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ABSTRACT 

 
Phelan-McDermid syndrome is a developmental disability syndrome associated with 

deletions of the terminal end of one copy of chromosome 22q13.  The observed chromosomal 

aberrations  include simple terminal deletions, interstitial deletions, deletions and duplications, 

and duplications without deletions.  All patients have some degree of developmental disability 

and many also have hypotonia, autism, minor dysmorphic features, and seizures.  I performed 

an epidemiological and cytogenetic investigation to better understand the etiology of Phelan-

McDermid syndrome and to provide information to patients and their families, clinicians, and 

researchers investigating developmental disabilities.  Deletions vary widely in size, from 60 kb to 

more than 9 Mb, but almost all cases are missing one copy of the subtelomeric gene SHANK3, a 

candidate gene for neurological features.  The results of this study established that larger 

deletions are associated with more severe disability establishing the rationale to investigate the 

role of additional genes or genomic regions for clinical features.  Statistical association analyses 

identified specific genomic regions as associated with 22 clinical features. In particular, speech is 

highly correlated with deletion size indicating that speech-related genes or genomic elements 

located in genomic bands 22q13.2q13.31 may be critical in determining a patient’s ability to 

communicate verbally.  The use of protein interaction networks identified candidate genes 

within these narrowed genomic regions. Also, a longitudinal assessment of phenotypes 

observed among individuals aged 0.4 to 64 years established significant variation of phenotypes 

by age, such that future investigations need to take age into account when conducting 

genotype-phenotype studies. In particular, we find that behavioral difficulties subside and low 
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muscle tone becomes less prominent as children age, however seizures, autism, and some 

chronic diseases become more apparent in teens and adults. 
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PREFACE 
 

In this work, I used statistical approaches to assess the potential associations of 22q13.3 

aberrations and clinical features of Phelan-McDermid syndrome. Phelan-McDermid syndrome 

(PMS) is a  developmental disability syndrome characterized by intellectual and developmental 

disability including severely delayed or absent speech, low muscle tone, minor dysmorphic 

features, autism spectrum disorders, seizures, and a number of other behavioral, medical, and 

physical features (Phelan and McDermid 2012).  Presentation of Phelan-McDermid syndrome is 

associated with the deletion of the terminal end of one copy of chromosome 22q13.  The two 

overarching questions I address in this work are 1) whether there are genes, in addition to 

SHANK3, that may contribute to the clinical features of the syndromes and 2) whether the 

clinical features of the syndrome change with patient age.  The methods I used to study PMS 

and the improved knowledge of several potential clinical and molecular causes of this syndrome 

are applicable to the study of other syndromes.  While no treatments are yet available, a better 

understanding of the clinical presentation and effect of deletion of different genes along the 

chromosome will assist patients, researchers, and clinicians in understanding and treating these 

patients. 

This dissertation is divided into six chapters.  In Chapter One, I review the literature 

regarding what is known about chromosome 22 and mechanisms that can lead to deletions or 

duplications.  I also review what is known about Phelan-McDermid syndrome and the clinical 

features most commonly found.  Because much of the Phelan-McDermid syndrome literature 

focuses on SHANK3 as a candidate gene for some of the neurological features of the syndrome, I 

review what is known about this telomeric gene and its role in the brain, specifically its role in 
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the post synaptic density of excitatory neurons.  I also review what is known about other genes 

and phenotypes associated with chromosome 22 in order to place this syndrome into context.  

In Chapter Two, I present an analysis of deletion size and its relationship with clinical 

features which was published in the Journal of Medical Genetics (Sarasua and others 2011).  The 

primary question addressed in this chapter was whether 22q13 genes or genomic regions, in 

addition to SHANK3, may be responsible for presence or severity of the clinical features in this 

syndrome.  The specific hypothesis tested was that there is no difference in size of deletion 

between those with and without a given clinical feature.  The alternative hypothesis was that 

there is a difference in deletion size between those with and without a given clinical feature.  

Deletion size was used as a proxy measure for the number of genes deleted, in addition to 

SHANK3. This work was based upon standardized clinical assessments of patients with simple 

terminal deletions of 22q13.  I identified clinically relevant features significantly associated with 

deletion size and also reported the prevalence of 80 different phenotypes.  One finding of 

particular significance was the association between better speech abilities in those with smaller 

deletions compared to larger deletions. 

In Chapter Three, I expanded the genotype-phenotype study presented in Chapter Two 

to identify specific regions most significantly associated with each clinical feature.  Protein 

interaction networks were used to identify candidate genes within these narrowed windows 

that may be most associated with the phenotypes identified. The research question being asked 

in this chapter was what specific genomic regions are associated with clinical features?  I tested 

the null hypothesis that a given genomic region was not associated with a clinical feature.  The 

alternative hypothesis was that a given genomic region was associated with a clinical feature. 
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In Chapter Four, I present a study on potential age-related and parent of origin related 

features in PMS.  My primary research question was whether the syndrome changed with age or 

was affected by the parent of origin of the affected chromosome.  My specific null hypothesis 

was that there was no difference in clinical features across age groups or parent of origin of the 

affected chromosome.  My alternative hypothesis was that there was a difference in clinical 

features across age groups and parent of origin.  To date, most studies have been based upon 

case reports, small case series, or studies of generally less than 40 individuals where no attempt 

was made to look at age-related differences in phenotypes.  A consensus at the 2012 Phelan-

McDermid syndrome Scientific Symposium held in July, 2012, in Orlando specifically identified 

the need for longitudinal studies of the syndrome to determine age-related changes.  I assessed 

age-related changes both cross-sectionally and longitudinally among those patients who 

participated in multiple clinic visits. I also examined parent of origin effects on clinical features 

to look for potential imprinting whereby a gene or genomic region is epigenetically silenced 

depending on maternal or paternal inheritance.  Further, I tested the effects of deletion size on 

clinical features.  Finally, I confirmed the presence of the deletion in a buccal (cheek) specimen.  

This finding demonstrated that the cytogenetic rearrangements of PMS are not limited to the 

more commonly used whole blood specimens and are likely representative of cytogenetic 

rearrangements in other tissues, including other tissues of ectodermal origin such as brain. 

In Chapter Five, I provide a summary of my findings and a look to the future. 

As part of my graduate training, I participated in the 2008 Genetic Analysis Workshop 

and collaborated with statisticians and epidemiologists in the application of a novel method to 

adjust for population structure in a genome wide association study of rheumatoid arthritis.  The 
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population genetics and statistical and programming skills I developed were helpful in my 

genetic epidemiology training, although this topic did not apply directly to my analysis of PMS.  

For this reason, I have included the paper I co-wrote in the appendix of this dissertation. 
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CHAPTER ONE 

CHROMOSOMAL ANOMALIES AND CLINICAL FEATURES ASSOCIATED WITH CHROMOSOME 

22Q13 
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Overview 

This review describes and chronicles research into the chromosomal microdeletion 

syndrome Phelan-McDermid syndrome (PMS) [MIM 606232].  This syndrome, also known as 

22q13.3 deletion syndrome, is associated with the loss, or occasional gain, of the terminal end 

of the long arm of chromosome 22.  It is recognized as a syndrome, encompassing 

developmental delays including marked speech delay, intellectual disability, hypotonia, minor 

dysmorphic features and sometimes autism spectrum disorders (ASDs), epilepsy, and a wide 

range of other clinical features (Phelan and McDermid 2012).  SHANK3 has been identified as a 

candidate gene for neurological features. The finding that this gene is often associated with 

ASDs, and the substantial research interest into the causes of ASDs, has led to increased 

research into PMS in general and SHANK3 in particular.  The highly variable deletion sizes, along 

with the wide range in severity of the condition, suggest the need for epidemiologic and 

cytogenetic work to understand the genetic causes of clinical features observed in PMS.  

Further, little work has been done to understand the syndrome over the lifespan of the affected 

individuals. Age related changes in the clinical presentation of the syndrome may affect which 

features can be observed at different ages and may impact the design of genotype-phenotype 

studies as well as diagnoses. 

In addition to describing what is known about PMS, this review also describes methods 

used to investigate the causes of a syndrome. This approach includes identifying a recurrent 

clustering of clinical features with an accompanying chromosomal rearrangement (deletion, 

duplication, translocation, or inversion) and identifying candidate genes within the affected 

genomic region.  These investigations require evidence from case reports and clinical studies, as 



 

 7 

   

 

7 

 

well as incorporation of experimental information from in vitro and in vivo studies of model 

organisms.  Statistical and bioinformatics tools can then be used to integrate extant knowledge 

and generate hypotheses for further investigative steps.  

This review details what is known about chromosomal rearrangements and their causes, 

specifically what is known about chromosome 22, the history of PMS, what is known about 

SHANK3, and investigates how this information can be applied to broader phenotypes such as 

autism and intellectual disability, speech, hypotonia, and growth anomalies ---all prominent 

features of Phelan-McDermid syndrome. 

 

Chromosome 22 and Chromosomal Rearrangements 

The human genome is comprised of 22 pairs of autosomal chromosomes, the X and Y 

sex chromosomes, and the mitochondrial genome.    Some anomalies in humans include whole 

chromosome duplication (for example, trisomy 21 also known as Down syndrome) or whole 

chromosome deletion (for example, monosomy X, also known as Turner Syndrome). Structural 

changes can include ring chromosomes, translocations whereby genomic material is exchanged 

between chromosomes, inversions whereby chromosomal material is not lost, but is inverted, 

and deletions and duplications of portions of a chromosome. As reviewed by Lupski and 

Stankiewicz, chromosomal deletions and duplications can impact phenotype by affecting gene 

dosage, gene interruption, gene fusion, position effects, unmasking recessive alleles, and by 

disruption of regulatory communication between alleles (Lupski and Stankiewicz 2005; 

Stankiewicz and Lupski 2002a).  Chromosomal deletions and duplications can be found on all 

chromosomes.  
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Chromosome 22 

Chromosome 22 is an acrocentric chromosome of approximately 51 Mb or 49.7 Mb in 

size according to the 2009 (hg19) build or the 2006 (NCBI36/hg18) build (International Human 

Genome Sequencing Consortium 2004), respectively.  The 2006 human genome build will be 

used as reference in this review as it was used for the deletion breakpoint mapping in our data 

and many published studies refer to this build.   

The PMS deletion region includes bands 22q13.2, 22q13.31, 22q13.32, and 22q13.33 

(the terminus of 22q).  22q13.2, q13.31 and q13.33 are gene rich while band q13.32 is gene poor 

(Figure 1.1).  Segmental duplications are scattered across this region, with more in the 

subtelomeric region and in 22q13.2.  Several micro RNAs (miRNAs) are located in 22q13.2 and 

22q13.31.  MiRNAs are regulatory noncoding RNAs that bind to messenger RNA to regulate 

translation or degradation of the transcripts (Bartel 2004).  These RNAs are typically about 22 

nucleotides in size.  Several miRNA target prediction algorithms have been developed to predict 

the targets of miRNAs including miRBase (Betel and others 2008; Griffiths-Jones and others 

2006) and TargetScan (Friedman and others 2009).  One miRNA located at 22q13.31, hsa-mir-

1249, is predicted to target SHANK3 (TargetScan).  Other noncoding RNA, of unknown function, 

are also located on 22q13 (Figure 1.1).  These RNAs, along with potential enhancer or regulatory 

elements, mean that associations between deletion regions and clinical features may be due to 

protein-coding or non-protein coding effects. 

Copy Number Variants 

Copy number variants (CNVs) are deleted or duplicated genomic segments and are 

common in the human genome.  Distinguishing between benign and pathogenic CNVs remains a 

challenge. The Database of Genomic Variants is a compilation of CNVs observed in control 
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samples and is helpful as a tool to identify CNVs less likely to be pathogenic (Iafrate and others 

2004; Redon and others 2006; Wong and others 2007; Zhang and others 2006).  A study of 500 

control individuals identified an average of 3 CNVs per genome with a median CNV size of 224 

kb and 16% of CNVs were larger than > 1 Mb in size (Marshall and others 2008). Another 

genome-wide study found that 5-10% of individuals have CNVs larger than 500 kb and 1-2% of 

individuals have variants > 1 Mb (Itsara and others 2009). Individual CNVs > 100 kb are rare and 

it was found that the greater the gene density in a CNV and the greater the CNV size the smaller 

the frequency in the population (Itsara and others 2009).  The authors found a 25-fold 

enrichment of CNVs between pairs of segmental duplications indicating that nonhomologous 

allelic recombination may be a mechanism underlying their origin.   The most CNV-dense region 

on Chromosome 22 is 22q11.2 which contains segmental duplications and leads to DiGeorge 

Syndrome (Shaikh and others 2007).  In comparison with 22q11, 22q13 is relatively poor in 

segmental duplications (Bailey and others 2002).  

CNVs on chromosome 22 are common.  In a study of 1654 pediatric patients tested 

because of developmental delay, ASD, seizures, dysmorphic features or congenital anomalies, 

1298 benign chromosome 22 CNVs were observed (how these CNVs were determined to be 

benign was not provided).  The same study identified 25 patients (1.5%) who had an abnormal 

chromosome 22 CNV (Yu and others 2011).  Of the 25 with abnormal CNVs, 22 were in 22q11 

region and three were in 22q13 (22q13.2qter, 22q13.31qter, 22q13.32qter). 

CNVs may be associated with ASDs.  In a study comparing 996 ASD patients and 1287 

controls, the patients with ASD were found to have 19% more CNVs than controls and were 69% 

more likely to have a CNV > 500 Kb in size (Pinto and others 2010). In another study, similar 

numbers of CNVs were observed in 427 ASD patients as in 500 controls (Marshall and others 
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2008).  The study identified some CNVs among patients which were not present in their controls 

or in the Database of Genomic Variants (Iafrate and others 2004) including two in 22q13.31 and 

one in 22q13.33.  

Mechanisms Generating and Repairing Chromosomal Breakage 

Two of the most common mechanisms for generating rearrangements are non-allelic 

homologous recombination (NAHR) and non-homologous end-joining (NHEJ) (Lupski and 

Stankiewicz 2005; Stankiewicz and Lupski 2002a).   

Non-Allelic Homologous Recombination (NAHR). NAHR occurs in regions with 

segmental duplications/low-copy repeats (LCRs) (Lupski and Stankiewicz 2005; Stankiewicz and 

Lupski 2002b).  These segmental duplications/LCRs are genomic segments of 10-400 Kb with > 

95-97% similarity, which occur to varying degrees in all human chromosomes.  During meiosis, 

misalignment of these highly similar, but non-homologous, regions allows for crossing over 

between sister chromatids.  The result of NAHR is either duplication or deletion of the 

chromosomal region between the segmental duplications.  Some of the best studied examples 

of NAHR occur on chromosome 17p11.2 where a recurrent 1.4 Mb deletion leads to hereditary 

neuropathy with liability to pressure palsies and the 1.4 Mb duplication leads to Charcot-Marie-

Tooth disease type 1A (Lupski and Stankiewicz 2005).  Smith-Magenis syndrome (SMS), 

associated with a recurrent 3.7 Mb deletion syndrome, is another syndrome associated with 

NAHR leading to a recurrent deletion (Elsea and Girirajan 2008).  22q11.2 deletion syndrome, 

also known as DiGeorge syndrome or velocardiofacial syndrome is likewise caused by NAHR 

leading to common deletions of 1.5 and 3 Mb (Stankiewicz and Lupski 2002a).  The syndrome is 

characterized by developmental delay and speech delay along with cardiac and other anomalies 

(Kobrynski and Sullivan 2007).  CNVs are especially common on 22q11 where numerous LCRs are 
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located (Yu and others 2011). Unlike 22q11, 22q13 has few LCRs, which explains the lack of 

common deletion sizes observed in PMS as shown in Figure 1.2.  Thus, while PMS is a deletion 

syndrome like those described above, the mechanisms causing PMS are different. 

Non-Homologous End Joining (NHEJ). In NHEJ, a double strand break is repaired by 

capturing the two broken ends, forming a synaptic complex to bridge the break. Overhangs are 

either filled in or removed causing gain or loss of genomic material, and then the two strands 

are ligated together (Weterings and Chen 2008).   

Mechanisms of Chromosomal Deletion and Repair in PMS 

The mechanisms by which 22q13 deletions were repaired have been studied in detail 

(Bonaglia and others 2011). Terminal deletions can be repaired by the synthesis of a new 

telomere using telomerase, by recombination, by telomere capture of another telomere leaving 

behind a derivative chromosome, and by circularization resulting in a ring chromosome.  In their 

study, they sequenced the breakpoint regions for more than 40 individuals with PMS with 

terminal deletions, interstitial deletions, ring chromosomes, and derivative chromosomes 

(Bonaglia and others 2011).  For terminal deletions, they found evidence of both telomere 

healing (Flint and others 1994) and telomere capture (Meltzer, Guan, Trent 1993).  Frequently, 

but not always, they found repetitive elements near the breakpoints and suggest these regions 

may be more susceptible to double strand breaks (Hannes and others 2010; Zhao and others 

2010).  Telomere healing is detected by the presence of TTAGGG repeats at the breakpoint 

(Lamb and others 1993).  In the case of telomere capture, frequently subtelomeric, in addition 

to telomeric, sequence is added (Lamb and others 1993; Meltzer, Guan, Trent 1993).  In the 

Bonaglia study, they were able to identify the source of one captured telomere as being 
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homologous to Xp/Yp (Bonaglia and others 2011). In the cases of interstitial deletions, ring 

chromosomes, and translocations, they find most are consistent with NHEJ repair mechanisms. 

 

History of 22q13 Deletion Syndrome 

The history of Phelan-McDermid syndrome follows the development of improved 

cytogenetic testing methods and an evolving understanding of the role of cytogenetics in the 

pathophysiology of developmental delays.  The first documentation of a chromosome 22 

terminal deletion occurred in 1985 with a case report of an individual with intellectual disability 

and dysmorphic features who had a pericentric inversion of chromosome 22 resulting in 

deletion of the 22q12->qter (Watt and others 1985).  This individual possessed a much larger 

deletion (22q12->qter) than is typically found (22q13.3) and was detected using chromosome 

staining techniques.  The size of the deletion was not assessed.  Over the next seven years, five 

more cases were reported in the literature of individuals with large 22q13 deletions and 

presenting with developmental delay, speech delay, hypotonia, and minor dysmorphic features 

(Herman, Greenberg, Ledbetter 1988; Kirshenbaum, Chmura, Rhone 1988; Narahara and others 

1992; Phelan and others 1992; Romain and others 1990).  In 1994 the first case series examined 

seven patients with 22q13.3 deletions and compared findings to previously reported cases.  The 

cases were noted for developmental delay, hypotonia, severe delays in expressive speech, 

minor dysmorphic features, and normal or accelerated growth (Nesslinger and others 1994).  

The first time a 22q13.3 deletion patient had molecular characterization to identify the 

breakpoint and obtain deletion size was in 1997 when a patient was found to have a terminal 

deletion of 130 kb and who presented only with intellectual disability and speech delay (no 
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dysmorphic features) (Flint and others 1995; Wong and others 1997).  Interestingly, this patient 

was identified from a cohort of 99 patients with intellectual disability of unknown cause for 

whom cytogenetic testing was performed.  Based upon the screening study, the authors 

estimated that 6% of unexplained intellectual disability (those with normal routine karyotypes 

and no recognizable syndrome) possessed chromosomal anomalies.  The finding of the 

individual with a small deletion of 130 kb indicated that the critical deletion region was the most 

distal portion.  At the time, SHANK3 had not been mapped and only ACR was mapped to the 

region. 

A case report of a 22q13.3 deletion in an autistic patient expanded the phenotypes of 

concern to include the autism spectrum (Goizet and others 2000).  This patient was identified 

when she was tested for DiGeorge syndrome (22q11.2 interstitial deletion) using FISH 

(fluorescence in-situ hybridization) and the control probe located distal to 22q13.3 was found to 

be deleted.  The deletion size was not characterized.  Deletion of the control probe for DiGeorge 

syndrome later became another common route for the diagnosis of 22q13.3 deletion syndrome. 

Dr. Katy Phelan, a cytogeneticist who had identified some of these early cases, formed a 

Deletion 22q13 Support Group which met for the first time in 1998 and led to biannual meetings 

where patients and their families, clinicians, and researchers could meet to improve their 

understanding of this condition.  This organization is now called the Phelan-McDermid 

Syndrome Foundation (www.22q13.org) which continues to support work on PMS.  Researchers 

at the Greenwood Genetic Center developed standardized study protocols to assess medical 

history, obtain physical exams, and perform high resolution genotyping on a cohort of patients.  

Data from this effort are provided in chapters 2-4 and in the medical literature (Phelan, 

http://www.22q13.org/
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Stapleton, Rogers 2010; Phelan and others 2001; Phelan, Brown, Rogers 2001; Phelan 2008; 

Rollins and others 2011; Sarasua and others 2011). 

The first large series of cases was described in 2001 when information from 37 

individuals was collected (Phelan and others 2001).  The most common features of the 

syndrome were global developmental delay, hypotonia, absent or severely delayed speech, 

normal to accelerated growth, and minor dysmorphic features.  Of the 37 cases, 29 (78%) had 

terminal deletions while 8 (22%) were the result of unbalanced translocations.  The size of 

deletions was not provided. Following this study, a number of other investigations from across 

the globe have been conducted (Bonaglia and others 2011; Dhar and others 2010; Jeffries and 

others 2005; Koolen and others 2005; Lindquist and others 2005; Luciani and others 2003; 

Manning and others 2004; Philippe and others 2008; Wilson and others 2003). 

While most deletions are simple terminal deletions, other chromosomal aberrations 

have been observed including ring 22 whereby genomic material is missing from the ends of the 

long and short arms of the chromosome which then fuse together (Battini and others 2004; De 

Mas and others 2002; Jeffries and others 2005; Luciani and others 2003; Manning and others 

2004; Phelan and others 2001).  While material may be missing from the short arm of this 

acrocentric chromosome, other than ribosomal RNA, no known functional material is located in 

this region and the clinical features are likely the result of missing 22qter material or mitotic 

instability of the ring chromosome (Guilherme and others 2011; Kosztolanyi 1987; Sigurdardottir 

and others 1999).  Another presentations is as an unbalanced translocation with another 

chromosome, resulting in the loss of the distal portion of chromosome 22q13 (Bonaglia and 

others 2001; Luciani and others 2003; Manning and others 2004; Phelan and others 2001).  

Phenotypes observed in translocations may arise due to loss of genomic material from 
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22q13qter, gain of material from the other chromosome involved in the translocation, and 

changes in spatial location altering gene expression (Harewood and others 2010).  Other 

presentations include inversions (Tagaya and others 2008), duplications due to translocations 

(Gajecka and others 2008; Jamsheer and others 2008), duplications and deletions (Koolen and 

others 2005; Lindquist and others 2005), mosaics (Bonaglia and others 2009; Jeffries and others 

2005; Phelan, Brown, Rogers 2001; Phelan and others 2001), dicentric chromosomes (Babineau 

and others 2006), and even interstitial deletions (Wilson and others 2008). 

A number of reviews of PMS have now been written (Bonaglia and others 2010; 

Cusmano-Ozog, Manning, Hoyme 2007; Havens and others 2004; Phelan, Stapleton, Rogers 

2010; Phelan and McDermid 2012; Phelan 2008). 

Testing Procedures 

Currently, a chromosomal microarray is the recommended first tier test for patients 

with developmental disabilities or congenital anomalies (Miller and others 2010).   Microarrays 

are able to detect small microdeletions and microduplications that may not be detectable on 

karyotypes.  Array CHG became a more common detection method in the PMS literature after 

2005 (Koolen and others 2005; Lindquist and others 2005). However, karyotypes and FISH are 

still useful for the identification of mosaicism and chromosomal rearrangements. 

Most PMS cases are identified after postnatal testing reveals the 22q13 anomaly in a 

child or adult with developmental delays or dysmorphic features; however, prenatal testing has 

also identified 22q13 deletions.  Several cases have been reported from amniocentesis  

following abnormal maternal serum screening (Koc and others 2009; Phelan, Brown, Rogers 

2001), an amniocentesis performed due to malformations in a prior pregnancy (Chen and others 
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2005),  or amniocentesis performed following abnormalities observed on prenatal ultrasounds 

(Koc and others 2009; Maitz and others 2008). 

Parent of Origin 

While almost all 22q13 deletions are de novo mutations, the affected chromosome is 

commonly paternal in origin.  Estimates of paternal origin from several studies are as follows: 

74% (Luciani and others 2003); 69% (Wilson and others 2003); 59% for ring chromosomes 

(Jeffries and others 2005); and 74% of terminal deletions, 100% for interstitial deletions, and 

60% for ring chromosomes (Bonaglia and others 2011).  In a study of 35 individuals with ring 

chromosomes, no differences in ages between parents transmitting or not transmitting an 

affected chromosome were observed (Jeffries and others 2005).  Further, no differences in 

phenotypes were observed based on parent of origin implying a lack of imprinting (Jeffries and 

others 2005; Luciani and others 2003).  One case of maternal uniparental disomy 22 has been 

reported without clinical features of PMS (Schinzel and others 1994).  Assessment for possible 

imprinting is important as it has been found to be important in other syndromes such as 

Angelman and Prader-Willi.  In these two syndromes, deletion or mutation of 15q11 results in 

distinct syndromes depending on the parent of origin (Buiting 2010).  While parent of origin 

effects have not been identified in PMS, if present, they could impact analysis of genotype-

phenotype correlations if not taken into account. 

How Common Is Phelan-McDermid Syndrome? 

The frequency of 22q13.3 deletions is unknown.  Phelan and others estimated the 

incidence of PMS to be approximately 1 in 11,000 to 15,000 individuals (Phelan, Stapleton, 

Rogers 2010).  They derived this estimate based upon two studies of ASD which found SHANK3 

deletions or mutations in 1% (Moessner and others 2007) and 1.4% (Durand and others 2007) of 
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cases.  They multiplied these values with an estimated ASD prevalence of 1/150 to obtain their 

estimates.  One could also make estimates based upon the frequency of observed 22q13.3 

deletions in  those with intellectual disability (ID) as almost all PMS cases have at least mild ID.  

In a study of 32,587 individuals with developmental delay, array CGH identified 59 (0.18%) as 

having a 22q13 deletion (Girirajan and others 2012). These 59 patients represented 2.55% of the 

2,312 found to have a CNV in the large cohort of 32,587.  No 22q13 deletions were found in 

8,329 controls.  In a study of 234 unexplained ID cases in China, 4 (1.7%) were found to have 

22q13.3 deletions (Gong and others 2012).  In their review of the literature, 0.24% of 

unexplained ID cases had 22q13 deletions using microarray studies (Gong and others 2012).  

Two other studies of ID found 22q13.3 deletions in 1 out of 95 cases (Hamdan and others 2011) 

and 1 out of 99 cases (Flint and others 1995).   With estimates of the prevalence of ID of 1-3% 

(Leonard and Wen 2002; Roeleveld, Zielhuis, Gabreels 1997) and taking a range of 0.18-1.7% for 

22q13.3 deletions in ID, one could estimate a range of 22q13.3 deletion frequencies of 

approximately 1 in 2,000 to 55,000.   Clearly, the estimates vary widely and the actual rate of 

22q13.3 deletions is unknown. 

To better interpret the pathogenicity of 22q13.3 deletions, it is useful to determine the 

prevalence of these CNVs in unaffected populations.  A study of 8,329 controls found no 22q13 

deletions using array CGH (Girirajan and others 2012). The Database of Genomic Variants (DGV) 

(Iafrate and others 2004; Redon and others 2006; Wong and others 2007; Zhang and others 

2006) is a compilation of CNVs observed in presumably healthy controls.   The DGV contains 

several 22q13.33 deletions encompassing SHANK3. Moessner and others noted no CNVs 

encompassing SHANK3 in 500 European controls or DGV HapMap samples using a high density 

500k array (Moessner and others 2007).  They reported that 10 22q13.33 deletions listed in the 
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DGV that were identified using BAC arrays were found to be false positive after use of 

quantitative PCR validation (data not shown) (Moessner and others 2007).  Park and others 

conducted a high density genome-wide CNV study of 30 Asian individuals in the HapMap project 

and report a 24 Kb CNV disrupting SHANK3 in one sample (Park and others 2010). Whether this 

finding has been validated is unknown.  No other CNVs were observed in the DGV that include 

SHANK3 exons.  A study of ASD that examined more than 2500 controls identified 2 CNVs 

disrupting SHANK3 (Glessner and others 2009).  The DGV displays additional CNVs, primarily 

<100 Kb in size, scattered across 22q13.  

 The evidence from different studies can support or refute a 22q13.3 deletion being 

present in the normal population and estimates of the frequency of these deletions vary widely. 

Association between specific CNVs and specific clinical features is needed.  

Interstitial Deletion 

While the focus of investigation of PMS has been on terminal deletions of 22q13.33, and 

SHANK3 in particular, several cases of interstitial deletions of 22q13 indicate that genomic 

regions centromeric to SHANK3 may be involved.  In the first case, a girl with a deletion of 

22q13.1-q13.2 had developmental delay, including speech delay, hypotonia, and minor 

dysmorphic features (Fujita and others 2000).  Two other patients with interstitial deletions 

centromeric to SHANK3 had developmental delay and speech delay with deletions of 22q13.1-

q13.2 (40.42-44.00 Mb) and 22q13 (41.22-45.37 Mb, 2006 Genome build), or approximately 4-5 

Mb proximal to SHANK3 (Wilson and others 2008). 

Sporadic and Unique Phenotypic Features of PMS Case Reports 

Most studies of PMS note neurologic, growth, and dysmorphic features of the 

syndrome.  However, additional clinical features in PMS have been reported.  These features 
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include central diabetes insipidus which resolved itself in a two year old girl with a 22q13.31 

deletion (Barakat and others 2004). Two cases of autoimmune hepatitis requiring liver 

transplants have been reported.   One case occurred in a 7 year old girl with a 1.535 Mb deletion 

of 22q13.3 (Tufano and others 2009) and another in a 4 year old girl with 22q13.31 deletion of 

5.675 Mb (Bartsch and others 2010).  Bartsch and others noted that the child showed 

developmental improvement after the transplant and suggest that chronic hepatic disease could 

contribute to developmental delay in some PMS patients (Bartsch and others 2010). This 

observation is intriguing as the bulk of work on developmental delay focuses on brain-expressed 

genes rather than other organ systems such as the liver. A case report described a case of an 

atypical teratoid/rhabdoid tumor in a girl with 22q13.3 deletion syndrome (Sathyamoorthi and 

others 2009). In a study of sudden infant death, one out of 27 cases examined had a 4.4 Mb 

deletion of 22q13.3 deletion and a 3 Mb duplication of chromosome 8q (Toruner and others 

2009).  Two brothers with identical 2.15 Mb 22q13.32q13.33 deletions had atypical bipolar 

disorder, in addition to intellectual disability and developmental delay of speech and language, 

and sleep disturbance (Verhoeven and others 2012).  Two patients with intellectual disability 

and dysmorphic features with 22q13 deletions were found to have metachromatic 

leukodystrophy, caused by low ARSA levels (Bisgaard and others 2009).  Their 22q13 deletions, 

in addition to SHANK3 deletion, included deletion of ARSA, and their remaining ARSA allele was 

either a pseudo allele or had a pathogenic mutation.  This deletion led to low ARSA activity 

which led to the recessive disease of metachromatic leukodystrophy (MLC).  MLC presents with 

mental retardation, dysmorphic features and low ARSA activity (Bisgaard and others 2009).   

This is an example of a deletion unmasking a recessive allele.  Interestingly, in the case of 22q13, 

little work has been done to sequence the remaining copy in patients with 22q13 deletions in 
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order to determine whether other phenotypes may be related to this phenomenon of a deletion 

unmasking a recessive allele. 

PMS Clinical Features 

PMS is one of a number of syndromes presenting with hypotonia, developmental delay, 

speech delay and/or autistic traits including Prader-Willi, Angelman, Williams, Smith-Magenis, 

Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, ASD, and cerebral 

palsy (Phelan 2008).  A challenge in conducting genotype-phenotype studies is that many clinical 

features have multiple causes and variable severity and some features are present in only a 

fraction of all cases.  The variability in phenotypes in PMS may be due to differences in deletion 

sizes and thus gene content deleted or could be due to incomplete penetrance, variable genetic 

background, or interacting factors.  A listing of common features observed in PMS is provided in 

Table 1.1. A description of some of these presenting signs follows. 

Developmental Delay 

Developmental delay includes delayed attainment of typical milestones with gross or 

fine motor skills, language, social, and cognitive abilities that occur in childhood (Moeschler, 

Shevell, American Academy of Pediatrics Committee on Genetics 2006).  Mild delays may 

resolve with age and may not be related to other life-long developmental disabilities including 

intellectual disability (ID).  Intellectual disability cannot be diagnosed reliably until a child is at 

least 5 years of age and thus the term “developmental delay” is sometimes used in place of ID or 

a more specific diagnosis (Moeschler, Shevell, American Academy of Pediatrics Committee on 

Genetics 2006).  Clinical evaluations of developmental delay or intellectual disability include 

clinical and family history, physical examination including dysmorphology and neurologic 
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examination, genetic testing, and targeted metabolic testing and brain imaging (Moeschler, 

Shevell, American Academy of Pediatrics Committee on Genetics 2006).  Chromosomal 

microarrays (array CGH or SNP microarrays) are now the recommended first tier test for the 

diagnosis of developmental disabilities or congenital anomalies (Miller and others 2010).  

Developmental delay is observed in nearly all cases of PMS (Phelan, Stapleton, Rogers 2010). 

Intellectual Disability 

The American Association of Intellectual and Developmental Disabilities defines 

intellectual disability as characterized by limitations in intellectual functioning and adaptive 

behavior (www.aamr.org).  It is measured with an IQ score with scores less than 70 indicating ID.  

The prevalence of ID is approximately 1-3% in the United States (Leonard and Wen 2002; 

Roeleveld, Zielhuis, Gabreels 1997).  Approximately 10% of individuals with ID also have autism 

(Oeseburg and others 2011).  Other common chronic conditions include epilepsy (22%), cerebral 

palsy (20%), anxiety disorder (17%), oppositional defiant disorder (12%), and Down syndrome 

(11%).   Intellectual disability may be syndromic, appearing in conjunction with other clinical 

features, or non-syndromic, appearing in isolation.  Intellectual disability and autism are highly 

interrelated (Schwartz and Neri 2012).  ID and ASD frequently have similar implicated genes and 

share common pathways (Betancur, Sakurai, Buxbaum 2009; Betancur 2011; Kou and others 

2012).    More than 200 ID genes have been identified to date (Betancur, Sakurai, Buxbaum 

2009; Kou and others 2012).  ID genes are involved in synapses, glutamate signaling, cell 

adhesion, RHO pathway, synaptic vesicle trafficking and exocytosis, the ERK/MAP pathway, Zinc 

finger proteins, transcriptional regulation and chromatin remodeling (Kaufman, Ayub, Vincent 

2010).  
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Autism Spectrum Disorders 

Autism spectrum disorders (ASDs) are developmental disabilities characterized by 

deficits in communication and social interaction, and by repetitive or restricted interests and 

behaviors (American Psychiatric Association and American Psychiatric Association. Task Force on 

DSM-IV 2000).  Subtypes of ASD include autistic disorder, childhood disintegrative disorder, 

Asperger syndrome, and pervasive developmental disorders, not otherwise specified.  

Approximately 1 in 88 children under age 8 years are estimated to have an autism spectrum 

disorder (Centers for Disease Control and Prevention 2012).  Approximately 70% of individuals 

with autism also have ID (Schwartz and Neri 2012). PMS is just one of many genetic syndromes 

that include ASD (Cohen and others 2005).  The prevalence of ASD in PMS is unknown, with 

estimates ranging from 0-94% (Sarasua and others 2011). 

Speech and Language Delay 

Absent or delayed speech is one of the hallmarks of PMS affecting more than 95% of 

individuals (Phelan 2008; Wilson and others 2003).  Relatively little is known about the genetics 

of speech.  FOXP2, a transcription factor, is the best studied gene associated with speech (Fisher 

and Scharff 2009; Konopka and others 2009; Spiteri and others 2007; Vernes and others 2007; 

Vernes and others 2008; Vernes and others 2011). FOXP2 is associated with dyspraxia, which 

causes difficulties in the physical production of sound.  No chromosome 22q13 targets were 

identified for FOXP2 (Konopka and others 2009; Spiteri and others 2007; Vernes and others 

2007). Additionally, CNTNAP2, CMIP, RIT2, ATP2C2, and SYT4 are potential speech related genes 

(Alarcon and others 2008; Bouquillon and others 2011; Newbury, Fisher, Monaco 2010).  These 

other genes are associated with memory and learning related speech disorders.  Speech abilities 

vary widely in PMS ranging from absent speech to being completely verbal.  A range in speech 
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ability is also seen in those with intellectual disability and autism spectrum disorders (Flax and 

others 2010; Hu and Steinberg 2009; Hu and others 2009; Waga and others 2011).  

In Rett syndrome, a neurodevelopmental disorder caused by mutations in MECP2, 45% 

of patients could speak no words, 55% had some words, and 14.5% could use two-word 

sentences. None had more than 40 words total (Uchino and others 2001).  This level of speech is 

somewhat similar to that seen in PMS although the highest levels of speech in PMS include the 

use of thousands of words and being fully verbal (Sarasua and others 2011).  In contrast, most 

typically developing children have at least 50 words and multi-word combinations by the time 

they reach two years of age (Rescorla 1989).  In a study of two-year olds, 9.7% were language 

delayed as defined as having fewer than 50 words or no word combinations on the Language 

Development Survey (Rescorla and Alley 2001).  Specific speech-language impairment, which is 

language impairment without cognitive delay, hearing impairment, autism, or other medical 

condition, is present in 5-8% of preschoolers (Newbury, Fisher, Monaco 2010).  Language delay 

shows 70% heritability in twins showing the most delayed language (Dale and others 1998). 

Hypotonia 

Hypotonia, and neonatal hypotonia in particular, is another hallmark feature of PMS 

(Phelan 2008).  Hypotonia is low muscle tone which is defined as resistance to stretch of the 

muscles as opposed to muscle strength (Hill 2005).  While hypotonia is rare in newborns, it is a 

common presenting sign for systemic and nervous system diseases (Leyenaar, Camfield, 

Camfield 2005) and is one of the indications a newborn should be tested for PMS.  In general, 

infants with hypotonia are more likely to have hypotonia due to a central nervous system cause 

(66%) than peripheral nerve cause (34%).  The most common diagnoses of infants with 

hypotonia are hypoxic-ischemic encephalopathy (20%), intracranial hemorrhage (8%), 
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chromosomal abnormalities and syndromic disorders (22%) including Prader-Willi syndrome, 

Down syndrome, and other chromosomal abnormalities, brain malformations (10%), metabolic 

disorders (8%), and peripheral hypotonia caused by muscle disorders or motorneuron/nerve 

disorders (Laugel and others 2008; Richer, Shevell, Miller 2001).  Central hypotonia is more likely 

to be accompanied by seizures, facial dysmorphisms, and cognitive delays than peripheral 

hypotonia (Harris 2008).  Cognitive delays (>95%), seizures (>25%), and dysmorphic features 

(>25-50%) are frequent in PMS (Phelan 2008). In PMS, neonatal hypotonia may resolve and not 

be present at older ages (Phelan, Stapleton, Rogers 2010).   

Dysmorphic Features 

Dysmorphic features and congenital anomalies often accompany hypotonia or 

developmental delay and their presence contributes to the differential diagnosis of specific 

disorders (Greenwood Genetic Center 2011; Moeschler, Shevell, American Academy of 

Pediatrics Committee on Genetics 2006).  In a standard physical examination for a clinical 

genetic workup, many features are examined.  Several databases, including the London 

Dysmorphology database (Winter 2009) and Phenomizer (Kohler and others 2009), allow the 

clinician to input dysmorphic and other clinical features to assist with identifying candidate 

genes or syndromes.  Background prevalence rates are not generally available for dysmorphic 

features.  Standard terminology has been developed along with photographs to assist in 

describing physical features of the head and face (Allanson and others 2009), periorbital region 

(Hall and others 2009), the ear (Hunter and others 2009), and hands and feet (Biesecker and 

others 2009).  During the physical evaluations of participants in the Greenwood Genetic Center 

PMS studies, standardized assessments by trained clinical geneticists were performed on a 
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consistent set of physical features to be comprehensive and standardized across all study 

participants. Table 1.1 lists some of the common dysmorphic features observed in PMS. 

Growth and Stature 

Growth and stature are some of the most commonly measured parameters in pediatrics 

and adult medicine and growth reference charts are available (Greenwood Genetic Center 2011; 

Kuczmarski and others 2002; Rollins, Collins, Holden 2010; World Health Organization 2006). 

Using growth charts, short stature is typically classified as being below the 5th percentile and tall 

stature as being above the 95th percentile for a given gender and age.  Head circumference 

measurements are typically classified as macrocephaly with a head circumference >97th 

percentile or < 3rd percentile.  Human genome wide association studies have identified a 

number of quantitative trait loci (QTL) for human height, but only one located in the 

22q13.2q13.33 region (Sammalisto and others 2005).  Sammalisto and others identified marker 

D22S282, located in the MPPED1 gene at genomic position 42.1 Mb linked to human height.  

This genomic region also includes a region identified as a body mass QTL in rats (Rat Genome 

Database, (Rapp 2000) accessed on the UCSC genome browser. Several rat and mouse studies 

have identified QTL for growth in the 22q13 orthologous regions.  Early studies of PMS suggest 

that growth tended to be normal or accelerated, but later systematic analysis identified that 

growth tends to be normal, but twice the expected number are either short or tall and 20% have 

macrocephaly (Rollins and others 2011). 
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Comparison with Other Deletion Syndromes 

Deletion syndromes are associated with all chromosomes and among those tested with 

intellectual disability, 1p deletions were the most common with 1q, 2q, 4p, 5p, 6q, 18q, and 22q 

also being common (Heilstedt and others 2003a).  Most de novo terminal deletions are paternal 

in origin, although 1p36 deletions are usually maternal in origin (Heilstedt and others 2003a). 

Candidate genes or genomic regions are identified consistently across genotype-phenotype 

studies by locating the smallest genomic region of overlap among affected individuals.  These 

deletion syndromes, including 22q13 deletion syndrome, commonly have developmental delay 

accompanied by dysmorphic features. Several of the better known terminal deletion syndromes 

include 1p36 deletion syndrome, 5p deletion syndrome and 18q deletion syndrome, described 

below.  In common with PMS, these deletion syndromes are characterized by developmental 

delay including speech delay and intellectual disability, hypotonia, and minor dysmorphic 

features and all have varying degrees of severity within each syndrome. None of the SHANK 

genes are locate on these chromosomes. 

Deletion 1p36 syndrome is the most common subtelomeric deletion observed, 

estimated to occur in approximately 1 in 5000 births (Heilstedt and others 2003a) and are found 

in 0.5 to 1.2% of individuals with unexplained intellectual disability (Battaglia and others 2008). 

Many of the clinical features of 1p36 deletion syndrome are similar to PMS. Common clinical 

features include universal developmental delay, intellectual disability, and absent or delayed 

speech.  Speech was absent in 75% and in 17% cases could speak individual words, and finally in 

8% patients had 2 word phrases (Battaglia and others 2008).  Additional features include 

hypotonia, delayed growth, heart defects, renal and genital abnormalities, minor facial 

dysmorphism, seizures, and deafness, among others. In contrast, deafness and delayed growth 
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are not commonly observed in PMS (Phelan and McDermid 2012). Terminal deletions, 

interstitial deletions and more complex rearrangements are found (Battaglia and others 2008; 

Shapira and others 1997).  The de novo mutations tended to be from maternally inherited 

chromosomes (60% maternal inheritance) (Heilstedt and others 2003b) rather than paternally 

inherited chromosomes as is the case for PMS (Phelan and McDermid 2012).  Larger deletions 

tended to be associated with a greater number of clinical phenotypes and genomic regions of 

approximately 2-4 Mb in size are associated with selected clinical features (Heilstedt and others 

2003b).  More recently, an assessment of the smallest region of overlap of five individuals with 

interstitial deletions has identified a genomic region of 200-800 kb and suggested several 

potential candidate genes (Rosenfeld and others 2010). 

18q- syndrome includes deletions of the terminus of 18q21.  Similar to Phelan-

McDermid syndrome, the syndrome is characterized by developmental delay and intellectual 

disability, hypotonia, seizures, genital anomalies, and minor facial dysmorphic features but also 

includes growth deficiency (Feenstra and others 2007; Kline and others 1993). Larger deletions 

were correlated with more severe clinical features.  The use of array CGH and examination of 

deletions for regions of overlap for specific features identified specific genomic regions for 

microcephaly, short stature, congenital aural atresia, cleft palate, and intellectual disability, 

among others (Feenstra and others 2007).  These results were based on 23 cases of terminal 

deletions (deletion sizes ranged from 6.1 to 27.0 Mb) and six cases of interstitial deletions 

(deletion sizes ranged from 7.2 to 24.0 Mb).  These deletions are much larger than those 

typically observed in PMS (generally < 9 Mb (Wilson and others 2003).  No common deletion 

breakpoints were observed, also similar to the PMS deletion. A number of candidate genes have 
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been proposed (Cody and others 2009; Feenstra and others 2007; O'Donnell and others 2010; 

Overhauser and others 1994). 

Another deletion syndrome, deletion of 5p, also known as cri du chat syndrome, is 

named for a characteristic high pitched cry (Mainardi and others 2001).  In addition, patients 

commonly have microcephaly and growth delay, speech delay, intellectual disability, behavioral 

problems, and facial dysmorphism.  Similar to PMS, de novo deletions are primarily paternal in 

origin (90%) (Mainardi and others 2001).  Inherited deletions have also been reported (Fang and 

others 2008). Deletions are usually terminal, but also include interstitial deletions and deletions 

accompanied by 5p duplications (Zhang and others 2005). Deletion sizes are variable, range up 

to 37 Mb (Zhang and others 2005), much larger than those observed in PMS (Phelan and 

McDermid 2012).  Deletion size is correlated with select clinical features and a genotype-

phenotype map has been established based upon smallest common regions of overlap observed 

among cases (Mainardi and others 2001; Zhang and others 2005) although genetic background 

or other factors may also impact severity of clinical features (Fang and others 2008).  By 

examining regions of common overlap, genomic regions have been associated with speech, 

severity of intellectual disability, and facial features (Gersh and others 1995; Overhauser and 

others 1994; Zhang and others 2005).  

 

Challenges in Defining Phenotypes in Human Deletion Syndrome Studies 

Challenges in understanding the genetic contribution to specific phenotypes include 

accurately defining phenotypes of study. Particularly during the early stages of investigations, 

phenotypes can be subjectively or inconsistently recorded.  For instance, in studies of PMS, 
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manuscripts frequently classify phenotypes as present or absent (+/-) or combine categories of 

phenotype.  Individuals with autism spectrum disorders may have extremely different 

phenotypes, but for research purposes are often combined blurring potentially important 

distinctions.  When more detailed information is available, such as using the full set of variables 

obtained in the Autism Diagnostic Interview–Revised, investigators have been able to distinguish 

individuals with known genetic causes of autism from idiopathic autism (Bruining and others 

2010) or distinguish subtypes based on differential gene expression (Hu and others 2009; Hu 

and Steinberg 2009). Some individuals may have no verbal speech and others may be mildly 

delayed but are often grouped into categories of “absent/delayed speech,” again blurring 

important distinctions.  Growth has typically been grouped as “normal to accelerated” 

(Nesslinger and others 1994) giving the impression that accelerated growth was a distinctive 

feature without separating out normal from accelerated.  Manuscripts provide clinical 

descriptions of patients, but may report an inconsistent set of phenotypes such that the reader 

does not know if lack of reporting a feature means the patient did not exhibit the feature, 

whether that information was not assessed, or whether that feature was not of importance to 

the authors at the time of writing.  These issues are of particular importance for rare diseases 

and during the early stages of identifying clinical syndromes where case reports and case series 

make up the bulk of the literature.    These concerns have been voiced for other deletion 

syndromes (Stewart and Kleefstra 2007). As research into a syndrome matures, the use of 

standardized data collection instruments and larger sample sizes can improve accuracy of 

studies. Strengths of other PMS studies (see Chapters 2-4) includes the use of a standardized 

health history questionnaire with the same set of clinical features assessed across cases, trained 
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clinical geneticists to conduct standardized physical exams, and instruments that assess severity 

of phenotype. 

 

Biological Basis of the Neurological Phenotypes of PMS and Identification of SHANK3 as a 

Candidate Gene 

The primary clinical features of concern (developmental delay, speech and language 

delay, intellectual disability, autism spectrum disorders, seizures) are brain-related phenotypes. 

Hypotonia, another prominent feature, is primarily related to central nervous system lesions, 

but can also be related to peripheral neurological causes (Laugel and others 2008; Richer, 

Shevell, Miller 2001). Since many of the known genes located on 22q13.3 are expressed in brain 

and nerve tissue and have neurologic functions, they could be potential candidate genes for the 

syndrome. Because SHANK3 is the gene deleted or disrupted in all cases of PMS, other than the 

instances of interstitial deletion (Wilson and others 2008), it is considered to be the primary 

candidate gene for many of the neurological features of PMS (Wilson and others 2003). The 

discovery of a translocation that disrupted SHANK3 gave additional evidence for SHANK3 being 

the candidate gene for PMS (Bonaglia and others 2001).  Further, this study looked at gene 

expression and found that SHANK3 is highly expressed in brain tissue and that the full length 

transcripts were only found in cerebral cortex and cerebellum. Substantial experimental 

evidence in mice, described below, also supports a role for Shank3 in neurologic phenotypes. 

While most cases of PMS have large deletions encompassing the entire SHANK3 gene, 

some cases have been observed that deleted only portions of the gene.  These cases include 

those deleting the distal portion of SHANK3:  a balanced translocation with chromosome 12 with 
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a breakpoint within exon 21 of SHANK3 (Bonaglia and others 2001), a translocation with 

Xq21.33 deleting the last two exons of SHANK3 (Misceo and others 2011), and three terminal 

deletions with breakpoints between exons 8 and 9 (Anderlid and others 2002; Bonaglia and 

others 2006).  There are also reported cases where the proximal end of SHANK3 is deleted with 

the distal portion intact (Delahaye and others 2009).  The differences in breakpoint location may 

affect whether the affected copy is a loss of function mutation leading to haploinsufficiency or a 

gain of function mutation which could interfere with expression, localization, or interaction with 

binding partners. 

SHANK3 is a scaffolding protein in the post-synaptic density of excitatory neurons.   

SHANK3 is being investigated as a candidate gene for ASD (Betancur, Sakurai, Buxbaum 2009; 

Durand and others 2007; Grabrucker and others 2011) and to a lesser extent Alzheimer’s 

disease, schizophrenia, and ID (Grabrucker and others 2011; Verpelli and Sala 2011). Therefore, 

the role of SHANK3 at the synapse will be presented here. 

Synapse Morphology and Function 

Synapse development and connectivity are necessary for normal brain function (Gong 

and Lippa 2010; van Spronsen and Hoogenraad 2010).  During growth, development and the 

learning process, new connections between synapses are made and old ones pruned (called 

synaptic plasticity).  As shown in Figure 1.3, neurons communicate by synapse formation 

between the presynaptic axon and the postsynaptic dendrite.  Electrical stimulation causes the 

release of neurotransmitters from the presynaptic axon that are received by receptors of the 

postsynaptic dendrite called the post synaptic density (PSD).   Cell adhesion molecules such as 

cadherin, neurexin, and neuroligin maintain the synaptic connection.  Actin, SHANK, and HOMER 

proteins form the scaffold of the PSD.  Neurotransmitter receptors such as NMDA, AMPA, and 
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mGluR receive chemical signals.  Alterations in synapse morphology and function may lead to ID, 

ASD, Alzheimer’s disease, schizophrenia, Parkinson’s disease, compulsive behavior, and 

addiction (Gong and Lippa 2010; van Spronsen and Hoogenraad 2010).  

SHANK Family of Proteins 

The three SHANK proteins, SHANK1 (chromosome 19q13.33), SHANK2 (chromosome 

11q13.3), and SHANK3 (chromosome 22q13.33) are found in the post-synaptic density (Bockers 

and others 2004; Boeckers and others 2002).  The SHANK family (SH3 and multiple ankyrin 

repeat domains) is also known as ProSAP (proline rich synapse associated protein) and all three 

have been associated with ID or ASD (Berkel and others 2010; Grabrucker and others 2011; Sato 

and others 2012; Verpelli and Sala 2011) although SHANK3 has been more extensively studied.  

The expression levels of different SHANK proteins vary by tissue type within the brain (Bockers 

and others 2004).  SHANK3 is the only one of the three to be associated with a known deletion 

syndrome. 

Structure of SHANK3 

SHANK3 is a protein coding gene made up of 58,572 nucleotides with 23 exons 

producing a full length protein of 1,747 amino acids [UCSC genome browser].  In addition, two 

smaller isoforms are expressed.  The two longest transcripts are only expressed in brain while 

the shorter transcript is expressed in brain, liver, heart, kidney, and placenta (Bonaglia and 

others 2001). The gene is located on 22q13.33 near the telomere.  Figure 1.4 shows the location, 

splice variants, and expression of SHANK3 as displayed on the UCSC genome browser.  It is 

primarily expressed in brain, heart, and liver tissue.  Within the brain, it is highly expressed in 

the post-synaptic density of excitatory neurons (Boeckers and others 2002). 
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The SHANK proteins are considered ‘master scaffolding molecules’ of the post synaptic 

density by cross-linking with other scaffolding proteins, binding the N-methyl-D-aspartic acid 

(NMDA), metabotropic glutamate receptors (mGluR), and α-amino-3-hydroxyl-5-methyl-4-

isoazole-pronionic acid (AMPA) receptor complexes (Sheng and Kim 2000), and providing 

structural support for cell adhesion molecules (Betancur, Sakurai, Buxbaum 2009).  See Figure 

1.5 for a schematic of the proteins located in the post synaptic density. 

SHANK proteins contain five protein-protein interaction domains: an ankyrin repeat 

domain, an Src homology 3 (SH3) domain, a PSD-95/discs large/zonula occludens-1 (PDZ) 

domain, proline rich regions, and a C-terminal sterile α-motif (SAM) domain.  Each of these 

regions has specific protein binding partners (Boeckers and others 2002).  The ankyrin repeat 

domain binds αFodrin which in turn binds to the actin cytoskeleton (Bockers and others 2001) as 

well as binds Sharpin which may cross-link multiple copies of SHANK3 (Lim and others 2001).  

The PDZ domain interacts with GKAP/SAPAP to bind to NMDA-receptors and cell adhesion 

molecules (Boeckers and others 1999; Naisbitt and others 1999).  The PDZ may also bind to 

CIRL/CI1 and SSTR2 (Kreienkamp and others 2000; Tobaben, Sudhof, Stahl 2000; Zitzer and 

others 1999).  Specific regions in the proline rich domain interact with Dyanamin-2 (Okamoto 

and others 2001), Homer (Hayashi and others 2009; Tu and others 1999), and Cortactin (Du and 

others 1998) which may bind to the mGluR (mGlutamate) receptors and actin cytoskeleton.  The 

Homer and Shank proteins are thought to form a mesh-like scaffolding network in the PSD 

(Hayashi and others 2009). Finally, the SAM domain is thought to bind to the SAM domain of 

other SHANK3 proteins, forming a scaffold (Naisbitt and others 1999).  Further, the 417aa C-

terminus region of SHANK3, including the SAM domain, is required to localize SHANK3 to the 
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post synaptic density (Boeckers and others 2005). Therefore, individuals with deletions of the C-

terminus may have gain-of-function mutations in addition to loss-of-function or 

haploinsufficiency.  Figure 1.6 provides a schematic of SHANK3. 

SHANK3 Expression 

SHANK3 is predominantly expressed in the brain and expression appears to be regulated 

with tissue-specific methylation (Beri and others 2007; Ching and others 2005).  Promoter 

associated CpG islands were highly methylated in peripheral blood where SHANK3 expression is 

low and unmethylated in brain tissue where expression is high (Beri and others 2007; Ching and 

others 2005).   In addition, chromatin conformational differences were also observed between 

tissue types (Beri and others 2007).  Further analysis of SHANK3 found tissue-specific 

methylation regulates five intragenic promoters within SHANK3 and identified two novel 

transcripts (Maunakea and others 2010). 

Most research into SHANK3 has focused on brain expression, but SHANK3 has been 

found to be a scaffolding protein at the sarcolemma (Grubb and others 2011), in epithelial cells 

in the gut where it facilitates host-pathogen interfaces (Huett and others 2009), and in signal 

transduction in the immune system (Redecker, Bockmann, Bockers 2006).   

Observed deletion breakpoints within the SHANK3 gene may have varying effects from 

null mutations where the transcript is not translated, to truncating mutations that cause gain-of-

function mutations affecting protein-protein binding or localization. 
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SHANK3 in Intellectual Disability 

While most work related to SHANK3 has examined ASD, SHANK3 mutations have been 

observed in cases of intellectual disability (Hamdan and others 2011).  In this study of 95 cases 

of nonsyndromic intellectual disability, one missense truncating mutation was found upstream 

of the PDZ domain and Homer and cortactin binding sites in SHANK3. While not examining 

SHANK3 mutations per se, other investigators have found 22q13 deletions (including deletion of 

SHANK3) in 0.18% to 1% of unexplained ID (Flint and others 1995; Girirajan and others 2012; 

Gong and others 2012). 

SHANK3 Mutations Observed in ASD in Humans 

SHANK3 mutations, intragenic deletions, and 22q13.3 deletions have been observed in 0 

– 4% of ASD cases (Boccuto and others 2012; Durand and others 2007; Gauthier and others 

2010; Glessner and others 2009; Moessner and others 2007; Sykes and others 2009; Waga and 

others 2011).  In a study of postmortem brain tissue, 28 miRNAs were differentially expressed in 

cases with ASD compared to controls (Abu-Elneel and others 2008).  SHANK3 and Neurexin, a 

synaptic cell adhesion molecule, are predicted targets for some of these miRNA. A linkage study 

found no linkage peaks on chromosome 22 (Stone and others 2004).  In two studies specifically 

looking for associations with autism and speech delays, no chromosome 22 SNPs were identified 

(Cho and others 2011; Flax and others 2010).  The evidence remains mixed on the role of 

SHANK3 mutations or deletions as observed in human observational studies. 

Mouse Models of Shank3 Knockout, Knockdown, and Haploinsufficiency 

Animal models are often used to estimate effects of genetic mutations in humans and 

have the advantage of being able to control the specific mutation under study and to examine 

phenotypic endpoints in a controlled, standardized manner.  A particular challenge for studies of 
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human syndromes with intellectual or behavioral features of concern is to identify measurable 

and standardized phenotypes in the animal model that are analogous to the human feature.  

While there are no human equivalents of autism, intellectual disability, or other psychiatric 

diseases in mice, there is a substantial literature on the use of quantifiable intermediate traits in 

mice to study these conditions (Crawley 2004; Seong, Seasholtz, Burmeister 2002; Silverman and 

others 2010).  Quantifiable intermediate traits in mice can be used to approximate the 

measurable intermediate traits in humans. In addition to anatomic/biochemical phenotypes, 

behavioral and cognitive phenotypes can be measured in mice.  For instance, assays have been 

developed to measure learning and memory (e.g. various maze tests), motor function (e.g. 

hanging from a wire or balancing on a rotarod), and social interaction (e.g. sniffing or interacting 

with other mice) (Crawley 2004; Seong, Seasholtz, Burmeister 2002; Silverman and others 2010).  

Thus, mouse models can be used to assess genetic effects on quantifiable intermediate 

phenotypes with analogs in humans. In PMS, the clinical features of intellectual disability, ASD, 

and hypotonia have measurable intermediate traits of learning and memory, speech and 

communication, social interaction, muscle tone, and neurologic properties of synapse function.   

Functional studies of Shank3 in mouse models support the hypothesis that Shank3 is 

critical for neurological function.  Various mouse models have been developed that knock out 

select isoforms or create a partial knock-out to mimic the deletion syndrome in humans.   

Shank3 is located in a syntenic region on mouse chromosome 15 at genomic position 89 Mb on 

the 103 Mb chromosome (Mouse genome assembly July 2007 NCBI37/mm9).  Unlike human 

SHANK3, mouse Shank3 is not proximal to a telomere. 

In a mouse model most closely resembling the 22q13.33 deletion, Bangash and others 

created a heterozygous mutation whereby one copy of Shank3 was missing the C-terminus of 
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the gene (Shank3 (+/ΔC)(Bangash and others 2011).  The deleted portion contains the region 

that binds Homer.  This region of the protein also deletes the critical region for targeting Shank3 

to the PSD (Boeckers and others 2005).  Bangash and others find that the truncated protein 

interacts with the wild-type protein with a resulting reduction of more than 90% of Shank3 at 

the synapse. Polyubiquitinization and relocalization of the wild type Shank3 to the proteasomes 

was observed.  In addition, the NR1 subunit of the NMDA receptor was polyubiquinated and 

down regulated.  No effects were observed on Shank1, Shank2, GKAP, and AMPA glutamate 

receptors.  Synapse morphology and number were also unaffected.  Electrophysiological studies 

showed a reduced NMDAR response and reduced NMDAR-dependent long term potentiation.  

The mGluR-long term potentiation was increased.  Behavioral studies found Shank3(+/ΔC) to 

have deficits in social interaction, increased response to amphetamine and NMDA antagonists, 

and reduced NR1 expression.  Learning and memory functions were not affected. This model 

supports the hypothesis that haploinsufficiency could produce the phenotypes observed in 

humans.  It also supports the hypothesis that a truncated Shank3 protein may act in a dominant 

negative manner and be the cause of deleterious phenotypes rather than haploinsufficiency.  

In another mouse model, the two primary Shank3 isoforms were completely knocked 

out and the third isoform was reduced (Peca and others 2011).  The model was created by 

targeting Shank3α exons 4-7 (the ankyrin repeat domains) and Shank3β exons 13-16 (the PDZ 

domain). Both isoforms were eliminated and Shank3γ was reduced by 42%.  Knockout mice 

exhibited self-injurious repetitive behaviors and deficits in social interaction (Peca and others 

2011).  Further, in the knock-out mouse brain tissue the molecular composition of the PSD was 

found to be altered, the morphology of the PSD was altered, and striatal postsynaptic function 

was reduced (Peca and others 2011).  This model demonstrated the role of Shank3 in the 
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mouse, but did not address the question of whether elimination of only one copy of Shank3, as 

would happen in 22q13.3 deletion syndrome, would result in clinical features. 

Whereas Peca and others used a complete knockout mouse model, haploinsufficiency 

was observed in another mouse model (Bozdagi and others 2010).  In this case, Shank3 

deletions of exons 4-9 were created.  The full length transcript was eliminated in the full 

knockouts and reduced in the heterozygotes.  Detection of transcripts containing the C-terminus 

and exons 19 and 20 were reduced in the heterozygotes (but not quantified).  The heterozygous 

mice demonstrated deficits in social interaction and communications and reduced synaptic 

function. This model supports the hypothesis that haploinsufficiency of Shank3 could result in 

clinically relevant phenotypes. 

In another model of Shank3 exons 4-9 complete knock out, the two largest and most 

common transcripts were eliminated, but shorter isoforms were observed (Wang and others 

2011).  Knockout mice had abnormal social behavior, communication, repetitive behaviors and 

deficits of learning and memory.  Further, reduced levels of Homer1b/c, GKAP, GluA1 were 

found in the PSD.  The authors concluded that the behavioral changes were similar to human 

ASD patients.  The finding of changes in learning and behavior contrasts to the findings of 

Bangash and others who did not find changes in learning and memory in mice with C-terminal 

deletions of Shank3 (Bangash and others 2011). By using a complete knock out model, the 

authors demonstrate the role of Shank3 in the mouse, but could not test whether missing one 

copy of the gene, as in the case of PMS, would cause similar phenotypes.  Further, the knockout 

did not eliminate the shorter transcripts which contain the C-terminus needed for localization of 

the protein. 
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Finally, in a study that used RNAi to knock down Shank3 expression in cultured mouse 

neurons, expression of mGluR5 receptors was reduced and synapse morphology was abnormal 

(Verpelli and others 2011).  The RNAi knocked down expression of the major isoforms by 70-

80%. This study also demonstrates the importance of Shank3 in mouse models and supports the 

hypothesis that SHANK3 may be haploinsufficient in humans, although the knock downs 

reduced expression by more than the 50% expected with deletion of one allele. 

In summary, functional work with mouse models demonstrated behavioral, biochemical, 

and synapse morphological changes with disruption of Shank3.  Given the multiple intragenic 

promoters (Maunakea and others 2010; Wang and others 2011) along with tissue-specific 

expression (Beri and others 2007; Ching and others 2005) and multiple methods of measuring 

phenotypes, it becomes difficult to parse out Shank3-domain-specific genotype-phenotype 

correlations.  It appears that mutations within Shank3 could work in a dose-dependent manner 

(leading to haploinsufficiency) or as a gain-of-function dominant manner.  With many interacting 

proteins, there is a strong possibility of deficits of Shank3 being attenuated or exacerbated by 

changes in interacting partners.  Nonetheless, it is clear that Shank3 mutations can have 

measureable and deleterious effects in the mouse brain. 

The evidence is mixed on whether SHANK3 dosage changes alone are the critical change 

in PMS.  In most cases of PMS, the entire SHANK3 is missing, but typically so are additional 

genes which have largely been unstudied.   In some instances of PMS, the SHANK3 gene has an 

intragenic deletion or truncation which could affect protein regulation, localization, 

dimerization, and interactions with protein-interaction partners.  The literature on SHANK3 

mutations in autism describe the combination of missense mutations along with 22q13.33 

terminal deletions making it difficult to parse whether the implied effect is due to dosage or 
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aberrant protein production.  The mouse model that was developed to directly address the 

question of the effect of a C-terminus deletion of Shank3 suggests that truncating mutations 

could be more deleterious than a single null allele because the mutant protein interacts with the 

wild type protein, leading to >90% reduced Shank3 at the PSD (Bangash and others 2011).  The 

question whether SHANK3 deletions have the same phenotype as SHANK3 mutations in humans 

remains unanswered. 

While the majority of PMS research efforts to date have focused on SHANK3, other 

22q13.3 genes may contribute to the phenotype.  Evidence to support this hypothesis comes 

from a report of two patients with PMS clinical features who have an interstitial, rather than 

terminal, deletion of 22q13.3 (Wilson and others 2008).  In these patients, the breakpoints are 

>4 Mb proximal to SHANK3 (SHANK3 is intact).  This finding of cases with a similar clinical 

presentation, but not missing SHANK3, suggests that there may be additional genes or genomic 

factors on 22q13.3 responsible for clinical features (Wilson and others 2008). 

Position Effects  

Independent of SHANK3-specific deletions or mutations, a chromosomal deletion can 

have position effects on the remaining genes.  Deletions and rearrangements can affect the 

presence of or relationship between genes and regulatory elements (Buchanan and Scherer 

2008).  Since most of the deletions are terminal deletions, telomere position effects may be of 

particular relevance.  

In a terminal deletion, the repair of a broken chromosome results in the placing of a 

newly healed or captured heterochromatic telomere in close proximity to a genomic region not 

normally proximal to a telomere.  Telomere position effects (TPE), whereby gene expression is 

inhibited in genes in close proximity to a telomere, has been observed in human cells (Baur and 
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others 2001).  In HeLa cells, gene expression was markedly reduced in genes placed adjacent to 

a newly formed telomere and expression was also reduced with increased telomere size (Baur 

and others 2001). The distance over which TPE may work is estimated to be up to 100 kb 

(Kulkarni and others 2010).  TPE has been found to affect replication timing in the affected 

region (Ofir and others 1999; Smith and Higgs 1999).  Interestingly, this effect was studied in a 

lymphoblastoid cell line from a patient with a 130kb terminal deletion of 22q13 previously 

reported (Wong and others 1997).  Gene expression of ARSA, located 54 kb from the breakpoint 

showed both alleles were expressed, although expression levels were not quantified (Ofir and 

others 1999) and appear qualitatively different.  The authors concluded that TPE did not extend 

that distance or the effects were incomplete.   No mention was found in the research record of 

any further work being done to investigate TPE on 22q13 genes in deletion patients or to 

determine if TPE could be different in brain tissue where gene expression differs.  It remains 

plausible that TPE could reduce expression levels of genes located within 100kb of a breakpoint.  

Future research might explore the TPE phenomenon on cell lines established from individuals 

with larger deletions or in neurons obtained from induced pluripotent stem cells of 22q13 

deletion patients. 

 

Beyond PMS, What Is Known About Phenotypes Associated With 22q13? 

To investigate what is already known about 22q13 associated phenotypes, the Catalog 

of Published Genome Wide Association Studies (GWAS) (Hindorff and others 2009a; Hindorff 

and others 2009b) was examined (Table 1.2 and Figure 1.7).  This database is curated by staff of 

the National Human Genome Institute who regularly review published GWAS studies and 
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include findings when studies include at least 100,000 SNPs and achieve a level of statistical 

significance of 10-5 or more significant.  An advantage to using this catalog is the comprehensive 

curation and weekly updating from the literature.  A drawback is that it only includes SNPs that 

achieve a P-value of 10-5 or more significant and it is possible that important associations may 

have been found at a lower level of significance in smaller scale studies.  The stringent criteria 

are used to weed out the expected high number of false positives given the large number of 

SNPs examined in modern SNP panels (100,000 to more than 1,000,000 SNPs assessed per 

individual).  However, in studies with small sample sizes, a true association may not be able to 

achieve such a high level of significance and will be omitted from this curation.  Table 1.2 

summarizes known GWAS associations with 22q13.2-22q13.33 genomic locations.  Associations 

found in 22q13.1 are beyond the largest observed deletion observed in PMS and are not 

included. Traits related to temperament, narcolepsy, multiple sclerosis, attention 

deficit/hyperactivity disorder appear most relevant to PMS.  However, as more information is 

collected on PMS patients, particularly in studies related to deletions beyond SHANK3, these 

traits can be revisited.  No GWAS studies found SNPs associated with intellectual disability, 

autism spectrum disorders, hypotonia, or speech/language disorders on 22q13.2q13.33. 

GWAS identified a large number of associations with a wide variety of phenotypes on 

22q13. In region 22q13.2 there were SNPs associated with Alzheimer disease and prostate 

cancer.  In region 22q13.31 there were SNPs associated with liver disease and liver enzymes and 

response to methylphenidate in children with attention deficit/hyperactivity disorder.  The 

ADHD related finding points to an SNP in an intergenic region between genes TBC1D22A and 

FAM19A5 (Mick and others 2008).  Band 22q13.32 had one association with pancreatic cancer.  

In region 22q13.33, associations were found for narcolepsy, hematologic phenotypes, 
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natriuretic peptide levels, and colitis.  The narcolepsy finding was for a SNP located at base 

position between genes CPT1B and CHKB (Miyagawa and others 2008).  Sleep disturbance has 

been reported in PMS (Sarasua and others 2011).The SNP is located 24kb proximal to the gene 

IB2 and 95kb proximal to SHANK3.  There were no associations in the Catalog when searching 

for “SHANK3”.  There were no hits when searching terms “hypotonia”, “language”, “speech”, 

”stature”, “dysmorphic OR dysmorphia”, or “macrocephaly”, “head circumference”, “intellect”, 

“IQ”, or “intellectual”.  A search for “height” identified several studies, including one on 

22q13.1, but outside the PMS deletion region (Estrada and others 2009).   “Intelligence” found 

one study, but found no SNPs associated.  “Mental retardation”, “syndactyly”, “vision”, “acuity”, 

“development” and “brain” found hits but nothing on chromosome 22.  Interestingly, searching 

for “autism” found only 5 published studies.  No chromosome 22 hits were found and only hits 

on chromosome 15 were identified.  This is a surprising finding given the large number of genes 

that have been found to be associated with autism, including SHANK3.  It may be that GWAS 

methods are of limited use for multifactorial conditions such as autism.  They also require highly 

significant findings which may be difficult to achieve even in the face of a truly causal gene. 

Mouse and Rat QTLs in the 22q13 Orthologous Regions 

Again using the UCSC genome browser to facilitate review of relevant features, mouse 

and rat QTLs (Blake and others 2011; Eppig and others 2012; Finger and others 2011; Rapp 

2000) in the orthologous regions were identified.  At base position 43.4-43.6 there is a mouse 

QTL related to methamphetamine response and may be related to brain function (Blake and 

others 2011; Eppig and others 2012; Finger and others 2011; Palmer and others 2005). 

Reviewing the Rat Genome Database for human QTLs identified regions associated with high 

blood pressure, chronic obstructive pulmonary disease (Rapp 2000; Twigger and others 2007). 
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Online Mendelian Inheritance in Man (OMIM) 

OMIM (www.omim.org) is a curated database of human genes and phenotypes focusing 

on Mendelian disorders.  OMIM identified genes and their associated disorders include  CYB5R3 

(methemoglobinemia) in 22q13.2; UPK3A (renal adysplasia), FBLN1 (polydactyly), ATXN10 

(spinocerebellar ataxia), PPARA (lipid metabolism), and TRMU (liver failure, deafness) in 

22q13.31; and ALG12 (congenital disorders of glycosylation), MLC1 (megalencephalic 

leukoencephalopathy with subcortical cysts), TUBGCP6 (microcephaly with or without mental 

retardation), SCO2 (cardioencephalomyopathy), TYMP (mitochondrial disorder), CHKB (muscular 

dystrophy), ARSA (metachromatic leukodystrophy), SHANK3 (Phelan-McDermid syndrome, 

Schizophrenia), and ACR (male infertility) in 22q13.33.  These genes are spread across the 

deletion region and are potential candidates for contributing to the PMS constellation of 

features, particularly given reports of kidney and liver problems, developmental delay, ataxia, 

and hypotonia in PMS (Phelan and McDermid 2012).   

Genotype-Phenotype Study Methods 

One of the goals of this work is to identify genes located in 22q13.2q13.33 that are 

deleted in addition to SHANK3 that may contribute to the presentation of the syndrome.  The 

typical method used to conduct genotype-phenotype studies in deletion syndromes is to 

identify the smallest region of overlap in a collection of cases which typically have deletions of 

varying sizes (Mefford and others 2012; Molin and others 2012; Talkowski and others 2011). In 

the case of PMS, the smallest region of overlap contains the three most terminal genes including 

SHANK3, ACR, and RABL2B.  All cases have developmental delay, absent or delayed speech, and 

almost all have hypotonia.  The severity of the condition varies as does the appearance of 

secondary medical and physical features.  As has been found in other conditions (Talkowski and 
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others 2011) the gene commonly deleted or disrupted may not be responsible for all features of 

a syndrome.  A contribution to the literature would be to delineate the features contributed by 

SHANK3 deletion and the features contributed by other genes. 

 

Summary 

Genes located on 22q13 remain sparsely annotated.  Efforts to determine genotype-

phenotype correlations in PMS will aid in understanding the independent and contributory 

effects of SHANK3 and 22q13 genes.  Further, what is learned in studying PMS will help in 

understanding the etiology of other developmental disability syndromes caused by mutations or 

copy number variants.  For instance, as array CGH is increasingly used, increasing numbers of 

microdeletions and microduplications are being detected and new syndromes are being 

recognized.  Increased numbers of identified cases with phenotypes accompanied by 

refinements in breakpoint identification mean that more phenotype-specific candidate regions 

will be identified.  Concurrently, as candidate genes are identified and confirmed in better 

understood syndromes with similar phenotype, this information will help in identifying 

candidate genes within narrowed candidate regions.  Examples of these deletion syndromes 

without identified causal genes include microdeletion syndrome 15q24 (Magoulas and El-Hattab 

2012), 6p22.3-p24.3 (Celestino-Soper and others 2012), and 2q22.1 (Mulatinho and others 

2012).  Progress in other deletion syndromes such as Angelman and Prader-Willi have identified 

the critical genes in the deletion regions (Buiting 2010). Examining genes known to be involved 

in other developmental disability syndromes and their interactions with 22q13 genes will be as 
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useful to PMS research as incorporating what we learn about PMS into research on other 

syndromes. 
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Table 1.1.  Common Features of PMS (as provided in (Phelan, Stapleton, Rogers 2010)). 

Proportion with feature Feature 

 95% Neonatal hypotonia 
Global developmental delay 
Absent or severely delayed speech 
Normal or accelerated growth 

 75% Large, fleshy hands 
Dysplastic toenails 
Long eyelashes 
Decreased perception of pain 
Mouthing/chewing behaviors 

 50% Dolichocephaly 
Poorly formed/large ears 
Wide brow 
Full/puffy cheeks 
Full/puffy eyelids 
Ptosis 
Deep-set eyes 
Flat midface 
Wide nasal bridge 
Bulbous nose 
Pointed chin 
Sacral dimple 
Decreased sweating 

 25% Strabismus 
Renal problems 
Gastroesophageal reflux 
Epicanthal folds 
Long philtrum 
High-arched palate 
Malocclusion/wide-spaced teeth 
Toes 2-3 syndactyly 
Cardiac defects 
Hypothyroidism 
Lymphedema 
Precocious or delayed puberty 
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Table 1.2. Summary of Findings on Chromosome 22q13 from the Catalog of Published Genome 
Wide Association Studies. 
Source Region Chr_pos hg 

19 
Chr_pos  
hg 18 Disease/Trait 

Reported 
Gene(s) 

Context p-Value 

(Man and others 2012) 22q13.2 41042091 39372036 Treatment 
response for 
severe sepsis  

MKL1 Intergenic 6.00E-07 

(Kim and others 2011a) 22q13.2 42218856 40548801 Alzheimer's 
disease 
biomarkers 

CCDC134 intron 1.00E-06 

(Eeles and others 2009) 22q13.2 43500212 41830155 Prostate 
cancer 

NR Intergenic 6.00E-29 

(Schumacher and others 
2011) 

22q13.2 43518275 41848218 Prostate 
cancer 

BIK intron 6.00E-06 

(Chambers and others 
2011) 

22q13.31 44324727 42656059 Liver enzyme 
levels 
(alanine 
transaminas
e) 

PNPLA3, 
SAMM50 

missense 1.00E-45 

(Speliotes and others 
2011) 

22q13.31 44324727 42656059 Nonalcoholic 
fatty liver 
disease 

PNPLA3 missense 4.00E-34 

(Kim and others 2011b) 22q13.31 44325996 42657328 Metabolite 
levels 

PNPLA3 intron 2.00E-18 

(Kim and others 2011b) 22q13.31 44325996 42657328 Metabolite 
levels 

PNPLA3 intron 2.00E-39 

(Yuan and others 2008) 22q13.31 44332570 42663902 Liver enzyme 
levels 

PNPLA3, 
SAMM50 

intron 8.00E-16 

(Greenwood and others 
2012) 

22q13.31 45961904 44340567 Temperame
nt-related 
traits 

FBLN1 intron 2.00E-08 

(Dolmans and others 
2011) 

22q13.31 46421842 44800505 Dupuytren's 
disease 

RP11û398F1
2.1, WNT7B 

Intergenic 3.00E-33 

(Yashin and others 2010) 22q13.31 47532396 45911059 
Longevity 

TBC1D22A intron 1.00E-06 

(Mick and others 2008) 22q13.31 48284514 46663177 Attention 
deficit 
hyperactivity 
disorder 

Intergenic Intergenic 3.00E-06 

(Wu and others 2011) 22q13.32 48929569 47308232 Pancreatic 
cancer 

FAM19A5 intron 1.00E-10 

(Del Greco and others 
2011) 

22q13.33 50086373 48472376 Natriuretic 
peptide 
levels 

BRD1 Intergenic 7.00E-06 

(Agrawal and others 
2011) 

22q13.33 50350971 48736974 Cannabis 
dependence 

PIM3 Intergenic 8.00E-06 

(Anderson and others 
2011) 

22q13.33 50435480 48777606 Ulcerative 
colitis 

PIM3, 
IL17REL 

missense 2.00E-07 

(Franke and others 2010) 22q13.33 50435480 48777606 Ulcerative 
colitis 

IL17REL missense 4.00E-08 

(Kamatani and others 
2010) 

22q13.33 50966914 49313779 Hematologic
al and 
biochemical 
traits 

NCAPH2,SCO
2,TYMP, 
KLHDC7B 

intron 4.00E-08 

(International Multiple 
Sclerosis Genetics 
Consortium and others 
2011) 

22q13.33 50971266 49318131 

Multiple 
sclerosis 

ODF3B nearGene-5 2.00E-08 

(Ganesh and others 2009) 22q13.33 50971752 49318617 Mean 
corpuscular 
volume 

ECGF1 nearGene-5 1.00E-15 
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(Miyagawa and others 
2008) 

22q13.33 51017353 49364218 

Narcolepsy 

CPT1B nearGene-
3;nearGene
-5 

6.00E-08 

(Yashin and others 2010) 22q13.33 51104680 49451545 
Longevity 

AC000050.2 Intergenic 1.00E-06 

 

1Source: (Hindorff and others 2009a; Hindorff and others 2009b), database accessed May 28, 
2012
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Figure 1.1 Region of Deletions Observed in PMS (22q13.2q13.33). The UCSC genome browser 
(Kent and others 2002) was used for this graphic using the 2006 (NCBI36/hg18) genome build 
(International Human Genome Sequencing Consortium 2004). 
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Figure 1.2 Deletions of 22q13.2q13.33 in Phelan-McDermid Syndrome. Terminal deletions are 
highly variable without common breakpoints in PMS. The UCSC genome browser (Kent and 
others 2002) was used for this graphic using the 2006 (NCBI36/hg18) genome build 
(International Human Genome Sequencing Consortium 2004). Reproduced from (Sarasua and 
others 2011) with permission from the BMJ Publishing Group Ltd.   
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Figure 1.3. Schematic Depiction of the Synapse. Schematic shows key proteins including the cell 

adhesion molecules cadherin, neuroligin, and neurexin; signaling receptors AMPAR, NMDAR, 

and mGluR; and structural proteins in the post synaptic density Actin, Homer, and Shank.  Figure 

provided with kind permission from Springer Science and Business Media.  The figure originally 

appeared in Current Neurology and Neuroscience Reports, Synapse Pathology and Psychiatric 

Disease, Volume 10, 2010, page 208, Myrrhe van Spronsen and Casper C. Hoogenraad.  
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Figure 1.4.  Location of SHANK3 Splice Variants in 22q13.33, Proximity to the Telomere, 
Expression in Tissue Types, and Open Chromatin Regions from the UCSC Genome Browser (Kent 
and others 2002; Su and others 2004). 
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Figure 1.5. Location and Interaction of Proteins in the Post Synaptic Density. Reprinted from 
(Verpelli and Sala 2011) with permission from Elsevier. 
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Figure 1.6. Schematic of SHANK3 and the PSD. Panel A provides a schematic of SHANK3 exons 

and conserved domains.  Panel B provides a schematic of SHANK3 and biding partners in the 

post synaptic density.  This figure is reprinted from (Phelan and McDermid 2012) with 

permission from S. Karger AG Basel. The figure was based upon (Kreienkamp 2008; Phelan and 

McDermid 2012) and is reprinted with kind permission from Springer Science and Business 

Media and Dr. Kreienkamp. 
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Figure 1.7. GWAS Findings in 22q13 from the UCSC Genome Browser and Catalog of Published 
Genome Wise Association Studies (Kent and others 2002; Hindorff and others 2009a; Hindorff 
and others 2009b). 
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CHAPTER TWO 

 

ASSOCIATION BETWEEN DELETION SIZE AND IMPORTANT PHENOTYPES EXPANDS THE GENOMIC 

REGION OF INTEREST IN PHELAN-MCDERMID SYNDROME (22Q13 DELETION SYNDROME) 
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phenotypes expands the genomic region of interest in Phelan-McDermid syndrome (22q13 

deletion syndrome). J Med Genet 48(11):761-6. Reprinted with permission from BMJ Publishing 

Group Ltd.] 

 

Abstract  

Background :The clinical features of Phelan-McDermid syndrome (also known as 22q13 

deletion syndrome) are highly variable and include hypotonia, speech and other developmental 

delays, autistic traits, and mildly dysmorphic features.  Patient deletion sizes are also highly 

variable, prompting this genotype-phenotype association study. Methods: Terminal deletion 

breakpoints were identified for 71 individuals in a patient cohort using a custom-designed high-

resolution oligonucleotide array comparative genomic hybridization platform with a resolution 

of 100 bp.  Results: Patient deletion sizes were highly variable, ranging from 0.22 to 9.22 Mb, 

and no common breakpoint was observed.  SHANK3, the major candidate gene for the 

neurologic features of the syndrome, was deleted in all cases.  Sixteen features (neonatal 

hypotonia, neonatal hyporeflexia, neonatal feeding problems, speech/language delay, delayed 

age at crawling, delayed age at walking, severity of developmental delay, male genital 

anomalies, dysplastic toenails, large or fleshy hands, macrocephaly, tall stature, facial 

asymmetry, full brow, atypical reflexes, and dolichocephaly) were found to be significantly 

associated with larger deletion sizes, suggesting the role of additional genes or regulatory 

regions proximal to SHANK3.  Individuals with autism spectrum disorders (ASDs) were found to 
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have smaller deletion sizes (median deletion size of 3.39 Mb) than those without ASDs (median 

deletion size 6.03 Mb, P=0.0144).  This may reflect the difficulty in diagnosing ASDs in individuals 

with severe developmental delay. Conclusions:  

This genotype-phenotype analysis explains some of the phenotypic variability in the syndrome 

and identifies new genomic regions with a high likelihood for causing important developmental 

phenotypes such as speech delay. 

 

Introduction  

Phelan-McDermid syndrome (PMS [MIM 606232]), also known as 22q13 deletion 

syndrome, is a rare syndrome characterized by developmental delay, absent or impaired 

speech, neonatal hypotonia, autistic traits, and mild dysmorphic features.[1-8]  Affected 

individuals have deletions ranging in size from 100 kb to over 9 Mb.[5]  Because PMS is 

considered to be underdiagnosed, the true prevalence is unknown.[1]  In an evaluation of more 

than 11,000 cases with developmental disabilities, 22q was the second most frequent 

subtelomeric rearrangement, identified in 0.2% of those evaluated.[9]  Simple terminal 

deletions account for approximately 75% of PMS cases.[10]  The other cases have been 

comprised of translocations in the 22q13 region,[2,11-13] ring chromosome 22,[1,2,14-16] and 

mosaics.[17,18] 

Until recently, diagnostic technologies relied upon cytogenetic banding and 

fluorescence in-situ hybridization (FISH) or bacterial artificial chromosome comparative genomic 

hybridization (CGH), which are not always able to detect smaller deletions or to accurately 
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measure deletion size or breakpoints.  Oligo array CGH allows for a much higher resolution of 

the chromosomal breakpoints. 

Most of the published work suggests that the loss of one copy of SHANK3 (SH3 and 

multiple ankyrin repeat domains 3, also referred to as ProSAP2 or proline rich synapse 

associated protein 2) is responsible for the neurological features of the PMS phenotype, since 

SHANK3 maps within the region of common deletion observed in patients.[5,6]  A patient with 

t(12;22)(q24.1;q13.3), which disrupted SHANK3, gave evidence implicating this gene as a major 

candidate for the neurological features of the syndrome.[11]  Further, a de novo interstitial 

deletion disrupting only SHANK3 was observed in an individual with developmental delay, 

speech delay, and mildly dysmorphic features including ptosis, epicanthal folds, and cupped 

ears.[19]  The authors concluded that haploinsufficiency of SHANK3 alone, and not genes 

telomeric to it, was responsible for PMS. 

SHANK3 is predominantly expressed in brain tissue and the expression appears to be 

regulated by tissue-specific methylation.[20,21]  SHANK3, a structural protein, is considered to 

be critical in the assembly, maintenance, and plasticity of the post-synaptic density (PSD) at 

excitatory synapses in the brain.[22]  SHANK3, along with other PSD components, including cell 

adhesion molecules such as neurexins[23-26] and neuroligins,[27,28] as well as scaffolding 

proteins, has been found to be associated with autism spectrum disorders (ASDs).[29-31]  

However, a recent finding of two individuals with PMS phenotypes and interstitial deletions 

outside of the SHANK3 region has expanded the search for additional genetic causes of the 

22q13 deletion phenotype.[32] 
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Another gene located near SHANK3, and deleted in most cases of PMS, is IB2.  IB2 (islet 

brain 2), also known as MAPK8IP2 (mitogen-activated protein kinase 8 interacting protein 2), is 

70kb proximal to SHANK3 and performs critical neurologic functions.[33]  Giza et al. 

demonstrated that the IB2 protein is located in the PSD and throughout the brain and is 

important in synaptic transmission and neural morphology.  A full knock-out mouse model of 

IB2 demonstrated reduced cognitive ability, learning and social interaction.[33] 

 This analysis, the first genotype-phenotype comparison to use high-resolution deletion 

breakpoint mapping on a large sample size, addressed the hypothesis that additional genes or 

regions of chromosome 22q13 besides SHANK3 contribute to the PMS phenotype. 

 

Subjects and Methods 

Subjects 

Study subjects were previously diagnosed with PMS and most attended one or more 

PMS Family Support Conferences held in 2001, 2004, 2006, and 2008 in Greenville, South 

Carolina and in 2006 in Melbourne, Australia.  The majority of blood specimens were collected 

at the 2006 and 2008 conferences in Greenville, South Carolina.  The study was approved by the 

Institutional Review Board of Self Regional Healthcare (Greenwood, South Carolina), and all 

participants’ parents or guardians provided signed informed consent forms.  All participants 

have a terminal deletion encompassing the SHANK3 gene.  Individuals with known or self-

reported chromosomal anomalies other than terminal deletions were not included in the 
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analysis in order to focus the study on 22q13 deletion effects.  Some participants in the present 

study may have participated in other studies published elsewhere. 

 Information on physical features was obtained from physical examinations conducted 

by experienced clinical geneticists following standardized assessment checklists or, for two 

patients, abstracted from a medical record.    Stature and head circumference were measured at 

the Family Conferences and the remaining physical features were evaluated based upon clinical 

judgment. These physician-confirmed features are listed in Supplemental Table 2.1.  Medical 

history was obtained from standardized medical history questionnaires administered during an 

in-person interview at the Family Conferences or completed independently by parents and 

mailed or emailed to the investigators.   When available, this parent-provided information was 

supplemented with information obtained from the physical examinations or from the abstracted 

medical record. These features are presented in Supplemental Table 2.2. For 72% of 

participants, more than one record source was available (physical examination, medical history 

questionnaire, or evaluation of the same individual across several years).  In instances where a 

discrepancy between records was identified, physician-provided answers were used in place of 

parent-provided information.  In cases where health information differed between different 

years of participation for an individual, positive responses were used such that the information 

represents “ever” reporting a feature.  This information was entered in a Microsoft Access 

(Redmond, WA) database and checked for accuracy. 
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Genetic analysis 

Genetic deletions were measured using a custom 4x44K 60-mer oligo array designed to 

cover chromosome 22q12.3-qter by Oxford Gene Technology (Oxford, UK).  In brief, genomic 

DNA was isolated and subsequently purified using the Zymo DNA Clean & Concentrator™ kit 

(ZymoResearch, Orange, California) according to manufacturer’s instructions.  Reference DNA 

used in the comparative hybridization was obtained from Promega (Madison, Wisconsin).  DNA 

concentration and purity were determined with a ND-1000 Spectrophotometer (NanoDrop 

Technologies, Wilmington, Delaware).  Two µg DNA from patients’ peripheral blood and 

reference samples were digested at 37ºC for 2 hours with 5 U of RsaI and AluI (Promega).  After 

heat inactivation of the enzymes, the samples were labeled with either Cy3- or Cy5-dUTP using 

the Agilent Genomic DNA labeling kit PLUS (Santa Clara, California).  Samples were purified with 

YM-30 Microcon filters from Millipore (Bedford, Massachusetts).  Hybridization and washes 

were conducted employing Oxford Gene Technology’s (OGT) CytoSure™ Chromosome 22q 

specific array protocol (Oxford, UK).  Arrays were scanned with the GenePix 4000B scanner 

(Molecular Devices, Sunnyvale, California).  Array feature extraction was performed with 

GenePix Pro 6.1.  Copy number/data analysis was performed with OGT’s CytoSure™/Oligome 

viewer software package.  Deletion breakpoints are accurate to 100 bp resolution and the array 

CGH genomic coordinates were established according to the 2006 human genome build 18 

(GRCh 36/NCBI build 36.1).[34]  Deletion sizes were plotted on the genome browser using the 

University of California at Santa Cruz Genome Browser.[35] 
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Statistical analysis 

Statistical analyses were performed using SAS version 9.2 (SAS Institute Inc., Cary, NC) to 

examine the association between deletion size and clinical features.  Because the distribution of 

deletion sizes was non-normal, non-parametric statistical tests including the Spearman rank 

correlation coefficient and two-sided Wilcoxon rank-sum test were used when the dependent 

variable was deletion size.  In cases where expected cell sizes were small (<5), exact methods 

were used.  Linear regression was used to examine the effect of the deletion size on continuous 

outcome measures such as speech and developmental features.   

 

Results 

Phenotype and deletion breakpoint data from 71 individuals were used in this analysis.  

Physical examination information was available for 54 (76%) and parent-provided medical 

history was available for 61 (86%) individuals.  A total of 84 clinical  phenotypic features were 

assessed.  The age of participants ranged from 0.4 to 40 years, with a mean of 7.6 years 

(standard deviation of 2.5 years).  The cohort was composed of 42 females and 29 males for a 

female to male ratio of 1.45:1.  Median deletion size was similar for males (6.03 Mb) and 

females (5.24 Mb, P=0.2678).  Deletion sizes ranged from 0.22 to 9.22 Mb (see Figure 2.1), with 

a mean of 5.08 Mb, a median of 5.25 Mb and a standard deviation of 2.56 Mb.  SHANK3 was 

deleted in all individuals and IB2 was deleted in all but two individuals.  Individuals with physical 

examination data tended to have smaller deletions (mean = 4.7 Mb) than those with only 

medical history information (mean = 6.5 Mb, P=0.0102), although the full range of deletion sizes 
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were observed for both groups.  The most common features observed in this cohort include 

developmental delay, expressive speech/lanaguage delay,  long eyelashes, increased pain 

tolerance, dysplastic toenails, and hypotonia. 

Sixteen of 84 characteristics were found to be significantly associated with larger 

deletion sizes (Tables 2.1 and 2.2; a list of all assessed features is provided in Supplemental 

Tables 1 and 2).  These characteristics tended to be related to physical features including: 

dolichocephaly, facial asymmetry, full (prominent) brow, large or fleshy hands, dysplastic 

toenails, tall stature, macrocephaly, atypical reflexes, and male genital anomalies; neonatal 

features: hypotonia, feeding problems, and hyporeflexia; and developmental delays: speech 

delay, developmental delay, later age to crawl, and later age to walk.  Among those with atypical 

reflexes, median deletion sizes were similar among those with strong reflexes (n=7, median 

deletion size 6.46 Mb, range of 1.85-8.96 Mb) and those with weak reflexes (n=9, median 

deletion size 6.57, range of 1.98-8.20).  Both were significantly larger than those with typical 

reflexes (Median deletion size 4.19 Mb, range 0.34-8.62). Behaviorial features were not 

associated with increased deletion size.  However, two features, ASD and aggressive behavior, 

were associated with smaller median deletion sizes. 

Prenatal and neonatal features 
 

Features present in the neonatal period, including hypotonia, feeding problems, and 

hyporeflexia, were all associated with larger deletion sizes (Table 2.2).  No association was found 

between deletion size and low birth weight (reported for 23% of the sample) or preterm birth 

(reported for 25% of the sample; Supplemental Table 2). 
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Autism Spectrum Disorders 

Autism spectrum disorders were reported in 26% of the patients over age three years 

(Table 2.2).  The median deletion size for those with ASDs was smaller (3.39 Mb, range 0.22 to 

7.19 Mb) than the median deletion size for those without ASDs (6.03 Mb, range 0.57 to 9.22, 

P=0.0144).  Similar to ASDs, aggressive behavior was also associated with smaller median 

deletion size (Table 2.2).  

Developmental Delay 

All patients had some degree of developmental delay. Severity of developmental delay, 

as rated by parents on an ordinal scale from mild, moderate, severe, and profound, was 

significantly and positively associated with deletion size when using linear regression (P=0.009). 

Similarly,  later age to crawl (P=0.0032) and later age to walk (P=<0.0001) were significantly 

associated with larger deletion sizes. 

Speech and Language Delay 

Speech was absent or delayed for 100% of individuals.  On the questionnaires 

administered in 2004 and 2006, parents were asked whether speech was absent or severely 

impaired and to note how many words the patient used.  In the questionnaire administered in 

2008, parents were asked whether speech was absent or severely impaired, how many words 

were used in a sentence, and to provide additional comments describing speech.  Among those 

over three years of age for whom speech information was provided (n=50), half reported no 

speech.  Another 28% had 40 or fewer words and did not report speaking in phrases or 

sentences. The final 22% reported having sentences or phrases, talking as the primary means of 
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communication, or more than 40 words and were coded as having “sentences” (Table 2.1).  

Median deletion size was higher for those with absent speech (6.72 Mb) and smaller for those 

with sentences (3.27 Mb).  When deletion size was examined in detail, none of the 22 

individuals with deletion sizes greater than 5.3 Mb was reported to speak in sentences whereas 

39% of the 28 individuals with deletion sizes smaller than 5.3 Mb use sentences (P=0.001).  

Deletion size showed a significant negative correlation with the number of words spoken 

(P=0.0102).  

Growth 

Growth was found to be non-linearly associated with deletion size (Table 2.1); those 

with normal stature had the smallest median deletion size at 4.80 Mb, while those with tall 

stature (>95th percentile) had a median deletion size of 6.18 Mb, and those with short stature 

(<5th percentile) had the largest median deletion size at 8.06 Mb.  Macrocephaly was associated 

with increased deletion size (median deletion size 6.99 Mb) whereas those with microcephaly 

had similar deletion sizes compared to those with normocephaly (median deletion size of 3.32 

Mb compared to 3.34 Mb, respectively). 

 

Discussion 

This genotype-phenotype study is the largest to date to include high-resolution deletion 

breakpoint genotype information along with clinical features to identify associations between 

features of Phelan-McDermid syndrome and deletion sizes.  Prior smaller studies found mixed 

indications of association between deletion size and the severity of the phenotype.[5]  In 
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particular, our findings are consistent with previous reports of correlations between increased 

deletion size and the severity of selected phenotypes.[6,15,36]  A case series of eight patients, 

which included neuroimaging, found that individuals with small deletions (~0.15 Mb) had 

decreased brain anomalies when compared to individuals with larger deletions.[7]  In another 

study of 12 subjects with oligo array CGH breakpoint data, patients with large hands tended to 

have larger deletions,[36] in agreement with our findings.  In a study of 30 individuals with 

22q13 deletions manifesting as ring chromosomes, Jeffries et al. found increased deletion size 

positively correlated with dysmorphic features related to ears, toenails, and philtrum as well as 

the developmental features of increased severity of developmental delay and speech delay.[15]  

Wilson et al. found a positive correlation between increased deletion size and developmental 

delay, hypotonia, head circumference, ear infections, pointed chin, dental anomalies, and 

several measures of independent behavior and daily living abilities.[6]  Our study also found an 

association of increased deletion size with neonatal hypotonia, head circumference, and facial 

features (Tables 2.1-2.2). 

Supporting our finding of larger deletions being associated with more severe 

phenotypes are reports of three individuals with interstitial deletions overlapping the larger 

deletion regions in our patients.[32,37]  Wilson et al. report two cases with an intact SHANK3 

gene, but presenting with speech delay (two words each and no sentences), macrocephaly, tall 

stature, hypotonia, delayed walking, and developmental delay.[32]  Fujita et al. described an 18 

month old Japanese girl with a del(22)(q13.1q13.2) with hypotonia, psychomotor delays, minor 

dysmorphic features (including dolichocephaly and full brow), and hearing loss due to inner ear 
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anomalies.[37]  These cases suggest there are clinically important genes located proximal to 

SHANK3. 

Speech and Language 

Most prior studies reporting on the effect of deletion size on speech and language delay 

do not distinguish between absent speech and delayed or impaired speech.  The present study 

found genomic differences by severity of language delay, particularly the dramatic difference in 

ability to speak in sentences being present in nearly 40% of those with smaller deletions but 

absent in those with larger deletions.  Previous findings of severe speech impairment among 

two cases with interstitial deletions [32] support the presence of genes affecting speech in the 

regions proximal to SHANK3.  None of the genes in the deletion region was identified as being a 

transcriptional target of FOXP2, a transcription factor known to be associated with speech.[38]  

Future work is critically needed to distinguish degrees of speech impairment with the genomic 

regions deleted. 

Autism Spectrum Disorders 

In this study, individuals reported by parents to have an autism spectrum disorder had 

smaller deletions than those without an ASD, but all are missing a copy of SHANK3, a gene 

implicated in autism.[29-31]  Approximately 26% of those over age 3 were reported to have an 

ASD; all were reported to have some degree of developmental delay.  The prevalence of ASD in 

the larger population of PMS patients is unknown, with published reports ranging from 0 to 94% 

(0/8 (0%),[7] 1/6 (17%),[39] 6/11 (55%),[40] 3/5 (60%),[36]  12/27 (44%) or 23/27 (85%) 

depending on the definition,[15] and 17/18 (94%) [5]).  Complicating a comparison are the 
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different diagnostic and reporting criteria used, as well as ages and degree of developmental 

delay of patients assessed.  Our analysis of autism is subject to several limitations.  We relied 

upon parent report of an autism or autism spectrum disorder diagnosis rather than a 

standardized instrument such as the Autism Diagnostic Interview, revised, [41] which would 

have improved the validity of this assessment.  We found that those with larger deletions 

tended to be more severely developmentally delayed.  It is possible that more severely impaired 

individuals may have been less likely to have been assessed for autism, that a diagnosis of PMS 

may have “replaced” or precluded an autism diagnosis, that more severe physical and 

intellectual disabilities may obscure autistic features, or that the assessments may be difficult to 

administer to or be inappropriate for the more severely impaired.   

Growth 

One of the commonly associated phenotypes of PMS is “normal to accelerated 

growth.”[4,5]  A recent analysis of the same cohort noted that both tall (>95th percentile) and 

short stature (<5th percentile), as well as microcephaly (<3rd percentile) and macrocephaly (>97th 

percentile) are common in individuals with 22q13 deletion.[42]  Additionally, the present 

analysis provides support for the presence of distinct deletion regions associated with short 

stature, tall stature, and macrocephaly.  

Limitations 

There are several limitations to the present analyses.  A large number of phenotypes 

were examined with statistical tests and, as these analyses were considered exploratory, were 

not corrected for multiple testing.  Given that 84 phenotypes were examined and using a P-
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value cut-off of <0.05, one might expect four to be identified due to chance, whereas 18 

phenotypes were found to be statistically significant (16 associated with larger deletion sizes 

and two with smaller deletion sizes).  Additionally, some phenotypes may be correlated with 

each other.  Further,  high-resolution karyotype information was not available for all 

participants.  Individuals with known or self-reported chromosomal anomalies other than simple 

deletions were removed from the analysis.  It is still possible that some individuals in the present 

cohort include patients with r(22), translocations, or other anomalies.  Nonetheless, prior 

studies of r(22) noted similar phenotypes to 22q13 deletion,[2,15,40] indicating that the ring 

structure does not alter the phenotype.  The proportion of our study group reporting 

chromosomal anomalies (37/108 or 34%) is similar to those reported elsewhere.[1,10]  Thus, it 

is unlikely that our results are significantly confounded by the presence of unaccounted-for 

chromosomal rearrangements.  It should be noted that the use of chromosomal microarrays to 

detect copy number variants is now recommended as the primary test, over G-banding or FISH, 

for individuals with developmental delay.[43]  Finally, analysis of physical features was restricted 

to those who had medical records or physical examinations at the family conferences.  This 

restriction was used to most accurately characterize phenotypes.  However, it was found that 

individuals with physical examinations tended to have smaller deletion sizes.  It is possible that 

individuals with larger deletions, and possibly a more severe phenotype, were less likely to 

travel to participate in the family conferences and thus those included in the present analysis 

group may represent a somewhat less severely affected population.  However, the full range of 

deletion sizes was observed in this group. 
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Summary 

This study implicates genomic regions proximal to SHANK3 in language, movement, 

developmental delay, and some dysmorphic features in individuals with Phelan-McDermid 

syndrome.  This is the first study of PMS to distinguish different degrees of speech delay with 

deletion size.  These findings are critical as they provide further regions of interest to help 

elucidate clinical implications for affected individuals.  Current investigations of SHANK3, IB2, 

and other telomeric genes should be supplemented to determine the independent and additive 

impacts of the additional loss of genes, micro RNAs, or regulatory elements in this region of 

chromosome 22q13.   
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Table 2.1.  Physical Examination Phenotypes Showing Significant Differences in 22q13 Deletion 
Sizes. a 

Phenotype Observed N % Median 

Deletion 

Size, Mb 

Range of 

Deletion 

sizes, MB 

P-valueb 

Dysplastic toenails + 

- 

40 

13 

75% 

25% 

5.89 

2.72 

0.22-8.96 

0.34-8.66 

0.0210 

Full (prominent) brow + 

- 

31 

22 

58% 

42% 

5.78 

3.18 

1.62-8.96 

0.22-8.66 

0.0287 

Large or fleshy hands + 

- 

29 

24 

55% 

45% 

6.03 

2.91 

1.65-8.96 

0.22-8.66 

0.0030 

Head size, percentile >97th % 

3rd-97th 

<3rd % 

11 

37 

6 

20% 

67% 

11% 

6.99 

3.34 

3.32 

5.08-8.20 

0.22-9.22 

1.34-8.55 

0.0078 

Refc 

0.9556 

Reflexes Atypical 
Typical 

16 
27 

37% 
63% 

6.51 
4.19 

1.85-8.96 
0.34-8.62 

0.0298 

Dolichocephaly + 

- 

16 

38 

30% 

70% 

6.38 

4.51 

2.23-8.96 

0.22-8.66 

0.0467 

Stature, percentile >95th  

5-95th 

<5th 

5 

36 

5 

11% 

80% 

11% 

6.18 

4.80 

8.06 

5.78-9.22 

0.22-8.55 

2.23-8.96 

0.0480 

Refc 

0.1698 

Facial asymmetry + 

- 

5 

49 

9% 

91% 

6.87 

4.52 

6.46-8.07 

0.22-8.96 

0.0218 

aPhenotypes were obtained from physical examinations or medical records. 
bTwo-sided, Wilcoxon rank-sum test.  
cReference group for statistical comparison
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Table 2.2.  Medical History Features Showing Significant Differences in 22q13 Deletion Sizes. a 

Feature Reported N % Median 

deletion 

size, Mb 

Range of 

deletion sizes, 

Mb 

P-value b 

Neonatal hypotonia + 

- 

49 

12 

80% 

20% 

5.96 

2.01 

1.34-9.22 

0.22-8.39 

0.0006 

Walked later than 15 

monthsc 

+ 

- 

37 

9 

80% 

20% 

5.77 

1.85 

1.34-8.96 

0.22-8.39 

0.0108 

Expressive 

speech/languagec 

No words 

< 40 words 

Sentences 

25 

14 

11 

50% 

28% 

22% 

6.72 

5.52 

3.27 

0.34-9.22 

1.62-7.32 

0.22-5.25 

Refd 

0.1555 

0.0094 

Neonatal feeding 

problems 

+ 

- 

47 

14 

77% 

23% 

5.96 

3.22 

0.34-9.22 

0.22-8.39 

0.0399 

Genital anomalies, 

males 

+ 

- 

7 

13 

35% 

65% 

8.20 

4.19 

6.18-8.96 

0.22-8.55 

0.0102 

Aggressive behavior + 

- 

20 

40 

33% 

67% 

4.20 

6.02 

0.57-8.20 

0.22-9.22 

0.0365 

Autism spectrum 

disorderc  

+ 

- 

14 

39 

26% 

74% 

3.39 

6.03 

0.22-7.19 

0.57-9.22 

0.0144 

Neonatal hyporeflexia + 

- 

12 

39 

24% 

76% 

7.15 

4.52 

3.27-9.22 

0.22-8.96 

0.0032 

aFeatures were obtained from parent-provided medical history or, for two individuals, a medical 
record. 
b Two-sided, Wilcoxon rank-sum test. 
cAmong those three or more years of age. 
dReference group for statistical comparison. 
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Supplemental Table 1.  Physical Examination Phenotypes and 22q13 Deletion Size. a 

Phenotypes Observed N % Median 
Deletion 
Size, Mb 

Range of 
Deletion 
sizes, MB 

P-value b  

Long eyelashes + 
- 

51 
2 

96% 
4% 

5.07 
6.23 

0.22-8.96 
5.75-6.72 

0.4702 

Dysplastic toenails + 
- 

40 
13 

75% 
25% 

5.89 
2.72 

0.22-8.96 
0.34-8.66 

0.0210 

Hypotonia + 
- 

38 
14 

73% 
27% 

5.09 
5.12 

0.67-8.96 
0.22-8.66 

0.5335 

Lax ligaments + 
- 

36 
17 

68% 
32% 

5.16 
3.92 

0.22-8.96 
0.34-8.66 

0.5636 

Full or puffy cheeks + 
- 

35 
19 

65% 
35% 

5.09 
4.49 

1.04-8.96 
0.22-8.66 

0.4185 

Bulbous nose + 
- 

33 
21 

61% 
39% 

5.75 
3.92 

0.57-8.96 
0.22-8.66 

0.0701 

Hyperextensible joints + 
- 

32 
21 

60% 
40% 

5.09 
5.08 

0.22-8.38 
0.34-8.96 

0.9064 

Full (prominent) brow + 
- 

31 
22 

58% 
42% 

5.78 
3.18 

1.62-8.96 
0.22-8.66 

0.0287 

Large fleshy hands + 
- 

29 
24 

55% 
45% 

6.03 
2.91 

1.65-8.96 
0.22-8.66 

0.0030 

Pointed chin + 
- 

29 
24 

55% 
45% 

3.92 
5.50 

0.22-8.96 
0.24-8.66 

0.2097 

Small or recessed jaw + 
- 

27 
25 

52% 
48% 

3.92 
5.09 

1.04-8.62 
0.22-8.96 

0.5011 

Fully or puffy eyelids + 
- 

26 
27 

49% 
51% 

5.08 
5.08 

0.34-8.96 
0.22-8.66 

0.9788 

Epicanthal folds + 
- 

24 
29 

45% 
55% 

4.50 
5.25 

1.34-8.96 
0.22-8.66 

0.5765 

Ptosis + 
- 

23 
31 

43% 
57% 

5.23 
4.52 

1.65-8.96 
0.22-8.66 

0.108 

High arched palate + 
- 

21 
29 

42% 
58% 

5.78 
5.08 

1.62-8.62 
0.22-8.66 

0.4242 

Reflexes Atypical 
typical 

16 
27 

37% 
63% 

6.51 
4.19 

1.85-8.96 
0.34-8.62 

0.0298 

Sacral dimple + 
- 

19 
33 

37% 
63% 

6.02 
4.19 

1.34-8.66 
0.22-8.96 

0.0544 

2/3 toe syndactyly + 
- 

19 
33 

37% 
63% 

6.03 
4.74 

1.34-8.38 
0.22-8.96 

0.1495 

Bitemporal narrowing + 
- 

19 
35 

35% 
65% 

6.03 
5.08 

1.85-8.96 
0.22-8.66 

0.3237 
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Long philtrum + 
- 

19 
35 

35% 
65% 

6.03 
4.52 

1.65-8.96 
0.22-8.66 

0.1337 

Flat midface + 
- 

17 
37 

31% 
69% 

5.75 
4.74 

1.65-8.96 
0.22-8.66 

0.1943 

Upslanting palpebral 
fissures 

+ 
- 

17 
36 

32% 
68% 

4.19 
5.16 

1.34-8.96 
0.22-8.66 

0.6303 

Deepset eyes + 
- 

17 
36 

32% 
68% 

5.25 
5.08 

1.62-8.96 
0.22-8.66 

0.8283 

Widely spaced teeth + 
- 

16 
36 

31% 
69% 

2.70 
5.24 

0.22-8.62 
0.24-8.66 

0.1000 

Dolichocephaly + 
- 

16 
38 

30% 
70% 

6.38 
4.51 

2.23-8.96 
0.22-8.66 

0.0467 

Malocclusion + 
- 

14 
38 

27% 
73% 

5.24 
4.91 

1.62-8.66 
0.22-8.38 

0.3959 

Dysplastic fingernails + 
- 

13 
40 

25% 
75% 

5.25 
5.08 

0.57-8.07 
0.22-8.96 

0.8783 

5th finger clinodactyly + 
- 

13 
40 

25% 
75% 

3.92 
5.09 

1.34-8.20 
0.22-8.96 

0.5881 

Strabismus + 
- 

13 
39 

25% 
75% 

6.09 
4.52 

2.22-8.38 
0.22-8.96 

0.0750 

Lymphedema + 
- 

11 
41 

21% 
79% 

6.63 
4.49 

0.57-8.62 
0.22-8.96 

0.1814 

Head size, percentile >97th % 
3rd-97th 
<3rd % 

11 
37 

6 

20% 
67% 
11% 

6.99 
3.34 
3.32 

5.08-8.20 
0.22-9.22 
1.34-8.55 

0.0078 
Ref c 
0.9556 

Deep nasolacrimal 
groove 

+ 
- 

10 
41 

20% 
80% 

6.10 
4.49 

1.62-7.22 
0.22-8.66 

0.2856 

Downslanting palpebral 
fissures 

+ 
- 

7 
41 

15% 
85% 

6.03 
4.74 

2.30-6.87 
0.22-8.96 

0.6424 

Stature, percentile >95th  

5-95 
<5th 

5 
36 

5 

11% 
80% 
11% 

6.18 
4.8 
8.06 

5.78-9.22 
0.22-8.55 
2.23-8.96 

0.0480 
Ref c 
0.1698 

Single palmar crease + 
- 

5 
48 

9% 
91% 

6.46 
5.08 

2.23-8.62 
0.22-8.96 

0.3971 

Facial asymmetry + 
- 

5 
49 

9% 
91% 

6.85 
4.52 

6.46-8.07 
0.22-8.96 

0.0218 

Skin tags + 
- 

2 
50 

4% 
93% 

3.56 
5.08 

1.34-5.78 
0.22-8.96 

0.4887 

aPhenotypes were obtained from physical examinations or medical records. 
bTwo-sided, Wilcoxon rank-sum test. Bold font indicates significant (P<0.05) finding. 
cReference group for statistical comparison. 
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Supplemental Table 2.  Medical History Features and Size of 22q13 Deletion. a 

Feature Reported N % Median 
deletion 
size, Mb 

Range of 
deletion 
sizes, Mb 

P-valueb 

Neonatal hypotonia + 
- 

49 
12 

80% 
20% 

5.96 
2.01 

1.34-9.22 
0.22-8.39 

0.0006 

Walked later than 15 
monthsc 

+ 
- 

37 
9 

80% 
20% 

5.77 
1.85 

1.34-8.96 
0.22-8.39 

0.0108 

Expressive 
speech/languagec 

No words 
<40 words 
Sentences 

25 
14 
11 

50% 
28% 
22% 

6.72 
5.52 
3.27 

0.34-9.22 
1.62-7.32 
0.22-5.25 

Refd 
0.1555 
0.0094 

Neonatal feeding 
problems 

+ 
- 

47 
14 

77% 
23% 

5.96 
3.22 

0.34-9.22 
0.22-8.39 

0.0399 

Overheats or turns 
red easily 

+ 
- 

40 
17 

70% 
30% 

5.86 
5.25 

0.34-9.22 
0.22-8.39 

0.4012 

Gastrointestinal 
reflux 

+ 
- 

31 
23 

57% 
43% 

5.23 
5.25 

0.22-9.22 
1.34-8.55 

0.8075 

Decreased 
perspiration 

+ 
- 

33 
25 

57% 
43% 

6.03 
5.08 

0.34-9.22 
0.22-8.96 

0.3663 

Large, dysplastic, or 
prominent ears 

+ 
- 

15 
24 

38% 
62% 

5.23 
3.88 

1.65-8.20 
0.22-7.86 

0.0621 

Failure to gain 
weight, newborn 
period 

+ 
- 

22 
39 

36% 
64% 

6.30 
5.09 

1.34-8.96 
0.22-9.22 

0.2093 

Genital anomalies, 
males 

+ 
- 

7 
13 

35% 
65% 

8.20 
4.19 

6.18-8.96 
0.22-8.55 

0.0102 

Reported any brain 
abnormality and had 
an MRI or imaging 

+ 
- 

20 
51 

28% 
72% 

6.51 
5.08 

1.85-8.96 
0.22-9.22 

0.0923 

Autism spectrum 
disorderc 

+ 
- 

14 
39 

26% 
74% 

3.39 
6.03 

0.22-7.19 
0.57-9.22 

0.0144 

Preterm birth + 
- 

15 
45 

25% 
75% 

6.99 
5.09 

1.34-8.62 
0.22-9.22 

0.1298 

Neonatal 
hyporeflexia 

+ 
- 

12 
39 

24% 
76% 

7.15 
4.52 

3.27-9.22 
0.22-8.96 

0.0032 

Thick lower lip + 
- 

14 
45 

24% 
76% 

5.26 
5.09 

1.04-8.38 
0.22-9.22 

0.7698 

Low birth weight + 
- 

14 
47 

23% 
77% 

6.84 
5.23 

1.34-8.62 
0.22-9.22 

0.2658 

Precocious puberty + 
- 

9 
37 

20% 
80% 

7.32 
5.09 

1.04-9.22 
0.22-8.62 

0.1280 

Sleep disturbancee + 
- 

14 
57 

20% 
80% 

3.67 
5.77 

1.04-8.96 
0.22-9.22 

0.2605 
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Diarrhea + 
- 

10 
42 

19% 
81% 

5.56 
5.51 

0.57-9.22 
0.22-8.96 

0.8806 

Ever having a seizure 
and taking anti-
seizure medication 

+ 
- 

10 
45 

18% 
82% 

6.34 
5.78 

0.22-8.96 
0.34-9.22 

0.5366 

Any kidney disease or 
abnormality 

+ 
- 

8 
41 

16% 
84% 

5.77 
5.09 

1.34-8.62 
0.22-8.96 

0.6381 

Arachnoid cyst + 
- 

8 
44 

15% 
85% 

5.08 
5.77 

3.09-8.55 
0.22-9.22 

0.9296 

Patent ductus 
arteriosus or 
ventricular septal 
defect 

+ 
- 

5 
37 

12% 
88% 

8.20 
5.25 

2.22-8.96 
0.22-8.62 

0.1583 

Vesicouretal reflux + 
- 

6 
51 

11% 
89% 

6.18 
5.23 

5.75-8.62 
0.22-9.22 

0.2521 

Sleep apnea + 
- 

5 
50 

11% 
89% 

6.72 
5.51 

0.57-8.20 
0.22-9.22 

0.4763 

Cellulitis + 
- 

5 
47 

10% 
90% 

6.72 
5.08 

4.52-8.20 
0.22-9.22 

0.0945 

Neonatal dehydration + 
- 

6 
52 

10% 
90% 

6.85 
5.24 

1.62-8.55 
0.22-9.22 

0.5014 

Neonatal 
hyperreflexia 

+ 
- 

3 
48 

6% 
94% 

8.20 
5.24 

3.96-8.39 
0.22-9.22 

0.2432 

Polycystic kidney 
disease 

+ 
- 

3 
48 

6% 
94% 

5.23 
5.76 

1.34-5.78 
0.22-8.96 

0.3854 

Sensory/Behavioral Problems 
 

Increased tolerance 
to pain/Does not 
show pain 

+ 
- 

53 
5 

91% 
9% 

5.25 
7.86 

0.22-9.99 
2.23-8.39 

0.1402 

Chews nonfood items + 
- 

52 
9 

84% 
15% 

5.51 
5.75 

0.22-9.22 
3.09-8.62 

0.4134 

Poor eye contact + 
- 

40 
21 

64% 
36% 

5.77 
5.23 

0.22-9.22 
0.34-7.32 

0.2821 

Biting + 
- 

37 
22 

63% 
27% 

5.75 
5.87 

0.57-9.22 
0.22-8.96 

0.3795 

Sensitive to touch + 
- 

38 
22 

63% 
37% 

6.10 
4.81 

0.22-9.22 
0.34-8.02 

0.0610 

Laughs at 
misbehavior 

+ 
- 

35 
24 

59% 
41% 

5.25 
5.99 

0.22-9.22 
1.62-8.55 

0.9694 

Impulsive behavior + 
- 

33 
25 

57% 
43% 

4.85 
6.03 

0.22-8.96 
1.62-9.22 

0.1631 

Excessive screaming + 
- 

26 
34 

43% 
57% 

4.80 
5.99 

0.57-8.62 
0.22-9.22 

0.1969 
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Hair pulling + 
- 

14 
20 

41% 
59% 

6.54 
4.79 

2.10-9.22 
0.22-8.55 

0.0991 

Pinching + 
- 

23 
38 

38% 
62% 

4.49 
6.03 

0.34-8.39 
0.22-9.22 

0.0550 

Non-stop crying + 
- 

22 
38 

37% 
63% 

5.44 
5.76 

0.34-9.22 
0.22-8.39 

0.6043 

Aggressive behavior + 
- 

20 
40 

33% 
67% 

4.20 
6.02 

0.57-8.20 
0.22-9.22 

0.0365 

Tongue thrusting + 
- 

17 
39 

30% 
70% 

5.96 
5.75 

0.57-8.96 
0.22-9.22 

0.9152 

Overly emotional + 
- 

12 
32 

27% 
73% 

5.17 
6.09 

1.34-8.96 
0.22-9.22 

0.3037 

Self destructive 
behavior 

+ 
- 

11 
48 

19% 
81% 

6.03 
5.50 

0.57-8.20 
0.22-9.22 

0.9151 

Mistreats animals + 
- 

11 
48 

19% 
81% 

6.72 
5.76 

1.65-8.96 
0.22-9.22 

0.3591 

aFeatures were obtained from parent-provided medical history or medical record. 
b Two-sided, Wilcoxon rank-sum test. Bold font indicates significant (P<0.05) finding. 
cAmong those three or more years of age. 
dReference group for statistical comparison. 
eThe medical history questionnaire did not ask specifically about sleep disturbances or 
problems.  However, 14 individuals mentioned sleep difficulties in open-ended or “other 
problems” sections of the questionnaire or mentioned taking a medication to help with sleep.  
The remaining individuals did not mention sleep related problems or taking a medication for 
sleep. 
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Figure 2.1.  Distribution of Deletion Sizes Among 71 Patients with Phelan-McDermid Syndrome.   
(A) Ideogram of chromosome 22q13.2-qter. (B) Horizontal bars represent deleted regions, 
sorted by deletion size.  Terminal deletions ranged from 0.2 to 9.2 Mb in size and covered 
chromosome regions 22q13.2-22q13.3.  Figures produced using the UCSC genome browser.[35] 
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CHAPTER THREE 

 

22Q13.2Q13.32 GENOMIC REGIONS ASSOCIATED WITH SEVERITY OF SPEECH DELAY, 

DEVELOPMENTAL DELAY, AND PHYSICAL FEATURES IN PHELAN-MCDERMID SYNDROME 
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[This paper is in submission as: Sarasua SM, Dwivedi A, Boccuto L, Chen CF, Sharp JL, Rollins JD, 

Collins JS, Rogers RC, Phelan K, DuPont BR. 2012. 22q13.2q13.32 Genomic Regions Associated 

with Severity of Speech Delay, Developmental Delay, and Physical Features in Phelan-McDermid 

Syndrome.] 

 

Abstract 

 

Phelan-McDermid Syndrome (PMS), also known as 22q13.3 deletion syndrome, 

commonly presents with varying degrees of hypotonia, speech and other developmental delays, 

autistic traits, and mild dysmorphic features.  Deletion breakpoints are variable with terminal 

deletion sizes ranging from 0.1 to 9 Mb. Prior research found specific phenotypes were 

associated with larger deletion sizes. This study tested the hypothesis that specific genomic 

regions within 22q13 are associated with specific phenotypes of interest. In a patient cohort of 

71 individuals, we paired clinical information with high density oligo array CGH to identify 

specific 22q13 regions associated with 22 phenotypes. In this cohort everyone has a terminal 

deletion encompassing SHANK3 (SH3 and multiple ankyrin repeat domains 3, located at 

22q13.33), the major candidate gene for PMS neurological findings. We find that additional 

gene loss proximal to SHANK3 is positively associated with severity of speech/language delay, 

neonatal hypotonia, neonatal feeding problems, delayed age at walking, dysplastic toenails, 

large/fleshy hands, macrocephaly, tall stature, short stature, facial asymmetry, dolichocephaly, 

full brow, bulbous nose, sacral dimple, strabismus, abnormal reflexes, sensitivity to touch, hair-

pulling behaviors, and male genital anomalies; and negatively associated with autism spectrum 

disorders, aggressive behavior, and pinching behavior.  Our use of statistical methods along with 
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protein interaction networks highlight the potential role of the genomic region 22q13.2q13.32 in 

PMS, explain some of the variability in observed phenotypes, and suggest additional genes and 

genomic regions for investigation as causal for speech and developmental delay. The statistical 

methods may be useful in genotype-phenotype analyses for other microdeletion or 

microduplication syndromes. 

 

Introduction 

Phelan-McDermid syndrome (PMS [MIM 606232]) is a rare condition typically caused by 

deletions of chromosome 22q13.  Common features of the syndrome include developmental 

delay, absent or impaired speech, neonatal hypotonia, autistic-like behaviors, and mild 

dysmorphic features (Bonaglia and others 2011; Cusmano-Ozog, Manning, Hoyme 2007; Havens 

and others 2004; Luciani and others 2003; Phelan and others 2001; Phelan 2008; Philippe and 

others 2008; Wilson and others 2003). Loss of one copy of SHANK3 (SH3 and multiple ankyrin 

repeat domains 3), a gene in the telomeric portion of 22q13.33, is likely responsible for many of 

the neurological features of the PMS phenotype (Bonaglia and others 2001; Delahaye and 

others 2009; Durand and others 2007; Grabrucker and others 2011; Phelan 2008; Wilson and 

others 2003).  An additional candidate gene is IB2 (islet-brain 2), also known as MAPK8IP2 

(mitogen-activated protein kinase 8-interacting protein 2). IB2 maps 70 kb proximal to SHANK3, 

is deleted in most PMS patients, and may play an important role in synaptic stability and 

neuronal transmission (Giza and others 2010). Initial work with the present cohort identified 

phenotypes associated with deletion size (Sarasua and others 2011). 
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This paper addresses the hypothesis that specific genomic regions of chromosome 

22q13 are associated with PMS-related phenotypes. 

 

Materials and Methods 

Study subjects and methods have been previously described (Sarasua and others 2011) 

and are briefly summarized below. 

Subjects 

The cohort included 71 individuals, 42 females and 29 males, with deletion sizes ranging 

from 0.2 to 9.2 Mb and a median deletion size of 5.25 Mb.  Ages spanned from 5 months to 40 

years, with a mean age of 7 years 6 months.  Most subjects attended one or more PMS family 

support conferences held between 2001 and 2008 and came from more than 30 states and 12 

countries.  Blood samples were collected at these meetings or were collected by personal 

physicians and sent to the investigators.  Clinical information was obtained either from 

standardized physical examinations performed at the conferences by trained clinical geneticists 

(n=54), medical record review (3 cases), and/or parent-completed medical history 

questionnaires (n=61).   The study was approved by the Institutional Review Board of Self 

Regional Healthcare (Greenwood, South Carolina), and all participants’ parents or guardians 

provided informed consent.  We excluded from analysis individuals with chromosomal 

anomalies other than simple terminal deletions ascertained by our arrays or previous 

cytogenetic exams.  All participants have a terminal deletion encompassing the SHANK3 gene 

and all but two are also missing one copy of IB2.   
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Genetic analysis 

Genetic deletions were measured from specimens of whole blood using a custom 4x44K 

60-mer oligo array designed to cover 22q12.3-terminus by Oxford Gene Technology (Oxford, 

UK).  Array CGH genomic coordinates of breakpoints were established according to the 2006 

human genome build (NCBI 36/HG 18) (International Human Genome Sequencing Consortium 

2004) with terminal deletion breakpoints ranging from chromosomal position 40.1 Mb to 49.5 

Mb.  The terminus of chromosome 22 is located at position 49.69 Mb. 

Statistical analysis 

Statistical analyses were used to examine 21 phenotypes identified from prior work 

(Sarasua and others 2011) as having different deletion sizes (P<0.10) between those with and 

without the given phenotype (Tables 3.1 and 3.2).   As a comparison, two phenotypes that were 

previously found to be unassociated with deletion size were also examined: microcephaly 

(P=0.9556) and seizures (considered as parent reporting the child had at least one episode of 

seizure and also used an anti-seizure medication, P=0.5366).   

Three exploratory and complementary methods were used to identify the genomic 

regions most associated with phenotypes.  The first two methods seek to identify the genomic 

breakpoint most associated with any given phenotype,  and this breakpoint will be defined as 

the optimal cutpoint in the genotype data. The first method is called the “minimum P-value” 

method (Altman and others 1994; Williams and others 2006) and was implemented using SAS v. 

9.2 (SAS Institute 2009). Sequentially at each breakpoint, the proportion of individuals with a 

given phenotype was compared between those with a given deletion size or larger to those with 



 

 112 

   

 1
1

2
 

 

a smaller deletion size.  Fisher’s Exact Test 2-sided P-value was calculated for each breakpoint 

comparison.  The genomic region bounded by the most distal and most proximal breakpoints 

which had a nominal P-value < 0.05 was identified as a genomic region of potential association.  

Within this region, the breakpoint resulting in the smallest P-value was identified as the optimal 

data cutpoint.  Relative risk (RR) and 95% confidence intervals were calculated at the optimal 

cutpoint. Bonferroni-adjusted P-values were also calculated to adjust for the fact that n-1 

statistical tests were calculated for each phenotype. The distribution of age and gender were 

examined for each phenotype to look for significant differences.   

Secondly, receiver operator characteristic (ROC) methods (Bewick, Cheek, Ball 2004) 

were used to examine sensitivity and specificity for all possible breakpoints using a logistic 

regression model in SAS (SAS Institute 2009). The Youden Index was used to identify the optimal 

cutpoint for a particular phenotype in the genomic data.  The Youden Index is calculated as J= 

(Sensitivity + Specificity - 1) and has a range of 0 to 1 (Bewick, Cheek, Ball 2004).  For each 

clinical feature, sensitivity was calculated as the proportion of all cases having a given deletion 

size or larger out of the total number of cases.  Specificity was calculated as the proportion of 

noncases with a deletion less than the given breakpoint out of all noncases. The breakpoint 

where the maximum Youden Index was achieved was identified as the optimal cutpoint. The 

area under the ROC curve (AUC) was calculated to determine whether genomic breakpoint 

position explained the data more than chance (AUC > 0.5) (Hanley and McNeil 1982; Hanley and 

McNeil 1983). While an AUC value of 1.0 would indicate a perfect predictor, AUC values above 

0.9 are considered to be highly accurate and AUC values from 0.7 to 0.9 can be considered 

moderately accurate (Greiner, Pfeiffer, Smith 2000; Swets 1988).  Additionally as part of this 
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method, age and gender effects were evaluated using logistic models for all phenotypes, but 

they did not confound the association between genomic breakpoint position and phenotype. 

Thirdly, the genomic region of common deletion for each phenotype was also identified 

(the traditional approach).  These three approaches were used simultaneously to identify 

genomic regions and to narrow the search for potential genes most likely associated with a 

given phenotype.  Lastly, we compared the prevalence of various conditions among the four 

cytogenetic bands in our region of interest (22q13.2, 22q13.31, 22q13.32, 22q13.33).  

Protein interaction networks to annotate 22q13 genes 

To further identify 22q13 genes of interest in the regions highlighted by the association 

analysis, known genes related to autism spectrum disorders, intellectual disability, hypotonia, 

and head size were used as seeds in a protein interaction network in order to identify 

interacting partners located in the 22q13 deletion region under study.    As listed in Table 3.3, 

curated gene lists were used as seeds for autism spectrum disorders (Basu, Kollu, Banerjee-Basu 

2009; Kou and others 2012; Pinto and others 2010; Sakai and others 2011) and intellectual 

disability (Chiurazzi and others 2008; Kou and others 2012; Lubs, Stevenson, Schwartz 2012; 

Pinto and others 2010).  The OMIM database (omim.org) was searched for the term “hypotonia” 

for genes with known locus, genes with known sequence and phenotype, phenotype description 

with molecular basis known, and having a gene map locus.  Similarly, “macrocephaly” and 

“microcephaly” were searched.  These lists contained genes with 22q13 genes (noted in Table 

3.3).  The gene lists were submitted for each phenotype separately to the online gene 

interaction tool GeneMANIA (Warde-Farley and others 2010) to search against known protein-



 

 114 

   

 1
1

4
 

 

protein interaction databases using the iRefIndex which includes BIND (Alfarano and others 

2005; Bader, Betel, Hogue 2003),  BioGRID (Stark and others 2006; Stark and others 2011), 

CORUM (Ruepp and others 2008), DIP (Salwinski and others 2004), HPRD (Mishra and others 

2006; Peri and others 2003), IntAct (Hermjakob and others 2004; Kerrien and others 2007; 

Kerrien and others 2012), MINT (Chatr-aryamontri and others 2007), MPact (Guldener and 

others 2006), MPPI (Pagel and others 2005) and OPHID (Brown and Jurisica 2005). We used 

GeneMANIA to search only physical interactions, up to 100 related genes per query gene, 

biological process based weighting, and submitting 100 genes in a batch. Genes identified as 

interacting partners with the seed genes were then compared to the list of protein coding genes 

on 22q13 using a Venn diagram maker.    

 

Results 

Specific genomic regions were associated with each phenotype assessed (Tables 3.1-3.2, 

Figures 3.1-3.4, Supplemental Figure 3.1).  The regions are described by genomic position based 

upon the 2006 human genome build 18 (International Human Genome Sequencing Consortium 

2004) where base position 49.69 Mb identifies the distal end of chromosome 22. The location of 

minimum P-value and maximum Youden Index were almost always identical and the location of 

the maximum Youden Index was always within the range of significant P-values obtained from 

the association analysis. Using the smallest common deletion as an indication of optimal 

cutpoint identified the same genomic regions as the association analysis for 7 of 21 features 

(facial asymmetry, male genital anomalies, tall stature, macrocephaly, delayed age at walking, 
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speech delay, and strabismus).  In these cases, the relative risk was either undefined (no cases 

observed below the optimal breakpoint) or 0 (no cases observed above the optimal breakpoint).  

For the remaining 14 features, a genomic location was found to be associated with either 

increased risk of the feature (RR ranging from 1.5 to 8.5) or decreased risk (RRs ranging from 0.3 

to 0.4).  For most phenotypes, those with the smallest deletions (22q13.33) were less severely 

affected than those with the largest deletions (22q13.2) (Table 3.2).  For selected clinical 

features of interest, the genomic regions significantly associated with the feature is presented 

graphically in Figure 3.5. 

Speech/language delay and developmental delay 

The 3.4 Mb genomic region surrounding genomic position 43.9 Mb was associated with 

speech ability (Figures 3.1 and 3.2).  While all individuals presented with speech delay, there 

were differences in verbal communication abilities. Of the 50 individuals over age 3 years with 

information about speech development, 25 had absent speech (0 words), 14 had minimal 

speech (spoke 1-39 words, but no known sentences or phrases), and 11 had “sentences” (spoke 

40 or more words or spoke in phrases or sentences).  The subjects in the minimal speech group 

were not included in the analysis to reduce misclassification and to better differentiate speech 

abilities between absent speech and verbal communication ability. Subjects with absent speech 

had deletion breakpoints ranging from position 40.4 to 49.3 Mb with a median deletion size of 

6.7 Mb.  Subjects with “sentences” had deletion breakpoints ranging from position 44.4 to 49.4 

Mb, with a median deletion size of 3.3 Mb. The distribution of breakpoints is illustrated in 

Figures 3.1 and 3.2A. As shown in Table 3.1 and Figure 3.2B, deletion breakpoints at position 

41.8 to 45.2 Mb are significantly associated with speech ability, with the smallest P-value 
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(P=0.0007) occuring at base position 43.9 Mb.  None of the 15 individuals with deletion 

breakpoints at 43.9 Mb or more proximal had “sentences,” whereas 11 of the 21 (52%) subjects 

with deletions at 44.4 Mb or more distal had “sentences” (RR=0; Bonferroni-adjusted P<0.05).  

The cutpoint of 44.4 Mb was identified using the Youden Index (Figure 3.2C).  The area under 

the curve (AUC) was 0.79 (“moderately accurate”; Figure 3.2D).  As shown in Table 3.2, none of 

the 12 individuals with deletions in 22q13.2 were able to speak in sentences compared to 47% 

with deletions of 22q13.31 or 60% with deletions occurring at 22q13.33.   Age and gender were 

not significant predictors or confounders of speech.  

Speech ability was also examined in relation to autism spectrum disorders (ASDs) and 

degree of developmental delay. The proportion of subjects forming sentences was similar for 

those who were reported to have an ASD (3 out of 11) compared to those who were not (8 out 

of 24, Fisher’s Exact Test P=1.0).  Speech ability was associated with parent report of degree of 

developmental delay (rank score of 1=mild to 7=profound).  Those with sentences had a median 

developmental delay score of 3 (“moderate”) while those without sentences had a median 

developmental delay score of 6 (“severe to profound”, Wilcoxon Rank-Sum Exact Test P=0.026).  

Those with deletion breakpoints at 43.9 Mb or more proximal had a median developmental 

delay score of 6 (“severe to profound”) while those with a deletion breakpoint more distal had a 

median developmental delay score of 5 (“severe”, Wilcoxon Rank-Sum Exact Test P=0.0495).  

Deletion size and developmental delay score were significantly correlated (Spearman rank 

correlation coefficient ρ=0.52, P=0.0045). 
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Neonatal features 

Neonatal hypotonia and neonatal feeding problems, as reported by parents, were 

significantly associated with 22q13.31 to 22q13.32 deletion regions (Tables 3.1 and 3.2, Figure 

3.3).  In the case of neonatal hypotonia, the Youden Index is maximum at chromosome 22 

position 45.7 Mb whereas position 47.4 Mb is the location of the minimum P-value (P<0.0001).  

Neonatal feeding problems were identified to have similar associated genomic regions with the 

minimum P-value (P=0.0009) and maximum Youden Index occuring at base position 45.5 Mb.    

Abnormal growth 

The presence of short stature (<5th percentile) and tall stature (>95th percentile) were 

moderately associated with distinct deletion regions (Tables 3.1 and 3.2, Figure 3.3).  Short 

stature was associated with deletions of the genomic region 41.0 to 42.5 Mb, with optimal 

cutpoints at position 41.6 Mb. Tall stature was associated with the genomic region bounded by 

position 43.9 to 44.6 Mb, with position 43.9 Mb having the optimal cutpoint.  Macrocephaly was 

associated with the genomic position 42.5 to 47.4 Mb, with optimal cutpoint at position 44.6 Mb 

and overlapping the genomic region associated with tall stature (Tables 3.1 and 3.2, Figure 3.3).  

Having large or fleshy hands identified the same peak genomic region as macrocephaly (Tables 

3.1 and 3.2, Figure 3.3). No genomic region was identified as being associated with microcephaly 

and the AUC for the ROC curve was 0.51 (similar to random chance, Tables 3.1 and 3.2, Figure 

3.4). This lack of association was expected given that microcephaly was unassociated in the 

preliminary analysis (P=0.9556) and was included in this analysis only for comparison purposes. 
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Autism spectrum disorders (ASDs) and aggressive behavior 

The genomic region from position 41.6 to 46.6 Mb was found to be associated with 

reduced prevalence of parent-reported diagnosis of Autism Spectrum Disorders (ASDs, Tables 

3.1 and 3.2, Figure 3.4).  The graphs depicting association statistics and Youden Index are broad 

and inconsistent.  Aggressive behavior and pinching behavior (themselves or others) were also 

associated with smaller deletions (Table 3.1 and Figure 3.4), although the statistical support for 

these associations is less compared to ASDs as neither had an AUC > 0.7 and neither achieved 

Bonferroni corrected levels of statistical significance (Table 3.1). 

Other features 

Other features, including male genital anomalies, atypical reflexes, dolichocephaly, 

sacral dimple, bulbous nose, strabismus, and full brow, were associated with specific genomic 

regions from 41.5 to 48.7 Mb (Tables 3.1 and 3.2).  No genomic region was associated with 

seizures and the AUC for the ROC curve was 0.56 (close to random chance, Figure 3.4).  This lack 

of association between genomic region and seizures was expected given that seizures were 

unassociated in the preliminary analysis (P=0.5366) and assessment of the seizure phenotype 

was included in this analysis only for comparison purposes. 

22q13 genes identified as interacting partners with known developmental disability genes 

The use of GeneMANIA to search existing physical protein interactions identified several 

genes across the 22q13 deletion region (Table 3.3) not otherwise immediately known as being 

candidate genes.  In particular, WNT7B and PARVB, both located in 22q13.31, were identified as 

interacting partners for ASD, ID, and hypotonia and WNT7B for macrocephaly.  The location of 
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22q13 genes used either as seeds or found to be interacting partners of ASD, ID, hypotonia, and 

macrocephaly associated genes are provided in Figure 3.5.  Also in Figure 3.5 are the genomic 

regions found to be most strongly statistically associated with features related to the central 

nervous system.  The location of known genes and micro RNAs as well as predictions of 

haploinsufficiency (Huang and others 2010) are also provided. 

 

Discussion 

This study is the first to identify specific chromosome 22q13.2q13.32 genomic regions, 

in addition to the terminal 22q13.33 genomic region encompassing SHANK3, associated with key 

phenotypes in Phelan-McDermid syndrome. Strengths of this study design include a large 

sample size for a rare condition, high resolution genotyping and widely dispersed breakpoints 

allowing for resolution between individuals exhibiting different phenotypes.  The location of the 

maximum Youden Index was always within the genomic region identified by the association 

analysis and was usually identical to the location with the minimum P-value (Table 3.1). These 

methods identified genomic regions of interest for phenotypes which had shown crude deletion 

size differences in the first stage of analysis and did not spuriously identify genomic regions for 

phenotypes which were not associated with deletion size. The use of both ROC characteristics 

and statistical association allowed us to examine genomic regions associated with phenotypes 

that may have many causes.  Individual genetic background will influence the appearance of 

many physical phenotypes such as growth and hypotonia.  Typically, genotype-phenotype 

studies of chromosomal deletions/duplications involve examining rare phenotypes and 

identifying the genomic region of common deletion/duplication (Feenstra and others 2007; 
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Korbel and others 2009).  However, those methods will not work for common or multifactorial 

phenotypes and genes with incomplete penetrance.   The combined use of association and ROC 

analysis allows for the identification of contributory genomic regions in multifactorial 

phenotypes and does not fail to identify critical genomic regions for phenotypes with strong 

genomic clustering.  

In previous works on PMS, the SHANK3 gene was successfully identified as constantly 

deleted in reported cases.  Haploinsufficiency of this gene was frequently associated with a core 

set of phenotypes including speech delay, developmental delay, hypotonia, and minor 

dysmorphic features (Bonaglia and others 2001; Bonaglia and others 2006; Bonaglia and others 

2011; Delahaye and others 2009; Jeffries and others 2005; Luciani and others 2003; Phelan and 

others 2001; Wilson and others 2003).  While there was a general impression that patients with 

larger deletions were more seriously affected, genotype-phenotype studies were hampered by 

small sample size, low resolution genotyping, or reliance on statistical measures of linear 

association (correlation coefficients, linear regression) (Dhar and others 2010; Jeffries and 

others 2005; Jeffries and others 2005; Koolen and others 2005; Phelan 2008; Philippe and others 

2008; Wilson and others 2003).  We hypothesized that for each phenotype, there was at least 

one gene that increased the risk of being affected, when disrupted along with SHANK3.  As part 

of this hypothesis, we predicted that the effect of an additional causal gene would be discrete 

rather than continuous.  

Because our patient cohort includes only those with terminal deletions and all patients 

are missing one copy of SHANK3, we cannot distinguish whether the more proximal genomic 

regions we identified have independent or additive effects along with SHANK3.  The literature 
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reports three cases of interstitial deletions which have intact SHANK3 and phenotypes similar to 

those in PMS (Fujita and others 2000; Wilson and others 2008), suggesting an independent role 

for genes in these genomic regions.  In particular, two individuals had speech delay (two words 

each and no sentences), macrocephaly, tall stature, hypotonia, delayed walking, and 

developmental delay yet had two copies of SHANK3 (Wilson and others 2008).  Their deletion 

breakpoints are reported to be between 40.42 and 44.00 Mb for one patient and between 41.22 

and 45.37 Mb for the second.  Our results are consistent with these reports of phenotypes being 

caused by deletions of 22q13.31-13.32, particularly for speech, tall stature, and macrocephaly.  

As shown in Figure 3.5, CYB5R3, PARVB, and has-mir-1249 all map in the region deleted in these 

interstitial cases. 

Speech and language delay 

The 3.4 Mb genomic region identified as being associated with lack of speech contains 

an estimated 45 protein coding genes. Within this region, the most strongly associated segment 

of chromosome 22 position 43.0 to 44.5 Mb contains the 13 protein coding genes KIAA1644, 

LDOC1L, LOC388910, LOC553158, PHF21B, DJ031123, NUP50, C22orf9, UPK3A, FAM118A, 

SMC1B, RIBC2, and FBLN1 along with a micro RNA miR-1249 and other miRNA and several non-

coding RNAs.  The genes PARVB and WNT7B, found to be interacting partners of genes known to 

be associated with ASD, ID, and hypotonia, are also in the region associated with speech. The 

findings of severe speech impairment among two published cases with interstitial deletions 

overlapping our genomic region of interest and intact SHANK3 (Wilson and others 2008) support 

the presence of genes affecting speech in this region.   None of the genes in this region were 

found to be transcriptional targets of FOXP2, a transcription factor known to be associated with 

http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003bet.2&near.idPos=chr22:42970890-43040064
http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003beu.1&near.idPos=chr22:43267114-43272669
http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003bev.1&near.idPos=chr22:43343883-43346993
http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003bff.1&near.idPos=chr22:43489135-43637328
http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003bfn.1&near.idPos=chr22:43655706-43784245
http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003bfq.2&near.idPos=chr22:43908374-43938382


 

 122 

   

 1
2

2
 

 

speech (Spiteri and others 2007; Vernes and others 2007).  Beyond FOXP2, little is known about 

genes related to speech (Fisher and Scharff 2009; Kang and Drayna 2011), although recent 

studies have added CNTNAP2, CMIP, ATP2C2, RIT2, and SYT4 as potential genes of interest 

(Bouquillon and others 2011; Newbury, Fisher, Monaco 2010).  The analysis of speech ability is 

made difficult given the variable language abilities of those with known SHANK3 deletions or 

mutations.  For instance, a study of autistic patients with SHANK3 mutations identified 

individuals with varying language abilities from no speech problems to those with absent speech 

(Waga and others 2011).  The additional loss of or mutation in causal genes may be the “second 

hit”  in addition to SHANK3 alterations, as proposed for a different microdeletion syndrome 

(16p12.1) which also has speech and developmental delay (Girirajan and others 2010).  We 

found correlation between speech ability and degree of developmental delay.  The association 

between 22q13.31 and speech ability may reflect an association with intellectual disability.  

Future research into speech and language abilities in PMS would benefit from having detailed 

evaluations to better characterize the types of language delay specific to this syndrome. 

Abnormal growth 

We recently reported that both tall (>95th percentile) and short stature (< 5th percentile) 

as well as macrocephaly (>97th percentile) are more common in PMS than expected (Rollins and 

others 2011). The present analysis provides evidence of distinct deletion regions associated with 

these growth parameters which support earlier findings by others (Dhar and others 2010; 

Wilson and others 2003). The genomic region we identified as being associated with short 

stature coincides with the genomic region identified as a human stature quantitative trail locus 
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(QTL) (Sammalisto and others 2005) as well as a body mass QTL in rats (Rat Genome Database, 

(Rapp 2000) accessed on the UCSC genome browser).  

Autism spectrum disorders 

In our analysis we noted that ASDs were associated with smaller deletions.   SHANK3 

mutations have been found to be associated with ASDs (Durand and others 2007; Gauthier and 

others 2009; Moessner and others 2007).  In the situation of PMS, the effect of SHANK3 may be 

attenuated as the deletion size increases and additional genes are codeleted.  It may also be 

more difficult to evaluate ASDs in patients with severe developmental and speech delay, both of 

which are associated with larger deletions. ASDs are a heterogeneous group of 

neurodevelopmental conditions and recent investigations have suggested different gene 

expression patterns associated with different domains of impairment (Hu and Steinberg 2009).  

Future research is needed to better delineate the autism phenotype in PMS patients and those 

with SHANK3 deletions or mutations to better identify particular domains affected. 

Review of potential genes of interest 

A large number of potentially interesting candidate genes were identified in this 

analysis, most with expression observed in relevant tissue types as described in the EST profile 

database (http://www.ncbi.nlm.nih.gov/nucest) and GNF Expression Atlas (Su and others 2002; 

Su and others 2004).  Few of these genes have been previously implicated as causative for 

human phenotypes. 22q13.31 genes predicted to be haploinsufficient according to prediction 

models include NUP50 (3% predicted probability of being haplosufficient), FBLN1 (9%), SMC1B 

(13%), CELSR1 (19%), PPARA (32%), SCUBE1 (42%), PHF21B (48%), and CERK (49%) (Huang and 
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others 2010).   Predictions were not available for all protein coding genes in our area, including 

c22orf9, KIAA1644, and WNT7B.  

The genomic region containing NUP50 was associated with neonatal hypotonia, atypical 

reflexes, tall stature, sensitivity to touch, macrocephaly, and lack of speech.  NUP50, 

nucleoporin 50kD, expressed in brain and muscle, is part of the nuclear pore complex regulating 

traffic between the nucleus and cytoplasm and may be involved in regulating transcription 

(Akhtar and Gasser 2007; Kalverda and others 2010; Ogawa and others 2010).  CERK, ceramide 

kinase, phosphorylates ceramide, an important membrane associated lipid. CERK is highly 

expressed in brain tissue and may be responsible for neuronal function and emotional behavior. 

Both of these genes have family members (NUP35, nucleoporin 35, and CERKL, ceramide kinase-

like) which were among the genes deleted in the critical genomic region of 2q31.2q32.32 

deletion syndrome, a condition presenting with intellectual disability and speech impairment as 

prominent features (Cocchella and others 2010).   

Two poorly annotated genes, C22orf9 (also known as LOC23313 or KIAA0930) and 

KIAA1644 are in the genomic region associated with speech delay, tall stature, macrocephaly, 

dolichocephaly, and facial asymmetry and are highly expressed in the brain.  C22orf9 has been 

found to interact with a class of genes that are expressed in brain, the 14-3-3 family of proteins 

involved in signal transduction (Ewing and others 2007; Jin and others 2004).  The 14-3-3ε 

protein is involved in Miller-Dieker syndrome and plays a direct role in brain development and 

neuronal migration (Toyo-oka and others 2003). 

The genomic region containing PHF21B, PHD finger protein, was associated with 

neonatal hypotonia, sensitivity to touch, hair-pulling behavior, dolichocephaly, macrocephaly, 

http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003bet.2&near.idPos=chr22:42970890-43040064
http://www.genome.ucsc.edu/cgi-bin/hgNear?hgsid=229951819&near.do.id=uc003bet.2&near.idPos=chr22:42970890-43040064
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and speech delay among others. Zhang et al. determined that PHF21B was a nuclear calcium 

regulated gene and expressed in hippocampal neurons (Zhang and others 2009).  Yang et al. 

found PHF21B, along with ATXN10, to be diurnally regulated in mouse prefronatal cortex and 

may be related to sleep cycles and mood (Yang and others 2007).  The genomic region 

containing FBLN1 was associated with neonatal hypotonia, speech delay, macrocephaly, delayed 

age at walking, hair-pulling behavior, atypical reflexes, dysplastic toenails, and male genital 

anomalies.  FBLN1 (Fibulin-1), is an extracellular matrix protein that has been found to be 

important in morphogenesis of neural crest cells in mice (Cooley and others 2008). Fbln1 null 

mice had cardiac wall thinning, ventricular septal defects, under-development of the thymus, 

thyroid, and skull bones, among other anomalies (Cooley and others 2008). FBLN1 has been 

shown to interact with the autism associated proteins FXR1, HOXA1, and NUF1P2 (Sakai and 

others 2011). Knockout mice for CELSR1, cadherin EGF LAG seven-pass G-type receptor 1, 

demonstrated abnormal neuronal migration and neural development (Formstone and others 

2010; Qu and others 2010).   CELSR1 was also identified as an interacting partner of a hypotonia 

associated protein. 

Two genes that were identified using protein interaction networks were PARVB (Beta 

parvin) and WNT7B (wingless-type MMTV integration site family). Both proteins were found to 

be physical interacting partners with proteins associated with ASD, ID, and hypotonia and 

WNT7B was also found to interact with macrocephaly associated proteins (Table 3.3). PARVB is 

deleted in the regions associated with lack of ASD, lack of speech, touch sensitivity, hair pulling 

behavior, abnormal reflexes, and macrocephaly.  It is also deleted in both cases of interstitial 

deletions (Wilson and others 2008).  WNT7B is deleted in one case of interstitial deletion and is 
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located in the regions associated with lack of ASD, lack of speech, walking late, hair pulling 

behavior, neonatal hypotonia, and macrocephaly.  The Database of Genomic Variants reports 

CNVs affecting coding regions of WNT7B, but not for PARVB. Interestingly, PARVB and SHANK3 

are both scaffolding proteins important in post synaptic structures (Govek, Newey, Van Aelst 

2005).  PARVB binds ARHGEF6 (a Rho guanine nucleotide exchange factor 6; a guanine 

nucleotide exchange factor for Rho GTPases) (Rosenberger and others 2003).  Mutations in the 

PARVB binding site on ARHGEF6 are associated with X-linked intellectual disability (Kutsche and 

others 2000).   ARHGEF6 heterodimerizes with ARHGEF7 (Rosenberger and others 2003), a 

binding partner of SHANK3, a candidate gene for PMS as well as autism spectrum disorders 

(Bonaglia and others 2001; Delahaye and others 2009; Durand and others 2007; Grabrucker and 

others 2011; Phelan 2008; Wilson and others 2003).  Figure 3.6 illustrates the physical 

interactions between PARVB and SHANK3 as obtained from GeneMANIA.  Thus, PARVB may 

have overlapping and interacting roles with SHANK3 (Govek, Newey, Van Aelst 2005). 

Finally, we note the presence of several micro RNAs in 22q13.31 including hsa-mir-1249 

which is located within an intronic region of C22orf9.  This micro RNA is predicted to target the 

22q13 genes SHANK3, PHF21B, and SERHL2 as well as a number of other brain and development 

associated genes (TargetScan(Friedman and others 2009)). Loss of hsa-mir-1249 may lead to 

misregulation of the preserved copy of SHANK3, affecting the severity of neurological 

phenotypes associated with SHANK3 haploinsufficiency, such as hypotonia, speech, and 

developmental delay. The fact that hsa-mir-1249 maps within the regions of interstitial deletions 

associated with PMS (Fujita and others 2000; Wilson and others 2008) probably represents 
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further evidence of the potential role played by these micro RNAs in neurodevelopmental 

disorders. 

The remaining genes, micro RNAs, and non-coding RNA in genomic regions associated 

with various phenotypes, particularly in the chromosome 22q13.31 region, deserve further 

examination in future studies. 

Limitations 

There are several limitations in the present analysis. Reporting of medical history 

phenotypes relied upon parent recall and may be subject to recall or information bias (Rothman 

and Greenland 1998).   Association statistics are heavily influenced by sample size and this study 

had small statistical power to examine associations with genomic regions near the telomere (the 

smallest deletions) and most proximal (those with deletions > 8 Mb in size).  Bonferroni-

adjustment of P-values was excessively conservative because each statistical comparison along 

the chromosome is not independent, given that the data are terminal deletions and a 

breakpoint at one position implies that all genes distal to it are also deleted.  However, the 

Bonferroni-adjusted method helped to illuminate the likely critical genomic regions to examine.  

No statistical adjustment was made for the fact that multiple phenotypes were examined in the 

same population.  While age and gender were not found to confound the genotype-phenotype 

associations in our analysis, we cannot rule out the possibility that age or gender distribution 

differences between affected and unaffected individuals could affect the genomic regions 

identified with various phenotypes. 
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Conclusion  

This study demonstrates how different genomic regions may play a critical role in the 

phenotypic heterogeneity that characterizes PMS.   All 71 subjects used in this study share 

haploinsufficiency of SHANK3 and present with a wide spectrum of phenotypes and terminal 

deletion sizes. We identified 22q13.2q13.32 genomic regions associated with speech/language 

delay, developmental delay, neonatal hypotonia, abnormal growth, behavioral features, and 

physical features.  These results indicate that, although the terminal 22q13.33 region 

encompassing SHANK3 is critical for the core of the PMS phenotype, additional, more proximal 

genomic regions are important to determine the severity of some symptoms and the variable 

occurrence of many secondary features of the syndrome. Therefore, we believe that future 

studies on the role of SHANK3, IB2, and other telomeric genes in PMS should also include work 

to determine the independent and additive effects of loss of 22q13.2q13.32 genes, micro-RNAs, 

or regulatory elements.  
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Table 3.1. PMS Phenotypes and Chromosome 22q13 Genomic Positions Identified by Minimun P-Value Method, MaximumYouden Index 
and ROC Analysis, and Smallest Common Deletion.  Phenotypes are Listed in Order of Bonferroni Adjusted Minimum P-value. 
Phenotypes Associated 

Genomic Region 

(Location of Min. 

P-value) 
a
 

Minimum 

P-value 

(Fisher’s 

Exact) 

Bonferroni 

Adjusted 

Minimum 

P-value 

Relative Risk  

(95% CI)
b
 

Max 

Youden 

Index
c
 

Genomic 

Location of 

maximum 

Youden 

Index (Mb)
a
 

Sensi-

tivity 

Speci-

ficity 

Area 

Under 

the 

ROC
d
 

Smallest 

Common 

Deletion 

Position 

(Mb) 

n 

Clinical results from physical exams 

Large/fleshy hands 42.7-48.7 (44.6) 0.0009 0.0454 2.5 (1.4-4.7) 0.47 44.6 0.72 0.75 0.75 48 53 

Macrocephaly 

(>97
th

) 

42.7-47.5 (44.6) 0.0010 0.0481 Undefined 0.55 44.6 1 0.56 0.76 44.6 47 

Facial asymmetry 43.1-44.6 (43.2) 0.0020 0.1037 Undefined 0.76 43.2 1 0.76 0.81 43.2 54 

Full brow 45.2-49.1 (48.4) 0.0033 0.1690 Undefined 0.33 45.8 0.74 0.59 0.68 48.1 53 

Tall stature (>95th) 43.9-44.6 (43.9) 0.0094 0.3667 Undefined 0.66 43.9 1 0.66 0.77 43.9 40 

Abnormal reflexes 42.7-44.6 (43.7) 0.0101 0.4259 3.1 (1.3-7.3) 0.43 43.7 0.69 0.74 0.71 47.8 43 

Dysplastic toenails 43.2-47.0 (43.7) 0.0084 0.4340 1.5 (1.1-2.0) 0.42 43.7 0.5 0.92 0.71 49.5 53 

Short stature (<5th) 41.1-42.5 (41.6) 0.0178 0.6956 8.5 (1.8-40.6) 0.51 41.6 0.6 0.91 0.7 47.5 40 

Dolichocephaly 43.5-47.8 (43.9) 0.0137 0.7283 3.2 (1.3-7.9) 0.4 43.9 0.69 0.71 0.68 47.5 54 

Bulbous nose 44.6-47.6 (47.5) 0.0154 0.8162 2.6 (0.96-6.8) 0.33 45.0 0.66 0.66 0.65 49.1 54 

Sacral dimple 45.0-47.0 (46.6) 0.0273 1.0000 3.8 (0.99-

14.5) 

0.32 46.6 0.89 0.42 0.66 48.4 52 

Strabismus 47.5  0.0466 1.0000 Undefined 0.28 47.5 1 0.28 0.67 47.5 52 
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Microcephaly (<3
rd

) None --  -- -- -- -- -- 0.51 48.4 42 

Features derived from parent-provided medical history questionnaires 

Neonatal hypotonia 43.1-49.5 (47.5) 6.50E-06 0.0004 4.6 (1.3-16.0) 0.67 45.8 0.84 0.83 0.84 48.4 61 

Speech (sentences 

v. absent speech)
e
 

41.8-45.2 (43.9) 0.0007 0.0230 0 0.60 43.9 1 0.6 0.79 44.4
f 
 36 

Walk > 15 months
e
 44.4-49.1 (48.4) 0.0008 0.0347 Undefined 0.57 45.2 0.68 0.89 0.79 48.4 46 

Neonatal feeding 

problems 

44.7-47.5 (45.5) 0.0009 0.0549 1.8 (1.2-2.8) 0.50 45.5 0.79 0.71 0.68 49.4 61 

Hair pulling 

behavior (age < 12 

years) 

42.4-47.8 (43.7) 0.0022 0.0560 3.0 (1.6-5.8) 0.57 43.7 0.57 1 0.82 47.6 26 

Genital anomalies 

(male) 

41.1-45.5 (43.5) 0.0031 0.0589 Undefined 0.77 43.5 1 0.77 0.9 43.5 20 

Sensitivity to touch 41.9-43.9 (42.5) 0.0054 0.3173 1.8 (1.3-2.4) 0.33 43.9 0.61 0.73 0.65 49.5 60 

Autism spectrum 

disorders
e
 

41.7-46.6 (45.2) 0.0093 0.4834 0.3 (0.1-0.7) 0.43 45.2 0.72 0.72 0.73 49.5 53 

Aggressive behavior 43.7-45.2 (44.8) 0.0108 0.6378 0.4 (0.2-0.8) 0.38 43.9 

44.8 

0.75 

0.65 

0.63 

0.73 

0.67 

0.67 

49.1 60 

Pinching 43.9-45.8 (44.8) 0.0140 0.8418 0.4 (0.2-0.8) 0.35 44.8 0.61 0.74 0.65 49.4 60 

Seizures requiring 

medication 

None --  -- -- -- -- -- 0.56 49.5 55 

a Genomic position according to the 2006 Human Genome Build 18.  The terminus is position 49.69 Mb. 
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bConfidence Interval 
c Youden Index = (Sensitivity + Specificity - 1) 
d Receiver Operator Characteristic Curve.  The curve plots sensitivity v. 1-specificity to obtain the ROC curve. 
eAmong those over 3 years of age 
fThe largest deletion breakpoint among those with sentences was at base position 44.4 Mb. The next observed deletion breakpoint 
occurs at position 43.9 Mb (an individual with absent speech).  In the situation of evaluating speech ability, we calculate sensitivity as 
identifying everyone with speech at a given breakpoint or more telomeric rather than more centromeric because speech is observed to 
be associated with smaller deletions rather than larger deletions and the maximum sensitivity (1.0) and maximum Youden index occur at 
position 44.4 Mb. The minimum P-value was obtained when comparing those with deletions at 43.9 Mb or more centromeric to those 
with deletions at 44.4 Mb or more telomeric. Thus, because there are no cases with breakpoints between 43.9 and 44.4 Mb, the 
minimum P-value at 43.9 Mb and the maximum Youden index at 44.4 Mb are equivalent cutpoints. 
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Table 3.2. Prevalence of PMS Phenotypes by 22q13 Deletion Band.  Phenotypes presented in 
descending order of prevalence in largest deletion group. 

Phenotype Cytogenetic Location of Deletion 

22q13.2 22q13.31 22q13.32 22q13.33 P-value
a
 

Physical exam features 

Gender (% male) 7/9 (78%) 15/30 (50%) 2/9 (22%) 2/5 (40%) 0.0321 

Age in years, median (range) 8.4 (3.1-17.2) 5.2 (0.9-40) 4.2 (1.5-8.8) 6.9 (4.4-9.2) 0.1430
b
 

Dysplastic toenails 8/9 (89%) 24/30 (80%) 5/9 (56%) 3/5 (60%) 0.0770 

Large/fleshy hands 7/9 (78%) 19/30 (63%) 3/9 (33%) 0/5 (0%) 0.0028 

Atypical reflexes 5/7 (71%) 8/25 (32%) 3/8 (38%) 0/3 (0%) 0.0843 

Full brow 6/9 (67%) 19/29 (66%) 6/9 (66%) 0/6 (0%) 0.0663 

Bulbous nose 6/9 (67%) 21/30 (70%) 4/9 (44%) 2/4 (50%) 0.2594 

Sacral dimple 5/9 (56%) 12/29 (41%) 1/9 (11%) 1/5 (20%) 0.0402 

Macrocephaly (>97
th

 %) 5/10 (50%) 6/24 (25%) 0/8 (0%) 0/5 (0%) 0.0060 

Strabismus 4/8 (50%) 7/30 (23%) 2/8 (25%) 0/6 (0%) 0.0688 

Dolichocephaly 4/9 (44%) 9/30 (30%) 3/9 (33%) 0/6 (0%) 0.1669 

Short stature (<5
th

 %) 3/8 (38%) 1/20 (5%) 1/5 (17%) 0/5 (0%) 0.0904 

Tall stature (>95
th

 %) 2/7 (29%) 3/23 (13%) 0/5 (0%) 0/5 (0%) 0.1301 

Microcephaly (<3
rd

 %) 1/6 (17%) 3/21 (14%) 1/9 (11%) 1/6 (17%) 0.9870 

Facial asymmetry 1/9 (11%) 4/30 (13%) 0/9 (0%) 0/6 (0%) 0.3079 

Parent-Provided Medical History Questionnaire Phenotypes 

Gender (%) male 7/15 (47%) 14/35 (40%) 1/6 (17%) 2/5 (40%) 0.4053 

Age in years, median (range) 5.0 (2.0-17.2) 6.5 (0.9-40) 3.9 (1.5-4.8) 6.9 (2.5-9.3) 0.1679
b
 

Hair-pulling behavior (age < 12 years) 6/6 (100%) 6/13 (46%) 2/4 (50%) 0/3 (0%) 0.0091 

Neonatal  hypotonia 14/15 (93%) 32/35 (91%) 2/6 (33%) 1/5 (20%) <0.0001 

Walk later than 15 months
c
 11/12 (92%) 20/23 (87%) 5/6 (83%) 1/5 (20%) 0.0161 

Sensitivity to touch 14/16 (88%) 18/35 (51%) 4/5 (80%) 2/4 (50%) 0.0993 

Neonatal feeding problems 13/16 (81%) 29/35/ (83%) 2/6 (33%) 3/4 (75%) 0.1592 

Genital anomalies (male) 5/8 (63%) 2/10 (20%) 0/1 (0%) 0/1 (0%) 0.0349 

Pinching behavior 4/16 (25%) 13/35 (37%) 4/6 (67%) 2/4 (50%) 0.0945 

Aggressive behavior 3/15 (20%) 13/35 (37%) 2/6 (33%) 2/4 (50%) 0.2358 

Seizures requiring medication 3/16 (19%) 5/28 (18%) 0/6 (0%) 2/5 (40%) 0.8739 

Autism spectrum disorders
c
 1/15 (7%) 9/25 (33%) 1/6 (17%) 3/5 (60%) 0.0468 

Speech (sentences)
c
 0/12 (0%) 8/17 (47%) 0/2 (0%) 3/5 (60%) 0.0101 

aMantel Haenzel Chi-Square using rank scores 
bKruskal-Wallis test 
cAmong those 3 years of age or older 
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Table 3.3. Source of Seed Genes and Additional Genes Identified Through Protein Interaction 
Networks to Annotate 22q13 Genes. 

Phenotype Gene seed list source and 
number of genes 

PMS genes in seed 
list and location 

Additional PMS genes found in  
interactions and location 

Autism 
spectrum 
disorders 

(Basu, Kollu, Banerjee-Basu 
2009) 328 
(Pinto and others 2010) 139 
(Kou and others 2012) 114 
(Sakai and others 2011) 35 
Total of 434 genes 

SHANK3 (22q13.33) FAM109B, POLR3H, BIK, TSPO 
22q13.2 
PARVB, WNT7B 22q13.31 
 

Intellectual 
Disability 

(Chiurazzi and others 2008) 
89 
(Lubs, Stevenson, Schwartz 
2012) 29 
(Kou and others 2012) 223 
(Pinto and others 2010) 110 
Total of 302 genes 

ALG12, CHKB 
(22q13.33) 
CYB5R3 (22q13.2) 

FAM109B, POLR3H (22q13.2) 
PARVB, WNT7B (22q13.31) 
MAPK12 (22q13.33) 

Hypotonia OMIM searched 
“hypotonia” in * gene with 
known locus, + gene with 
known sequence and 
phenotype, # phenotype 
description with molecular 
basis known, gene map 
locus 
Total 557 genes 

ACO2 (22q13.2) 
TRMU (22q13.31) 
ALG12, SCO2, 
SHANK3 (22q13.33) 

FAM109B (22q13.2) 
CELSR1, PARVB, WNT7B 
(22q13.31) 

Macrocephaly OMIM searched 
“macrocephaly” in * gene 
with known locus, + gene 
with known sequence and 
phenotype, # phenotype 
description with molecular 
basis known, gene map 
locus 
 Total 181 genes 

MLC1, SHANK3 
(22q13.33) 

POLR3H (22q13.2) 
WNT7B (22q13.31) 
CHKB, ARSA (22q13.33) 

Microcephaly OMIM +, *, # 423 genes CYB5R3 (22q13.2) 
ALG12 (22q13.33) 

POLR3H (22q13.2) 
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Figure 3.1. Comparison of 22q13 deletion regions for those with absent speech compared to 
those with sentences. Snapshot from the UCSC genome browser showing chromosome band 
positions and locations of 22q13 genes and micro RNA using the March 2006 (NCBI36 /hg18) 
assembly.   
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Figure 3.2. Association and ROC analysis for speech delay.  Panel A: Distribution of chromosome 
22q13 breakpoints by genomic position for those with sentences and those with absent speech. 
Panel B: minus log10 (P-value) of association between genomic breakpoint position and speech. 
The blue line represents a P-value < 0.05 ; the red line is significant after Bonferroni correction 
(P < 0.0014). Panel C: Youden Index by breakpoint position. Panel D: ROC curve.   
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Figure 3.3. Distribution of chromosome 22q13 breakpoints by genomic position for phenotypes 
significant after bonferroni correction and having an AUC ≥ 0.75. Each column describes a 
different phenotype. Row A displays the breakpoint positions for those with and without the 
given phenotype.  Row B displays the minus log10 (P-value) of association between genomic 
breakpoint position and phenotype.  The blue line represents a P-value < 0.05 ; the red line 
indicates significance after Bonferroni correction. Row C displays the ROC curve. 
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Figure 3.4. Distribution of chromosome 22q13 breakpoints by genomic position for ASDs, 
microcephaly, and seizures.  ASDs were less likely in those with larger deletions.  Microcephaly 
and Seizures do not show association with deletion size.  Each column describes a different 
phenotype. Row A displays the breakpoint positions for those with and without the given 
phenotype.  Row B displays the minus log10 (P-value) of association between genomic 
breakpoint position and phenotype.  The blue line represents a P-value < 0.05 ; the red line 
indicates significance after Bonferroni correction. Row C displays the ROC curve. 
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Figure 3.5. The PMS deletion region illustrating the genomic regions statistically associated with 
medical and physical phenotypes of interest.  The dark green bands represent the features 
obtained from medical history and the light green bands represent features obtained from 
physical exam.  The bands represent regions associated at P<0.05.  The thick band represents 
the regions with the smallest P-value. Also shown are locations of known genes and miRNAs, 
locations of genes found to be associated with ASD, ID, hypotonia, or macrocephaly in protein 
interaction databases using GeneMANIA (Warde-Farley and others 2010).  In addition, 
predictions of haplosufficiency (Huang and others 2010) as shown with red indicating predicted 
haploinsufficient and green indicating predicted haplosufficient. Finally, the interstitial deletions 
as given by (Wilson et al. 2008) are provided. 
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Figure 3.6. Physical protein-protein interaction network between PARVB and SHANK3 as created 
by GeneMANIA (Warde-Farley and others 2010).  Both proteins share interacting partners.  
Intersitital deletions are missing a copy of PARVB and not SHANK3 while the remaining cases of 
PMS are all missing SHANK3. 
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Supplemental Figure 3.1. Association Analysis Results for all phenotypes.  The first column 
depicts the distribution of chromosome 22q13 breakpoints by genomic position. The second 
column displays the minus log10 (P-value) of association between genomic breakpoint position 
and phenotype. The third column displays the Youden Index by genomic breakpoint position.  
The fourth column displays the ROC curve.  The figure extends 6 pages. 
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CHAPTER FOUR 

 

CLINICAL AND GENOMIC FEATURES OF PHELAN-MCDERMID SYNDROME IN A LONGITUDINAL 

ASSESSMENT OF 201 PATIENTS. 
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Sarasua SM, Boccuto L, Sharp JL, Dwivedi A, Chen CF, Rollins JD, Rogers RC, Phelan K, DuPont BR. 

Abstract 

This study is the first to describe age-related changes in a large cohort of Phelan-

McDermid syndrome patients. The clinical and cytogenetic characteristics of Phelan-McDermid 

syndrome (PMS) were studied over a period of up to12 years follow-up. 201 patients attended 

one or more Phelan-McDermid Syndrome Family Support conferences and 130 also provided a 

whole blood specimen for high resolution oligo array CGH to determine 22q13 breakpoints. 

Genomic anomalies included terminal deletions (85%), terminal deletions and interstitial 

duplications (9%), interstitial deletions (2%), a 22q13.3 duplication and no deletion (1%), and 4% 

who were mosaic preventing detection on array CGH.  Individuals diagnosed prior to the year 

2005, and especially those diagnosed prior to the year 2000, have larger deletions on average 

than those diagnosed more recently.  Behavioral problems (chewing behaviors, biting, hair 

pulling, crying) subsided with increasing age and developmental abilities (independent walking 

and toileting) improved with increasing age.  The proportion reporting having an autism 

spectrum disorder, seizures, or cellulitis increased with age.  Among physical features, the 

presence of large or fleshy hands, hypotonia, lax ligaments, and hyperextensible joints improved 

with increasing age.  Lymphedema and abnormal reflexes increased with age.  Younger children 

tended to be of typical or tall stature while older children tended to be of typical or short 

stature.   Among those over age 3 years, speech abilities did not vary significantly with age, but 

did vary significantly by deletion  size (P=0.0064): absent speech (median deletion size 6.53Mb, 

range 0.34-9.22), less than 50 words (median deletion size 5.1 Mb, range 1.62-7.45), 50 or more 

words or phrases (median deletion size 4.36 Mb, range 3.09-5.23), and sentences or being fully 
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verbal (median deletion size 2.42 Mb, range 0.22-4.52).  Larger deletion sizes were associated 

with greater degree of developmental delay, later age to walk, more hair pulling behaviors, 

strabismus, facial asymmetry, abnormal reflexes, macrocephaly, dolicocephaly, large or fleshy 

hands, skin rashes, and 2/3 toe syndactyly.  Those with larger deletions were less likely to report 

an autism diagnosis or aggressive or impulsive behaviors.  Hypotonia and seizures were not 

associated with larger deletions.  Deletion size did not vary by parent of origin of the affected 

chromosome but 73% of affected chromosomes were of paternal inheritance.  Seizures were 

the only feature found associated with maternal parent of origin.  This analysis demonstrates 

the importance in assessing age and deletion size in understanding the clinical presentation of 

PMS. 

 

Introduction 

A substantial body of work is accumulating to better understand the clinical features of 

Phelan-McDermid syndrome (PMS), which generally consist of developmental delay including 

significant speech delay, hypotonia, and minor dysmorphic features (Bonaglia and others 2011; 

Phelan and McDermid 2012).  The syndrome is associated with deletions, and occasionally 

duplications, of up to 9 Mb in size in the 22q13 region.  Chromosomal abnormalities include 

simple terminal deletions, ring chromosomes, translocations, interstitial deletions, as well as 

duplications.   In almost all cases, the SHANK3 gene, mapping to the distal end of 22q13.33, is 

affected (Bonaglia and others 2010; Phelan and McDermid 2012) or in rarer cases, disrupted 

(Anderlid and others 2002; Bonaglia and others 2001; Bonaglia and others 2006; Delahaye and 

others 2009; Misceo and others 2011) and SHANK3 is a candidate gene for many of the 
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neurologic features of the syndrome (Bonaglia and others 2001; Bonaglia and others 2006; 

Phelan and McDermid 2012). SHANK3 deletions or point mutations have also been reported in 

isolated cases of autism spectrum disorders (ASDs) (Betancur, Sakurai, Buxbaum 2009; Boccuto 

and others 2012; Durand and others 2007; Grabrucker and others 2011). ASD is frequently a co-

morbid condition of PMS, with different studies reporting highly variable rates ranging from 0 to 

94% (Dhar and others 2010; Jeffries and others 2005; Lindquist and others 2005; Manning and 

others 2004; Phelan and others 2001; Philippe and others 2008; Sarasua and others 2011).  

Work is ongoing to determine the effects of Shank3 haploinsufficiency in mouse models 

(Bangash and others 2011; Bozdagi and others 2010; Peca and others 2011; Verpelli and others 

2011; Wang and others 2011). While the role of SHANK3 is being actively investigated, little 

work has been done to examine the independent or contributory roles of the approximately 120 

protein coding genes and additional miRNAs or noncoding RNAs co-deleted in the larger 

deletion patients.  Several lines of evidence suggest that deletion size is predictive of phenotypic 

severity (Jeffries and others 2005; Sarasua and others 2011; Wilson and others 2003; Wilson and 

others 2008). 

Clinical studies of PMS have generally been based upon case reports and small case 

series, with the largest study describing 61 patients (Phelan and others 2001).  One area of 

research that has not been performed until now is a longitudinal assessment of age-related 

changes in PMS phenotypes.  Because the syndrome is rare and published studies have analyzed 

small cohorts, clinical features tend to have been examined in aggregate without looking at age-

specific differences.  However, understanding age-related changes is important for clinical 
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management and genotype-phenotype assessments may need to account for age if clinical 

features change with age. 

In this study, we examine the prevalence of 60 phenotypes across ages, deletion sizes, 

and parent-of-origin to better inform patients, researchers, and clinicians on the clinical profile 

of PMS. 

Methods 

Patient Recruitment 

A total of 201 individuals participated in the study at least once from 2004 to 2010 at 

four biannual family conferences of the Phelan-McDermid syndrome Family Support 

Conference.  Of these, 55 attended two or more times, including from the earliest conferences 

in 1998 and 2000.  At the conferences, parents or guardians answered a health history survey 

and patients were offered a standardized physical examination by a trained clinical geneticist.  In 

five cases, medical records were abstracted to obtain clinical information.  Height and head 

circumference were obtained at the physical examinations and were converted to age- and 

gender- specific percentiles using standard growth charts (Greenwood Genetic Center 2011; 

Kuczmarski and others 2002; Rollins, Collins, Holden 2010; World Health Organization 2006).  In 

addition, 130 individuals provided a blood sample for array comparative genomic hybridization 

(CGH) between 2006 and 2010, and of these, 118 also answered the health history 

questionnaire or had a physical exam.   Informed consent was provided and the study was 

approved by the Institutional Review Board of the Self Regional Health System. 
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Genetic analysis 

22q13 deletions and duplications were delineated from whole blood specimens using a 

custom 4x44K 60-mer oligo array designed to cover 22q12.3-terminus by Oxford Gene 

Technology (Oxford, UK) as described previously (Sarasua and others 2011).  The 2006 human 

genome build (NCBI 36/HG 18) was used to establish array CGH genomic breakpoint coordinates 

(International Human Genome Sequencing Consortium 2004).   Whole blood specimens were 

obtained from 92 patients and their parents to determine the parent of origin of the affected 

chromosome. Genomic DNA was isolated from peripheral blood by high salt precipitation. 

Purified DNA was diluted to a concentration of 105 ng/μl and stored at 4°C in TE (10 mmol/l Tris-

HCl, pH 7.6, 1 mmol/l EDTA). Because SHANK3 is deleted in all cases tested, this gene was 

selected for parent of origin testing. The Primer 3 Input website 

(http://frodo.wi.mit.edu/primer3/) was used to design the primers to amplify our target region 

on the SHANK3 gene: the sequence of the forward primer is 5’- GCCTGGGCAAACTGGACAAGT-3’, 

and the sequence of the reverse primer is 5’-TCCCCAACCAGGAAGCCCTAG-3’. The two primers 

flank a 491 base pair region including the last part of intron 9, exon 10 and the first part of 

intron 10 of the SHANK3 gene. The region was selected for the presence of two highly variable 

SNPs: c.1304+42 G>A (NG_008607.1:g.25449 G>A, rs13055562) and c.1304+103 C>A 

(NG_008607.1:g.25511 C>A, rs2341009). The rs13055562 allele frequencies, according to the 

1000 genome database (http://www.1000genomes.org/home), are 62.4% G and 37.6% A; while 

the rs2341009 allele frequencies are 73.7% A and 26.3% C. The region also includes a third SNP, 

c.1304+48 C>T (NG_008607.1:g.25455 C>T, rs76224556), which is more rare in the normal 

population (96.2% C and 3.8% T) and has been reported in association with autism spectrum 

http://www.1000genomes.org/home
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disorders (Boccuto and others 2012). Each sample was amplified by PCR, purified and then 

sequenced using the DYEnamiv ET Dye Terminator Cycle Sequencing Kit on the MegaBACE 1000 

Analysis System (Amersham Biosciences, Sunnyvale, CA). Sequencing was performed in both 

forward and reverse directions. We also analyzed the highly polymorphic tandem TA repeats of 

the microsatellite D22S1169, mapping within SHANK3. The forward primers (5’-

GCACACACATGCACATAATC-3’) were synthesized and labeled with fluorescein amidite (Sigma-

Aldrich, St. Louis, MO), while the reverse primers (5’-AACAACTTCCAGCAGACG-3’) were not 

labeled. The region amplified by these primers ranges between 113 and 131 base pairs, 

depending on the number of repeats. The polymorphisms were detected by CEQ™ 8800 Genetic 

Analysis System (Beckman Coulter, Brea, CA). 

Cytogenetic analysis of buccal specimen 

A buccal swab collection kit was mailed to a participant with a non-mosaic >7 Mb 

terminal deletion.  The collection kit requested the patient rinse his or her mouth with water, 

gently scrape the inside of the cheek with a swab, and then wipe the swab on two enclosed 

glass slides.  After air drying for 30 minutes, the slides were placed in a cardboard mailer and 

returned by mail to the Greenwood Genetic Center for cytogenetic analysis.  A control specimen 

was also collected using the same procedures. For in situ hybridization of interphase 

chromosomes, fluorescent labeled commercial probes for the terminus of 22q (N85A3) and 

22q11.2 (D22S75) were obtained from Abbott. Probes were used per manufacturer’s 

specifications. Slides were fixed with a 50% methanol:50% acetic acid dip, then incubated in 2x 

SSC at 37oC for 15 minutes, serially dehydrated in 70%, 85%, and 100% ethanol at room 

temperature, denatured in 70% formamide/2 x SSC at 79oC for two minutes, then serially 
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dehydrated in 70%, 85%, 100% ethanol. In situ hybridization was performed at 37oC for a 

minimum of 12 hours in a humidity chamber. The slides were post washed at 42 oC using a Post 

Wash I (50% formimide/2xSSC) solution three times for 5 minutes each and a 2xSSC solution two 

times for 2 minutes each. Then the slides were place at room temperature in a 2xSSC/0.1%NP-

40 solution for 3 minutes. The labeled probes were visualized with FITC-labeled anti-digoxigenin, 

and chromosomes were counterstained with DAPI. Images were examined at 100x 

magnification under a Zeiss Axiophot fluorescent microscope equipped with FITC, DAPI and dual 

band pass filter sets. Digital images were captured by computer using Applied Imaging 

Cytovision software (Pittsburgh), and photographs were printed on a Kodak XL 7700 color image 

printer. 

Statistical Analysis 

A total of 201 individuals participated in the study and 55 of these individuals 

participated more than once across the different conferences.  Most of the analyses in this study 

are cross-sectional and include only the data from the most recent visit such that each 

observation is independent.  In a subset of analyses designed to specifically look longitudinally, 

only those individuals who attended multiple times were included in a repeated measures 

analysis as explained below. SAS software was used for all statistical analysis (SAS Institute 

2009). When available, currently having a condition was assessed rather than ever having a 

condition. Wilcoxon Rank-Sum or Kruskal Wallis P-values were calculated when comparing 

continuous variables such as age and deletion size. Spearman correlation coefficients were 

calculated for continuous measures.  Results were judged to be statistically significant at a 

P<0.05 and of borderline significance at 0.05 < P < 0.10. 
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Cross-sectional analysis. To make use of the full sample size of 201 individuals, a cross-

sectional analysis by age group was performed. The prevalence of 62 conditions was compared 

across four age groups: 0.4 to 4.9 years, 5 to 9.9 years, 10 to 17.9 years, and 18 to 64 years.  The 

age categories were selected to represent the pre-school, school age, adolescent, and adult 

phases of life. Statistical significance was assessed with the Cochran-Mantel-Haenszel chi-square 

test using rank scores or Fisher's Exact Test. The effect of deletion size (independent variable) on 

phenotypes (dependent variable) was assessed in regression models and included age and 

gender covariates.  For continuous phenotypes (age at learning to walk, level of developmental 

delay, and head circumference percentile), linear regression models were used.  For 

dichotomous phenotypes, logistic regression was used.  For the models assessing the effect of 

deletion size, the sample was restricted to those with simple terminal deletions and excluded 

those with duplications, interstitial deletions, or those with known translocations as these 

genomic rearrangements may have independent effects from those of the terminal deletions.  

The association between parent of origin of the affected chromosome and dichotomous 

outcomes was assessed by Fisher’s Exact Test. 

Longitudinal analysis. For those individuals who attended two or more times, a 

longitudinal analysis was conducted to examine changes within the same group of individuals. 

The longitudinal analysis was conducted for those physical or medical features that showed 

statistically significant (P<0.05) age-related differences in prevalence in the cross sectional 

analysis.  Only those individuals with two or more visits (n=55) were included in the longitudinal 

analysis.  A repeated measures logistic regression procedure was used to model the log odds of 
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medical/behavioral features.  A longitudinal analysis was not conducted of physical exam 

features because too few individuals had multiple visits for these conditions (n≤12). 

 

Results 

Cytogenetic findings 

Of 201 individuals with at least one physical exam or health record, the mean age was 

8.4 years, median age was 6.15 years with a range of 0.4 to 64.2 years (Table 4.1).  The majority 

(85%) of 22q13 anomalies were terminal deletions; however, deletions accompanied by 

duplications (9%), and interstitial deletions (2%) were also observed (Table 4.1, Figure 4.1). 

There was also one case of a duplication without a deletion and in 4% of cases, no deletion was 

observed on array CGH.  These final cases were previously known to carry a mosaic deletion.  

Among those with a measured deletion, there was no difference in median deletion size 

between those with terminal deletions, terminal deletions and duplications, or interstitial 

deletions (Table 4.1).  Deletion breakpoints were highly varied across the 9 Mb terminal region 

of 22q13. 

Detection of 22q13 Deletion in Buccal Swab Specimen. The loss of 22q13.3 was 

demonstrated in an individual with both an array CGH confirmed deletion and a FISH confirmed 

deletion in a buccal specimen.  No loss of the 22q11.2 probe (red) was observed in any of 110 

interphase spreads, but in 105 (95%) of these spreads, only one probe for the 22q13.33 

terminus (green) was observed, consistent with a terminal deletion of 22q13.3.  This individual 
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was found to have a >7 Mb deletion by array CGH.  In a control specimen, 97 of 100 cells 

showed no deletion. 

Age Correlation with Genetic Features 

Age of patient and deletion size did not vary by gender of the subject.  No difference 

was observed in age of participants who did and did not have a microarray test performed and 

no difference was observed in age by the type of chromosomal anomaly.   Individuals diagnosed 

prior to 2000 tended to be older and tended to have larger deletion sizes, however age and 

deletion size were not correlated.  The Spearman rank correlation coefficient between age at 

assessment and deletion size (among those with terminal deletions) was nonsignificant at 

r=0.013, P=0.887 (n=118).  The correlation remained small and nonsignificant even when 

stratifying by year of diagnosis.  Year of diagnosis was correlated with deletion size (r=-0.257, 

P=0.0156, n=88). Among the 30 patients missing year of diagnosis, there was no difference in 

deletion size (Krusak-Wallis P=0.621 ) or age of participant (Kruskal-Wallis P=0.7385) for those 

with missing or known year of diagnosis.  For those with missing deletion size data, there was no 

difference in age of participant (Wilcoxon P=0.4335). 

Cross-sectional Analysis of Development, Health, and Physical Features 

Features based on medical history 

Developmental, speech, and neurological features. By three years of age, the majority 

of patients (88%) could walk independently (Tables 4.2 and 4.3).  The mean age when this skill 

was acquired was 28.2 months and ranged from 10 to 98 months of age.  Fewer patients were 

reported to be toilet trained (24%) and this skill took longer to acquire, ranging from 36 to 240 
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months (Table 4.2). Speech abilities, among those over age three years, did not improve 

significantly with age (P=0.6179), except that the strongest verbal abilities were more prevalent 

in those over 5 years of age (Table 4.3).  In total, 50% of the patient group (72/144) had no 

speech, 27% (39/144) reported having a vocabulary of 40 or fewer words, 10% (15/144) were 

reported to have 50 or more words in their vocabulary or the ability to use phrases, and 13% 

(18/144) were reported to have large vocabularies, use full sentences, and to use speech as a 

primary means of communication.  Speech ability, categorized into four levels was inversely 

correlated with other measures of development including age at learning to walk (Spearman r=-

0.3189, P=0.0015) and level of developmental delay (r=-0.5016, P<0.0001).   

The prevalence of seizures increased with age from 11% among those under age 5 years 

to 60% among adults.  Finally, the prevalence of having a high pain threshold increased with age 

from 69% to 89% between the youngest and older age groups. 

Behavioral features and major systems. The number of PMS patients reported to have 

an autism spectrum disorder or to exhibit autistic-like features increased with age ranging from 

19% in the 3-4.9 year old age group and 60% among those over 18 years. As seen in Table 4.3, 

many adverse behaviors improved with age including decreased prevalence of chewing 

behaviors, nonstop crying, biting, and hair pulling.  Some conditions remained problematic such 

as gastroesophageal reflux which was reported for 30-50% of individuals regardless of age.  

Precocious puberty was reported for 14% of those from age 5 to 9 and for 41% among those 

ages 10 to 17.  The prevalence of kidney problems did not change with age while the prevalence 

of skin rashes and cellulitis increased with increasing age.  Diabetes and thyroid disease were 

rare. 
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Physical Exam Features 

Commonly reported features include long eyelashes, dysplastic toenails, pointed chin, 

full or puffy eyelids, and large or fleshy hands (Table 4.4). Most physical features remained 

unchanged by age of the patient other than height and size of hands.  While the majority of 

patients are of typical stature (5-95th percentile, mean height percentile=53%, range from 0.5 to 

99.5%), there was a trend of decreasing height percentile with age.  Among those under age 5, 

19% are tall for age and 7% are short for age, but among those 10 to 17 years of age, none are 

tall for age and 28% were short for age.  The proportion with large or fleshy hands also 

decreased with age.  The proportion with atypical head circumference did not vary by age, but 

18% had macrocephaly and 11% had microcephaly. The mean head circumference was 54th 

centile, range of 0.5 to 99.5th centile. 

Neurological/muscular features. Several neurological features improved with age, 

including fewer individuals presenting with hypotonia, lax ligaments, hyperextensible joints, or 

weak reflexes as the age of the patient increased (Table 4.3).  The prevalence of having strong 

reflexes increased with age. 

Parent of Origin Effects 

Of the 92 trios assessed, 64 (70%) were informative for parent of origin of the affected 

chromosome. While none of the assessed parents had any chromosomal rearrangements, the 

22q13 deletion originated from the paternal chromosome in 73% of cases (47/64) and from the 

maternal chromosome in 27% of cases (17/64) (Table 4.1).  No difference was observed in age of 

the child or deletion size by parent of origin.  There was no difference in parental age at 
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conception between those transmitting an affected chromosome and those transmitting an 

unaffected chromosome (Table 4.6).  The proportion of paternal origin was similar for sons 

(71%) as for daughters (74%) (Table 4.7).  Of the 60 features examined, only the proportion 

reporting seizures differed by parent of origin (Table 4.8).  Having seizures was more common 

among offspring inheriting a maternally derived chromosome deletion (7/13, 54%) than a 

paternally derived chromosome deletion (5/30, 17%), P=0.0241 Fisher’s Exact Test. The 

association remained after adjustment for age and gender. None of the other 60 features 

assessed was statistically significant at P<0.05, although pointed chin and lax ligaments were of 

borderline significance (Table 4.8). 

Longitudinal Analysis 

Among 55 patients who had two or more visits and could be assessed longitudinally, the 

mean time between assessments was 3.7 years, median was 3.0 years (range 0.3 years to 12.1 

years).  Of these, 41 came for two visits, 13 came for 3 visits, and 1 came for 4 visits.  Some 

clinical data were missing at different visits.  The longitudinal change in prevalence of clinical 

features was assessed with a repeated measures logistic regression model (Table 4.9). This 

assessment was performed on those features that showed a statistically significant difference in 

the cross-sectional analysis. Too few individuals came for multiple physical exams (n ≤ 12) to 

model physical features. The longitudinal assessment supported the observations derived from 

the cross-sectional analysis. In general, however, there was little observed change in prevalence 

of the assessed features between observation time periods.  The direction of effect was in 

agreement with the cross-sectional analysis, although the level of statistical significance was 

typically worse.  Prevalence of high pain tolerance increased with increasing age (P=0.0062). 
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22q13 Deletion Size Effects 

Size of terminal deletion was assessed in a logistic regression model adjusting for 

potential age and gender effects. Deletion size was statistically significant for 18 features (Tables 

4.5 and 4.10) out of 54 features that were assessed (listed in Tables 4.2 and 4.3).  In particular, 

features related to developmental delay (level of developmental delay, speech ability, walking 

ability), growth (macrocephaly, large/fleshy hand size), dysmorphic features (facial asymmetry, 

2/3 toe syndactyly, dolichocephaly), and neurological features (abnormal reflexes, strabismus) 

were associated with larger deletion sizes.  All the macrocephalic patients with terminal 

deletions had a deletion size > 5.07 Mb and in the macrocephalic cases with a deletion and a 

duplication, deletions were all > 5.02 Mb. Stature was not associated with deletion size. Autism 

spectrum disorders and the behavioral features of impulsiveness and aggressive behavior were 

inversely associated with deletion size:  those with larger deletions were less likely to report 

these features.  Seizures and hypotonia were not statistically significantly associated with 

deletion size in this analysis.  Figures 4.2 and 4.3 show deletion size distributions for those with 

varying speech abilities and for head circumference demonstrating the marked differences 

observed by phenotype. Speech ability was inversely correlated with size of terminal deletion 

(r=-0.3832, P<0.0001).  When represented graphically, size of deletion was significantly 

associated with speech ability and deletion sizes varied greatly for each level of speech ability 

(Figure 4.2).  While the largest deletion among those with absent speech was 9.22 Mb, the 

largest deletion for those with full sentences and functional language was 4.52 Mb (Table 4.5, 

Figure 4.2).  
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Discussion 

Overall Clinical Findings 

The prevalence of phenotypes observed in this study generally agrees with prior 

published reports (Bonaglia and others 2010; Jeffries and others 2005; Luciani and others 2003; 

Phelan and McDermid 2012; Phelan and others 2001; Sarasua and others 2011).  Other than 

developmental and speech delay, the most common features observed in our cohort (Tables 4.3 

and 4.4) were: hypotonia (75%), distinctive neurological abnormalities, such as overheating 

(68%) and high pain threshold (77%), and minor dysmorphic traits, like long eyelashes (93%), 

dysplastic toenails (73%), and large or fleshy hands (63%). All patients had speech delay with 

half having no speech, 27% having single words, and 23% having phrases or full sentences.  

Other common problems included seizures (27%), ASDs (31%), gastroesophageal reflux (42%), 

kidney problems (26%), frequent constipation (41%), and skin rashes (39%), among other 

features.  Diabetes, thyroid abnormalities, and enzyme deficiencies were rare (≤6%).  Among 

physical features, both tall and short stature were common, as was macrocephaly.  Abnormal 

reflexes and lax ligaments were also common. 

Clinical Features Change with Age 

This is the first study of PMS to examine age-related changes in a large sample size.  A 

large number of features were found to either increase or decrease in prevalence with age.  

Certain features such as hypotonia, lax ligaments, and weak reflexes decreased with increasing 

age.  Reflexes were observed to become stronger with age.  Tall stature was more prevalent 

among younger patients, but was absent in children and adults over age 10, and short stature 
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became more common with age.  Macrocephaly was common (~18%) across all age groups.  An 

earlier analysis, restricted to only those with pure non-mosaic terminal deletions, also observed 

the prevalence of both macrocephaly and microcephaly as well as tall and short stature (Rollins 

and others 2011).  The larger sample size in the less restrictive sample allowed us to perform the 

age-related analysis.  Acceleration or deceleration in growth has been reported in other 

syndromes. Examples of syndromes with accelerated growth include Sotos syndrome (Douglas 

and others 2003), Weaver syndrome (Douglas and others 2003), Simpson-Golabi-Behmel 

syndrome (Pilia and others 1996), and Beckwith-Wiedemann syndrome (Choufani, Shuman, 

Weksberg 2010) and Russell-Silver syndrome is an example of a syndrome showing growth 

deceleration (Eggermann 2010). 

Longitudinal vs. Cross-Sectional Analysis 

The longitudinal analysis agreed with the results derived from the cross-sectional 

analysis when sufficient sample size was available to perform the assessment.  The short 

longitudinal follow-up period, 3.7 years on average, may not have been long enough to observe 

changes that may be due to development.  Further, some individuals may not have reached the 

ages most at risk for some features or may have already passed the highest risk time periods for 

any given clinical feature.  Longer follow-up time periods with larger sample sizes are needed to 

better assess the longitudinal compared to cross-sectional approach to assessing age-related 

changes in PMS phenotypes.  The agreement between age effects noted in the cross-sectional 

analysis was supported by the repeated measures longitudinal follow-up in the smaller sample 

supporting the use of the cross-sectional data as a good proxy for longitudinal follow-up of 

individuals. 
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Comparison to Other Syndromes Where Longitudinal Assessment Has Been Performed 

Few longitudinal assessments have been performed in rare genetic syndromes given the 

inherent difficulty in studying a large sample size of a rare syndrome.  One study to assess cross-

sectional and longitudinal changes in a neurodevelopmental disorder caused by a microdeletion 

was a study of William syndrome (Elison, Stinton, Howlin 2010).  They assessed age-related 

changes among adults and found that increased age was not correlated with diminished 

cognitive, language, or adaptive functioning, and that some areas improved with age among 

adults.  Our study used methods most similar to the Elison study by comparing prevalence of 

outcomes by age groups in a cross-sectional manner, as well as including a longitudinal 

assessment in a subset.  Our study included children as well as adults, however.  In a study of 

Fragile X syndrome, boys from ages 9 months to 68 months were assessed multiple times to 

examine longitudinal changes in development (Roberts and others 2009).  The primary aim of 

the study was to determine age when the delays first became evident and to trace age-related 

changes in development during early childhood. Unlike in our study, they focused on young 

children and did not follow them through adolescence or adulthood.  In a study of predictors of 

psychosis in 22q11.2 deletion syndrome, imaging studies and measures of psychiatric function 

were taken in late childhood and early adolescences in a group of 22q11.2 deletion syndrome 

patients and controls (Kates and others 2011).  The authors were able to correlate brain-related 

changes to measures of prodromal symptoms and psychosis.  The authors employed continuous 

outcome measures rather than the dichotomous outcome measures used in our study, and they 

focused on a key period of development, while our study also examined early and late 

childhood, adolescence, and adulthood to assess key ages of development.  We did not include 
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brain imaging studies, which would be of great benefit to improve specificity and reliability of 

measurements of neurological and cognitive function.  One study of PMS that did examine brain 

imaging was a study of eight individuals from ages 5 to 8 years (Philippe and others 2008), but 

longitudinal imaging was not included. 

Identification of Deletion in Buccal Specimens 

This study successfully identified the deletion in a buccal specimen (cells from internal 

cheek mucosa).  Buccal and central nervous system tissues share the same ectodermal origin 

while blood cells derive from the mesoderm (Sadler 2004). While testing is typically performed 

on blood specimens, deletions have been also been detected in amniotic fluid (Chen and others 

2005; Maitz and others 2008; Phelan, Brown, Rogers 2001) and umbilical cord blood or 

specimens (Phelan, Brown, Rogers 2001). The finding of deletions in multiple specimen types 

and of differing developmental germ layers establishes that the 22q13.3 deletions are not 

limited to a blood-specific anomaly.  With improved laboratory testing methods, less invasive 

specimens such as saliva or buccal cells may be more frequently employed.  Our method used 

FISH on interphase buccal smears to confirm the presence of the deletion, but adaptations of 

array CGH to saliva or buccal specimens may allow for the measurement of deletion size, break 

points, and genome-wide anomalies in the future.  Further, future assessments of the potential 

effects of mosaicism on severity of the phenotype may contribute to the understanding of the 

clinical variability of PMS. 
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Parent of origin effects 

In our study, no parents were observed to have a chromosomal rearrangement 

involving 22q13. However we determined that 73% of deleted chromosomes in the PMS 

patients were derived from a paternally inherited chromosome. This figure agrees with previous 

reports indicating a greater frequency of paternal inheritance (74% (Luciani and others 2003); 

69% (Wilson and others 2003); 59% for ring chromosomes (Jeffries and others 2005); and 74% 

for terminal deletions and 60% for ring chromosomes (Bonaglia and others 2011).  We observed 

no difference in age between the parents transmitting the affected chromosome and the 

parents transmitting the normal one (Table 4.6), in agreement with others (Bonaglia and others 

2011). No difference in sizes of deletions by parent of origin was observed, also in agreement 

with others (Bonaglia and others 2011; Jeffries and others 2005). Finally, we observed only one 

significant feature (seizures) associated with maternal inheritance and no features significantly 

associated with paternal origin (Table 4.8).  Other studies report lack of association with parent 

of origin and phenotypes (Jeffries and others 2005; Luciani and others 2003).  Wilson and others 

found two features (measures of community living and a high palate) to be associated with 

paternal origin, and found seizures to be unassociated with parent of origin (Wilson and others 

2003).  The lack of an observed parent of origin difference in phenotypes implies a lack of 

imprinting of causal genes in the deletion region, although the studies were small (n<50) and did 

not attempt to include interaction between size of deletion and parent of origin.  This lack of a 

parent of origin effect is in contrast with the well-known parent of origin effects observed in 

Angelman and Prader-Willi syndromes (Buiting 2010; Nicholls and Knepper 2001). While no 

22q13.3 genes are known to be imprinted according to the Catalog of Parent of Origin Effects 
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(Morison, Paton, Cleverley 2001), prediction algorithms suggest the potential for several 

22q13.31q13.33 genes to be imprinted (Luedi and others 2007).    

Effect of Deletion Size 

As noted by Sarasua and others, deletion size is associated with speech abilities and 

other measures of development, neurologic function, and physical characteristics (Sarasua and 

others 2011).  In this more detailed analysis, the stepwise decrease in speech ability with 

increased deletion size could indicate the presence of causal genes in the deletion regions.  

Individuals with duplications and deletions had speech abilities consistent with their deletion 

sizes and the size of the duplication did not appear to impact speech abilities.  Prior 

investigations identified genes of particular interest (Chapter 3). In particular, the genes TRMU, 

WNT7B, ATXN10 and micro RNAs hsa-let-7a-3 and hsa-let7b are not deleted in the group with 

functional speech/full sentences, the genes FBLN1, NUP50, C22orf9, KIAA1644, and PARVB and 

hsa-mir-1249 are not deleted in the group with more than 50 words or phrases, and the genes 

MPPED1 and CYB5R3 are not deleted in the group with single words (Figure 4.2).   

Regarding macrocephaly, all patients with macrocephaly have a deletion size > 5 Mb and 

all simple terminal deletion cases are missing one copy of WNT7B, a candidate gene for 

macrocephaly identified in Chapter 3, while two cases of macrocephaly among those with 

duplication and deletions are either missing WNT7B or have a duplication covering WNT7B.  

WNT7B has been found to interact with GPC3 (Capurro and others 2005), the protein involved in 

the macrocephaly syndrome Simpson-Golabi-Behmel syndrome (Pilia and others 1996). The 

large number of genes and microRNAs in the deletion region merit further investigation for 

contributing to the phenotype of PMS as there are clear deletion size effects.  Too few 
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individuals (n=2) were missing only SHANK3 to be able to distinguish SHANK3-specific 

phenotypes, although a previous analysis (Chapter 3) identified phenotypic differences by 

deletion size and deletion band.   

This study found decreased prevalence of autism spectrum disorders with increased 

deletion size.  It may be that the more severely impaired individuals with more physical or 

cognitive impairments may not be appropriate for evaluation of autism. 

Changes in Diagnostic Sensitivity: Changing Picture of PMS 

Diagnostic sensitivity has increased dramatically in the past 10 or more years. Now that 

chromosome array CGH is a first tier test for children with developmental disabilities as well as 

congenital anomalies (Miller and others 2010), not only will more individuals be tested than 

would have previously, but more small deletions will be detected with this technique than 

previously.  These two factors may affect the severity and types of disabilities present in 

individuals diagnosed with PMS, likely identifying individuals with smaller deletions and more 

mild features.  Because it has been found in other studies (Dhar and others 2010; Jeffries and 

others 2005; Sarasua and others 2011; Wilson and others 2003) and in ours that size of deletion 

affects the constellation and severity of phenotypes found in a patient and that age of 

evaluation affects the degree to which certain phenotypes are manifested, future studies of 

PMS will need to assess both age and deletion size in future genotype-phenotype studies and 

clinical therapeutic trials.  As more research is conducted into the effects of SHANK3 specific 

mutations and deletions, the SHANK3-specific phenotypes will be able to be compared with the 

remainder of the 22q13.3 deletion patients to separate out effects due to SHANK3 or other 

genes.   
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Conclusion 

In our cohort, we found that patients with PMS have widely varying deletion sizes from 

0.2 Mb to 9.2 Mb, with no apparent common breakpoints. PMS can be due to simple terminal 

deletion of 22q13.3ter, interstitial deletions of 22q13.2q13.31, 22q13.3 deletions accompanied 

by 22q13.3 duplications, and 22q13 duplication without a deletion.  Patients present with a 

diversity of speech, developmental, behavioral, neurologic, and health conditions. The 

manifestation of these features varies by age at evaluation and deletion size, but not parent of 

origin of the affected chromosome.  Patients diagnosed more recently tend to have smaller 

deletions and thus may present with less severe phenotypes than reported in the earlier 

literature on PMS.  Research is needed to distinguish between phenotypes caused by SHANK3 

deletion alone and the additional impact of other 22q13.3 genes or genomic regions. 
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Table 4.1. Age and Size of Deletions by Gender, Age Group, Type of Chromosomal Anomaly, 

Year of Diagnosis and Parent Of Origin. 

Patient Information Sample size Median age in years 
(min-max) 

*P-Value 22q13.3 Deletion Size 
(Mb) n=118 

*P-value 

At least one health history 
interview or physical exam 
From 2004 to 2010 

201 6.2 (0.4-64.2)  5.23 (0.22-9.22)  

Gender 
Male 
Female 

 
81 (40%) 
120 (61%) 

 
6.5 (0.4-44.6) 
6.2 (1.1-64.2) 

 
0.1481 

 
6.03 (0.22-9.22) 
5.06 (0.41-9.22) 

 
0.2087 

Age at most recent visit 
0.3-4.9 years 
5-9.9 years 
10-17.9 years 
18-64 years 

 
77 (38%) 
67 (33%) 
36 (18%) 
21 (10%) 

 
3.2 (0.4-4.9) 
6.9 (5.0-9.8) 
12.3 (10.0-17.7) 
21.3 (18.3-64.2) 

 
<0.0001 

 
6.03 (0.34-9.22) 
4.41 (0.22-9.22) 
5.23 (1.04-8.94) 
6.63 (2.75-8.96) 

 
0.1206 

Microarray result 
None available 
Available 
Type of result 
     Terminal deletion 
     Interstitial deletion 
     Duplication 
     Del and duplication* 
 
     No deletion visualized 
(mosaics) 

 
77 (38%) 
124 (62%) 
 
105 (85%) 
2 (2%) 
1 (1%) 
11 (9%) 
 
5 (4%) 

 
5.6 (0.4-64.2) 
6.5 (0.9-44.6) 
 
6.4 (0.9-44.6) 
18.5(15.7-21.2) 
4.1 
6.7 (2.3-12.2) 
 
18.7 (2.8-33.8) 

 
0.4386 

 
NA 
 
 
5.3 (0.22-9.22) 
4.4 (2.72-6.04) 
4.7 (duplication size) 
4.8 (0.41-7.18)  
1.3 (0.02-6.84) dup size 
NA 

 
NA 
 
 
0.3300** 

Year of Diagnosis 
  Unavailable 
  Available 
    Before 2000 
    2000-2004 
    2005-2010 

 
43 (21%) 
158 (79%) 
22 (14%) 
62 (39%) 
74 (47%) 

 
5.6 (0.9-36.6) 
6.3 (0.4-64.2) 
13.7 (7.9-23.5) 
7.0 (2.6-44.6) 
4.2 (0.4-64.2) 

 
0.9552 
 
<0.0001 

 
5.0 (0.34-9.22) 
5.4 (0.22-9.22) 
8.5 (1.58-9.22) 
5.8 (0.41-8.78) 
4.1 (0.22-8.94) 

 
0.6232 
 
0.0058 

Parent of origin of deleted 
chromosome 
  Mother 
  Father 

 
17 (27%) 
47 (73%) 

 
6.9 (0.9-21.3) 
5.3 (1.1-36.6) 

 
0.6759 

 
5.2 (1.78-9.22) 
5.1 (0.34-8.94) 

 
0.2978 

*Wilcoxon Rank Sum 2-Sided P-value for two-level analysis, Kruskal-Wallis P-value for multilevel 
analysis 
** the test compared deletion sizes only among the three types of deletions (terminal deletions, 
interstitial, deletions with co-occurring duplications in 22q13.3) 
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Table 4.2. The Ability To Walk and Use the Toilet Independently, Among PMS Patients Over 

Three Years of Age. 

Skill Proportion with 
ability 

Age acquired the ability 

Mean 
(months) 

Median 
(months) 

Minimum-Maximum 
(months) 

Walk 
unassisted 

88% (n=145) 28.21 22 10-98 

Use toilet 24% (n=139) 92.52 78 36-240 
1Of the 122 patients with an age indicated when the skill was acquired. 
 2Of the 32 patients with an age indicated when the skill was acquired. 
 

 



 

 
 

1
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Table 4.3. Current Health, Developmental, and Behavioral Features of Individuals with Phelan-McDermid Syndrome, by Age. 

Feature Total (%) Age 0.4-4.9 years Age 5-9.9 years Age 10-17.9 years Age 18-64 years P-value
1
 

Yes/total % Yes/total % Yes/total % Yes/total % 

Developmental/Neurological 

Speech (age > 3) 
None 
1-40 words 
50+ words or phrases 
Verbal communication 

 
72/144 (50%) 
39/144 (27%) 
15/144 (10%) 
18/144 (13%) 

 
20/37 
13/37 
4/37 
0/37 

 
54 
35 
11 

0 

 
29/59 
13/59 
5/59 
12/59 

 
49 
22 

8 
20 

 
16/29 
5/29 
3/29 
5/29 

 
55 
17 
10 
17 

 
7/19 
8/19 
3/19 
1/19` 

 
37 
42 
16 

5 

 
0.6179 

Walking unassisted 136/174 (78%) 40/68 59 51/58 88 27/30 90 18/18 100 <0.0001 

Toilet trained 33/168 (20%) 3/67 4 10/55 18 9/28 32 11/18 60 <0.0001 

Any Seizures 41/151 (27%) 6/55 11 14/53 26 10/23 43 12/20 60 <0.0001 

Sleep problems 12/26 (46%) 5/11 45 3/6 50 1/1 100 3/7 43 1.0000
2
 

Overheats or turns red 
easily 

105/105 (68%) 33/58 57 41/55 75 20/24 83 11/18 61 0.0816 

Decreased perspiration 89/149 (60%) 33/61 54 35/58 60 17/25 68 11/18 61 0.3655 

Touch Sensitivity 80/175 (46%) 33/67 49 24/58 41 14/32 44 9/18 50 0.6990 

High pain threshold 131/170 (77%) 44/64 69 44/56 79 26/31 84 17/19 89 0.0256 

Arachnoid cyst 24/129 (19%) 6/46 13 11/44 25 5/21 24 2/18 11 0.6091 

Gastroesophageal reflux 62/149 (42%) 24/56 43 22/52 42 7/23 30 9/18 50 0.8502 

Behavioral Features           

ASD (age ≥ 3 years) 39/127 (31%) 7/36 19 15/50 30 9/25 36 8/16 50 0.0270 

ASD + autistic like features 
(age ≥ 3 years) 

44/127 (35%) 7/36 19 17/50 34 9/25 36 11/16 69 0.0027 

Chewing non-food items 153/181(85%) 67/76 88 58/64 91 27/34 79 12/20 60 0.0121 

Impulsiveness 78/166 (47%) 26/61 43 29/55 53 15/31 48 8/19 42 0.7085 

Biting (self or others) 82/179 (46%) 41/70 58 26/58 45 13/32 41 2/19 11 0.0006 

Hair pulling 48/118 (41%) 23/43 53 15/38 39 6/21 29 4/16 25 0.0163 

Excessive screaming  54/174 (31%) 24/68 35 17/56 30 10/32 31 3/18 17 0.2231 

Aggressive behavior 49/127 (28%) 18/74 24 15/61 25 11/33 33 5/20 25 0.5534 

Nonstop crying 38/178 (21%) 20/69 29 14/58 24 4/32 13 0/19 0 0.0051 

Genitourinary 

Genital anomalies 8/146 (5%) 3/56 5 1/51 2 2/23 9 2/16 13 0.2302 
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Precocious puberty 15/121 (12%) 0/48 0 5/35 14 9/22 41 1/16 6 0.0017 

Frequent urinary tract 
infections 

12/158 (8%) 4/59 7 3/54 6 2/26 8 3/19 16 0.5182
2
 

Vesicouretal reflux 18/133(14%) 9/46 20 7/50 14 2/21 10 0/16 0 0.2593
2
 

Polycystic kidneys 6/132 (5%) 1/51 2 5/46 11 0/19 0 0/16 0 0.1650
2
 

Duplicate kidney 1/135 (1%) 0/51 0 1/47 2 0/21 0 0/16 0 0.6222
2
 

Dilated renal pelvis 7/129 (5%) 5/51 10 1/43 2 1/19 5 0/16 0 0.3760
2
 

Increased kidney size 11/126 (9%) 3/50 6 6/42 14 2/18 11 0/16 0 0.3176
2
 

Other kidney trouble 25/133 (19%) 12/49 24 9/50 18 1/18 6 3/16 19 0.3752
2
 

Any kidney problem 39/148 (26%) 18/56 32 14/53 26 5/22 23 2/17 12 0.1094 

Other Clinical Features 

Frequent constipation 11/27 (41%) 4/10 40 1/8 13 2/2 100 4/7 57 0.1023
2
 

Skin rashes 60/152 (39%) 15/58 26 22/50 44 15/26 58 8/18 44 0.0088 

Cellulitis 9/137 (7%) 2/54 4 1/48 2 1/19 5 5/16 31 0.0027
2
 

Diabetes 2/129 (2%) 1/48 2 0/42 0 0/22 0 1/17 6 0.2751
2
 

Hypothyroid 7/121 (6%) 0/44 0 3/42 7 2/19 11 2/16 13 0.0707
2
 

Hyperthyroid 1/122 (1%) 0/44 0 0/42 0 0/19 0 1/17 6 0.1391
2
 

Enzyme deficiency 4/107 (4%) 0/37 0 1/37 3 1/17 6 2/16 13 0.0806
2
 

Immune deficiency 14/113 (12%) 7/44 16 4/39 10 0/15 0 3/15 20 0.2910
2
 

1P-value from Cochran-Mantel-Haenszel Chi-Square (Row Mean Scores Differ) Statistic, rank scores 
2Fisher’s Exact 2-sided P-value 
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Table 4.4. Physical Exam Features by Age of Individuals with Phelan-McDermid Syndrome. 

Feature Total (%) Age 0.4-4.9 years Age 5-9.9 years Age 10-17.9 years Age 18-44 years P-value1 

Yes/total % Yes/total % Yes/total % Yes/total % 

Physical features 

Height 
  <5th percentile 
  5-95th percentile 
  95th percentile 

 
11/96 (11%) 
76/96 (79%) 
9/96 (9%) 

 
3/42 
31/42 
8/42 

 
7 

74 
19 

 
3/29 
25/29 
1/29 

 
10 
86 

3 

 
5/18 
13/18 
0/18 

 
28 
72 

0 

 
0/7 
7/7 
0/7 

 
0 

100 
0 

 
0.0296 

Head circumference 
  <3rd percentile 
  3-97th percentile 
  >97th percentile 

 
12/110 (11%) 
78/110 (71%) 
20/110 (18%) 

 
4/52 
38/52 
10/52 

 
8 

73 
19 

 
5/33 
26/33 
2/33 

 
15 
79 

6 

 
3/20 
11/20 
6/20 

 
15 
55 
30 

 
0/5 
3/5 
2/5 

 
0 

60 
40 

 
0.4352 

Long eyelashes 105/113 (93%) 45/49 92 35/35 100 19/22 86 6/7 86 0.07902 

Dolicocephaly 36/113 (32%) 19/50 38 7/35 20 7/21 33 3/7 42 0.29232 

Pointed chin 58/111 (52%) 31/51 61 15/32 47 9/21 43 3/7 43 0.40032 

Facial asymmetry 9/110 (8%) 2/48 4 2/34 6 3/21 14 2/7 29 0.09482 

High or arched palate 49/104 (47%) 20/44 45 13/34 38 11/21 52 5/5 100 0.2495 

Full or puffy eyelids 60/111 (54%) 32/49 65 16/34 47 11/21 52 1/7 14 0.05482 

Epicanthal folds 52/111 (47%) 28/49 57 16/34 47 6/21 29 2/7 29 0.12042 

Deep set eyes 34/111 (31%) 18/49 37 9/34 26 6/21 29 1/7 14 0.61132 

Large or fleshy hands 71/112 (63%) 39/49 80 14/35 40 14/21 67 4/7 57 0.00232 

*2/3 toe syndactyly 53/110 (48%) 23/48 48 17/35 49 10/21 48 3/6 50 1.00002 

Dysplastic toenails 81/111 (73%) 39/48 81 24/36 67 15/21 71 3/3 50 0.22682 

Dysplastic fingernails 26/111 (23%) 15/48 31 7/35 20 3/21 14 1/7 14 0.43682 

Single Palmar crease 12/109 (11%) 4/47 9 2/34 6 4/21 19 2/7 29 0.13742 

Neurological/Muscular 

Strabismus 28/109 (26%) 11/47 23 9/34 26 7/21 33 1/7 14 0.6874 

Hypotonia 82/110 (75%) 41/48 85 25/34 74 12/21 57 4/7 57 0.04282 



 

 
 

1
8

4
 

Lax ligaments 72/110 (65%) 34/48 71 25/34 74 12/21 57 1/7 14 0.0427 

Hyperextensible 
joints 

68/111 (61%) 32/49 65 24/34 71 11/21 52 1/7 14 0.03382 

Lymphedema 26/108 (24%) 8/47 17 6/34 18 7/20 35 5/7 71 0.0122 

Abnormal reflexes 44/91 (48%) 15/41 37 12/27 44 14/18 78 3/5 60 0.02302 

Reflexes 
  Weak 
  Typical 
  Mixed 
  Strong 

 
28/91 (31%) 
47/91 (52%) 
2/91 (2%) 
14/91 (15%) 

 
12/41 
26/41 
0/41 
3/41 

 
29 
63 

0 
7 

 
8/27 
15/27 
1/27 
3/27 

 
30 
30 

4 
11 

 
7/18 
4/18 
0/18 
7/18 

 
39 
22 

0 
39 

 
1/5 
2/5 
1/5 
1/5 

 
20 
40 
20 
20 

 
0.01192 

Ptosis 53/112 (47%) 25/50 50 10/33 30 13/22 59 5/7 71 0.07222 
1P-value from Cochran-Mantel-Haenzel Chi-Square (Row Mean Scores Differ) Statistic, rank scores 
2Fisher’s Exact 2-sided P-value 
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Table 4.5.  Terminal 22q13 Deletion Size by Level of Speech Ability Among Patients Age 3 Years 

and Older. 

Speech level Sample Size Median 
Deletion Size 
(Mb) 

Mininum 
(Mb) 

Maximum 
(Mb) 

Kruskal-
Wallis P-
value 

Absent 39 6.53 0.34 9.22 0.0050 

1-49 words 18 5.81 1.62 7.45 

50+ words or 
phrases 

6 4.36 3.09 5.23 

Sentences, verbal 
communication 

8 2.42 0.22 4.52 
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Table 4.6. Ages at Conception for Parents Transmitting an Affected or Unaffected Chromosome. 

Parent of origin of 
affected chromosome 
22q13 

Age of Parent 
transmitting affected 
chromosome 
Mean (range in years) 

Age of Parent 
transmitting 
unaffected 
chromosome 
Mean (range in years) 

T-Test P-value 

Mother 31.4 (23-42) 31.4 (19-42) 0.99 

Father 33.4 (20-45) 33.5 (20-46) 0.97 
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Table 4.7. Parent of Origin Transmission by Gender of Child. 

Transmission Number Proportion Paternal 
inheritance 

Risk ratio (95% 
confidence interval) 

Father to son 20 20/28 (71%) 0.97 (0.72-1.31) 

Mother to son 8 

Father to daughter 28 28/38 (74%) 

Mother to daughter 10 
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Table 4.8. Phenotypes with Significant Differences by Parent of Origin of Deletion. 

Phenotype Maternally inherited Paternally inherited P-value Fisher’s Exact 

Pointed chin 4/12 (25%) 22/34 (65%) 0.0914 

Lax ligaments 5/11 (45%) 27/35 (77%) 0.0654 

Seizures 7/13 (58%) 5/30 (17%) 0.0241*  

*This association remained significant (P=0.0218) after adjusting for age and gender in a logistic 
model. 
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Table 4.9. Effect of Increasing Age on Selected Features Assessed in a Repeated Measures 
Logistic Regression Model. 

Feature Sample Size Beta Coefficient1 P-value Odds ratio (95% 
CI) 2 

Walk alone 47 0.6623 0.0459 1.9 (1.01-3.71) 

Use toilet alone 45 0.4363 0.0037 1.5 (1.16-2.06) 

Autism spectrum 
disorder (age > 3 
years) 

31 -0.0968 0.7085 0.9 (0.54-1.53) 

High pain tolerance 46 0.3348 0.0062 1.4 (1.10-1.77) 

Seizures 30 0.0693 0.3666 1.1 (0.92-1.25) 

Chewing behavior3 51 -0.0701 0.2850 0.9 (0.82-1.06) 

Excessive crying 49 -0.0775 0.1638 0.9 (0.83-1.08) 

Biting 48 -0.0880 0.0801 0.9 (0.83-1.01) 

Hair pulling 12 -0.7665 0.0920 0.5 (0.19-1.16) 

Skin rashes 25 -0.1014 0.2572 0.9 (0.755-1.08) 

Cellulitis 20 0.1983 0.0789 1.2 (0.93-1.52) 
1The Beta coefficient represents the change in log odds between a one year increase in follow-
up age. 
2The odds ratio (with 95% confidence interval) represents the increased odds of having the 
feature between a one year increase in follow-up age. 
3For chewing behavior, the model improved with adding a quadratic term.  The coefficient for 
age is β=0.4100 (P=0.0951) and the coefficient for age2 is β=-0.0141 (P=0.0602).  
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Table 4.10. Association Between Size of Terminal Deletion (In Mb) and Phenotypes, Adjusting for 
Age and Gender in a Regression Model (Results With P<0.10) 1 

Phenotype Sample 
Size 

Coefficient for 
size of terminal 
deletion (Mb) 

P-value Odds ratio (95% 
CI) comparing a 1 
Mb difference in 
deletion size 

Linear regression 
models1 

    

Age learned to walk 
(months) among those 
age > 3 years 

58 4.439 <0.0001  

Level of delay (among 
those age > 3 years) 

61 0.220 0.0108  

Head circumference, 
percentile 

72 5.266 0.0030  

Logistic regression 
models2 

    

Large or fleshy hands 73 0.3860 0.0017 1.47 (1.16-1.87) 

Ability to walk alone 
(among those age > 3 
years) 

69 -0.9193 0.0028 0.40 (0.22-0.73) 

Abnormal reflexes 60 0.3925 0.0059 1.48 (1.12-1.96) 

Dolichocephaly 74 0.3112 0.0125 1.37 (1.07-1.74) 

Macrocephaly (>97th 
percentile) 

72 0.3826 0.0136 1.47 (1.06-1.97) 

Aggressive behavior 85 -0.2479 0.0253 0.78 (0.63-0.97) 

Hair pulling 47 0.3463 0.0303 1.41 (1.03-1.93) 

2/3 toe syndactyly 72 0.2326 0.0373 1.26 (1.01-1.57) 

Impulsiveness 79 -0.2120 0.0462 0.81 (0.66-1.00) 

Strabismus 71 0.2552 0.0462 1.29 (1.00-1.66) 

ASD (age > 3) 62 -0.2513 0.0540 0.78 (0.60-1.00) 

ASD + ASD features (age 
> 3) 

62 -0.2313 0.0710 0.79 (0.62-1.02) 

Cellulitis 65 1.0553 0.0617 2.87 (0.95-8.69) 

Facial asymmetry 72 0.5579 0.0691 1.75 (0.96-3.19) 

Skin rashes 75 0.1896 0.0837 1.21 (0.98-1.50) 
1For linear regression models the hypothesis tested was no linear relationship between deletion 
size and phenotype.  The Beta coefficient represents the predicted mean change in phenotype 
for a 1 Mb change in deletion size. 

2For the logistic regression models, the hypothesis tested was no change in log odds of 
phenotype for a 1 Mb change in deletion size. 
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Figure 4.1.  Deletions (red bars) and Duplications (blue bars) Observed in Unrelated Individuals 
with Phelan-McDermid Syndrome.  The location of 22q13 cytogenetic bands, known genes, and 
the location of previously reported interstitial deletions (Kent and others 2002; Wilson and 
others 2008) are also presented in this figure produced using the UCSC genome browser (Kent 
and others 2002) using the 2006 (hg18) genome build (International Human Genome 
Sequencing Consortium 2004). 
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Figure 4.2. Deletions (red bars) and Duplications (blue bars) Grouped by Speech Ability.  The 

numbers to the left of the bars indicate the approximate number of words in the patient’s 

vocabulary. The location of 22q13 cytogenetic bands, known genes, and the location of 

previously reported interstitial deletions (Kent and others 2002; Wilson and others 2008) are 

also presented in this figure produced using the UCSC genome browser (Kent and others 2002) 

using the 2006 (hg18) genome build (International Human Genome Sequencing Consortium 

2004) 
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Figure 4.3.  Deletions (red bars) and duplications (blue bars) for those with macrocephaly (>97th 

percentile) and those with normocephaly (3rd-97th percentile of head size for age and gender). 
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Figure 4.4. Fluorescence In Situ Hybridization of Interphase Chromosomes from Buccal Cells. Red 
probes label 22q11.2 and green probes label 22q13.33.The top panel shows results from a PMS 
patient with a >7Mb deletion showing deletion of one terminus of chromosome 22.  The bottom 
panel shows results from an unaffected control. 
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CONCLUSION 

 

In this body of work, I conducted an epidemiologic and cytogenetic investigation of 

Phelan-McDermid syndrome (PMS) to better understand the molecular basis of the syndrome 

which ultimately one hopes can be used to direct therapeutic strategies. 

I began my work with a review of the relevant literature (Chapter One) to describe the 

history and context of research in Phelan-McDermid syndrome.  I reviewed the most common 

and troubling phenotypes, types of genomic rearrangements, and the current understanding of the 

role of SHANK3, a candidate gene for many of the neurologic features of PMS, and an actively 

investigated gene for autism spectrum disorders.  I also reviewed known associations with the 

22q13.3 region with other phenotypes. 

For my research, I first established the rationale for expanding the genomic region of 

investigations beyond SHANK3 by demonstrating significant differences in deletion sizes 

between those with and without a long list of phenotypes (Chapter Two).  I pursued this finding 

by applying statistical methods in a novel application to identify deletion regions most associated 

with 22 phenotypes (Chapter Three). I combined reviews of the literature and the use of protein 

interaction networks to highlight candidate genes within these associated genomic regions.  

Finally, I conducted a cross-sectional analysis on the largest cohort to date (n=201), as well as a 

longitudinal assessment of 55 individuals to assess age related differences in phenotype (Chapter 

Four).  I established that the prevalence of many phenotypes varies by age and that genotype-

phenotype studies need to account for this in their analyses.  In addition, I confirmed the strong 

association between deletion size and phenotype with a strong correlation between deleted 
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regions and varying degrees of speech impairment from absent speech to functional language.  

While the deletions are de novo, I established that parent of origin of the affected chromosome 

was more often paternal (73%). No differences were observed in parental age or transmission to a 

son or daughter. Maternal parent of origin was associated with seizures, a finding that needs 

confirmation through larger studies.  Lastly, I demonstrated that this chromosomal anomaly can 

be detected in buccal specimens, a tissue derived from the same embryonic ectodermal layer as 

the central nervous system.  The comprehensive analysis of cytogenetic abnormalities 

demonstrated the preponderance of simple terminal deletions in this syndrome, but also 

demonstrated the presence of interstitial deletions, deletions accompanied by duplications, and 

duplications without deletions. 

In reviewing what I have learned about PMS, I see several areas of future research that 

follow directly from my findings.  In Chapter Three, I identified genomic regions associated with 

neurologic and growth related phenotypes that warrant further investigation.  Several genes, 

including CYB3R5, PARVB, and WNT7B are potential candidates for speech, growth, hypotonia, 

and intellectual ability.  PARVB, in particular, appears to have many overlapping functions and 

even interactions with SHANK3 in the post synaptic density.  As has been done with SHANK3, 

mouse models investigating the impact of haploinsuficiency of these genes would be of interest.  

Further, other investigators are currently using induced pluripotent stem cell techniques to 

transform fibroblast cells into neuronal cell lines to investigate gene expression.  Better 

understanding of the interactions between the genes located along 22q13 would help to 

understand the impact of the deletions.  Does deletion of one copy of SHANK3 affect gene 

expression elsewhere on 22q13 or elsewhere in the genome?  While it is known that telomere 

position effects may extend up to 100 kb, are these effects observed in the neuronal cells derived 

from patients with varying deletion breakpoints?  Finally, it has not been established in humans 
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whether loss of one copy of SHANK3 alone causes clinical features or rather, whether loss of one 

copy exposes recessive mutations in the remaining allele.  Sequencing of the entire 22q13 haploid 

chromosome may provide information on this aspect of the syndrome.  As more patients are 

identified, particularly those with deletions of only SHANK3 or deletions within SHANK3, we 

may be able to parse the differences between haploinsufficiency and mutation in the gene and 

contributions from the remainder of 22q13 genes and noncoding elements. Finally, based upon 

my interactions with parents of affected children, the severe speech delay is of primary 

importance.  A comprehensive speech evaluation of PMS patients would be useful in identifying 

the most important domains of speech affected. 
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Appendix A 

 

Effect of Population Stratification on the Identification of Significant Single-Nucleotide 

Polymorphisms in Genome-Wide Association Studies 
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[This paper was published in BMC Proceedings 2009: Sarasua S. M., Collins J. S., Williamson D. 

M., Satten G. A. and Allen A. S. 2009. Effect of population stratification on the identification of 

significant single-nucleotide polymorphisms in genome-wide association studies. BMC 

proceedings, 3(Suppl 7):S13] 

 

Abstract 
 

The North American Rheumatoid Arthritis Consortium case-control study collected case 

participants across the United States and control participants from New York. More than 

500,000 single-nucleotide polymorphisms (SNPs) were genotyped in the sample of 2000 cases 

and controls. Careful adjustment for the confounding effect of population stratification must be 

conducted when analyzing these data; the variance inflation factor (VIF) without adjustment is 

1.44. In the primary analyses of these data, a clustering algorithm in the program PLINK was 

used to reduce the VIF to 1.14, after which genomic control was used to control residual 

confounding. Here we use stratification scores to achieve a unified and coherent control for 

confounding. We used the first 10 principal components, calculated genome-wide using a set of 

81,500 loci that had been selected to have low pair-wise linkage disequilibrium, as risk factors in 

a logistic model to calculate the stratification score. We then divided the data into five strata 

based on quantiles of the stratification score. The VIF of these stratified data is 1.04, indicating 

substantial control of stratification. However, after control for stratification, we find that there 

are no significant loci associated with rheumatoid arthritis outside of the HLA region. In 

particular, we find no evidence for association of TRAF1-C5 with rheumatoid arthritis. 
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Background 

Population stratification occurs when a population is composed of subpopulations that 

have varying allele frequencies. When these subpopulations also have differing baseline risks for 

a trait, then population stratification can lead to spurious allele-trait associations. To control for 

confounding by population stratification in case-control studies, statistical methods have been 

developed that use genetic markers to provide information on population structure. Among 

such methods are genomic control [1,2],structured association [3,4], and principal components 

[5,6]. 

A new statistical approach for controlling for population stratification in case-control 

studies was recently proposed by Epstein et al. [7]. This method involves modeling the odds of 

disease, given data on substructure-informative loci. For each participant the stratification 

score, which is that participant’s estimated odds of disease calculated using his or her 

substructure-informative-loci data, is calculated using the diseaseodds model. Next, subjects are 

assigned to (typically five) strata defined by quantiles of the stratification score. Finally, the 

association between genotypes and the trait is ascertained using a stratified test. This approach 

is similar in spirit to the use of the propensity score to control for confounding in an 

observational study [8,9]. Epstein et al. showed that testing using the stratification score could 

control for confounding by population stratification in some situations where other methods fail 

[7]. The goal of this study was to assess the effect of controlling for population stratification in a 

genome-wide association study using the stratification score described above. 
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Methods 

We analyzed the genome-wide association study data from the North American Rheumatoid 

Arthritis Consortium (NARAC) provided as Problem 1 for Genetic Analysis Workshop 16 [10,11]. 

This dataset is composed of cases from several sources: families, sib-pairs, sporadic cases, 

persons with long time disease, and new onset cases. Control participants were selected from a 

population-based cancer study in New York, frequency-matched to case participants for self-

reported ethnic origin. Genotyping was performed with the Illumina Infinium HumanHap550 

(version 1.0) platform (San Diego, CA) with 545,080 single-nucleotide polymorphisms (SNPs) for 

all case participants and 48% of control participants; 33% of controls were genotyped using 

HumanHap550 version 3.0 and 20% with the HumanHap300 and HumanHap240S arrays. The 

multiple sources of case and control participants in these data argues for careful examination of 

the role of population stratification in any associations found. 

We followed the basic quality control procedures outlined by Fellay et al. [12], excluding 

data from SNPs that had extensive missingness (missingness > 5%), deviations from Hardy-

Weinberg equilibrium (p-value < 0.001 in controls), and low minor allele frequency (<1%). After 

removing duplicated and contaminated samples, information was available for 2058 individuals 

(868 cases; 1190 controls). Of these, 568 individuals were male and 1490 were female. A total of 

501,228 SNPs were used in subsequent analyses. The average genotyping rate for subjects was 

0.994. PLINK [13] was used for data cleaning and to calculate both the unstratified and stratified 

Mantel-Haenszel allelic association test. p-Values of the max(T) were computed using both the 

Bonferroni method and 10,000 permutation datasets. 

We used the stratification score of Epstein et al. to adjust our analyses for confounding 

due to population stratification [7]. The authors focus on adjusting association tests using a 
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limited number of ancestry-informative markers and, therefore, partial least squares (PLS) was 

used to estimate the stratification score. Here, no such marker panel was readily available; 

hence, we utilized markers from across the genome. Applying PLS to these data would likely 

result in substantial overfitting of the stratification score, leading to a loss of power [14,15]. In 

order to appropriately use this genome scale information, a different approach was needed. 

Thus we used a modified principal-component (PC) approach based on Fellay et al. [12] in place 

of PLS. Starting with the 501,228 SNPs that passed our quality control procedure, this modified 

PC approach captures the large-scale genetic variation in the data while minimizing the 

influence of a few regions high in linkage disequilibrium (LD) from dominating the PCs. This is 

accomplished by excluding SNPs from the PC analysis that reside in regions of known high LD 

and then further pruning the PC SNP set to minimize the LD between the remaining SNPs. After 

this pruning procedure 81,500 SNPs remained. Using the first few PCs, four individuals 

(D0009459, D0011466, D0012257, and D0012446) were found to be significant outliers, 

suggesting appreciable non-European ancestry. These individuals were excluded from 

subsequent analyses and, when the PC analysis was repeated, no further outliers were 

identified. The first 10 PCs were then used in a logistic model of disease to estimate each 

individual's stratification score--their predicted probability of being a case given the genomic 

information contained in their PCs. Five strata were then formed based on the quantiles of the 

stratification scores, for use in a stratified association analysis. We note that the computation 

demands presented by this procedure are quite minimal; it took approximately 30 minutes to 

generate the principal components and calculate the stratification score using a Linux 

workstation with two dual core 2.39-GHz opteron processors and 6 GB of RAM. We measured 

confounding by population stratification using the variance inflation factor (VIF), defined as the 
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median of the observed χ2 test statistics divided by the expected value of this median under the 

null hypothesis of no association of any SNP with rheumatoid arthritis (RA) [1]. 

 

Results 
 

The unstratified analysis has a VIF of 1.44, while the VIF of the stratified analysis using 

the method of Epstein et al. was 1.034. In this context, it is worth noting that the identity-by-

state (IBS) clustering approach to controlling for confounding by population stratification that is 

implemented in PLINK, and that was used by Plenge et al. [11], only attained a VIF of 1.14. For 

this reason, Plenge et al. also used genomic control [1,2] to control the residual confounding. 

Aside from SNPs in the HLA region on chromosome 6, genome-wide we found no SNPs 

that were significantly associated with RA at the α=0.05 level (Figure 1). Interestingly, rs2900180 

and rs3761847 on chromosome 9 in the TRAF1-C5 gene (reported by Plenge et al. [11]) and 

rs2476601 on chromosome 1 in the PTPN22 gene (reported by Begovich et al. [16]), were far 

from significant genome-wide (empirical adjusted p = 1, p = 1 and p = 0.21, respectively). To 

further investigate, we examined the five 2×3 tables for rs3761847 (Figure 2) and noted that 

there are only 12 cases in stratum 5. We then pooled strata 4 and 5 and recalculated the VIF to 

be 1.035. Pooling these strata did not increase the significance of these three SNPs (empirical 

adjusted p = 1, p = 1, and p = 0.084) and lack of statistical significance was not due to small 

strata size. The top three SNPs ranked by p-values, outside chromosome 6, were rs2476601 

(chromosome 1, empirical p-value = 0.08), rs6596147 (chromosome 5, empirical p-value = 0.09), 

and rs1038848 (chromosome 8, empirical p-value = 0.21).  
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Conclusions 

Differences in recruitment of cases and controls suggest that control of population 

stratification is crucial for a proper analysis of these data. This is confirmed by the large VIF for 

the unadjusted analysis. Stratification score analysis dramatically reduces the VIF, increasing 

confidence in any associations that are found. Interestingly, once we controlled for population 

stratification, we found no SNPs outside the HLA region on chromosome 6 that were associated 

with rheumatoid arthritis at the genome-wide significance level of α = 0.05. 

Like all stratified analyses, the stratification score approach will tend to lose power 

relative to a pooled (unadjusted) analysis when there is no confounding. Thus, our failure to 

replicate the associations found previously in these data may result from a loss of power from 

using the stratification score approach. However, the large VIF for these data makes 

confounding highly likely and, therefore, a competing explanation is that residual stratification 

in the primary analyses led to false associations. Further, Epstein et al. found that the 

stratification score approach had comparable power compared with other methods for control 

of population stratification [7]. Finally, we note that a spurious association may replicate if 

population stratification is not fully controlled in each analysis. 
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Figure 1 - Comparison of GWA Results for Unstratified, Stratified Analyses (5 Strata). Horizontal 
line is the Bonferroni threshold for genome-wide significance at α=0.05. 
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Figure 2 - Stratification score tables for association analysis of SNP rs3761847 

 

Stratum 1 G=0 G=1 G=2 Total 

Case 103 174 73 350 

Control 20 32 8 60 

Stratum 2     

Case 84 128 69 281 

Control 50 57 22 129 

Stratum 3     

Case 41 79 45 165 

Control 88 121 38 247 

Stratum 4     

Case 21 28 9 58 

Control 138 171 44 353 

Stratum 5     

Case 3 8 1 12 

Control 161 178 60 399 
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List of Abbreviations 

 

IBS: Identity-by-state 

LD: Linkage disequilibrium 

NARAC: North American Rheumatoid Arthritis Consortium 

PC: Principal-component 

PLS: Partial least squares 

RA: Rheumatoid arthritis 

SNP: Single-nucleotide polymorphism 

VIF: Variance inflation factor 
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Appendix B 

List of Abbreviations 

 

ASD Autism spectrum disorder 

CNV Copy number variant 

GWAS Genome wide association study 

IBS Identity-by-state 

ID Intellectual disability 

Kb kilobase pairs 

CGH Comparative genomic hybridization 

LD Linkage disequilibrium 

Mb million base pairs 

NARAC North American Rheumatoid Arthritis Consortium 

PC Principal-component 

PLS Partial least squares 

PMS Phelan-McDermid Syndrome 

PSD Post synaptic density 

RA Rheumatoid arthritis 

SNP Single-nucleotide polymorphism 

VIF Variance inflation factor 
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