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ABSTRACT 
 

Zoonotic diseases are infectious diseases that can be transmitted from or 

through animals to humans, and arthropods often act as vectors for transmission.  

Emerging infectious diseases have been increasing both in prevalence and 

geographic range at alarming rates the last 30 years, and the majority of these 

diseases are zoonotic in nature.  Many zoonotic diseases are considered 

notifiable by the Centers for Disease Control and Prevention (CDC).  However, 

though state regulations or contractual obligations may require the reporting of 

certain diseases, significant underreporting is known to exist.  Because of the 

rich volume of information captured in health insurance plan databases, 

administrative medical claims data could supplement the current reporting 

systems and allow for more comprehensive spatio-temporal analyses of zoonotic 

infections. 

The purpose of this dissertation is to introduce the use of electronic 

administrative medical claims data as a potential new source that could be 

leveraged in ecological field studies in the surveillance of arthropod-borne 

zoonotic diseases.   If using medical claims data to study zoonoses is a viable 

approach, it could be used to improve both the temporal and spatial scale of 

study through the use of long-term longitudinal data covering large geographic 

expansions and more geographically refined ZIP code scales.  Additionally, 

claims data could supplement the current reporting of notifiable diseases to the 

CDC.  This effort may help bridge the disease incidence gap created by health 
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care providers’ underreporting and thus allow for more effective tracking and 

monitoring of infectious zoonotic diseases across time and space. 

I specifically examined 5 tick-borne (Lyme disease [LD], babesiosis, 

ehrlichiosis, Rocky Mountain spotted fever [RMSF], and tularemia) and 2 

mosquito-borne (West Nile virus, La Crosse viral encephalitis) diseases known to 

occur in the southeastern US.  I first compared disease incidence rates from 

cases reported to the Tennessee Department of Health (TDH) state registry 

system with medically diagnosed cases captured in a southeastern managed 

care organization (MCO) claims data warehouse.  I determined that LD and 

RMSF are significantly underreported in Tennessee.  Three (3) cases of 

babesiosis were discovered in the claims data, a significant finding as this 

disease has never been reported in Tennessee.  Next, I used a cluster scan 

statistic to statistically validate when (temporal) and where (spatial) these data 

sources differ.  Findings highlight how the data sources do not overlap in their 

significant cluster results, supporting the need to integrate administrative and 

state registry data sources in order to provide a more comprehensive set of case 

information.  Once the usefulness of administrative data was demonstrated, I 

focused on how these data could improve spatio-temporal macro-scale analyses 

by examining information at the ZIP code level as opposed to traditional county 

level assessments.  I expanded on the current literature related to spatially 

explicit modeling by employing more advanced data mining modeling techniques.  

Four separate modeling techniques were compared (stepwise logistic regression, 
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classification and regression tree, gradient boosted tree, and neural network) to 

describe the occurrence of tick-borne diseases as they relate to socio-

demographic, geographic, and habitat characteristics.  Covariates most useful in 

explaining LD and RMSF were similar and included co-occurrences of RMSF and 

LD, respectively, amount of forested and non-forested wetlands, 

pasture/grasslands, and urbanized/developed lands, population counts, and 

median income levels.  Finally, I conclude with a ZIP code level spatio-temporal 

modeling exercise to determine areas and time periods in Tennessee where 

significant clusters of the studied diseases occurred.  ZIP code level clusters 

were compared to the previously defined county-level clusters to discuss the 

importance of spatial scale.  The findings suggest that focused disease/vector 

prevention efforts in non-endemic areas are warranted. 

Very little work exists using administrative claims data in the study of 

zoonotic diseases. This body of work thus adds to an area void of much 

knowledge.  Administrative medical claims data are relatively easy to access 

given the appropriate permissions, have relatively no cost once access is granted, 

and provides the researcher with a volume rich dataset from which to study.  This 

data source should be properly considered in the wildlife and biological sciences 

fields of research. 
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CHAPTER 1  
 

IMPORTANCE OF STUDYING ZOONOTIC DISEASES 
 

INTRODUCTION 

Zoonotic diseases, also termed zoonoses, are infectious diseases that can 

be transmitted from or through animals to humans, and arthropods often act as 

vectors for transmission.  Emerging infectious diseases have been increasing 

both in prevalence and geographic range at alarming rates the last 30 years, and 

the majority of these diseases are zoonotic in nature (Jones et al. 2008).  

Zoonotic diseases are of significant concern to public health and account for 

approximately 75% of recently emerging infectious diseases, and approximately 

60% of all human pathogens originate from animals (CDC NCEZID 2010).  

Zoonoses can be in the form of viral (e.g., West Nile virus), bacterial (e.g., Lyme 

disease), fungal (e.g., Histoplasmosis), protozoan (e.g., babesiosis) or parasitic 

(e.g., Filariasis) infections.  These zoonotic diseases can pose a serious public 

health threat as some diseases such as rabies, though rare, can be fatal, while 

others (e.g., ringworm) are minor health concerns.  Even when incidence rates 

are relatively low, large-scale public health scares can emerge (e.g., West Nile 

and H1N1 viruses). 

Arthropods (e.g., mosquitoes, ticks, mites, spiders) make up over 80 

percent of all animal species but only a very small percentage of the over 1 

million described species are potentially dangerous to humans (Goddard 2008). 
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However, arthropods can serve as vectors for the transmission of zoonotic 

diseases from the infected animal (reservoir) to a susceptible human host.  

Diseases transmitted by arthropods are thus termed arthropod-borne diseases 

(Eisen and Eisen 2007).  The ability for vectors to successfully transmit disease 

from reservoir to host depends on many factors including vector physiology, 

morphology, reproductive capacity, and genetics.  Additionally, the occurrence, 

extent, and suitability of arthropod habitats depend on multiple factors such as 

temperature, topography, moisture, rainfall, soil pH, weather, and geographical 

location.  Human induced factors may also contribute to the rise in disease 

prevalence because of climate change, public health policy, lack of prevention 

and control, and increasing urbanization (Goddard 2008). 

Many zoonotic diseases are considered notifiable by the Centers for 

Disease Control and Prevention (CDC).  This means that when a case is 

diagnosed or suspected, the diagnosing clinician (i.e., health care provider) 

should report this information to their local or state health department.  In addition 

to diagnosing and treating individual patients, health care providers play an 

important role in protecting the public health through the identification and 

reporting of infectious diseases.  Health care providers are typically the first 

health officials to encounter cases of infectious zoonotic diseases, and therefore 

play an important role in disease surveillance activities (GAO 2004).  Health 

insurance plans, sometimes referred to as managed care organizations (MCO), 

contract with providers to deliver health care to their members.  Therefore, there 
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is both a direct (self-reporting) and indirect (provider-reporting) responsibility of 

health plans in the reporting of infectious diseases.  Indirectly within their legally 

binding contract with providers, health plans could require providers to report 

100% of diagnosed cases.  However, though state regulations or contractual 

obligations may require the reporting of certain diseases, underreporting still 

exists as not all diagnosed or suspected cases are reported by health care 

providers (Marier 1977; Meek et al. 1996; Young 1998; Koo and Caldwell 1999), 

and can vary by physician specialty (Campos-Outcalt et al. 1991). 

Medical claims data are recorded within the healthcare system every time 

a patient visits their doctor or hospital for a medical service, fills a prescription 

medicine, or seeks consultation from a clinician.  Of particular interest is the 

amount of available data from MCOs, as well as the temporal and spatial 

granularity of captured data elements from each medical encounter.  Medical 

claims data contain, among other things, the patient’s ZIP code at the time of 

service, date of medical service, and medical diagnosis codes which describe the 

reason why the patient is seeking medical care.  The geographic element of a 

patient’s residence location combined with the date of diagnosis provides both a 

spatial and temporal “stamp” of what the patient was exposed to, and potentially 

when and where the exposure may have occurred.   

Medical claims data may aid in the study and tracking zoonoses.  If using 

medical claims data is a viable approach, it could be used to improve both the 

temporal and spatial scale of study through the use of long-term longitudinal data 
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covering a large geographic expansion and at a more geographically refined 

scale.  Additionally, claims data could supplement the current reporting of 

notifiable diseases to the CDC.  This effort may help bridge the disease 

incidence gap created by health care providers’ underreporting and thus allow for 

more effective tracking and monitoring of infectious zoonotic diseases across 

time and space. 

 

BACKGROUND 

Southeastern Arthropod-borne Diseases 
 

Arthropod-borne diseases are infectious diseases in which arthropods are 

considered a transmitting vector or intermediate host.  These diseases can be 

separated into categories based upon vector phylogeny.  The most prevalent 

vectors in the southeastern US and the primary focus of this study are ticks and 

mosquitoes, and thus this study proposes to categorize diseases as tick-borne 

and mosquito-borne, respectively.  Specifically, we examine five tick-borne 

(Lyme disease, babesiosis, ehrlichiosis, Rocky Mountain spotted fever, and 

tularemia) and 2 mosquito-borne (West Nile virus and La Crosse viral 

encephalitis) diseases known to occur in the southeastern US (Table 1-1).  For 

the purposes of this study, the southeast was considered South Carolina, North 

Carolina, Georgia, Tennessee, Florida, Alabama, Mississippi, Louisiana, and 

Arkansas (Figure 1-1). 
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Tick-borne Diseases (Table 1-1) 
 
Borreliosis - Lyme disease (ICD-9 Diagnosis Code: 088.81*

Lyme disease is the most frequently reported vector-borne disease in the 

US (Varela et al. 2004) with 29,780 cases reported nationwide in 2009, with 32 

occurring in Tennessee (CDC MMWR 2010).  Lyme disease is caused by the 

bacterium Borrelia burgdorferi, which is transmitted to humans via the 

Blacklegged or deer tick (Ixodes scapularis), the same tick responsible for 

transmitting babesiosis and certain forms of ehrlichiosis.  Symptoms include a 

characteristic “bulls-eye rash” within 2 weeks after exposure, fever, headache, 

and fatigue.  If left untreated, infection can spread to joints, the heart, and the 

nervous system. Most cases of Lyme disease can be treated successfully with a 

few weeks of antibiotics.  The majority of diagnosed cases occur in the New 

England area, upper Mid-West, southeastern US, and Pacific Coast states.   

) 

 

Babesiosis (ICD-9 Diagnosis Code: 088.82) 

Babesiosis is an uncommon tick-borne malaria-like illness caused by the 

Babesia microti organism, which usually infects white-footed mice and other 

small mammals.  This organism is then transferred to humans by Ixodes 

scapularis (CDC NCEZID 2010).  Most cases of babesia infection are 

asymptomatic or include mild fevers and anemia while more severe cases carry 

symptoms similar to malaria and can be life-threatening.  Reported cases are on 

                                                   
* See below for a detailed description of the ICD-9 medical coding system 
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the rise, perhaps because of expanded medical awareness (Hunfeld et al. 2008).  

In North America, the disease is most commonly found in the Northeast and 

upper Midwest, particularly in parts of New England, New York, New Jersey, 

Wisconsin, and Minnesota.  According to the Tennessee Department of Health 

Communicable Disease Interactive Data Site, there have been no reported cases 

within Tennessee for the 1995-2009 time period.  However, a recent 2010 report 

indicates what they believe to be the first zoonotic babesiosis case documented 

in Tennessee (Mosites et al. 2010). 

 

Rickettsiosis – Rocky Mountain spotted fever (ICD-9 Diagnosis Code: 082.0) 

Rocky Mountain spotted fever is the most severe tick-borne rickettsial 

illness in the US and is caused by the Rickettsia rickettsii bacterial organism.  

Infections occur most commonly in the southeastern and south central US and 

are typically transmitted from the bite of an infected American Dog tick 

(Dermacentor variabilis).  Symptoms include the development of a rash within 2 

to 4 days after the onset of fever, and can be non-descript or mimic other 

illnesses with headache, muscle pain, nausea, and lack of appetite.  In 2009 

there were 1,393 cases reported nationwide, with 184 occurring in Tennessee 

(CDC MMWR 2010). 
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Ehrlichiosis – human monocytic ehrlichiosis, Ehrlichia chaffeensis (ICD-9 

Diagnosis Code: 082.41) 

Ehrlichia chaffeensis can refer to both the disease name and the 

responsible bacterial pathogen.  Ehrlichiosis caused by E. chaffeensis is also 

referred to as human monocytic ehrlichiosis (HME).   As with tularemia, HME is 

associated with bites from the Lone Star tick (Amblyomma americanu) and is 

characterized by acute onset of fever and headache, malaise, anemia, nausea, 

vomiting, and/or a rash.  This disease occurs most often in the Southeastern and 

Midwestern US, and the number of diagnosed cases have risen steadily from 

1999 – 2006 (CDC NCEZID 2010).  In 2009 there were 122 cases reported 

nationwide, with 16 occurring in Tennessee (CDC MMWR 2010). 

 

Tularemia - (ICD-9 Diagnosis Code: 021) 

Tularemia is a relatively uncommon but potentially fatal infectious disease 

most common in the south central US, Pacific Northwest, and Massachusetts.  It 

is caused by the bacterium Francisella tularensis which is transmitted to humans 

through the bite of 2 different ticks, the American dog tick and the Lone Star tick.  

Tularemia can also be transmitted through the handling of infected animal 

carcasses, consuming contaminated food or water, or breathing in the bacteria.  

Because of the latter aerosol transmission capability, this disease is considered a 

possible bioterrorism indicator and is classified as a category 1B disease, which 

requires immediate telephonic notification followed by a written report within 1 
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week of diagnosis (TDH CEDS 2010).  Symptoms occur within 5 days of 

exposure and include a sudden fever onset, chills, headache, diarrhea, muscle 

and joint pain, dry cough, difficulty breathing, and progressive weakness.  In 

2009 there were 123 cases of tularemia reported nationwide, with only 2 

occurring in Tennessee (CDC MMWR 2010). 

 

Tick Species 

Blacklegged tick, deer tick (Ixodes scapularis) 

This tick is widely distributed in the northeastern and upper midwestern 

US (Figure 1-2; Figure 1-3) and can transmit Borrelia burgdorferi (responsible for 

Lyme disease) and Babesia microti (responsible for babesiosis).  Larvae and 

nymphs feed on small mammals and birds, while adults feed on larger mammals 

and will bite humans on occasion. It is important to note that the pathogen that 

causes Lyme disease is maintained by wild rodent and other small mammal 

reservoirs, and is not transmitted everywhere that the blacklegged tick lives. In 

some regions, particularly in the southern US, the tick has very different feeding 

habits that make it an unlikely vector in the spread of human disease (CDC 

NCEZID 2010). 

 

Lone Star tick (Amblyomma americanum) 

This tick is primarily found in the southeastern and eastern US (Figure 

1-3) and is responsible for the transmission of organisms causing forms of 
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borreliosis (Southern Tick-Associated Rash Illness), ehrlichiosis (human 

monocytic ehrlichiosis), and tularemia. White-tailed deer are a major host of Lone 

Star ticks and appear to represent a natural reservoir for Ehrlichia chaffeensis.  

Larvae and nymphs feed on birds and deer (CDC NCEZID 2010). 

 

American Dog tick (Dermacentor variabilis) 

This tick is the most commonly identified species responsible for 

transmitting the Rickettsia rickettsii bacterial organism and causes Rocky 

Mountain spotted fever in humans. This tick can also transmit tularemia. It is 

widely distributed east of the Rocky Mountains and also occurs in limited areas 

on the Pacific Coast (Figure 1-3). Larvae and nymphs feed on small rodents. 

Dogs and medium-sized mammals are the preferred hosts of adult ticks, 

although it feeds readily on other large mammals, including humans (CDC 

NCEZID 2010). 

 

Mosquito-borne Diseases 

Arthropod-borne viruses are primarily transmitted during the summer and 

fall in the US, with disease incidence peaking in late summer. Presently, there 

are two more commonly described mosquito-borne viral diseases (La Crosse and 

West Nile) occurring in the southeastern US.   
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La Crosse viral encephalitis (ICD-9 Diagnosis Code: 062.5) 

La Crosse viral encephalitis (LACV) is a relatively uncommon viral illness 

transmitted to humans by the bite of an infected Aedes Triseriatus mosquito. 

Most cases occur in the upper Midwestern, mid-Atlantic, and southeastern states. 

Though most often asymptomatic, if symptoms do occur they include fever, 

headache, nausea, vomiting, and general malaise. If the infection is more severe 

(typically in children under 16), encephalitis can form and can include seizures, 

coma, and paralysis.  In rare cases, long-term disability or death can result.  In 

2009, there were 8 confirmed cases in Tennessee (USGS ArboNet 2009). 

 

West Nile virus (ICD-9 Diagnosis Code: 066.4) 

The West Nile virus (WNV) was first detected in the US in 1999 and 

became notifiable in 2002.  WNV is spread to humans through the bite of an 

infected mosquito, typically thought to be the Culex pipiens mosquito, which 

become infected after feeding on infected birds.  Though the virus quickly spread 

across the US from 1999 through 2001, neuroinvasive disease incidence 

remained low until 2002 when large outbreaks in the Midwest and Great Plains 

occurred.  Approximately 80 percent of people infected with WNV are 

asymptomatic.  Less than 1% of people infected will have severe life-threatening 

symptoms, such as high fever, neck stiffness, stupor, disorientation, coma, 

tremors, convulsions, muscle weakness, vision loss, numbness, and paralysis.  

There were 329 reported cases of non-neuroinvasive West Nile virus in 2009, 4 
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of which occurred in Tennessee.  Additionally, there were 361 reported cases of 

neuroinvasive West Nile virus in 2009, 4 of which occurred in Tennessee (CDC 

MMWR 2010). 

 

Mosquito Species 

Eastern tree hole mosquito (Aedes triseriatus) 

This mosquito species is found in wooded regions of eastern and central 

North America, particularly in areas with temporary pools of stagnant water, such 

as tree holes and abandoned tires. It favors pools which contain leaf debris and 

other organic material to provide food for its larvae. Adults remain in areas near 

larval habitats throughout their lifespan.  Aedes triseriatus occurs from Florida, 

north to Ontario and west to Texas (CDC NCEZID 2010). 

 

Northern house mosquito (Culex pipiens) 

This mosquito is usually the most common pest mosquito in urban and 

suburban settings and serves as an indicator of polluted water in the immediate 

vicinity.  It is recognized as the primary vector of St. Louis encephalitis and West 

Nile virus in the eastern US and is normally considered to be a bird feeder, 

though some urban strains may prefer mammalian hosts (CDC NCEZID 2010). 
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Notifiable Diseases 

 According to the TDH, notifiable diseases are: 

“declared to be communicable and/or dangerous to the public and 

are to be reported to the local health department by all hospitals, 

physicians, laboratories, and other persons knowing of or 

suspecting a case in accordance with the provision of the statutes 

and regulations governing the control of communicable diseases in 

Tennessee.” 

 

Improving Macro-scale Analyses by Aggregating to the ZIP Code Level 

The reporting and tracking of illness cases is essential to knowing who is 

infected and where the problems are occurring.  A major limitation in the study of 

such diseases, however, is the ability to comprehensively track disease 

incidence over space and time at a meaningful geographic scale.  Data 

aggregations and disease incidence is most often presented at the county level 

(Sugumaran et al. 2009).  Unfortunately, county level assessments compared to 

ZIP code level analyses may mask smaller isolated high risk areas as well as 

obscure within county variability (Mostashari et al. 2003; Eisen et al. 2006).  In 

2007, the CDC called for a means to improve data collection methods to 

determine probable pathogen exposure sites based specifically on patient activity 

spatial patterns.  This suggests geocoding the residential location (street address 

or ZIP code) of the infected patient and conducting a radial search around that 
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point to examine the underlying landscape.  However, data describing possible 

pathogen exposure sites (i.e., patient’s actual residential location information) are 

limited (Glass et al. 1995; Eisen and Eisen 2007), and means to collect this 

information can be very costly (e.g., patient surveys).  Therefore, studies within 

the wildlife and ecological sciences are often limited in predictive power due to 

the inability to generate large sample sizes, either because of costs, data 

availability or both (Bissonette 1999).  Health plans and their associated 

administrative data may help improve this data deficiency. 

 

Role of Health Plans and Providers in the Monitoring of Infectious Diseases 

As previously mentioned, MCOs play a major role in the tracking of 

infectious diseases.  Medical claims data are recorded within the healthcare 

system every time a patient visits their doctor or hospital for a medical service, 

fills a prescription medicine, or seeks consultation from a physician.  Therefore, 

all diagnosed zoonotic infections where patients are seeking monetary 

reimbursement from their health plan would be documented in the plans’ claims 

data warehouse.  If the services rendered are from an actual person (e.g., 

physician), a HCFA-1500 form is completed and submitted to the health plan 

covering the patient.  If the services rendered are billed from a facility (e.g., 

hospital), a UB-92 form is completed.    These forms are very similar and capture, 

among other things, patient information (name, date of birth, address, ZIP code), 

date of service, services rendered, and diagnosis information (described below in 
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detail in the ICD-9 coding system).  The term “electronic” refers to data that is 

stored electronically in a data warehouse.  The term “administrative” refers to 

data that is transferred from the claim form to the health plan’s data warehouse.  

Administrative data does not typically include elements like lab results (e.g., 

blood pressure, white blood cell count).  

 

International Classification of Diseases (ICD) Medical Coding System 

The ICD coding system is used throughout the healthcare industry to 

describe diseases, injuries, symptoms, complaints, and conditions encountered 

when patients visit a health care provider. Under this coding system, similar 

health conditions can be categorized together, and each condition/diagnosis is 

assigned a unique code, up to six characters long in a hierarchical listing.  The 

ICD codes are revised periodically, and the majority of the US currently uses the 

9th

 

 edition (ICD-9).  For example, a patient diagnosed as having West Nile virus 

could be given a 3-digit ICD-9 code of “066” indicating a diagnosis of an 

“arthropod-borne viral disease.” More specifically, the patient would be given a 4-

digit ICD-9 code of “066.4,” which indicates “West Nile Fever.” And even further, 

the health care provider could be more specific with the coding if certain 

symptoms were present, or certain tests confirmed the presence of something.  

For example, the ICD-9 hierarchy of diagnosis code “066” is: 
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066  Other arthropod-borne viral diseases  

066.4  West Nile Fever 

 066.40  West Nile fever, unspecified 

066.41  West Nile fever with encephalitis 

066.42  West Nile fever with other neurological manifestation 

066.49  West Nile fever with other complications 

 

Another important aspect of diagnosis coding on a claim form is that a 

medical encounter can have more than one diagnosis code.  The initial most 

important diagnosis (as deemed by the health care provider) is the primary 

diagnosis, and other diagnoses would be considered secondary, tertiary, and so 

on.  For example, a physician could see a patient about their illness and 

determine that West Nile fever is the primary diagnosis (066.4).  The physician 

may also code, on the same claim form, another secondary diagnosis for a 

headache (784.0) and tertiary diagnosis for nausea (787.02).  Data in the 

BlueCross BlueShield of Tennessee (BCBST) data warehouse capture up to 8 

diagnosis codes. 

Of particular interest is the amount of available data from health plans, as 

well as the temporal and spatial granularity of captured data elements from each 

medical encounter.  Medical claims data contain, among other things, the 

patient’s ZIP code at the time of service, date of medical service, and medical 

diagnosis codes which describe the reason why the patient is seeking medical 
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care.  The geographic element of a patient’s residence location combined with 

the date of diagnosis provides both a spatial and temporal “stamp” of what the 

patient was exposed to, and potentially when and where the exposure may have 

occurred.  Therefore, this administrative data source could supplement the 

current reporting and tracking structure and provide a better estimate of the true 

incidence rate.  

  

OBJECTIVES 

A major limitation in spatial epidemiology is the collection of relevant 

longitudinal data at the appropriate geographic scale.  Research often relies on 

drawing conclusions from only limited sample sizes usually taken either at a 

static point in time, or some periodic time interval convenient for sampling, which 

is further constrained by sampling cost.  Additionally, diseases must be reported 

to the CDC or health departments in order to be recorded in the database, and 

clinicians or infected patients may not always manually report these.   

This study proposes to introduce the use of electronic administrative 

medical claims data as a potential new source that could be leveraged in 

ecological field studies in the analyses and monitoring of arthropod-borne 

zoonotic diseases.   If using medical claims data to study zoonoses is a viable 

approach, it could be used to improve both the temporal and spatial scale of 

study through the use of long-term longitudinal data covering a large geographic 

expansion and at a more geographically refined ZIP code scale.  Additionally, 
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claims data could supplement the current reporting of notifiable diseases to the 

CDC.  This effort may help bridge the disease incidence gap created by health 

care providers’ underreporting and thus allow for more effective tracking and 

monitoring of infectious zoonotic diseases across time and space. 

 

Specifically, the 4 main objectives of the study are: 

1. To determine if certain notifiable diseases are underreported based on a 

comparison of MCO administrative claims data and the TN State Health 

Department (TDH) 

2. To determine how MCO and TDH data compare/differ in the context of 

spatio-temporal cluster analyses at the county level 

3. To determine what geographic, habitat, and socio-economic 

characteristics may be useful in explaining the occurrence of zoonotic 

diseases 

4. To determine where and when (if any) significant spatial and temporal 

clusters of selected diseases occurred across the state of Tennessee for 

the 2000-09 time period using MCO data at the ZIP code level 

 

To my knowledge, this project is one of only a very small number of projects 

that attempt to use administrative data from a MCO to study zoonotic diseases.  

If successful, this could provide quantifiable evidence of more accurate estimates 

of disease prevalence.  Additionally, there is a multi-state initiative within the 
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BlueCross BlueShield Association (BCBSA) to combine multiple BlueCross plans’ 

claims data into one centralized data warehouse.  This combined data source will 

contain information on approximately 100 million people across the entire US and 

thus serve as a potentially powerful data source for mapping and monitoring of 

zoonotic diseases. 

 

DISSERTATION OVERVIEW 

The dissertation is arranged in 5 chapters, where the first serves as a 

basic introduction to the work, and the last 4 chapters are written as independent 

papers.  Because each project is undertaken individually with the explicit purpose 

of publication, some information/verbiage contained within the chapters may 

overlap. 

 Chapter 2 addresses the feasibility of using administrative medical claims 

data in the analysis and tracking of infectious zoonotic diseases.  The objective is 

to determine if notifiable diseases are underreported.  This is done by comparing 

the TDH data with administrative claims data extracted from the BlueCross 

BlueShield of Tennessee data warehouse, later defined as the MCO.  The 

general hypothesis is there is no difference between the state reported incidence 

rates for a selected disease and the MCO claims derived incidence rate. 

 Chapter 3 builds on Chapter 2 and compares zoonotic case information 

derived from the TDH state registry system with MCO administrative medical 

claims information to statistically validate when (temporal) and where (spatial) 
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these data sources differ.  The general research hypothesis is that no differences 

in clusters exist between the two data sources.   

Once MCO data is determined to be useful, Chapter 4 addresses the need 

to study potential site characteristics at a finer scale (i.e., ZIP code) as opposed 

to traditional county level analyses using administrative data.  Specifically, the 

objective is to determine what, if any, site level characteristics may be influential 

in explaining disease occurrence.  The general research hypothesis is 

geographical/habitat characteristics do not influence the presence of zoonotic 

diseases. 

Chapter 5 takes information learned from Chapters 2 – 4 and attempts to 

address the feasibility of using MCO data in the tracking of zoonotic diseases at 

the ZIP code level.  Specifically, the objective is to determine where and when 

significant spatial and temporal clusters of selected diseases occurred, and 

compare these findings to county-level outcomes.  The general research 

hypothesis is there are no significant spatial or temporal clusters of disease 

incidence across Tennessee for the study period. 
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Table 1-1: Arthropod-borne zoonotic diseases known to occur in the 
southeastern US and selected for study 

Disease 
Common 
Name 

Pathogen 
Type Pathogen 

Vector 
Type Primary Vector 

Borreliosis Lyme 
disease 

Bacterial Borrelia 
burgdorferi 

Tick Blacklegged, 
or deer tick 

(Ixodes 
scapularis) 

Babesiosis Babesiosis Protozoan Babesia 
microti 

Tick Blacklegged, 
or deer tick 

(Ixodes 
scapularis) 

Rickettsiosis Rocky 
Mountain 
spotted 
fever 

Bacterial Rickettsia 
rickettsii 

Tick American 
dog tick 

(Dermacentor 
variabilis) 

Ehrlichiosis Human 
Monocytic 
Ehrlichiosis 

Bacterial Ehrlichia 
chaffeensis 

Tick Lone star 
tick 

(Amblyomma 
americanu) 

Tularemia Tularemia Bacterial Francisella 
tularensis 

Tick American 
dog tick, 
Lone star 
tick 

(Dermacentor 
variabilis, 
Amblyomma 
americanum) 

La Crosse 
Encephalitis 

La Crosse 
viral 
encephalitis 

Viral La Crosse 
encephalitis 
virus 

Mosquito Eastern tree 
hole 
mosquito 

(Aedes 
triseriatus) 

West Nile 
Fever 
(Virus) 

West Nile 
virus 

Viral West Nile 
Virus 

Mosquito Northern 
house 
mosquito 

(Culex 
pipiens) 
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Figure 1-1: Map indicating southeastern states according to this study
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Figure 1-2: Approximate distributions of the Blacklegged Tick (Ixodes scapularis), 
the Lone Star tick (Amblyomma americanum) and the American Dog tick 
(Dermacentor variabilis) (images source: CDC)
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Figure 1-3: Life stages and relative sizes of 3 tick species known to be primary 
vectors for zoonotic diseases (image source: CDC) 
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CHAPTER 2  
 

USING ADMINISTRATIVE MEDICAL CLAIMS DATA TO ESTIMATE 
UNDERREPORTING OF INFECTIOUS ZOONOTIC DISEASES 

 

ABSTRACT 

Notifiable diseases require regular, frequent, and timely reporting of 

diagnosed cases to aid in prevention and control.  However, manual reporting 

can be burdensome, incomplete, and delayed.  Administrative claims data 

captured from clinical encounters details the patient's reason for seeking care, 

service date, and place of residence.  To determine if administrative data is 

useful in the tracking and reporting of diagnosed zoonotic diseases, 5 tick-borne 

(Lyme disease [LD], babesiosis, ehrlichiosis, Rocky Mountain spotted fever 

[RMSF], tularemia) and 2 mosquito-borne (West Nile virus, La Crosse viral 

encephalitis) diseases known to occur in the southeastern US were examined.  

Disease incidence rates from cases reported to the Tennessee Department of 

Health (TDH) and medically diagnosed cases captured in a southeastern 

Managed Care Organization (MCO) claims data warehouse were compared 

using a complete randomized block design within a general linear mixed model.  

LD incidence was 7.7 times higher (P < 0.001) than what was actually reported to 

the state, possibly indicating significant underreporting (~196 unreported cases 

per year in TN).  MCO data suggests that about 33 cases of RMSF go 

unreported per year in TN (P < 0.001).  Three (3) cases of babesiosis were 
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discovered using claims data, a significant finding as this disease has never been 

reported in Tennessee.  Significant spatial and temporal variations in disease 

rates were present (P < 0.001).  This study successfully demonstrates the 

usefulness of administrative claims data in the tracking and reporting of zoonotic 

diseases. 
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INTRODUCTION 

 Notifiable diseases are infectious diseases for which regular, frequent, and 

timely reporting of individual diagnosed cases aids in prevention and control (e.g., 

Lyme disease, giardiasis, salmonella) (GAO 2004; CDC NNDSS 2010).  In 1961, 

the Centers for Disease Control and Prevention (CDC) was given oversight 

responsibility for compiling and publishing weekly morbidity statistics for listed 

notifiable diseases through the Morbidity and Mortality Weekly Report (MMWR).  

Public health officials from state health departments collaborate annually with the 

CDC to determine which diseases should be listed.  This disease surveillance 

effort, the National Notifiable Disease Surveillance System (NNDSS), is one of 

the oldest surveillance systems in the United States (US).  Reporting of disease 

cases by health care providers and laboratories is currently mandated only at the 

state level and therefore can vary from state to state (Koo and Wetterhall 1996; 

CDC NNDSS 2010).     

 In 2009, there were over 7,000 cases of notifiable communicable diseases 

reported to the Tennessee Department of Health Communicable and 

Environmental Disease Services (TDH CEDS 2009).  This is over twice the 

number of notifiable diseases reported in 2000 (TDH WebAim 2010).  Though 

state regulations or contractual obligations may require the reporting of certain 

diseases, traditional passive surveillance initiated by the diagnosing clinician can 

be burdensome, incomplete, and delayed (Doyle et al. 2002).  Thus 

underreporting of diseases exists as not all diagnosed or suspected cases are 
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reported by health care providers (Marier 1977; Meek et al. 1996; Young 1998; 

Koo and Caldwell 1999; Figueiras et al. 2004), and can vary by physician 

specialty (Campos-Outcalt et al. 1991).  Many health care providers may not 

understand the importance of public health surveillance, and generally how, 

when, why, and what to report (Koo and Caldwell 1999; Figueiras et al. 2004). 

Health insurance plans could play a major role in the reporting of 

infectious diseases (Rutherford 1998; Koo and Caldwell 1999).  Medical 

encounter data are recorded within the healthcare system every time a patient 

visits their doctor or hospital for a medical service, fills a prescription medicine, or 

seeks consultation from a clinician.  When seeking reimbursement from a health 

plan for the medical services performed, medical encounter data is captured via 

an insurance claims form completed by the physician performing the services, 

and then is submitted to the health plan.  Therefore, all claims with medically 

diagnosed cases being filed to a health plan are captured electronically in the 

plan’s data warehouse.  Considering more than 253 million Americans have 

health insurance and will most likely utilize that service when needed (DeNavas-

Walt et al. 2010), the administrative data captured from a medical encounter 

could serve as a useful source in the tracking of diagnosed infectious diseases.  

This study examines the feasibility of using administrative claims data in the 

analysis and tracking of infectious zoonotic diseases by comparing medically 

diagnosed cases of zoonotic infections extracted from administrative claims data 

to zoonotic cases reported to the Tennessee State Health Department.  The level 
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of underreporting is estimated for five tick-borne (Lyme disease [LD], babesiosis, 

ehrlichiosis, Rocky Mountain spotted fever [RMSF], tularemia) and 2 mosquito-

borne (West Nile virus, La Crosse viral encephalitis) diseases known to occur in 

the southeastern US.  The general research hypothesis is that incidence rates 

from the state health department are underrepresented when compared to actual 

diagnosed claims information. 

 

METHODS 

Study Area 

 Disease cases known to occur for residents living within the state 

boundaries of Tennessee were studied.  For the purposes of this study, 

Tennessee is considered a southeastern state and is approximately bounded 

within the southernmost west coordinate (-90.309200, 34.995800) to the northern 

most east coordinate (-81.646900, 36.611900).  Approximately 6.3 million people 

live within the 95 counties, and they have a median age of 37 and median 

income of $43,600.  Ninety-three (93) percent of the state population lived in the 

same residence or same county as they did one year prior (US Census Bureau 

2009).  Of the state’s approximately 10.9 million hectares, 5% is considered 

federal lands, 3% water area, 9% non-federal rural, and the remaining 83% is 

non-federal non-rural lands (USDA 2000).  Estimated land cover percentages for 

the state are as follows: open water (2.7%), forested wetland (3.0%), non-

forested wetland (0.4%), grassland/pasture (37.2%), cropland (5.8%), upland 



32 

deciduous forest (40.6%), upland mixed forest (4.4%), upland coniferous forest 

(3.6%), urban/developed (1.9%), and non-vegetated (0.2%) (Tennessee Wildlife 

Resources Agency 1997). 

 

Disease Case Data 

Disease occurrence data within the proposed study area of Tennessee 

were collected from 2 separate data sources and tested for statistical differences.  

The first data source was electronic administrative medical claims data obtained 

from a large southeastern managed care organization (MCO) located in 

Tennessee.  This MCO insures approximately 60% of the entire state’s 

population.  All medical claims having a primary or secondary arthropod-borne 

disease diagnosis code of interest (see below) were extracted for the January 1, 

2000–December 31, 2009 time period.  Allowed claims (i.e., non-voided and 

approved for payment) having one of the following diagnosis codes were retained 

for study: 

Tick-Borne Diseases: 

• Babesiosis (ICD-9 code: 088.82) 

• Borreliosis - Lyme disease (LD) (ICD-9 code: 088.81) 

• Ehrlichiosis - human monocytic ehrlichiosis (HME) (ICD-9 code: 082.41) 

• Rickettsiosis - Rocky Mountain spotted fever (RMSF) (ICD-9 Diagnosis 

Code: 082.0) 

• Tularemia (ICD-9 code: 021) 
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Mosquito-Borne Diseases: 

• La Crosse viral encephalitis (LACV) (ICD-9 code: 062.5) 

• West Nile virus (WNV) (ICD-9 code: 066.4) 

These diseases were selected because they are known to occur within the 

southeastern US (CDC NCEZID 2010) and they provide a mix of relatively 

abundant cases (e.g., borreliosis, rickettsiosis) to very rare cases (e.g., 

babesiosis, tularemia) to study.  Using the MCO database, any patient receiving 

medical services for one of the selected diseases prior to the start of the study 

period (January 1, 2000) or after the study period (December 31, 2009) was 

removed from the analysis.  To best ensure the diagnosis for the patient was in 

fact their first diagnosis, only the first recorded diagnosis date for each patient 

was retained.  Any subsequent claims for the patient were removed and not 

considered in this study.  This analysis utilized the exact diagnosis code for 

disease identification and served to represent the minimum estimation (i.e., lower 

limit) of incidence according to MCO data.  

The second data source was an extract provided by the TDH, Center for 

Environmental and Communicable Diseases detailing all notifiable “confirmed” or 

“probable” disease cases reported to the state of Tennessee during the study 

period (TDH WebAim 2010).  This resulted in a comparison of medically 

diagnosed cases to CDC confirmed or probable disease cases.  For example, a 

medical diagnosis for LD should be based on an individual’s history of possible 
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exposure to ticks that carry LD, the presence of typical signs and symptoms, and 

the results of blood tests.  CDC case definitions for LD are as follows: 

• Confirmed Case – A case of erythema migrans (“bulls-eye” rash) with 

known exposure, or a case of erythema migrans with laboratory evidence 

of infection and without a known exposure, or a case with at least one late 

manifestation that has laboratory evidence of infection. 

• Probable Case – Any other case of physician-diagnosed LD that has 

laboratory evidence of infection. 

The comparison between data sources can be made because of the extraction of 

medical claims with the specific ICD-9 diagnosis code, not a generic root-level 

code.  Thus it is assumed that if a clinician codes at this detail, they have 

evidence to support the diagnosis beyond suspicion.  Furthermore, this very 

difference and ambiguity is the main intent of the study, which is to compare the 

difference between state reported incidence rates and medically diagnosed case 

rates to determine if claims data could support the current surveillance system.  

Because TDH serves as the compiler of all data sources to the state level, these 

data represent a theoretically complete set of reported cases for the state.  The 

state data detail what the event was (e.g., West Nile virus), when it occurred (i.e., 

event date), and the county of residence for the infected person (i.e., county 

name). 
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Count Adjustment for MCO Data 

Previous unpublished internal work with MCO data indicates that ICD-9 

coding errors can exist in the data.  For example, a patient had a claim 

containing exactly 1 line item for Enteric tularemia (ICD-9 code: 0211).  This line 

item was part of a larger medical claim containing many other occurrences of 

70211, which is the ICD-9 code for “Inflamed seborrheic keratosis.” This was an 

obvious miscode in the system and cause for data validity concerns.  Further, 

tularemia cases were evenly distributed throughout the year.  This is unexpected 

as this disease is quite seasonal in nature, occurring in peaks during the summer 

months (Boyce 1975).  Exact quantification of this error type is difficult, if not 

impossible, as it requires manually reviewing tens-of-thousands of line items of 

data to check for ICD-9 coding errors, and judgment could in part be subjective.  

In addition, no known work exists on this subject, so references are unavailable 

on the number of line items needed to ensure validity.  Therefore, an adjustment 

factor was employed based on the number of line items a patient had for a given 

disease in the MCO system.  Rather than developing an empirical filter upon 

which to remove these types of claims, it was decided to create a threshold value 

and apply this to disease cases to remove any cases where the medical claim 

did not have at least 3 separate line items with the same diagnosis code.  This 

could obviously remove valid cases that contain less than 3 line items, but most 

likely would remove all cases in error as someone would have to make 3 errors 

on the same claim record.  Thus, the MCO rates may in fact be 
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underrepresented because of this adjustment.  All results and analyses use this 

adjustment applied to the MCO data. 

 

Data Aggregations 

For each of the seven diseases, the number of cases was aggregated per 

county per year separately for TDH and MCO data.  Because each data source 

had different populations from which case information was drawn, raw counts 

could not be fairly compared.  Therefore, the denominator difference was 

adjusted by including population counts in all models.  For TDH data, yearly 

county level population estimations were provided by the Tennessee Department 

of Health-Division of Health Statistics.  Historical population counts (i.e., plan 

membership) by county were not known for MCO data and were therefore 

estimated using an overall monthly adjustment factor.  This was done by first 

calculating total MCO membership enrollment for each month of the study period 

(this served as the denominator).  Next, the total number of medical claims filed 

for each month of the study period was calculated (this served as the numerator).  

The adjustment factor was a monthly ratio of medical claims to membership.  The 

next step was to use this monthly adjustment factor to derive a membership 

estimate per county per month for the study period.  Medical claims capture the 

county of residence of the member, therefore an estimated monthly county level 

population was calculated by dividing the total number of medical claims filed by 

MCO members within a given month and county by the overall monthly 
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adjustment factor.  For example, if in January 2000 there were 10,000 active 

members enrolled in the MCO health plan, and 2,500 filed a claim in that month, 

then the January 2000 adjustment factor is 25% (i.e., 2500 / 10000).  If County A 

had 400 members file claims during January 2000, then the monthly adjusted 

population count for County A would be 1,600 (i.e., 400 / 0.25).   

 

MAPAt = mAt / at                

where  

Equation 1: Monthly Adjusted Population Counts 

MAPAt

m

 = monthly adjusted population for County A at time t (time t is 

denoted as the month and year in question) 

At

a

 = number of members enrolled in the MCO that reside in County A at 

time t 

t = statewide adjustment factor at time t given by at = Mt / Ct

M

 where  

t 

C

= total number of members enrolled in the MCO at time t  

t

 

 = total number of members that filed a claim during time t 

The same monthly adjustment factor was applied to all counties for each 

respective month, and therefore this approach assumes spatial homogeneity of 

claims submissions.  This process was validated by comparing this method to 

known current membership levels and showed the median inflated error rate to 

be approximately 1,768 members, or about a 17% over-adjustment.  Therefore, 
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incidence rate estimates from MCO could be underrepresented due to this 

method because the denominators are inflated. 

 

Statistical Analyses 

To estimate if and to what extent underreporting of notifiable diseases 

exist, a randomized control block design was employed within a generalized 

linear mixed model (GLMM) approach to compare TDH and MCO case counts.  

These models are particularly useful in estimating trends in disease rates and 

where the response variable is not necessarily normally distributed (Salah et al. 

2007; SAS® 2008).  Input values into the models included a yearly (n = 10) 

county (n = 95) case total, which produced 950 observations for each data 

source.  Separate models were built for each disease, and the response variable 

of interest was disease counts assumed to be Poisson distributed with a log-

transformed population count as an exposure offset.  Disease counts were 

expected to vary by county (i.e., spatial heterogeneity) due to varying population 

denominators, socio-economic factors, and varying geographic and habitat 

characteristics (Kalluri et al. 2007; Wimberly et al. 2008; Winters et al. 2008; 

Yang et al. 2009).  Therefore, county was used as a blocking factor to remove 

the expected county-to-county variability when comparing TDH to MCO values.  

Space (county) was considered a random effect, while time (year), data source 

(MCO vs. TDH), and a time*data source interaction were considered fixed effects.  

Fixed effects were examined for statistical significance using the F-test with an 



39 

alpha level of 0.05. Variability in case counts across counties was tested using a 

covariance test within the GLMM procedure.  SAS® Enterprise Guide version 4.2 

and SAS/STAT version 9.3 were used for all analyses (SAS® 2008).  

Seasonality profiles were created for each disease and visually compared 

between data sources.  These profiles detail the percentage of all recorded 

cases by month (January-December) for the entire study period to illustrate in 

which months the disease is most prevalent.  This was done for exploratory 

purposes to see the relationship between recorded event dates from the state 

and the date of service that patients seek medical care.  

 

RESULTS 

Overview 

Approximately 58,385,858 medical claims were filed during the 2000-2009 

study period.  Of these, 6,638 patients had a medical claim with a primary or 

secondary diagnosis for one of the 7 described arthropod-borne diseases.  After 

removing invalid claims (patients without at least 3 separate ICD-9 entries for the 

disease, patients with claim dates starting or ending outside of the time period, 

duplicate patient entries, and patients having non-unique disease coding issues 

[e.g., code for RMSF and LD on the same claim]), 1,654 unique cases were 

distributed across the 7 diseases of interest and remained for study.  The 

average age of patients having one of the described diseases was 37.3 (SD: 

19.84; SE: 0.49), and 53.2% were female.  Proportion of female patients was 
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higher in the mid- to late-age groups (aged 15-60 years).  The age/gender 

distribution for patients with a disease is comparatively different from the 

population as a whole.  In the overall MCO member population, irrespective of 

disease, the distribution of males is higher compared to females across all age 

groups over 15 years old (Figure 2-1). 

The majority of disease cases were LD (n=903; 55%), followed by RMSF 

(n=661; 40%).  The remaining 5 diseases made up the residual 5% of disease 

cases (Figure 2-2).   Three (3) cases of babesiosis were found within the MCO 

claims data, specifically within Davidson, Lincoln, and Washington Counties.  

Average ages varied within each disease type.  On average, patients diagnosed 

with LACV were much younger than the other diseases (Figure 2-3).  Gender 

distributions varied by disease.  Lyme disease appears to be diagnosed more in 

females, while LACV was diagnosed more often in males (Figure 2-4).   

 

Comparison of Medical Claims Case Data to State Reported Data 

To determine if and to what extent possible underreporting occurs, MCO 

case data was compared to the TDH data set for the entire study period (i.e., 

“data source” comparison).  Raw per100k disease rates using the MCO data 

source appear higher for LD, babesiosis, RMSF, and tularemia.  HME and LACV 

rates are higher from the TDH data source, and WNV rates are equal.  However, 

results from the general linear mixed model suggest that only LD and RMSF 

values are statistically different, as all other models did not converge (Table 2-1).  
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The average yearly number of medically diagnosed cases of LD from MCO data 

were 7.7 times higher those reported to the state (F = 835.44; P < 0.0001).  LD 

rates significantly varied over the 10 year study period (F = 2.08; P = 0.0283) and 

there was a significant temporal interaction with year*data source (F = 2.84; P = 

0.0026).  Based on the residual pseudo-likelihood, a tests of covariance suggests 

there is significant spatial variation of LD cases across the state (χ2 = 84.8; P < 

0.0001). The average yearly number of medically diagnosed cases of RMSF 

from MCO data were 1.24 times higher than those reported to the state (F = 

14.45; P = 0.0001).  RMSF disease rates significantly varied over the 10 year 

study period (F = 14.82; P < 0.0001), and there was a significant temporal 

interaction with year*data source (F = 10.14; P < 0.0001).  There is also 

significant spatial variation of RMSF case across the state (χ2  

Temporal trending indicates the aforementioned per 100k rate differences 

varied from year to year, and MCO rates were not consistently higher throughout 

the entire study period.  LD rates from MCO were consistently higher than TDH 

rates (

= 1135.01; P < 

0.0001). 

Figure 2-5).  TDH indicated no evidence of babesiosis but MCO data 

indicates 3 separate cases in years 2004, 2005, and 2009 (Figure 2-6).  RMSF 

rates from TDH were lower than MCO rates from 2000-2005, but increased 

beyond MCO for all years afterwards except 2008 (Figure 2-7).  TDH rates for 

HME were consistently higher than MCO (Figure 2-8).  Tularemia rates were 

much higher in MCO data for years 2000-2004, and then rates became 
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approximately equal from 2005-2009 (Figure 2-9).  LACV rates for TDH were 

higher from 2000-2004, then fluctuate afterwards (Figure 2-10).  TDH and MCO 

rates for WNV follow similar patterns, with TDH rates being slightly higher (Figure 

2-11). 

Monthly aggregated data show the seasonality of these diseases (Figure 

2-12; Figure 2-13; Figure 2-14; Figure 2-15; Figure 2-16; Figure 2-17) (NOTE: 

babesiosis not shown due to non-representation in TDH data).  Overall, the tick-

borne diseases were more prevalent during May – August, whereas the 

mosquito-borne illnesses were most prevalent during August – October.  With the 

exception of tularemia, the seasonal data was relatively consistent between the 

two data sources.  A time lag is evident throughout the seasonal graphs, where 

MCO data is lagging behind the TDH data.  The seasonality relationship between 

LD and RMSF across the entire study period for MCO data shows RMSF has 

sharper peaks suggesting cases are relatively more concentrated in the summer 

months (Figure 2-18). 

 

DISCUSSION 

Administrative medical claims data is an important resource for research 

and surveillance of chronic diseases (Yiannakoulias et al. 2009).  Results 

suggest administrative data could be a valuable resource in the tracking and 

reporting of infectious zoonotic diseases.  The overwhelming majority of cases of 

LD and RMSF cases within the MCO data source was expected and supports the 
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findings of others (GER 2004; CDC NCEZID 2010).  This study suggests LD 

rates reported to the state are well below that of MCO administrative data, and 

the actual statewide prevalence rate over the study period may be 3.8 per 100k, 

rather than 0.49 as reported by TDH statistics.  This equates to an approximate 

7.7 fold difference over the entire study period, resulting in an additional 1,956 

cases above the 292 reported to TDH.  This suggests that, on average, about 

196 cases of LD go unreported each year in Tennessee.  This supports the body 

of evidence suggesting LD is underreported, possibly up to 12-fold in some areas 

(Meek et al 1992; Coyle et al. 1996).  Though these diseases are required to be 

reported to the health department through the National Notifiable Disease 

Surveillance System, reporting is a voluntary process.  It is known that many LD 

cases are incomplete, unavailable, and not reported to the CDC (Bacon et al. 

2008).  Fines associated with non-reporting of diagnosed cases are relatively low 

and therefore provide little incentive to do so (MCO internal communication).  

However, the process of estimating a true prevalence rate is difficult, because 

there is also evidence suggesting LD cases are over-reported in areas that are 

not endemic for the disease (Rosen 2009), possibly due to misdiagnoses (Steere 

et al. 1993; Svenungsson and Lindh 1997) and having similar clinical symptoms 

as other diseases such as Southern Tick Associated Rash Illness (STARI) 

(Moncayo 2006; Rosen 2009).  Additionally the deer tick (Ixodes scapularis), 

which is the primary vector of Lyme disease, is rarely found in Tennessee 

(Moncayo 2006; Rosen 2009), thus providing biological evidence of over-
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estimating the disease.  This conflicting evidence supports the need for further 

investigation into integrating data sources. 

RMSF has been a reportable illness since the 1920s.  RMSF rates were 

slightly higher according to the MCO data, and suggest the actual number of 

cases in the state could have been 3.1 per 100k rather than 2.5 (an average 

difference of approximately 33 more cases per year).  RMSF is the most severe 

and frequently reported tick rickettsial disease in the US (CDC NCEZID 2010).  

Tennessee is one of the top 5 states for RMSF transmission, accounting for 

approximately 12% of cases nationwide.  As with LD, the number of RMSF cases 

may be underreported due to vague and/or asymptomatic infections (Lacz et al. 

2010), and despite frequent laboratory testing and reports of RMSF, the true 

incidence in Tennessee is unknown (Moncayo et al 2010).  Indirect 

immunofluorescence assay (IFA) serologic testing is used by the CDC and most 

state laboratories, though this test commonly produces false positive and false 

negative results (GER 2004) and therefore cannot always provide definitive proof 

of RMSF in the early symptomatic phase.  Additionally, diagnostic levels of 

antibodies do not appear until a week or more after onset of symptoms, thus 

making early detection difficult.  Prospective active surveillance for RMSF in 

regions where the disease is hyperendemic suggests that as many as 50% of all 

cases (including confirmed but unreported deaths due to RMSF) are missed by 

passive surveillance mechanisms (Wilfert et al. 1981). 
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Overall, disease incidence rates were higher using administrative data for 

all tick-borne diseases except HME (ehrlichiosis).  The state reported a nearly 3-

fold increase in HME cases from 2007 to 2008.  Cases in the neighboring state of 

Georgia have increased dramatically since being reportable in 1999 (GER 2004) 

and recent expansion of the lone star tick has increased cases in the New 

England area (CDC MMWR 1998; ALDF 2006).  HME rates may be 

comparatively lower in MCO data because clinical diagnosis is difficult due to 

misdiagnoses and limitations of confirmatory testing.  Diagnoses are often made 

before laboratory confirmation is available.  HME in Tennessee is under 

recognized and not routinely tested (Moncayo 2006).  Patients will usually seek 

medical care when initially experiencing vague and possibly mild flu-like 

symptoms, prior to the presence of classical diagnostic signs and symptoms 

(GER 2004).  The large deviation in HME cases between MCO and TDH data 

warrant further investigation into diagnosing patterns because it is apparent the 

disease is being reported to the state, but not necessarily recorded in the ICD-9 

medical claims system as the specified coding level examined during this study. 

Though statistical testing of babesiosis was inconclusive due to the small 

sample size, MCO data indicated at least 3 cases of babesiosis were diagnosed 

in Tennessee during the 2000-2009 study period.  This is of interest because 

babesiosis has never been reported in the state, and was only recently discussed 

at the 2010 International Conference on Emerging Infectious Diseases 

Conference, whereby the authors suggested they had discovered the first 
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diagnosed case in Tennessee in 2009 (Mosites et al. 2010).  These authors are 

now attempting to identify animal reservoir hosts and tick vectors.  Data from the 

MCO could aid in this effort, and suggest that at least 2 other cases occurred 

prior to this finding. 

The large noted differences in tularemia cases for the 2000-2004 time 

period and then convergence of values for the remaining study period was 

unexpected.  An outbreak of tularemia has occurred in Tennessee in the distant 

past (Warring and Ruffin 1946), therefore it is possible that an isolated acute 

outbreak occurred but went unreported (NIAID 2008).  It is also plausible this 

increase was related to bioterrorism because F. tularensis, the causative agent of 

tularemia, can be spread via aerosol transmission.  Since the 2001 terrorist 

attacks at the World Trade Center, there is heightened awareness of this disease 

(Altman 2002; Palmore et al. 2002) and therefore may explain the spikes in 

diagnosed cases. 

Patients diagnosed with La Crosse viral encephalitis were much younger 

than all others with a diagnosed zoonotic disease (median age: 8), and is 

consistent with the findings of others (Erwin et al. 2002).  Due to sample size, no 

definitive conclusion for comparing the TDH with MCO data was reached.  

However, the data suggest more cases were reported than diagnosed for years 

2000-2003.  The relationship reversed from 2006-2009, suggesting more cases 

were diagnosed than reported.  LACV is the predominant virus of the California 

serogroup, which is made up of other viral infections including St. Louis 
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encephalitis, Eastern/Western equine encephalitis, and other unspecified 

mosquito-borne viral encephalitis.  Diseases in this serogroup can present with 

similarities.  Thus, uncertainty around an exact diagnosis of LACV is possible 

because non-diagnosed cases may have failed to develop antibodies or available 

testing procedures are not sufficiently sensitive (Erwin et al. 2002).  As previously 

mentioned, examination of specific ICD-9 codes shows it is possible some cases 

went undetected due to variation in clinician coding practices. 

West Nile virus rates from the MCO data followed a similar temporal 

pattern to TDH reported cases, though actual MCO numbers were slightly lower 

and statistical testing was inconclusive due to sample size.  As with LACV, the 

clinical diagnosis of WNV (ICD-9: 066.4) falls within a larger more generic root 

ICD-9 category of “066: Other arthropod-borne viral diseases.” This phase of the 

study examined only those cases with specific ICD-9 codes, and it is therefore 

possible that many cases reported to the state were diagnosed at the root level, 

rather than the actual ICD-9 code.  To better understand the impact this may 

have on rates, I post-hoc examined per 100k rates at the root ICD-9 level for 

WNV and determined rates averaged over the study period were 52 times higher 

(4.37 vs. 0.08) when using the root diagnosis code compared to the specific ICD-

9 diagnosis.  This suggests physicians are far more likely to code at the root level, 

versus the more specific code level.  Further work in this area is needed.  

Zoonotic diseases are very seasonal in nature, mainly due to the temporal 

dynamics of the vectors’ life cycles and population densities of intermediate hosts.  
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For example, mid-summer peaks in Lyme disease incidence suggest tick nymphs 

are the life stage most responsible for transmitting infections to humans (Killilea 

et al. 2008).  Additionally, infection rates may be higher in the summer months 

because the general public spends more time out of doors during this time, thus 

increasing the likelihood of exposure.  Results from this study suggest 

administrative data and actual reported cases from TDH follow similar seasonal 

distributions patterns.  TDH data cannot be compared directly to MCO on a case 

by case basis (i.e., cannot match a patient record to a state reported case).  

MCO prevalence data slightly lagged behind TDH by approximately a month or 

two.  This is expected because the TDH event date represents the estimated 

date of exposure, whereas MCO data represents the date when the infected 

individual sought medical care.  It is known that symptoms of a zoonotic disease 

can develop days or even months after a bite (CDC NCEZID 2010).  This lag 

phenomenon further confirms the usefulness of MCO data in tracking zoonotic 

infections, as it provides an estimate of the time from exposure to treatment.  

This seasonal overlapping of data serves as both visual and quantitative 

confirmation that MCO data are in fact a viable source for detecting zoonotic 

infections.  That is, this correlation between data sources can serve as an 

indication that each data source is measuring similar events.   

Limitations in study include the inability to empirically filter out claims in 

error.  Even though the data were filtered to include only cases with at least 3 line 

items, there still exists the possibility of claims coding errors.  This filtering also 
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limits the ability to potentially estimate the true rate, because valid claims might 

be removed using this filtering process.  Treatment for these diseases is also not 

necessarily consistent between health care providers, so this introduces 

complexity in any attempts to develop an empirically based claim line item count 

algorithm.  Uncertainties surrounding the diagnosis and reporting of these cases 

suggest such trends must be interpreted with caution.  Historical population 

counts by county were not known for MCO data and were therefore estimated, 

and this estimation may not be without error.  There was no control for patients’ 

enrollment time in the plan, so it is possible that a patient’s claims records are 

incomplete.  For five of the seven studied diseases, statistical testing was not 

possible due to sample sizes.  However, it can be argued that statistical testing is 

not necessarily required because data for both sources were not drawn from a 

sample and represent the population.  Therefore, any noted differences are in 

fact real differences.  We are further limited by the inability to relate, via a patient 

identifier, a medically diagnosed case to a CDC defined “confirmed” or “probable” 

case.  A patient could be coded with LD in the MCO claim system without 

necessarily having a laboratory confirmed diagnosis, or a physician could report 

a confirmed case without laboratory confirmation if the patient presented with 

erythema migrans and was recently in an endemic county (CDC 1995).  Only one 

other study has examined the differences between administrative data and 

notifiable disease data (Yiannakoulias and Svenson 2009), and they arrived at 

the same conclusion that administrative health data may be insufficiently precise 



50 

without laboratory confirmation.  Both studies conclude that administrative data 

could enhance the current passive surveillance registry system.   

 

CONCLUSIONS 

Zoonotic diseases in Tennessee, particularly LD and RMSF, may be 

significantly underreported to the state health department within the current 

passive system.  Administrative medical claims data suggest that approximately 

200 cases of Lyme disease and 30 cases of Rocky Mountain spotted fever go 

unreported each year in Tennessee.  Medical claims data show babesiosis may 

have been present in the state 8 years prior to what is currently thought to be the 

first reported incident.  This study successfully demonstrates the usefulness of 

administrative claims data in the tracking and reporting of zoonotic diseases. 

In the past 10 years, the number of officially reported cases of tick-borne 

diseases in Tennessee has increased (e.g., from 0 officially reported cases of 

ehrlichiosis in 1995 to 74 in 2008, and from 0 reported cases of RMSF in 1995 to 

232 in 2008) (TDH WebAim 2010).  State and local public health officials rely on 

health care providers, laboratories, and other public health personnel to report 

the occurrence of notifiable diseases to state and local health departments (CDC 

1997).  Missing from this statement is health plans and the data they could 

provide to state and national surveillance efforts. Without such data, trends 

cannot be accurately monitored, unusual occurrences of diseases might not be 

detected, and the effectiveness of intervention activities cannot be easily 
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evaluated.  Reporting methods using administrative data and CDC surveillance 

are similar in that both represent the location of the disease based on the 

resident county of the infected individual, not exposure.  This should help control 

for differences in data gathering methodologies.  Though dates may differ, both 

data sources also capture a temporal component, where TDH reports the 

estimated exposure date and MCO data reports the data the infected individual 

sought medical treatment.  However, specific spatio-temporal differences of 

these two data sources are not known and further work examining these 

attributes is warranted. 
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Table 2-1: Summary statistics and results from general linear mixed models for 
yearly per 100k disease incidence comparisons between MCO and TDH data 

  MCO   TDH     

  
Yearly 
mean SD   

Yearly 
mean SD   F-value 

Lyme Disease 3.76 0.80  0.49 0.13  835.44* 

Babesiosis 0.01 † 0.02  0.00 0.00  - 

Rocky Mtn. spotted fever 2.75 0.46  2.32 1.17  14.45* 
Human Monocytic 
Ehrlichiosis 0.06 † 0.06  0.59 0.34  - 

Tularemia 0.19 † 0.21  0.05 0.04  - 

La Crosse Viral Encephalitis 0.04 † 0.05  0.10 0.13  - 

West Nile Virus 0.08 † 0.09   0.08 0.12   - 
* Significant at P < 0.05        
†   Mixed-models did not converge 
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Figure 2-1: Distribution of gender across age groups for patients with one of the 
described diseases (lines) compared to the entire MCO population (columns)
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Figure 2-2: Percent distribution of medically diagnosed zoonotic diseases in 
Tennessee for the 2000-09 study period 
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Figure 2-3: Mean (white square) and standard errors (bars) of patient age across 
disease type
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Figure 2-4: Distribution of gender across disease type 
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Figure 2-5: Temporal comparison of Lyme disease incidence rates using MCO 
medical claims data and Tennessee State Health Department (TDH) reported 
data 
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Figure 2-6: Temporal comparison of babesiosis disease incidence rates using 
MCO medical claims data and Tennessee State Health Department (TDH) 
reported data
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Figure 2-7: Temporal comparison of RMSF disease incidence rates using MCO 
medical claims data and Tennessee State Health Department (TDH) reported 
data 
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Figure 2-8: Temporal comparison of HME disease incidence rates using MCO 
medical claims data and Tennessee State Health Department (TDH) reported 
data 
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Figure 2-9: Temporal comparison of tularemia disease incidence rates using 
MCO medical claims data and Tennessee State Health Department (TDH) 
reported data
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Figure 2-10: Temporal comparison of La Crosse viral encephalitis (LACV) 
disease incidence rates using MCO medical claims data and Tennessee State 
Health Department (TDH) reported data 
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Figure 2-11: Temporal comparison of West Nile virus (WNV) disease incidence 
rates using MCO medical claims data and Tennessee State Health Department 
(TDH) reported data 
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Figure 2-12: Comparison of the seasonal distribution of Lyme disease cases for 
MCO data (diagnosis date according to medical claims) versus TDH data 
(estimated date of exposure according to state records)
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Figure 2-13: Comparison of the seasonal distribution of Rocky Mountain spotted 
fever cases for MCO data (diagnosis date according to medical claims) versus 
TDH data (estimated date of exposure according to state records) 
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Figure 2-14: Comparison of the seasonal distribution of human monocytic 
ehrlichiosis cases for MCO data (diagnosis date according to medical claims) 
versus TDH data (estimated date of exposure according to state records) 
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Figure 2-15: Comparison of the seasonal distribution of tularemia cases for MCO 
data (diagnosis date according to medical claims) versus TDH data (estimated 
date of exposure according to state records) 
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Figure 2-16: Comparison of the seasonal distribution of La Crosse viral 
encephalitis cases for MCO data (diagnosis date according to medical claims) 
versus TDH data (estimated date of exposure according to state records)
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Figure 2-17: Comparison of the seasonal distribution of West Nile virus cases for 
MCO data (diagnosis date according to medical claims) versus TDH data 
(estimated date of exposure according to state records) 
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Figure 2-18: Seasonality of Lyme disease (solid line) compared to Rocky 
Mountain spotted fever (dashed line) over the entire 2000-09 study period using 
MCO administrative medical claims data 
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CHAPTER 3  
 

SPATIO-TEMPORAL DIFFERENCES OF ARTHROPOD-BORNE INFECTIONS 
USING ADMINISTRATIVE MEDICAL CLAIMS DATA AND STATE REPORTED 

SURVEILLANCE DATA 
 
 
ABSTRACT 
 

When considered separately, notifiable disease registry systems and 

administrative medical claims data have positive and negatives attributes within 

disease surveillance efforts. Combined however, these data sources could 

provide a more complete source of information.  Using a spatio-temporal scan 

statistic, zoonotic case information derived from a state registry system (TDH) 

was compared with administrative medical claims information derived from a 

managed care organization (MCO) to statistically validate when and where these 

data sources differ.  Study observations included case information for four tick-

borne (Lyme disease [LD], ehrlichiosis, Rocky Mountain spotted fever [RMSF], 

tularemia) and 2 mosquito-borne diseases (West Nile virus [WNV], La Crosse 

viral encephalitis [LACV]) known to occur in Tennessee during 2000-09.  A total 

of 103 clusters were detected indicating when/where case volume was greater 

than expectation.  Of these, 9 were statistically significant (P<0.05) with 7 from 

TDH data.  Considering only the significant clusters, there was no spatial or 

temporal overlapping between data sources. Findings suggest MCO data and 

TDH registry data each add unique important disease information.  This study 
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further supports the need to integrate administrative and clinical registry data 

sources in order to provide a more comprehensive set of case information.  

INTRODUCTION 
 

Syndromic surveillance is the identification of disease indicators based on 

cases yet to be confirmed through, for example, laboratory results.  Case 

information is usually defined through administrative medical data sources such 

as emergency room reports and hospital inpatient data.  The intent of 

surveillance is to detect disease outbreaks quickly in order to increase response 

time (Mandl et al. 2003; Kuldorff et al. 2005).  Until recently, little emphasis has 

been given to the importance in using administrative medical claims data for 

research in and surveillance of communicable diseases (Yiannakoulias and 

Svenson 2009; Chapter 2).  However, because of the need for rapid outbreak 

detection, administrative medical data as a supplemental resource for disease 

surveillance is gaining more attention (Buckeridge 2005; Yiannakoulias and 

Svenson 2009). 

Notifiable diseases are infectious diseases for which regular, frequent, and 

timely reporting of individual diagnosed cases aids in prevention and control.  

The National Notifiable Disease Surveillance System (NNDSS), with oversight 

from the Centers for Disease Control and Prevention (CDC), serves as the 

nation’s comprehensive source of data on reportable notifiable diseases (CDC 

NNDSS 2010).   When considering using notifiable disease registry systems and 

administrative medical claims data in surveillance efforts, both data sources have 
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positive and negatives attributes.  Disease registry systems provide case 

information for health care organizations and providers, public health officials, 

government and regulatory agencies, and others concerned with information 

about potentially preventable diseases.   However, significant underreporting of 

notifiable diseases exists even though state regulations or contractual obligations 

may require it (Marier 1977; Meek et al. 1996; Young 1998; Koo and Caldwell 

1999; Bailey et al. 2005; Rosen 2009; Yiannakoulias and Svenson 2009; Chapter 

2).  Further, registry data is often presented at a comparatively more granular 

spatial scale (e.g., county) compared to administrative medical data. 

Administrative medical claims data may be more comprehensive than disease 

registry data but at the expense of potential over-reporting due to misdiagnosis or 

premature diagnosing without confirmed laboratory tests, coding errors, and 

variability in provider practice patterns.  Together though, these two data sources 

could provide a valuable combination of information for spatio-temporal 

surveillance (Yiannakoulias and Svenson 2009; Chapter 2). 

Other than the work presented in Chapter 2, only one other study 

examining the differences between administrative data obtained from a health 

insurer and notifiable registry data for zoonotic case information is known 

(Yiannakoulias and Svenson 2009).  Both studies indicate significant 

underreporting of cases, as well as spatial and temporal variation of information 

between the two data sources.  Chapter 2 highlights that significant spatio-

temporal differences exist at the aggregated population level.  Yiannakoulias and 
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Svenson (2009) go on to test for spatio-temporal clustering differences to 

specifically highlight where and when statistical separation occurs for Escherichia 

coli O157:H7 infections derived from the two data sources. 

This study compares information derived from state reported cases of 

zoonotic infections with administrative medical claims information derived from a 

large southeastern managed care organization (MCO).  The analysis presented 

in Chapter 2 and is expanded here to compare the spatio-temporal clustering 

information generated from these two data sources.  The intent is to statistically 

validate when and where these data sources differ by examining case 

information on four tick-borne (Lyme disease [LD], ehrlichiosis, Rocky Mountain 

spotted fever [RMSF], tularemia) and 2 mosquito-borne diseases (West Nile virus 

[WNV], La Crosse viral encephalitis [LACV]) known to occur in Tennessee. 

 
METHODS 
 
Study Area 

 The study area for this project was described in Chapter 2, but briefly, 

Tennessee is considered a southeastern state and is approximately bounded 

within the southernmost west coordinate (-90.309200, 34.995800) to the northern 

most east coordinate (-81.646900, 36.611900).  The spatial sampling unit 

consists of the 95 counties within Tennessee. 
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Disease Case Data 

Case data for the four diseases was extracted from two separate data 

sources and compared for spatial and temporal differences.  The first data 

source was medically diagnosed cases extracted from a MCO claims data 

warehouse.  Described earlier in Chapter 2, all medical claims having a primary 

or secondary arthropod-borne disease diagnosis code of interest (see below) 

were extracted for January 1, 2000-December 31, 2009.  Although 3 records of 

babesiosis were observed in the MCO database (Chapter 2), no observations 

existed in TDH data and this disease was therefore excluded from analyses.  

Medical claims having one of the following diagnosis codes were retained for 

study: 

 

Tick-Borne Diseases: 

• Borreliosis - Lyme disease (LD) (ICD-9 code: 088.81) 

• Ehrlichiosis - human monocytic ehrlichiosis (HME) (ICD-9 code: 082.41) 

• Rickettsiosis - Rocky Mountain spotted fever (RMSF) (ICD-9 Diagnosis 

Code: 082.0) 

• Tularemia (ICD-9 code: 021) 

 

Mosquito-Borne Diseases: 

• La Crosse viral encephalitis (LACV) (ICD-9 code: 062.5) 

• West Nile virus (WNV) (ICD-9 code: 066.4) 
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Any patient receiving medical services for one of the selected diseases prior to 

the start of the study period (January 1, 2000) or after the study period 

(December 31, 2009) was removed from the analysis.  For MCO medical claims 

data, space and time are represented as the county of residence for the patient 

at the time medical services were rendered, respectively. 

The second data source was an extract provided by the Tennessee 

Department of Health (TDH), Center for Environmental and Communicable 

Diseases (CEDS) detailing all notifiable diseases reported to the state of 

Tennessee during the study period (TDH WebAim 2010).  Because TDH serves 

as the compiler of all data sources to the state level, this data represents a 

theoretically complete set of reported cases for the state.  For TDH data, space 

and time are represented as the resident county for the infected person and 

when the exposure likely occurred, respectively. 

 

Statistical Analyses 

For each data source and disease, a retrospective space-time permutation 

analysis was conducted to determine if significant space-time disease clusters 

were similar between data sources.  The space-time scan statistic methodology 

is described in detail in Kulldorff et al. (2005).  Briefly, a scan statistic is created 

by moving a cylindrical window over each county centroid, where the circular 

base represents the size of the search radius space around the centroid and the 
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cylinder height represents a pre-defined time duration.  Significant cluster 

detection is determined using this scan statistic by creating a relatively infinite 

number of overlapping cylinders to define the scanning window, each being a 

possible candidate for a disease cluster.  Within each cylinder, the actual and 

expected number of disease cases, along with a Poisson generalized likelihood 

ratio (GLR) is calculated.  Under the Poisson assumption, the generalized 

likelihood ratio (GLR) for any given scan window is calculated as: 
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       Equation 2: Poisson GLR 

 
where  

T = total number of cases 

c = actual number of cases within the scan window 

E[c] = expected number of cases within the window under the null 

hypothesis 

I = indicator function which is equal to 1 if c > E [c] or 0 otherwise 

(Kulldorff 1997)  

 

To detect clusters with high rates, I was set to 1 (i.e., observed value should be 

higher than the expected value).  Using Monte Carlo simulation (Dwass 1957), 

the actual GLR is compared to simulated GLRs within the cylinder.  Relative risk 

(RR) for a significant cluster is calculated as the observed number of cases 
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divided by the expected number of cases.  For clusters where RR > 1, this 

indicates the observed number of diseases cases is greater than expectation.  

Statistical significance is defined in terms of a p-value, and is computed as 

p=R/(S+1), where R is the rank of the GLR for the actual observation and S is the 

number of simulated cases.  For example, if you simulate 999 cases, you thus 

obtain 999 GLR values.  You then rank order these 999 GLRs from highest to 

lowest, where the highest GLR indicates the highest probability a cluster exists at 

that site. You then insert the actual GLR into this rank ordered list, and if the 

actual GLR is higher than the 50th highest simulated GLR, then the cluster is 

statistically significant at an alpha of 0.05 (i.e., 50 / 999+1).  Irrespective of the 

actual P value itself (i.e., does not have to be below 0.05), the cluster with the 

highest P value is considered the primary cluster and all subsequent clusters in P 

value rank order are considered secondary.  This analysis adjusts for any 

potential purely spatial and/or temporal variation, does not require a control 

comparison, and is most appropriate when information about the population-at-

risk is unavailable or irrelevant (Kulldorff et al. 2005).  SaTScan™ software 

v9.0.1 (Kulldorff 2010) was used for all cluster detection analysis.  Specific 

software settings for these analyses included a retrospective space-time 

permutation probability model scanning for areas of high disease incidence, time 

aggregation of 1 month, a maximum spatial cluster size equal to 25% of the at-

risk population, maximum temporal cluster size equal to 25% of the study period, 

a maximum of 999 Monte Carlo replications, and secondary clusters could not 
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entirely overlap other previously reported clusters.  Maps of significant clusters 

were generated using Maptitude™ v5.0 GIS software (Caliper Corporation 2008). 

 
 
RESULTS 
 
 Case volume results for the study period are presented in detail elsewhere 

(Chapter 2).  Briefly, within the MCO claims data there were 1,651 diagnosed 

cases distributed across the six diseases compared to 2,166 TDH registered 

cases.  Raw count values are less important in this study because the underlying 

populations are different, and therefore counts are expected to vary.  More 

importantly is the distribution of cases within a data source and the space-time 

clustering of these cases.   

LD cases contributed to the majority of disease cases for MCO data 

(54.7%), while RMSF cases accounted for the majority of TDH cases (64.1%) 

(Figure 3-1).  Across all six diseases, 103 clusters had a RR score greater than 1, 

indicating the observed number of diseases cases was greater than expectation.  

Relative risk varied significantly across the diseases, but the largest RR values 

are associated with smaller case volume.  Of the 103 clusters, 9 were statistically 

significant (P<0.05) with 7 from TDH data and 2 from MCO data.  Considering 

each disease separately and only examining statistically significant clusters, 

there was no spatial or temporal overlapping between data sources (Table 3-1).  

Spatial and/or temporal overlapping occurred between data sources if 

significance was not considered (data not presented).  Both data sources 
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produced statistically significant LD and RMSF clusters, while only TDH data 

produced a significant WNV cluster.  No significant clusters were found for HME, 

tularemia, or LACV.  A cluster ID was assigned to all space-time clusters in order 

to cross-reference information in Table 3-1 to Figure 3-2 – Figure 3-4 for 

temporal and spatial cluster maps.  The cluster ID is a concatenation of disease, 

data source and cluster order.  The first letter in the ID denotes the first letter of 

the disease (L=Lyme disease; R=Rocky Mountain spotted fever; W=West Nile 

virus), the second letter denotes the data source (M=MCO; T=TDH) and the 

number represents the cluster order based on relative risk values (1=first; 

2=second, etc.).  The top portion of Figure 3-2 – Figure 3-4 illustrates the spatial 

overlay of the clusters, while the bottom portion indicates the temporal overlay of 

the clusters. 

 

DISCUSSION 
 

This study compared the spatio-temporal information of arthropod-borne 

zoonotic disease cases derived from two data sources, administrative medical 

claims data and a state notifiable disease registry system.  No attempt was made 

to make case-level comparisons between the data sources.  Rather, analyses 

were aggregated to the data source scale in order to make generalizations about 

spatio-temporal clustering similarities and differences between these two 

systems.  Unlike the sampling universe in Yiannakoulias and Svenson (2009) in 

which nearly all patients are insured by public insurance, our observed values 
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(i.e., disease cases) for TDH and MCO are not necessarily independent, nor are 

they necessarily non-independent.  MCO cases are not necessarily a pure 

subset of the state numbers and vice versa.  For example, a patient could have 

LD and the diagnosing clinician reports the case to the state.  That patient may or 

may not be a member of the MCO.   If the patient was a member of the MCO, 

this would be both a state case and a MCO case.  If they are a non-MCO 

member, this is a state case, but not an MCO case.  Conversely, a patient could 

have LD and be a MCO member but the diagnosing clinician does not report the 

case. This would indicate a MCO case that is not a state case.   

MCO cluster LM1 and TDH clusters LT1 and LT2 were statistically 

significant LD clusters but did not overlap in space or time.  Cluster LT2 had no 

radius and was therefore centered on the county centroid.  The outermost 

northwest portion of the LM1 cluster was approximately 12 km from cluster LT2, 

and the clusters were separated by about 1.5 years in time.    MCO cluster LM1 

temporally correlates with earlier MCO findings (Chapter 2) suggesting sharp 

peaks in LD rates during the 2002 time period.  LM1 and LT1 outer cluster limits 

are separated by less than 45 km.  Both data sources thus provide valuable 

disease case information not captured in one another.  No LD clusters occurred 

in the western portion of the state.  This mostly agrees with the findings of others 

reporting detection of Borrelia burgdorferi, the causative bacterium of LD, in the 

middle to eastern portions of the state (Haynes et al. 2005; Shariat et al. 2007; 

Jordan et al. 2009).  LD clusters were not necessarily confined to summer 
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months, unlike the seasonality trends where the majority of cases occurred in the 

summer months (Chapter 2).  We interpret this finding as the ability of the scan 

statistic to adjust for purely temporal abnormalities by testing thousands or even 

millions of overlapping space-time clusters (Kulldorff et al. 2005).  That is, 

disease surveillance is only effective if you can detect in a timely manner when 

case volume is abnormal.  If you were to simply compare case volume on a 

month by month basis, for example, your results would suggest LD outbreaks 

occur in May or June compared to previous months simply because this is when 

the disease is most prevalent (Chapter 2).  Conclusions could be flawed because 

the temporal look-back period is not long enough, nor it is variable as it is in the 

scan statistic (Kulldorff et al. 2005).  Thus, after adjusting for temporal case 

volume, significant clusters appear throughout a year from both data sources 

with no clear pattern.  All of this suggests the eastern portion of Tennessee may 

be a high-risk area for LD monitoring.   

RMSF is the most commonly reported tick-borne disease in Tennessee 

(Moncayo et al. 2010).  In 2009 there were 1,393 cases reported nationwide, with 

184 (13%) occurring in Tennessee (CDC MMWR 2010) making it the 3rd highest 

case count in the US.  In a study of RMSF disease severity, Tennessee ranked 

2nd only to North Carolina in the percentage of fatal RMSF cases (Adjemian et al. 

2009).  A significantly large RMSF cluster (RM1) was detected from MCO data in 

the western portion of the state, centered in Haywood County and extending out 

87 km, touching 28 Tennessee counties and completely inscribing 10 counties.  
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The center of RM1 was located 105 km from the cluster center of 6 fatal RMSF 

cases reported by Adjemian et al. (2009), and was completely inscribed within its 

250 km radius.  Temporally for RM1, this 6-month cluster coincides with the most 

prevalent months (April – October) of infected cases (Chapter 2), with nearly 

92% of all MCO cases occurring during this time of year.  TDH cluster RT1, RT3, 

and RT4 are all located in the middle portion of Tennessee, suggesting this 

rather large area should be monitored more closely for RMSF outbreaks.  TDH 

cluster RT2 in Monroe County is further east than the other TDH clusters, and is 

temporally long beginning in May 2003 and lasting 52 months (August 2005).  

This long duration temporally agrees with earlier findings (Chapter 2) where TDH 

rates began to rise dramatically in 2003 and peaked in 2006.  Our findings in the 

west agree with the known increased risk of RMSF in western Tennessee 

(Adjemian et al. 2009; Moncayo et al. 2010), but go further to suggest the middle 

and eastern portions of the state should also be monitored for heightened RMSF 

infections.  As with LD, statistically significant RMSF clusters for MCO and TDH 

did not overlap in space or time, thus providing further evidence to support data 

integration.  

A significantly high volume of WNV cases occurred in Fall 2003.  One year 

earlier in August 2002, a significant cluster in Dyer County was detected in TDH 

data (WT1), though it went undetected in MCO claims data.  Our findings 

generally agree both temporally and spatially with others.  The largest WNV 

epidemic ever recorded in US history occurred in 2002, with 4,156 human cases 
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and 284 deaths.  Shelby County, Tennessee is located 3 counties south of Dyer 

County.  It has consistently reported the highest number of human WNV cases, 

and from 2002 through 2006, 136 human WNV cases were reported to the state 

of which 66% occurred in Shelby County (Ozdenerol et al. 2008).  Further, high 

volumes of laboratory confirmed WNV infections were detected in the Tennessee 

Valley area for the July – September 2002 time period in nearby Paris, TN, less 

than 35 km from the Dyer County cluster edge (Cupp et al. 2007). 

Overall, results are mixed when comparing spatial and temporal clustering 

between data sources.  This agrees with the preponderance of evidence 

suggesting the need to integrate electronic administrative data with clinical 

registry data (e.g., NAHDO; Doebbeling et al. 1999. Virnig and McBean 2001) in 

order to provide more comprehensive information than either single source.  

Disease surveillance and retrospective health care studies require monitoring of 

incidence rates across space and over time.  Therefore, sample sizes can be 

limited within the space, time, or space-time dimension.  For example, less than 

2% of all peer-reviewed publications in the journal Ecology were from studies 

lasting more than 5 years (Tilman 1989).  Because of limited data resources, 

public health officials and researchers should make full use of existing data 

sources, both administrative and clinical registries.  Limited sample sizes can be 

inherit in studies covering large geographic areas simply due to logistical and 

cost constraints, and therefore the alternative is to reduce the study area and 

scope (e.g. Letcher et al. 2002).  However, a small scale spatial study can 
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introduce unwanted bias in the results because biological organisms may exhibit 

differential responses at different spatial scales (Wiens and Milne 1989; 

Zimmerman et al. 2007).  Medical claims data are recorded within the healthcare 

system every time a patient visits their doctor or hospital for a medical service, 

fills a prescription medicine, or seeks consultation from a physician.  Of particular 

interest is the amount of available data from health plans, as well as the temporal 

and spatial granularity of captured data elements from each medical encounter.  

Medical claims data contain, among other things, the patient’s ZIP code at the 

time of service, date of medical service, and medical diagnosis codes which 

describe the reason why the patient is seeking medical care.  The geographic 

element of a patient’s residence location combined with the date of diagnosis 

provides both a spatial and temporal “stamp” of what the patient was exposed to, 

and potentially when and where the exposure may have occurred.  Health plans 

may provide a centralized warehouse of rich data spanning many years, 

supporting more large-scale longitudinal disease studies (Roos et al. 1987; 

Schull et al. 2006) and surveillance activities. 

Our study is not without limitations for some of the reasons outlined in 

Chapter 2.  Statistical significance was not reached in all clusters and 

insignificance could simply be determined based on our parameter settings within 

the SaTScan™ tool (Sugumaran et al. 2009), the chosen spatial scale (Winters 

et al. 2008; Lloyd 2010), or limited sample size for certain diseases. 
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CONCLUSIONS 
 

Findings suggest administrative claims data offer disease case information 

not captured in clinical registry systems and vice-versa, thus supporting the need 

for integrating data to provide a more comprehensive data source.  Less than 

one-third of all US states placed contractual obligations on Medicaid contracts for 

MCOs to report communicable diseases (Mauery et al. 2003).  Therefore, health 

plans themselves could engage in direct reporting of notifiable diseases because 

they process the medical claims containing the diagnoses information.  

Supplemental reporting of communicable diseases by health plans could 

centralize the reporting to health departments or the CDC, thereby expediting the 

ability to identify potential disease clusters (Mauery et al. 2003).  Medical claims 

data may aid in the study and tracking zoonoses as it could be used to improve 

both the temporal and spatial scale of study through the use of long-term 

longitudinal data covering a large geographic expansion.  Additionally, claims 

data could supplement the current reporting of notifiable diseases to the CDC.  

This effort may help bridge the disease incidence gap created by health care 

providers’ underreporting and thus allow for more effective tracking and 

monitoring of infectious zoonotic diseases across time and space. 
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Table 3-1: Spatio-temporal county-level cluster summary of statistically 
significant clusters per data source 

Disease Data 
Source 

Cluster 
ID* County Cluster 

Radius
† Time Period 

of Cluster ‡ 
P 

value 

Num. 
of 

Cases 

Relative 
Risk 

(RR)** 

Lyme 
disease 

MCO LM1 Monroe  76.0 1/02-3/04 0.006 68 1.95 

TDH LT1 Sullivan  92.0 1/09-7/09 0.004 13 5.02 
LT2 Cumberland  0.0 7/00-8/00 0.034 4 23.84 

Rocky 
Mountain 
spotted 
fever 

MCO RM1 Haywood  86.7 4/09-10/09 0.002 25 3.15 

TDH 

RT1 Marshall  0.0 10/00-11/00 0.001 3 347.25 
RT2 Monroe  67.5 5/03-8/05 0.001 65 2.08 
RT3 Smith  74.9 5/07-8/08 0.001 119 1.66 
RT4 Hickman 52.8 12/05-11/06 0.006 57 2.04 

Human 
Monocytic 

Ehrlichiosis 
no significant clusters 

Tularemia no significant clusters 

La Crosse 
viral 

enceph. 
no significant clusters 

West Nile 
virus TDH WT1 Dyer  67.9 8/02-8/02 0.007 5 6.57 

* Refer to Figure 3-2 - Figure 3-4 for cluster ID location and time comparison 
† County location for center of cluster 
‡  Radius = 0 indicates cluster is centered on county centroid; Displayed as a dot 
on maps. 
** Calculated as the number of observed cases divided by the number of 
expected cases 
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Figure 3-1: Summary of disease distribution by data sources: managed care 
organization (MCO) adminsitrative claims data and the Tennessee Deaprtment of 
Health (TDH) notifiable disease registry 
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Figure 3-2: Spatial (top) and temporal (bottom) comparison of significant Lyme 
disease clusters created using two data sources: managed care organization 
(MCO) administrative claims data and the Tennessee Department of Health 
(TDH) notifiable disease registry 
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Figure 3-3: Spatial (top) and temporal (bottom) comparison of significant RMSF 
clusters created using two data sources: managed care organization (MCO) 
administrative claims data and the Tennessee Department of Health (TDH) 
notifiable disease registry 
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Figure 3-4: Spatial (top) and temporal (bottom) comparison of significant WNV 
clusters created using two data sources: managed care organization (MCO) 
administrative claims data and the Tennessee Department of Health (TDH) 
notifiable disease registry 
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CHAPTER 4  
 

SPATIALLY EXPLICIT MULTI-SCALE MODELS FOR EXPLAINING THE 
OCCURRENCE OF INFECTIOUS ZOONOTIC DISEASES 

 

ABSTRACT 

Zoonotic diseases can be transmitted via an arthropod vector, and it is 

often of interest to create disease incidence risk maps based on underlying 

associative factors within the surrounding landscape of known occurrences.  A 

major limitation however is the ability to track disease incidence at a meaningful 

geographic scale.  It has been shown that administrative medical claims data is 

useful in the tracking of zoonotic diseases and provides disease case information 

at the ZIP code level.  Four separate modeling techniques were compared 

(stepwise logistic regression, classification and regression tree, gradient boosted 

tree [GBT], neural network [NNET]) to describe the occurrence of 2 tick-borne 

diseases known to occur in Tennessee (Lyme disease [LD], Rocky Mountain 

spotted fever [RMSF]) as they relate to socio-demographic, geographic, and 

habitat characteristics.  Areas higher in disease prevalence were not necessarily 

the same areas having high predicted risk of disease infection.   Of 615 ZIP 

codes modeled, LD occurred in 49.9% and RMSF in 46.8%. GBT best explained 

LD occurrence (misclassification rate: 0.232; average squared error: 0.187; ROC: 

0.789). RMSF incidence was best explained with a NNET algorithm 

(misclassification rate: 0.288; average square error: 0.232; ROC: 0.696).  

Covariates most useful in explaining LD and RMSF were similar and included co-
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occurrences of RMSF and LD, respectively, amount of forested and non-forested 

wetlands, pasture/grasslands, and urbanized/developed lands, population counts, 

and median income levels of the underlying census population. 



103 

INTRODUCTION 

Because zoonotic diseases are transmitted via an arthropod vector, it is 

often of interest to understand vector habitat in the epidemiologic study of 

diseases.  It is common in spatial epidemiology to describe vector habitat and 

then create causal inference risk maps of potentially high-risk areas based on 

habitat preferences (Wimberly et al. 2008; Winters et al. 2008).  These geospatial 

mapping exercises outline areas having high probabilities of vector prevalence, 

and then infer disease risk based on probable presence or absence.  For 

example, abundance of the tick genus Ixodes, one of which is the vector primarily 

responsible for the transmission of Lyme disease (LD), is associated with 

temperature, landscape slope (Lane and Stubbs 1990), forested areas with 

sandy soils (Kitron et al. 1992), and increasing residential development (Aronoff 

1989).  Tularemia incidence is positively associated with dry forested habitat 

areas (Eisen et al. 2008).  Populations of people living within forested areas and 

on specific soils are at higher risk of contracting LD (Glass et al. 1995; Killilea et 

al. 2008).  Human monocytic ehrlichiosis (HME or Ehrlichia chaffeensis) is more 

associated with wooded habitats compared to neighboring grassy areas (Gaff 

and Schaefer 2010). 

A major limitation in the study of such diseases however is the ability to 

comprehensively track disease incidence at a meaningful geographic scale 

(Killilea et al. 2008).  Data aggregations and disease incidence rates are most 

often presented at the county level (Wimberly et al. 2008; Eisen and Eisen 2007; 
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Sugumaran et al. 2009).  Unfortunately, county level assessments compared to 

ZIP code level analyses may mask smaller isolated high risk areas as well as 

obscure within county variability (Mostashari et al. 2003; Eisen et al. 2006).  In 

2007, the Centers for Disease Control and Prevention (CDC) called for a means 

to improve data collection methods to determine probable pathogen exposure 

sites based specifically on patient activity spatial patterns (Eisen and Eisen 2007).  

This suggests geocoding the residential location (street address or ZIP code) of 

the infected patient and conducting a radial search around that point to examine 

the underlying landscape (Wieczorek et al. 2006).  However, data describing 

possible pathogen exposure sites are limited (Glass et al. 1995; Eisen and Eisen 

2007), and means to collect this information can be very costly.  Therefore, 

studies within the wildlife and ecological sciences are often limited in predictive 

power due to the inability to generate large sample sizes, either because of costs, 

data availability, or both (Bissonette 1999). 

Administrative medical claims data contain, among other things, a 

patient’s ZIP code at the time of service, date of medical service, and medical 

diagnoses describing the reason(s) why the patient is seeking medical care.  The 

use of administrative claims data in the study of zoonotic diseases was 

previously discussed (Chapters 2-3).  Use of this data is relatively easy and 

inexpensive to work with, and could represent a volume rich source of persons 

diagnosed with zoonotic diseases.  The geographic element of a patient’s 

residence location combined with the diagnosis provides spatially explicit 
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information regarding what the patient was exposed to, and potentially where the 

exposure may have occurred.  Spatially explicit disease case models created 

using data from managed care organizations (MCO) do not exist.  It is the 

purpose of this study to determine if meaningful exploratory spatial models can 

be constructed at the ZIP code level to help describe the occurrence of 2 tick-

borne zoonotic diseases known to occur in Tennessee (LD and Rocky Mountain 

spotted fever [RMSF]).  The general research hypothesis is certain landscape 

and socio-demographic factors are useful in explaining zoonotic disease 

presence. 

 

METHODS 

Study Area 

 The study area for this project was described in Chapter 2, but briefly, 

Tennessee is considered a southeastern state and is approximately bounded 

within the southernmost west coordinate (-90.309200, 34.995800) to the northern 

most east coordinate (-81.646900, 36.611900).  Estimated land cover 

percentages for the state are as follows: open water (2.7%), forested wetland 

(3.0%), non-forested wetland (0.4%), grassland/pasture (37.2%), cropland (5.8%), 

upland deciduous forest (40.6%), upland mixed forest (4.4%), upland coniferous 

forest (3.6%), urban/developed (1.9%), and non-vegetated (0.2%) (Tennessee 

Wildlife Resources Agency 1997). 
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Disease Case Data 

Medically diagnosed cases of LD and RMSF from January 1, 2000-

December 31, 2009 were collected from the electronic data warehouse system of 

a large MCO located in Tennessee.  These diseases were selected because they 

occurred in at least 20% of the sample units (i.e., ZIP codes), and therefore 

would not be potentially plagued by issues related to rare event modeling.  The 

process of data collection was described in detail in Chapter 2, but briefly, 

zoonotic disease cases within the study area of Tennessee were extracted from 

MCO claims data warehouse if they had any of following diagnosis codes for LD 

(ICD-9 code: 088.81) and RMSF (ICD-9 Diagnosis Code: 082.0).  Disease cases 

without at least 3 separate line items in the claims system were removed.  Any 

patient receiving medical services for one of the selected diseases prior to the 

start of the study period or after the study period was removed from the analysis. 

 

Spatial Sample Unit 

This study uses two types of spatial data: 1) disease occurrence data at 

the ZIP code level extracted from medical claims and 2) underlying spatial data 

to describe the socio-demographic, geographic, and habitat characteristics 

surrounding the ZIP code centroid.  ZIP codes can have either a geographic 

centroid or population-weighted centroid.  A geographic centroid is defined by the 

US Census Bureau as the center of the tabulation area as it relates to the 

geographic extremes of the physical boundaries of the polygon.  A population-
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weighted centroid is the center of the tabulation area as determined by where the 

majority of the population is located within the polygon.  For this study, the 

geographic centroid was converted to a population weighted ZIP code centroid to 

create the spatial sample units.  This weighted-average transformation was 

accomplished using the underlying inscribed census block population counts 

within the enclosing ZIP code to calculate an adjusted longitude (xz) and latitude 
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Equation 3: Population-weighted centroid conversion

 
 

where  

xz 

p

= transformed population-weighted x-coordinate for ZIP code z 

i = the population of the ith

x

 census block within ZIP code z 

i = the x-coordinate value of the ith

Repeat for the y-coordinate. 

 census block.  

 

Dependent (Response)Variable 

For the purposes of this study, spatial models are considered to be 

exploratory models at the ZIP code level, and separate models were built for 

each of the 2 studied diseases.  Two separate modeling exercises were 

conducted across the 2 diseases using different dichotomous (i.e., binary) 
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response variables.  The first approach assigned a value of 1 to all ZIP codes if 

the disease in question was present at any time during the study period, 

otherwise the ZIP is assigned a value of 0.  ZIP codes with a value of 1 are 

hereafter considered ‘case’ sites.   

The second modeling approach assigned a 1 to only those ZIP codes with 

a z-score greater than zero.  This was done to explain characteristics of ZIP 

codes having an observed disease case volume above expectation relative to all 

other ZIP codes.  The observed number of cases in a ZIP code was the per 100k 

rate averaged over the study period, and the expected number of cases within a 

ZIP code was derived from the statewide incidence rate averaged over the entire 

study period.  Thus ZIP code rates were proportional to the member population 

within that ZIP code.  A z-score was calculated for each ZIP code using the 

standard formula: 

j

ji
i

yy
z

σ
−

=
             

Equation 4: Standard z-score calculation
 

where  

iz  = z-score for ZIP code i 

iy  = observed per 100k rate of cases in ZIP code i averaged over the 

entire study period 

jy  = mean of the disease rate cases averaged across the set of j ZIP 

codes 
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jσ  = standard deviation of the disease rate cases across the set of j ZIP 

codes 

 

Independent Variables 

Underlying socio-demographic, geographic, and habitat characteristics of 

the landscape surrounding the population-weighted ZIP code centroid served as 

explanatory variables.  Clinical variables representing the per100k rate of other 

zoonotic diseases (LD, RMSF, human monocytic ehrlichiosis, babesiosis, 

tularemia, La Crosse viral encephalitis, and West Nile virus) within the ZIP code 

were also included.  Independent variables in the model are considered multi-

level because data aggregations were done at 2 spatial scales, 1.6 km and 8 km.  

Socio-demographic factors included total population count and median income 

from the 2000 US Census Bureau estimates within 1.6 km and 8 km of the ZIP 

centroid.  Geographic factors included continuous distance (km) to the nearest 

river/stream and the number of river kilometers within the 2 radial aggregation 

bands.  Habitat characteristics included the amount (km2

Land use data was downloaded from the Tennessee Spatial Data Server 

(TSDS) and is a generalized version of the detailed vegetation map that was 

prepared in compliance with the National Gap Analysis Program effort.  The 10 

land cover types were derived from classification techniques performed on 

Landsat Thematic Mapper imagery and included open water, forested wetland, 

) of land use type and 

wetland type (described below) within the 2 radial aggregation bands.  
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non-forested wetland, pasture/grassland, cropland, upland deciduous forest, 

upland mixed forest, upland coniferous forest, urban/developed, and non-

vegetated (barren land & strip mines/rock quarries/gravel pits).  The strip 

mines/rock quarries/gravel pits class were taken from ancillary data sets and 

added to the classification file. The forest classes were extracted from satellite 

imagery and reclassified.  Forest communities were interpreted from aerial 

videography acquired in April 1995 and correlated to the satellite imagery 

(Tennessee Wildlife Resources Agency 1997).  

Digital wetland areal data was downloaded from the TSDS and is sourced 

from the National Wetlands Inventory (NWI) data base.  The US Fish and Wildlife 

Service (USFWS) and the US Geological Survey (USGS) are the Federal 

agencies primarily responsible for providing geospatial information relative to the 

Nation's wetlands.  This data layer represents the extent, approximate location 

and type of wetlands and deepwater habitats in the conterminous United States. 

These data delineate the areal extent of wetlands and surface waters as defined 

by Cowardin et al. (1979). Certain wetland habitats are excluded from the 

National mapping program because of the limitations of aerial imagery as the 

primary data source used to detect wetlands.  This data layer was digitized from 

USGS topographic base maps.  Alpha-numeric codes describing the type of 

wetland are attributed to each digitized polygon and correspond to the wetland 

and deepwater classifications.  For example, “L1UB1Hx” indicates the delineated 

area as: 
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• L: Lacustrine (System) 

• 1: Limnetic (Subsystem) 

• UB: Unconsolidated Bottom (Class) 

• 1: Cobble-Gravel (Subclass) 

• H: Permanently Flooded (Water Regime modifier) 

• X: Excavated (Modifier) 

There were a total of 567 different described wetland types in the 

Tennessee NWI wetlands data layer.  To reduce the amount of potential 

explanatory variables, the top 11 wetland types by area were selected (Table 

4-1).  This reduced set of wetland areas account for approximately 90% of the 

entire landscape, so little information was lost and provided a refined basis for 

predictive modeling. 

All continuous independent variables (i.e., covariates) were transformed 

using a quantitative binning procedure.  This was done to improve model 

performance so as to not restrict the relationships between covariates and 

response to only linear interpretations.  For each covariate, 4 bins were created 

using quantiles to generate groups by splitting the data into bins having 

approximately the same frequency of observations.  For example, the covariate 

“median income” could be separated into 4 bins, where INCOME_BIN_1 has all 

observations with an income less than $29,000, INCOME_BIN_2 ($29-$33,000), 

INCOME_BIN_3 ($33-$39,000) and INCOME_BIN_4 (>$39.000).  These 

transformed variables are then treated as ordinal dummy variables in the 
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modeling procedures.  When modeling a particular disease, geographic co-

occurrence of all other diseases was included as a binary indicator (0,1 where 1 

indicates another disease was also recorded in the ZIP code). 

Patient level characteristics (e.g., age, gender, comorbidities) were 

excluded from analyses because the intent of this study was to determine what 

geographically based risk factors could explain disease occurrence.  Additionally, 

we aimed to produce risk factors that could be replicated in other environments 

without requiring known case/patient level information.   

 

Analytical Modeling Techniques 

Four separate modeling techniques were compared (stepwise logistic 

regression, classification decision tree, gradient boosted tree, neural network) to 

determine which model type performs best (i.e., champion model).  The modeling 

dataset consisted of 615 ZIP code records with 2 different binary response 

variables (evidence of disease, above average incidence according to z-score) 

and all aforementioned explanatory variables.  The dataset was partitioned into 

two mutually exclusive data sets, a training data set, and a validation data set.  

The training data set was used for preliminary model fitting, and then once the 

model was built, the validation data set was used to fine-tune (to help prevent 

over-fitting) and assess the final adequacy of the model.  The data partitions 

were created using stratified sampling (stratified by the binary response variable), 



113 

and the training data set included approximately 80% (n=490) of the observations, 

and the validation set contained the remaining 20% (n=125).   

Stepwise logistic regression (SLR) is a variable selection algorithm that 

begins with no candidate variables in the model, and then systematically adds 

effects that are significantly associated with the response variable (Efroymson 

1960).  Effects can be subsequently removed if it is not significantly associated 

with the response once another variable enters the model.  This selection 

process continues until either 1) no other effect in the model meets the ‘stay 

significance level’ or 2) the user defined number of iterations criterion is met.  

The entry significance level value was set to 0.5 to ensure effects with potential 

were considered, while stay significance was set to a more conservative 0.05 to 

guard against Type I errors (concluding that a factor was influential when in fact it 

was not).   

A classification and regression (CART) decision tree (Breiman et al. 1984) 

is a commonly used algorithm in data mining and machine learning techniques.  

Classifications are used with nominal targets, while regression trees are used 

with continuous targets.  A tree is created by applying a series of simple 

interpretable rules to the data in a recursive partitioning factor using a splitting 

criterion. These rules are then used to classify new observations into a series of 

tree nodes. One of the major benefits of a decision tree is its ability to use 

missing data which can often be as informative as known data, unlike regression 

techniques which cannot process this information directly.  A classification tree 
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was created using the Pearson Chi-square p-value statistic as a splitting criterion.  

Maximum threshold p-values for variable consideration in the splitting criterion 

were set to 0.2 with a Bonferroni adjustment (to account for multiple 

comparisons), and the minimum number of acceptable observations for a 

categorical value was set at 15. 

 Gradient boosting within classification and regression trees (GBT) is an 

emerging technique in data mining algorithms that has been shown to outperform 

traditional decision tree approaches (De Ville 2006; Elith et al. 2008).  Boosting is 

an adaptive method designed to improve predictive performance by combining 

multiple simple models into one overall “ensemble” model (Friedman 2001; 

Friedman 2002).  Boosting is described in detail elsewhere (Friedman 2001), but 

briefly, this approach recursively resamples the data to generate results that form 

a weighted average of the resampled data set.   The successive samples are 

adjusted to accommodate previously computed inaccuracies.  This continues 

until a user-defined limit is reached, then each tree within the series is combined 

to form a single final algorithm explaining the response variable. 

A neural network (NNET) is a type of model that is designed to mimic the 

neurophysiology of the human brain, in that it attempts to “learn” as it moves 

along the data and examines it.  These types of models are referred to as 

feedforward backpropagation networks (Lapedes and Farber 1987).  As with the 

gradient boosting technique, they are typically used when understanding the 

effects of the model are less important compared to model performance.  That is, 
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the output of the model cannot be readily interpreted as the aforementioned SLR 

and CART techniques can.  In a neural network, there are three kinds of units in 

the modeling procedure: 

1. Input units obtain the values of covariates and standardize those values; 

2. Hidden units perform internal computations, providing the nonlinearity that 

makes neural networks powerful; and 

3. Output units compute predicted values and compare those predicted 

values with the values of the response variable 

Each unit produces a single computed value and this computed value is passed 

along the connections to other hidden or output units. Output units (i.e., predicted 

values) are compared with the response variable value to compute the error 

function in an attempt to minimize the error.  For this project, the multilayer 

perceptron (MLP) method which is the most common network technique was 

utilized.  The MLP was leveraged because they are best used when prior 

knowledge of the relationship between inputs and targets is unknown. 

 

Model Comparisons 

All models were built using SAS® Enterprise Miner™ (SAS® 2009).  A 

model champion was chosen using the overall misclassification rate applied to 

the validation dataset, which represents the percentage of all incorrectly 

predicted observations.  In addition, the following model fit statistics were 

examined: receiver operator characteristic (ROC) curves, averaged squared 
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error, sensitivity, specificity, and positive predictive values (PPV).  ROC curves 

plot sensitivity (true positive) on the y-axis and 1-specificity (false positive) on the 

x-axis, which can be used to visually interpret how well models perform relative 

to one another.  Models with a steep initial rise then level off are comparatively 

better than models with curves that follow the 45 degree diagonal.  To provide 

interpretation for GBT and NNET models, the original complete data set (n=615) 

was scored with the predictive algorithms produced by the final GBT and NNET 

models.  This scoring calculated a predictive probability ranging from 0-1 for each 

observation (i.e., ZIP code), detailing the likelihood that the disease in question 

would be present in the ZIP code.  We then applied an explanatory CART model 

to the data to determine which independent variables were most associated with 

predicted probabilities greater than 0.5 (Wall and Cunningham 2000). 

 

RESULTS 

Of the 615 ZIP codes modeled, LD occurred in 49.9% (n=307), RMSF 

occurred in 46.8% (n=288), and LD or RMSF occurred in 97% (n=595) of the ZIP 

codes.  Approximately 33% (n=204) of the ZIP codes had at least one case of LD 

and one case of RMSF.  Of the 307 ZIP codes with LD, 51 had above average 

incidence rates of LD (i.e., z-score >0).  Of the 288 ZIP codes with RMSF, 48 had 

above average incidence rates (i.e., z-score >0).  Lastly, 2% (n=12) of all ZIP 

codes had above average incidence rates for both RMSF and LD. 
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The average LD rate across all ZIP codes and the entire study period was 

4.56 per 100k (SD: 9.46).  The highest average LD rate (81.3 per 100k; n = 2) 

occurred in ZIP code 38564 within the Knoxville region of Jackson County.  The 

highest raw count of LD cases (n = 29) occurred in ZIP code 37830 of Anderson 

County (Knoxville region).  The average RMSF rate across all counties and the 

entire study period was 4.05 per 100k (SD: 9.32).  The highest average RMSF 

rate (98.1 per 100k; n = 1) occurred in ZIP code 37140 within the Nashville 

region of Hickman County.  The highest raw count of RMSF cases (n = 28) 

occurred in ZIP code 38401 of Maury County (Nashville region).  Approximately 

38% of the LD cases occurred in the Nashville regional area (middle of state), 

and only 5% occurred in the Johnson City area (northeast potion of state).  

Similarly, 45% of the RMSF cases occurred in the Nashville regional area and 

only 3% occurred in the Johnson City area (Table 4-2; Figure 4-1; Figure 4-2). 

Exploratory models examining ZIP codes having at least one occurrence 

of LD or RMSF successfully converged across all 4 modeling procedures.  For 

the LD models, the GBT outperformed all others with a misclassification rate of 

0.232, average squared error of 0.187 and ROC value of 0.789 (Table 4-3; 

Figure 4-3) using misclassification rate as the champion model selection criterion.  

Covariates most useful in explaining LD occurrence within the GBT model were 

co-occurrences of RMSF, amount of forested and non-forested wetlands, upland 

deciduous forests and urbanized/developed lands, population counts, median 

income, and wetland type PUBHh (Palustrine Unconsolidated Bottom 
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Permanently Flooded Dike/Impounded).  Occurrence of RMSF was best 

explained using a neural network algorithm (misclassification rate=0.288; 

average square error=0.232; ROC=0.696) (Table 4-3; Figure 4-4).  Similar to the 

LD model, covariates most useful in explaining RMSF occurrence within the 

NNET model were co-occurrences of LD, amount of forested and non-forested 

wetlands, pasture/grasslands, and urbanized/developed lands, and population 

counts. 

  The algorithms from the champion models were used to score the 

validation data set (n=125).  Areas higher in disease prevalence were not 

necessarily the same areas having high predicted risk of disease infection 

(Figure 4-5; Figure 4-6).  Table 4-3 provides a comprehensive assessment of all 

modeling outcomes for LD and RMSF and details covariates useful in explaining 

the variability in disease occurrence.  A ZIP code was predicted to be a “case” 

site if the posterior probability was greater than or equal to 0.50, and therefore all 

model fit statistics are based on this predicted probability threshold.  The symbols 

denote the general direction of the data, where a “+” indicates a positive 

relationship between the covariate and the response (i.e., as the covariate 

increases, the likelihood of a disease case occurring also increases), a “-” 

indicates a negative relationship between the covariate and the response (i.e., as 

the covariate increases, the likelihood of a disease case occurring decreases), 

and a “+ / -” indicates a non-linear relationship (i.e., in some ranges of the 

covariate, the likelihood of a disease case occurring decreases while in other 
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ranges, likelihood of disease increases).   Note that the interpretations of the 

signs are only generalizations for two reasons: first, not all modeling procedures 

can be directly interpreted, and second, raw data were transformed using the 

binning procedure to segment each variable into groups thus allowing for non-

liner interpretations.  Additionally, p-values for covariates are not reported 

because only the SLR procedure produces this type of interpretable statistic.  

Model fit was adequate for both LD and RMSF.  Figure 4-7 displays the 

performance of each model against the posterior probability predictions.  The 

dotted 45o

Exploratory models using the z-score to define ZIP codes with above 

average incidence rates were unsuccessful across all modeling types.  The 

models did not pick any successful covariates to explain the above average 

incidence rates, and therefore each algorithm simply predicted all observations to 

have below average incidence rates.  No other results are reported for these 

models. 

 line represents a perfect model fit based on the predictions from the 

algorithm.  For example, within the posterior probability range of 0.50 – 0.60 you 

would expect from a perfect model that approximately 50-60% of the ZIP codes 

actually had a disease case.  Additionally, this chart can be used to determine 

the optimal posterior probability that should be used as a threshold to assign a 

predicted classification of “case” to the ZIP code.  Moving the threshold value of 

the prediction can thus alter the model fit statistics because model evaluation is 

based in part on the ability to predict a “case”. 
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DISCUSSION 

 Results from this study suggest LD and RMSF incidence rates are 

associated with varying landscape characteristics.  Disease incidence was 

explained reasonably well within the spatially explicit models at the ZIP code 

level using administrative medical claims data as a source for diagnosed cases.  

It is believed this is the first study that has attempted to use claims data for 

modeling the spatial characteristics of zoonotic diseases.  This study also 

supports the need to collect and study disease incidence at the ZIP code level as 

opposed to a more coarse county level.  

Three out of the four models suggested that LD incidence increased with 

increasing urbanization.  Two different covariates reflect urbanization in this 

study: urbanization as a land use type and population counts.  Both covariates 

indicated a consistently positive relationship with disease risk across the 4 

models.  Assuming urbanization is indicative of residential habitation, others have 

also suggested that residential factors were associated with increased risk of LD 

(Steere et al. 1977; Maupin et al. 1991).  Others found LD risk to be reduced in 

highly developed areas (Glass et al. 1995).  It is likely that land use types 

between studies are different and therefore produce different findings.  Glass et 

al. (1995) specifically described highly developed areas as multiunit residential 

neighborhoods, and found these areas to be negatively associated with risk of 

LD.  The urbanization variable used in our study is defined in terms of land use 
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type, not actual physical representations of housing structures.  Further, Glass et 

al. (1995) report an adjusted odd ratio upper confidence limit equal to 1 for this 

urbanization variable, which denotes the possibility that no significant association 

exists (i.e., in statistics, an odds ratio of 1 indicates the independent variable 

does not have any statistical influence on the outcome varaible). 

LD incidence was significantly associated with both forested and non-

forested wetland areas.  In a comprehensive review of literature related to LD risk, 

Killilea et al. (2008) found that LD was consistently associated with forested 

areas.  A probable explanation is these land use types provide valuable habitat 

for host abundance (McLean et al. 1993; Ginsberg et al. 2005; Ogden et al. 

2008).  A crude analysis between disease incidence and forested wetland area 

suggest a positive correlation when forested wetlands account for up to 2.5% of 

the surrounding sample area.  However, disease incidence declines when the 

amount of forested wetlands is above this amount.  Similarly, a positive 

correlation exists between disease incidence and upland deciduous forests when 

this land use type accounts for up to 24% of the surrounding sample area.  

Above this amount and the relationship becomes negative. Glass et al. (1995) 

reported persons living in forested areas had elevated risk (OR: 3.7; 95% CI: 1.2 

– 11.8) of LD exposure.  This non-linear relationship between disease incidence 

within deciduous forests and non-forested wetlands may result from the complex 

vector-host interaction.  For example, an area that is 100% forested may not be 

inhabited by humans and, therefore, reduces the possibility of disease 
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transmission from vector to host.  Consequently, an area that is 100% urbanized 

may eliminate vector habitat, thus removing all chances of a vector-host 

interaction.  Borrelia burgdorferi, the causative agent of LD, may occur in urban 

and suburban development areas as well as in isolated park/forest preserves 

where deer, rodents, and birds can thrive (Magnarelli et al. 1995).  Kitron et al. 

(1992) reported that I. scapularis were most abundant on sandy soils with 

deciduous forests. 

The positive association between LD occurrence and median incomes 

may be more an artifact of the data source rather than an actual correlation.  The 

data source is from persons with health insurance, both commercially insured 

and government subsidized programs for those who cannot afford coverage (i.e., 

Medicaid).  Relatively wealthier persons have more access to care and tend to 

disproportionately utilize medical services compared to lower income persons 

(Wilkinson and Pickett 2006; Lusardi et al. 2010).   

Covariates explaining RMSF incidence were mostly similar to LD and thus 

similar interpretation of results are assumed.  However, one notable difference 

was RMSF was significantly associated with the amount of pasture/grassland 

within all 4 models.  The American Dog tick (Dermacentor variabilis) is the most 

commonly identified species responsible for transmitting the Rickettsia rickettsii 

bacterial organism that causes RMSF in humans.  D. variabilis is considered an 

ixodid tick (hard-shell tick) and these are commonly found in grassland areas 
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including pastures, old fields, clearings around homes, and brushy habitats (Liu 

et al. 1995; Parola and Raoult 2001). 

When evaluating either LD or RMSF, the co-occurrence of the each other 

was significant throughout all 8 models.  There are two, though possibly more, 

likely explanations for this relationship.  As previously mentioned, significant 

explanatory covariates were similar for each disease.  Therefore, it is plausible 

that suitable habitat features are overlapping for the tick vectors (Parola and 

Raoult 2001).  Another possible reason for this interaction is both diseases have 

similar clinical presentations, thus cases may be misdiagnosed between the two 

diseases (Masters et al. 2003).  In highly endemic areas within the US where 

awareness of RMSF is high, many patients receive an alternate diagnosis when 

initially seeking medical attention.  Cases not laboratory confirmed are frequently 

not RMSF and laboratory confirmation using weak diagnostic criteria may lead to 

false-positives (Helmick et al. 1984).  Because of the possibility of misdiagnoses, 

it is recommended that clinicians receive confirmatory laboratory results prior to 

making a definitive clinical diagnosis. 

Areas higher in disease prevalence were not necessarily the same areas 

having high predicted risk of disease infection.  This supports our original project 

intent to illustrate the need to build spatially explicit models.  Traditional risk 

maps can highlight temporally static areas where case volumes are high relative 

to other spatial units.  This approach benefits from its simplicity, however it lacks 
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statistical validation and does not account for other influencing factors and is 

influenced by population. 

Limitations in study include the inability to definitively confirm a diagnosed 

case of LD and/or RMSF as such.  Land use and wetlands data do not 

necessarily reflect the same temporal period as the diagnosed disease case.  

The champion models for LD and RMSF were the GBT and NNET, respectively.  

Although they performed well, these modeling procedures do not produce directly 

interpretable results.  Therefore, the ability to describe the quantitative impact of 

the covariates without deriving them from the SLR or CART results is limited. 

 

CONCLUSIONS 

Findings from this study suggest that administrative medical claims data is 

a viable source to study and map disease risk for LD and RMSF.  Spatial models 

predicting disease risk are favorable to defining risk by mapping areas of high 

incidence.  Spatial factors associated with medically diagnosed cases of 

zoonoses agree with other literature using actual CDC reported cases.  Little 

work exists using more advanced non-linear modeling techniques like those used 

in this study and it is recommended to explore these options as they may provide 

better results than traditional regression-based approaches.  Administrative 

medical claims data is relatively easy to access given the appropriate 

permissions, relatively no cost once access is granted and provides the 

researcher with a volume rich dataset from which to study. 
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Table 4-1: Top 11 wetland types by area in Tennessee and selected for study 

Wetland 
Type Description Area  

(sq km) 
Percent of 
Total Area Cumulative % 

L1UBHh 
Lacustrine Limnetic Unconsolidated 

Bottom Permanently Flooded 
Dike/Impounded 

2726.4 30.9% 30.9% 

PFO1A Palustrine Forested Broad-Leaved 
Deciduous Temporary Flooded 1812.1 20.5% 72.0% 

R2UBH 
Riverine Lower Perennial 

Unconsolidated Bottom Permanently 
Flooded 

1347.9 15.3% 82.0% 

PFO1C Palustrine Forested Broad-Leaved 
Deciduous Permanently Flooded 1061.7 12.0% 90.8% 

PUBHh 
Palustrine Unconsolidated Bottom 

Permanently Flooded 
Dike/Impounded 

254.2 2.9% 84.6% 

PFO6F Palustrine Forested Deciduous 
Semipermanently Flooded 205.3 2.3% 86.3% 

PFO1F 
Palustrine Forested Broad-Leaved 

Deciduous Semipermanently 
Flooded 

109.6 1.2% 86.5% 

PUBHx Palustrine Unconsolidated Bottom 
Permanently Flooded Excavated 96.7 1.1% 87.4% 

R2UB3H 
Riverine Lower Perennial 

Unconsolidated Bottom Mud 
Permanently Flooded 

84.9 1.0% 88.3% 

PEM1A Palustrine Emergent Persistent 
Temporary Flooded 79.5 0.9% 89.1% 

PEM1C Palustrine Emergent Persistent 
Seasonally Flooded 68.5 0.8% 89.8% 
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Table 4-2: Regional summary of disease distribution (Lyme disease and Rocky 
Mountain spotted fever) for the 2000-09 study period within Tennessee according 
to medically diagnosed claims data 

  
Lyme disease 

N (%) 
Rocky Mountain 

spotted fever N (%) Total (%) 

Nashville 343 (38%) 296 (45%) 639 (41%) 

Knoxville 271 (30%) 149 (23%) 420 (27%) 

Chattanooga 96 (11%) 87 (13%) 183 (12%) 

Jackson 80 (9%) 80 (12%) 160 (10%) 

Memphis 69 (8%) 26 (4%) 95 (6%) 

Johnson City 44 (5%) 23 (3%) 67 (4%) 

Totals 903 661 1,564 
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Table 4-3: Model summary statistics for spatially explicit models describing the 
occurrence of medically diagnosed cases of Lyme disease and Rocky Mountain 
spotted fever for the 2000-09 study period within Tennessee  

  Lyme Disease (LD)   Rocky Mountain Spotted Fever 
(RMSF) 

Model Type GBT SLR NNET CART   GBT SLR NNET CART 
Model Performance          
 Misclassification Rate 0.232* 0.272 0.288 0.296  0.304 0.312 0.288* 0.296 
 Average Square Error 0.187 0.182 0.253 0.206  0.230 0.210 0.232 0.213 
 ROC 0.789 0.812 0.688 0.674  0.702 0.727 0.696 0.712 
 PPV 83.7% 75.0% 77.1% 85.7%  69.8% 68.5% 72.5% 70.4% 
 Sensitivity 66.1% 67.7% 59.7% 48.4%  62.7% 62.7% 62.7% 64.4% 
 Specificity 87.3% 77.8% 82.5% 92.1%  75.8% 74.2% 78.8% 75.8% 
Input Variables**          
Land cover          
 Forested Wetland + / -  -     + + / - 

 
Non-Forested 
Wetland 

+ / -       -  

 Pasture/Grassland      + + / - + / - + 

 
Upland Deciduous 
Forest 

+ / - + / -    -    

 Urban/Developed + + +   +  + / -  
Wetland Type          
 PUBHh -         
Geographic          
 Distance to River   + / -       
Demographic          
 Population Counts + + + +  + + + + / - 
 Median Income + + + / - +      
Clinical          

 Lyme Dis. Co-
occurrence      + + + + 

  RMSF Co-occurrence + + + +           
* Best model chosen using lowest misclassification rate on validation 
dataset    

** Denotes aggregations were made at 1.6 and 8km where 
applicable      

NOTE: Variables missing from this table indicate non-significance across all models and plus and 
minus signs indicate direction of relationship 
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Figure 4-1: Spatial distribution of medically diagnosed Lyme disease cases (raw 
count) within Tennessee ZIP codes during the 2000-09 study period: Dark black 
outlines define regional areas 
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Figure 4-2: Spatial distribution of medically diagnosed Rocky Mountain spotted 
fever cases (raw count) within Tennessee ZIP codes during the 2000-09 study 
period: Dark black outlines define regional areas 
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Figure 4-3: Receiver operator characteristic (ROC) curves for spatial models 
explaining occurrence of medically diagnosed cases of Lyme disease for the 
2000-09 study period within Tennessee 
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Figure 4-4: Receiver operator characteristic (ROC) curves for spatial models 
explaining occurrence of medically diagnosed cases of Rocky Mountain spotted 
fever for the 2000-09 study period within Tennessee 
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Figure 4-5: Delineated risk areas for Lyme disease according to raw disease 
incidence per 100k rates (top) and predicted probabilities from spatial predictive 
models (bottom) 
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Figure 4-6: Delineated risk areas for RMSF according to disease incidence per 
100k rates (top) and predicted probabilities from spatial predictive models 
(bottom)
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Figure 4-7: Performance of champion models as a function of the posterior 
probability predictions on the validation datasets 
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CHAPTER 5  
 

USING A RETROSPECTIVE SPACE-TIME PERMUTATION SCAN STATISTIC 
FOR DETECTING CLUSTERS OF ARTHROPOD-BORNE ZOONOTIC 

DISEASES 
 

 
ABSTRACT 

Determining when and where disease prevention efforts should be 

targeted is a major focus in the study of zoonotic diseases.  Space-time scan 

statistics were developed to detect statistically significant clusters of disease 

incidence where the observed amount is above expectation.  This provides a 

means to study disease distribution over space and time, as well as the 

underlying factors influencing disease presence.  The objective of this study was 

to determine if any significant spatial and/or temporal clusters existed for five tick-

borne (Lyme disease [LD], babesiosis, ehrlichiosis, Rocky Mountain spotted 

fever [RMSF], tularemia) and 2 mosquito-borne diseases (West Nile virus [WNV], 

La Crosse viral encephalitis) known to occur in Tennessee.  A cross-sectional 

sampling was performed for 10 consecutive years (2000-2009) across 615 

population-weighted ZIP code centroids in Tennessee.  Disease incidence data 

were extracted from administrative medical claims data from a large 

southeastern managed care organization.  SaTScan™ software was used to 

detect significant clusters using a retrospective space-time permutation analysis.  

Overall, 1,654 unique cases were distributed across the 7 studied diseases and 3 

statistically significant clusters were detected.  A significant LD cluster (P = 0.006, 
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RR = 2.22, radius = 43.4 km) was detected in northeast Tennessee around ZIP 

code 37710.  A significant RMSF cluster (P = 0.018, RR = 3.26, radius = 87.4 

km) was detected in west Tennessee around ZIP code 38006.  A significant 

WNV cluster was located near the RMSF cluster.  Findings suggest these 

significant cluster areas have underlying geographic/habitat features explaining 

their existence, and ZIP code scale analyses may provide enhanced information 

compared to county-level assessments.  Focused disease/vector prevention 

efforts in non-endemic areas are warranted. 
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INTRODUCTION 
 

In ecological studies, sample units may represent an observation taken at 

some location (space) and/or at some temporal event (time).  Determining when 

and where disease prevention efforts should be targeted is a major focus in the 

study of zoonotic diseases (i.e., diseases that can be transferred from/through 

animals to humans).  Combining epidemiologic methods to identify disease risk 

with geospatial analytics provide an opportunity to study disease distribution over 

space and time, as well as the underlying factors influencing disease presence 

(Glass et al. 1995; Sugumaran et al. 2009; Chapters 3 and 4).  Additionally, it is 

important to identify significant disease clusters in order to implement appropriate 

public health precautions (Steere et al. 1977; Rogers and Randolph 2003; 

Iyengar 2005; Sugumaran et al. 2009).   

Identification of significant clusters is confounded by the statistical 

property that any geographic region under study will always contain some high-

rate area by chance alone (Kuldorff et al. 1998).  To address this issue, space-

time scan statistics were developed to detect non-randomly occurring clusters 

while accounting for multiple statistical testing (Kulldorff 1997; Iyengar 2005; 

Kulldorff 2010).  Scan statistics, like those incorporated into the SaTScan™ 

software package (Kulldorff 2010), have been widely implemented in various 

fields of study including, but not limited to, forestry (Coulston and Riitters 2003), 

wildlife biology (Miller et al. 2002; Porcasi et al. 2006; Spindler et al. 2009), and 
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infectious diseases (Chaput et al. 2002; Mostashari et al. 2003; Brooker et al. 

2004). 

Of the approximate 1,415 species of infectious organisms known to be 

pathogenic to humans, 868 (61%) are zoonotic.  Of all recently emerging 

pathogens, 75% are zoonotic and are twice as likely to be associated with 

emerging diseases compared to non–zoonotic pathogens.  This recent 

emergence of zoonoses in the US has been attributed to climate change, 

reforestation, increases in reservoir and vector populations, residential 

preferences, and increased outdoor recreational activities (Taylor et al. 2001).  

Currently in Tennessee, there are approximately 70 communicable diseases 

required to be reported to the Tennessee State Health Department for tracking 

purposes.  However, problems exist with disease surveillance because multiple 

systems are implemented through multiple agencies with little cross-coordination, 

thus creating unnecessary duplication of efforts and inefficient use of resources.  

Further, wildlife diseases are rarely covered in surveillance efforts and no 

definition exists for what triggers a response for action (Dunn 2005). 

In Tennessee, disease surveillance relies on a system where significant 

underreporting of diseases is known to exist and publicly reported data from the 

State Health Department is available only at the county level (Chapters 1 – 3).  

Administrative medical claims data extracted from a managed care health plan 

are effective in measuring zoonotic disease incidence across time and space 

(Chapters 2 – 4).  Routinely collected administrative data is an inexpensive 
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comprehensive source of disease information well-suited for retrospective study 

and disease surveillance.  However, only one known study leverages claims data 

as a source for studying spatio-temporal zoonotic disease clustering 

(Yiannakoulias and Svenson 2009).  The objective of this study was to determine 

if any significant spatial and temporal clusters existed for five tick-borne (Lyme 

disease [LD], babesiosis, ehrlichiosis, Rocky Mountain spotted fever [RMSF], 

tularemia) and 2 mosquito-borne diseases (West Nile virus, La Crosse viral 

encephalitis) known to occur in Tennessee.  If using medical claims data is a 

viable approach, surveillance tracking of infectious zoonotic diseases across time 

and space could improve by utilizing this resource. 

 

METHODS 

Study Area 

 The study area for this project was described in Chapter 2, but briefly 

Tennessee is considered a southeastern state and is approximately bounded 

within the southernmost west coordinate (-90.309200, 34.995800) to the northern 

most east coordinate (-81.646900, 36.611900).  The spatial sampling unit 

consisted of the 615 population-weighted ZIP code centroids within Tennessee 

(Chapter 4). 
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Disease Case Data 

The collection of disease incidence data from the managed care 

organization (MCO) data warehouse was described earlier.  Briefly, all medical 

claims having a primary or secondary arthropod-borne disease diagnosis code of 

interest (see below) were extracted for the study period January 1, 2000-

December 31, 2009.  Medical claims having one of the following diagnosis codes 

were retained for study: 

Tick-Borne Diseases: 

• Babesiosis (ICD-9 code: 088.82) 

• Borreliosis - Lyme disease (LD) (ICD-9 code: 088.81) 

• Ehrlichiosis - human monocytic ehrlichiosis (HME) (ICD-9 code: 082.41) 

• Rickettsiosis - Rocky Mountain spotted fever (RMSF) (ICD-9 Diagnosis 

Code: 082.0) 

• Tularemia (ICD-9 code: 021) 

Mosquito-Borne Diseases: 

• La Crosse viral encephalitis (LACV) (ICD-9 code: 062.5) 

• West Nile virus (WNV) (ICD-9 code: 066.4) 

Any patient receiving medical services for one of the selected diseases prior to 

the start of the study period or after the study period was removed from the 

analysis.  Disease cases were aggregated to the ZIP code on the medical claim, 

which represents the ZIP code of residence for the patient at the time medical 

services were rendered.  Population-weighted ZIP code centroids were 
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geocoded and used in the cluster detection analysis as the spatial sample unit.  

The day, month, and year of the diagnosis were also extracted from the claims 

data. 

 

Retrospective Space-Time Permutation Analysis 

Previous work has shown LD and RMSF incidence rates vary 

geographically (Chapters 2 – 4).  Traditional risk maps can highlight temporally 

static areas where case volumes are high relative to other spatial units (e.g., 

Figure 5-1).  Spatial kriging, a geospatial interpolation process, can smooth out 

these risk maps so that risk is not clearly defined by ZIP code boundaries (e.g., 

Figure 5-2).  These approaches benefit from their simplicity, however, they lack 

the statistical rigor (Chapter 4) and capability to simultaneously vary across time 

and space.  To overcome this issue, a retrospective space-time permutation 

analysis was conducted for each selected disease to determine if any significant 

space-time clusters exist within Tennessee and throughout the study period.  

This methodology is described in detail in Kulldorff et al. (2005).  Briefly, a scan 

statistic is created by moving a cylindrical window over each ZIP code centroid, 

where the circular base represents the size of the search radius space around 

the centroid and the cylinder height represents a pre-defined time duration.  

Significant cluster detection is determined using this scan statistic by creating a 

relatively infinite number of overlapping cylinders to define the scanning window, 

each being a possible candidate for a disease cluster.  Within each cylinder, the 
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actual and expected number of disease cases, along with a Poisson generalized 

likelihood ratio (GLR) is calculated.  Under the Poisson assumption, the GLR for 

any given scan window is calculated as: 
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where T is the total number of cases, c is the actual number of cases within the 

scan window, E[c] is the expected number of cases within the window under the 

null hypothesis, and I is the indicator function which is equal to 1 if c > E [c] or 0 

otherwise (Kulldorff 1997).  To detect clusters with high rates, I was set to 1 (i.e., 

observed value should be higher than the expected value).  Using Monte Carlo 

simulation (Dwass 1957), the actual GLR is compared to simulated GLRs within 

the cylinder.  Relative risk (RR) for a significant cluster is calculated as the 

observed number of cases divided by the expected number of cases.  Statistical 

significance is defined in terms of a p-value, and is computed as p=R/(S+1), 

where R is the rank of the GLR for the actual observation and S is the number of 

simulated cases.  For example, if you simulate 999 cases, you thus obtain 999 

GLR values.  You then rank order these 999 GLRs from highest to lowest, where 

the highest GLR indicates the highest probability a cluster exists at that site. You 

then insert the actual GLR into this rank ordered list, and if the actual GLR is 

higher than the 50th highest simulated GLR, then the cluster is statistically 

significant at an alpha of 0.05 (i.e., 50 / 999+1).  This analysis adjusts for any 
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potential purely spatial and/or temporal variation, does not require a control 

comparison, and is most appropriate when information about the population-at-

risk is unavailable or irrelevant (Kulldorff et al. 2005).  SaTScan™ software 

v9.0.1 (Kulldorff 2010) was used for all cluster detection analysis.  Specific 

software settings for these analyses included a retrospective space-time 

permutation probability model scanning for areas of high disease incidence, time 

aggregation of 1 month, a maximum spatial cluster size equal to 25% of the at-

risk population, maximum temporal cluster size equal to 25% of the study period 

and a maximum of 999 Monte Carlo replications.  Maps of significant clusters 

were generated using Maptitude™ v5.0 GIS software (Caliper Corporation 2008). 

 

RESULTS 

 Overall disease case results are presented earlier in Chapter 2, but briefly, 

1,654 unique cases were distributed across the 7 studied diseases and used in 

the cluster detection analyses.  The majority of disease cases were LD (n = 903; 

55%), followed by RMSF (n = 661; 40%).  The remaining 5 diseases made up the 

residual 5% of disease cases.  Davidson County accounted for 9.7% (n=88) of all 

LD cases and 21.4% (n = 3) of HME cases.  Maury County had the highest 

number of RMSF cases (n = 47; 7.1%) while Shelby County had the highest 

number of WNV (n = 8; 38.1%) cases.   

 A significant LD cluster (53 cases, P = 0.006, RR = 2.22) was detected 

centering in the northeastern area of Tennessee (36.164667 N, 84.236972 W; 



148 

radius = 43.4 km) around ZIP code 37710 (Anderson County), approximately 35 

km northwest of Knoxville ( 

Figure 5-3).  This cluster encapsulated 51 ZIP code areas and was specifically 

associated with the time period beginning October 2001 and ending August 2003.  

A secondary cluster of cases, though non-significant (18 cases, P = 0.189, RR = 

3.69), was centered around ZIP code 38483 of Lawrence County (35.430774 N, 

87.323665 W; radius = 66.7 km), approximately 95 km southwest of Nashville.  

This cluster was specifically associated with the time period beginning August 

2003 and ending May 2004.  There were 25 other non-significant clusters 

detected throughout the state with p-values greater than 0.5 (50% of Monte Carlo 

replications).  To reduce the amount of information, we only present the 

significant cluster information (Table 5-1) but graphically show all secondary 

clusters in the map figures for spatial reference ( 

Figure 5-3 - Figure 5-5). 

  A significant cluster of RMSF (24 cases, P = 0.018, RR = 3.26) was 

detected centering in the western side of Tennessee (35.707710 N, 89.084874 

W; radius = 87.4 km) around ZIP code 38006 (Crockett County), approximately 

105 km northeast of Memphis (Figure 5-4).  This geographically large cluster 

encapsulated 108 ZIP code areas and was specifically associated with the time 

period beginning April 2009 and ending October 2009.  A secondary cluster of 

cases, though non-significant at alpha = 0.05 (4 cases, P = 0.10, RR = 36.72), 

was centered around ZIP code 37082 of Cheatham County (36.088518 N, 
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87.122007 W; radius = 9.6 km), approximately 31 km west of Nashville.  This 

cluster was specifically associated with the time period beginning May 2006 and 

ending June 2006.  There were 23 other non-significant clusters detected 

throughout the state with p-values greater than 0.5 (50% of Monte Carlo 

replications) (Table 5-1; Figure 5-4). 

A significant cluster of WNV (4 cases, P = 0.044, RR = 5.25) was detected 

centering in the western side of Tennessee (35.752529 N, 89.538019 W; radius 

= 64.5 km) around ZIP code 38063 (Lauderdale County), approximately 83 km 

northeast of Memphis (Figure 5-5).  This cluster encapsulated 40 ZIP code areas 

and was specifically associated with the time period beginning July 2006 and 

ending September 2006 (Table 5-1). 

 The most likely cluster of HME was not statistically significant (2 cases, P 

= 0.57, RR = 7.00), and was centered around ZIP code 37174 of Maury County 

(35.728158 N, 86.910828 W; radius = 17.8 km) approximately 50 km south of 

Nashville.  The most likely cluster of tularemia was not statistically significant (3 

cases, P = 0.37, RR = 10.5), and was centered around ZIP code 38341 of 

Benton County (35.874121 N, 88.087316 W; radius = 34.5 km) approximately 

190 km northeast of Memphis and 120 km southwest of Nashville.  The most 

likely cluster of LACV was not statistically significant (2 cases, P = 0.930, RR = 

5.00), and was centered around ZIP code 37705 of Anderson County (36.216522 

N, 84.014630 W; radius = 14.1 km) approximately 20 km east of the significant 
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LD cluster center.  Overall, 3 cases of babesiosis, were found, however no 

clusters were detected (Table 5-1).   

 

DISCUSSION 

 Arthropod-borne zoonotic diseases are known to vary geographically and 

occur in significant clusters (e.g., Eisen et al. 2008; Adjemian et al. 2009).  Often, 

spatio-temporal modeling of these diseases is conducted at the county level or 

higher spatial scale (e.g., Mostashari et al. 2003; Wimberly et al. 2008; Adjemian 

et al. 2009).  While this scale may be appropriate for multi-state initiatives, it can 

mask smaller isolated high risk areas as well as obscure within county variability 

(Mostashari et al. 2003; Eisen et al. 2006).  Analyses at a finer spatial scale like 

ZIP codes could improve disease surveillance activities while simultaneously 

protecting the identity of infected patients.  Further, significant underreporting of 

zoonotic diseases by diagnosing clinicians exists (Marier 1977; Meek et al. 1996; 

Young 1998; Koo and Caldwell 1999; Figueiras et al. 2004) and could be 

improved using administrative medical claims data (Chapters 2 and 3).  Thus the 

importance of the current study was our ability to successfully demonstrate 

spatio-temporal modeling at the ZIP code scale using medical claims data from a 

health plan. 

LD is the most frequently reported vector-borne disease in the US.  In 

2009 there were 29,780 cases reported nationwide, with 32 occurring in 

Tennessee (CDC MMWR 2010).  LD is caused by the bacterium Borrelia 
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burgdorferi, which is transmitted to humans via the Blacklegged or deer tick 

(Ixodes scapularis), the same tick responsible for transmitting babesiosis and 

certain forms of ehrlichiosis.  Spatial clustering of LD is common in endemic 

areas in the northeastern US (Steere et al. 2004; Doll 2008 unpublished), but is 

not considered endemic in Tennessee.  Infected tick vectors are considered rare 

(ALDF 2010) and in a sample of nearly 900 blacklegged ticks, no evidence of 

Borrelia burgdorferi was found within the state of Tennessee (Rosen 2009).  

Previous work disputes these findings, suggesting LD incidence may be 7 times 

higher (3.7 vs. 0.49 per 100k) than state reported values (Chapter 2).  Further, 

the current study suggests LD varies geographically within Tennessee and 

indicates the presence of a significant cluster in the northeast part of the state.  

There is reasonable evidence to suggest the infection occurred within/near the 

patient’s residence (Maupin et al. 1991; Glass et al. 1995; Cromley et al. 1998; 

Eisen et al. 2006) and not while traveling to an endemic area.  With LD on the 

rise nationwide (CDC NCEZID 2010), there is a need for more active surveillance 

in non-endemic states and improved reporting to address underreporting. 

The significant LD cluster northwest of Knoxville, TN encompassed 51 ZIP 

codes.  The Knoxville cluster center was located approximately 80km from the 

county-level based significant LD cluster from previous work (LM1 in Chapter 3), 

and was nearly one-half its size.  The comparatively smaller size was expected, 

given that the data is at a smaller spatial scale and one would expect better 

granularity.  However, the spatial displacement of cluster centers (80 km) was 
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unexpected.  Additionally, the time periods of the clusters were similar, but the 

Knoxville ZIP cluster started 2 months before and ended 7 months before the 

county-level cluster.  This suggests that ZIP code data could not only provide 

enhanced spatial scale, but may produce fundamentally different results 

compared to larger spatial scales.  We performed a post-hoc analysis to compare 

the ZIP codes within the Knoxville cluster to all other Tennessee ZIP codes 

outside the cluster.  Findings from this analysis support earlier work (Chapter 4) 

that LD is more prevalent in urbanized areas of greater populations, as well as 

forested areas.  Compared to non-cluster areas, ZIP codes in the Knoxville 

cluster had over 5 times the median amount of urbanized area within an 8 km 

band surrounding the centroid and median population counts were nearly 3 times 

higher.  The median amount of upland coniferous forested area was 

approximately 2.5 times greater within the cluster compared to outside the cluster.  

Findings go on to suggest the occurrence of LACV and tularemia was 4.7 and 

2.2 times higher, respectively, in the Knoxville cluster compared to non-cluster 

ZIP codes. 

RMSF is the most severe tick-borne rickettsial illness in the US and is 

caused by the Rickettsia rickettsii bacterial organism (CDC NCEZID 2010).  

Infections occur most commonly in the southeastern and south central US and 

are typically transmitted from the bite of an infected American Dog tick 

(Dermacentor variabilis).  Symptoms include the development of a rash within 2 

to 4 days after the onset of fever, and can be non-descript or mimic other 
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illnesses with headache, muscle pain, nausea, and lack of appetite.  In 2009 

there were 1,393 cases reported nationwide, with 184 (13%) occurring in 

Tennessee (CDC MMWR 2010) making it the 3rd highest case count in the US.  

In a study of RMSF disease severity, Tennessee ranked 2nd

The significant RMSF cluster detected in western Tennessee (Crockett 

County) was spatially large (87.4 km radius) encompassing 108 ZIP codes but 

temporally small (7 months).  The Crockett cluster was nearly identical to a 

previously detected significant RMSF cluster using county-level data (Cluster 

RM1 in Chapter 3).  The ZIP and county-level clusters had centers located 

approximately 20 km apart, both were approximately equal in size and covered 

the same time period.  The Crockett cluster center was located only 90 Euclidean 

kilometers from the cluster center of six fatal RMSF cases reported by Adjemian 

et al. (2009), and was completely inscribed within its 250 km radius.  The 

Adjemian et al. cluster represented 26% of all fatal RMSF cases reported during 

their 5 year study.  The eastern most edge of the Crockett cluster was only 1.5 

km away from overlapping the Adjemian et al. cluster center.   

 only to North 

Carolina in the percentage of fatal RMSF cases (Adjemian et al. 2009).   

Closer examination of the 108 inscribed ZIP codes support earlier findings 

that RMSF incidence is associated with the presence of forested wetlands 

(Chapter 4).  ZIP codes within the Crockett cluster had over 50 times the median 

amount of surrounding forested wetland habitat, 5 times the amount of cropland 

(unfounded in earlier results), number of WNV cases were 1.8 times higher and 
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tularemia cases 4.5 times higher than the remaining areas of the state. Contrary 

to earlier findings, the cluster area was less populated with lower LD rates 

compared to non-cluster ZIP codes.  The southwest edge of the Crockett cluster 

narrowly misses including the Memphis population and comprises the more rural 

parts of Tennessee.  This supports others that very complex interactions are at 

work and no single attribute can drive high incidence rates (Holman et al. 2001; 

Goddard 2008; Adjemian et al. 2009).  Because our data were aggregated to the 

ZIP code scale rather than the county, this may better delineate the focus area 

Adjemian and colleagues suggest is needed for studying RMSF infections. 

The West Nile virus (WNV) was first detected in the US in 1999 and 

became notifiable in 2002.  WNV is spread to humans through the bite of an 

infected mosquito, typically thought to be the Culex pipiens mosquito, which 

become infected after feeding on infected birds.  Though the virus quickly spread 

across the US from 1999 through 2001, neuroinvasive disease incidence 

remained low until 2002 when large outbreaks in the Midwest and Great Plains 

occurred.  Approximately 80 percent of people infected with WNV are 

asymptomatic.  Less than 1% of people infected will have severe life-threatening 

symptoms, such as high fever, neck stiffness, stupor, disorientation, coma, 

tremors, convulsions, muscle weakness, vision loss, numbness, and paralysis 

(CDC NCEZID 2010).  There were 329 reported cases of non-neuroinvasive 

West Nile virus in 2009, 4 of which occurred in Tennessee.  Additionally, there 
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were 361 reported cases of neuroinvasive West Nile virus in 2009, 4 of which 

occurred in Tennessee (CDC MMWR 2010). 

Similar in geographic locale to RMSF, a significant WNV cluster was also 

detected in west Tennessee (Lauderdale County) and was over 85% inscribed 

within the RMSF Crockett cluster.  This was an interesting find because a nearly 

identical (spatial and temporal) WNV cluster was detected using county-level 

MCO data, but it was not statistically significant (P = 0.702) (Chapter 3, not 

reported).  ZIP codes within the WNV cluster had similar attributes to the 

Knoxville LD and Crockett RMSF clusters.  The median amount of croplands and 

forested and non-forested wetlands within the WNV cluster were 10 to 20 times 

higher inside the cluster compared to ZIP codes outside of the cluster.  

Additionally, urbanization was higher within the cluster.  Several wetland types 

were more prevalent inside the cluster compared to outside, including emergent 

and semi-permanently flooded deciduous forested wetlands.  It is well 

established that mosquitoes thrive in wetland habitat areas and degraded 

wetlands can provide ideal habitat for WNV carrying mosquitoes.  Mosquito 

larvae feed on algal blooms created by microbial growth in nutrient rich 

contaminated waters.  Filling or draining wetlands may not provide the necessary 

habitat for mosquito predators and thereby increases mosquito outbreaks. 

Restoring damaged or degraded wetlands could help control the spread of WNV, 

as healthy wetlands can sustain numerous species of mosquito-eating fish, 

amphibians, insects and birds (US EPA 2004).  Early warning systems designed 
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to detect an uprising in WNV can be effective and efficient means to preventing 

WNV (Mostashari et al. 2003; Gosselin et al. 2005). 

Limitations of this study include the possibility that identified clusters are 

the result of some unmeasured variable that could vary geographically, such as 

climate, demographics, or clinician diagnostic abilities/patterns.  Using 

administrative claims data, we cannot definitively know if the clinician diagnosed 

cases meet the CDC criteria for confirmed or probable.  However, results support 

earlier findings relating disease occurrence to favorable habitat conditions.  The 

permutation scan statistic is susceptible to changes in the underlying population 

over long periods of time, and significance may be biased by this population 

change rather than an actual disease incidence change.  However, the significant 

clusters detected in this study were not localized to the latter part of the study 

period, thus it can be assumed the overall changing population was not an issue.   

 

CONCLUSIONS 

This study successfully demonstrated spatio-temporal modeling at the ZIP 

code scale using medical claims data from a MCO is possible, and may provide 

enhanced information compared to county-level assessments.  Significant 

clusters of LD, RMSF, and WNV were detected in Tennessee during the 2000-09 

study period.  These significant cluster areas have underlying geographic/habitat 

features that help explain their existence.  Further work investigating clusters 

while adjusting for potential confounding effects such as demographic and 
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geographic factors is warranted.  Additionally, findings suggest that focused 

disease/vector prevention efforts in non-endemic areas are warranted. 
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Table 5-1: Spatio-temporal cluster analyses output statistics for statistically 
significant clusters of arthropod-borne zoonotic diseases 

  
ZIP 

Code 
Center 

Latitude Longitude Radius 
(km) 

Time 
Period 

of 
Cluster 

P 
value* 

Num. 
of 

Cases 

Relative 
Risk 

(RR)† 

Lyme 
disease 37710 36.1647 -84.2370 43.4 10/01-

8/03 0.006 53 2.22 

Rocky 
Mountain 
spotted 
fever 

38006 35.7077 -89.0849 87.4 4/09-
10/09 0.018 24 3.26 

Human 
monocytic 
ehrlichiosis 

no significant clusters 

Tularemia no significant clusters 

La Crosse 
viral 

encephalitis 
no significant clusters 

West Nile 
virus 38063 35.7525 -89.5380 64.5 7/06-

9/06 0.044 4 5.25 

* P value derived from 999 Monte Carlo simulations 
† 

 

Relative risk (RR) calculated as the number of observed cases divided by the number of 
expected cases.  RR>1 indicates case rates above expectation 
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Figure 5-1: Lyme disease risk map created by simple aggregation of raw counts 
to ZIP codes for the 2000-09 study period within Tennessee 
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Figure 5-2: Lyme disease risk map created by spatial kriging (geospatial 
interpolation method) of raw counts to ZIP codes for the 2000-09 study period 
within Tennessee  
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Figure 5-3: Location and radius of clusters of increased rates of medically 
diagnosed Lyme disease cases identified in Tennessee for the 2000-09 study 
period.  
NOTE: Statistically significant clusters are shaded in grey. 
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Figure 5-4: Location and radius of clusters of increased rates of medically 
diagnosed Rocky Mountain spotted fever (RMSF) cases identified in Tennessee 
for the 2000-09 study period. 
NOTE: Statistically significant clusters are shaded in grey. 
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Figure 5-5: Location and radius of clusters of increased rates of medically 
diagnosed West Nile virus (WNV) cases identified in Tennessee for the 2000-09 
study period.  
NOTE: Statistically significant clusters are shaded in grey 
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