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ABSTRACT 

This dissertation presents a model-based approach to perform system integration 

of a novel positioning sensing method, termed “Direct Position Sensing.” Direct Position 

Sensing can actively monitor the planar position changes of motion control devices 

without the dependency of the conventional position sensor combined with kinematic 

model to estimate the planar position. Instead, Direct Position Sensing uses the 

technology of computer vision and digital display to directly monitor the planar position 

displacement of a motion control device by actively tracking the desired position of the 

device based on the displayed target showed on the digital screen. The integration of the 

computer vision as the feedback system to the motion controller, introduces intermittency 

and latency in the controller’s feedback loop.  

In order to integrate the slower computer vision sensor to the motion controller, a 

model-based controller architecture, Smith Predictor approach was first implemented to 

the Direct Position Sensing system. The Smith Predictor uses a mathematical plant model 

that is running in parallel with the actual plant so that the model predicts the plant output 

when the actual output of the system is unavailable. Due to the intermittency feedback of 

the system, a path prediction algorithm was developed to minimize the model residual 

during the intermittent feedback so that the tracking performance of the system can be 

improved. Furthermore, a model input corrector was also developed to correct the control 

action to the plant model based on the model residual to enhance the path prediction.  
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Simulations and hardware experiments results show that the model-based strategy 

provides improved tracking performance of the system when latency and intermittency 

exist in the controller feedback loop.  
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CHAPTER ONE 

1 INTRODUCTION 

 

 

1.1 Objective 

The objective of this research is to use model based approaches to perform system 

integration for a novel positioning sensing system. Instead of using conventional position 

sensors, this novel positioning system uses computer vision together with a digital 

display to actively track the planar position of a motion control devices. Thus, system 

integration between the newly developed vision sensor and the motion controller must be 

performed. This research uses the Computer Numerical Control (CNC) XY table as an 

application example to show the proof of concept of the novel positioning system. 

 

1.2 Motivation  

Machining technology has advanced from manual machines, through Numerical 

Control (NC) machines and to the CNC machines of today, as represented in Figure 1-1 

respectively. The main goal of advancement and continuing development of machine 

tools is to create more accurate and faster machines so that complicated parts can be 

manufactured efficiently and with greater precision. Almost all CNC machines in the 
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manufacturing industry use position sensors such as rotary encoder or linear scale to 

monitor the position of each machine’s axis to provide position and velocity feedback to 

the motion controller so that the desire path of the part can be tracked accurately. 

However, machine errors related to geometric inconsistencies, kinematic errors and 

thermal distortion exist during the machining operation, affecting the machine accuracy. 

 

 

A) Manual machine 

 

B) NC machine 

 

C) CNC machine 

Figure 1-1: Machine tool advancements [1-3]. The control of metal cutting has evolved from a primarily A) manual 
operation to B) semi-automatic axis control and then to C) fully automatic axis control machines, which has improved 
accuracy and faster productivity 

 

 CNC machines mainly operate in an offline error compensation architecture in 

which the inaccurate machine has to be shut down in order to be re-calibrated to factory’s 

design specification. This process is time consuming, expensive and inefficient for any 

manufacturing facility. In addition, most of the previous and current research related to 

machine accuracy improvement involves adding more sensors and employing additional 

compensation algorithms over the existing position control schemes. However, such 

schemes are still unable to directly locate the actual toolpoint of the system. Although 
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each machine axis’s position sensing system operates using closed-loop control, the 

position sensing system of the planar or spatial location is still operated in an open-loop 

manner. This is because the planar or spatial positions are estimated through a kinematic 

model of the machine based on the feedback from each axis’s position sensor. Such a 

design is subject to tool point position error which leads to inaccuracies in producing high 

precision parts, resulting in higher loss to the company. 

Thus, this research presents a new position sensing architecture termed “Direct 

Position Sensing” that can actively monitor the actual planar toolpoint of an 

automatically- controlled positioning machine without relying on a kinematic model. The 

success of this new algorithm will enable the machine to accurate track the desired 

trajectory while eliminating the offline error compensation and mapping process 

commonly used to calibrate the machine. This approach will help the manufacturing 

industry save cost in terms of labor, energy consumption, and material resources in 

producing accurate and high quality parts.  

 

1.3 Research Challenges  

Instead of using an optical sensor, Direct Position Sensing utilizes a computer 

vision sensor to monitor the planar position of the CNC machine. This computer vision 

sensor consists of a digital display screen, a digital camera and an image processing 

micro-controller to track the planar location of the machine as shown in Figure 1-2. 
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Figure 1-2: Vision sensor configuration[4]. A digital screen that is located on top of the XY table, is used to display 
desired trajectory of the system and the digital camera that is mounted at the center of the table, is used to monitor the 
planar displacement  

 

In this research, it is assumed that 1) there exists a constant time delay, τ within 

the feedback loop owing the long image processing time of the vision sensor, and 2) no 

output will be generated during the image processing period, which leads to an 

intermittent feedback. Therefore, the feedback of the vision sensor to the motion 

controller is assumed to be delayed and intermittent, which is not only detrimental to the 

path tracking of Direct Position Sensing but also can cause the system to be unstable. 

The primary objective is to develop a model-based control approach to predict the 

actual tool path of the machine during periods between intermittent feedbacks of position, 

and to correct the prediction when feedback is received. This approach is phased in time 

to account for the delay in feedback owing to image processing time. 
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1.4 Dissertation organization  

The remainder of the dissertation is organized as follows: 

• Chapter 2 presents the background and literature reviews of machine positioning 

error and error compensation techniques  

• Chapter 3 presents the system design of the newly-developed positioning system, 

the fundamental intellectual questions to be answered.  

• Chapter 4 presents the literature survey of model-based control, and its 

application to CNC and multiaxis positioners.  

• Chapter 5 presents the Smith Predictor approach to integrate both the vision 

system and the motion controller 

• Chapter 6 presents the Modified Smith Predictor that was developed to minimize 

the model residual that exists in the original Smith Predictor  

• Chapter 7 provides the conclusion and future directions necessary in this research. 
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CHAPTER TWO 

2 BACKGROUD AND LITERATURE REVIEW  

 

 

2.1 Computer Numerical Control Machine  

This chapter first presents a brief introduction of CNC machine, machine errors, 

and error compensation methods to overcome the machine error. The CNC machine 

consists for three main components: 1) machine structures, 2) driving system and 3) 

controller [5].  

2.1.1 Machine Structures 

Typically, a CNC machine has static machine structures such as machine columns 

and beds that serve as the chassis of the machine to ensure the stiffness of the machine so 

that the dynamic structures such as machine axis, spindle, table and other moveable 

structures can be sturdily mounted on the static structures as presented in Figure 2-1. 
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Figure 2-1: Machine structures [6]. Static structures serve as a rigid framework on which to mount the dynamic 
structures such as spindle and articulating axes  

 

2.1.2 Drive System 

The CNC’s drive system has three main components: motor, amplifier, and 

sensor. The motor is used to drive not only the axis of the machine but also the spindle of 

the machine. In order to provide an appropriate current to the motor, an amplifier is 

needed to monitor the transmitted current, i (t) to the motor based on the command signal 

from the controller, u(t) as seen in Figure 2-2. Then, the position sensor is used to 

measure the position, θ(t) or velocity, ω(t) of axes’ motor and feed the measured signal 

back to the controller so that the tracking error, e(t) of each axis can be obtained [5].  
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Figure 2-2: Closed loop control of a single axis. Based on the error between the trajectory, r(t) and position feedback, 
y(t), the controller output a proper control action, u(t) to the amplifier which generate the current, i(t) to actuate the 
motor  

 

2.1.3 Controller  

The controller is used to ensure the drive system follows the pre-defined 

trajectory or setpoints of the system with minimal error. Although various control 

architectures have been developed, the Propotional Integral Derivative (PID) controller is 

still the most commonly used control architecture in the industy due to its simplicity and 

easy implimentation. Eq. (2.1) shows the general PID equation and can be rewritten as 

Eq.(2.2) which is the more commonly used form in the industry. Ti represents the integral 

time and TD represents the derivative time , their relationship with the proportional gain, 

KP are shown in Eq. (2.3) and (2.4) respectively.  

 

 ( ) I
p D

K
C s K K s

s
= + +  (2.1) 

 
1

( ) (1 )p D

I

C s K T s
T s

= + +  (2.2) 

 P
I

I

K
T

K
=  (2.3) 



9 

 

 D
D

P

K
T

K
=  (2.4) 

 

The output of the control action of the controller depends on both the gains of the 

PID controller and also the values of the measurement’s error obtained from the sensor. 

In general, Kp is proportional to the measured error, so the bigger the KP, the faster the 

output response is going to be generated. However, if the KP value is too big, this can 

lead to instability and resultant oscillatory behavior. The KI  is the integral control that is 

used to sum up the error during the integral time so that the steady state error can be 

reduced. The larger the KI, the faster the response reaches the setpoints, but improper 

settings of the KI will lead to overshoot or undershoot responses. Lastly, KD is 

proportional to the rate of change of the process variable [7]. Large KD can cause 

vibration in the system because the first derivative of the position error is sensitive to 

noise [8]. Typically in the industry, the PI controller is widely used because there is 

difficulty in tuning the KD; improper tuning or system temporal change can cause heavy 

vibration [5]. 

 

2.2 Feedforward Control 

Although the conventional position control method is able to track the desired 

position of each axis, following error still exists. Following error in this context 
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represents the deviation between the setpoints position and the actual position that is due 

to servo lag. As seen in Figure 2-3, servo lag happens when the motor does not have 

sufficient speed of response to reach the desired velocity when it starts running from a 

stop position. The following error impact to path tracking is illustrated in Figure 2-4. 

 

 
Figure 2-3: Velocity profile during servo lag. As seen in the diagram the broken line represent the servo lag of the 
system when the motor starting from a static position, the lag of not reaching the velocity profile fast enough causes the 
following error to happen 

 

 
Figure 2-4: Following error due to servo lag. The solid line represents the setpoints of the system and the dotted line 
represents the response of the motor and the following error of the system is the vertical distance between the setpoints 
and response 
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Often, a velocity feedforward control algorithm will be added to the conventional 

motion controller to speed up the response, allowing the motor to reach its velocity 

profile faster and minimize the servo lag. Unlike conventional position control that 

generates control action based on the obtained feedback, the feedforward operates based 

on a pre-specific model [8]. Typically, the inverse transfer functions of the plant will be 

used as the model for the velocity feedforward controller. With the model based 

approach, model discrepancy is expected, so the feedforward controller is frequently used 

together with the feedback control architecture so that the model discrepancy from the 

feedforward controller can be corrected in the feedback loop as shown in Figure 2-5. 

 

 
Figure 2-5: Velocity feedforward control. The feedforward controller added to the conventional controller to improve 
the system response of the system minimizing the following error. 

 

 



12 

 

2.3 Machine Error  

Accuracy is one of the most crucial performance quantification metric of a 

machine tool in order to produce high precision and good surface finish products. In the 

manufacturing industry, accuracy is defined as the degree of conformance of a finished 

part with the required dimensional and geometrical accuracy [9]. Error in this context is 

described as the position deviation of the cutting edge from the theoretical value to the 

desired tolerance of the workpiece [10]. However, the minimum error that can exist in a 

system is only depends on the system’s resolution. Furthermore, a more important factor than 

the system resolution is relied on accuracy of the sensor that is used to measures the actual 

point [11]. Hence, one of the suggested methods to keep track of machine error is to 

formulate an error budget which allocate and predict the error source of a machine [12].  

There are two fundamental categories of machine errors: quasi-static and dynamic 

errors [10]. Quasi-static errors involve errors generated by wears and misalignment of the 

tool and workpiece which gradually changes with time [10]. Geometric errors, kinematic 

errors, and thermal errors are the most commonly known quasi-static errors. These errors 

may not be sensed by independent axis encoders as the axes are subject to the same error, 

causing the workpiece to be inaccurate. Dynamic errors are mainly related to the error  

generated due to the operating condition and the configuration of the machine tools, such 

as vibration of the machine structure due to improper setting of the spindle rate or 

feedrate of the machine [10]. 
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Figure 2-6: Error budget [10]. Machine errors of a machine tool and the factor affecting it  

 

2.3.1 Geometric Error  

Geometric error is the error associated with the misalignment of a machine 

component such as the straightness and flatness of a machine axis, e.g. the straightness 

and angular error of the X axis with respect to the X, Y and Z direction, as shown in 

Figure 2-7 [13]. In a typical 3-axis Cartesian machine such as a milling machine, the tool 

coordinates are directly obtained from the readings from each of the X, Y, and Z axis’s 

position sensor. However in the actual machine, each of these axes is not perfectly 

accurate; they pose six components of small positioning errors on each axis as shown in 

Figure 2-7 [13]. Thus, for a three axis CNC machine, there are eighteen small 

geometrical errors. 
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Figure 2-7: Geometrical and kinematics error. This diagram shows the associated geometric and kinematic error of 
the X-axis of a three axis machine 

 
 

Table 2-1: Nomenclatures of the geometric error shown in Figure 2-7 

Variables Definition Types of error 

dxX • Straightness error of X axis with respect to X axis • Geometric error 
dxY • Straightness error of X axis with respect to Y axis • Geometric error 
dxZ • Straightness error of X axis with respect to Z axis • Geometric error 
dxA • Angular error of X axis with respect to X axis • Geometric error 
dxB • Angular error of X axis with respect to Y axis • Geometric error 
dxC • Angular error of X axis with respect to Z axis • Geometric error 
Sxy • Squareness error between X- and Y- axis • Kinematic error 
Sxz • Squareness error between X- and Z- axis • Kinematic error 
Syz • Squareness error between Y- and Z- axis • Kinematic error 
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2.3.2 Kinematic Error 

Kinematic error is related to the motion error when the two or more axes are used 

to position the desired planar or spatial location, e.g., squareness errors, SXY, SXZ and SYZ 

shown in Figure 2-7 [13]. Kinematic error is also highly affected by the geometric error. 

In the as-built machine, the axes directions will not be perfectly orthogonal and cause 

squareness errors between the coupled axes. Some of these errors are caused by backlash 

error, machine deflection error and assembly flaws [13, 14]. 

2.3.3 Thermal Error 

Besides the geometric and kinematic errors, thermal error is also one of the main 

factors for machine tool accuracy [15, 16]. The continuous operation of machines during 

the manufacturing process generates heat which can causes expansion on various 

machine tool components. The machine structures’ expansion causes the machine 

positioning system to be inaccurate. There are six major known thermal sources within 

the machine tool: 1) cutting process heat, 2) heat generated by the machine, 3) machine’s 

cooling system, 4) work cell’s temperature, 5) heat generated by operator and people 

around the machine, 6) thermal memory of the previous environment [16].  

There are two types of thermal errors: 1) position independent thermal error and 

2) position dependent thermal error [15, 17]. The position independent thermal error is 

related to the thermal expansion of the static structure such as the beds, and columns of 

the machine structure, that are mainly caused the by the surroundings temperature. The 
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position dependent thermal error is the error which occurs on the travel axis of the 

machine in which the thermal error changes as a function of axis position and 

temperature [14, 18]. As an example of position dependent thermal error, Figure 2-8 

presents the thermographic snapshot of a moving ball screw during a multipass milling 

operation at a mean feed rate of 10 m/min over 20 minutes[19]. Based on the captured 

snapshot, it can be seen that there was a significant and heterogeneous temperature 

changes along the ballscrew ranging from approximately 28 oC to 50 oC  [19]. In addition, 

it can also be observed that the temperature increment was only located at one significant 

portion of the ballscrew, which is the path where the machine travels most frequent. 

 

 
Figure 2-8: Thermal expansion of moving ball screw. The temperature of the ballscrew with respect to its absolute 
location during a  multipasses milling process at a mean feedrate of 10 m/min within 20 minutes [19]  
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A) Thermal drift 

 
B) No thermal drift 

Figure 2-9: Parts comparison due to the effect of thermal drift. The two parts are presented which were 
manufactured before and after thermal stabilization of the CNC, the machined part shown in A) has an error of 44 µm 
and is mainly due to the thermal expansion of the machine structure [19]  

 

The impact of thermal expansion is unfavorable to machining processes. As seen 

at Figure 2-9, the contour of the thermal affected workpiece in Figure 2-9A deviated by 

44µm from the non-affected workpiece in Figure 2-9B. Consequently, the tool point 

coordinates estimated from the axis positions and nominal kinematic model will be 

slightly incorrect due to the expansion of the axes and the impact of the thermal 

expansion. 

2.3.4 Cutting Force Induced Error  

Although much research has been performed on the compensating error caused by 

geometric, kinematic and thermal sources, not much has been carried out in 

compensating the error caused by the cutting force [10]. During the machining process 

for hardened steel, the part is commonly machined to its final form. This type of 

machining process operates at a very high cutting force in which the amount of force 

acting on the workpiece need to be taken into consideration [20]. Due to the high cutting 
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force used during the machining process, deformation of the workpiece and tool can 

happen and affects the workpiece geometry accuracy. 

2.3.5 Fixture Error  

The fixture-tool workpiece system is also one of the most important factors to 

ensure the overall accuracy of the workpiece. During a machining operation, a fixture is 

used to position and hold the workpiece from moving due to the excessive force acting on 

it. Hence, the accuracy of the machine workpiece is depending on the sturdiness of the 

fixture to restrain the workpiece from moving during the machining process [21]. 

Workpiece displacement can be caused by inadequate clamping force of the fixture, 

which also can generate the geometric error of the workpiece. Studies also show that the 

workpiece displacement can be affected by the clamping sequence, clamp’s geometry  

and location [22]. 

 

2.4 Error Compensation 

During the machining operation, the cutting motion and thermal condition of the 

machine tools varies with time, making the error source also changes with time [10]. The 

time-varying factor of the error is one of the barriers to accurately track and compensate 

the machine error, leading to machine inaccuracy [23]. There are two alternatives to 

improve the accuracy of the CNC machine: 1) error avoidance and 2) error compensation 

[14]. The error avoidance method is to build a machine that is mechanically accurate in 
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term of all the structures of the machine [10, 24, 25]. However, this method is expensive 

owing to the use of high-precision components to build the machine, and operation in a 

temperature-controlled environment in order for the accuracy to be maintained. In 

addition, it is impossible to build a machine that is error free. 

On the other hand, error compensation is a more commonly used method that is in 

the industry to calibrate the machine while improving the machine’s accuracy. The goal 

of error compensation is to first analyze and inspect the error source of the machine and 

then correct the measured error using suitable algorithms based on the types of machine 

error sources [14]. However, machine accuracy can be affected not only by a single error 

source, but by the combination of various error sources mentioned above. As a result, all 

the existing machine tool errors have to be taken into consideration when designing the 

error compensation algorithms.  

There are two categories: “pre-calibrated error compensation” and “active error 

compensation [14].” Pre-calibrated error compensation also termed offline error 

compensation, is a method to calibrate the machine tool when the machine is not in 

operation, either before or after the operation. However, the machining process and 

measurement has to be repeatable for this algorithm to accurately compensate the error. 

On the other hand, the active error compensation method is used to correct the measured 

error during the machine operation [26]. The benefit of this method is that the 

workpiece’s accuracy can be improved by implementing the error compensation 
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algorithms on the machines, which is why this method is attractive to the industry. In 

addition, active error compensation method not only enhance the machine accuracy but 

also has justified installation and calibration cost [14]. Another alternative is to compensate 

the error in real time during the machining processes by observing the interaction between 

ranges of error components within the machining processes, termed real-time error 

compensation or active error compensation [27]. There are two basic real-time error 

compensation approaches: parametric error measurement approach and master part 

tracking approach [14]. 

2.4.1 Parametric Error Measurement  

The parametric error measurement approach consists of three major areas of 

activity: 1) Error identification and modeling, 2) Error mapping and 3) Error 

compensation via add-on control algorithms [10]. 

2.4.1.1 Error Identification and Modeling  

There are five commonly known error identification methods used: 1) error 

synthesis, 2) grid calibration, 3) design artifact, 4) metrology frame, and 5) finite element 

[10]. Only the error synthesis model, in which the method acquires the total error in terms 

of individual error components, and then provide the compensation scheme to 

compensate the quasi-static error [28]. It is also known that the empirical modeling 

approaches: the regression analysis and feedforward using neural-network could be used 

to perform error mapping. Due to this model-based approach, the error synthesis 
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modeling is sensitive to the location of the sensor and also requires more time to perform 

data acquisition and data training in order to formulate a good machine tool model [10].  

2.4.1.2 Error Mapping and Compensation 

Error mapping is used to quantify each error source of the machine. The laser 

interferometer as shown in Figure 2-10 is the more precise and commonly used method to 

measure most error components on a CNC or a CMM machine, such as the straightness, 

flatness and squareness of the axes. When the error map of the axis is obtained, the 

measured error will be inverted so that the error of each absolute position can be 

corrected though the pitch compensation algorithm of CNC controller as shown in Figure 

2-11.  

However, the laser interferometer is not able to measure the rotating component’s 

position, such as the machine spindle; only the non-contact capacitance sensor can be 

used to quantify the spindle errors [28]. Although the laser interferometer can also be 

used to measure the position error cause by the thermal expansion of the machine, the 

measurements of the affected area is not going to be repeatable due to the non-linearity of 

the thermal source. Thus, laser interferometer is not suitable to be used to calibrate the 

thermally induced error on a machine. In general, a mathematical model is needed to 

provide the relationship between thermal displacement and temperature [9]. 



22 

 

 
Figure 2-10: Laser Interferometer [29]. Configuration of a laser interferometer to perform error mapping on a 
machine  

 

 
Figure 2-11: Overview of error mapping and compensation process: The solid line represents the mapped error 
from the laser interferometer of each absolute position along a ballscrew and the broken line represents the 
compensated value generated by the error compensation software to compensate the error of each position so that the 
error can be cancelled off 

 

2.4.2 Master Path Tracking 

The master path tracking method requires the machine tool point to track the 

master component such as a ball-bar [10]. This method is mainly targeted to measure the 

volumetric error of the machine [26]. The tracing error of the workpiece can be measured 

using both the laser interferometer and the Coordinate Measuring Machine (CMM) and 

then be compensated using real time error compensation algorithms mentioned earlier to 
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correct the motion’s discrepancy of the machine’s structures [30]. However, measurement 

criteria such as: 1) repeatable machining process, 2) lower spatial rate of change, and 3) 

reasonable cost to compensate the machine error, need to be met in order for the master path 

tracking method to be used effectively [30].  

2.4.3 Geometric Error Compensation 

70 percent of the machine errors are composed of geometric and kinematic error 

[16]. Much research has been performed to mitigate machine errors and improve the 

accuracy of the machine tool, as well as the CMM that uses the same type of position 

control system [17, 28, 31-36] .Weekers performed research in software error 

compensation for dynamic error of the CMM [37]. His approach uses two sets of 

additional inductive sensors to monitor carriage motion errors. Although the result of the 

approach is able to improve the machine accuracy, experiments were performed based on 

an one axis architecture and has not being applied to multiple axes [37]. Mu’s approach 

to CMM compensation, which used a software data fitting method could also only 

partially compensate for dynamic errors [38]. Donmez first proposed a system to 

intercept the encoder feedback signals by a computer software compensation [32]. The 

proposed algorithm used the measured quadrature signals to compute the volumetric error 

of the machine, and then compensates the position error in real time, which does not 

required extra modification to the CNC controller software and it can be integrated to any 

CNC machines [32]. 
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In 2000, Wang and Janeczko designed a new type volumetric positioning errors 

measurement method that is capable to compute the linear displacement errors and 

straightness errors concurrently, instead of using laser interferometer [39]. However in 

2003, Chapman emphasized that Wang’s method still consist of some vector’s constraints 

or sequential diagonal methods [40]. Furthermore, in 2006 Svoboda had shown that the 

magnitude of the linear displacement error of Wang’s method is big after performing 

multiple experiments and test [41]. 

2.4.4 Thermal Error Compensation 

There are many thermal sources that influence the machines structures: 1) cutting 

process, 2) cooling system, 3) operating environment, and 4) machine energy loss [16]. 

Thus, thermally-induced machine error is categorized as the most difficult machine error 

source for researchers to compensate [42]. Thermal error avoidance research such as 

repositioning the heat source, and using different types of material to build stiffer 

structures to minimize expansion  were performed but these methods are expensive and 

still unable to greatly eliminate the thermal expansion error [5]. 

Although thermal error compensation is difficult, much research has been carried 

out to help to minimize this error. Most of the compensation methods utilize artificial 

intelligence and a model-based approach to predict the thermally-induced errors [15]. For 

instance, different types of neural network were used to perform thermal error modeling 

[43], including Cerebellar Model Articulation Controller (CMAC) neural network [44], 
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fuzzy ARTMAP neural network [45]. Srinivasa and Ziegert approached thermal error 

compensation using artificial neural networks coupled with a rapid machine measurement 

scheme [45]. Even with this approach, characterization of the thermal behavior of the 

machine required several days for data collection. Although the thermally-induced error 

was improved with this method, accuracy of the overall machine was degraded slightly 

while at constant temperature [46].  

In 1995, Chen and Chiou compared the thermal error modeling effects by using 

multiple regression analysis and artificial neural network [47]. In 2003, Ramesh utilized 

the Bayesian network and support vector machine model to perform error mapping 

during the machining operation based on the machine tool temperature profile [48]. At 

the same year, Yang and Ni also developed a new type of thermal error mapping model, 

termed Output error model that can predict the thermal error based on the time series of 

the operating temperature inputs and the thermal deformation outputs [49]. Although the 

output error model approach can formulate an accurate thermal error model, it is also 

heavily depends on the training condition, and parameter tuning of the compensation 

algorithms used. Yet, the thermal error is still unable to be eliminated [44].  

2.4.5 Drawbacks of the Current Positioning System  

Based on the up-to-date error compensation algorithms, the actual toolpoint 

position of the system is still unable to be tracked accurately. In addition, nearly all the 

methods are still relying on the kinematic model of the machine. For a conventional 
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positioning system, the machine error impact on machines can be further illustrated as 

shown in Figure 2-12A where the nominal machine kinematic model assumes perfectly 

straight axes and exact squareness between the two axes. However, the as-built machines 

guideways for both the X and Y direction are not perfectly flat and straight. Therefore, 

when one wishes to position the tool at some arbitrary spatial coordinate, the commands 

to the individual axes are obtained using the nominal kinematic model [4]. 

Typically, the position setpoints of each axis of the XY table are pre-generated by 

the Computer Aided Manufacturing (CAM) software before deploying the parts program 

in the CNC machine’s controller. During the operation, the controller will actuate the 

servo motors based on the generated position setpoints and also to ensure that the position 

error between the desired setpoints and measured position is minimal. The XY table’s 

planar positions are estimated using the kinematic model based on the measured position 

of the position sensors of the X and Y axis as shown in Figure 2-12B. Based on the block 

diagram shown in Figure 2-12B, it can be seen that the individual position feedback of 

each axis can be accurate with the use of the linear glass scale, but the “As-built” 

geometrical error such as squareness error cannot be detected via these sensors. Thus, the 

imperfection in the nominal kinematic model lies outside the feedback loop, and so 

cannot be detected or corrected in real time [4].  

 



 

Figure 2-12: CNC controller block diagram:

actual planar position of the table due to the
CNC controller architecture in which the error feedback lies within feedback loop of each motor.
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(A) 
 

 
(B) 

 
: CNC controller block diagram: A) shows the schematic of a XY table which unable to estimate the 

actual planar position of the table due to the usage of the kinematic model, B) shows the block diagram of the current 
in which the error feedback lies within feedback loop of each motor. 

 

 

) shows the schematic of a XY table which unable to estimate the 
) shows the block diagram of the current 
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CHAPTER THREE 

3 SYSTEM DESIGN AND CHALLENGES 

 

 

This chapter introduces a new type of positioning sensing system that can actively 

monitor the actual position of a XY table without the dependency of the kinematic model, 

termed “Direct Position Sensing”. First, the concept and system design of the system is 

introduced. Then, the associated research challenges of the design are given. 

 

3.1 Direct Position Sensing Method  

The Direct Position Sensing provides a two-dimensional position sensor to 

directly monitor planar tool position. To prove the concept of Direct Position Sensing, a 

prototype to directly monitor the two dimensional planar position was developed using a 

digital camera and a flat panel display (e.g. Liquid Crystal Display-LCD). The goal of the 

system is to drive each X- and Y- axis of the system from its current location (Black star 

in Figure 3-1A) toward the desired location displayed on the LCD. (Black “X” in Figure 

3-1A). 
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(A) 

 

 (B) 

Figure 3-1: Direct Position Sensing system: A) shows the schematic of Direct Position Sensing where the actual 
toolpoint is sensed via vision sensor instead of conventional position sensor, B) shows the new control scheme where 
the machine error is located outside the as-built machine, allowing the machine error to be compensated 

 

The error vector of the tool point is measured using the computer vision system 

and is then decomposed into individual axis position errors to be fed back to the motion 

controller in order to drive the tool towards the correct position. The motion controller 

obtains the feedback position from the image processing algorithm that actively monitors 

the displacement changes of the dynamic display target rather than through the feedback 
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from the kinematic model that is obtained using the position sensors from each axis, as 

shown in Figure 2-12A. Thus, the travel path of the XY table will not be affected by the 

geometrical error and thermal expansion on the two axes used for X and Y direction [4].  

Unlike the conventional system where the feedback loop is located in the servo 

drives as seen in Figure 3-1B, Direct Position Sensing’s feedback loop is located outside 

servo loop, permitting the machine error to be included into the control loop. Therefore, 

Direct Position Sensing will take account of machine error directly to control of the 

desired path regardless of the machine error that occurs in the machine. 

 

3.2 System Design 

In order to show the proof of concept, the Direct Position Sensing prototype was 

built where the LCD screen that is used to display the active array target is positioned on 

top of the XY table and a digital camera is mounted below the XY table as shown in 

Figure 3-2. Figure 3-3 shows the location of the digital camera at the center of the table. 

This prototype system uses a National Instrument’s CompactRIO real time controller and 

two brushed motor drive modules for motion control purposes. Meanwhile, an IEEE-

1394 firewire camera and a National Instrument’s Compact Vision System were used for 

image acquisition and image processing respectively [4]. 

 



 

Figure 3-2: Direct Position Sensing’s p

LCD screen is located on top of a XY table for target display and tracking purposes

 

Figure 3-3: Camera location of the prototype.

display target on the LCD screen 

 

3.3 Research Challenges 

The Direct Position Sensing

system and motion control system. 

the system integration of the motion controller with the computer vision system. The 

of system integration is to create a robust coupling of subsystems so that they do not have 

adverse effects on one another. Each system must be design
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’s prototype. The prototype configuration of Direct Position Sensing where the 
LCD screen is located on top of a XY table for target display and tracking purposes 

 
cation of the prototype. The digital camera is located at the center of the table

 

Direct Position Sensing consists of two main subsystems: image

system. The main research of this dissertation concentrates on 

system integration of the motion controller with the computer vision system. The 

create a robust coupling of subsystems so that they do not have 

adverse effects on one another. Each system must be designed with the effect on 

 
type configuration of Direct Position Sensing where the 

the center of the table to track the 

subsystems: image processing 

concentrates on 

system integration of the motion controller with the computer vision system. The goal 

create a robust coupling of subsystems so that they do not have 

ed with the effect on 
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operation of coupled systems in mind so that Direct Positing Sensing via vision sensor 

can be achieved. There are three subsystems: 

1. dynamic path planning which generates the motion controller setpoints for display 

on the LCD,  

2. vision sensor that calculates the position error based on the current position and the 

displayed target position, 

3. motion controller which drives each axis to the displayed location based on the 

position error obtained by the vision system.  

Unlike a conventional motion controller that uses a rotary encoder or a linear 

glass scale which has high feedback frequency ranging from 10kHz to 100kHz [19], the 

vision sensor has slower feedback frequency approximately in the range of 2 to 10Hz, 

while the motion controller’s loop rates ranges from 500Hz to 1kHz. The slower 

feedback in the motion controller’s feedback loop leads to an intermittent feedback, in 

which the motion controller only obtains the actual feedback from the vision sensor in a 

fixed period of time instead of continuously. In addition, it is assumed that it takes τ 

milliseconds for the image processing algorithm to output the calculated position at each 

iteration, the intermittent feedback signal to the motion controller is also time-delayed. 

The resultant time delay, τ in the intermittent feedback of the Direct Position Sensing as 

illustrated in Figure 3-4 is detrimental to the path tracking performance of the system. 

This kind of feedback is unacceptable in the motion control discipline as the traditionally-
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controlled system response will become sluggish and oscillatory. While the control loop 

rate can be reduced to match the image processing algorithm’s frequency, the response of 

the proposed positioning system will be unacceptably slow.  

 

 
Figure 3-4: The comparison of feedback scenario. From top, continuous signal, intermittent feedback, delayed 
feedback and delay and intermittent feedback  

 

3.4 Research Objectives and Questions 

This dissertation presents the solutions to mitigate the above mentioned 

challenges. There are two main objectives of this research. The first objective is to 

establish a fundamental understanding of the effect and impact of the time delay and 

intermittent feedback to the path tracking performance of Direct Position Sensing. This 

goal gives rise to the following research questions:  
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3.4.1 Research Questions A (Time Delay and Intermittent System Behavior) 

A 1.  What are the detrimental effects of the time delay and intermittent 

feedback to the proposed system? 

A 2.  What are the approaches that can be used to mitigate the impact of the 

time delay and intermittent feedback?  

A 3.  What are the tradeoffs between the delay and intermittent period as 

compared with the resolution of the vision sensor?  

The second objective is to develop system integration solutions to integrate the 

motion controller and computer vision system with the available information from the 

controller and sensor. The following research questions are studied: 

3.4.2 Research Questions B (System Integration Challenges) 

B 1.  What are the available known data that can be obtained by the motion 

controller during the operation? 

B 2.  Can a model-based approach be effectively used in the control architecture 

to predict the path of the actual system? If yes, how accurate can the 

model be made, and what are the tradeoffs between model accuracy and 

system controllability? 

B 3.  What are the modelings approaches to estimate the plant model so that 

modeling discrepancy can be minimized? 
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CHAPTER FOUR 

4 MODEL BASED CONTROLLER 

 

 

This chapter presents the literature and background related to model-based 

approaches to improve the performance of the system that has time delay and intermittent 

feedback.  

 

4.1 Model-Based Control  

Model-Based Control (MBC) architecture in this context describes a control 

system that explicitly uses a plant model in the control algorithm [50]. Figure 4-1 shows 

the generic MBC architecture where the model is used to predict the process output, and 

the disturbance estimation block is used to adjust and update the estimated disturbance so 

that the predicted outcome is closer to the actual measurements. The concept of MBC 

started in the 1970s primarily in the process industry where the process model was use to 

predict the future system behavior, so that the controller could generate a set of optimal 

control actions based on the given process constraints [50].  
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Figure 4-1: Generic Model-Based Control strategy [50]. A model is used to predict the process output, and the 
disturbance estimation block is used to adjust and update the estimated 

 

The accuracy of the plant model is critical in MBC where the performance and 

stability of the controller is heavily relying on the model’s predictive capability. 

Typically, the plant model is obtained using a system identification process. The MBC 

procedure is carried out as follows:  

1. formulate the plant model of the system using system identification process, 

2. validate the plant model together with the actual plant via open loop stimulus 

signal, 

3. tune the controller using the model in simulation,  

4. analyze the performance of the controller based on the design requirement such as 

percentage of overshoot, rise time, steady state error , and the root mean square of 

the tracking error,  

5. fine tune the controller in the real time system.  
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Figure 4-2: Model-Based Control. Overview of the MBC design from system identification till the deployment of the 
model to the controller 

 

The selection of an MBC approach in this research is mainly due to the existence 

of intermittent feedback and time delay in the feedback loop of the system. Intermittent 

feedback in this context is defined as the period when there are no feedback signals 

provided by the sensor back to the controller due to the slow sampling time of the sensor. 

Therefore, the plant model of Direct Position System is used to serve as the path predictor 

to provide the controller the system output during the intermittent period until the next 

available actual vision feedback is generated by the image processing algorithm.  
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4.2 System Modeling  

To address the first step for model based controller design, system modeling for 

the plant used in the proposed system was performed. First the theoretical modeling of 

the plant model was carried out to estimate the order of the model, and then system 

identification process was performed to obtain the plant model of the actual system.  

4.2.1 Theoretical Modeling 

Two servo motors are used in this positioning system, where each motor is 

coupled to a lead screw of one of the axis of the XY table. Figure 4-3 shows the 

schematic of the simple servo motor that is modeled in using electric circuit consisting of 

resistance, R representing the resistance within the electric circuits, inductance, L 

representing the inductance within the armature windings and back-electromotive force 

or back-emf, eb [7]. Based on Kirchhoff’s voltage law, the equation of the electrical 

circuit can be written as Eq. (4.1). 

 

 
Figure 4-3: DC Motor model [7]. Theoretical modeling for a basic servo motor 
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 b

di
V R i L e

dt
= ⋅ + +  (4.1) 

 b BEMF BEMF

d
e K K

dt

θ
ω= =  (4.2) 

 

The back-emf of the system is proportional to the angular velocity, ω of the motor 

and can be expressed as Eq. (4.2) and the back-emf constant, KBEMF is used to convert the 

rotational rate to voltage. The current of the circuit, i is proportional to the applied torque, 

and the torque constant, Kmotor. The relationship between the current and the torque is 

formulated as Eq.(4.3) and the summation of torque of the motor is shown in Eq.(4.4) 

where b is the viscous damping coefficient representing the mechanical loss and J 

represents the moment of inertia of the entire rotating system, including the machine 

rotor, load, coupling and shaft [7]. 
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 (4.6) 

 

By solving for the input current i of Eq. (4.1) and (4.4) using Laplace Transform 

with zero initial condition, the transfer function of the angular velocity over the input 

voltage can be obtained, as shown in Eq.(4.5). In addition, the angular position over input 

voltage’s transfer function shown in Eq. (4.6) is formulated by integrating Eq.(4.5). 

Based on the theoretical derivation shown, the plant model can be formulated as a third 

order model if the output is to be the position over voltage relationship. However, the 

model can be further reduced to a second order model if the inductance of the motor is 

small and negligible [7]. 

4.2.2 System Identification  

Once the model order of the plant is derived via theoretical modeling, it can serve 

as a guideline to perform system identification. System identification is a process to 

construct a model of an actual plant using an estimation algorithm based on the measured 

data of input and output signal to the plant to be characterized. In brief, Figure 4-4 shows 

the flow chart of the system identification process where data acquisition of the required 

data of the servo motor will first be initiated. Then, system identification will estimate the 

plant model based on the recorded input and output of the plant. After that, validation 

based on the error between the output response of the predicted model and the measured 
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output is performed and the model is refined until this error falls below a user-defined 

threshold. 

 

 
Figure 4-4: System identification procedure. The input and output of the plant are used to estimate the plant model 
by the model estimation algorithm, and the selection of the model is based on residual analysis of the process and also 
the max acceptable model error, ε 

 

Traditionally system identification has been an estimation process of a dynamic 

system based on historical measured data, and can be categorized into parametric and 

non-parametric methods. Although the non-parametric model estimation method is a 

more simple method, the estimated model of the system is not as accurate as the 

parametric model [51]. Most non-parametric estimated models was mainly used prior to 
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the 1960’s to estimated the system response based on the impulse response and frequency 

response of the system in time domain [51-53]. As a result, the non-parametric estimation 

can only provide partial information to the controller designer such as the stability and 

time constants of the system but not the model parameters coefficients, which is 

important in creating model to be used in MBC. On the other hand, the parametric 

method uses mainly curve-fitting algorithm to predict the model parameters to a pre-

selected model, that will be discussed later, based on the measured input and output of a 

system identification process [51]. The parametric model is formulated in the form of 

differential equations in both continuous and discrete model that can also be converted to 

transfer function or state space form depending on the user preference and also system 

requirement. Generally, the parametric model is represented in a general-linear 

polynomial form as shown in Eq.(4.7) [51]. 

 

 1 1( ) ( , ) ( ) ( , ) ( )n
y k z G z u k H z e kθ θ− − −= +  (4.7) 
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u(k) and y(k) are the input and output of the system respectively, e(k) corresponds 

to the system’s disturbance, G(z
-1

,θ) is the deterministic part of the system, H(z
-1

,θ) 

represents the stochastic part of the system, z
-1 is the backward shift operator in the 

discrete domain and θ is the set of model parameters [51]. Eq. (4.10), (4.11), (4.12), 

(4.13) and (4.14) shows the representation of A(z) , B(z), C(z) , D(z) and F(z) respectively 

that are used in the general-linear polynomial form. The deterministic part of the system 

represents the relationship between the output and input signal whereas the stochastic part 

represents the unpredictable disturbance that affects the output signal [51].  

 

 1 2
1 2( ) 1 ... ka

kaA z a z a z a z
− − −= + + + +  (4.10) 

 1 2 ( 1)
0 1 2 1( ) ... kb

kbB z b b z b z b z
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 1 2
1 2( ) 1 ... kc

kcC z c z c z c z
− − −= + + + +  (4.12) 

 1 2
1 2( ) 1 ... kd

kdD z d z d z d z
− − −= + + + +  (4.13) 

 1 2
1 2( ) 1 ... kf

kfF z f z f z f z
− − −= + + + +  (4.14) 

 

ka, kb, kc, kd and kf are the model orders. Eq. (4.15) shows the general 

representation of a general-linear polynomial model; the block diagram of the model is 

shown in Figure 4-5. 
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Figure 4-5: General-linear polynomial model’s block diagram [51] Allow user to select the types of model to be 
used in the system identification process 

 

 
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

n
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−
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The used of general-linear polynomial model, allows controller designer to have 

the options to set one or more of A(z), C(z),D(z) and F(z) to 1 for both system dynamics 

and stochastic dynamic. There are four commonly-used configurations used in real world 

applications: autoregressive with exogenous terms (ARX), autoregressive-moving 

average with exogenous terms (ARMAX), output error and box-jenkins. A summary of 

these four types of general linear polynomial model methods is shown in Table 4-1. 
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Table 4-1: Types of parametric models algorithms [51] 

Model type Criteria that set to 

1 

Summary 

ARX C(z), D(z) and F(z) The model includes the stochastic dynamics and 
is useful when disturbances enter the process 
early. The stochastic and dynamic system share 
the same poles. 

ARMAX D(z) and F(z) The model includes the stochastic dynamics and 
is useful when disturbances enter the process 
early and have more flexibility than ARX in 
handling models that contain disturbances. 

Output 
Error 

A(z), C(z), and D(z)  The model describes the system dynamics 
separately from the stochastic dynamics. 

Box Jenkins A(z) This model represents the disturbances properties 
separately from the system dynamics. It is useful 
when disturbance enters late in the process. 

 

For instance in the case of ARX, the system identification algorithm will need to 

fit the parameters to the data criterion so that the prediction error of the Least-square 

method, Vn(θ) shown in Eq. (4.16) can be minimized. N is equal to the amount of 

measured data, y(t) is the measured data and ( )y t
⌢

represents the predicted output of the 

model, that is a scalar of the known data vector, φ and parameter vector, θ [51]. The 

Least-square solution is formulated as in Eq.(4.18) [50]. 
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1
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 1( )T T
yθ φ φ φ−=  (4.18) 

 

According to the ARX model criteria, the gain of C(z), D(z) and F(z) are 

configured to 1, generating a general-linear polynomial model in the form shown in 

Eq.(4.19) and the parameter vector and data vectors of the model are shown in Eq. (4.20) 

and (4.21) respectively. 

 

 ( ) ( ) ( ) ( ) ( )A z y k B z u k e k= +  (4.19) 

 ( ) [ ( 1)... ( ) ( 1)... ( )]
a a

t y t y t n u t u t nϕ = − − − − − −  (4.20) 

 1 2 1[ .... .... ]T

ARX na nba a a b bθ =  (4.21) 

 

Depending on the types of model that the controller designer chooses to formulate 

the model, the estimated model parameters will not be identical and can varies immensely 

depending on the selected model types. In order to select a better model to be used in the 

system, model validation needs to be carried out to quantify the goodness of the model. 

4.2.3 Model Selection and Validation  

The actual system can be represented by different models. As mentioned in the 

previous section, there are many system identification estimation methods used in 
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formulating the model and each type of model representation has its own pro and cons. 

Although these estimation methods can help to formulate the best model of the system, 

the model might not be able to represent the actual system accurately [51]. Even with a 

higher order model, a mathematical model will not have a perfect representation of an 

actual plant of a system but if the selected model can have close estimation of the actual 

plant, then the model is considered “good enough” to be used [51]. In addition, most 

process change with time, which restrict the obtained plant model to be able to accurately 

represent the process during the operation.  Instead of trying to perform multiple system 

identification processes to obtain the most accurate model for the actual plant, it is 

suggested to design a control system or disturbance estimation algorithm to compensate 

the model uncertainties effectively [51].  

Model validation needs to be performed to select a heuristic model that best fit the 

actual system; this should be performed in both software and hardware experiments [8]. 

After the model is built, model simulation can be performed by using the same stimulus 

input signal so that the residual of the model can be obtained. Residuals in this context is 

described as the difference between the measured output, y(k) and the predicted output of 

the model, y’(k) as shown in Eq. (4.22) [51].  

 

 ( ) ( ) '( )e k y k y k= −  (4.22) 
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Residual analysis can be performed in the hardware validation. Once the model is 

validated in simulation, it will be programmed in the control algorithm of the prototype 

so that the model is running parallel with the actual plant. Therefore, same input signal 

will be fed to both the actual plant and model, and the residual analysis can be carried out 

based on the captured outputs from both the plant and model. Once the model is 

finalized, then it is ready to be used in MBC.  

 

4.3 Smith Predictor  

One of the MBC algorithms used in this research is the Smith Predictor. In 1957, 

O. J. M Smith presented a control algorithm using a plant model running parallel with the 

actual plant shown in Figure 4-6 to improve the system that has a long time delay, with 

the base design becoming known as the Smith Predictor. This structure is shown in 

Figure 4-6, and has a mathematical plant model, Ge(s) that is created parallel to the actual 

plant Ge0(s) in the system. The objective of the mathematical plant model is to serve as a 

predictor for the actual model when time delays occur [54]. The prediction error, dy is 

used to correct the system response when the actual feedback is obtained after the time 

delay.  Table 4-2 shows the nomenclature of the block diagram.  
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Figure 4-6: Smith Predictor block diagram: The inner loop consists of the system model to predict the actual 
system’s output. The model is delayed by a time step D representing the actual time delay of the system. The residual is 
added to the model prediction to compensate the predicted value for feedback. 

 

Table 4-2: Nomenclature for Smith Predictor block diagram 

C(s) Controller 
Geo(s) Actual Plant 
Geo(s) Mathematical Model 
e

-Ds Time Delay Block 
Yd Desired Setpoints 
e Setpoints Error 
u Control Input 
Ya Plant Response 
Yp Mathematical Model Response 
Y1 Delayed Mathematical Model Response 
dy Error Between Actual And Mathematical Model 
Yp

’ Response Feedback 
 

Initial implementations were mainly undertaken in the process control sector (e.g., 

chemical plants, petrochemical refinery). However, the Smith Predictor structure has 

been widely used in many applications such as the communication, and motion control 

sectors. Although the theoretical analyses of the Smith Predictor form shows that it can 

effectively mitigate time delay in closed loop control, there are still some imperfections 
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to be taken into consideration especially in dealing with disturbance rejection. Thus, 

many modified versions of Smith Predictor have been created to meet the requirement of 

the related applications.  

4.3.1 Literature of Modified Smith Predictor  

The original Smith Predictor architecture will have a steady state error if the time 

delay of the process is unknown or varying. Consequently, Watanabe and Ito had 

proposed a Modified Smith Predictor to reduce the steady state error by incorporating an 

integral function in the plant model to stabilize the plant [55]. However, analysis and 

experiments done by Åström had show that the Watanabe’s design has slow setpoints 

response and the disturbance rejection response is tends to be oscillating. [56]. Åström on 

the other hand had proposed an approach to enhance Watanabe’s design. Åström’s 

approach is to decouple the disturbance or load response from the setpoints response so 

that both of these responses can be solved individually. Although the setpoints tracking of 

the new design is faster, the tuning of the controller is more complicated [56, 57]. Then, 

Matausek and Micic performed research to further improve the Åström’s Modified Smith 

Predictor by having an additional controller in the Smith Predictor Inner loop to reduce 

the disturbance of decoupled load response of the system. [57]. Moreover, the Matausek 

and Micic’s Modified Smith predictor was proven to have better system response and 

path tracking performance as compare to the Åström’s Modified Smith Predictor 

architecture based on the simulation results done by Tian and Gao [58].  
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4.4 Adaptation of Smith Predictor in the Visual Servo-ing Applications 

One of the applications that Smith Predictor is often being implemented is in the 

visual-servoing application. Visual servoing is also known as vision-based robot control 

where the feedback from a vision sensor is used to perform closed loop control of a 

system such as robots, and unmanned vehicle. 

4.4.1 Overview of Visual Servo-ing 

Most factories are equipped with multiple kinds of robots replacing manual labor, 

with the intention to produce high repeatability and accurate products. However, the 

control algorithm of a robot is complicated and has limited position accuracy due to the 

used of the kinematic model of the framework that resist the robot to be controlled 

accurately. At the same time, a lot of companies also realized that in order to improve the 

robot accuracy, more sensors need to be used but the sensors integrations can increase the 

cost and the complexity of the control architecture [59]. This might cause the control 

system to be less robust and stable. Instead of adding more sensors to the robot, computer 

vision is proposed as an alternative solution to improve the position accuracy of the 

robot.  

In the robotics world, computer vision is used to mimic the human eye in most 

applications. Shirai and Inoue have performed earlier research on using a computer vision 

system to not only control the robot end-effectors but to improve the robot accuracy [60]. 

It can also been seen in today’s technology where commercial robot companies such as 
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Kuka , Fanuc, Stäubli, and ABB have integrated computer vision in most of their robot 

models, either in an open loop function or a “Look-and-move” system. Thus, the 

accuracy of the robot is heavily depends on the visual sensor and also on the joint 

position sensor of the robot. Corke  performed a literature search on visual servoing and 

found that there has been a tremendous improvement of the integration of visual servoing 

robotics in multiple industries [61]. In addition, Corke also describes that there are two 

main visual servo-ing architectures: dynamic look-and-move and direct visual-servo as 

shown in Figure 4-7 and Figure 4-8 respectively used in the industry [61, 62].  

 

 
Figure 4-7: Dynamic look and move [63]: Having the computer vision as position enhancer but still relying on the 
joint angle sensors to provide the position of the system to the controller. 

 

 
Figure 4-8: Direct visual-servo [63]. Uses the computer vision as the main feedback of the control system. 

 



53 

 

As seen in the block diagram, the dynamic look-and-move uses both the joint 

angle sensor and the computer vision as the feedback for the system. On the other hand, 

the direct visual-servo eliminates the use of the joint angle sensor and purely relies on the 

vision sensor to provide the feedback to the controller. Hutchingson, and Corke also point 

out that nearly all the visual servoing application adapt to the Dynamic look-and-move 

architecture [59]. This is because the slow feedback sampling rate of the vision sensor 

will cause the controller to be unstable, and also that the controller gain will have to be 

de-tune to much lower gain in order to compensate the time delay that occurs in the 

system. Therefore, with the assistance of the joint angle sensor, the controller can still 

maintain the stability of the system while using the vision sensor to further improve the 

robot’s position accuracy [61]. 

The “Look-and-move” algorithm has been widely adopted by the manufacturing 

industry. Corke and Hutchingson also mentioned that kinematic singularities of the Look-

and-move algorithm is separated from the visual controller, which permits the visual 

control robot becomes an ideal Cartesian motion device to accurately position the end 

effectors of the robot [59]. However, the low sampling rate of the vision sensor in the 

direct visual servo algorithm created a complex and nonlinear control problem for the 

controller designer as the feedback of the system is too slow, resisting a robot to have a 

good system response. Therefore, Corke and Hutchingson emphasized that the internal 

joint position sensor cannot be eliminated from the controller in order to have fast system 

response while maintaining the stability of the robot [61]. 
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4.4.2 Smith Predictor in Visual-servo Application  

For the system that does not require a fast system response, the dynamic look-

and-move architecture is able to maintain stability and provide feedback to the controller 

to move accordingly. However, for a system that requires faster system response such as 

path tracking visual servoing application, there are still some system integration 

challenges specifically related to the image processing time of the vision sensor which is 

also the feedback delay within the system. Feedback delay can cause the system to have 

position error and also potentially create the wind-up situation causing the system to be 

unstable. In order to address such research challenges, the Smith predictor has been 

applied to some of the dynamic look-and-move visual servoing application.  

Sim, Hong and Lim modified the Smith Predictor architecture for a 3D visual 

servoing application in an AdeptOne robotic arm and they added a path predictor, F in 

the original Smith Predictor architecture as presented in Figure 4-9, in which this 

predictor was programmed to predict the future path of the system one unit time step 

ahead. Based on their results, they concluded that their modified version improved the 

path tracking performance of the robot significantly and Figure 4-10 shows the RMS of 

the tracking deviation of a linear motion [64]. 
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Figure 4-9: Multi rate predictor control scheme for Visual Servo[64]. System block diagram of Sim, Hong and Lim 
Modified Smith Predictor 

 

 
Figure 4-10: Results of the multi rate predictor control scheme for visual servo[64]. Results of Sim, Hong and Lim 
Modified Smith Predictor 

 

Xie, Sun, Rong and Yuan applied a Modified Smith Predictor in a 

micromanipulation robot to perform point-to-point motion of their robot where they 

modeled the vision sensor of the system with dual modeling loops as shown in Figure 
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4-11, instead of model the actual plant of the micromanipulator. According to their 

findings, their modified architecture is able to reduce the overshooting of the system that 

is caused by the time delay and also the micromanipulator has better tracking 

performance and disturbance rejection[65]. 

 

 
Figure 4-11: Visual servoing with Modified Smith Predictor [65].  System block diagram of the micromanipulator 

 

Zeng, Huang and Wang implemented a Fuzzy adaptive PID with Modified Smith 

Predictor to a micromanipulation robotic hand and the control block diagram of their 

proposal is shown in Figure 4-12. They were using a Modified Smith Predictor that 

consists of an integrator, M to minimize the steady state error of the system. Then, they 

used a Fuzzy logic algorithm to tune the PID gains of the manipulator controller. [66]. 

They concluded that their Modified Smith Predictor as compare to the single PID 

controller has more robustness and better disturbance rejection of their micro manipulator 

that was running at the feedrate of 1.2 mm/s. 
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Figure 4-12: Fuzzy adaptive PID with Modified Smith Predictor [66]. System block diagram of micromanipulation 
robotic hand 

 

4.5 Summary Remarks 

Although Smith Predictors have been successfully implemented in many visual 

servoing applications, most of these applications are still rely on the primary position 

sensor to stabilize the controller, and the goal of these Modified Smith Predictor(s) is to 

mitigate the time delay of the system only. However, the Direct Position System has one 

more challenge than some of the previous applications that were mentioned in the 

literature: the intermittent feedback. This is because the Direct Position System is not 

relying to the conventional position sensors to provide the feedback but just only the 

vision sensor. Thus, the Modified Smith Predictor that will be discussed in chapter six 

will shows the uniqueness of the Direct Positing System version of Smith Predictor in 

improving the path tracking of the system by creating a prediction algorithm for the 

during the intermittent period to minimized the model residual and also update the 
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control action of the model so that the model output is always close to the plant output to 

have a better prediction of the system. 
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CHAPTER FIVE 

5 ADAPTATION OF SMITH PREDICTOR TO DIRECT POSITION SENSING 

 

 

This chapter presents the procedures and results of the system identification carried 

out to obtain a heuristic plant model for the model-based controller used in both 

simulation and hardware experiments.  

The simulation and hardware validation of the Smith Predictor approaches is 

presented for the cases when the feedback is 1) continuous, 2) delayed, 3) intermittent, 

and 4) combined delayed and intermittent. The objective of the simulation and hardware 

validation is to observe the tracking performance of the Smith Predictor controller of 

each feedback type and quantify the error. Root Mean Square (RMS) error between the 

setpoints of the system and the output of the plant was used as the metric to quantify the 

performance. Error of the adapted system for each case is compared with the baseline 

continuous feedback case. 
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5.1 System Identification  

System identification for the servo motor used in the prototype was performed. 

First, data acquisition to record the input and output of the servo motor was performed. A 

sine sweep signal as shown in Figure 5-1 with amplitude of 20V peak-to-peak was used 

as the stimulus signal for the servo. At the same time, the motor linear position, in mm 

based on sine sweep stimulus signal were measured.  

 

 
Figure 5-1: Sine sweep signal used as the stimulus signal for system identification: This is an example of the sine 
sweep signal continuously from 0.01 to 10 Hz, allowing stimulus-response analysis across a range of relevant 
frequencies. 

 

Both the recorded stimulus signal and servo position were fed into the system 

identification algorithm. The ARX parametric model estimation algorithm was used to 

estimate the model of the servo because it is one more the most commonly used 

algorithm and also that it provide better prediction based on the residual analyses. Eq. 

(5.1) shows the discrete transfer functions estimated by the ARX model. 
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5.2 Model Validation  

First, model validation was performed by checking RMS residual between the 

measured signal and the model output signal. The model was also proven stable as all the 

poles of the system stay within the stability circle. Once the mathematical model of the 

plant was selected, the same stimulus signal that was used to actuate the actual plant was 

fed into the selected model to generate a set of model output so that the waveform of the 

model and the actual measured data can be compared.  

 

  
Figure 5-2: Model validation in software. The black solid line is output of the model and red dotted is the output of 
the motor 

 

 

 
Figure 5-3: Model validation in hardware. The black solid line is output of the model and red dotted is the output of 
the motor 
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For the software validation, the model was proven stable based on the root locus 

plot, and the RMS residual, ε was 0.09mm, considered small for an open loop system. 

After that, the model was also validated in the prototype in which the model was 

programmed to be running parallel with the actual servo motor. With the same stimulus 

signal, the position of both the servo and model were captured as shown in Figure 5-3. 

The RMS residual, ε between the model and the actual servo motor position was 0.11mm 

which is also considered small in an open loop manner. Based on the validation of the 

stability and the RMS residual, the model is incorporated to the system architecture. 

 

5.3 Smith Predictor 

Before the Smith Predictor was deployed in the real time controller, simulations 

were carried out to observe and analyze the behavior of the system when the feedback is 

1) continuous, 2) delay, 3) intermittent and 4) combined delay and intermittent. Figure 

5-4 shows the test plan for both the simulation and experimental tests that were 

performed to analyze the characteristic of the system. 
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Figure 5-4: Smith Predictor’s test plan. For simulation and experimental validation  

 

5.3.1 Simulation 

Simulation of the Smith Predictor to mitigate the mentioned three different 

feedback scenarios was performed using LabVIEW Control and Simulation toolkit. The 

goal of these simulations is to study the detrimental effect of the delay intermittent 

feedback to the motion control of Direct Position Sensing and also to analyze the 

performance and limit of the Smith Predictor in path tracking.  
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Figure 5-5: Smith Predictor architecture. Two vision sensor emulators were added to the controller to simulate the 
feedback of the vision sensor 

 

Figure 5-5 shows the block diagram of the Smith Predictor during simulation 

where C(s) is the controller, G(z) is the plant, and Gm(z) is the plant model. In order to 

perform analysis of the effect that the time delay and intermittent feedback have on the 

path tracking performance of Direct Position Sensing, vision sensor emulators, V(z) and 

VM(z) were created for both the plant and the model so that the time delay (0-500ms) and 

intermittent cycles (0-500 cycles) can be manipulated across the stated test ranges in 

order to observe the behavior of the control system in responding to different time delay 

and intermittent configurations.  

Due to the computation power of the micro processor of the prototype, the actual 

controller of the prototype is operating at the rate of 500Hz instead of 1kHz. Thus, during 

the simulation, it was assumed that the micro controller was operating at 500Hz (closing 

the loop at 2ms per cycle), and the intermittent cycle was varied from 0 to 250 

intermittent cycles to synchronize with the microcontroller loop time. 
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Since the mathematical model is not 100% accurate, the impact of model residual 

for Smith Predictor was also tested in simulation. The model residual between the plant 

model, Gm(z) and the actual plant, G(z) as illustrated in Figure 5-5, was simulated by 

using two different plant models that were obtained via system identification as shown in 

Eq. (5.2) and Eq.(5.3), respectively. 
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5.4 Results 

A 0.2Hz sine wave with amplitude of 2mm peak-to-peak of was used as a 

reference trajectory of the test. In order to quantify the path tracking performance of the 

Smith Predictor, the RMS position error between the reference trajectory and the plant 

output was used as the performance metric of the system. Note that the goal of this 

simulation and hardware experiments in this chapter was not focused on obtaining the 

best gain to achieve the best tracking performance of the system but to analyze the effects 

of each test case: 1) continuous, 2) delay, 3) intermittent and 4) delay and intermittent 
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feedback to the Smith Predictor. Thus, the Proportional-Integral (PI) controller used in 

Smith Predictor architecture in simulation and hardware experiments had the same PI 

gain which Kc=10 and Ti=0.05 that was tuned by trial and error, so that the behavior of 

each case can be compared. 

5.4.1 Continuous Feedback  

First, the nominal case in which the system has continuous feedback was run so 

that response and the RMS position value of this case can be used as a reference for the 

performance comparison of the system. In the nominal case, the RMS position error for 

the simulation was 6.47μm and the hardware RMS error was 17.03μm. 

 

 
Figure 5-6: Simulation result when the feedback is continuous. This simulation was run to obtained a nominal value 
for the tracking performance  

 

5.4.2 Delay Feedback  

Simulation and hardware testing of a system that has time delay were performed. 

Figure 5-7 and Figure 5-8 shows the simulation and hardware result when there is 100ms 

delay, respectively.  
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(A) 

 
(B) 

Figure 5-7: Simulation results when system has 100ms delay feedback: (A) Plant output vs. reference, illustrating 
following error, (B) Plant output vs. model, illustrating model residual 

 

  
(A) 

 
(B) 

Figure 5-8: Hardware experiment results when system has 100ms delay feedback: (A) Plant output vs. reference, 
illustrating following error, (B) Plant output vs. model, illustrating model residual. 

 

As seen in Figure 5-7(B), the model residual of the system is quite linear and it is 

not drifting from the plant output, but this is not the case in the prototype as shown in 

Figure 5-8(B), in which the model drifted toward one direction. This is detrimental to the 
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system when the model output is not corrected. An algorithm to address this problem is 

presented in chapter six.   

 

 
Figure 5-9: RMS position error of Smith Predictor with different time delay scenario for both simulation and 

experimental testing 

 

Table 5-1: RMS position error of Smith Predictor with different time delay scenario for both simulation and 

experimental testing 

RMS Position Error,(µm) 

Time delay,(ms) Real time Simulation 

0 17.03 5.27 
100 38.92 11.89 
200 58.80 18.47 
300 67.16 24.96 
400 73.91 31.29 
500 84.68 37.44 

 

Figure 5-9 and Table 5-1 summarize the RMS position error of both the 

simulation and experimental results run from 100ms to 500ms. Based on the tests, it can 

be observed that the tracking position error increases with respect to the increment of the 

time delay. When comparing with the nominal tracking error, both the simulation results 
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and hardware experiments results show the increment of tracking error. In the case of 

100ms, the tracking error of the hardware experiment was 38.92μm but when the delay 

increased to 500ms, the tracking error of the system increases to 84.68μm. One of the 

factors that affect this error is the accuracy of the model; the other is due to the time delay 

feedback that occurs in the system in which the modeling error of the system also cannot 

be corrected instantaneously but after the delay. 

5.4.3 Intermittent Feedback  

The intermittent feedback simulation and hardware testing were also performed to 

observe and analyze the system if such type of feedback exist the system without the time 

delay. The result of the simulation and hardware testing that had 200 intermittent cycles 

is shown in Figure 5-10 and Figure 5-11. 

 

 
(A) 

 
(B) 

Figure 5-10: Simulation results for 200 intermittent cycles: (A) Setpoints vs. plant response and (B) actual output 
vs. model output illustrating model residual 
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(A) 

 

(B) 
Figure 5-11: Prototype results when system has 100 cycles: (A) Setpoints vs. plant response and (B) the intermittent 
feedback of the plant and model illustrating model residual 

 

Both the simulation results from the simulation and hardware show the affected 

feedback waveform of the system, in which the position of the system was assumed 

constant during the intermittent period. In addition, the output response of the plant in the 

hardware experiment also showed the drifting effect of the model as mentioned in the 

delay case. It can also be observed that plant output of the system was not smooth as 

every time the feedback sensor update the controller after each intermittent period, it 

created a small step input to feedback signal. 
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Figure 5-12: RMS position error of Smith Predictor with different intermittent cycle’s scenario for both 

simulation and experimental testing 

 

 

Table 5-2: RMS position error of Smith Predictor with different intermittent cycle’s scenario for both 

simulation and experimental testing 

RMS Position Error,(µm) 

Intermittent feedback,(cycle) Real time Simulation 

0 17.03 6.42 
50 23.52 6.95 

100 25.93 10.39 
150 37.47 18.14 
200 42.11 22.20 
250 45.97 27.05 

 

 

Table 5-2 and Figure 5-12 shows the RMS tracking error of the simulation and 

experimental results for the intermittent feedback case and it can be seen that the RMS 

tracking error of the system increase with the intermittent cycles. For a system that has 50 

intermittent cycles, the RMS tracking error of the hardware experiments data is 23.52μm, 

but when is increased to 250 intermittent cycles, the RMS tracking error increased to 

45.97μm. Based on both the simulation and hardware experiments, it can see that the 
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RMS tracking error increase with respect to the length of the intermittent cycles. During 

the intermittent period, there were lack of actual position feedback from the sensor to 

correct the path, and at the same time the controller was relying on the model to predict 

the path until the actual position from the sensor is obtained. Thus, it is critical that the 

model of the plant can be modeled as close as the plant to minimize the tracking error. As 

compare with the delay feedback case, the RMS tracking error increment is smaller 

because during intermittent feedback because the obtained error can be corrected 

instantaneously, but not in the delay feedback.  

5.4.4 Delay and Intermittent Feedback  

The simulation and hardware testing for the delay and intermittent feedback were 

performed and the results of the both the simulation and hardware testing when the 

system has 200ms delay and 100 intermittent cycles are shown in Figure 5-13 and Figure 

5-14. 
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(A) 

 
(B) 

Figure 5-13: Simulation results when system has 200ms delay and 100 intermittent cycle’s feedback: (A) 
Setpoints vs. plant response and (B) the delay output of the plant and model illustrating model residual. 

 

 
(A) 

 
(B) 

Figure 5-14: Prototype results when system has 200ms delay and 100 intermittent cycle’s feedback: (A) Setpoints 
vs. plant response and (B) the delay output of the plant and model that shows the drifting for the model output from the 
actual plant output 
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As seen in the hardware experiment’s results, the model residual as shown in 

Figure 5-4 can be increasing with respect to time, so correction to the model must be 

perform to enhance the tracking performance of the system. At the same time, it can be 

seen that the delay and intermittent feedback affect the path tracking performance of the 

simulation and hardware experiments as shown in both Figure 5-13(A) and Figure 

5-14(A) respectively.  

 

 
Figure 5-15: RMS tracking error for delay and intermittent feedback. Position error of Smith Predictor with 
different delay and intermittent cycle’s scenario for both simulation and experimental testing   
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Table 5-3: position error of Smith Predictor with different delay and intermittent cycle’s scenario for both 

simulation and experimental testing 

RMS Position Error,(µm) 

Intermittent feedback, (cycles) Time delay,(ms) Real time Simulation 

0 0 17.03 5.27 
50 100 47.62 15.13 

100 200 53.76 26.39 
150 300 63.94 35.65 
200 400 84.16 44.90 
250 500 100.96 53.40 

 

Figure 5-15 and Table 5-3 shows the summary of the simulation and experimental 

results of the Smith Predictor when delay and intermittent exist in the feedback. As seen 

in the results when there were 500ms time delay and 250 intermittent cycle’s feedback, 

the RMS tracking error was 100.96μm as compare to 47.62μm when there were 100ms 

time delay and 50 intermittent cycles.  Similar like the delay feedback case and the 

intermittent feedback case, the RMS tracking error of the system that has both the delay 

and intermittent feedback increases with the length of the delay and intermittent cycles 

Furthermore, the RMS error of this case is the highest among all three cases mentioned 

above because the feedback data is not only intermittent but delay, causing the controller 

not able to correct the modeling error and the actual measured error instantaneously.  

 

5.5 Summary Remarks  

When the delay or intermittent cycles of the system increases, the RMS tracking 

position error also increases. For the system that has only time delay the simulation 
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results showed that there was at least 2μm of position error increment for every 100ms 

time delay increment whereas the experimental results also shows the increment of error 

but not linearly as seen in results. For the system that has intermittent cycles only, the 

simulation results also shows that the increment of errors with respect to the intermittent 

cycles. Based on the observation, the tracking error of the system in the hardware 

experiment is smaller than the tracking error in the delay feedback case. This is because 

the model residual of the system for the intermittent feedback case was corrected 

instantaneously when the residual was obtained. However in the delay feedback case, the 

obtained residual at time t is not the current model residual of the system but instead the 

previous residual at time t-τ, preventing the system from correcting the residual 

immediately. When comparing the worst case scenario of the delay feedback case and 

intermittent feedback case, the RMS tracking error difference between both cases was 

18μm in the hardware experimental result. However, when comparing the system that has 

both delay and intermittent feedback, both the simulation and experimental results show a 

bigger increment in the RMS tracking position error. For example, in the case of 500ms 

delay and 250 intermittent cycles, the error was 100.96μm, almost three times larger than 

the tracking error when only 250 intermittent cycles feedback exists in the system.  

One of the main underlying reasons for position error is model discrepancy 

between the model and the plant. The plant model is unable to accurately represent the 

actual plant, particularly un-modeled dynamics that were not included in the model used 
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in the Smith Predictor. Thus, when model discrepancy error builds up, the error needs to 

be corrected instantaneously, but when the feedback is delay and also intermittent, the 

error can only be corrected when the actual plant data is obtained. This can cause large 

drift error and large compensation at each data point. Thus, research involving correcting 

and predicting the model residual during the intermittent feedback was performed to 

enhance the tracking performance of Direct Position Sensing. 
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CHAPTER SIX 

6 MODIFIED SMITH PREDICTOR 

 

 

6.1 Introduction  

Based on the findings from the previous chapter, the model residual buildup 

during the intermittent path is shown to be detrimental to the path tracking performance 

of the system. Thus, this chapter presents augmentations to the Smith Predictor to 

minimize the model residual.  

For a system that has intermittent feedback, the modeling residual can only be 

corrected when the actual feedback is obtained. In addition, the modeling residual may 

increase during the intermittent period, which potentially causes instability in the system. 

Hence, this chapter shows algorithms that were developed to augment the original Smith 

Predictor to address these challenges.  

First, a prediction algorithm of the intermittent path based on the historical 

obtained information was created to minimize the modeling residual. Second, a 

Proportional controller is added in the inner loop of the Smith Predictor to update the 

control action to the plant model based on the model residual obtained. Third, the 
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combined intermittent path prediction together with the inner Proportional controller was 

also implemented to enhance the tracking performance of the system. 

 

6.2 Intermittent Path Prediction Algorithms  

As seen in Figure 6-1, the measured output signal, x(z-τ) from the vision sensor, 

V(z) is delayed and intermittent. During the delay and intermittent cycles, the plant 

model, Gm(z) is used to provide the estimated plant output based on the plant model. In 

order to correct the prediction, the output of the plant model was also modeled to have 

delay and intermittent feedback so that the prediction error, em(z+ τ) can be obtained to 

correct the estimated output from the model.  

 

 
Figure 6-1: Smith Predictor block diagram: The solid line is a continuous signal and the broken line is the 
intermittent signal 
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Based on  the original Smith Predictor architecture, it was assumed that the 

current position maintains a constant value until the next obtained position was available, 

a signal equivalent to a Zero Order Hold (ZOH) model as shown in Figure 6-2(A). 

Hence, the model residual, em(z) also has the ZOH type of waveform as shown in Figure 

6-2(B). In addition, every time the system acquires the updated feedback, it creates a step 

input of 10 to 40μm ,as seen in Figure 6-2(B), to feedback signal of the controller, 

xA’(z).and cause xA’(z) to be noisy as shown in Figure 6-3. 

 

 
(A) 

 
(B) 

Figure 6-2: Intermittent feedback (A) actual and model output, (B) modeling discrepancy between the actual and 
model output. 
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Figure 6-3: Feedback signal to the controller, xA’(z).The unevenness of the curves was caused by the update of the 
model residual every time the system obtained the intermittent update 

  

Thus, the goal of the intermittent path prediction algorithm is to estimate the path 

of the plant during the intermittent period by extrapolating the historical obtained 

position. This prediction path provides closer estimation of the model residual as 

compared to the ZOH model used in the Smith Predictor. Three extrapolation algorithms 

based on the obtained historical actual data were added to the Smith Predictor 

architecture to estimate the intermittent path: First Order Hold (FOH), Second Order 

Hold (SOH), and Third Order Hold (TOH) models. Hence, by predicting the intermittent 

path rather than holding the position at a static position, a smoother model residual signal 

is provided as compared with a ZOH signal. 

 

6.2.1 Extrapolation Method 

As seen in Figure 6-4, instead of assuming that the position is maintained at its 

previous location, the prediction algorithm uses points of the historical feedback to 
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estimate the intermittent path. For the FOH extrapolation, the algorithm used the current 

obtained position, y(t) and the previous obtained position, y(t-P) to extrapolate the path 

for y(t+P) as shown in Figure 6-4. Eq. (6.1) shows the equation used to extrapolate the 

path from t to t+P and A1 and B1 were calculated based on y(t) and y(t+P). 

 

 
Figure 6-4: First Order Hold. Use the current point, y(t) and previous point, y(t-P) where P is the intermittent interval 
to extrapolate the path from t to t+P shown in solid blue line. The black dotted line represent the setpoints, and the red 
broken line show the ZOH  
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For the SOH, the algorithm uses the current obtained position, y(t) and the 

previous two obtained positions, y(t-P) and y(t-2P) to extrapolate the path for y(t+P) and 
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the Eq.(6.2) shows the equations used to extrapolate the path from t to t+P by solving the 

parameters A2, B2 and C2 based on y(t), y(t-P) and y(t-2P). 

 

 
Figure 6-5: Second Order Extrapolation: Use the current point, y(t) and previous point, y(t-P) and y(t-2P)  where P 
is the intermittent interval to extrapolate the path from t to t+P shown in solid green line. The black dotted line 
represent the setpoints, and the red broken line show the ZOH  
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Similarly for the TOH model, three previously obtained positions, y(t-P), y(t-2P) 

and y(t-3P) together with the current obtained position, y(t) will be used to extrapolate the 

path for y(t+P) as shown in Figure 6-6. Eq. (6.3) was used to extrapolate the path from t 
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to t+P by solving the parameters A3, B3, C3 and D3 based on y(t), y(t-P),y(t-2P) and y(t-

3P). 

 
Figure 6-6: Third Order Extrapolation: Use the current point, y(t) and previous point, y(t-P), y(t-2P) and y(t-3P) 
where P is the intermittent interval to extrapolate the path from t to t+P shown in solid blue line. The black dotted line 
represent the setpoints, and the red broken line show the ZOH 
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As seen in Figure 6-4, Figure 6-5 and Figure 6-6, the FOH has the more accurate 

extrapolated path as compare to the higher order methods like the SOH and TOH.  The 

prediction of these algorithms is not only dependent on the setpoints’ underlying 
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waveform but also the measurement data from the sensor. This effect can be further 

observed in both the simulation and hardware experimental results   

6.2.2 Results  

Simulation and hardware experiments of the extrapolation algorithms were 

performed and the extrapolation algorithm of the plant and the model, PA(z) and PM(z) 

respectively, were integrated to the Smith Predictor architecture as shown in Figure 6-7. 

Similar to chapter five, a 0.2Hz sine wave was used as the setpoints for the system, and 

the FOH, SOH and TOH algorithm are tested individually with respect to different 

feedback cases. The RMS tracking error of the simulation was obtained so that the 

performance of each algorithm can be compared. This extrapolation algorithm is applied 

to the system with intermittent feedback. Two simulations were performed: 1) system 

with intermittent feedback only and 2) system with delay and intermittent feedback. 

 

 
Figure 6-7: Smith Predictor with intermittent path prediction algorithm. The Intermittent path prediction 
algorithm, PA(z) and PM(z) were added to the original Smith Predictor architecture 
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6.2.2.1 Intermittent Feedback  

Simulations and hardware experiments using the three described extrapolation 

methods in the intermittent feedback case were performed. The same reference trajectory 

used in the hardware testing was used in the simulation. The goal of the simulation is to 

compare the performance of the extrapolation algorithms at equivalent controller setups. 

Therefore, the gains of the PI controller’s gains for all cases were configured having the 

same gains to compare the behaviors of the system. In the intermittent case, the time 

delay τ will be equal to zero.  

Figure 6-8 shows the comparison of the modeling error waveform, em(z) using the 

Smith Predictor together with the intermittent path prediction algorithms and it can be 

seen that the extrapolation algorithms a smoother signal, em(z) as compare to the ZOH 

signal from the original Smith Predictor architecture, especially when the SOH and TOH 

were used.  

Based on the simulation results, the tracking performance of the Smith Predictor 

with intermittent path prediction has smaller RMS tracking error than the original Smith 

Predictor as seen in Table 6-1 and Figure 6-9. The extrapolation algorithms help to 

reduce the tracking error As seen in Table 6-2, there was at least 32% RMS tracking error 

reduction by using the intermittent path prediction algorithm when there was 50 

intermittent cycles feedback. For the 100 intermittent cycles feedback case, there was at 

least 53% RMS tracking error reduction. 
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 6-8: Error waveform em  of the Smith Predictor with intermittent path prediction algorithm in simulation 
. ( A) ZOH, (B) FOH, (C) SOH and (D) TOH 
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Table 6-1: Simulation of the extrapolation algorithms in Smith predictor during intermittent feedback 

 RMS tracking error, µm 

Intermittent 

Feedback(cycles)  
ZOH  FOH SOH TOH 

0 4.67 4.67 4.67 4.67 
50 7.47 5.02 4.75 4.73 

100 13.74 6.35 4.64 4.63 
 

 

 
Figure 6-9:  Simulation results of the extrapolation algorithms during intermittent feedback. Based on the 
simulation results, the SOH has the lowest RMS tracking error for both the 50 intermittent cycles and 100 intermittent 
cycles  

 

Table 6-2: Percentage of error reduction as compare to ZOH 

Error comparison, % 

Intermittent 

Feedback(cycles) 
FOH SOH TOH 

50 -32.78% -36.40% -36.67% 
100 -53.81% -66.19% -66.32% 

 

 Based on the simulation results when the system has 100 intermittent cycles, the 

intermittent path prediction helps to improve the tracking performance of the system by 
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at least 6μm. However, the selection of the algorithms used in the Smith Predictor will 

depend on the setpoints and also the amount of noise and disturbance in the system. As 

the intermittent cycles increase, the prediction error of these extrapolation algorithm will 

also increase, which can lead to instability in the system. 

 Hardware experiments were also performed and the results are presented in Table 

6-3 and Figure 6-10. For a system that has 50 intermittent cycles, the SOH method has 

the best performance in which the RMS tracking error of the system was reduced by 

19.76% and for a system that has 100 intermittent cycles, the FOH has a error reduction 

of 39.66%. Thus, it can be seen that TOH is not always the better method for the 

prediction, and it is based on influences such as the length of the intermittent cycles, the 

measurement noises, and other disturbances. 

 

Table 6-3:  Hardware experimental results for intermittent feedback 

  RMS tracking error, μm 

Intermittent, cycles ZOH FOH  SOH TOH  

0 14.2 14.2 14.2 14.2 
50 20.19 16.2 16.76 15.55 

100 31.64 19.09 43.92 33.93 
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Figure 6-10: Hardware experiment results for intermittent feedback For 50 intermittent cycles feedback, the TOH 
has the lowest RMS value and for the 100 intermittent cycles feedback , the FOH has the lowest RME tracking error  
 

 

 

Table 6-4: Error comparison for intermittent feedback case in hardware experiment with the ZOH 

  Error reduction, % 

Intermittent, cycles FOH  SOH TOH  

50 -19.76% -16.99% -22.98%
100 -39.66% 38.81% 7.24%

 

6.2.2.2 Delay and Intermittent Feedback 

Simulations were also performed for the case of delay and intermittent feedback. 

In this case, the obtained feedback at time t, is a delay feedback but the goal of this 

algorithm is to predict the intermittent path so that the model residual signal is not in a 

ZOH type of waveform. Based on the simulation result showed in Table 6-5 and Figure 

6-11, it can be observed that the RMS tracking error of the FOH, SOH and TOH reduced 

error as compared with ZOH. For the case of 100 ms delay and 50 intermittent cycles, the 
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RMS tracking error is reduced by 20.44% using FOH, by 21.86% using SOH and by 

22.07% using TOH.  

 

Table 6-5: Simulation of the extrapolation algorithm in Smith predictor during delay and intermittent feedback 

 RMS tracking error, µm 

Delay (ms) | Intermittent 

feedback (cycles) 
ZOH FOH SOH TOH 

0 4.78 4.78 4.78 4.78 
100 | 50 13.65 10.86 10.66 10.63 
200|100 24.75 17.94 16.75 16.75 

 

 

 
Figure 6-11: RMS tracking error for delay and intermittent feedback. The simulation results shows that both the 
SOH and TOH have lower RMS tracking error for both cases 
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Table 6-6: Error comparison when intermittent path prediction is added to the Smith Predictor during delay 

and intermittent feedback 

Error reduction, % 

Delay (ms) | Intermittent feedback (cycles) 
FOH SOH TOH 

100 | 50 -20.44% -21.86% -22.07% 
200|100 -27.53% -32.32% -32.32% 

 

 Hardware experiments for the intermittent path prediction were also performed 

and the results are presented in Figure 6-12. The percentage different between the RMS 

tracking error of each extrapolation algorithm to the original Smith Predictor algorithm’s 

RMS tracking error is shown in Table 6-7. 

 

Table 6-7: Hardware experimental results for delay and intermittent feedback 

  RMS tracking error, μm 

Delay (ms)| intermittent , cycles ZOH FOH  SOH TOH  

0 14.2 14.2 14.2 14.2 
100|50 57.8 73.67 69.5 77.46 

200|100 70.28 102.74 84.43 99.33 
 

 

Table 6-8:  Error comparison for delay and intermittent feedback in hardware 

Error comparison, % 

Delay (ms)| intermittent cycles FOH SOH TOH 

100|50 27.46% 20.24% 34.01% 
200|100 46.19% 20.13% 41.33% 
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Figure 6-12: Hardware experimental results for delay and intermittent feedback .The FOH has lowest RMS 
tracking error during the 100ms delay and 50 intermittent cycles case, but the ZOH has the lowest when the time delay 
and intermittent cycles increase to 200ms and 100 intermittent cycles  

 

It can be observed that the intermittent prediction algorithm did not perform as 

well as expected in the simulation. For the case of 100ms delay and 50 intermittent 

cycles, the RMS tracking error increases 27.46% for the FOH, 20.24% for the SOH and 

34.01% for the TOH. For the case of 200ms delay and 100 intermittent cycles, the RMS 

tracking error increase by 46.19% using FOH, 20.13% using SOH and 41.33% using 

TOH. Thus, it can be seen that the Smith Predictor with ZOH works better in the system 

that has both delay and intermittent. 

6.2.2.3 Summary  

 Based on the simulation results, the intermittent path prediction algorithm also 

works in the system that has both the delay and intermittent feedback but just that the 

tracking error improvement of the system is not as significant as compared with the 

system that has intermittent feedback alone.  
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 Based on the hardware experimental results, the intermittent prediction algorithm 

works well when the system has intermittent feedback only, but when the algorithm is 

used in the delay and intermittent feedback case, the RMS tracking error increases. 

Potential reason for the error increment can due to the delay feedback of the system , as 

when the delay feedback is obtained, it was also fed back to the system causing a small 

step input to the feedback, which also making the path to be uneven. Since the 

intermittent path prediction uses historical data to extrapolate the path, the small bump in 

the feedback signal might cause the next prediction path to be inaccurate. In addition, the 

choice of extrapolation algorithm used in the system will also depend on the setpoints 

signal and the amount of noise of the system. This is because this intermittent path 

prediction algorithm is depending on the historical points, so if the previous obtained 

value has sufficiently high position error, then this will cause the intermittent predicted 

path to be inaccurate  

 

6.3 Model Input Corrector  

The second approach was to include a model input corrector to update the plant 

model. As seen in chapter five, the validation of the plant model with the actual plant 

shows that the model residual will always exist in a model based control system, and the 

model residual can increase with respect to time or operation conditions if the model is 

not updated. Thus, the objective of adding the model input corrector, Cm(z) is to update 
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the control action of the primary controller to  the model Gm(z) based on the obtained 

model residual, em(z) as shown in Figure 6-13. 

As seen in chapter five in both the simulation and experimental results, that the 

plant model’s output has the tendency to drift away from the actual plant output. 

Although the model residual, em(z) was obtained and added to the feedback signal to the 

controller, xA(z) to be corrected by the primary controller of the system, C(z), the model 

output, x’(z) of the system was still uncorrected. Thus, the goal of adding a additional 

Proportional controller, Cm(z) is to update the control action to the model, um(z) based on 

the obtained residual as illustrated in so that the model output of the system is close to the 

actual plant output to have a better predictor. Stability analysis of adding Cm(z) into the 

original Smith Predictor was performed, and the eigenvalues of the system were all 

located on the left side of the plane, which shows this to be a stable control architecture. 

(Refer to Appendix B). 



96 

 

 
Figure 6-13: Model input corrector: An additional controller Cm (z) was added to the Smith Predictor 

 

6.3.1 Results 

Simulations and hardware experiments of the Smith Predictor with model input 

corrector were performed. The RMS tracking error between the setpoints and the system 

response was used as the performance metric. Thus, the performance of the path tracking 

and the performance of the model input corrector can be quantified. The model input 

corrector algorithm was tested with all three different feedback scenarios: 1) delay, 2) 

intermittent and 3) delay and intermittent feedback. Figure 6-14 shows the comparisons 

of the output signal of the plant and model with and without the model input corrector. 

Based on the simulation results, the model input corrector helps to maintain the model 

output closer to the actual plant output as illustrated in Figure 6-14B. Figure 6-15 and 
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Figure 6-16 shows the comparison of the model input corrector performance’s simulation 

results for the intermittent feedback case, and the delay and intermittent feedback case 

respectively. 

 

 
(A) 

 
(B) 

Figure 6-14: Simulation results of the plant and model output when there is 100ms delay: (A) without Model 
input corrector and (B) with Model Discrepancy Corrector. 
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(A) 

 
(B) 

Figure 6-15: Simulation results of the plant and model output when there is 100ms delay: (A) without Model 
input corrector and (B) with Model Discrepancy Corrector. 

 

  
(A) 

 
(B) 

Figure 6-16: Simulation results of the plant and model output when there is 200ms delay and 100 intermittent 
cycles : (A) without Model input corrector and (B) with Model Discrepancy Corrector. 
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Table 6-9 shows the RMS position tracking error of the Smith Predictor with 

model input corrector for both the simulation and hardware experiments. It can be seen 

that the Smith Predictor with model input corrector improved the tracking error and the 

error reduction percentage of each case is presented in Table 6-10. 

 

Table 6-9: Comparison of the Smith Predictor with and without the model input corrector in both simulation 

and hardware experiment 

 

 

Table 6-10: RMS tracking error reduction, for simulation and hardware experiment 

 

 

Without Model Updater Model Updater Without Model Updater Model Updater

10.80 8.20 33.85 26.74
17.09 12.01 59.43 37.77

Without Model Updater Model Updater Without Model Corrector Model Updater

8.05 6.99 23.4 21.72
14.67 10.75 33.28 27.9

Intermittent, cycles Time delay, ms Without Model Updater Model Updater Without Model Corrector Model Updater

50 100 14.09 10.27 57.8 45.5
100 200 25.49 18.58 70.28 56.66

Simulation Hardware

RMS Position Error, µm RMS Position Error, µm

Time delay, ms

100
200

Intermittent, cycles

100
50

Simulation Hardware

-24.13% -21.00%
-29.70% -36.45%

Simulation Hardware

-13.11% -7.18%
-26.70% -16.17%

Intermittent, cycles Time delay, ms Simulation Hardware

50 100 -27.10% -21.28%
100 200 -27.13% -19.38%

Intermittent, cycles

Error reduction, %

Time delay, ms

100
200

50
100
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For the system that has 100ms delay, the simulation results show a 24.13% 

reduction in RMS tracking error with the implementation of the model input corrector, 

and 21.00% of reduction in the hardware experiment. Similarly, for system that has 100 

intermittent cycles, the simulation result shows a 13.11% reduction in the RMS tracking 

error; and 7.18% reduction in the hardware experiment. For the case that has 200ms time 

delay and 100 intermittent cycles, the simulation results shows a 27.13% reduction in the 

RMS tracking error; and 19.38% reduction in the hardware experiment. 

6.3.2 Summary Remarks 

The result of the simulation and hardware experiments of implementing model 

input corrector to the Smith Predictor shows that this scheme helps to improve the 

tracking performance of the system as seen in the data and analyses mentioned above. 

Since the goal of this test is to analyze and observe the behavior of the system so the gain 

of the controller and the model input corrector was not optimally tuned yet. Thus, the 

performance of the model input corrector can further be optimized with better gain 

turning. At the moment, the model input corrector uses only a Proportional controller and 

the gain of the controller, Kp was tuned heuristically so that the model output maintain as 

close as the plant output. 
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6.4 Combining the Intermittent Path Predictor via Extrapolation with Model 

Input Corrector  

Based on the simulation and experimental results of the two additional method 

mentioned above, this chapter shows the results of the Smith Predictor when the 

intermittent path prediction algorithm: PA(z) and Pm(z) and the model input corrector, 

Cm(z) were integrated together to the Smith Predictor architecture as described in Figure 

6-17. 

 

 
Figure 6-17: Smith Predictor with intermittent path prediction and model input corrector. When both the model 
input corrector, Cm(z)and the intermittent path predictions for the plant and model, PA(z)and Pm(z) respectively were 
added to the Smith Predictor architecture  

 

6.4.1 Results   

Simulation and hardware experiments of the combined algorithms into the Smith 

Predictor architecture were performed for two feedback cases: 1) intermittent and 2) 

delay and intermittent feedback.  A 0.2Hz sine wave was used to generate the setpoints of 

the system. The RMS tracking error of the system was used to as the performance metric. 
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First, simulation of original Smith Predictor architecture was performed indicated by 

ZOH. Then, the intermittent path prediction with all three extrapolation methods: first 

order hold, second order hold and third order hold was performed, denoted as FOH, SOH 

and TOH respectively. After that, these four mentioned cases were re-simulated again by 

integrating with the model input corrector, denoted by ZOH_M, FOH _M, SOH _M and 

TOH_M respectively.  

6.4.1.1 Intermittent Feedback  

Simulation and hardware experiments for the Smith Predictor with the combined 

algorithms were performed and the results are presented in Table 6-11 and Table 6-12 

respectively. Based on the simulation results, it can be observed that the Smith Predictor 

with the combined algorithms, denoted as ZOH_M, FOH_M, SOH_M, and TOH_M 

minimized the RMS tracking error of the system as compare to using the intermittent 

prediction algorithms without the model input corrector. For the case of 100 intermittent 

cycles as presented in Table 6-11, TOH_M has the best tracking performance and the 

RMS tracking error for this scheme is 4.43μm. 

 

Table 6-11: Simulation result for intermittent feedback 

 

Intermittent 

Feedback(cycles) 
ZOH_M ZOH FOH_M FOH SOH_M SOH TOH_M TOH

0 4.78 4.67 4.78 4.67 4.78 4.67 4.78 4.67
50 6.12 7.47 4.69 5.02 4.81 4.75 4.70 4.73
100 9.70 13.74 4.76 6.35 4.57 4.64 4.43 4.63

RMS tracking error, µm
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 In the hardware experiment, the Smith Predictor with the combined algorithms 

has lower RMS tracking error as compare to the intermittent path prediction without the 

model input corrector as seen in Table 6-12. In the case of 100 intermittent cycles, the 

ZOH_M has best tracking performance among other schemes and the RMS tracking error 

for this scheme was 19.06μm. When comparing with control scheme, the FOH was also 

performing well in which the RMS tracking error is 19.09μm. However, when comparing 

with SOH and TOH, the RMS tracking error increases to 43.32μm and 33.93μm 

respectively. However, with model input corrector, the RMS tracking error of both 

algorithms was reduced to 34.77μm and 22.62μm respectively. Thus, the model input 

corrector helps to improve the tracking performance of the intermittent path prediction.  

 

Table 6-12: Hardware experimental result for intermittent feedback 

 

 

6.4.1.2 Delay and Intermittent Feedback  

Simulation and hardware experiments for the Smith Predictor with the combined 

algorithms were also performed for the delay and intermittent feedback case. Based on 

Intermittent 

Feedback(cycles) 
ZOH_M ZOH FOH_M FOH SOH_M SOH TOH_M TOH

0 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
50 18.04 20.19 15.73 16.2 15.08 16.76 15.13 15.55
100 19.06 31.64 18.37 19.09 34.77 43.92 22.62 33.93

RMS tracking error, µm
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the simulation results as seen in Table 6-13, the Smith Predictor with the combined 

algorithms has lower RMS tracking error as compare to using the intermittent prediction 

algorithms without the model input corrector. For instance, in the case of 200ms delay 

and 100 intermittent cycles as presented in Table 6-13, TOH_M has the better tracking 

performance as compare to other scheme and the RMS tracking error for this scheme was 

11.49μm. 

 

Table 6-13: Simulation results for delay and intermittent feedback 

 

 

For hardware experiments, the Smith Predictor with the combined algorithms also 

shows the same performance in which this control scheme has lower RMS tracking error 

as compare to the intermittent path prediction without the model input corrector.  Table 

6-14 shows the experimental results obtained from the prototype. When the system has 

200ms delay and 100 intermittent cycles, TOH_M has the least RMS tracking error, and 

also RMS tracking error was reduced from nominal ZOH tracking error of 70.28μm to 

56.63μm. Similarly to the SOH case in which the RMS tracking error was 84.43μm was 

reduced to 61.1μm after implementing the model input corrector.   

Delay (ms ) | Intermittent 

feedback (cycles)
ZOH_M ZOH FOH_M FOH SOH_M SOH TOH_M TOH

0 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78
100 | 50 9.66 13.65 7.99 10.86 8.01 10.66 7.99 10.63
200|100 17.80 24.75 11.95 17.94 11.68 16.75 11.49 16.75

RMS tracking error, µm



105 

 

Table 6-14: Hardware experimental results for delay and intermittent feedback 

 

 

6.5 Combining the Intermittent Path Predictor via Interpolation with Model 

Input Corrector 

Based on the simulation and hardware experiments results from section 6.4, it can 

be observed that the extrapolation method is not robust enough to perform the path 

prediction of the Modified Smith Predictor. Figure 6-18(A) shows the scenario when the 

feedback is delayed and intermittent, and Figure 6-18(B) shows predicted intermittent 

path using the extrapolation method based on the obtained positions from the sensor. It 

can be seen that the prediction error using extrapolation method can be large and 

unbounded because the extrapolation method is sensitive to the noise, disturbance and 

also the measured data.   

Delay (ms ) | Intermittent 

feedback (cycles)
ZOH_M ZOH FOH_M FOH SOH_M SOH TOH_M TOH

0 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
100 | 50 45.5 57.8 37.4 73.67 51.99 69.5 36.22 77.46
200|100 56.66 70.28 58.22 102.74 61.1 84.43 56.63 99.33

RMS tracking error, µm
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(A) 

 
(B) 

Figure 6-18: Extrapolation method. (A) shows the illustration when the feedback is delayed and intermittent, (B) 
shows the extrapolation method to predict the intermittent path using historical data only and it can be seen that the 
prediction error of the intermittent path is very large.  
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Figure 6-19: Intermittent path prediction. Interpolation path was predicted by using the delayed measured positions 
that were shifted backwards by image processing time, P, and one future point, Y(t+P) that was known ahead of time 
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Thus, an interpolation method based on the historical data and the future data was 

implemented to the Modified Smith Predictor to predict the intermittent path during the 

delayed and intermittent period. Since the a priori reference trajectory of system was 

known, the future point of the trajectory, Y(t+P) can also be used as one of the 

interpolation points of the algorithm. Therefore, all the delayed and intermittent data 

obtained by the sensor shown in Figure 6-18(A), were shifted backwards by the image 

processing time, P as shown in Figure 6-19. Then, interpolation using the shifted data, 

Y(t-nP) and the future point of the trajectory, Y(t+P) was performed not only to estimate 

the position at time t but to predict the intermittent path of the system from time t to t+P 

as seen in Figure 6-19. Three different interpolation methods were tested: first order, 

second order and third order. First order interpolation used only one obtained data point, 

Y(t-P) and the future point, Y(t+P) to obtain the intermittent path as shown in Eq.(6.4). 

 

 1 1 :( ) t t t Py t A t B = += +  (6.4) 

where 

1 1

1 1

( ) ( )

( ) ( )

y t P A t P B

y t P A t P B

+ = + +

− = − +  
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Second order interpolation used two obtained positions, Y(t-P) and Y(t-2P), and the future 

point, Y(t+P) to obtain the intermittent path as shown in Eq.(6.5).
  

 

 2
2 2 :2

( ) t t t Py t A t B t C = += + +  (6.5) 

 where 

2
2 2 2

2
2 2 2

2
2 2 2

( ) ( ) ( )

( ) ( ) ( )

( 2 ) ( 2 ) ( 2 )

y t P A t P B t P C

y t P A t P B t P C

y t P A t P B t P C

+ = + + + +

− = − + − +

− = − + − +  

 

Third order interpolation used three obtained positions, Y(t-P) ,Y(t-2P) and Y(t-3P), and 

the future point, Y(t+P) to obtained the intermittent path as shown in Eq.(6.6).
  

 

 3 2
3 3 3 3 :( ) t t t Py t A t B t C t D = += + + +  (6.6) 

where 

3 2
3 3 3 3

3 2
3 3 3 3

3 2
3 3 3 3

3 2
3 3 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( 2 ) ( 2 ) ( 2 ) ( 2 )

( 3 ) ( 3 ) ( 3 ) ( 3 )

y t P A t P B t P C t P D

y t P A t P B t P C t P D

y t P A t P B t P C t P D

y t P A t P B t P C t P D

+ = + + + + + +

− = − + − + − +

− = − + − + − +

− = − + − + − +  
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Results of the interpolation approach and its comparison with the previously-described 

extrapolation approach are given in Table 6-15, and represented graphically in Figure 

6-20. 

 

Table 6-15: Hardware experiments results. This table shows the comparison of the path tracking performance of the 
Modified Smith Predictor when the interpolation method was used in the intermittent path prediction instead of the 

extrapolation method.  

 
 

 

 
Figure 6-20: Performance comparison. The chart shows the hardware experimental results when the Modified Smith 
Predictor used the extrapolation method and interpolation method together with the model input corrector to perform 
path tracking of a 0.2 Hz sine wave reference trajectory 

 

Delay (ms ) | Intermittent feedback (cycles) ZOH ZOH_M FOH_M SOH_M TOH_M FOH_M SOH_M TOH_M

0 14.20 14.20 14.20 14.20 14.20 14.20 14.20 14.20
100 | 50 57.80 45.50 37.40 51.99 36.22 28.59 24.19 28.16

200 | 100 70.28 56.66 58.22 61.10 56.63 38.88 36.57 37.46

Interpolation

RMS tracking error, µm

Extrapolation
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Hardware validation of Modified Smith Predictor with model input corrector and 

the intermittent path prediction was performed. Table 6-15 shows the comparison of the 

path tracking performance of the Modified Smith Predictor during the hardware 

experiments when the interpolation method was used in the intermittent path prediction 

algorithm instead of the extrapolation method. The results show that the interpolation 

method reduces the RMS tracking error by at least 20% as compared with the 

extrapolation method. For instance, when the system has 100ms time delay and 

intermittent intervals, the RMS tracking error was reduced by 53%, using the second 

order interpolation method. In addition, this Modified Smith Predictor was also tested in 

the prototype system to track reference trajectories different than a sine as presented in 

Figure 6-21 and Figure 6-22.  The hardware experimental results showed that the path 

tracking performance of the Modified Smith Predictor works well not only with the test 

reference trajectory: 0.2Hz sine wave but also applicable to other reference trajectories.  

 

 
Figure 6-21: Hardware experiment for tracking a ramp-like waveform. The RMS tracking error was 10.5µm 
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Figure 6-22: Hardware experiment for tracking a random waveform. The RMS tracking error was 26.68µm 

 

Based on the experimental results, it can be concluded that the intermittent path 

prediction via interpolation together with the model input corrector not only improves the 

path tracking performance of the system, but also increases the robustness of the 

prediction algorithm. 

 

6.6 Frequency Analysis Comparison 

Frequency analysis of the system with different control architectures and feedback 

scenarios were performed: 1) Baseline system - PI controller with continuous feedback 

from encoders, and 2) Direct Position Sensing system using a Modified Smith Predictor 

with intermittent path prediction via interpolation together with a model input corrector, 

tested for the case when delayed and intermittent feedback occurs in the system. 

Frequency analysis of both the baseline system and Direct Position Sensing 

system were performed to compare the dynamic response of both systems and resultant 

usable bandwidth. Bandwidth in this context is defined as the frequency range from 0 to 
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the cut-off frequency fc where the amplitude response dropped by -3dB. In order to obtain 

the output response of the system at varying frequencies, sine waves of 2mm peak-to-

peak magnitude ranging from 0.01Hz to 10Hz were run to obtain the Bode plot for each 

system.  

6.6.1 Classical System  

Figure 6-23 and Figure 6-24 show the amplitude and phase Bode plots of the 

baseline system; the bandwidth of this system was found to be 4.5Hz. 

 

 
Figure 6-23:Bode plot Mag. Bode magnitude ratio plot for the classical system with continuous feedback. The 
bandwidth of the system is estimated around 4.5Hz based on the plot. 

-15

-10

-5

0

5

0.1 1 10

O
u

tp
u

t/
In

p
u

t 
M

a
g

n
it

u
e

 R
a

ti
o

 

(d
B

)

freq, Hz

Mag(dB): Baseline system



113 

 

 
Figure 6-24: Bode plot Phase. Bode phase plot for the classical system with continuous feedback; the phase shift 
begins at approximately 3Hz. 

 

6.6.2 Direct Position Sensing 

Frequency analysis of the Modified Smith Predictor with model input corrector 

and intermittent path prediction using interpolation was performed on the prototype to 

obtain the bandwidth of the system under test. In addition to the 2-mm-amplitude input 

reference, a 100-ms time delay and 100-ms intermittent interval was included in the 

system. As the loop closure time or the control is 2ms, this intermittent behavior 

translates to an actual feedback data point of 100-ms delayed data every 50th control 

cycle. Figure 6-25 and Figure 6-26 show the Bode plots of the system; bandwidth is 

around 4.5Hz, equivalent to the bandwidth of the baseline system.  
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Figure 6-25: Bode plot Mag. Bode plot for the Direct Position Sensing System that has 100ms delay and 50-cycle 
intermittent interval feedback, using intermittent path prediction via interpolation method and model input corrector 
structure. The bandwidth of this system is 4.5Hz. 

 

 
Figure 6-26: Bode plot Phase. Bode plot for the Direct Position Sensing System with 100ms delay and 50-cycle 
intermittent interval feedback using intermittent path prediction via interpolation method and model input corrector 
structure. 
 

6.6.3 Recommendation 

A primary assumption in this analysis is that the time delay is equal to the 

intermittent interval, which is also equivalent to the processing time of the image 

processing algorithm. Although the processing time of the image processor is not always 

equivalent to the intermittent interval, this research assumed both the processing time and 
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the intermittent interval to simplify the feedback scenario of the system during the system 

integration process of the Modified Smith Predictor control architecture and the vision 

sensors. However, when the actual time delay and intermittent interval of a system is 

known, those values can be used to tune the Modified Smith Predictor to compensate the 

delayed and intermittent feedback.  

Based on the test run on the hardware, the baseline system with continuous 

feedback has a bandwidth of 4.5Hz. The Direct Position Sensing System using the 

intermittent path prediction via interpolation method and the model input corrector with 

the emulation of 100ms image processing time and 50-cycle intermittent feedback also 

has a bandwidth of 4.5Hz. Similar testing was performed at a 200-ms delay value on the 

prototype, and the system found to be significantly degraded especially the path tracking 

performance of the system in which the intermittent path is too long, causing the path 

prediction error to increase. Therefore, it is recommended that the image processing time 

of the vision sensor should not be longer than 100ms in order to match the baseline 

system response.  

In addition, the aliasing effect is another factor that needs to be considered in this 

research due to the long cycles of intermittent feedback which significantly decrease the 

system sampling frequency. For the case under study in this analysis, when the system 

has 100ms intermittent interval, the equivalent sampling frequency is 10Hz. According to 
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Shannon’s theorem, the maximum frequency to be resolved, fi cannot exceed ½ of the 

sampling frequency, fs as presented in Eq.(6.7).  

 

 
1
2i s

f f≤  (6.7) 

 

If this criterion is violated, the sampling system cannot resolve the higher 

frequencies, and false signals will be introduced, a phenomenon known as aliasing. 

Figure 6-27 illustrates a hardware test of the intermittent system sampling at 10Hz, and 

trying to resolve a 7Hz signal. This violates Shannon’s theorem, and aliasing occurs in 

the system, notably the beat frequency observed across multiple cycles.  

 

 
Figure 6-27: Aliasing effect when the input signal of the system is larger than 5 Hz. The input signal of this test is 
7Hz, and the restricted sampling frequency cannot resolve the input, resulting in a false signal.  
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CHAPTER SEVEN 

 

7 CONCLUSION 

 

 

7.1 Conclusion 

This dissertation presents a new type position sensor: Direct Position Sensing that 

can actively monitor the planar position of a device using computer vision technology 

Instead of using a set of conventional position sensor, Direct Position Sensing uses 

computer vision technology: a digital camera and a digital display screen, to track the 

planar position of the system. The objective of Direct Position Sensing is to be able to 

perform planar motion control of the system by actively tracking the display target on the 

digital display screen. By doing so, the associated machine errors of the device will not 

affect the path tracking of the system. In addition, Direct Position Sensing also eliminates 

the need of the kinematic model to estimate the planar position as Direct Position Sensing 

is capable to actively track the actual planar position based on the display target on the 

digital screen. Since Direct Position Sensing is actively monitoring the planar position of 

the system and not relying on the kinematic model, the error mapping and error 

compensation process can be eliminated. Therefore, the production cost of a part also can 



118 

 

be reduced because the machined part is more accurate, which reduces scrap attributable 

to machine error and improves overall product quality, reducing scrap and rework.  

In addition, this dissertation also shows a unique system integration process to 

integrate a motion controller with a slow sensor system. Although the feedback latency of 

using a computer vision system is a well known issue, the feedback intermittent behavior 

that exists in this system posed a new research challenge. Intermittent feedback actually 

occurs in many applications, but typically in shorter intermittent cycles. This research 

investigated the system that has long intermittent cycles, which causes fundamental 

control issues using traditional methods. This dissertation pioneers new approaches in 

control of long intermittent feedback systems with significant time delay behavior, and 

also evaluates the system integration approach to bridge a system that not only has delay 

feedback but also intermittent feedback to a motion controller using model based 

approach. 

Based on the trade-off analysis of the factor that affects the controllability and the 

accuracy of Direct Position Sensing is presented in Figure 7-1. If the high resolution is 

desired in the system, then the number of images that need to be processed increases 

which also increases the image processing time and also the accuracy of the tracking 

system. However, it affects the controllability of the system because when the image 

processing time of the system increases, and the time delay and intermittent cycles of the 

system also increases. As seen in this dissertation, when the time delay and intermittent 
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cycles increases, the controllability of the system decreases, detrimentally affecting 

tracking capability of the system. However, controllability of the system can still be 

achieved by finding the best balance between the controller frequency and the vision 

sensor frequency. 

 

 
Figure 7-1: Trade-off analysis. This diagram shows the trade-off analysis between the system resolution, accuracy 
image processing time and the controllability of the system  

 

7.2 Contributions 

Below are the academic contributions as a result of this research: 

1. Design of a novel active tracking position sensing system 

a. planar position of a device can be directly measured accurately without 

using a kinematic model 

b. eliminate the needs for error mapping and compensation that improve 

accuracy and are robust to time-dependent system changes 
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due to image averaging

Vision measurement error 

Prediction error

Optimal 
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Point
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2.  Integrated high-rate motion control system with low-rate vision acquisition and 

processing system. 

a. Design of a new type of feedback control architecture that controls a 

motion system with both time delay and long intermittent cycle behavior 

using a model based control algorithm 

b. Development of a control algorithm to address the delay and long 

intermittent cycles by using model based control in an augmented Smith 

Predictor architecture. 

c. Creation of an automated model residual corrector algorithm: Model input 

corrector, emulating a feedback controller to correct the plant model 

during the motion control process. 

d. Development of an estimation algorithm based on the historical data and a 

priori data to minimize the model residual  of the model based control 

during the intermittent period ,  enhancing the tracking performance of the 

Direct Position System  

e. Investigation of the types of possible model-based approaches to address 

this new feedback control system and also provide the feedback of the 

findings   

f. Recommendation of the image processing time so that the system response 

of the Direct Position Sensing system performance is compatible with the 

baseline system with continuous feedback  
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7.3 Future Work 

Most model-based control systems use only one fixed model in the controller that 

is obtained via offline system identification method. Thus, during the continuous 

operation of a system, the plant model might be varying with time which leads to the 

increment of model discrepancy, which directly affects the performance of the controller 

(See Appendix F). Thus, research related to investigate real time system identification 

either periodically or continuously to update the model for a model-based controller can 

be performed to enhance the controller performance[67]. 

In addition, this dissertation only uses a linear model to represent a servo motor. 

Hence, the plant model can be extended to incorporate other involved factors such as 

backlash and friction to further improve the model accuracy of the plant. As a first 

prototype of Direct Positing Sensing, the camera, digital screen and the embedded micro 

controller was limited in terms of processing power and capturing speed. As seen in the 

simulation and experiment results, the RMS position error of the tracking system 

increases with the time delay and intermittent cycles which is caused by the processing 

time of the computer vision system. Thus, further testing can be pursued to decrease the 

image processing time by improving the algorithm and also faster processor so that the 

delay and intermittent cycles of the system can be minimized. 
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APPENDIX A: Hardware Experiment Data for Smith 

Predictor 

 
100ms delay 

 
200ms delay 

 
300ms delay 

 
400ms delay 

 
500ms delay 

Hardware experiments results for delay feedback 
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50 intermittent cycles 

 
100 intermittent cycles 

 
150 intermittent cycles 

 
200 intermittent cycles 

 
250 intermittent cycles 

Hardware experiments results for intermittent feedback 
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100ms delay and 50 intermittent cycles 

 
200ms delay and 100 intermittent cycles 

 
300ms delay and 150 intermittent cycles 

 
400ms delay and 200 intermittent cycles 

 
500ms delay and 250 intermittent cycles 

Hardware experiments results for delay and intermittent feedback 
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APPENDIX B: Stability Analysis for Model Input Corrector  
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Figure B-1: Simplified block diagram from Modified Smith Predictor with model input 
corrector 
 
 

Variables Description 

C1 PI controller 
C2 P controller for Model input corrector  
G1 Plant 
G2 Plant’s model  

 

The goal of the stability analysis is to observe the stability of the Modified Smith 

Predictor when another controller C2 was integrated to the system as shown in Figure B-1 

and also obtain the range of the Kp2 gain of C2 before the system become unstable. The 
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plant, G1and the plant model, G2 in the continuous domain as shown in Eq. (A.1) and 

(A.2) were used in the simulation. C1 and C2 show the transfer function of the PI 

controller and the P-controller used in the model input corrector, as shown in Eq.(A.3) 

and (A.4) respectively.  
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The system block diagram of Figure B-1 was reduced to a single transfer function shown 

in Eq. (A.5) and the derivation of the reduced transfer function is shown below:   
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The Proportional and Integral gains of C1 were configured to be constant throughout this 

simulation, in which Kp=10, and Ki=1000. These gains were the same gains used in the 

simulation and hardware experiment of the Modified Smith Predictor without the model 
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input corrector that was tuned by trial and error. Thus, in order to obtain the range of Kp2 

of C2 before the system becomes unstable, the eigenvalues of the system based on 

Eq.(A.5) in term of Kp2 were computed as shown at Eq.(A.5) 
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Based on the control theory, the system is considered unstable, if the eigenvalues of the 

system are positive. Thus, by solving all the eigenvalues obtained in Eq. (A.5) equal to 

zero, Eq. (A.6) shows all the Kp2 values of the calculated results.  Thus, it can be 

concluded that the system is stable as long as Kp2 is smaller than 10.775  

 

 

2

2

2

2

2

2

2

2

10.77505245

10.77505641

12.09971022

10.77506829

10.85308889

12.09971022

261.5554759

3224.677420

p

p

p

p

p

p

p

p

K

K

K

K

K

K

K

K

=

=

=

=

=

=

=

=

 (A.6) 



135 

 

APPENDIX C: Hardware Experiments Data for Modified 

Smith Predictor  
 

Hardware experiment data for intermittent path prediction together with model input 
corrector 

 

 
ZOH 

 
ZOH with model input corrector 

Delay 100ms and 50 intermittent cycles for the ZOH case 

  
TOH 

 
TOH with model input corrector 

Delay 100ms and 50 intermittent cycles for the TOH case 
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FOH 

 
FOH with model input corrector 

Delay 200ms and 100 intermittent cycles for the FOH case 

 
SOH 

 
SOH with model input corrector 

Delay 200ms and 100 intermittent cycles for the SOH case 
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TOH 

 
TOH with model input corrector 

Delay 200ms and 100 intermittent cycles for the TOH case 
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APPENDIX D: Waveform of Baseline System with Continuous 

Feedback during Frequency Analysis  
 

Baseline 0.1Hz 

 
Baseline 0.5Hz 

 
Baseline 1Hz 

 
Baseline 2Hz 

 
 
 



139 

 

Baseline 3Hz 

 
Baseline 4Hz 

 
Baseline 5Hz 

 
Baseline 6Hz 
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Baseline 7Hz 

 
 

Baseline 8Hz 

 
Baseline 9Hz 

 
Baseline 10Hz 
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APPENDIX E: Smith Predictor with Intermittent Path 

Prediction using Interpolation Method and also Model Input 

Corrector for Frequency Analysis 
 

0.1Hz 

 
0.5 Hz 

 
1 Hz 
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2 Hz 

 
3 Hz 

 
4Hz 
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5 Hz 

 
6 Hz 

 
7 Hz 

 
 

8 Hz 
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APPENDIX F: Simulation vs. Hardware Results 

One of the reasons that the simulation results of the Modified Smith Predictor is 

dissimilar to the actual hardware experiment results is that the uncertainties and 

disturbance of the actual plant are not accurately modeled in the simulation environment. 

Since most of the disturbances are time-varying, it is difficult to simulate these conditions 

to accurately match the actual real time application. Although Gaussian noise is 

integrated in the simulation and separate stationary linear models are used for the plant 

and plant model representations, there will always be some other un-modeled elements of 

the actual plant missing in the simulation, restricting the simulation accuracy.  

To show the impact of the time varying disturbance of a system, a hardware 

experiment was perform by observing the leadscrew position displacement with respect 

to the changes in the leadscrew’s friction. The experiment measured the displacement of 

the leadscrew using the same input open-loop setpoints (20V peak-to-peak 0.5Hz sine 

wave) under three lubrication conditions: light, medium and heavy oil layer. Results as 

given in Figure F-1 show: 

1. the baseline leadscrew, with no lubricant added, had a 6mm peak-to-peak without 

much position drift,  

2. the light-lubed leadscrew had 8mm peak-to-peak with 1mm drift per period, 

3. the medium lubed leadscrew had 13mm peak-to-peak with 1mm drift per period, 

4. the heavy lubed leadscrew had 14mm peak-to-peak with 1.5mm drift per period. 
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Figure F-1: Open loop comparison of the motor movement. This graph shows the influence of the friction to the 
leadscrew displacement with the same input command: 20V peak-to-peak 0.5Hz sine wave 

 

 
Based on the results, it can be seen that the plant model will have to be updated at 

points in time in order to more closely represent the actual plant. This is because that the 

unmodeled elements of the plant, and also the time-varying disturbance will affect the 

output and behavior of the plant during the operation. This will cause the model 

discrepancy of the system to increase with time, degrading the path prediction and 

ultimate behavior of the Modified Smith Predictor.  On the other hand, the simulation of 

the Modified Smith Predictor used two different linear plant models to replicate the real 

time system of having model discrepancy. By doing so, the model discrepancy of the 

system is linear and predictable, giving the simulation results better accuracy than the 

hardware validation results.  Thus, a real time system identification algorithm has already 

been proposed for future work so that the plant model used in the real time application 

can be updated consistently to improve the controller performance especially when 

Model-based controller is used in the application.  
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