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Abstract

The trend in parallel computing toward large-scale cluster computers running thousands

of cooperating processes per application has led to an I/O bottleneck that has only gotten

more severe as the the number of processing cores per CPU has increased. Current parallel

file systems are able to provide high bandwidth file access for large contiguous file region

accesses; however, applications repeatedly accessing small file regions on unaligned file

region boundaries continue to experience poor I/O throughput due to the high overhead

associated with accessing parallel file system data.

In this dissertation we demonstrate how client-side file data caching can improve

parallel file system throughput for applications performing frequent small and unaligned

file I/O. We explore the impacts of cache page size and cache capacity using the pop-

ular FLASH I/O benchmark and explore a novel cache sharing approach that leverages

the trend toward multi-core processors. We also explore a technique we call progressive

page caching that represents cache data using dynamic data structures rather than fixed-size

pages of file data. Finally, we explore a cache aggregation scheme that leverages the high-

level file I/O interfaces provided by the PVFS file system to provide further performance

enhancements.

In summary, our results indicate that a correctly configured middleware-based file

data cache can dramatically improve the performance of I/O workloads dominated by small

unaligned file accesses. Further, we demonstrate that a well designed cache can offer sta-

ble performance even when the selected cache page granularity is not well matched to

the provided workload. Finally, we have shown that high-level file system interfaces can

significantly accelerate application performance, and interfaces beyond those currently en-

visioned by the MPI-IO standard could provide further performance benefits.
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Chapter 1

Introduction

The continuous improvement in microprocessor performance is a critical factor in

increasing the performance of high-end cluster computers. Recently, the performance ad-

vancements of modern commodity processors has shifted from further improvement in

single-threaded execution performance to the addition of multiple high-performance execu-

tion threads on a single microchip via multi-core processors. The current fastest computer

system in the world, IBM’s Roadrunner, leverages multi-core chip designs to achieve more

than 1 Petaflop of sustained performance running the popular Linpack benchmarking pro-

gram [57]. Individual Roadrunner nodes are composed of 2 dual-core Opteron processors

with 16 Gigabytes of RAM and 4 eight-core Cell Processors with 16 Gigabytes of RAM.

At 36 processing cores per node, Roadrunner is one example of utilizing greater intranode

parallelism to achieve higher supercomputer performance.

Increasing the number of processing cores per CPU appears to be the next signifi-

cant trend in microprocessor design, and high-performance computing systems are rapidly

preparing for increased intraprocessor parallelism. The number of cores available per pro-

cessor is likely to increase in the coming years as high-performance computers begin to

achieve multiple Petaflop performance ratings. Intel has recently developed a prototype

1



processor with 80 cores integrated into a single microchip in hopes of building a 1 Ter-

aflop processor designed for use in a future machine projected to achieve 100 Petaflops of

sustained computing performance [31].

Increased intranode parallelism improves the processing density of supercomputers

and leads to staggering performance levels for applications and benchmarks that do not per-

form significant amounts of I/O; however, parallel applications that process large data sets

are often unable to fully utilize the massive available processing power because the proces-

sors idle while retrieving data from storage and writing results data to storage. A typical

workflow for a large scientific application may require multiple data intensive steps [58]:

1. Acquiring the data,

2. Staging and reorganizing the data onto a fast file system,

3. Analyzing the data,

4. Outputting results data,

5. Reorganizing the data for visualization, and

6. Processing the data for visualization.

Each workflow stage in the scientific application requires the manipulation of re-

search domain data, and as the amount and fidelity of data required for scientific inquiry in-

creases, the time spent manipulating the data in secondary storage increases. The enormous

size of research data sets can result in an I/O bottleneck for many data intensive scientific

applications: although the available processing power is enormous, processors are forced

to remain idle while large working sets are distributed to the available processing cores.

2



Client 0 Client 1 Client 2 Client 3

Switched Network

NFS Server

Appl.

Process 0

Appl. Appl. Appl.

Process 1 Process 2 Process 3

Figure 1.1: Network File System Configuration

1.1 Parallel File Systems

Parallel file systems are one popular approach to alleviating the I/O bottleneck that

exists for some parallel applications. Parallel file systems are similar to traditional network

file systems in that they allow many cluster nodes to mount a single consistent file system

over the cluster’s interconnection network. Applications are able to transparently access

file data over the network connection via the same interfaces used for access to local file

data. However, as shown in figure 1.1, network file systems traditionally do not provide

support for distributing data over multiple I/O nodes. A scientific application running on

multiple computation nodes in parallel is likely to be bandwidth constrained by the file

system servers’ disk and network bandwidths and unable to take advantage of the full

network bandwidth and computational power available at the application nodes.

Parallel file systems attempt to provide additional file system bandwidth by extend-

ing the concept of a network file system to allow file data and metadata to reside on multiple

3



Client 0 Client 1 Client 2 Client 3

Switched Network

PFS Server 0 PFS Server 1 PFS Server 2 PFS Server 3

Appl. Appl. Appl.

Process 0

Appl.

Process 1 Process 2 Process 3

Figure 1.2: Parallel File System Configuration

remote servers. The cluster is typically partitioned into two types of nodes: compute nodes

and I/O nodes. Client applications run on the compute nodes and the individual storage

servers run on the I/O nodes. By increasing the number of independent network connec-

tions and disks participating in the file system, the client application is able to achieve

greater aggregate throughput when accessing the file system. A typical parallel file system

configuration is shown in figure 1.2.

A file’s metadata is stored on a single I/O server; however, file data is typically

distributed among some or all of the I/O nodes to provide applications fast access to a

single file in the parallel file system. Figure 1.3 shows a common file data distribution

scheme that partitions the file data into fixed sized blocks called strips. The file data strips

are distributed among the I/O servers in a round-robin fashion that allows parallel access

to file data and load balances access to the entire file contents. A scientific application

running on multiple computation nodes in parallel is able to see a single consistent view of

the file while still achieving the high aggregate bandwidth available by distributing the file
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Figure 1.3: PFS File Data Distribution

contents over independently accessible I/O nodes.

1.1.1 Extant I/O Bottlenecks

Parallel file systems are well suited to providing scalable I/O for large contiguous

file accesses. Network startup costs and request overhead are easily amortized over the

time spent transferring large amounts of data from multiple disks in parallel. In the case

where an application’s data workload is dominated by metadata operations or the typical

file access size is small or occurs on unaligned boundaries, an I/O bottleneck that limits

application performance may still occur. One approach to avoid processors idling while

waiting for file system data is captured in steps two and four of the scientific application

workflow in figure 1.4. In this workflow the data is reorganized, or staged, between the

computationally demanding phases of the workflow so that large contiguous file accesses
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Figure 1.4: Sample Scientific Application Workflow

compose the majority of the application’s I/O requests during computation. Alternatively,

the application software can be modified so that file accesses occur on large, aligned bound-

aries, and then the application itself reorganizes the data among the processors via message

passing. Both of these approaches pose difficulties for application developers in the general

case.

First, the increase in the number of processing cores per node has led to less main

memory available per process despite the rapid growth in node memory sizes. The smaller

memory size per process has reduced the size of each individual process’ communication

buffer, even though the size of the aggregate communication has increased. Further, the

increased intra-node parallelism and reduced buffer sizes makes it necessary for parallel

programs to focus on intelligently overlapping processing and I/O phases to reduce con-

tention for the smaller portions of main memory available to the process. These techniques

work well for leveraging the performance in modern compute node hardware, however,

they are not well suited for accessing parallel file systems. Parallel file systems favor large,

contiguous accesses that allow the file system to amortize the disk and network access laten-

cies over the much higher performance available when streaming a large buffer over a high

bandwidth network. Unfortunately, large file accesses, regardless of alignment, require the

application to use an approach based on large memory buffers, and force applications into

alternating periods of idle processes or idle network resources to avoid contention for main

memory resources.
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Figure 1.5: Parallel Application Software Stack

Second, the use of high-level numeric and I/O libraries makes it difficult for applica-

tion writers to reorganize file data or restructure file accesses to achieve higher file system

throughput. Modern numeric solvers have become so complicated that the time and ex-

pense required to develop the basic numeric routines and accompanying file formats would

make it impossible to build scientific applications within reasonable time frames and bud-

gets. Instead, application writer’s leverage third-party libraries called middleware to more

easily perform parallel numeric processing. Figure 1.5 shows a software stack for a typical

parallel application. The application code calls a high-level library that provides interfaces

for performing parallel computation and parallel I/O [25, 40, 42, 49]. The high-level li-

brary in turn interfaces with a message passing library in order to send and receive data

between cooperating processes, and modern message passing libraries also expose an in-

terface for performing parallel I/O using a parallel file system client. The high-level library,

message passing library, and parallel file system client each constitute middleware; that is,

each of these libraries provide a simple interface that abstracts the process of communicat-

ing with cooperating processes to perform parallel calculations and interact with file data.
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Middleware libraries allow the researchers to focus their software efforts on their imme-

diate scientific domain rather than on the mechanics of writing parallel codes; however,

the use of multi-purpose high-level libraries disconnects the developer from the underlying

I/O system making it difficult or impossible for the developer to modify the underlying

routines to operate at an I/O granularity appropriate for targeted machines. Ideally, middle-

ware libraries provide optimized support for the target platforms; realistically, high-level

application interfaces are not always easily mapped onto emerging computer architectures

and must balance backwards compatibility with possible performance improvements.

In the case where the application writer develops his own I/O routines, the require-

ment to perform I/O on evenly aligned boundaries may still impose substantial hardships.

For example, in the fluid dynamics benchmarking code we use in this dissertation file I/O

is more naturally expressed using smaller, non-uniformly sized chunks of data and accom-

panying unaligned file accesses. By requiring scientists to access the file system using arti-

ficially aligned data structures we increase the complexity and fragility of scientific codes,

and tightly couple the code to the current storage system interfaces making it more difficult

to leverage emerging storage architectures that offer improved performance. The notion

of the I/O interface making data access more difficult rather than easier seems particularly

inappropriate.

Finally, even where it is possible to tune parallel codes and libraries to use the I/O

system more efficiently, system tuning can be very difficult and may require significant

amounts of development time. The time and computing resources spent performing appli-

cation benchmarking and tuning could be better spent accomplishing scientific research.

Similarly, the time spent reorganizing file data for efficient data access is time not spent

researching the problem domain. By requiring applications to reorganize the data during

multiple workflow steps, the I/O bottleneck increases the amount of work performed during

the workflow without improving the basic result.

8



1.1.2 Performance Optimizations

The performance problems associated with metadata operations and small I/O ac-

cess patterns on parallel file systems are well known. The Parallel Virtual File System,

or PVFS, employs two well known approaches to optimize the performance of small file

system access patterns: client-side caching and compound operations. Both optimizations

exist in other file systems, and have been shown to be effective at improving performance

for many small access dominated workloads.

1.1.2.1 Client-Side Caching

PVFS uses a file name cache called the ncache to associate file system names to the

unique handle used to describe files within the file system. As described earlier, a PVFS

file is composed of a metadata object and a set of data objects, usually with one data object

per server. PVFS directories are similar, however there is only a single data object to store

the directory entries and it uses a key-value pair organization to associate directory entries

to the entry’s metadata object. Each of these file system objects is uniquely identified by a

system-wide 64-bit value called a handle. Each server stores the data for a unique range of

handles ensuring that a given handle can be located on only one server.

The client-side ncache associates file names to the unique handle describing the file

data. The ncache is critical to performance because it allows the client to cache parent

directory elements when opening or creating files. For example, when a client attempts

to open the file name “/base/foo”, the client must first retrieve the metadata for the root

directory, “/”. If the permissions allow directory searching, the client may then locate the

metadata for the directory “foo” by searching the directory entries stored for “/”. Once the

handle for “/base” is located and the metadata resolved, the client may search the directory

entries for “/base” and determine if an entry exists for “foo”. By caching the handles for
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each of the path elements, a client’s subsequent file open request for “/base/bar” can

avoid looking up the metadata for “/” and “/base”, and proceed to retrieve the metadata

for “/base” and begin searching the directory entries for the name “bar”.

PVFS also caches file attributes (metadata), in a structure called the acache. Similar

to the ncache, the acache exists in PVFS to avoid retrieving the same file or directory

metadata attributes repeatedly. Without the acache, every file read or write would require

querying the file’s metadata to determine the data object handles. By caching the metadata

attributes during the initial file open, most file I/O operations are able to proceed without

any additional interactions with the metadata server.

1.1.2.2 Compound Operations

PVFS employs compound operations to improve the performance of small file ac-

cesses. A compound operation is an optimization that allows the file system to recognize

that several small messages will be sent to perform a requested client action, and rather

than perform each step with separate messages, the individual messages are combined into

a single, compound file system request. For example, in file read or file write without com-

pound operations, the PVFS client determines which data objects host the data being read

or written. The client then sends a message to the identified servers so that both the client

and server can establish a dedicated and buffered connection for file data transfer called a

flow. The flow uses fixed-size buffers to send the data between the network and local file

system at speeds approaching the maximum available bandwidth (network or disk depend-

ing on which I/O resource is limiting performance). For large file accesses, the latency of

the additional message to initiate the flow connection is quite small compared to the time

spent transferring data from the disk or network. For file reads and writes that are not large

enough to fill the flow transfer buffer the cost of sending the additional message to establish

the data flow may require as much time as the actual file I/O. In the case where the file I/O
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is smaller than the available message buffer size, PVFS packs the read or written data into

a compound file I/O operation that includes the data along with the described file region

avoiding the overhead that would be required to establish and send the data separately as

part of a flow.

1.1.3 Problem Summary

Even with optimizations such as attribute caching and compound operations, paral-

lel file systems face significant performance problems with small file accesses, and file

reads and writes occurring on non-aligned boundaries. Compound operations are able

to reduce the additional network overhead associated with using PVFS; however, small

reads and writes are still not well matched to the currently available storage technology.

Network bandwidth has increased steadily in the last ten years, with 10Gb networks now

readily available in high-end computer systems; network latencies, even with low-latency

interconnects such as Myrinet, have improved very little over the same time frame [48].

Similarly, the storage capacity of modern disks continues to improve steadily; however,

magnetic disks still exhibit poor random access performance and the fast random access

times promised for solid state disks have not yet materialized at price points competitive

with spinning disks. The performance of small I/O access to files in parallel file systems

continues to be dominated by the initial latency costs of both networking and disk tech-

nologies.

1.2 Middleware Caching in Parallel File Systems

The primary impediment to improving parallel file system performance for small

file I/O operations is the high latency of network and disk accesses. For that reason, our

search for performance improvements should obviously include optimization techniques
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that remove or hide system latency. One of the most natural extensions for improving the

latency of a file system is a client-side data cache. Data caching allows us to completely

eliminate file system latency in the case where the client’s local data cache can satisfy the

application’s I/O request. In the general application of caching to system latency reduction,

we envision the performance benefits to occur primarily during repeated reads to the same

memory locations. However, with the exception of some out-of-core solvers, the typical

parallel code is unlikely to read the same file locations repeatedly. Fortunately, data caching

offers the promise of improving the performance of more than just read-after-read and read-

after-write access patterns.

One of the most important ways a file data cache can improve the performance

of small I/O access patterns is by completing small file writes immediately in the local

cache, and then performing a write back on a large data block later when a cache eviction

is triggered. By taking advantage of write back caching, parallel file system caches have

been able to achieve improvements in write bandwidth as seen by the application; however,

overall performance improvements have been difficult to observe when combined with a

complex parallel file system [44].

Pre-fetching heuristics are another way that a middleware cache can improve the

performance of parallel codes. Intelligent pre-fetching code can perform an in situ analysis

of the alignment of file access boundaries and begin pre-fetching data during the compu-

tational phases of a parallel code to improve the performance of later file read requests.

The latency of accessing pre-fetched data is hidden from the user as the application is able

to read the pre-fetch data from the local cache and continue performing calculations im-

mediately. Kotz and Ellis described and classified the most practical pre-fetching schemes

for the common data alignment patterns in use for current parallel software [35]. Tran and

Reed extended basic data pre-fetching schemes by using ARIMA time series modeling to

include temporal heuristics for determining when to begin pre-fetching the data so that the
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(a) Data Cache as part of PFS Client (b) Data Cache as part of MPI Library

Figure 1.6: Middleware Interactions for a Data Cache

data would arrive just before each file I/O phase begins [56].

1.2.1 Benefits of Middleware

Earlier we defined middleware as a library that provides an abstraction layer that al-

lows client code to seamlessly contact remote processes to perform distributed algorithms.

Using this definition, both the MPI communication library and the PVFS client interface

are middleware components. Each library allows the user to transparently contact remote

processes; in the case of the MPI library the communication occurs in order to change local

memory contents, and in the case of the file system client the communication occurs to

update file system contents. One major difference between the libraries then, is the set of

remote machines they contact to perform the service they provide. In the case of MPI com-

munication calls, the remote nodes contacted are limited to the other application processes,

whereas in the case of the parallel file system calls, the remote processes are only the file

system’s I/O servers.

Figure 1.6 shows the two realistic middleware configurations for the cache: within

the parallel file system client or within the MPI-IO middleware driver. In terms of perfor-
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mance (and our study is primarily concerned with improving performance), it appears that

the former configuration may exhibit better performance by allowing the cache access to

the internal file system data structures and removing a layer of overhead. The latter con-

figuration shown in figure 1.6(b) is required to use the parallel file system’s client library

in order to access the I/O nodes, meaning that all file I/O must conform to the available

interface and exhibit any accompanying overhead. We do not believe that performance

improvements related to the reduction of overhead are likely to be significant; however,

a study of such overhead may be worthwhile (perhaps as part of a larger study of how

high-level I/O interfaces affect file system performance).

On the other hand, figure 1.6(b) provides at least one significant optimization oppor-

tunity not available in the former configuration: it allows the client data caches to behave

cooperatively. That is, when the data cache is implemented within the MPI library, the

available communication infrastructure can be leveraged such that file data is sent directly

between caches, rather than requiring an addition step of sending data to the I/O node in

order to forward it to another application process’ data cache. In one of our later cache

configurations we will leverage this technique to provide scalable performance in one of

our cache designs.

1.3 Proposed Research

Although prior experimentation with data caching has generated promising perfor-

mance improvements, we believe that a detailed study of caching middleware for parallel

file systems is warranted. Past prototype-based studies have been limited by the availabil-

ity of hardware resources and in the high degree of variance exhibited in the performance

of systems performing hundreds of intensive jobs at the same time the researchers are at-

tempting to measure a meaningful benchmark. Our study of caching attempts to address
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these concerns by building an accurate simulation environment to use for measuring cache

performance and that allows us to easily isolate the performance of the I/O subsystem and

vary the simulated hardware components to provide results over a wide variety of emerging

computer architectures. We also believe that we can further improve the performance of

caching middleware by utilizing novel cache organizations. In this dissertation, we perform

a rigorous study to demonstrate that the performance of small and unaligned file accesses

can be significantly improved with middleware-based file cache designs that reduce latency

costs by using novel cache organizations to increase file system access granularity:

• Shared, Concurrent Access Caching,

• Progressive Page Granularity Caching, and

• MPI File View Caching.

1.3.1 Shared, Concurrent Access Caching

Cache sharing leverages the trend toward large numbers of processing cores in

emerging computing architectures by configuring a middleware cache capable of sharing

data between the application processes. With a node local shared data cache we may be

able to greatly improve the cache hit ratio versus a cache that is local to only a single

execution thread. Cache sharing may also allow the use of MPI view-based I/O request

bundling. MPI provides a mechanism for describing non-contiguous file regions called file

views. Parallel applications often use file views to more easily partition non-contiguous

file regions among a large number of processes. Collective I/O requests performed by each

process may then be bundled together in a middleware cache, reducing the size and number

of requests dispatched to the file system. By reducing the amount of request data sent to the

file system, the middleware cache will be able to reduce the performance costs associated
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with small I/O requests. Additionally, request bundling can reduce the requested data’s

fragmentation, resulting in more efficient overall access to the file system.

In studying the performance improvements available through cache sharing, we

have learned that it is also important to study the page granularity used to access the file

system. While large page granularity offers benefits in amortizing network startup costs

over each individual cache page access, on low latency networks, small page sizes can also

provide high performance by reducing the overhead related to coherence protocols. How-

ever, in order to leverage the reduced coherence costs of small pages we have found that it

is necessary to use high-level file system interfaces that allow multiple pages of file data to

be described in a single request. In our studies we have included traditional page caching

schemes that demonstrate the effects of cache page granularity on the chosen coherence

mechanism, as well as sophisticated approaches that allow a close-to-open consistency

model in conjunction with cache sharing.

1.3.2 Progressive Page Granularity Caching

While the benefits of file data caching can be substantial, there are many cache

configurations that can lead to performance degradation rather than performance improve-

ment. In general, the page-based coherence protocols can lead to unnecessary performance

reduction due to false sharing. False sharing is the performance degrading situation that

occurs when two processes are not logically in contention for the same range of data but

are forced to perform expensive synchronization operations because the data ranges reside

on the same cache page, and the page can only be modified by a single process at a time.

Our scheme, progressive page granularity caching, is able to prevent resource con-

tention under false sharing by describing only the updated data regions within each cache

page. Applications performing small, unaligned file accesses are able to utilize larger page
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Figure 1.7: Vector Data Type MPI File View

sizes without increases in false sharing and coherence overhead. Within the design space

of a progressive page cache architecture we evaluate the difficulties in constructing a cache

infrastructure without fixed-size pages and the relevant performance characteristics of the

algorithms and data structures used to implement a progressive page file data cache. We

also perform a thorough examination of the performance of a standalone cache design and

a shared cache design similar to the optimization technique we applied to the fixed-size

page cache.

1.3.3 MPI File View-Aware Aggregation

Finally, we have studied cache organizations that optimize the high-level collective

I/O calls popular in scientific applications. MPI File Views are used to describe regularly

spaced regions within a file using an MPI Data Type. For example, a vector-based file view

can be applied to a file that will cause a single read or write interaction to only access every

n-th byte of a file. Data types can be combined together to allow a process to easily access

complicated, but regular, non-contiguous file regions.
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One of the most common uses of MPI File Views is to partition file data among

many cooperating processes in a single I/O operation. The processes each apply comple-

mentary file views to the file before performing a collective file read or write operation.

A collective I/O operation requires each process to simultaneously participate in the same

I/O call, with each process receiving different data based on the file view applied by the

current process. Typically, the collective I/O operation is used to perform structured I/O,

where each individual process applies a file view describing dis-contiguous regions within

the file; however, the aggregate file access describes a single contiguous file region. Fig-

ure 1.7 shows an example of a vectorized data type applied as a file view to partition non-

contiguous file regions into a four contiguous regions when accessed through collective

I/O operations by the individual processes. Although the non-contiguous file regions ap-

pear contiguous to the individual processes, the MPI library will need to translate a single

collective read or write call into many smaller file access operations to perform the pro-

cesses single I/O call.

We have constructed a request aggregation scheme that has knowledge of the MPI

File Views in use and will allow us to aggregate the small I/O calls into larger, contiguous

file I/O operations that are matched to the high-level data type interfaces provided by the

parallel file system. The parallel file system itself cannot easily perform this composition

operation because the file system clients have no mechanism for sharing data between one

another and by the time the non-contiguous requests reach the file system servers, the op-

portunity for optimization has already passed. Instead, we propose enhancing our shared

cache architecture to perform MPI File View combining for collective I/O operations. At

present, no algebraic methods exist for finding the union of MPI File Views, which may be

composed of arbitrarily nested collections of MPI data types. Rather, we rely on heuristics-

based algorithms that detect interactions based on structured I/O, an easier case to han-

dle for view unification and a more likely candidate for performance improvement versus
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purely non-contiguous unstructured I/O operations.

1.4 Method of Study

We performed our studies of parallel file system caching using a simulated model

of a parallel file system. Our simulator, the High-End Computing I/O simulator (HECIOS),

is a trace-driven parallel file system simulator using the discrete event simulation libraries

provided by OMNeT++ . The simulator is built to closely simulate the network messages

and system calls used by the Parallel Virtual File System (PVFS) to perform file system

tasks. The PVFS network protocol is simulated with correct details resulting in the realistic

message sizes being sent over the network to the correct PVFS server processes. The

majority of the work performed by the simulator consists of parsing the traces, processing

the application requests into parallel file system requests, and distributing file data to the

correct server. Detailed simulation models are responsible for correctly deconstructing

high-level MPI collective file I/O calls into the correct parallel file system interactions.

The parallel file system models then translate those interactions into the required network

transactions or operating system calls.

While most of the work is done in the parallel file system models, most of the

simulated time accounting is performed by the physical device simulation: the network

models, operating system models, and disk models. The cluster interconnection network

connecting the compute nodes and I/O nodes is simulated using an OMNeT++ compatible

simulation framework called INET. INET provides a set of detailed network simulation

models including a complete TCP/IP and Ethernet environment. The availability of the

INET network simulation framework is one of the chief benefits of using the OMNeT++

simulation packages. PVFS uses the local file system to store node-local file data, and

the requisite operating system calls (e.g. open, read, write) are simulated correctly for file
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I/O; however, file metadata in PVFS is stored using Oracle’s Berkeley DB libraries and the

simulator uses a simpler flat-file organization for storing file metadata. The hard disk model

uses a simplified drive geometry model that accounts for typical hard disk parameters such

as head movement speeds, spindle speeds, and physical inertia times, but does not take

into account more complicated parameters such as disk pre-fetching and speculative block

accesses.

We also developed a set of tools for converting the output from readily available

parallel and serial application traces into more concise trace formats useful for our simu-

lation software. In addition to using traces available in public repositories we also traced

useful benchmarks at large scale. The collection of new I/O traces has only been possi-

ble because of the publicly available tracing tools from Los Alamos National Laboratory

and large number of processing nodes available on Palmetto, Clemson University’s large

cluster computer available for research use. We plan to contribute all traces collected on

the Palmetto compute cluster back to the community for use by other I/O and file system

research teams.

1.5 Dissertation Organization

In Chapter 2 we present an overview of related research projects in the field of

data caching. Chapter 3 is a detailed description of our simulator’s software component

model, and the methods we used to verify and validate the simulation model. In Chapter 4

we present the performance results of our fixed page designs including the performance

data for our shared cache designs. Chapter 5 describes the algorithms and data structures

used for building a progressive paged file data cache and the resulting performance data.

Chapter 6 describes the heuristics used to construct our high-level data type cache and

the accompanying performance results. Finally, in Chapter 7 we briefly summarize our
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experimental results, describe some of the conclusions and implications of this study, and

provide a set of suggestions for further work in this field based on our own findings.
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Chapter 2

Related Work

The existence of an I/O bottleneck for many applications is not a novel observation.

Hennessy and Patterson noted that many applications are unable to realize the performance

gains available from fast CPUs due to time spent waiting for storage processing to com-

plete [26]. One popular approach to address the performance disparity between processors

and disks has been caching. Modern operating systems, such as Linux, implement a file

system-based buffer cache that stores individual disk blocks as the user performs file reads

and writes [6]. The benefits of disk caching are obvious; the number of individual disk ac-

cesses can be minimized and disk writes can be bundled together to improve the efficiency

of disk access. Because all file accesses must proceed through a single buffer cache local

to the file system, there are no cache coherence or file consistency issues associated with

local file system caches. The only drawback of local file system caching is the possibility

that data successfully written to the file system may not be fully committed to secondary

storage, and, in the presence of a file server crash, data loss may occur. Cache aging and

data flushing policies are used to mitigate this problem, though an ill-timed server failure

will still result in lost data.
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2.1 Cache Coherence

Parallel file systems typically deploy large caches on the individual I/O servers;

however, since these caches store data for all file system clients without preference for

any application I/O patterns the file system performance is still primarily governed by how

the application accesses the files. Client-based file caching has the potential to provide

higher performance to applications that perform frequent, small file accesses; however,

the programming model for an effective caching system may need to be altered. When

a process reads a region of file data, the programmer typically expects to receive the data

most recently written to that file region. In the event of multiple writers, determining which

write is most recent is a complicated problem requiring a global clock that synchronizes

all reads and writes. Instead, we may choose to use a model that does not require that a

read sees only the most recently written data. Rather, the read returns data that could have

come from some valid program ordering. This expected result is the notion of coherence:

a system is coherent if the values available to be read can be reconstructed from a valid

ordering of the writes performed to that file region [15]. Coherence ensures that when a

write occurs, it will eventually become available to all readers; coherence does not provide

for when the written data will become available.

2.2 Data Consistency Models

The issue of when written data becomes available for later reads is governed by the

data consistency model. The consistency model defines which total program orderings are

valid, and thus, which written data may be returned to the application during a file read.

In general, stronger consistency semantics define fewer valid orderings which provides an

easier programming model, while weaker consistency models allow more valid orderings
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allowing better cache performance in many cases. Below we describe several different

consistency models.

2.2.1 Strict Consistency

In a strict consistency scheme, a file region read must include the contents of the

most recent write to that region. That is, read and write operations are seen at all clients

in the order they are dispatched into the file system. While strict consistency schemes are

very natural from an application writer’s point of view, the performance impacts of having a

single serialization point for all file system access are likely to be too great for applications

requiring high levels of I/O throughput.

2.2.2 Sequential Consistency

Another strong semantic for file access is sequential consistency [16]. Sequential

consistency requires that all processes must see the same read and write ordering for file

locations, and that the ordering must be a valid interleaving of the reads and writes based

on the executing processes. For example, if two processes write differing data to the same

file location, call it Location 1, and then perform a synchronization operation, all following

reads of Location 1 must return the same data for all processes.

2.2.3 Weak Consistency

The weak consistency model takes a different approach to determining the ordering

of file reads and writes. Weak consistency ensures that file reads and writes are seen in a

valid total program ordering for all processes, but the same ordering does not have to be

presented to all processes. This scheme is workable because weak consistency ensures that

synchronization variables (e.g. mutexes) are always presented in a sequentially consistent
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fashion. Thus, the programmer can define critical sections using synchronization variables

to ensure that designated reads see the result from the most recent write.

2.2.4 Release Consistency

Release consistency further relaxes the restrictions of the weak consistency model [22].

Again, the read and write ordering must be from a valid program interleaving, however they

need not be the same for each process. In release consistency the synchronization primitive

is separated into acquires and releases. An acquire operation performs a read to gain sole

access to a lock and a release operation relinquishes sole control over the lock. All critical

sections are initiated with an acquire and terminated with a release. In release consistency

acquire operations can be performed in any valid order on each process; however, release

operations must appear in the same valid order for all processes.

2.2.5 Scope Consistency

Scope consistency further relaxes the approach described in release consistency by

adding context to the synchronization variable accessed during acquire operations [28].

In scope consistency, each synchronization variable describes a consistency scope. Re-

lease operations only need to be delivered in-order to processes that also release that same

consistency scope. So all processes do not see the same order for all release operations;

but instead see the same order only for the consistency scopes released by the individual

process. Scope consistency generally results in the same consistency semantic as release

consistency; however, in the case where two different variables are used to synchronize the

same file region, scope consistency may return different results than release consistency.
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2.2.6 Entry Consistency

Entry consistency requires that a dedicated synchronization variable be attached

to each shared memory location [28]. The consistency scheme then is the same as scope

consistency with the modification that a separate scope exists for each location. This model

is not easily supported by current programming languages and compilers, and does not map

easily onto the variable-sized file accesses that characterize most file I/O.

2.3 File System Client Caching

In Chapter 1 we discussed the popularity of metadata and name caching in tra-

ditional network file systems and high-performance parallel caching. Client-based data

caching has long been a recognized technique for improving file system responsiveness

and I/O throughput. Here we describe the client-side caching schemes used in three im-

portant distributed file systems and a fourth approach, cooperative caching, evaluated pri-

marily in small scale simulations. One problem with adding a client-side data cache into

the underlying file system is the difficulty in tuning the cache to perform well with individ-

ual applications. None of the caches described in this section have the ability to tune file

system caching parameters for individual applications.

2.3.1 The Network File System

Version 3 of the Network File System (NFSv3) implements a simple client-side data

cache [23] using a relaxed consistency model. The consistency model, called close-to-open

consistency, implements a weaker scheme than any we have described thus far. The basic

mechanism resembles weak consistency; however, each individual file open introduces its

own consistency scope. When a file is opened, any data for the file in the cache is marked
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invalid and must be re-read from the server. All file writes update only the local cache until

the file is closed, at which point the file data is flushed to disk. Because file data is cached

as 4KB pages on the client, data caching may result in two competing processes reverting

the state of a file if both are writing to the same 4KB page. In the case where the data

cache does not provide a usable programming semantic, NFSv3 can support POSIX-style

file locking to ensure that access to the file is serialized.

2.3.2 The Network File System, Version 4

Version 4 of the Network File System (NFSv4) uses a weak consistency scheme

similar to the consistency model used in NFS version 3. When a client opens a file, the

client’s cached data for the file must be re-validated. And when the file is closed, the

cached data must be written to the server, just as in version 3 of the protocol. File opens

in NFSv4 also allow the user to request a delegation that grants exclusive access to the

file. Any acquired read exclusive or write exclusive delegation can later be revoked by the

server, and further reads and writes need to reacquire the appropriate delegation in order to

proceed. Other than setting the desired delegation during the file open call, the delegation

transaction protocol is entirely transparent to the user, but is one mechanism for ensuring

a file is not concurrently read or written. Along with the delegation scheme, NFSv4 has

added a cache coherence protocol to the POSIX advisory locking calls. When a client

acquires a file region lock the locally cached data for that file region must be re-validated.

Naturally, when the file region lock is released, the modified data for that file region is

written to the server. By allowing cache coherence for individual file regions rather than

only for the entire file, NFSv4 should provide a better model for concurrent file access than

the approach used in NFSv3.

27



2.3.3 PPFS: The Portable Parallel File System

The Portable Parallel File System, PPFS, implemented several layers of caching

within the file system [27]. In particular, PPFS supported global caching, client-side

caching, and server-side caching with the ability to specify writeback policies for each

component. Although the PPFS developers recognized that caching was a critical factor

for improving the performance of many application workloads, the client-side caches did

not provide any coherence control, and thus only produced well defined results for work-

loads without overlapping file accesses. One of the primary research efforts associated

with the PPFS client-side caching was the development of sophisticated cache pre-fetching

policies. One of the most innovative approaches is an ARIMA-based temporal data pre-

fetching scheme that was shown to provide significant performance improvements for ES-

CAT, an electron scattering that alternates between intensive computation and intensive file

data retrieval [56].

2.3.4 Cooperative Caching

Cooperative caching seeks to improve network file system performance by mutu-

ally sharing the contents of client data caches [19]. In cluster environments where high-

performance, low latency message passing networks are frequently available, accessing

remote clients to retrieve cached data may result in improved file system throughput. Coop-

erative caching offers the most opportunity for performance improvement when the clients

exhibit a large degree of inter-client sharing [4]. Many projects have explored the use of

cooperative caching within the file system as an effective means for improving file sys-

tem performance [2, 29, 62]. Bagrodia, et al. performed simulation studies of cooperative

caching for MPI-IO benchmarks on four and eight client processes. Their simulator, MP-

ISIM, was used to study the number of disk accesses performed using several varieties of
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cooperative caching. The study results are difficult to extrapolate to modern machines due

to the small number of client processes used and the dissimilarity of their simulator to the

latest parallel I/O systems (e.g. all file systems interactions use list I/O) [3].

2.4 Middleware-based Caching

The emergence of middleware as a critical component for lowering the cost and

complexity of parallel code has been an important change in the development cycle of

scientific applications. By using an abstract parallel machine model, applications are able

to interface with middleware specifically tuned for the high-performance computer in use.

Middleware caching offers the likely benefit of tuning cache parameters specifically for

application workloads, although tuning options also allow the possibility of a poorly chosen

parameter to degrade, rather than improve, performance. Additionally, middleware-based

data caches can leverage other middleware components to take advantage of the collective

nature of parallel I/O. In our study of various cache designs we will attempt to leverage the

capabilities of the messaging middleware layer to improve performance whenever possible.

2.4.1 Active Buffering

Active buffering is one middleware-based approach for improving the performance

of synchronous collective file write operations using MPI-IO [45]. Active buffering uses

additional memory available at the compute node to copy the users output buffer into a man-

aged output buffer called the active buffer. A dedicated thread then writes data from the ac-

tive buffer to the file system. Provided the user has available unused memory, active buffer-

ing may provide higher performance than the conventional asynchronous MPI-IO bindings

due to its more efficient interaction with the file system. In traditional asynchronous file

writes the user cannot safely access any output buffer in use by an asynchronous collective
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operation. If the time spent filling the output buffers is relatively short, the user must em-

ploy double or triple buffering techniques to ensure that the processor does not idle while

waiting for the next file write to complete. Active buffering may be able to bundle multi-

ple outstanding requests in order to interact with the file system more efficiently; however,

it is not clear whether this performance advantage exists for real applications rather than

specially designed benchmarks.

2.4.2 Discretionary Caching for PVFS

Vilayannur, et. al explored the performance benefits and penalties of a multi-level

file cache implemented for the original PVFS [60]. Their caching scheme provided a Linux

kernel module that provided file page caching for each compute node. Additionally, a

single dedicated node with a larger amount of main memory acted as a global file data

cache. The study found that file reads that missed in both the local and global data caches

performed worse than simply reading data directly from the file system. Secondly, the cost

of updating the local and global caches with data that was not later accessed also decreased

performance. The authors suggest implementing a discretionary caching scheme, such that

only data that will be accessed repeatedly is stored in the caches. The authors instrumented

a compiler with additional directives to enable and disable data caching, and implemented

a set of heuristics for determining which data blocks should be locally cached, globally

cached, or bypass the cache entirely.

2.4.3 ROMIO Data Caching

The Center for Ultra-Scale Computing and Information Security at Northwestern

University has prototyped several file cache designs [44, 32] with ROMIO, an open source

implementation of the MPI-IO standard [51]. The basic approach involves partitioning the
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file into a set of fixed-size pages. The pages are then assigned to a single computation node

by taking the modulo of the page number. Job processes access file data by requesting

it from the client responsible for the cache page rather than by accessing the file system

directly, a cooperative caching approach. In one scheme, the file data may only be cached

at the node responsible for the cached page. Another scheme implements directories at the

responsible node so that another process may cache the page. All of these schemes require

that file data is cached at only one node and that all file accesses occur on page aligned

boundaries. Our studies intend to explore the effects of relaxing the requirement to cache

data in only one location and measure the benefits of allowing file access on non-aligned

boundaries.

The caching middleware developed at Northwestern University has been extended

to support file data pre-fetching using a scheme called I/O signatures [32, 8]. An I/O sig-

nature is constructed by running a target application with a tracing library to store the set

of all I/O accesses to a text file. An offline analysis tool is then used to parse the trace

information in hopes of finding I/O access patterns. Any identified access patterns are writ-

ten into the I/O signature file for the application and that file is loaded into a pre-fetching

module supplied in a modified version of MPI. The measured performance improvements

using I/O signatures were moderate.

2.5 Summary

Our study of middleware-based file data caching is a natural extension of many

of the prior studies of file data caching for parallel codes. Although NFS versions 3 and

4 provide a mechanism for coherent file caching, data is only guaranteed to remain con-

sistent at file page size granularity (typically 4KB). Our caching schemes use the same

basic consistency model as NFS, close-to-open consistency; however, our coherence pro-
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tocols provide consistent data irrespective of the cache page size. Secondly, unlike NFS

and PPFS, we have elected to implement our caching schemes in middleware rather than in

the actual file system client. Other middleware caching approaches have demonstrated the

utility of a library-based implementation to accelerate file I/O. Although approaches such

as active buffering are designed to accelerate access to small file regions, the reported re-

sults could not demonstrate significant performance improvements beyond those provided

by the asynchronous file access routines included with MPI-IO. Similarly, the caching ap-

proaches developed by the team at Northwestern University appeared to provide volatile

performance results, with little explanation of why some configurations successfully im-

proved performance while other configurations degraded performance. In this dissertation,

in addition to the novel cache designs we present, we are interested in performing a thor-

ough analysis of the performance effects of cache page sizes and cache capacities. Finally,

as part of our analysis, we also examine the effects of hardware related bottlenecks on the

performance improvements available with file data caching.
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Chapter 3

Methods

We have chosen to use simulation to perform our studies for three important rea-

sons:

1. A simulator allows us to experiment with emerging supercomputer architectures not

generally available,

2. A simulator allows us to rapidly evaluate candidate cache designs,

3. And a simulator can produce results more quickly than a prototype.

The first advantage of performing a simulation-based study rather than prototyping

is the increased number of platforms we can use for experiments. One trend in emerging

architectures is the use of custom hardware to improve processing performance. The De-

partment of Energy’s two fastest clusters, Roadrunner and BlueGene/P, both leverage cus-

tom hardware that does not run the standard Linux environment expected by PVFS. Porting

PVFS to run on custom hardware is a complicated task, and in the case of BlueGene envi-

ronments, has only been accomplished by installing Linux on the cluster and running the

computer system without the use of some specialized hardware. Additionally, it is not clear
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that we can even acquire sufficient access to these high-end clusters to perform any bench-

marking experiments. Cutting edge hardware is highly sought after for performing basic

science; receiving compute time to execute I/O benchmarks is often difficult or impossible.

In simulation, we have the ability to modify the computer architectural parameters with

ease. Fabricating a microprocessor with 120 cores may still be a difficult task for Intel, but

simulating a processing node with 120 independent cores is simply a matter of modifying

a simulator execution profile. The ability to perform simulations at emerging scales, rather

than only at the scales currently available, also allows us to produce results that may more

easily guide the designs of future high-end computing storage systems.

The second motivation for using a simulator to perform our study is the ease with

which we can implement candidate cache architectures. Parallel file systems, like most

complex distributed systems, are difficult to program and difficult to debug. Interactions

between older code and new data structures often leads to difficult to understand behavior

and race conditions. Two recent research prototypes based on the PVFS source code found

that in addition to their proposed modifications, PVFS needed substantial modifications

in existing code for buffer management [52] and socket management [9] in order to take

meaningful performance measurements. By implementing a simulator that processes the

traces of successful application executions we are able to avoid several of these problems.

Because the simulator runs all the processes within a single thread in a single address space,

race conditions and distributed debugging cease to be issues entirely. Sharing data between

processes is trivial, and the use of an application trace allows us to know the outcome

of each I/O event before simulating it, allowing us to avoid the problem of servicing the

request and instead focusing on producing an accurate timing model and the collection of

meaningful statistics.

Finally, our simulation model will allow us to generate experimental results more

quickly than repeated trials using a PVFS-based prototype. Although parallel file systems

34



are in general complicated systems that require detailed simulation in order to generate

an accurate timing model, some of the system components can be abstracted and the tim-

ing approximated without affecting the simulation results. The intelligent application of

abstraction in the simulation models enables the simulator to return sufficiently accurate

timing results without requiring a significant amount of simulation time. Parallel storage

systems are particularly well suited to this type of abstraction because costly network and

disk operations usually dwarf the amount of time spent computing file offsets and extents.

We plan to simply measure the average processor time over several trials for each file sys-

tem operation, and use that value as a reasonable abstraction for each operation processing

time. Additionally, rather than actually spending the time to store the data to disk, we need

to only calculate the amount of time it would take to store the data to disk.

3.1 HECIOS: The High-End Computing I/O Simulator

In order to study the performance effects of various file system client caching

schemes we have built HECIOS, the High-End Computing I/O Simulator. HECIOS is a

trace-based simulation platform for studying the behavior of parallel I/O systems on high-

end cluster computers. Simulation provides several advantages over prototyping in terms

of evaluation I/O system modifications for emerging computer architectures. The use of

simulation allows us to measure caching effects for large scale computer architectures that

are not widely available, or even at scales that are not yet in production (e.g. 48 processing

cores per node). Secondly, novel caching organizations are often more easily implemented

in simulation rather than via prototype. The use of global bookkeeping structures in a single

address space removes many of the difficulties of keeping data synchronized in distributed

systems. Finally, the use of a simulator allows us to develop abstract models of some com-

ponents in the parallel I/O system, thus allowing time spent performing experimentation to
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be reduced (at the expense of some result precision).

Many parallel I/O research efforts have used simulation to evaluate novel perfor-

mance enhancements. Weil, et al. used a simulator to evaluate the effectiveness of various

parallel file system metadata load balancing schemes [61]. Bragodia, et al. used simulation

studies to evaluate the benefits of cooperative caching for parallel file system using four

and eight client processes [3]. Bosch and Mullender used the Patsy simulator to measure

the impacts of server-based caching policies in the traditional file system, Pegasus. Each

of these projects were able to leverage detailed simulators in evaluating the performance

impacts of the criterion under study; similarly, HECIOS is designed to allow us to study

the performance impacts of modifying the parallel I/O software stack and the underlying

parallel file system.

3.1.1 HECIOS System Architecture

HECIOS is designed to provide an accurate simulation environment for modeling

the I/O performance of parallel applications accessing parallel file systems. Before running

the simulator, an application that accesses the file system is executed, and a trace of the

application’s processing and I/O requests is recorded. HECIOS includes a set of tools for

translating the output of two available tracing tools into a trace file format supported by

HECIOS. The execution trace is then loaded into HECIOS and the time spent processing

and performing I/O is accounted for with a detailed simulation. HECIOS produces two

output files: a scalar output file that outputs values determined during simulation, and a

vectorized output file that tracks the change in recorded values over the simulated time

frame. Values such as cache hit rate are recorded as scalars, whereas the round trip time for

each file creation is recorded as a vector.

One of the major design goals of HECIOS was allowing the easy reconfiguration
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Figure 3.1: Simulator Architecture

of the simulator to model diverse cluster configurations. HECIOS provides the user the

ability to select the number of compute nodes, the number of I/O nodes, the number of si-

multaneous processes per compute node, and the network architecture including the switch

hierarchy, network component bandwidth, and network startup costs. HECIOS also sup-

ports easy configuration of system call overheads, the size of the buffer cache on the I/O

nodes, the disk scheduling algorithm, and the physical disk performance characteristics.

One problem with the number of available configuration parameters is the difficulty in de-

termining how each configuration parameter affects any particular simulation run. In order

to lessen the burden of measuring each of the individual parameters, we have tried to tune

the simulator to an existing cluster to develop a performance baseline from which we can

then designate the independent variables to study in our experiments.

Figure 3.1 shows the system architecture for HECIOS. File system requests orig-

inate from the I/O application and are dispatched into the middleware cache (which can

be configured to forward messages without adding delay). If the cache cannot satisfy the

request (or is configured without data caching) the request is forwarded to the file system
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client. The file system client translates the application request into one or more file system

requests, and dispatches the request to the BMI client model. The bulk message interface

(BMI) protocol is used in PVFS to send data efficiently over many different types of inter-

connection networks [10]. In our simulation, the only available network type is a TCP/IP

network built using the INET network simulation components. INET simulates the delay

associated with transmitting the client requests to the appropriate I/O node and delivers the

message to BMI server on the I/O node. The BMI server sends the message to the parallel

file system server, which constructs local file system requests based on the client request.

The local file system requests are dispatched into the OS and committed to disk as neces-

sary. Once the OS finishes processing the local requests, the OS response or responses are

collected at the parallel file system server, which then constructs the correct response type

and sends it over the network via BMI to the file system client. When all of the responses

are received at the client, the client signals the operation completion to the application via

the middleware cache.

3.1.2 HECIOS Implementation

HECIOS is written in the C++ programming language. Using C++ as our main pro-

gramming language provides several tangible benefits to the development process. First,

C++ includes the Standard Template Library (STL), a high quality implementation of the

most commonly needed container classes (e.g. vectors, maps, and queues) alleviating the

need to develop common data structures and iteration algorithms. Second, C++ is an object-

oriented programming language allowing us to easily develop high-level abstractions that

are then reused throughout the software. Another advantage of C++ is that we are able to

easily perform black box testing by leveraging an existing C++ unit testing framework [14].

Finally, there are many freely available libraries written in C and C++ that provide capabil-
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ities useful to a parallel I/O simulator.

3.1.2.1 OMNeT++ Simulation Framework

The simulation infrastructure of HECIOS is provided by the OMNeT++ discrete

event simulation framework. OMNeT++ provides a complete simulation environment for

scheduling events, building a network of connected simulation models, and scheduling

messages for later arrival at a specified model. Simulation models are derived from the

provided SimpleModule class which requires concrete implementations of methods for ini-

tialization, finalization, and message arrival. The NED scripting language is then used to

construct a network of simulation models via composition into a CompoundModule or us-

ing a direct connection called a gate. One of the major advantages for HECIOS in using

OMNeT++ and the NED language to construct the network of simulation components is

that simulation parameters such as the number of compute nodes, or the network architec-

ture can be easily reconfigured without recompiling the simulator.

3.1.2.2 INET Simulation Framework

The INET Simulation Framework is a network simulation package developed using

OMNeT++ . INET provides detailed models for simulating TCP/IP connections over an

Ethernet network. The INET simulation includes models for Ethernet media access control,

collision avoidance and detection, TCP congestion control, TCP startup costs, and various

queuing policies. INET has been successfully used in several research efforts [50, 34].

In developing the source code for HECIOS we have used an iterative development

model that attempts to keep the simulator in a working state at all times. Every new feature

required for an experiment requires a process iteration that adds the new features and re-

factors the existing code as necessary. One frequent problem when using iterative method-

ologies that require redesigning existing components to perform new tasks is the explosion
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Figure 3.2: HECIOS Package Dependency Layering

in the number of dependencies in the software system. To accomplish the addition of new

functionality for an iteration, it may be appropriate to simply add new relationships to exist-

ing classes, or it may be better to add new classes that abstract the new dependencies. Every

connection between two classes results in a new edge in the dependency graph leading to a

more complex, difficult to modify software system.

3.1.3 Software Component Architecture

In order to guide our decisions in adding new dependencies and managing the de-

pendencies between existing classes we have divided our software project into the nine

packages shown in figure 3.2. Within a single package there is no restriction on how the

classes may be interrelated. However, dependencies between classes in different pack-
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ages must satisfy the vertical ordering shown in the diagram. For example, classes in the

Common package may not rely on classes from any other package while classes in the

OS package may aggregate, inherit from, or use any classes in the Physical, Message, and

Common packages. One benefit of our approach to package dependency ordering is that

all dependencies between classes in different packages are unidirectional, and that bidirec-

tional dependencies can only exist within a single package. Additionally, by striving to

place new classes in the correct package, we only increase the complexity of the modified

package rather than the system as a whole. And as one package becomes too complicated

it can be subdivided into multiple packages, and re-factored to lessen the complexity of

developing software within the package.

3.1.3.1 Config Package

The Config package is responsible for interconnecting the simulator models in the

correct configuration and initializes the components according to the user specified trace

file and settings. The configuration package contains the code that configures how mid-

dleware caches are shared among processes, how the compute nodes and I/O nodes are

connected via switching, and constructs the mechanism for assigning file contents to indi-

vidual I/O servers.

3.1.3.2 Client Package

The Client package implements the code responsible for executing the instructions

in the trace file, performing middleware caching, and constructing the client-side parallel

file system messages. The majority of client processing is performed using state machines

built from the OMNeT++ state machine facility.
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3.1.3.3 Server Package

The Server package contains the code implementing the parallel file system server-

side operations. Every basic parallel file system operation is implemented as a state ma-

chine using the OMNeT++ state machine infrastructure. The server determines the correct

state machine to construct based on the type of message arriving over the network.

3.1.3.4 I/O Package

The I/O package is used by both the Client and Server packages to transmit file

data between the client and server. As in PVFS, the basic mechanism used is a data flow

that processes the I/O request to determine the amount of data to transmit and whether the

transmission involves reading or writing to disk or memory based on the whether the flow

endpoint is a client or server and whether the request is a read or write.

3.1.3.5 Layout Package

The Layout package acts as a central registry for looking up file names, file handles,

and file attributes. The use of the central repository of data makes it easy for the client or

server to quickly determine whether a file exists, or where it resides without storing the

response from the simulated server.

3.1.3.6 OS Package

The OS package provides the operating system components useful to our simula-

tion. Specifically, the OS layer includes a POSIX file system interface for use by the Server

and I/O packages and internally simulates a Linux file system’s disk scheduler, block cache,

and file system inode and data block assignment schemes.
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3.1.3.7 Physical Package

The Physical package includes the model of a simulated hard disk, an integration

layer for accessing the INET networking components, and the BMI protocol client and

server models used to access the network.

3.1.3.8 Messages Package

The Messages package defines all of the messages sent between simulator models.

We use the high-level OMNeT++ message definition language to describe all of the mes-

sages for each component of the system architecture, and then automatically generate C++

code using the provide code generation tool.

3.1.3.9 Common Package

The Common package contains all the widely useful type definitions (e.g. FileHan-

dle, FileSize, FileOffset) and widely reusable classes. Some of the most useful classes in

the Common package include the Filename class which allows path components to be eas-

ily extracted from file names and the FSOperation and FSState classes used to build nested

state machines in the Client and Server packages.

3.1.4 User Interfaces

HECIOS provides two interfaces for executing simulation scenarios: a command

line interface (CLI) and a graphical user interface (GUI). The command line interface pro-

vides updates on the simulation state at tunable intervals (every 100,000 events by default).

Output includes the total number of events processed, current simulation time, events per

second, events per simulation second, and the total user time spent executing the simula-

tion. The command line environment is provided so that simulations can be executed on
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Figure 3.3: HECIOS Main Window

the distributed processing resources available on campus.

HECIOS also provides a graphical user interface based on the TCL/TK environ-

ment supported by the OMNeT++ simulation package. Figure 3.3 shows the main GUI

window which presents the same progress statistics reported in the command line version

of HECIOS. The main window includes a window for viewing all of the simulation defined

output messages (warnings, diagnostics, etc.), and basic controls for starting the simula-

tion, stopping the simulation, and controlling the level of detail provided in the interaction

animations. Figure 3.4 shows the main visualization window for HECIOS. The main visu-

alization window displays the top level component models and highlights the models and

connections as the messages flow between the simulation models. The main visualization
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Figure 3.4: HECIOS

Figure 3.5: HECIOS
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window also supports the ability to drill down on the compound models and examine the

simulation models contained within the compound model. Figure 3.5 shows the drilled

down view of the process running on the compute node. Icons represent the application

process, middleware cache, parallel file system client, and a management interface for ac-

cessing the BMI abstraction layer of the network. The icons are highlighted while handling

a simulation event, and the links are animated as a message is sent between the models.

3.2 Simulator Validation

One of the primary difficulties in executing a simulation-based performance study

is ensuring that the experimental results are a valid approximation of the real world system

to be simulated [33]. One aspect of simulator validation is code verification: the process of

ensuring the model is correctly coded and performs all of the steps the software developer

intended the simulator to perform. Essentially, verifying the simulation model is the same

as ensuring that the developed software is correct. To that end, we have used recognized

best practices and methods for developing correct software to ensure the verification of

our simulator. In particular, we focused on using a spiral model for software development

that continuously refines and improves the software by implementing, testing, and integrat-

ing each new simulator feature as completely as possible before beginning a new feature.

Secondly, as part of our testing approach we performed both high-level black box testing

that ensured the simulator performed the same steps as the real world system (PVFS) and

low-level white-box testing aided by the use of a unit testing framework (CppUnit) and

the development of significant test scaffolding to allow software modules to be tested in

isolation from the remainder of the software system. Finally, we have performed a series

of experiments that attempt to measure how well our simulator models the real world sys-

tems, and how well our model predicts the expected response when the real world system

46



is modified.

In performing our validation experiments we have tried to perform a series of ex-

periments that measure the simulator’s performance over a variety of inputs. For example,

we have performed sets of experiments that are latency constrained and sets of experiments

that are bandwidth constrained. Although we have attempted to build an accurate software

model, we are aware that our model does make several simplifying assumptions. We will

note those assumptions when relevant, particularly when the assumption leads to perfor-

mance predictions that differ from the real world system. The remainder of Section 3.2

focuses on describing the experimental details of the individual validation experiment con-

figurations and the observed results of the simulated and real world system.

3.2.1 Clemson University’s Palmetto Cluster Computer

In order to compare the results of HECIOS and a real system running PVFS it was

first necessary to choose an actual existing computer system to target for simulation. At

Clemson University the natural choice is the Palmetto Cluster, the fastest computer at the

university and the 60th fastest computer in the November 2008 Top 500 list, a listing of the

500 fastest publicly known supercomputers.

The Palmetto Cluster is a collection of 6,168 dedicated computing cores capable of

achieving a peak performance of 56.55 Teraflops and sustaining 45.61 Teraflops of compu-

tational performance. As shown in Table 3.1, Palmetto is composed of 3 different types of

high-end computational nodes, each with dual 64-bit quad-core processors. Every proces-

sor is rated at 2.3GHz or higher and has at least 4MB of L2 cache. The Dell nodes contain

12GB of memory while the Sun Microsystems nodes provide 16GB of total RAM. Lo-

cal storage on the compute nodes is provided by Western Digital WD800JD-75MS 80GB

drives with 8MB of disk cache. In general, Palmetto has 36 nodes per rack and a total of
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Num Vendor Processor Type Num Num Memory

Nodes CPUs Cores (GB)

257 Dell Intel Xeon E5345 2 8 12

@ 2.33 GHz

258 Dell Intel Xeon E5345 2 8 12

@ 2.33 GHz

256 Sun AMD Opteron 2356 2 8 16

@ 2.3 GHz

Table 3.1: Palmetto Compute Node Architecture

24 racks in the entire system (some of the racks host switching gear, and do not contain a

full 36 nodes). All of the compute nodes run a 64-bit CentOS-5 Linux distribution with the

2.6.18-92.1.10.el5 version of the distribution kernel.

In order to run a computational job on Palmetto, the user must submit a job execu-

tion script to the Maui scheduler, which then interacts with the cluster’s Torque resource

scheduler to determine when the available computing resources are available to satisfy the

job’s computing requirements. The computational jobs may be queued for several hours,

or even days, while waiting for the requested computational resources. Due to the hetero-

geneity of the compute nodes, in particular the difference in the amount of main memory

available on the Dell nodes versus the Sun nodes, we submitted all of our validation timings

to nodes that satisfied the “Intel” resource request, ensuring our jobs executed on the Dell

nodes that provide only 12GB of main memory.

Palmetto also provides two independent interconnection networks for each com-

pute node: a Gigabit Ethernet network interface and a Myrinet Myri-10G network inter-

face. The Gigabit Ethernet connection is provided by an integrated Broadcom BCM5708

network interface chip on each compute node. The GigE network is available for use by

applications; however, it is also used as a cluster management network for spawning jobs,

monitoring compute node resources, and accessing network shares. Each compute node
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also has a Myrinet Myri-10G network connection that is dedicated for application use only.

The Myrinet 10G network is a high-performance interconnect capable of low-latency mes-

sage passing and 1.2 GB/s of sustained network bandwidth. The Myri-10G network can be

accessed as a low-latency, 9.8 Gb/s IP network or with the Myrinet Express (MX) RDMA

interface capable of achieving full line-rate bandwidth and a message passing latency of

2.3 µs.

3.2.1.1 Measuring PVFS Performance

By default, the Palmetto cluster does not run the PVFS parallel file system. Instead,

Palmetto uses the Lustre file system to provide a high-performance parallel storage system.

Although the Lustre file system provides a high-performance storage interface, it is not

possible for a non-privileged user to change the number of I/O nodes or to access the storage

system over the Myrinet 10G network. Further, since the file system is in production use it

is not possible to guarantee that other user’s jobs are not performing significant amounts of

“interference” I/O operations. Even if PVFS was available on Palmetto, we would find it

necessary to run our instance of the file system to avoid interference operations and to have

the option to configure the file system with varying number of I/O nodes.

In order to construct a PVFS file system as part of our computational job, we are

the using the PVFS Automatic Volume Service. The PVFS Auto Volume service, or PAV,

is a set of scripts included with PVFS that start remote I/O server processes on a subset

of the nodes allocated to the computational job. We have further modified PAV to enable

the PVFS I/O servers to utilize the Myrinet network interface in addition to the default

TCP/IP-based network connection.
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3.2.2 Validating Simulated Gigabit Ethernet Performance

Our HECIOS simulator uses the INET network simulation package to construct a

realistic model of a TCP/IP network transport over a switched Ethernet physical local area

network. In particular, we use the Ethernet2 model-set that allows full duplex network

connections and a TCP Reno congestion avoidance algorithm. One shortcoming of the

HECIOS network simulation model is that all of the compute nodes are connected with a

single network switch. In reality, each Palmetto rack uses a single 48-port Dell PowerCon-

nect 2848 Gigabit Ethernet switch with a single 10 Gigabit port trunked to a single vlan

on a Cisco Nexus 7000 backbone switch. Effectively, the inter-rack bisection bandwidth is

only one-fifth of the intra-rack bisection bandwidth, meaning that benchmark performance

may differ greatly depending upon the number of racks any computational job is scheduled

across.

Although the INET package has the capability to construct complex networks, the

default networking components do not allow the interconnection of switches or port trunk-

ing to provide the bandwidth achieved by link aggregation. Instead, it would be necessary

to construct multiple network routers in order to connect the switches, thus resulting in a

larger number of network hops than is required in the physical system. The other alterna-

tive is to develop improved Ethernet switch models that support direct switch connections

and port trunking. We did not feel that the added accuracy in network topology modeling

would balance out the development time required to implement an Ethernet switch with

link aggregation support and direct switch connection capabilities. The following sections

attempt to measure and define the validity of the Gigabit Ethernet networking model used

by HECIOS.
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3.2.2.1 Network Latency Benchmark

The ping utility is a useful tool for measuring the round-trip latency between two

nodes connected over an IP-based network. Ping measures the round-trip latency by send-

ing a series of “echo request” ICMP packets from a network node to a destination IP. The

recipient node then responds to each echo request by sending an “echo response” ICMP

packet back to the originating node. The originator then prints out the time between send-

ing the packet and receiving the response which is the round-trip latency. In our simulator,

the ping time is primarily affected by the parameters setting each node’s IP processing

delay and the switch processing time. While it would be possible to set the parameter val-

ues such that the simulator exactly matches the observed ping times, the parameter values

also needed to provide accurate real-world performance over our entire array of validation

benchmarks, which sometimes led to difficulties in balancing the overall system validity as

opposed to the validity of a single complex benchmark.

Table 3.2 shows 30 collected ping times for intra-rack ping, inter-rack ping, and

simulated ping times. Our simulator does not implement multiple hierarchical switches

interconnected to form a large network, instead we implement a single unified switch that

connects all of the nodes in a flat topology. In this case we have decided that a simpler im-

plementation is worth the loss of accuracy because it improves the simulator performance

(i.e. benchmarking sessions perform much faster) and it reduces the overall simulator com-

plexity. Due to the simplified switch topology, our simulated ping time lies between the

two extremes, with a bias toward the intra-rack ping time average. Ideally, we could per-

form a T-Test on the simulated value to insure that the simulated ping time does not differ

significantly from the mean; however, since the data is bi-modal we are not aware of a

suitable hypothesis test using parametric statistics. In order to generate a data sample that

we can perform statistical analysis upon we then tried to re-sample the data using greater
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Trial Intra-rack Inter-rack Simulated

Ping Time (ms) Ping Time (ms) Ping Time (ms)

1 0.116 1.600 0.147968

2 0.092 0.158 0.097864

3 0.087 0.153 0.097864

4 0.087 0.161 0.097864

5 0.087 0.265 0.097864

6 0.086 0.158 0.097864

7 0.089 0.183 0.097864

8 0.088 0.224 0.097864

9 0.092 0.159 0.097864

10 0.089 0.197 0.097864

11 0.086 0.161 0.097864

12 0.091 0.183 0.097864

13 0.088 0.133 0.097864

14 0.091 0.132 0.097864

15 0.088 0.136 0.097864

16 0.087 0.132 0.097864

17 0.089 0.136 0.097864

18 0.086 0.143 0.097864

19 0.088 0.181 0.097864

20 0.088 0.135 0.097864

21 0.086 0.168 0.097864

22 0.100 0.152 0.097864

23 0.088 0.163 0.097864

24 0.088 0.184 0.097864

25 0.087 0.233 0.097864

26 0.087 0.155 0.097864

27 0.089 0.195 0.097864

28 0.088 0.162 0.097864

29 0.087 0.183 0.097864

30 0.086 0.253 0.097864

Mean 0.089 0.219 0.0995341

Table 3.2: Ping times recorded for Palmetto over the Gigabit Ethernet Interface
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randomization. We are using Palmetto’s node named node0254 as the source node for all

ping times because we can use that node freely to ping other nodes. We then randomly

select another node to ping by choosing random numbers in the set [0..770] (excluding 254

as a possibility). We then contact the selected node using ping. We further randomize ping

time selection by choosing a random number from the set [2..100], and then collecting the

i-th ping where i is the selected random number. We discard all of the initial pings due to

the possibility of additional work involving NIC and switch-based address resolution time

being included in the ping time.

Table 3.3 shows the randomly selected ping destinations, random sample numbers,

and the resultant ping times. The mean ping time is 0.112ms and the median ping time is

0.095ms. As the large time difference between the mean and median ping times indicates,

the randomly sampled data still does not correspond to a normal distribution; however, this

is to be expected. Ping time values are bound on one side only. That is, the minimum

possible time for a ping request to be acknowledged is limited by the wire propagation

delay of the electronic network signal, whereas there does not exist any theoretical upper

bound on the ping time given enough other network traffic. The sampled data did not

conform to any probability distribution used by the Minitab simulation package, therefore

we used a bootstrapping procedure to determine robust confidence intervals for the mean

and median ping times.

Table 3.4 shows the computed mean and median ping times using a bootstrapping

procedure with 1000 repetitions. Our simulated ping time of 0.097864ms does not fall

within the bootstrapped mean ping time range. However, because the sample size includes

a significant sample size (30 trials), in our opinion the median value is a better character-

izing measure of the Ethernet interface’s ping performance. Our simulated ping time of

0.097864ms lies within the 95% confidence interval for the bootstrapped median and is

statistically indistinguishable from the bootstrapped median of 0.098ms at two significant
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Trial Node Name i-th Ping Ping Time (ms)

1 node0687 8 0.095

2 node0491 38 0.094

3 node0521 91 0.094

4 node0123 6 0.165

5 node0172 78 0.118

6 node0272 2 0.104

7 node0349 86 0.095

8 node0678 30 0.094

9 node0237 25 0.146

10 node0714 97 0.094

11 node0139 63 0.131

12 node0752 7 0.095

13 node0583 82 0.094

14 node0425 33 0.104

15 node0464 43 0.129

16 node0292 29 0.119

17 node0207 31 0.123

18 node0581 78 0.095

19 node0390 37 0.094

20 node0717 96 0.094

21 node0308 23 0.185

22 node0440 6 0.093

23 node0310 57 0.094

24 node0310 23 0.111

25 node0684 54 0.095

26 node0636 94 0.095

27 node0080 43 0.205

28 node0117 62 0.094

29 node0611 11 0.124

30 node0107 54 0.094

Table 3.3: Ping times recorded for Palmetto over the Gigabit Ethernet Interface
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Bootstrap Mean Ping Time (ms) Bootstrap Median Ping Time (ms)

Average 0.112 Average 0.098

Std Deviation 0.0051 Std Deviation 0.0057

Min 0.100 Min 0.094

Max 0.128 Max 0.124

95% C.I. [0.104,0.121] 95% C.I. [0.0945,0.111]

Table 3.4: Mean and Median Ping Times for Palmetto using bootstrapping with 1000 rep-

etitions

digits.

3.2.2.2 MPI I/O Test Benchmark

While network latency is an important metric for evaluating the validity of our

parallel file system simulator, it is perhaps more important to have an accurate model of

network bandwidth and network utilization characteristics. The MPI I/O Test benchmark

is a useful tool for evaluating the aggregate file system bandwidth available to clients of the

parallel file system. The benchmark is an MPI code that has each of the participating pro-

cesses open a shared file and write 16 Mebibytes(16 x 102) of data to the file before closing

it. The processes then collectively re-open the file (requiring synchronization) and read

the 16 Mebibytes of data from the file before closing the file and calculating the aggregate

bandwidth in Megabytes per second.

Figure 3.6 shows the aggregate bandwidth curve for the MPI I/O Test benchmark

running on 8 nodes with 8 processes per node. The x-axis measures the number of I/O nodes

participating in the file and the y-axis measures the aggregate bandwidth in Megabytes per

second. For each file system configuration, 10 trials were measured using the Gigabit Eth-

ernet network on the Palmetto cluster. Each individual trial is graphed as a single scatter-

point. The measured bandwidth using an identical file system configuration in simulation

is show using the connected line-points.

55



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  5  10  15  20  25  30

M
B

/s

Number of I/O Nodes

PVFS
HECIOS

(a) Write Bandwidth

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  5  10  15  20  25  30

M
B

/s

Number of I/O Nodes

PVFS
HECIOS

(b) Read Bandwidth

Figure 3.6: Comparison of empirical and simulated parallel file system bandwidth using 64

file system clients (8 processes per node) connected with Gigabit Ethernet

The write bandwidths measured empirically and in simulation track very closely in

Figure 3.6(a). Figure 3.6(b) shows the simulated and real world performance for bench-

mark’s aggregate read bandwidth. The read performance curves indicate the simulated

system provides slightly higher read bandwidth; however, the overall read performance

and the performance trends are very similar to the real world system. The other major

trend we note in Figure 3.6(b) is the increasing variance in the real world system’s per-

formance. As the aggregate read bandwidth graph shows, the performance variance of the

MPI Test I/O code running on Palmetto is relatively large, and grows as the number of I/O

nodes increases. One likely cause of the diminished performance that leads to the increased

variance is switch in-cast. In-cast occurs when many network clients try to send data si-

multaneously to a single host. The queuing buffer for the switch port is overwhelmed with

data and the switch is forced to drop some number of the frames sent to the port. Although

both Ethernet and TCP have mechanisms for avoiding congestion, both are more effective

for preventing frame drops at network nodes rather than at the network switch level.

Figure 3.7 shows the aggregate read and write bandwidth data for both PVFS and

HECIOS using 128 total processes (16 client nodes with 8 processes per node). Again,
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Figure 3.7: Comparison of empirical and simulated parallel file system bandwidth using

128 file system clients (8 processes per node) connected with Gigabit Ethernet

we see that the simulated write performance closely mimics the real world measurements,

although the simulated bandwidth at 25 I/O nodes is much slower than real world system’s

write performance. The simulated aggregate read performance shown in Figure 3.7(b)

also tracks closely to the results observed for Palmetto. However, with a 25 I/O node

configuration the aggregate read performance is higher on the simulator versus the real

system. Although, in this case, the simulated and observed values are much closer.

Finally, Figure 3.8 shows the aggregate bandwidth performance for our last Ethernet

network configuration, 32 nodes with 8 processors per node for a total of 256 benchmark

processes. In general, we are pleased with the accuracy of the simulated file bandwidth

performance, however, two configurations, one write and one read, exhibit much higher

performance on the simulator than on the Palmetto cluster. The simulated write perfor-

mance shown in Figure 3.8(a) tracks very closely to the real world system with one outlier

when configured with 10 I/O nodes. For the read performance in Figure 3.8(b) we observe

that the simulator provides higher read performance for 20 and 25 I/O nodes; however,

the high simulated performance with 20 I/O nodes is a much larger outlier than the 25

I/O node configuration. Again, the difficulty in matching the simulated performance with
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Figure 3.8: Comparison of empirical and simulated parallel file system bandwidth using

256 file system clients (8 processes per node) connected with Gigabit Ethernet

the observed performance is attempting to provide adequate matching performance over a

wide range of benchmarks while also simplifying the system so that a simulator can return

results faster than a real world system. The major cause of the performance difference

again appears to be the lack of a hierarchical switch architecture as opposed to a flat net-

work topology. Even with the various inaccuracies we have described in our system, we

feel that the simulated values could easily approximate an execution path on the Palmetto

cluster, even if it does not match one of the 10 trials we observed at each configuration.

For that reason, we are satisfied with the performance of our simulator on the MPI-I/O Test

benchmark on our simulated Palmetto system.

3.2.2.3 The FLASH I/O Benchmark Routine

The final benchmark we use to validate our simulator is FLASH I/O, a parallel,

multi-dimensional, adaptive-mesh-refinement, hydrodynamics code useful for simulating

thermonuclear flashes for astrophysics applications [21]. The adaptive mesh refinement

algorithm subdivides the computational domain into Cartesian grids and sub-grids capable

of arbitrary refinement levels. The grids and sub-grids are composed of three-dimensional
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arrays called blocks that are distributed across the participating MPI processes. A single

block represents a structured mesh and is implemented as an 8x8x8 array with an additional

4 elements in each dimension called guard cells that hold ghost data to avoid nearest neigh-

bor communication during refinement calculations. The FLASH I/O kernel uses the HDF5

library to produce three files: a plotfile with centered data, a plotfile with corner data, and

a checkpoint file. The FLASH I/O benchmark routine duplicates the FLASH code’s I/O

kernel to allow experimentation with improving I/O performance without spending time

performing domain calculations [46].

Because the FLASH I/O benchmark uses the popular HDF5 I/O library to access

the underlying file system [25], we consider it representative of many I/O bound appli-

cation workloads that perform small, unaligned, and independent file writes to construct

hierarchical data formats. Each benchmark process produces 7.5MB of data total, and the

total file sizes scale linearly with the number of participating benchmark processes. For

each output file, all of the participating processes open the file (truncating the size to zero

if necessary), perform roughly 250 small, unaligned file writes, and close the file. The

small size of each individual file write and the small size of total I/O performed by each

process has traditionally made it challenging to achieve a high-level of parallel file system

I/O throughput with this benchmark. In particular, achieving scalable parallel file system

performance is traditionally difficult with workloads dominated by small, unaligned file

reads and writes.

Figure 3.9 shows the observed total runtime for the FLASH I/O benchmark using

128 client processes and 256 client processes respectively. In general, the total runtimes on

Palmetto and on HECIOS’ simulated Palmetto environment are very similar.
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Figure 3.9: Comparison of empirical and simulated parallel file system execution time

running the FLASH I/O benchmark on Palmetto with the Gigabit Ethernet interface (lower

is better).

3.2.3 Validating Simulated Myri-10G Performance

While HECIOS’ Gigabit Ethernet network-based configuration provides a reason-

ably accurate model of the physical system, we are more interested in measuring the effects

of our proposed file system modifications using the most recent high-performance hardware

capabilities. Gigabit Ethernet provides a reasonable amount of network bandwidth, how-

ever, the high network latency caused by copying data from user space into kernel memory

in order to send TCP packets performs much worse than several popular alternative net-

working technologies. Palmetto’s high-performance, alternative interconnection network

is provided in the form of Myrinet’s Myri-10G high-end networking fabric. In addition to

providing 10 times the bandwidth of Gigabit Ethernet, Myri-10G also exhibits substantially

lower network messaging latency. Many of the performance improvements made available

by Myrinet are due to the use of an independent processor on the network interface card

that calculates message check-sums, sends route discovery messages, and performs source

routing in conjunction with switch support for wormhole routing. Palmetto’s Myri-10G

network uses both line cards and edge switches to construct an interconnection network
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with full crossbar bandwidth (each node has a full 10 Gigabit connection to every other

node). A Myrinet 10G-SW32LC-16M line card is used to connect 16 nodes with a full

crossbar connection. The line card has an additional 16 ports that connect into a Myrinet

Edge enclosure that connects the line cards using a 16 port CLOS topology network as the

back plane architecture. However, even with the high degree of network bandwidth avail-

able, switch in-cast can still be a problem when many nodes send data simultaneously to a

single node, although wormhole routing does avoid the extreme in-cast penalties imposed

by Ethernet because packets are queued at the sender rather than simply dropped by the

switch.

For our simulator we did not have access to a network package that correctly sim-

ulates Myrinet, so instead we have modified the Ethernet network settings to approximate

the performance of a high-performance networking fabric such as Myrinet. The chief dif-

ference between our simulated configuration and a real Myrinet network is again the flat

network topology that comes from using a single network switch, and also the fact that our

switch drops in-cast packets, rather than queuing the packets at the sender. We have been

able to modify the media access times of the network card and switch so that the network

provides low latency message passing, and tuned the switch and network card buffer sizes

so that the network performance under load approximates the high-performance network

on Palmetto.

3.2.3.1 Network Latency Benchmark

The Myrinet Express (MX) software interface is able to avoid the system call over-

head associated with copying message buffers between user space memory and kernel page

memory by providing an interface that sends network messages directly from user space

without the requirement to copy. Even when Myri-10G is used as a medium for an IP net-

work, Myrinet is able to provide lower latency due to the dedicated checksum processor,
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tighter physical medium qualities and more aggressive signal timings. In order to compare

the network latencies used by our simulator we are again using the Ping utility, this time

running on Palmetto’s IP over Myrinet interface.

Table 3.5 shows the Myrinet network ping time in milliseconds between two nodes

on the same line card (column 2) and two nodes on different line cards connected over

the edge switch (column 3). Column 4 shows the simulated ping time using HECIOS

configured with a Myrinet Myri-10G network. The first trial for each test again appears

to be an outlier, probably related to network address resolution overhead. Similar to our

earlier Ethernet ping time experiments, the observed ping times again appear to be bimodal

with our simulator value adhering much more closely to the ping times within a single line

card. We performed the same randomization as described in Section 3.2.2.1 (randomly

choosing both the destination node and sample number to observe) and generated a sample

of ping time values using Palmetto’s node0254 as the ping source node.

The results of our randomized process are shown in Table 3.6. The mean ping

time is 0.048 milliseconds and the median ping time is 0.036 milliseconds. The differ-

ence between the observed data mean and median values indicates that we should again be

concerned that the data is not normally distributed. An Anderson-Darling test for normal-

ity returned a value of 2.387 with an accompanying P-Value of less than 0.005 indicating

that the data does vary significantly from the normal distribution [36]. However, for this

set of observations, the Minitab statistical package was able to find a matching probability

distribution for the data by applying the following Johnson transformation:

J = 1.37919+0.575550∗ ln((R−0.0226194)/(0.192187−R)) (3.1)

where R is the observed ping time and J is the transformed value [37]. The transformed data

was verified to correspond to a normal distribution using the Anderson-Darling normality
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Trial Intra-line Inter-edge Simulated

Ping Time (ms) Ping Time (ms) Ping Time (ms)

1 0.076 0.096 0.0601568

2 0.036 0.091 0.0367264

3 0.026 0.056 0.0367264

4 0.024 0.112 0.0367264

5 0.025 0.123 0.0367264

6 0.024 0.065 0.0367264

7 0.024 0.078 0.0367264

8 0.024 0.125 0.0367264

9 0.024 0.125 0.0367264

10 0.026 0.117 0.0367264

11 0.025 0.226 0.0367264

12 0.025 0.084 0.0367264

13 0.025 0.130 0.0367264

14 0.023 0.183 0.0367264

15 0.025 0.096 0.0367264

16 0.024 0.127 0.0367264

17 0.026 0.095 0.0367264

18 0.025 0.109 0.0367264

19 0.036 0.065 0.0367264

20 0.026 0.076 0.0367264

21 0.025 0.125 0.0367264

22 0.026 0.070 0.0367264

23 0.024 0.063 0.0367264

24 0.024 0.062 0.0367264

25 0.024 0.096 0.0367264

26 0.033 0.121 0.0367264

27 0.054 0.065 0.0367264

28 0.025 0.085 0.0367264

29 0.025 0.128 0.0367264

30 0.026 0.134 0.0367264

Mean 0.029 0.156 0.0375074

Table 3.5: Ping times recorded for Palmetto using the Myrinet Interface
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Trial Node Name i-th Ping Ping Time (ms)

1 node0208 73 0.045

2 node0546 29 0.080

3 node0592 41 0.061

4 node0032 24 0.042

5 node0417 21 0.030

6 node0711 34 0.032

7 node0730 65 0.038

8 node0192 38 0.027

9 node0586 62 0.026

10 node0177 62 0.098

11 node0699 32 0.031

12 node0721 70 0.036

13 node0741 10 0.031

14 node0528 49 0.068

15 node0498 14 0.024

16 node0153 69 0.026

17 node0380 36 0.026

18 node0390 77 0.036

19 node0745 62 0.031

20 node0451 91 0.052

21 node0363 48 0.156

22 node0329 13 0.112

23 node0160 46 0.025

24 node0265 92 0.058

25 node0623 50 0.036

26 node0637 92 0.067

27 node0388 39 0.029

28 node0122 90 0.075

29 node0117 55 0.027

30 node0280 25 0.023

Table 3.6: Randomized ping times recorded for Palmetto over the Myrinet 10G Interface
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test and resulted in an A-D value of 0.180 with a P-value of 0.907 allowing us to continue

our statistical analysis with an alpha-level of 10% (i.e. the probability the data is not normal

is less than 10%).

The simulated ping time, 0.0367264ms, becomes the transformed value -0.00197.

A one sample T-Test indicates that the observed and simulated means are identical with a

probability of 0.981 (or alpha < 0.05). We conclude that our simulated ping time is not

significantly different than the average of the randomized pings we observed on Palmetto.

3.2.3.2 MPI I/O Test Benchmark

In order to validate the bandwidth accuracy of our simulator we are again using

the MPI I/O Test benchmark developed at Argonne National Laboratory. For all of our

observed trials we are using PVFS2 configured to use the Myrinet MX software package,

a network communication layer that is based on dedicating, or pinning, pre-allocated user-

space memory buffers for sending and receiving network messages. This approach avoids

the expensive calls to convert user-space memory into kernel space packets and is more

generally known as a remote direct memory access method, or RDMA for short.

In Figure 3.10 we have again overlaid the observed read and write aggregate band-

width curves using the MPI I/O Test benchmark. In this configuration, the benchmark

program is running on 8 nodes with 8 processes per node and all parallel file system access

uses only the Myri-10G network using the RDMA-based MX network driver. The x-axis

measures the number of I/O nodes participating in the file and the y-axis measures the ag-

gregate bandwidth in Megabytes per second. For each file system configuration, 10 trials

were measured using the Gigabit Ethernet network on the Palmetto cluster. Each individual

trial is again graphed as a single scatter-point. The measured bandwidth using an identi-

cal file system configuration in simulation is show using the connected line-points. The

write bandwidths shown in Figure 3.10(a) are approximately the same with the simulated

65



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  5  10  15  20  25  30

M
B

/s

Number of I/O Nodes

PVFS
HECIOS

(a) Write Bandwidth

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  5  10  15  20  25  30

M
B

/s

Number of I/O Nodes

PVFS
HECIOS

(b) Read Bandwidth

Figure 3.10: Comparison of empirical and simulated parallel file system bandwidth using

64 file system clients (8 processes per node) connected with Myrinet Express (MX) using

Myri-10G fabric.

network providing higher aggregate bandwidth for several configurations, but generally

tracking the observed results. Figure 3.10(b) shows the aggregate read bandwidth curves,

and generally provides a good model of the real world system.

Figure 3.11 shows the same aggregate read and write bandwidth curves we have

observed in the previous graphs this time with the MPI I/O Test benchmark running on 32

nodes with 8 processes per node. In Figure 3.11(a) we note an exaggerated inflection point

in the simulated write performance at 5 I/O nodes and again at 20 I/O nodes. The inflection

points are performance outliers, however only the configuration with 20 I/O nodes appears

to be substantially higher than the real system. The simulated read performance shown

in Figure 3.11(b) closely tracks the real system performance, although the simulated sys-

tem provides slightly higher read bandwidths for all configurations with more than 10 I/O

nodes.

Finally, Figure 3.12 shows aggregate read and write bandwidth for the MPI I/O

Test benchmark running on 64 nodes with 8 processes per node. Figure 3.12(a) shows

large differences between the simulated write bandwidth and Palmetto’s write bandwidth
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Figure 3.11: Comparison of empirical and simulated parallel file system bandwidth using

128 file system clients (8 processes per node) connected with Myrinet Express (MX) using

Myri-10G fabric.

for configurations with less than 20 I/O nodes. In this case we wonder if PVFS or Palmetto

is not simply misconfigured when performing I/O bandwidth tests using large numbers of

nodes. We have modeled the extreme in-cast exhibited for configurations larger than 20 I/O

nodes; however, we were unable to configure the simulator to match the depressed write

performance with small numbers of I/O nodes. The simulated read performance shown in

Figure 3.12(b) much more closely approximates the real system, although by limiting the

buffer sizes to induce switch in-cast for file writes we have also induced some degree of

switch in-cast in the final read bandwidth data point. We include further discussions of

switch in-cast as we encounter them in our later experiments.

3.2.3.3 FLASH I/O Benchmark

For the Myrinet network we tried to run the FLASH I/O benchmark at larger scales,

however we were only able to successfully run the benchmark using 8 and 16 client nodes,

as the Myrinet hardware was unreliable when running the FLASH I/O benchmark on both

a large number of client nodes and I/O nodes simultaneously. In general, the limiting fac-
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Figure 3.12: Comparison of empirical and simulated parallel file system bandwidth using

256 file system clients (8 processes per node) connected with Myrinet Express (MX) using

Myri-10G fabric.

tor for the performance of the FLASH benchmark is network and disk latency rather than

the available I/O bandwidth. Although the network provides low latency message pass-

ing, the intensive nature of the FLASH I/O benchmark overwhelms the network queues at

the clients, limiting the scalability of the benchmark. Figure 3.9 shows the simulated and

observed total runtimes for the FLASH I/O benchmark using 64 client processes and 128

client processes respectively. Our simulated results are generally very accurate, although

HECIOS provides better performance in the case of a single I/O. Because the single I/O

node case is mainly useful for computing theoretical speedups rather than a configuration

used for a parallel file system (obviously 1 I/O node exhibits no parallelism), we are satis-

fied with the simulations FLASH I/O results.
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Figure 3.13: Comparison of empirical and simulated parallel file system execution time

running the FLASH I/O benchmark on Palmetto with the Myrinet 10G interface (lower is

better).

3.3 A Case Study: Using Server-to-Server Communica-

tion in Parallel File Systems

HECIOS is designed to closely mimic the existing parallel file system, PVFS. As

such, we expect it to provide an accurate model of the parallel file system performance for

an application’s trace. However, in order for HECIOS to be a viable tool for our study of

caching behavior in parallel file systems, our simulator must also easily provide an accurate

model of novel parallel file system enhancements. In order to verify the effectiveness of

HECIOS as a tool for modeling parallel file system improvements, we have chosen to im-

plement a cutting edge performance improvement and verified the simulated performance

against a prototype implementation in PVFS.

3.3.1 Prototype Implementation

In addition to a simulation study, we have also implemented the proposed optimiza-

tions in PVFS, a widely available parallel file system. Our experiments were performed
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using the number of file system servers as the independent variable and the operation exe-

cution time as the dependent variable. We gathered 35 samples for each file system config-

uration. The first two samples were discarded to avoid experimental noise related to startup

costs. The remaining 33 samples achieved an approximate normal distribution about the

sample mean and standard deviation. The presented data omits extreme outliers. An ex-

treme outlier is defined as being less than (Q1− 3(IQR)) or greater than (Q3 + 3(IQR)),

where Q1 and Q3 represent the first and third quartile of the sample set, and IQR represents

the maximum of the interquartile range or 5µs.

3.3.1.1 Jazz System Configuration

In order to time the individually optimized file system operations we used Argonne

National Laboratory’s Jazz cluster. Jazz is made up of 350 compute nodes, allowing us

to scale each operation over a large number of I/O nodes to determine the operation per-

formance at scales rarely seen for production parallel file systems. Each node contains a

2.4GHz Pentium Xeon processor, at least 1GB of RAM, and an 80GB IBM hard disk. The

compute nodes run a Linux 2.4.26 kernel with ext3 local file systems – it is on these nodes

that we configured and ran PVFS servers, transforming the compute nodes into de facto I/O

nodes for our purposes. The nodes are interconnected with both a 100Mb/s Fast Ethernet

network and a high-performance Myrinet-2000 network based on the PCI64C network in-

terface card with a message latency of 6.7µs [48]. The transmission time of small messages

sent during metadata operations are primarily limited by message latency, rather than the

available bandwidth.
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3.3.2 Server-to-Server Communication

In his dissertation, Carns proposed collective communication between the I/O servers

as a mechanism to simplify consistency control and improve the performance of three im-

portant file metadata operations: create, stat, and delete [9]. Using his techniques and

prototype as a reference, we are able to evaluate the effectiveness of HECIOS in measuring

the performance of an innovative parallel file system modification.

Carns’ proposed technique is based on the observation that as parallel file systems

increase in scale, efficient metadata access becomes more difficult. Although client driven

serial metadata techniques may perform adequately for a few hundred clients accessing

tens of metadata servers; when thousands of application processes attempt to simultane-

ously create files, remove files, and list the contents of a directory, the performance of

client driven metadata operations directly impacts the number of storage nodes that can

be deployed in a parallel file system. Additionally, the difficulty in maintaining a con-

sistent view of the file system during independent and simultaneous multi-step metadata

operations encourages file system developers to deploy complicated distributed locking ap-

proaches that increase fragility and further impact scalability. The use of server-to-server

communication neatly addresses both of these problems. Server-to-server communication

in a parallel file system improves the scalability of the file system by simplifying consis-

tency control for metadata operations and improving performance by leveraging collective

communication techniques to perform metadata operations more efficiently.

3.3.3 File Creation

The process of creating a file in a parallel file system requires a considerable amount

of work. A metadata object must be initialized and populated with values, data objects must

be initialized on each storage server, and a directory entry must be added in the parent di-
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rectory. Although it is possible to perform some of the work in an “as needed” fashion;

lazy creation techniques are unlikely to improve the performance of typical application

work loads. Typical file creation use cases (e.g. copying files or data collection) immedi-

ately follow file creation with writing a substantial amount of file data to the file system.

In such cases the notion that the file system can populate only the metadata on an eager

basis, and then initialize the data storage resources on demand is unlikely to result in bet-

ter performance. Object pre-creation strategies have been shown to improve performance

[20], but our optimizations are independent of such techniques, and so we present metadata

algorithms that do not rely on pre-created data objects.

The file creation algorithm listing (and all following listings) use the following

conventions for brevity:

• C: represents a client process

• D: represents a data server

• M: represents a metadata server

• P: represents a parent directory server

• →: represents a request sent from a client to a server (response is implied)

For example, the statement “C → M create metadata object” indicates that a request was

sent from the client to the metadata server in order to create a metadata object. Each algo-

rithm step is implemented with atomic semantics. The client-driven file creation process is

shown in Figure 3.14.

First, the client retrieves the parent directory’s attributes to verify that creation per-

missions exists. The client then creates a metadata object on the metadata server, and

creates the data objects on the data servers simultaneously. Once all the data objects are
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1 C → P g e t p a r e n t d i r e c t o r y a t t r s

2 C →M c r e a t e m e t a d a t a o b j e c t

3 f o r each D:

4 C → D c r e a t e d a t a o b j e c t

5 C →M s e t f i l e a t t r i b u t e s

6 C → P c r e a t e d i r e c t o r y e n t r y

Figure 3.14: Client-initiated file create algorithm

initialized, the file metadata is populated and the parent’s directory entry is created. By

ordering the operations carefully, the need for a distributed locking system that acquires all

the resources preemptively is avoided. In the scenario where two clients attempt to simulta-

neously create the same file, only one client will be able to successfully write the directory

entry; however, the client that fails to create the file will need to perform further work to

clean up the orphaned metadata and data objects.

In addition to the possible leaked resources during creation failure, data object cre-

ation is slower than it needs to be. By making the client responsible for performing all

the communication necessary to create the data objects, the server disk activity can be

overlapped but the client’s network link becomes a serialization point and a bottleneck for

interacting with the data servers. The collective algorithm shown in Figure 3.16 resolves

both of these issues.

In this algorithm, the server responsible for the parent directory entry is contacted

by the client to perform the file creation. The parent directory server serializes local ac-

cess to the parent directory and then creates the metadata object. The parent server and

data servers collectively implement the binary tree communication algorithm shown in

Figure 3.15 to create all of the data objects for the file. The parent server populates the

metadata and creates the directory entry before unlocking the parent directory and signal-

ing success to the client.

This algorithm simplifies consistency management because the parent directory can
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1

33 3 3

2 2

Figure 3.15: Binary tree collective communication

1 C → P f i l e c r e a t e r e q u e s t

2 P l o c k s p a r e n t d i r e c t o r y

3 P →M c r e a t e m e t a d a t a o b j e c t

4 f o r each D: ( c o l l e c t i v e )

5 P → D c r e a t e d a t a o b j e c t

6 P →M s e t f i l e a t t r i b u t e s

7 P c r e a t e s d i r e c t o r y e n t r y

8 P u n l o c k s p a r e n t d i r e c t o r y

9 C ← P a g g r e g a t e r e s p o n s e

Figure 3.16: Collective file create algorithm

perform local serialization on the directory entry. There is no possibility of two clients mak-

ing partial progress toward creating the same file. Additionally, if the collective communi-

cation fails, the parent can simply unlock the parent directory locally rather than depend on

a remote lock timeout mechanism. The algorithm also improves performance because the

binary tree collective communication creates all of the data objects in time proportional to

O(log2(n)) rather than O(n) where n is the number of data objects for the file.

Figure 3.17 shows the time to create a single file for each file system configuration

(i.e. the number of file system I/O nodes). Figure 3.17(a) shows the predicted time to

create a file using both the client-based create and the collective create algorithm using

the HECIOS simulator tuned to match the performance of the Jazz cluster. Figure 3.17(b)
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Figure 3.17: File Create Performance on Jazz (Simulation)

shows the creation times for both algorithms as measured on Jazz. The increasing slope

demonstrated on the real system is largely due to the increasing cost of the poll system call

as the number of active sockets grows [9]. The Linux 2.4.26 kernel in use on Jazz does

not support the more modern epoll system call that provides roughly O(c) socket polling

performance. Our simulator does not impose an increasing performance cost as the number

of sockets increases and thus the file creation performance using the client-driven algorithm

is roughly linear in the number of I/O servers.

3.3.4 File Removal

File removal can be a very resource intensive operation for parallel file systems.

File data may be distributed over tens or hundreds of data servers and orphaned data ob-

jects may result in a significant loss in storage capacity until the file system can be repaired

(usually via an offline file system check). Figure 3.18 lists the basic client-driven file re-

move algorithm.

The client-initiated file removal algorithm demonstrates the difficulties in develop-

ing a file system server without the use of distributed locking. Consider the scenario where

75



1 C →M g e t f i l e a t t r i b u t e s

2 C → P remove d i r e c t o r y e n t r y

3 C →M remove m e t a d a t a o b j e c t

4 f o r each D:

5 C → D remove d a t a f i l e o b j e c t

Figure 3.18: Client-initiated file remove algorithm

one client attempts to delete a file while another client is simultaneously modifying the file

system permissions. Client 1 initiates the remove, and succeeds in removing the parent

directory’s entry for the file. Client 1 then attempts to continue the removal process by

deleting the file metadata, but a network timeout occurs causing the metadata removal to

fail. At the same time, client 2 modifies the permissions of the parent directory so that

further modifications by client 1 are not allowed. Client 1 can then attempt to recreate

the directory entry in the parent directory; however, since client 2 has modified the parent

permissions, the file has been deleted. This outcome results in a large number of orphaned

data files that waste significant storage space. Even in the case where the application code

is simply interrupted immediately after the parent directory entry has been removed will

result in orphaned data objects and wasted space until a file system check can be performed

to recover the storage space.

1 C → P a g g r e g a t e remove r e q u e s t

2 P l o c k s p a r e n t d i r e c t o r y

3 P →M g e t m e t a d a t a a t t r i b u t e s

4 f o r each D and M: ( c o l l e c t i v e )

5 P → D remove d a t a o b j e c t

6 P →M remove meta o b j e c t

7 P remove d i r e c t o r y e n t r y

8 P u n l o c k p a r e n t d i r e c t o r y

9 C ← P a g g r e g a t e r e s p o n s e

Figure 3.19: Collective file remove algorithm

The server-driven file removal listing in Figure 3.19 does not exhibit this behavior.
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Figure 3.20: File Remove Performance

By having the parent directory’s server control the remove, access to the parent directory

can be trivially serialized with a local lock, and a change in the permission’s of the file

targeted for removal is detected by the server and no repairs are necessary. Even if the

client is interrupted, the parent directory server will fully complete the remove operation.

Figure 3.20 shows the time to perform a single file remove, i.e. remove the file data,

metadata, and parent directory entry for each file system configuration (i.e. the number of

file system I/O nodes). Figure 3.20(a) shows the predicted time to remove a file using both

the client-based file delete and the collective file deletion algorithm using the HECIOS

simulator tuned to match the performance of the Jazz cluster. Figure 3.20(b) shows the

deletion times for both algorithms as measured on Jazz. We again see the increasing slope

due to the increased cost of the poll as the number of I/O nodes participating in the file

delete increases.

3.3.5 File Stat

File stat, while rare in parallel applications, is common during system adminis-

tration and interactive data set management activities. One of the most common ways a
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user invokes the file stat command is using the UNIX utility ls. The ls command lists

the contents of a directory and, optionally, each entries attributes (e.g. permissions, last

modification time, file size). Efficient performance in the file stat command is critical to

easing data management activities and improving the file system’s interactivity. PVFS, like

most file systems, employs a client-side attribute cache to avoid retrieving file metadata

before every file interaction (e.g. to check permissions); however, metadata fields such as

the file size and access time (atime) are not kept up to date for the same reason – to avoid

writing metadata attributes after every successful file I/O. The file stat operation allows the

user to query all of the file’s metadata. The client-initiated file stat algorithm is shown in

Figure 3.21.

1 C →M g e t m e t a d a t a a t t r i b u t e s

2 i f f i l e s i z e i s r e q u e s t e d :

3 f o r each D:

4 C → D g e t d a t a a t t r i b u t e s

5 C compute l o g i c a l f i l e s i z e

Figure 3.21: Client-initiated file stat algorithm

One important feature to note is that the client is only required to contact the data

servers if the user has requested the file size. The more common operation of requesting

the file’s permissions only requires checking the attribute cache and contacting the file’s

metadata server if the cache entry does not exist.

The collective file stat operation in Figure 3.22 differs from create and remove in

that the file’s metadata server initiates the collective communication rather than the parent

directory server. Also, the collective data attribute request (Steps 5 and 6) acts like a gather

operation instead of a reduction. The metadata server receives all of the data object at-

tributes rather than just the computed size or latest access time. For simplicity, we prefer to

perform the metadata calculations at the meta server, but a distributed reduction algorithm
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1 C →M a g g r e g a t e s t a t r e q u e s t

2 M l o c k s m e t a d a t a o b j e c t

3 M g e t m e t a d a t a a t t r i b u t e s

4 i f f i l e s i z e i s r e q u e s t e d :

5 f o r each D: ( c o l l e c t i v e )

6 M→ D g e t d a t a a t t r i b u t e s

7 M computes l o g i c a l f i l e s i z e

8 M u n l o c k s m e t a d a t a o b j e c t

9 C ←M a g g r e g a t e r e s p o n s e

Figure 3.22: Collective file stat algorithm
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Figure 3.23: File stat Performance

would be a reasonable improvement upon this algorithm.

Figure 3.23 shows the time to perform a single file full stat command, i.e. an op-

eration that contacts each of the I/O nodes to determine an accurate accounting of file

metadata such as file size or last access time. Figure 3.23(a) shows the predicted time to

stat a file using both the client-based file get-attributes and the collective file get-attributes

algorithms using the HECIOS simulator tuned to match the performance of the Jazz cluster.

Figure 3.23(b) shows the stat times for both algorithms as measured on Jazz. We again see

the increasing slope in the observed data from Jazz due to the increased cost of the poll as

the number of I/O nodes participating in the file delete increases [9].
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3.3.6 Interactive Workload Evaluation

We also measured the performance of the improved collectives in real world scenar-

ios that require the manipulation of a large number of files. We chose three tasks commonly

performed by both software developers and system administrators. In the first representa-

tive test, we extracted all of the files from a Linux-2.6.9 source file archive in tar format.

In the second test, we performed a full listing of all of the files in the resulting source tree,

which relied heavily on the implementation of the file stat operation. Finally, we performed

a recursive remove of all of the source files. The 2.6.9 Linux kernel source is composed of

over 1,000 directories and 16,000 files, with most of the files having a small or moderate

size. Figure 3.24 shows the runtime in seconds for the three file manipulation tasks on

a parallel file system configured with 74 dedicated storage nodes using both the simula-

tion software and the prototype implementation running on the Adenine cluster (100Mbit/s

network).

Adenine System Configuration Clemson University’s Adenine cluster is composed of

75 compute nodes. Each compute node contains dual Pentium III 1GHz processors with

1GB of RAM and 30GB Maxtor hard drives. All nodes are connected by a 100Mb/s (Fast

Ethernet) network, while 48 nodes also have a 1Gb/s (GigE) network connection. Each

network uses a single, independent dedicated switch. The compute nodes run a Linux 2.6

kernel with an ext2 file system.

The measurements in Figure 3.24 exemplify the idea that optimizing the perfor-

mance of the most critical operations can provide substantial execution time improvement.

Each of the three tasks is composed of file system operations other than file creation, re-

moval, and stat; for example, archived file extraction requires file I/O, directory creation,

file creation, and metadata updates for atime. Still, the performance improvement of nearly

49% can be attributed entirely to the improved efficiency of the collective file creation
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Figure 3.24: Kernel Manipulation Performance on Adenine

technique. Similarly, recursive file listing and recursive file removal require additional

metadata operations such as readdir; however, the performance speedups in using collec-

tive file stat and collective file remove improve the benchmark execution times by 75% and

83%, respectively. In summary, with only the collective metadata operations presented in

this paper, we were able to significantly improve the performance and interactivity of these

three common developer and administrative tasks.

3.4 Summary

Although our simulator was not able to provide a perfect simulation of the Jazz clus-

ter due at least in part to the behavior of the outdated poll system call, HECIOS was able

to demonstrate the basic performance characteristics of the algorithmic improvement from

linear time to logarithmic time. Our simulator was able to provide an adequate simulation

of how the proposed modifications would effect a diverse metadata intensive workload.

HECIOS has been designed to provide an accurate model of actual MPI I/O codes and

benchmarks rather than single operation micro-benchmarks, so it is not surprising that
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HECIOS provides more accurate results with trace-based workloads. In summary, we

believe that this case study demonstrates that our simulator is able to provide a realistic

platform for performing experiments in parallel I/O. The simulation runs and prototype

implementation yielded similar results for a complex parallel file system optimization.
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Chapter 4

Fixed-Size Page Caching

Traditionally, data caching is used to improve application performance by improv-

ing the locality of reference for frequently used data locations. For example, the Linux

kernel’s page cache uses any available main memory to cache frequently accessed disk

blocks to avoid spending time repeating disk accesses to the same file locations. Similarly,

the disk cache on modern hard drives attempts to store the most recently accessed disk sec-

tors on a small RAM buffer on the drive, and, more speculatively, the disk controller will

attempt to pre-fetch sectors into cache that are likely to be requested in the future. Network

file systems, including parallel file systems, typically employ a client-side name cache and

a client-side metadata cache in order to avoid repeatedly checking the permissions of par-

ent directories on a remote server and to avoid beginning all path resolutions with the root

directory server.

One of the fundamental decisions in the architecture of any cache is: How to map

the address space of possible values into cache locations? Most approaches begin by

evenly subdividing the address space into fixed-size blocks (usually called lines in proces-

sor caches or pages for disk-backed caches). The advantage of using a fixed-size cache page

is the ease of implementing a mapping algorithm from the real address space to the corre-
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sponding cache location, the ease of evicting data from the cache, and the small amount

of cache metadata required to describe the cache address space and determine the next

eviction.

One of the simplest address mapping transformations, called direct mapping, can

be calculated by taking the address modulo the number of blocks the cache can store. More

concisely, a direct mapped cache uses the following mapping function to determine the

cache location for an address:

Addresscache = Addressglobal( mod Sizecache). (4.1)

A direct cache mapping is simple and fast to calculate, although it may lead to continual

block evictions if two frequently used addresses translate to the same cache address. Fully

associative mapping schemes enable any cache block to become a duplicate of any aligned

block of the address space, and while expensive to implement in hardware, software imple-

mentations are straightforward and reasonably efficient.

The second major advantage of fixed-size blocks for caching is the ease in deter-

mining which blocks to replace once the cache is full and more data is requested. The

most efficient choice for the next fixed-size block to evict from the cache is the block that

will be used the furthest into the future. Generally, the information needed to implement

this scheme is not available and an approximation called the “Least Recently Used” cache

algorithm is often preferred. In software, a linked list can be updated each time a cache

block is accessed to ensure that list is sorted from most recently used to least recently used.

Evictions blocks are calculated by accessing the tail of the linked list. Hardware cache

implementations that have limited resources for maintaining an LRU list may simply resort

to randomized eviction.

Finally, caches with a fixed block size typically require smaller amounts of storage
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overhead than alternative designs. The implementation details for fully associative caching

have been described in detail in literature (e.g. Hennessy and Patterson [26]), essentially

the overhead boils down to nk tag bits per cache block, where n is the cache capacity in

blocks and k is at most the number of bits in the full address store, and n log2(n)+ 2 bits

for storing the LRU list pointers. Because log2(n) must be less than k, and k must be less

than n, the overhead of a direct cache is O(n), or simply, linear in the number of cache

entries. As the small cache overhead implies, fixed-size block caches are relatively easy to

implement and the data blocks within the cache are easy to locate and evict.

4.1 File Data Cache Architecture

A contiguous page of file data is the basic block of storage within the file data

caches we examine in this chapter. The size of the contiguous pages is a cache parame-

ter that is supplied at run time, allowing us to sweep the entire cache page size parameter

space to determine the effects of page size on application performance. Although we have

performed our parameter sweeps using powers of two, it is possible that some applica-

tion workloads would achieve better page alignment with a non-power of two page size.

Additionally, because our underlying file system does not provides its own caching or a

mechanism for performing advisory locking on some fundamental block size we have been

able to examine the performance of page sizes smaller than 4KB, the traditional locking

granularity on many Posix file systems.

In order to transparently store and retrieve file data at the client, our middleware

cache intercepts and interprets all MPI-I/O calls to file open, close, read and write from the

application to the file system. Essentially, our cache is implemented as a file system driver

within MPI-IO that wraps the actual target file system. For each file open and close the

cache respectively increments and decrements the reference count for the file name within
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the cache. When the reference count reaches 0, all dirty pages associated with the closed

file are flushed from the cache. As we will discuss in section 4.1.1, this behavior performs

a critical role in our selected data consistency scheme.

Cache page lookups are performed using a compound key based on the file name,

and the file page id, which is simply the file page number determined by calculating the

desired file offset divided by the page size.

Key f ilename = Request f ilename

Keypageid = Requesto f f set/Cachepagesize

The cache is fully associative so that any page of the file can be stored in any block in the

local cache. As described earlier, the storage overhead associated with the cache O(n).

The cache uses a write-back model for updates, meaning file writes that can be

successfully copied into the cache are allowed to complete immediately. As part of any

cache update (due to a read or write), evicted dirty pages are written back to the file system

synchronously before completing the operation. The cache page eviction model is based

on a simple sorted LRU list where, such that each cache page update or access results in

the key being moved to the tail of list.

Finally, it is important to note that file reads and writes that are larger than the

entire cache capacity bypass the cache rather than causing a series of updates and evictions.

In the case of a large file write that triggers a cache bypass and provides new data for

pages currently in cache, the cache data will be updated and the bypass write will occur as

describe before. Similarly, a large bypass read will interact with the file system first, and

then any newer data residing in the cache will be copied on top of the read. Additionally,

while a bypass read or write is occurring, the cache must block until the bypass operation
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completes its interaction with the underlying file system. This is necessary to insure the

consistency of the file data returned by the bypass operation.

4.1.1 Data Consistency

The data consistency model describes the ordering model for how updates to shared

file regions are applied to actual underlying files. In general, programmers typically expect

the ordering model to provide sequential consistency, that is, file writes should be per-

formed atomically in the order they are completed and all file reads should return the value

of any file write that has previously completed. We can paraphrase the formal definition

provided by Lamport as follows [39]:

A parallel I/O program is sequentially consistent if the contents of each file is

the same as if operations of all the processes were executed in some sequential

order, and the operations of each individual process in this sequence in the

order specified by its program.

Unfortunately, sequential consistency is difficult to provide in general, and, since it requires

a centralized clock or synchronization point, sequential consistency is unlikely to provide

high levels of performance.

Fortunately, more relaxed consistency models are both popular and ubiquitous in

parallel computing. Our caches typically use the popular close-to-open file consistency

model employed by NFSv4 [24]. Close-to-open consistency is an eager release consistency

model that ensures all persistent file data is updated when the file is closed and that any

subsequent file opens are guaranteed to see the file data committed during all previous file

close operations. In order for a client process to see the most up to date version of the file

data, it only needs to close all references to the file and perform a new file open.
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One important element of close-to-open consistency that may not be immediately

obvious, is the removal of any guarantees of atomicity in write operations. That is, if two

processes, A and B, begin simultaneously writing bytes 10 to 20 of file /foo, there is no

requirement that a later reader, called process C, sees only exclusively the contents of the

write by A or exclusively the contents of the write by B. It is perfectly valid for some of

the first ten bytes to come from process A’s write, and some of the ten bytes to come from

process B. Note that all of the bytes must come from either process A’s file write or process

B’s file write; it is not valid for any of the original file data to remain. Also note that it is

possible to use synchronization via MPI_Barrier calls to ensure that the contents of the file

are updated atomically; however, writes to the file must be serialized in order to achieve an

atomic update semantic.

In some of our experiments we will further relax the consistency model beyond the

allowances of close-to-open consistency. We provide a further explanation of the relaxed

consistency model as we describe the results of those experiments.

4.1.2 Multiple Writers

In our previous discussion of data consistency we described the consistency re-

quirements at the I/O operation level (e.g. a file read or write), however, one may naturally

assume that the concern about generating a sequential program ordering is only critical for

the file regions that are read and written by multiple processes. Unfortunately, when using

a fixed-size block cache this assumption is false.

The problem is that when a fixed-size block cache is employed, a file write does

not just affect the file region described by the write, but instead all of the cache pages the

region lies upon. Again consider two processes, A and B, writing to a file, /foo. Process

A is writing the file byte range 0 - 9, and process B is writing the file byte range 10 - 19. It
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would appear that the file must contain the data from both writes once both processes have

written and closed the file. However, if the cache page size is 100 bytes, the individual

caches cannot just update the ten bytes in question. Instead, the entire page must be evicted

from the process caches and either the first 100 bytes from process A will be in the file, or

the first 100 bytes from process B will be in the file. Either way, the result is not what a

programmer would expect, and close-to-open consistency is violated (the updated data for

one of the file regions will not appear to future readers after a successful file close).

This problem, called false sharing, results when two unrelated data regions cause

incorrect result to be committed to the file system wholly due to the page granularity used

in the cache architecture. Fortunately, false sharing is a well researched problem, with

many different solutions [17].

4.1.2.1 Cache Page Directory

The false sharing problem described in the previous section is a problem of cache

coherence: when the second process attempts to write the updated cache page to file, it

no longer has a coherent view of the file. The obvious way to resolve false sharing is to

insure that each page of file data is only cached at one location at a time. While this idea

returns the correct result, it is overly pessimistic in requiring a cache page to reside at only

one location. Instead, we must ensure that a cache page is only updated at one location

at a time, and any cache page that a file write needs to update must include other pending

updates for that page (note that this condition provides a stronger guarantee than close-to-

open consistency, but is still a sufficient implementation of close-to-open consistency).

In order to ensure that pages are updated at only one cache at a time we can construct

a state directory that maintains the state of every cache page [18]. In order to update a cache

page, a client process must hold the cache page in an exclusive state (i.e. only the one client

cache has the page stored locally). On the other hand, if a process wishes to read from a
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cache page, many client processes can simultaneously hold the page in a shared state. The

cache page directory then must be able to store the current state of the cache page and

locators for finding the client process or processes that locally store the page.

Because of the frequent messaging required to update the state of the cache pages,

a distributed directory approach is usually preferred over a single centralized cache page

directory [11, 41]. The most straightforward scheme is to simply store the directory entry

for cache pages on the home node, or the same node that stores the backing store’s version

of the data. For a parallel file system, the home node is simply the I/O server that persists

the corresponding portion of the file, and the file system server process must be modified

to maintain a cache page state directory alongside the file data.

There are several problems with the I/O server as home node approach. First, cur-

rent cluster messaging schemes typically only support message transmissions between pro-

cesses within a single MPI execution context (e.g. a parallel job). However, I/O servers are

UNIX daemons that are not part of any MPI context, and further, multiple MPI jobs may

attempt to simultaneously access the same file requiring the I/O servers to concurrently

participate in multiple MPI execution contexts. One possibility for implementing such a

scheme is the use of multipurpose daemons (MPDs) that manage all cluster processes and

may be implemented with a mechanism to send directory cache protocol messages to any

process running on a cluster computing system [7].

Another problem with directory-based approaches is integrating directory messages

into our proposed shared caching enhancements. In a shared cache, multiple processes

share the cache pages, and, concomitantly, must also share the cache page state. With

multiple processes sharing the data, the question becomes which process should the home

node contact to notify the processes of a cache state change (e.g. from shared state to

invalid state). If the process contacted is performing intensive processing, the cache inter-

ruption could trigger significant performance loss due to context switching costs. On the
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other hand, if the message is queued and handled during the next I/O phase, the processes

requesting the state change are forced to idle while waiting for cache directory service.

One solution is to simplify the cache directory protocol to exist only in the client

processes as part of the middleware cache. In this approach, we can segment the cache

directory entries evenly amongst all of the client processes (using round-robin page assign-

ment or some other scheme) and manage the directories within the middleware cache. This

approach is feasible; however, it is unlikely to be an effective scheme for experimenting

with cache sharing due to the previously stated problems of determining which process to

contact for directory state changes. Additionally, our simulator is not well instrumented

to capture the performance costs of the cache protocol overhead. For these reasons, we

have decided not perform a performance analysis of a directory-based middleware caching

protocol.

4.1.2.2 Cache Page Differences

The complexity of directory-based caching protocols has led us to evaluate a dif-

ferent false sharing avoidance schemes that leverages a simpler protocol at the expense of

additional cache storage overhead. The TreadMarks system [1], originally used to imple-

ment a shared processor virtual memory system, provides a simple, but effective scheme to

avoid writing inconsistent file data that has resulted from false sharing. Before performing

any write that does not encompass a full cache page, the cache must first read in the data

page from the file system. The cache then makes a duplicate of the read page in memory,

and updates the duplicate data. When the page is evicted from the cache (due to replace-

ment or a file close), the updated duplicate page and the original page are compared, and

only the differences between the two pages, or “diffs”, are written back to the file system.

The major drawbacks of this scheme are the additional cache storage required and

the possibility that small, unaligned writes will accumulate sparsely over each page re-
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sulting in the same poor performance we sought to improve in the first place. Below, we

describe how our implementation of a page differencing scheme attempts to overcome sev-

eral of these limitations.

4.2 Page Delta Cache

In Section 4.1.2.2 we described the basic scheme used by TreadMarks to avoid

false sharing in cache pages. Our system modifies the basic TreadMarks approach so that

when partial page data is written to the duplicate page, the original copy of the page is also

updated in order to act as dirty mask for the updated data. The simplest way to accomplish

the dirty mask operation is to perform a modified memcpy operation that writes data to the

client’s requested region on both the original copy and the duplicate copy. However, the

data written to the original copy of the data should be the complement of the data written

to the duplicate cache page.

The reason for modifying the original TreadMarks scheme is that we desire to in-

crease the granularity of file system interactions, and rather than writing only the differ-

ences, which may be a disjoint subset of the updates, we prefer to update the maximum

contiguous region possible. Additionally, our simulator cannot calculate the actual deltas

on the file data because our file traces only include metadata describing the file I/O per-

formed rather than the actual updated file data. One possible optimization is to use an

actual dirty mask to track the updated file regions. The implementation details and an anal-

ysis of the storage overhead of such an approach is presented in Chapter 5 as part of our

progressive paging description.
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(b) Heat Graph (darker is better)

Figure 4.1: FLASH I/O benchmark execution time on 8 CPUs, 1 process per node, and 4

I/O Nodes over Gigabit Ethernet.

4.2.1 Measuring the Effects of Cache Parameters

In the following experiments, we attempt to gain an understanding of how the cache

block size and cache capacity affect performance across several cluster platform configu-

rations. We are using the popular FLASH I/O benchmark as a tool for examining how the

different cache and platform architectures interact to affect application run times. Addition-

ally, we use this analysis to guide cache reorganizations in order to improve performance.

Figure 4.1 shows a surface plot and heat graph expressing the total execution time

of the FLASH I/O benchmark configured to run on a cluster with 8 single-core compute

nodes connected via Gigabit Ethernet to a parallel file system consisting of 4 I/O nodes.

The x-axis shows the cache page size in bytes and the y-axis shows the total cache data

capacity in bytes. In the case of impossible page and capacity combinations (e.g. a 256KB

cache page size with a 1KB cache capacity) the baseline performance of the benchmark

execution time without caching has been provided instead. The non-caching times appear

as an flat triangular plane on the surface plots and as a lower right triangle on the heat

graphs. Finally, we have clamped execution times in excess of 10 seconds in order to

improve the appearance of the graphs. Benchmark run times in excess of 10 seconds are
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Figure 4.2: FLASH I/O benchmark execution time on 8 CPUs, 1 process per node, and 4

I/O Nodes over Myrinet Myri10G.

exhibiting an execution time slowdown of at least 100% versus the time required to run

without caching.

Figure 4.2 shows the same 8 compute nodes, 1 process per node, and 4 I/O node

configuration as in figure 4.1; however, in these results, the simulated interconnection net-

work is using our Myrinet Myri10G network settings. The obvious performance feature for

both configurations is the large run time spike for cache configurations with smaller page

sizes (1KB and less) and large cache capacities. Secondarily, we can see that the cache is

effective at improving the benchmark performance when the cache capacity is sufficiently

large, but not too large.

The relatively narrow band of high-performance cache configurations in figures 4.1

and 4.2 is particularly troubling. When the cache has too few pages, the performance is

barely improved over the base case, and when the cache has too many pages, the perfor-

mance may be much worse than if no cache had been employed at all. To improve our

insight into this problem, we have re-indexed the data from figure 4.2 into figure 4.3 such

that the x-axis shows the cache capacity in number of pages rather than cache size in bytes.

The execution time for each page size is then plotted using scatter points. We have limited
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Figure 4.3: FLASH I/O benchmark execution time sorted by cache capacity in pages (log-

log scale).

figure 4.3 to only the six smallest configurations to examine how the number of pages in

the cache effects the overall execution time for small cache page sizes. As evidenced by

the graphic, cache configurations with less than 64 pages of capacity tend to provide stable

performance, but as the page capacity grows beyond 256 pages the run time for some con-

figurations begins to increase rapidly (note: the y-axis has a logarithmic scale). Obviously,

this leads to tuning difficulty for system administrators and end users because specifying a

“too small” cache is unlikely to maximize performance, while selecting a “too large” cache

may lead to even worse performance than not using a cache at all.

Tables 4.1 and 4.2 show the cache configurations that result in the best performance

for each of the interconnection network types, respectively. We note that the timing results

are for the entire FLASH I/O benchmark routine execution rather than just the time spent

performing file I/O. Our cache cannot improve the performance of the benchmark’s non-
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Page Size Cache Size Total Exec. Time Speedup

64KB 16MB 0.8174 2.62

32KB 16MB 0.8186 2.62

16KB 16MB 0.8216 2.61

8KB 16MB 0.8296 2.59

Table 4.1: Best performing cache configurations on Gigabit Ethernet (8 CPU, 4ION).

Page Size Cache Size Total Exec. Time Speedup

32KB 64KB 0.2546 5.62

32KB 128MB 0.2551 5.61

64KB 8MB 0.2718 5.27

128KB 16MB 0.2733 5.24

Table 4.2: Best performing cache configurations on Myrinet Myri10G (8 CPU, 4ION).

I/O related operations (e.g. file opens, barriers, and broadcasts). The highest speedup in

table 4.1 is 2.62, which is far short of the maximum possible theoretical speedup of 7.21

available if each I/O node is accessed at the maximum possible I/O bandwidth of 117MB/s

per I/O node – which is, admittedly, very unlikely. Similarly, the best performing cache

configurations for the Myrinet network results in a remarkable speedup of 5.62; however,

this is still well short of the maximum possible theoretical throughput.

4.2.1.1 Addressing Performance Volatility

The performance volatility demonstrated for small page sizes in figures 4.1 and

4.2 is largely an artifact of the network and file system becoming overwhelmed by the

bursty stream of relatively small page updates. When the cache page size is small and the

number of cache pages is small, the cache acts as a governor, ensuring that file system

updates are fed to the file system at a steady, sustainable pace. As the number of cache

pages increases the networking queues are overwhelmed and the file system performance

becomes unstable; larger writes will force many page evictions while small file writes may
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Figure 4.4: FLASH I/O benchmark execution time with the Block-Indexed data type opti-

mization on 8 CPUs, 1 process per node, and 4 I/O Nodes over Gigabit Ethernet.

not force any evictions at all, reducing the average throughput. The unstable performance

is not apparent with larger page sizes because the average file system interaction size is

larger, reducing the total network traffic.

In order to improve the update granularity we have chosen to exploit the high level

data type interfaces that parallel file systems such as PVFS support. Equivalent to the MPI

File View interface available in MPI-IO, our simulator uses the file system support for non-

contiguous data types (based on the interfaces of PVFS). We maintain the same fixed-size

paging architecture of our first cache design. However, instead of interacting with the file

system by reading and writing individual cache pages, we construct a Block-Indexed data

type describing each of the pages to be read or written from the file system and perform all

of the partial page evictions resulting from a write in a single large operation.

Figures 4.4 and 4.5 show the results of using the Block-Indexed data type to access

the file system with both Ethernet and Myrinet, respectively. The data clearly indicates

that employing the block-indexed data type to map the cache data into the file system

improves the access granularity, reduces the performance volatility, and formulates a cache

design that does not exhibit significant performance volatility or penalize the performance
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Figure 4.5: FLASH I/O benchmark execution time with the Block-Indexed data type opti-

mization on 8 CPUs, 1 process per node, and 4 I/O Nodes over Myrinet Myri10G.

Page Size Cache Size Total Exec. Time Speedup

32KB 16MB 0.8081 2.66

64KB 16MB 0.8086 2.65

16KB 16MB 0.8108 2.65

8KB 16MB 0.8170 2.63

Table 4.3: Best performing cache configurations using block-indexed access on Gigabit

Ethernet (8 CPU, 4ION).

of cache configurations with small page sizes.

Tables 4.3 and 4.4 show the four best performing cache configurations with the

block-indexed data type cache optimization for both Gigabit Ethernet networks and Myrinet

Myri10G networks. The block-indexed data type appears to remove the penalty for large

cache capacities, resulting in lower performance volatility, while providing roughly identi-

cal performance for the fastest cache configurations (we do not consider the performance

improvements to be statistically significant).
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Page Size Cache Size Total Exec. Time Speedup

64KB 16MB 0.2367 6.04

16KB 16MB 0.2411 5.94

32KB 16MB 0.2452 5.84

8KB 16MB 0.2462 5.81

Table 4.4: Best performing cache configurations using block-indexed access on Myrinet

Myri10G (8 CPU, 4ION).
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Figure 4.6: FLASH I/O benchmark execution time with the Block-Indexed data type opti-

mization on 1 CPU, 8 processes per node, and 4 I/O Nodes over Gigabit Ethernet.

4.2.1.2 Leveraging Modern Cluster Hardware

Until this point, we have assumed that each compute node is running a single pro-

cess with a single dedicated network link. Modern clusters, however, leverage the capa-

bilities of multi-core processors to improve the system processing density which leads to

several processes running on a single compute node, all sharing the same network interface.

The increased number of clients per network connection typically leads to greater network

utilization at the cost of decreased performance for each individual process due to network

queue overruns and collisions. In this section we look at how this more popular cluster

configuration affects caching performance.
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Figure 4.7: FLASH I/O benchmark execution time with the Block-Indexed data type opti-

mization on 1 CPU, 8 processes per node, and 4 I/O Nodes over Myrinet Myri10G.

Page Size Cache Size Total Exec. Time Speedup

32KB 16MB 2.7081 1.57

64KB 16MB 2.7089 1.57

16KB 16MB 2.7107 1.57

8KB 16MB 2.7107 1.57

Table 4.5: Best performing cache configurations using block-indexed access on Gigabit

Ethernet (1 CPU, 8PPN, 4ION).

Figures 4.6 and 4.7 show the Flash I/O benchmark performance running with the

block-indexed data type on a single node with 8 cores and a single network link. Although

the file system performance is generally stable, we can again see that when the page size

is small (64 byte pages or smaller), the performance is again unstable. Because a 64 byte

page is unlikely to appear in a realistic system, we do not consider that a significant perfor-

mance problem. On the other hand, in these configurations it is important to note that eight

individual caches exist on each node, meaning that the largest cache configuration, with

512MB of cache, actually uses 4GB of memory per node in total, an unrealistic amount

for a compute node that is likely configured with less than 16GB of total memory (the

maximum available on Palmetto).
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Page Size Cache Size Total Exec. Time Speedup

64KB 16MB 0.3170 4.84

32KB 16MB 0.3200 4.80

16KB 16MB 0.3209 4.78

4KB 8MB 0.3219 4.78

Table 4.6: Best performing cache configurations using block-indexed access on Myrinet

Myri10G (1 CPU, 8PPN, 4ION).

Fortunately, the small size of the Flash I/O benchmark working set means that small

caches are capable of providing a substantial performance improvement. Tables 4.5 and 4.6

show the fastest configurations of the per process caches for Gigabit Ethernet and Myrinet.

On parallel codes that require a larger working set, the size of the caches may need to grow

as well. One of the original ideas discussed in this dissertation was the application of a

single cache to multiple processes running on a multi-core node.

4.2.1.3 Shared Caching

This time in order to improve the caching systems performance we look at the ef-

fects of sharing the cache data for all the MPI processes participating on the node. The

shared memory primitives in Linux do not allow us to simply pin and unpin buffers into

shared memory, instead data will need to be copied into and out of the shared cache which

can require mutually exclusive access to cached file pages; however, with memory band-

widths currently 10 times faster than network bandwidth, the costs should be easily amor-

tized over the gains made in improving the page coverage of partial page writes. Addition-

ally, our shared cache also includes the block-indexed data type optimization we discussed

earlier (it still provides a benefit in terms of performance volatility).

One caveat with the shared file cache is that the close-to-open consistency model

described in section 4.1.1 is further relaxed. Rather than flushing all the dirty cache pages
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Figure 4.8: FLASH I/O benchmark execution time with a shared cache on 1 CPU, 8 pro-

cesses per node, and 4 I/O Nodes over Gigabit Ethernet.

Page Size Cache Size Total Exec. Time Speedup

16KB 64MB 2.6649 1.60

32KB 128MB 2.6673 1.60

64KB 128MB 2.6688 1.60

8KB 64MB 2.6765 1.59

Table 4.7: Best performing shared cache configurations on Gigabit Ethernet (1 CPU, 8PPN,

4ION).

on each file close, we now wait for all the local processes accessing the file to close it before

flushing the dirty pages into the file system. Essentially, the consistency granularity is

altered from process-centric to node-centric, as a client opening a file on one node can only

see the file updates from nodes where every process that is updating the file has performed

a file close.

Figures 4.8 and 4.9 show the benchmark performance data for our final cache con-

figuration. Here we see that the cache performance is very similar to the performance of the

non-shared cache. However, in these configurations the shared cache is using one-eighth

the memory resources per node to achieve the same benchmark performance.

Tables 4.7 and 4.8 again show the four fastest configurations for each of the inter-
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Figure 4.9: FLASH I/O benchmark execution time with a shared cache 1 CPU, 8 processes

per node, and 4 I/O Nodes over Myrinet Myri10G.

Page Size Cache Size Total Exec. Time Speedup

8KB 64MB 0.2928 5.25

16KB 64MB 0.2931 5.24

64KB 128MB 0.2933 5.24

32KB 128MB 0.2940 5.23

Table 4.8: Best performing shared cache configurations on Myrinet Myri10G (1 CPU,

8PPN, 4ION).
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connection network types. In the case of the Gigabit network the additional speedup from

cache sharing is negligible; however, two of the configurations halve the memory require-

ment per node to achieve nearly identical performance. On the Myrinet interconnect the

shared cache exhibits better performance than the non-shared caches in table 4.6, although

the memory consumption per node is basically unchanged.

4.2.2 Cache Performance At Scale

Based on our experimental analysis, we have been able to construct a middleware

cache that consistently achieves high performance for our benchmark program at small

scales. We now wish to explore the effects of middleware caching on our benchmark ap-

plication at larger scales.

4.2.3 Gigabit Ethernet Network Experiments

Because of the extended runtimes required to simulate large-scale benchmarks and

cache configurations we are leveraging our earlier small-scale results to determine a subset

of representative configurations that should illustrate the effects of cache page size and

capacity on benchmark execution time. We have chosen page sizes of 512B, 4KB, 64KB,

and 256KB in order to measure page size effects at scale. For each page size we perform

simulation executions using a cache size of 2MB and 16MB, respectively. We avoided

larger cache sizes simply because we do not believe application developers will be willing

to dedicate much more system memory to middleware caching (e.g. 1GB to 8GB of the

available system memory at 512 processes, or 2GB to 16GB at 1024 processes). Note that

the sizes shown are on a cache basis rather than a node basis and include only the data

capacity, not the overhead associated with maintaining cache keys and each cache page’s

LRU status. The shared cache configurations are using one-eighth as much memory as
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Figure 4.10: FLASH I/O benchmark execution time with a block-index cache on 512 pro-

cesses (64 Nodes, 8PPN) over Gigabit Ethernet (lower is better).

the non-shared cache configurations due to the dual quad-core processors in our Palmetto

simulation profile.

Figures 4.10 and 4.11 show the execution times for the FLASH I/O benchmark

running as 512 processes on 64 Gigabit Ethernet nodes on file systems ranging from 1 I/O

node to 90 I/O nodes. The left hand figures demonstrate the performance of each cache

page size on a cache configured with 2MB of capacity and the right hand figures show the

benchmark execution time on caches configured with 16MB of capacity. As you would

expect, the larger caches provide better performance, however the benefits of even a small

cache can be substantial if the cache page size is well chosen. Only one of the selected

cache configurations (256KB pages in a 2MB cache) fails to improve the performance of

the benchmark over most of the selected file system sizes.

Similarly, figures 4.12 and 4.13 show the execution times for the FLASH I/O bench-

mark running as 1024 processes on 128 Gigabit Ethernet nodes. Again the parallel file sys-

tem configurations range from 1 I/O node to 90 I/O nodes. At the thousand process scale,

most of the smaller 2MB cache configurations only slightly improve performance. The

larger 16MB caches (shown in the right side column) are still able to provide substantial
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Figure 4.11: FLASH I/O benchmark execution time with a shared cache on 512 processes

(64 Nodes, 8PPN) over Gigabit Ethernet (lower is better).
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Figure 4.12: FLASH I/O benchmark execution time with a block-index cache on 1024

processes (128 Nodes, 8PPN) over Gigabit Ethernet (lower is better).
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Figure 4.13: FLASH I/O benchmark execution time with a shared cache on 1024 processes

(128 Nodes, 8PPN) over Gigabit Ethernet (lower is better).

performance improvements with the smaller page sizes.

4.2.4 Myrinet Myri10G Network Experiments

As we described in Chapter 3, our simulation of the Myrinet networking technol-

ogy is not as accurate as our simulation of Ethernet networks. The extremely variable cache

performance shown in figure 4.14 bears this out as inadequate switch buffering completely

clouds any insight we have into cache performance. When the Flash I/O benchmark is run

without caching, the poor network utilization of the application results in stable perfor-

mance because the amount of switch buffering provided by the simulator is adequate for

the inefficient network access. However, upon adding the client-side cache, the network

bandwidth utilization increases due to the larger average message size and the upper limit

on the switch buffer capacity is quickly reached causing a large number of dropped frames

and the accompanying packet retransmissions and lowered network throughput.

On a real Myrinet network, frames cannot be dropped; rather, the messages will

enqueue into network buffers all the way back to the originating node eventually forcing

107



 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

T
im

e
 (

s
)

Number of I/O Nodes

No Cache
Cache (512B x 2MB)
Cache (4KB x 2MB)

Cache (64KB x 2MB)
Cache (256KB x 2MB)

(a) Execution time on 2MB block-indexed cache

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

T
im

e
 (

s
)

Number of I/O Nodes

No Cache
Cache (512B x 16MB)
Cache (4KB x 16MB)

Cache (64KB x 16MB)
Cache (256KB x 16MB)

(b) Execution time on 16MB block-indexed cache

Figure 4.14: FLASH I/O benchmark execution time with a block-index cache on 512 pro-

cesses (64 Nodes, 8PPN) over Myrinet Myri10G.

the sender to block until the desired network route is clear. Because our simulation does

not provide this key functionality, in Chapter 3 we configured the switch buffer size to grow

in proportion to the number of nodes simulated; however, we also instituted a maximum

allowable switch buffer size for Myrinet simulations. The buffer size limit improves the

quality of our simulator validation results; however, it now appears to limit the simulated

performance gains we can achieve by improving the efficiency of the benchmark’s network

access. In order to provide results that may better reflect how large scale Myrinet installa-

tions perform, our remaining results use a reconfigured Myrinet simulation that allows the

switch size to grow beyond the buffer size limit we enforced during our earlier performance

validation tests.

Figures 4.15 and 4.16 show the performance of the FLASH I/O benchmark simu-

lated on the enhanced Myrinet network infrastructure. Again, the use of a client-side cache

provides excellent performance improvements with both the cache per process and cache

per node configurations.

Figures 4.17 and 4.18 shows the execution time for the benchmark running on a

non-shared and shared cache. For the 2MB cache per node configuration we can see that
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Figure 4.15: FLASH I/O benchmark execution time with a block-index cache on 512 pro-

cesses (64 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch buffer size

(lower is better).
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Figure 4.16: FLASH I/O benchmark execution time with a shared cache on 512 processes

(64 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch buffer size (lower is

better).
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Figure 4.17: FLASH I/O benchmark execution time with a block-index cache on 1024

processes (128 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch buffer

size.
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Figure 4.18: FLASH I/O benchmark execution time with a shared cache on 1024 processes

(128 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch buffer size (lower is

better).
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the performance is not generally improved, although the benchmark exhibits better scaling

than in the non-cached case. When the cache size is increased to 16MB per node, both

caches are able to again improve performance for file systems composed of more than

20 I/O nodes for all page sizes except 256KB, which only improves performance for file

systems with more than 60 I/O nodes.

4.3 Summary

In this chapter we have described a file data caching middleware that transpar-

ently provides coherent file access and improves application performance. Our file caching

scheme improves application I/O granularity by using fixed-size pages for parallel file sys-

tem access. False sharing between caches is prevented by using a diff-based scheme similar

to the TreadMarks Shared Virtual Memory system. We were able to use small-scale experi-

ments with the FLASH I/O benchmark to empirically evaluate our cache design parameters

over a variety of hardware configurations. We determined that the block-indexed data type

can be leveraged within our fixed-size page caches to reduce performance volatility and

lessen the impacts of poorly chosen cache parameters. We also examined the effective-

ness of cache sharing at improving performance and reducing the memory requirements

necessary for caching at the cost of loosening our selected data consistency scheme.

Finally, we were able to leverage the results of our small-scale analysis to find a rep-

resentative set of cache configurations to examine the effects on benchmark performance at

scale. We found that at 512 applications processes the standard fixed-size page cache and

shared cache were able of significantly improving performance for both Gigabit Ethernet

clusters and Myrinet clusters. We also found that our benchmark running as 1024 pro-

cesses experienced significant performance improvements with our fixed-size page caches,

however, the increased network utilization led to increased volatility. This result is not sur-
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prising as even our largest file system configuration, 90 I/O nodes, is still far less than the

128 compute nodes running the application benchmark.
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Chapter 5

Progressive Page Caching

The primary problem associated with fixed-size page caching, in all of its incarna-

tions, is false sharing. The only mechanism for reducing the degree of false sharing is to

reduce the page size, and as we saw in our analysis of fixed-size page caching in Chap-

ter 4, caches configured to use small page sizes are the most likely to generate unstable

performance (though we were able to largely mitigate the performance volatility). More

problematically, some parallel file systems such as Lustre and GPFS may be unable to ben-

efit from cache page sizes smaller than a system memory page (typically 4KB) or a disk

block (typically 512 bytes) respectively, because the mechanisms used to provide advisory

locking within the file system lead to contention and poor performance with smaller gran-

ularity accesses [43]. In this chapter we look at an alternative caching scheme that seeks to

avoid false sharing at the cost of additional overhead in time and space.

5.1 Architecture Overview

Our progressive page cache appears to the end user as identical to our earlier fixed-

size page cache designs. A middleware caching infrastructure intercepts and interprets all
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calls to file open, close, read and write from the application to the file system in a manner

mostly transparent to the user. Just as in fixed-size page caching, the only differences the

client sees between using a caching middleware and accessing the file system directly is the

change to close-to-open file consistency and, hopefully, improved performance. While an

application scientist’s view of the I/O system is mostly unchanged, the internal architecture

of a progressive page cache is significantly different from a fixed-size page cache.

In progressive page caching, the file is still segmented into fixed-size pages as de-

scribed in the chapter on basic page caches. We are still able to use our same page identifi-

cation formula to construct cache keys:

Key f ilename = Request f ilename

Keypageid = Requesto f f set/Cachepagesize

However, if the initial lookup succeeds, we will need to examine the actual contents of

the cache page in order to ensure the correct page contents are present. In the case of a

file read, it still may be necessary to request several file pages from the backing store/file

system based on the actual cache contents. But in the case of a file write, the data can be

immediately copied into the cache without a requirement to pre-acquire the contents of any

additional file pages at all!

5.1.1 Progressive Page Cache I/O

Fundamentally, file I/O is described by a file offset, a file extent, and a data buffer.

The offset describes where in the file to begin reading or writing data, the extent describes

how much data to read or write, and the data buffer is used to locally store the file contents.
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Figure 5.1: A sample progressive cache page with an accompanying list of the valid file

regions. The valid file regions are shown in black and described by the file region list.

In both our fixed-size page cache and our progressive page cache the data buffer is stored

locally on the cache page. The major difference is that our progressive page cache does

not attempt to update the rest of the page with valid data on a file write. Instead, the cache

maintains a set of valid file offsets and extents for each cache page.

Recall that false sharing may occur when a cache page being committed back to

the file system is only partially updated, and thus stale data on the cache page may be

written back to the file system if the file system has been updated since the page was

cached. Progressive paging explicitly avoids false sharing by maintaining a set of valid file

regions, or offset and extent pairs, within the page. Figure 5.1 shows a representation of a

progressive cache page that is partially filled with file regions and the page’s accompanying

set of file region descriptions. During cache page evictions and replacements, the library

ensures that only the updated file regions are written into the backing store/file system.

5.1.1.1 Client Reads

A progressive page middleware cache satisfies file reads in a manner similar to our

previous fixed-size page cache. First, the middleware attempts to satisfy the read with data

from the cache. For each portion of the read that cannot be satisfied from the cache, the

115



satisfying file page is added into a single block-indexed data type. The block-indexed data

type is then used to read all of the non-resident pages from the file system in a single re-

quest. We use the block-indexed data type based on the results of our prior study; however,

it is possible that for some workloads single page requests could work just as well.

The major difference in read processing for the progressive page cache versus the

fixed-size page cache discussed in Chapter 4 is how the read data is merged into the pro-

gressive cache. With a fixed-size page cache design, it is impossible to have a partially

empty cache; instead, the cache page must be filled before any write to that page can be

performed. A progressive page cache is not so simple, and portions of the page may be

dirty, requiring the read data to be merged into the progressive page selectively. We discuss

these issues more fully in Section 5.2.

5.1.1.2 Client Writes

In a progressive page cache, file writes are even simpler to process than file reads,

the data is simply merged into the cache. Any existing pages are updated with the new

data; for pages that do not exist a blank page is constructed, and the file regions are written

into the blank page and the file region set for the page is updated.

5.1.1.3 Progressive Page Cache Evictions

The progressive page cache uses the same close-to-open consistency model we de-

scribed in Chapter 4. Cache page evictions occur under three scenarios: the cache is full

and a client read operation requires a new cache page, the cache is full and a client write

operation requires a new page, or a file is closed. Because our cache uses a write back

policy for committing data to the file system, only during page evictions is data actually

stored to the underlying parallel file system. If the evicted page contains file regions that

have been updated in the cache, but not sent to the backing store, then the regions are writ-
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ten to the file system. Based on the results of our earlier work we construct all of the fully

updated pages into a single request using a block-indexed data type, and all of the partial

pages are written with a request using the more general indexed data type. Requests using

a file view based on the indexed data type are able to describe the irregular file regions

typical of partial cache pages [55].

5.2 Implementation Details

The chief problem with implementing a progressive page cache organization is de-

termining how to organize the actual progressive pages. In a fixed-size cache the page

organization is straightforward: the keys are held in a fast lookup data structure such as

a hash table, a list stores the LRU status, and the pages can be stored consecutively in

an array or managed dynamically with little penalty in either case. The only additional

state required for the data pages is a single bit to indicate if a page contains data not yet

committed to the file system (i.e. a dirty bit).

The basic organization of the progressive state cache is similar: a hash table for

keys and a list for LRU sorting. However, for a progressive page the amount of state to

be stored with the page is considerable, and thus how we store the data pages will depend

significantly upon how we choose to store the state information. Obviously, our page im-

plementation will attempt to balance ease of implementation, runtime performance, and

storage overhead.

In selecting implementation appropriate data structures, we need to first examine

exactly what type of operations a progressive page cache will need to perform in order to

read, write, and evict cache pages. Upon receiving a file read or file write, the cache first

needs to determine if the file regions described by the requested I/O exist in the cache.

Because the page may not be fully populated, the cache lookup may require traversing the
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file regions to find the updated regions. In the case of a file write, it will also be necessary to

update each requested page with new file regions, and/or merge with existing file regions.

Finally, during page eviction, we must extract all of the updated file regions from a page

in order to perform file data write backs. More generally, we can categorize the three

fundamental operations as cache lookup, cache insertion, and cache eviction.

Based on the description of these operations, we see that we will need state infor-

mation so that the cache can determine which information on a page is valid. In the case

where the cache page is the result of a file read, this determination can be done simply by

adding a single bit identifying if the page has been read from the backing store or is the

result of client file updates. Analogous to the fixed-size page caches dirty-bit, we call this

the valid-bit, and it describes whether the non-updated data in the cache page is valid, or

not.

Although figure 5.1 shows the set of updated file regions maintained as a doubly

linked list, there are several possible data structures we could choose to maintain the set of

active file regions within the cache page. In the next sections we look at two possibilities,

a dirty-mask and a file region tree, and examine the costs and benefits of each in terms of

runtime and cache memory requirements.

5.2.1 Page Dirty-Mask Overview

The first mechanism we describe for maintaining the set of updated file regions is

a dirty-mask assigned to each page in the progressive page cache. In this approach, we

choose not to describe the updated regions explicitly, but rather for every updated byte in

the page, we set a corresponding dirty bit in the page’s dirty-mask bit vector. For example,

in a progressive page cache with 512 byte pages, each cache page will have 512 state bits

to describe the dirty status of each cache page. This approach has the disadvantage of
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describing the state of pages that may not be valid at all; however, for some workloads it

will provide the smallest possible runtime and storage overhead. We begin our analysis of

the dirty-mask approach by examining the runtime of the three critical cache operations we

described earlier: insertion, lookup, and eviction.

5.2.1.1 Insertion Runtime

Given a request to insert into the progressive page cache of size R, the time spent

updating the dirty mask on a file region insertion is the time it takes to update R bits in

the dirty-mask. Figure 5.2 shows one possible implementation for the dirty mask insertion

algorithm in C. As the code listing shows, the total execution total cost of updating the page

dirty mask during a file region insertion is 17 + ⌈R/8⌉ integer operations and 1 + ⌈R/8⌉

comparison operations. The runtime asymptote is O(R).

5.2.1.2 Lookup Runtime

File region lookups into the progressive page cache occur when trying to satisfy a

file read in the local cache. Given a lookup request for a file region of size, R, the total time

spent inspecting the cache pages spanned by R is the time it takes to read the value from R

bits of dirty mask. The code listing supplied in figure 5.2 can be easily modified to test that

each bit for the desired file region is set using 15+⌈R/8⌉ integer operations and 3+⌈R/8⌉

comparison operations. The runtime asymptote is again O(R).

5.2.1.3 Eviction Runtime

Finally, we look at the time required to perform a cache page eviction. On a cache

page eviction, it is necessary to update the status for the entire bit vector so that the page

may be safely used with its newly mapped data. Although it may be possible to combine the

dirty-mask eviction update with the update required for the new data insertion, the runtime
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1 void i n s e r t ( char∗ page_mask , i n t o f f s e t , i n t e x t e n t )

2 {

3 /∗ Update t h e f i r s t b y t e ∗ /

4 i n t f i r s t _ b y t e = o f f s e t / 8 ;

5 i n t f i r s t _ b y t e _ o f f = o f f s e t \% 8 ;

6 i n t f i r s t _ b y t e _ l o = 8 − f i r s t _ b y t e _ o f f ;

7 i f ( e x t e n t <= f i r s t _ b y t e _ l o )

8 {

9 /∗ Update t h e o n l y b y t e f o r t h i s page ∗ /

10 char mask = ( ( 1 << e x t e n t ) − 1) << f i r s t _ b y t e _ o f f ;

11 page_mask [ f i r s t _ b y t e ] | = mask ;

12 }

13 e l s e

14 {

15 /∗ Update t h e f i r s t b y t e ∗ /

16 char mask = ( ( 1 << f i r s t _ b y t e _ l o ) − 1) << f i r s t _ b y t e _ o f f ;

17 page_mask [ f i r s t _ b y t e ] | = mask ;

18

19 /∗ Update t h e l a s t b y t e ∗ /

20 i n t l a s t _ b y t e = ( o f f s e t + e x t e n t ) / 8 ;

21 i n t l a s t _ b y t e _ l o = ( o f f s e t + e x t e n t ) \% 8 ;

22 mask = ~ ( ( ( 1 << (8 − l a s t _ b y t e _ l o ) ) − 1) << l a s t _ b y t e _ l o ) ;

23 page_mask [ l a s t _ b y t e ] | = mask ;

24

25 /∗ Update t h e r e m a i n i n g b y t e s ∗ /

26 i n t s e c o n d _ b y t e = f i r s t _ b y t e + 1 ;

27 i n t s e c o n d _ l a s t _ b y t e = l a s t _ b y t e − 1 ;

28 f o r ( i n t i = s e c o n d _ b y t e ; i <= s e c o n d _ l a s t _ b y t e ; i ++)

29 {

30 page_mask [ i ] | = −1;

31 }

32 }

33 }

Figure 5.2: Example of dirty mask region insertion code in C
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is still proportional to O(nP), where n is the number of pages to evict and P is the size of

a page in the progressive page cache; or, more simply, O(P). The total number of integer

operations required to perform the update is ⌈P/8⌉ operations.

5.2.2 File Region Set Overview

The obvious alternative to the mask-based approach described in the previous sec-

tion is to simply store the offset and extent pairs for just the updated regions in a cache

page. Then as lookups, inserts, and evictions occur the set of file regions can be searched,

appended, and erased as necessary. Not surprisingly, the data structure we use to store

the data set has a significant impact on storage overhead, cache performance, and even

implementation difficulty.

In figure 5.1 we saw the file regions stored in a doubly linked list, but a quick anal-

ysis demonstrates that this organization is unlikely to yield optimal results. For example,

if we wish to insert adjoining file regions, from an overhead standpoint, we would ideally

merge the two regions together. Given a linked list of updated file regions, it is neces-

sary to check every region in the list for an overlapping sub-region. Sorting the list by the

offsets seems like it may help, but without constant time access to random list elements,

insert time is still proportional to the number of file regions in the list. Fortunately, we can

more simply select a binary search tree as our data structure, and leverage the resulting log2

performance for search and insertion.

Figure 5.3 shows a visual representation of a file region set implemented as a binary

search tree [12]. The tree sort key is the file region offset and the tree nodes have been

modified to store additional data in the form of the file region extent. In addition to the left

and right child node pointers typical of a tree structure, nodes also maintain a parent node

pointer. The parent node pointer is needed to allow easy iteration over the tree nodes, an
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Figure 5.3: A binary search tree for file regions. The offset is used as the key field, with

the extent tacked on as additional node data.

operation required to maintain the constraint that no file regions in the tree overlap. The

non-overlapping constraint is important in achieving adequate performance for lookups and

reducing the tree’s memory footprint.

5.2.2.1 Insertion Runtime

Inserting into the file region tree can be decomposed into three basic steps. First,

find the tightest lower bounding file region and resolve any overlapping regions with the

file region to insert. Second, check the upper bounding regions to determine if the new

region overlaps any following regions, and resolve those overlapping areas. Finally, insert

the new region if no overlapping regions were located.

Listing 5.1 shows the algorithm for finding the next lowest file region before the

region to insert. The algorithm is basically the same as a binary search tree insert, although

we return the parent node, rather than add a child to the node.

Using the lower bound algorithm, we can then formulate an algorithm for inserting

into our non-overlapping file region tree. Listing 5.2 shows the algorithm for inserting into

the file region tree. In part I, we find the lower bounding region and adjust it if it overlaps.
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Algorithm 5.1: LowerBound(Tree tree, FileOffset offset) : Node

begin1

node← Root(tree)2

lb← NIL3

while node 6= NIL do4

if o f f set < node.o f f set then5

lb← node6

node← node.le f t7

else8

node← node.right9

end10

end11

return lb12

end13

In part II, we subsume the regions that follow the new region, and add those as overlapping

if necessary. Finally, we insert the new region just above the lower bound if no overlaps

occur. Following the insertion, the tree may require re-balancing. In our implementation

we used a standard red-black tree approach to maintain a balanced search tree [13].

In order to analyze the runtime for Listing 5.2 let us define the following cache

parameters:

• Let P be the size of a cache page, and

• Let R be the size of the new file region, and

• Let Q be the number of regions already stored on the page, and

• Let V be the number of regions the new file region overlaps on the page.

In Part I of the insertion algorithm, the call to LowerBound has runtime in the same order as

a standard tree insertion, O(log2(Q)) with at most 10 integer operations and 2 comparison

operations of overhead. The time to iterate over the succeeding regions to find subsumed

regions is proportional to O(V ) with a total overhead of 6V + 2 integer operations and 2V
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Algorithm 5.2: Insert(SortedFileRegion regions, FileRegion newRegion)

begin1

// Part I.

hasPriorOverlap← false2

lb← LowerBound (regions, newRegion.offset)3

lbEnd← lb.o f f set + lb.extent4

if newRegion.o f f set ≤ lbEnd) then5

prior.extent ← Max (priorEnd, newEnd) - prior.o f f set6

newRegion← prior7

hasPriorOverlap← true8

end9

// Part II.

newEnd← newRegion.o f f set +newRegion.extent10

iterator← getNext(regions, iterator)11

while iterator.o f f set ≤ newEnd do12

nextEnd ← iterator.o f f set + iterator.extent13

newRegion.extent← Max (newEnd, nextEnd)−newRegion.o f f set14

Erase (regions, iterator)15

iterator← getNext(regions, iterator)16

end17

// Part III.

if hasPriorOverlap = false then18

AddChild(lb, newRegion)19

end20

end21
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comparison operations. Finally, the time to perform insertion if no overlapping regions is

performed requires only 1 comparison operation and 6 integer operations, because the new

region can simply be inserted as a child of the lower bound node, so O(c). In the worst

case, the value for V is P/2, resulting in an algorithm runtime of O(P); however, as that

requires updating every other byte in the page, we classify the runtime of tree insertion as

O(log2(Q)).

5.2.2.2 Lookup Runtime

In order to perform a Lookup operation on a file region, we need to search for the

element in the tree with the largest file region offset that is smaller or equal to the lookup

region’s offset. Just as in the earlier insert algorithm, the LowerBound algorithm described

in Listing 5.1 provides exactly the behavior we desire. If the located lower bound region

does not fully overlap the lookup file region, then the entire page will need to be retrieved to

satisfy the read. For the Lookup operation to provide correct behavior, we must ensure that

no file regions in the tree overlap. Of course, the insertion algorithm provided in Listing 5.2

maintains the non-overlapping region constraint, thus a single call to LowerBound can be

used to perform file region lookups. As discussed earlier, the runtime of LowerBound is

asymptotically the same as a binary tree search, or simply O(log2(Q)), where Q is the

number of non-overlapping file regions stored for the cache page.

5.2.2.3 Eviction Runtime

During a page eviction, we need only to erase the nodes in the file region tree. So

the runtime for page eviction is simply proportional to the number of updated regions in

the page, or O(Q). As we stated earlier, in the worst case, the value for Q is P/2, resulting

in an algorithm runtime of O(P)
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Dirty-Mask File Region Tree
Procedure

Runtime Order Add. Overhead Runtime Order Add. Overhead

17opsint+ (6V +8)opsint+
Insert O(R)

1opscmp
O(log2(Q)+V )

(2V +1)opscmp
15opsint+

Lookup O(R)
1opscmp

O(log2(Q)) 1opsint

Evict O(P) 0 O(Q) 0

Table 5.1: Expected case runtimes for performing the three critical progressive page

caching operations. Worst case performance is triggered by inserting a region that fully

writes a mostly updated page (R = P).

5.2.3 Data Structure Comparison

Table 5.1 shows the run time asymptotes for the dirty-mask and file region tree

progressive page implementations. The expected runtime performance and the worst case

performance are shown for both implementations. For the purpose of comparing the run-

times of both approaches easily, we define the worst-case for the dirty mask to be when the

page has been fully updated minus one byte. The file region tree implementation presents

worst-case performance when the page has been updated with an alternating byte pattern

(every other byte), resulting in a fully populated file region tree.

Table 5.1 shows that asymptotically, insert performance will on average be no worse

for the region tree than it is for the dirty mask; however, the large additional overhead

(which does not include any costs associated with maintaining the balanced tree constraint

or dynamic memory management) dominates the logarithmic performance of the file region

tree for all but the largest page sizes. The simplicity, and easy optimization of the dirty-

mask approach means that it will be faster for typical page sizes, and even more so when

the newly inserted region overlaps many existing file regions.
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Page Dirty-Mask File Region Tree

Size Overhead Maximum Break-even

512 bytes 64 bytes 1344 bytes 2 regions

4KB 512 bytes 14592 bytes 18 regions

64KB 8KB 315392 bytes 292 regions

256KB 32KB 1425408 bytes 1149 regions

Table 5.2: The memory overhead required to store file region metadata for 4 page sizes.

The break-even column describes the number of file regions that can be stored in the same

amount of storage as the dirty-mask.

For the lookup operation, the relationship between the sizes of R and Q likely deter-

mines which data structure produces better search performance. Because the file region tree

is implemented as a balanced binary search tree, lookups can easily be performed in time

proportional to the logarithm of the number of existing file regions with very low overhead.

The dirty-mask approach can locate the file region to examine in constant time, but must

process the region a bit or byte at a time, resulting in time proportional to the requested

region size. In terms of the problem domain of our cache middleware, small, unaligned file

regions, we expect that R will generally be larger than Q, and thus the performance of the

file region tree is likely to be better than the dirty mask performance.

Finally, we look at the eviction operation. Although the file region tree approach

has the opportunity to do less work than the dirty-mask when Q << P, the existence of

hardware support for the memset function probably means that the dirty mask provides

similar, if not better performance for most realistic cache page sizes.

Table 5.2 shows the progressive page file region storage overhead for both the dirty-

mask and the file region tree. As you can see the overhead for the dirty-mask is always

the same, and provides fairly good compression with the bit-per-byte mapping scheme,

meaning that the file region set can be represented with one-eighth of the cache page size.

The memory overhead asymptote is O(P).
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The file region tree, not surprisingly, results in much worse compression when the

maximum number of file regions are populated. The file region offset and extent can be

stored in 2log2(P) bits. Assuming we are pre-allocating the storage for the file region tree,

we can store the left, right, and parent node pointers in 3 log2(P/2) bits. The total storage

required per node is 5 log2(P)−3. The maximum number of file regions per page is P/2.

Multiplying the two terms together we see the asymptotic bound on the memory overhead

is O(P log2(P)), a log factor worse than the dirty-mask approach.

Fortunately, this memory layout is not the only possibility. If we instead use 64-

bit pointers to represent the left, right, and parent pointers for each node in the file region

tree, we can dynamically allocate the nodes (in fact, we could store the tree data in an ar-

ray that grows dynamically and use the smaller pointers described above, but the resulting

copy operations and memory management is beyond the scope of this dissertation). The

final column of table 5.2, titled Break-even, shows the number of such dynamically allo-

cated file region nodes the tree can store per page before consuming more storage than the

per page storage used by the dirty-mask scheme. For context, recall that the FLASH I/O

benchmark performs less than 250 writes per process before closing the file, thus forcing

cache page evictions. Further, those writes do not all occur on the same page and are not

all on disjoint file regions. For many workloads, the dynamically allocated file region tree

will consume less memory and provide better runtime performance than the dirty-mask

approach.

5.3 Performance Analysis

Given our earlier analysis of the overheads associated with the two competing ap-

proaches to storing progressive page cache metadata, it would be useful to examine how

differing cache page sizes and capacities perform. Our simulator is intended to provide ac-
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Figure 5.4: FLASH I/O benchmark execution time with a progressive paged cache on 8

CPUs, 1 process per node, and 4 I/O Nodes over Gigabit Ethernet.

curacy for high latency network and disk operations, rather than the much smaller latency

associated with simulating a microprocessor. Fortunately, our earlier analysis that demon-

strated that at the request and page sizes we are interested in benchmarking, the runtimes of

our progressive page processing are likely to be suitably fast (logarithmic or linear time),

and sufficiently similar. In particular, when compared to the order of magnitude slower

network and disk latencies associated with parallel file system access, we feel confident

that discarding algorithm runtime is unlikely to contaminate our results.

5.3.1 Baseline Performance

As in the last chapter, we begin our examination of progressive page cache perfor-

mance by examining how our cache affects performance at small scales. Figures 5.4 and

5.5 shows a surface plot and heat graph expressing the total execution time of the FLASH

I/O benchmark configured to run on a cluster with 8 single-core compute nodes accessing a

parallel file system running of 4 I/O nodes. In figure 5.4 we see that using the Gigabit Eth-

ernet network, we are able to generate a relatively stable performance improvement at most
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Figure 5.5: FLASH I/O benchmark execution time with a progressive page cache on 8

CPUs, 1 process per node, and 4 I/O Nodes over Myrinet Myri10G.

Page Size Cache Size Total Exec. Time Speedup

256KB 8MB 0.2770 7.75

256KB 16MB 0.2772 7.74

256KB 2MB 0.2808 7.65

256KB 4MB 0.2831 7.58

Table 5.3: Best performing cache configurations with progressive page caching on Gigabit

Ethernet (8 CPU, 4ION).

cache page sizes. The smallest page sizes exhibit a small degree of performance degrada-

tion, but the unstable performance of our previous cache designs appears to be largely gone.

This is in part due to the progressive nature of the cache and the intelligent application of

high-level data types to reduce the number of file system transactions.

Figure 5.5 shows execution time using the same simulation configuration with the

exception of the network, which is configured as a Myrinet Myri10G interconnect. We can

see that the progressive page cache pairs with the low latency, high bandwidth Myri10G

network to produce excellent performance over the entire range of cache configurations.

Tables 5.3 and 5.4 show the four best performing cache configurations with pro-

gressive page caching for Gigabit Ethernet networks and Myrinet Myri10G networks, re-
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Page Size Cache Size Total Exec. Time Speedup

256KB 16MB 0.1667 8.58

128KB 16MB 0.1801 7.94

64KB 16MB 0.1872 7.64

32KB 16MB 0.1892 7.56

Table 5.4: Best performing cache configurations with progressive page caching Myrinet

Myri10G (8 CPU, 4ION).
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Figure 5.6: FLASH I/O benchmark execution time with the Block-Indexed data type opti-

mization on 1 CPU, 8 processes per node, and 4 I/O Nodes over Gigabit Ethernet.

spectively. The speedups are impressive and improve upon the results of our fixed-size

page caches from the last chapter. Even more interesting is the clear correlation between

the size of the cache page and performance. Clearly cache capacity is a relevant factor,

but the emergence of page size as a strong factor in cache performance has several impor-

tant ramifications in how we select the data structure to store the cache metadata, and thus

provides important insight into progressive caching.
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Figure 5.7: FLASH I/O benchmark execution time with the Block-Indexed data type opti-

mization on 1 CPU, 8 processes per node, and 4 I/O Nodes over Myrinet Myri10G.

Page Size Cache Size Total Exec. Time Speedup

256KB 16MB 0.5903 7.21

256KB 8MB 0.5998 7.10

256KB 4MB 0.6008 7.08

256KB 1MB 0.6020 7.07

Table 5.5: Best performing cache configurations with progressive page caching on Gigabit

Ethernet (1 CPU, 8PPN, 4ION).

5.3.2 Performance on Multi-core Nodes

Figures 5.6 and 5.7 show the Flash I/O benchmark performance running with a

progressive page cache on a single node with 8 cores and a single network link. Here, we

again see the return of performance instability for small page sizes when using the Ethernet

interconnect. The simulated cluster configuration with the Myrinet interconnect shown in

figure 5.7 exhibits much less performance degradation, again likely due to the superior

performance characteristics of Myri10G compared to Gigabit Ethernet.

Tables 5.5 and 5.6 show the fastest configurations of the progressive page caches

for multiple processes running on Gigabit Ethernet and Myrinet nodes. Again we note the
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Page Size Cache Size Total Exec. Time Speedup

256KB 16MB 0.1851 8.30

256KB 8MB 0.1947 7.89

256KB 4MB 0.2044 7.51

256KB 2MB 0.2096 7.33

Table 5.6: Best performing cache configurations with progressive page caching on Myrinet

Myri10G (1 CPU, 8PPN, 4ION).

appearance of cache page size as an apparent governing factor on performance, as all of the

fastest configurations use the largest tested page size, 256KB. And cache capacity appears

again as a predictor of performance, with more cache capacity resulting in more impressive

speedups.

5.3.2.1 Cache Sharing

Our final small scale configuration again looks at using cache sharing to improve

cache performance volatility and overall cache performance. The difficulties of using

shared memory management as an implementation medium for the file region tree may

make a shared implementation unlikely; however, the simulated performance results pro-

vide an interesting data point. Additionally, because multiple processes are sharing the

same cache pages, the number of updated cache regions may grow rapidly leading to large

metadata storage requirements for a region tree based progressive page cache. For a shared

progressive page cache, a dirty-mask based implementation may be more feasible given

limited budgets and schedule time. Also, we again note that shared caching violates close-

to-open-consistency due to close-based evictions only occurring for the last file close on

the node. A possible solution to this problem is to attach the process rank to each updated

region, and writing the page contents back to disk, but not evicting file pages that are closed

by one process on the node but remain open for other job processes.
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Figure 5.8: FLASH I/O benchmark execution time with a shared progressive page cache

on 1 CPU, 8 processes per node, and 4 I/O Nodes over Gigabit Ethernet.
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Figure 5.9: FLASH I/O benchmark execution time with a shared progressive page cache 1

CPU, 8 processes per node, and 4 I/O Nodes over Myrinet Myri10G.
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Page Size Cache Size Total Exec. Time Speedup

256KB 64MB 0.5799 7.34

256KB 32MB 0.5919 7.20

256KB 16MB 0.5960 7.15

256KB 8MB 0.5973 7.13

Table 5.7: Best performing shared progressive page cache configurations on Gigabit Eth-

ernet (1 CPU, 8PPN, 4ION).

Page Size Cache Size Total Exec. Time Speedup

256KB 64MB 0.1786 8.61

256KB 32MB 0.1865 8.24

256KB 16MB 0.2011 7.64

256KB 4MB 0.2012 7.64

Table 5.8: Best performing shared progressive page cache configurations on Myrinet

Myri10G (1 CPU, 8PPN, 4ION).

Figures 5.8 and 5.9 show the benchmark performance data for our final cache con-

figuration. Here we see that the cache performance is very similar to the performance of the

non-shared cache. However, in these configurations the shared cache is using one-eighth

the memory resources per node to achieve the same benchmark performance.

Tables 5.7 and 5.8 again show the four fastest configurations for each of the inter-

connection network types. Although the performance is slightly better than in the non-

shared case, the appeal of the shared cache is again the more efficient utilization of cache

space and the opportunity for increased request bundling. By dedicating only 8MB per

node to cache data (not including the file region metadata overhead), a shared cache can

provide significantly reduced benchmark execution times.
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5.3.3 Cache Performance At Scale

Based on our experimental analysis, we have been able to construct a middleware

cache that consistently achieves high performance for our benchmark program at small

scales. We now wish to explore the effects of middleware caching on our benchmark ap-

plication at larger scales.

5.3.3.1 Gigabit Ethernet Network Experiments

Due to the extensive simulation time required to produce results for large-scale

benchmarks, we are again limiting the number of measured cache configurations to a rep-

resentative subset of the entire configuration space. We have selected page sizes of 512B,

4KB, 64KB, and 256KB in order to measure page size effects at scale. For each page

size we perform our simulations using caches configured with data capacities of 2MB and

16MB. We do not include the space for progressive page overhead in our cache size config-

urations; however, considering the progressive page overhead can be considerable, we do

not think extremely large client-side cache sizes are likely to be interesting to research sci-

entists. Again, given 512 processes with 16MB progressive page caches, the cached data

alone may consume as much as 8GB of main memory. With progressive page overhead

we can imagine another GB of RAM dedicated to caching rather than application domain

code. Dedicating significantly more RAM to a file data cache is unlikely in our opinion.

Figures 5.10 and 5.11 show the execution times for the FLASH I/O benchmark

running as 512 processes on 64 Gigabit Ethernet nodes on file systems ranging from 1 I/O

node to 90 I/O nodes. The left hand figures demonstrate the performance of each pro-

gressive page size on a cache configured with 2MB of capacity and the right hand figures

show the benchmark execution time on caches configured with 16MB of capacity. As you

would expect, the larger caches provide better performance; however, the performance im-
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Figure 5.10: FLASH I/O benchmark execution time with a progressive page cache on 512

processes (64 Nodes, 8PPN) over Gigabit Ethernet (lower is better).
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Figure 5.11: FLASH I/O benchmark execution time with a shared progressive page cache

on 512 processes (64 Nodes, 8PPN) over Gigabit Ethernet (lower is better).
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Figure 5.12: FLASH I/O benchmark execution time with a progressive page cache on 1024

processes (128 Nodes, 8PPN) over Gigabit Ethernet (lower is better).

provement appears to be significantly impacted by cache page size, a much different result

than for our earlier fixed-size page designs. All of the configurations provide significant

improvement over the non-cached execution.

Similarly, figures 5.12 and 5.13 show the execution times for the FLASH I/O bench-

mark running as 1024 processes on 128 Gigabit Ethernet nodes. Again the parallel file sys-

tem configurations range from 1 I/O node to 90 I/O nodes. At the thousand process scale,

the performance improvements are greater for the larger cache sizes; however, increasing

the progressive page granularity seems to have the strongest effect on benchmark execution

time. All of the configured caches are able to improve the performance of the FLASH I/O

benchmark.

5.3.3.2 Myrinet Myri10G Network Experiments

In Chapter 4 we saw that our flawed simulation of the Myrinet interconnect likely

invalidated our large-scale cache configuration testing and results. We modified our simu-

lator to uncap the buffer size in hopes of providing a simulation of how a high-performance

network might perform, even though our simulation of such a network departs from reality.
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Figure 5.13: FLASH I/O benchmark execution time with a shared progressive page cache

on 1024 processes (128 Nodes, 8PPN) over Gigabit Ethernet (lower is better).

For these results, we perform the same modifications to our network model. As before, we

believe that this set of results is useful for describing how a low-latency, high-performance

interconnection network may perform with a progressive cache.

Figures 5.14 and 5.15 show the performance of the FLASH I/O benchmark simu-

lated on the enhanced Myrinet network infrastructure. Again, the use of a client-side cache

provides excellent performance improvements with both the cache per process and cache

per node configurations.

Finally, figures 5.16 and 5.17 show the execution time for the benchmark running

on a 1024 Myrinet interconnected processes. For the 2MB cache per node configuration

we can see that the performance is generally improved; however, users should clearly favor

a large page size. Similarly, when the cache size is increased to 16MB per node, the

cache is able to again improve performance for most file system configurations, but the

best performance is achieved with the largest page size, 256KB.
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Figure 5.14: FLASH I/O benchmark execution time with a progressive page cache on 512

processes (64 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch buffer size

(lower is better).
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Figure 5.15: FLASH I/O benchmark execution time with a shared progressive page cache

on 512 processes (64 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch

buffer size (lower is better).
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Figure 5.16: FLASH I/O benchmark execution time with a progressive page cache on 1024

processes (128 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch buffer

size.
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Figure 5.17: FLASH I/O benchmark execution time with a shared progressive page cache

on 1024 processes (128 Nodes, 8PPN) over Myrinet Myri10G with fully dynamic switch

buffer size (lower is better).
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5.4 Summary

In this chapter we introduced a new middleware caching paradigm for parallel file

systems, progressive page caching. We looked at two possible implementations for main-

taining the updated regions in a progressive page: a dirty-mask and a file region tree. We

did an in-depth analysis of the runtime and storage requirements of each approach, and

learned that if the number of updated regions in a page is relatively small compared to

the size of the page, the file region tree offers better asymptotic performance and smaller

storage overhead. These results were further strengthened by our small scale performance

results, which indicated that large page sizes were a strong component in configuring a

high-performance cache.

At large scale, the performance impacts of progressive page caching and the file

region tree scheme became even clearer. A correctly configured progressive cache has the

opportunity to strongly improve performance, and there is little risk that performance will

be made worse by selecting unfortunate cache parameters. On the other hand, it is impor-

tant to be selective in choosing the file I/O workloads with which to apply progressive page

caching. It is not hard to imagine workloads that result in large amounts of file region meta-

data storage, and perhaps even poor performance due to the growth in runtime proportional

to large page sizes.
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Chapter 6

MPI View Aware Aggregation

In our study of caching up to this point, we have frequently noted that the perfor-

mance benefits of file data caching did not rely so much upon reading data already resident

in the cache, but rather in improving the utilization patterns of the application to more

closely match the file system’s capabilities. In this chapter we examine a technique that

is independent of caching, but seeks to improve application performance by improving the

application access granularity directly.

6.1 Collective I/O Aggregation

One of the benefits of the collective I/O interface available in MPI-IO is that it

allows the application developer to provide more information to the middleware layers

allowing for further optimization. In a traditional POSIX-style read or write, the file system

is provided only a file handle, an offset, and an extent. In order to access sparse fields

within a file, the application developer must issue an independent series of accesses, which

makes it difficult for the underlying libraries to optimize access for the entire application

rather than simply for each request. The anticipatory disk scheduler provided by the Linux
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Figure 6.1: An example of a vectorized MPI file view. The file regions are assigned to the

processes in a round robin fashion, assuring that file reads and writes access only the file

data assigned to the individual process.

operating system was designed to address this issue by waiting for a small amount of time

after receiving an I/O request to see if the next arriving I/O request should be scheduled in

conjunction with the first request [30]. Although clever, this approach is not optimal and

has been replaced in the Linux kernel [53].

To address this problem, POSIX file I/O has been extended to allow a list of offset

and extent pairs to be included in a single I/O request. While the list I/O interface may be

adequate for a single executing process, parallel jobs are composed of multiple processes,

and the POSIX list I/O interface cannot incorporate the data from multiple processes into a

single request. The standardization committee for MPI-IO recognized this shortcoming in

the POSIX I/O specification and created collective I/O operations that allow the application

writer to specify a single I/O request that spans multiple processes. In addition to the

collective I/O interface, MPI-IO provides an alternative scheme for defining regular and

repeating file regions called file views.

Similar to database views, MPI file views allow each process participating in a

collective I/O to access only the disjoint set of file regions interesting to that process. For

example, if four processes are participating in a collective I/O operation and accessing the

file in a round-robin fashion, the application writer can specify a vector-based file view that
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describes how the entire file is partitioned among the cooperating processes. Figure 6.1

shows an example of how an MPI process views the file after applying a file view. The

utilization of MPI file views allows I/O library implementers to have greater knowledge of

how the application writer intends to access the file. Any MPI data type can be used to

build a file view, thus the application writer can specify vectorized access patterns, tiled

access patterns, or combinations of any valid MPI data type.

6.1.1 Two-Phase I/O with Data Sieving

Two-phase I/O is one of the earliest aggregation approaches applied to MPI collec-

tive I/O operations [54]. In two-phase, the requests are forwarded to a subset of the client

processes called aggregators. After all of the assigned collective I/O requests arrive at the

aggregator, the library extracts the minimum file offset and maximum file offset from the

assembled requests and requests all of the file data between the minimum and maximum

offset. Once the contiguous data region has been retrieved from the file system, the pro-

cess of extracting only the portions requested by the processes is called data sieving. In

the case where the requests as a group are significantly less partitioned than each request

independently the disk and network access performance increases dramatically.

Unfortunately, it is not difficult to imagine collective requests that will cause two-

phase to request far more data than is truly necessary. For example, if a collective I/O in-

tentionally accesses widely spaced out data regions, data sieving will retrieve the spaces in

between the data as well as the desired data, resulting in pathologically poor performance.

The implementers of data sieving have conceived of three solutions to this problem.

First, the file is partitioned round-robin among all of the aggregators, so that each

aggregator only receives collective requests for a portion of the file. The reorganization of

the requested file domains between the processes is called the shuffle step and may require
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additional remote communication between the job processes. Secondly, the data sieving

distance is limited to a configurable buffer size (by default 4MB) that prevents requesting

massive amounts of data between the file regions accessed by the application. Finally,

aggregation implementation determines if the data sieving step will request primarily non-

requested data, and if that is the case, simply forwards the individual collective requests to

the file system in that case.

6.1.2 View-based Aggregation

View-based aggregation modifies the basic data sieving aggregation implementa-

tion by sending the file views to the aggregators when the file view is set [5]. Then, rather

than sending the individual requests to the aggregator nodes, it is only necessary to send

the data buffer. At the aggregator, the buffer is mapped into the file views and the starting

and ending offsets are extracted from the file view information. A single request span-

ning the entire file data range from the starting offset to the ending offset is then sent to

the file system. In the case where remote communication is required between the job pro-

cesses and aggregators, view-based aggregation offers opportunities for better performance

by reducing the costs associated with the data shuffling step and does not result in worse

performance than data sieving with two-phase I/O.

6.1.3 View-aware Aggregation

In this dissertation we present a new approach to aggregation we call view-aware

aggregation. Similarly to view-based aggregation, the file views are sent to the aggregator

and used to perform the request aggregation. However, rather than assume that the aggre-

gator is a remote node, we operate under the assumption that aggregation is performed for

all of the processes running on a single compute node. Thus the file views are accumulated
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into shared memory at the aggregator without the need for a data shuffle step. As the file

views are accumulated into shared memory, a new file view is constructed that combines all

of the existing file view data types into a single data type if possible. When a collective I/O

operation is performed on a compute node, all local processes participating in the collec-

tive operation will issue their requests into the shared buffer. The collective participant that

arrives last in the buffer will then perform the file system request using the shared buffer of

client data and the aggregated file view constructed earlier.

6.2 Implementation Details

At present, we are unaware of a valid algebra that can be used to combine arbitrary

data types during request aggregation. MPI data types are very similar to a restricted set

of regular expressions, but the Kleene algebras that exist for regular expression languages

are descriptive and do not include operators for unification or equivalence among expres-

sions [38]. Instead, we are relying on the assumption that most collective I/O operations

will attempt to access the file with similar data types. Thus we can apply a heuristic ap-

proach to combining MPI file views.

In general, we believe that most scientific data solvers tend to operate on similar

MPI data types. For example, if a scientist requires a matrix-matrix multiplication, most

implementations will attempt to read the matrix data from the file using roughly equally

sized chunks of the matrix at each process. In this case, the MPI file views are likely to be

very regular, and a heuristic approach to combining the types can be effective. Similarly,

if a vector of data is to be distributed among all of the processes, a heuristic approach can

construct a single high-level data type of the complementary strided access patterns. On

the other hand, if the file views in use are related in a subtle, or hard to detect fashion,

our heuristic approach will fail, and our implementation will have to resort to simple data
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Figure 6.2: An example of a MPI vector data type.

sieving, or simply issue each request individually. Even when no prepackaged heuristic is

capable of performing the view union, it may be possible for the application developer to

provide a custom procedure for performing an application specific view aware data type

re-combination such that the aggregators can provide improved performance.

6.2.1 File View Unions

At present, we have only developed a small number of union algorithms for use with

our view-aware aggregator. In general, our approach to view joining has been to detect a

fundamental period for the data types in use, and then perform the combination based on

the size of the contiguous regions within the fundamental period. For example, consider a

set of file views based on the vector data type. The vector data type is parameterized with

a count, a block length, a stride, and the type of data stored in the vector (called the old

type). The count is the number of blocks in the vector. The block length is the number

of elements per block, and the stride is the number of elements between the start of each

block.

Figure 6.2 shows an example of the valid data regions specified by a vector data

type. In general, we expect that the vector described by the vector data type will be parti-

tioned relatively evenly amongst all of the processes participating in a collective file I/O. In

the case where all of the file views use the same vector block length and stride, with only
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Figure 6.3: An example of a MPI subarray data type.

differing initial type displacements or counts, it is easy to assemble the beginning and end-

ing offsets for a block into a set of offset and extent pairs, and then extract the contiguous

regions for each block. Our code to perform this combination uses the code similar to the

file region tree described in Chapter 5.

We perform a similar composition with file views using the Subarray data type. The

Subarray data type is specified by an array of sizes, an array of sub-sizes, an array of starts,

and a data ordering. The sizes array describes the size of the full array dimensions. The

sub-sizes array describes the size of the sub-array dimensions. The starts array describes

the offset into each full array dimension, and the data ordering specifies whether the data is

stored in row-major order as in C, or in column-major order as in FORTRAN. Figure 6.3

shows an example of the data described by a subarray data type in MPI. In order to com-

bine subarray data types to construct a unified data view, we essentially require that the

sizes array must be identical for all composition data types, the sub-sizes array must be

identical in all dimensions not storing data contiguously, and the starts array must generate

a valid data period. While this set of constraints is stringent, if all of the array data is to be

distributed relatively evenly among the processes, these constraints are likely to be true for
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most of the collective participants. The unified Subarray data type can be constructed by

collecting the length of elements in the contiguous dimension. If all of the contiguous data

forms a single contiguous region, we construct a new Subarray data type. If the regions

are not contiguous, we instead construct an Indexed data type to describe the disjoint data

regions.

These same techniques can be used to combine Darray, Indexed, and Block-Indexed

data types – provided that the individual data types all have the same fundamental period

size. We have not explored any heuristics for combining irregular and non-periodic data

types such as the MPI struct data type. If there does exist a fundamental period allowing a

single data type to represent the data for multiple processes, users should be able to extend

our approach to provide further data type combining heuristic approaches.

6.2.2 MPI Tile I/O Benchmark

In order to evaluate our view-aware aggregation scheme we are using a popular non-

contiguous I/O test called the MPI Tile I/O benchmark [47]. The MPI Tile I/O benchmark

accesses the file as a two dimensional array, with each process in the MPI job assigned a

portion of the array called a tile. Each tile is 80 bytes by 1000 bytes, and before performing

any file I/O the benchmark sets a Sub-array data type as the MPI file view to ensure that

each process retrieves only the tile assigned to that process. All processes then participate

in a collective file write operation or a collective file read operation depending on whether

the benchmark is set to generate the tile data or access existing tile data.

Figure 6.4 shows how the tile I/O data is partitioned among the MPI processes.

During a file read, all of the tile data will be retrieved from disk due to the simulated

operating system buffer cache beginning in an empty state. During a file write of the tiled

data the data will primarily be written into the operating system buffer cache without a
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Figure 6.4: The MPI Tile I/O benchmark distributes two-dimensional tiles of data from

within a single file to all of the job processes. The contiguous row data is limited to 80

bytes per process with 1000 columns per tile for a total I/O size of 80 kilobytes of data per

process.

synchronous flush to disk. In theory the tile I/O read performance is heavily governed

by the disk performance while the tile I/O write performance is primarily limited by the

network bandwidth. In fact, due to the challenging nature of the tile I/O benchmark and the

large number of nodes configured for our simulations we will see that switching hardware

will often become a critical bottleneck for many of our optimization attempts.

It is important to note that we do not use the current default behavior of the PVFS

driver in MPICH2 to access the tiled file data. The current driver accesses each contiguous

tile row with an individual request; thus, for an 80x1000 tile, 1000 requests are generated

to access the file data for each MPI process. Instead we use the high-level data type in-

terfaces available in PVFS to access the tiles using a sub-array data type directly from the

file system. By utilizing the file views within the MPI driver for PVFS we are able to

avoid the overhead of deconstructing each non-contiguous file region into a separate I/O

request, greatly improving file system performance in the base case. Additionally, we have

modified the benchmark to access the tile I/O pattern collectively multiple times accessing

data further along in the file each time without any overlap in file regions. We perform

100 access iterations in succession for the small scale benchmarking results and 50 access

iterations for the large scale results. A single access iteration did not result in long enough
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Figure 6.5: Simulated execution time for MPI Tile I/O benchmark using 64 file system

clients (8 processes per node) connected with Gigabit Ethernet

runtimes to perform a straightforward data analysis.

Figure 6.5 shows the simulated baseline performance for the tile I/O benchmark

executing on 64 compute nodes with 8 processes per node using the Gigabit Ethernet man-

agement network. The x-axis shows the number of I/O nodes employed by the parallel file

system and the y-axis shows the benchmark execution time. We present the file write and

file read times separately, and note that the file write is primarily network bound while the

file read is primarily disk bound. We have also included timings for a shared fixed-size

page cache and a shared progressive page cache, both configured with a cache page size

matching the longest aligned contiguous region accessed in the file. Although our earlier

caching results were able to significantly improve the performance of the flash I/O bench-

mark, the high-level Subarray data type already exploited by the tile I/O benchmark is able

to provide better performance then the more general page-based data types used by the

cache.

Figure 6.6 shows the same benchmarking result, this time using a Myrinet network

without a global limit to the total switch buffer size (though the amount of buffer available

to each network port is still limited). We have again included the benchmarking times
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Figure 6.6: Simulated execution time for MPI Tile I/O benchmark using 64 file system

clients (8 processes per node) connected with Myrinet

using our earlier caching designs; however both fixed-size page caching and progressive

page caching were unable to significantly improve the benchmark performance.

6.3 Performance Analysis

Like our earlier shared caching approaches, view-aware aggregation seeks to im-

prove performance by increasing the granularity of file system access. Multiple collective

I/O requests are assembled into a single I/O request at each computation node. By reducing

the costs associated with sending multiple requests over the network and updating the data

file once rather than multiple times, we anticipate that view-aware aggregation can increase

performance for applications that leverage collective I/O.

6.3.1 Small Scale Evaluation

As has been our practice in previous chapters, we begin our performance evaluation

with a single multi-core computation node and a small file system configuration. Table 6.1

shows the execution time of the MPI Tile I/O benchmark running as 8 processes running
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Aggregation Total Time (GigE) Total Time (Myrinet)

Scheme Read secs. Write secs. Read secs. Write secs.

None 2.89164 2.66067 1.23024 0.436352

Data Sieving 2.92259 N/A 1.13668 N/A

View-Aware 2.92322 2.32597 1.13785 0.231396

Table 6.1: Tile I/O execution time on 1 CPU, 8PPN, 4ION.

Aggregation Disk Time (GigE) Disk Time (Myrinet)

Scheme Read secs. Write secs. Read secs. Write secs.

None 0.96861 0.17585 0.97289 0.17720

Data Sieving 0.82454 N/A 0.82563 N/A

View-Aware 0.82552 0.03222 0.82738 0.03220

Table 6.2: Tile I/O disk access time on 1 CPU, 8PPN, 4ION.

on a single computation node. The underlying parallel file system is configured with 4 I/O

servers. The difference in performance between the direct file system access, data sieving

aggregation, and view-aware aggregation is modest at small scales; however there is clearly

a small degree of performance improvement when writing the tiled data over the Myrinet

network.

Table 6.2 shows the maximum time spent accessing the disk on the I/O nodes for

each aggregation scheme. As the timing data shows, one of the advantages of aggregation

schemes is the improved efficiency achieved in accessing the underlying file system storage

components. Data sieving and view-aware aggregation effectively result in the same disk

access time in this benchmark execution because both schemes are able to aggregate all

of the collective I/O requests together into a single contiguous request. Of course, for this

configuration, data sieving could be performed without a shuffle-step because the entire

array of data was accessed by a single compute node. In the more general case, data

sieving will require an extra communication phase because each compute node accesses

eight possibly contiguous sub-array regions, but the data in between the sub-array rows is
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larger than the sub-array, and thus the aggregator will request far more data than is actually

required by local processes. The only solution provided by the full two-phase solution is

the shuffle step that requires an additional one-to-many communication for each process

to every aggregator allowing the requests to be reorganized into contiguous file domains

assigned to each aggregator. Otherwise, the aggregator requests will include large regions

of data not explicitly requested by the constituent processes.

6.3.2 Large Scale Evaluation

For our evaluation of view-aware aggregation at large scales we have traced the MPI

Tile I/O benchmark on 512 processes. Because of the extended simulation time required

to measure execution time for 512 processes, we only perform the tile I/O access pattern

50 consecutive times per process rather than the 100 iterations we performed for our small

scale testing.

6.3.2.1 Gigabit Ethernet Network Experiments

Our simulated Gigabit Ethernet based on the hardware in Palmetto struggled to take

advantage of the improved performance associated with view-aware aggregation. Although

the disk access times for the view-aware approach were significantly improved, the network

switch was unable to cope with the large amount of data arriving to and from each network

port. As the switch buffers overflowed, Ethernet frames required multiple back-off and re-

transmission cycles eventually leading to collapse in TCP throughput. This problem, called

switch in-cast, has been frequently observed for large scale storage system access [59].

Figure 6.7 shows the execution time for both writing and reading the two-dimensional

tile data from a file. In the case of the file read, the disk access appears to act as a gov-

ernor, limiting the network traffic and achieving a reasonable performance improvement
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Figure 6.7: MPI Tile I/O benchmark execution time with view-aware aggregation on 512

processes (64 Nodes, 8PPN) over Gigabit Ethernet (lower is better).

over the base case execution time. The file write, however, triggers TCP collapse, and the

primarily network bound tile data write with view-aware aggregation achieves much worse

performance than if the optimization is not applied at all.

Due to the large scale of modern cluster computers several solutions have been

proposed to lessen switch in-cast and TCP collapse in storage systems [59]. In this disser-

tation, we apply the simplest solution, we double the size of the switch buffers. Figure 6.8

shows the performance of our view-aware aggregation optimization on the exact same con-

figuration as figure 6.7 with the exception that the amount of memory available within the

network switch has been doubled. With this cluster configuration it is easy to examine the

improved benchmark performance achieved via view-aware aggregation.

6.3.2.2 Myrinet Myri10G Network Experiments

Because our Myrinet simulation suffered from a similar in-cast induced perfor-

mance problem earlier, we have again uncapped the limit on the available amount of mem-

ory in the entire switch; however, the amount of memory per switch port is still limited to

4000 bytes. Figure 6.9 shows the performance of the Tile I/O benchmark with view-aware
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Figure 6.8: MPI Tile I/O benchmark execution time with view-aware aggregation on 512

processes (64 Nodes, 8PPN) over Gigabit Ethernet with increased switch buffering (lower

is better).

aggregation at each compute node over the simulated Myrinet Myri10G interconnect. The

initial file write performance instability is triggered due to insufficient switch buffering;

but as the number of switch ports in use is increased due to a larger number of I/O nodes,

the view-aware aggregation optimization demonstrated considerable performance improve-

ments. In the case of the tile data read, the view-aware aggregation again significantly

improves upon the performance of the default file system interface.

6.4 Summary

View-aware aggregation is a promising approach to improving the performance of

applications already leveraging high-level data types and collective I/O operations. Unfor-

tunately, view-aware aggregation does not pair well with our existing cache designs due to

loss of typing data that occurs as data is copied into the cache. A useful modification to our

earlier caching schemes could allow the cache to somehow use the data type supplied by

the aggregator for later file system access. Unfortunately, we never found an approach for

such a mechanism that could meaningfully improve performance beyond that provided by
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Figure 6.9: Comparison of empirical and simulated parallel file system bandwidth using 64

file system clients (8 processes per node) connected with Myrinet

the plain view-aware aggregator.

One drawback to the increased granularity of access provided by view-aware aggre-

gation is the requirement to use extremely high-end switching hardware to achieve actual

performance improvements. Modest commodity network switches simply will not provide

the degree of network buffering needed to support applications running on hundreds or

thousands of processes and accessing large-scale file systems running on tens or hundreds

of I/O nodes. As the core density of modern clusters increases, the advantages of high-level

request aggregation will become more and more relevant, but the network buffering capac-

ity of storage networks will need to grow proportionately to support the increasing number

of execution threads per network interface.
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Chapter 7

Conclusions

In this dissertation we have focused on performing a rigorous study of the perfor-

mance impacts of several different client-based caching architectures. In Chapter 1 we

describe several workloads that exhibit performance problems for parallel file systems and

described 3 file data cache designs to improve performance: shared caching, progressive

page caching, and view-aware data caching. Chapter 2 describes the background literature

for data caching in parallel applications and parallel file systems. Chapter 3 provides a

detailed description of our simulator model and presents all of the results of our validation

experiments. Chapters 4, 5, and 6 presents the architectural overviews for our cache de-

signs, important cache implementation details, and our experimental results with each of

the cache designs. In this chapter we summarize our experimental results, describe relevant

future work that follows from this dissertation, and describe our contributions to the high

performance computing and parallel file system communities.
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7.1 Fixed-size Page Caching

We found that a fixed-size page caching approach was effective for improving the

performance applications performing small, unaligned file access – provided the cache was

able to sufficiently improve the granularity of file system access. By utilizing file system

interfaces supporting high-level data type access we were able to significantly improve

the performance of the FLASH I/O benchmark, and demonstrated a shared caching ap-

proach that provided high performance with only moderate memory requirements. We also

demonstrated that it is possible to efficiently achieve close-to-open cache coherence for our

file system by using a false-sharing avoidance scheme based on the Treadmarks system.

One disappointing note is that although the page caching approach improved application

performance, we still encountered little scalability as the number of I/O nodes used in the

parallel file system were increased.

7.2 Progressive Page Caching

Progressive page caching provides a further improvement upon the performance of

the fixed-size page caching design by eliminating the need to maintain cache coherence

at the page granularity. Progressive page caching maintains the cache coherence only for

data actually updated by the application. We examined two alternative data structures for

storing the additional metadata required to implement progressive page caching, a dirty-

mask approach and a file region tree, with an assessment that the density of the page data is

likely to determine which data structure is more appropriate. Finally, we performed a series

of benchmarks with our progressive page caching scheme and learned that large progressive

cache page sizes generally provide better performance than smaller cache pages, and are

as an important factor in application I/O performance as the amount of memory devoted to
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the cache.

7.3 File View Aware Aggregation

While our caching designs attempted to find a regular page-based data structure in

a series of small, unaligned file accesses, our MPI file view-aware aggregation approach

attempts to leverage the data type information provided by the collective I/O interfaces pro-

vided by MPI. View-aware aggregation improves file system access granularity by combin-

ing the data types of a collective I/O operation participants into a single data type driven

request. By combining the data types supplied by each processes file view, the aggre-

gator is able to bundle file access operations together and improve performance. Earlier

aggregation approaches relied on the application data arriving at the aggregator as mostly

contiguous requests, but view-aware aggregation attempts to create a new sparse data type

from the already sparse data types, improving performance even in the case where the data

is highly structured, but also spaced out within the file.

7.4 Future Work

Our study of parallel file system caching has resulted in many useful discernment

into how caching mechanisms can actually improve file system performance. Equally im-

portant, our study has also provided an insight into what caching modifications and refine-

ments merit further study. The benefit of performing simulation-based evaluations is the

low costs associated with looking at widely varied and speculative approaches to parallel

file system performance. In this section we look at several caching modifications that may

provide improved file system performance or improved application I/O semantics.
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7.4.1 Cache Page Replacement

During our study of page-based caching we briefly discussed the working set, or the

amount of cache space required to service an application’s computational phase between

each file access. Unfortunately, given the finite quantities of physical memory available to

software developers, the amount of cache space available may not always exceed the size

of the application’s working set. In such cases, the replacement policy used by our file

system cache may be a critical factor in cache performance. For example, if an application

is writing data to the file system in some non-sequential order, the cache may need to re-

read the data for a cache page many times in order to write small regions to the page.

Obviously, re-reading a cache page multiple times is bad for performance (progressive

paging is designed to avoid this overhead entirely), but an intelligent cache replacement

algorithm may be able to avoid this overhead by only evicting cache pages that will not be

accessed later.

Our caching studies used a least recently used (LRU) cache page replacement pol-

icy entirely. LRU page replacement can be the worst replacement policy for applications

performing file accesses in a cyclical manner, and a configurable approach that allows the

application developer to select the best replacement policy may be of some use. The devel-

oper’s of Sun Microsystem’s ZFS file system contend that a system that combines LRU data

with frequency of page access called adaptive replacement caching is an effective scheme

for balancing the most popular types of file system workloads. A workload characteriza-

tion study coupled with an examination of page replacement schemes could provide useful

insight into the importance of cache page eviction policies.

More speculatively, we could attempt to construct a cache page replacement algo-

rithm that attempts to evict pages based on how quickly the evicted data can commit to

the underlying file system. For example, multiple full cache pages can be efficiently de-
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scribed with a single block-indexed data type, and written to the file system in a single

request. Because we do not generally anticipate file re-read and re-write access patterns,

a fastest-commit first eviction policy could result in significantly improved performance.

Additionally, the policy may choose to write data pages that do not require eviction, thus

further increasing the granularity of file system access without requiring any additional

cache tuning by the application developer. One difficulty in developing a fastest-commit-

first eviction policy is the need for a page scoring system that can accurately rank how

quickly partially updated pages can be committed into the file system.

7.4.2 Consistency

One of the limitations of the caches described in this dissertation is the reliance

upon close-to-open consistency. Although close-to-open consistency is apt to become the

de facto standard for parallel file systems due to its adoption by NFSv4, some application

developers are likely to need stronger consistency semantics. An exploration of directory-

based caching for parallel file systems is one possibility for providing a stronger semantic

at the cost of a much more complicated caching protocol. Because directory-based caches

require that a page exists in a modified state on only one file system client, an eager-release

consistency semantic can be implemented for each file I/O (requiring a synchronization at

each I/O as well) rather than just a synchronization triggered by file open and close calls.

One of the difficulties of a directory-based scheme is communicating from the file system

servers to the various client processes. Advanced messaging daemons such as the MPDs

used by MPICH2 may be a critical factor for implementing directory-based caching at the

file system servers.

The second major consistency issue we discussed in this caching study is the viola-

tion of close-to-open consistency triggered by shared caching. Both our shared fixed-size
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page caching and shared progressive page caching designs violated close-to-open consis-

tency by requiring every process on the node to close the file in order to trigger the cache

flush to disk. In the case of progressive page caching, it is possible to provide close-to-open

consistency even in the shared cache case, although likely at the cost of some performance.

For example, by modifying the file region tree to include the originating process rank along

with each dirty region in the tree, it would be possible to flush only the correct dirty regions

to the file system. In the case that multiple processes update the same file regions, then the

affected file regions would need to maintain a list of modifying processes rather than sim-

ply a single field. Of course, the region tree will become more segmented and the benefits

of sharing the cached file data may disappear as the amount of cache metadata increases,

but in the case of few overlapping file regions, the storage and performance overhead may

be acceptable for applications that require strict close-to-open consistency.

7.4.3 Writeback Buffers

One of the cache modifications we attempted to study, but were unable to achieve

positive performance improvements was a cache writeback buffer. A writeback buffer al-

lows file reads and writes to complete immediately without waiting for any resulting evic-

tions to commit to the underlying file system. Unfortunately, in our studies of writeback

buffering we found that the increased rate of file system I/O resulted in performance degra-

dation. A more thorough examination of fixed-size writeback buffering may be able to

determine how much writeback buffering is required to improve cache performance and

at what point the amount of available writeback buffer leads to network congestion and

unstable performance in file system access.
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7.4.4 File System Tuning

Although the large-scale performance improvements using our middleware cache

were noteworthy, we were disappointed that varying the number of file system I/O nodes

did not alter the overall benchmark performance significantly. In our simulation trials, we

kept the parallel file system striping factor – the amount of contiguous file data mapped to

each server in turn – at the default size of 64KB. Although our caching middleware clearly

impacts the granularity of file system interactions, it is possible that the default stripe size

is simply too large and a smaller striping factor, possibly less that the cache page size, may

result in greater file system scalability. Another possibility is two dimensional file data

distributions that stripe data ranges into subsets of the available data servers, meaning that

a larger contiguous range may map to a smaller subset of I/O nodes, but the file data in

whole is still mapped evenly over all of the file system’s available I/O nodes.

One element of file system tuning that we know improves performance is the use

of the high-level data type interfaces available in PVFS. We feel that the exploration of

other non-Posix file I/O APIs is a useful study, and likely to result in further performance

improvements. During our study of view-aware caching we discussed the need to copy

data into the cache to construct a contiguous buffer for the PFS client interface. A more

general API that can work with multiple client memory buffers can prevent those additional

copies and further improve performance with no additional costs to applications performing

Posix-based I/O. Another possibility is the ability to pin cache pages into the file system

directly, allowing the file system and user applications to share memory directly.

Finally, extremely general scatter-gather I/O primitives have proved extremely use-

ful for many types of I/O domains and may conceivably provide better performance for

many typical cache access patterns. One problem is a lack of understanding in how re-

quest data fragmentation affects parallel file systems. The traditional focus on file system
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interfaces for contiguous data has left a glaring hole on how high-level interfaces for file

systems impact performance. A detailed study of how request fragmentation affects paral-

lel file system performance is warranted, particularly given that the costs associated with

fragmentation may disappear with emerging disk technologies (e.g. solid-state and phase-

change storage devices).

7.5 Contributions

This work provides four significant contributions to the field of parallel file systems

and parallel storage:

1. The availability of HECIOS, the High-End Computing I/O Simulator. Upon com-

pletion of this work, HECIOS will be released under the GNU Public License, an

open source software license that allows anyone to modify and use the code for re-

search purposes. One goal of HECIOS is to provide a suitable environment for easily

measuring prospective parallel file system extensions. Although the HECIOS simu-

lation model closely follows the PVFS software model, HECIOS is designed to be

extended. Adding in constructs unique to other parallel file systems, such as a dis-

tributed locking service, allows HECIOS to become a general parallel file system

research tool. In this way, HECIOS will advance the research and development of

PVFS, and other production file systems deployed in multiple high-end computing

systems.

In our studies we were able configure HECIOS to accurately model Clemson Univer-

sity’s Palmetto cluster, including its Gigabit Ethernet network and Myrinet Myri10G

network. We have performed extensive parameter sweeps over cache page sizes and

cache capacities at small scale and large scale for both interconnection networks, and
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we have been able to use HECIOS to design middleware components that provide

stable performance over a wide range of configurations and system scales.

2. In order to perform interesting studies with the HECIOS simulator, it was impor-

tant to use representative application execution traces. As part of this work we have

performed traces of several popular parallel I/O benchmarks. The availability of

Clemson University’s Palmetto cluster made it possible to generate traces for ap-

plications running simultaneously on thousands of processes which is a significant

improvement over the existing 128 node traces currently available from Los Alamos

National Laboratory.

3. The most important component of our contributions is a study of the performance

improvements available by leveraging the high-level data type parallel file system

interfaces with shared caching and request aggregation. Our initial fixed-size page

cache and progressive page cache were effective at improving the granularity of ac-

cess of the parallel file system, but the performance stabilized and improved more

generally when we employed shared cache architectures that increased the density

of data on each page allowing the caches to access the file system with highly ef-

ficient block-indexed data types. Effectively, our caching infrastructure allowed the

caches to find some amount of regular structure in the data even though the file data

accesses dispatched by the application were presented in an irregular ordering. Sim-

ilarly, our view-aware aggregation scheme improved the granularity of applications

already leveraging the high-level data type accesses by aggregating the data types at

each multi-core compute node and constructing a new data type encompassing all

of the constituent data types. The performance advantages of high-level file system

interfaces has long been important, but our techniques have been shown to access

this performance without further modifying and complicating end-user code.
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4. Finally, our contributions include a detailed study of the performance of our middle-

ware component designs over a wide array of parameter settings and at large scales.

Past studies have been limited to small scales and limited parameter sweeps due to

the inability to get significant time on a high performance cluster. Additionally, file

system enhancement trials are often contaminated because the parallel file systems

under study are often servicing other applications during the benchmarking process.

This interference leads to contaminated results and many repeated benchmarks to try

and average out the noise in the experimental results. Because we invested the time

in building and validating our simulator, we were able to more efficiently collect ex-

perimental results and leverage the cluster hardware available at Clemson, but we

instead leveraged it as a reference system for validation and computing resource for

simulation experiments rather than as an actual benchmarking system.

7.6 Closing

In this dissertation we have endeavored to understand how middleware-based data

caching and request aggregation affect the performance of parallel file systems. We have

shown that for some workloads, and for some cluster configurations, that client-side data

caching can provide substantial performance improvements. On other workloads, it is rea-

sonable to assume client-side caching will detract from overall application performance

rather than improve it – particularly those applications already relying upon high-level data

type access. This mixed benefits scenario is unfortunately the nature of most sufficiently

complex systems. Given the constraints of the physical devices employed by parallel file

systems, there is no single best approach to improving the performance of a parallel file

system.

In the coming months and years it is likely that CPU performance will continue
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to improve, network performance will improve, and even disk performance will increase

– perhaps dramatically. It is also undoubtedly true that with increasing performance will

come increasing application demands in the forms of higher fidelity data sets, increased

computational scale, and emerging scientific fields with completely novel computational

requirements. While the improvements in the performance of the underlying technologies

will no doubt increase parallel file system performance, access to high-level file system

interfaces will still exist as an important optimization for accelerating the file-based I/O

of demanding parallel applications with storage workloads dominated by small, unaligned

file accesses. The benefits of latency reduction and request bundling are fundamental in

improving the throughput of parallel file systems and will be important in building file

systems capable of meeting the demands of future scientific efforts.
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