
Clemson University
TigerPrints

All Dissertations Dissertations

5-2010

THE ACCURACY OF OBSERVERS'
ESTIMATES OF THE EFFECT OF GLARE ON
NIGHTTIME VISION: DO WE EXAGGERATE
THE DISABLING EFFECTS OF GLARE?
Stacy Balk
Clemson University, stacy.balk@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Experimental Analysis of Behavior Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Balk, Stacy, "THE ACCURACY OF OBSERVERS' ESTIMATES OF THE EFFECT OF GLARE ON NIGHTTIME VISION: DO
WE EXAGGERATE THE DISABLING EFFECTS OF GLARE?" (2010). All Dissertations. 560.
https://tigerprints.clemson.edu/all_dissertations/560

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1236?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/560?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 
THE ACCURACY OF OBSERVERS’ ESTIMATES OF THE EFFECT OF GLARE 

ON NIGHTTIME VISION:  
DO WE EXAGGERATE THE DISABLING EFFECTS OF GLARE? 

 
 
 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctorate of Philosophy 
Human Factors Psychology  

 
 

by 
Stacy Ann Balk 

May 2010 
 
 

Accepted by: 
Dr. Richard Tyrrell, Committee Chair 

Dr. Leo Gugerty 
Dr. Christopher Pagano 

Dr. Fred Switzer 
 



ii 
 

ABSTRACT 

Designing headlights involves balancing two conflicting goals: maximizing 

visibility for the driver and minimizing the disabling effects of glare for other 

drivers. Complaints of headlight glare have increased recently. This project 

explored the relationship between subjective (discomfort and expected visual 

problems) and objective (actual visual problems) consequences of glare. Two 

experiments – a lab-based psychophysical study and a field study – quantified 

the accuracy of observers’ estimates of the effects of glare on their acuity.  In 

both experiments, participants over-estimated the extent to which glare degraded 

their ability to see a small high contrast target. Observers’ estimates of the 

disabling effects of glare were more tightly linked with subjective reports of glare-

induced visual discomfort than with objective measures of glare-induced visual 

problems. 
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INTRODUCTION 

In recent years – since the appearance of high intensity discharge (HID) 

headlighting – consumers have complained about glare from oncoming 

headlamps, and focus has been placed on reducing the effects of headlamp 

glare produced by vehicles at night. Because limiting the amount of light emitted 

by headlamps can limit drivers’ ability to see objects ahead, it is important to 

achieve a satisfactory balance between the somewhat incompatible goals of 

maximizing roadway visibility and minimizing glare problems. Yet, little work has 

focused on the tradeoffs between roadway visibility and headlamp glare. This 

project will explore the estimated and actual effects of glare on visibility. It is 

hoped the project will provide useful knowledge that can be used to understand 

the objective and subjective responses to glare and to address the trade-off 

between headlamp glare and visibility. 

There are a disproportionate number of nighttime roadway fatalities. 

Despite a reduction in nighttime traffic, 46% of all fatal crashes occur under 

nighttime conditions compared to 49% during daylight hours (NHTSA 2006).  

Furthermore, when accounting for the number of miles traveled, fatal crashes are 

3 times more likely at night than during the day (National Safety Council, 2008). It 

is quite obvious that visual perceptual abilities are critical to driving and have long 

been identified as such (e.g., Brody, 1955). Poor visibility has been shown to be 

a key causal factor in nighttime crashes.  
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Owens and Sivak (1996) examined data from the Fatality Analysis 

Reporting System (FARS) over an 11 year period (1980-1990) and found that 

even when factors such as day of the week and alcohol were controlled, reduced 

visibility remained the greatest contributor to fatal nighttime crashes involving 

pedestrians and bicyclists. Nighttime crashes accounted for 65.3% of all fatal 

crashes, 12.1% greater than chance. Furthermore, when other conditions of poor 

visibility were included (e.g., fog, haze, etc.), the proportion of fatal crashes rose 

to 78.8%.   

Further evidence of increased nighttime crashes due to poor visibility is 

provided by Sullivan and Flannagan (2002). Vehicle crash data from the FARS 

between 1987 and 1997 was investigated. Vehicle collision data from the weeks 

surrounding the time change associated with Daylight Savings Time (DST) were 

examined. (DST involves setting clocks one hour ahead in the spring and 

returning to standard time in the fall; effectively making sunrise and sunset 1 hour 

later. Daylight Savings Time is observed by the majority of the United States.) 

This scenario provides the ability to investigate crash data during similar periods 

of the day, when there would presumably be little change in vehicle or pedestrian 

traffic patterns. It was found that crash conditions involving especially challenging 

visual conditions (i.e. the detection of a pedestrian) were approximately 3-7x 

more likely in dark conditions than in light conditions.  However, crash rates 

involving less visually challenging conditions (specifically single vehicle lane 

departure) remained virtually unchanged.  
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The discrepancy between crashes in light and dark conditions can be 

explained, in part, by the selective degradation hypothesis. Under low luminance 

conditions focal visual functions such as acuity, contrast sensitivity, and visual 

accommodation are degraded, and consequently the ability to recognize and 

identify objects is also reduced. In fact, (at moderate latitudes) the first 30 

minutes after sunset and before sunrise contain the most drastic changes in our 

visual abilities (Owens, Francis, and Leibowitz, 1989). However, during similar 

low luminance conditions the ability to use vision to guide one’s self through the 

world remains intact (see Schneider, 1967, 1969). It has been hypothesized that 

this selective degradation of the visual system is responsible for drivers’ 

overconfidence in their abilities when driving at night (Leibowitz & Owens, 1977). 

That is, even when acuity is very low at night, drivers are surprisingly skilled at 

steering their vehicle to stay within their intended lane (Brooks, Tyrrell, & Frank, 

2005; Owens & Tyrrell, 1999). And, in fact, drivers have even been shown to 

increase speed with more salient lane position information (e.g., Allen, O'Hanlon, 

& McRuer, 1977; Kallberg; 1993; Smiley, Bahar, & Persaud, 2004). As a result of 

the continual feedback in maintaining road lane position, the selective 

degradation hypothesis asserts that drivers are unable to appreciate the extent to 

which they are unable to detect and recognize obstacles (especially those of low 

contrast). Thus this pattern of selective visual functions being degraded while 

others are more robust can lead to a reduction in the ability to detect 

inconspicuous hazards (e.g., pedestrians, animals, or other objects in or along 
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the roadway) without a corresponding reduction in speed – a pattern commonly 

referred to as “overdriving one’s headlights” (Leibowitz, Owens and Tyrrell, 

1998).  

There are different strategies to increase drivers’ ability to detect objects 

of low contrast at night – presumably reducing the overall nighttime fatality rates. 

A viable option to increase the conspicuity of low contrast objects is the 

application of retroreflective material.  For example, the use of retroreflective 

material in a biological motion (BioMotion) highlighting formation has been shown 

to dramatically enhance the conspicuity of pedestrians (e.g., Balk, Tyrrell, 

Brooks, Carpenter, 2008;  Luoma, Schumann, & Traube, 1996; Owens, Antonoff 

& Francis, 1994; Wood, Tyrrell, and Carberry, 2005).  

An emerging technological approach is the addition of an in-vehicle night 

vision enhancement system (NVES). While NVESs appear to be one promising 

solution, it is unclear whether these systems are able to aid drivers in the 

detection of low contrast objects (Mahlke, Rösler, Seifert, Krems, & Thüring, 

2007). Further, many NVESs use infrared technology, thus relying on the heat 

emitted by objects to generate useful images. While this may aid in the detection 

of living beings (i.e. humans, animals), NVESs provide little advantage in the 

detection of inanimate objects (e.g., roadway debris, fallen trees). 

Another way in which low nighttime visibility can be increased is by simply 

increasing ambient lighting. It has been shown that even small changes in 

ambient lighting effect crash rates. Sivak, Schoettle, and Tsimhoni (2007) 
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analyzed pedestrian fatality data from FARS from 1996 through 2005. Fatality 

rates on nights with a full moon were compared to those on nights with a new 

moon. Typical ambient illumination from the moon only varies from about 0.1 lx 

(full moon) to 0.001 lx (new moon). However, even with this relatively small 

difference in ambient luminance, pedestrian fatalities were 22 percent greater on 

nights with a new moon. This finding shows that even the increase in ambient 

lighting attributed to the moon is sufficient to provide increased nighttime 

(pedestrian) safety. Thus, it would be expected that the detection of other low 

contrast objects would increase with increased illumination. In turn, it appears 

that fatal nighttime crashes can be decreased via increasing visibility with 

illumination. This is especially relevant for crashes involving objects of low 

contrast. If overall light level is increased (thus increasing object contrast) 

obstacles in and along the roadway can be seen easily and thus responded to 

more quickly (Rea and Ouellette, 1988).   

One way to increase ambient illumination is with increased street lighting 

(IESNA, 2000). This, however, contributes to light pollution, is expensive, and 

simply not feasible in many situations. A simple and quite effective alternative is 

to increase vehicle headlamp intensity (i.e., utilization of the high beam headlight 

setting). For example, in an on-road study, Wood, Tyrrell, and Carberry (2005) 

found that drivers were able to recognize pedestrians wearing dark clothing at a 

distance 3.5x greater when using high beams than when using low beams.  
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 It has been shown, however, that drivers consistently underuse their high 

beam headlights. Hare and Hemion (1968) first examined the real world use of 

high beam headlights. The number of vehicles using high beam headlights was 

assessed on several roadways (17) across the United States.  High beam vs. low 

beam usage data was collected from vehicles on dark rural roads where there 

was no opposing traffic, no lead vehicle (within 183 m; 600 ft), in clear weather 

(no fog or precipitation), and thus no reason not to use high beams. High beam 

use ranged from only 10% (Northwest) to 40% (Southeast), showing a gross 

underutilization of high beams. Furthermore, it has been shown that low beam 

headlights do not provide enough light at speeds greater than 32 km/h (20 MPH; 

Leibowitz, Owens, & Tyrrell, 1998; see also Perel, Olson, Sivak, & Medlin, 1983). 

This emphasizes the need and usefulness of increasing ambient nighttime 

lighting which can be accomplished with high beam headlamps. 

Hare and Hemion (1968) used simple observer techniques to measure 

high beam vs. low beam usage. While it is unlikely that this methodology 

generated a great deal of error, recent studies have attempted similar 

measurements with improved technologies. Recent studies have also attempted 

to quantify high beam usage because it is reasonable to believe that high beam 

use rates may have changed since the late 1960s for two primary reasons. First, 

the number of vehicle miles travelled has been increasing over the past several 

decades (Bureau of Transportation Statistics; 2002). Yet, roadway infrastructure 

has remained steady, with little relative expansion. These factors combined lead 
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to more densely populated nighttime roads than those of the late 1960s. Thus, 

fewer appropriate opportunities (not following a lead vehicle, no oncoming traffic) 

to use high beam headlights exist. This idea is supported by Hare and Hemion’s 

work, who found that high beam headlamp usages decreased as traffic density 

increased.  

A second factor that may have modified high and low beam use is in-

vehicle technologies. Most vehicles of the 1960s utilized a foot pedal to switch 

between high and low beam settings. Now, however, most headlamps are 

controlled using a switch, or stalk, where by the switch is pushed or pulled once 

to change the light setting (Federal Motor Vehicle Safety Standard No. 108). This 

methodology, which appears to be simpler, may have influenced driver headlight 

use behavior. Thus it was important to reexamine the real-world headlamp 

usage. 

One such study was conducted by Sullivan, Adachi, Mefford, and 

Flannagan (2004). Two observers counted the number of unopposed vehicles 

using high beams along three dark, rural, straight roads. Light measurements 

were taken of vehicle lights traveling from one direction to provide an objective 

measurement of high vs. low beam use. In addition, both observers made 

judgments on all vehicles (reaching an agreement rate of 82.2%). Data combined 

from vehicles traveling both directions averaged about 50% high beam usage. 

While, this rate is greater than that of Hare and Hemion (1968) it remains clear 

that drivers regularly underuse high beam headlamps.  
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Similarly to Hare and Hemion (1968), Sullivan et al. (2004) found that 

drivers tend to decrease high beam usage as traffic density increases. While it 

seems plausible that drivers may just be reluctant to use high beams for reasons 

of convenience or effort, this cannot entirely explain the underuse. Here, high 

beam use never exceeded 70%, even at the lowest traffic densities.  

As traffic cannot entirely explain the use/underuse of high beam 

headlights it is important to explore other feasible explanations. Another recent 

study investigated the effects of both driver gender and age on beam usage. In 

order to accomplish this Mefford, Flannagan, and Bogard (2006) asked young, 

middle aged, and older people to drive instrumented vehicles for an extended 

period of time (7-27 days). Approximately 21% of the miles traveled occurred at 

night. The results confirmed that drivers underused high beams. Even in ideal 

environments (dark rural roads, no opposing traffic, no lead vehicle), high beam 

use rate only rose to 25.4%. While there was no significant difference in high 

beam usage between genders, there was a significant effect of driver age. The 

older drivers (60-70 years of age), on average, used the high beam light setting 

3x more often than the younger drivers (20-30 years of age).  

 Another recent study measured high beam headlamp usage using similar 

instrumented vehicles (Buonarosa, Sayer, & Flannagan, 2008). Participants 

drove the instrumented vehicles for an average of 26 days, with about 23% of the 

driving during nighttime hours. High beam headlights were used for 

approximately 9.8 minutes for each 100 km (62.14 miles) traveled. Whereas low 
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beam headlights were used for approximately 97.6 minutes per 100 km (62.14 

miles) traveled. Yet again, it can be seen that high beam headlamps were greatly 

underused. While most types of lamp usage measured (e.g., turn signals) 

remained consistent across age and gender, high beam utilization varied for 

both. Interestingly, males drove 34% more nighttime driving hours than females, 

yet used their high beams only about half as frequently. Consistent with previous 

work (Mefford, Flannagan, and Bogard, 2006) it was found that older drivers use 

high beam headlights more frequently than younger drivers. In this study the 

older drivers (60-70 years) utilized their high beams 5x more often than the 

younger counterparts (20-30 years). This may indicate that older drivers 

understand their nighttime visual decrement to a greater extent than younger 

drivers and subsequently feel less confident in their ability to see during night 

driving.  

 Perhaps, then, drivers underuse their high beam headlamps because in 

general, they appreciate neither the need to improve visibility nor the benefits 

that high beams provide. As noted previously, the selective degradation 

hypothesis explains that even under low light levels, we are able to navigate our 

environment successfully, while failing to detect/recognize objects and obstacles 

(especially those of low contrast) in our path.  

Drivers continually receive visual feedback about their ability to maintain 

lane position. Yet drivers very rarely receive feedback about the objects they fail 

to see. In other words, drivers are largely unaware of what they cannot see. 
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Thus, if drivers are constantly receiving information that they are driving well 

(successfully steering to maintain proper lane position), it seems reasonable to 

assume that drivers do not feel as though more light along the roadway is 

needed. This then would result in drivers not using high beam lighting. An 

additional possible reason that drivers regularly underuse high beam headlamps 

is a desire to minimize glare problems for oncoming drivers.  

 Oncoming headlights can produce glare. Luckiesh and Holladay (1925) 

first subcategorized glare. While many descriptions of glare were made two 

broad categories were outlined. The first type is physically disabling to vision 

(“disability glare”) and the second causes a sensation of pain or discomfort 

(“discomfort glare”).  This is not to say that these are the result of two different 

types of light, but rather they are simply two different ways to measure/classify 

glare from a single light source. The exact relationship between these two broad 

descriptions is yet to be clearly defined. As explained below, both discomfort and 

disability glare can be produced by the same light source. It is also possible that 

discomfort glare can be present in the absence of disability glare and vice versa. 

Very little is understood about these types of relationships. The current study 

explores the relationship between the feelings of discomfort that glare can trigger 

and the visual disabilities that can result from glare sources. 

Glare described as being disabling (i.e., disability glare) inhibits our 

perceptual abilities to see. It is influenced by the object size and contrast as well 

as ambient light, eye health, light source orientation, et cetera.  For example, the 
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contrast-reducing effects of veiling glare (optical light scattering) can make 

recognizing, or even detecting, low contrast objects nearly impossible. Glare can 

also decrease visibility distance. This combined with lowered contrast can 

increase reaction times and decrease the probability of detecting objects while 

driving (Miller and Benedek, 1973; Sivak & Olson, 1982; Frerebeau, 1988; 

NHTSA 2007). It is thought that disability glare can be estimated by 

approximating veiling luminance (light scattering that reduces contrast of the 

optical image; Lv; see Fry 1954). However, there are many ways in which 

disability can be measured dependent on the task at hand (e.g., object detection, 

lane maintenance, speed variability, etc.). 

After exposure to an extraneous light source (glare) there can be a period 

of lingering visual disability. Rhodopsin is a pigment in the retina crucial to visual 

perception under low light levels. However, when the eye is exposed to a bright 

light (i.e. light shock) photobleaching occurs. That is, the rhodopsin is depleted 

and must be replenished prior to regaining full low light visual abilities. In visually 

healthy young adults, this process takes approximately 30 minutes. The most 

rapid recovery of the rhodopsin occurs in the first few minutes, yet the ability to 

detect objects (especially those of low contrast) can be inhibited throughout 

photopigment regeneration. In addition, if the light source is sufficiently intense, 

viewers can be subject to a mildly disabling negative after image. 

 Discomfort glare, on the other hand, describes the subjective feeling of 

pain, annoyance, or fatigue that results from exposure to an intense light source. 
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Feelings of discomfort are related to the size and the intensity of a light source, 

yet not to the energy emitted from the light source. That is, larger light sources of 

low intensity generally cause more intense feelings of discomfort than smaller 

light sources of greater intensity. When the size of the glare source remains 

constant, increased intensity leads to increased ratings of discomfort (e.g., 

Schwab & Hemion, 1972; Sivak, Flannagan, Traube, & Kojima, 1999). Duration 

of exposure to a light source also influences ratings of discomfort, but to a lesser 

extent than changes in intensity (Sivak, Flannagan, Traube, & Kojima, 1999).  

Glare is rated as more bothersome in the upper portion of the field of view 

than in the lateral portion of the field of view (assuming consistent angular 

separation from the fovea; Miller and Benedek, 1973). Light source color has 

also been found to influence feelings of discomfort. Light sources in the red and 

blue spectrums have been shown to dramatically increase ratings of discomfort 

(e.g., Flannagan, Sivak, Ensing, & Simmons, 1989; Berman, Bullimore, Bailey, & 

Jacobs, 1996).  

Discomfort glare is typically measured using a subjective rating scale of 

comfort. The most common scale ranges from 1 (unbearable) to 9 (just 

noticeable; deBoer, 1967). While the deBoer scale is quite simple, it has shown 

to be a consistent and reliable manner to measure feelings of discomfort 

resulting from glare. However, the deBoer scale tends to produce a great deal of 

between-subject variability. While this variability may be troublesome, it is likely a 

simple reflection of individual perceptual differences. There have been several 
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attempts to quantify discomfort glare utilizing objective measures. It is likely that 

individual differences in discomfort would be reflected in objective measures as 

well (e.g., Sturgis, Pulling, & Vaillancourt, 1981).  

Objective measures of discomfort glare have been shown to be inaccurate 

and frequently inconsistent. For example, Berman, Bullimore, Jacobs, Bailey, 

and Gandhi (1994) made electromyographic (EMG) recordings around the eye of 

participants while presenting a variety of glare scenarios. Participants were also 

asked to give subjective ratings of discomfort. EMG recordings were used to 

generate an Objective Discomfort Ratio (ODR) to quantify the change in 

electrical activity around the eye. When the glare source luminance was 

increased to a value expected to increase EMG activity by 25%, ODR values 

moved in the expected direction in 79% of the participants. This is compared with 

90% of the subjective measurements. Further, modifying the ambient room 

illumination produced the anticipated lower ODR values in 15 of 19 participants, 

and 20 out of 20 participants provided lower subjective ratings of discomfort. 

While this objective measure (EMG) follows the anticipated direction of 

activation, these recordings failed to reduce between-subject variability, a 

possibly undesirable characteristic of the subjective measurement. Furthermore, 

EMG recordings require expensive and obtrusive equipment. These factors 

combined give little to no advantage of this objective measure of discomfort glare 

over the simple paper-and-pencil subjective measure.  
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Other attempts at quantifying discomfort glare using objective measures of 

the pupil have been made. Hopkinson (1956) and Fry & King (1975) both found 

very small changes in pupillary oscillations in the presence of glare. However, 

these findings have not been found to be tightly correlated with participants’ 

subjective feelings of discomfort.  Furthermore, Howarth et al. (1993) found no 

difference in pupillary oscillations with changes in discomfort glare intensities, 

even when light levels neared the ‘intolerable’ level. Attempts at correlating 

electrical activity in the brain (EEG) and subjective feelings of discomfort have 

also failed (Emdad, Belkic, Theorell, Cizinsky, Savic, & Olsson, 1998). 

Mathematical computations (e.g., Hopkinson, 1960; Einhorn, 1961) have also 

found little success.  Thus it seems that the relationship between subjective 

feelings of discomfort and physical responses is poorly understood as is the 

relationship between disability and discomfort glare (see also, Olson, Aoki, 

Battle, & Flannagan, 1990).   

 Oncoming headlight glare can result in both discomfort and disability glare 

and there are many factors that moderate its effects. One major factor is the 

condition of the observer’s vehicle windshield. Over time dirt and grime 

accumulate on the windshield. This dirt causes light scattering and can further 

intensify the effects of glare. Specifically, the retinal contrast of objects in, or 

along, the roadway will be reduced (Rea, 2000). Scratches and cracks in 

windshields produce a similar effect. Much like filth and scratches on 

windshields, dirt and blemishes on headlamp casing causes light scattering. 



15 
 

Along similar lines, one study even reported that persons wearing visual 

correction also had a tendency (though non-significant) to report greater 

discomfort than those who did not (Sivak, Flannagan, Traube, & Kojima, 1999; 

see also Lauer & Kotvis, 1934).  

Many other factors influence the discomfort and disability incurred from 

headlamps. One of these factors is head lamp type. High-intensity discharge 

(HID) lamps tend to emit a light of a bluish tint. This color tends to elicit higher 

ratings of discomfort than tungsten-halogen lights which are of a more 

yellow/white tint (e.g., Flannagan, Sivak, Ensing, & Simmons, 1989; Berman, 

Bullimore, Bailey, & Jacobs, 1996). Lamp mounting height also influences 

feelings of discomfort. Glare sources of greater eccentricity above the focal point 

tend to increase discomfort (Miller and Benedek, 1973; Akashi, Van Derlofske, 

Raghavan, & Bullough, 2008). Headlight alignment also plays an important role 

in discomfort ratings. Regulations for headlamp aim are specifically designed to 

maximize visibility distances while minimizing glare to oncoming drivers; poorly 

aimed headlamps can cause the opposite (U.S. Congress, 2001; Copenhaver & 

Jones, 1992).  

Drivers often complain about glare from oncoming vehicle headlights. With 

the widespread use of HID headlamps, glare has become more salient to drivers. 

Such complaints have even made headlines in the popular press (e.g., Healey, 

2001), and it appears that complaints about headlamps tend to increase as new 

technology is introduced (NHTSA, 2001). Each year the National Highway Traffic 
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Safety Administration (NHTSA) receives numerous complaints about vehicle 

headlamps. In fact, in 2001 NHTSA opened a public docket (NHTSA-01-8885) 

requesting public comments on glare and glare related issues. As of April 2008, 

5800 comments had been received from members of the public (see also Docket 

Number:  NHTSA-1998-4820). The comments received however, are often a 

biased sample, representing mostly complaints associated with headlights and 

their resulting glare. As a result, the NHTSA put forth an effort to further 

investigate nighttime headlight glare in a more objective manner. 

In order to more clearly understand drivers’ overall perceptions of glare, a 

formal survey was conducted by the NHTSA (Singh, & Perel 2003). The survey 

gathered opinions from drivers (18 years+) via random calling. A primary 

question asked of the drivers was “In the last 12 months, while driving at night, 

has the glare from the headlights of an oncoming vehicle been ‘not noticeable,’ 

‘barely noticeable,’ ‘noticeable but acceptable,’ ‘disturbing,’ or did it cause a 

‘crash or near miss’?” Only a small percentage of participants found oncoming 

headlight glare to be ‘not noticeable’ (6%) or ‘barely noticeable’ (5%). While fifty-

seven percent of respondents reported that they perceived the glare to be 

‘noticeable but acceptable.’ However, thirty-one percent of respondents 

perceived glare to be ‘disturbing’ and one percent reported a ‘crash or near miss.’ 

Thus nearly a third of survey respondents described an element of vehicles that 

is meant to be a safety device as having caused “disturbing” effects. 
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Older drivers generally report having more difficulty with nighttime glare as 

a result of age-related ocular changes (e.g., reduced ocular transmissivity, 

macular degeneration, detached retina, etc.). However, in this survey, older 

drivers’ (65+; 11%) discomfort ratings were not significantly different from those 

of the younger drivers (18-24; 12%). Thus the high number of persons rating 

glare to be ‘disturbing’ cannot necessarily be associated with age differences.  

Drivers finding glare to be disturbing may be a key component to 

understanding the underuse of high beam headlights at night. That is, drivers’ 

may assume that because they feel discomfort when facing the high beams of 

other drivers, they must also be disabled. Subsequently, in an effort to minimize 

both disability and discomfort glare, drivers may abstain from using high beam 

headlights. 

It is quite obvious that disability glare can negatively influence factors 

important to good driving – specifically, our nighttime visual abilities.  As 

previously noted, decrements in visibility due to reduced illumination have been 

largely associated with crash rates (Owens & Sivak, 1996; Sullivan & Flannagan, 

2002). In addition, persons who are especially sensitive to changes in nighttime 

illumination have higher crash rates than those who are visually healthy (Owsley, 

Stalvey, Wells, & Sloane, 1999; Owsley, Stalvey, Wells, Sloane, & McGwin, 

2001). That is, persons with cataracts (clouding of the lens) are susceptible to 

major impairments in contrast sensitivity. Subsequently, people with severe 

contrast sensitivity decrements are almost 6 times more likely to be involved in a 
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recent crash (Owsley, et al., 2001). Yet, there has been difficultly directly 

associating crash rates with glare or a loss of visual abilities due to glare. A study 

conducted in the late 1960’s found that no more that 1% of all fatal nighttime 

crashes could be associated with headlamp glare (Hemion, 1969). Further, a 

more recent study found that only about 0.3% of fatal nighttime crashes listed 

glare as a contributing factor (NHTSA, 2007). It is possible however, that these 

low rates are a result of poor reporting methods (e.g., not listed on incident report 

form, drivers involved do not/cannot report glare).   

Much work has been focused on efforts to reduce/minimize nighttime 

headlight glare. This work has been, in part, motivated by the large number of 

complaints submitted to the NHTSA (e.g., Docket No. NHTSA-01-8885). The 

majority of these complaints were triggered by drivers experiencing discomfort 

and assuming that they were also experiencing disability glare. However, it is not 

clear that drivers are able to determine when they are visually disabled by glare 

and when they are not; to my knowledge this issue has never been addressed 

empirically. Thus complaints of excessive glare must not be taken as clear 

evidence that headlamp glare is a major problem. Indeed, one rarely hears about 

drivers complaining about their headlamps being too dim despite the fact that 

nighttime visibility problems are well documented. One of the goals of the present 

project is to explore and to explain the relationship between disability glare and 

discomfort glare and to quantify the accuracy with which drivers can estimate the 

magnitude of glare-induced reductions in their ability to see. 
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In response to these headlamp-glare related complaints the US Congress 

allocated $1,000,000 to NHTSA to investigate the effects and risks associated 

with oncoming headlight glare (U.S. Congress, 2005). Specifically, SAFETEA-LU 

states: 

“(a) In General- Using funds made available to carry out section 403 of 

title 23, United States Code, for fiscal year 2005, the Secretary shall make 

$1,000,000 available to conduct a study on the risks associated with glare to 

oncoming drivers, including increased risks to drivers on 2-lane highways, 

increased risks to drivers over the age of 50, and the overall effects of glare on 

driver performance. 

“(b) Report- Not later than 18 months after the date of enactment of this 

Act, the Secretary shall transmit to the Committee on Transportation and 

Infrastructure of the House of Representatives and the Committee on 

Commerce, Science, and Transportation of the Senate a report on the results of 

the study and any recommendations regarding measures to reduce the risks 

associated with glare to oncoming drivers.” 

The NHTSA has subsequently published many technical reports and 

summaries focused on headlamp glare (e.g., Akashi, Hu, Bulluough, 2008; 

Akashi, Van Derlofske, Raghavan, & Bullough 2008; Bullough, Skinner, Akashi, 

Van Delofske, 2008; Bullough, Skinner, Pysar, Radetsky, Smith, & Rea 2008; 

NHTSA, 2008a; & NHTSA, 2008b). The results of several of these studies 
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responding to the SAFETEA-LU (Safe, Accountable, Flexible, and Efficient 

Transportation Equity Act: A Legacy for Users) are discussed here.  

Many aspects of headlamp glare were addressed in the series of studies 

conducted by the NHTSA. One of the major contributing factors to the perception 

of glare intensity is the angle of the glare source (Fry 1954; Miller and Benedek, 

1973). As a result, a recent study examined the effects of headlamp mounting 

height (Akashi, Van Derlofske, Raghavan, & Bullough, 2008). Not surprisingly it 

was found that participants rated higher mounted headlamps to be more 

discomforting. Discomfort ratings, however, decreased as headlamp intensity 

decreased. Another way to reduce light intensity is through polarization.  

Polarization involves activating or placing a filter over headlamps as the driver 

approaches an oncoming vehicle. Schwab & Hemion (1972) showed that 

participants rated light from a polarized source as less discomforting than non-

polarized light.  

Another report examined both discomfort glare and visual abilities in 

varying amounts of illumination (Bullough, Skinner, Akashi, Van Delofske, 2008). 

Once again it was found that the discomfort ratings of glare increase as lamp 

mounting height increases as well as when lamp intensity increased. 

Unfortunately, no measures of disability were taken in the presence of oncoming 

glare. Visual abilities, however, were measured in varying amounts of fixed 

lighting (overhead pole-mounted lighting) with varying headlamp intensities. 

Participants were asked to sit in a stationary vehicle and indicate the presence of 
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an 18 cm x 18 cm (≈7 in x 7 in) board as it moved toward the vehicle from one of 

five eccentricities (-15°, -5°, 0°, 5°, and 15°). As exp ected, the distance at which 

the target board was detected was reduced as the roadway lighting decreased. 

The targets most in the periphery (±15°) were also de tected at the closest 

distances. Somewhat surprisingly, headlamp lighting only influenced (increasing 

distance) the detection distance of one target board (+15°). That is, the ambient 

illumination resulting from the roadway lights was sufficient enough to allow 

participants to detect the target squares in the absence of headlight illumination. 

The authors suggest that this provides evidence to support the idea of a lower 

intensity ‘city’ headlamp setting (introduced by Schreuder, 1975). It is thought 

that this setting would reduce the impact of oncoming headlamp glare.  

This suggestion should, however, be taken with caution. First, in this 

environment of fixed lighting, the headlamps did aid in object detection for the 

15° target. Objects located just to the right of the vehicle (near 15°) are of great 

importance to detect early. It is in this location that many pedestrians, animals, 

etc. are located. These moving hazards are potentially able to move quickly into 

the road with little to no warning. Further, as evidenced by high beam usage data 

(Hare & Hemion, 1968; Sullivan, Adachi, Mefford, & Flannagan, 2004; 

Buonarosa, Sayer, & Flannagan, 2008), drivers frequently use an inappropriate 

headlight setting. If drivers were left to manually select a ‘city’ setting it is 

possible that many people would inappropriately use the setting in non-fixed 

lighting settings. This could further decrease nighttime visibility and subsequently 
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increase nighttime driving risk. In addition, headlamp glare may simply not be an 

issue in well-lit areas at night. Drivers generally report lower levels of discomfort 

glare in the presence of greater ambient illumination (e.g., Miller & Benedek, 

1973; Flannagan, Sivak, & Gellatly, 1991). Furthermore, it is also not known if 

headlamp glare in these areas actually cause disability. This is especially 

relevant as visual acuity tends to improve as ambient illumination increases 

(Sturgis & Osgood, 1982). 

Other non-government based groups have also focused on glare. For 

example, in 2001 the AAA Foundation for Traffic Safety published 

“Countermeasures for Reducing the Effects of Headlight Glare” (Mace, Garvey, 

Porter, Schwab, & Adrian). This document outlines numerous ways in which 

headlight glare can be minimized. These ways include beam pattern 

modification, annual headlamp beam re-aiming, adaptive headlighting, headlamp 

height requirement modifications. Other methods to reduce glare that do not 

involve vehicle headlamps are also mentioned, including the use of night driving 

glasses and glare screens (large physical barriers) between opposing lanes of 

traffic to reduce or eliminate glare produced by oncoming vehicle headlamps 

(Mace et al., 2001).  

Despite the considerable literature on headlight glare and reducing 

headlight glare, little emphasis has been placed on the effects of glare on actual 

driving performance.  To my knowledge, only two on-road studies and one 

simulator study have explored the actual effects of glare on driver performance. 
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Ranney, Simmons, & Masalonis (1999) asked twelve experienced commercial 

truck drivers to drive in a simulator for two eight-hour sessions. Throughout the 

drives participants were exposed to multiple periods of glare from a following 

vehicle. It was found that even with prolonged exposure to glare, participants’ 

driving behavior was not negatively affected. A small decrement in pedestrian 

detection was found when drivers became sleepy, but was not attributed to glare. 

While the lack of a glare-related decrement in driving performance (e.g., 

pedestrian detection, vehicle in mirror detection, vehicle control, etc.) is 

encouraging, these findings may not generalize to many driving scenarios. First, 

the population tested was professional drivers. These drivers spend many more 

hours on the roadway than do other drivers. Secondly, this study focused on 

glare originating from following vehicles. This type of glare is quite different from 

glare from oncoming headlights. Finally, it is difficult to replicate nighttime driving 

conditions in a simulator. These factors may have had a significant effect on the 

findings of this study. 

The first of the two on-road studies asked participants to drive 

instrumented vehicles along a straight roadway (Bullough, Skinner, Pysar, 

Radetsky, Smith, & Rea, 2008). The participant encountered two different 

vehicles with headlights of different intensities. While this study is limited in 

scope, it was found that with increased glare intensity there was a greater 

variability in throttle position (i.e. greater variability in speed). This finding is 

consistent with the second study.  



24 
 

The second of these two studies asked participants to drive an 

instrumented vehicle around a city course (Theeuwes, Alferdinck, & Perel, 2002). 

Along the course the participants were exposed to various intensities of glare 

(produced from a fixed source on the hood of the vehicle). The overall presence 

of glare affected driving speed. Participants drove, on average, 2 km/h (1.2 mph) 

slower with glare than without glare. However, there was not a significant 

difference in driving speeds between the different glare intensity levels. While 

driving speed variability is an indicator of higher task load (e.g., Törnros & 

Bolling, 2006), the slowing of the vehicle may not necessarily be an indicator of 

decreased driving performance. As previously mentioned, drivers often drive at 

speeds too fast for visibility conditions at night (e.g., Leibowitz, Owens and 

Tyrrell, 1998).  While the issue has not been sufficiently researched, slowing the 

vehicle may actually be beneficial to nighttime road safety. 

In the Theeuwes, et al. study, steering wheel reversals (a rapid change in 

steering wheel direction) were also measured throughout the participants’ drive 

(Theeuwes, Alferdinck, & Perel, 2002). The presence of glare significantly 

increased steering wheel reversals in only one especially curvy portion of the 

road. Glare also affected object detection performance. During one portion of the 

drive participants were asked to identify low contrast boards made to represent 

pedestrians. In the low-intensity glare condition (350 cd), participants detected a 

similar number of boards as with no glare. The two strongest intensities (690 cd 

and 1380 cd), however, generated significantly shorter detection distances.  
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These two decrements to driving performance can be partially explained 

by the placement of the glare source lighting. In this study the glare source was 

mounted to the hood of the test vehicle. This placement prevents the possible 

lighting benefits gained from an oncoming vehicle. As a driver approaches an 

oncoming vehicle at night there is a brief period when there is greater total 

lighting along the roadway (i.e., the combination of oncoming headlighting and 

personal vehicle lighting provides more overall lighting on the road than personal 

vehicle lighting alone). This lighting may enable drivers to see a greater distance 

and subsequent portion of the road. This may then enable drivers to view the 

road ahead to better understand the curvature of the road as well as to identify 

objects (e.g., silhouetting) in or along the roadway. This possible lighting 

advantage was not present in this study. This view of oncoming headlight glare 

increasing visibility distances is supported by Flannagan, Sivak, Traube, & 

Kojima (2000).  

Flannagan et al. (2000) measured seeing distance in a variety of lighting 

conditions. Participants sat in a stationary vehicle on a vacant, straight roadway 

and were exposed to low, medium, and high intensities of oncoming (stationary) 

glare headlights along with corresponding levels of their own (“seeing”) 

headlights. It was found that as seeing headlamps and glare headlamps both 

increased proportionately (i.e., low vs. low, medium vs. medium, high vs. high), 

seeing distance also increased. In fact, seeing distance increased about 17% 

from the lowest intensity combination to the highest intensity combination. That 
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is, participants were able to recognize a pedestrian at a distance 17% greater in 

the high beam vs. high beam setting than the low beam vs. low beam setting. 

Despite this glare-induced increase in seeing distance, the greater the intensity 

of the glare source light, participants provided lower (i.e., more intense) deBoer 

scale ratings. That is, as glare intensity increased the observers experienced 

improved visual performance while also experiencing greater discomfort. It 

appears then that drivers’ reports of discomfort are a poor predictor of nighttime 

visibility when encountering oncoming headlight glare.  

Nighttime drivers commonly encounter oncoming vehicles using bright and 

often discomforting headlights. It is this discomfort that has led many drivers to 

complain about the intensity of headlights and the glare they cause. These 

complaints have led NHTSA to not only investigate glare, but also to generate 

ways in which glare can be reduced (e.g., Akashi, Hu, Bulluough, 2008; Akashi, 

Van Derlofske, Raghavan, & Bullough, 2008; Akashi, Van Derlofske, Watkinson, 

Fay, 2005; Bullough, Skinner, Akashi, Van Delofske, 2008; Bullough, Skinner, 

Pysar, Radetsky, Smith, & Rea, 2008; Bullough, Van Derlofske, Dee, Chen, & 

Akashi, 2003; Singh, and Perel, 2003; NHTSA, 2007; NHTSA, 2008a; & NHTSA, 

2008b). It appears, however, that subjective feelings of discomfort are unable to 

accurately predict objectively measured decrements in visual performance. In 

addition, drivers, in general, can be poor judges of personal nighttime visual 

abilities in the presence of glare.  Yet, it seems as if a great deal of research has 

been motivated at least in part by the assumption that subjective feelings of 
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discomfort are highly correlated with decrements in visual performance. It is 

possible that despite experiencing considerable discomfort drivers may not 

actually experience any disability (and vice versa). Despite drivers facing the 

glare of oncoming headlamps being acutely aware of their own discomfort, they 

may be quite unaware of their inability to see objects and hazards ahead. It may 

be the case that the light from oncoming headlights causes little or no decrement 

in visual ability even in drivers who feel “blinded” by the glare.  

In order to clarify these issues (i.e. the relationship between feelings of 

discomfort and subsequent estimates of disability) observers’ estimates of 

personal visual abilities must be quantified both with and without glare present. A 

recent methodological advance makes this possible. In order to determine 

whether drivers understand that visual acuity declines with luminance, Brooks 

and Tyrrell (2008) developed a technique to have participants estimate their own 

acuity under different luminances. In order to estimate acuity, participants were 

trained to use both a magnitude estimation technique (assigning a number to 

specify the size of the optotype that would be just recognizable) and a 

psychophysical matching technique (using calipers to estimate the height of the 

optotype) to different decimal acuity values (at 6 m; 20 ft). This methodology 

resulted in participants being able to accurately estimate known acuity values 

(represented by sized different squares) under daylight/room light conditions. 

(The verbal and manual estimates produced similar results and were further 

analyzed as a combined estimate score.) However, participants were 
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subsequently unable to estimate in acuity as accurately when illumination was 

lowered. Participants were able to successfully estimate that acuity worsens 

under low light levels. Yet, under low light levels, college-aged and middle-aged 

participants consistently underestimated their own acuity. Brooks and Tyrrell 

(2008) concluded that while participants generally understand the trend of their 

changing visual abilities under challenging conditions (non-daylight/room light), 

participants did not fully appreciate the extent to which their own acuity is 

affected by low luminance on acuity. That is, participants estimated that under 

low luminances their ability to distinguish fine detail was much worse than it really 

is.  If people are not able to accurately assess their own visual abilities in differing 

light levels, it is feasible that people may dramatically overestimate the effects of 

headlight glare.  More importantly for the present work, however, is the fact that 

the techniques developed by Brooks and Tyrrell (2008) provide a valuable means 

of assessing observer’s estimates of their own visual abilities under changing 

visual conditions. This project will rely heavily on these techniques.  

The primary goal of the current study is to determine how accurately 

drivers are able to estimate the extent to which glare sources affect their visual 

abilities. Experiment one utilized the laboratory-based psychophysical approach 

(developed by Brooks & Tyrrell, 2008) to explore participants’ ability to estimate 

their own visual acuity in the face of differing intensities of glare. Participants 

estimated their own visual acuity in the presence of low, medium, and high glare 

intensities. Actual acuity was also measured at each of these intensities 
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Participants also provided subjective ratings of glare-induced discomfort using 

the deBoer scale  

Experiment two utilized an outdoor in-vehicle method of assessing both 

the participants’ ability to see in the face of an oncoming pair of headlights and 

their estimates of their ability to see in the same conditions. Participants 

estimated the distance at which they would be able to recognize the orientation 

of a retroreflective letter on the roadway ahead.  This was done with seeing 

headlights (i.e., own vehicle) on both low and high beam settings and with glare 

lights (i.e., opposing vehicle) on both low and high beam settings. Participants 

again provided subjective ratings of glare source intensity using the deBoer 

scale.   

In general, it was hoped that these two experiments will lead to a better 

understanding of how well drivers assess their personal visual abilities in the 

presence of glare. Specifically, these two experiments test the hypothesis that 

drivers overestimate the extent to which glare sources impair their ability to see 

objects.  It is also hoped that a better understanding of the relationship between 

feelings of discomfort are related to actual visual abilities in the presence of 

glare.  
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EXPERIMENT 1 

Method 

Participants:  

Twenty-four people participated (M = 19.3 years; 18 – 21 years) in 

exchange for credit in an undergraduate psychology course.  Each achieved both 

a binocular and monocular visual acuity of at least 6/12 (20/40; the minimum 

requirement to attain a driver’s license in South Carolina). No participants self-

reported any visual pathologies (e.g. cataracts) other than corrected refractive 

errors. Those participants with refractive errors used contact lenses during the 

experiment – none wore glasses. All had a valid driver’s license and had been 

driving for at least one year. 

  

Initial Visual Screening:   

After informed consent was obtained, both monocular and binocular visual 

acuity was measured using the Optec 2000 Vision Tester (Stereo Optical 

Company, Inc.).  All participants achieved a visual acuity of at least 6/12 (20/40). 

Contrast sensitivity was also measured using the Pelli-Robson Contrast 

Sensitivity Test (M = 1.77, range = 1.65-1.95; Pelli, Robson & Wilkins, 1988).  

Participants were tested at 3 meters (9.8 ft) under normal room lighting.  After 

assessing both acuity and contrast sensitivity measurements, participants were 

given a brief overview of the remainder of the experimental session.   
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Freiburg Visual Acuity and Contrast Test: 

 Participants were next sat at a table. The room lights were turned off and 

a small lamp was placed behind a temporary cloth wall to facilitate the use of the 

calipers (described later). Ambient illumination (measured at the viewer’s eye) 

was approximately 0.18 lx for the remainder of the experimental session.  While 

seated at the table, participants placed their chins in a rest which allowed the 

eyes to be aligned with the center of a computer screen placed 6 meters (20 ft) 

away from the viewer. While sitting at the table and using the chin rest, 

participants’ acuity was measured using the Freiburg Visual Acuity and Contrast 

Test (version 3.3; FrACT3.3). The FrACT3.3 requires the viewer to determine the 

orientation of a size-varying Landolt C (presented at orientations of 0°, 45°, 90°, 

135°, 180°, 225°, 270°, and 315°) using a numeric key pad (see Figures 1 and 

2).  A 70% contrast setting was used. This however, actually generated a 

contrast of about 78%, the Landolt C characters had a mean luminance of 11.06 

cd/m2 (R = 89, G = 89, B = 89) and the background had an mean luminance of 

92.16 cd/m2 (R = 233, G = 233, B = 233). Participants were required to attain a 

minimum monocular (right eye) acuity of 0.0 logMAR (20/20) in order to continue 

to acuity estimation training.  
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Figure 1. Representation of numeric keypad response based on Landolt C 

orientation.  

 

 

Figure 2. Response keypad with (hook and loop closure) tactile cues. 
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Glare Source: 

A “glare box” (323 mm high, 325 mm wide, and 42 mm deep) was placed 

between the participant and the computer screen, ≈ 44 cm from the viewer’s eye 

(see Figure 3).  Participants looked through a hole (72 mm in diameter) in the 

center of the box (see Figure 4). The hole was aligned with the center of the 

computer screen.  Around the hole is an illuminated white annulus (or “glare 

ring”), 11 mm in width. Light is reflected through this ring toward the viewer. This 

light is generated by six, 100-watt, tungsten halogen bulbs. Light intensity was 

controlled by using a variac to vary the voltage supplied to the bulbs. The variac 

was used to create 3 different light intensities by attenuating the voltage supplied 

to the bulbs (37%, 77%, and 98% of maximum). Luminance measurements were 

taken at various points around the glare ring to determine the luminance of each 

glare level (4 measurements at each of the cardinal directions). The low intensity 

averaged 120.72 cd/m2, the medium intensity averaged 3116.13 cd/m2, and the 

high value averaged intensity 7098.06 cd/m2 (see Table 1 for mean values at 

each of the measurement regions). The illumination, measured at the participant 

eye was 0.18 lx at no light, 5.87 lx at the low light level, 119.25 lx at the medium 

light level, and 257 lx at the high light level.  The entire box is painted with heat 

resistant matte paint, the light ring is white in color and the remainder of the 

exposed area is black.  



 

Figure 3. Aerial view of experimental setup. 
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. Aerial view of experimental setup.  
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Figure 4. Glare source. The leftmost white arrow is pointing to the outer edge of 

the white “glare ring.” The rightmost shaded arrow is pointing to the right edge of 

the “viewing aperture.” 

 

 Due to the distance between the glare box and the computer screen, the 

left eye was occluded in order to prevent problems associated with retinal 

disparity. Each participant’s left eye was covered with an eye patch (a piece of 

felt was placed between the eye and the eye patch for comfort) after binocular 

acuity was measured during the initial vision screening. Monocular vision was 
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used for the remainder of the experimental session. Participants looked through 

the hole in the glare source box throughout the experimental session, even when 

it was not in use.   

 

Table 1. Mean luminance values by variac percentage of maximum voltage 

supplied to the glare source. The variac set to the 37% voltage generated the low 

glare intensity, 77% generated the medium glare intensity, and 98% generated 

the high glare intensity.  

Region of light 
annulus 

Luminance mean values (cd/m2) 
Variac 37% 
maximum 

voltage 

Variac 77% 
maximum 

voltage 

Variac 98% 
maximum 

voltage 
Top 57.81 1458.8 5859.0 
Left 139.45 3693.5 7682.8 

Bottom 152.2 3993.0 7784.0 
Right 133.48 3319.3 7066.5 

Overall Mean Values 120.7 3116.1 7098.1 
 

Acuity Estimation Training: 

 Next, the experimenter explained to the participant that he/she would be 

making two different types of acuity estimates, verbal and manual. It was 

emphasized that participants could have as much training as necessary until they 

felt comfortable making size estimates.  Participants were shown a square on the 

computer screen the same height as the height of a logMAR 0.0 letter (Snellen 

equivalent 6/6 or 20/20; 8.7 mm x 8.7 mm).  Participants were also provided with 

a small metal square of the same dimensions (8.7 mm x 8.7 mm). This was to be 

used as a reference for a “size 1” and all size estimates were based on this size 
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(see Figure 5).  For example, something 2x taller would be called a “size 2”. 

Participants were allowed to hold and/or feel the metal square at any time, but 

were not allowed to look at it either during the acuity estimation phase or the 

testing size estimation ability phase.   

 

 

Figure 5. Training square and calipers. The leftmost arrow points to the gap in 

the calipers, which the same size as the metal size one square. The rightmost 

arrow points to the metal square.  

 

 The experimenter then showed the participant the square on the computer 

screen again. The digital squares matched the contrast of the Landolt C (78%), 

the squares had a mean luminance of 11.46 cd/m2 (R = 89, G = 89, B = 89) and 

the background had a mean luminance of 92.16 cd/m2 (R = 233, G = 233, B = 

233).   The relationship between the height of the different sized squares on the 

screen and the metal square was emphasized.  For example, two size one 
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squares were held up to the computer screen and the participants were told: “this 

square is a size two and it is exactly two size 1 squares tall.”  Squares that were 

1.3, 1.6, 2, 2.5, 3.2, 4, and 5 times taller than the size 1 square were shown to 

the participants (see Table 2). Additionally, if a participant’s acuity exceeded 6/6 

(20/20) then square sizes smaller than 1 were also shown (i.e., .8, .6, .5, .4, and 

.3) as necessary.  Square sizes were presented in two blocks (1-2 and 2.5-5). 

After participants reported being comfortable producing verbal estimates for each 

block of square sizes, the entire set was practiced. Feedback was provided as 

necessary (e.g., “good job,” “only off by one size, this is actually a size…,” etc.). 

When participants felt comfortable giving verbal size estimates for each of the 

computer square sizes, they were shown how to make manual magnitude 

estimates using calipers.  Participants were instructed to hold the calipers in a 

vertical fashion (numbers facing the experimenter) and to generate the height of 

each of practice square sizes. This was done starting with the calipers in both the 

closed and open positions. Participants practiced making manual estimates with 

the calipers until they were both proficient and comfortable with the task.  If the 

participant attained acuity better than 6/6 (20/20), an opportunity to practice 

making manual caliper estimates for square sizes smaller than 1 was provided. 

The entire training processes lasted between 20-40 minutes to complete, 

depending on how quickly participants were able to grasp the task.  
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Table 2. Square sizes with equivalent acuity and letter height. 

Square 
size 

Caliper 
size 
(mm) 

LogMAR 
Acuity 

Snellen 
Acuity 

(m) 

Snellen 
Acuity 

(ft) 
0.3 2.8 -0.5 6/1.9 20/6.3 
0.4 3.5 -0.4 6/2.4 20/8 
0.5 4.4 -0.3 6/3 20/10 
0.6 5.5 -0.2 6/3.8 20/12.5 
0.8 6.9 -0.1 6/4.8 20/16 
1.0 8.7 0 6/6 20/20 
1.3 11 0.1 6/7.5 20/25 
1.6 14 0.2 6/9.6 20/32 
2.0 17 0.3 6/12 20/40 
2.5 22 0.4 6/15 20/50 
3.2 28 0.5 6/189 20/63 
4.0 35 0.6 6/24 20/80 
5.0 44 0.7 6/30 20/100 

 

 

Testing Size Estimation Ability:  

 To ensure that participants were able to estimate letter size accurately, 

their abilities were tested. Participants were presented with the 8 different square 

sizes in a random order (ranging from size 1 to size 5). Participants were asked 

to give 2 verbal estimates and 2 manual caliper estimates for each square size. 

No feedback was provided to the participants. Participants were informed that 

they were able to change their verbal size estimate from the first to second 

response. Participants either first responded with verbal response followed by a 

manual caliper response (and repeated) or first responded with a manual caliper 

response followed a verbal response (and repeated). Whether participants 
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responded with the verbal or manual response first was randomized between 

participants. To reduce the possible effects of magnitude under or overestimation 

bias while using the calipers, participants estimated size once starting with the 

calipers closed and once starting with the calipers open. This order was 

randomized across participants and the two manual responses were averaged. 

The two verbal responses were also averaged. 

 

Acuity Estimation: 

 Once the participants both felt comfortable and were able to accurately 

estimate square sizes (each square verbal estimate correct a minimum of four 

times and each manual estimate correct two times) in estimating sizes, they were 

then deemed able to use verbal and manual techniques to estimate their own 

visual acuity. During the acuity estimation portion of the experiment the 

participants’ task was to “estimate the size of the C whose orientation you would 

just barely be able to determine.”  The computer screen remained blank (solid 

grey, matching the background color of the acuity test and square training 

screens) during this time. Participants were reminded that they could estimate 

any size that they desired and were not constrained to using the previous square 

sizes they had practiced. Before giving any acuity estimates, participants were 

verbally reminded of the smallest size Landolt C whose orientation they 

determined earlier (based on logMAR acuity; see Table 2). Participants gave 2 

verbal and 2 caliper estimates (in the same order as during the test at the end of 
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size estimate training) at four different light/glare intensities (low, medium, high, 

and no light source; see Figure 6). Acuity estimates were always made in either 

ascending or descending glare order. Half of the participants made estimates 

beginning with no light (and progressed to the high glare level) and half began 

with the high glare (and progressed to no light). After the acuity estimation at 

each glare intensity level participants waited 1-5 minutes for the afterimage of the 

glare source to dissipate.   

 

 

Figure 6. Participant estimating acuity using calipers. 
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Actual Acuity Measurements: 

 After participants estimated their acuity at each of the 4 luminance levels, 

actual acuity was measured using the Freiburg Visual Acuity and Contrast Test 

(FrACT version 3.3; eight possible Landolt C orientations, 50 trials each). This 

was done twice at each of the 4 luminance levels in the same order in which 

acuity estimates were made. The two acuity measurements were later averaged. 

Again, participants waited 1-5 minutes for the afterimage of the light source to 

dissipate between each acuity measurement.  

 

Subjective Ratings of Light Source Discomfort: 

 Participants were asked to provide a subjective measure of the intensity of 

the glare at each light level (after the first acuity measurement at each light level).  

This was assessed using the deBoer measurement scale. This scale ranges from 

9 (unnoticeable) to 1 (unbearable; see Table 3).  
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Table 3. deBoer scale used to subjectively rate light intensity. 

Unnoticeable 9 

 8 

Satisfactory 7 

 6 

Just admissible 5 

 4 

Disturbing 3 

 2 

Unbearable 1 

 

 

Questionnaire: 

After all acuity measurements were taken, participants were asked to 

answer several short questions about their nighttime driving attitudes and 

behaviors (see Appendix A). Upon completing this questionnaire, participants 

were given an opportunity to ask any questions, and thanked for their time. 
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Results Experiment 1 

It should be noted that all analyses on actual and estimated acuity values 

were conducted after the data had first been transformed into log(MAR) units. 

Caliper estimates were made in letter height (mm) and were converted to 

log(MAR) units directly. Verbal estimates required an extra conversion. The 

verbal estimates were multiplied by 8.727 (the mm height of a size 1) – creating a 

letter height (in mm) from which the log(MAR) conversion was made. 

 

Training: 

As described earlier, after the conclusion of the acuity estimation training, 

participants estimated the sizes of all eight training square sizes in a random 

order. For each square size, participants provided 1 manual estimate starting 

with the calipers closed, 1 manual estimate starting with the calipers open, and 2 

verbal estimates. The two caliper estimates were averaged to create a single 

manual score and the two verbal estimates were averaged to create a single 

verbal score. The training test was completed without feedback from the 

experimenter (i.e., participants were not told if responses were accurate). The 

squares were presented in the same order for all participants during the training 

test. All participants passed the training testing with a minimum correlation 

between the estimated square size and the actual square size of r  = .90 (in both 

the verbal and manual techniques). 
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Verbal technique.  Participants appreciated the differences in physical 

square sizes using the verbal technique, F(7, 161) = 388.96, p < .001. Linear 

regression models were calculated for each participant to describe accuracy with 

which the participants estimated the square sizes (see Appendix B).  The R2 

values were then averaged across all participants, resulting in a mean R2 value 

of .95. This indicates that participants were able to accurately estimate square 

size using the verbal technique. Figure 7 presents the verbal, manual, and 

combined verbal + manual square size estimates averaged across all 

participants.  
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Figure 7. The mean participant estimated square size during training test using 

the verbal technique, manual technique, and the combined verbal + manual 

score. 

 

Manual technique. Participants appreciated the differences in square sizes 

using the manual technique, F(7, 161) = 312.94, p < .001. Linear regression 

models were calculated for each participant to describe how accurately the 

participants estimated the square sizes (see Appendix B).  The R2 values were 

then averaged across all participants, resulting in a mean R2 value of .94. This 

indicates that participants were able to accurately estimate square size using the 

manual technique. 
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Verbal and Manual Techniques.  A repeated measures ANOVA compared 

the verbal and manual techniques. No significant difference between the two 

estimation techniques was found, F(1, 23) = .62, p > .05. Subsequently, a 

averaged (verbal + manual) estimate was created for each participant. Using this 

score linear regression models were calculated for each participant to describe 

how accurately the participants estimated square sizes (see Appendix B).  The 

R2 values were then averaged across all participants, resulting in a mean R2 

value of .95. Table 4 presents the mean R2 and standard deviation for the verbal, 

manual, and combined estimate scores. For the remainder of the analyses the 

averaged estimate was used as the measure of estimated acuity.  

 

Table 4. Mean R2 and standard deviation values. Each participant’s correlation 

between judged and actual square size during training test. All participant values 

were then averaged. 

 Verbal Technique Manual Technique Combined 

Mean R2 value .95 .94 .95 

Standard Deviation .04 .05 .04 

 

 

Actual Acuity:  

 Table 5 presents the mean acuity and standard deviation (including all 24 

participants) at each of the four glare intensity levels (none, low, medium, and 
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high; see also Figure 7).  Interestingly, glare level did not significantly affect 

measured acuity, F(3, 69) = 1.309, p > .05, ηp
2 = .05.  

 

Table 5. The mean measured acuity (logMAR) and standard deviation at each of 

the glare light levels. 

 No Glare Low Glare 
Medium 

Glare High Glare 

Mean Measured Acuity 
(Snellen Denominator, ft) 

-.075 
(16.8) 

-.075 
(16.8) 

.-085 
(16.4) 

-.060 
(17.4) 

Standard Deviation .087 .103 .091 .104 
 

 

Estimated Acuity: 

Table 6 presents the mean estimated acuity and standard deviation 

(including all 24 participants) at each of the four glare intensity levels (none, low, 

medium, and high).  Participants believed that glare level would significantly 

affect acuity, F(3, 69) = 21.78, p < .001, ηp
2 = .49. Pairwise comparisons (LSD) 

revealed that acuity was estimated to decline significantly with each increase in 

intensity of the glare source light. That is, participants estimated acuity to be 

maximal with no glare light, and the acuity estimates were progressively and 

significantly worse with the low, medium, and high glare levels.  Participants 

estimated acuity at the medium and high glare levels to be worse than the low 

glare. Finally, participants estimated acuity to be worse at the high glare level 

than the medium glare level (see Figure 8).   
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Table 6. The mean estimated acuity (logMAR) and standard deviation at each of 

the glare light levels. 

 No Glare  Low Glare  
Medium 
Glare  High Glare  

Mean Estimated Acuity 
(Snellen Denominator, ft) 

-.018 
(19.2) 

.048 
(22.3) 

.108 
(25.6) 

.161 
(29.0) 

Standard Deviation .090 .147 .181 .207 
 

 

Actual vs. Estimated Acuity: 

The estimations and measurements at the no light level have been 

excluded from comparisons between estimated and actual acuity. This was done 

because participants were told their ‘correct’ answer (the baseline acuity 

originally measured using FrACT) when estimating acuity under the no light 

condition. This was done so that participants were provided with an anchor from 

which other estimates could be based.  

A 4 (glare level) x 2 (actual v. estimated) repeated measures ANOVA 

revealed a significant difference between estimated and actual acuity, F(1, 23) = 

40.86, p < .001, ηp
2 = .64. Overall, participants estimated acuity (M = .11 

logMAR; 20/25.8) to be significantly worse than the mean of the actual measures 

of acuity (M = -.07 logMAR; 20/17). Further, a significant interaction between 

glare level and acuity (estimated vs. actual) existed, F(2, 46) = 7.04, p = .002, ηp
2 

= .23. This interaction confirms that the discrepancy between estimated and 

actual acuity increases with increases in glare level. Still, participants estimated 

their acuity to be significantly worse than their actual acuity at the low (F(1, 23) = 
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24.75, p < .001, ηp
2 = .52), medium, (F(1, 23) = 36.56, p < .001, ηp

2 = .61), and 

high (F(1, 23) = 33.88, p < .001, ηp
2 = .60), glare levels. Figures 8 and 9 depict 

the relationship between measured and estimated acuities averaged across 

participants (individual participant data can be seen in Appendix C).    

 

 

Figure 8.  Mean (+ or – 1 standard error of the mean) estimated and actual 

acuity. 
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Figure 9. Comparisons of estimated acuity and actual acuity. 

 

Acuity Estimate Accuracy & Glare:

In order to better understand participants’ ability to

acuity under different levels of glare a difference (er

each level of glare (Low, Medium, and High) each participant

was subtracted from their actual

score represents an overestimation of acuity and a negative

represents an underestimation of acuity

indicate better acuity).   
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Figure 9. Comparisons of estimated acuity and actual acuity.  

ccuracy & Glare: 

In order to better understand participants’ ability to correctly estimate their 

acuity under different levels of glare a difference (error) score was created. For 

Low, Medium, and High) each participant’s estimated

actual acuity measurement. Thus, a positive error 

estimation of acuity and a negative error score 

estimation of acuity (recall that smaller logMAR value
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Table 7. Difference scores (logMAR) and standard deviation for each of the glare 

levels. Negative values indicate acuity underestimation.  

 Low Glare  Medium Glare  High Glare  

Mean difference -.123 -.193 -.221 

Standard Deviation .121 .157 .186 

 

 

A repeated measures ANOVA revealed a significant effect of glare level, 

F(2, 46) = 7.04, p = .002, ηp
2 = .23 confirming that the magnitude at which 

participants underestimated their acuity significantly increases as glare level 

increases (see Figure 10). Acuity estimates showed the least error in the low 

glare light condition. The medium and high glare levels generated significantly 

greater overestimates than the low glare levels, but were not significantly greater 

than each other. Table 7 presents the mean acuity underestimation and standard 

deviation for each of the glare levels (low, medium, and high). 
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Figure 10.  Mean estimation error (minus 1 standard error of the mean) as a 

function of glare intensity. Negative values indicate an underestimation of acuity.  

 

deBoer Ratings: 

A repeated measures ANOVA revealed a significant effect of glare 

intensity on deBoer ratings, F(2, 46) = 87.71, p < .001, ηp
2 = .79 (see Figure 11). 

Participants rated each of the light levels significantly different from one another. 

The mean deBoer ratings were: low glare = 6.1 (between “Satisfactory” and “Just 

Admissible”), medium glare = 4.5 (slightly more discomforting than “Just 

Admissible”), and high glare = 3.4 (slightly less discomforting than “Disturbing”; 

recall that a lower rating indicates a higher level of discomfort).  
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Figure 11. Mean deBoer ratings (plus 1 SEM) of discomfort at each glare 

intensities. Lower deBoer values indicate a higher level of discomfort.  

 

deBoer scale and estimated acuity.  In order to better understand the 

relationship between estimated acuity and deBoer ratings, correlations were 

calculated for each participant (a table of individual R2 values can be found in 

Appendix D). The mean individual R2 between deBoer ratings and estimated 

acuity is .76 (range = .07 to .99). The mean r = -.44 (range -.99 to .96). That is, 

as ratings of discomfort increased (lower deBoer numerical rating) acuity 

estimates also tended to increase (i.e. poorer acuity).  

Because there was considerable variability between individual participant 
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levels was calculated. The average estimated acuity at each of the light levels 

was strongly correlated with the average deBoer rating at each of the glare 

levels, R2 = .99, p < .05 (y = -0.0427x + 0.3048; see Figure 12). That is, as 

participants’ feelings of discomfort worsened, it was estimated that acuity also 

worsened. 

 

 

Figure 12. Mean deBoer ratings by average estimated and actual acuity. 

 

deBoer scale and measured acuity.  In order to better understand the 
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Appendix E). The average individual R2 between deBoer ratings and actual 

acuity is .44 (range = .00 to .99). The mean r = -.29 (range -.99 to .97).  The 

mean measured actual acuity at each of the light levels was correlated with the 

average deBoer rating at each of the glare levels, R2 = .28, p > .05 (y = -0.0051x 

- 0.0493; see Figure 12).  

 deBoer ratings and actual/estimated acuity. In order to further investigate 

the relationship between deBoer ratings and estimated vs. actual acuity, R2 

values were compared. An r to t transformation was conducted to determine if 

these two correlations are significantly different from one another (Cohen & 

Cohen, 1983; Applied Multiple Regression/Correlation Analysis for the Behavioral 

Sciences).  This analysis revealed a significant difference in the relationships, 

further emphasizing the strong relationship between feelings of discomfort and 

estimated acuity, t(21) = -13.56, p < .001. 

 deBoer ratings and acuity estimation accuracy. Yet another way to 

examine the relationship between deBoer ratings and acuity estimates is to 

utilize acuity estimation error. The relationship between the mean acuity 

estimation error and the mean deBoer rating yielded R2 = .98 (y = .038x - .35; 

see Figure 13). This illustrates that as participant underestimation of acuity 

increases, subjective feelings of discomfort also increase.  
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Figure 13. deBoer ratings of discomfort by acuity estimate error.  Recall that 

lower values on the deBoer scale indicate greater ratings of discomfort.  

 

 deBoer ratings and eye color. It has previously been reported that people 

with light colored irises report greater glare sensitivity than those with darker 

irises (e.g., Desilva & Robinson, 1938). In order to determine whether eye color 

was related to the participants’ subjective feelings of discomfort from the glare 

source, a chi-square was performed at each of the light levels. No significant 

differences in feelings of discomfort between light and dark eyes was found in the 

low (χ2(8) = 3.73, p >.05), medium (χ2(8) = 8.56, p >.05), or high (χ2(8) = 2.9, p 

>.05) glare levels.  
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Discussion 

Experiment 1 sought to determine the relationship between estimates of 

acuity and actual acuity in the presence of glare. Participants were successfully 

able to learn how to estimate acuity using both a verbal and manual technique. 

Because there was no significant difference between the verbal and manual 

techniques, the estimates were averaged together. Ratings of discomfort were 

assessed and participants’ actual acuity was measured and compared to 

estimated acuity in the presence of three different glare intensities. As 

hypothesized, as ratings of glare resulting discomfort increased, participants 

estimated that acuity worsened.   

Actual measures of visual acuity, however, were unaffected by the 

intensity of the glare source. This is presumed to be a consequence of several 

factors. First, independent of the intensity of the glare source, the luminance of 

the stimulus (i.e. the laptop screen presenting the Landolt C) was constant 

across conditions. Thus neither the luminance nor the contrast of the distal 

stimulus changed across conditions.  

Second, because the stimulus was positioned in the center of the glare 

annulus, there was a distance of ≈4.65° between the stimulus and the glare light.  

As a glare source moves closer to the line of vision, the negative (retinal-contrast 

reducing) effects of that glare source increase (Cobb & Moss, 1928; Luckiesh, 

1944). However, if a stimulus is of sufficient contrast and brightness, glare does 
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not significantly affect discrimination abilities (Cobb & Moss, 1928; Luckiesh, 

1944).  

Luckiesh (1944) determined the minimum threshold size to determine the 

presence of two equally sized bars with a gap of the same size. The bars were 

presented in four contrasts (2%, 5%, 20%, 100%) at three different brightness 

levels (3.4 cd/m2, 34.3 cd/m2, and 342.6 cd/m2). At the greatest luminance, the 

effect of glare almost entirely disappears, regardless of contrast. At 34.3 cd/m2 

luminance and 20% contrast, glare only reduced threshold by 0.19 (arcmin) and 

by only 0.03 (arcmin) at 100% contrast. At maximum luminance (342.6 cd/m2) 

and 20% contrast, glare only reduced threshold by 0.03 (arcmin) and by 0.01 

(arcmin) at 100% contrast. The stimulus in the present experiment had a 

luminance of 92.16 cd/m2 and contrast of 78%. While these conditions are do not 

fit perfectly to those of Luckiesh, the Luckiesh data suggest that glare would have 

a minimal (if any) effect on acuity.  

The findings of Luckiesh (1944) complement those of Cobb and Moss 

(1928). Cobb and Moss determined the minimum size/visual angle required to 

determine the presence of test rectangles of different contrasts (the same type as 

those used by Luckiesh, 1944) with three different luminance levels (3.4 cd/m2, 

34.3 cd/m2, and 342.6 cd/m2). A glare source was placed at 5°, 10°, 20°, and 40° 

above the test object. Overall, as the glare source was positioned closer to the 

line of sight, the visual angle required to determine the presence of the 

rectangular bars increased (i.e. the bars and the space between increased). 
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However, as the luminance and the contrast of the test object increased, the 

effects of glare were muted. These data show that with sufficient stimulus 

luminance and contrast, the acuity reducing effects of glare are negligible. These 

data are consistent with the finding in the present study that glare did not affect 

the participants’ acuity to the stimulus with 78% contrast. 

Third, pupil size varied across conditions. Pupil size is a complex and 

important component of visual acuity. A large pupil size allows for more light to 

enter the eye (to stimulate the retina). On the other hand, a smaller pupil size 

reduces optical aberrations. As the intensity of the glare source increased in 

Experiment 1, the size of the pupil decreased (see Figure 14), thus reducing 

retinal illuminance. Retinal illuminance is measured in trolands, the log-product of 

the distal stimulus luminance (cd/m2) and pupil area (mm2). This calculation, 

however, does not take into account other factors which influence retinal 

illuminance (e.g., clouding of the lens, non-stimulus related light). Further, while 

the luminance of the far stimulus (the computer screen) remains constant across 

conditions, the luminance of the glare source changes (and subsequently retinal 

illuminance changes). In order to approximate retinal illumination trolands were 

calculated using the luminance of the near stimulus (glare annulus) rather than 

the far stimulus (computer screen). The mean approximate retinal illuminance 

values in Experiment 1 are: low glare, 3.24 trolands, medium glare, 4.36 trolands, 

high glare, 4.58 trolands. It has been shown that as retinal illuminance increases, 

visual acuity improves. However, this is a non-linear function. In the region of the 
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steepest slope, an increase in intensity of 0.8 log-trolands improves acuity about 

0.2 (log) (Graham et al., 1965). However, the retinal illuminance values of 

Experiment 1 lie in a horizontal asymptote. That is, based on retinal illuminance 

alone, one would not necessarily expect acuity to vary significantly in the present 

experiment.  

Pupil size also affects depth of field. In general, as pupil size decreases 

resolving power (and acuity) increases (e.g., Ogle & Schwatz, 1959; Graham et 

al., 1965).  This however, is only true to a certain extent. Acuity steadily 

increases as the diameter of the pupil approaches 2.0 mm, after which acuity 

stabilizes (see Graham et al., 1965, p.333 for summary of data). Mean pupil 

diameter in the present study ranged from 2.6 mm (high glare) to 4.2 mm (low 

glare; see Figure 14) – values within the range of maximal stable acuity. Based 

on pupil size alone, one would not expect acuity to vary significantly between 

glare conditions. It appears then that the decrease in pupil size reduced the 

amount of glare source light entering the eye and effectively muted the negative 

effects (intraocular light scattering, resulting in a reduction of stimulus contrast) of 

the glare source on acuity.  As a result of these factors (constant luminance and 

contrast of the distal stimulus, and pupil size) it is not surprising that participant 

acuity did not change across glare conditions. It is certainly possible, of course, 

that if the acuity stimulus had a lower contrast that acuity values would be 

reduced as the intensity of the glare source increased. 
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Figure 14. Mean pupil area (mm2) as a function of the illumination at the eye in 

each of the four glare conditions. Measurements are from five non-participants of 

similar age as the participants in Experiment 1 and in the same apparatus (see 

Appendix F for individual plots). 

 

 While changes in glare source intensity did not affect participants’ 

measured acuity, the changes did affect the participants’ estimates of their own 

acuity. Overall, participants estimated that acuity would decline significantly with 

each increase in glare source intensity.  

 This finding indicates that, in general, estimates of acuity in the presence 

of a glare source can be dissociated from measures of actual visual acuity. That 

is, observers exaggerate the effects of glare on visual acuity. If estimates of 

acuity are not necessarily related to actual acuity, then it is important to 
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investigate other factors that may influence estimates of acuity; which, in this 

case are glare-induced feelings of discomfort.  

 Each of the three glare light intensities was rated as resulting in a 

significantly different level of visual discomfort. The low glare level obtained a 

mean deBoer rating of 6.1 – between “Satisfactory” and “Just Admissible.” The 

medium glare level obtained a mean score of 4.5 – slightly more discomforting 

than “Just Admissible.” The high glare level obtained a mean score of 3.4 – 

slightly less discomforting than “Disturbing.”  

 The mean deBoer ratings were not good predictors of mean measured 

acuity. However, mean deBoer ratings were strongly correlated with mean acuity 

estimates. This finding supports that hypothesis that discomfort, rather than 

actual abilities, guide observers’ estimates of their own acuity in the presence of 

a glare source. This finding makes sense at an intuitive level. In order to estimate 

our abilities we rely on readily available and salient information. In Experiment 1, 

the feelings of discomfort resulting from the glare source were both available and 

salient and were subsequently tightly linked to acuity estimates.  Further feelings 

of physical discomfort are often linked with performance decrements (e.g., a 

hiker can experience muscular fatigue and feel the need to slow down).  

Experiment 1 has provided valuable insight related to the accuracy with 

which we judge the effects of glare on vision. It is expected that the effects 

measured in the laboratory are generalizable to other environments, especially 

those involving acuity-based tasks. Because of the relevance of this work to the 
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on-road setting in which the headlights of opposing vehicles can induce feelings 

of discomfort glare, it is important to determine whether these findings generalize 

to the context of night driving.  

A field test of the effects measured here is needed. It is possible that there 

is something about the night driving context that triggers driving-specific 

subjective responses to glare that were not triggered in the laboratory setting. 

Understanding these subjective responses and their relationship to glare-induced 

visual decrements is important for several reasons. First, a better understanding 

of how people estimate vision is affected by glare in nighttime driving 

environments will be gained. Secondly, participants’ estimates of how glare 

affects their vision in an indoor (laboratory) environment can be compared to an 

outdoor driving environment. That is, if both the indoor and outdoor studies 

(which employ very different methodologies) produce similar patterns of results, a 

higher degree of convergent validity will support the argument that the effects are 

fundamental and not limited to one particular experimental context. 

To extend the findings from Experiment 1 to a setting that is closer to the 

night driving situation, participants sat in a test vehicle that faced another 

stationary vehicle under four different headlamp conditions (using combinations 

of high and low beams) and were asked to estimate the distance at which they 

could determine the orientation of a Landolt C that was positioned next to a 

vehicle. The distance at which the orientation could actually be determined was 

also measured. This provides the opportunity to measure the accuracy of 
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participants’ judgments of their glare-induce visual decrements, and subjective 

feelings of discomfort in a context that more closely resembles nighttime driving. 
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EXPERIMENT 2 

Method 

Participants:  

Sixteen people participated (M = 20 years; 18 – 33 years).  Each achieved 

a visual acuity of at least 6/12 (20/40; the minimum requirement to attain a 

driver’s license in South Carolina).  None reported visual pathologies (e.g. 

cataracts) other than corrected refractive errors. Participants wearing glasses 

were provided an opportunity to clean their lenses prior to the beginning of the 

experiment. All had a valid driver’s license. Each experimental session took place 

at least 1 hour after sunset on nights free of precipitation and fog.  

 

Visual Screening: 

After informed consent was obtained, visual acuity was measured using 

the Optec 2000 Vision Tester (Stereo Optical Company, Inc.).  Contrast 

sensitivity was also measured using the Pelli-Robson Contrast Sensitivity Test 

(Pelli, Robson & Wilkins, 1988).  Participants were tested at 3 meters (9.8 ft) 

under normal room lighting (M = 1.72; range 1.5-1.95).  After assessing both 

acuity and contrast sensitivity measurements, participants were given a brief 

overview of the remainder of the experimental session. Participants were then 

driven to the test site.   
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Test Site: 

 The testing site was an unilluminated (<0.01 lx), semi-rural utility road 

adjacent to a campus golf course. The 3.05 m-wide road includes a 230 m (≈755 

ft) section of straight and level unobstructed non-delineated roadway. The road is 

free of pavement/street markings and streetlights (see Figure 15).    

 

 

Figure 15. Daytime view of test site. 
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Glare Source: 

 A vehicle (2008 Infiniti EX35) was parked near the end of the straight 

portion of the test site roadway. The high intensity discharge (low beams are 

xenon; high beams are low beam xenon + halogen) headlamps were self-aligning 

and were cleaned each night prior to data collection. Neither additional lighting 

nor filters were used to modify the glare source. Figure 16 presents illumination 

at the participant eye measured at distances ranging from 25 feet to 700 feet for 

both high and low beam settings.  

 

 

Figure 16. Illumination from glare source vehicle (as measured from the 

passenger seat of the test vehicle) for both high and low beam headlamps.  
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Participant Vehicle: 

 Only one participant was tested at a time. The participant sat in the front 

passenger seat of the test vehicle (2005 Scion Xb) while an experimenter drove. 

The vehicle’s headlamps were adjusted to manufacturer specification. Both the 

vehicle headlamps and windshield were cleaned each night prior to data 

collection. Neither additional lighting nor filters were used to modify the 

headlights. 

 

Measuring Participants’ Estimates of Recognition Distance: 

Participants were asked to estimate the maximum distance at which they 

would just be able to determine the orientation of a retroreflective Landolt C (see 

Figure 17) that was positioned directly in front of their vehicle. The Landolt C was 

8 cm in diameter (16 mm stroke width and gap) and made from 3M Scotchlite 

8906 silver retroreflective fabric. The letter was placed on a dark circular 

mounting board. The mounting board was placed on a tripod to the right of the 

test vehicle (as seen from the participant’s position) and at the same distance 

from the test vehicle as the glare vehicle. The center of the Landolt C was 

approximately 80.5 cm above the ground.  From the participant’s perspective, the 

Landolt C was located 1.52 m (5 ft) to the right of the glare vehicle’s front tire and 

1.17 m (3.83 ft) to the left of the right edge of the roadway (see Figure 18 and 

Figure 19).  
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Figure 17. Outdoor Landolt C stimulus.  

 



 

Figure 18. Diagram of Experiment 2 setup; aerial perspective. The road contains 

no lane delineation markers, other major signs, or road markers.
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. Diagram of Experiment 2 setup; aerial perspective. The road contains 

no lane delineation markers, other major signs, or road markers.  

 

. Diagram of Experiment 2 setup; aerial perspective. The road contains 
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Figure 19. Position of the Landolt C stimulus in relation to the glare source 

vehicle. Both the glare source vehicle and the participant vehicle have high beam 

headlights turned on. The camera flash was not used.  

  

Just as in Experiment 1, each participant was provided a baseline from 

which future estimates could be made. In the previous experiment, each 

participant was periodically reminded of the square size that was equivalent to 

their acuity and could then rely on this knowledge while making acuity estimates. 

In order to create the baseline marker in this experiment, participants were slowly 

(i.e., at approximately 3.2- 8.0 kph; 2-5 mph) driven toward the Landolt C 

stimulus. The low beam headlights on the participant vehicle were turned on, but 

the glare vehicle’s lamps remained off.  The point at which participants indicated 

they could just barely determine the orientation of the Landolt C was marked on 
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both the right and left shoulders of the roadway with 28” tall orange traffic cones 

(without retroreflective markings). Participants were allowed to use these cones 

as a reference during the distance estimations that followed. The reflective 

portion of the Landolt C was then covered and the test vehicle returned to the 

beginning of the test road (which was 213.4 m from the glare vehicle).  

To estimate recognition distance, participants were slowly driven toward 

and away from the glare source vehicle while the headlamps of the test vehicle 

remained pointed toward the stimulus. Participants were asked to look toward the 

stimulus (the stand holding the Landolt C stimulus remained in position, while the 

retroreflective portion was covered with a black cloth). When driving toward the 

glare source vehicle, participants were asked to indicate when they reached the 

point at which they would just barely be able to determine the orientation of the 

Landolt C had it been present. When driving away from the Landolt C, 

participants were asked to indicate when they reached the point at which they 

would just barely lose the ability to determine the orientation of the Landolt C. 

Participants used their right hand to drop weighted bags out of the open right 

window to mark these points (described in more detail later).  

Participants were shown combinations of headlamps on low and high 

beam settings of the two vehicles (Low vs. Low; Low vs. High; High vs. Low; and 

High vs. High).  After participants were shown a single lighting combination, they 

were asked to make distance estimates. This was done starting in 2 different 

positions for each lighting combination; once when the vehicles started 7.62 m 
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(25 ft) apart (a reverse moving trial) and once when the vehicles started 213.36 

m (700 ft) apart (forward moving trial). For trials that started at the greater 

starting distance, the participants were told “As we move forward, imagine that 

the C was present in the same place you saw it before. At the moment you think 

that you would just barely be able to determine the orientation of the C, drop this 

bag out of your window.” For trials that started at the shorter distance, the 

participants were told “As we move backward, imagine that the C was present in 

the same place that you saw it before. At the moment you think that you would 

just barely be unable to determine the orientation of the C, drop this bag out of 

the window.” 

The bags [17 cm x 11cm plastic bags filled with ≈ 118 cm3 (.5 cup) of rice] 

that participants dropped out of the window were coded to mark trial numbers 

(see Figure 20). The distances of each bag dropped by the participant (from the 

Landolt C stimulus) were later measured by an experimenter using a measuring 

wheel.    

 



75 
 

 

Figure 20. An example of bags used by participants to mark response distances.  

 

Participants made a total of 8 distance estimations.  The participants 

made one estimate moving toward and one estimate moving away from the 

Landolt C stimulus location for each of the 4 headlight combinations (Low vs. 

Low; Low vs. High; High vs. Low; and High vs. High). The approaching distance 

and the reversing distance were later averaged to comprise a single estimated 

recognition distance for each of the four headlighting combinations. See Table 8 

for a complete listing of trial combinations; the 8 combinations were presented in 

a new quasi-random order for each participant. 
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Table 8. Lighting and vehicle movement combinations in which participants 

estimated recognition distances. 

Combination # 
Participant 

vehicle 
movement 

Participant 
vehicle lights 

Glare source 
vehicle lights 

1 Forward Low Beams Low Beams 
2 Forward Low Beams High Beams 
3 Forward High Beams Low Beams 
4 Forward High Beams High Beams 
5 Reverse Low Beams Low Beams 
6 Reverse Low Beams High Beams 
7 Reverse High Beams Low Beams 
8 Reverse High Beams High Beams 

 

 

Measuring Actual Recognition Distances: 

 After participants completed the 8 recognition distance estimates, 

measures of actual recognition distances were made. In each condition, the 

actual recognition distances were defined as the distance at which the participant 

could just recognize the orientation of the Landolt C stimulus (using the method 

of limits). Actual recognition distances were measured for each of the four 

headlight combinations (Low vs. Low; Low vs. High; High vs. Low; and High vs. 

High); once when moving toward the Landolt C stimulus and once when moving 

away from the stimulus. When moving toward the Landolt C, participants first 

dropped a bag. The experimenter driver then stopped the vehicle. The participant 

then announced the orientation of the Landolt C by indicating the direction of the 

gap. This was done by pointing to a C on a sheet of paper (see Figure 21) that 



 

matched the orientation of the reflective C stimulus (i

90°, 1 35°, 180°, 225°, 270°, and 315°

the orientation of the Landolt C.

 

Figure 21. Image on a piece of paper that participants used to indicate the 

orientation of the reflective C stimulus. 

 

Actual recognition distances were also 

away from the stimulus. When the vehicle slowly reversed away from the Landolt 

C stimulus, the participant 

indentify the orientation of the C. The order in which the 
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matched the orientation of the reflective C stimulus (i.e., orientations of 0°, 45°, 

35°, 180°, 225°, 270°, and 315° ). Participants always correctly identified 

the orientation of the Landolt C. 

 

. Image on a piece of paper that participants used to indicate the 

orientation of the reflective C stimulus.  

distances were also measured when the vehicle moved 

away from the stimulus. When the vehicle slowly reversed away from the Landolt 

C stimulus, the participant dropped a bag to indicate when they could no longer 

of the C. The order in which the 8 trials were completed 

of 0°, 45°, 

Participants always correctly identified 

. Image on a piece of paper that participants used to indicate the 

when the vehicle moved 

away from the stimulus. When the vehicle slowly reversed away from the Landolt 

indicate when they could no longer 

completed 
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matched the order in which the estimates were measured. The orientation of the 

stimulus was changed between trials; the stimulus was at one of 8 possible 

orientations, selected at random for each trial. The approaching distance and the 

reversing distance were later averaged to comprise a single actual recognition 

distance for each of the four headlight combinations.  

 

Subjective Ratings of Discomfort Glare: 

 After each estimated and actual recognition distance was measured, 

participants were asked to use the deBoer scale (see Table 3) to provide a 

subjective description of the intensity of the opposing vehicle’s headlamps. While 

formulating their rating participants were asked to look down the roadway as if 

they were driving. Subjective ratings were recorded with the participant 

positioned in the test vehicle with the vehicle parked. Subjective ratings were 

made for each of the four headlighting combinations at several locations. After 

each estimated and actual recognition distance, participants provided a 

subjective judgment of discomfort. In addition, subjective deBoer ratings (for all 

four headlight combinations) were made at 23.0 m (75 ft), 61.0 m (200 ft), 213.4 

m (700 ft), and at each participant’s respective baseline marker. The 23.0 m 

distance was chosen because it is the distance at which the illumination (at the 

viewers’ eye) is maximal from the glare source vehicle’s high beam setting. In 

total participants made 24 ratings of discomfort.   
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The (23.0 m, 61.0 m, and 213.4 m) distances provided three consistent 

locations for subjective judgments of discomfort across participants. Because the 

illumination from the glare vehicle’s headlamps depends on the distance from it, 

this allowed there to be ratings of discomfort with consistent lighting across 

participants. At these three distances, participants made four subjective ratings of 

discomfort (one for each of the headlighting combinations: Low vs. Low; Low vs. 

High; High vs. Low; and High vs. High).  The four ratings were measured in the 

same order in which estimates of recognition were made.  

 After completing the subjective ratings, the participants completed a short 

questionnaire about nighttime driving attitudes and behaviors (see Appendix A). 

While participants completed the questionnaire, the experimenter measured and 

recorded the distance of each bag from the Landolt C. The participants were 

given time to ask any questions, thanked for their time, and driven back to 

Brackett Hall.   
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Results Experiment 2 

Baseline Recognition Distance:  

 Participants were initially slowly driven toward the Landolt C stimulus while 

the participant vehicle used low beams and the glare source vehicle did not have 

any lights turned on. This method was used to create a baseline from which 

estimates of Landolt C recognition distance could be based. The mean baseline 

Landolt C recognition distance was 35.25 m (105.82 ft; range 16.0 – 48.4 m)  

 

Estimated Recognition Distances:  

 Estimated measures of recognition distance are operationally defined as 

the mean of the appropriate forward-moving and backward-moving trials.  A 2 x 2 

repeated-measures ANOVA revealed that estimates of recognition distance were 

significantly different based on glare vehicle headlights, F(1, 15) = 47.91, p < 

.001, ηp
2 = .76 (see gray bars in Figure 22 and top row of Table 9). Participants 

estimated significantly shorter Landolt C recognition distances when the glare 

source vehicle used high beams (25.13 m; 82.46 ft) than when it used low beams 

(37.08 m; 121.65 ft). That is, participants believed that the glare vehicle’s beam 

setting would affect recognition distances. In addition, 95% confidence intervals 

were calculated: Glare vehicle: low, Participant Vehicle: low 29.56 – 40.64 m 

(96.98 – 133.32 ft); Glare vehicle: low, Participant Vehicle: high 33.71 – 44.41 m 

(110.61 – 145.70 ft); Glare vehicle: high, Participant Vehicle: low 21.02 – 28.48 m 
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(68.97 – 93.43 ft); Glare vehicle: low, Participant Vehicle: high 21.35 – 29.69 m 

(70.04 – 97.42 ft). 

 Estimates of Landolt C recognition distance were also influenced by 

participant vehicle headlights, F(1, 15) = 13.42, p = .002, ηp
2 = .47. Participants 

estimated significantly greater recognition distances when the participant vehicle 

was using high beams (32.29 m; 105.94 ft) than when using low beams (29.93 

m; 98.18 ft). That is, participants believed that seeing high beams would increase 

the distance at which the Landolt C could be recognized. No significant 

interaction between glare vehicle headlights and participant vehicle headlights 

was found, F(1, 15) = 2.66, p > .05 (see Appendix G for individual participant 

plots).  

 

 

Figure 22. Estimated and actual Landolt C recognition distances (plus 1 standard 

error of the mean) at each of the four headlight combinations.  
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Actual Recognition Distances: 

Actual measures of recognition distance are operationally defined as the 

mean of the appropriate forward-moving and backward-moving trials. A 2 x 2 

repeated measures ANOVA revealed no significant effects of glare vehicle 

headlights on actual Landolt C orientation recognition distances, F(1, 15) = .35, p 

> .05, ηp
2 = .02 (see black bars in Figure 22 and bottom row of Table 9 ). Further, 

participant vehicle headlights did not affect actual recognition distances, F(1, 15) 

= .42, p > .05. No significant interaction was found, F(1, 15) = 1.27, p > .05. In 

other words, headlight combination did not affect the actual recognition Landolt C 

recognition distances. In addition, 95% confidence intervals were calculated: 

Glare vehicle: low, Participant Vehicle: low 32.99 – 43.99 m (108.23 – 144.34 ft); 

Glare vehicle: low, Participant Vehicle: high 32.10 – 43.53 m (105.30 – 142.83 ft); 

Glare vehicle: high, Participant Vehicle: low 31.35 – 41.26 m (102.84 – 135.37 ft); 

Glare vehicle: low, Participant Vehicle: high 33.51 – 42.74 m (109.95 – 140.22 ft). 

 

Table 9. Mean estimated and actual recognition distances for each of the four 

headlight combinations. Standard deviation values are presented in parentheses.  

 
Glare: HIGH, 
Passenger: 

HIGH 

Glare: HIGH, 
Passenger: 

LOW 

Glare: LOW, 
Passenger: 

HIGH 

Glare: LOW, 
Passenger: 

LOW 
Estimated 
Distance 

25.52 m 
(7.8) 

24.75 m 
(7.0) 

39.06 m 
(10.0) 

35.10 m 
(10.4) 

Actual 
Distance 

38.12 m 
(8.7) 

36.30 m 
(9.3) 

37.82 m 
(10.7) 

38.49 m 
(10.3) 
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Actual vs. Estimated Recognition Distances: 

A 2 x 2 x 2 repeated measures ANOVA was used to examine the 

relationship between estimated and actual recognition distances and headlighting 

combination. A significant difference between estimated and actual Landolt C 

recognition distances, F(1, 15) = 8.63, p =.01, ηp
2 = .37 was found. Actual 

recognition distances (37.69 m; 123.64 ft) were significantly longer than 

estimated recognition distances (31.12 m; 102.06 ft). That is actual recognition 

distances were 17% longer than participants estimated.   

The repeated measures ANOVA also revealed a significant interaction 

between estimated/actual Landolt C recognition distances and glare vehicle 

headlights, F(1,15) = 61.47, p < .001, ηp
2 = .80. An interaction between 

estimated/actual Landolt C recognition distances and participant vehicle 

headlights was also found, F(1,15) = 9.04, p = .009, ηp
2 = .38. As previously 

noted when examining actual recognition distances alone, headlighting did not 

affect recognition distance. However, headlight combination did affect estimated 

recognition distances; such that high beam headlight glare significantly reduced 

estimate distances.    

 

Accuracy of Estimated Recognition Distances:  

In order to better understand participants’ ability to estimate accurately the 

distance at which the orientation of the Landolt C stimulus can be determined 

under different headlighting conditions, a difference (error) score was created. 
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For each level of headlight glare (Low vs. Low; Low vs. High; High vs. Low; and 

High vs. High) each participant’s estimated recognition distance was subtracted 

from the actual recognition measurement. Thus, a positive error score represents 

an overestimation and a negative error score represents an underestimation.  

Using this error score, a 2 x 2 repeated measures ANOVA revealed that 

glare vehicle headlights significantly affected the accuracy of participants’ 

estimated Landolt C orientation recognition distances, F(1, 15) = 61.47, p < .001, 

ηp
2 = .80. Participants’ errors in recognition estimates were significantly greater 

when the glare vehicle used high beams than when it used low beams. 

Participants underestimated Landolt C recognition distances by -12.08 m (-39.63 

ft) when the glare vehicle used high beams and by -1.08 m (-3.53 ft) when it used 

low beams. 

However, participant vehicle headlights significantly affected the accuracy 

of participants’ estimated Landolt C orientation recognition distances, F(1, 15) = 

3.22, p > .05. There was also no significant interaction between glare vehicle and 

participant vehicle headlights, F(1, 15) = 3.23, p > .05. 

 

deBoer Ratings:  

Participants were asked to provide subjective judgments of discomfort. 

This was done after each estimated and actual Landolt C recognition distance. A 

repeated measures 2 x 2 x 2 ANOVA revealed that deBoer ratings of discomfort 
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did not differ based whether participants were estimating recognition distance or 

providing actual recognition distances, F(1, 15) = .55, p > .05 (see Table 10).  

Participants deBoer ratings of discomfort were influenced by whether the 

glare vehicle used high or low beams, F(1, 15) = 95.73, p < .001, ηp
2 = .87. 

Participants rated high beam headlight glare (3.78, slightly less discomforting 

than “Disturbing”) as significantly more discomforting than low beam headlight 

glare (7.39, slightly less discomforting than “Satisfactory”).  

Ratings of discomfort were not influenced by participant vehicle 

headlights, F(1, 15) = 1.38, p > .05. Further there was not a significant interaction 

between glare vehicle headlights and participant vehicle headlights, F(1, 15) = 

.006, p > .05. That is, participant ratings of discomfort were based solely on the 

glare vehicle’s headlights and were not influenced by the participant vehicle 

headlights. 

 

Table 10. Mean deBoer ratings of discomfort given at estimated and actual 

recognition distances (numerical and verbal equivalent) based on headlighting 

combination.  

 
Glare: HIGH, 
Passenger: 

HIGH 

Glare: HIGH, 
Passenger: 

LOW 

Glare: LOW, 
Passenger: 

HIGH 

Glare: LOW, 
Passenger: 

LOW 
Numerical 

rating 
3.72 3.83 7.34 7.44 

Verbal rating 

Slightly less 
discomforting 

than 
“Disturbing” 

Slightly less 
discomforting 

than 
“Disturbing” 

Slightly less 
discomforting 

than 
“Satisfactory” 

Slightly less 
discomforting 

than 
“Satisfactory” 
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deBoer scale and estimated recognition distances. In order to investigate 

the relationship between ratings of discomfort and recognition distances, 

individual correlations were calculated for each participant; one for the correlation 

between his or her estimated recognition distances and the corresponding 

deBoer ratings and a second between his or her actual recognition distances and 

the corresponding deBoer ratings.  The mean R2 between estimated recognition 

distance of the Landolt C and deBoer ratings is .70 (range = .00 to .99; individual 

R2 values can be found in Appendix H). The mean r is .84 (range = -.05 to .99). 

That is, as ratings of discomfort increased, estimates of Landolt C recognition 

distance also tended to decrease.  

Because there was considerable variability between individual participant 

R2 values, a second approach to this relationship was taken. The R2 for the mean 

estimated recognition distances and the mean deBoer ratings at each of the four 

headlighting combinations was calculated. Using this methodology, the R2 = .94, 

p < .05 (y = 2.93x + 15.13; see Figure 23). That is, as participants’ feelings of 

discomfort worsened, it was estimated that acuity also worsened.   
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Figure 23. Mean deBoer ratings by estimated and actual Landolt C recognition 

distances. 

 

deBoer scale and actual recognition distance.  The mean R2 between 

actual recognition distance of the Landolt C and their corresponding deBoer 

ratings is R2 = .00 (range = .00 to .94). The mean r is .00 (range = -.88 to .97). 

Once again, a second approach was used to examine the relationship between 

deBoer ratings of discomfort and actual recognition distances. The R2 for the 

mean actual recognition distances and the mean deBoer ratings at each of the 

four headlighting combinations was .28, p > .05 (y = .28x + 36.09; see Figure 23). 

 deBoer ratings and actual/estimated recognition distance. In order to 

further investigate the relationship between estimated vs. actual Landolt C 

recognition distances and their corresponding deBoer ratings, R2 values were 

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9

R
ec

o
g

n
it

io
n

 D
is

ta
n

ce
 (

m
)

deBoer Rating

Estimated

Actual



88 
 

compared. An r to t transformation was conducted to determine if these two 

correlations are significantly different from one another (Cohen & Cohen, 1983; 

Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences).  

This analysis revealed a significant difference in the relationships, further 

emphasizing the strong relationship between feelings of discomfort and 

estimated visual abilities, t(13) = -3.70, p < .001. In other words, the relationship 

between estimated recognition distances and their respective deBoer ratings of 

discomfort was stronger than the relationship between actual recognition 

distances and their respective deBoer ratings of discomfort. 

 deBoer ratings and recognition estimation accuracy. Yet another way to 

examine the relationship between deBoer ratings and acuity estimates is to 

utilize estimation error. The relationship between the mean acuity estimation 

error and the mean deBoer rating (measured at the estimation distance) yielded 

R2 = .96, p < .05 (y = 2.70.x – 21.28; see Figure 24). This illustrates that as 

participant underestimations of recognition distance increases, subjective 

feelings of discomfort also increase. 
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Figure 24. deBoer subjective ratings of discomfort (given at the estimated Landolt 

C recognition distance) by recognition estimation error. Recall that lower values 

on the deBoer scale indicate greater ratings of discomfort.  

 

deBoer ratings at fixed distances:  Participants also provided deBoer 

ratings at three fixed distances (75 ft, 200 ft, and 700 ft) for each of the four 

headlight combinations. Overall, 2 x 2 x 3 ANOVA revealed no significant 

difference in deBoer scale ratings was found based on distance alone, F(2, 30) = 

2.23, p > .05, ηp
2 = .13. Participant vehicle headlights did not influence deBoer 

ratings, F(1, 15) = 1.22, p > .05, ηp
2 = .08. 

The glare vehicle headlights, however, did influence deBoer ratings of 

discomfort, F(1, 15) = 111.58, p < .001, ηp
2 = .88. Ratings of discomfort were 

significantly greater when the glare vehicle used high beams (3.16, “Disturbing”) 
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than when it used low beams (7.65, slightly less discomforting than 

“Satisfactory”). Table 11 presents mean ratings for each of the fixed distance 

measurements at each of the four headlighting combinations.  
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Table 11. Mean deBoer ratings of discomfort glare (numerical and verbal 

equivalent) based on headlighting combination and distance. 

 
Glare: HIGH, 
Passenger: 

HIGH 

Glare: HIGH, 
Passenger: 

LOW 

Glare: LOW, 
Passenger: 

HIGH 

Glare: LOW, 
Passenger: 

LOW 
Numerical 

rating (75 ft) 2.81 2.44 7.63 7.75 

Verbal rating 
(75 ft) 

Slightly more 
discomforting 

than 
“Disturbing” 

Slightly more 
discomforting 

than 
“Disturbing” 

Slightly less 
discomforting 

than 
“Satisfactory” 

Slightly less 
discomforting 

than 
“Satisfactory” 

Numerical 
rating (200 ft) 

2.97 2.56 7.69 7.81 

Verbal rating 
(200 ft) 

Slightly more 
discomforting 

than 
“Disturbing” 

Slightly more 
discomforting 

than 
“Disturbing” 

Slightly less 
discomforting 

than 
“Satisfactory” 

Slightly less 
discomforting 

than 
“Satisfactory” 

Numerical 
rating (700 ft) 

4.19 4.00 7.63 7.38 

Verbal rating 
(700 ft) 

Between “Just 
Admissible” 

and 
“Disturbing” 

Between “Just 
Admissible” 

and 
“Disturbing” 

Slightly less 
discomforting 

than 
“Satisfactory” 

Slightly less 
discomforting 

than 
“Satisfactory” 

 

 

A significant interaction between glare vehicle headlights and the distance 

of the deBoer rating was found, F(2, 30) = 9.67, p = .001, ηp
2 = .39. At each of 

the fixed distances, 2 x 2 ANOVAs revealed a significant effect of glare vehicle 

headlights on deBoer ratings of discomfort (75 ft, F(1, 15) = 120.76, p < .001, ηp
2 

= .89; 200 ft, F(1, 15) = 111.33, p < .001, ηp
2 = .88; 700 ft, F(1, 15) = 40.59, p < 

.001, ηp
2 = .73). At each distance, deBoer ratings were significantly more 

discomforting worse when the glare vehicle used high beams then when the 

glare vehicle used low beams. However, at the distance of 700 feet, when the 
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glare vehicle used high beams, ratings of discomfort dropped to a mean rating of 

4.10 as compared to 2.77 at 200 feet and 2.63 at 75 feet. Ratings when the glare 

vehicle used low beams did not significantly vary across distances.  

deBoer ratings and eye color. In order to determine whether eye color 

influenced subjective feelings of discomfort from the glare source, a chi-square 

was performed for each of the headlight combinations at the 75 feet distance 

(maximal illumination measured at the participant eye). No significant differences 

in feelings of discomfort between light and dark eyes was found in the glare 

vehicle: low beams, participant vehicle: low beams, (χ2(8) = 4.36, p >.05), glare 

vehicle: low beams, participant vehicle: high beams,  (χ2(8) = 3.2, p >.05), glare 

vehicle: high beams, participant vehicle: low beams, (χ2(8) = 8.63, p >.05), or 

glare vehicle: high beams, participant vehicle: high beams, (χ2(8) = 4.36, p >.05) 

headlight combinations.   
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Discussion 

 Experiment 2 sought to determine the relationship between estimates of 

Landolt C orientation recognition distances and the actual distance at which the 

orientation can be determined in the presence of glare. It was hypothesized that 

participants would exaggerate the disabling effects of high-beam headlight glare.  

Participants estimated the distance at which the orientation of a Landolt C 

could be recognized in each of four combinations of headlights (Low vs. Low; 

Low vs. High; High vs. Low; and High vs. High). The actual distance at which 

participants recognized the orientation of the Landolt C with each of the 

headlighting combinations was also recorded.  

 Overall the actual distances at which participants were able to determine 

the orientation of the Landolt C were neither dependent on glare vehicle 

headlights nor participant vehicle headlights. This is not surprising considering 

that (similarly to Experiment 1) the stimulus was of high contrast. As previously 

noted, the ability to discriminate stimuli of sufficient contrast is minimally affected 

by the presence of glare. This finding is supported by Wood et al. (2005), whose 

participants were asked to respond when confident that a pedestrian was present 

while driving through a closed-road track at night. In the presence of glare, 

participants had more difficultly identifying low contrast pedestrians than high 

contrast pedestrians. When the participant vehicle used low beam headlights, a 

pedestrian wearing all black (low contrast) was only detected by 5% of the 

drivers, whereas a pedestrian wearing retroreflective material in a biological 
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motion configuration (high contrast) was detected by 85% of the drivers. Overall, 

pedestrians were identified more frequently when the driver used high beams 

than when low beams were used. However, low contrast pedestrian (wearing all 

black) detection increased by 30% when switching to high beams and high 

contrast pedestrian (wearing retroreflective material in a biological motion 

configuration)  detection only increased by 5%. This suggests that retroreflective 

material may provide be sufficient contrast for recognition, even when using low 

beams. 

 However, the fact that recognition distances did not increase when the test 

vehicle used high beam headlights is not consistent with the findings of 

Flannagan et al. (2000) who found that participants were able to recognize a 

pedestrian at a distance 17% greater when experiencing high vs. high beams 

over low vs. low beams. This discrepancy, however, can be easily explained. The 

stimulus (i.e. pedestrian) in Flannagan et al. moved between the glare vehicle 

and the stationary vehicle. This methodology allowed the participant to gain 

visual benefits of stimulus backlighting/shadowing. In the present study, the 

Landolt C stimulus was placed in a position (adjacent to the glare source vehicle) 

that did not allow for backlighting/shadowing from the glare source vehicle.  

While actual recognition distances of the Landolt C did not vary across 

headlight combinations, participants estimated that the recognition distances 

would change. Overall, participants believed that when the glare source vehicle 
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used high beam headlights recognition distances would be significantly (32%) 

shorter than when low beam glare lights were used.  

Further, these estimates were not representative of actual recognition 

distances. That is, participants were not accurate in estimating the distance at 

which the orientation of the Landolt C could be determined. Overall, participants 

had a tendency to underestimate visual abilities by 18%.  Specifically error in 

distance estimation increased (i.e., underestimates grew) when glare headlights 

were switched to high beams.  Accuracy varied with headlight condition such that 

underestimates were as follows: glare vehicle: high beams, participant vehicle: 

low beams, 32%; and glare vehicle: high beams, participant vehicle: high beams, 

33%; glare vehicle: low beams, participant vehicle: low beams, 9%. When the 

glare vehicle used low beams and the participant vehicle used high beams, 

participants slightly overestimated recognition distances by 3%, thus when the 

glare vehicle used low beams, participants more accurately appreciated the 

benefits of using high beam over low beams ‘seeing’ lights 

Similar to Experiment 1, observers overestimated the extent to which a 

glare source would degrade their ability to see a small high contrast target. 

Correlational analyses suggested that observers’ estimates are tightly linked to 

the visual discomfort that they experience while exposed to the glare source. 

Participant estimates of recognition distance are strongly correlated with deBoer 

ratings of discomfort. Yet there is not a significant relationship between actual 

recognition distances and subjective feelings of discomfort. As a result, it 
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appears that feelings of discomfort produced by the glare source informed the 

observers’ recognition estimates. 
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GENERAL DISCUSSION 

 Two experiments used two very different methodologies to explore 

people’s abilities to accurately estimate visual abilities in the presence of a glare 

source. Experiment 1 asked participants to estimate their visual acuity in the 

presence of three different glare intensities. Experiment 2 asked participants to 

estimate the distance at which the orientation of a reflective Landolt C could be 

determined while in the presence of four different headlighting combinations (Low 

vs. Low; Low vs. High; High vs. Low; and High vs. High).  

In both experiments it was hypothesized that, despite widely discrepant 

methodologies, observers would overestimate the disabling effects of glare. This 

pattern was found in both experiments. Whether in the presence of a table-top 

glare source (Experiment 1) or a pair of opposing high beam headlamps 

(Experiment 2), observers underestimated their ability to see small high contrast 

targets when a glare source was present. Furthermore, rather than actual visual 

abilities, subjective feelings of discomfort appear to have informed the observers’ 

estimates of their ability to see when glare was present.  

These findings have several important implications. If a driver believes 

that his or her vision is impaired when encountering a vehicle using high beam 

headlights, he or she may take cautionary measures. For example, drivers may 

reduce speed, which may increase driving safety. As previously noted, people 

often “overdrive” their headlights (Leibowitz, et al. 1998). A reduction in speed 

allows drivers more time to see and recognize objects along the roadway.  
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Drivers who are annoyed by headlight glare may also be tempted to look 

away from the glare source to reduce the discomforting effects of glare. If drivers 

look away from the roadway when averting their eyes, it is possible to fail to 

detect relevant objects in or along the roadway or even to drift outside of one’s 

lane. This could result in especially dangerous situations where pedestrians are 

present.   

Additionally, if drivers are unable to distinguish between the effects of 

disability glare from the effects of discomfort glare, they may be less likely to use 

their own high beam headlights.  High beam headlights place light in a broader 

area in and along the road which may help drivers to see and recognize objects 

of importance (especially those of low contrast; e.g., pedestrians). The use of 

high beam headlights is a simple and effective way to increase nighttime visual 

abilities (e.g., Leibowitz, et al., 1998; Wood, et al., 2005). A driver who is 

reluctant to use his or her high beams due to a desire to avoid “blinding” 

approaching drivers may unwittingly assume a greater risk of a collision with 

objects on the roadway at night.  

It appears as though these feelings of discomfort do indeed prevent 

(young) drivers from using high beam headlights. Survey data revealed that 

participants only reported using high beam headlights during nighttime driving 

about 26% of the time. Participants also provided comments such as “I usually 

use low beams all the time,” “normally don’t think about it (using high beams),” 

and “(I consider) the vision of other drivers.” These comments suggest that 
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participants are reluctant to use high beam headlights in a variety of situations. 

This implies drivers do not fully appreciate the benefits of high beam headlights.  

The comments also suggest that young drivers believe that high beam headlights 

are harmful to the vision of oncoming drivers, when in fact high beams are likely 

not as disabling as is thought most drivers. Drivers who believe (1) that glare 

from high beams can severely disrupt other drivers’ ability to see, and (2) that 

they can see well enough with low beams (e.g., Tyrrell, et al., 2004) are likely to 

be particularly reluctant to use their high beams. This pattern of beliefs can result 

in a dangerous over-reliance on low beams that might go unnoticed until an 

unexpected object or pedestrian is encountered on a roadway at night. 

As noted previously, drivers often complain about discomfort from 

headlight glare. It has been largely due to these complaints that a great deal of 

research and monetary effort has been placed on reducing headlight glare. 

However, if typical drivers are unable to distinguish between the effects of 

discomfort glare and disability glare (i.e., exaggerate the effects of glare), 

perhaps the magnitude of the glare problem as it affects driving performance is 

smaller than many might have thought. That is, drivers are not blinded by glare 

(as drivers often complain) and it may not actually be as large of a problem as 

some believe. In the context of the present work, acuity (using high contrast 

stimuli) was not negatively affected by glare. This is not to say that glare does not 

negatively affect other visually based driving tasks (e.g. simple detection tasks) 

or driving performance. Perhaps then, more research focus should be placed on 
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the possibly negative effects of glare on driving performance. In other words, 

does glare actually effect driving performance, or does it simply cause driver 

annoyance? (This, of course, is not to say that simple annoyances do not affect 

driving performance.)  To untangle the subjective and objective consequences of 

headlight glare a systematic program of research on the effects of headlight glare 

is needed. 

While people often complain about the “blinding” effects of glare, it is 

difficult to find a complaint about low light levels on the roadway at night (NHTSA, 

2001). Perhaps unfortunately, these complaints have driven research focusing on 

reducing glare. Yet, this preliminary research has revealed that drivers can 

overestimate the extent to which glare reduces their ability to see; it seems 

possible that relying on citizens’ complaints about headlight glare to determine 

research priorities can be problematic. Subjective measures of discomfort glare 

should not be used as a substitute for objective measures of disability glare, 

regardless of the relative ease with which discomfort glare can be measured and 

the frequency of complaints from citizens. Indeed, reducing glare by reducing 

forward headlighting could actually decrease nighttime safety by reducing the 

total amount of light in and around the roadway.  

The present data have revealed that the average young driver does not 

fully understand how vision is affected by glare. This misunderstanding often 

leads to complaints about glare with little understanding of its objective effects. It 

is clear that more work is necessary to fully understand how vision and driving 
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performance are affected by nighttime headlight glare as well as drivers’ 

perceptions of these effects.  

The present study has many limitations. Only young, visual healthy adults 

participated. Also, the experiments presented relatively simple and non-

challenging tasks. Real world nighttime driving involves many more factors than 

were present in the current work (e.g., maneuvering the vehicle).  Because of 

these (and other limitations), further research is needed to accurately understand 

how glare affects real-world nighttime driving and drivers beliefs about these 

effects.  

Another limitation of the present experiments is that both relied on very 

high contrast, acuity-based stimuli. While this is a good first step, drivers often 

need the visual capacity to detect lower contrast objects with lower spatial 

frequencies and greater angular extents (e.g., typical pedestrians). As previous 

research has shown (Cobb & Moss, 1928; Luckiesh, 1944), high contrast acuity-

based stimuli are relatively robust to the effects of glare. Even though it is 

important to be able to recognize and read roadway signs at night, the failure to 

accurately read these signs may generally be of less consequence than failing to 

respond to the presence of an object or person in the roadway (who are 

especially at risk in areas where one would not expect to encounter a 

pedestrian). As such, it is important to gain a better understand of how glare 

affects low contrast stimuli as well as how drivers believe their vision is affected 

in such scenarios.  A key issue here is likely to be the extent to which typical 
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drivers understand the concept of contrast and its relevance to the driving task. 

That is, do drivers understand the importance of detecting low contrast and less 

salient objects in the nighttime driving environment.  

Future research should be conducted to determine the effects of headlight 

glare on real world driving tasks. For example, does high beam headlight glare 

help or hinder the detection of low contrast and how drivers think their visual 

abilities are affected. As a result of the severe consequences, special attention 

should be given to scenarios involving pedestrians. As noted previously, 

headlight glare may cause drivers to modify driving behavior. It is important to 

understand how people react behaviorally to glare. That is, do drivers look away 

from the road (to minimize the presumed glare effects), look towards the glare 

source (due to novelty or interest), reduce speed, deviate from their lane, et 

cetera. Such data will better inform policy and engineering decisions regarding 

the design of headlighting systems. 

In both of the present experiments glare did not affect observers’ ability to 

see an object ahead of them. However, both studies relied on visually healthy 

young observers and different patterns may emerge from older drivers due to 

age-related visual changes. As we age, we experience a variety of different 

changes which affect the way we see (e.g., Shieber & Shinar, 1991). Older adults 

are more prone to developing visual pathologies including cataracts and 

glaucoma and adapt to the dark more slowly. To my knowledge no research has 

explored the extent to which either normal age-related visual changes or visual 
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pathologies affect the accuracy with which drivers understand their own visual 

limitations.   

Further, as we age, the muscles of the iris weaken. That is, the pupil does 

not decrease to sizes that it was once able to produce. The inability to fully 

contract the iris can mean that the eye experiences a loss in resolving power. In 

other words, the depth of field is reduced and we are less able to clearly focus 

(especially on stimuli at closer distances). And a reduction in the ability to reduce 

pupil size in response to glare can reduce the eye’s ability to moderate the 

effects of glare by changing pupil size. The combination of larger pupil sizes and 

cataracts means that many older drivers are experiencing more intraocular light 

scattering and a reduction of retinal contrast. This reduction of contrast makes 

objects (especially those of low contrast) more difficult of see and recognize. 

Because of the effects of aging on the eye, it is likely that glare effects older 

drivers (especially those with cataracts) in a different and more disabling way 

than younger adults. It is also likely that because these visual impairments are 

magnified in nighttime driving, older drivers are more vocal about headlight glare 

and tend to drive less at night than younger drivers. 

Because visual abilities of older adults are different than those of younger 

drivers it is important to further investigate this population of drivers. It is 

important to investigate both the actual effects of nighttime headlight glare and 

how drivers believe vision is affected in this special population of drivers. It is 

expected that older drivers’ vision is negatively affected by glare. It is also 
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expected that older drivers will follow similar patterns of exaggerating the 

disabling effects of glare. 

Beyond the current findings, it is important that drivers are informed of the 

benefit of high beam headlights in seeing and recognizing important objects in 

and around the roadway (e.g. Wood et al., 2005). High beam headlights spread 

more light in and around the roadway. This light increases drivers’ abilities to see 

and recognize objects. This increase in visual detection abilities affords drivers 

more time to see and respond to objects/pedestrians.  One can assume then, 

that an increase in high beam headlight use would result in a decrease of 

nighttime crashes into objects and pedestrians (i.e., an increase in nighttime 

driving safety).  The tendency measured in the present experiments to 

exaggerate the visually disabling effects of glare may be counter-productive by 

limiting drivers’ use of their own high beams.  

However, if drivers are unaware of the benefits of using high beam 

headlights, it seems unlikely that usage will increase. This is especially true if 

estimates of our nighttime visual abilities rely on exaggerations of the disabling 

effects of glare. However, simple educational procedures might be useful in 

informing drivers of the benefits of high beam headlights over low beam 

headlights. Tyrrell, Patton, and Brooks (2004) found that two months after 

hearing a lecture on visual issues relevant to night driving, pedestrians better 

estimated their visibility to drivers at night. Participants were asked to estimate 

the distance at which they believed a driver would be able to recognize them as a 
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pedestrian. Participants who heard a relevant, graphic-intensive lecture provided 

conspicuity estimates that were 56% shorter than a control group who had not 

heard the lecture. This shows that education methods may be a viable and 

productive way to inform road users about nighttime driving issues such as the 

limitations of low beam headlights.  

The present studies used two widely different methodologies to assess 

how people believe their visual abilities are affected by glare. As hypothesized, 

estimates appear to have been guided by subjective feelings of discomfort, 

despite the lack of relationship between subjective discomfort and objective 

measures of actual visual abilities. It is hoped that the current work represents a 

starting point to a new area of research on night driving that will ultimately 

increase our knowledge of the relationship between how drivers believe their 

vision is affected by frequently encountered visual challenges as well as the 

actual effects of the same visual challenges. It is hoped that such an 

understanding can be leveraged into a measurable increase in roadway safety.  
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Appendix A  

   Participant Questionnaire 

Part I. General questions. Please remember that all answers will be kept 

confidential, so please answer as candidly as possible. 

1. How many years of driving experience do you have? _______________ 
 

2. Of the total time you spent driving in the last 12 months, approximately what 
percentage of the time did you spend driving on each of the following types of 
roads? 

 
a. in town/city? _________ 
b. in suburbs or country? _________ 
c. on highways? _________ 

 
3. Of the total time you spent driving in the last 12 months, approximately what 

percentage was done during the nighttime (after sunset and before sunrise)?  
__________ 
 

4. How comfortable do you feel driving at night in good weather? (circle one)  
 
 
a. Very Comfortable 
b. Comfortable 
c. Neutral 
d. Uncomfortable 
e. Very Uncomfortable 

 
5. How comfortable do you feel driving at night in bad/stormy weather? (circle 

one)  
a. Very Comfortable 
b. Comfortable 
c. Neutral 
d. Uncomfortable 
e. Very Uncomfortable 
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6. Which of the following driving situations do you generally try to avoid? 

(Insert one of the letters listed below to indicate how strongly you avoid each 
situation.) 
  
 N Never avoid 

 P Prefer to avoid 

 A Always avoid (except emergencies) 

 
heavy traffic, daylight _______  heavy traffic, night _______ 

rain, daylight     _______  rain, night  _______ 

fog, daylight     _______  fog, night  _______ 
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Part II. Ease of Driving in Different Conditions 
 

How easy do you feel it is to drive under each of the following conditions? 

(Assume good weather and daytime conditions unless otherwise specified.) 

 
Assign a number from 1 to 7 to each item using the following scale as 
a guide: 
 

  1 2 3 4 5 6 7 

 Not at all Very 
 Easy Easy 

 
7.  through a quiet residential neighborhood ____ 

8.  through a busy shopping mall, parking lot ____  

9. in city traffic ____ 

10. making a right turn in city traffic _____ 

11. changing lanes on a divided highway/interstate ____ 

12. entering a divided highway/interstate ____ 

13. exiting a divided highway/interstate ____ 

14. making a U-turn on a wide city street ____ 

15. parallel parking along the curb of a busy street ____ 

16. pulling into a parking space at the supermarket ____ 

17. reversing out of a parking space at a supermarket ____ 

18. on a divided highway/interstate in clear weather, daylight ____ 

19. on a divided highway/interstate in clear weather, nighttime ____ 

20. on a divided highway/interstate in rainy weather, daylight ____ 

21. on a divided highway/interstate in rainy weather, nighttime ____ 
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22. What percentage of the time do you use high beam headlights when driving 

at night in the following situations? 

a. on city streets     ______ 

b. on highways/interstates  ______ 

c. on country roads    ______ 

d. on suburban roads   ______ 

 

23. When you are driving on divided highways/interstates at night, how frequently 

do the headlights of oncoming traffic seem troublesome? 

a. Rarely    ______ 

b. Occasionally  ______ 

c. Often   ______ 

d. At every encounter ______ 

 

24. Estimate the distance at which you can see the following objects when driving 

at night: (in meters or feet)   

a. Other vehicles:       

b. Cyclists:        

c. Pedestrians wearing white:     

d. Pedestrians wearing black:     

e. Traffic signs:       
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25. Are there any precautions you take when driving at night? 

 

 

 

 

26. What influences your nighttime low-beam headlight usage over high beam 

headlight usage (or vice versa)?  

 

 

 

 

 

 

 

27. What type of vehicle do you drive most of the time (e.g., sedan, hatchback, 

station wagon, sports car, van, truck). If you frequently drive more than one 

vehicle, please indicate what type of vehicle you assumed in the preceding 

questions. 

 

 

 

 

 

 

 

 

28. Do you have any other comments about your experiences driving at night? 
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Appendix B 

Graphs depicting individual participant data resulting from the training test in 
Experiment 1 

 

Appendix B; Figure 1. Participant 1 training test data; verbal R2= .92, manual 
R2=.85, and combined verbal + manual R2=.89.  
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Appendix B; Figure 2. Participant 2 training test data; verbal R2= .98, manual 
R2=.99, and combined verbal + manual R2=.99.  
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Appendix B; Figure 3. Participant 3 training test data; verbal R2= .94, manual 
R2=.96, and combined verbal + manual R2=.96.  
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Appendix B; Figure 4. Participant 4 training test data; verbal R2= .95, manual 
R2=.98, and combined verbal + manual R2=.97.  
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Appendix B; Figure 5. Participant 5 training test data; verbal R2= .96, manual 
R2=.99, and combined verbal + manual R2=.99.  
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Appendix B; Figure 6. Participant 6 training test data; verbal R2= .90, manual 
R2=.82, and combined verbal + manual R2=.87.  
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Appendix B; Figure 7. Participant 7 training test data; verbal R2= .95, manual 
R2=.93, and combined verbal + manual R2=.94.  
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Appendix B; Figure 8. Participant 8 training test data; verbal R2= .93, manual 
R2=.93, and combined verbal + manual R2=.94.  
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Appendix B; Figure 9. Participant 9 training test data; verbal R2= .99, manual 
R2=.96, and combined verbal + manual R2=.98.  
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Appendix B; Figure 10. Participant 10 training test data; verbal R2= .96, manual 
R2=.87, and combined verbal + manual R2=.92.  
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Appendix B; Figure 11. Participant 11 training test data; verbal R2= .99, manual 
R2=.92, and combined verbal + manual R2=.98.  
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Appendix B; Figure 12. Participant 12 training test data; verbal R2= .99, manual 
R2=.98, and combined verbal + manual R2=.98.  
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Appendix B; Figure 13. Participant 13 training test data; verbal R2= .91, manual 
R2=.91, and combined verbal + manual R2=.93.  
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Appendix B; Figure 14. Participant 14 training test data; verbal R2= .87, manual 
R2=.91, and combined verbal + manual R2=.89.  
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Appendix B; Figure 15. Participant 15 training test data; verbal R2= .96, manual 
R2=.95, and combined verbal + manual R2=.96.  
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Appendix B; Figure 16. Participant 16 training test data; verbal R2= .91, manual 
R2=.95, and combined verbal + manual R2=.94.  
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Appendix B; Figure 17. Participant 17 training test data; verbal R2= .98, manual 
R2=.93, and combined verbal + manual R2=.97.  
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Appendix B; Figure 18. Participant 18 training test data; verbal R2= .89, manual 
R2=.94, and combined verbal + manual R2=.93.  
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Appendix B; Figure 19. Participant 19 training test data; verbal R2= .96, manual 
R2=.96, and combined verbal + manual R2=.98.  
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Appendix B; Figure 20. Participant 20 training test data; verbal R2= .94, manual 
R2=.84, and combined verbal + manual R2=.95.  
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Appendix B; Figure 21. Participant 21 training test data; verbal R2= .86, manual 
R2=.95, and combined verbal + manual R2=.92.  
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Appendix B; Figure 22. Participant 22 training test data; verbal R2= .98, manual 
R2=.96, and combined verbal + manual R2=.98.  
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Appendix B; Figure 23. Participant 23 training test data; verbal R2= .99, manual 
R2=.99, and combined verbal + manual R2=.99.  
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Appendix B; Figure 24. Participant 24 training test data; verbal R2= .95, manual 
R2=.96, and combined verbal + manual R2=.96.  
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Appendix C 

Graphs depicting individual participant estimated and actual acuity data in 
Experiment 1 

 

Appendix C; Figure 1. Participant 1 estimated and actual acuities.  
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Appendix C; Figure 2. Participant 2 estimated and actual acuities.  

 

 

Appendix C; Figure 3. Participant 3 estimated and actual acuities.  
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Appendix C; Figure 4. Participant 4 estimated and actual acuities.  

 

 

Appendix C; Figure 5. Participant 5 estimated and actual acuities.  
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Appendix C; Figure 6. Participant 6 estimated and actual acuities.  

 

 

Appendix C; Figure 7. Participant 7 estimated and actual acuities.  
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Appendix C; Figure 8. Participant 8 estimated and actual acuities.  

 

 

Appendix C; Figure 9. Participant 9 estimated and actual acuities.  
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Appendix C; Figure 10. Participant 10 estimated and actual acuities.  

 

 

Appendix C; Figure 11. Participant 11 estimated and actual acuities.  
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Appendix C; Figure 12. Participant 12 estimated and actual acuities.  

 

 

Appendix C; Figure 13. Participant 13 estimated and actual acuities.  
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Appendix C; Figure 14. Participant 14 estimated and actual acuities.  

 

 

Appendix C; Figure 15. Participant 15 estimated and actual acuities.  
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Appendix C; Figure 16. Participant 16 estimated and actual acuities.  

 

 

Appendix C; Figure 17. Participant 17 estimated and actual acuities.  
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Appendix C; Figure 18. Participant 18 estimated and actual acuities.  

 

 

Appendix C; Figure 19. Participant 19 estimated and actual acuities.  
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Appendix C; Figure 20. Participant 20 estimated and actual acuities.  

 

 

Appendix C; Figure 21. Participant 21 estimated and actual acuities.  

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No light Low Medium High

A
cu

it
y 

va
lu

es
 (

L
o

g
M

A
R

)
Estimated & Actual Acuity - Participant 20 

Estimated Acuity

Measured Acuity

Glare Light IntensityGlare Light Intensity

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No light Low Medium High

A
cu

it
y 

va
lu

es
 (

L
o

g
M

A
R

)

Estimated & Actual Acuity - Participant 21 

Estimated Acuity

Measured Acuity

Glare Light IntensityGlare Light Intensity



147 
 

 

Appendix C; Figure 22. Participant 22 estimated and actual acuities.  

 

 

Appendix C; Figure 23. Participant 23 estimated and actual acuities.  

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No light Low Medium High

A
cu

it
y 

va
lu

es
 (

L
o

g
M

A
R

)
Estimated & Actual Acuity - Participant 22 

Estimated Acuity

Measured Acuity

Glare Light IntensityGlare Light Intensity

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No light Low Medium High

A
cu

it
y 

va
lu

es
 (

L
o

g
M

A
R

)

Estimated & Actual Acuity - Participant 23 

Estimated Acuity

Measured Acuity

Glare Light IntensityGlare Light Intensity



148 
 

 

Appendix C; Figure 24. Participant 24 estimated and actual acuities.  
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Appendix D 

Individual participant R2 values for both the relationship between deBoer ratings 
of glare light discomfort and acuity estimates as well as the relationship between 

deBoer ratings of glare light discomfort and actual acuity. 

  

Participant Number R2 DeBoer and 
Estimated Acuity 

R2 DeBoer and Actual 
Acuity 

1 0.99 0.72 
2 0.77 0.06 
3 0.87 0.00 
4 0.59 0.47 
5 0.86 0.60 
6 0.10 0.04 
7 0.10 0.94 
8 0.74 0.34 
9 0.96 0.88 

10 0.95 0.98 
11 0.33 0.07 
12 0.67 0.98 
13 1.00 0.84 
14 0.37 0.92 
15 0.17 0.93 
16 0.98 0.25 
17 0.88 0.00 
18 0.07 0.83 
19 0.96 0.43 
20 0.15 0.95 
21 0.98 0.82 
22 0.34 0.00 
23 0.91 1.00 
24 0.48 0.25 
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Appendix E 

Graphs depicting individual participant estimated and actual acuity data + 
corresponding deBoer ratings of discomfort in Experiment 1 

 

Appendix E; Figure 1. Participant 1 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 2. Participant 2 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 3. Participant 3 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 4. Participant 4 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 5. Participant 5 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 6. Participant 6 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  

 

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

A
cu

it
y 

(L
o

g
M

A
R

)

deBoer Rating

Estimated & Actual Acuity - Participant 6

Measured Acuity

Estimated Acuity



156 
 

 

Appendix E; Figure 7. Participant 7 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 8. Participant 8 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 9. Participant 9 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 10. Participant 10 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 11. Participant 11 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 12. Participant 12 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 13. Participant 13 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 14. Participant 14 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 15. Participant 15 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 16. Participant 16 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 17. Participant 17 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 18. Participant 18 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  

 

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

A
cu

it
y 

(L
o

g
M

A
R

)

deBoer Rating

Estimated & Actual Acuity - Participant 18

Measured Acuity

Estimated Acuity



168 
 

 

Appendix E; Figure 19. Participant 19 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 20. Participant 20 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 21. Participant 21 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 22. Participant 22 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 23. Participant 23 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix E; Figure 24. Participant 24 estimated and actual acuities with 
corresponding deBoer ratings of discomfort.  
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Appendix F 

Graphs depicting individual participant pupil area. 

 

 

Appendix F; Figure 1. Participant 1 pupil area (mm2) at no light, low glare, 
medium glare, and high glare.  
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Appendix F; Figure 2. Participant 2 pupil area (mm2) at no light, low glare, 
medium glare, and high glare.  

 

 

Appendix F; Figure 3. Participant 3 pupil area (mm2) at no light, low glare, 
medium glare, and high glare.  
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Appendix F; Figure 4. Participant 4 pupil area (mm2) at no light, low glare, 
medium glare, and high glare.  

 

 

Appendix F; Figure 5. Participant 5 pupil area (mm2) at no light, low glare, 
medium glare, and high glare.  
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Appendix G 

Experiment 2 participant estimated and actual recognition distances 

 

 

Appendix G: Figure 1. Participant 1 estimated and actual Landolt C recognition 
distances.  

 

Appendix G: Figure 2. Participant 2 estimated and actual Landolt C recognition 
distances.  
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Appendix G: Figure 3. Participant 3 estimated and actual Landolt C recognition 
distances.  

 

 

 

Appendix G: Figure 4. Participant 4 estimated and actual Landolt C recognition 
distances.  

0

10

20

30

40

50

60

70

Glare: LOW, 
Passenger: 

LOW

Glare: LOW, 
Passenger: 

HIGH

Glare: HIGH, 
Passenger: 

LOW

Glare: HIGH, 
Passenger: 

HIGH

R
ec

o
g

n
it

io
n

 d
is

ta
n

ce
 (

m
)

Headlighting Combination

Recognition distances - Participant 3

estimated

actual

0

10

20

30

40

50

60

70

Glare: LOW, 
Passenger: 

LOW

Glare: LOW, 
Passenger: 

HIGH

Glare: HIGH, 
Passenger: 

LOW

Glare: HIGH, 
Passenger: 

HIGH

R
ec

o
g

n
it

io
n

 d
is

ta
n

ce
 (

m
)

Headlighting Combination

Recognition distances - Participant 4

estimated

actual



179 
 

 

Appendix G: Figure 5. Participant 5 estimated and actual Landolt C recognition 
distances.  

 

 

 

Appendix G: Figure 6. Participant 6 estimated and actual Landolt C recognition 
distances.  
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Appendix G: Figure 7. Participant 7 estimated and actual Landolt C recognition 
distances.  

 

 

 

Appendix G: Figure 8. Participant 8 estimated and actual Landolt C recognition 
distances.  
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Appendix G: Figure 9. Participant 9 estimated and actual Landolt C recognition 
distances.  

 

 

 

Appendix G: Figure 10. Participant 10 estimated and actual Landolt C recognition 
distances.  
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Appendix G: Figure 11. Participant 11 estimated and actual Landolt C recognition 
distances.  

 

 

 

Appendix G: Figure 12. Participant 12 estimated and actual Landolt C recognition 
distances.  
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Appendix G: Figure 13. Participant 13 estimated and actual Landolt C recognition 
distances.  

 

 

 

Appendix G: Figure 14. Participant 14 estimated and actual Landolt C recognition 
distances.  

 

0

10

20

30

40

50

60

70

Glare: LOW, 
Passenger: 

LOW

Glare: LOW, 
Passenger: 

HIGH

Glare: HIGH, 
Passenger: 

LOW

Glare: HIGH, 
Passenger: 

HIGH

R
ec

o
g

n
it

io
n

 d
is

ta
n

ce
 (

m
)

Headlighting Combination

Recognition distances - Participant 13

estimated

actual

0

10

20

30

40

50

60

70

Glare: LOW, 
Passenger: 

LOW

Glare: LOW, 
Passenger: 

HIGH

Glare: HIGH, 
Passenger: 

LOW

Glare: HIGH, 
Passenger: 

HIGH

R
ec

o
g

n
it

io
n

 d
is

ta
n

ce
 (

m
)

Headlighting Combination

Recognition distances - Participant 14

estimated

actual



184 
 

 

Appendix G: Figure 15. Participant 15 estimated and actual Landolt C recognition 
distances.  

 

 

 

Appendix G: Figure 16. Participant 16 estimated and actual Landolt C recognition 
distances.  
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Appendix H 

Individual participant R2 values for both the relationship between deBoer ratings 
of glare light discomfort and estimated Landolt C recognition as well as the 

relationship between deBoer ratings of glare light discomfort and actual 
recognition distance of the Landolt C. 

  

Participant 
Number 

R2 DeBoer and 
Estimated 
Distance 

R2 DeBoer 
and Actual 
Distance 

1 0.94 0.66 
2 0.27 0.09 
3 0.82 0.11 
4 0.93 0.78 
5 0.85 0.00 
6 0.94 0.31 
7 0.83 0.71 
8 0.97 0.36 
9 0.84 0.49 

10 0.98 0.39 
11 0.90 0.94 
12 0.00 0.12 
13 0.33 0.70 
14 0.93 0.25 
15 0.84 0.62 
16 1.00 0.06 
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