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ABSTRACT 
 
 

We investigate strategies to improve the performance of transmission schedules 

for mobile ad hoc networks (MANETs) employing adaptive direct-sequence spread-

spectrum (DSSS) modulation.  Previously, scheduling protocols for MANETs have been 

designed under the assumption of an idealized, narrowband wireless channel.  These 

protocols perform poorly when the channel model incorporates distance-based path loss 

and co-channel interference.  Wideband communication systems, such as DSSS systems, 

are more robust in the presence of co-channel interference; however, DSSS also provides 

multiple-access capability that cannot be properly leveraged with a protocol designed for 

narrowband systems.  We present a new transmission scheduling protocol that 

incorporates link characteristics, spreading factor adaptation, and packet capture 

capability into scheduling and routing decisions.  This provides greater spatial reuse of 

the channel and better adaptability in mobile environments.  Simulation results 

demonstrate the merits of this approach in terms of end-to-end packet throughput, delay, 

and completion rate for unicast traffic.  We also discuss two variations of the protocol: 

one provides a method for enhancing the network topology through exchange of local 

information, and the other leverages multi-packet reception (MPR) capability to enhance 

the network topology.  We show that each approach is useful in networks with sparse 

connectivity.  We conclude by studying the capacity of the networks used in previous 

sections, providing insight on methods for realizing further performance gains. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

A mobile ad hoc network (MANET) is a special type of wireless network in 

which terminals self-organize to communicate.  Information is sent as packets, which 

must often traverse several network terminals to reach their destinations.  Consequently, 

terminals in a MANET must be designed to act not only as a receiver and transmitter for 

the primary user, but also as traffic routers for other network users.  MANETs are 

characterized by their unpredictability: network membership may change as terminals 

enter and leave the network, the quality of communication links varies due to terminal 

mobility, terrain features, and interference, and traffic demands fluctuate as users 

exchange voice, data, and video packets.   

MANETs are designed to provide communications capability when wired and/or 

wireless communications infrastructure is not available.  This is often the case in military 

operations, or during disaster relief when the existing infrastructure has been damaged.  

Some emerging commercial standards take cues from the MANET paradigm, including 

the IEEE 802.11 ad hoc mode for peer-to-peer communication, and the IEEE 802.16e 

standard for mobile internet access.  The key features required for these applications are 

rapid deployment and robust, adaptive operation in a wide range of environments.  

Military applications additionally require security features, such as jamming resistance, 

low probability of intercept, confidentiality, and distributed control so that there is no 

single point of failure.   
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1.1   Medium Access Control Overview 

The wireless channel is a shared communication medium, so protocols are 

required to govern how and when terminals may access the channel.  These medium-

access control, or MAC, protocols fall into one of two categories: contention-based, and 

contention-free.  Contention-based protocols, such as ALOHA [1], CSMA [2], MACA 

[3], and other variants, allow a terminal to compete for access to the channel whenever a 

packet is available for transmission.  Assuming the network is not heavily loaded, this is 

a very efficient strategy because terminals can attempt to access the channel at any time, 

and terminals with no traffic do not consume channel resources.  However, as the traffic 

load increases, contention mechanisms break down.  This results in transmission failures, 

unfairness, and excessive delay.   

Contention-free MAC protocols divide the channel into separate sub-channels 

based upon time (TDMA), frequency (FDMA) or code (CDMA), which are then reserved 

by terminals for transmissions.  These guaranteed reservations provide stable operation at 

high traffic loads.  Contention-free medium access control is particularly beneficial when 

supported applications have quality-of-service (QoS) requirements since access to the 

channel is pre-determined.  If contention-based access is used, there is a chance a 

terminal may go an extended period of time without successfully contending for use of 

the channel.  By reserving dedicated time, frequency, or code sub-channels, terminals are 

guaranteed regular access to the channel.  As a result, end-to-end delay and throughput 

vary less than in networks using contention-based access. 
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We focus on spatial TDMA (STDMA), which improves the utilization of pure 

TDMA by allowing terminals which are sufficiently far apart to reuse the channel (i.e., 

schedule transmissions in the same time slots).  Specifically, we investigate protocols 

supporting broadcast transmissions to neighboring terminals.  Broadcast transmission 

scheduling achieves slightly lower spatial reuse than protocols which only require 

successful link activation, but there are several advantages.  First, not all network data 

traffic is unicast; many applications require sending data to a set of destinations, or all 

terminals in the network.  Broadcast transmission scheduling makes this process more 

efficient since each transmission reaches many neighboring terminals. 

Secondly, network control packets are often required to be sent to all nearby 

terminals, especially in support of routing protocols for ad hoc networks.  For example, 

AODV routing [4] requires route request (RREQ) packet flooding to achieve route 

discovery; the flooding process is much more efficient when a single transmission can 

reach all neighboring terminals.  If OLSR [5] is used to perform routing, then HELLO 

packets must be periodically broadcast to all neighbors and topology control (TC) 

messages must be exchanged between all relay terminals to disseminate link information.  

Since MANET terminals are expected to perform routing operations and handle traffic 

for a variety of applications, the stability and flexibility provided by broadcast 

transmission scheduling makes it an appropriate MAC strategy.     

1.2   The Benefits of Direct-sequence Spread-spectrum In Ad Hoc Networks 

In a direct-sequence spread-spectrum (DSSS) system, information bits are 

modulated at the transmitter by a higher rate pseudonoise, or PN, spreading sequence 
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known to the receiver.  This process spreads the energy of the transmitted signal over a 

much larger bandwidth than is necessary for communication.  At the receiver, the 

information bits may be recovered through synchronous correlation of the received signal 

with the spreading sequence.  This results in several advantages over narrowband 

modulation.  The noise-like qualities of the transmitted signal make it more difficult for 

third parties to detect active transmitters.  Since the signal occupies a larger bandwidth, a 

hostile jammer must use more energy to disrupt communications.  Furthermore, since the 

spreading sequences must be known to the receiver, eavesdropping is difficult.  These 

advantages make DSSS modulation particularly applicable in military communication 

systems.   

In addition to the above security features, DSSS provides multiple-access 

capability that is applicable in both military and commercial applications.  In particular, if 

multiple signals overlap in time, space, and frequency at a receiver which is correlating to 

a particular DSSS signal, then the energy from the interfering transmissions is attenuated.  

This phenomenon, commonly referred to as spreading gain, results in more robust link 

performance.  In an ad hoc network where link quality fluctuates rapidly and interference 

from other users is unpredictable, this added robustness may greatly improve network 

performance, as well as simplify protocol design.   

For a single user, DSSS is less bandwidth-efficient than narrowband modulation 

approaches, such as BPSK.  Also, reception of DSSS signals requires precise 

synchronization with the incoming signal during an acquisition phase.  Acquiring and 

maintaining synchronization during reception is a challenging problem in its own right, 
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and the interested reader may consult a standard text, such as [6], for a more detailed 

examination of this topic.  While we use a standard, simplified model for reception of 

DSSS signals designed to reflect the typical performance of such systems, the actual 

performance depends upon the correlation properties of the spreading sequences, signal 

acquisition and tracking performance, and the relative power levels of signals from 

multiple transmitters at a receiver.  For example, performance analysis of DSSS systems 

which considers the correlation properties of the spreading sequences is provided in [7].   

There are several strategies for assigning spreading sequences, also called 

spreading codes, in networks utilizing DSSS modulation.  These include common code, 

receiver-oriented code assignment, and transmitter-oriented code assignment. In 

common code systems, all transmissions use the same spreading sequence.  In this case, 

acquisition of a signal from a particular transmitter is difficult because there is no easy 

way to differentiate between transmitters.  If receiver-oriented code assignment is used, 

transmitters use a code associated with the receiver to which they are sending a packet.  

Broadcasting a message to multiple receivers is difficult because they all use different 

codes.  If transmitter-oriented code assignment is chosen, each transmitter uses its own 

unique spreading sequence for all transmissions.  Receivers must select which transmitter 

sequence to correlate with before attempting to receive a packet.  The benefit of this 

method is that broadcasting data to multiple receivers is simpler since all intended 

receivers can correlate with the transmitter’s spreading sequence.     
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1.3   Modeling the Wireless Channel 

The evaluation of any wireless communication protocol relies heavily upon the 

model of the wireless environment used for testing.  While wireless environment models 

are examined in greater detail in later chapters, we note here that one of the main 

contributions of this work is that the protocols are designed to operate in the physical 

interference model.  This model accounts for some of the key features of the wireless 

environment, such as large-scale fading proportional to signal propagation distance and 

aggregate multiple-access interference (MAI) from distant transmitters.  Successful 

packet reception is possible when a signal-to-interference-plus-noise, or SINR, threshold 

is satisfied at the receiver. 

In contrast, much of the previous work in distributed transmission scheduling 

protocols has assumed a simplified graph model which accounts for neither fading 

proportional to distance nor aggregate MAI.  However, in real systems, there is a 

significant interaction between the transmission schedule, MAI, and the quality of 

communications links.  Hence, schedules produced under a graph model may perform 

quite differently in reality.  In particular, in several recent papers (e.g., [8], [9], [10], and 

[11]) it is noted that schedules developed under a graph model perform poorly in the 

physical interference model.  This motivates the development of new protocols which are 

explicitly designed under the physical interference model.   

1.4   Problem Statement   

We develop distributed protocols to support reliable communications in highly 

dynamic MANETs using DSSS modulation and broadcast transmission scheduling under 
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the physical interference model.  These protocols adapt the schedule to the changing 

environment without incurring large overhead costs.  At the same time, the protocols 

maintain a high transmission success rate and an efficient channel assignment.  

We assume network membership and topology is dynamic.  Terminals operate on 

a single communication channel using half-duplex transceivers; hence, they may not 

simultaneously receive and transmit.  We use a novel DSSS transmission format 

employing both common code and transmitter-oriented code assignment.  Packet 

transmissions must satisfy a signal-to-interference-plus-noise (SINR) threshold at a 

receiver which has pre-selected the transmitter spreading sequence to be successfully 

received.  Terminals have no knowledge of signal path or channel gain, but are able to 

form estimates of SINR for received packets.   

We present a protocol which leverages the multiple access capability of DSSS to 

achieve improved spatial reuse and faster adaptation in mobile environments when 

compared to traditional scheduling approaches.  The use of common-code DSSS 

modulation allows each terminal to identify neighboring terminals.  The set of 

neighboring terminals detected in this manner is used in a distributed scheduling 

algorithm to determine appropriate transmission times.  Periodic control packets allow 

terminals to establish communication links with appropriate neighboring terminals, and 

determine times at which these links may be utilized to support point-to-point and 

broadcast transmissions using transmitter-oriented DSSS modulation.  For broadcast 

transmissions, terminals employ a conservative spreading gain to maximize coverage.  

For point-to-point transmissions, terminals use link-SINR estimates to dynamically adjust 
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spreading gain for each transmission, allowing link performance to be improved.  

Terminals employ a queue management policy designed to take advantage of these 

variable link data rates and reduce control packet overhead.  We also describe new 

routing metrics to take advantage of these capabilities.   

We show, using network-level simulations with end-to-end packet statistics, how 

this approach results in appreciable gains in performance.  We also develop and analyze 

two variations of the protocol.  First, we show how additional topology information may 

be shared among terminals to provide a higher level of network connectivity.  Second, we 

show how multi-packet reception capability improves network connectivity by increasing 

the availability of receivers.  In the final chapter, we use an idealized channel access 

strategy to study the capacity of wireless networks.  Specifically, we analyze features 

used by the distributed protocol, such as transmission rate adaptation and multi-packet 

reception, in this setting to determine their influence on achievable throughput capacity.   

The rest of this manuscript is organized as follows: background material and 

related work are presented in Chapter 2.  In Chapter 3, we evaluate several distributed 

scheduling algorithms to identify which is best for implementation in a distributed 

protocol.  In Chapter 4, we present channel and receiver models which are used 

throughout the manuscript, as well as simulation settings.  In Chapter 5, the distributed 

protocol is motivated and presented; performance results are given in Chapter 6.  

Chapters 7 and 8 develop the two protocol variants discussed above.  Chapter 9 provides 

a study of throughput capacity using a centralized algorithm, and concluding remarks are 

given in Chapter 10.   
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CHAPTER TWO 
 

BACKGROUND AND RELATED WORK 
 
 

The design of scheduled MAC protocols for MANETs has received considerable 

attention in the literature.  The Time Slot Assignment Problem, or TSAP, is a classic 

formulation of the problem.  In its most general form, the goal of the TSAP is the 

assignment of transmission opportunities (time slots) to network terminals in a repeating 

frame satisfying some set of constraints [12].  The network is modeled as a graph 

G=(V,E), where the vertex set V represents the wireless terminals and the edge set E 

represents links between terminals that may communicate directly.  Two terminals are 

deemed 1-neighbors if they are connected by an edge, 2-neighbors if they have a 

common 1-neighbor, and so on.  The schedule is required to be collision-free, where the 

term collision refers to co-channel interference that leads to transmission failure.  In the 

graph model, a collision occurs at a receiver when two or more 1-neighbors transmit in 

the same slot; since terminals cannot transmit and receive at the same time, a collision 

also occurs if two 1-neighbors are assigned the same transmission slot.   

Collision-free schedules are defined differently depending upon whether 

broadcast scheduling or link scheduling is used.  For broadcast schedules, the graph 

vertices are assigned transmission slots and collisions are disallowed at all 1-neighbors.  

For link schedules, directional edges are assigned transmission slots and collisions are 

disallowed only at the intended receiver [13].  Formally, a collision-free broadcast 

schedule allows two terminals i and j to transmit in the same slot if: 
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(i-b) edge ( , )i j E∉ and edge ( , )j i E∉ , and  

(ii-b) there exists no terminal k for which edge ( , )i k E∈ and ( , )j k E∈ . 

A collision-free link schedule allows concurrent link activation of links (i, j) and  

(k, l) if: 

(i-l)  i, j, k and l are mutually distinct 

(ii-l) ( , )k j E∉ and ( , )i l E∉  

In Figure 1 (a) and (b), collisions for broadcast schedules are illustrated which 

violate rule (i-b) and rule (ii-b), respectively.  If the transmitting terminals (highlighted) 

are separated by at least two hops, as in Figure 1 (c), collisions are avoided.  In Figure 2, 

collisions for link schedules are illustrated, with active links denoted by arrows.  In part 

(a), rule (i-1) is violated, while in part (b), rule (ii-l) is violated.   

Myriad variations on the TSAP are realized by considering additional objectives, 

such as designing schedules which minimize end-to-end delay [14][15], balance traffic 

loads [16][17][18], or minimize the length of the repeating transmission frame to enable 

more frequent transmissions [19].  Other ways in which protocols vary are centralized vs. 

distributed implementation, use of different wireless channel models, such as the physical 

interference model, and the use of special signaling and/or contention periods to aid in 

scheduling transmissions. 
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(a)
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i
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j
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k

 
Figure 1. Under broadcast scheduling, transmitting terminals (highlighted) must be 

more than two hops apart.  Scenarios (a) and (b) are prohibited, while (c) is 
allowable.  

(a)

(b)

(c)

i

i

i

j

j

j=l

k

k

k

l
(i,l)

l

 
Figure 2. Under link scheduling, any transmission configuration that ensures 

receiving terminals are within range of only one transmitter is allowed.  Scenarios 
(a) and (b) are prohibited, while (c) is allowable.   
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2.1   Centralized Scheduling Algorithms 

Centralized scheduling algorithms depend upon global information to create 

transmission schedules.  The resulting schedules achieve optimal or near-optimal 

performance, depending upon the scheduling criteria used.  Centralized algorithms scale 

poorly to large networks due to the burden involved in collecting and distributing global 

information.  However, they remain an important area of research since they aid in 

appreciating the complexity of the scheduling problem, give insight into the design of 

distributed protocols, and provide useful performance benchmarks.   

The broadcast scheduling problem, or BSP, is defined as the generation of the 

minimum-length collision-free broadcast transmission schedule which guarantees each 

terminal at least one transmission per frame.  In [20], the BSP is shown to be NP-hard, 

motivating solutions based upon sophisticated optimization algorithms.  In [21], mean-

field annealing is used to generate minimal-length schedules, while similar schedules are 

generated in [22] using a Hopfield Neural Network, in [23] using a genetic algorithm, and 

in [24] with a mixed neural-genetic algorithm.  In [25], simulated annealing is used to 

generate schedules which achieve maximal stable throughput for a given traffic load and 

frame length.  Direct solution of this problem involves finding maximally-constrained 

vertex cliques, and this sub-problem is itself NP-hard, as shown in [26].   

In [27], a linear program is used to compute minimal-length schedules using the 

physical interference model as a constraint.    Linear programming has been frequently 

used to solve the problem of determining a transmission schedule, packet routing, and/or 

transmission parameters (power/rate) for a given network topology satisfying a given 
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input traffic vector.  In this case, the problem may be solved as a multi-commodity flow 

linear program [28].  In [29], linear programming is used to compute minimal-length link 

schedules with link flow constraints, also under the physical interference model.  

Minimal-length scheduling with joint rate-control is similarly considered in [30].  In [31], 

joint scheduling and power control is achieved by alternating between two algorithms 

that address each problem individually.  There are many other centralized variations; 

however, we now turn our attention to distributed scheduling protocols.   

2.2   Distributed Graph-Based Scheduling Protocols 

Numerous distributed scheduling protocols have been developed using the graph 

model described above.  These may be classified as frame-based or random scheduling 

approaches.  In some frame-based approaches (e.g. [20] and [32]), the transmission frame 

length is a global parameter; in the worst case, a fully-connected network requires a 

frame length equal to the number of network terminals to support broadcast 

transmissions.  Specifically, in [20], a skeleton schedule is created by setting the frame 

length equal to the number of terminals and assigning each terminal the transmission slot 

corresponding to its ID number.  Additional transmission slots are assigned by priority 

after exchange of local topology information using the skeleton schedule.  In [32], the 

network graph is colored so that no terminals within two hops have the same color; the 

frame length is equal to the number of colors used.  Unfortunately, if the topology 

changes due to terminal mobility, the schedule may no longer be collision-free.  In [33] 

and [34], the network graph is colored in a similar fashion, but frame lengths are a power-

of-two and may vary depending upon local terminal density.  Multiple authors have 
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independently developed power-of-two scheduling, for example [35] and [36].  In [37], 

protocols are developed which maintain collision-free operation of schedules based upon 

the algorithm in [33] in mobile environments.  In [38], the algorithm in [33] is also used 

in a protocol which allows construction of broadcast schedules in network initialization 

scenarios.   

Some hybrid protocols use structured contention to allow terminals to reserve 

transmission slots. For example, in [39], periodic contention frames allow terminals to 

negotiate a new schedule with neighbors.   As long as the contention frames occur fairly 

regularly in comparison to topology changes, the schedule is largely collision-free.  In 

[36], periodic bootstrap slots allow terminals to make reservations for transmissions in 

later frames.  In [40], each transmission slot is preceded by a contention period.  A 

skeleton schedule, similar to the one used in [20], is used in [40], but terminals may 

contend for access in slots that are not assigned to them on the condition they do not 

interfere with regularly scheduled transmissions which are given priority.  This requires a 

four-phase contention mechanism before data is transmitted: priority RTS, priority CTS, 

contention RTS, and contention CTS.  In [41] a schedule is created by iterating through 

several rounds in which terminals run a lottery for requesting slots.  After the lottery is 

completed terminals begin using the schedule.  If the topology changes the lottery must 

be run again.   

Other protocols do no use a transmission frame at all; instead, random priority 

generation in each slot dictates channel access.  In [42], each terminal is assigned a 

random number seed which is shared with 1 and 2-neighbors.  In each slot, if a terminal 
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has a packet to transmit it becomes active with probability p by generating a 

pseudorandom number between 0 and 1, using its own seed. Transmissions are not 

collision-free, but collisions are greatly reduced by requiring that active terminals 

transmit with a probability that is inversely proportional to the number of other active 1 

and 2-neighbors.  In [43], a protocol called NAMA (node activation multiple access) uses 

hash functions to compute pseudorandom priorities for terminals in each time slot; a 

terminal may transmit if it generates the highest priority among its 1- and 2-neighbors.  

One drawback of the graph model is that strong interference may be caused by 

terminals which are more than two hops away in the topology graph.  For a simple 

example, consider Figure 3 in which terminals separated by n-hops are actually in close 

proximity.  If terminal 2 and terminal n+1 are assigned the same transmission slot, 

interference from terminal n+1 may cause interference at terminal 1 that is not accounted 

for in the topology graph.  This motivates an extended graph model called a conflict 

graph.  In a conflict graph, links of the original graph are represented by vertices, and an 

edge connects two vertices in the conflict graph if the corresponding links in the original 

graph cannot be successfully activated in the same time slot.  Coloring the vertices of the 

conflict graph so that each vertex has a unique color among its adjacent vertices yields a 

collision-free slot assignment.  An equivalent approach is the use of interference links in 

the original graph; an interference link (e.g. the dotted line in Figure 3) is added between 

two terminals i and j if ( , )i j E∉ , but activation of either i or j prevents packet reception 

at the other terminal.  As a result, the interference links function only as additional 

scheduling constraints.  This approach is used in [8], [18], and [44] to develop link 
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schedules.  However, the addition of interference links does not fully solve the problem 

since it still does not account for link failures caused by the aggregate interference from 

many terminals transmitting simultaneously.   

n+1

2

1

5

4

3

n

n-1

n-2

n-3

 
Figure 3. Example network in which terminals 1 and n+1 are n hops apart in the 

topology graph, yet may interfere strongly with one another. 

2.3   Other MAC Protocols Using the Physical Interference Model 

A common theme in the design of the above transmission scheduling protocols is 

that they first identify available network links, and then develop a schedule that meets a 

set of criteria, such as collision-free broadcasts or minimum end-to-end packet delay.  

However, there is a direct and complex interaction among transmission schedules, the 

MAI environment, and the links present for communication.  The set of usable links 

varies from one slot to the next, depending upon the set of terminals transmitting in each 

slot.  This results in the poor performance of the graph based schedules when used in the 

physical interference model, as noted in Section 1.3 ([8], [9], [10], and [11]).    
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The problem has also been observed in IEEE 802.16 mesh networks.  The 802.16 

Coordinated Distributed Scheduling (CDS) protocol partially addresses the MAI problem 

by utilizing an extended 3-hop transmission scheduling mode (via 

ExtendedNeighborType) when necessary.  While it may eliminate some collisions, this 

strategy results in increased overhead and decreased spatial reuse.  In [10], it is shown 

that even the extension to a 3-hop mode does not ensure collision-free operation under 

more realistic channel models.  Their proposed modification to CDS, termed collision-

free CDS or CF-CDS, allows terminals to monitor and detect collisions, and adapt the 

schedule when necessary. 

In a few recent papers, MAC protocols have been explicitly designed based on the 

physical interference model.  In [45] the authors develop distributed link scheduling 

called Randomized Contention Aware Multiple Access (RCAMA) which converges 

asymptotically over time to throughput optimality.  RCAMA requires a total of eight 

transmissions per slot: 3 RTS/CTS exchanges with different transmitter sets to obtain 

knowledge of the interference environment, followed by a DATA/ACK exchange.  In 

addition, optimality is only guaranteed if the physical environment is static.  Lastly, 

efficient distributed implementation of RCAMA requires the path-loss exponent between 

each terminal to be bounded, and thermal noise must be bounded in terms of the 

interference.  In [46], a contention-based MAC protocol uses DSSS modulation to enable 

clusters of terminals to transmit at the same time.  While the clustering of transmitters 

does improve throughput in a DSSS system, the clustering requires additional overhead 

in the form of two RTS/CTS/RTS exchanges, followed by a DATA/ACK exchange, for a 
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total of eight transmissions per slot.  Also, as mentioned in the introduction, there are 

numerous applications for which scheduled access is preferable to contention-based 

access.   



 19

CHAPTER THREE 
 

EVALUATION OF DISTRIBUTED SCHEDULING ALGORITHMS 
 
 

In Section 2.2, several distributed, graph-based scheduling algorithms are 

mentioned.  These algorithms are designed to provide collision-free schedules in the 

graph-based channel model given a fixed set of known neighboring terminals.  In 

contrast, the major contribution of this work is a protocol which develops the neighbor 

set of each terminal based upon information received from nearby terminals in the 

physical interference model.  Efficient performance of this protocol requires a method of 

assigning transmission slots based upon the neighbor set.  Several of the algorithms 

described in Section 2.2 can satisfy this requirement.  In this chapter, we present a 

detailed study of three such algorithms to determine which approach most efficiently 

allocates channel resources to terminals.  

3.1  Overview of Distributed Scheduling Algorithms 

We define the neighborhood of a terminal i, denoted iΝ , to be the set of local 

terminals which influence scheduling decisions at i, inclusive of i itself.  The key 

property of this set is that whenever i transmits, all terminals in /i iΝ  are in receive 

mode, and when one or more terminals in /i iΝ  transmit, terminal i is in receive mode.  

We examine the performance of three priority-based broadcast scheduling algorithms in 

terms of the neighborhood size, iΝ , allowing evaluation of how well channel resources 

are provisioned under each algorithm.  Performance differences between these algorithms 



 20

arise from how they handle problems of priority chaining [47] and priority starvation, 

and by how they classify contenders for channel access.   

Denote the priority of terminal i to transmit in slot t as ( , )P i t .  Priority chaining 

occurs when some terminal is preempted in the schedule by a terminal with higher 

priority, which is itself preempted by a third terminal with even higher priority.  Consider 

the example network in Figure 4 under the rules of a collision-free broadcast schedule 

(rules i-b and ii-b in chapter 2).  Terminals i and j cannot transmit in the same slot 

because they are two hops apart; similarly, terminals j and k cannot transmit in the same 

slot.  If, in the current slot t, ( , ) ( , ) ( , )P i t P j t P k t< < , then i does not transmit in slot t 

because it is preempted by j.  However, i could transmit in slot t since j is itself 

preempted by k.   

i

j

k  
Figure 4. Example network used to illustrate priority chaining. 

Priority chaining leads to inefficient spatial allocation of the channel.  One 

strategy for decreasing the rate of priority chaining is to allow only a subset of terminals 

to be eligible to transmit in each slot.  The ineligible terminals would then have a priority 

of 0.  However, this leads to another problem termed priority starvation, which occurs 

when terminal i and all of its neighbors, iΝ , are assigned priority 0.  As an example, in 
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Figure 5 we define set { }1 2 3, , , ,i i j k k kΝ = .  In this example, priority starvation occurs if 

1 2 3( , ) ( , ) ( , ) ( , ) ( , ) 0P i t P j t P k t P k t P k t= = = = = .   

i

j

k1

k2

k3  
Figure 5. Example network used to illustrate priority starvation. 

In the following sections, we describe a scheduling algorithm which is affected by 

priority chaining only, another algorithm which is affected by priority starvation only, 

and a third algorithm which is affected by both priority chaining and priority starvation, 

but to a smaller extent. 

3.2  NAMA 

NAMA is described in [43].  NAMA uses neighborhood-aware contention 

resolution (NCR), a hash-based priority assignment algorithm which operates as follows: 

in each slot t terminal i calculates its priority as 

  ( , ) ( )P i t MD t i i= ⊕ ⊕ .   (3.1) 

The function MD(x) is a deterministic hashing function designed to generate a 

uniformly distributed pseudorandom number based upon bit-wise hashing of x; ‘⊕ ’ acts 

as the bit-wise concatenation operator.  In this work, we use a deterministic hashing 

function derived from the MD5 message digest algorithm [48].  In each slot, terminal i 

generates the priority for itself and each neighbor in the set iΝ .  If, in slot t, terminal i 

generates the largest priority among its neighbors, i transmits in slot t.  Since the terminal 
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ID is bit-wise appended to the priority derived by the hash function, each terminal 

generates a unique priority in each time slot.  Also, each terminal has a non-zero priority 

to transmit in each slot, hence priority starvation does not occur because some terminal 

has priority to transmit in each neighborhood. 

3.3  UxDMA 

UxDMA [13], used in the context of TDMA, assigns transmission slots in a 

repeating transmission frame based on color numbers assigned to a terminal and other 

terminals in its neighborhood.  UxDMA requires each terminal i to have a unique color 

number among its neighbors, iΝ , to avoid collisions.  UxDMA is not a completely 

distributed algorithm as it requires global knowledge of the largest color number 

assigned, cmax, which in turn defines the length of a transmission frame.  However, a 

distributed implementation of UxDMA, called DRAND [41], employs a lottery process 

to assign colors to terminals up to cmax.  

Under UxDMA, the transmission priority of a terminal i with color ci in slot t is 

  max max1, mod mod
( , )

0,
it c c c

P i t
otherwise

=⎧
= ⎨
⎩

.  (3.2) 

Hence, in each transmission frame, terminals are only candidates to transmit in 

the slot corresponding to their color number. Since each terminal has a unique color 

amongst its neighbors, if a terminal is a candidate to transmit then it is the only candidate 

in its neighborhood.  Thus, priority chaining cannot occur.  However, priority starvation 

does occur because terminals calculate the frame length based upon the largest color 
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number in the network.  For example, any neighborhood which does not contain color 

cmax experiences starvation in the last transmission slot of every frame.   

3.4  Lyui’s Algorithm 

Lyui’s scheduling algorithm was first described in [33], and a brief description of 

the algorithm and it properties is given in [34].  Lyui’s algorithm also assigns 

transmission slots in a repeating frame based on color numbers, and also requires each 

terminal i to have a unique color number among its neighbors in iΝ .  For an arbitrary 

color number c, let p(c) represent the smallest power of 2 greater than or equal to c.  Let 

ci,max represent the largest color number found in set iΝ .  The frame size of terminal i is 

p(ci,max).  Frame lengths may vary across the network depending on local terminal density 

and the resulting color assignment; however, since the frames are all a power of two, 

frames of differing lengths nest together evenly. 

Under Lyui’s algorithm, the transmission priority of terminal i with color number 

ci in slot t is  

  
, mod ( ) mod ( )

( , )
0,

i i i ic t p c c p c
P i t

otherwise
=⎧

= ⎨
⎩

.  (3.3) 

In Table 1, this rule is used to indicate the slots in which the first eight color 

numbers have nonzero priority.  If a terminal has the highest candidate color number in 

its neighborhood, then it has priority to transmit.  Terminals are guaranteed to transmit at 

least once in each frame, and possibly in additional slots depending on the coloring of 

neighbors.  For example, if a terminal is assigned color 2 but has no neighbors with color 

4, then that terminal may also transmit in the fourth slot of each frame.   
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Priority chaining is possible under Lyui’s algorithm; for example, consider Figure 

4 with t=8, ci = 2, cj =4, and ck =8.  In slot 8, color number 8 has the highest transmission 

priority; color number 4 has the next highest transmission priority, followed by color 

numbers 2 and 1, respectively.  Terminal i does not transmit in slot 8 because terminal j is 

a candidate to transmit and has higher priority, and terminal j does not transmit because 

terminal k is a candidate to transmit and has higher priority than terminal j.  In this case, 

terminal i could transmit without generating a collision.   

Priority starvation is also possible using Lyui’s algorithm; for example, consider 

Figure 5 with t=2 and terminals {i, j, k1, k2, k3} assigned colors {3,4,5,6,7}, respectively.  

In slot 2, terminals with color number 2 have the highest priority to transmit, and 

terminals with color number 1 may transmit if there is no neighbor with color number 2.  

Terminal i does not transmit in slot 2 because color number 3 is not a candidate to 

transmit in slot 2.  No neighbors of terminal i transmit in slot 2 because no neighbors 

have color number 1 or color number 2.  In this case, terminal i could transmit without 

generating a collision.   

 
Table 1. Colors and slots in which they are candidates.   
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3.5  Performance Evaluation 

We use simulations to evaluate NAMA, UxDMA, and Lyui’s algorithm based 

upon the average number of assigned transmissions per terminal per slot.  We also 

evaluate the channel access delay of each approach by computing the average number of 

slots between successive transmissions for each terminal, as well as the maximum 

number of slots between successive transmissions for all terminals in the network.  

Results are averaged over a set of 100 networks, each containing 200 terminals placed at 

random locations in a square of area 1,414 m2. Statistics for each test network are 

obtained over a period of 1024 slots.  To eliminate edge effects and produce a constant 

average terminal density, opposite edges of each test network are stitched together to 

form a torus.  Letting w and h represent the width and height of the area, the distance 

between terminals i and j, located at positions (xi, yi) and (xj, yj), respectively, is given by 

  
2 2

( , )
2 2 2 2i j i j
w w h hd i j x x y y⎛ ⎞ ⎛ ⎞

= − − − + − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (3.4) 

For these simulations, network connectivity is modeled using a graph, similar to 

the approach described in Section 2.2.  The communications range, R, is used to define 

the neighborhood size for each terminal in the following manner: all terminals j for which 

( , )d i j R≤  are in set 1
iΝ , and the neighborhood of terminal i is 

1

1 1

i

i i j
j

i
∈Ν

⎛ ⎞
Ν = Ν Ν⎜ ⎟⎜ ⎟

⎝ ⎠
∪ ∪ ∪ .  

Thus, the neighborhood of each terminal is nondecreasing with R.     

An interesting point of reference is the performance of a centralized algorithm 

designed to maximize assigned transmissions per terminal per slot and minimize delay 
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between transmissions.  This has been a topic of some interest, resulting in several 

centralized optimization algorithms (see Section 2.1).  We have developed a centralized 

algorithm which augments the slot assignment of each distributed algorithm to achieve a 

Pareto optimal transmitter configuration in each slot.  In particular, after transmission 

slots are assigned using a specified algorithm (NAMA, UxDMA, or Lyui), the list of 

terminals is traversed to pack additional transmissions into the schedule.  As each 

terminal is visited, if the terminal is in receive mode and all terminals in its neighborhood 

are in receive mode, then the terminal is switched to be a transmitter.  As a result, priority 

chaining and priority starvation are eliminated. 

Figure 6 shows the number of transmissions per terminal per slot, averaged over 

all test networks, as a function of the neighborhood size used by the terminals.  As the 

neighborhood size increases, terminals must share the channel with more neighbors, and 

thus gain access to the channel less often.  The centralized packing algorithm results in 

approximately equal performance when used with all three scheduling approaches.  

Lyui’s algorithm provides the highest level of spatial reuse for all neighborhood sizes, 

while the performance of NAMA is noticeably lower due to priority chaining.  UxDMA 

performs better than NAMA when the average neighborhood size is large; however, if the 

average neighborhood size is small, NAMA performs better than UxDMA.  This is 

because the transmission frame length used by UxDMA is dictated by the largest 

neighborhood in the network; as a result, there are many smaller groups of terminals 

which are forced to use an unnecessarily long transmission frame, resulting in priority 

starvation since they are not eligible to transmit in later slots of the frame.   
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Figure 6. Log-log plot of spatial reuse as function of neighborhood size for NAMA, 

UxDMA, and Lyui's algorithm. 

The average delay between transmissions using each algorithm is shown in Figure 

7.  The average delay is inversely related to the transmissions per terminal per slot: if 

more terminals transmit in each slot, then it is natural that fewer slots elapse between 

each transmission by a terminal.  However, by examining the maximum delay between 

transmissions, one may observe a large difference.  In Figure 8, the average maximum 

delay between transmissions is calculated by finding the maximum time between 

transmissions for any terminal in each test network, and then averaging over all test 

networks.  Under NAMA, terminals may go an extended period of time without winning 

the right to transmit in a slot.  Thus, there is a significant probability that in a network of 

200 terminals, some terminal gets far fewer transmission opportunities purely by chance.  

UxDMA and Lyui’s algorithm, on the other hand, both guarantee that terminals may 
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transmit once per frame, resulting in much smaller maximum delay values.  For UxDMA, 

the average maximum delay between transmissions is equal to the average delay in 

Figure 7; this is because all terminals transmit exactly once per frame.  Under Lyui’s 

algorithm, terminals use a frame size that is a power of 2.  This results in longer 

transmission frames and greater maximum delay between transmissions, yet the average 

delay in Figure 7 is lower because some terminals transmit in more than one slot per 

frame.   

 
Figure 7. Average channel access delay for each scheduling algorithm. 
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Figure 8. Average maximum channel access delay for each scheduling algorithm. 

 

In designing a scheduling algorithm, one intuitive objective is to have each 

terminal share the channel fairly with all terminals in its neighborhood.  Thus, if the 

neighborhood size of terminal i is iΝ , then a fair allocation results in at least 
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transmissions per slot for terminal i.  Using this approach, we define the spatial 

reuse efficiency for a scheduling algorithm as the number of transmissions per terminal 

per slot per neighbor.  In Figure 9, the spatial reuse efficiency is shown for each 

scheduling approach.  Due to the complex manner in which priority chaining, priority 

starvation, and neighborhood membership are affected by R, the spatial reuse efficiency 
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the spatial reuse efficiency is higher (between 1.5 and 2.1 for Lyui’s algorithm) because 

multiple neighbors of a terminal may not be neighbors themselves.  For example, if 

terminal i has neighbors 1
1 ij ∈Ν  and 

1

1
2

i

j
j

j
∈Ν

∈ Ν∪ , it may be the case that 
1 2

1 1
j jΝ Ν =∅∩ . 

In this case, 1j and 2j  may use the same color and transmit at the same time.   

To better illustrate this point, in Figure 10 we show the average neighborhood size 

as R increases.   When R is approximately 300m, the average neighborhood size is 100 

but the average maximum color number found in the neighborhood of a terminal is only 

about 50.  Terminals using Lyui’s algorithm and UxDMA use color numbers to contend 

for channel access.  Terminals using NAMA, on the other hand, contend using their ID 

numbers, which are all distinct.  Due to the overlap of neighbor colors, terminals observe 

a lower number of contenders under Lyui’s algorithm and UxDMA than under NAMA.  

Hence, they operate as if they have a smaller neighborhood and enjoy higher spatial reuse 

efficiency.   
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Figure 9. Spatial reuse efficiency metric for each scheduling algorithm. 

 
Figure 10. Neighborhood size and average number of colors required as R increases. 
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There are clear advantages to using color numbers instead of terminal ID numbers 

when scheduling transmissions.  Since terminals using a color-based transmission 

scheduling algorithm tend to have multiple neighbors with identical colors, the number of 

contenders in each slot is reduced in comparison to a system in which each neighbor 

generates a distinct priority, such as NAMA.  As a result, Lyui’s algorithm provides 

between 1.5 to 2 times as much spatial reuse as NAMA for a given neighborhood size.  A 

smaller number of contenders results in a greater rate of spatial reuse and a lower rate of 

priority chaining, but introduces the problem of priority starvation since only certain 

colors are eligible in each slot.  Lyui’s algorithm, which allows multiple colors to be 

candidates for transmission in each time slot, performs better than UxDMA, which only 

allows one color to be a candidate in a time slot.  In addition, Lyui’s algorithm does not 

require the frame size to be a global parameter, as it is in UxDMA, making it well-suited 

for implementation in a distributed network.  
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CHAPTER FOUR 
 

SYSTEM DESIGN AND EVALUATION 
 
 

In this chapter we describe in detail the wireless channel and receiver model used 

throughout the remainder of this work.  We also provide an overview of network traffic 

generation, multi-hop routing, and the method for computation of results used throughout 

the rest of this work; this organization allows for an efficient discussion of protocol 

features and performance in later chapters.    

4.1  Channel and Receiver Model 

We assume terminals are synchronized to slot boundaries using an external GPS 

signal, as described in [39], or they may establish local synchronization in a distributed 

manner similar to [49].  Also of note is the distributed protocol in [50], which is designed 

to allow groups of terminals with independent local synchronization to agree on a 

common slot reference.  All terminals use identical transmission power, except in cases 

noted in Section 8.4 where terminals may use a reduced transmission power for certain 

transmissions to influence the network topology.   

Terminals communicate over a common channel using DSSS modulation with a 

fixed chip rate.  Link gain is symmetric between two terminals, and constant for the 

duration of a transmission slot.  A transmission is successfully received only if the SINR 

at the receiver exceeds a threshold, β.  Specifically, when a link (i,j) is activated for a 

transmission from terminal i to terminal j, the SINR for the link,  denoted ,i jξ , must 

satisfy  
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In the above calculation, Pr(i) is the power received from terminal i at j, Tc is the 

chip duration, Ni,,j is the spreading factor employed for this transmission, and N0 is the 

receiver noise power.  This model for DSSS modulation assumes spreading codes are 

pseudo-noise (PN) sequences and the sequences are long enough so that there are a large 

number of possible sequences.  We assume spreading sequences are pre-assigned to 

terminals and automatically provided to all other terminals.     

To simulate the capture effect, we consider two distinct cases: transmissions using 

a common spreading code known to all terminals, and transmissions using a transmitter-

oriented spreading code with a unique code for each transmitter (see [51]).  For common-

code transmissions, if several terminals begin transmitting at the start of a time slot, we 

assume the slight clock differences at the transmitters and variations in propagation times 

cause the signals arriving at receiver j to be chip-asynchronous, enabling capture of a 

single transmission.   

We model capture as follows.  In a time slot in which all transmitters employ a 

common spreading code, each receiver j calculates the SINR for each transmitter i and 

forms the set { },j i jS i ξ β≡ > of candidate signals to capture.  If Sj is not empty, j 

randomly selects one element from the set using a uniform distribution.  This capture 

model reflects the message-retraining capture model described in [52] with retraining 

threshold MRγ β≅ .  For time slots in which all transmitters employ transmitter-oriented 
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spreading codes, a receiver must pre-select a transmitter-oriented code to monitor and it 

receives a transmission only if this transmitter is active and (4.1) is satisfied. 

Terminals in receive mode are supplied with sample SINR estimates for each 

successful transmission using a common or transmitter-oriented code.  The sample SINR 

estimates are made relative to a maximum spreading factor, Nmax.  Thus if a transmission 

from j to i uses spreading factor Nj,i<Nmax, then the sample SINR estimate from the 

receiver is multiplied by max

,j i

N
N

.  The incoming link SINR estimate, denoted ,
ˆ

j iξ , is 

computed by terminal i as the minimum of the last ten sample SINR estimates for 

transmissions from j. 

We assume terminals are able to detect certain instances in which a transmission 

fails due to insufficient SINR, although a reliable SINR estimate is not provided.  

Specifically, if a receiver has selected a transmitter-oriented code to monitor, but a 

transmission using that code fails due to insufficient SINR, then receiver forms a sample 

SINR estimate of β for that transmission.  If a receiver has selected a transmitter-oriented 

code to monitor, but no transmission is made, then no sample SINR estimate is provided 

to the receiver.     

4.2  Simulation Settings 

The channel parameters used in simulations are listed in Table 2.  The power 

received from transmitter i at receiver j is  

  ,
,

( )
4r t i j t

i j

P i PG P
d

α
λ
π

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
. (4.2) 
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This depends on the transmitted energy tP , the wavelengthλ of the carrier frequency, the 

transmission distance ,i jd , and the path-loss exponent α .   

32, 64, or 96Nmax

4.0e-21 J/HzN0

0.125mλ

3.5α

2.9e-7 s/chipTc

8 β

ValueParameter

32, 64, or 96Nmax

4.0e-21 J/HzN0

0.125mλ

3.5α

2.9e-7 s/chipTc

8 β

ValueParameter

 
Table 2. Channel parameters used in simulations. 

In the simulations, the communications range of a terminal, denoted R, is the 

maximum distance between a transmitter and a receiver so that (4.1) holds, assuming no 

MAI and use of the largest spreading factor, Nmax.  Given R, we set the transmission 

power, Pt, as 

  0

max

4
t

c

NRP
T N

α βπ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (4.3) 

4.3  Packet Generation and Forwarding  

The network packet generation rate, γ, is equal to the expected number of unicast 

data packets generated by the network in each slot.  In each slot, each terminal generates 

a unicast data packet with probability N
γ , where N is the total number of network 

terminals.  At the time of generation, the packet’s destination is chosen uniformly from 
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the set of remaining terminals; for networks with N terminals, there are ( 1)N N − distinct 

flows.   

Packets are not acknowledged, nor are dropped packets retransmitted.  Packets are 

dropped in four situations.  A terminal may enqueue up to 20 packets (data and control); 

a packet arriving to a full queue is dropped.  If a packet arrives at a terminal which has no 

route to the packet’s destination, the packet is dropped.  A packet is dropped if the SINR 

is less than or equal to β at the receiver.  A packet is also dropped if the intended receiver 

is not correlating to the transmitter’s spreading sequence.   

4.4 Routing of Multi-hop Traffic 

Routing protocols significantly affect system performance, and are themselves 

influenced by the network topology and transmission schedule.  Distributed routing 

protocols may require significant overhead in an ad hoc network.  However, this work 

focuses on the performance of a cross-layer scheduling protocol.  As a result, we use a 

centralized, min-cost routing algorithm to compute the forwarding tables used by 

terminals.  Each terminal computes a link cost to each of its neighbors, and these link 

costs are used in Dijkstra’s algorithm to compute min-cost routes between each pair of 

terminals.  At the end of the process, the forwarding table for each terminal is updated 

automatically.  In simulations, the min-cost routes are recomputed every 64 time slots 

based upon the current link costs stored by each terminal.   

The cost metric computed by terminal i for a neighboring terminal, j, is  
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,
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In (4.4), ETR(i) represents the effective transmission rate of terminal i, calculated as the 

number of slots in each frame in which i transmits divided by the frame length of 

terminal i.  LinkRate(i,j) is the number of packets per slot which may be sent over this 

link, and this depends upon the outgoing link SINR estimate ,î jξ .  The factor jU  is a 

number between 0 and 1 which represents the assigned slot utilization of terminal j, 

measured as the fraction of transmission slots assigned to j in which j transmits a packet 

(data or control).  Whenever terminal j is a candidate to transmit in a given slot, j updates 

its utilization estimate as follows: 

  ' (0.95) (0.05) ( )j jU U T j= +  (4.5) 

The function ( )T j is an indicator function which is equal to 1 if j transmits a packet in 

the current slot and 0 otherwise.  This is an exponentially weighted moving average with 

a smoothing factor of 5%.  The utilization estimate results in a higher link cost for 

neighbors with large traffic loads, while neighbors with low traffic loads are assigned 

lower link costs to avoid traffic congestion.  Links with low SINR estimates are more 

sensitive to MAI, so a scaling function, ( )xζ , is used to deemphasize routing over low-

SINR links. ( )xζ  is defined as 
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Several other routing metrics were examined in preliminary work.  These 

included min-hop routing, and several variations on (4.4) which did not take into account 

utilization, link rate, or effective transmission rate.  We determined that a simple min-hop 

routing metric performs poorly in this environment when compared to metrics that 

account for link rate and link SINR.  We also determined that including utilization in the 

routing metric leads to significantly better overall performance.  The metric in (4.4) may 

be implemented by periodically requiring terminals to exchange utilization estimates.     

4.5 Generation of Network Performance Statistics 

In steady-state simulations, packet statistics are collected after a warm-up period 

of 3000 slots to allow queue lengths to reach their stationary distributions.  This is 

followed by a period of 1000 slots, during which time marked packets are generated.  The 

simulations end when all marked packets are accounted for.  End-to-end packet statistics 

reported represent the average values over all test networks.  Formally, we may define the 

following: 

• t(i,j,k): total number of marked packets successfully received for flow (j,k) 

in network instance i 

• d(i,j,k): sum of packet delay for all marked packets successfully received 

for flow (j,k) in network instance i 

• g(i,j,k): total number of marked packets generated for flow (j,k) in network 

instance i 

• ϒ : the set of test networks 

• N: the number of terminals in each test network 
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• Δ : the duration for which marked packets are created, measured in slots 

The following calculations are used to measure packet throughput, delay, and 

completion rate in simulations:  

  
1 1 1

1 1 ( , , )
( 1)

N N

i j k
k j

t i j kThroughput
N N

ϒ

= = =
≠

=
ϒ − Δ∑ ∑∑ ,  (4.7a) 

  
1 1 1

1 1 ( , , )
( 1) ( , , )

N N

i j k
k j

d i j kDelay
N N t i j k

ϒ

= = =
≠

=
ϒ −∑ ∑∑ , (4.7b) 

and 
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CHAPTER V 
 

IMMEDIATE NEIGHBOR SCHEDULING 
 
 

The multiple-access capability of DSSS modulation motivates a different design 

philosophy for transmission scheduling protocols since transmissions can be received in 

the presence of interference from other users.  In particular, terminals may use a smaller 

neighborhood to schedule transmissions, resulting in greater spatial reuse and less control 

overhead.  Suppose a network of nine terminals is constructed so that there are three 

clusters of three terminals apiece, arranged as shown in Figure 11.  Terminals in cluster 1 

can communicate directly with terminals in cluster 2, and terminals in cluster 2 can 

communicate directly with terminals in cluster 3, but terminals in clusters 1 and 3 cannot 

communicate directly.  Two scheduling scenarios are examined: in the first scenario, the 

neighborhood of a terminal used for scheduling transmissions consists of all terminals 

within two hops.  In the second scenario, the neighborhood of a terminal consists of all 

terminals within one hop.  Each terminal is required to have a unique color in its 

neighborhood, so the first scenario requires 9 total colors.  In the second scenario the two 

non-neighboring clusters reuse colors, requiring 6 total colors.   

Cluster 1 Cluster 2 Cluster 3

 
Figure 11. Example network with nine terminals arranged into three clusters. 
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In scenario 1 only one terminal may transmit per slot, allowing each terminal in 

cluster 2 to establish links with each terminal in clusters 1 and 3.  In scenario 2, when two 

terminals in clusters 1 and 3 which are assigned the same color transmit simultaneously, 

the terminals in cluster 2 can capture only one of the transmissions, even if both may 

satisfy the SINR requirement in (3.1).  As a result, each terminal in cluster 2 can establish 

up to three bidirectional inter-cluster links.  Figure 12 shows two simulated topologies 

corresponding to the two scenarios.  Despite the loss of some communications links, 

connectivity between clusters is maintained in scenario 2 due to the random manner in 

which capture occurs.  The advantage to this is that instead of transmitting in 1 out of 9 

slots on average, as in scenario 1, terminals are able to transmit in 1 out of 6 slots on 

average – a gain of 50%.  At the same time, the diameter of the network increases from 2 

to 3; however, only a fraction of the network traffic is affected by this increase.  Also, in 

a mobile ad hoc network, the schedule changes whenever the neighborhood membership 

changes.  Since scenario 2 uses a smaller neighborhood for scheduling, the schedule 

changes less frequently in mobile scenarios, and less information must be exchanged to 

adapt the schedule.    

2

1

3

4
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6

7

8
9

2

1

3

4
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6

7

8
9

 
Figure 12. Network topology for scenario 1 (left), where the neighborhood is all 

terminals within two hops, and network topology for scenario 2 (right), where the 
neighborhood is all terminals within one hop.   

The benefit of using a smaller neighborhood to schedule transmissions in 

conjunction with DSSS modulation motivates the design of our protocol.  Since the 
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protocol collects information only from terminals which are near at hand to schedule 

transmissions, we denote this approach as the immediate neighbor scheduling (INS) 

protocol.  The protocol defines how terminals collect, exchange, and use neighbor 

information, which is then used by Lyui’s algorithm (described in Section 3.4) to 

schedule transmissions.      

5.1 Summary of INS Properties  

The key properties of the INS protocol are summarized as follows: 

• Transmission slots are divided into an identification interval and a data 

interval (see Figure 13).  The neighborhood used by Lyui’s algorithm for 

scheduling transmissions is based upon neighbors detected during 

identification intervals. 

• Terminals maintain basic information about neighbors using a neighbor 

table. 

• Terminals in receive mode use a receive vector to determine which 

neighbor transmits in each slot.  The receive vector for terminal i is 

denoted r(i).  If element i
sr  of r(i) is equal to j, then i attempts to receive a 

packet from neighbor j in slot s of the frame. 

• Terminals in transmit mode use a transmit matrix to determine which 

neighbors may receive a transmission in the current slot.  The transmit 

matrix for terminal i is denoted T(i).  Element ,
i
j st of T(i) is equal to 1 if 

neighbor j may receive a transmission from i in slot s, and 0 other wise.   
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• Entries in the neighbor table are formed by receiving a FLAG packet in 

the identification interval.  Entries in r(i) are formed by receiving a packet 

in the data interval.  Entries in T(i) are formed via exchange of periodic 

neighbor acknowledgement, or NBR_ACK, control packets.   

• Neighbors are grouped into two sets.  The communicable neighbor set of i, 

1
iN , is the  set of nearby terminals for which bidirectional communication 

is possible.  The detectable neighbor set, 2
iN , is the set of nearby 

terminals for which communications links are intermittent or 

unidirectional.  

• Each terminal maintains a color number that is unique among the 

terminals in its neighborhood.  

frame for terminal m

data or control packet

n

flag bits

slot

21 3

data intervalidentification
interval  

Figure 13. Formatting of  transmission slots. 

5.2   INS Description 

Transmissions during the identification interval use a common spreading code to 

facilitate detection of neighboring terminals, while transmissions during the data interval 

use a transmitter-oriented spreading sequence unique to the transmitting terminal.  When 

terminal i is assigned to transmit in slot s, it transmits a FLAG packet in the identification 
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interval with probability ½.  A FLAG packet from i contains the ID and color number of 

i.  Since fewer terminals transmit in the identification interval, multiple-access 

interference is much lower during this time and neighbors are more easily detected.  If i 

does not transmit a FLAG in the identification interval, i may receive a FLAG from 

another transmitter, even if i transmits in the data interval.       

Since transmissions during the data interval use a transmitter-oriented spreading 

sequence, the receive vector for terminal i, r(i), allows i to determine which transmitter-

oriented spreading code to monitor in each slot in which it does not transmit.  The 

transmit matrix of i, T(i), specifies, for each slot, which terminals monitor i’s unique 

spreading sequence.  The neighbor table of i stores terminal ID, color number, link 

parameters (outgoing link SINR Estimate, transmission rate, and cost for use in routing), 

and expiration slots for the neighbor table entry, r(i), and T(i).   

Entries in the neighbor table, r(i), and T(i) expire after a period of time if they are 

not refreshed so that the schedule remains efficient as neighbors cease operating or move 

away.  The neighbor timeout parameter, Nto, determines the number of transmission 

frames to store information that is not refreshed.  When i receives a FLAG from terminal 

j in slot s, the information for j in the neighbor table is updated and the neighbor table 

entry’s expiration slot is set be 2niNto slots from the current slot, where ni is the frame 

length calculated by i.  When i receives a packet from terminal j in the data interval of 

slot s, i sets i
sr j= , and sets the receive vector expiration slot for entry i

sr to be niNto from 

the current slot.  Using a longer timeout for neighbor table entries is intuitive since it 



 46

promotes greater stability in neighborhood membership in situations where link SINR 

degrades slowly due to increasing distance between a transmitter and receiver.   

Entries in T(i) are formed via periodic exchange of NBR_ACK packets.  A 

NBR_ACK packet transmitted by terminal j contains the receive vector of j, r(j), as well 

as the estimate of the incoming SINR, ,î jξ , for each terminal i listed in r(j) and the current 

utilization estimate jU  (used for determining link costs in the routing algorithm).  For 

each terminal i that receives this NBR_ACK packet, i sets , 1i
j st = for all slots s such that 

j
sr i= .  It also sets the transmit vector expiration slot for entry ,

i
j st to be niNto slots from 

the current slot.  Lastly, i updates its neighbor table with the outgoing link SINR estimate 

to j.  To ensure periodic broadcast of NBR_ACK packets, when terminal j transmits a 

NBR_ACK packet, j schedules another NBR_ACK packet to be generated in a slot 

uniformly distributed in the interval 
( ) ( ),

2
j to

j to

n N
n N

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 slots from the current slot.  

NBR_ACK packets are also automatically generated when a packet is received in the 

data interval from a terminal that is not listed in the receive vector.   

There are two ways in which a terminal may receive a packet in the data interval 

from a terminal not listed in the receive vector.  During slot s, if terminal i is in receive 

mode and 0i
sr =  (i.e., no transmitter is associated with the current transmission slot), 

then if i receives a FLAG from a terminal j, we assume i processes the information from 

j, and infers j’s spreading code so it can attempt to receive a packet from j in the data 

interval.  If 0i
sr =  and no FLAG is received, i attempts to receive a packet from the 
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terminal in its neighbor table with the highest transmission priority in the current slot (if 

multiple terminals satisfy this then a simple tie-breaker, such as lowest ID, is used).  

Successful packet reception from terminal j in the data interval of slot s allows i to set 

i
sr j= . 

Every terminal is required to have a unique color number among the terminals 

listed in its neighbor table.  If after updating its neighbor table, a terminal has the same 

color number as one of its neighbors, it changes its color number to the smallest color 

number not found in the neighbor table. If, after updating neighbor information, the 

neighbor table information is inconsistent with the receive vector or transmit matrix, then 

the invalid entries in r(i), and T(i) are automatically corrected.  This may happen if a 

neighbor j changes its color, for example, from 1 to 2.  Neighbor j can no longer transmit 

in slot 1.  If 1
ir j= , then i sets 1 0ir = .  If 2 0ir = , i sets 2

ir j= ; otherwise 2
ir  does not 

change.   

The neighbors of terminal i are divided into two sets: detectable neighbors, 2
iN , 

and communicable neighbors, 1
iN . For a neighbor j, if i

sr j= for some slot s, and 

, 1i
j lt = for some slot l, then j∈ 1

iN ; otherwise, j is a member of 2
iN .  The reason for this 

separation is that, due to varying levels of MAI, not all links are bidirectional.  

Unidirectional links are not reliable since transmission of NBR_ACK packets fails in one 

direction.  Consequently, the link cost to neighbors in 2
iN  is set to infinity so they are not 

considered for routing multi-hop data traffic.           
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5.3  INS Example 

Figure 14 shows an example network during an initialization phase with six 

terminals, A, B, C, D, E, and F, arranged in a linear configuration.  Each row 

corresponds to a time slot, and the color, transmission, and reception status for each 

terminal is shown in each slot.  Initially, each terminal is assigned color 1.  There are two 

special considerations during network initialization.  First, since a terminal with color 1 

and no detected neighbors has priority to transmit in every slot, we force the terminals to 

transmit with probability ¼ until at least one neighboring terminal is detected.  In 

addition, the minimum frame size for a terminal is set to 4 slots.   

In slot 1 of the example, only terminals B and D elect to transmit.  B transmits 

both a FLAG packet and a packet in the data interval, while D transmits only during the 

data interval.  The FLAG packet from B causes A and C to add B as a neighbor.  Since B 

has color 1, A and C both change their color to 2.  D’s transmission is unsuccessful 

because C and E have not yet detected D and do not know to monitor D’s spreading 

code.  In slot 2, A and C transmit because they now have color 2.  A transmits in the data 

interval only, while C transmits in both intervals.  B detects the FLAG from C, adds C as 

a neighbor and receives the subsequent transmission from C in the data interval; no color 

change is necessary.  In slot 3, E transmits a FLAG that is detected by D and F.  D 

changes its color to 3 since it now has detected neighbors with colors 1 and 2.  F changes 

its color to 2 since it has only detected a neighbor with color 1.   
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Figure 14. Example illustrating neighbor detection and color selection via FLAG 

reception.   

We now examine the neighbor table of B, r(B), and T(B) at the end of slot 4.  B 

received a packet from C in slot 2 and a packet from A in slot 4, so r(B)=(0,C,0,A).  

Assuming that the packets transmitted by A and C were NBR_ACK packets generated 

when they detected B, C’s NBR_ACK informs B that it can transmit a packet to C in slot 

1 of the frame.  A’s NBR_ACK informs B that it can transmit a packet to A in slots 1 and 

3.  Thus, T(B)  is: 

Slot #
0 A B C D E F

1

2

3

4

1 1 1 1 1 1

2 1 2 1 1 1

2 1 2 1 1 1

2 1 2 3 1 2

Possible Transmit & Receive Scenarios 
Transmit Data 
 
Transmit FLAG & Data 
 
Receive Data 
 
Receive FLAG & Data 
 
Receive FLAG 
 
Receive FLAG & Transmit 
Data 
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T(B)=
1 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.   

Lastly, the set of communicable neighbors for B is 1
BN  ={A,C}since A and C 

appear in the receive vector and have entries in the transmit matrix.   

As of slot 4, C’s receive vector is r=(B,0,B,0).  Thus, C never attempts to receive 

a packet from D and multi-hop communication between B and D is not possible.  In a 

larger network, it is likely that additional terminals lying between B and D would supply 

additional links, and thus provide a greater chance that a route exists between B and D.  

For example, in Figure 12, network connectivity is preserved when a single-hop 

neighborhood is used.  However, in a sparse topology this can be a significant problem.  

In Chapter 6, we discuss the challenges of using INS in networks with low terminal 

density, and show through simulation results that the problem is mitigated as terminal 

density increases.  In Chapter 7, we discuss an extension to the INS protocol which 

allows terminals to improve connectivity by sharing additional neighbor information.  In 

Chapter 8, we describe a further extension which improves connectivity by leveraging 

multi-packet reception capability of terminals equipped with advanced receiver hardware.   

5.4   Link-based Adaptation of Spreading Factor 

When terminal i transmits a unicast data packet to neighbor j, the outgoing link 

SINR estimate, denoted ,î jξ , may be used to adjust the spreading factor to take advantage 

of links with high SINR.  Utilizing the maximum spreading factor, Nmax, i can transmit 
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one packet in the payload interval.  When ,î jξ  is above a threshold, i reduces the 

spreading factor to increase the data rate.  For these investigations, i can reduce the 

spreading factor by a factor of 2 or 4 as shown in Table 3.  A 3dB margin must be 

satisfied before terminals attempt to increase the spreading factor.  Broadcast data and 

network control packets (e.g., NBR_ACK packets) are always transmitted using the 

maximum spreading factor.  

4 packets per slot

2 packets per slot

1 packet per slot

Link RateLink Spreading 
Factor 

Link SINR 
Estimate

4 packets per slot

2 packets per slot

1 packet per slot

Link RateLink Spreading 
Factor 

Link SINR 
Estimate

,
ˆ 4i jβ ξ β< ≤

maxN

,
ˆ4 8i jβ ξ β< ≤ max

2
N

,
ˆ8 i jβ ξ< max

4
N

 
Table 3. Allowable transmission modes for various link SINR estimates.  

Incoming link SINR estimates ,î jξ  are computed using the method described in 

Section 4.1.  The current incoming link SINR estimate ,î jξ  is sent to i in each NBR_ACK 

packet, providing i with an outgoing link SINR estimate.   

5.5  Intelligent Queue Management  

Queue management is utilized to reduce control packet overhead and to exploit 

spreading factor adaptation.  In a slot in which a terminal is scheduled to transmit, it 

scans its queue for candidate packets.  Broadcast data and network control packets are 

always candidates for transmission; if the first candidate packet is a broadcast data, 

BLOCK, or NBR_ACK packet, the search stops and the packet is transmitted.  A unicast 
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data packet is a candidate only if the next hop for the packet is listed in the transmit 

matrix for this slot.  If the first candidate packet is unicast data packet, and the next hop is 

a neighbor for which a reduced spreading factor will be employed, then the search 

continues for other candidate unicast data packets which may be sent using a reduced 

spreading factor.  If no candidate packet is found, the terminal does not transmit in the 

data interval.  Figure 15 shows several allowable transmission scenarios.  For example, 

suppose terminal i has packets {p1, p2, p3, p4} enqueued for j2, j1, j2, and j1 respectively, 

and suppose j1 and j2  are both listed in the transmit matrix for this slot.  Terminal i first 

dequeues p1 for transmission.  Since the slot is not full, i next dequeues p2.  The next 

packet, p3, cannot be transmitted since there is not enough remaining time in the slot.  

However, p4 can be transmitted, resulting in a scenario identical to (D) in Figure 15.   

Flag (p=0.5) Payload (1x)

Payload (2x)

Payload (4x) Payload (4x) Payload (4x) Payload (4x)

Flag (p=0.5)

Flag (p=0.5)

(C) use for high-SINR link to j1

(A) use for low-SINR link to j3

(B) use for intermediate-SINR link to j2

Payload (4x) Flag (p=0.5)

(D) Mixed strategy: unicast multiple packets to receivers j1 and j2

Payload (2x) 

Payload (2x)

i

j1

Payload (4x)

j3

j2

 
Figure 15. Example showing some feasible transmission scenarios for unicast data 

packets from terminal i.   
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CHAPTER SIX 
 

EVALUATION OF INS PROTOCOL 
 
 

In this section we analyze the performance of immediate neighbor scheduling 

using simulations.  For each simulation, the number of terminals, N, is 100, and the 

number of trials, ϒ , is also 100 .  Neighbor density, which is a measure of the average 

number of neighbors of a terminal, is varied by adjusting the communications range, R.  

Values of R of interest are {200, 250, 350}, resulting in average 1-hop neighbor counts of 

approximately {10.1, 15.2, 27.1} respectively.  For values of R below 200, network 

performance is dominated by low connectivity and unavailability of routes.  End-to-end 

packet statistics are used to compare the performance of schedules which use a 2-hop 

neighborhood, as used in collision-free graph-based schedules, and immediate neighbor 

schedules, which use a smaller neighborhood to schedule transmissions.   

Section 6.1 contains a description of the 2-hop scheduler, referred to as the 

Broadcast Transmission Scheduler (BTS).  In Section 6.2, we present steady-state results 

for networks with stationary terminals.  In Section 6.3, we describe a new mobility 

model, and use end-to-end packet statistics to evaluate the performance of the INS 

protocol in mobile networks.  In Section 6.4, we examine how the adaptive transmission 

protocol improves performance.    

6.1   Centralized Collision-free Scheduler Implementation 

For comparison, we have implemented a centralized broadcast transmission 

scheduler (BTS), designed to generate collision-free broadcast transmission schedules 
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assuming use of the graph-based connectivity model.  The purpose for this is to 

determine how the gain in spatial reuse provided by the INS protocol balances with the 

greater number of communications links provided a traditional scheduling protocol.  A 

greater number of communication links results in more robust network topologies.  The 

additional links also tend to span longer distances, decreasing the average hop count for a 

packet to reach its destination.  

When the BTS is used, the communications range is used to generate a topology 

graph (i.e., the 1-neighbors of a terminal are all terminals within communications range, 

and the 2-neighbors of a terminal are all additional terminals within communications 

range of 1-neighbors) which is then supplied to each terminal.  Terminals are assigned 

unique colors among their 1- and 2-neighbors to ensure a collision-free schedule.  All 

other details of the simulation are identical, including routing, queueing policies, 

spreading, and the requirement on SINR given by (3.1).  Note that while BTS generates 

collision-free transmission schedules under the graph-based connectivity model, not all 

transmissions are successful because the SINR requirement may not be satisfied.   

In the BTS tests, NBR_ACK packets play the same role in determining the 

transmit matrix and receive vector for terminals, which are then used for identifying 

communicable neighbors which may be used by the routing algorithm.  This results in 

approximately equal control packet overhead for the INS and BTS tests.  In a real system, 

a scheduling protocol using a 2-hop scheduling neighborhood would require additional 

overhead to manage recoloring of terminals in response to local changes in network 

topology.  For example, the protocol in 0 describes a method for exchanging local 
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information across multiple hops to facilitate this type of coordination.  In the BTS, 

terminals are automatically notified of local changes in network topology, and recoloring 

of terminals to account for these changes is performed automatically. 

6.2   Performance in Stationary Networks 

We examine the steady-state performance of the INS protocol and the centralized 

BTS protocol.  To support our claim of higher spatial reuse with the INS protocol, in 

Figure 16 we show the average number of transmissions per slot under the INS protocol 

and the BTS for R=200m and R=250m.  Under the INS, terminals have fewer neighbors 

with which they must share the channel, so they may be able to operate with shorter 

transmission frames and transmit more often.   

When more transmissions are allowed per slot, the MAI is greater and some 

neighboring terminals are more difficult to reach.  As a result, packets tend to take shorter 

hops and must be forwarded more times to reach their destinations.  The average hop 

count for successful packets is shown in Figure 17 for R=200m and R=250m.  The INS 

protocol results in one to two additional hops per packet when compared to the BTS. 
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Figure 16. Average number of transmissions per slot for INS and BTS, R=200m 

(top) and R=250m (bottom). 
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Figure 17. Average hop count of successful packets for INS and BTS, R=200m (top) 

and R=250m (bottom). 
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Steady state end-to-end packet statistics when R is 200m, 250m, and 350m, are 

shown in Figure 18, Figure 19, and Figure 20, respectively.  At R=200m, the packet delay 

is lower when the INS protocol is used, and the throughput appears similar.  However the 

packet completion rate is actually much lower than that provided by the BTS.  At this 

density, the major challenge faced by the INS protocol is network connectivity.  The BTS 

also exhibits a packet completion rate slightly below 100% at low packet generation rates 

for the same reason, but the connectivity is much better overall.  A closer examination of 

the behavior of the INS protocol reveals the causes for this difference.  

The INS protocol allows a terminal to detect most terminals within 

communications range through reception of FLAG packets, but not all of these become 

communicable neighbors.  This is due to two factors: first, terminals may only capture 

packets from one transmitter in each slot, so if two or more neighbors transmit in the 

same slot, then only one transmitting neighbor becomes a communicable neighbor.  

Second, greater spatial reuse in the INS tests results in greater MAI and lower link SINR 

values; if the SINR of a particular link is very low in the BTS tests, then the SINR of the 

same link in the INS tests may be below the threshold required for packet reception.  A 

test network is disconnected when one or more terminals are isolated from the other 

terminals in the network.  In the INS tests, the combination of greater MAI and fewer 

communicable neighbors causes more test networks to be disconnected.     

Disconnected networks cause more packets to be dropped since there is no route 

for some source-destination pairs.  For example, in the INS tests, when R=200m and the 

packet generation rate γ = 0.5 packets per slot, 7% of generated traffic is lost due to 
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routing failures, 3% is lost due to queue overflow; the remaining 5% is lost due to 

insufficient SINR at the receiver or the wrong transmitter being selected by the receiver.  

When the BTS tests are run at the same generation rate, 4.4% of generated packets are 

lost due to queue overflow, and 0.6% are lost due to routing failures.      

At very low packet generation rates ( 0.2γ ≤ packets per slot), the packet 

completion rate of the INS protocol decreases slightly because terminals do not transmit 

often enough establish reliable transmitter-receiver matchings: for example, if the data 

input rate to the network is zero, then terminals only transmit FLAG packets and periodic 

NBR_ACK packets.  In this situation, it is difficult for a terminal i to determine if a 

neighbor should be in set 1
iN  or set 2

iN  .  This results in establishment of fewer links to 

neighbors, a greater number of disconnected networks, and a larger portion of 

transmissions which fail due to the receiver correlating to the wrong spreading sequence.  
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Figure 18. Packet throughput, delay and completion rate when R=200m. 
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At higher network densities (R=250m and R=350m) network connectivity is more 

robust, so more links for routing packets are available and eliminating collisions is not as 

important.  When 0.5γ > packets per slot, the INS protocol supports higher packet 

completion rates with much lower packet delay than the BTS tests.  The BTS tests 

provide 100% packet completion rate at lower values of γ , but terminals in these tests 

are provided with perfect information about all reachable terminals within two hops.  In a 

real distributed network, this information would be very difficult to obtain.   

The INS tests achieve a higher overall packet completion rate at high packet 

generation rates since terminals are able to transmit more often. This improvement comes 

despite the fact that each transmission, on average, traverses a shorter distance.  

However, the analysis in [53] shows that theoretical wireless network transport capacity 

is maximized when neighbor density is just dense enough to ensure network connectivity 

while allowing for maximal spatial reuse.  The gain in performance from scheduling 

using a smaller neighborhood mirrors this result, and becomes much more noticeable at 

the higher neighbor densities.   

Most packet drops in the BTS tests are due to queue overflow; this is also the case 

for the INS protocol when R=250m or R=350m.  At a packet generation rate of 1.0γ = , 

when R=250m, 1% of generated packets are dropped because no route to the destination 

exists, 10% of generated packets are dropped due to queue overflow, 0.35% are lost due 

to insufficient SINR, and 0.9% are lost because the receiver is attempting to receive a 

transmission from a different transmitter.  When R=350m, the corresponding rates of 

packet loss are 0.03%, 3%, 0.15%, and 0.24%, respectively.   
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It is difficult to compare the performance of the INS and BTS tests across 

different values of R.  As R increases, the average number of hops required for a packet 

to reach its destination decreases; this allows the network to support a greater level of 

traffic.  However, the neighbor density also increases with R, leading to longer 

transmission frames and less spatial reuse.  This tends to reduce the level of traffic the 

network may support.  Despite this complex tradeoff, we claim that INS protocol has 

superior scalability as neighbor density increases based upon the following observation: 

as the value of R increases, the performance of the INS schedules continues to improve, 

while the performance of the BTS schedules remains about the same.  This reinforces the 

above conclusion that the INS scheduling approach better leverages the multiple access 

capability of DSSS than the approach used for BTS schedules.   
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Figure 19. Packet throughput, delay, and completion rate when R=250m. 
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Figure 20. Packet throughput, delay and completion rate when R=350m. 
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6.3   Performance in Mobile Networks 

To examine the performance of the INS protocol in dynamic environments, we 

use a five-state discrete-time Markov chain to model terminal mobility.  In state 0, a 

terminal is stationary.  In states 1, 2, 3, and 4 a terminal may move north, east, south, and 

west, respectively. Terminals in motion all move at the same speed.  The rate of mobility-

induced topology changes depends upon the speed of mobile terminals, as well as two 

probability parameters, denoted p and q, which define how long terminals are in the 

mobile states (states 1 – 4) and how long a terminal is in the stationary state (state 0).  A 

third parameter, r, defines the rate at which terminals in motion turn right or left.  When a 

stationary terminal begins moving, its initial direction is equally likely among the four 

mobile states.  When a terminal changes direction, it turns left or right with equal 

probability.  The mobility state of each terminal is updated in every slot.  A diagram of 

the mobility model and its state transition probability matrix are shown in Figure 21.  We 

use this model in lieu of the random waypoint mobility model [54] because it is easier to 

create special-case mobility scenarios, and because it maintains a more even spatial 

distribution of terminals.  Table 4 shows the values of the mobility parameters used in 

simulations.   
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Figure 21. Mobility model and state transition matrix. 

If we define a D as the random variable representing the number of slots a 

terminal moves in a single direction, then the expected value of D is  

  ( )( )
1

1[ ] 1 1
n

n
E D n p r

p r

∞

=

= − − − =
+∑ . (6.1) 

Similarly, when a terminal stops moving the expected amount of time spent in the 

stationary state is 1 q slots.  When mobile terminals reach a boundary, they are reflected 

back in the opposite direction.   
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0.000065r: probability a mobile terminal turns 90º left or right (equally likely)

0.02q: probability a stationary terminal begins moving

0.000065p: probability a mobile terminal stops moving

0.000065r: probability a mobile terminal turns 90º left or right (equally likely)

0.02q: probability a stationary terminal begins moving

0.000065p: probability a mobile terminal stops moving

 
Table 4. Mobile parameters used in simulations. 

In the INS mobility tests, terminals are initialized with color 1 and no knowledge 

of surrounding terminals, as in the stationary tests.  We use the performance of the BTS 

in mobile networks for comparison.  Terminals in the BTS mobility tests are initialized 

with a greedy coloring based upon the topology of the network at the beginning of the 

simulation.  In each slot, the underlying topology graph (based upon communications 

range, R) is updated, and the neighbor tables of all terminals are updated to reflect the 

current topology.  In both the INS and BTS tests, the centralized routing is recomputed 

every 64 slots.  The terminals move according to the schedule in Table 5.  Speed is 

quoted in meters/second, and we assume there are 150 time slots per second in the 

simulation. During low mobility periods, there are approximately 0.25 and 0.28 link 

changes per slot for R=200m and R=250m, respectively.  During high mobility periods, 

there are approximately 0.5 and 0.55 link changes per slot for R=200m and R=250m, 

respectively.  In all cases, the packet generation rate is 0.5 packets per slot for the 

duration of the mobile simulations.     

0(15001, 25000)

20.0(10001, 15000)

10.0(5001,10000)

0(1,5000)

Speed (m/s)Time Period (slots)

0(15001, 25000)

20.0(10001, 15000)

10.0(5001,10000)

0(1,5000)

Speed (m/s)Time Period (slots)

 
Table 5. Terminal mobility in mobile scenarios.   
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To evaluate performance in mobile scenarios, we use a windowed throughput 

measurement: the simulation maintains a running total of delivered packets for the 

network, and every 64 slots an instantaneous throughput estimate, measured in packets 

per slot, is obtained by dividing the total delivered packets by 64.  The running total is 

then reset and a new window starts.  Figure 22 shows the throughput during the 4-stage 

simulation for R=200m and R=250m.  The INS protocol maintains a high level of 

throughput during mobile periods, showing that the schedule is able to continuously 

adapt coloring and neighbor tables to the changing topology.  In all tests, the majority of 

packet drops are due to routing failures.  When two terminals move within 

communications range, they must detect each other through FLAG transmissions and 

successfully exchange NBR_ACK packets before they can both use the other for routing 

packets.  This process takes longer if terminals transmit less often, as in the BTS tests.  

Thus, while coloring conflicts are automatically resolved by the BTS, it still takes the 

BTS some time to recover from topology changes.  This process is faster in the INS tests 

because terminals transmit more often, allowing faster recovery from topology changes. 

As terminals move, it may happen that a terminal that has a high color number 

because it is in a dense area of the network moves to a less-dense area of the network.  In 

this case, the terminal would keep its original color number since no coloring conflicts 

occur.  However, this is inefficient if the terminal could choose a new, lower color 

number.  As a result, a slight, gradual decrease in performance occurs during mobile 

periods, particularly in the BTS tests.  To correct for this, at time slot 15,000 terminals in 



 69

the BTS tests are recolored, and throughput diminishes until neighbor tables are 

reconstructed.  The coloring is not modified in this manner in the INS tests.   

Even though it is a distributed protocol, the INS does not require an extended 

initialization period to identify neighbors and compute a schedule.  Figure 23 shows a 

close-up of the second graph in Figure 22 (R=250) to demonstrate the initialization 

behavior.  As terminals detect new neighbors, they may change color several times and 

generate several NBR_ACK packets.  By time slot 400, however, the INS protocol is 

delivering packets at a higher rate than the BTS, clearing backlog that built up as 

neighbors were detected.   
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Figure 22. Packet throughput during 4-stage mobile scenarios for R=200 and R=250. 
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Figure 23. Close-up of packet throughput measurements to show initialization 

behavior. 
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6.4   Utility of Spreading Factor Adaptation 

Link-based adaptation of spreading factor is used in both the INS tests and the 

BTS tests to a substantial degree.  For example, at R=350m, both the INS and BTS tests 

use the highest transmission rate (lowest spreading factor) for approximately 80% of 

transmissions, regardless of the packet generation rate; approximately 5% of packets are 

transmitted using the highest spreading factor, and around 15% of packet transmissions 

use the intermediate spreading factor of 16.  When the adaptive transmission protocol 

(ATP) is deactivated, the maximum stable throughput is much lower. In Figure 24, the 

packet completion rate for the INS and BTS tests is shown for tests in which the adaptive 

transmission protocol is deactivated; these are plotted with the results in Section 6.2 for 

comparison.  We consider the same test cases as before: R=200, R=250, and R=350.   

Without the adaptive transmission protocol, the BTS tests cannot support a 90% 

completion rate for γ  values greater than 0.5, regardless of the value of R.  When the INS 

is used without the ATP, the performance is especially poor in networks with sparse 

connectivity.  For R=250m and R=350m, the INS tests only support a 90% packet 

completion rate for γ =0.45 and γ =0.65, respectively, when the ATP is not used.  Thus, 

the ATP improves INS protocol’s performance by approximately 100% at R=250m and 

R=350m.  This illustrates the value of the cross-layer protocol design.  By combining the 

greater spatial reuse of the INS protocol with the flexibility of adaptive transmission 

rates, large performance gains for end-to-end traffic are realized. 
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Figure 24. Utility of spreading factor adaptation in the INS and BTS tests.   
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CHAPTER SEVEN 
 

ENHANCING INS WITH SELECTIVE COLLISION ELIMINATION 
 
 

In dense networks with a random distribution of terminal locations, the 

information obtained from immediate neighbors is sufficient to generate a schedule and 

network topology which supports multi-hop communications between any pair of 

terminals in the network.  In sparse networks, however, important links which are 

necessary for connectivity are not available when the INS protocol is used, causing the 

network to become disconnected and some destinations to be unreachable.  This is noted 

in the simulation results of Chapter 6 when the neighbor density is low (R=200m).   

This can also be seen in the example network in Section 5.3, using Figure 14.  At 

the end of the example, B can communicate with A and C because they are both 

members of 1
BN .  However, C’s receive vector is r(C)=(B,0,B,0).  D is not listed in r(C), so 

D is a member of 2
CN .  Since the schedule does not support bidirectional communication 

between C and D, the network is disconnected (i.e., there is no route between one or 

more source-destination pairs).  In sparse networks, such as the network of Figure 14, it is 

important to establish bidirectional communication with as many neighbors as possible to 

improve network connectivity.  

We extend the INS protocol by allowing terminals to change the transmission 

schedule in order to increase the number of communicable neighbors.  This process is 

termed selective collision elimination.  Here the term collision refers to the event of two 

neighboring terminals transmitting in the same time slot, and it does not specifically refer 
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to the success or failure of a particular transmission.  Selective collision elimination is 

accomplished via messages, termed BLOCK packets, which deliver information about 

non-immediate neighbors to surrounding terminals so that they may be accounted for in 

the schedule.  In practice, a terminal only needs to know about a few of these non-

immediate neighbors in order to recover links necessary for connectivity.   

The message contained in a BLOCK packet is a four-tuple (a, s, c, b), where a is 

the ID of a neighbor, s is a slot number, c is a color number, and b is another terminal ID 

representing the intended recipient of the BLOCK message.  When terminal i receives a 

BLOCK packet with message (a, s, c, b), i adds terminal a to its neighbor table and, if 

necessary, changes its color to maintain a unique color among the terminals in its 

neighbor table. 

The remainder of this chapter is structured as follows: in the next section we 

provide an example of selective collision elimination.  We describe two approaches for 

implementing selective collision elimination in Sections 7.2 and 7.3.  In Section 7.4, we 

evaluate selective collision elimination using simulations.   

7.1   INS Example Extended with Selective Collision Elimination  

To demonstrate the operation of BLOCK packets, we continue the example from 

Section 5.3 with selective collision elimination enabled.  The next sequence of slots is 

shown in Figure 25 starting with slot 5 (slot 1 of the 4-slot frame).  In slot 6, assume A 

transmits in both the identification and data intervals while C transmits only in the data 

interval.  This allows B to detect that two terminals are transmitting in the same slot if B 

captures the FLAG from A and receives the packet from C (the receive vector of B is 



 76

r(B)=(0,C,0,A)).  For this example, assume B responds to detection of two transmitting 

terminals in this slot by generating a BLOCK packet with message (C,2,2,A).  This 

message is constructed to inform terminal A that terminal C also transmits in slot 2 of 

each frame with color 2.   

 
Figure 25. Six-terminal network example extended to demonstrate operation of 

BLOCK packets. 

In slot 7, B transmits the BLOCK packet.  Terminal A receives the BLOCK 

packet and learns of terminal C, which also has color 2; A adds C to its neighbor table 

and changes its own color to 3.  Meanwhile, terminal D transmits in the identification and 

data intervals of slot 7.  C detects two terminals transmitting in the same slot when it 

Slot #
A B C D E F

5 (1)

6 (2)

7 (3)

8 (4)

9 (1)

10 (2)

11 (3)

12 (4)

!

2 1 2 3 1 2

2 1 2 3 1 2

2 1 2 3 1 2

3 1 2 3 1 2

!

B(C,2,2,A)

B(D,3,3,B)

3 1 2 3 1 2

3 1 2 3 1 2

3 1 2 3 1 2

3 1 2 3 1 2
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receives the FLAG from D and the BLOCK packet from B.  For this example, assume C 

constructs a BLOCK packet with message (D,3,3,B).  C waits until slot 10 to transmit the 

BLOCK packet, since ,2 1C
Bt =  and slot 10 is slot 2 of the transmission frame.  No color 

change results from this BLOCK packet; however, terminal B adds D to its neighbor 

table and no longer transmits in the 3rd slot of each frame.   

Intelligent use of information gained from FLAG bytes can help reduce the 

amount of time required to regain links when neighbors change color.  To see this, note 

that in slot 8, B is still trying to detect a transmission from A even though A no longer 

transmits in that slot.  In slot 11, B learns of A’s color change via FLAG reception.  

Terminals with color 3 cannot transmit in slot 4 of the frame, so B clears the receive 

vector entry listing A in the 4th slot of the frame (refer to Section 5.2 for an example).   

At this point, the network supports multi-hop communications between any pair 

of terminals, even when the neighbor entries generated by BLOCK packets expire.  This 

is a consequence of the coloring which was induced by the BLOCK packets.  In general, 

however, this is not the case and more BLOCK packets may be generated as neighbor 

table entries gained through BLOCK messages expire. 

7.2  Implementing Selective Collision Elimination with a Fixed Threshold 

A common blocking threshold parameter, BT, shared by all terminals, represents 

the minimum SINR for a received packet that causes a BLOCK packet to be created.  

When terminal i receives a FLAG transmission in slot s from terminal j, i forms an SINR 

estimate ,
ˆ

j iξ  for the received FLAG.  If i
sr k= , where k j≠  and k>0, and ,

ˆ
j iξ >BT, then i 
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creates a BLOCK message.  If j kc c> , the BLOCK message is (j, s, cj, k).  Otherwise, the 

BLOCK message is (k, s, ck, j).  

A lower value for the BT allows for more BLOCK packets to be created.  If BT is 

set to 0, then terminal i generates a BLOCK whenever it receives a FLAG packet from a 

terminal for which it is not scheduled to receive from during that data interval of the same 

slot.  The resulting schedule is very close to a collision-free broadcast schedule, but the 

overhead to achieve this can be significant.  As a result, while a low value of BT is 

valuable in networks where connectivity is an issue, it becomes a liability (in terms of 

overhead) when connectivity is robust.   If a larger value of BT is used, then a BLOCK 

packet is generated only when the transmitter identified in the FLAG is a strong source of 

interference during the data interval. 

7.3  Implementing Selective Collision Elimination with a Variable Threshold 

Each terminal i calculates a blocking threshold btj for each neighbor j based upon 

the SINR estimate of link (j, i).  Consider a scenario in which terminal i lists j in the 

receive vector for slot s, i.e. i
sr j= , and another nearby terminal k begins transmitting in 

slot s.  If k generates significant additional MAI, then the SINR requirement for link (j, i) 

may no longer being satisfied.  This condition is expressed as 

  max

0

( )
( )

r

r

P j N
N P k

β≤
′ +

, (7.1) 

where ( )rP x  represents the power received at i from transmitter x, and 0N ′  represents the 

sum of thermal noise and aggregate MAI from transmitters besides k.   By rearranging 

terms, (7.1) may be rewritten as 
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  max

0 0

( ) ( )1 1r rP j N P k
N Nβ

≤ +
′ ′

. (7.2) 

The incoming link SINR estimate for neighbor j, ,
ˆ

j iξ , is made relative to the maximum 

spreading factor, maxN  (see Section 4.1).  We make the approximation 

  max
,

0

( )ˆ r
x i

P x N
N

ξ ≅
′

 (7.3) 

and substitute into (7.2), yielding  

  ,
,

max

ˆ1 ˆ 1 k i
j i N

ξ
ξ

β
≤ + . (7.4) 

Next, we solve for the value of ,k̂ iξ  which results in equality in (7.4), and use that as a 

basis for btj.  We define the blocking threshold for link (j, i), to be btj to be 

  max ,
1 ˆ 1j j ibt cN ξ
β

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. (7.5) 

In (7.5), we set c = 0.5 to provide approximately 3dB of additional protection for link 

(j,i).  The SINR estimate for link (j, i) is the minimum of several sample estimates, while 

the SINR estimate for the transmission from k, ,k̂ iξ , corresponds to a single sample.  The 

sample link SINR estimates may be imprecise, and may vary from one time slot to 

another depending upon transient conditions, so the additional 3dB of protection 

increases the robustness of the protocol.   

When using the variable threshold method, the routing table of i is used in 

conjunction with the neighbor blocking thresholds to determine when to create a BLOCK 

packet.  A BLOCK packet may be created in two cases.  In the first case, if i receives a 
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FLAG transmission from k in slot s, and there is currently no route to k, and i
sr k≠ , then i 

creates a BLOCK packet with message (k, s, ck, j), where i
sj r=  (note this does not 

depend upon jbt ).  Terminal i also sets i
sr k= .  When terminal j receives this BLOCK 

packet, j adds k to its neighbor table and, if necessary, changes its color.  With k added to 

the neighbor table, j will no longer transmit in slot s, and it is easier for k to become a 

communicable neighbor of i.  Since no route to k existed previously, this improves 

network connectivity.   

In the second case, if i receives a FLAG transmission from a neighbor k in slot s, 

and there exists some other terminal j for which i
sr j= , ,

ˆ
j k ibt ξ< , and the next hop for 

routing packets to j is j itself, then i creates a BLOCK packet with message (j, s, cj, k).  

When terminal k receives this BLOCK packet, k adds j to its neighbor table and, if 

necessary, changes its color.  This ensures that i can continue receiving NBR_ACK 

packets from j, so that link (i, j) may continue to be used for forwarding packets.     

By using the routing table and a variable threshold to determine when to generate 

BLOCK packets, terminals are better able to control the additional overhead of selective 

collision elimination.  A terminal does not create a BLOCK packet unless doing so 

improves network connectivity, or preserves links which are used for forwarding packets.  

In networks with robust connectivity, fewer BLOCK packets are created since the 

connectivity of these networks is very robust.  In networks with sparse connectivity, more 

BLOCK packets are created to establish and preserve important communications links. 



 81

7.4  Evaluation of Selective Collision Elimination 

We use simulations of stationary networks to determine the steady-state 

performance of the INS protocol when selective collision elimination is enabled.  We 

consider the variable threshold method for generating BLOCK packets, as well as the 

fixed threshold method with BT=100.  In preliminary studies, we examined the use of 

other fixed thresholds, specifically 10, 20, 50, 200, and 1000.  The low thresholds (10, 20 

and 50) result in poor performance when R=250m or R=350m due to the large amount of 

additional overhead generated.  The larger thresholds (200 and 1000) perform better at 

higher network densities, but they do not achieve a 90% packet completion rate when 

R=200m.  By setting BT=100, a 90% packet completion rate can be reached when 

R=200m, and excessive overhead in more dense networks is avoided.   

In Figure 26, the packet completion rate is shown as a function of packet 

generation rate when R is 200m, 250m, and 350m for the variable-threshold and the 

fixed-threshold implementations.  The performance results from Chapter 6 (base INS 

protocol and BTS) are also included in the plots for comparison.  When R=200m, the 

variable threshold performs almost as well as the BTS, providing a 90% packet 

completion rate up to γ=0.6.  The fixed threshold also improves the performance of the 

INS protocol, but to a lesser extent.  When the neighbor density is increased (R=250m 

and R=350m), both methods result in decreased performance when compared to the base 

INS protocol.  There are two reasons for this.  First, the BLOCK packets themselves 

create additional overhead in the network.  Second, the additional neighbor table entries 

created by BLOCK packets result in less spatial reuse.   
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Figure 26. Performance of selective collision elimination using the fixed-threshold 

and variable-threshold methods.   
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Comparing the performance of the fixed and variable thresholds, it is evident that 

the variable threshold performs considerably better in networks with sparse connectivity, 

and maintains a slight performance edge over the fixed threshold in networks with robust 

connectivity.  This is because the variable threshold is able to adapt the level of overhead 

generated from BLOCK packets to the network conditions.  To better illustrate this point, 

Figure 27 shows the overhead from BLOCK packets, expressed in BLOCK packets 

transmitted per slot, for the fixed and variable thresholds and for various values of R.  

Using the fixed threshold, the overhead is similar in networks with different neighbor 

densities.  The variable threshold, however, is able to achieve reduced overhead in 

networks with high neighbor densities. 

In summary, the variable blocking threshold dramatically improves the 

performance, in terms of packet completion rate, of networks with sparse connectivity at 

low to medium traffic loads.  The fixed blocking threshold also improves performance in 

these networks, but to a smaller extent.  The BTS has a greater packet completion rate for 

these scenarios (sparse connectivity and low traffic load), but it achieves this because it is 

provided with topology information that is not available to the distributed INS protocol.  

In networks with robust connectivity and high traffic loads, selective collision elimination 

imposes a performance penalty to the INS protocol due to increased control packet 

overhead and decreased spatial reuse.  In the next chapter, we modify the INS protocol to 

leverage multi-packet reception capability; this approach does not increase control packet 

overhead or decrease spatial reuse.   
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Figure 27. Overhead due to BLOCK packets using the fixed-threshold (dashed) and 
variable-threshold (solid) methods. 
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CHAPTER EIGHT 
 

ENHANCING INS WITH MULTI-PACKET RECEPTION CAPABILITY 
 
 

The 1-hop scheduling neighborhood used by the INS protocol allows two or more 

transmitters within communications range of a receiving terminal to transmit in the same 

slot.  In the investigations of the INS protocol and selective collision elimination thus far, 

we have assumed that a terminal can only receive from one transmitter during the data 

interval of a time slot.  However, the current generation of software-defined radios may 

exploit this feature of the INS protocol, receiving data from multiple transmitters in 

parallel.  This capability is termed multi-packet reception (MPR).  In this chapter, we 

introduce MPR as a means to improve connectivity in networks using the INS protocol 

without increasing control packet overhead.  In the next chapter we investigate how MPR 

may improve the throughput capacity of a network.   

When the INS protocol is used in sparse networks, there are two reasons for lower 

network connectivity: first, some links which are critical for connectivity have very low 

link margin, so they can tolerate little MAI.  These links may be available when a 2-hop 

scheduling neighborhood is used, but unavailable when the INS protocol is used due to 

increased MAI as a result of using a 1-hop scheduling neighborhood.  Second, under the 

INS protocol, fewer neighboring terminals are available to receive from a transmitting 

terminal.  This is because these neighboring terminals may be attempting to receive a 

packet from another transmitter in the same slot.  MPR capability improves receiver 

availability since a terminal in receive mode can select multiple neighboring terminals 
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from which to attempt to receive a packet in each slot.  As a result, more bidirectional 

communications links are formed.  

In the following section, we describe the model for MPR used in this work, as 

well as an analysis of transmission scenarios for which MPR is feasible.  Section 8.2 

provides a description of how the INS protocol is modified to account for MPR 

capability.  In Section 8.3 we evaluate the network performance of the INS protocol with 

modifications for MPR capability using simulations.      

8.1  Analysis of MPR Feasibility  

The wireless channel is modeled using the physical interference model defined in 

Chapter 4.  Throughout the remainder of this work, it is convenient to use the composite 

SINR threshold ,
,

i j
i jN
ββ ′ ≡  as the requirement for successful reception of a transmission 

from terminal i to terminal j employing a spreading factor ,i jN    In addition, we use 

0
0

c

NN
T

′ ≡  to represent the thermal noise power normalized by chip duration.  Using the 

modified SINR threshold ,i jβ ′ , when a link (i,j) is activated for a transmission from 

terminal i to terminal j, the modified SINR for the link, denoted ,i jξ′ , must satisfy  

  , ,
0

( )
( )

r
i j i j

r
k i

P i
N P k

ξ β

∀ ≠

′ ′= >
′ + ∑

. (8.1) 

For successful reception, it is required that  , ,i j i jξ β′ ′> .  Multi-packet reception (MPR) 

capability is modeled as the ability to receive from two or more transmitters 

simultaneously, provided the SINR, for each transmission satisfies this requirement.     
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To facilitate the analysis in this section, the power received from a transmitter, i, 

at a receiver, k, is the product of the transmission power, Pt, and the channel gain, ,i kG , 

which is a function of the distance id between i and k, as well as a path-loss exponent α.  

Thus, we have 

  i iG d α−= . (8.2) 

We assume all terminals use identical transmission power and chip rate, and all receivers 

experience the same level of thermal noise per chip, 0N ′ .  The communications range, R, 

represents the maximum transmission distance when there is no MAI and the maximum 

spreading factor, maxN , is employed (note that in the presence of MAI, the feasible 

transmission range is less than the communications range).  Given the SINR 

threshold
maxN
ββ ′ ≡ , thermal noise, 0N ′ , and communications range R, the transmission 

power is set as 

  0tP N Rαβ ′ ′= . (8.3) 

Consider the simultaneous reception of signals from transmitters i and j, both 

using spreading factor Nmax, at a receiver k.  In the following, the symbol 

,
t k

k i j

MAI Pd α−

≠

≡ ∑  represent the interference from transmitters other than i and j.  The 

SINR calculations for transmissions from i and j to k are 

  
( )

( )
0

,
0 0

i
i k

j

N R d

N MAI N R d

α α

α α

β
ξ

β

−

−

′ ′
′ =

′ ′ ′+ +
. (8.4a) 

and 
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( )

( )
0

,
0 0

j
j k

i

N R d

N MAI N R d

α α

α α

β
ξ

β

−

−

′ ′
′ =

′ ′ ′+ +
. (8.4b) 

Because we require ,i kξ β′ ′>  and ,j kξ β′ ′>  for the successful activation of links (i, k) and 

(j, k) the transmission distances must satisfy 

  

1

0

0

j
i

j

d
d

d N MAI
R N

α

α

α

β

⎛ ⎞
⎜ ⎟
⎜ ⎟< ⎜ ⎟⎛ ⎞′⎛ ⎞ +⎜ ⎟′ + ⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

 (8.5a) 

and 

  

1

0

0

i
j

i

dd
d N MAI
R N

α

α

α

β

⎛ ⎞
⎜ ⎟
⎜ ⎟< ⎜ ⎟⎛ ⎞′ +⎛ ⎞⎜ ′ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

. (8.5b) 

The inequality in (8.5a) provides an upper bound on di; however, a lower bound 

on dj may be obtained from the same inequality.  Likewise, the inequality (8.5b) provides 

an upper bound on dj, as well as a lower bound on di.  Rearranging terms yields  

  

1

0

0

1

j
i

j

d
d

d N MAI
R N

α

α

α

β

⎛ ⎞
⎜ ⎟

′⎜ ⎟> ⎜ ⎟⎛ ⎞′⎛ ⎞ +⎜ ⎟− ⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

 (8.6a) 

and 

  

1

0

0

1

i
j

i

dd
d N MAI
R N

α

α

α

β

⎛ ⎞
⎜ ⎟

′⎜ ⎟> ⎜ ⎟⎛ ⎞′ +⎛ ⎞⎜ ⎟− ⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

. (8.6b) 
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In summary, for simultaneous reception from transmitters i and j, di must satisfy 

( ) ( )j i jA d d B d< < , where  

  ( )
1

1 0

0

( ) 1 j
j j

d N MAIA d d
R N

α α

αβ

−
⎛ ⎞⎛ ⎞′⎛ ⎞ +′ ⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

 (8.7a) 

and 

  

1

0

0

( ) j
j j

d N MAIB d d
R N

α α

β

−
⎛ ⎞⎛ ⎞′⎛ ⎞ +′⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠⎝ ⎠

. (8.7b) 

Both ( )jA d and ( )jB d go to 0 as jd  goes to 0.  However, as jd increases, 

( )jA d becomes larger than ( )jB d , and reception of both transmissions becomes 

impossible.  The threshold distance, d, for which MPR becomes impossible in the two 

transmitter example is  

  ( )

( )

1

2

0

0

1

1
d R

N MAI
N

α

β

β

⎛ ⎞
⎜ ⎟′−⎜ ⎟= ⎜ ⎟⎛ ⎞′ +′+⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠⎝ ⎠

. (8.8) 

If there is no interference from other users (i.e., MAI=0), (8.7a) reduces to 

  
1

( )j
j

A d
d R

α

α α

β
− −

⎛ ⎞′
= ⎜ ⎟⎜ ⎟−⎝ ⎠

, (8.9a) 

and (8.7b) becomes 

  

1

1( )j
j

B d
d R

α

α αβ − −

⎛ ⎞
= ⎜ ⎟⎜ ⎟′ +⎝ ⎠

. (8.9b) 
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Given a value for the distance of transmitter i to the receiver, id , the bounds 

defined in (8.9a) and (8.9b) are plotted in Figure 28 for R=100 and values of 

Beta { }0.1,0.25,0.4,0.55β ′≡ = .  The horizontal axis represents the distance id , while the 

vertical axis represents the distance jd .  For example, if Beta is 0.25 and id  is 60 units, 

then MPR is feasible if jd is between 45 and 75 units, assuming there are no other 

sources of MAI and an identical path loss exponent for each link.  For a given value of 

Beta, the threshold distance identified in (8.8) for which MPR becomes impossible is the 

point in Figure 28 where the functions ( )jA d  and ( )jB d intersect.  For example, if 

Beta=0.55, then 80d ≈ . 
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As shown in (8.7a) and (8.7b), MPR is feasible when transmitters i and j are 

placed so that ( ) ( )j i jA d d B d< < .  However, in a mobile ad hoc network terminals may 

be in random locations.  For a random placement of terminals, we define *
jd  as the value 

of jd which maximizes the probability of a second terminal, i, being located so that 

( ) ( )j i jA d d B d< < .  In particular, given a uniform spatial distribution of terminals, the 

expected number of terminals in the disc defined by ( )( ), ( )j jA d B d  is proportional to 

( )2 2( ) ( )j jB d A dπ − .  Under this spatial distribution, we have 

  

1
( )

*

( )

ˆ 1max 2 ˆ

i

i
i

B d

j d
A d

d rdr R
αβπ

β β

−
⎛ ⎞+

= = ⎜ ⎟⎜ ⎟′−⎝ ⎠
∫ , (8.10) 

where  

  ( )
2
2ˆ

α
αβ β
−⎛ ⎞

⎜ ⎟+⎝ ⎠′= . (8.11) 

This result is obtained by setting to the derivative, with respect to jd , of 

( )2 2( ) ( )j jB d A dπ −  equal to 0 and solving for jd .   

Similar analysis on MPR feasibility may be done for reception of 3 or more 

transmitters; however, the set of feasible transmitter distances is considerably smaller and 

more difficult to graphically represent.  However, givenβ ′ , it is straightforward to 

determine how many transmissions may satisfy the SINR requirement at the receiver.  If 

we assume n transmissions are successfully received under ideal conditions (equal 

received power from each transmission, neglible thermal noise, and no other sources of 
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interference besides the n transmitters) then the reception requirement for each 

transmitter is 

  1
( 1) 1

t

t

Pd
n Pd n

α

α β
−

−
′= >

− −
 (8.12) 

 

Since n is an integer, we have  

  1 1n
β
⎢ ⎥

≤ +⎢ ⎥′⎣ ⎦
. (8.13) 

This final result is also given in [55] and [56].   Clearly, in the presence of noise, 

reception from more than one transmitter is feasible if and only if 1β ′ < .   

8.2   Integrating MPR Capability with the INS Protocol 

In this section we describe the operation of the INS protocol when terminals have 

MPR capability; this extended protocol is referred to as the INS-MPR protocol.  We 

define a constraint, MPR_MAX, to represent the maximum number of transmissions a 

receiver may acquire in a slot.  Since terminals may receive from multiple transmitting 

neighbors in each slot, the receive vector, r(i), is replaced with a receive matrix R(i).  

Entry ,
i
j sr of R(i) is equal to 1 if terminal i attempts to receive a packet from neighbor j in 

slot s.  At all times, each column s of R(i) must satisfy  

  ,
i
j s

j
r

∀

≤∑ MPR_MAX. (8.14) 

Once a terminal selects MPR_MAX neighbors to monitor in slot s, no additional entries 

may be made in column s of  R(i)  until an existing entry in column s expires.     
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Next, we design the INS-MPR protocol use a pair-wise compatibility requirement 

for the entries in column s of R(i).  The pair-wise compatibility requirement helps to 

ensure that if terminal i indicates (via NBR_ACK transmission) that it can receive from 

two neighbors, j and k, in slot s, then simultaneous transmissions from j and k to i in slot s 

will both exceed the required SINR thresholds, ,j iβ ′  and ,k iβ ′ .  Transmissions from two 

neighbors, j and k, in slot s are not pair-wise compatible if simultaneous transmission 

from j and k to i in slot s results in one or more failed transmissions due to insufficient 

SINR.   

The rule for pair-wise compatibility is developed as follows.  Given a terminal i in 

receive mode, suppose two nearby terminals, j and k, both transmit in slot s of the 

transmission frame.  To simplify notation we define 0

,
( )r

l j kc

NN P l
T ≠

′ ≡ + ∑  to represent the 

sum of the thermal noise and MAI at i in slot s, exclusive of the transmissions from j and 

k.  For reception from j and k, it is required that  

  ,
( )

( )
r

j i
r

P j
N P k

β ′>
′ +

 (8.15a) 

and 

  ,
( )

( )
r

k i
r

P k
N P j

β ′>
′ +

. (8.15b) 

(8.15a) and (8.15b) may be rewritten as 

  ,
( ) ( )(1 )r r

j i
P j P k

N N
β ′> +

′ ′
 (8.16a) 

and  

  ,
( ) ( )(1 )r r

k i
P k P j

N N
β ′> +

′ ′
. (8.16b) 
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Next, because SINR estimates are made relative to Nmax, we have the following 

approximations:  

  ,

max

ˆ( ) j irP j
N N

ξ
≅

′
 (8.17a) 

and 

  ,

max

ˆ( ) k irP k
N N

ξ
≅

′
 (8.17b) 

The left-hand side of the inequalities in (8.16a) and (8.16b) are substituted by (8.17a) and 

(8.17b), respectively.  The right-hand side of the inequalities in (8.16a) and (8.16b) are 

substituted by (8.17b) and (8.17a), respectively.  Multiplying both sides by Nmax, the 

transmissions from j and k are pair-wise compatible when  

  , , max ,
ˆ ˆ( )j i j i k iNξ β ξ′> +  (8.18a) 

and 
  , , max ,

ˆ ˆ( )k i k i j iNξ β ξ′> + . (8.18b) 

When MPR_MAX>2, pair-wise compatibility is no longer a sufficient predictor 

of the success or failure of a particular set of transmissions.  For example, if there are 

three non-zero entries in column t of R(i), then any two neighbors scheduled to transmit in 

the slot may transmit successfully to i, but transmission failure occurs when all three 

transmit at the same time.  However, one feature of both the INS and the INS-MPR 

protocol is that terminals scheduled to transmit in the same slot are generally well-

separated; if they are close enough to receive each other’s FLAG transmissions, then they 

transmit in separate slots so that they may receive each other’s transmissions.  It is 
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uncommon for a terminal to have more than two neighbors which transmit in the same 

slot which are all pair-wise compatible.  Even in this case, three or more would have to 

actually be transmitting in the slot for a failure to occur.     

The INS-MPR protocol is designed to generate the same level of network control 

overhead as the INS protocol defined in Chapter 5.  For the INS protocol defined in 

Chapter 5, the only control packets generated are NBR_ACK packets.  NBR_ACK 

packets are generated periodically.  Additional NBR_ACK packets are generated when a 

neighbor j is detected which causes an entry in the receive vector, r(i), to change from 0 to 

j.  This allows fast feedback to neighbors so that new communications links may be 

established, and so that communications links which have timed out may be recovered.  

For the INS-MPR protocol, NBR_ACK packets are also generated periodically.  

However, additional NBR_ACK packets are generated only if a terminal i receives a 

packet from j in a slot s for which there is no x such that , 1i
x sr =  (i.e., the additional 

NBR_ACK packets are generated only for the first transmitter detected in a slot).  When 

additional neighbors are detected in a slot, they are acknowledged through the 

periodically generated NBR_ACK packets.   

8.3   Evaluation of the INS Protocol with Modifications for MPR Capability 

In this section we evaluate the performance of the INS-MPR protocol, using the 

INS protocol described in Chapter 5 as a performance benchmark.  Selective collision 

elimination is used in neither the INS nor the INS-MPR protocol.  In simulations of the 

INS-MPR protocol, MPR_MAX is 2.   
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For results reported in previous chapters, 8β =  and max 32N = ; hence, 

max

0.25
N
ββ ′ = = .  In practice, the value of β ′  may be reduced through the use of larger 

maximum spreading factor, lower code rate, lower order modulation, or improved 

receiver design.  In these systems the potential influence of MPR increases.  Consider 

Figure 28: as Beta decreases, the “eye” opens and MPR is feasible for more transmission 

scenarios.  One may also consider (8.18a) and (8.18b): for smaller values of ,j iβ ′  and ,k iβ ′ , 

the pair-wise compatibility requirement is more easily satisfied. Consequently, we 

explore the performance of the INS-MPR protocol for  { }0.25,0.125,0.083β ′ = .  In the 

simulations, 0.125β ′ =  is achieved by setting max 64N = , and 0.083β ′ =  is achieved by 

setting max 96N = .  Larger values of  maxN  change the spreading factors which may be 

used by the adaptive transmission protocol.  When max 64N = , the adaptive transmission 

protocol may set the spreading factor to 64, 32, or 16.  When max 96N = , the adaptive 

transmission protocol may set the spreading factor to 96, 48, or 24. 

The packet generation rate is measured in packets per slot.  For results with 

R=200m and R=250m, results are shown for packet generation rates up to 1.4 packets per 

slot.  For results with R=350m, the horizontal axis extends to packet generation rates of 

up to 2 packets per slot because these networks are able to support greater end-to-end 

packet completion rates.     

In Figure 29, the average packet completion rate is shown for the INS-MPR 

protocol for R=200m, R=250m and R=350m; results for the INS protocol and the BTS are 
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also shown for comparison.  Note that there is no reason to examine the performance of 

the BTS with MPR extensions because the BTS ensures that there is only one transmitter 

within range of a receiver.  At R=200m, the INS-MPR protocol shows significantly better 

performance when compared to the INS protocol.  The reason for this is that more 

terminals are able to successfully receive each transmission.  To better illustrate this 

point, we measure the average number of receivers successfully decoding each control 

packet (i.e., the NBR_ACK packets) transmitted; these packets are used for 

measurements since they are transmitted using the maximum spreading factor.  For 

γ = 0.6 packets per slot, R=200m, and maxN = 32, the average number of terminals 

successfully receiving each NBR_ACK packet is approximately 9.7 for the BTS, 7.5 if 

the INS protocol is used, and 8 if the INS-MPR protocol is used.  Since more terminals 

are able to receive each transmission, there are more communications links and the 

connectivity of the network improves.  It is also noteworthy that the performance 

improvement for the INS-MPR protocol does not require additional communication 

overhead from BLOCK packets.  Consequently, for higher packet generation rates, the 

INS-MPR protocol performs at least as well as the INS protocol.   

When R=250m and R=350m, INS-MPR provides smaller performance gains 

when compared to the INS protocol.  For R=250m, if there is a 90% packet completion 

rate requirement, the INS-MPR protocol supports a packet completion rate of γ = 1.1, 

while the INS protocol only satisfies this requirement up to γ = 0.95; the performance 

gain from MPR is approximately 16% in this case.  At R=350m, there is almost no 

perceptible difference in performance between the two approaches.  Receiver availability 
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is not a concern in very dense networks since terminals have a large number of neighbors 

to which they may transmit.  Allowing terminals to increase the number of communicable 

neighbors, through MPR capability, is rarely helpful in these networks.   

In addition, the adaptive transmission protocol precludes gains from MPR.  When 

Nmax=32, the available spreading factors for a transmission are 32, 16, and 8.  At 

R=350m, approximately 80% of all data packet transmissions use the smallest available 

spreading factor, 8, as a result of the link cost metric (this is true in both the INS and the 

INS-MPR protocols).  When a spreading factor of 8 is used on a link (j, i), , 1j iβ ′ =  and 

MPR is not feasible.   
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Figure 29. Performance of the INS-MPR protocol for Nmax = 32. 
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We next consider systems that have a smaller value of β ′  because maxN is 

increased.  In these systems, the performance of both the INS protocol and the INS-MPR 

protocol is improved.  For example, if maxN is 64 as in Figure 30, when R=200m, the INS-

MPR protocol provides a 90% packet completion rate up to a generation rate of almost 

0.75, while the BTS only provides this up to approximately 0.65.  If maxN is 96 as in 

Figure 31, when R=200m, the INS-MPR protocol provides a 90% packet completion rate 

up to a generation rate of almost 0.85.  The performance of the BTS does not change 

significantly when β ′ is decreased.  At higher values of R (250m and 350m), MPR 

provides additional gains in network performance when the system uses a larger 

spreading factor.  In these systems, MPR is feasible even when the smallest spreading 

factor is used for transmissions (the smallest available spreading factor is 16 when 

max 64N = , and 24 when max 96N = ).   In systems for which max 96N =  and R=250m, the 

INS-MPR protocol provides a 90% packet completion rate up to 1.4γ = , while the INS 

protocol only supports this packet completion rate up to 1.15γ = ; this represents a 

performance improvement of approximately 20%.  When max 96N =  and R=350m, the 

performance improvement is approximately 10% (1.45 for the INS protocol to 1.6 for the 

INS-MPR protocol).   
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Figure 30. Performance of the INS-MPR protocol for Nmax = 64. 
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Figure 31. Performance of the INS-MPR protocol for Nmax = 96. 
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Based on these results, MPR significantly improves the performance of the INS 

protocol in sparse networks due to a greater number of communicable neighbors.  This 

improvement does not require the introduction of additional communication overhead, 

such as BLOCK packets.  As a result, in networks with high traffic load, the performance 

of the INS-MPR protocol is much better than the performance of the INS protocol with 

selective collision elimination.  In all networks, performance gains due to MPR increase 

asβ ′ is reduced; this is because a greater number of links may be activated at higher data 

rates.   
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CHAPTER NINE 
 

ESTIMATING THROUGHPUT CAPACITY 
 
 

Determining the throughput capacity of a network is a challenging problem, but 

results on throughput capacity provide a useful benchmark for the performance of 

distributed scheduling protocols, such as the INS.  These studies also provide insight as to 

the extent to which various features, such as MPR, may improve network throughput.  

For example, capacity scaling results from [57] suggest that MPR has the potential to 

significantly improve the asymptotic throughput capacity of a wireless network.  In this 

chapter, we estimate the throughput capacity of wireless networks using a centralized 

transmission packing algorithm.  Centralized algorithms provide a tractable solution to 

the problem of estimating the throughput capacity of large networks (see [58] and [59] 

for further discussion).  Optimization algorithms, such as those based upon linear 

programming (e.g., [60]), may be used to determine the optimal resource allocation 

which achieves the throughput capacity of a given network under certain assumptions; 

however, these algorithms are only applicable in small networks due to their complexity.     

In the next section, we provide a brief survey of the literature to provide 

background on how MPR has been used to provide enhanced performance.  In Section 

9.2, we analyze the throughput capacity of a small network to show how MPR, as we 

have modeled it, may lead to improved network throughput when compared to a network 

in which terminals are capable of only single-packet reception.  In Section 9.3, we 

describe the centralized algorithm used to generate estimates of throughput capacity.  In 

Section 9.4, results obtained from the centralized algorithm are used to compare the 
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performance of networks with MPR capability and the performance of networks with 

only single-packet reception capability.  We also examine the influence of the adaptive 

transmission protocol used by the INS protocol when used with the centralized algorithm.   

9.1  Survey of Results on Multi-packet Reception  

The model for multi-packet reception we describe in Chapter 8 requires that 

signals from multiple transmitters satisfy an SINR threshold requirement at the receiving 

terminal.  This model is also used in [56] to improve the performance of single-hop 

networks with MPR by modifying a standard CSMA/CA backoff mechanism.   

There are several other models for MPR which are commonly used in the 

literature.  One approach uses a capture matrix to model MPR capability.  For a given 

capture matrix C, element Cn,k represents the probability that k packets are received by a 

single terminal when n transmitters are within communications range.  In [57] the authors 

employ a capture matrix for which Cn,k=1 when n=k; using this model, they show that the 

order capacity of a wireless network is log( )N
N

⎛ ⎞
Ο⎜ ⎟⎜ ⎟
⎝ ⎠

when terminals are capable of MPR.  

This is a substantial improvement over the capacity predicted by [53] and [61], where the 

order capacity without MPR is shown to be 1
N

⎛ ⎞Ο⎜ ⎟
⎝ ⎠

.  Other approaches which model 

MPR using a capture matrix are as follows.  The early work of [62] demonstrated that 

MPR capability may stabilize the throughput of slotted ALOHA.  In [63], MPR is used in 

conjunction with a hybrid scheduling/contention-based MAC protocol to improve the 

throughput of Manhattan networks.  The drawback to modeling MPR using a capture 
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matrix is that it does not account for the noise power at a receiver or the distribution of 

received signal powers.   

In [64], the authors design a receiver-initiated MAC scheduling protocol for 

receivers capable of multi-user detection (MUD).  As in Chapter 8, signals from each 

transmitter must exceed an SINR threshold to be successfully received.  Unlike the model 

in Chapter 8, these receivers are able to mitigate MAI from other users to further increase 

opportunities for MPR.  In addition, the receiver-initiated MAC protocol described in 

[64] does not allow for broadcast transmissions to many neighbors at once, which is a key 

goal in this work. In [65], [66], and [67], MPR is achieved through multi-user detection 

and interference cancellation.  This requires accurate estimation of channel parameters, as 

well as complex receiver design which allows received signals to be processed in 

multiple stages.  The model for MPR we describe in Chapter 8 does not require MUD or 

successive interference cancellation.   

9.2  Performance of an Example Network with MPR 

In this section we once again consider a six-terminal network, similar to the 

network from Section 5.3 where terminals are labeled A through F.  We use this network 

to compare the optimal performance in the case of single-packet reception to the optimal 

performance in the case of MPR.  In this example, terminals are spaced 120m apart, as 

shown in Figure 32.  The transmit power is set so the communications range, R, is 200m.  

As a result, each terminal may only communicate directly with its nearest neighbors.  

Simulations are performed to compare the performance of the network under single 
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packet reception and multi-packet reception.    The spreading factor for all transmission is 

64, resulting in an SINR threshold 0.125β ′ = .   

 

0            120         240         360          480           600 Distance (m)

A B C D E F

 
Figure 32. Physical locations of terminals for six-terminal example. 

We consider two scenarios, one corresponding to the case of terminals which are 

not capable of MPR, and one corresponding to the case of terminals which are capable of 

MPR.  In the former case, a three slot transmission frame is required so that terminals are 

able to transmit to and receive from each neighbor in each transmission frame.  This 

results in a slot assignment of {1,2,3,1,2,3} for terminals {A,B,C,D,E,F}, respectively 

(note that Lyui’s slot assignment algorithm is not being used in this example).  In the 

latter case, terminals with MPR capability are able to receive from two transmitting 

neighbors simultaneously.  The slot assignment {1,2,1,2,1,2} for terminals 

{A,B,C,D,E,F}, respectively, enables them to alternate between transmitting in one slot 

and receiving from 0,1, or 2 neighbors in the next slot.   

Each terminal generates unicast traffic at equal rate for all possible destinations.  

In Figure 33, Figure 34, and Figure 33, we show the end-to-end throughput, delay, and 

completion rate, respectively, for both scenarios.  For this test, results are averages over 

10 random packet generation scenarios applied to the topology in Figure 32.  Without 

MPR, stable throughput can only be supported up to a generation rate of approximately 

0.55 packets per slot.  With MPR, throughput is stable for packet generation rates up to 
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approximately 0.8 packets per slot.  A similar comparison may be made by examining the 

packet completion rate; a 90% completion rate corresponds to a packet generation rate of 

0.61 packets per slot with single packet reception and 0.92 packets per slot with MPR.  If 

there is a delay requirement of 10 slots or less, then MPR allows a nearly two-fold 

increase in supported packet generation rate, from 0.4 to 0.75 packets per slot. 

 

   

 
Figure 33. End-to-end packet throughput for single-packet reception and multi-

packet reception. 
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Figure 34. End-to-end packet delay for single-packet reception and multi-packet 
reception. 

 
Figure 35. End-to-end packet completion rate for single-packet reception and multi-

packet reception. 
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For more complex network topologies similar performance gains are much more 

difficult to achieve.  There are several reasons for this.  First, terminals are not spaced at 

regular intervals; hence, a receiver within range of two transmitters may suffer from the 

near-far effect, preventing reception of more than one packet.  In addition, when there 

are a large number of unicast traffic pairs, and many available routing options for each 

traffic flow, determining the optimal scheduling and routing to take advantage of MPR 

capability is prohibitively complex!  In the six-terminal network, there is only one route 

for each traffic flow, and the optimal schedule may be found via the techniques in [25].   

To summarize the process in [25], one may compute the traffic load for each 

terminal based upon the number of flows for which the terminal must forward traffic.  

The load factor for a terminal is the traffic load of a terminal divided by the fraction of 

bandwidth assigned to it.  Next, examine groups of terminals which must transmit 

separately, given the requirement that transmissions must be successful.  The grouping 

with the largest summed traffic load is the grouping which limits the maximum stable 

throughput of the network.  For an optimal schedule, it is necessary and sufficient that the 

full bandwidth be assigned to such a grouping, while remaining terminals are assigned 

bandwidth such that they have a smaller load factor than terminals in the grouping.  For 

single packet reception, the limiting grouping is {2,3,4} (or {3,4,5} by symmetry).  The 

maximum stable throughput is 0.64 packets per slot; this may be obtained with a 47 slot 

schedule.  The schedule used in the simulation supports a maximum stable throughput of 

only 0.59 packets per slot, but it is much easier to implement.  For the case of multi-

packet reception, the limiting grouping is {3,4}.  The maximum stable throughput is 0.88 
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packets per slot; this is realized with the 2 slot schedule used in simulations, representing 

a 37.5% improvement over the maximum stable throughput of single packet reception.  

Lastly, terminals may only enqueue up to 20 packets at a time.  The variance of the 

random packet generation causes packet queues to begin dropping packets at input values 

that are less than the maximum stable throughput.  As a result, one would not expect to 

see, for example, a 100% completion rate when MPR is used and the packet generation 

rate is 0.87.   

9.3  Centralized Transmission Scheduling Algorithm 

We use a centralized transmission scheduling algorithm to estimate the 

throughput capacity of the random networks used in tests of the INS protocol.  This 

algorithm uses global knowledge of link gains, MAI, packet queues, and terminal activity 

to determine a maximal transmitter configuration in each slot.  The centralized algorithm 

resembles an idealized CDMA-based MAC protocol from [68] in that it considers 

transmitters for activation in a serial fashion.  The algorithm in [68] is also used as a point 

of comparison in [46], where it is referred to as serialized contention resolution.  In the 

latter paper, it is assumed that traffic demands are persistent, i.e. terminals always have a 

packet to send, and the evaluation is based on the single-hop throughput attained by the 

scheme.  Under these conditions, serialized contention resolution is Pareto optimal since 

throughput depends only on the size of the active transmitter set, and the final transmitter 

set cannot be augmented without disrupting an existing transmission.   

In this work, we do not assume persistent traffic demands, and we evaluate end-

to-end performance.  We also introduce a fairness constraint, in the form of a minimum 
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transmitter set, to ensure bounded delay for each packet.  Specifically, in each slot the 

minimum transmitter set consists of a single terminal, and terminals are placed into this 

set in a round-robin fashion from one slot to the next.  Thus, in a network of N terminals, 

each terminal is given first consideration for transmission once every N time slots.  The 

order of the remaining terminals is a randomized permutation with a uniform distribution.  

Given this ordering and the initial transmitter set, the algorithm in Figure 36 is executed 

to determine the transmitter configuration for the current slot, s.  Candidate links are 

considered for activation based upon the ordering of the transmitters and current state of 

their packet queues.  The qualifications for activating a candidate link (i,j) in slot s are: 

• Terminal i must have one or more packets enqueued for transmission 

• Terminal i must not be scheduled to receive a packet 

• For some enqueued packet p, p’s next hop j must be in receive mode 

• The SINR requirement for each active link, including (i,j), must be 

satisfied  

• The transmission from i to j must be feasible in the sense that it does not 

violate MPR constraints or constraints associated with the adaptive 

transmission protocol.  The conditions for feasibility are explained in the 

following paragraphs.   

If all conditions are met, then i transmits packet p in slot s. 

The feasibility constraint related to MPR is expressed as a limit on the number of 

transmitters which may be associated with a receiver j in time slot s: 
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  ,
1

N
s
i j

i
l

=

≤∑ MPR_MAX. (9.1) 

The parameter MPR_MAX defines the maximum number of transmitters from which a 

terminal may attempt to receive a packet.  In this chapter, we set MPR_MAX to 4 for 

scenarios in which terminals have MPR capability; otherwise, MPR_MAX is set to 1 so 

that only single-packet reception is possible.  The upper bound determined via (8.12) is of 

little use determining a value of MPR_MAX to use since it does not account for thermal 

noise and MAI.  In practice, instances for which a terminal receives from four distinct 

transmitters are exceedingly rare (<0.03% in all cases we consider).  The complexity of 

determining a valid transmitter configuration grows with MPR_MAX, so it is desirable to 

use a small value.   

The feasibility constraint related to the adaptive transmission protocol is 

expressed as a limit on the sum of the time slot fractions occupied by packets p selected 

by terminal i for transmission to neighboring terminals j in time slot s: 

  
_

,

max

1
j p next hop

i j

p

N
N

= −>
∀

≤∑ . (9.2) 

When the adaptive transmission protocol is used, the spreading factor used for a link (i, j) 

depends upon the link SINR estimate, ,î jξ , which is stored at terminal i.  The centralized 

algorithm provides these samples directly to the terminals.  All other details are identical 

to the description provided in Section 5.4. If the ATP is not used, then all packets are 

transmitted with the maximum spreading factor, maxN .   
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The procedure feasibleTransmission() in Figure 36 uses (9.1) and (9.2) to 

determine if packet p may be transmitted in slot s.  

Several features of the centralized algorithm lead to its excellent performance.  

First, the algorithm achieves a maximal transmitter set in each slot; if a terminal is not 

transmitting, then at least one of the following holds true: it is receiving a packet, it does 

not have a packet it can transmit, or it cannot transmit without causing another 

transmission to fail. Second, the centralized algorithm is sensitive to the traffic load at 

each terminal induced by the routing algorithm.  If a terminal is required to forward 

packets for only a few source/destination pairs, then it refrains from transmitting when its 

queue is empty, allowing terminals with large traffic demands to access the channel more 

frequently.  Lastly, the centralized algorithm described in this section does not schedule 

broadcast transmissions.  Instead, the algorithm activates individual links at each step.  

This provides more flexibility in construction of the transmitter sets, and better 

performance for the unicast data traffic we consider.     
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Algorithm: Centralized Transmission Packing:  
Input: Time slot s 
Initial feasible transmitter set sT created according to the fair use policy for slot s.  

Initial receiver set { }sR = ∅ ,  Initial link matrix Ls ={0}.  

Output: Augmented set sT listing terminals transmitting in slot s.   

Receiver set sR containing terminals receiving in slot s.   

Link activation matrix Ls with entries , 1s
i jl = if link (i,j) is active in slot s, 0 otherwise.  

//Create seed scenario for slot s 
  For each terminal si T∈  
      For each packet p enqueued at i  
          If (!feasibleTransmission(p)) next; 
          _j p next hop= − > ; 
          , 1s

i jl = ; s sR R j= ∪ ; ( )i Xmt p− > ; 
      End For 
  End For 
// Pack transmissions according to feasibility 
  For each terminal s si T R∉ ∪  
      For each packet p enqueued at i  
          If (!feasibleTransmission(p)) next; 
          _j p next hop= − > ; 
          , 1s

i jl = ; 
          If (feasibleLinkMatrix(Ls))  
              s sT T i= ∪ ; s sR R j= ∪ ; ( )i Xmt p− > ; 
          Else 
              , 0s

i jl = ; 
          End If 
      End For 
  End For 
 
  feasibleLinkMatrix(Ls) 

  For each element , 0s
i jl ≠  

      If  ( ,i jξ β≤ ) return false; 
  End For 
  return true;        
  

Figure 36. Centralized transmission scheduling algorithm used to estimate 
throughput capacity. 
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9.4  Estimating Throughput Capacity for Random Networks 

In this section, we use the centralized algorithm in Figure 36 to estimate the 

throughput capacity of the random networks used in previous simulations, as well as to 

study the extent to which MPR affects throughput capacity.  Results are presented from 

three scenarios.  For the base scenario, only single-packet reception is allowed 

(MPR_MAX is 1) and terminals use maximum spreading factor, maxN , for all 

transmissions.  In another scenario, identified with the ‘MPR’ label, MPR_MAX is 4 so 

that terminals are able to receive from up to four transmitters in each slot.  In the final 

scenario, MPR_MAX is 4 and terminals use SINR estimates to adapt the spreading factor 

for each transmission in the manner described in Section 5.4.  The ‘MPR, ATP’ label is 

applied to these scenarios.   

Apart from the centralized algorithm, which constructs the set of transmitters in 

each slot, the simulations in this section are identical to the simulations in previous 

sections.  The simulations use the same channel and receiver model as in previous 

simulations.  Traffic generation and routing is also identical.  Any neighbor within 

communications range is considered as a communicable neighbor for routing packets, but 

the routing metric applies high cost to links which consistently have low SINR.  

Terminals generate periodic control packets according to the rules for ACK packets used 

by the INS protocol; thus, control overhead is approximately the same.  NBR_ACK 

packets do not have a specific destination, so it is not required that they be successfully 

received by any neighbor (requiring them to be received by all neighbors within the 

communications range would severely limit spatial reuse).  Lastly, terminals in receive 
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mode are automatically configured to receive a packet which is transmitted to them; the 

SINR requirement must be satisfied for successful reception, but the centralized 

algorithm guarantees that this is always the case.   

  In Figure 37, the top graph shows the end-to-end packet completion rate when 

0.25β ′ = ( max 32N = ) and the communications range, R, is 200m or 250m.  The bottom 

graph shows the same metric for dense network topologies with R set to 300m or 350m.  

When R=200m, the packet completion rate is always less than 1 since there are a few 

instances in which one or more terminals are isolated from the rest of the network; hence, 

the packets they generate for destinations for which there is no valid route are dropped.  

This does not occur when R>200m, and the performance improves.  There is only a very 

slight advantage to using MPR in these networks, and there is no perceptible advantage to 

using MPR in networks with higher values of R.   

The use of the adaptive transmission protocol is a detriment to network 

performance.  The reason for this is that terminals use a reduced spreading factor on links 

with high SINR, regardless of whether or not they have multiple packets which can be 

transmitted.  Using a reduced spreading factor effectively lowers the link SNR.  As a 

result, the link can tolerate less MAI and it is more difficult for the centralized algorithm 

to activate additional transmitters.  The INS protocol, on the other hand, produces a set of 

transmitters in each slot which generally remains the same from one transmission frame 

to the next; the ATP improves performance by increasing the transmission rate of certain 

transmitters in that set.      
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Figure 37. Packet completion rate for networks using a maximum spreading factor 

set to 32. 
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Figure 38 shows the end-to-end packet completion rate in networks for which 

0.125β ′ =  ( max 64N = ).  When R=200m and R=250m, there is a performance 

improvement of approximately 8% and 4.5%, respectively, at a 90% completion rate 

when terminals have MPR capability.  The performance of dense networks (R=300m and 

R=350m) is not significantly improved with MPR capability even with a larger maximum 

spreading factor.  This is likely due to the fact that terminals have more choices for 

forwarding packets when routes are created.  In networks with sparse topology, a single 

terminal providing connectivity between two sections of the network is a frequent 

occurrence; in this situation, MPR capability allows the terminal to act essentially as two 

receivers.  In a dense network topology, on the other hand, this type of situation is less 

likely. 

Figure 39 shows the end-to-end packet completion rate in networks for which 

0.083β ′ =  ( max 96N = ).  For R=200m and R=250m, if a 90% packet completion rate is 

required then MPR capability improves performance by 12.5% and 10%, respectively.  

Results for R=300m and R=350m also show modest improvements in this case.  From 

this we may conclude that the type of MPR capability we consider results in small 

increases in throughput capacity when the spreading factor is sufficiently large.  Use of 

larger spreading factors makes this form of MPR more appealing, mirroring the results of 

the distributed INS-MPR protocol in Chapter 8.       
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Figure 38. Packet completion rate for networks using a maximum spreading factor 
set to 64. 
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Figure 39. Packet completion rate for networks using a maximum spreading factor 
set to 96. 
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CHAPTER TEN 
 

CONCLUSIONS 
 
 

The primary contribution of this work is a new approach for designing 

transmission scheduling protocols in systems which use DSSS modulation.  We have 

shown that scheduling approaches designed under the assumptions of a narrowband 

channel, such as the approach used for the BTS in simulations, fail to capitalize on the 

higher MAI tolerance which is possible in a DSSS system.  The INS protocol, on the 

other hand, uses a more aggressive approach to schedule transmissions, sacrificing a 

small degree of connectivity for greatly improved spatial reuse of the channel.  This 

results in significantly better performance in networks with robust connectivity.   

The design of the INS protocol is particularly advantageous in mobile ad hoc 

networks for two reasons.  First, terminals operating under the INS protocol do not have 

to coordinate across multiple hops to make changes to the transmission schedule in 

response to mobility.  Second, the INS protocol allows terminals to operate with a shorter 

transmission frame than a scheduling protocol which uses a larger neighborhood to 

schedule transmissions.  As a result, terminals can more quickly establish bidirectional 

communications links with neighbors in a mobile network.  These features also make 

network initialization easier.   

We evaluate the performance of the INS protocol using unicast data traffic.  The 

INS protocol is envisioned for systems using distributed routing protocols, such as 

OLSR, as well as systems which handle multicast and broadcast traffic.  The INS 

protocol is well-suited for these systems since it constructs a broadcast transmission 
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schedule for each terminal.  Not all neighboring terminals are reachable in every slot, but 

through the transmit matrix, a terminal generally has knowledge of which neighbors are 

reachable in a particular slot.   

The INS protocol accounts for the diversity of communications links, via link 

SINR estimates, which are available to a terminal.  Multiple packets are scheduled for 

transmission in a slot when link quality allows it by using a reduced spreading factor.  

Unicast data packets are only forwarded to neighbors for which a bidirectional 

communications link has been established, and these packets are only transmitted in slots 

for which the neighbor has indicated reception is possible.   

The link cost metric used in routing incorporates link SINR estimates and slot 

utilization estimates reported through the exchange of NBR_ACK control packets.  The 

link cost metric is designed to emphasize use of reliable links with high SINR estimates, 

as well as links that may be activated at high transmission rates, and that are associated 

with neighbors reporting low slot utilization and greater effective transmission rate.   

The INS protocol uses Lyui’s transmission scheduling algorithm to assign 

transmission slots to terminals based on the local neighborhood determined through 

reception of FLAG packets.  We demonstrated that Lyui’s algorithm provides better 

spatial reuse than two other well-known slot assignment algorithms.  There are two 

reasons for this.  First, Lyui’s algorithm uses a variable frame length which depends on 

local terminal density; thus, terminals in sparse areas of the network to transmit more 

frequently and priority starvation is reduced.  Second, Lyui’s algorithm uses colors 

instead of terminal ID to arbitrate transmission priority.  This effectively reduces the 
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number of contending entities viewed by a terminal, since some neighbors can be 

assigned the same color.  As a result, instances of priority chaining occur less often.   

We designed two protocol variants designed to enhance the connectivity of sparse 

networks operating with the INS protocol.  One approach, selective collision elimination, 

introduces additional overhead in the form of BLOCK packets.  These packets allow a 

terminal to separate two neighbors transmitting in the same slot when they interfere 

excessively with one another, or when both neighbors are important for forwarding 

packets.  Another approach leverages multi-packet reception capability (MPR) to 

improve network performance.  MPR allows terminals to establish more communications 

links without requiring additional control packet overhead.  In sparse networks, 

establishing more communications links improves the network connectivity, leading to 

better network performance.  In dense networks with large traffic demands, the protocol 

variation which leverages MPR is preferable to the approach of selective collision 

elimination because it does not introduce additional communication overhead.   

As a final step, we analyzed the throughput capacity of networks using a 

centralized transmission scheduling algorithm.  Our results suggest that MPR, in the form 

outlined in this work, has limited potential for improving throughput capacity of 

networks.  This potential for improvement is greater in networks for which 1β ′ << , since 

more scenarios for MPR are feasible.  Other strategies, such as activating transmitters at a 

higher rate or distributing network traffic more evenly through routing, may be more 

effective means for increasing throughput capacity.  Other forms of MPR, such as MPR 
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based upon multi-user detection and successive interference cancellation, may also be 

more effective means for increasing throughput capacity.   
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