategy 8: The final strategy combines Strategy 5 and Strategy 6 by multiplying 

the two hyperbolic functions.  The similarity is calculated as: 

8 5 6( , ) ( ) ( )i j w wsim ws ws g l g l= ⋅
                  (15) 

As depicted in Figure 9 S8, when 0.85α = , the computed similarities have the 

highest correlation with the human judgments on training set 1D . Using 0.85α = , we 

calculate the similarities of word pairs in testing set 0D and found their correlation with 

human judgments is 0.83503, which is the highest correlation among all strategies tested. 
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3.5.3. Experimental Discussion 

The correlations between the computed similarity values and the human 

judgments on testing set 0D  using four different strategies are summarized in Table 5. 

All our strategies (3-8) outperformed Li’s best strategy (1, 2). Especially, the Strategy 8, a 

combination of Sech and Tanch transfer functions, achieves the best result. 

Table 5: Correlations between WEST similarity and human judgments on testing set 

Strategy S1 S2 S3 S4 S5 S6 S7 S8 
Correlation. 0.797 0.808 0.818 0.818 0.811 0.825 0.811 0.835 

 

To better study the result of our approach, we record our semantic similarity data 

of all eight strategies and compare them with Miller-Charles human judgments in Table 6 

and Table 7. Our experiments confirm that the distance-based methods are effective and 

accurate in measuring the semantic similarity of words when considering three factors: 

the graph distance of the words, the SpecLev of their LCA, and the SpecLev difference of 

these words. Our weighted edge model seamlessly integrates the three factors together 

and the similarity value can be easily tuned by a single parameter when adapting transfer 

function, instead of two parameters used by Li’s best strategy. 
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Table 6: Comparison of S1-S4 on D0 testing dataset with MC Human Rating 

Word1  Word2  
MC 

Rating 
Sim 1 
a=0.2 

Sim 2 
a=0.2 
b=0.3 

Sim 3 
a=0.8 

Sim 4 
a=0.8 

b=1 
cord  smile  0.13 0.14 0.04 0.01 0 
rooster  voyage  0.08 0.01 0 0 0 
noon  string  0.08 0.11 0.03 0.01 0 
glass  magician  0.11 0.17 0.12 0.04 0.04 
monk  slave  0.55 0.45 0.43 0.41 0.41 
coast  forest  0.42 0.37 0.2 0.07 0.06 
monk  oracle  1.1 0.25 0.23 0.24 0.24 
lad  wizard  0.42 0.45 0.43 0.39 0.39 
forest  graveyard  0.84 0.2 0.11 0.03 0.03 
food  rooster  0.89 0.05 0.02 0 0 
coast  hill  0.87 0.45 0.32 0.16 0.16 
car  journey  1.16 0.03 0 0 0 
crane  implement  1.68 0.45 0.41 0.32 0.32 
brother  lad  1.66 0.45 0.43 0.39 0.39 
bird  crane  2.97 0.55 0.54 0.72 0.72 
bird  cock  3.05 0.82 0.81 0.87 0.87 
food  fruit  3.08 0.17 0.09 0.02 0.02 
brother  monk  2.82 0.82 0.81 0.87 0.87 
asylum  madhouse  3.61 0.82 0.81 0.87 0.87 
furnace  stove  3.11 0.17 0.14 0.08 0.08 
magician  wizard  3.5 1 0.98 1 1 
journey  voyage  3.84 0.82 0.81 0.87 0.87 
coast  shore  3.7 0.82 0.68 0.66 0.66 
implement  tool  2.95 0.82 0.78 0.77 0.77 
boy  lad  3.76 0.82 0.81 0.85 0.85 
automobile  car  3.92 1 1 1 1 
midday  noon  3.42 1 0.99 1 1 
gem  jewel  3.84 1 0.98 1 1 
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Table 7: Comparison of S5-S8 on D0 testing dataset with MC Human Rating 

Word1  Word2  
MC 

Rating 
Sim 5 
a=0.85 

Sim 6 
a=0.9 

Sim 7 
a=0.85 

b=1 

Sim 8 
a=0.85 

cord  smile  0.13 0 0.14 0 0 
rooster  voyage  0.08 0 0.07 0 0 
noon  string  0.08 0 0.13 0 0 
glass  magician  0.11 0.03 0.18 0.03 0.01 
monk  slave  0.55 0.49 0.49 0.49 0.32 
coast  forest  0.42 0.08 0.27 0.08 0.03 
monk  oracle  1.1 0.23 0.31 0.23 0.1 
lad  wizard  0.42 0.47 0.48 0.47 0.3 
forest  graveyard  0.84 0.03 0.19 0.03 0.01 
food  rooster  0.89 0 0.11 0 0 
coast  hill  0.87 0.2 0.36 0.2 0.09 
car  journey  1.16 0 0.08 0 0 
crane  implement  1.68 0.39 0.45 0.39 0.23 
brother  lad  1.66 0.47 0.48 0.47 0.3 
bird  crane  2.97 0.85 0.75 0.85 0.76 
bird  cock  3.05 0.97 0.95 0.97 0.96 
food  fruit  3.08 0.02 0.17 0.02 0 
brother  monk  2.82 0.97 0.95 0.97 0.96 
asylum  madhouse  3.61 0.97 0.95 0.97 0.96 
furnace  stove  3.11 0.06 0.2 0.06 0.02 
magician  wizard  3.5 1 1 1 1 
journey  voyage  3.84 0.97 0.95 0.97 0.96 
coast  shore  3.7 0.88 0.88 0.88 0.81 
implement  tool  2.95 0.93 0.92 0.93 0.89 
boy  lad  3.76 0.96 0.94 0.96 0.94 
automobile  car  3.92 1 1 1 1 
midday  noon  3.42 1 1 1 1 
gem  jewel  3.84 1 1 1 1 
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3.5.4. Comparison with Li’s Method 

Our method performs better than Li’s best strategy due to two reasons: (1) Our 

weighted edge distance model embedded the concept of SLD counting in the difference 

between inheriting and categorizing relationships, which is coherent with human 

perception. For example, word pairs in the testing set 0D  as shown in Table 6 and Table 

7, "monk-slave" and "lad-wizard", have the same graph distance of 4. The SpecLevs of 

both pairs’ LCA are 6. However, the SLD between "monk-slave" pair is greater than that 

of “lad-wizard”. Thus, Weighted Edge Distance of "monk-slave" is less than that of "lad-

wizard". By Strategy 7, the similarity value for "monk-slave" is 0.316 and "lad-wizard" is 

0.296. These two results are consistent with MC human judgments, where the ratings for 

"monk-slave" and "lad-wizard" are 0.55 and 0.42 respectively. However, Li’s strategy 

cannot distinguish the SLD, calculating the same similarity value for both word pairs.  

(2) The second reason can be contributed to new hyperbolic transfer function, 

which matches with human perception more accurately in transferring weighted edge 

distance into similarity value. For example, in testing dataset, the MC human judgments 

of "monk-slave" and "journey-voyage" are 0.55 and 3.84 respectively, scaling from 0 

(least similar) to 4 (exactly the same). The similarity values computed by our Strategy 7 

are 0.316 and 0.957 respectively, compared with Li’s strategy’s 0.425 to 0.811. 

Obviously, our results are more consistent with human judgments than that of Li's.  
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3.5.5. The Impact of WordNet Evolution 

As demonstrated by our experimental studies, Li’s best strategy has a correlation 

of 0.8078 with human judgments. However, in Li’s original paper, the correlation was 

reported as high as 0.8914, a huge difference from our experimental studies. Based on our 

observation and some previous studies, we can safely state that the evolution of WordNet 

is the main cause of this difference.   

Due to the evolution of WordNet, the graph distance and the SpecLev of the LCA 

acquired from WordNet vary from version to version. For example, the graph distance 

between ‘rooster-voyage’ is 23 in WordNet 3.0, which is used in our experiments, but Li’s 

paper obtained a graph distance of 30 using WordNet 1.6. Similarly, the graph distance 

between ‘furnace-stove’ is 9 in our experiments and only 2 in Li’s paper due to the 

difference of WordNet versions.  Based on these observations, we are not surprised that 

the correlation between the computed similarity values and the human judgments 

obtained in our study is quite different from that claimed in Li’s paper.  

The study by Varelas et al. [58] further confirms our observation. Varelas repeated 

Li’s experiments and found that the highest correlation between the computed similarities 

and the human judgments is only 0.82, much less than 0.8914 which was claimed in Li’s 

paper and much closer to our experimental results. Although Varelas did not mention 

which version of WordNet they used, we guess they used WordNet 2.0 or 2.1, considering 

the fact that WordNet 3.0 was released in Dec, 2006 and WordNet 2.1 Windows version 

was released in Mar, 2005.  
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Figure 13: The evolution of WordNet structure 

The structure change of WordNet has also been reported in some earlier studies. 

The WordNet structure in Figure 13(a) was illustrated by Jiang et al [50] who used 

WordNet 1.5 in their research. They discovered that the pair ‘furnace-stove’ was given 

high similarity values in human rating, whereas a very low rating (second to the lowest) 

was found using their method. They checked the WordNet hierarchy and found the 

shortest path of “furnace-stove” has a length 7. In Li’s paper which used WordNet 1.6, 

the same word pair has a very short graph distance 2. In WordNet 3.0, the shortest graph 

distance between this pair increases to 9 as shown in Figure 13(b). 
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Table 8 lists the correlations between the computed similarities and human 

judgments using Li’s method under different WordNet versions.  

Table 8: Li’s method under WordNet versions 

 Li, 2003 Varelas, 2005 Us, 2009 
WordNet Version 1.6 2.0/2.1 3.0 
Correlation 0.8914 0.82 0.8078 

3.5.6. Comparison with IC-based approaches 

Jiang [50] claimed his highest correlation is 0.8282 in his paper. However, that 

result was tuned to adapt the specific MC dataset. If they used the experimental methods 

as Li’s and ours, their experimental result would be much more reliable and trustful. 

Li tried to further improve the correlation between the computed similarity values 

and human judgments by combining the information content with graph distance in 

similarity measures, but found that the performance was degraded. Therefore, it is 

reasonable to believe that combining the information content and graph distance in 

measuring the semantic similarity of words may not improve the performance. Repeating 

Varelas’ work, we also applied the WordNet similarity module implemented by Ted 

Pedersen [59] to calculate the correlations between the human judgments and the 

computed similarity values obtained by methods proposed by Resnik [49], Jiang [50] and 

Lin [51]. The only difference is that we use WordNet 3.0.  

As shown in Table 9, Jiang’s method and Lin’s method, which used difference 

strategies to combine information content with graph distance, performed worse than 

Resnik’s method, a pure information content-based method. Although an implementation 
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issue, explained Ted Pedersen himself, that “zero information content values in the 

denominator are handled in a special way in case of the Jiang-Conrath and the Lin 

measures”. The Perl module implementation returns extremely large number when two 

words are in the same synset, such as ‘hill-mound’ returns 12876699. The miscalculation 

greatly degraded the expected correlation performance. Another reason for Jiang’s poor 

performance is due to the Perl WordNet similarity module’s implementation chooses a 

simplified form ignoring the depth and density factors which further corrupt the expected 

correlation accuracy. 

Table 9: Comparison with IC-based approaches 

Method Type G.Varelas, 2005 Us, 2009 
Resnik Information Content (IC) 0.79 0.8124 
Lin Normalized IC 0.82 0.7517 
Jiang Hybrid 0.83 0.6900 
Li Graph Distance & IC 0.82 0.8078 
Our method Weighted Edge - 0.8350 

3.5.7. Computational Cost Analysis 

Retrieving the Least Common Ancestor in the WordNet is the Least Common 

Ancestor (LCA) problem, which is the same as Range Query Minimum (RQM) problem. 

Harel and Tarjan [60] showed an algorithm to find two nodes’ LCA in constant time with 

a linear preprocessing of the tree structure. Bender and Farach-Colton [61] presented a 

simplified algorithm with O(n) preprocessing time and constant time to obtain LCA under 

a tree structure. Bender et al [62] proposed an algorithm solving LCA problem on Direct 

Acyclic Graph (DAG) with 2.688( )O n  preprocessing time and (1)O  query time. Since 
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the WorldNet hierarchy is constructed as DAG rather than tree, we can achieve this 

2.688( )O n  pre-processing time and (1)O execution time to retrieve the LCA of two 

synsets in WordNet graph.  

Steyvers [63] illustrates that Zipf’s (Power Law) Distribution applies not only to 

word frequency, but also to the number of senses of English word.  That is, most words 

have a small amount of senses, and only a few words have a large amount of senses. 

Empirically, those words with many senses are coherent with those high frequency words 

which would be trimmed if using stop-lists. Though we need to iterate 2( )O n  time to 

find the best sense-pair when measuring a word-pair, the expectation for the number of 

senses of each word is low – thus - it is still applicable in real-application. 

3.6. Weighted Edge Similarity Web Tools 

3.6.1. Web Architecture 

Providing Web services or application packages for word similarity measures will 

benefit researchers in related research fields. Existing web tools or packages for word 

similarity measures are limited. MSRs [64] is an implementation of word similarity 

methods based on several large text corpora. A Web Server is publicly available at 

http://cwl-projects.cogsci.rpi.edu/msr, which measures word semantic relatedness based 

on corpus such as Google, Wikipedia, New York Times,  and so on. WordNet::Similarity 

[59] is a powerful Perl Module developed by Ted Pedersen et.al. They have pre-computed 

information content from the British National Corpus (World Edition), the Penn 
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Treebank (version 2), Brown Corpus, the complete works of Shakespeare, and SemCor 

(with and without sense tags). A web Interface is provided embedding eleven different 

word similarity methods under both Graph-distance and IC categories. UMLS:: 

Similarity [65] is a recent proposed Perl Module calculating the semantic similarity 

between concepts in Unified Medical Language System (UMLS) using several previously 

developed similarity measures such as Wu [46], Leacock  [66], and Nguyen [67]. 

To disseminate our proposed new method for word similarity measure, we have 

built and published a set of web-based tools and services online. We call our tool set 

WEST--Weighted-Edge based Similarity Measurement Tools [68]. This section presents 

the design and analysis of this WEST environment. We will introduce the architecture of 

the system and the implementation details of weighted edge approach.  

The WEST environment is built upon Client-Server architecture. The web server 

is deployed at the School of Computing, Clemson University, South Carolina. The details 

of WEST architecture are shown in Figure 14. 
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Figure 14: WEST Architecture 
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The operating system of the server is CentOS; Apache server provides the HTTP 

service for the whole environment. The backend computational measurement is written in 

Perl. WordNet::QueryData and WordNet::Similarity modules are used in our project to 

access the WordNet database, and provide existing similarity measurements from 

previous studies. SOAP::Lite module is employed providing the SOAP web service to 

both frontend and the public. The frontend user-interface is coded by PHP. PHP::SOAP 

client exchanges data from the Perl SOAP server.  JQuery, the most popular Ajax 

Framework, is employed to provide an interactive experience between user and the web-

environment. 

3.6.2. Implementation 

A detail implementation of Weighted Edge approach is introduced in this section. 

There are seven steps to conduct the similarity measurement for any word pair ���, ���. 

(1) Stemming: We need to pre-process any given word before conducting similarity 

measurement. A simple WordNet morphology function wrapped by Similarity 

Module is used to stem word into original form e.g. “dogs”->”dog”.  

(2) Part-of-Speech (PoS): In WEST, we need to test the PoS of any given word to 

ensure the word is a noun. The WordNet hypernym relationship only applies to 

noun and verb, not to adjective, adverb or the others. Since nouns are widely 

acknowledged play the most decisive role in information retrieval applications, 

currently WEST is focusing on noun to prove its effectiveness. However, 

Weighted Edge method works the same for verbs. 
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(3) LCA Selection: For each sense-pair of a word-pair, we use PathFinder from 

WordNet::Similarity module to retrieve its LCA. Among all retrieved LCA, we 

keep a record on the highest SpecLev and corresponding sense-pair. If there are 

two or more such LCAs, we take the LCA on the shortest graph distance path. 

Thus, we retrieve the sense-pair of a word-pair with highest similarity and its 

LCA sense. 

(4) SpecLev Retrieval: Level function from WordNet:: QueryData module is used to 

retrieve the SpecLevs of the three target senses.  

(5) Weighted Edge Distance: Equation 15 is used to calculate the Weighted Edge 

Distance. We optimize the calculation by pre-calculating the Weighted Edge 

Distance from all SpecLev to its root (SpecLev 0) and store them into a 2-

dimentional array for every Weighted Decreasing Rate. Thus, the computation 

only spends constant time.  

(6) Transfer Function: After the Weighted Edge Distance has been calculated, we 

can apply the transfer functions in section 3.5.2 to change the Weighted Edge 

Distance into similarity value. 

(7) Web Service: SOAP::Lite Module is used to wrap the Weighted Edge interface 

into SOAP web service. 
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3.7. Summary 

This chapter presents a novel WordNet-based method to measure semantic 

similarity of a word pair and provide a set of Web-based tools and APIs that can be used 

by public. Weighted Edge approach is based on an important observation that humans are 

more sensitive to the semantic difference caused by the categorization than by 

specification. Therefore, people view word pair separated by specification more similar 

than those separated by categorization. Our weighted edge distance model merges the 

specification level difference of a word pair and the specification level of its least 

common ancestor together. Based on this new model and a set of improved non-linear 

transfer functions, our method’s result reaches the highest correlation against Miller-

Charles’s human similarity judgment by far. 
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Chapter 4  

Ontology Graph based Query Expansion 

4.1. Motivation 

Since the beginning of the new millennium, the explosively growing biomedical 

data has made it difficult for the researcher to keep up-to-date with ongoing research. It is 

important to capture the latest biological discovery from literature which demands for an 

efficient and effective biomedical information retrieval (BIR) system. Though many 

existing information retrieval techniques can be directly used in BIR, BIR differs from 

traditional information retrieval in its widely used biomedical terms and abbreviations 

which are not presented in traditional thesaurus. One of the difficulties in BIR is to 

increase the recall and precision performance in searching MEDLINE database. 

MEDLINE is a large bibliographic database that contains more than 18.9 million 

documents (by July 2011) of medical journals and articles. NCBI’s PubMed system is the 

most widely used web system for searching MEDLINE.  

However, effectively querying MEDLINE by PubMed is not an easy task for 

normal users. It is widely reported [6, 7] that normal users do not utilize the system as 
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effectively as experts. Those inexperienced searchers either fail to employ the best query 

terms or fail to effectively apply Boolean expressions in the query statement [8].  

4.1.1. Related Works 

Using MEDLINE to perform biomedical information retrieval has been studied 

since early 1990s [9-11]. Those early studies observed that using controlled vocabularies 

such as MeSH offer no advantages in retrieval performance over free-text.  The poor 

performance is caused by a number of potential reasons such as missing concepts and 

incomplete synonym sets [12]. Srinivasan [13, 14] observed that pseudo relevance 

feedback (PRF) based query expansion on MeSH vocabulary improved the retrieval 

performance. Yoo [15] and Abdou [16] re-designed/modify the terms weight scheme 

found by PRF. However, since PubMed doesn’t sort matched documents by relevance, 

the PRF strategy might not apply properly into PubMed.  

All above query expansion methods have a common weakness that they only used 

one controlled vocabulary - MeSH. The problem of the ineffective searching of 

MEDLINE is caused by its heavy usage of the MeSH vocabulary in its indexing and user-

querying components. There are 26,142 descriptors, 83 qualifiers, over 177K assisting 

entry terms and over 199K supplementary concept records in MeSH 2011; but only 

descriptors and qualifiers are used in indexing MEDLINE. In comparison, NLM 

Metathesaurus 2010AB covers 2.3 million biomedical concepts.  The primary 

disadvantage of the MEDLINE/PubMed system is that it indexes millions of documents 

with less than 1.1% of the available biomedical vocabulary.  
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Matos [69] invested in query expansion for gene related publication which 

expands genes to its related proteins, pathways and diseases, but it is not a general 

method. Taylor [17] expanded the query with inter-concept relationship by reformatting 

the query into a semantic graph. The problem of this method is over-emphasizing the 

concepts with inter-relations; besides it is computationally expensive in building the 

semantic graph for indexing documents. 

Recently, Personalized PageRank based methods are applied in two natural 

language processing fields. In 2009, Agirre and Soroa [70] first proposed the application 

of Personalized PageRank in Word Sense Disambiguation (WSD) using WordNet as 

knowledge base. Later they made further study on biomedical WSD [71] using 

Metathesaurus as knowledge base. Personalized PageRank is also used to measure 

word/text semantic similarity. Agirre and Alfonseca [72] used Personalized PageRank to 

compute word similarity using WordNet as knowledge base. Later they compared their 

methods using various knowledge bases [73].  Ramage applied a similar random walk 

method to measure text semantic similarity [74]. 

4.1.2. Word Similarity and Query Expansion Problem 
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Figure 15: Relationship between word similarity and query expansion problem 

Given a graph ( , )G V E= in Figure 15(a), let’s assume an arbitrary word similarity 

function ( , )Sim x y  can be used to calculate the similarity between node x and node y. 

We define Accumulated Similarity in Figure 15(b) between node set 0 1{ , ,..., }nX x x x=  

and node y as Equation 16: 

  
0

( , )
n

i
i

AS Sim x y
=

=∑                                      (16) 

With the above definition, the query expansion problem can be represented by 

word similarity problem in Figure 15(c): Given a graph ( , )G V E= , an arbitrary similarity 

function ( , )Sim x y  and a node set 0 1{ , ,..., }nX x x x= , query expansion aims to select top 

K nodes with the largest Accumulated Similarity from the rest of the nodes in the graph. 

It is worth noting that for the query expansion problem, we need to use 

accumulated similarity rather than the maximum similarity 
0

{ ( , )}i
i n

Max Sim x y
≤ <

 to prevent 

query drifting [42-44, 75]. Query drifting can cause the degradation of the search 

performance and is the worst case for query expansion. 
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4.1.3. Contributions 

In this chapter, we propose and evaluate a novel and effective ontology graph 

based query expansion scheme for biomedical search engine by utilizing a subset of 

UMLS Metathesaurus. Our contributions are six-folds. First, this novel query expansion 

method is conceptually different from previous techniques as of our knowledge. Second, 

the query expansion analyzes the whole context of user query rather than individual terms 

in the query. Third, unlike many previous studies which utilize only MeSH, our method 

can employ multiple controlled vocabularies from Metathesaurus for indexing/searching. 

Fourth, we showed that generalized biomedical concepts may degrade retrieval 

performance. Fifth, we designed a systematic method to eliminate the mapped 

generalized biomedical concepts and populate closely related specialized concepts 

resulting in significant increase in the relevance of retrieval results. Sixth, we 

demonstrate that query expansion based on ontology graph is more stable than that based 

on pseudo relevance feedback because sorting the retrieved documents by relevance is 

found to be often inaccurate. 

4.2. Personalized PageRank Algorithm 

The PageRank algorithm, a method for computing the relative rank of web pages 

based on the linkage structure of the web, was introduced in [76, 77] and has been widely 

used since then. The fundamental motivation underlying the basic foundation of 

PageRank algorithm is recognition and use of the fact that important pages are almost 

always linked to many other important pages.  
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Consider a random surfer who begins at web page and executes a random walk on 

the web as follows: at each time step, the surfer proceeds from his current page to a 

randomly chosen web page that it hyperlinks to. As the surfer proceeds in this random 

walk from node to node, he visits some nodes more often than others; intuitively, more 

frequently visited nodes are those with many in-links coming from other frequently 

visited nodes. For a detailed review of PageRank computing, see [78-81]. 

Let ( ),G V E= be a directed graph with vertices ( )1,... NV v v= where the nodes 

represent web pages and directed edges E  represents the directed hyperlinks. Let n  be 

the total number of pages, the edgesE are given by a (often sparse) nonnegative matrix

n nM × , where 1ijM = iff there is a direct link from vertex iv to vertex jv and equal to 0 

otherwise. Let deg( )i  denote the out-degree of vertexiv . For pages with non-zero 

number of out-linksdeg( ) 0i > , the rows of M can be normalized into a row-stochastic 

matrix by / deg( )ij jiP M i= , where the sum of components in each row is one. If

deg( ) 0i = , we set the entire row component to zero.  

Given a vertexiv , let ( )iIn v be the set of vertices pointing to it, PageRank of iv  is 

defined as: 

 
( )

1 1
( ) ( ) (1 )

deg( )
j i

i j
v In v

P v c P v c
j N∈

= + −∑
 

              (17) 

where (0,1]c∈ is the so-called damping factor which ensures the irreducibility and 

aperiodicity properties so that the iterative power method can converge to principal 

eigenvector as solution. Note that a web page user follows one of the local out-links with 
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probability cand teleports to another random page with probability1 c− . In this paper, 

we simply choose a heuristic damping factor value 0.85. 

The PageRank score reflects a “democratic” principle in the sense that the user 

has no preference for any particular pages. However, a random surfer may have a set of 

preferred pages where he is more likely to be teleported to in real world. The algorithm 

can be modified to reflect biased user preference (such as bookmark pages), called 

Personalized PageRank [82], by replacing the uniform teleportation probability vector 

with non-uniform one. For an overview of recent personalization methods, see [79, 83]. 

We rewrite Equation (17) in terms of normalized teleportation probability vector

v . The calculation of PageRank Vector P  is equivalent to: 

(1 )cM c= + −P P v                             (18) 

The teleportation probability vector v  is non-uniformly distributed in 

Personalized PageRank; thus the random web page user has a higher (teleportation) 

probability to jump back to the original page. Thus, the Personalized PageRank Vector 

(PPV) P  represents the importance of the entire vertices effectively biased by the initial 

non-uniform teleportation probability vector. 
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4.3. Fundamental Notion 

 

Figure 16: An example fraction of a biomedical ontology graph 

Before we dive into the technical details, we want to explain the fundamental idea 

underlying the personalized PageRank algorithm in query expansion.  

Let’s assume a searching scenario in the first place. Given two concepts 

“Vitamin” and “Nyctalopia” as user input, a small portion of the sub-ontology graph is 

illustrated in Figure 16. For a better illustration of the graph, we choose one simple 

English word to represent each concept in the figure. Depending on the size of the 

ontology graph, there might be hundreds of concepts related to either “Vitamin” or 

“Nyctalopia”, and tens of concepts related to both concepts. For query expansion, it is 

very straightforward to prefer those concepts linked to both “Vitamin” and “Nyctalopia” 

such as “Vitamin A”. Although it is plausible to directly probe the two neighbor sets of 

each concept and compute its intersection, it is much complicated and computational 
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expansive if we consider the situation of either inter-relationships among multiple 

concepts or relationships separated by multiple hops. 

By using personalized PageRank, we can imagine that the random surfer is 

teleported back to either “Vitamin” or “Nyctalopia” every time. Thus, “Vitamin” and 

“Nyctalopia” will have the highest probability distribution in the final Personalized 

PageRank Vector (PPV); followed by those concepts linked to (or near to) both “Vitamin” 

and “Nyctalopia” such as “Vitamin A”, “Cod-liver oil”. Those concepts linked to (or near 

to) only one concept are assigned the lower probability value. Of course, concepts far 

from both “Vitamin” and “Nyctalopia” are assigned the lowest probability value. The 

merit for personalized PageRank is that it naturally assigns higher value to those concepts 

linked to or near to more original concepts. Besides, it can treat concepts separated from 

original concepts by multiple hops with different value. In a word, by computing the PPV, 

we acquire the probability distribution of the concepts from the entire graph and the PPV 

serves as relational indicators for each concept to the original input concepts. Section 

4.4.1 describes the construction of the ontology graph; section 4.4.2 introduces mapping 

input text to biomedical concepts; section 4.4.3 applies the personalized PageRank to 

compute PPV. Nevertheless, there is one problem if we directly use the rank in PPV into 

query expansion. Among all four concepts linked to both “Vitamin” and “Nyctalopia” in 

the Figure 15, concepts “Vitamin A” and “Cod-liver Oil” are certainly very interesting as 

expanded terms; however, “immunology” and “metabolism” are not. How can we 

evaluate “Vitamin A” and “Cod-liver Oil” higher than “immunology” and “metabolism” 



 

in the query construction? We propose a weighted scheme in section 

problem. Section 4.4.5 assembles the rest elements for building a search engine.

4.4. Ontology Graph based Query Expansion

The flow chart in Figure 

new expanded query. There are total five steps where each step is corresponding to a 

single subsection. 

Figure 17: Flow chart describing the query expansion procedure
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Ontology Graph based Query Expansion Method 

Figure 17 shows the major steps of our method to construct a 

new expanded query. There are total five steps where each step is corresponding to a 

Flow chart describing the query expansion procedure
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(UMLS) [28, 29] is a 

lingual vocabulary database containing information about 

relationships.  
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Each biomedical concept is identified by a distinctive id called Concept Unique 

Identifier (CUI), which is an eight character alpha-numeric string. We use CUI to 

represent each biomedical concept in this paper. Each CUI is associated with a set of 

lexical variants strings, called concept name. The concept name may refer to medical 

conditions, appendages, diseases, drugs, and others; it may be single term, phrase, or a 

string of terms.  The MRCONSO table stores the entire CUIs and concept names.  

The Metathesaurus includes many inter-concept relationships as well. Most of 

these relationships come from individual vocabularies. The others are either added by 

NLM during Metathesaurus construction or contributed by users to support certain types 

of applications. The inter-concept relationships are stored in the MRREL table. Many 

types of relationships are included such as parent/child, immediate siblings.  

The construction of ontology graph matches Step 1 in Figure 17. An ontology 

graph is constructed using the information from MRCONSO and MRREL tables. The 

concepts are represented as vertices, and all the inter-concept relationships are 

represented as edges. The type of the inter-concept relationship is not distinguished so 

that there is no weight attached to the edges of ontology graph. 

Table 10: Multiple vocabularies and #CUIs 

Group 
Acronym of 
Vocabulary Full Name of Vocabulary #CUIs 

I 

MSH Medical Subject Headings 313,372 
SNOMEDCT SNOMED Clinical Term 320,648 
CSP CRISP Thesaurus, 2006 16,680 
AOD Alcohol and other Drug 15,900 

II 
GO Gene Ontology 54,453 

ICD10CM 
Int’l Classification of Disease, 10th edition, 
Clinical Modification 

97,664 
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NCI NCI Thesaurus 81,455 
RXNORM RxNorm Vocabulary 193,737 

III 
MTH Metathesaurus MTH 138,003 
NCBI NCBI Taxonomy 478,196 
RCD Clinical Term Version 3 186,032 

 

In our study, we used Metathesaurus 2010AB including total 2,381,619 concepts. 

Four major English vocabularies in Group I (MSH [30], SNOMEDCT [32], CSP, and 

AOD) with total 620,387 concepts are employed to build our Origin ontology graph. 

Eight vocabularies from Group I+II with total 988,490 concepts are used to construct 

Medium ontology graph. Finally, all eleven vocabularies from Group I+II+III with total 

1,470,588 concepts are used to build the Large ontology graph.  

Table 10 lists the full name and the number of concepts from each vocabulary. It 

is worth noting that we studied the difference of Origin, Medium, Large ontology graphs 

in chapter 4.5.5. The rest of the chapter only applies to the Origin ontology graph. 

4.4.2. Mapping Text to CUI 

The task of automatically mapping biomedical text to UMLS Metathesaurus is 

performed by MetaMap [84, 85], a supporting software tool provided by NLM. MetaMap 

uses a knowledge intensive approach based on symbolic, natural language processing 

(NLP) and computational linguistic techniques. MetaMap has been used in biomedical 

information retrieval and data mining applications, and automatic indexing of biomedical 

literature at NLM. 
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Shown in Step 2a in Figure 17, MetaMap first splits an input text into a set of 

noun phrases and generates the variants for each noun phrase where a variant essentially 

consists of one or more noun phrase words together with all of its spelling variants, 

abbreviations, acronyms, synonyms. Then, it maps a set of candidate CUIs containing 

one of the variants and computes a score for each candidate CUI by an evaluation 

function. Finally, it combines candidates involved with disjoint parts and re-computes the 

score based on the combined candidates. Those CUIs with highest score are selected as 

the best match to the input text.  

Since only a subset of the Metathesaurus is used to build the ontology graph, we 

keep only those mapped CUIs that exist in the four selected vocabularies. Those CUIs are 

called Original CUIs, shown in Step 2b in Figure 17.  

MetaMap2010 maps MEDLINE document’s title, abstract, and query text to 

Metathesaurus CUIs. The Med-Post/SKR part-of-speech tagger and word sense 

disambiguation are enabled during the process.  

4.4.3. Personalized PageRank on CUI 

Recall the concept of Personalized PageRank from section 4.2. Given a part of 

biomedical related text, mapped CUIs produced by MetaMap can be used as the initial 

teleportation probability vector to compute Personalized PageRank Vector (PPV) defined 

in Equation 17 via power iteration. 

Next, PPV is computed based on the Original CUIs as the teleportation 

probability vector on the ontology graph. We denote the top scored CUIs in the computed 
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PPV be PPV CUIs, noted as Step 3a in Figure 17. Scores of PPV CUIs are L1-

normalized. 

It’s worth noting that Personalized PageRank ensures the Original CUIs are 

present and highly scored in the computed PPV CUIs.  

PPV CUIs of query text are used as query expansion candidates. Since the query 

text is very short that only 2-4 Original CUIs are mapped for query in most of the case, 

we select a fixed top 500 scored PPV CUIs as candidates for each query, shown as Step 

3b in Figure 17.  

The PPV computation is performed by an open source C++ tool called UKB1 

[70], which is originally used to perform WSD. 

4.4.4. Weight Scheme of PPV CUIs 

The key value of our proposed ontology graph based method is to effectively and 

efficiently build the L1-normalized query PPV CUIs into expanded query.  

However, there are two reasons why we cannot directly use the PPV CUIs into 

query expansion. 

First, the scores are not very discriminative for direct usage in query expansion. 

The Personalized PageRank algorithm ensures the existence and high score of the 

Original CUIs ranked in the PPV CUIs. If we sort the PPV CUIs in descending order, the 

Original CUIs are distinguished from the rest PPV CUIs with high score and the score 

gaps between the two groups are large in most cases. The rest of the PPV CUIs have 
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much lower scores as well as tiny score gap between two consecutive CUIs. Thus, 

directly using PPV CUIs make trivial difference from simply using Original CUIs. 

 Second, the Personalized PageRank algorithm also guarantees that generalized 

concepts (more links) are scored higher than specialized concepts (less links). This 

phenomenon causes dozens of general medical concepts, such as ‘disease’ or ‘therapy’, 

frequently appeared and highly ranked in the PPV CUIs list.  

To alleviate the problem, we propose a weighted scheme to compute a new weight 

iw for each PPV CUI i  in order to re-rank the PPV CUIs. Analogous to the classic tf-idf 

form in information retrieval, the query weight formula ps-ipf is defined as: 

i i iw ps ipf= ⋅                                         (19) 

 i ips sα=                                       (20) 
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The Equation (19) is a combination of two factors. The first factor ips  is 

acronym for PPV Score, serving as term frequency: is  is the L1-normalized PPV score 

of CUI i ; and [0,1]α∈  is a tuning parameter used to increase PPV score by decreasing

α . The second factor is called inverse PPV frequency (IPF), which is analogous to 

inverse document frequency based on probabilistic ranking model [86], where N is the 

total number of computed PPVs in the collection, and in is the number of PPVs 

containing that specific PPV CUI i . In addition, plus .5 prevents the error when iN n= . 

                                                                         
1 http://ixa2.si.ehu.es/ukb/ 
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To statistically estimate IPF in Equation (21), we computed and indexed a large 

amount of PPVs from biomedical corpus to build an IPF repository. Shown as Step 4a in 

Figure 17, the PPV CUIs for document are computed using a sliding window method, 

different from the fixed top 500 query PPV CUIs for query text. Because of the title and 

abstract texts may have arbitrary length with various numbers of Original CUIs, a sliding 

window with size 100 is applied on the sorted PPV CUIs list to truncate the sequence 

when the difference in scores between the first and last CUI in the window drops below 

5% of the highest-scoring PPV CUI.  

In our study, we compute PPV CUIs generated from 348K OHSUMED 

documents to build the IPF repository shown as Step 4b in Figure 17. Thus, we can 

estimate the IPF by counting PPV frequencyin  for every CUI using Equation (21), 

shown as Step 4c in Figure 17. 
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Figure 18: Weight scheme re-rank the order of CUIs 
After the weights of all PPV CUIs are computed using Equation 19, we sort the 

query PPV CUIs again by selecting the top ranked k candidates, called Final CUIs in 

Figure 18 The computed weights of Final CUIs are divided by the highest weight for 

normalization so that those final weights are in the range[0,1]  .  

Finally, a boosting value b is used as an influence factor by multiplying the score 

of Final CUIs during the final query construction.  

4.4.5. Document Indexing and Retrieval 

To perform biomedical information retrieval efficiently, we use the popular 

Apache Lucene2 Java search library version 2.9.4 to create local index for MEDLINE 

documents. 

 In the indexing stage, a modified Lucene standard analyzer with an enhanced 

stop-list3  and Porter stemmer is used to analyze, tokenize and index MEDLINE 

document’s title and abstract respectively. Moreover, MetaMap is employed to analyze 

the title and abstract text to map a set of associated CUIs which are indexed as well.  

In the retrieval stage, shown as Step 5a, 5b in Figure 17, query text is analyzed by 

the same Lucene analyzer to extract query terms. MetaMap is used to map Metathesaurus 

CUIs from the query text.  When the query’s Original CUIs are mapped, we apply the 

Personalized PageRank algorithm to compute the PPV of that query described as Section 

                         
2 http://lucene.apache.org/ 
3 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart- stop-list/english.stop 
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4.4.3. Then we apply weight scheme in chapter 4.4.4 to construct final CUIs. Lastly, the 

free-text terms and Final CUIs (shown in Step 5c) are combined into a new expanded 

query for querying the Lucene index (Step 5d) in Figure 17. 

4.5. Validation of Our Approach 

4.5.1. Dataset 

To evaluate the performance of our scheme, we compare the precision/recall of 

information retrieval under the same data set, the OHSUMED collection [9]. OHSUMED 

is a clinically-oriented MEDLINE subset, consisting of 348,566 documents covering all 

references from 270 medical journals over a five-year period (1987-1991). This dataset 

has been extensively utilized [10, 11, 13-15, 17] to carry-out BIR experiments. In 

creating the OHSUMED dataset novice physicians using MEDLINE generated 106 

queries. Physicians were asked to provide a statement of information about their patients 

as well as their information need, or query.  Each query was later replicated by four 

searchers, two physicians experienced in searching and two medical librarians. The 

results were assessed for relevance by a different group of physicians. 

4.5.2. Experimental Design 

Seven strategies are evaluated and compared in our experiment listed in Table 11. 
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• Free-text: Both title and abstract text of document and query text are analyzed and 

tokenized by Lucene’s standard analyzer with enlarged stop-list and Porter 

stemmer.  

• Original CUIs: Metathesaurus CUIs mapped by MetaMap tool and presented in 

four selected vocabularies. 

• Original CUIs + PRF: it applies Pseudo Relevance Feedback (PRF) based query 

expansion on CUIs. The top 50 initially retrieved documents are collected, and the 

scores of the CUIs included in those documents are accumulated. Top ranked PRF 

CUIs are used to construct a new query. 

• (Original CUIs + PRF)∩ Final CUIs: the query expansion is based on the 

intersection between the PRF CUIs and Final CUIs. PRF scores are used. 

• Original CUIs ∪  Final CUIs: the new expanded query includes Original CUIs 

in the first place; then it appends the top ranked PPV CUI candidates in the end, 

but skipping the already added Original CUIs. All CUIs in the final query are 

boosted by value b . 

• Final CUIs: the new query is directly formed by the top ranked Final CUIs with 

boost value b . It’s worth noting that Original CUIs are not guaranteed to be 

included in the new query.  

Table 11: Seven index and retrieval strategies (*N/A: not applicable) 

Retrieval 
Strategies 

Document Representation Query Representation 
Vector 1 Vector 2 Vector 1 Vector 2 

S1 Free-text N/A Free-text N/A 

S2 N/A Original CUIs N/A Original CUIs 
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S3 Free-text Original CUIs Free-text Original CUIs 
S4 Free-text Original CUIs Free-text Original CUIs + PRF 

S5 Free-text Original CUIs Free-text (Original CUIs + PRF)
∩  Final CUIs 

S6 Free-text Original CUIs Free-text Original CUIs ∪  
Final CUIs 

S7 Free-text Original CUIs Free-text Final CUIs 
 

Among the seven tested strategies, Strategies 1-4 repeat the work of previous 

studies and serve as a solid base line, and Strategies 5-7 apply our proposed method in 

query expansion in different ways. 

4.5.3. Experimental Results 

Following experiments use Origin ontology graph (built by four vocabularies) to 

compute personalized PageRank vector. Table 12 shows the eleven points interpolated 

average precision (11pt. avg. precision) at the 11 standard recall levels, Mean Average 

Precision (MAP), and R-precision [37]. 11-point interpolated average precision is a 

traditional method to boil the precision-recall curve into eleven numerical values that the 

interpolated precision is measured at the 11 recall levels of 0.0, 0.1, 0.2, ..., 1.0. To further 

simplify the performance of recall-precision, Mean Average Precision is widely used in 

TREC community providing a single-figure measure of quality across recall levels. 

Among evaluation measures, MAP has been shown to have especially good 

discrimination and stability. R-precision measures precisions at fixed low levels of 

retrieved results, such as 10 or 30 documents. All the three performance indicators can be 
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calculated by trec_eval  tool4  for the various retrieval strategies tested in this 

dissertation. 

Table 12: Best performance of seven strategies 

 S1 S2 S3 S4 S5 S6 S7 

iprec_at_recall_0.00 0.7032 0.5594 0.7037 0.7029 0.6968 0.7226 0.7601 

iprec_at_recall_0.10 0.5157 0.3637 0.5210 0.5309 0.5388 0.5509 0.5883 

iprec_at_recall_0.20 0.4130 0.2728 0.4060 0.4345 0.4372 0.4283 0.4781 

iprec_at_recall_0.30 0.3203 0.1960 0.3244 0.3479 0.3475 0.3358 0.3896 

iprec_at_recall_0.40 0.2477 0.1389 0.2516 0.2863 0.2790 0.2614 0.3033 

iprec_at_recall_0.50 0.2062 0.0883 0.1994 0.2393 0.2272 0.2121 0.2479 

iprec_at_recall_0.60 0.1588 0.0566 0.1490 0.1827 0.1749 0.1601 0.1924 

iprec_at_recall_0.70 0.1132 0.0357 0.0994 0.1349 0.1290 0.1120 0.1416 

iprec_at_recall_0.80 0.0717 0.0219 0.0597 0.0850 0.0762 0.0675 0.0906 

iprec_at_recall_0.90 0.0365 0.0119 0.0310 0.0408 0.0401 0.0330 0.0399 

iprec_at_recall_1.00 0.0059 0.0008 0.0048 0.0063 0.0061 0.0047 0.0047 

11pt. avg. precision 0.2538 0.1587 0.2500 0.2720 0.2684 0.2626 0.2942 

MAP 0.2333 0.1366 0.2289 0.2530 0.2486 0.2415 0.2704 

R-precision 0.2712 0.1810 0.2742 0.2907 0.2924 0.2840 0.3060 

 

Table 13 presents the parameters used to achieve the best performance in different 

strategies. Table 14 shows the pairwise comparison between these strategies. A pair of 

strategies is compared by computing the percentage improvement achieved when using 

the stronger strategy over the weaker one. For example, row 2 column 3 indicates that S3 

offers 57.5% improvement over S2.  

                         
4 http://trec.nist.gov/trec_eval/ 
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The result of S1-S3 conform to the observations in  previous studies [10, 11] that 

strategy indexing both free-text and Metathesaurus information (S3) did not perform 

better than free-text indexing strategy (S1), and indexing restricted to Metathesaurus (S2) 

performed significantly worse than free-text strategy (S1). The pseudo relevance 

feedback strategy (S4) [13] improves the performance by 8.8% compare to the baseline 

S3. 

Since S3 utilizes both free-text and Metathesaurus information and S4 applies 

additional query expansion, they serve as two solid base-line strategies to benchmark our 

proposed ontology graph based Strategies 5-7. S5 reconstructs the query by intersecting 

the set of S4 and Final CUIs which causes 1.3% drop (its term score uses PRF score 

rather than PPV weight).  S6 avoids PRF and directly uses the PPV CUI candidates, but 

it keeps the original mapped CUIs; S6 is 5% better than S3, but 3.8% worse than S4. The 

best strategy S7 simply uses Final CUIs where part of Original CUIs may be excluded 

from the new query. To our surprise, S7’s performance is significantly better than any 

other strategies where it improves 15.9%, 85.4%, 17.7% and 8.2% over baseline S1, S2, 

S3, S4 respectively. On average, S7 is 24.8% better than all other strategies. 

Table 13: Parameters of best performance (*N/A: not applicable) 

 S1 S2 S3 S4 S5 S6 S7 

max retrieved #docs per 
query 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

#docs for pseudo 
relevance feedback N/A N/A N/A  50 50 N/A N/A 

#CUIs chosen for 
expanded query  N/A N/A N/A  5 15 25 15 
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boosting value b for 
expanded terms 

N/A N/A N/A  0.4 0.75 0.7 0.8 

α in Equation  N/A N/A N/A  N/A N/A 0.1 0.1 

 

Table 14: Pairwise comparison of retrieval strategies of 11pt. avg. precision 

 
S1 

(0.2538) 
S2 

(0.1587) 
S3 

(0.2500) 
S4 

(0.2720) 
S5 

(0.2684) 
S6 

(0.2626) 
S7 

(0.2942) 

S1 (0.2538)  -59.9% -1.5% 7.2% 5.8% 3.5% 15.9% 

S2 (0.1587)   57.5% 71.4% 69.1% 65.5% 85.4% 

S3 (0.2500)    8.8% 7.4% 5.0% 17.7% 

S4 (0.2720)     -1.3% -3.8% 8.2% 

S5 (0.2684)      -2.2% 9.6% 

S6 (0.2626)       12.0% 

4.5.4. Effectiveness Analysis 

To effectively demonstrate the power of ontology graph based query expansion, 

we analyze the PPV CUIs generated from OHSUMED query. The details of query #10 

“Effectiveness of gallium therapy for hypercalcemia” is presented in Table 15. MetaMap 

maps four Original CUIs for query #10: (C1280519: Effectiveness), (C0016980: 

Gallium), (C0039798: therapy), (C0020437: Hypercalcemia).  

A close look at Table 15 leads us to believe that there are two key reasons why our 

proposed scheme performs better: (1) Ontology graph based query ranks specialized 

CUIs (Gallium, Hypercalcemia) much higher than generalized CUIs (effectiveness, 

therapy) because specialized CUI has a much larger IPF than generalized CUI. Thus, the 

ontology graph based query expansion has a less tendency to include those generalized 
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CUIs which may retrieve irrelevant noise documents. For query #10, only one Original 

CUI ‘Gallium’ is presented in the new query. (2) It successfully finds additional useful 

CUIs closely related to those valuable specialized CUIs (Gallium, Hypercalcemia). 

Rankings #1, #3, #8 are valuable CUI expansion for ‘Gallium’, and rankings #5, #6, #14, 

#15 are valuable CUI expansion for ‘Hypercalcemia’ in Table 15. 

To demonstrate that using all Original CUIs can degrade the performance, we 

apply the same parameters set of S7 to S6 in Table 13. The evaluation result of S6 is: 

11pt. avg. precision 0.2597, MAP 0.2386, R-precision 0.2831. The result shows that the 

generalized terms in Original CUIs can degrade the performance as much as 13.3% in 

11pt. avg. precision. 

Table 15: Details of PPV final weights of OHSUMED Query #10  

 

Rank PPV CUI 
Final 
Weight 

Init. PPV 
Score is  IPF Concept Name 

1 C0202390 5.8315 0.0006 12.341 Gallium measurement 
*2 C0016980 5.7205 0.0756 7.4059 Gallium 
3 C0061005 5.5911 0.0006 11.8302 gallium arsenide 

4 C0150195 5.4806 0.0008 11.2424 
Electrolyte management: 
hypercalcemia 

5 C1833372 5.4740 0.0007 11.2424 
Familial benign hypercalcemia, 
type 3 

6 C0682902 5.3936 0.0006 11.2424 boron group elements 
7 C0878684 5.3856 0.0008 11.0417 SHORT syndrome 
8 C0061008 5.2749 0.0011 10.395 gallium nitrate 
9 C0268478 5.2404 0.0008 10.7315 Blue diaper syndrome 
10 C0033597 5.1809 0.0011 10.2207 Protactinium 
11 C0005124 5.1423 0.0011 10.1437 Berkelium 
12 C0015853 5.1061 0.0011 10.0723 Fermium 
13 C0025275 5.0723 0.0011 10.0056 Mendelevium 
14 C0271851 4.9913 0.0008 10.1437 Hypercalcemia due to sarcoidosis 

15 C0271850 4.9901 0.0008 10.1437 
Hypercalcemia due to 
granulomatous disease 

Table 15: Details of PPV final weights of OHSUMED Query #10 “Effectiveness of 
gallium therapy for hypercalcemia” (asterisk * indicates Original CUIs) 
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M       M        M 
*27 C0020437 4.8283 0.0732 6.2714 Hypercalcemia 

M       M        M 
*275 C1280519 1.7453 0.0782 2.2518 Effectiveness 

M       M        M 
*362 C0039798 0.5907 0.0733 0.7672 Therapy 

4.5.5. Multi-Vocabularies of Ontology Graphs 

Recall the above experiments are performed on Origin ontology graph (built by 

four vocabularies). Now, we want to study the effectiveness by enlarging the ontology 

graph with more vocabularies. Thus, we had performed a series of additional evaluations 

on Medium and Large ontology graphs shown in Figure 19. Medium ontology graph uses 

eight vocabularies and Large ontology graph uses eleven, shown in Table 10. We use 

them to re-compute the PPVs from 106 queries and 348K documents. Finally, the 11 

point average precision values are calculated with the same parameters set as S7 in Table 

13. We vary the size of PPV CUIs before re-ranking by weighted scheme. It shows that 

small size of CUIs (<150) degrades the performance greatly. Large size of CUIs (>500) 

doesn’t play a role in the final value. The size between 200 and 250 shows the best result.  

Figure 19 also shows that the Origin ontology graph still performs the best, and 

Large ontology graph’s performance is better than Medium ontology graph. It implies that 

increasing the number of ontologies may not improve the overall performance. Further 

experiments are required to identify which vocabulary causes the performance 

degradation. 
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Figure 19: 11pt. avg. precision values using three different ontology graphs 

 

 

4.6. Summary 

We have proposed a new ontology graph based query expansion scheme for 

MEDLINE. MeSH and three other controlled vocabularies from Metathesaurus are used 

to construct the graph. MetaMapped biomedical concepts are used to find semantically 

related counterparts by running Personalized PageRank algorithm on the graph. A 

carefully designed weight scheme is applied to select top biomedical concept candidates 

for query expansion. Experiments show that the best ontology graph based query 

expansion S7 surpasses the results of pseudo relevance feedback based query expansion 

(with 4, 8 and 11 vocabularies respectively) selecting various 
size of PPV CUIs before we re-rank those CUIs by Weighted 
Scheme. 
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S4, no query expansion S3, and all other strategies by 8.2%, 17.7% and 24.8% on 

average in 11pt. interpolated average precision. We also identify that the generalized 

biomedical concept is one of the reasons for performance degradation.  
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Chapter 5  

Hybrid Query Expansion Assisted by WEST 

5.1. Background 

In this chapter, we will apply the Weighted Edge Similarity (WEST) method from 

chapter 3 into our previously successful PPV query expansion approach for biomedical 

information retrieval from chapter 4.  

Directly applying word semantic similarity into query expansion isn’t an easy 

task. Voorhees [87] showed that an automatic procedure of query expansion based on the 

WordNet synonym sets can degrade retrieval performance. His experiments showed that 

the query expansion technique makes little difference in retrieval effectiveness if the 

original queries are relatively complete descriptions of the information being sought even 

when the concepts to be expanded are selected by hands; while less well developed 

queries can be significantly improved by expansion of hand-chosen concepts. 

Jalali [88, 89] applied Li’s similarity method [90] on MeSH tree ontology by 

computing the word similarity between the original query terms and pseudo relevance 
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feedback terms. A threshold of 0.7 is used to cut-off low similar terms in the pseudo 

relevance feedback procedures in his approach. 

5.2. Hierarchy of Ontology Graph 

To apply our WEST algorithm, there are two prerequisite conditions to satisfy: 

(1) Whether there exists a suitable underlying ontology structure? 

(2) Whether the hierarchy of ontology structure can be explored and Least 

Common Ancestor can be computed? 

Luckily, after carefully studying the Metathesaurus ontology, we find that both 

prerequisite conditions can be fulfilled by using multiple biomedical ontologies derived 

from Metathesaurus. 

First, since we are working on the biomedical data, the underlying ontology has to 

be changed from WordNet to the Metathesaurus ontologies which were built in chapter 4. 

We choose to use the Origin ontology graph of four vocabularies (MSH, SNOMEDCT, 

AOD, CSP) for its simplicity and effectiveness in the following experiments. 

Second, the hierarchy of the ontology has been constructed in the “Computable” 

Hierarchies (MRHIER) table of UMLS Metathesaurus. The MRHIER table of the Origin 

ontology graph was constructed by the four vocabularies with 6,876,273 total records of 

which 278,085 distinct CUIs.  

The MRHIER table has two important attributes: AUI and PTR. AUI is short for 

Atom Unique Identifiers [91] which is the basic building blocks or "atoms" from which 

the Metathesaurus is constructed from each of the source vocabularies. Every occurrence 
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of a string in each source vocabulary is assigned a unique atom identifier or AUI. If 

exactly the same string appears multiple times in the same vocabulary, for example as an 

alternate name for different concepts, a unique AUI is assigned for each occurrence. AUI 

contain the letter A followed by seven numbers. The abbreviation for the source that 

contributed each string is noted in parentheses after the string. 

Table 16: MRCONSO of CUI C0016980 “Gallium” 

AUI SAB STR 
A0014095 MSH Gallium 
A2877777 SNOMEDCT Gallium 
A0014094 MSH Gallium 
A0479659 CSP gallium 
A0479658 AOD gallium 
A4781508 SNOMEDCT Gallium, NOS 
A1961887 CSP Ga element 
A3471456 SNOMEDCT Gallium (substance) 

Table 17: MRHIER of CUI C0016980 “Gallium” 

AUI SAB PAUI PTR 

A0014094 MSH A0743535 
A0434168.A2367943.A18456972.A0135374.A0135450
.A0053536.A0743535 

A0014094 MSH A0743535 
A0434168.A2367943.A18456972.A0135374.A0135450
.A0085365.A0743535 

A0479658 AOD A1388564 A1386158.A1389303.A1389283.A1392037.A1388564 
A0479659 CSP A1195034 A0398472.A0318590.A0318854.A0483678.A1195034 

A2877777 
SNOM
EDCT 

A3471460 
A3684559.A3206010.A16967690.A3347798.A3559706
.A3471460 

A2877777 
SNOM
EDCT 

A3471460 
A3684559.A3206010.A3738095.A3347798.A3559706. 
A3471460 

 

PTR denotes for “Path to Top or Root” of the hierarchical context. The PTR is a 

string composed of AUI separated by periods, each AUI representing a node in the 

Metathesaurus hierarchy. The PTR and the AUI were concatenated to produce a 
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Hierarchical Unique Identifier (HUI) locating the given record in the Metathesaurus 

hierarchy [92].  

Other attributes of MRHIER includes SAB and PAUI. SAB is short for “Source 

Abbreviation” which records which vocabulary it is stored. The PAUI shows the direct 

parent of that CUI. There are three CUIs in our version of the MRHIER which don’t have 

PTR values: Medical Subject Headings (C1135584/A0434168), CRISP Thesaurus 

(C1140093/A0398472), Alcohol and Other Drug Thesaurus (C1140162/A1386158). 

To better illustrate the hierarchy provided by Metathesaurus, we re-use the OHSUMED 

query #10 “Effectiveness of gallium therapy for hypercalcemia” from chapter 4.4.4. The 

term “Gallium” is corresponding to CUI C0016980 in MRCONSO in Table 16 and 

MRHIER in Table 17. 

Figure 20 shows the hierarchy of the ontology graph between CUI pair 

<“gallium”, “gallium nitrate”>, < “gallium”, “fermium”> and < “gallium”, “berkelium”>. 

The AUI specific level (SpecLev) of the hierarchy is shown in the figure which is used to 

compute the weighted length as well as the similarity value of a pair. 



 

Figure 20: Hierarchy of “gallium nitrate”, “fermium”, “berkelium”
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“gallium nitrate”, “fermium”, “berkelium” and “gallium”

  

 

and “gallium” 
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5.3. Weighted Edge Similarity Assisted Query Expansion 

In this section, we applied our Weighted Edge Similarity (WEST) algorithm on 

the ontology graph to compute the semantic similarity of the Final CUIs and the Original 

CUIs.  

The motivation of applying semantic similarity to screen Final CUIs is to further 

considering the generalization and specification of the Final CUIs. Since the personalized 

PageRank algorithm only considers the in-link relationship and we use the weight scheme 

to filter those CUIs with high document frequency. However, it doesn’t consider the Final 

CUIs’ relationship in the way whether the expanded CUI is more general or more specific 

of the Original CUIs. By applying the Weighted Edge Similarity algorithm, we are able to 

filter those more general expanded CUIs and keep those more specific expanded CUIs 

into the final expanded query. 

The WEST algorithm is applied in Step 5c in Figure 21 noted in red color. The 

rest of the flow chart is the same of the personalized PageRank (PPV) based Query 

Expansion. 

In the Step 5c, we evaluate the top K Final CUIs and compute the semantic 

similarity of each Final CUI with all the Original CUIs and keep the highest similarity 

value. A heuristic similarity threshold is set according to the decreasing rate α  value of 

WEST. If a Final CUI’s highest similarity value is lower than the threshold, then that CUI 

will be skipped in the final expanded query. 
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Figure 21: Flow chart of applying Weighted Edge Similarity (WEST) algorithm 

5.4. Validation of Our Final Query Expansion Approach 

To validate our approach applying WEST algorithm into the personalized 

PageRank based query expansion, we implement the WEST algorithm on the 

Metathesaurus ontology graph. Three additional experiments are performed to evaluate 

the performance gain on the original PPV based query expansion. 

Table 18: Three WEST assisted index and retrieval strategies 
Retrieval 
Strategies 

Document Representation Query Representation 
Vector 1 Vector 2 Vector 1 Vector 2 

S7 Free-text Original CUIs Free-text Final CUIs 
S8 Free-text Original CUIs Free-text WEST(sech) Final CUIs 
S9 Free-text Original CUIs Free-text WEST(tanhc) Final CUIs 
S10 Free-text Original CUIs Free-text WEST(sech*tanhc) Final CUIs 

 
The best strategy of personalized PageRank algorithm S7 is used as the baseline. 

We evaluate the three hyperbolic transfer functions described in chapter 3.5.2 in Table 18. 

S8 uses sech function, S9 uses tanhc function and S10 applies sech*tanhc which again 
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showed the best performance in our WordNet experiments. In this WEST assisted query 

expansion experiment, a heuristic threshold value is set to 0.30 which is close to our 

previous work [18, 19], and the decreasing rate of WEST algorithm 0.8α =  for all three 

new strategies. The experimental result is shown in Table 19. 

Table 19: Performance of WEST assisted hybrid query expansions 

 S7 S8 S9 S10 

WEST transfer 
function 

N/A sech tanhc sech* tanhc 

iprec_at_recall_0.00 0.7601 0.7475 0.7344 0.7775 

iprec_at_recall_0.10 0.5883 0.5940 0.5787 0.6034 

iprec_at_recall_0.20 0.4781 0.4889 0.4761 0.4912 

iprec_at_recall_0.30 0.3896 0.4068 0.3891 0.4092 

iprec_at_recall_0.40 0.3033 0.3283 0.3144 0.3291 

iprec_at_recall_0.50 0.2479 0.2596 0.2621 0.2741 

iprec_at_recall_0.60 0.1924 0.2025 0.2005 0.2170 

iprec_at_recall_0.70 0.1416 0.1494 0.1443 0.1657 

iprec_at_recall_0.80 0.0906 0.0933 0.0892 0.0941 

iprec_at_recall_0.90 0.0399 0.0386 0.0435 0.0467 

iprec_at_recall_1.00 0.0047 0.0053 0.0061 0.0073 

11pt. avg. precision 0.2942 0.3013 0.2944 0.3105 

MAP 0.2704 0.2841 0.2716 0.2857 

R-precision 0.3060 0.3176 0.3086 0.3252 

 

The experiment shows that all of three new strategies improve the personalized 

PageRank query expansion. Among three strategies, the best strategy S10 applying both 

sech and tanhc as the transfer function improves the eleven point average precision by 

5.54% comparing to S7 and 22.34% to S1. 
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5.5 Discussion 

We use weighted edge similarity algorithm to assist word expansion by further 

filtering low similarity terms from the expanded terms generated by Personalized 

PageRank algorithm. Experiments show that all three strategies S8-S10 with WEST 

improve the search performance comparing to those method without applying similarity 

filtering. 

The reason for performance improvement is due to the removal of general concept 

and kept of specific concept. Personalized PageRank algorithm selects the concepts 

which best matches the query context; while the weighted scheme re-weights the entire 

rank so that general concepts are ranked lower and specific concepts are ranked higher. 

WEST similarity further filter those general concepts based on its specific level in the 

ontology that terms with low specific level (more general) are removed from the 

expansion list. 
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Chapter 6  

G-Bean: A Graph-based Biomedical Search Engine 

6.1. Overview 

We have implemented an interactive Graph-based Biomedical Search Engine (G-

Bean) using our proposed ontology graph query expansion algorithm. The online system 

accepts any medical related user query and processes them with expanded medical query 

to search for the whole MEDLINE database. 

6.2. Architectural Design 

6.2.1. MEDLINE Dataset 

It is not trivial and fairly important to collect the entire corpus of MEDLINE 

records as well as MetaMapping the entire MEDLINE text contents. Our first trial is to 

manually create a Python script to crawl the MEDLINE records from NLM’s entrez 

portal [93]. It spends us more than 10 days to crawl 14M records.  
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However, at the same time, we found that NLM has already built a package called 

Medline/PubMed Baseline which contains the entire MEDLINE. More importantly, the 

Medline/PubMed Baseline has already applied MetaMap to the whole MEDLINE data 

parsing these citations and get corresponding CUIs for every citation [94]. According to 

the description, the entire MEDLINE corpus of 19,569,568 citations was created on 

November 19, 2011. It was processed (by shell command metamap10 –Z 1011 –qE) 

between January 26, 2011 and February 16, 2011 through the MetaMap program 

generating MetaMap Machine Output formatted results for each of the citations. The 

results are now available via the link [95]. The compressed downloadable data requires 

129.9GB disk space. 

Thanks to the NLM’s pre-processed MEDLINE citation data which saved us more 

than 20 days of work, we apply our information retrieval model to index the MEDLINE 

as well as its MetaMap processed CUIs as shown in Chapter 4.3.5. However, building an 

index for such a large scale data is challenge even using Lucene library. In real index 

phrase, we repeated several times trying to index 20M citations and failed due to the Java 

virtual memory space is not enough. We finally succeed our approach by optimizing the 

Lucene index at every 50 input files (total 653 files) and setting the Java virtual 

machine’s memory by -Xms4096m -Xmx4096m. 

At first, we process the whole MEDLINE citations by indexing its title and 

abstract processed by porter stemmer and filtered by MIT stop-list5. The MetaMapped 

                         
5 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart- stop-list/english.stop 
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CUIs are also indexed for our proposed query expansion. The whole indexed data 

requires 25.8GB disk spaces. 

However, when we evaluate the index we created as above, we find that using 

porter stemmer and stop-list is not a good option for biomedical document indexing. The 

reason is that some biomedical special terms will be removed during indexing and 

searching phase. For example, Gene Ontology is short for (GO) which is in the stop-list. 

When we search the term G-SESAME, it returns documents about sesame which is not 

what we want.  

In order to solve this problem, we re-index the entire document corpus simply 

using white space to separate each term. We do not use porter stemmer, stop-list or 

distinguishing capitalized letter in the second round indexing. The re-indexed data 

requires 39GB disk space and takes 18.2 hours to index. 

6.2.2. Architecture 

Since we are using the Java version Lucene library underlying our query 

expansion implementation, we choose to implement the online system using Client-

Server architecture powered by Java Servlet Pages. The front-end is written by Java 

Servlet Pages (JSP) and the back-end is supported by our ontology graphed assisted 

hybrid query expansion system. The detailed architecture is shown in Figure 22. 

As shown in Figure 22, the front-end is composed by HTML and JSP codes which 

are directly displayed to users around the world. When the user’s query is passed to the 

back-end system, the original query is parsed via Porter stemmer and filtered by the MIT 
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stop-list. The MetaMap program searches and generates the corresponding CUIs recorded 

in the Metathesaurus. The CUIs will be expanded by running the personalized PageRank 

algorithm on the ontology graph at first. Then, the expanded CUIs will be filtered by 

computing the semantic similarity between the expanded CUIs and the Origin CUIs. The 

filtered Final CUIs with the original text phrases are composed together as the Hybrid 

Final Query to search our local MEDLINE indexes. 

Currently, the proposed G-Bean search engine is deployed on web server Tomcat 

6.0 using Ubuntu 11.04 as the operating system. The current version of web application 

system is at http://bioir.cs.clemson.edu:8080/BioIRWeb/index.jsp. 



 

Figure 

6.3. Usage 

The interface of the

biomedical terms and G-Bean

database. The current URL of the website is 
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Figure 22: Architecture of G-Bean 

the website is shown Figure 23 where user can query any 

Bean returns a list of biomedical documents from MEDLINE 

The current URL of the website is 

 

where user can query any 

a list of biomedical documents from MEDLINE 

The current URL of the website is at 



 

http://bioir.cs.clemson.edu:8080/BioIRWeb

the original item in the PubMed online database in 

Figure 23:

Figure 24: Selected 
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:8080/BioIRWeb. Click the title of any listed item will link to 

the original item in the PubMed online database in Figure 24. 

: Biomedical information retrieval website 

Selected article is linked to PubMed database 

lick the title of any listed item will link to 

 

 



 

One feature of our website is that the user can select his interested article and find 

its related articles. The selected article is displayed in the middle column and the related 

articles are shown in the right column. As shown in 

of cancer-related hypercalcemia the role of gallium nitrate

the right bottom articles shows top rel

User can select multiple articles and add them into Selected Articles in the middle 

column; while Related Articles in the right column includes the related articles for each 

selected article. All the related articles are re

Figure 26, the user selects one more article “

lymphoma”.  

Figure 25: User select

The user can change the query but keep the contents in the Selected Articles and 

Related Articles in order to select additional articles to the middle and right columns.  
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One feature of our website is that the user can select his interested article and find 

its related articles. The selected article is displayed in the middle column and the related 

ht column. As shown in Figure 25, the user adds “

related hypercalcemia the role of gallium nitrate” into the Selected Articles, and 

rticles shows top relevant articles to that user selected article.

User can select multiple articles and add them into Selected Articles in the middle 

column; while Related Articles in the right column includes the related articles for each 

selected article. All the related articles are re-sorted by its matched score. As shown in 

, the user selects one more article “Gallium nitrate in the treatment of 

User selects article from search results  

The user can change the query but keep the contents in the Selected Articles and 

Related Articles in order to select additional articles to the middle and right columns.  

One feature of our website is that the user can select his interested article and find 

its related articles. The selected article is displayed in the middle column and the related 

, the user adds “Treatment 

” into the Selected Articles, and 

article. 

User can select multiple articles and add them into Selected Articles in the middle 

column; while Related Articles in the right column includes the related articles for each 

matched score. As shown in 

Gallium nitrate in the treatment of 

 

The user can change the query but keep the contents in the Selected Articles and 

Related Articles in order to select additional articles to the middle and right columns.  



 

Figure 27 shows the corresponding selected result in 

articles are selected. 

Figure 

Figure 27: Change the search keywords to “skin cancer” and 
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shows the corresponding selected result in the right columns when multiple 

Figure 26: User selects additional article  

Change the search keywords to “skin cancer” and select additional article 

right columns when multiple 

 

 

select additional article  
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6.4. Evaluation 

Objective evaluation was shown in the previous chapters. In this section, we show 

our subjective evaluation comparing G-Bean and PubMed. 

To evaluate the performance of our Graph based Biomedical Search Engine (G-

Bean), we have used the 106 queries from OHSUMED dataset to search the entire 20 

million MEDLINE citations. The search results were compared with the results returned 

by PubMed interface. An expert in biomedical sciences carefully examined the results 

returned by both search engines. Surprisingly, the expert felt that G-Bean returned better 

search results in 79 of these queries while both search engines returned good search 

results on other 27 queries. This evaluation further confirms the superiority of G-Bean 

biomedical search engine. It is worth-noting that PubMed system fails to return any 

results on several queries such as #7, #52, and #101.  

From the biomedical expert's judgment, we find that if the query is composed of 

MeSH terms, both systems perform well. However, if the query cannot be parsed into 

MeSH terms, the PubMed usually doesn't return desired results and our system 

outperforms PubMed in most of the case. Besides, the PubMed system frequently 

matches items simply related to general terms such as "therapy" and "effective" which 

decrease the precision and degrade the performance. To sum up, our G-Bean system 

outperforms the original PubMed's search and it is more convenient for user to perform 

efficient and effective search in biomedical area. 

Table 20 shows the OHSUMED Query #11 “review article on cholesterol emboli” 

where the term “cholesterol emboli” is not in the MeSH ontology. Thus, only #3 from 



109 
 

PubMed is related to the user query. However, our G-Bean is able to automatically 

mapping cholesterol emboli into its related CUI C0149649 which gives us a better result 

in our biomedical search engine that all the top 5 results are related to the user’s query. 

Table 20: Top 5 in OHSUMED Query #11 “review article on cholesterol emboli” 

 PubMed G-Bean 

1 Pitfall in nephrology: contrast 
nephropathy has to be differentiated from 
renal damage due to atheroembolic 
disease. 

Cutaneous cholesterol emboli (author's 
transl).  

2 Objectives of teaching direct 
ophthalmoscopy to medical students. 

Spinal cord infarction due to cholesterol 
emboli complicating intra-aortic balloon 
pumping (case report and review of the 
literature).  

3 Cholesterol embolization syndrome. Multiple cholesterol emboli syndrome. 
Bowel infarction after retrograde 
angiography.  

4 Models of preventable disease: contrast-
induced nephropathy and cardiac 
surgery-associated acute kidney injury. 

Cholesterol emboli after cardiac 
catheterization. Eight cases and a review 
of the literature.  

5 Subcutaneous thrombotic vasculopathy 
syndrome: an ominous condition 
reminiscent of calciphylaxis: 
calciphylaxis sine calcifications? 

Multiple cholesterol emboli syndrome.  

 

Table 21 shows top 5 articles retrieved by OHSUMED Query #19 “use of beta-

blockers for thyrotoxicosis during pregnancy” using the two search engine. Only G-Bean 

is able to retrieve articles related to “beta-blockers” while the PubMed retrieved none 

articles related to beta-blockers. 

 



110 
 

Table 21: Top 5 in OHSUMED Query #19 “beta-blockers for thyrotoxicosis” 

 PubMed G-Bean 

1 Therapy of hyperthyroidism in pregnancy 
and breastfeeding. 

Treatment of thyrotoxicosis during 
pregnancy with propranolol.  

2 Hyperthyroidism and other causes of 
thyrotoxicosis: management guidelines of 
the American Thyroid Association and 
American Association of Clinical 
Endocrinologists. 

Oral beta-blockers for mild to moderate 
hypertension during pregnancy.  
 

3 [Severe circulatory insufficiency in a 
patient with neonatal hyperthyroidism]. 

Evaluation of thyrotoxicosis during 
pregnancy with color flow Doppler 
sonography.  

4 Molar pregnancy-induced thyroid storm. Oral beta-blockers for mild to moderate 
hypertension during pregnancy.  

5 Total intravenous anesthesia for 
evacuation of a hydatidiform mole and 
termination of pregnancy in a patient 
with thyrotoxicosis. 

Transient post-operative thyrotoxicosis 
after parathyroidectomy.  

 

The entire 106 OHSUMED queries, its top 5 results from both system and the 

biomedical expert’s opinions are presented in website: 

http://bioir.cs.clemson.edu/SearchEngineEvaluation/evaluation.php. 

Several OHSUMED queries such as Query #23 “spontaneous unilateral 

galactorrhea, differential diagnosis and workup” and Query #30 don’t get results in 

PubMed while our search engine returns good results.  

Based on these subjective evaluations, G-Bean is more stable and effective 

comparing to PubMed search, especially when user’s query contain terms which are not 

MeSH terminology.  
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Chapter 7  

Conclusion 

7.1. Contribution Summary 

We have proposed an enhanced search engine for the biomedical research 

community to facilitate effective searches via a hybrid query expansion approach on 

biomedical ontology graph. The biomedical ontology graph can be constructed by any 

number of existing biomedical vocabularies in Metathesaurus which provides the 

possibility of customized search for different users. Two different but related methods 

exploring the ontology graph are studied and evaluated to construct an expanded query to 

search the MEDLINE Lucene index. Both of the methods are proved to be effective in 

increasing the recall-precision performance. To sum up, our contributions are ten-folds as 

listed below: 

(1) Our proposed query expansion algorithm is conceptually novel and very 

different from previous query expansion methods in information retrieval as 

of our knowledge. 
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(2) Unlike most of the previous ontology based studies which utilize only MeSH 

as their solo ontology, our method can employ multiple controlled 

vocabularies from Metathesaurus for indexing and searching. 

(3) The application of multiple vocabularies provides the possibility for users to 

customize their specialized search. A gene scientist can create the ontology 

using GO vocabulary to expand the query specifically to Gene Ontology. 

(4) We have designed a systematic method to eliminate the mapped generalized 

biomedical concepts and populate closely related specialized concepts 

resulting in significant increase in the relevance of retrieval results. 

(5) Our experimental analysis showed that eliminating generalized biomedical 

concepts in the search query may greatly improve the recall-precision 

performance. 

(6) We demonstrate that query expansion based on ontology graph is more stable 

than that based on pseudo relevance feedback because sorting the retrieved 

documents by relevance is found to be often inaccurate. 

(7) We made an important observation that humans are more sensitive to the 

word semantic difference caused by the categorization than by specification. 

In another word, people view word pair separated by specification more 

similar than those separated by categorization. 

(8) Our WEST semantic similarity algorithm performs well on both WordNet and 

multiple ontologies generated from Metathesaurus. 
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(9) We explore two different yet effective approaches to take advantages of the 

multiple biomedical ontologies into bioinformatics information retrieval.  

(10) The two approaches are successfully combined and the hybrid approach has 

achieved best performance in our experiments. 

7.2. Future work 

7.2.1. Further Evaluation of Multiple Ontologies 

We explore the multi-vocabularies of ontology graph construction in Chapter 

3.4.5. The Origin version with four vocabularies was increased with additional 

vocabularies to construct Medium version (8 vocabularies) and Large version (11 

vocabularies) ontology graph. However, both Medium and Large version don’t perform 

better than the Origin version while the Large version performs better than the Medium 

version. This implies that the introduction of certain ontology might impair the overall 

retrieval performance. A further evaluation of the relationship between the retrieval 

performance and the combination of multiple ontologies can be studied. 

7.2.2. Speed-up the Personalized PageRank Computation 

Currently, we compute the personalized PageRank vector on the fly during the 

query expansion construction phrase. The PPV computation for each query might take 

one to several seconds which is based on the size of the ontology graph. However, this 

process can be accelerated with several existing methods. One outstanding solution is 
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proposed by Jeh and Widom called Scaled Personalization in [96]. The authors developed 

an approach to compute PPV as a solution of a linear combination of a set of basic PPVs. 

For a given teleport vectorv , the personalized PageRank equation can be deduced into 

Equation (22): 

(1 ) ,0 1Tx Ax cP x c v c= = + − < <                              (22) 

where the PPV x  relates to user-specified bookmarks with weights represented 

in v  [83]. The author Haveliwala proposed the Linearity Theorem to encode PPV into 

shared components: 

Linearity Theorem. The solution to a linear combination of preference vectors 

1v  and 2v  is the same linear combination of the corresponding PPV’s teleport vector 1x  

and 2x , for any constants 1 2, 0α α ≥  such that 1 2 1α α+ = , 

1 1 2 2 1 1 2 2 1 1 2 2( ) (1 )( )Tx x cP x x c v vα α α α α α+ = + + − +               (23) 

Applying either Jeh or Haveliwala’s method can help us pre-calculate the PPV of 

each CUI before the searching phrase. During the searching phrase, we only need to add 

up all the corresponding unit PPV to be the query’s PPV. In this way, we can use the pre-

calculated PPV to accelerate the search response. 

7.3. Expected Impact 

Effectively querying MEDLINE by PubMed is not an easy task for non-expert 

users. Our hybrid query expansion method for query the MEDLINE has greatly improved 

the recall-precision performance in biomedical information retrieval. However, our 

method is not limited to biomedical area. As long as there is suitable ontology graph, we 
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can apply our personalized PageRank query expansion into any area. In addition, we can 

apply the WEST algorithm if the hierarchy of ontology graph can be obtained. 
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Appendices 
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Appendix A: List of acronyms and abbreviations 

AOD - Alcohol and Other Drug 
API - Application Programming Interface 
BIR - Biomedical Information Retrieval 
CSP - CRISP Thesaurus 
CUI - Concept Unique Identifier 
DAG - Directed Acyclic Graph 
GO - Gene Ontology 
IC - Information Content 
ICD10CM - Int’l Classification of Disease, 10th edition, 

Clinical Modification 
LCA - Least Common Ancestor 
MAP - Mean Average Precision 
MEDLINE - Medical Literature Analysis and Retrieval System Online 
MC dataset - Miller and Charles dataset 
MSH/MeSH - Medical Subject Headings 
MTH - Metathesaurus MTH 
NCBI - National Center for Biotechnology Information 
NLM - National Library of Medicine 
PPV - Personalized PageRank Vector 
PRF - Pseudo Relevance Feedback 
PS-IPF - PPV Score – Inverse PPV Frequency 
RCD - Clinical Term Version 3 
SNOMEDCT - SNOMED Clinical Term 
SpecLev - Specification Level 
TF-IDF - Term Frequency – Inverse Document Frequency 
WEST - Weighted Edge Similarity Tools 
WSD - Word Sense Disambiguation 
UMLS - Unified Medical Language System 
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Appendix B: Public web services provided by WEST 

B.1. Web Service 
The following web services are provided and supported by WEST team at: 

Uri: ‘urn:LiangSimilarity’ 

Proxy: ‘http://bioir.cs.clemson.edu:17581/’ 

B.2. Web Service Functions 
double query(string word1, string word2[, string st rategyCode[, float 
alpha[, float beta]]]) 

Table 22: Strategy Code of WEST Web Service 

Methods Strategy Code 
Weighted Edge Hybrid wehybrid 

Weighted Edge Sech wesech 

Weighted Edge tanhc wetanhc 

Li's Method li 

 
Example: 
double res = query("boy", "man");  //Default Weight ed Edge Hybrid with 
alpha 0.85 
double res = query("boy", "man", "wesech"); //Weigh ted Edge Sech 
double res = query("boy", "man", "wesech", 0.87); / /Weighted Edge Sech 
with alpha 0.87 
double res = query("boy", "man", "li", 0.2, 0.3); / / Li's method with 
alpha 0.2 and beta 0.3 

B.3. Perl Client Sample using SOAP::Lite 
use SOAP::Lite; 
my $soap = SOAP::Lite  
-> uri('urn:LiangSimilarity') 
-> proxy('http://bioinformatics.clemson.edu:17581/' ); 
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my $res = $soap->query("boy", "man"); 
print "boy~man:".$res->result."\n"; 

B.4. PHP Client Sample using PHP::SOAP 
$client = new SoapClient(NULL, 
            array( 
            "location" => "http://bioinformatics.cl emson.edu:17581/", 
            "uri"      => "urn:LiangSimilarity", 
            "style"    => SOAP_RPC, 
            "use"      => SOAP_ENCODED 
          )); 
$res = $client->query("boy", "man"); 
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Appendix C: Install and Run BioIRWeb website 

C.1 Installation 

1. MetaMap 

• Need to install both MetaMap10 and MetaMap API (extract both into the 

/root/workspace/MetaMap) 

• Set environement PATH and JAVA_HOME in ~/.bashrc 

export JAVA_HOME=”/usr/lib/jvm/java-6-openjdk” 

export PATH=$PATH:/root/workspace/MetaMap/public_mm /bin 

• /root/workspace/MetaMap/bin/install 

2. UKB_PPV: 

 . chmod of the UKB_PPV in the ukb_ppv directory 

a. install boost library 

 Install Tomcat 

 . the details follow the Tomcat and Eclipse document 

C.2 Startup the web application 



121 
 

1. cd /usr/share/tomcat6/bin  

sh shutdown.sh  

In order to shut down the Tomcat run by the Ubuntu 

2. Open Java Eclipse 

3. Run the Eclipse’s Tomcat server      

a. click BioIRWeb in the Eclipse’s Package Explorer 

b. click the Green Triangle Button to run program with the right drop list 

c. select Run As->Run on Server 

4. Open another terminal (startup the MetaMap daemon) 

cd ~/workspace/MetaMap/ 

sh metamap_start.sh  

 In the Web Browser, enter http://localhost:8080/BioIRWeb/index.jsp 

 If any Java Null Pointer errors, check the Java Library screenshot in the 

BioIRWeb directory. 
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