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Abstract

The necessity of more trustworthy methods for measuring the risk (volatility) of financial

assets has come to the surface with the global market downturn This dissertation aims to propose

sample arc length of a time series, which provides a measure of the overall magnitude of the one-

step-ahead changes over the observation time period, as a new approach for quantifying the risk.

The Gaussian functional central limit theorem is proven under finite second moment conditions.

With out loss of generality we consider equally spaced time series when first differences of the series

follow a variety of popular stationary models including autoregressive moving average, generalized

auto regressive conditional heteroscedastic, and stochastic volatility. As applications we use CUSUM

statistic to identify changepoints in terms of volatility of Dow Jones Index returns from January,

2005 through December, 2009. We also compare asset series to determine if they have different

volatility structures when arc length is used as the tool of quantification. The idea is that processes

with larger sample arc lengths exhibit larger fluctuations, and hence suggest greater variability.
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Chapter 1

Introduction

When the recent economic crisis hit markets world wide, most of the stock indices and asset

prices started to fluctuate rapidly. As a result, financial markets became hard to predict. Being able

to predict the behavior of stocks, plays a significant role when one invests in stock markets. Rapid

fluctuations indicate the instability of respective stocks and bring a huge risk on investments which

involve them. Latest bad developments in financial sector, raised eye brows regarding the methods

that have been using to measure the risk involved with an asset series for a quite some time.

Since the volatility of an asset series and the risk involved with it are positively related, a

measurement for volatility will always give an idea about the risk. Therefore modeling and measuring

volatility of financial assets is important to risk managers and is a necessary component of derivative

pricing.

In finance practitioners tend to focus on log returns, which is essentially the first difference

of log prices. That is, if asset price at time t is denoted by Pt, Yt = lnPt − lnPt−1 represents log

returns. It is known that most of the asset returns are relatively small and a Taylor expansion of

natural logarithm around “one” gives

Yt = ln (Pt/Pt−1) = ln

(
1 +

Pt − Pt−1
Pt−1

)
.

Based on the above form, clearly log returns, Yt can be approximated by (Pt − Pt−1) /Pt−1, which

is the percent return at time t. The famous Black-Scholes option pricing formula is developed based

on the assumption that {ln(Pt)} follows a Brownian motion. Log returns are the common base
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for most of the commonly used volatility models. In the field, log-returns are considered as the

baseline transformation since those tend to show a set of common characteristics, which are known

as stylized facts that asset prices do not reveal.

1. Leptokurtosis: asset returns have a density with heavier tails than those of the normal distri-

bution.

2. Persistence: large (small) absolute returns tend to be followed by large (small) absolute returns.

For more on stylized facts, see Taylor (2005).

Main results discussed in chapter 2 will be verified for three classes of univariate and multi-

variate versions of volatility models. Proper definitions of those models and certain conditions they

have to satisfy to hold some nice properties are stated in chapter 3. Therefore without going in the

direction of modeling volatility, we will directly move on to methods of measuring it.

Volatility is typically quantified in terms of fluctuations of the investment asset return, often

in terms of sample variances. Even though the asymptotic quantification of the sample variances

largely depends on finite fourth moments it is well known that most of the financial series do not

satisfy the above requirement.

There are two non-parametric volatility measures commonly used in the area of financial

time series, namely squared values and absolute values of log returns, {Yt}. Asymptotic theory

had been developed for partial sums n−1
∑
t=1 Y

2
t and/or n−1

∑n
t=1 |Yt| as n → ∞ and widely

employed in statistical inference for these quantities. In order to prove the Functional Central

Limit Theorem (FCLT) we always make an assumption on the existence of process moments to

some order. For example, if log returns follow a stationary generalized autoregressive conditional

heteroscedastic (GARCH) process, Berkes et al. (2004a) proved a FCLT for Y 2
t under the assumption

that E|Y0|8+δ <∞ using weak dependence concepts of Doukhan and Louhichi (1999). As stated in

Berkes et al. (2008), a result in Doukhan and Wintenberger (2007) implies a FCLT when E [|Y0|]4+δ <

∞ for some δ > 0. Giraitis et al. (2007) deduce a FCLT for the partial sums processes of {Y 2
t }

when E
[
Y 4
0

]
< ∞. In fact if log returns follow a GARCH process we can deduce a FCLT for

absolute values under finite second moment conditions
(
E [Y0]

2
<∞

)
using a FCLT proved for

{|Yt|δ} inBerkes et al. (2008), where δ > 0. Given the leptokurtosis of returns, it is desirable to

prove a FCLT under relaxed moment conditions. In fact, empirical evidence indicates that many

asset return series have finite second moments, but infinite fourth moments (e.g., Cont (2001)).
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As an effort to improve quantifying methods by overcoming previously stated higher moment

condition requirements, we propose the sample arc length of a time series as a new tool. Most

importantly, we prove the functional central limit theorem (FCLT) under finite second moment

conditions on first differences of the series.

Let {Xtj}nj=1 be a univariate time series observed at the time points t1 < t2 < · · · < tn.

The k-step-ahead sample arc length, which is denoted by An, is

Akn =

n∑
j=2

√
(tj − tj−k)

2
+
(
Xtj −Xtj−k

)2
.

With out loss of generality, for the simplicity we study the one step ahead arc lengths setting

ti − ti−1 ≡ 1. Under this simplification we can re-write one step ahead sample arc length as

A1
n =

n∑
j=2

√
1 + Y 2

t ,

where Yt = Xt−Xt−1, is the the first difference of the series {Xtj}nj=1. In this setup, the sample arc

length is a natural measure of the overall magnitude of the one-step-ahead series changes over the

observation period and An/n measures the average magnitude of the one-step ahead changes of the

series Xt. We can easily extend the definition of the arc length for a univariate series to a multivariate

time series. Suppose {Xt} represents a d− variate series given by Xt = (X1,t, . . . , Xd,t)
′. The one

step ahead sample arc length is now defined by,

n∑
j=2

√
1 + (X1,t −X1,t−1)

2
+ · · ·+ (Xd,t −Xd,t−1)

2
.

By observing the definition of sample arc lengths of {Xt} and comparing it with squared returns

{Y 2
t } and absolute values |Yt|, we can say though the quantity we propose react the variability as

same as the latter two the arc length provides a different measure of log prices than squared and

absolute returns.

We can point out several advantages of using arc length as a tool for measuring volatility.

First the arc length can be easily defined for unequally space time series. Though the results we

discuss here are only derived for equally spaced time series, they can be extended to unequally

spaced series as well. Second, our limit theory results hold for most of the parametric models for
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volatility that are commonly used in practice, including linear processes, GARCH processes, and

the stochastic volatility models of Davis and Mikosch (2009). Third, arc length methods handle

multivariate case well. Importantly, for multivariate series, components do not need to follow a

common model for our results to hold. For example, one component could follow an autoregressive

moving-average (ARMA) process and another could be generated by a GARCH recursion. Not only

that but also the independence of those components is not required. Our results hold even when

two or more components are driven by the same innovation sequence.

The rest of the dissertation proceeds as follows. In Chapter 2 we state our main results,

which are the FCLT theorem for the sample arc length under different scenarios. Chapter 3 discusses

classes of model that follow main results. In addition to volatility models we also discuss some of

their probabilistic features that are being used in the context. Chapter 4 dedicates for applications

of sample arc length as measure of risk. We illustrate how the asymptotic theory can be applied

to real world data, utilizing arc length as the tool to identify volatility shifts and compare assets

in terms of risk. In order to show how well arc length behaves, we compare arc length results with

those obtained using squared and absolute values. Some brief simulations show how the methods

perform for finite samples. In Section 5.1 we prove all theorems stated in Chapter 2 under general

dependence assumptions on the log return processes. Section 5.2 verifies conditions for Theorems

stated in Chapter 2, when log-returns follow models listed in Chapter 3.

4



Chapter 2

Results

In this section we state our main results; the functional central limit theorems for sample arc

lengths under finite second moment conditions. We will mainly present conditions that can be easily

checked and hold for most of the volatility models commonly used in practice. The asymptotics we

state here can be applied for linear, ARMA, GARCH and stochastic volatility type processes.

Let {Xt} be an observable time series and {Yt} be the first difference of it. We assume

that {Yt} is strictly stationary, but {Xt} is not necessarily stationary. The partial sums for mean

corrected arc length up to time np are

Sn(p) = n−1/2
∑

1≤i≤np

(ηi − E[η0]), p ∈ [0, 1] ,

where ηt =
√

1 + ||Yt||2 and || · || is the usual Euclidean norm.

The central limit theorem for these partial sums is derived assuming moment conditions of

ηt. Most of the time series models are written in terms of a sequence of random innovations Zt. The

sufficient conditions for the weakly convergence of partial sums of such models are given below.

Suppose that {Yt} is causal in terms of the innovation sequence {Zt}:

Yt = g(Zt,Zt−1, . . .) (2.1)

for some function g. To prove an arc length central limit theorem, some assumptions on the depen-

dence structure of {Zt} need to be imposed. Let Fk = σ(Zk,Zk−1, . . .) and observe that Yt ∈ Ft.
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Assumptions will be phrased in terms of the relationship between Gt+h = σ(Zt+h,Zt+h+1, . . .) and

Ft. For processes satisfying (2.1), the two assumptions below will be sufficient for our work. Define

the mth order truncation

Y
(m)
t = g(Zt,Zt−1, . . . ,Zt−m,0,0, . . .). (2.2)

Assumption 1 The process {Zt} is φ-mixing with
∑∞
h=1 φ

1/2
h <∞. Here,

sup
A∈Gt+h,B∈Ft

|P (A|B)− P (A)| ≤ φh.

Assumption 2 With Qm = ||Yt||2 − ||Y(m)
t ||2,

∑∞
m=0E[|Qm|]1/2 <∞.

Let D[0, 1] denote all real-valued functions on the domain [0, 1] that are right-continuous

and have left-hand limits, equipped with the usual Skorohod topology. Weak convergence in this

space is denoted by
D[0,1]→ . Our first result is now stated; its proof is presented in the Chapter 5.

Theorem 1 Suppose that {Xt} is a series with stationary first differences {Yt} satisfying (2.1)

and Assumptions 1 and 2. If E[||Yt||2] <∞, then the sum in τ2 = Var(η0) + 2
∑∞
k=1 Cov(η0, ηk) is

absolutely convergent and {Sn(p)} D[0,1]→ τ{W (p)}, where {W (p)}1p=0 is a standard Brownian motion.

In practice, it is not reasonable to assume that all components in a multivariate series follow

the same type of a model. For example we may find cases that one component follows a GARCH

type model while another component follows an ARMA type model. In order to accommodate such

situations, assume that ith component of Yt, denoted by Yi,t, satisfies

Yi,t = gi(εi,t, εi,t−1, . . .). (2.3)

Define the mth order truncation by Y
(m)
i,t = gi(εi,t, εi,t−1, . . . , εi,t−m, 0, 0, . . .). While an assumed

model might satisfy both (2.1) and (2.3), εi,t 6= Zi,t in most typical cases.

Assumption 3 The process {εt} is φ-mixing with
∑∞
h=1 φ

1/2
h <∞.

Assumption 4 For Qm,i = Y 2
i,t −

(
Y

(m)
i,t

)2
, one has

∞∑
m=0

√
E[|Qm,i|] <∞, i = 1, 2, . . . , d.

6



As condition (2.3) is a special case of (2.1) and Assumption 4 implies Assumption 2, the

following result is obtained.

Corollary 1 Suppose that {Xt} has stationary first differences {Yt} satisfying (2.3) and Assump-

tions 3 and 4. If E[||Yt||2] < ∞, then the sum in τ2 = Var(η0) + 2
∑∞
k=1 Cov(η0, ηk) is absolutely

convergent and {Sn(p)} D[0,1]→ τ{W (p)}, where {W (p)}1p=0 is a standard Brownian motion.

Remark 1 In Corollary 1, the innovations {εt} can have highly dependent components. For exam-

ple, when d = 2, the result holds even if ε1,t = ε2,t.

Remark 2 The main point of Corollary 1 is that only marginal models for the components of the

vector-valued process are needed to obtain a FCLT for multivariate arc lengths. Under general

conditions, if the FCLT holds for each component arc length, then a FCLT for arc lengths of the

vector process also holds.

The asymptotic distribution of the sample arc length can be found when there exists long-

range dependence which are also called long memory processes, using the central limit theorems

stated above for stationary processes. When innovations are independent and identically distributed

(iid), we can relax Assumption 2 to accommodate some type of long memory processes. Though the

result given below is stated for univariate series, it can be extended to multivariate series. Let {Xt}

be a univariate time series with Yt = Xt −Xt−1 satisfying

Yt = g(Zt, Zt−1, ...), (2.4)

where {Zt} is iid. Define Y
(m)
t = g(Zt, . . . , Zt−m, 0, 0, . . .) and cm = E[|Y 2

0 − (Y
(m−1)
0 )2|]. The

following result is proven in the Appendix.

Theorem 2 Suppose that {Xt} has stationary first differences {Yt} satisfying (2.4). If E[Y 2
t ] <∞

and
∑∞
m=1

√
cm/m <∞, then the sum in τ2 = Var(η0)+2

∑∞
k=1 Cov(η0, ηk) is absolutely convergent

and {Sn(p)} D[0,1]→ τ{W (p)}, where {W (p)}1p=0 is a standard Brownian motion.

More often in applications, it may be desirable to compare the risk of two asset series. The

result we state below focuses on the joint asymptotic distribution of the sample arc lengths. Even

though it is given for univariate components of a multivariate series, it can be easily extended to

any set components.
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Let {Xt} be a d-dimensional series with stationary first differences {Yt} satisfying (2.1).

The sample component arc lengths involve

ηi,t =
√

1 + Y 2
i,t, i = 1, 2, . . . , d. (2.5)

For i = 1, 2, . . . , d, let

S(i)
n (p) = n−1/2

∑
1≤t≤np

(ηi,t − E[ηi,0]), p ∈ [0, 1]. (2.6)

Theorem 3 Suppose that {Xt} has stationary first differences {Yt} satisfying (2.3) and Assump-

tions 3 and 4. If E[||Yt||2] < ∞, then for Sn(p) = (S
(1)
n (p), . . . , S

(d)
n (p))′, the sum in τ2i =

Var(ηi,0)+2

∞∑
k=1

Cov(ηi,0, ηi,k) is absolutely convergent for i = 1, 2, . . . , d and {Sn(p)} ⇒M{W(p)},

where ⇒ denotes weak convergence, {W(p)}1p=0 is a d-dimensional standard Brownian motion, and

M is a d× d matrix with ith diagonal component τ2i .

Proofs for all the theorems stated above will be given in Appendix 5.1. In Chapter 3 we

will discuss classes of univariate and multivariate models commonly used when volatility is modeled

in practice.

8



Chapter 3

Volatility Models

In this section we will consider some of the univariate and multivariate models that are being

commonly discussed in literature. Let {Pt}nt=1 be asset prices and {Xt}nt=1 be the log transformed

prices Xt = ln(Pt). The volatility models given below are defined in terms of the log returns

{Yt} = {ln(Pt)− ln(Pt−1)}.

3.1 Volatility Models - Examples

The conditions stated in Theorem 1 can be verified for all the models presented below.

Proofs are provided in Section 2 of Chapter 5. Model types we discuss in the context coupled with

their proper definitions are given below.

3.1.1 Univariate models

First the arc length of {ln(Pt)} for univariate series is taken into account.

Example 1 If {Pt} follows geometric Brownian motion or Xt = ln(Pt) is a causal ARIMA(p, 1, q)

or ARMA(p, q) series with independent and identically distributed zero-mean innovations {εt} having

a finite variance, then {Yt} is a linear process in that

Yt =

∞∑
j=0

ψjεt−j ,

9



with ψ0 = 1 and |ψj | ≤ cγj for some constants c > 0 and 0 ≤ γ < 1 (see Brockwell and Davis

(1991)).

To make things more clear and organized we provide the definitions of ARIMA(p, 1, q),

ARMA(p, q) and geometric Brownian motion below.

Definition 1 (Brockwell and Davis (2002))

{Xt} is an ARMA(p, q) process if Xt is a stationary and if for every t

Xt − φ1Xt−1 − · · · − φt−p = εt + θ1εt−1 + · · ·+ θqεt−q, (3.1)

where εt ∼WN
(
0, σ2

)
and the polynomials φ(·) = (1− φ1z − · · · − φpzp) and

θ(z) = (1 + θ1z + · · ·+ θpz
p) have no common factors.

Definition 2 (Brockwell and Davis (2002))

{Xt} is an ARIMA(p, 1, q) process if Yt = Xt −Xt−1 is a causal ARMA(p, q) process.

Definition 3 (Ross (2007))

If {Yt} is a Brownian motion process, then the process {Xt} defined by,

Xt = exp{Y }

is called a geometric Brownian motion.

Example 2 Suppose that {Yt}∞t=−∞ follows a stationary GARCH(p, q) model Bollerslev (1986) in

that

Yt = σtεt, (3.2)

σ2
t = ω +

∑
1≤i≤p

αiY
2
t−i +

∑
1≤j≤q

βjσ
2
t−j , (3.3)

where

ω > 0, αi ≥ 0, 1 ≤ i ≤ p, βj ≥ 0, 1 ≤ j ≤ q. (3.4)

The conditions assumed in Theorem 2.1 can now be verified using arguments similar to those in

Berkes et al. (2008).
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Example 3 Suppose that {Yt} follows the stochastic volatility process of Davis and Mikosch (2009);

that is,

Yt = σtεt, t ≥ 1, where σt = exp


∞∑
j=0

ψjνt−j

 .

Here, {σt}∞t=1 is independent of the iid noise sequence {εt}∞t=1. Also {ψj}∞j=0 is a sequence of

absolutely summable deterministic coefficients with ψ0 = 1 and {νt}∞t=−∞ is an iid sequence of zero

mean random variables with a finite variance. This model is more general than the stochastic variance

model of Harvey et al. (1994). We assume that the linear process
∑∞
j=0 ψjνt−j is generated from

an ARMA recursion so that |ψj | ≤ cγj for some c > 0 and γ ∈ [0, 1). Without loss of generality,

we assume that c < 2 (one can always increase γ towards unity to enforce this supposition). To use

Theorem 1, one needs E[Y 2
0 ] <∞. This entails assuming E[etν0 ] <∞ for all t with |t| ≤ 2.

3.1.2 Multivariate models

The univariate models above can be extended to d-dimensional settings in various ways.

More information about the multivariate models and the verification of conditions of Theorem

2.1 can be found in Section 5.2. Throughout, {Yt} is a d-variate series with components Yt =

(Y1,t, . . . , Yd,t)
′.

Example 4 Suppose that each component of {Yt} follows any of the univariate models previously

considered. By Corollary 1, the sample arc lengths of {Xt} satisfy a FCLT whenever the random

shock vector sequence satisfies Assumption 3.

Example 5 Let {Yt} be a stationary and causal multivariate AR(p) process satisfying

Yt −Φ1Yt−1 − · · · −ΦpYt−p = Zt, (3.5)

where {Zt} is d-variate white noise (the components need not be independent). We can rewrite the

equation 3.5 in the more compact form given by

Φ(B)Yt = Zt, {Zt} ∼WN(0,Σ),

where

Φ(z) = I− Φ1z − · · · − Φpz
p.

11



Then the sample arc lengths of {Xt} satisfy a FCLT.

The modern literature has now developed several types of multivariate GARCH(p, q) pro-

cesses. Bauwens et al. (2006) surveys the topic. Our next example considers the CCC GARCH(p, q)

process proposed in Bollerslev (1990).

Example 6 A d-variate series {Yt} is called a CCC-GARCH(p, q) process if it satisfies

Yt = H
1/2
t Zt (3.6)

and

Ht = DtRDt = (ρi,j
√
σi,i,tσj,j,t), (3.7)

where Dt = Diag(σ
1/2
1,1,t, . . . , σ

1/2
d,d,t) and σi,i,t follows a univariate GARCH(p, q) model; i.e.,

σi,i,t = ωi +
∑

1≤j≤p

αi,jY
2
i,t−j +

∑
1≤j≤q

βi,jσi,i,t−j , (3.8)

and R = (ρi,j)
d
i,j=1 is a symmetric positive definite matrix with ρi,i = 1 for all i = 1, . . . , d. Here,

Zt = (Z1,t, . . . , Zd,t)
′ is a d-variate random vector with E[Zt] ≡ 0 and Var(Zt) ≡ Id, where Id is the

d-dimensional identity matrix. Then the sample arc lengths of {Xt} satisfy a FCLT.

As for multivariate GARCH processes, the modern literature contains several multivariate

stochastic volatility models. The model below is more general than that proposed by Harvey et al.

(1994) and studied in Asai et al. (2006).

Example 7 For an iid sequence {Zt}, suppose {Yt} obeys Yt = H
1/2
t Zt, with H

1/2
t =

Diag(σ1,t, . . . , σd,t). Also let σi,t = exp{Wi,t}, where the d-variate process {Wt} follows a causal

vector autoregression. Then the sample arc lengths of {Xt} satisfy a FCLT.

3.2 Properties of Volatility Models

In this section we discuss some of the properties those models need to be satisfied in order to

hold conditions for Theorem 1. We will discuss some stationary conditions and causality conditions

for both univariate and multivariate versions of models here.

12



We start our review with the definition of strictly stationarity and weak stationarity of a

sequence.

Definition 4 Brockwell and Davis (2002)

(a) Strictly stationary sequence

A sequence {xt : t ∈ Z} is strictly stationary if (x1, . . . , xn) and (x1+h, . . . , xn+h) have the same

joint distributions for all integers h and n > 0.

(b) Weakly stationary (stationary) sequence

A sequence {xt} is weakly stationary if,

(i) E [xt] = µx(t) is independent of t,

and

(ii) γx(t+ h, t) = Cov (xt+h, xt) is independent of t for each h.

For a GARCH(p, q) process the necessary and sufficient conditions for the existence of a

strictly stationary solution can be found in Berkes et al. (2008). Before stating those conditions we

will represent the squared processes
(
Y 2
t

)
and

(
σ2
t

)
of GARCH(p, q) process in a form of a stochastic

recurrence equation, given by

Qt = AtQt−1 + Bt, (3.9)

where

Qt =
(
σ2
t+1, . . . , σ

2
t−q+2, Y

2
t , . . . , Y

2
t−p+2

)′
,

and defining Λt =
(
β1 + α1ε

2
t , β2, . . . , βq−1

)
∈ Rq−1, Ψt =

(
ε2t , 0, . . . , 0

)
∈ Rq−1, α (α2, . . . , αp−1);

At =



Λt βq α αp

Iq−1 0 0 0

Ψt 0 0 0

0 0 Ip−2 0


.

In At, an identity matrix of size j is defined by Ij.A norm of a matrix A of size d× d is given as

||A|| = sup
{
||Ax||d : x ∈ Rd and ||x||d = 1

}
,

13



where ||.||d is the Euclidean norm in Rd. The vector Bt of equation 3.9 is defined as Bt =

(α0,0, . . . ,0)
′

. We also say a solution to (3.2) and (3.3) is nonanticipative if Yt is independent

of σ({εj, j > t}) (See Berkes et al. (2008)). A theorem formulated based on the result of Bougerol

and Picard (1992) for the strictly stationarity of a GARCH(p, q) process is given in Berkes et al.

(2008) and we state it as follows.

Theorem 4 Suppose that (3.4) holds, E log ||A0|| < ∞, and {εn,n ∈ Z} are independent, and

identically distributed random variables. Then GARCH(p, q) process as defined in 3.2 and 3.3 has a

unique, nonanticipative, stationary and ergodic solution if and only if

γL = inf
0≤n<∞

1

n+ 1
E log ||A0A1 . . .An|| < 0.

Note that γL is the top Lyapunov exponent of the sequence An.

Berkes et al. (2008) recovers a result of Bollerslev (1986) and Bougerol and Picard (1992)

that shows a strictly stationary solution to (3.2) and (3.3) when E[Y 2
0 ] <∞ exists if and only if

∑
i≤p

αiEε
2
0 +

∑
i≤q

βi < 1.

Note that the stochastic volatility model defined in Example 3, will have a stationary solution

when the ARMA recursion that generates the linear process has a stationary solution.

In addition to stationarity, we assume that ARMA processes stated in examples are causal.

Now we present the definition of a cuasal ARMA process.

Definition 5 (Brockwell and Davis (1991)) An ARMA(p, q) process defined in (3.1) is said to be

causal (or more specifically to be a causal function of {εt}) if there exist a sequence of constants

{Ψj} such that
∑∞
j=0 |Ψj | <∞ and

Yt =

∞∑
j=0

Ψjεt−j, t = 0,±1, . . . (3.10)

Following theorem given in Brockwell and Davis (1991) gives the necessary and sufficient condition

for an ARMA process to be causal.

Theorem 5 Let {Yt} be an ARMA(p, q) process for which the polynomials φ(·) and θ(·) have no

common zeroes. Then {Yt} is causal if and only if φ(z 6= 0) for all z ∈ C such that |z| ≤ 1.

14



In multivariate setting, stationarity and causality of an AR(p) process is also defined in a

similar fashion.

Definition 6 Brockwell and Davis (2002) The d-variate series {mathbfXt} is (weakly) stationary

if

• µX(t) is independent of t, and

• ΓX(t+ h) is independent of t for each h

where

µX(t) = E[Xt] =



µt1

µt2
...

µtd


and

ΓX(t+ h, t) =


γ11(t+ h, t) . . . γ1d(t+ h, t)

...
. . .

...

γd1t+ h, t . . . γdd(t+ h, t)

 .
Here for all i, j = 1, 2, . . . , d, γij(t+ h, t) = Cov (Xt+h,i, Xt,j).

As defined for a univariate series, we can define a causal multivariate AR(p) process and provide the

condition it need to satisfy to be a causal process as follows.

Definition 7 Brockwell and Davis (2002) An AR(p) process defined in (3.5) is causal, or a causal

function of {Zt}, if there exist matrices Ψj with absolutely summable components such that

Yt =

∞∑
j=0

ΨjZt−j for all t.

Causality is equivalent to the condition det Φ(z) 6= 0 for all z ∈ C such that |z| ≤ 1.

Some real world applications and simulation results, using sample arc lengths as the tool of measuring

the volatility are presented in next chapter. We also compare arc length results with squared and

absolute values.
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Chapter 4

Applications

Sample arc length can be used in may applications that involves with risk and volatility.

Detecting volatility shifts, comparing and clustering time series for similarities in terms of risk are

some of those, we discuss in this section. In addition to real world scenarios, we also present some

simulations studies to illustrate how well sample arc length responds for infinite fourth moment

conditions and variety model classes compared to squared and absolute values.

4.1 Changepoint Detection

Detecting time points that changes the market volatility is highly important in finance.

Specifically the goal here is to identify points where the volatility changes from high to low or

vise versa. We can find some parametric and non-parametric methods that have been developed

regarding this subject in literature. Berkes et al. (2004b) propose Gaussian likelihood methods to

detect changepoints in GARCH(p, q) processes while Mercurio and Spokoiny (2004) use methods

based on locally adaptive volatility estimate.

On the other hand non-parametric methods are proposed based on cumulative sum (CUSUM)

or moving sum procedures. Suppose that {Vt}nt=1 is any given sequence. The CUSUM statistics is

defined by

Cn = max
1≤k≤n

∣∣∣∣∣∣
∑

1≤i≤k

Vi −
k

n

∑
1≤i≤n

Vi

∣∣∣∣∣∣ .
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Suppose that the partial sums of {Vt} satisfy a Gaussian FCLT:

{
n−1/2

np∑
t=1

(Vt − E[V ])

}
D[0,1]→ τV {W (p)},

where {W (p)}1p=0 is a standard Brownian motion. Here, τV := limn→∞ nVar(n−1
∑n
t=1 Vt) is n

times the long-run variance of the stationary series {Vt}. By the continuous mapping theorem,

Cn
τ̂V n1/2

D→ sup
0≤p≤1

|B(p)|,

where {B(p)}1p=0 is a Brownian bridge and τ̂V is any consistent estimator of τV .

For a finite n, one estimates τV with

γV (0) + 2

n−1∑
h=1

(1− h/n)γV (h),

where γV (h) is the autocovariance of {Vt} at lag h. Unfortunately, the usual estimator

γ̂V (h) =
1

n

n−h∑
t=1

(Vt − V )(Vt+h − V )

is biased, markedly so for large h. Hence, the sum is truncated at the greatest integer less than or

equal to 3
√
n:

τ̂2V =

γ̂V (0) + 2

[ 3
√
n]∑

h=1

(1− h/n)γ̂V (h)

 .
This estimator is consistent and avoids excessive bias with large lags; Berkes et al. (2009) discusses

this and other truncation schemes.

We consider Dow Jones Index (DWJ) daily closing values from January 1, 2005 through

December 31, 2009 to detect changepoints in volatility if there exists any. Figure 4.1 shows the daily

log prices (left) and daily log-returns (right). After applying the base transformation to generate

log-returns the market behavior becomes more evident. This time period is particularly chosen since

it represents a time interval before and after the rescission hit the US markets. The impact of the

economic crisis can be clearly seen through the high volatility of the market in the last quarter of

2008. Visual inspection of the figure 4.1 suggests several changepoints in volatility mainly in the

second half of the series.

17



 

Time

Lo
g 

P
ric

es

2005 2006 2007 2008 2009 2010

8.
8

9.
0

9.
2

9.
4

 

Time

Lo
g−

R
et

ur
ns

2005 2006 2007 2008 2009 2010

−
0.

05
0.

00
0.

05
0.

10
Figure 4.1: Log-Transformed Prices (Left) and Log-Returns (Right) of Dow Jones Index values.

In order to accept of deny this suggestion statistically, the CUSUM tests were applied to

the sample arc lengths vt =
√

1 + y2t , absolute returns vt = |yt|, and squared returns vt = y2t . In all

cases, we focused on values of τ̂−1V n1/2Cn and any number of it larger than the 95th percentile of

max0≤p≤1 |B(p)| suggests statistically significant volatility changes. The time where Cn is maximized

is the estimated changepoint time.

Figure 4.2 presents CUSUM test statistics for the series from January 2005 through Decem-

ber 2009, in which arc length is considered as the tool of quantifying volatility. Here, vt =
√

1 + y2t

and yt is the observed log return. The horizontal line marks the 5% significance threshold. The max-

imum value of the test statistic is found as 2.321, which is highly significant (p-value = 4.181×10−5).

The corresponding point, that is considered as the time where volatility shifts significantly is iden-

tified as July 23, 2008.

We now divide the series into two about the changepoint recorded on July 23, 2008. This

results two segments of series, the first consists of 894 observation recorded from January 1, 2005

— July 23, 2008 and the second consists of 364 observations from July 24, 2008 — December 31,

2009. Then we apply the CUSUM test separately on both series to determine if there exist any

changepoints. Figure 4.3 plots those test statistics and the 5% significance thresholds.

In order to determine if any multiple changepoints are present, we subsegment the series and

sequentially apply the CUSUM test to the subsegments. Even though this is not the true multiple
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Figure 4.2: DWJ CUSUM statistics from Jan 1, 2005 — Dec 31, 2009; vt =
√

1 + y2t .

changepoint identification scheme, this type of methods often perform well. This segmentation and

application of CUSUM test is continued until no statistically significant changepoint can be detected

in those subsegments. The results of this process are presented in Table 4.1.

We also applied the CUSUM test to both absolute returns vt = |yt| and the squared returns

vt = y2t to compare those results with ones we observed using arc length. Table 4.1 shows all

those those statistically significant changepoints. Both arc length and squared returns indicates four

changepoints on exactly same time points. But interestingly arc length produces slightly smaller

p-value than square returns provides. This is an indication that arc length may be more powerful

than squared returns here. On the other hand CUSUM test based on absolute returns suggests seven

changepoints locates at completely different dates compared to time points arc length and squared

returns indicate. This behavior might be a result of the rapid fluctuations of absolute returns unlike

arc length or squared returns when quantity is near zero. In fact, for large yt, arc length and absolute
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Figure 4.3: CUSUM statistics for sub-sample 1 (left) and sub-sample 2 (right).

CUSUM summands are essentially the same.

Table 4.1: Changepoints and p-values for arc length, squared returns, and absolute returns.
Changepoint Date Arc Length Squared Returns Absolute Returns

7/25/2006 0.009
2/27/2007 0.037
6/5/2007 0.0232
7/10/2007 5.551× 10−9 5.554× 10−9

10/30/2007 2.770× 10−8

7/23/2008 4.181× 10−5 4.212× 10−5

9/15/2008 1.878× 10−5

3/24/2009 0.00123 0.00124
4/22/2009 0.0216
7/16/2009 0.0007 0.0007
7/24/2009 0.0227

We proved the FCLT for arc length under assumption of finite second moments. In contrast,

this result hold for squared returns only under finite fourth moment conditions. When fourth

moments are infinite, the FCLT for squared returns falls apart and the
√
n normalization for the

squared return CUSUM statistic does not lead to a weak limit. The tail behavior of the underlying

distribution determines the correct normalization. In practice it is difficult to infer the tail behavior

by observing a set of data. Hence practitioners often misapply the
√
n normalization though heavy

tails are present.

A simulation study is conducted to demonstrate how the power of the CUSUM test varies
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depend on the moment conditions We draw n iid series from a Pareto distribution with a shape

parameter of three and a unit scale parameter. These conditions make sure that the series has finite

second moments but infinite fourth moments. In order to introduce an artificial changepoint, we

placed a scale shift at the center for each series n. That is, {Zt} is a simulated as iid Pareto and

Yt =

 Zt for t ≤ n/2

1.1Zt for t > n/2
.

Ten thousand independent series are generated and the empirical power of the CUSUM test

is computed. The results are given in Figure 4.4 and clearly it shows that both arc length and

absolute returns outperform squared returns.
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Figure 4.4: Power of the CUSUM tests for Pareto data.

We also carried out another simulation study to compare the Type I error of CUSUM test

considering four different model types. Specifically, we consider log returns are generated from
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the following processes: {Yt} is iid N(0, 1); {Yt} is a stationary Gaussian ARMA(1, 1) series with

AR coefficient 0.3 and moving-average coefficient 0.2; {Yt} is a stationary GARCH(1, 1) series with

ω = 0.01, α = 0.3, and β = 0.2; Stochastic volatility with ln(σt) being a stationary Gaussian ARMA

(1, 1) series with AR coefficient 0.3 and moving-average coefficient 0.2. Ten thousand independent

series of length n = 250 were generated from each of the above processes and the empirical probability

of Type I error with test size α = 0.05 was computed. The length n = 250 was chosen since it roughly

corresponds to one year of daily stock prices. In all models, the iid sequences driving the model

errors were generated from the normal family. The simulation results in Table 4.2 indicate that all

CUSUM tests are conservative. This phenomenon has been observed in other studies — CUSUM

tests based on asymptotic quantiles coming from the supremum of the Brownian bridge tend to be

conservative Robbins et al. (2011).

Table 4.2: Probability of Type I error for the CUSUM tests.
Model Type Arc Length Squared Returns Absolute Returns
IID Normal(0, 1) 0.0316 0.0296 0.0334
ARMA(1, 1) 0.0370 0.0336 0.0392
GARCH(1, 1) 0.0346 0.0332 0.0431
Stochastic Volatility 0.0255 0.0127 0.0273

The empirical power of the CUSUM test is also computed based on a simulation of ten

thousand series of size n = 250. This study is conducted based on the same four scenarios stated

above to investigate how arc length perform compared to square returns and absolute returns. We

multiplied the simulated data by 1.5 for t > n/2 to make sure there is a changepoint at time

n/2. Table 4.3 displays respective power values. Based on all the findings, it appears that arc

length methods outperform methods based on squared returns. Arc length methods also perform

comparatively well against absolute returns methods.

Table 4.3: Power of the CUSUM tests.
Model Type Arc Length Squared Returns Absolute Returns
IID Normal(0, 1) 0.9594 0.9560 0.9457
ARMA(1, 1) 0.8718 0.8584 0.8557
GARCH(1, 1) 0.6287 0.6106 0.7106
Stochastic Volatility 0.1241 0.0348 0.1426
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4.2 Stock Risk Comparisons

In this subsection we demonstrate how Theorem 3 can be implemented to compare the risk

of two series asset prices. Though we compare only individual stocks, the same procedure will be

used when two set of portfolios are compared. As a result of the Theorem 3 we state the following

result as a corollary.

Corollary 2 Suppose the d = 2 dimensional series {Xt} has first differences {Yt} satisfying (2.3)

and Assumptions 3 and 4. If E[||Yt||2] < ∞, then S
(1)
n (1) − S

(2)
n (1) has an asymptotic normal

distribution with zero mean and variance τ2 = Var(ηt)+2
∑∞
k=1 Cov(η0, ηk), where ηt =

√
1 + Y 2

1,t−√
1 + Y 2

2,t.

As one of the applications we consider British Petroleum (BP), Exxon Mobil (Exxon), and

Royal Dutch Shell (Shell) stock prices from January 01, 2006 — December 31, 2006. The year

2006 is chosen because CUSUM test is unable to detect any changepoint via any method when it is

applied to above three return series.

Figure 4.5 displays log-return for BP, Exxon, and Shell in year 2006. It is hard to see a clear

difference between three plots by the naked eye. In order to make a statistical conclusion we used

Corollary 2 and compare them pairwise for any differences in volatility. The results are listed in

Table 4.4. Making our belief true, it appears that none of the companies have significantly different

volatilities at the 5% level of significance; BP and Exxon, in fact, had highly similar volatilities.

Table 4.4: Risk comparison of oil companies.
Comparison P-Value
BP vs Exxon 0.950
Exxon vs Shell 0.175
BP vs Shell 0.069

As another application we now consider three internet technology companies Google, Intel,

and Apple from January 01, 2007 — December 31, 2007. The CUSUM test indicates these three

return series are free of changepoints for year 2007 via any method. Time plots corresponding to

three companies are shown in Figure 4.6.

Applying the Corollary 2 we compared them pairwise to investigate if there exist any statis-

tical difference in terms of volatility. Visually, both Google and Intel seems to behave similarly, while

Apple indicates a different behavior compared to other two. The results based on the hypothesis test
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Figure 4.5: Log Returns of (a) BP, (b) Exxon, and (c) Shell from 1/1/2006 — 12/31/2006.

are listed below in Table 4.5. The p-values confirm that Google and Intel have similar volatilities

while that of Apple is significantly different.

Table 4.5: Risk comparison of internet technology companies.
Comparison P-Value
Google vs Intel 0.4176
Google vs Apple 0.00002
Intel vs Apple 0.00087
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Figure 4.6: Log Returns of (a) Google, (b) Intel, and (c) Apple from 1/1/2007 — 12/31/2007.

4.3 Discussion and Future Work

In this work we accomplished several things worth mentioning. We introduce sample arc

length as tool for quantifying the magnitude of k-step-ahead changes of a stationary time series.

We also present general asymptotic theory for the sample arc length for stationary data under finite

second moment conditions. Lastly we verify general conditions required to make sure Gaussian

asymptotics hold for popular models including, linear, ARMA, GARCH and stochastic volatility

type processes.
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On the other hand arc length can be applied on any time scale. It can also be adapted to

non-equally spaced time series and unlike other tools, arc length is a natural measure for multivariate

time series.

When asymptotics for sample arc length are discussed we also proved the FCLT theorem

for long memory processes with independent and identically distributed (iid) innovations, it does

not cover the general family of these type of models. It is still a challenging and an open problem

to relax the iid innovation assumption. This could lead the arc length to a measure of risk free of

model assumptions.

Though we used the arc length to detect changepoints exist in a historical series, it has

not been applied in identifying changes occur at real time. Adopting the arc length to detect

changepoints at real time stand as another avenue of extending this work in the future.
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Chapter 5

Proofs

Here we prove the results in this dissertation.

5.1 Proof of the Main Theorems in Chapter 2

This section proves the theorems stated in Section 2. We start with a lemma that is

repeatedly used below.

Lemma 1 Given two positive random variables U and V with finite variances,

E[(
√

1 + U −
√

1 + V )2] ≤ E[|U − V |].

Proof(Lemma 1) Observe that

(√
1 + U −

√
1 + V

)2
≤

∣∣∣(√1 + U −
√

1 + V
)(√

1 + U +
√

1 + V
)∣∣∣

≤ |U − V |.

Taking expectations proves the lemma. Theorem 20.1 of Billingsley (1968) is used as the foundation

when proving both Thorem 1 and 3 of this work. Hence we state Billingsley’s functional central

limit theorem beow.

Theorem 6 Billingsley (1968) Suppose that {εn} is ϕ mixing with
∑
ϕ
1/2
n < ∞ and that the

ηn = f (. . . , εn−1, εn, εn+1 . . .) have mean 0 and finite variance. Suppose further that there ex-
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ist random variables of the form ηln = f (εn−l, . . . , εn, . . . , εn+l) such that
∑
ν
1/2
l < ∞, where

νl = E
{
|η0 − ηl0|2

}
. Then the series

σ2 = E
{
η20
}

+ 2
∑∞
k=1E {η0ηk}

converges absolutely; if σ2 > 0 and Xn is defined by Xn = 1
σ
√
n
S[nt] (ω), then

Xn
D→W

where Sn = η1 + . . .+ ηn and W is a standard Brownian motion.

Now we can prove Theorem 1.

Proof(Theorem 1)

Let η
(m)
t =

√
1 + ||Y(m)

t ||2, where Y
(m)
t is given in (2.2). Since finite variances of {Yt}

and Assumption 1 hold, the result follows from Theorem 21.1 of Billingsley (1968) if we can show

that
∞∑
m=1

E[|η0 − η(m)
0 |2]1/2 <∞. (5.1)

Letting U = ||Y0||2 and V = ||Y(m)
0 ||2, Lemma A.1 and Assumption 2 complete our proof:

∞∑
m=1

E[|η0 − η(m)
0 |2]1/2 ≤

∞∑
m=1

E[|Qm|]1/2 <∞,

Proof(Theorem 2)

Suppose that {Yt} satisfies (2.4) and set

ξt =
√

1 + Y 2
t − E

[√
1 + Y 2

0

]
, ξ

(m)
t =

√
1 + (Y

(m)
t )2 − E

[√
1 + (Y

(m)
t )2

]
.

The result follows from the invariance principle given in F. et al. (2006) if we can establish

that
∑∞
m=1m

−1/2{E
[
E[ξ0|F−m]2

]
}1/2 < ∞, where Ft = σ(Zj , j ≤ t). Since {Zt} is iid,

E[ξ
(m−1)
0 |F−m] = 0 and

E
[
E[ξ0|F−m]2

]
= E

[
E[ξ0 − ξ(m−1)0 |F−m]2

]
≤ E[(ξ0 − ξ(m−1)0 )2]

≤ E[(η0 − η(m−1)0 )2]
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≤ E[|Y 2
0 − (Y

(m−1)
0 )2|],

where the last line follows from Lemma A.1. The above bounds give

∞∑
m=1

m−1/2
{
E
[
E[ξ0|F−m]2

]}1/2 ≤ ∞∑
m=1

(cm/m)1/2,

which is finite by assumption.

Cramer-Wold device for process convergence Davidson (1994) plays a major role in the proof

of Theorem 3 and we state it below to make the proof clear.

Theorem 7 Davidson (1994) Let Xn ∈ Dd be a an d-vector of random elements. Xn
D→ X, where

P (X ∈ Cd) = 1, if and only if λ
′
Xn

D→ λ
′
X for every fixed λ with λ

′
λ = 1

where C = C[0, 1] is the space of continuous real valued functions on [0, 1].

Proof( Theorem 3)

We prove the theorem for d = 2; arguments for higher dimensions are similar. We use the

Cramer-Wold device for process convergence (Theorem 29.16 of Davidson (1994)). Let a1 and a2 be

real numbers and consider a1S
(1)
n (p) + a2S

(2)
n (p), where S

(i)
n (p) is as given in (2.6) for i = 1, 2. Let

ηi,t be as in (2.5) and define η
(m)
i,t =

√
1 +

(
Y

(m)
i,t

)2
and

ξt = a1(η1,t − E[η1,t]) + a2(η2,t − E[η2,t]).

We now show that {ξt} satisfies a FCLT.

Using Theorem 21.1 of Billingsley (1968), it is enough to show that

∞∑
m=1

E[(ξ0 − ξ(m)
0 )2]1/2 <∞, (5.2)

where

ξ
(m)
0 = a1(η

(m)
1,0 − E[ηi,t]) + a2(η

(m)
2,0 − E[ηi,t]).

We have the following approximations:

∞∑
m=1

E[(ξt − ξ(m)
t )2]1/2 ≤

√
2(a21E[(η1,0 − η(m)

1,0 )2])1/2

+
√

2(a22E[(η2,0 − η(m)
2,0 )2])1/2
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≤
√

2|a1|E
[
|Y 2

1,0 − (Y
(m)
1,0 )2|

]1/2
+
√

2|a2|E
[
|Y 2

2,0 − (Y
(m)
2,0 )2|

]1/2
,

where the last inequality follows from Lemma A.1. Condition (5.2) now follows from Assumption 4.

Applying Theorem 21.1 from Billingsley (1968) shows that

τ2 = Var (a1y1,0 + a2y2,0) + 2

∞∑
k=1

Cov (a1y1,0 + a2y2,0, a1y1,k + a2y2,k)

is absolutely summable and that

a1S
(1)
n (p) + a2S

(2)
n (p)

D[0,1]→ τ{W (p)},

where {W (p)}1p=0 is a standard Brownian motion.

Using properties of covariance and standard arguments, τ{W (p)} follows the same law as

(a1, a2)M{W(p)}, where {W(p)}1p=0 has components which are independent standard Brownian

motions. The result now follows from the Cramer-Wold device.

5.2 Proof of the Examples in Section 3

5.2.1 Univariate Models

This section provides detailed proofs when log returns follow an ARMA, or a GARCH

process, or a Stochastic volatility model. Examples are numbered according to the numbers appear

in the paper.

Proof(Example 1)

Let Y
(m)
0 =

∑m
j=0 ψjε−j. Notice that

|Qm| = |Y 2
0 − (Y m0 )

2 |

= | (Y0 − Y m0 ) (Y0 + Y m0 ) |

= | (Y0 − Y m0 ) (Y0 − Y m0 + 2Y m0 ) |

= | (Y0 − Y m0 )
2

+ 2 (Y0 − Y m0 )Y m0 |
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≤ | (Y0 − Y m0 )
2 |+ 2| (Y0 − Y m0 )Y m0 |

Using the iid assumption on {εt} and the fact that all expectations are positive we have

(E|Qm|)1/2 ≤
(

E (Y0 − Y m0 )
2

+ 2E| (Y0 − Y m0 )Y m0 ||
)1/2

,

≤
(

E (Y0 − Y m0 )
2
)1/2

+
√

2 (E|Y0 − Y m0 |E|Y m0 |)
1/2

,

≤
(

E (Y0 − Y m0 )
2
)1/2

+
√

2 (E|Y0 − Y m0 |E|Y0|)
1/2

.

For Var(ε0) = σ2
ε

E (Y0 − Y m0 )
2

= E

 ∞∑
j=m+1

ψjε−j

( ∞∑
k=m+1

ψjε−k

)
=

∞∑
j=m+1

∞∑
k=m+1

ψjψkE [ε−jε−k]

=

∞∑
j=m+1

ψ2
jEε

2
−j

=

∞∑
j=m+1

ψ2
jσ

2
ε

≤
∞∑

j=m+1

c2γ2jσ2
ε

= c2σ2
ε

γ2(m+1)

(1− γ2)
∞∑
m=1

(
E(Y0 − Y m0 )2

)1/2 ≤ cσε
γ2(

1− γ
)(

1− γ2
)1/2

Also

E|Y0 − Y m0 | = E|
∞∑

j=m+1

ψjε−j|

≤
∞∑

j=m+1

|ψj |E|ε0|

≤
(
E
(
ε20
))1/2 ∞∑

j=m+1

|ψj |
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≤ σε

∞∑
j=m+1

cγj

= cσε
γm+1

(1− γ)
∞∑
m=1

(E|Y0 − Y m0 |)
1/2 ≤ c1/2σ1/2

ε

γ(
1− γ1/2

)(
1− γ

)1/2

Since E[|Y0|] ≤ E[|ε0|]
∑∞
j=0 |ψj | < ∞, it follows that

∑∞
m=1E[|Qm|]1/2 < ∞. By Theorem 1, a

FCLT holds for the sample arc lengths of {Xt}.

Proof(Example 2)

We follow the arguments in Berkes et al. (2008)’s Theorem 2.1. Without loss of generality,

we may take p = q. The division lemma implies that every positive integer m can be expressed as

m = p`+ r, where ` and r are integers satisfying ` ≥ 0 and 0 ≤ r ≤ p− 1.

Define an mth order truncation of the stationary solution of a GARCH(p, q) series at time

zero, say Y
(m)
0 , via

(
Y

(m)
0

)2
= ωε20

(∑̀
k=1

∑
1≤l1,...,lk−1≤p

k−1∏
i=1

(
βli + αliε

2
−l1−l2−···−li

))

Note that ` is implicitly defined. Since Y 2
0 ≥ (Y

(m)
0 )2, we have

Y 2
0 − (Y

(m)
0 )2 = ωε20

∞∑
k=`+1

∑
1≤l1,...,lk−1≤p

k−1∏
i=1

(
βli + αliε

2
−l1−l2−···−li

)
.

Now

E[Y0]2 − E[(Y
(m)
0 )]2 ≤ ωE[ε20]c`

1− c
,

where c = [(α1 + · · ·+ αp)Eε
2
0+(β1 + · · ·+ βq)] < 1, since the GARCH process is strictly stationary.

It now follows that

∞∑
m=1

E[|Qm|]1/2 ≤
∞∑
`=1

(
ωE[ε20]c`

1− c

)1/2

=
( ωσ2

ε

1− c

)1/2 ∞∑
`=1

c`/2
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=
( ωσ2

ε

1− c

)1/2 c1/2(
1− c1/2

) <∞.

Hence, the FCLT for sample arc lengths of {ln(Pt)} follows from Theorem 2.1.

Proof(Example 3)

Define the m-th order truncation

Y
(m)
0 = ε0 exp

 m∑
j=0

ψjν−j

 .

The above assumptions guarantee that E[(Y
(m)
0 )2] is bounded in m. With α0 =

∑∞
j=0 ψjν−j and

α
(m)
0 =

∑m
j=0 ψjν−j, we obtain

∣∣∣∣Y 2
0 −

(
Y

(m)
0

)2∣∣∣∣ =
∣∣∣ε20 exp 2α0 − ε20 exp 2α

(m)
0

∣∣∣
= ε20 exp 2α

(m)
0 |exp 2α0 − 2αm

0 − 1|

=
(
Y

(m)
0

)2
|exp (2α0 − 2αm0 )− 1|

Taylor expanding the exponential function about zero gives

∣∣∣exp (2α0 − 2α
(m)
0 )− 1

∣∣∣ ≤ 2
∣∣∣α0 − α(m)

0

∣∣∣ exp (2δm),

where

|δm| < |α0 − αm0 | =

∣∣∣∣∣∣
∞∑

j=m+1

ψjν−j

∣∣∣∣∣∣ .
These bounds and the fact that exp{2 |a− b|} ≤ exp{2(a− b)}+ exp{2(b− a)} for all a, b, provide

E[|Qm|] ≤ E[(Y
(m)
0 )2]E [(exp{2 |α0 − αm0 |}) 2 |α0 − αm0 |] ,

≤ E[(Y
(m)
0 )2]E [(exp (2αm0 − 2α0) + exp (2α0 − 2αm0 )) 2 |α0 − αm0 |] ,

and the Cauchy-Schwarz inequality now yields

E[|Qm|] ≤ 2E[
(
Y

(m)
0

)2
]
(

(Mm(4) +Mm(−4))E
[
(α0 − αm0 )

2
])1/2

, (5.3)
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where Mm(t) is the moment generating function of α0−α(m)
0 . For m0 sufficiently large and j > m0,

4|ψj | < 2. Both Mm(4) and Mm(−4) are bounded for m > m0.

For m ≤ m0, we have

E
[∣∣∣Y 2

0 − (Y
(m)
0 )2

∣∣∣] ≤ 2E[Y0]2 = C2
1 <∞. (5.4)

Also notice that

E
[
(α0 − αm0 )

2
]

= E

 ∞∑
j=m+1

ψjν−j

( ∞∑
k=m+1

ψkν−k

) ,
= E

 ∞∑
j=m+1

∞∑
k=m+1

ψjψkν−jν−k

 ,
=

∞∑
j=m+1

∞∑
k=m+1

ψjψkE [ν−jν−k] ,

=

∞∑
j=m+1

ψ2
jE
[
ν2−j
]
,

= σ2
ν

∞∑
j=m+1

ψ2
j .

Now causality gives,

E
[
(α0 − αm0 )

2
]
≤ c2σ2

ν

∞∑
j=m+1

γ2j ,

= c2σ2
ν

γ2(m+1)

(1− γ2)
(5.5)

Combining (5.3), (5.4), and (5.5) illuminates finite constants C1 and C2 such that

∞∑
m=1

E[|Qm|]1/2 ≤ m0C1 + C2

∑
m>m0

γ(m+1)/2 <∞. (5.6)

Theorem 2.1 now shows that the partial sums of arc length for Xt = ln(Pt) satisfy a FCLT.

5.2.2 Multivariate Models

Note that Yt = (Y1,t, . . . , Yd,t)
′ is a d-variate series at time t. Detailed proofs for all

mutivariate models listed in section 3.2 can be given as follows.

34



Proof(Example 5)

We verify the conditions for Theorem 2.1 when d = 2; arguments for higher dimensions are

similar.

Causality allows us to write the solution to (3.5) as

Yt =

∞∑
j=0

ΨjZt−j ,

where
∑∞
j=0 |Ψj | < ∞ in a component by component sense. For Ψj, we denote the element in

column ` of row k by Ψk,`,j. Equation (3.5) gives

 Y1,t

Y2,t

 =

∞∑
j=0

 ψ1,1,jZ1,t−j + ψ1,2,jZ2,t−j

ψ2,1,jZ1,t−j + ψ2,2,jZ2,t−j

 .
As in proof of Example 1, for i = 1, 2, define

Y
(m)
i,0 =

m∑
j=0

ψi,1,jZ1,−j + ψi,2,jZ2,−j .

Now we define Qm in a similar manner as it has been defined for univariate models.

|Qm| =
∣∣∣Y 2

1,0 + Y 2
2,0 − (Y

(m)
1,0 )2 − (Y

(m)
2,0 )2

∣∣∣ ,
≤

∣∣∣∣Y 2
1,0 −

(
Y

(m)
1,0

)2∣∣∣∣+

∣∣∣∣Y 2
2,0 −

(
Y

(m)
2,0

)2∣∣∣∣
=

2∑
i=1

|Y 2
i,0 −

(
Y mi,0
)2 |

=

2∑
i=1

|
(
Yi,0 − Y mi,0

) (
Yi,0 + Y mi,0

)
|

=

2∑
i=1

|
(
Yi,0 − Y mi,0

) (
Yi,0 − Y mi,0 + 2Y mi,0

)
|

=

2∑
i=1

|
(
Yi,0 − Y mi,0

)2
+ 2

(
Yi,0 − Y mi,0

)
Y mi,0|

≤
2∑
i=1

|
(
Yi,0 − Y mi,0

)2 |+ 2|
(
Yi,0 − Y mi,0

)
Y mi,0|
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The Cauchy-Schwarz inequality gives

E[|Qm|] ≤
2∑
i=1

E
[
|
(
Yi,0 − Y mi,0

)2 |+ 2|
(
Yi,0 − Y mi,0

)
Y mi,0|

]
,

=

2∑
i=1

(
E

[(
∆

(m)
i

)2]
+ 2E

[
|Y mi,0||∆

(m)
i |

])
,

≤
2∑
i=1

(
E

[(
∆

(m)
i

)2]
+ 2

(
E
[
Y 2
i,0

]
E
[
(∆

(m)
i )2

])1/2)
,

where ∆
(m)
i = Yi,0 − Y (m)

i,0 . Observe that for i = 1, 2,

E
[
(∆

(m)
i )2

]
= E

[(
Yi,0 − Y (m)

i,0

)2]

= E

 ∞∑
j=m+1

ψi,1,jZ1,−j + ψi,2,jZ2,−j

( ∞∑
k=m+1

ψi,1,kZ1,−k + ψi,2,kZ2,−k

)
= E

[ ∞∑
j=m+1

∞∑
k=m+1

ψi,1,jψi,1,kZ1,−jZ1,−k +

∞∑
j=m+1

∞∑
k=m+1

ψi,2,jψi,2,kZ2,−jZ2,−k +

2

∞∑
j=m+1

∞∑
k=m+1

ψi,1,jψi,2,kZ1,−jZ2,−k

]

=

∞∑
j=m+1

ψ2
i,1,jE

[
Z2
1,−j

]
+

∞∑
j=m+1

ψ2
i,2,jE

[
Z2
2,−j

]
+ 2

∞∑
j=m+1

ψi,1,jψi,2,jE [Z1,−jZ2,−j ]

=

∞∑
j=m+1

(
ψ2
i,1,jσ1,1 + ψ2

i,2,jσ2,2 + 2ψi,1,jψi,2,jσ1,2

)
,

where σl,k = Cov(Zl,0, Zk,0).

Causality implies the bound |ψi,k,j | ≤ cγj for some constants c > 0 and 0 < γ < 1. This

bound holds uniformly in i and k. Using this gives

E
[
(∆

(m)
i )2

]
≤

(
σ1,1 + σ2,2 + 2σ1,2

) ∞∑
j=m+1

γ2j

=
(
σ1,1 + σ2,2 + 2σ1,2

)γ2(m+1)

1− γ2
. (5.7)

36



Hence for all i = 1, 2

∞∑
m=1

E
[
(∆

(m)
i )2

]1/2
≤

(
σ1,1 + σ2,2 + 2σ1,2

)1/2
(1− γ2)

1/2

∞∑
m=1

γ(m+1),

=

(
σ1,1 + σ2,2 + 2σ1,2

)1/2
γ2

(1− γ2)
1/2

(1− γ)
,

and

∞∑
m=1

E
[
(∆

(m)
i )2

]1/4
≤

(
σ1,1 + σ2,2 + 2σ1,2

)1/4
(1− γ2)

1/4

∞∑
m=1

γ(m+1)/2,

=

(
σ1,1 + σ2,2 + 2σ1,2

)1/4
γ

(1− γ2)
1/4 (

1− γ1/2
) .

Also based on the same arguments we made above it can be shown that

E
[
Y 2
i,0

]
= E

 ∞∑
j=0

ψi,1,jZ1,−j + ψi,2,jZ2,−j

( ∞∑
k=0

ψi,1,kZ1,−k + ψi,2,kZ2,−k

)
= E

[ ∞∑
j=0

∞∑
k=0

ψi,1,jψi,1,kZ1,−jZ1,−k +

∞∑
j=0

∞∑
k=0

ψi,2,jψi,2,kZ2,−jZ2,−k +

2

∞∑
j=0

∞∑
k=0

ψi,1,jψi,2,kZ1,−jZ2,−k

]

=

∞∑
j=0

ψ2
i,1,jE

[
Z2
1,−j

]
+

∞∑
j=0

ψ2
i,2,jE

[
Z2
2,−j

]
+ 2

∞∑
j=0

ψi,1,jψi,2,jE [Z1,−jZ2,−j ]

=

∞∑
j=0

(
ψ2
i,1,jσ1,1 + ψ2

i,2,jσ2,2 + 2ψi,1,jψi,2,jσ1,2

)
,

and as a result of the causality, we get

E
[
Y 2
i,0

]
≤

(
σ1,1 + σ2,2 + 2σ1,2

) ∞∑
j=0

γ2j

=

(
σ1,1 + σ2,2 + 2σ1,2

)
1− γ2

<∞.

Now using all the pieces showed above, it follows that
∑∞
m=1E[|Qm|]1/2 < ∞. Theorem 2.1 now

allows us to infer that the sample arc lengths of the log-price vectors satisfy a FCLT.
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Proof(Example 6)

For ease of presentation, we restrict attention to d = 2, the arguments being similar for

larger d. Then Yt = (Y1,t, Y2,t)
′ satisfies

Y 2
1,t + Y 2

2,t = σ1,1,tZ
2
1,t + σ2,2,tZ

2
2,t + 2σ1,2,tZ1,tZ2,t,

where

σ1,2,0 = ρ1,2
√
σ11,0σ2,2,0.

Lemma 2.1 of Berkes et al.(2008) shows that the unique stationary solution of σi,i,0 for

i = 1, 2 can be expressed as

σi,i,0 = ωi

( ∞∑
k=1

∑
1≤l1,...,lk−1≤p

k−1∏
j=1

(
βilj + αiljZ

2
i,−l1−l2−···−lj

))
.

Strict stationarity ensures that for each i,

ci =
[
(αi,1 + · · ·+ αi,p)E[ε2i,0] + (βi,1 + · · ·+ βi,p)

]
< 1.

Also note that E[σi,i,0] = (1− ci)−1ωi <∞ for each i.

Mimicking the univariate GARCH arguments, define an mth order truncation as

(
Y

(m)
1,0

)2
+
(
Y

(m)
2,0

)2
= σ

(m)
1,1,0Z

2
1,0 + σ

(m)
2,2,0Z

2
2,0 + 2σ

(m)
1,2,0Z1,0Z2,0,

where

σ
(m)
i,i,0 = ωi

(∑̀
k=1

∑
1≤l1,...,lk−1≤p

k−1∏
j=1

(
βilj + αiljε

2
i,−l1−l2−···−lj

))
; i = 1, 2,

σ
(m)
1,2,0 = ρ1,2

√
σ
(m)
11,0σ

(m)
2,2,0.

Here, ` is such that m = p`+ r, where ` and r are integers satisfying ` ≥ 0 and 0 ≤ r ≤ p− 1. As

in the univariate arguments, we again take p = q in the GARCH representations of {σi,i,t}i=1,2 as

this can be done without loss of generality.
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Observe that

Qm = Y 2
1,0 + Y 2

2,0 − (Y
(m)
1,0 )2 − (Y

(m)
2,0 )2

=
(
σ1,1,0 − σ(m)

1,1,0

)
Z2
1,0 +

(
σ2,2,0 − σ(m)

2,2,0

)
Z2
2,0 +

(
σ1,2,0 − σ(m)

1,2,0

)
Z1,0Z2,0.

Hence,

∞∑
m=1

E[Qm]1/2 ≤
∞∑
m=1

(
E
[
σ1,1,0 − σ(m)

1,1,0

]
E
[
Z2
1,0

])1/2

+

∞∑
m=1

(
E
[
σ2,2,0 − σ(m)

2,2,0

]
E
[
Z2
2,0

])1/2

+

∞∑
m=1

(
E
[
σ1,2,0 − σ(m)

1,2,0

]
E [Z1,0Z2,0]

)1/2

. (5.8)

The first two sums on the right hand side of (5.8) are summable by the arguments in Example 2. To

handle the third term, consider σ1,2,0 − σ(m)
1,2,0. As shown in Berkes et. al(2008), σi,i,0 − σ(m)

i,i,0 > 0

for each m > 0. Hence,

σ1,2,0 − σ(m)
1,2,0 = ρ1,2

(
√
σ1,1,0σ2,2,0 −

√
σ
(m)
1,1,0σ

(m)
2,2,0

)
≤ ρ1,2

(
σ1,1,0σ2,2,0 − σ(m)

1,1,0σ
(m)
2,2,0

)1/2
≤ ρ1,2

{[
σ1,1,0

(
σ2,2,0 − σ(m)

2,2,0

)]1/2
+
[
σ
(m)
2,2,0

(
σ1,1,0 − σ(m)

1,1,0

)]1/2}
≤ ρ1,2

{[
σ1,1,0

(
σ2,2,0 − σ(m)

2,2,0

)]1/2
+
[
σ2,2,0

(
σ1,1,0 − σ(m)

1,1,0

)]1/2}
.

Applying the Cauchy-Schwarz inequality gives

E
[
σ1,2,0 − σ(m)

1,2,0

]
≤ ρ1,2

(
E [σ1,1,0]E

[
σ2,2,0 − σ(m)

2,2,0

])1/2

+ ρ1,2

(
E [σ2,2,0]E

[
σ1,1,0 − σ(m)

1,1,0

])1/2

. (5.9)

Equation (5.9) shows existence of finite constants C1 and C2 such that

∞∑
m=1

(
E
[
σ1,2,0 − σ(m)

1,2,0

]
E [Z1,0Z2,0]

)1/2

≤ C1

∞∑
m=1

(
E
[
σ2,2,0 − σ(m)

2,2,0

])1/4
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+ C2

∞∑
m=1

(
E
[
σ1,1,0 − σ(m)

1,1,0

])1/4
.

Note that for i = 1, 2,

∞∑
m=1

E
[
σi,i,0 − σ(m)

i,i,0

]1/4
≤ ω

1/4
i c

1/4
i(

1− ci
)1/4(

1− c1/4i

) .
As E[Z2

i,0] < ∞, E[σi,i,0] < ∞ for i = 1, 2 and E[Z1,0Z2,0] < ∞, we have
∑∞
m=1E[Qm]1/2 < ∞.

By Theorem 2.1, the arc lengths of the log prices {Xt} satisfy the FCLT when the log-returns, {Yt},

follow the CCC-GARCH model.

Proof(Example 7)

Definition B.2 1 The d-variate series {Yt} = (Y1,t, . . . , Yd,t)
′ follows a MSV if it satisfies

Yt = H
1/2
t Zt, (5.10)

H
1/2
t = Diag(σ1,t, . . . , σd,t),

ln(σt) = µ+ Φ ◦ ln(σt−1) + Vt, (5.11) Zt

Vt

 ∼ N


 0

0

 ,

 Pε 0

0 Σν


 , (5.12)

where Zt = (Z1,t, . . . , Zd,t)
′ and Vt = (ν1,t, . . . , νd,t)

′ are random vectors, σt = (σ1,t, . . . , σd,t)
′ is a

d-dimensional vector of unobserved volatilities, µ and Φ are d × 1 parameter vectors, the operator

◦ denotes the Schur element-by-element product, Σν = {σν,i,j}di,j=1 is a positive definite covariance

matrix, and Pε is the correlation matrix.

Since Equation 5.11 has a causal stationary solution, we can express σt as

σt = exp

µ(I−Φ)−1 +

∞∑
j=0

Ψj ◦Vt−j

 , (5.13)

where Ψj = (ψ1,j , . . . , ψd,j)
′ is a sequence of deterministic vectors with Ψ0 = (1, . . . , 1)′. The next

example considers a more general model.
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For an iid sequence {Zt}, suppose {Yt} obeys

Yt = H
1/2
t Zt,

with H
1/2
t = Diag(σ1,t, . . . , σd,t). Also let σi,t = exp{Wi,t}, where the d-variate process {Wt}

follows a causal vector autoregression. We now verify the conditions in Theorem 2.1 assuming

d = 2; arguments are similar for higher dimensions.

As in Example 5, we invoke causality to write

Wt =

∞∑
j=0

Ψjεt−j .

We further assume an iid {εt}. Causality implies that |ψi,k,j | ≤ cγj and, as before, one can take

c < 2 without loss of generality. Our bivariate system can be written as

Y1,t = σ1,tZ1,t, σ1,t = exp

 ∞∑
j=0

ψ1,1,jε1,t−j + ψ1,2,jε2,t−j

 ,

Y2,t = σ2,tZ2,t, σ2,t = exp

 ∞∑
j=0

ψ2,1,jε1,t−j + ψ2,2,jε2,t−j

 .

As in Example 3, moment conditions will be assumed. Suppose that the moment generating

function of εt exists in an appropriate neighborhood of zero; specifically, assume

E[exp (t1ε1,0 + t2ε2,0)] <∞

for |t1| ≤ 2 and |t2| ≤ 2. Let

Y
(m)
1,t = Z1,t exp

 m∑
j=0

ψ1,1,jε1,t−j + ψ1,2,jε2,t−j

 .

and define Y
(m)
2,t similarly. As in the proof of Example 5,

|Qm| =
∣∣∣Y 2

1,0 + Y 2
2,0 − (Y

(m)
1,0 )2 − (Y

(m)
2,0 )2

∣∣∣ ,
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≤
∣∣∣∣Y 2

1,0 −
(
Y

(m)
1,0

)2∣∣∣∣+

∣∣∣∣Y 2
2,0 −

(
Y

(m)
2,0

)2∣∣∣∣ .

To verify Assumption 2.2, note that

E[|Qm|] ≤ E
∣∣∣∣Y 2

1,0 −
(
Y

(m)
1,0

)2∣∣∣∣+ E

∣∣∣∣Y 2
2,0 −

(
Y

(m)
2,0

)2∣∣∣∣
and

E[|Qm|]1/2 ≤ E
[
|Y 2

1,t − (Y
(m)
1,t )2|

]1/2
+ E

[
|Y 2

2,t − (Y
(m)
2,t )2|

]1/2
(5.14)

Note that for all i = 1, 2

E
[
|Y 2
i,t − (Y

(m)
i,t )2|

]
= E

Z2
i,t exp

2

m∑
j=0

ψi,1,jεi,t−j + ψi,2,jεi,t−j

 ,
and observe that each term on the right hand side of (5.14) is summable (in m) by the argument

presented in Example 3. Applying Theorem 2.1 shows that the sample arc lengths of log prices satisfy

a FCLT.
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