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ABSTRACT 

 

Zoos are a unique environment where humans and animals are in close daily contact, 

potential mosquito habitats exist, exotic plants and animals are introduced regularly, and 

wild animals roam. Studies of mosquito behaviors in zoos will lead to a better 

understanding, both within and outside zoos, of disease transmission routes and mosquito 

biology. To investigate whether the unique assemblage of habitats in zoos affects 

mosquito behavior, I sampled larvae and adults in the Greenville Zoo and the Riverbanks 

Zoo, South Carolina, USA, from March 2008 to January 2011. The objectives of my 

study were to investigate mosquito oviposition behavior, blood-host usage, and 

transmission of the causative agent of dog heartworm (Dirofilaria immitis); document the 

structure of the mosquito pyloric armature; and provide zoos with suggestions for 

mosquito control. My results underscore the medical and veterinary importance of 

studying mosquito blood feeding ecology in zoos, and the experimental utility of zoos for 

studying mosquito behavior.  

 

A total of 1,630 larvae and 4,349 adults representing 16 species was collected and 

identified. The most common species were Aedes albopictus, Ae. triseriatus, Culex 

erraticus, Cx. restuans, and Cx. pipiens complex. Principal components and multiple 

logistic regression analyses showed that across both zoos the overall larval mosquito 

presence (regardless of species) was predicted by ambient and site temperature, 

precipitation, dissolved oxygen, presence of natural habitats, and absence of aquatic 

vegetation. Pairwise species associations indicated significant habitat-based relationships 
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between larvae of Ae. albopictus and Ae. triseriatus, and Cx. pipiens complex and Cx. 

restuans. Recommendations to zoo personnel, regarding larval mosquito habitat 

management, were to reduce or eliminate artificial containers and shade sources greater 

than or equal to 2 m above standing water, use mosquito larvicides when source 

reduction is not possible, and receive training in recognizing and mitigating larval 

mosquito habitats. Mosquitoes fed on captive animals, humans, and wild animals, and 

took mixed bloodmeals. Blood hosts included 1 amphibian species, 16 bird species, 10 

mammal species (including humans), and 2 reptile species. Minimum flight distances 

(dispersal) from host locations ranged from 15.5 m to 327.0 m, with a mean of 94.1 m ± 

13.4 m. No mosquitoes tested (n = 45) were positive for D. immitis. The pyloric spines of 

Ae. albopictus, Ae. j. japonicus, Ae. triseriatus, An. punctipennis, Cx. pipiens complex, 

Cx. restuans, Or. signifera, and Tx. rutilus  were photographed and measured. 

Differences exist in qualitative and quantitative spine structure, with Aedes spp. forming 

one general group, Culex spp. another, and An. punctipennis and Or. signifera a third. 

The one specimen of Toxorhynchites rutilus examined was most like Culex spp. 

mosquitoes.  

 

Larval mosquito-habitat, adult mosquito-host associations, and pyloric armature and 

spine structures generally conformed to previously published accounts, indicating that 

mosquito biology inside zoos represents mosquito biology outside zoos. Therefore, zoos 

can be used for experiments not feasible in the field. However, novel variation (e.g., new, 

exotic host records) recorded in mosquito species warrants further investigation in zoos.  
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My study demonstrates that zoos can be used as experiment environments to study 

mosquito behaviors (e.g., oviposition cues, innate versus learned host preferences, 

mosquito dispersal, and home range memory), and that findings can be extrapolated to 

non-zoo areas, while also providing medical and veterinary benefits to zoo animals, 

visitors, and the public.  
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CHAPTER ONE 

INTRODUCTION 

 

Great strides have been made in the past century to reduce the incidence of arthropod-

borne diseases, and the key to most of this success has been the identification and control 

of arthropod vectors (Service 1978, Geong 2001). However, although we have achieved a 

significant decline in infection rates, we still coexist with many arthropods that have the 

potential to transmit agents of illness between humans and the animals that serve as 

zoonotic reservoirs. I am primarily interested in areas where different genomes and 

pathogens can converge (e.g., airports, factory farms, rest areas, shipping ports, and 

zoos). Associated with the epidemiological threat of these areas are the vectors that can 

spread disease agents out of them.   

 

Zoos are a unique environment where mosquitoes, humans, and exotic and native animals 

and plants interact. They are places where humans and animals are in close daily contact, 

potential mosquito oviposition and larval development habitats exist, exotic plants and 

animals are introduced regularly, and wild animals are present. The only requirement for 

a potential outbreak (e.g., West Nile virus or avian blood pathogens) would be the 

introduction of the pathogen (for instance, by migrating birds) into a competent 

population (such as mosquitoes breeding on zoo grounds).  
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Nineteen articles have been published that are related to aspects of mosquito ecology in 

zoos including surveys of larval mosquito habitats and environmental characteristics 

related to oviposition (Beier and Trpis 1981b, Derraik 2004, Derraik and Slaney 2005, 

Derraik et al. 2008, Tuten 2011), incrimination of mosquito vectors (Beier and Stoskopf 

1980, Beier and Trpis 1981a, McConkey et al. 1996, Huijben et al. 2003, Grim et al. 

2004, Ejiri et al. 2009), identification of blood hosts (Nelder 2007, Ejiri et al. 2011), 

recommendations for mosquito control in zoos (Derraik 2005), management of 

mosquitoes in zoos (Griner 1974, Shimonsky 2009, Shimonsky 2010), and a review of 

mosquito-associated illnesses in zoo animals (Adler et al. 2011). These studies have 

identified mosquitoes as the arthropods of greatest medical and veterinary concern in 

zoos, and documented larval mosquitoes on zoo grounds, epinortics in captive, 

endangered birds, mosquito bloodmeals from multiple hosts in succession, and mosquito 

biting of humans.  

 

Awareness is increasing about the need for an understanding of mosquito ecology at the 

intermediate and microhabitat scales (Rey et al. 2006, Gu et al. 2008, Chaves et al. 2010, 

Ferguson et al. 2010). This understanding will be a synthesis of the interaction between 

mosquito host choice, larval performance, ovipositional preference, and vector potential 

within the context of environment. Human-created and modified environments, such as 

zoos, present unique arenas in which to study the habitats, distributions, and successions 

of multiple mosquito species. Analyses of mosquito oviposition and blood feeding 

behaviors in zoos will lead to a better understanding of mosquito involvement in disease 
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transmission routes. These data will contribute to the larger knowledge on larval 

mosquito habitats, mosquito-host relationships, and host fidelity patterns of mosquitoes.  

 

If potential vector species can be identified, then zoos can implement cost-effective 

source reduction of larval habitats associated with the vector species. Most zoos perform 

continuous surveillance for zoonoses and keep a close watch on ―sentinel‖ animals, 

which serve as an early warning system for zoo-associated pathogens (McNamara 2007). 

Animals are tested and vaccinated at the first signs of disease within and beyond the 

confines of zoos, and disease detection and notification networks exist among 

veterinarians, physicians, and public health agencies (Adler et al. 2011). Despite this 

vigilance, a critical component is missing in the monitoring of zoonoses in zoological 

parks—the ecology of the vectors themselves.  

 

My study focuses on larval habitats, blood hosts, dog heartworm (Dirofiliaria immitis) 

transmission, and pyloric armature of mosquitoes in South Carolina zoos. The results of 

my study will identify potential zoo-associated threats and the conditions that foster their 

survival, allowing for a more rapid response to a disease outbreak and more efficient 

detection methods aimed at preventing one. The unifying idea for my investigations is 

that the unique environment of zoological parks is a testing ground for experiments 

undertaken to gain a better understanding of mosquito ecology as a basis for control 

measures in zoos and by extrapolation, beyond zoos. I intend to provide a better 

understanding of the potential health risks posed by mosquitoes interfacing with animals 
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and humans in a zoo setting. Additionally, I aim to use the zoos as natural experiments for 

the investigation of mosquito biology. My research will benefit zoos by providing an 

empirical basis for mosquito control recommendations. 

 

The specific objectives of my research on mosquito ecology in South Carolina zoos are 

1. To document mosquito species present as larvae and adults.  

2. To determine environmental variables associated with larval mosquito 

distributions.   

3. To document mosquito blood hosts.  

4. To determine potential vectors of Dirofilaria immitis.  

5. To interpret structure of the pyloric armature of zoo-associated mosquitoes.   

 

The specific hypotheses of my research on mosquito ecology in South Carolina zoos are 

1. Mosquito species present as larvae and adults will not differ from environments 

outside the zoos.   

2. Larval mosquito distributions will be predictable on the basis of environmental 

variables.   

3. Blood feeding of mosquitoes will conform to previous host usage patterns in non-

zoo areas.  

4. Mosquito vectors of Dirofilaria immitis will be present and conform to previous 

vector reports.  

5. The pyloric armature of zoo-associated species will vary among species.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

Around 3,200 species of mosquitoes (Diptera: Culicidae) are recognized worldwide, and 

females of most of these species will consume vertebrate blood at some point during their 

adult life (Foster and Walker 2009). Female and male mosquitoes obtain nutrients from 

plant nectar and insect honeydew as adults, and from decomposed leaf matter, suspended 

particles, microinvertebrates, and small macroinvertebrates in aquatic habitats as larvae 

(Merritt et al. 1992, Foster and Walker 2009). Most adult female mosquitoes also 

supplement their carbohydrate-rich diet with vertebrate blood rich in amino acids. 

Bloodmeal supplements are used for energy required in flight, foraging, and egg 

development (Hocking 1971, Foster and Walker 2009). Additionally, blood feeding 

females will usually obtain blood from more than one vertebrate host during their 

lifetime, with each bloodmeal typically driving a gonotrophic cycle of egg fertilization, 

maturation, and deposition (Hocking 1971, Washino and Tempelis 1983). This tendency 

to feed on multiple hosts, with meals punctuated by non-feeding egg-laying periods, is 

one of the primary reasons female mosquitoes are efficient intermediate hosts and vectors 

of animal pathogens (Foster and Walker 2009).  

 

Mosquitoes in zoos 

A zoo is an enclosed space in which artificial habitats host natural phenomena (e.g., 

migrating birds stopping over on zoo grounds, breeding and birth of exotic animals) to 
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create ecologies that exist in few other places. These habitats usually have well-defined 

parameters in which many inputs are controlled by necessity of operation. Additionally, 

zoos are environments where native and non-native mosquitoes and native and non-

native animal hosts interact. They are islands of diversity; areas where animals and plants 

not normally found in association with each other will co-occur. The ecologies of zoos 

could be different than surrounding areas because of human-mediated introduction of 

non-native flora and fauna. Although gene flow might occur across zoo boundaries 

between some subpopulations (e.g., mosquitoes), it will not occur between other, 

primarily, non-native organisms limited in distribution (e.g., plants at the zoo such as 

bromeliads or foreign animals such as penguins).Therefore, different selection pressures 

might operate on mosquitoes feeding and breeding within zoos compared to those outside 

of zoos. If these pressures are strong enough, they could outweigh the effects of gene 

flow (thereby facilitating new behaviors adapted to zoo environments). These behaviors 

could then facilitate species dispersal into habitats similar to zoos (e.g., city parks). 

Alternatively, few or no differences between mosquitoes within and outside zoos might 

exist. Altogether, zoos represent unique environments in which to study mosquito 

ecology in controlled yet heterogeneous conditions and to monitor mosquito-borne 

diseases. 

 

Research on mosquitoes in zoos is scarce but it supports further investigation. Studies 

have not only confirmed mosquito presence in zoos (Pombi et al. 2003), but have 

documented mosquitoes breeding on zoo property (Beier and Trpis 1981b). Twelve 



7 

 

species of adult and six species of larval mosquitoes were found during a previous study 

in the Greenville Zoo, South Carolina (Nelder 2007). The study author also documented 

locations of adult captures and the locations of larvae (Table 2.1). Some adults were 

captured for which no larval specimens were found. During the same study, mosquitoes 

at the Riverbanks Zoo, Columbia, SC, were found taking blood meals from hosts as 

diverse as birds to hippopotamus (Nelder 2007).  

 
Table 2.1. Species of mosquitoes captured as adults and their associated larval habitats at the Greenville, 

SC, USA zoo 2004-2006 (Nelder 2007).  

Species of mosquito captured as adults Habitat of same species found as larvae 

Aedes aegypti No larvae found 

Aedes albopictus Bamboo shoots, white buckets, concrete 

depressions, red planters, rain gutters, storm drain 

covers, tree holes, black, blue, and white tarpaulins 

Aedes japonicus japonicus No larvae found 

Aedes triseriatus Red planters, rain gutters, tree holes 

Aedes vexans No larvae found 

Anopheles crucians No larvae found 

Anopheles punctipennis Blue tarpaulins 

Coquilletiddia perturbans No larvae found 

Culex erraticus No larvae found 

Culex quinquefasciatus/pipiens complex Rain gutters and blue and white tarpaulins 

Culex restuans White tarpaulins 

Orthopodomyia signifera Blue tarpaulins 

 

Further research is timely and necessary for a contemporary understanding of vector 

dynamics in zoos. Two recent studies in New Zealand zoos documented that densities of 

adult mosquitoes were higher in zoos than in nearby native forest and suggested that zoos 

can serve as foci of enzootic outbreaks (Derraik 2004, Derraik et al. 2008). Various forms 

of avian Plasmodium (the causative agent of avian malaria) were detected molecularly in 

Culex mosquitoes at the Baltimore Zoo and related directly to the death of a penguin in 

the zoo (McConkey et al. 1996). And, at the Baltimore Zoo, mosquitoes on zoo grounds 

were documented carrying avian malarial parasites (Grim et al. 2004). An established 
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documentation of mosquito blood-meals in South Carolina zoos would provide a map of 

potential transmission routes if Plasmodium or any other mosquito-transmitted pathogens 

became problems on zoo grounds. Currently, the head veterinarian at the Riverbanks Zoo 

is only aware of Yersinia spp.(not transmitted by mosquitoes) in zoo birds and primates 

(K. Benson, personal communication). Additionally, every bird death at the Riverbanks 

Zoo is subject to full necropsy and one dead bird was previously found positive for West 

Nile virus (WNv); this information is unknown for the Greenville Zoo. Although there is 

a national consortium (funded by the CDC) of zoos and public health officials, the 

National Zoological West Nile Virus Surveillance Group, it does not include routine 

mosquito monitoring in zoos by entomologists (McNamara 2007).  

 

Environmental characters of larval mosquito habitats 

To gain an understanding of the distribution of larval habitats requires a holistic view of 

not only larval requirements for survival and growth but also distribution of adults and 

cues that female adult mosquitoes use to locate and assess oviposition sites. Any 

predictive model of larval distribution will incorporate all of these factors to produce the 

most accurate picture possible by considering both the proximate and ultimate 

mechanisms affecting individual success. Female mosquitoes use many different cues for 

choice of oviposition site including visual, tactile, and olfactory cues (Bentley and Day 

1989). Female mosquitoes should have strong ovipositional preferences, as larvae are not 

able to change the environment the adult female commits them to. Therefore, decisions 
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affecting success and failure will be strongly reinforced through the survival of 

subsequent generations (Spencer et al. 2002).  

 

Although ovipositional choice seems to be dependent on a complex suite of interacting 

cues, some specific cues can be volatilized chemicals derived from both decaying and 

living animal and vegetable matter at the breeding site, turbidity or color of the water, 

reflectance of the surface, wetness of the habitat, texture of the habitat surrounding the 

water body, temperature of the water, and pH. Ovipositional choices can have 

pronounced effects on mosquito populations in terms of distribution and abundance of 

both larvae and adults (Reiskind and Wilson 2004) (Spencer et al. 2002). However, 

although many laboratory studies have been conducted on female ovipositional choices, 

particularly those related to volatile chemicals, oviposition behavior in field conditions is 

still in need of study (Reiskind and Wilson 2004). We know that some species prefer tree 

hole habitats while other species prefer human-made containers and these preferences 

could be due to selection for different life-history strategies such as increased ability to 

compete in species rich environments or ability to develop faster in warmer environments 

(Sota et al. 1992).  

 

The act of oviposition is the result of a complex suite of behaviors on the part of the 

female that range from large-scale cues affecting flight movement to small-scale cues 

such as assessing water temperature in a microhabitat. Females can assess a site for 

previous and contemporary conspecifics and detrimental predators and thereby oviposit 
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in sites that have indicators of potential larval success or avoid sites that would be 

harmful to larvae (Kitron 1989, Torres-Estrada et al. 2001, Sunahara 2002, Arav and 

Blaustein 2006). However, there is evidence that different females use the same cues in 

different ways. For example, Aedes triseriatus has been recorded ovipositing in the 

presence of conspecific eggs in one study but avoiding ovipositing when conspecifics are 

present in another (Kitron 1989, Beehler 1991). Nonspecific eggs can deter oviposition in 

Culex spp. or alternately not affect decision making (Dhileepan 1997, Reiskind and 

Wilson 2004). However, in a large-scale study conducted in the Florida Keys, species 

from the genera Aedes, Culex, and Ochlerotatus multiply infested the same artificial 

containers (Hribar et al. 2001). Altogether, these data hint that the co-occurrence of 

mosquito species may be dependent on the environmental context. During a longitudinal 

field study colonization patterns, and any changes in composition, of species in different 

breeding habitats would help to elucidate these conflicting results.  

 

Gravid female mosquitoes have an arsenal of abiotic cues with which they can assess a 

potential larval habitat. For species that lay eggs in natural and artificial containers either 

as rafts or as eggs deposited above the water line (which will hatch when the containers 

flood), aspects related to pool size such as permanence and risk of desiccation can be 

assessed in a variety of ways. They could appear to prefer an optimal surface area to 

depth ratio (thereby providing a large surface for matter exchange with the surrounding 

environment in a location ephemeral enough to allow for larval development in the 

absence of established predators). Depth of container can provide larval protection when 
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water is abundant, as pupae gain protection from aerial predation with increasing depth of 

water (Rodriguez-Prieto et al. 2006). But a study conducted in a resource-limited 

environment designed to mimic tree holes found that increasing depth decreased larval 

survival and increasing horizontal surface area increased larval survival (Wynn and 

Paradise 2001). However, depth might not be assessed directly whereas surface area is 

(Lester and Pike 2003, Arav and Blaustein 2006). And choice of surface area could be 

independent of presence of predators (Lester and Pike 2003). Alternately, oviposition 

preference can be positively correlated with depth of the water body while holding 

surface area constant, but this preference could be species specific (Dhileepan 1997). 

Empirical observation of native Japanese species indicates that choice of pool size can 

vary by species (Sunahara 2002). We do not know whether turbidity of the water body is 

used as an ovipositional cue but it has been correlated with larval abundance of several 

species in an Iowa wetland (Mercer et al. 2005).  

 

Multiple aspects related to plants in, on, and around the water body could have direct 

effects on oviposition site choice for species that lay eggs singly in still, weedy water. 

Plant volatiles acquired from living plants and tested in a laboratory setting induced 

oviposition in an Anopheles species at low concentrations but had a repellent effect at 

high concentrations (Torres-Estrada et al. 2005). This same effect was observed in the 

same species and another Anopheles species when using plant volatiles from dried plants 

and cyanobacteria mats acquired from breeding habitats (Rejmankova et al. 2005). The 

amount of vegetation correlated with larval presence in natural habitats has also been 
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shown to vary by species (Gimnig et al. 2001). For females of some species which tend to 

choose smaller containers dependent on external inputs for environmental enrichment 

there is a preference for containers with high detritus amounts (such as leaves fallen from 

nearby trees) in choice tests for containers enriched with organic nutrients (Beehler and 

Mulla 1995, Reiskind and Wilson 2004, Yee and Yee 2007). Additionally, oviposition 

choice could be specific for certain types of trees, as indicated by the predominant leaf 

substrate or chemicals obtained from certain leaves (Novak and Peloquin 1981, 

Lampman and Novak 1996, Trexler et al. 1998). When given a choice between a 

substrate in artificial tree holes and no substrate, and both treatments lacked plant 

volatiles, females still chose dark substrates and this could be due to camouflage for 

larvae provided by darker substrates (Huang et al. 2007).  

 

These nutrients could be indirect indicators of other habitat aspects that might not be 

evident during the normal hours of oviposition at crepuscular times of day. One factor 

that might be assessed indirectly is that of shade, and first-instar larvae have been 

associated with shaded habitats, indicating an ovipositional preference (Foley et al. 

2002). However, although some species are known as ―shade-loving‖, this seems to be 

related to anecdotal evidence rather than explicitly investigated mechanisms (Foley et al. 

2002). Some mosquitoes also preferentially oviposit in plants that contain the water body, 

such as bromeliads and trees, whereas others have become specialists in human-affected 

landscapes and oviposit in water-bearing artificial containers such as buckets and gutters 

(Haramis 1984, Beehler 1991, Sota et al. 1992, Hribar et al. 2001, Gottfried et al. 2002).  
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Females might also be using specific aspects of the water itself to assess a site. 

Artificially darkened water elicits more of a response than lighter choices (Beehler 1991, 

Dhileepan 1997). Scant empirical evidence exists on the role of water temperature as an 

ovipositional cue for mosquitoes it does have an effect on larval development and would 

therefore be a logical habitat aspect to record (Derraik and Slaney 2005). Additionally, 

temperature affects larval development times, emergence rates, and population densities 

in laboratory experiments (Alto and Juliano 2001a). When combining the effect of water 

temperature and desiccation, significant differences have been found in emergence rates 

and adult population numbers with varying combinations of water level, evaporation, and 

temperature (Alto and Juliano 2001b). These are all aspects intrinsically related to shade 

and a female might use a parameter such as water temperature to assess a site‘s shade 

cover and resistance to desiccation as well as its susceptibility to flooding.  

 

The relationship between oviposition choice, water temperature, and larval development 

underscores the need to understand larval habitat requirements in order to better 

understand female ovipositional choice and larval habitat distribution. Many aspects 

other than water temperature can affect larval presence, survivorship, distribution, species 

succession, and abundance. Although an understanding of larval habitat requirement is 

essential to the creation of any predictive model, the process of defining the most 

important habitat predictors of larval presence will also inform our perception of adult 

population dynamics. Various factors related to larval development can have marked 

effects on the emergent adult population in terms of individual size, distribution and, 
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hence, dispersal (Schneider et al. 2004). If larval biological and ecological factors have 

an influence on subsequent adult stages, then to control adult populations the associated 

larval stages must be characterized. Previous studies related to larval distribution, 

survival, and abundance provide good starting parameters for this characterization. 

 

Soluble nitrogen content can have a limiting factor on larval growth in tree hole 

assemblages dependent on stemflow for nutrient input (Kaufman and Walker 2006). 

However, larval abundance can also be unrelated to total nitrogen content (Costanzo et al. 

2005). Adversely, the number of immature mosquitoes has been significantly correlated 

with dissolved nitrate (Mercer et al. 2005). Other dissolved nutrients and ionic content 

derived from local stemflow could affect larval abundance (Paradise and Dunson 1997). 

Larval abundance can be correlated with conductivity (a measure of dissolved ionic 

compounds) but also can be independent of it, depending on species (Costanzo et al. 

2005). In addition to nitrogenous compounds and ionic concentrations, pH has been 

determined experimentally to have effects on abundance of larvae through indirect effects 

on the trophic structure of tree-hole environments (Paradise 2000).   

 

Just as water-body associations with plants can affect female oviposition choice they can 

also have an effect on larval development. In Puerto Rico, larval and pupal abundance 

were enhanced in artificial containers with leaf litter or algae that were near trees (Barrera 

et al. 2006). A study in Thailand found location of larvae in shade environments to be 

species dependent, and one species predominated in temporary habitats in artificial 
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containers near animals (Vanwambeke et al. 2007). But abundances of two common 

American species are shade independent (Costanzo et al. 2005). Plants can also influence 

larval mosquito abundance by influencing the richness of species assemblages associated 

with leaf litter. When given a choice between animal and plant detritus, larvae of two 

species fed preferentially on animal detritus (Kesavaraju et al. 2007). Presence of 

macroinvertebrate detritus benefits container-dwelling mosquitoes by enhancing growth 

rate, survival, and adult mass (Yee et al. 2007).  

 

The type of larval mosquito habitats, whether it‘s natural, artificial, temporary, 

permanent, covered, or uncovered, can have an effect on species distributions. A study in 

Vero Beach, FL, found eggs of two species significantly positively associated with urban 

settings and negatively associated with rural or open settings. However, no distinct rural 

vs. urban patterns emerged for the two other species assessed (Rey et al. 2006). Flooding 

of a habitat could lead to alternations of species present in the same container, as some 

raft-laying species will exploit a habitat during dry times while eggs of floodwater 

mosquitoes accumulate. When the containers flood, those eggs will hatch and there will 

be a switch in the dominant species. A succession of species has been noted in the same 

environments, depending on seasonal rainfall in three Anopheles species in Kenya 

(Gimnig et al. 2001). 
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Blood hosts of mosquitoes 

Since the incrimination of mosquitoes as vectors of pathogens in 1878, numerous studies 

have been conducted on mosquito-host associations (Foster and Walker 2009). Just as 

numerous are the methods that have been used to capture blood-fed mosquitoes and 

determine host identity. Host-seeking and blood-engorged mosquitoes have been 

captured with nets, and vacuum aspiration from hosts and vegetation where mosquitoes 

rest after blood feeding (including traps designed to be attractive resting sites), fan 

collections of host-seeking mosquitoes in flight (e.g., light traps that attract host-seeking 

mosquitoes), and fan collections of mosquitoes in habitats where they lay eggs (i.e., 

―gravid traps‖) (Silver 2008). To determine bloodmeal identity early studies relied on 

eyewitness accounts of mosquitoes feeding on animals. With advances in technology, 

methods have become increasingly sophisticated and allow for elucidation of host 

identity based on biochemical characterizations of mosquito bloodmeals.  

 

Briefly, the primary methods used to determine mosquito-host associations include 

recording mosquito visits to hosts through direct observation and bait traps (e.g., choice 

experiments between caged animals), identifying hosts using serological methods 

including precipitin tests, fluorescent antibody technique, passive hemagglutination 

inhibition technique, enzyme-linked immunosorbent assay, and most recently DNA-

based methods that amplify host DNA with the polymerase chain reaction (PCR) 

followed by variants on any or all of the following steps: restriction enzyme digestion, 

gel separation, heteroduplex analysis, reverse line-blot hybridization, excision and 
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purification of isolated host-derived DNA, sequencing of the DNA, and identification of 

the sequence using a GenBank BLAST (Washino and Tempelis 1983, Mukabana et al. 

2002, Kent 2009). One of the most common PCR primers in current use was designed by 

Kocher et al. (1989) to universally (e.g., all vertebrates) amplify a portion of the 

vertebrate mitochondrial cytochrome b gene. To date this primer has been used in at least 

eleven studies on mosquito bloodmeal identity (Kent 2009).  

 

From these data, generated over a century of study, general patterns in mosquito-host 

associations have been characterized, yet many specific associations (e.g., host fidelity) 

are still debated. We know that many factors contribute to the likelihood of an individual 

mosquito feeding on an individual host. These factors can be environmental (e.g., 

ambient temperature), behavioral (e.g., host avoidance of a mosquito), temporal (e.g., 

time of day), physiological (e.g., parasitism of the mosquito or host), and genetic (e.g., 

Culex pipiens complex subpopulations with preferences for either birds or mammals) 

(Hocking 1971, Washino and Tempelis 1983, Rossignol et al. 1985, Bentley and Day 

1989, Fonseca et al. 2004). Most mosquito species have either ―fixed‖ (i.e., specific host 

preferences regardless of host diversity) or ―opportunistic‖ (i.e., no host preferences, so 

diversity of bloodmeals reflects local host diversity) feeding patterns (Hess et al. 1968, 

Edman et al. 1972, Washino and Tempelis 1983). Within those species that have ―fixed‖ 

patterns they are further characterized as ―anthropophagic‖ (i.e., human-feeding), 

―zoophagic‖ (i.e., feed on vertebrates other than humans), ―mammalophagic‖ (i.e., 

mammal-feeding), and ―ornithophagic‖ (i.e., avian-feeding) (Reisen 2009).   
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 The basis of mosquito host biases likely has coevolutionary (e.g., optimized digestive 

enzymes) and environmental (e.g., feeding on most abundant hosts) components. 

Mosquitoes employ a wide arsenal of tools to locate hosts including olfactory and visual 

cues (Gibson and Torr 1999), and sound (Borkent and Belton 2006).  Some of these cues, 

such as volatiles emitted by human skin microbiota, could even determine mosquito host 

choice within a species (Braks et al. 1999). Some mosquitoes might have physiological 

and behavioral mechanisms allowing them to exploit a particular host at the expense of 

being able to efficiently use blood from a wide range of host types, such as the apparent 

evolved anthropophily of Aedes aegypti (Harrington et al. 2001). But retaining plasticity 

in host usage can be advantageous. For instance, feeding on new hosts could help some 

invasive mosquito species adapt to new environments and subsequently become vectors 

of introduced and native pathogens (Juliano and Lounibos 2005, Bataille et al. 2009). 

Mosquito host usage might be influenced by location of the host in relation to the larval 

habitat and previous environmental stimuli conditioning the mosquito (Hocking 1971, 

Smith et al. 2004, Foster and Walker 2009). Depending on the species, a mosquito might 

stay very close to the larval habitat from which it emerged (e.g., ≤30 meters) or disperse 

over distances exceeding 100 kilometers; however, two kilometers is the typical upper 

lifetime flight distance of a mosquito and most mosquitoes average 50 meters or less 

(Foster and Walker 2009, Silver 2009). 

 

Studies of mosquito hosts and populations have been integral to sorting out the 

epidemiology of many diseases. Mosquitoes can act as both vectors of pathogens (e.g., 
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transmission of WNv from birds to humans) and intermediate hosts necessary to the life 

cycle of pathogens (e.g., several filarial nematodes and Plasmodium spp. have obligate 

developmental stages in mosquito hosts). A single mosquito species or genus can be the 

critical vector serving as the most fundamental component of an epidemiological 

outbreak (Hamer et al. 2009). In such scenarios, identification of the main vector and its 

hosts can lead to mosquito management efforts that interrupt pathogen transmission. 

However, an understanding of the ecology of the vector is necessary to control efforts 

(Juliano and Lounibos 2005) and if the ecology is not well understood then efforts to 

control pathogen transmission might fail (Ferguson et al. 2010). Monitoring and censuses 

of mosquito populations can lead to anticipation of potential vectors, and early 

interventions in the event of outbreaks (Britch et al. 2008).  

 

Mosquito vectors of Dirofilaria immitis 

Dirofilaria immitis (Spirurida: Onchocercidae) is a filarial nematode parasite and the 

causative agent of ―canine heartworm‖ disease (Grieve et al. 1983). It is transmitted 

between vertebrate hosts by mosquitoes and requires the mosquito as an intermediate host 

for three stages of larval development. Prevalence of D. immitis infection in dogs can 

reach up to 45% in the United States and the American Heartworm Society was formed 

in 1974 to provide a forum for research (Boreham and Atwell 1988, Roberts and Janovy 

Jr. 2005). It has been reported in North and South America, the Caribbean, Europe, 

Africa, southeast Asia, and Australia, and although it was originally thought to persist 

only in warm coastal areas the range is spreading into temperate inland areas due to either 
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movement of infected dogs or increasing abundance of mosquito vectors, or both (Lok 

1988).  

 

Over 60 species of mosquito in the genera Aedes, Anopheles, Culex, and Psorophora 

have been implicated as vectors, and some of these are serious pests of man and 

domesticated animals (Lok 1988). A mosquito ingests first-stage D. immitis microfilariae 

when it takes a bloodmeal from an infected and competent vertebrate host. The 

microfilaria migrate to the mosquito Malpighian tubules, the entrance of which are 

located in the lumen of the pyloric valve between the midgut and hindgut (Thompson 

1905), where they molt through their second and third stages. The third stage larvae then 

migrate to the mosquito mouthparts (specifically the lumen of the labium) and are 

introduced to a new host when the mosquito takes its next bloodmeal, whereupon they 

exit the labium and enter the host through skin ruptured by the mosquito bite (Grieve et 

al. 1983). This developmental process is temperature-dependent, but typically takes 12 -

14 days between mosquito ingestion of microfilaria and subsequent inoculation of a new 

host with infective third-stage D. immitis larvae. In the vertebrate host D. immitis larvae 

take 70 – 90 days to molt through their fourth and fifth stages of development and then 

reach sexual maturity once located in the heart and pulmonary arteries. At this point the 

cycle begins anew as females mate and release microfilariae into the host circulatory 

system (this paragraph was adapted from chapters in Boreham and Atwell 1988, and 

Foster and Walker 2009). 
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Although D. immitis or ―heartworm disease‖ is most often associated with domestic dogs, 

it has been found in many wild and domestic animals, and evidence exists of a persistent 

sylvatic reservoir of the parasite in wild canines (e.g., coyotes) (Ciferri 1982, Abraham 

1988, Lok 1988). It has been found in at least 10 species of canine other than dogs, 6 

feline species including domestic cats, 20 other species of mammals including several 

that are regularly exhibited in zoos (e.g., otters, orangutans, seals), and man (Abraham 

1988, Boreham 1988). Dirofilaria immitis infections in zoo animals have been associated 

with host death, and some represent first records in a particular host (e.g., penguins at the 

Tokyo Zoo) (Sano et al. 2005); some of the more notable cases are included in Table 2.2.   

 

Once an animal is diagnosed with heartworms, treatment typically consists of 

chemotherapy using thiacetarsamide or levamisole (adulticides), followed by dithiazanine 

iodide or ivermectin (larvicides) with ongoing chemoprophylaxis using 

diethycarbamazine citrate or ivermectin (Courtney 1988). However, adulticides can be 

very dangerous to the host animal and often require the animal‘s movement to be 

severely restricted for several weeks following treatment (Courtney 1988, Kreeger et al. 

1990). In heartworm endemic regions, heartworm infection should be included in the 

differential diagnosis for sudden death of exotic cats housed outdoors, non-human 

primates with cardiopulmonary disease, and human lung cancer (Ciferri 1982, Deem et 

al. 1998, Gamble et al. 1998). Continued screening of native and exotic zoo animals 

which can be definitive hosts of D. immitis was recommended after a study of heartworm 
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prevalence in Calgary, Alberta, Canada which included the Calgary Zoo (although no zoo 

animals tested positive) (Frimeth and Arai 1984). Additionally, D. immitis might serve as  

 
Table 2.2. Selected reports of confirmed or putative Dirofilaria immitis infection in captive animals at  

zoos.   

Country Common Name Linnaean Name 
First 

report?
1
 

Cause of 

death?
2
 

Reference 

 

Japan 

 

Snow leopard 

 

Uncia uncia 

 

Yes 

 

No 

 

Murata et al. 2003 

Korea Eurasian otter Lutra lutra No Yes Matsuda et al. 2003 

USA Black-footed cat Felis nigripes Yes Yes Deem et al. 1998 

USA 
Pale-headed 

saki monkey 
Pithecia pithecia No N/A

3
 Gamble et al. 1998 

Japan 
Humboldt 

penguin 

Spheniscus 

humboldti 
Yes

4
 Yes Sano et al. 2005 

USA Wolverine Gulo luscus Unknown Yes 
Williams and Dade 

1976 

USA 
California sea 

lion 

Zalophus 

californianus 
No Yes White 1975 

USA Red panda 
Ailurus fulgens 

fulgens 
No Yes

5
 Neiffer et al. 2002 

USA Bengal tiger Panthera tigris Unknown Yes 
Kennedy and Patton 

1981 

1. Whether this is the first report in the literature of D. immitis infection in the particular animal.  

2. Whether D. immitis was implicated as the cause of animal death upon post-mortem examination.  

3. First premortem diagnosis of D. immitis infection in a non-human primate with subsequent    

successful treatment of infection, i.e., no animal death.  

4. First report of D. immitis infection in a bird.  

5. Treatment for parasite with melarsomine was putative cause of death.  

 

an excellent proxy for studies on the epidemiology of human filariases; incidentally, it 

was the first filarial nematode transmitted by mosquitoes to have its life cycle determined 

(by Thomas Bancroft in Brisbane, Australia in 1901) (Grieve et al. 1983, Boreham and 

Atwell 1988).  
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Pyloric armature of mosquitoes 

Distinct areas of armature composed of lightly and heavily sclerotized ―teeth‖, have been 

noted along the interior of mosquito fore- and midguts (Trembley 1951). Most notable 

are those termed the cibarial, pharyngeal, and pyloric armature. These armatures might 

aid in mechanical hemolysis of mosquito host blood cells, or disruption leading to death 

of filarial parasites infecting the mosquito (Lyimo and Ferguson 2009). Additionally, 

migration of infective filarial larvae across the mosquito body cavity can be damaging 

(thus reducing fitness) to the adult mosquito (Perrone and Spielman 1986). Therefore, 

mosquito pecies susceptible to D. immitis infection would have an advantage by 

maintaining physical defenses against filarial infection (which are usually less costly than 

physiological defenses). Alternatively, species with less well-developed armature could 

be more susceptible to infection, as was the case in a study including well known Aedes 

sp. and Culex sp. vectors that had poorly developed armature (McGreevy et al. 1978). 

 

The pyloric armature might aid in mechanical filtering and concentration of mosquito-

host erythrocytes from serum and its structure might vary with structure of host 

erythrocytes (Vaughan et al. 1991, Lyimo and Ferguson 2009). Up to thirty-fold 

differences have been noted in the size of vertebrate red blood cells (ca. 2μm to 52 μm in 

diameter), with class level differences apparent (Snyder and Sheafor 1999). Therefore as 

a consequence of coevolution, and selection pressures to either specialize (e.g., on one 

host class, such as Aves) or generalize (i.e., opportunistically feed on the closest host 

available) armature structure might reflect known differences in host erythrocyte size and 
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shape. Differences in the number and type of teeth on mosquito maxillae have previously 

been related to host type (e.g., birds, ―cold-blooded‖ animals, mammals including 

humans) (Lee and Craig 1983). And, because of the peristaltic action of the pylorus, the 

armature might also aid in hemolyzing host blood cells (Vaughn et al. 1991), a known 

function of the cibarial armature (Coluzzi et al. 1982, Chadee et al. 1996). 

 

The foregut armature aids in shredding, and thus killing, filarial nematodes (e.g., 

Wuchereria bancrofti) ingested in mosquito bloodmeals (McGreevy et al. 1978). 

Additional evidence that armature elaboration tends to decrease as vector efficiency 

increases, as was the case in studies including well known Aedes spp. and Culex spp. 

vectors that had poorly developed cibarial and pharyngeal armature (Shoukry and 

Soliman 1995, McGreevy et al. 1978). Given the precedent set by the action of mosquito 

foregut armature, the pyloric armature might aid in killing of Dirofilaria immitis L1 

larvae that migrate into the Malpighian tubules through openings in the pyloric valve (Dr. 

John McCall, personal communication 2011), specifically, where the Malpighian tubules 

open into the space between the midgut and ileo-colon valves that form the pyloric valve 

(Thompson 1905)– a strategy different from that of other filarioid nematodes that migrate 

across the midgut into the hemocoel (Macdonald and Ramachandran 1965). Disruption of 

the migration of infective D. immitis larvae could provide a fitness benefit as their 

passage and development can be damaging to the adult mosquito, and shortens mosquito 

lifespan (Kershaw et al. 1953). Accordingly, species with less well-developed armature 

would be more susceptible to filarial infection. Some mosquito species are capable of 
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ingesting D. immitis larvae, and harboring development until a certain stage at which they 

kill the mosquito (Sulaiman and Townson 1980). Therefore, some mosquitoes can be 

infected but are incompetent vectors, whereas other species can be infected and are 

competent vectors. However, wide variation in the number of microfilariae ingested by 

individual mosquitoes (Russell and Geary 1992), and low incidences of Dirofilaria spp. 

infection in most natural populations might render selection pressure by filarial 

nematodes on pyloric armature weak.  

 

Thompson (1905) and de Boissezon (1930) state that the pyloric armature is lacking in 

mosquito larvae, and it is not mentioned in larvae by Christophers (1960), whereas other 

authors have suggested that it is 1) present (Clements 1963), and 2) aids mosquito larvae 

in disrupting the establishment of trichomycete fungal parasites (McCreadie and Beard 

2003), and the armature could subsequently be carried over into the adult during 

metamorphosis; however, no work has been done documenting the fate the the larval 

pylorus in the adult mosquito (Clements 1963). Because the cuticular lining of the 

hindgut is shed during molting, the pyloric armature would likely not persist in the adult 

mosquito unless there was a function for it. Trichomycete fungi have been noted for 

having a mysterious ―preference‖ for the larval mosquito rectum although the pH drop 

required for trichomycete sporangiospore formation begins in the pylorus (which has a 

neutral pH as opposed to the basic pH of the midgut) and sporangiospore formation has 

been noted in the mosquito pylorus (Horn 2001). The esophageal armature might aid in 

drawing a type II peritrophic matrix through the gut, and the pyloric armature might serve 
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a similar function, and aid in the disintegration, or backwards passage of type I 

peritrophic matrixes (Wigglesworth 1950). It might also aid in backwards passage of the 

peritrophic matrix encapsulated larval meconium. A previous study on the pyloric 

armature of sand flies suggested it could serve to facilitate disruption of undigested 

blood-meal residue and peritrophic matrix, and might influence Leishmania parasites that 

localize in the pylorus (Christensen 1971). One study on phlebotomine sand flies 

documented bloodmeal excretion into the hindgut occurring simultaneously with the 

breakdown of the peritrophic matrix, and noted unattached, motile flagellated Leishmania 

parasites in the lumen of the pylorus and Malpighian tubules (Walters et al. 1987).  

 

A recent SEM study documented ―cuticular ridges with tentacle-like appendages‖ in the 

pylorus or ―hind triangle‖ of the sand fly, Phlebotomus papatasi (Warburg 2008). The 

cibarial, and pharyngeal, armature of mosquitoes have taxonomically meaningful 

characters (Chwatt 1945, Forattini and Sallum 1992) and the armature of spines and 

plates in pyloric intima of lepidopteran and black fly larvae have been noted for their 

taxonomic importance (Kim and Adler 2007, Byers and Bond 1971). Trembley (1951) 

suggested the pyloric armature of adult mosquitoes might have taxonomic utility. 
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CHAPTER THREE 

HABITAT CHARACTERISTICS OF LARVAL MOSQUITOES IN ZOOS OF 

SOUTH CAROLINA, USA
1
 

 

Zoos provide a variety of larval habitats and a wide range of blood-meal hosts for 

mosquitoes (Beier and Trpis 1981a, Derraik 2004, Nelder 2007). Mosquito vectors also 

can introduce pathogens to zoo animals (often of endangered or threatened species) from 

wild populations (Fix et al. 1988, McConkey et al. 1996, Alley et al. 2008). With an 

increase in zoo-based rehabilitation services for wild animals, including captive-breeding 

and reintroduction programs, previously naive animals could be released into the wild 

after becoming infected on zoo grounds (Brossy et al. 1999). Unique combinations of 

adventive and indigenous (sensu Frank and McCoy 1990) hosts, mosquitoes, and 

pathogens occur in zoos, as evident during the outbreak of West Nile Virus at the Bronx 

Zoo, NY, in 1999 (Ludwig et al. 2002), and when cardiac infection with Dirofilaria 

immitis (dog heartworm) was implicated in the death of a black-footed cat (Felis 

negripes) at a zoo in Florida (Deem et al. 1998). Zoos ideally should incorporate 

mosquito control into existing pest-management programs or implement programs if 

none currently exist (Derraik 2005).  

 

 Meaningful relationships between physicochemical variables of aquatic habitats and the 

presence or absence of mosquito larvae have been demonstrated (Senior-White 1926, 

                                                 
1
 Published in the J. Am. Mosq. Control Assoc. . 2011. 27(2): 111-119 
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Rejmankova et al. 1991, Muturi et al. 2007). Interactions between aquatic habitats and 

surrounding terrestrial ecology, including location of blood-meal hosts, can influence 

distributions of mosquito larvae (Vanwambeke et al. 2007, Yee and Yee 2007, Gu et al. 

2008). At the proximate level, habitat parameters such as vegetation patterns and water 

chemistry can serve as cues for oviposition (Allan et al. 1987, Bentley and Day 1989, 

Blackwell and Johnson 2000).  Effective mosquito abatement and control programs 

should begin with a survey of mosquitoes in a given area and a characterization of their 

habitats (WHO 1975). Because of differential distributions of adults and larvae, and 

inherent biases in methods, surveys of multiple life stages should be conducted 

(Minakawa et al. 2002, Silver 2008). Understanding larval mosquito ecology is relevant 

to understanding adult distributions (Gimnig et al. 2001) and implementing control 

through ―habitat-based interventions‖ (Gu et al. 2008).  

 

Zoos contain a novel juxtaposition of habitats. For instance, an aviary mimicking a 

tropical rainforest might be located next to an arctic penguin exhibit. These varied 

habitats could create partitioned breeding sites and blood-meal hosts, and therefore act as 

accidental yet informative choice experiments or represent wholly new environments. To 

exploit this aspect of zoos as a study system for mosquito behavior, I surveyed aquatic 

habitats for mosquito larvae and measured physicochemical variables in two South 

Carolina zoos. During a previous survey of adult mosquitoes at the same zoos, larval 

mosquito habitats were noted but not characterized (Nelder 2007). The purpose of my 

study was to test the hypothesis that the distribution of larvae is predictable on the basis 
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of selected habitat characteristics, and determine whether larval mosquito habitats in zoos 

differ from those reported previously in the literature. This study also provides 

information for zoo personnel, regarding mosquito management.  

 

Materials and Methods 

Study Locations and Sites. All sites sampled were in the Greenville Zoo (Greenville, 

Greenville Co., South Carolina, USA; GPS: N34° 50.493′ W82° 23.133′, elev. 266m) and 

Riverbanks Zoo and Garden (Columbia, Richland Co., South Carolina, USA; GPS: N34° 

00.358′ W81° 04.280′, elev. 51m). The Greenville Zoo (GZ), located in the piedmont 

ecoregion,  is approximately 4 hectares and is bordered by the Reedy River. The 

Riverbanks Zoo (RZ) (excluding the gardens which were not part of the study area), 

located in the sandhills ecogregion, is approximately 21 hectares and is bordered by the 

Broad and Congaree rivers. The two zoos are 152 kilometers apart. Each zoo was initially 

surveyed and all accessible water bodies were examined as potential mosquito habitats. 

Accessibility was determined by zoo restrictions (e.g., alligator ponds at both zoos were 

not examined), with emphasis on minimal disturbance to zoo animals and visitors. Some 

sites did not persist for the entire study.  

 

Sites were defined as an individual larval habitats within the zoos, such as a container or 

pool, and were classified by origin (artificial or natural), type (container or pool), and 

disturbance (disturbed or undisturbed). Artificial sites were defined as having a 

discernible human origin. Containers were distinguished from pools by having a 
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perimeter, a substrate discontinuous with the surrounding landscape, and a surface area 

≤0.30 m
2
. Disturbance was determined as any habitat disruption to the site (e.g., weekly 

cleaning by zoo employees, regular flooding by road run-offs, sporadic treatment with 

Bacillus thuringiensis israelensis (Bti) pellets). For large sites (e.g., vernal ponds), a 

meter along the edge was randomly selected and used for both environmental and larval 

samples during the entire study. Sites were ordered in a circuit and for each visit a 

beginning site was chosen randomly. During each zoo visit, physicochemical parameters 

were measured in one full circuit in the morning, and larval samples were taken in a 

second full circuit in the afternoon. Collections during each visit spanned one or two 

days, depending on the number of sites with water. Monthly collections were conducted 

at each zoo in March, May – August, October (RZ) and November (GZ) 2008, and 

January 2009.   

 

Environmental Measurements. The average weekly high and low air temperatures and 

precipitation amounts preceding the week of collections for each zoo were obtained from 

the Greenville (KGMU) and Columbia (KCUB) downtown airports.  Continuous 

measurements, of water at each site, taken on-site, were conductivity (Horiba 

Conductivity meter B-173), dissolved oxygen and temperature (Extech Dissolved 

Oxygen meter 407510A), pH (Oyster pH/mV/temp meter), depth, and surface length and 

width or surface diameter. Categorical measurements (taken by visual estimation) 

included aquatic vegetation (submerged and emergent, scored as presence or absence), 

canopy cover (≤50% or >50%), and height of predominant shade (≤2m or >2m). 
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Collection equipment was cleaned with distilled water between sites, and all meters were 

primed with water from the site before taking measurements. Conductivity, dissolved 

oxygen, and pH meters were calibrated with reference standards before each visit. 

Approximately the same amount of time was spent taking environmental samples at each 

site (mean = 8.8 ± 2.5 minutes).  

 

Larval Sampling and Identification. Larvae were sampled with a baster (21.0 ml), ladle 

(70.0 ml), or dipper (470.0 ml), depending on site depth and surface area. Initially, 8 sites 

were sampled with a net and larvae were pipetted from a white pan, but the procedure 

was time intensive and abandoned. Due to low water volume, five sites were sampled 

with a pipette (~2.8 ml). Sites were sampled until either 10 samples were taken or the 

water in the site was exhausted (yielding fewer than 10 samples). Sample water was 

strained through a mesh net that was then rinsed with distilled water into a 284-ml glass 

jar and transported to the laboratory. A sample of water was taken regardless of perceived 

larval presence or absence. Approximately the same amount of time was spent taking 

water samples at each site (mean = 6.8 ± 3.0 minutes). Late instars (3
rd

 and 4
th

) were 

killed in warm water and fixed in 80% EtOH. Early instars were reared to either late 

instars or adults. Pupae were reared to adults. Mosquito larvae and adults were identified 

to species using the keys of Darsie and Ward (2004). Larvae from the first day (of two) of 

the initial visit at Riverbanks Zoo were fixed on site in 80% EtOH and all late instars 

were indentified. Representative specimens of larvae and adults were deposited in the 

Clemson University Arthropod Collection.  



32 

 

Statistical Methods.   Conductivity, dissolved oxygen, pH, surface area and depth, water 

temperature, and weekly mean high and low air temperature and precipitation, were entered 

into a principal components analysis (PCA). Beforehand, conductivity, dissolved oxygen, 

pH, depth, and surface area were log transformed to approximate normality. The purpose 

of a PCA is to preserve useful variability in a dataset with highly correlated variables 

while eliminating collinearity. All PCs with eigenvalues >1.0 were used in place of 

original habitat variables in subsequent analyses (Stoops et al. 2007). The relationships 

between original variables and derived principal components (PCs) were interpreted 

using Spearman‘s rank correlations (Ciborowski and Adler 1990). Significant 

associations between habitat parameters and PCs with presence of mosquito larvae 

(regardless of abundance) were determined using stepwise multiple logistic regression 

with backward elimination (Chatterjee and Hadi 2006) in the SAS JMP 8 statistical 

platform (Sall et al. 2007). Species present at more than 10% of sites also were analyzed 

separately.  

 

Parameters were initially tested for significance by univariate analysis. All significant 

variables (p<0.25 to avoid type II errors) were entered into the multiple regression 

(Hosmer and Lemeshow 2000). The parameters initially tested were PC1, PC2, aquatic 

vegetation (presence/absence), canopy cover (≤50% or >50%), origin (artificial or 

natural), shade height (≤2m or >2m), site disturbance (disturbed or undisturbed), type 

(container or pool), and zoo (GZ or RZ). After univariate screening, parameters were 

assessed for inclusion in the model, using significance of Chi-square scores (probability 
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to enter and leave were both set at p ≤ 0.10 to avoid type I errors) (Udevitz et al. 1987). 

Final parameters were determined by comparing Aikaike information criterion (AIC) 

scores of the models. The model with the lowest AIC score was chosen (Chatterjee and 

Hadi 2006). The goal was to develop a model with the strongest predictive power, using 

the least number of parameters.  

 

Final fitted models were tested for overall goodness of fit, and percentages of larvae 

correctly classified as either present or absent at a site were calculated (McCreadie and 

Adler 1999, Hamada et al. 2002). Additionally, an analysis was conducted in SAS (9.2) 

to determine if the effect of time of visit was having an impact on the development of the 

regression model.  The analysis included a repeated measures approach by adding visit as 

a variable in the regression models (adjusted for using a random effects model) and also 

analyzing bivariate correlations between visit and environmental variables already in the 

model.   

 

In addition to model creation, coefficients of pairwise associations between the four most 

abundant species across both zoos were calculated using Hurlbert‘s C8 with Ratliff‘s 

correction, and tested for significance using chi-square analysis (Hurlbert 1969, Ratliff 

1982). These associations were analyzed according to source of habitat (artificial or 

natural origin), habitat type (container or pool), and amount of shade (canopy cover 

≤50% or >50%). 
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Results 

In total, 59 sites were sampled repeatedly over the study period, 27 at the Greenville Zoo 

and 32 at the Riverbanks Zoo. Artificial containers (n = 19) included buckets, a birdbath, 

concrete cedar stumps, gutters, a pool in a tarp, plastic and metal pipes, trash bins, and a 

tire. Natural containers (n = 20) included treeholes and bamboo stumps. Artificial pools 

(n = 11) included garden ponds and puddles in tire tracks, and natural pools (n = 9) 

included vernal pools and a duck pond. Extra sites were sampled for larvae on an ad hoc 

basis (not included in regression analyses); positive sites included buckets, plant pots, 

puddles, standing water on a park bench (once), tarps, tires, treeholes, and unused snack 

carts.  

 

A total of 1,630 larvae, representing 16 species in 7 genera, was collected and identified 

from 238 samples (Table 3.1). Of these, 653 were collected at the Greenville Zoo (91 

samples) and 977 at the Riverbanks Zoo (147 samples). Mosquito larvae were found in 

all seasons at the Riverbanks Zoo, but no mosquito larvae were found during winter at the 

Greenville Zoo. Only one species, Culex restuans (Theobald), was found in all four 

seasons. Four species comprised 91.7% of all larvae collected at both zoos: Aedes 

albopictus (Skuse) (46.0%), Ae. triseriatus (Say) (23.6%), Culex pipiens complex (L.) 

(9.7%), and Cx. restuans (12.4%). Aedes albopictus was found in artificial and natural 

containers and artificial pools but not in natural pools (Table 3.2). Aedes triseriatus was  
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Table 3.1. Total number of individuals collected at Greenville (GZ) and Riverbanks (RZ) zoos, South 

Carolina, and percentage of aquatic habitats positive for larvae (by season), 2008-2009.  

 

Species
a
 

GZ RZ 

No.          

larva

e 

total 

% sites
b
  No.        

larva

e 

total 

% sites  

Spr. 

(n=36

) 

Sum. 

(n=40

) 

Fall 

(n=4

) 

Spr. 

(n=52

) 

Sum. 

(n=54

) 

Fall 

(n=21

) 

Win. 

(n=20

) 

Ae. albopictus 472 25 62.5 25 278 15.4 25.9 19 0 

Ae. triseriatus 71 19.4 20 0 314 19.2 13 14.3 0 

Cx. restuans 22 5.6 5 0 180 17.3 9.3 4.8 15 

Cx. pipiens complex 64 0 10 50 94 7.7 9.3 4.8 0 

Cx. salinarius 0 0 0 0 27 3.8 0 0 0 

Or. signifera 0 0 0 0 27 0 3.7 4.8 5 

Cx. territans 20 8.3 10 0 6 7.7 1.9 4.8 0 

Ae. vexans 0 0 0 0 21 7.7 3.7 0 0 

An. punctipennis 1 0 2.5 0 8 0 7.4 0 0 

Tx. rutilus 1 0 2.5 0 7 1.9 5.6 0 0 

Cx. erraticus 0 0 0 0 7 1.9 7.4 0 0 

An. crucians complex 2 2.8 0 0 1 0 1.9 0 0 

Ps. ferox 0 0 0 0 3 0 1.9 0 0 

An. quadrimaculatus 

complex 0 0 0 0 2 0 1.9 0 0 

Ae. canadensis 0 0 0 0 1 0 0 0 5 

Ps. ciliata 0 0 0 0 1 0 1.9 0 0 

Total
c
 653 44.4 75 50 977 59.6 59.3 33.3 20.0

b
 

a
In descending order by total number of larvae across both zoos 

b
Number of sites sampled in parentheses; no mosquito larvae were collected at GZ in winter (11 sites 

sampled) 
c
Total number of larvae at each zoo, and percentage of total sites positive for mosquito larvae by respective 

season  

 

 

found only in artificial and natural containers. Culex pipiens complex was found in all 

except natural containers. Culex restuans was found in artificial and natural containers 

and natural pools in one zoo (RZ) but in only artificial pools at the other zoo (GZ).  
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The variables entered into the PCA resulted in two PCs with eigenvalues >1.0 and these 

explained 58.2% of the variability in the environmental measurements (Table 3.3). Water 

temperature, and weekly mean high and low air temperature and precipitation, were  

 

Table 3.2. Percentage of aquatic habitat types positive for larvae at Greenville (GZ) and Riverbanks (RZ) 

zoos, South Carolina, 2008-2009.  

Species 

GZ   RZ 

AC         

(n = 

29) 

NC        

(n = 

36) 

AP         

(n = 

25) 

NP       

(n = 

1) 

  

AC       

(n = 

40) 

NC     

(n = 

36) 

AP          

(n = 

46) 

NP        

(n = 

25) 

Ae. albopictus 34.5 52.8 24.0 0 
 

40.0 27.8 0 0 

Ae. triseriatus 17.2 27.8 0 0 
 

12.5 41.7 0 0 

Ae. vexans 0 0 0 0 
 

5.0 0 6.5 4.0 

An. crucians 

complex 
0 0 4.0 0 

 
2.5 0 0 0 

An. punctipennis 0 0 4.0 0 
 

2.5 0 4.4 4.0 

An. 

quadrimaculatus 
0 0 0 0 

 
0 0 2.2 0 

Cx. erraticus 0 0 0 0 
 

2.5 0 8.6 0 

Cx. pipiens 

complex 
0 0 24.0 0 

 
15.0 0 4.4 4.0 

Cx. restuans 0 0 16.0 0 
 

17.5 5.6 0 36.0 

Cx. salinarius 0 0 0 0 
 

0 2.8 0 4.0 

Cx. territans 0 2.8 24.0 0 
 

2.5 2.8 2.2 12.0 

Or. signifera 0 0 0 0 
 

0 11.1 0 0 

Ps. ferox  0 0 0 0 
 

0 0 0 4.0 

Ps. ciliata 0 0 0 0 
 

0 0 2.2 0 

Tx. rutilus 0 2.8 0 0 
 

2.5 8.3 0 0 

Oc. c. canadensis 0 0 0 0 
 

0 0 0 4.0 
a
Alphabetically ordered 

 

significantly positively associated with PC1. Dissolved oxygen was significantly 

negatively associated with PC1. Surface area and depth were significantly positively 

associated with PC2. Conductivity and pH were significantly negatively associated with 

PC2.  



37 

 

The final model correctly predicted presence and absence of mosquito larvae at 72.6% of 

sites (Table 3.4). The model included PC1, PC2, origin, disturbance, aquatic vegetation, 

canopy cover, and shade height. Larval presence was significantly (p<0.05) positively 

associated with PC1, natural habitats, and absence of aquatic vegetation. It was weakly 

(p<0.10) positively associated with PC2, undisturbed habitats, and shade height ≤2m. 

Separate logistic regression analyses also were conducted for Ae. albopictus and Ae. 

triseriatus because they were present at more than 10% of sites.  

 

Table 3.3.. Minimum, maximum, and mean values of continuous variables used in principal components 

(PCs) analysis, with Spearman‘s rank correlation coefficients for each variable and associated PCs. 

Environmental measurements taken from aquatic habitats at Greenville and Riverbanks zoos, South 

Carolina, 2008-2009.  

Parameter 
Values   Principal Component 

Min Max Mean   PC1 p PC2 p 

Ambient high (C°) 12.00 31.00 21.32 
 

0.878 <0.0001* 0.117 0.146 

Ambient low (C°) -2.00 27.00 13.46 
 

0.863 <0.0001* 0.058 0.472 

Precipitation (cm) 0.00 1.30 0.42 
 

0.402 <0.0001* 
-

0.098 
0.223 

Water temp (C°) 2.00 28.80 16.99 
 

0.875 <0.0001* 0.036 0.654 

DO (mg/L) 0.50 20.90 4.01 
 

-

0.658 
<0.0001* 0.107 0.181 

pH 4.50 9.66 6.90 
 

0.059 0.464 
-

0.608 
<0.0001* 

Conductivity 

(µS/cm)  
19.00 7700.00 681.52 

 
0.088 0.273 

-

0.812 
<0.0001* 

Surface Area (m²) 
4.91x10

-

4
 

15.00 1.06 
 

-

0.096 
0.230 0.747 <0.0001* 

Depth (cm) 0.50 66.00 10.41 
 

0.075 0.351 0.684 <0.0001* 

         Variance 

explained (%) 

        Total 

    

35.5 
 

22.7 

 Cumulative 

    

35.5 
 

58.2 

 a
Asterisk indicates significance at the 0.05 level 

 

 



38 

 

The final model for Ae. albopictus correctly predicted presence and absence at 79.5% of 

sites. The model included PC1, zoo, type, and shade height. Aedes albopictus was 

significantly (p<0.001) positively associated with PC1 and container habitats and weakly  

(p<0.10) associated with the Greenville Zoo and shade height ≤2m. The final model for 

Ae. triseriatus correctly predicted presence at 84.6% of sites. The model included PC1, 

origin, and shade height. The type category (container or pool) could not be included in 

the model for Ae. triseriatus because it was a perfect predictor (i.e., Ae. triseriatus was 

found only in container habitats) and caused model instability. Aedes triseriatus was 

significantly (p<0.001) positively associated with natural containers and shade height 

≤2m and weakly (p<0.10) positively associated with PC1. Time of visit was found to be a 

non-significant variable in the regression models and bivariate analyses, and the repeated 

measures analysis based on time of visit did not significantly improve or change the form 

of the final models chosen. 

 

Coefficients of interspecific association (C8) were obtained by analyzing sites from both 

zoos as one data set (Table 3.5); there was no zoo associated difference in interspecific 

associations among larvae when zoos were analyzed separately. Aedes albopictus and  

Ae. triseriatus were significantly positively associated in artificial and natural habitats, 

and in shaded habitats. Aedes albopictus was also significantly positively associated with 

Cx. pipiens complex in pools, and completely (i.e., the two species were never found 

together) negatively associated with Cx. restuans in natural habitats. Aedes triseriatus 

was not significantly associated with the other two species.  
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Table 3.4. Logistic regression on association between habitat variables and principal components with 

mosquito larval presence in aquatic habitats sampled at Greenville  (GZ) and Riverbanks (RZ) zoos, South 

Carolina, 2008-2009.  

Parameter 
Regression 

coefficient 
SE X² p 

Reg.Coeff. 

Lower 

95% 

Reg. 

Coeff. 

Upper 

95% 

Aedes albopictus 

(R² = 0.3103; % correctly classified: 79.5; Goodness of fit = 0.8206; Observations = 156) 

Intercept -1.467 0.355 17.03 <0.001* -2.262 -0.834 

PC1 0.682 0.145 22.09 <0.001* 0.412 0.984 

Zoo[GZ/RZ] 0.417 0.217 3.69 0.055 -0.006 0.851 

Type[C/P] 1.127 0.336 11.22 <0.001* 0.532 1.890 

ShdHght[≤2m/>2m] 0.384 0.229 2.82 0.093 -0.065 0.837 

Aedes triseriatus 

 (R² = 0.2471; % correctly classified:  84.6; Goodness of fit = 0.995; Observations = 156) 

Intercept -1.465 0.264 30.80 <0.001* -2.020 -0.975 

PC1 0.268 0.155 3.00 0.084 -0.027 0.587 

Origin[N/A] 0.949 0.271 12.22 <0.001* -1.521 -0.445 

ShdHght[≤2m/>2m] 1.064 0.264 16.27 <0.001* 0.568 1.613 

All Species 

(R² = 0.2642; % correctly classified: 72.6; Goodness of fit = 0.2680; Observations = 156) 

Intercept -0.169 0.321 0.28 0.598 -0.818 0.452 

PC1 0.585 0.132 19.67 <0.001* 0.340 0.861 

PC2 0.354 0.201 3.10 0.078 -0.032 0.762 

Origin[N/A] 0.627 0.277 5.14 0.0234* -1.191 -0.099 

Disturbed[U/D] 0.536 0.287 3.49 0.062 -0.020 1.111 

AqVeg[No/Yes] 0.964 0.315 9.39 0.0022* 0.370 1.614 

CanCov[>50%/≤ 

50%] 0.345 0.237 2.13 0.144 -0.826 0.107 

ShdHght[≤2m/>2m] 0.476 0.257 3.44 0.064 -0.016 0.996 
a
 AqVeg = aquatic vegetation (both submerged and emergent); CanCov = amount of canopy cover above 

habitat >50%/≤ 50%; Disturbed: D = disturbed, U = undisturbed; Origin: A = artificial, N = natural; ShdHt 

= height of predominant shade source above habitat ≤2m or >2m; Type: C = container, P = pool 
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Table 3.5. C8 coefficients of pairwise associations, within three habitat categories, between four most 

common mosquito species sampled as larvae at Greenville and Riverbanks zoos, South Carolina, 2008-

2009. A value of 1 indicates complete positive association (always found together), and -1 indicates 

complete negative association (i.e., never found together). Artificial, container, and shaded values above 

the diagonal, and natural, pool, and unshaded values below.  

Species
a
 

Aedes 

albopictus 

Aedes 

triseriatus 

Culex pipiens 

complex 

Culex 

restuans 

Artificial vs. Natural 

Ae. albopictus −    0.13* 0.10 0.08 

Ae. triseriatus     0.21* − 0.00 0.12 

Cx. pipiens complex -1.00 -1.00 −   0.30* 

Cx. restuans -1.00 -0.64 -1.00 − 

Container vs. Pool 

Ae. albopictus − 0.11 0.01 -0.15 

Ae. triseriatus   NA
b
 − NA

b
 NA

b
 

Cx. pipiens complex     0.25* NA
b
 −      0.42** 

Cx. restuans 0.10 NA
b
 -0.25 − 

Shaded vs. Unshaded 

Ae. albopictus − 0.19* 0.05 -0.04 

Ae. triseriatus 0.09 − -1.00 -0.08 

Cx. pipiens complex 0.02 0.04 − 0.17 

Cx. restuans -0.20 0.00  0.18* − 
a
Significance of chi-square statistic, *p<0.05, **p<0.001, 

b
Ae. triseriatus never found in pools  

 

Discussion 

Mosquitoes oviposit in a variety of aquatic habitats at the Greenville and Riverbanks 

zoos, and the presence of their larvae is predictable. The most common species across 

both zoos, Ae. albopictus, is of particular importance from a zoo-based perspective. It 

bites people during the day, causing a nuisance to zoo visitors and employees 

(unpublished data). It also bites animals and can transmit arboviruses and the causative 

agent of dog heartworm, Dirofilaria immitis (Gratz 2004). Both zoos have attempted 

mosquito control in the last three years: two ―mosquito magnet‖ traps at the Greenville 
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Zoo (currently not being used), and unmonitored and sporadic Bti use at the Riverbanks 

Zoo (ongoing). The other dominant species (Ae. triseriatus, Cx. pipiens complex, and Cx. 

restuans) are also of medical and veterinary concern (Foster and Walker 2009). 

 

The 16 species collected as larvae in the zoos were previously represented in a statewide 

survey of adults from 1996 to 1998 in which 34 species were collected (Wozniak et al. 

2001). During my study 23.5% of those species were found at the Greenville Zoo and 

47.1% at the Riverbanks Zoo. Comparisons also were made with 2008 adult monitoring 

records from the South Carolina Department of Health and Environmental Control 

(SCDHEC) (C.L. Evans, SCDHEC, personal communication). Of the four species 

collected by SCDHEC in Greenville County, three were found as larvae in the zoo. In 

Richland County also, the mosquito larvae represented a subset of the local mosquito 

population and 15 of the 16 species (with the exception of Tx. rutilus) collected in the 

Riverbanks Zoo were collected as adults at non-zoo locations; 20 species were collected 

as adults in Richland County that were not collected as larvae in the zoo (most notably, 

Cq. perturbans was present in adult but not larval collections). 

 

 Aedes albopictus oviposits in large and small artificial and natural containers and pools 

(e.g., bromeliads, tin cans, treeholes, and water drums) and less commonly in large 

natural water bodies such as trenches and ground pools (Chan et al. 1971, Moore et al. 

1988). It can persist in an environment with no human-created water bodies, but can 
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flourish in human-altered environments such as parks and gardens (Moore 1999). These 

characterizations are consistent with the results of my study.  

 

Aedes triseriatus, the second most abundant species in my study, oviposits almost 

exclusively in shaded containers (e.g., tires, treeholes) (Beier et al. 1983, Williams et al. 

2007), and in my study, larvae of Ae. triseriatus were significantly associated with 

natural containers and shade height ≤2m. Shade might prevent the desiccation of 

container habitats during periods of drought (Kitron et al. 1989). Additionally, understory 

canopy can contribute to increased microbial respiration in natural containers, leading to 

an increase in mosquito production, and exhibit a reduction in secondary metabolites, 

possibly reducing metabolic costs in detritivorous mosquito larvae (Strand et al. 1999).  

 

Overall, habitat use in the two zoos did not differ from previous accounts of immature 

mosquito distributions. One aspect not investigated in my study is that the overall 

abundance of mosquitoes could be higher in zoos due to a larger population of captive 

hosts, compared with non-zoo areas (e.g., city parks, abandoned lots, sylvan habitats) or, 

alternatively, lower because of insecticide treatment of captive animals.  

 

Additionally, according to C8 values calculated, habitat partitioning or competition 

between species for oviposition sites, or between larvae, could be occurring in the zoos. 

Aedes triseriatus was not significantly associated with the other two species but C8 values 

between it and Cx. restuans in shaded habitats, and Cx. pipiens complex in unshaded 
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habitats were very similar to values calculated in a 1981 study in Indiana tire yards, 

although significance of associations differed between my study and the previous one 

(Beier et al. 1983). Additionally, the C8 value between Cx. pipiens complex and Cx. 

restuans in unshaded habitats differed marginally from Beier et al. although the species‘ 

association was significant in my study. However, although some association values were 

similar to the Beier et al. study others were different, indicating that more comparisons 

are required to determine if within zoo species associations differ significantly from those 

in habitats outside the zoos.  

 

Zoo employees should receive semi-annual training in larval mosquito habitat 

recognition, and eliminate or ameliorate container habitats (e.g., fill with sand, utility 

foam, or overturn when not in use) (Shimonski 2009). If containers are an integral part of 

the zoo environment (e.g., artificial tree stumps), they can be flushed or treated regularly 

with mosquito larvicides. If larvicides are used, they need to be monitored by maintaining 

a database of when and where they are used. Gutters at both zoos were a frequent source 

of mosquito larvae. If gutters are unnecessary they should be removed, but if required, 

they should be cleaned regularly to prevent standing water. Shade sources ≤2m in height 

over larval habitats should be eliminated when possible or receive special attention as 

they are associated with mosquito larvae.  

 

Both the Greenville and Riverbanks zoos regularly flush most artificial pools in animal 

enclosures and the Riverbanks Zoo stocks most artificial pools with Gambusia spp. 
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(larvivorous fish) and incorporates a flowing water design in most artificial pools that 

creates a strong current at the pool edges. These practices probably prevent mosquito 

development in artificial pools. In general, it seems that the mosquito problem in both 

zoos is due to unrecognized (and hence, uncontrolled) container habitats and natural 

pools, not zoo aquatic exhibits. However, if an exhibit pool lacks flowing water, regular 

flushing, larvicides, and mosquito predators it is likely mosquito larvae will develop 

there. Natural pools (e.g., vernal ponds) are a control concern; for example, they were the 

source of most Cx. restuans larvae at the Riverbanks Zoo. Zoos will need to decide if the 

cost to eliminate, modify, or regularly treat these habitats is worthwhile.  

 

Absence of aquatic vegetation was significantly associated with larval presence, possibly 

because few anophelines were found during the study. However, increasing shade from 

growing aquatic vegetation can render habitats unsuitable as breeding sites (Munga et al. 

2006). Other species, such as Cq. perturbans, associated with plants were probably 

missed by the sampling methods used. An independent study of mosquito larvae in a 

nearby zoo (e.g., Atlanta Zoo) should be undertaken to assess the validity of the model.  

 

The results of my study can aid zoo employees in recognizing larval mosquito habitats, 

and remediating and designing zoo displays with the prevention of larval mosquito 

development in mind. Additionally, this and previous studies (Beier and Trpis 1981b, 

Derraik 2005, Nelder 2007) indicate that although zoos might not provide novel breeding 

habitats, mosquito populations within zoos are representative of populations, or subsets 
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of populations, outside of them. Research collaboration between zoos and medical 

entomologists can start with mosquito monitoring in zoological parks and training of zoo 

employees in mosquito-habitat recognition, but it has the potential to evolve into well-

designed studies on mosquito, pathogen, and host interactions, and testing of primers for 

mosquito blood-meal identification using banked sera in zoos (e.g., an exotic animal in a 

zoo is a native animal elsewhere in the world). By providing a heterogeneous landscape 

with habitats simulating vastly different environments and novel assemblages of hosts, 

zoos are natural experiments that can be used to study mosquito ecology, behavioral 

plasticity, and vector potential. 
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CHAPTER FOUR 

MOSQUITO HOSTS IN SOUTH CAROLINA ZOOS 

 

Zoos are unique environments in which to study mosquito foraging behavior and to use 

strong hypothesis testing to elucidate the host adaptations and preferences of mosquitoes. 

For instance, they can be used to investigate the role of genetic components versus 

developmental or environmental parameters in shaping mosquito host choices, or 

nestedness of ectoparasite and host networks, two recently suggested goals of current 

medical and veterinary entomology research (Graham et al. 2009, Chaves et al. 2010). 

Species of captive animals represented in mosquito bloodmeals can be compared with 

those available in a particular zoo, and information such as flight distances from hosts 

(Ejiri et al. 2011) and larval mosquito habitats can be acquired. Zoos are also excellent 

experimental environments for addressing another recently suggested goal of research, 

that being how environmental factors alter or shape mosquito assemblages (Beketov et al. 

2010). If the results of studies in zoos are representative of non-zoo environments, then 

they provide the power to predict mosquito distributions and host-usage patterns in areas 

not feasible for field studies.  

 

Additionally, zoos have epidemiological consequences for captive and wild animals and 

humans. Mosquitoes transmit pathogens that have resulted in the deaths of captive birds 

and mammals, including endangered species (Beier and Trpis 1981a, Adler et al. 2011). 

Culex pipiens pallens was documented as a vector of avian Plasmodium spp. at a zoo in 



47 

 

Japan (Ejiri et al. 2011). If mosquitoes are interrupted during feeding on a zoo animal, the 

diversity of potential second hosts nearby is higher than it would be in most non-zoo 

environments because of human-mediated groupings of animals. Mosquitoes in zoos 

could have a feeding advantage because hosts might not have coevolved behavioral 

defenses. Alternatively, mosquitoes, especially adventive species, could be at a feeding 

disadvantage because some zoo animals sharing the same historical distribution as the 

mosquitoes might have coevolved defenses. Veterinary hospitals at zoos present the 

problem of sequestered and sick, and possibly restrained, animals that mosquitoes could 

access and might prefer (Klowden and Lea 1979, Hurd et al. 1995). 

 

Finally, zoos have high host heterogeneity that might contribute to increases in pathogen 

prevalence, leading to epizootics (Kilpatrick et al. 2006a), or cause a dilution of biting 

rates on susceptible hosts, thereby decreasing pathogen incidence in the general 

population (Bradley and Altizer 2007). Zoos are ideal for addressing these competing 

hypotheses because mosquitoes are present, hosts and their movements are known, 

animals are under regular observation, and wild and captive animals are in the same area. 

In an era of shrinking global borders, and re-emerging pathogens previously sequestered 

in a sylvan cycle, zoos could act as pathogen buffers in increasingly disturbed and 

urbanized spaces. 

 

My objectives in this study were to investigate 1) feeding patterns and hosts of 

mosquitoes in zoos; 2) distributions of mosquitoes after feeding; and 3) prevalence of dog 
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heartworm, Dirofilaria immitis, in bloodfed mosquitoes. I tested the hypotheses that 

mosquito bloodmeals  1) degrade with time; 2) represent captive animals, humans, and 

wildlife; 3) include examples of mixed-species; and 4) conform to previous known 

mosquito-host class associations (e.g., mammals, birds).  

 

Materials and Methods 

Site selection and mosquito sampling. Mosquitoes were collected from the Greenville 

Zoo (Greenville County) and Riverbanks Zoo (Richland County), South Carolina, USA, 

from May 2009 to October 2010, once or twice a month, with gravid traps and backpack 

and hand-held aspirators. In 2009, mosquitoes were collected with gravid traps, 

transported alive to a lab, fixed at -70C in an ultralow freezer, identified (Darsie and 

Ward 2005), and separated by gonotrophic condition according to Sella‘s (1920) stages. 

The head plus thorax of each bloodfed female mosquito was separated from the abdomen, 

with a razor blade on a fresh Kimwipe, and placed in an autoclaved and UV-sterilized 

1.5-ml centrifuge tube. The razor and forceps were immersed in alcohol and flame-

sterilized for at least 30 seconds after each mosquito was cut. The same procedures were 

used in 2010, except mosquitoes were collected using hand-held and backpack aspirators 

and killed on dry ice in the field. All collections were stored at -70C, and later moved to -

20C before further processing. Latex gloves were worn during sorting and processing.  

 

In April 2009, 15 gravid-trap sites were selected at the Greenville Zoo and 19 at the 

Riverbanks Zoo. Selected sites had little human traffic, partial shade, and protection from 
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wind and artificial lighting. Gravid-trap infusion water was based on that of Jackson et al. 

(2005). Once a month, five locations at each zoo were selected randomly for gravid-trap 

placement, with the caveat that all traps be at least 50 m apart to ensure independence 

(Allan et al. 1987, Reiter 2007). Traps were turned on between 1600 and 1700 and 

retrieved between 0800 and 0900. Two traps were run for three days per location, 

resulting in 30 trap nights per zoo per month. Both zoos were sampled from June through 

September 2009. The Greenville Zoo also was sampled in April and the Riverbanks Zoo 

in May. All catch containers were cleaned with ethanol between trap days to prevent 

experimenter contamination of the traps.  

 

In April 2010, 13 aspiration sites were selected at the Greenville Zoo and 17 at the 

Riverbanks Zoo; if new sites later were noted, they were added on an ad hoc basis. Both 

zoos were sampled 1-4 times per month for 1-3 day periods from May to September. The 

Riverbanks Zoo also was sampled in April 2010 and February 2011. In 2009, resting 

boxes were placed inside and outside animal habitats at both zoos. During 2009 and 

2010, creeping ground cover at both zoos was sampled with a backpack aspirator. 

Starting in May 2010, bloodfed females were collected in Richland County (including the 

Riverbanks Zoo). They were fixed on dry ice in the field; the heads and thoraxes were not 

separated from the abdomens.  

 

Representative voucher specimens of each mosquito species are deposited in the Clemson 

University Arthropod Collection, South Carolina.  
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Mosquito handling and preservation. Genomic DNA was extracted from the heads plus 

thoraxes, and the abdomens of bloodfed mosquitoes, using a DNAzol BD Direct 

Extraction Kit (Molecular Research Center, Cincinnati, OH, USA), according to 

manufacturer‘s instructions, with slight modifications. Briefly, 50 μl DNAzol BD 

solution was added to a 1.5 ml tube containing the respective mosquito divisions and 

homogenized by crushing with a pipette tip. Then, 200 μl DNAzol BD was added, the 

solution was vortexed, and left to sit at room temperature (RT) for 30 – 60 minutes. 

Subsequently, 125 μl was removed to a new tube and the original mosquito material was 

stored in the remaining DNAzol BD in a freezer at -20°C. Then, 50 μl isopropanol was 

added to the transferred 125 μl DNAzol BD-mosquito homogenate. It was shaken and 

vortexed for ca. 1 minute and left at RT for ca. 60 minutes, then centrifuged at 6,000g for 

six minutes. The supernatant was removed and 62.5 μl DNAzol BD added, vortexed until 

the DNA pellet dispersed, and centrifuged at 6,000g for 5 minutes. The supernatant was 

removed and 125 μl 75% EtOH added, then centrifuged at 6.000g for 5 minutes. Then, 

the ethanol was carefully decanted and pipetted out, and the tubes were left upside down 

on Kimwipes to allow remaining alcohol to evaporate. The pellet was dissolved in 25 μl 

8mM NaOH, left at RT for 5 minutes, then shaken and vortexed until the pellet dissolved. 

Finally, 4 μl of HEPES was added. The DNA extract was stored at 4°C for up to one 

week but transferred to -20°C for longer periods. Genomic DNA was extracted from 

mosquitoes in batches of 20-30 individuals, with an initially empty sterilized 1.5 ml tube 

as a negative control in each batch of extractions to control for extraction contamination 
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(i.e., extracted gDNA from one tube is accidentally transferred to another, or there is a 

source of bench contamination). 

 

The DNAzol BD is the least expensive kit on the market and has been used successfully 

for genomic DNA extractions from mosquito bloodmeals and filarioid nematodes in the 

family Onchocercidae (Molaei et al 2008 & 2009, Watts et al. 2009, Neary et al. 2010). 

Before processing experimental samples, methods were refined using bloodfed 

mosquitoes with known hosts procured from colonies at The Ohio State University, 

Columbus, OH, USA (Anopheles gambiae and Culex pipiens),Clemson University (Cx. 

pipiens), and the NIH Filariasis Research Reagent Resource (FR3) at the University of 

Georgia in Athens, GA, USA ( Aedes aegypti infected with Dirofilaria immitis) 

 

Bloodmeal analysis. Genomic DNA extracts from mosquito abdomens were amplified 

by PCR on a Bio-Rad iCycler, using order-specific primers for birds and mammals, and 

universal vertebrate primers (Table 1). All primers amplified segments of the 

mitochondrial cytochrome b gene and have been previously used in studies analyzing 

mosquito bloodmeals. A 25 μl reaction mixture containing 12.5 μl GoTaq Colorless 

Master Mix (Promega), 1 μl forward and 1 μl reverse (premixed), 1 μl gDNA, and 9.5 μl 

nuclease-free water (provided with GoTaq) was used. Negative and positive controls 

were included in every PCR. Negative controls consisted of distilled, autoclaved water, 

and positive controls were domestic dog gDNA (from blood obtained at the FR3) for 

mammal-specific and universal vertebrate primers, and chicken gDNA (from bloodfed 
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Cx. pipiens from a colony at Ohio State University) for avian primers. The same gDNA 

used as positive controls was used to optimize PCR cycling conditions for each primer 

(Table 4.1). Our strategy was to first attempt amplification with order-specific primers for 

birds and mammals. If neither of these reactions yielded a product for a given sample, 

that sample was then subjected to another PCR with universal vertebrate primers. 

Successful amplifications were determined by visualizing PCR products on a 1.5% 

agarose gel with EDTA followed by ethidium bromide staining and UV trans-

illumination. Gels were documented digitially on a Bio-Rad Gel Doc System and 

archived. 

 

 PCR products were purified out of successful reaction mixtures, using an ―Exo-AP‖ 

protocol. Briefly, a master ―Exo-AP‖ mix was made by diluting (with DNA-grade H2O) 

Exonuclease I at 1:100, and Antarctic phosphatase at 1:10 in the same PCR tube. Then, 1 

μl of the Exo-AP mix was added to 1 μl of PCR product. The resultant mixture was 

placed in a PCR cycler and the following thermal profile was used to purify PCR 

products: 37°C for 30 minutes, 80°C for 15 minutes, and a 4°C hold. Subsequently, either 

a forward or reverse primer was added (depending on the best performing primer for 

sequencing in test trials) to wells and purified products were sent to the Clemson 

University Genomics Institute for Sanger sequencing on an ABI 3130 (Applied 

Biosystems). Primer sequences were removed from trace file results and the remaining 

sequences were edited with BioEdit 7.0.5.3 freeware (Hall 1999). The sequences were 

run through the GenBank nucleotide (nr) database, using the BLASTN 2.2.25+ 
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algorithm, and vertebrate hosts identified (Altschul et al. 1997). Results with the highest 

―Max score‖ were recorded along with the ―Max ident‖ percent values. For each analyzed 

bloodmeal, the highest percent identity that was geographically reasonable is presented, 

with lower percent identities (e.g., <95%) indicating questionable results. If there were 

two or more similar percentages the discrepancy is discussed. Common and Latin names 

follow those of the International Ornithologist‘s Union for birds 

(www.worldbirdnames.org), Wilson and Reeder‘s Mammal Species of the World 3
rd

 ed. 

on-line searchable database for mammals (http://www.bucknell.edu/msw3), and the 

IUCN Red List of Threatened Species for reptiles and amphibians (www.iucnredlist.org).  

 

To screen for experimenter contamination that would lead to false-positive human  

identifications (Malmqvist et al. 1999), sample sequences from successful amplifications 

with the mammal-specific primer set were checked against the sequence of the same 

amplicon from gDNA isolated from the experimenter (HT), using the CAP Contig 

Assembly program in BioEdit (7.0.5.3) (Hall 1999), with parameters of a 1-base 

minimum match and 85% overlap. Other conspecific sample sequences were checked 

against each other in the same way to ensure all non-human results were not due to bench 

contamination.  

 

Dirofilaria screen. Genomic DNA extracts from mosquito heads plus thoraxes and 

abdomens were amplified by PCR on a Bio-Rad iCycler, using a ―pan-filarial‖ primer set 

that amplifies gDNA from at least nine species of filarioid nematodes including 

http://www.worldbirdnames.org/
http://www.bucknell.edu/msw3
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Acanthocheilonema reconditum, Dirofilaria immitis, and D. repens (Table 4.1). The 

resultant amplicons can be distinguished to species with a gel separation; A. reconditum 

produces bands at 578bp, D. immitis at 542bp, and D. repens at 484bp. Genomic DNA 

from D. immitis-infected dog blood and D. immitis-infected mosquitoes (obtained at the 

FR3) was used to optimize PCR cycling conditions. Genomic DNA from uninfected 

mosquitoes (also from the FR3) was used as a negative control. To ensure that genomic 

DNA was extracted from heads plus thoraxes, a control PCR was performed with a 

universal insect primer that amplifies a portion of the insect 12s rRNA gene (Table 1). 

All PCR products and gels were treated as for bloodmeals.   

 

Statistical Analyses. All analyses were conducted in JMP 9 (SAS Institute, Cary, NC, 

USA). Mosquito-host forage ratios (Hess et al. 1968) were used to determine if 

mosquitoes exhibited host biases. Forage ratios were obtained by dividing the percent of 

a particular host represented in mosquito bloodmeals by the percent of that host type in 

the general population. Minimum flight distances were calculated, using Google Earth, 

for mosquitoes with bloodmeals from captive hosts, based on the locations of mosquito 

captures and hosts. Because most animal enclosures were irregularly shaped, the shortest 

and longest distances between mosquito captures and enclosure boundaries were 

estimated. These distances were pooled across zoos and tested separately by host type 

(bird versus mammal), Sella stage, and mosquito species, and if there were no differences 

between short and long distances, the average of the two distances was used. All analyses 

were conducted in JMP 9 (SAS Institute, Cary, NC, USA). 



55 

 

Table 4.1. Primers used to amplify mosquito-host genomic DNA and Dirofilaria immitis genomic DNA.  

Primer Sequence (5'-3') Target 
Product 

(bp) 

Dena-

turati

on 

Anneal-

ing 

Exte

n-

sion 

No. 

cycles 
Ref.  

Avian 

GACTGTGACAA

AATCCCNTTCC

A 
Cytb 508 94 55 72 33 

Ngo and 

Kramer 

2003 

GGTCTTCATCT

YHGGYTTACAA

GAC 

Mamma

l 

CGAAGCTTGAT

ATGAAAAACCA

TCGTTG 
Cytb 772 94 50 72 35 

TGTAGTTRTCW

GGGTCHCCTA 

Univers

al 

vertebra

te 

AAAAAGCTTCC

ATCCAACATCT

CAGCATGATGA

AA Cytb 307 94 50 72 40 

Kocher 

et al. 

1989 AAACTGCAGCC

CCTCAGAATGA

TATTTGTCCTCA 

Pan-

filarial 

AGTGCGAATTG

CAGACGCATTG

AG 
Cuticula

r 

antigen 

gene 

578 (A. 

reconditu

m) 542 

(D. 

immitis) 

484 (D. 

repens) 

94 60 72 32 

Rishniw 

et al. 

2006 
AGCGGGTAATC

ACGACTGAGTT

GA 

Univers

al insect 

AAACTAGGATT

AGATACCCTAT

TA 
12S  400 94 50 72 32 

O‘Neill 

et al. 

1992 AAGAGCGACGG

GCGATGTGT 
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Results 

Mosquito collections. Sixteen species of mosquitoes were collected from both zoos: 13 

from the Greenville Zoo and 14 from the Riverbanks Zoo, with 11 in common (Table 

4.2). In total, 2873 individuals were collected at Greenville and 1476 at Riverbanks. Of 

these, 106 (2.4%) were bloodfed, 34 (1.2%) at Greenville and 72 (4.9%) at Riverbanks 

(Table 3). Five species were bloodfed at Greenville, and nine at Riverbanks, with no 

species at Greenville that were not also at Riverbanks: Aedes albopictus (Skuse 1895), 

Ae. triseriatus (Say 1823), Anopheles punctipennis (Say 1823), Anopheles 

quadrimaculatus complex (Say 1824), Culex erraticus (Dyar and Knab 1906), Cx. 

pipiens complex (L. 1758), Cx. restuans (Theobald 1901), Cx. territans (Walker 1856), 

and Psorophora columbiae (Dyar and Knab 1906).  

 

Genomic DNA Amplifications and Identifications.  

Hosts were successfully identified from 63.2% of bloodmeals, 32.4% at Greenville and 

77.8% at Riverbanks. Host identity was not obtained from the single Ps. columbiae 

bloodmeal. Two multiple bloodmeals were detected from mosquitoes at Riverbanks, one 

wild bird and captive mammal in An. punctipennis and one wild bird and reptile 

(wild/captive status undetermined) in Cx. pipiens complex. One of the human results that 

was removed due to possible experimenter contamination might have been part of a 

mixed human and wild bird bloodmeal in a female of Cx. pipiens complex from 

Greenville. Overall, four human sequences had high homology with the experimenter 

sample (1 Cx. erraticus from Riverbanks, 3 Cx. pipiens complex from Greenville). 
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Because the primer set was universally mammal-specific, the four excluded sequences 

might not have been from the experimenter but, rather, were legitimate; nonetheless, the 

four data points were not included in statistical analyses or in tables (their inclusion in 

analyses did not alter the significance of statistical test results).  

 

The likelihood of extraction success was significantly lower for Cx. restuans than for Ae. 

albopictus, An. punctipennis, Cx. erraticus, Cx. pipiens complex, and Cx. territans, and 

for Cx. pipiens complex and Cx. territans than for An. punctipennis and Cx. erraticus 

(chi-square, G=30.442, df=5, p<0.0001). The overall extraction success rates by Sella‘s 

stages were 81.0% (30/37) for Sella II, 81.0% (17/21) for Sella III, 81.8% (9/11) for Sella 

IV, 33.3% (1/3) for Sella V, and 26.3% (5/19) for Sella VI. Product success declined 

significantly with increasing Sella stage and, as a group, II, III, and IV were significantly 

different from VI, while V was not included because it was a lone data point (chi-square, 

G=21.414, df=4, p<0.0003). Additionally, Sella stage was independent of host type.  

 

No significant differences were found for host (F=0.2499, df=2, p=0.7796), Sella stages 

(F=2.1386, df=3, p≤0.1068 (Sella V not included because it was a lone data point)), 

mosquito species (=1.9916, df=3, p=0.1246 (excluding species with only one or two 

bloodmeals)), or zoo (t=-0.16624, df=14.06339, p=0.8703), in the maximum percent 

sequence identity between sequences GenBank and sample sequences (due to low sample 

size, mosquitoes were pooled across zoos, except when comparing across zoos) (Table 

4.3).  
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Table 4.2. Mosquito species collected with hand and backpack aspiration, light traps, and (primarily) 

gravid traps at the Greenville and Riverbanks zoos, South Carolina, from 2009-2011. Species presented 

alphabetically rather than in order of prevalence. GZ = Greenville Zoo, RZ = Riverbanks Zoo.  

All Species 
Total 

GZ 
% GZ 

Total 

RZ 
% RZ 

Total 

(GZ + 

RZ) 

% (GZ + 

RZ) 

Ae. albopictus 281 9.78 261 17.68 542 12.46 

Ae. canadensis canadensis 0 0.00 1 0.07 1 0.02 

Ae. japonicus japonicus 7 0.24 0 0.00 7 0.16 

Ae. triseriatus 22 0.77 11 0.75 33 0.76 

Ae. vexans 2 0.07 12 0.81 14 0.32 

An. punctipennis 1 0.03 54 3.66 55 1.26 

An. quadrimaculatus 

complex 
1 0.03 5 0.34 6 0.14 

Cx. erraticus 0 0.00 64 4.34 64 1.47 

Cx. pipiens complex 1707 59.42 860 58.27 2567 59.03 

Cx. pipiens/restuans 132 4.59 11 0.75 143 3.29 

Cx. restuans 700 24.36 108 7.32 808 18.58 

Cx. spp 1 0.03 22 1.49 23 0.53 

Cx. territans 17 0.59 64 4.34 81 1.86 

Or. signifera 1 0.03 0 0.00 1 0.02 

Ps. ferox 0 0.00 1 0.07 1 0.02 

Ur. sapphirina 1 0.03 2 0.14 3 0.07 

Total 2873 100.00 1476 100.00 4349 100.00 

 

Flight Distances. Overall, minimum flight distances (dispersal) from host locations 

ranged from 15.5 m to 327.0 m with a mean and standard error of 94.1 m ± 13.4 m. Flight 

distances did not differ significantly between host types (bird versus mammal) (Welch‘s 

ANOVA, WF=4.2395, df=1, p=0.0527) (Table 4.3) (three reptile bloodmeals were not 

included because mosquito flight distances were identical). No significant differences 

were found in flight distances among  An. punctipennis (n=9), Cx. erraticus (n=10), and 

Cx. pipiens complex (n=10)(F=2.2438,  df=2, p=0.1262) (Ae. triseriatus and An. 

quadrimaculatus not included because each had n=2).  Average flight distance for Sella 
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stage III was significantly longer than Sella II, but neither was different from IV 

(F=3.8099, df=2, p≤0.0344).  

 

Mosquito Hosts (Table 4.4). Of the four species with more than 5 bloodmeals across 

both zoos, Cx. pipiens complex and Cx. erraticus fed on a significantly different ratio of 

avian to mammalian to reptilian hosts in captivity than did An. punctipennis (chi-

square=14.848, df=4, p<0.005) (Fig. 4.1). No significant differences were found among 

the four species in the wild category. Bloodmeals from humans were included in the wild 

category (removing them did not change significant differences). Culex pipiens complex 

and Culex erraticus showed a slight bias for birds and An. punctipennis showed a strong 

bias for mammals (Table 4.5). Aedes albopictus fed on only wild animals (including one 

human); of the five Ae. albopictus bloodmeals, 3 were birds and 2 were mammals. Three 

bloodmeal identifications of  wild bird hosts of Cx. erraticus (two European starlings, 

one Grey catbird) and one of Cx. pipiens complex (Grey catbird) were not the highest 

percent hits returned by GenBank but were the highest hits that made sense 

geographically (i.e., hosts with higher percent hits do not occur in North America and 

were not known zoo residents).  

 

Collections with more than four identified bloodmeals at the Riverbanks Zoo did not 

show a trend toward increased use of captive animals in the zoo interior versus exterior 

(Fig. 4.2); however, the only human bloodmeals were recorded in a more interior location 

(i.e., within the perimeter of the outer customer walkway) in the zoo. Differences were  
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Table 4.3. Average GenBank BLAST percent identity (between sample sequence and sequence in  

GenBank), percent of host genomic DNA amplification success (number mosquito bloodmeals successfully 

amplified out of total number sampled), and minimum flight distances (inferred from known location of 

captive hosts and location of mosquito capture) for each zoo and overall total by mosquito species and Sella 

stage.  

Bloodfed 

Species.  

Sella 

Stage 

Avg. GenBank BLAST % 

identity ± SE                            (n) 

Amp. Success 

(# 

successful/tot

al tested) 

Avg. flight distance ± 

SE (m)                                            

(n) 

  
GZ RZ Total Total 

G

Z 
RZ Total 

Ae. albopictus 

unknow

n 
96 (1) 

93 ± 7 

(3) 

93.8 ± 5 

(4) 
80.0 (4/5) na na na 

II 99 (1) na 99 (1) 100 (1/1) na na na 

Ae. triseriatus II na 
99 ± 0 

(2) 

99 ± 0 

(2) 
100 (2/2) na 

41±18 

(2) 

41±18 

(2) 

An. 

punctipennis 

unknow

n 
na 99 (1) 99 (1) 100 (1/1) na 80 (1) 80 (1) 

II 99 (1) 
99.4 ± 

0.2 (8) 

99.3 ±0.2 

(9) 
90 (9/10) 

76 

(1) 

54±12 

(7) 

57±11 

(8) 

VI na 95 (1) 95 (1) 50 (1/2) na na na 

An. 

quadrimaculat

us 

complex 

III na 100 (1) 100 (1) 100 (1/1) na 55 (1) 55 (1) 

IV na 99 (1) 99 (1) 100 (1/1) na 68 (1) 68 (1) 

Cx. erraticus 

II na 
95 ± 2 

(10) 

95 ± 2 

(10) 
90.9 (10/11) na 

106±4

6 (5) 

106±4

6 (5) 

III na 
95 ± 2 

(11) 

95 ± 2 

(11) 
91.7 (11/12) na 

249±7

9 (2) 

249±7

9 (2) 

IV na 
99 ± 1 

(2) 

99 ± 1 

(2) 
66.7 (2/3) na 

110±8

4 (2) 

110±8

4 (2) 

V na 95 (1) 95 (1) 100 (1/1) na 93 (1) 93 (1) 

Cx. pipiens 

complex 

unknow

n 
na na na 0 (0/5) na na na 

II 100 (1) 
98 ± 2 

(6) 

98 ± 1.5 

(7) 
100 (7/7) 

16 

(1) 

85 ± 

18 (2) 

62 ± 

25 (3) 

III 99 (1) 
93 ± 7 

(4) 

94 ± 5 

(5) 
62.5 (5/8) 

30 

(1) 

201±3

4 (2) 

144±6

0 (3) 

IV 
99.5 ± 

0.5 (2) 
99 (3) 

99.2 ± 

0.2 (5) 
83.3 (5/6) 

53 

(1) 

121±3

4 (3) 

104±2

9 (4) 

V na na na 0 (0/1) na na na 

VI 
92 ± 5 

(4) 
na 

92 ± 5 

(4) 
28.6 (4/14) na na na 

Cx. restuans 

II na na na 0 (0/1) na na na 

IV na 93 (1) 93 (1) 100 (1/1) na na na 

V na na na 0 (0/1) na na na 

VI na na na 0 (0/3) na na na 

Cx. territans II na 99 (1) 99 (1) 20 (1/5) na na na 

Ps. columbiae na na na na 0 (0/1) na na na 
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not found in the percentages of mosquito-host classes (i.e., bird, mammal, reptile) 

between the zoo interior and exterior. However, of the four reptile hosts identified, three 

came from mosquitoes captured within 37 m of their hosts, captive giant tortoises. A 

bloodmeal from an amphibian host (American green tree frog) came from Cx. territans 

taken near an alligator pond. Of the two species with the most hosts, Cx. pipiens complex 

and Cx. erraticus, a seasonal shift was detected in the use of birds versus mammals (e.g., 

early-season bird feeding) when host identities were summed across zoos and years (Fig. 

4.3).  

 

Hosts identified from mosquitoes collected in Richland County,  but not in the 

Riverbanks Zoo, from May to July 2010 included Canis lupus baileyi (Mexican wolf) 

(likely Canis lupus familiaris) for Ae. albopictus; Canis familiaris (domestic dog), 

Odocoileus hemionus hemionus (mule deer) (likely Odocoileus virginianus) for Cx. 

erraticus; and Canis lupus (Grey wolf, n=2) (likely Canis lupus familiaris) for Cx. 

pipiens complex. One bloodmeal identified (93% GenBank sequence identity) from a 

mosquito trapped outside the zoo at the State Park Health Center in Richland Co. had two 

competing and equally unlikely host identifications (both with 92% max. ident.): 

Anderson‘s flapshell turtle (Lissemys punctata andersoni) and the Desert monitor 

(Varanus griseus). A turtle or monitor bloodmeal could be from a captive or released pet, 

as there is an exotic reptile show in Richland Co. every year. But no exotic reptile farms 

are in the surrounding area. Two soft-shelled turtle species, Apalone spinifera and A. 
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ferox, are found in South Carolina (www.texasturtles.org/Trionychidae) and both have 

entries in GenBank. 

 

Dirofilaria immitis screening. When tested with D. immitis-infected mosquitoes, the 

extraction protocol had an 80% success rate. Of the 67 mosquitoes with an identified 

host, the heads plus thoraces and abdomens of 59 were tested separately for D. immitis. 

Of the 59 heads plus thoraces tested, 45 had positive bands when amplified with the 

Insect 12s extraction control primers. No samples were positive for D. immitis.  

 



 

 

 

Table 4.4. Bloodfed mosquito species collected at Greenville and Riverbanks zoos, South Carolina, 2009 - 2011. If more than one mosquito was positive for a given 

host, the separate mosquitoes are indicated in parentheses with zoo and GenBank BLAST percent identities. C = captive, H = human, W = wild; A = avian, M = 

mammal, R = reptile.  

Bloodfed Spp.  

# hosts 

ID/total 

GZ (%) 

# hosts 

ID/total RZ 

(%) 

# hosts 

ID/total 

(%) 

Host Spp. (Zoo, GenBank BLAST % identity) 
C:H:W 

GZ 

C:H:W 

RZ 

A:M:R 

GZ 

A:M:R 

RZ 

Ae. albopictus 2/2 (100) 3/5 (60) 5/7 (71) 
Avian: Northern cardinal (Cardinalis cardinalis) (R, 79), Carolina chickadee∆ (Poecile carolinensis) (R, 100), Mourning dove∆ (Zenaida 

macroura) (R, 100). Mammal: Virginia opossum (Didelphis virginiana) (G, 96), Human (Homo sapiens) (G, 99). 
0:1:1 0:0:4 0:2:0 3:0:0 

Ae. triseriatus 0/0 (na) 2/2 (100) 2/2 (100) Avian: Common ostrich∆ (Struthio camelus) (R, 99). Mammal: Brown bear∆ (Ursus arctos) (R, 99) NA 2:0:0 NA 1:1:0 

An. punctipennis 1/2 (50) 
10/10* 

(100) 
11/12 (92) 

Avian: Summer tanager∆ (Piranga rubra) (R, 99†), Common ostrich∆ (R, 99). Mammal: Auroch (i.e., cow) (Bos Taurus) (R, 99; R, 

99†), Goat (Capra hircus) (G, 99), Spotted hyena∆ (Crocuta crocuta) (R, 100), Horse (Equus caballus) (R, 100; R, 100; R, 99; R, 99), 

Human (R, 95). 

1:0:0 8:1:1 0:1:0 2:8:0 

An. quadrimacu-

latus complex 
0/0 (na) 2/2 (100) 2/2 (100) Avian: Common ostrich∆ (R, 100). Mammal: Brown bear∆ (R, 99). NA 2:0:0 NA 1:1:0 

Cx. erraticus 

0/0 (na) 24/28 (86) 24/28 (86) 

Avian: Grey crowned crane∆, ¥ (Balearica regulorum ) (R, 97), Northern cardinal (R, 99; R, 99), Grey catbird (Dumetella carolinensis) 

(R, 88), Carolina chickadee (R, 89), American flamingo∆ (Phoenicopterus ruber) (R, 99; R, 95), Keel-billed toucan∆ (Ramphastos 

sulfuratus) (R, 100), Common ostrich∆ (R, 100), Common starling (Sturnus vulgaris) (R, 89; R, 89), Mourning dove (R, 100; R, 99; R, 

99). Mammal: Horse (R, 100), Human (R, 95; R, 88; R, 82), Raccoon (Procyon lotor) (R, 99; R, 90), Ring-tailed lemur∆ (Lemur catta) 

(R, 95). Reptile: Galápagos tortoise∆,¥ (Chelonoidis nigra) (R, 98; R, 98, R, 98).  

NA 10:3:11 NA 14:7:3 

Cx. pipiens 

complex 
8/24 (33) 13/19* (68) 21/42 (50) 

Avian: Wreathed hornbill∆ (Rhyticeros undulatus) (G, 100), Northern cardinal (G, 100; R, 99), Yellow-throated warbler (Dendroica 

dominica) (R, 72†), Grey catbird (R, 89), Tufted titmouse (Baeolophus bicolor) (G, 77), American flamingo∆ (R, 100; R, 100), Carolina 

chickadee (G, 99), Toco toucan∆ (Ramphastos toco) (R, 100), Common ostrich∆ (R, 99), Carolina wren (Thryothorus ludovicianus) (R, 

99), Northern red-billed hornbill∆ (Tockus erythrorhynchus) (R, 99), Mourning dove (R, 100; R, 99). Mammal: Auroch (R, 99), Spotted 

hyena∆ (Crocuta crocuta) (R, 99), Human (G, 100; R, 95), Ring-tailed lemur∆ (G, 99), Siamang (Symphalangus syndactylus) ∆, Φ (G, 99). 

Reptile: American box turtle (Terrapene carolina) ¥(R, 99†). 

3:1:4 7:0:6 5:3:0 10:2:1 

Cx. restuans 0/4 (0) 1/2 (50) 1/6 (17) Avian: Northern cardinal (R, 93). NA 0:0:1 NA 1:0:0 

Cx. territans 0/2 (0) 1/3 (33) 1/5 (20) Amphibian: Green treefrog (Hyla cinerea) (R, 99). NA 0:0:1 NA 0:0:0 

Ps. columbiae 0/0 (na) 0/1 (0) 0/1 (0) na NA NA NA NA 

Total 

11/34 

(32) 
56/72 (78) 

67/106 

(63) 
  4:2:5 29:4:24 5:6:0 32:19:4 

∆ Novel host record (results with <95% identity not evaluated); *1 mosquito with mixed bloodmeal; †Mixed bloodmeal; ¥IUCN 2.3 "Vulnerable‖; ΦIUCN 

2.3 ―Endangered‖ 
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Table 4.5. Forage ratios of three mosquitoes in South Carolina zoos on captive animals. A forage ratio >1 

indicates preference for that host type because the mosquito is taking more bloodmeals from that host type 

than is found in the standing population. Ratios are presented for the current study, and a previous study in 

the Riverbanks Zoo. Additionally, percentages from previous studies outside of zoos are presented for the 

purposes of comparison.  

Species Current Study (n) 
Current + Previous 

study* (n) 
Previous study (n) 

Cx. pipiens complex  
Avian 

(6) 

Mammal 

(4) 

Avian 

(24) 

Mammal 

(5) 

Avian 

(18) 

Mammal 

(1) 

% from literature† 68.5 31.5 
    

% in Bloodmeals 60.0 40.0 83.0 17.0 95.0 5.0 

% in Zoo Population^ 52.0 48.0 52.0 48.0 52.0 48.0 

Forage Ratio 1.2 0.8 1.6 0.4 1.8 0.1 

       

Cx. erraticus  
Avian 

(5) 

Mammal 

(2) 
Avian (8) 

Mammal 

(2) 
Avian (3) 

Mammal 

(0) 

% from literature 39.0 61.0 
    

% in Bloodmeals 71.0 29.0 80.0 20.0 100.0 0.0 

% in Zoo Population^ 52.0 48.0 52.0 48.0 52.0 48.0 

Forage Ratio 1.4 0.6 1.5 0.4 1.9 0.0 

       

An. punctipennis  
Avian 

(1) 

Mammal 

(8)     

% from literature 5.0 95.0 
    

% in Bloodmeals 12.5 87.5 
    

% in Zoo Population^ 52.0 48.0 
    

Forage Ratio 0.2 1.8         

*Nelder 2007 
      

†Contact author for dataset and list of publications used to obtain literature numbers.  

^Estimate of percent of individuals in each class exposed to mosquitoes at zoos summed across both 

zoos 
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Figure 4.1. Identity of mosquito bloodmeals during 2009-2011, across two South Carolina zoos, by captive 

versus wild status. Numbers in boxes refer to number of hosts, and size of boxes represents different host 

numbers.Wild category includes human bloodmeals for An. punctipennis (n=1), Cx. erraticus (n=1) or Cx. 

pipiens complex (n=3). *An. punctipennis significantly different than two other species in captive category 

(p≤0.05). 

 



 

 

 

 

Figure 4.2. Mosquito hosts (C:H:W above line, A:M:R below line) in Riverbanks Zoo 2009-2011. ―A‖ indicates a gravid trap site, while ―B‖ is a hand aspiration site. Dashed lines indicate 
boundary of zoo and employee access roads. Solid lines are customer walkways within zoo. 
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Figure 4.3. Host types for two mosquito species summed across years 2009-2011 and zoos. Total number 

of hosts given at top of the bar.  

 

Discussion 

The success rate (63.2%) for bloodmeal identifications and percentage of multiple 

bloodmeals (3%)  is within the range of previous studies using similar methods and 

species  (Molaei et al. 2008 &  2009, Ejiri et al. 2011). The success rates of bloodmeal 

identification for Sella stages were similar to those found by Ejiri et al. (2011), where 

―full-fed‖=Sella II, ―partial-fed‖=Sella III, ―half-gravid‖=Sella IV-V, and ―gravid‖=Sella 

VI-VII. The declining success rate of extractions likely was due to decreasing bloodmeal 

volume (and hence, decreasing amounts of DNA) in the mosquito abdomen (Ejiri et al. 

2011) due to the digestive action of bloodmeal nucleases. Although the likelihood of 

obtaining gDNA decreased with increasing Sella stage, if gDNA was obtained, the 
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quality of the amplicon was similar across stages, suggesting that regardless of bloodmeal 

age, a successful identification is likely if host genomic DNA is recovered.  

 

Host DNA extractions from mosquitoes collected at the Riverbanks Zoo were more 

successful than those at the Greenville Zoo. I think this is because the Greenville samples 

were subjected to one more thaw-freeze cycle (due to transport) than were the Riverbanks 

samples. Although the magnitude of extraction failure was greater for the Greenville 

samples, the failure trend across species did not differ between zoos.  

Although 63.2% of bloodmeals from mosquitoes in zoos were successfully identified, 

only 27% (6/22) of SC-DHEC collections outside the zoo and 30% (3/10) inside the zoo 

were successful. I believe this was due to an inhibitory effect of the mosquito heads on 

PCR efficiency (Lardeux et al. 2008). The successful identifications by species were 50% 

for Ae. albopictus (4/8) and 75% for Cx. erraticus (3/4), but only 13% for Cx. pipiens 

complex (2/15). No hosts were identified for An. punctipennis (0/1), Cx. restuans (0/3), 

or Ps. columbiae (0/1), suggesting that the inhibitory effect might not be as strong in Ae. 

albopictus and Cx. erraticus as in other species.  

 

The relative proportion of captive hosts in the current study was lower than that in a study 

by Nelder (2007) at the Riverbanks Zoo: 41.7% versus 71.4% for Cx. erraticus, and 

47.6% versus 62.5% for Cx. pipiens complex.  In this study, 1 amphibian species, 16 bird 

species, 10 mammal species, and 2 reptile species were identified, which is comparable to 

the 17 bird species and 7 mammal species in the study by Ejiri et al. (2011), with one 



 

69 

 

mammalian host (Bos taurus) and one avian genus (Parus) in common. Two of the most 

prevalent mammals (horses and humans) and three of the most common birds (American 

robin, grey catbird, and northern cardinal) in my study also were reported among the 

most common mammals and birds in a previous meta-analysis of 12 bloodmeal studies 

conducted primarily in the eastern United States (Chaves et al. 2010).  

 

Of the species with more than 5 bloodmeals from captive animals across both zoos, Cx. 

pipiens complex and An. punctipennis showing host-class usage similar to that reported 

previously in the literature, with Culex erraticus showed a reverse of previous literature 

reports (i.e., bias for birds in this study). This reversal was seen previously in Cx. 

erraticus bloodmeals collected at the Riverbanks Zoo (Nelder 2007). Aedes albopictus 

also showed avian associations more so than previously reported in the literature.  

 

The apparent differences in host use by Ae. albopictus and Cx. erraticus inside, as 

opposed to outside, zoos merit further investigation. Aedes albopictus is rarely reported 

as having avian hosts but, being opportunistic and ground-associated, it might take blood 

meals from any hosts it encounters during appetitive flights (Dennett et al. 2007). Zoos 

possibly represent predator-limited areas for wild birds, especially urban-associated 

passerines, which might forage more often on the ground where Ae. albopictus would 

encounter them. Alternatively, they might forage more often on the ground because of 

less competition in zoos from ground-dwelling mammals (e.g., chipmunks) that are 

subject to pest control programs. Northern cardinal (Cardinalis cardinalis) has been 
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reported once as a host of Ae. albopictus (Richards et al. 2006), but to my knowledge the 

other two avian hosts of Ae. albopictus in this study are novel records. Culex  erraticus 

has been described as both ornithophilic and opportunistic, and it might preferentially 

feed on large birds with lowered defenses (e.g., nesting birds) that occur in high 

abundances (Hassan et al. 2003, Unnasch et al. 2006, Mackay 2007).  Five of the fourteen 

Cx. erraticus bird hosts in my study were captive and large (e.g., flamingo), indicating 

that this mosquito might exploit noticeable and vulnerable hosts. Of the previous authors 

reporting host usage in zoo mosquitoes, Nelder (2007) found a similar avian association 

in Cx. erraticus, and Ejiri et al. (2011) reported Ae. albopictus feeding on four humans, 

one rat, and one Black-necked swan. 

 

Bird-feeding in zoos merits further investigation given the possibility for avian malaria 

transmission to wild and captive birds by mosquitoes in zoos (Ejiri et al. 2011), and the 

transmission of West Nile virus from birds (which act as natural amplification reservoirs) 

to humans (Kilpatrick et al. 2006b).  The first fully sequenced strain of West Nile virus 

(WNv) from North America was isolated from a flamingo at the Bronx Zoo (Lanciotti et 

al. 1999). Aedes albopictus, Ae.  triseriatus, Cx. erraticus, Cx. pipiens complex, and Cx. 

restuans have been implicated as vectors of Eastern Equine Encephalitis virus, LaCrosse 

Encephalitis virus, and West Nile virus (Wozniak et al. 2001, Dennett et al. 2007, 

Kilpatrick et al. 2007) and my study showed some species of mosquitoes feeding on 

WNv ―super-spreader‖ bird species, such as American robin (Turdus migratorius) 

(Hamer et al. 2009). Eight mammal hosts from the current study are susceptible to WNv 
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(Brown bear, cow, goat, horse, human, lemur, opossum, raccoon) (Blitvich 2008). And 

An. punctipennis has been implicated as a vector of Dirofilaria immitis in Georgia, USA 

(Licitra et al. 2010). Dirofilaria immitis can infect large carnivores and has been 

implicated in the deaths of zoo animals (Adler et al. 2011). Culex territans is a vector of 

reptile and amphibian trypanosomes (Bartlett-Healy et al. 2009). Although they often do 

not receive much attention in the wild animal literature, many zoos house rare and exotic 

reptiles and amphibians that could be vulnerable to mosquito-borne pathogens.  

 

Although Ejiri et al. (2011) found a significantly longer flight distance for gravid females 

than for full-fed, partial-fed, and half-gravid females, no differences were noted in flight 

distances among the 33 mosquitoes with known Sella stages in the present study. This 

difference could be due to the availability of oviposition sites in the two zoos.  

 

Overall, mosquito behaviors conform to what has been previously recorded outside of 

zoos, but differ enough to merit further investigation. And, the study of mosquito blood 

feeding ecology in zoos will be of medical and veterinary benefit. My results demonstrate 

that by engaging zoos as experiments on mosquito behavior, further investigations will 

add to the growing literature on the developmental, environmental, and genetic aspects of 

host choice in mosquitoes.   
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CHAPTER FIVE 

PYLORIC ARMATURE OF MOSQUITOES 

 

Distinct armature composed of groups of lightly and heavily sclerotized, sometimes 

toothed, chitinous spines (also called spicules or microspines) are borne on the cuticular 

lining of the anterior hindgut, or pylorus (i.e., ileo-colon or pyloric ampulla), in 

mosquitoes and other insect taxa, including larvae of Simuliidae and Lepidoptera, and 

adults of Ephemeroptera, Diplopoda, and phlebotomine Psychodidae (Trembley 1951, 

Byers and Bond 1971, Christensen 1971, Elzinga 1998, Kim and Adler 2009). Adult 

mosquitoes have armature in three areas: the cibarium and pharynx of the foregut 

(McGreevy et al. 1978) and the pylorus of the hindgut. The pyloric armature of 

mosquitoes is a collection of chitinous spines lining the intima of the pylorus that project 

posteriorly, and are located just posterior to the pyloric valve. Less is known of it than the 

other mosquito armature.  

 

The mosquito pyloric armature has been briefly mentioned (Eysell 1905, Thompson 

1905, de Boissezon 1930, Richins 1938, Snodgrass 1959, Christophers 1960, Clements 

1963), and although species differences have been noted (Trembley 1951, Vaughan et al. 

1991), no quantitative analysis has been published. Eysell (1905) called the spines of the 

pyloric armature ―chitin-nadeln‖ or chitin-needles and noted they ―projected downward‖ 

and were deposited in a ―regular‖ formation (possibly referring to them being in rows). 

Thompson (1905) described the ―ileo-colon‖ as being a pumping apparatus ―roughened 
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by bristle-like chitinous papillae which point caudad‖ and described the armature as a 

―hirsute belt‖. De Boissezon (1930) described spines in the pyloric armature as ―poils 

chitineux hérissés‖ or bristly chitinous hairs. Richens (1938) described the pylorus as 

having ―rough spines projecting caudad into the lumen.‖ Snodgrass (1959) stated that 

―the inner wall of the pyloric funnel is armed in some species with numerous small spines 

directed posteriorly‖. Christophers (1960) said ―the epithelium [of the pyloric ampulla] 

has a fine cuticular lining which carries backwardly projecting spinous processes‖. 

Additionally, Christophers noted that ―the spines are not unlike those seen on the larval 

cuticle in some situations, namely a thorn-like base which is continued into from four to 

six fine spines projecting in a horizontal plane‖. Clements (1963) noted ―numerous 

backward-pointing spines‖ on the inner surface of the pylorus of larvae (but only cites 

Trembley 1951 so this could be inaccurate) and adults.  

 

The most comprehensive investigation to date, including the only published light 

microscope pictures of the armature, was by Trembley (1951). She found ―pyloric 

spines‖ of 6 – 16 μm arranged in ―irregular rows‖ that changed from ―fine and comblike‖ 

to ―heavier‖ in an anterior to posterior direction, in Ae. aegypti. She reported pyloric 

spines in both sexes of Ae. aegypti, Ae. atropalpus, Ae. albopictus, Ae. triseriatus, An. 

quadrimaculatus, An. freeborni, An. albimanus, An. aztecus, Cx. pipiens, and Cx. 

quinquefasciatus. She reported differences in spines among genera and species. Vaughan 

et al. (1991) also reported differences among different Anopheles species but did not 

present quantitative data. Two scanning electron micrographs of the pyloric spines of Ae. 
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aegypti were previously published as part of a larger study on the alimentary canal 

(Dapples and Lea 1974).  

 

Because ―spines‖ is the most commonly used term in the literature, is used in the two 

most comprehensive works to date (Trembley 1951, Vaughan et al. 1991), and is used by 

one well-established authority (Snodgrass), this is the term that will be used in the current 

work to describe the individual spiculate projections lining the cuticular intima of the 

mosquito pylorus.  

 

The pyloric armature might aid in mechanical filtering and concentration of mosquito-

host erythrocytes from serum and its structure might vary with size and shape of host 

erythrocytes (Vaughan et al. 1991, Lyimo and Ferguson 2009). Because of the peristaltic 

action of the pylorus, the armature might also aid in hemolyzing host blood cells (Vaughn 

et al. 1991), a known function of the cibarial armature (Coluzzi et al. 1982, Chadee et al. 

1996). The foregut armature aid in shredding, and thus killing, filarial nematodes (e.g., 

Wuchereria bancrofti) ingested in mosquito bloodmeals (McGreevy et al. 1978), and the 

pyloric armature possibly aids in killing of Dirofilaria spp. L1 larvae. These larvae 

migrate into the Malpighian tubules through openings in the pyloric valve (Dr. John 

McCAll, UGA-Athens, personal communication 2011), specifically, where the 

Malpighian tubules open into the space between the midgut and ileo-colon valves that 

form the pyloric valve (Thompson 1905) – a strategy different from that of other filarioid 
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nematodes that migrate across the midgut into the hemocoel (Macdonald and 

Ramachandran 1965).  

 

A quantitative and descriptive understanding of mosquito pyloric armature can 

potentially elucidate mechanisms behind mosquito vector competence and host choice 

and aid taxonomy. The objectives of this study were to document, describe, and compare 

the pyloric armature of mosquitoes. The hypothesis was that there would be significant 

differences in spine structure among species.  

 

Materials and Methods  

Mosquito Collections and Preparation. Mosquitoes were obtained from June to 

September 2009 with gravid and light traps at the Greenville (Greenville Co.) and 

Riverbanks (Richland Co.) zoos, and April to May 2011 at the Clemson University 

Cherry Farm Insectary, South Carolina. Zoo samples were stored in a -20C freezer prior 

to dissection while Cherry Farm Insectary samples were dissected fresh from the insect 

traps. If insects were previously frozen, they were placed in a 10% Alconox solution in a 

refrigerator for 1-3 days to rehydrate before dissection. Mosquitoes were sexed and 

identified to species beforehand.  

 

Mosquito Dissections. Each individual was dissected in a small drop of Phosphate 

Buffered Saline on a microscope slide. The mosquito was oriented to a lateral view and, 

using the aid of a dissecting microscope, a pin was placed through the center of the 
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thorax. With the pin holding the mosquito in place, the eighth abdominal segment was 

gently pinched with a pair of fine-tipped forceps. The forceps were gently pulled away 

from the mosquito body, while the gut could be viewed exiting the body cavity. The gut 

would either be pulled out whole or break at the midgut and hindgut junction just anterior 

to the pyloric armature. If the fore- and midguts were also obtained, dissecting pins were 

used to separate the hindgut from the rest of the alimentary tract.  

 

By means of a dissecting pin inserted into the still-attached eighth abdominal segment, 

the entire hindgut was dragged across the slide into a drop of 10% KOH. The gut was left 

to clear in this solution for 3-4 hours at room temperature, with periodic refreshments 

made to compensate for evaporation. After 3-4 hours, the gut was then dragged by the 

eighth abdominal segment into a drop of acetic acid on the slide. The terminalia were 

severed from the gut with a dissecting pin and removed from the slide. A coverslip was 

placed on top of the drop containing the gut.  

 

Pylorus Images and Measurements. Pyloric armature was viewed and photographed at 

50x, 125x, 250x, 500x, and 1250x (oil immersion) magnifications with a compound 

microscope (Olympus BH-2) with a camera (ProgRes Speed XT core 5, Jenoptik). 

Measurements were made on pictures of the armature in the ImageJ software program (U. 

S. National Institutes of Health) (Abramoff et al. 2004). Measurements were made of 

pylorus lengths, spine base width, spine stem width, spine length, tooth length, and 

number of teeth (Fig. 5.1). Spine measurements were taken for up to five spines in each 
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of the first (i.e., proximad) and second (i.e., middle) third of the pylorus. Additionally, as 

many distances between spine tips as possible were measured across the whole pylorus 

(Fig. 5.2). Anterior and middle spines were also scored for whether they had 1) a straight 

(teeth flush at the same point) or irregular (variation in tooth attachment line) base 

widths; 2) barbed (i.e., flared at the base like a spearhead) teeth; and 3) pointed and 

closed (i.e., proximal portion of spine coming to a complete tip), pointed and open (i.e., 

tip approaching a point but not complete) or truncate (i.e., no noticeable tip, rather 

proximad portion of spine similar in width to base) tips (Fig.5. 2). 

 

Figure 5.1. Up to four measurements were taken of each spine. A) Spine length: the 

length from the tip to line C; B) Stem width: the width of the spine at the midpoint of A; 

C)  Base width: the width of the spine where the outside teeth meet the spine body; and 

D) Tooth length: the length of the tooth closest to the intersection of A and C. Spines 

were also scored for whether 1) the line where teeth bases met the spine body was 

straight or irregular; 2) the teeth were barbed (i.e., the tooth base or whole tooth were 

darkened with bases thicker than tips) or needlelike (i.e., no darkening and little to no 

difference in width along length 
 

 

 

 

Respectively, the mean lengths and widths were compared for anterior and middle spines. 

In general, posterior spines were less elaborate than those in the proximad or middle 

portions, often having only 1 or 2 teeth or being toothless spicules. Therefore, the 

posterior spines were not compared among species. Male specimens were measured for 

two species, four Ae. albopictus and two Ae. triseriatus. 
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Figure 5.2. Tip to tip spine distance represented by white 

line. Spine ―A‖ has a straight base width, barbed teeth, and 

a truncate tip; ―B‖ has an irregular base width, needlelike 

teeth, and a pointed but open tip; and ―C‖ has a straight base 

width, barbed teeth, and a closed tip.  

 

 

 

 

 

 

 

 

The preparation method resulted in either one of two distinct slide mounts, one in which 

the pylorus popped open, rendering a top-down view of the pylorus interior, and another 

in which the pylorus laid flat on its side, rendering a top to bottom view of the pylorus 

exterior (Fig.5.3). 

 

Pyloruses were scored for whether 1) spines in the pylorus were sparse (distance between 

spines > one spine width apart), regular (distances between spines ≤ one spine width 

apart, but not overlapping), or dense (overlapping spines); 2) spines were in rows; and 3) 

spines were untoothed or bifurcated (e.g., 0-2 teeth), toothed (e.g., ≥ 3 teeth), or 

progressing from posteriorly toothed to anteriorly untoothed. In some cases, spine 
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Figure 5.3. Two different results of slide-mounting. The left picture is a popped-open top down view of the 

pylorus interior, whereas the right picture is a top to bottom view of the pylorus exterior. Spines were 

measured in both types.  

 

characters could not be measured because of preparation artifacts or quality – characters 

were only measured if they were clearly visible. All images taken are deposited on CD in 

the Clemson University Arthropod Collection with voucher specimens.  

 

Over 600 male and female mosquitoes of eleven species were examined. Pictures and 

measurements were taken of four Ae. albopictus females and four males, five Ae. j. 

japonicus females, two Ae. triseriatus females and two males, three An. punctipennis 

females, four Cx. pipiens complex females, five Cx. restuans females, one Or. signifera 

female, and one Tx. rutilus female. No males of Ae. j. japonicus and Or. signifera were 

collected, and Cx. spp. males were collected but could not be identified to species. 

Pictures were also taken of outgroups consisting of two Ceratopogonidae females, three 

females and one male of Corethrellidae, one Psychodidae female, and one 

Mycetophilidae female.  
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Statistics. The means of spine lengths, widths, and tip to tip distances were compared 

among Ae. albopictus, Ae. j. japonicus, Ae. triseriatus, Cx. pipiens complex, and Cx. 

restuans without and with corrections for within species pseudoreplication (i.e., multiple 

spine measurements within each individual within each species) were compared using an 

Analysis of Variance (ANOVA).  The model was a simple one-factor model with a term 

for species.   Data were checked for conformation to the ANOVA assumptions of 

normality and homoskedasticity. If necessary, data were transformed prior to analysis. If 

transformation did not achieve normality and homoskedasticity, then a non-parametric 

Kruskal-Wallis one-way ANOVA was used. When the assumption of equality of 

variances was violated Welch‘s ANOVA was used.  If the results of Kruskal Wallace test 

and/or the Welch‘s test did not differ from those of a traditional ANOVA, the results of 

the ANOVA were reported because of ease of interpretation and means comparison tests.  

 

Results 

Armature Structure within Species (Fig.5. 4) 

Ae. albopictus females  

Pylorus. One of four was scored as regular, while three of four were dense. Two were in 

obvious rows, and two were not. Three were visibly more elaborate anteriorly as opposed 

to posteriorly.  

Proximad spines. Four of twenty spines had straight tooth bases, and sixteen were 

irregular. All teeth were barbed. Seven had a closed tip, seven had an open but pointed 

tip, and six had a truncated tip.  



 

81 

 

Middle spines. Two of twenty middle spines had straight tooth bases, and eight were 

irregular. All teeth were barbed. Six had a pointed, closed tip, and four had pointed, open 

tips.  

Ae. albopictus males (not included in Fig.5.4)  

Pylorus. Two of four were sparse, and the other two dense. Three were not in obvious 

rows, while one was. Two were uniformly simple, one was uniformly elaborate, and two 

were anteriorly elaborate grading to posteriorly simple.  

Proximad spines. Six of twenty had straight tooth bases, four had irregular. Ten were 

barbed, and five were needlelike.  

Middle spines. Six of twenty spines had straight bases, three had irregular. Eight had 

barbed teeth, five had needlelike. Eighteen had closed tip, one had truncate.  

 

Ae. j. japonicus  

Pylorus. All five were dense. All five were in obvious rows and uniformly elaborate 

anterior to posterior.  

Proximad spines. Nineteen of twenty-three spines had regular tooth bases, four were 

irregular. One tooth was scored as barbed, twenty-one scored as needlelike. Fifteen had a 

closed tip, three had an open but pointed tip, and five had a truncated tip.  

Middle spines. Fifteen of twenty-four middle spines had straight tooth bases, four had 

irregular. Nineteen were barbed. Seventeen had pointed, closed tip, one had pointed, open 

tip, one had truncate.  
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Ae. triseriatus females  

Pylorus. One was regular, and one dense. Both were in obvious rows. One was anteriorly 

elaborate grading to posteriorly simple.   

Proximad spines. Five of ten spines had straight tooth bases, five were irregular. All ten 

teeth were barbed. Three had a closed tip, one had an open but pointed tip, and six had a 

truncated tip.  

Middle spines. Nine of ten spines had straight tooth bases, and one had irregular. All ten 

were barbed. Seven tips were pointed and closed, while three were truncate.  

Ae. triseriatus males (not included in Fig.5.4)  

Pylorus. One of two was regular, and the other one dense. One was not in obvious rows, 

while one was. Both were uniformly elaborate.  

Proximad spines. Eight of ten had straight tooth bases, two had irregular. Nine of ten 

were barbed, and one was needlelike.  

Middle spines. Four of ten had straight tooth bases. Three had barbed teeth. Four had 

pointed tips.  
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Figure 5.4. Spines of the pyloric armature in seven species of mosquitoes. Pictures are representative of the hundreds of spines found 

in an individual pylorus. Topographic distinctions generally exist in spine size and shape between anterior third (i.e., proximad), 

middle third (i.e., middle) and posterior third (i.e., distad) portions of pylorus. Spines are oriented as they would be in the mosquito 
pylorus with a single tip anterior and, generally, several teeth posterior. When observed in the sagittal plane, posterior portions of 

spines project into the pyloric ampulla while anterior portions are flush with the intima. Two teeth on Ae. albopictus distad spine might 

be artifact of preparation and represent a split spine end.  
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An. punctipennis This species was difficult to measure (e.g., teeth often hard to 

distinguish) because teeth were long and wispy, and seemed much more hair like than 

spiculate, compared to the other species, giving the impression of paintbrushes. The 

measurements presented here document variation but are not considered representative of 

the species and likely greatly underestimate the extent of variation. The spines that were 

measured happened to be pressed out so that individual teeth could be distinguished.  

Pylorus. One of three was sparse, and the other two regular. None were in obvious rows. 

All three were uniformly simple.  

Proximad spines. Eight of ten had straight tooth bases, two had irregular. Nine of ten 

were barbed, and one was needlelike. Measured spine width ranged from 1.60 - 3.38 μm, 

stem width ranged from 0.56 - 2.30 μm, spine length ranged from 5.22 - 16.54 μm, and 

tooth length ranged from 3.82 - 8.20 μm. The number of proximad teeth was 0 to 5.  

Middle spines. Four of fifteen had closed tips, one had open but pointed tip. The middle 

spine width ranged from 2.41 - 2.89 μm, stem width ranged from 1.18 - 1.86 μm, spine 

length ranged from 3.18 - 5.34 μm, and tooth length ranged from 3.33 - 3.34 μm. The 

number of middle teeth ranged from 0 to 5.  

 

Cx. pipiens complex  

Pylorus. All four were dense, in obvious rows, and anteriorly elaborate grading to 

posteriorly simple.   
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Proximad spines. Nineteen of twenty spines had a straight tooth bases, one was irregular. 

All twenty teeth were barbed. Eleven had a closed tip, eight had an open but pointed tip, 

and one had a truncated tip.  

Middle spines. Thirteen of twenty middle spines had straight tooth bases, one had 

irregular. Fourteen of twenty were barbed. Thirteen of twenty tips were pointed and 

closed, while two were pointed and open.  

 

Cx. restuans  

Pylorus. One was sparse, other four were dense.  All five were in obvious rows. Four 

were anteriorly elaborate grading to posteriorly simple, one was unscored.   

Proximad spines. Eight of twenty-five spines had straight tooth bases, sixteen were 

irregular. Twenty of twenty-five teeth were barbed, four were not. Ten had a closed tip, 

two had an open but pointed tip, and twelve had a truncated tip.  

Middle spines. Seven of twenty-two middle spines had straight tooth shoulder, while six 

had irregular. Thirteen of twenty-five were barbed. Twelve tips closed and pointed, one 

open and pointed, two truncate 

 

Or. signifera  

In terms of quantitative analysis this species was similar to An. punctipennis. The one 

pylorus measured was dense, not in obvious rows, anteriorly elaborate grading to 

uniformly simple, and four of five measured spines had straight tooth shoulders, while 

one was irregular. All visible teeth were needlelike. The proximad spine width ranged 



 

86 

 

from 3.32 - 6.34 μm, stem width ranged from 2.33 - 4.11 μm, spine length ranged from 

7.64 - 11.59 μm, and tooth length ranged from 5.26 - 10.15 μm. The number of proximad 

teeth ranged from 6 to 10. No measurements were taken for middle spines.  

 

Tx. rutilus (not included in Fig.5.4)  

Pylorus. Dense, not in obvious rows, with elaborate barbed spines throughout (Fig. 5.5). 

No measurements were made of teeth because of poor specimen quality.    

Figure 5.5. Female Tx. rutilus pylorus. Anterior 

section on right, posterior on left.  

 

 

 

 

 

 

 

 

Outgroups Two ceratopogonid females were examined. One in the blood feeding 

Piliferous sp. group did not have visible pyloric armature, but the other, a predaceous 

Atrichopogon sp. did have spinous spicules in the pylorus. Three corethrellid females had 

armature with anteriorly elaborate and posteriorly simple spines, but the three males did 

not have visible spines. Two non-blood feeding psychodids and one mycetophilid 

examined did not have visible spines. None of the spines examined were as elaborate as 

those in the Culicidae. 
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Spine Comparisons (Tables 5.1 & 5.2) 

Proximad spines. Among species, mean base widths (F=1.4473, df=4, p=0.2683) or stem 

width (F=1.2029, df=4, p=0.3512) were not significantly different. Mean spine lengths 

were significantly different, with Ae. j. japonicus having a significantly longer mean 

spine length than Ae. albopictus, Cx. restuans, and Cx. pipiens complex (F=4.5729, df=4, 

p≤0.0132). Also, Ae. j. japonicus and Ae. triseriatus had significantly longer mean tooth 

lengths than Ae. albopictus, Cx. restuans, and Cx. pipiens complex (F=7.2278, df=4, 

p≤0.0019). Additionally, Ae. albopictus had significantly more teeth than Ae. j. japonicus, 

Cx. restuans, and Cx. pipiens complex, Ae. triseriatus had significantly more than Cx. 

restuans and Cx. pipiens complex, and Ae. j. japonicus had significantly more than Cx. 

pipiens complex (F=5.9826, df=4, p≤0.0047) (on data transformed to meet normality 

assumptions by raising to the power of ½).  

 

Middle spines. Among species, the mean base widths (F=2.6447, df=4, p=0.0960) and 

stem widths (F=1.5025, df=4, p=0.2740) were not significantly different. Spine length 

was significantly different, with Ae. j. japonicus and Ae. triseriatus having longer mean 

spine lengths than Cx. restuans and Cx. pipiens complex (F=4.2834, df=4, p≤0.0281) (Ae. 

albopictus did not differ from any species). Also, Ae. j. japonicus and Ae. triseriatus had 

significantly longer mean tooth lengths than Cx. pipiens complex and Cx. restuans, and 

all four were significantly longer than Ae. albopictus (F=15.2117, df=4, p≤0.0004). 

Additionally, the mean number of teeth was significantly different, with Ae. albopictus 
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having more than all other species except Ae. j. japonicus, and Ae. j. japonicus having 

more than both Cx. spp. (F=6.6045, df=4, p≤0.0069).  

 

Spine tips. The mean distances between spines were not significantly different 

(F=1.2079, df=4, p=0.3554).  

 

Quantitative Differences between Females and Males 

Ae. albopictus Four males and four females were compared. The mean width of proximad 

spine bases and stems, and mean tooth lengths were not significantly different between 

males and females. Females did have significantly more teeth than males (F=6.6841, 

df=1, p≤0.0415). The mean width of middle spine bases and stems, mean tooth lengths, 

and mean number of teeth were not significantly different between males and females.  

Ae. triseriatus Two males and two females were compared. The mean width of proximad 

and middle spine bases and stems, mean tooth lengths, and mean number of teeth were 

not significantly different between males and females.  
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Table 5.1.  Means ± SE (μm) and ranges (in parentheses) of female mosquito spines comprising the pyloric armature. 

Proximad spines found in ca. the anterior third of pylorus, middle spines located in ca. the middle third. Spines in the 

posterior third not measured. Base width is where base of the spine teeth meet the body of the spine, stem width is the 

width of the spine at the middle of the body length, length is the tip of the spine to the base of the teeth. Different letters 

in superscript indicate significant differences between means at the 0.05 level of significance.  

Species     

(no. spines 

measured)* 

Base 
Width 

Stem 
Width 

Length 

Length: 

Base 
Width 

ratio† 

Base 
Width: 

Stem 

Width 
ratio† 

Length 
of teeth 

No. teeth 

No. 

teeth 

(median) 

Pylorus 

length (no. 
pyloruses 

measured) 

Distance 
between 

spine tips 

(no. spines 
measured) 

Anterior Both Sections 

Aedes 

albopictus 

(20) 

4.94 ± 

0.48 

(1.34-

9.90) 

3.01 ± 

0.41 

(0.92-

7.13) 

7.97 ± 

0.41B 

(5.87-

12.13) 

1.96 ± 

0.28 

(0.80-

6.55) 

1.75 ± 

0.10 

(1.21-

2.71) 

3.84 ± 

0.20B 

(2.10-

5.41) 

7.75 ± 

0.46A 

(4-11) 

8 

213.78-

244.90 

(2) 

18.24 ± 

4.57 (13) 

Aedes j. 

japonicus 

(23) 

4.59 ± 

0.27 

(2.62-

7.23) 

2.46 ± 

0.20 

(1.34-

4.66) 

10.63 ± 

0.65A 

(5.22-

16.24) 

2.41 ± 

0.15 

(1.08-

4.09) 

1.98 ± 

0.11 

(1.29-

3.07) 

6.37 ± 

0.33A 

(3.56-

9.26) 

5.78 ± 

0.37B,C 

(3-9) 

6 

392.37-

462.18 

(2) 

19.60 ± 

7.19 

(124) 

Aedes 

triseriatus 

(10) 

5.57 ± 

0.42 

(3.79-

8.57) 

3.56 ± 

0.47 

(1.37-

6.10) 

9.04 ± 

0.71A, B 

(6.23-

13.25) 

1.71 ± 

0.18 

(0.92-

2.55) 

1.77 ± 

0.24 

(1.11-

3.64) 

6.20 ± 

0.52A 

(4.12-

9.63) 

6.90 ± 

0.59A,B 

(5-11) 

6.5 
308.24 

(1) 

19.40 ± 

1.09 (63) 

Culex 

pipiens 

complex 

(20) 

3.57 ± 

0.16 

(2.38-

5.33) 

2.11 ± 

0.12 

(0.95-

3.12) 

6.70 ± 

0.25B 

(5.13-

8.75) 

1.96 ± 

0.12 

(0.96-

2.93) 

1.76 ± 

0.09 

(1.18-

2.88) 

4.58 ± 

0.34B 

(2.77-

10.07) 

4.10 ± 

0.29D 

(3-8) 

4 

195.45-

240.40 

(2) 

18.15 ± 

4.75 

(109) 

Culex 

restuans 

(24) 

4.33 ± 

0.35 

(2.01-

9.01) 

3.15 ± 

0.36 

(1.00-

8.36) 

6.78 ± 

0.24B 

(4.65-

9.58) 

1.80 ± 

0.14 

(0.52-

3.10) 

1.52 ± 

0.07 

(1.06-

2.47) 

4.53 ± 

0.26B 

(1.84-

7.16) 

4.63 ± 

0.27C,D 

(3-8) 

4.5 
191.89 

(1) 

13.65 ± 

4.25 (82) 

 

Middle   

Aedes 

albopictus 

(10) 

3.91 ± 

0.30 

(2.39-

5.45) 

2.13 ± 

0.14 

(1.45-

2.68) 

9.53 ± 

0.92A,B 

(5.76-

14.18) 

2.52 ± 

0.25 

(1.48-

3.66) 

1.84 ± 

0.09 

(1.44-

2.34) 

3.23 ± 

0.27C 

(1.88-

4.88) 

5.60 ± 

0.45A 

(4-8) 

5.5 na na 

Aedes j. 

japonicus 

(19) 

4.22 ± 

0.29 

(2.60-

7.42) 

2.44 ± 

0.22 

(1.53-

5.62) 

12.24 ± 

0.59A 

(8.26-

16.30) 

3.15 

±0.25 

(1.30-

4.85) 

1.79 ± 

0.09 

(1.14-

2.63) 

7.10 ± 

0.29A 

(4.90-

9.39) 

4.42 ± 

0.30A,B 

(3-7) 

4 na na 

Aedes 

triseriatus 

(10) 

3.48 ± 

0.24 

(2.06-

4.50) 

1.74 ± 

0.18 

(1.06-

2.87) 

1.23 ± 

0.65A 

(9.48-

15.15) 

3.65 ± 

0.28 

(2.23-

4.72) 

2.14 ± 

0.24 

(1.13-

3.85) 

7.73 ± 

0.54A 

(5.78-

10.17) 

3.60 ± 

0.31B,C 

(2-5) 

3.5 na na 

Culex 

pipiens    

(14-15) 

2.69 ± 

0.19 

(1.76-

3.76) 

1.48 ± 

0.10 

(0.89-

2.34) 

7.92 ± 

0.47 B 

(5.37-

11.15) 

3.09 ± 

0.26 

(2.10-

6.05) 

1.87 ± 

0.17 

(1.18-

3.28) 

4.99 ± 

0.29B 

(3.64-

7.60) 

2.53 ± 

0.26C 

(0-4) 

3 na na 

Culex 

restuans   

(13-15) 

2.85 ± 

0.25 

(1.54-

4.84) 

1.81 ± 

0.21 

(0.95-

3.54) 

7.79 ± 

0.26B 

(6.68-

9.77) 

2.80 ± 

0.26 

(1.48-

4.36) 

1.65 ± 

0.09 

(1.21-

2.38) 

5.10 ± 

0.28B 

(3.32-

6.61) 

2.80 ± 

0.36C 

(0-5) 

3 na na 

*Top row are mean ± SE (μm), bottom (in parentheses) are ranges 

†Means not compared 
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Table 5.2.  Means ± SE (μm) and ranges (in parentheses) of male mosquito spines comprising the pyloric 

armature. Proximad spines found in ca. the anterior third of pylorus, middle spines located in ca. the middle 

third. Spines in the posterior third not measured. Base width is where base of the spine teeth meet the body 

of the spine, stem width is the width of the spine at the middle of the body length, length is the tip of the 

spine to the base of the teeth.  

Species 

(no. spines 

measured)* 

Base 

Width 

Stem 

Width 
Length 

Length: 

Base 

Width 

ratio† 

Base 

Width: 

Stem 

Width 

ratio† 

Length 

of 

teeth 

No. 

teeth 

No. 

teeth 

(median) 

Pylorus 

length 

(no. 

pyloruses 

measured) 

 

Anterior † 

 

Both 

Sections 

Aedes 

albopictus 

(5-20 

4.74 

± 

1.48 

(2.97-

6.97) 

1.48 

± 

0.66 

(0.87-

3.56) 

7.99 ± 

1.22 

(6.44-

9.24) 

2.26 ± 

0.46 

(1.76-

2.91) 

2.06 ± 

0.67 

(1.22-

3.55) 

2.40 ± 

0.33 

(2.10-

2.87) 

2.90 

± 

3.13 

(0-

8) 

2 

 

273.38 ± 

190.82 

(4) 

(126.80-

554.02) 

Aedes 

triseriatus 

(10) 

4.46 

± 

0.71 

(2.85-

5.43) 

2.35 

± 

0.41 

(1.80-

2.96) 

11.38 

± 2.06 

(7.07-

14.08) 

2.57 ± 

0.35 

(1.76-

2.96) 

1.92 ± 

0.32 

(1.38-

2.37) 

4.55 ± 

1.00 

(3.09-

5.92) 

7.00 

± 

1.25 

(4-

9) 

7 
152.88 

(1) 

 

Middle†  

Aedes 

albopictus 

(9-19) 

3.61 

± 

1.01 

(1.80-

5.16) 

1.48 

± 

0.52 

(0.84-

2.91) 

10.01 

± 2.14 

(7.26-

13.56) 

3.07 ± 

1.42 

(1.82-

5.67) 

2.15 ± 

0.68 

(1.54-

3.47) 

3.55 ± 

1.11 

(2.50-

5.94) 

2.16 

± 

2.69 

(0-

8) 

0 na 

Aedes 

triseriatus 

(4) 

3.74 

± 

0.84 

(2.61-

4.53) 

1.84 

± 

0.41 

(1.50-

2.43) 

11.68 

± 2.36 

(8.88-

14.63) 

3.19 ± 

0.68 

(2.51-

4.04) 

2.07 ± 

0.53 

(1.54-

2.79) 

5.14 ± 

0.83 

(4.40-

6.22) 

5.75 

± 

1.26 

(4-

7) 

6 na 

*Top row are mean ± SE (μm), bottom (in parentheses) are ranges 

 †Means not compared 

   

 

Discussion 

Significant differences exist among species in quantitative measurements of spines. These 

differences roughly follow phylogenetic relationships, with the two Cx. spp. being most 

similar to each other, Ae. j. japonicus and Ae. triseriatus being more similar to each other 

than to  Ae. albopictus, and An. punctipennis and Or. signifera being most similar to each 
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other. However, although Tx. rutilus is more closely related to the Anopheles and 

Orthopodomyia genera, its spine structure is more similar to the Aedes and Culex genera 

(Harbach 2007). But, only one rehydrated Tx. rutilus specimen was observed. Future 

studies could optimize spine characters onto phylogenies to determine if they have utility 

in phylogenetic studies.  

 

The mosquitoes with different morphologies also generally display different host 

affinities. The two Cx. spp. are ornithophagic (i.e., bird feeding) and the Ae. spp. are 

mammalophagic (i.e., mammal feeding). Anopheles punctipennis feeds on birds and 

mammals, and Or. signifera on amphibians, birds, and mammals (refs for all). The 

differences in structure might relate to differences in host erythrocyte structure. Average 

erythrocyte cell size for mammals is 62.1 ± 22.2 μm
3
, for birds 168.9 ± 28.5 μm

3
, and for 

reptiles 398.2 ± 121.4 μm
3
 (Hawkey et al. 1991), with considerable variation within 

classes (Wintrobe 1933). It might benefit mosquitoes to concentrate erythrocytes in 

species with lower densities of red blood cells, an aspect that changes by an order of 

magnitude between mammals (7.77 ± 2.86 x 10
12

/l), birds (2.79 ± 0.53 x 10
12

/l), and 

reptiles (0.75 ± 0.32 x 10
12

/l).  

 

Mosquito physiological reactions to bloodmeals could alter properties of the peritrophic 

matrix (Romoser et al. 1975, Berner et al. 1983);  if it fluctuates with predominant host 

types in different mosquito species, then some might have more robust armature to deal 

with consequences to the matrix (e.g., thicker matrix). Finally, variation in spine shape, 
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spine density, or tooth number might be greater in mosquito species that switch between 

avians, humans, and mammals as opposed to specializing on one host, as suggested by 

Lyimo (2010). Further investigation with more mosquito species could reveal significant 

associations between erythrocyte structure (e.g., size, shape) and mosquito pyloric spine 

structure.  

 

Parasites in bloodmeals could also alter properties of the peritrophic matrix, or parasites 

might exert a direct selection pressure on the female pyloric armature. Of the seven 

species in this study, all but Or. signifera are vectors of D. immitis. However, they vary in 

vector efficiency. These differences in efficiency might be related to armature differences. 

The armature might be lethal to all filarial parasites; for example, if parasites are 

displaced to the posterior portion of the pylorus during blood feeding, then the backwards 

projecting spines might disrupt subsequent parasite migration to the mosquito Malpighian 

tubules or flight muscles. If this is the case, pyloric spines would be expected in all 

mosquito species exposed to filarial parasites and their morphological differences might 

be correlated with differences in parasite structure (e.g., width, cuticle strength).  

 

The presence of elaborate spines in male mosquitoes and a Tx. rutilus female, and lack of 

significant differences between males and females could be due to several factors. As 

suggested for sand flies, this could be a relic of a time when both males and females were 

putative blood feeders, a suggestion never definitively demonstrated (Christensen et al. 

1971). Christophers (1960) mentions observing male Ae. aegypti feeding on diuretic fluid 
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of females, and elaborated pyloric spines could benefit males engaging in this behavior 

(although the behavior could be purely opportunistic and an artifact of the laboratory 

setting). But neither of these hypotheses would account for the presence of a robust 

armature in Tx. rutilus. If the pyloric armature aids in backward passage and 

disintegration of the peritrophic matrix (Wigglesworth 1950), males and non-blood 

feeding species might benefit as well as blood-feeding females, but an explanation is still 

needed for the variation among species. The armature also would be present in both sexes 

and non-blood feeders if it aided in the backward passage of the meconial peritrophic 

matrix, which has variable presence in different mosquito species (Romoser et al. 2000).  

 

If the evolved function of the pyloric armature was to aid in backward passage and 

disintegration of the meconial peritrophic matrix, the armature might have been exapted 

by female mosquitoes to aid in bloodmeal processing or concentration, or to protect 

against parasites.  Pharyngeal armature occurs in both male and female mosquitoes but 

has been implicated in damage to ingested microfilariae (McGreevy et al. 1978). If the 

pyloric armature does cause damage to microfilariae, more variation should exist in 

males than in females, which was not apparent in this study.  

 

Trembley (1951) reported ―groups of five to eight‖ spines in Ae. aegypti and Vaughan et 

al. (1991) reported ―diamond-shaped spicules arranged in rosettes‖ in three Anopheles 

spp. , but neither of these patterns were seen in the current specimens. However, Vaughan 

et al. (1991) noted one species with spines arranged in ―rows‖ (albeit an Anopheles sp.), 
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as was noted in several species in this study (no anophelines). Some of the posterior 

spines in a few species were untoothed and could be interpreted as ―diamond-shaped‖. 

Although Vaughan et al. (1991) were not clear what they meant by spine size, their report 

of spine sizes of 3-7 μm, 3-9 μm, and 14-18 μm are similar to spine body lengths and 

total spine lengths (i.e., body length  +  tooth length). In some cases, the spines looked 

similar to oral armature (Buse and Kuhlow 1979, Somboon et al. 2009), and in particular 

Ae. triseriatus spines looked similar to the comb scales of immature Ae. spp. Females and 

males had both pointed and truncate spine tips; if these differences are due to tip breakage 

over time, they could lead to a method for age-grading female and male mosquitoes. An 

SEM study could verify whether the truncate shape of some spines was legitimate or due 

to breakage.   
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CHAPTER SIX 

CONCLUSION 

 

Mosquitoes display a diverse array of breeding and host-seeking behaviors. Depending 

on the species, oviposition can occur in natural or artificial containers, which are entire 

habitats or microhabitats associated with larger areas. Interactions between aquatic larval 

habitat and surrounding terrestrial ecology might influence mosquito population 

distribution and more study is needed in this area (Vanwambeke et al. 2007, Yee and Yee 

2007). Even though an environment might contain optimal larval habitats, larval density 

could be low if the terrestrial environment is not advantageous to the adult female (Yee 

and Yee 2007). ‗Bad mother‘ decisions made by herbivorous insects in which the adult 

female optimizes her longevity by placing larvae in suboptimal habitats close to the adult 

food source might also apply to mosquitoes (Mighthew 2001, Reiskind and Wilson 

2004).  

 

Host-seeking behavior and oviposition can occur contemporaneously during crepuscular 

hours (Reddy 2007). More adult mosquitoes occur in the vicinity of aquatic breeding 

grounds and dispersal of mosquitoes is influenced by both proximity to breeding grounds 

and hosts (Le Menach et al. 2005). And local mosquito abundance should increase with 

increasing larval habitat availability (Shaman et al. 2002, Reiskind and Wilson 2004). 

Studies of larval ecology are becoming more common as larval population dynamics are 

increasingly considered necessary to understanding fluctuations in, and distributions of, 
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adult populations (Gimnig et al. 2001). An optimal environment would provide adults 

access to sugar and blood meals, mates, and oviposition and larval development sites. 

 

An advantage of studying mosquitoes in zoos is that mosquito larval development sites 

can be evaluated in relation to hosts. For instance, different mosquito species metabolize 

bloodmeal components with different efficiencies and fates, depending on female size 

(related to nutritional quality of larval habitat), bloodmeal size (related to time spent at 

host), and host species (Hurd et al. 1995); therefore, some mosquito species (e.g., strong 

competitors as larvae, catholic in adult feeding habits) could be at a distinct advantage or 

disadvantage in the zoo environment. Different mosquito species can have behavioral, 

physical, and physiological adaptations for different hosts and thus be expected to exhibit 

host preferences of varying specificities. For example, differential human erythrocyte 

concentration correlating with host usage has been shown in some Anopheline species 

(Vaughan et al. 1991). Zoos are an excellent environment in which to use strong 

hypothesis testing to elucidate the host and oviposition adaptations and preferences of 

different mosquito species. Results of such testing can provide us with the power to 

predict mosquito species distributions and host usage patterns in non-zoo environments.  

 

We could also learn more about host avoidance in mosquitoes by analyzing the zoo 

species they do not feed on; for instance, might be there is a preferential avoidance of 

species with low blood levels of isoleucine, an amino acid essential to oogeneesis (Hurd 

et al. 1995). Adult female mosquitoes do not always display ―gonotrophic concordance‖ 
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(i.e., one egg batch per bloodmeal), are known to take multiple bloodmeals during one 

gonotrophic cycle if hosts are readily available, and are more likely to take multiple 

bloodmeals if larvae developed in low-quality habitats (Hurd et al. 1995). A dilution 

effect on pathogen transmission might occur in zoos if mosquitoes feed on more species 

of hosts than they would outside of zoos. Alternatively, there could be an amplification of 

pathogen transmission if preferred or vulnerable hosts are present, or infected or sick 

hosts are confined and concentrated (e.g., such as in hospitals).  

 

Collaboration between entomologists and zoo personnel can be beneficial to captive and 

wild animals, and the human zoo workers and attendees. The original study suggesting 

the importance of mosquitoes as vectors of pathogens in zoos was precipitated by an 

ongoing problem at the Baltimore Zoo, Maryland, USA, with avian malaria in the 

outdoor penguin exhibit (Beier and Trpis 1981a). A host of studies conducted since then 

on the inevitable problem of avian malaria when penguins are housed outdoors (penguins 

lack coevolved defenses against both mosquito vectors and Plasmodium spp.) generated a 

large body of knowledge on disease pathology and potential vectors before wild 

endangered Galapagos penguins were found to have avian malaria for the first time in 

2009 (Levin et al. 2009). Potentially, many other animals of conservation concern 

currently housed in zoos could benefit by this type of epidemiological investigation. Zoos 

regularly trade animals for breeding and other purposes, and through these routes a local 

mosquito could acquire a foreign pathogen. For instance, animals are regularly 

quarantined in hospitals after transfer, and mosquitoes might have access to animals in 
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hospitals because mosquito exclusion is not a routine part of quarantine. Studying the 

relationships between mosquitoes, hosts, and pathogens in zoos can provide wildlife 

researchers and ecologists with early warning systems (e.g., identification of naïve and 

vulnerable hosts) for the management of mosquito-borne diseases in an era of global 

climate change (Reiter 2008), and provide medical entomologists and epidemiologists 

with information on mosquito-vector potential, pathogen plasticity, and host-learned 

defenses.  

 

Additionally, communication between entomologists and zoo workers can provide insight 

into both disciplines. For instance, after presenting my research to the Zoological 

Association of America in November 2010 I learned that some zookeepers have noticed 

Capuchin monkeys rubbing green onion juice on their fur when bothered by mosquitoes, 

and others think animals might lie on warm mulch to keep biting flies away. These two 

anecdotes hint at intriguing possibilities for studying natural mosquito-avoidance 

behavior in zoo animals. And, as a direct result of my work, the South Carolina 

Department of Health and Environmental Control began running mosquito traps in the 

Riverbanks Zoo as part of its annual statewide WNv monitoring project.  

 

I placed resting boxes in areas of high mosquito biting activity in the zoos, as reported by 

keepers. Oddly, mosquitoes were rarely found in the resting boxes possibly because there 

were much better sites nearby. The Riverbanks Zoo has a large water catchment basin 

underthe zoo that is connected by numerous sewer pipes. Drains in the floors of exhibits 
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lead to this basin. I have seen mosquitoes flying out of drains and I think they may be 

traveling between exhibits through the sewer pipes and also resting in them. Keepers 

report high mosquito biting in areas associated with the drains and it would be 

worthwhile to place rubber mats over the drains when not in active use to see if mosquito 

biting activity is reduced, and also place eclosion traps over the drains to capture any 

mosquitoes leaving them.  

 

When the new Red-necked wallaby exhibit was installed at the Riverbanks Zoo, I was 

able to consult with them on potential mosquito breeding habitats in the exhibit. There 

were changes enacted in some of the problem areas I noted, during the course of my 

research, in my annual reports to the zoos. For example, a pump house station located in 

the wall of the bear exhibit of the Riverbanks Zoo (and directly across from an outdoor 

aviary) was an area where multiple species of bloodfed mosquitoes were found resting 

during my research and previous work (Nelder 2007). After the zoo repainted the walls, 

cleaned the floor of debris, moved objects located close to the walls (e.g., buckets) and 

(probably most importantly) put a door on the room, mosquito resting activity dropped to 

zero. Additionally, gutters at both zoos were either removed or are now being regularly 

inspected and cleaned. And, finally, areas where mosquitoes could rest after biting (for 

instance, shaded areas with creeping groundcover and ivy-covered walls) were stripped 

of vegetation and shade, and repainted. I also checked some indoor areas that might be 

trouble areas but could be overlooked, for instance bromeliads, bamboo stumps, other 

standing water, and ground vegetation inside the bird exhibits of the indoor aviary at the 
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Riverbanks Zoo, but never found mosquitoes in unusual places. The keepers at the 

Greenville Zoo did report to me that they‘ve seen mosquito larvae in elephant footprints 

in dried mud. There are likely some novel mosquito breeding habitats in zoos that haven‘t 

been recorded before (e.g., Ae. albopictus in elephant footprints) but a lack of access to 

some animal habitats prevented me from investigating them.  

 

Before robust inferential hypothesis-based works can be undertaken in zoos, a descriptive 

basis must be laid down. The next step is to more rigorously test hypotheses related to 

mosquito foraging in relation to oviposition sites and host locations in zoos and 

dilution/amplification hypotheses regarding pathogens. For instance, could we use zoos 

or mini-zoos as diluters in areas of high human pathogen transmission? Or will zoos 

serve as the focus of epizootics? We can address these and many other questions about 

mosquito biology by conducting experiments in the unique milieu of zoological parks.  

The zoo-as-experiment scenario is advantageous, as zoo habitats are replicated 

worldwide (e.g,. ―Africa‖ exhibit, ―rainforest‖ exhibit), many aspects of habitat design 

and input are controlled through necessity of operation (e.g., type of plants in an exhibit), 

long-term health records are kept on animals (including serobanking), and animals are 

under routine surveillance by zookeepers. Additionally, my work and the work of others 

(Beier and Trpis 1981b, Derraik 2004, Huijben et al. 2003) has shown that mosquito 

dynamics within zoos are similar enough to use as proxies for environments outside of 

zoos.  
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Some examples of work that can be done in the unique experimental milieu of zoos are as 

follows 

 

Within-species host preference in mosquitoes. We can use DNA profiling to identify 

individual animals in exhibits from mosquito bloodmeals. Through this we can ask 

questions such as ―Do mosquitoes preferentially feed on the young of this species‖ and 

―Does mosquito host preference change through time‖ Or, if an exhibit has problems with 

bird blood parasites we can ask questions such as ―Do mosquitoes prefer or avoid 

parasitized hosts‖ or ―Are some hosts at higher risk for parasitism because of mosquito 

within-host preferences‖ because we will know the identity of each parasitized host. We 

can also sex the host from which the bloodmeal was obtained.  

 

Mosquito-host coevolution. We can determine if adventive species of mosquitoes (e.g., 

Ae. j. japonicus) are preferentially feeding in themed areas (e.g., ―Asia Exhibit‖) with 

animals representative of their geographic origins. The opportunity also exists to study 

mosquito sugar-feeding behavior in zoos to determine if mosquitoes preferentially use 

native or exotic (e.g., found as part of the landscapting in animal habitats) plants. 

 

Mosquito microhabitats and dispersal. Because hosts and oviposition sites can be 

known in great detail in zoos, this knowledge would facilitate an in-depth investigation of 

mosquito dispersal between feeding and oviposition sites and the controversial issue of 

possible home range memory in mosquitoes (Service 1997). 
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Zoo effects on mosquito populations. If zoos provide mosquitoes with abundant 

generational requirements (e.g., blood and sugar hosts, mates, oviposition and resting 

sites), gene flow out of the zoo might be inhibited, facilitating selection for zoo-

associated traits.  

 

More than 600 million people visits zoos each year, equivalent to 10% of the global 

human population (Adler et al. 2011), and zoo animals are particularly susceptible to 

parasites and their pathogens (Nelder 2007, Adler et al. 2011). Additionally, the licensing 

body for United States zoos, the American Zoological Association, does not have any 

specific requirements regarding mosquito control. However, a 2004 US congressional 

report on the National Zoo in Washington, DC, mandated that the zoo governance create 

and fill a pesticide program management position (Adler et al. 2011). Given that zoos are 

areas where animals, humans, and pathogens commingle without regulatory oversight, 

we cannot deny that the ecology of mosquitoes in zoos should necessarily be studied.  

 

My research demonstrates that mosquito behaviors in zoos do not differ so much from 

non-zoo environments that zoos cannot be used as experimental environments; however, 

they differ enough to merit further investigation. Additionally, my work has 

demonstrated that a holistic investigation of mosquito oviposition and blood-feeding 

behavior, vector status, and anatomy can be undertaken in zoos.  
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Public Summary 

Mosquitoes in zoos represent a potential public health threat and biting nuisance. They can 

transmit pathogens causing disease in zoo animals, and possibly, zoo visitors and workers. 

However, it is essential that potential threats be investigated before far-reaching conclusions lead 

to expensive control measures. From 2008 to 2011 I investigated the significance of mosquitoes 

at the Greenville and Riverbanks zoos in South Carolina.  

 

I studied habitats where mosquito larvae are found, analyzed mosquito bloodmeals to determine 

hosts, and tested mosquitoes for agents of dog heartworm. Additionally, I investigated aspects of 

mosquito anatomy that are possibly related to blood feeding and mosquito resistance to 

pathogens. I discovered that mosquitoes are breeding on zoo properties and biting captive and 

wild animals on zoo grounds, including humans.  However, no mosquitoes I tested were positive 

for dog heartworm. Additionally, I found significant differences in mosquito anatomy but cannot 

currently determine whether these differences affect bloodfeeding or pathogen presence.  

 

My research indicates that mosquitoes do not appear to behave differently in zoos than they do 

outside of them. Therefore, mosquitoes are a manageable problem in zoos if proper control 

measures are taken. Additionally, my results indicate that zoos could be optimal experimental 

environments for the study of mosquito behavior; for instance, when field studies might not be 

affordable or feasible. Finally, because of my research I was able to give zoos recommendations 

on reducing the number of larval habitats of mosquitoes, and hence, the number of biting adults, 

and identify hosts potentially at risk of mosquito-borne pathogens in zoos.  
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Appendix A  

Pictures of larval mosquito habitats at the two zoos 
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Appendix B 

Pictures of gravid collection sites at the two zoos 

 



 

112 

 

 

 

 

 

 

 

 

 

 



 

113 

 

 

 

 

 

 

 



 

114 

 

 

 

 

 

 

 



 

115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

116 

 

Appendix C 

Pictures of aspiration sites at the two zoos 
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Appendix D 

GPS coordinates and descriptions of mosquito collection locations at the two zoos 

(All coordinates measured with a Garmin eTrex GPS unit) 

Larval Collection Locations 

        

Site GPS North GPS West Description 

Greenville Zoo 

1 34.84690 82.38733 Treehole near base of oak tree behind lemurs 
 

2 34.84701 82.38742 Top of pvc pipe between picnic tables and shed  

3 34.84643 82.38854 Pumphouse behind S. America exhibit 
 

4 34.84614 82.38798 Holly bush behind S. America exhibit 
 

5 34.84673 82.38884 Wheelbarrow tire by orangutans 
  

6 34.84577 82.38843 Tallest pipe on backside of duck pond 
 

7 34.84577 82.38843 Shortest pipe on backside of duck pond 
 

8 34.84600 82.38862 End of runoff ditch before it drains into duck pond 

9 34.84590 82.38851 Pipe at end of fence demarcating edge of site #8 
 

10 34.84639 82.38912 Pool at mouth of runoff ditch 
  

11 34.84564 82.38836 Fake concrete tree stump between flamingo and garden pond 

12 34.84577 82.38820 Edge of flamingo pond by porch 
  

13 na na Another edge of bog-Combined with 14 
 

14 34.84564 82.38836 Garden pond by alligator viewing house 
 

15 34.84674 82.38686 Gutter on restroom building next to owl cage 
 

16 34.84801 82.38610 White bucket top near machine shed 
 

17 34.84745 82.38623 Fake concrete tree stump by operations office 
 

18-28 34.84661 82.38893 
Bamboo stumps (n=11) in grove between waterfall and 

backside of orangutan enclosure 

        
Riverbanks Zoo 

29 34.00858 81.07459 Garden pond near ponies and raptors  
 

30 34.00834 81.07413 Overturned white 50g bucket near dumpsters  
 

31 34.00780 81.07431 Mud puddle by dumpsters  
  

32 34.00778 81.07343 Oak treehole behind ostrich cage  
  

33 34.00879 81.07113 5g sunken bucket closest to Ndoki house (in old canal) 

34 34.00877 81.07128 5g sunken bucket closest to elephant barn (in old canal) 

35 34.08680 81.07127 Oak treehole on edge of canal 
  

36 34.00865 81.07082 Oak treehole by Ndoki house  
 

37 34.00895 81.07102 Hole in rock by site #34 
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38 34.00927 81.07054 Oak treehole in bog 
   

39 34.00940 81.07048 One section of largest vernal pond  
  

40 34.00910 81.07129 Vernal pool 1; one closer to maintenance shed 
 

41 34.00911 81.07027 Vernal pool 2; one closest to road  
  

42 34.00960 81.07496 Garden pool in front of Australia house  
 

43 34.00924 81.07468 Metal birdbath in front of educational building 
 

44 34.00883 81.07422 Edge of stream by pony ring  
  

45 34.00893 81.07370 Oak treehole in pony ring 
  

46 34.00881 81.07354 Metal cigarette bucket behind Kenya café  
 

47 34.00838 81.07359 Water bog next to alligator pond 
  

48 34.00845 81.07354 Small glass bowl within bog area next to alligator pond 

49 34.00832 81.07258 Gutter on tortoise house  
  

50 34.00875 81.07225 Mud puddle behind reptile house 
  

51 34.00875 81.07225 Black plastic pool behind reptile house 
 

52 34.00875 81.07225 Large metal pool behind reptile house 
 

53 34.00941 81.07259 Back edge of lemur pool closer to reptile house  

54 34.00991 81.07259 Bamboo stump behind bear exhibit 
  

55 34.08900 81.07146 Water at edge of elephant enclosure by viewing deck 

56 34.00986 81.07030 Pump housing by machine shop 
  

57 34.00990 81.06901 Mud puddle by landscaping shed  
  

58 34.00925 81.06982 Drainage ditch near vernal pools 
  

59 34.00923 81.07026 Sunken stumphole in ground 
  

60 34.00970 81.06250 Tarp around marshmallow roasting structure   
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Gravid Trap Locations 

Site GPS North GPS West Description 

Greenville Zoo 

1 34.84734 82.38658 Behind building. next to employee break room 

 2 34.84865 82.38806 At perimeter fence, near alligators, clump of Holly bushes 

3 34.84565 82.38829 Beside alligator viewing house 

  4 34.84626 82.38858 Behind shack at back of flamingo pond 

 5 34.84648 82.38823 Side of bathroom building. by waterfall 

  6 34.84687 82.38849 Backside of fence behind children‘s playground 

7 34.84701 82.38766 Backside of fence between picnic tables and shed 

8 34.84712 82.38722 Front of education building. behind bushes 

 9 34.84637 82.38797 Under bushes next to employee walkway to S. America 

10 34.84679 82.38733 Behind reptile house 

   11 34.84801 82.38601 Back corner of machine shop under eaves 

 12 34.84759 82.38615 Behind fence behind animal hospital 

 13 34.84757 82.38637 Behind zoo offices 

   14 34.84755 82.38659 Behind fence next to garage 

  15 34.84731 82.38685 Bamboo between elephant enclosure and education building. 

Riverbanks Zoo 

16 34.00999 81.07036 Behind machine shop, across from vernal pool 

 17 34.00978 81.07169 Side of gorilla viewing building. near front door 

 18 34.00950 81.07188 Against fence behind gorilla building. 

  19 34.00993 81.07204 Behind ―Gorilla Goodies‖ stand 

  20 34.01003 81.07243 Behind bear exhibit, by bamboo stumps 

 21 34.00960 81.07350 Backside of Starbucks 

   22 na na Side of aviary, across from Baboons - INACCESSIBLE 

23 34.00919 81.07484 Front of 3D Adventure theater 

  24 34.00965 81.07558 Behind merry-go-round wall 

  25 34.01027 81.07564 Front of raptor clinic, facing parking lot 

 26 34.00813 81.07440 Behind fence, by dumpsters near Safari station 

 27 34.00871 81.07464 Behind pony ring 

   28 34.00806 81.07218 Side of reptile house across from cafeteria 

 29 34.00865 81.07257 Side of tortoise shelter, against building 

 30 34.00878 81.07368 Side of cafeteria, facing zoo train depot 

 31 34.00996 81.07552 Corridor in front of vet clinic 

  32 34.00930 81.06963 Back corner of storage shed by landscaping, in ivy 

33 34.00938 81.07086 Between back of Ndoki lodge and largest vernal pool 

34 34.00908 81.07248 Front corner of reptile house by tortoises 

 35 34.00836 81.07354 Corridor between ostrich enclosure and safari station 
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Aspiration Locations 

Site GPS North GPS West Description 

 Greenville Zoo 

1 34.84632 82.38871 Tree stump in woods behind duck pond 

2 34.84562 82.38820 Crepe myrtle bushes beside alligator house 

3 34.84731 82.38685 Ivy covered area behind education building 

4 34.84679 82.38733 Ivy covered wall behind reptile house 

5 34.84679 82.38733 Ivy covered hill behind reptile house 

6 34.84634 82.38803 Pumphouse behind S. America exhibit 

7 34.84629 82.38804 Bushes and ivy behind S. America exhibit 

8 34.84639 82.38793 Employee trail behind S. America exhibit 

9 34.84649 82.38776 Ivy covered hill behind barnyard animals 

10 34.84685 82.38847 Underside of playground porch 

 11 34.84625 82.38858 Shed behind duck pond 

 12 34.84578 82.38825 Underside of duck pond porch 

 13 34.84672 82.38741 Gutters behind reptile house 

 

 

  

     Riverbanks Zoo 

14 34.00933 81.07501 Ivy on wall of education building 

 15 34.00859 81.07224 Wall of metal pool behind reptile house 

16 34.00875 81.07395 Underside of walkway to train  

 17 34.00922 81.07256 Underside of platform by old hippo pool 

18 34.00923 81.07452 Front wall of education building behind garden 

19 34.00988 81.06953 Bunker inside landscaping shed 

 20 34.00919 81.07391 Wall of aviary across from train 

 21 34.01012 81.07541 Sewer grates behind storage sheds by clinic 

22 34.00992 81.07530 Outside bathroom by merry-go-round 

23 34.00951 81.07436 Large fan unit at employee access to ape island 

24 34.01003 82.07036 Pumphouse behind bears 

 25 34.00870 81.07354 Underside cafeteria 

  26 34.00992 81.07169 Underground pumphouse near ―Gorilla Goodies‖ 

27 34.00990 81.07031 Pumphouse area at machine shop 

 28 - - Under ape island (overnight Siamang habitat) 

29 34.00980 81.07141 Employee area, Research Conservation Outpost 

30 34.00905 81.07354 Groundcover and bushes on back of aviary 

UV-A 34.00878 81.07458 CDC-miniature light trap (CO2–baited) behind pony ring (used 

one time in May 2010 ) 

 

 



 

124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

125 

 

Appendix E 

Annual updates to the two zoos 

Mosquito collections at the Greenville Zoo March 2008 to October 2008: Annual 

Report 

 
Holly Tuten 

Department of Entomology, Soils & Plant Sciences 

Clemson University 
 

Overview 

 

Immature mosquitoes were collected from habitats at the Greenville zoo from March to 

October 2008. Samples were taken once a month, excepting April and September. All 

samples were taken within the zoo‘s perimeter fence. In December 2007 and January 

2008 the entire zoo property was examined for potential mosquito breeding habitats. 

Twenty-eight study sites were selected based on three main criteria: 1. non-disturbance to 

animals, 2. the likelihood of retaining water throughout the study period, and 3. 

accessibility. These sites were then sampled on each subsequent visit, if they contained 

water. The average number of study sites positive for larvae per visit, over the entire 

sampling period, was 64 percent. This means that for each visit approximately two of 

every three sites sampled had mosquito larvae.  

 

Eight species of mosquito were collected as larvae on zoo property. These species are:  

 

Species Feeding Behavior Larval Habitat(s) 
 Aedes albopictus 

 

 Anopheles crucians 

 

 Anopheles punctipennis 

 

 Culex pipiens 

 

 Culex restuans 

 

 Culex territans 

 

 Ochlerotatus triseriatus 

 

 Toxorhynchites rutilus 

 

 Avian, mammal, reptile 

 

 Mammal 

 

 Mammal 

 

 Avian, mammal 

 

 Mammal 

 

 Amphibian, reptile 

 

 Avian, mammal 

 

 No blood meal (nectar feeder) 

 Standing water 

 

 Ponds, rain pools, 

swamps 

 Ditches, slow streams, 

swamps, tire ruts 

 Foul water in ditches, 

large containers, pools 

 Standing water 

 

 Grassy margins of clean 

water 

 Tires, treeholes, some 

artificial containers 

 Tires, treeholes 
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Breeding habitats of concern 

 

Data collected over the six sampling visits indicate that some sites, or site types, have 

consistently high numbers of immature mosquitoes but can be controlled or altogether 

eliminated. The most notable of these are: 

 

1. In the area behind the main office there at least one container every visit had hundreds 

of immature mosquitoes. Containers included garbage bins, overturned buckets, and the 

tops of closed 50g buckets. Prevention of mosquitoes breeding in these containers 

requires that they be overturned, periodically tipped, or drained. Some of the worst 

nuisance species breeding at these sites are Aedes albopictus, Culex restuans, and Culex 

pipiens. 

 

2. Bamboo stumps in the bamboo grove consistently contained water and larvae. 

Although each individual stump will not produce large numbers of mosquitoes each 

month, their combined volume will. The stumps need to be either drained or eliminated.  

 

3. The flamingo pond. This is the most problematic site at the zoo. Thousands of 

mosquitoes emerged from it over the course of the study, with numbers increasing over 

the summer. Mosquito species collected were Culex restuans, Culex pipiens, and Culex 

territans.  

 

4. The gutter on the bathrooms beside the owl cage. This site (and probably other gutters) 

has a tendency to get clogged with leaves. The result is water stagnation and breeding by 

Aedes albopictus and Ochlerotatus triseriatus.  

 

5. The pump housing behind small primates consistently had high numbers of multiple 

species of immature mosquitoes.   

 

Control of mosquito breeding on zoo property 

 

Although many breeding sites cannot be controlled reliably (e.g., treeholes, ephemeral 

puddles) many others can be (e.g., pump house, buckets, tarps). To foster effective 

control on zoo grounds all employees should look for potential breeding sites and 

eliminate them when they can. When sites cannot be eliminated Bti treatments should be 

used in a regulated manner. Bti pellets could be dispensed in the manner of a prescription. 

There would be a point person for each area in the zoo responsible for picking up pellets 

from management each month. This person would also be tasked with treating sites 

identified in their respective area. In this way a monthly check would show which 

departments have picked up Bti pellets. Additionally, these point people could receive 

instruction in how to recognize potential breeding sites and how to monitor those sites for 

mosquito activity. The ideal situation would be for one zoo employee to work a monthly 

maintenance day where they walk around the zoo and treat sites with Bti, tip over 

buckets, pick up trash, and identify potential mosquito pest problems.  
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Employee reports of mosquito biting activity 

Throughout the study employees offered anecdotal information on mosquito biting 

activity. Additionally, a map of the zoo installed in the employee break room served as a 

reporting station for mosquito bites. Based on these sources of information, the areas of 

highest biting activity are 1. behind primates, 2. behind the bamboo grove, 3. behind 

small primates, and 4. in front of the lion cage.  

 

 

Conclusions 

 

Currently, at the zoo, the best method for reducing the number of mosquito bites received 

by employees and visitors is to reduce the number of mosquito breeding habitats. The 

best remedy is for employees to know what breeding habitats look like and how to 

eliminate or treat them when habitats are recognized. Additionally, two ―mosquito 

magnet‖ machines are installed at the zoo. They currently require a refill of carbon 

dioxide for operation. I have spoken with the installer, Mr. Weeks, and we agreed I 

would empty and replace the nets whenever I visit the zoo.  

 

Although I did not sample every potential breeding site at the zoo, the survey conducted 

was comprehensive enough to provide a basis for determining which sites should be 

managed and which are not problems. The bias inherent in my sampling scheme (e.g., 

limited access to animal enclosures) calls for vigilance on the part of zoo employees 

regarding identification of potential mosquito breeding sites. Additionally, I spoke with 

employees who work near breeding sites but do not know what immature mosquitoes 

look like.  To ameliorate this, I would like to give a 30-minute seminar at the zoo 

sometime in May to educate employees about mosquitoes. This seminar could be 

repeated two times over the course of one day to include as many employees as possible. 

The seminar will include information which can facilitate recognition of mosquito 

breeding sites.  
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Mosquito collections at the Riverbanks Zoo March 2008 to October 2008: Annual 

Report 

 
Holly Tuten 

Department of Entomology, Soils & Plant Sciences 

Clemson University 

 

Overview 

 

Immature mosquitoes were collected from habitats at Riverbanks Zoo from March to 

October 2008. Samples were taken once a month, excepting April and September. 

Sampling was also conducted in areas adjacent to the zoo (e.g., treeholes near the river) 

but most samples were taken within the zoo‘s perimeter fence. In January and March 

2008 the entire zoo property was examined for potential mosquito breeding habitats. 

Thirty-two study sites were selected based on three main criteria: 1. non-disturbance to 

animals, 2. the likelihood of retaining water throughout the study period, and 3. 

accessibility. These sites were then sampled on each subsequent visit, if they contained 

water. The average number of study sites positive for larvae per visit, over the entire 

sampling period, was 63 percent. This means that for each visit approximately two of 

every three sites sampled had mosquito larvae.  

 

Fifteen species of mosquito were collected as larvae on zoo property. These species are:  

 

Species Adult Feeding Behavior Larval Habitat(s) 
 Aedes albopictus 

 

 Aedes vexans 

 

 Anopheles crucians 

 

 Anopheles punctipennis 

 

 Anopheles quadrimaculatus 

 

 Culex erraticus 

 

 Culex pipiens 

 

 Culex restuans 

 

 Culex salinarius 

 

 Culex territans 

 

 Ochlerotatus triseriatus 

 

 Orthopodomyia signifera 

 

 Avian, mammal, reptile 

 

 Large mammals 

 

 Mammal 

 

 Mammal 

 

 Large mammals 

 

 Amphibian, avian, mammal, reptile 

 

 Avian, mammal 

 

 Mammal 

 

 Avian, mammal 

 

 Amphibian, reptile 

 

 Avian, mammal 

 

 Avian 

 

 Standing water 

 

 Grassy Ditches, rain 

pools, tire ruts 

 Ponds, rain pools, 

swamps 

 Ditches, slow streams, 

swamps, tire ruts 

 Marshes, lake margins 

 

 Lake margins, slow 

streams 

 Foul water in ditches, 

large containers, pools 

 Standing water 

 

 Water with rotting 

vegetation 

 Grassy margins of clean 

water 

 Tires, treeholes, some 

artificial containers 

 Treeholes, artificial 

containers 
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 Psorophora ferox 

 

 Psorophora ciliata 

 

 Toxorhynchites rutilus 

 

 Avian, mammal, reptile 

 

 Mammal 

 

 No blood meal (nectar feeder) 

 Temporary and 

woodland pools 

 Woodland pools 

 

 Tires, treeholes 

 

Breeding habitats of concern 

 

Data collected over the six sampling visits indicate that some sites, or site types, have 

consistently high numbers of immature mosquitoes but can be controlled or altogether 

eliminated. The most notable of these are: 

 

1. In the area behind Kenya café at least one container every visit had hundreds of 

immature mosquitoes (these containers are probably sources of biting adults in the pony 

ring). Containers included drink carts, large cooking pots with old food scraps, cigarette 

buckets, and various kitchen containers. Prevention of mosquitoes breeding in these 

containers requires that they be overturned, periodically tipped, or drained. Some of the 

worst nuisance species breeding at these sites are Aedes albopictus, Culex restuans, and 

Culex pipiens. 

 

2. The frame for the marshmallow roaster stored on perimeter road. During the months 

when this is not being used it is covered with a tarp. The tarp develops many rain-filled 

pockets ranging from 1L to 5L in volume. Hundreds of adult mosquitoes were emerging 

from this site every month. At one point during the study the tarp was treated with Bti 

granules but did not receive a thorough application. Because of this, pockets nearest 

perimeter road did not have immature moquitoes but those furthest away were still 

producing the same number of adults as before the application.  

 

3. The vernal ponds located between the back of the horticulture house and Ndoki lodge. 

These pools were dry from June to October but thousands of adult mosquitoes emerged 

from March to May. Mosquito species collected from these sites during the active months 

were Culex restuans, Culex pipiens, Culex salinarius, and Culex territans. Personnel in 

the reptile department told me that they deliberately flood these habitats during winter 

months (to provide habitat for salamanders).  

 

4. Although not on the zoo grounds, there is an extensive bog adjacent to the perimeter 

road fence. This is probably a significant source of adults during the months that it is 

flooded. During this study it was flooded in March, May, and October.  

 

5. During the course of the study thousands of immature mosquitoes of multiple species 

were observed in puddles and tire tracks along the length of perimeter road. Although 

some puddles are ephemeral (and therefore hard to treat) others held water during all but 

one month (July) of the study. The most notable of these are beside the dumpsters and the 

horticulture building. Additionally, garbage located along perimeter road provided 
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productive breeding habitats (e.g., old lamp posts, drink bottles, broken plastic 

containers).  

 

6. The pump housing located on the side of the machine shop consistently had high 

numbers of multiple species. I was told by an employee that it cannot be drained and is 

not being treated with Bti pellets.  

 

 

Control of mosquito breeding on zoo property 

 

Although many breeding sites cannot be controlled reliably (e.g., treeholes, ephemeral 

puddles) many others can be (e.g., pumphouse, permanent puddles, buckets, tarps). To 

foster effective control on zoo grounds all employees should look for potential breeding 

sites and eliminate them when they can. When sites cannot be eliminated Bti treatments 

should be used in a regulated manner. Dr. Tiffany Moore suggested that Bti pellets could 

be dispensed to different departments in the zoo in the manner of a prescription. There 

would be a point person in each department responsible for picking up Bti pellets from 

the animal hospital each month. This person would also be tasked with treating sites 

identified in their respective area. In this way a monthly check would show which 

departments have picked up Bti pellets each month. Additionally, these point people 

could receive instruction in how to recognize potential breeding sites and how to monitor 

those sites for mosquito activity. The ideal situation would be for one person to have a 

monthly maintenance day where they walk around the zoo and treat sites with Bti, tip 

over buckets, pick up trash, and identify potential mosquito pest problems.  

 

Employee reports of mosquito biting activity 

 

Throughout the study employees offered anecdotal information on mosquito biting 

activity. Additionally, a map installed in the employee break room served as a reporting 

station for mosquito bites. Based on these sources of information, the areas of highest 

biting activity are 1. the pony exhibit, 2. the area between the Siamangs and the merry-

go-round, and 3. the area behind the bird garden and lemur exhibit.  

 

Employees reported that mosquitoes at pony rides are particularly bad on humid days and 

on some weekends they use more than one can of aerosol mosquito repellent. They are 

sharing this spray with zoo visitors and spraying the ponies.  

 

Conclusions 

 

Currently, at the zoo, the best method for reducing the number of mosquito bites received 

by employees and visitors is to reduce the number of mosquito breeding habitats. The 

best remedy is for employees to know what breeding habitats look like and how to 

eliminate or treat them when habitats are recognized.  
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Although I did not sample every potential breeding site at the zoo, the survey conducted 

was comprehensive enough to provide a basis for determining which sites should be 

managed and which are not problems. The bias inherent in my sampling scheme (e.g., 

limited access to animal enclosures) calls for vigilance on the part of zoo employees 

regarding identification of mosquito breeding sites. Additionally, I spoke with many 

employees who work near breeding sites but do not know what immature mosquitoes 

look like.  To ameliorate this, I would like to give a 30-minute seminar at the zoo 

sometime in May to educate employees about mosquitoes. This seminar could be 

repeated three times over the course of one day to include as many employees as 

possible.  
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Mosquito collections at the Greenville Zoo January 2009 to September 2009: 

Annual Report 

 
Holly Tuten 

Department of Entomology, Soils & Plant Sciences 

Clemson University 

 

Overview 

 

Habitats were sampled for immature mosquitoes at the Greenville Zoo in January (none 

were found). Adults were collected 1-2x per month June – September 2009 (Table One). 

In June 2009 the entire zoo property was examined for potential adult trapping sites. 

Fifteen study sites were selected based on four main criteria: 1. non-disturbance to 

animals, employees, and zoo visitors, 2. accessibility, 3. ground cover and canopy 

vegetation, and 4. nearby wind breaks (e.g., walls or fences) (Table Two). These sites 

were then sampled with adult traps which use water attractive to certain species of 

mosquitoes as egg-laying habitats.  

 

Additionally, statistical analyses were performed on data collected in 2008 – 2009 on the 

environmental variables of habitats with immature mosquitoes. These results of the 2008 

– 2009 study were presented at the annual meeting of the Entomological Society of 

America in December 2009, are the subject of a publication submitted to the J. Med. 

Entomol. , and will be presented later in this report.  

 

Species Adult Feeding Behavior Larval Habitat(s) 

 Aedes albopictus 

 

 Aedes triseriatus 

 

 Culex pipiens 

 

 Culex restuans 

 

 Culex territans 

 

 Orthopodomyia signifera 

 Avian, mammal, reptile 

 

 Avian, mammal 

 

 Avian, mammal 

 

 Mammal 

 

 Amphibian, reptile 

 

 Avian 

 

 

 Standing water 

 

 Tires, treeholes, some artificial 

containers 

 Foul water in ditches, large 

containers, pools 

 Standing water 

 

 Grassy margins of clean water 

 

 Treeholes, artificial containers 

 

Table One. Species of mosquito collected as adults in 2009 at the Greenville Zoo, with 

the previously recorded host preferences of adult females, and habitats where larvae are 

found.   

 

 

 

 



 

133 

 

Site 

number 

Location description 

1 Behind bldg. next to employee break room 

2 At perimeter fence, near alligators, clump of Holly bushes 

3 Beside alligator viewing house 

4 Behind shack @back of Flamingo pond 

5 Side of bathroom bldg. by waterfall 

6 Backside of fence behind children‘s playground 

7 Backside of fence between picnic tables and shed 

8 Front of education bldg. behind bushes 

9 Under bushes next to back walkway to S. America 

10 Behind reptile house 

11 Far back corner of machine shop under eaves 

12 Behind fence behind animal hospital 

13 Behind Jeff‘s office 

14 Behind fence next to trash can & rain barrels by garage 

15 Bamboo between elephant enclosure and education bldg.  

Table Two. Sites for placement of adult traps during 2009 and 2010 

 

Results of 2008 – 2009 study on habitats with mosquito larvae 

 

Objectives: 

1. Survey the mosquito species present as larvae in the Greenville Zoo 

2. Determine environmental factors associated with larval presence 

3. Determine seasonality of species 

4. Provide control and monitoring recommendations to the zoo 

 

Results: 

1. 653 larvae collected representing 8 species 

2. 4 species comprised 96% of collections 

a. Aedes albopictus: 72%  

b. Aedes triseriatus: 11% 

c. Culex pipiens complex: 10% 

d. Culex restuans: 3% 

3. Mosquito larvae were most abundant in summer (75.0% of sites sampled had 

larvae) and fall (50.0% of sites sampled had larvae), followed by spring (44.4% of 

sites had larvae), then winter (no sites sampled had larvae) 

4. Mosquito larvae were found in artificial and natural containers, and artificial and 

natural pools.  

5. The most abundant species, Aedes albopictus, was 6.3 times more likely to be 

found in container habitats than in other habitat types.  
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6. The second most abundant species, Aedes triseriatus, was 3.6 times more likely to 

be found in natural habitats, and 3.5 times more likely to be found when the shade 

source for the habitat is less than or equal to 2 meters (e.g., low bushes or shrubs).  

7. Mosquito larvae, regardless of species, were 1.4 times more likely to be found in 

natural habitats, and 1.7 times more likely when aquatic vegetation was absent 

from the habitat.  

8. Presence of mosquito larvae was positively correlated with temperature and 

precipitation.  

 

Recommendations: 

1. Empty or eliminate container and natural habitats or remediate (e.g., fill with 

sand).  

2. Regularly clean or flush all container and pool habitats that are integral to animal 

exhibits.  

3. Eliminate shade sources less than 2 meters above aquatic habitats.  

4. Use mosquito larvicides for habitats that cannot be eliminated, remediated, or 

regularly flushed.  

5. Provide a yearly training seminar or educational video for zoo employees on 

habitat and larval recognition, and control strategies, before peak mosquito 

abundance.  

 

Control of mosquito breeding on zoo property 

 

Although many breeding sites cannot be controlled reliably (e.g., treeholes, ephemeral 

puddles) many others can be (e.g., pump house, buckets, tarps). To foster effective 

control on zoo grounds all employees should look for potential breeding sites and 

eliminate them when they can. When sites cannot be eliminated Bti treatments should be 

used in a regulated manner. Bti pellets could be dispensed in the manner of a prescription. 

There would be a point person for each area in the zoo responsible for picking up pellets 

from management each month. This person would also be tasked with treating sites 

identified in their respective area. In this way a monthly check would show which 

departments have picked up Bti pellets. Additionally, these point people could receive 

instruction in how to recognize potential breeding sites and how to monitor those sites for 

mosquito activity. The ideal situation would be for one zoo employee to work a monthly 

maintenance day where they walk around the zoo and treat sites with Bti, tip over 

buckets, pick up trash, and identify potential mosquito pest problems.  

 

Specific breeding habitats of concern at the Greenville Zoo 

 

Data collected over the six sampling visits indicate that some sites, or site types, have 

consistently high numbers of immature mosquitoes but can be controlled or altogether 

eliminated. The most notable of these are: 

 



 

135 

 

1. In the area behind the main office there at least one container every visit had hundreds 

of immature mosquitoes. Containers included garbage bins, overturned buckets, and the 

tops of closed 50g buckets. Prevention of mosquitoes breeding in these containers 

requires that they be overturned, periodically tipped, or drained. Some of the worst 

nuisance species breeding at these sites are Aedes albopictus, Culex restuans, and Culex 

pipiens. 

 

2. Bamboo stumps in the bamboo grove consistently contained water and larvae. 

Although each individual stump will not produce large numbers of mosquitoes each 

month, their combined volume will. The stumps need to be either filled (e.g., with 

concrete or sand), drained, or eliminated.  

 

3. The flamingo pond. This is the most problematic site at the zoo. Thousands of 

mosquitoes emerged from it over the course of the study, with numbers increasing over 

the summer. Mosquito species collected were Culex restuans, Culex pipiens, and Culex 

territans.  

 

4. The gutter on the bathrooms beside the owl cage. This site (and probably other gutters) 

has a tendency to get clogged with leaves. The result is water stagnation and breeding by 

Aedes albopictus and Aedes triseriatus.  

 

5. The pump housing behind small primates consistently had high numbers of multiple 

species of immature mosquitoes.   

 

Conclusions 

 

Currently, at the zoo, the best method for reducing the number of mosquito bites received 

by employees and visitors is to reduce the number of mosquito breeding habitats. The 

best remedy is for employees to know what breeding habitats look like and how to 

eliminate or treat them when habitats are recognized.  

 

Although I did not sample every potential breeding site at the zoo, the survey conducted 

was comprehensive enough to provide a basis for determining which sites should be 

managed and which are not problems. The bias inherent in my sampling scheme (e.g., 

limited access to animal enclosures) calls for vigilance on the part of zoo employees 

regarding identification of mosquito breeding sites. Additionally, I spoke with many 

employees who work near breeding sites but do not know what immature mosquitoes 

look like.  To ameliorate this, I would like to give a 30-minute seminar at the zoo in 

April 2010 to educate employees about mosquito breeding habitat recognition and 

control. This seminar could be repeated three times over the course of three days to 

include as many employees as possible.  
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Mosquito collections at the Riverbanks Zoo January 2009 to September 2009: 

Annual Report 

 
Holly Tuten 

Department of Entomology, Soils & Plant Sciences 

Clemson University 

 

Overview 

 

Immature mosquitoes were collected from habitats at Riverbanks Zoo in January and 

June 2009 (Table One). Adults were collected 1-2x per month June – September 2009. In 

June 2009 the entire zoo property was examined for potential adult trapping sites. 

Nineteen study sites were selected based on four main criteria: 1. non-disturbance to 

animals, employees, and zoo visitors, 2. accessibility, 3. ground cover and canopy 

vegetation, and 4. nearby wind breaks (e.g., walls or fences) (Table Two). These sites 

were then sampled with adult traps which use water attractive to certain species of 

mosquitoes as egg-laying habitats.  

 

Additionally, statistical analyses were performed on data collected in 2008 – 2009 on the 

environmental variables of habitats with immature mosquitoes. These results of the 2008 

– 2009 study were presented at the annual meeting of the Entomological Society of 

America in December 2009, are the subject of a publication submitted to the J. Med. 

Entomol. , and will be presented later in this report.  

 
Species Life 

stage 

Adult Feeding Behavior Larval Habitat(s) 

 Aedes albopictus 

 

 Aedes triseriatus 

 

 Aedes vexans 

 

 Anopheles 

punctipennis 

 

 Culex pipiens 

complex 

 

 Culex restuans 

 

 Culex territans 

 

 Ochlerotatus 

canadensis 

 

 Orthopodomyia 

signifera 

 A, L 

 

 A 

 

 A 

 

 A 

 

 A 

 

 A, L 

 

 A 

 

 L 

 

 A 

 

 Avian, mammal, reptile 

 

 Avian, mammal 

 

 Large mammals 

 

 Mammal 

 

 

 Avian, mammal 

 

 

 Mammal 

 

 Amphibian, reptile 

 

 

 Amphibian, avian, 

mammal, reptile 

 

 Avian 

 

 Standing water 

 

 Tires, treeholes, some artificial 

containers 

 Grassy Ditches, rain pools, tire 

ruts 

 Ditches, slow streams, swamps, 

tire ruts 

 

 Foul water in ditches, large 

containers, pools 

 

 Standing water 

 

 Grassy margins of clean water 

 

 Shaded woodland pools 

 

 Treeholes, artificial containers 
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Table One. Species of mosquito collected in 2009 at the Riverbanks Zoo, with life stages 

represented in collections (A = adult, L = larvae), the previously recorded host 

preferences of adult females, and the habitats where larvae are found.   

 

 

Site number Location description 

16 Behind machine shop, across from vernal pool 

17 Side of gorilla viewing bldg. near front door 

18 Against fence behind gorilla bldg.  

19 Behind gorilla goodies stand 

20 Side of grizzly bear exhibit, by bamboo stumps 

21 Backside of Starbucks 

22 Side of aviary, across from baboons – INACCESSIBLE 

23 Front of 3D Adventure theater 

24 Behind merry-go-round wall 

25 Front of raptor clinic, facing parking lot 

26 Behind fence, by dumpsters near Safari station 

27 Behind pony ring 

28 Side of reptile house across from cafeteria 

29 Side of tortoise shelter, against bldg 

30 Behind cafeteria 

31 Corridor in front of vet clinic 

32 Back corner of storage shed by landscaping, in ivy 

33 Between back of Ndoki lodge and largest vernal pool 

34 Front corner of reptile house 

35 Corridor between ostrich cage and safari station 

Table Two. Sites for placement of adult traps during 2009 and 2010 

 

Results of 2008 – 2009 study on habitats with mosquito larvae 

 

Objectives: 

5. Survey the mosquito species present as larvae in the Riverbanks Zoo 

6. Determine environmental factors associated with larval presence 

7. Determine seasonality of species 

8. Provide control and monitoring recommendations to the zoo 

 

Results: 

9. 977 larvae collected representing 16 species 

10. 4 species comprised 88% of collections 

a. Aedes albopictus: 28%  

b. Aedes triseriatus: 32% 

c. Culex pipiens complex: 10% 

d. Culex restuans: 18% 
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11. Mosquito larvae were most abundant in spring (59.6% of sites sampled had 

larvae) and summer (59.3% of sites sampled had larvae), followed by fall (33.3% 

of sites had larvae), then winter (20% of sites sampled had larvae) 

12. Mosquito larvae were found in artificial and natural containers, and artificial and 

natural pools.  

13. The most abundant species, Aedes triseriatus, was 3.6 times more likely to be 

found in natural habitats, and 3.5 times more likely to be found when the shade 

source for the habitat is less than or equal to 2 meters (e.g., low bushes or shrubs).  

14. The second most abundant species, Aedes albopictus, was 6.3 times more likely to 

be found in container habitats than in other habitat types.  

15. Mosquito larvae, regardless of species, were 1.4 times more likely to be found in 

natural habitats, and 1.7 times more likely when aquatic vegetation was absent 

from the habitat.  

16. Presence of mosquito larvae was positively correlated with temperature and 

precipitation.  

 

Recommendations: 

6. Empty or eliminate container and natural habitats or remediate (e.g., fill with 

sand).  

7. Regularly clean or flush all container and pool habitats that are integral to animal 

exhibits.  

8. Eliminate shade sources less than 2 meters above aquatic habitats.  

9. Use mosquito larvicides for habitats that cannot be eliminated, remediated, or 

regularly flushed.  

10. Provide a yearly training seminar or educational video for zoo employees on 

habitat and larval recognition, and control strategies, before peak mosquito 

abundance.  

 

Control of mosquito breeding on zoo property 

 

Although many breeding sites cannot be controlled reliably (e.g., treeholes, ephemeral 

puddles) many others can be (e.g., pumphouse, permanent puddles, buckets, tarps). To 

foster effective control on zoo grounds all employees should look for potential breeding 

sites and eliminate them when they can. When sites cannot be eliminated Bti treatments 

should be used in a regulated manner. Dr. Tiffany Moore suggested that Bti pellets could 

be dispensed to different departments in the zoo in the manner of a prescription. There 

would be a point person in each department responsible for picking up Bti pellets from 

the animal hospital each month. This person would also be tasked with treating sites 

identified in their respective area. In this way a monthly check would show which 

departments have picked up Bti pellets each month. Additionally, these point people 

could receive instruction in how to recognize potential breeding sites and how to monitor 

those sites for mosquito activity. The ideal situation would be for one person to have a 

monthly maintenance day where they walk around the zoo and treat sites with Bti, tip 

over buckets, pick up trash, and identify potential mosquito pest problems.  
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Specific mosquito-breeding sites of concern at the Riverbanks Zoo 

 

Data collected over the six sampling visits indicate that some sites, or site types, have 

consistently high numbers of immature mosquitoes but can be controlled or altogether 

eliminated. The most notable of these are: 

 

1. In the area behind Kenya café at least one container every visit had hundreds of 

immature mosquitoes (these containers are probably sources of biting adults in the pony 

ring). Containers included drink carts, large cooking pots with old food scraps, cigarette 

buckets, and various kitchen containers. Prevention of mosquitoes breeding in these 

containers requires that they be overturned, periodically tipped, or drained. Some of the 

worst nuisance species breeding at these sites are Aedes albopictus, Culex restuans, and 

Culex pipiens. 

 

2. The frame for the marshmallow roaster stored on perimeter road. During the months 

when this is not being used it is covered with a tarp. The tarp develops many rain-filled 

pockets ranging from 1L to 5L in volume. Hundreds of adult mosquitoes were emerging 

from this site every month. At one point during the study the tarp was treated with Bti 

granules but did not receive a thorough application. Because of this, pockets nearest 

perimeter road did not have immature moquitoes but those furthest away were still 

producing the same number of adults as before the application.  

 

3. The vernal ponds located between the back of the horticulture house and Ndoki lodge. 

These pools were dry from June to October but thousands of adult mosquitoes emerged 

from March to May. Mosquito species collected from these sites during the active months 

were Culex restuans, Culex pipiens, Culex salinarius, and Culex territans. Personnel in 

the reptile department told me that they deliberately flood these habitats during winter 

months (to provide habitat for salamanders).  

 

4. Although not on the zoo grounds, there is an extensive bog adjacent to the perimeter 

road fence. This is probably a significant source of adults during the months that it is 

flooded. During this study it was flooded in March, May, and October.  

 

5. During the course of the study thousands of immature mosquitoes of multiple species 

were observed in puddles and tire tracks along the length of perimeter road. Although 

some puddles are ephemeral (and therefore hard to treat) others held water during all but 

one month (July) of the study. The most notable of these are beside the dumpsters and the 

horticulture building. Additionally, garbage located along perimeter road provided 

productive breeding habitats (e.g., old lamp posts, drink bottles, broken plastic 

containers).  
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6. The pump housing located on the side of the machine shop consistently had high 

numbers of multiple species. I was told by an employee that it cannot be drained and is 

not being treated with Bti pellets.  

 

Conclusions 

 

Currently, at the zoo, the best method for reducing the number of mosquito bites received 

by employees and visitors is to reduce the number of mosquito breeding habitats. The 

best remedy is for employees to know what breeding habitats look like and how to 

eliminate or treat them when habitats are recognized.  

 

Although I did not sample every potential breeding site at the zoo, the survey conducted 

was comprehensive enough to provide a basis for determining which sites should be 

managed and which are not problems. The bias inherent in my sampling scheme (e.g., 

limited access to animal enclosures) calls for vigilance on the part of zoo employees 

regarding identification of mosquito breeding sites. Additionally, I spoke with many 

employees who work near breeding sites but do not know what immature mosquitoes 

look like.  To ameliorate this, I would like to give a 30-minute seminar at the zoo in 

April 2010 to educate employees about mosquito breeding habitat recognition and 

control. This seminar could be repeated three times over the course of three days to 

include as many employees as possible.  
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Mosquito collections at the Greenville and Riverbanks Zoos March 2010 to October 

2010: Annual Report 

 
Holly Tuten 

Department of Entomology, Soils & Plant Sciences 

Clemson University 

 

Overview and Results 

From April to September 2010, adult mosquitoes were collected 1-2x per month by hand 

aspiration from resting habitats at the Greenville and Riverbanks Zoos. The zoos were 

inspected for potential adult aspiration sites on an ongoing basis (Table one). Molecular 

analyses were used on mosquitoes collected in 2009 and 2010 to determine the identity of 

mosquito hosts (Figure one, Table two). The following species were never found 

bloodfed (total number of individuals collected in parentheses): 

• Aedes  

– canadensis (1), japonicus (7), vexans (6),  

• Culex 

– pipiens/restuans (116), spp. (6) 

• Orthopodomyia signifera (1) 

• Psorophora ferox (1) 

• Uranotaenia sapphirina (3) 

 

 In total 2,522 mosquitoes were collected from the two zoos. Ninety-five of the collected 

mosquitoes were bloodfed and vertebrate hosts were successfully identified from fifty-

three of those bloodmeals. Additionally, bloodfed mosquitoes were tested for the 

causative agent of dog heartworm, Dirofilaria immitis. No mosquitoes tested positive for 

D. immitis. For the three species most commonly bloodfed species there were avian, 

human, and mammalian hosts, and there were notable differences in the ratio of avian to 

mammalian hosts depending on whether the animals were captive or wild (Figure two).  

 

These results were presented at the annual meeting of the Entomological Society of 

America in December 2010. Data from both zoos are presented together to convey the 

total breadth and patterns of vertebrate hosts used.  

 

Conclusions 

 At least eight mosquito species are feeding on captive and wild animals, and 

humans, in SC zoos. 

 Cx. erraticus and Cx. pipiens complex foraged more often on birds, and An. 

punctipennis foraged more often on mammals. 

 Mosquitoes appear to have a broader host range when feeding on captive as 

opposed to wild animals. 

 There were several novel host records from mosquitoes feeding on captive 

animals. 

 No bloodfed mosquitoes were positive for D. immitis.  
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Table One. Sites for adult aspirations during 2010. GZ = Greenville Zoo,  

RZ = Riverbanks Zoo.  

Zoo Description 

GZ Tree stump in woods behind duck pond 

GZ Trees and fence behind alligator 

GZ Ivy area between elephants and education 

GZ Ivy covered wall behind reptile 

GZ Ivy area behind reptile 

GZ Pumphouse behind South America 

GZ Bushes and ivy behind South America 

GZ Trail behind South America 

GZ Ivy across from reptile/snack area 

GZ Underside of playground porch 

GZ Ivy and shed behind duck pond 

GZ Underside of duck pond porch 

GZ Gutters behind reptile house 

RZ Ivy in front of education building 

RZ Pool with larvae behind reptile house 

RZ Bridge beside train (small access bridge) 

RZ Under bridge by old hippo pool 

RZ Front wall of education bldg behind garden 

RZ Bunker inside landscaping shed 

RZ Wall of aviary across from train 

RZ Sewer grates behind storage sheds by clinic 

RZ Outside bathroom by merry-go-round 

RZ Large fan unit at entrance to ape island 

RZ Pumphouse behind bears 

RZ Area underneath cafeteria 

RZ Underground pumphouse near Gorilla Goodies 

RZ Pumphouse area at machine shop 

RZ Under ape island 

RZ Interior RCO 

RZ Groundcover and bushes on back of aviary 
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Figure One. The total number of mosquitoes collected of species that were found 

bloodfed at least once. ―Ae.‖ = Aedes, ―An.‖ = Anopheles, and ―Cx.‖ = Culex 

 

Table Two. Species of mosquito collected in 2010 at the Riverbanks and Greenville Zoos 

with identity of hosts. Captive species in bold. 

Zoo Site Description 

Ae. albopictus Human, Opossum 

Ae. triseriatus Brown bear  

An. punctipennis Cow, Horse, Ostrich, Spotted hyena, Summer tanager  

An. 

quadrimaculatus 

cmplx  
Brown bear, Ostrich  

Cx. erraticus 

American flamingo, Cow, Grey-crowned crane, Horse, Human, 

Indefatigable island tortoise, Keel-billed toucan, Mourning 

dove, Northern cardinal, Ostrich, Raccoon, Thick-billed parrot, 

Toco toucan, Turkey vulture 
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Cx. pipiens   

complex  

American flamingo, Carolina chickadee, Carolina wren, Cow, 

Eastern box turtle, Human, Mourning dove, Northern cardinal, 

Ostrich, Red-billed hornbill, Ring-tailed lemur, Siamang, 

Spotted hyena, Toco toucan, Wreathed hornbill 

 

 

 
Figure One. The ratio of avian to human to mammal hosts used by three species of 

mosquitoes across both zoos. The total number of hosts indicated by numbers in middle 

of cells. Percentage bar across bottom of figure.  
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Figure Two. The ratio of avian to mammal hosts used by three species of mosquitoes, 

grouped by captive versus wild status. The total number of hosts indicated by numbers in 

middle of cells. Percentage bars across bottom of figure. 
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