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ABSTRACT 

 In the field of wind energy, modeling and simulation techniques provide an efficient and 

economical alternative to experimentation for studying the behavior of wind turbines. Numerical 

models however are approximations of reality, thusly making it crucial to evaluate various 

sources of uncertainties that influence the model predictions. Credibility of a numerical model 

rests on the model’s ability to replicate existing experimental data, widely known as fidelity-to-

data. This dissertation advocates that fidelity-to-data, while necessary, is insufficient to claim 

credibility of a numerical model. Herein, the objective is to develop numerical models that not 

only provide agreement to experimental data, but also remain consistent (robust) as unavoidable 

uncertainties are considered.  

The focus in this dissertation is on the development of models that are simplified yet 

consistent with experiments, which offer the possibility of large scale simulations for rapid 

prototyping and prognostics. This dissertation presents a completely integrated Verification and 

Validation (V&V) procedure that includes the solution and code verification, sensitivity analysis, 

calibration, validation, and uncertainty quantification in the development of a finite element (FE) 

model of the CX-100 wind turbine blade that is simplified yet consistent with experiments. This 

integrated V&V procedure implements a comprehensive evaluation of uncertainties, including 

experimental, numerical, and parametric uncertainties, to evaluate the effect of assumptions 

encountered in the model development process.  Mesh refinement studies are performed to ensure 

that mesh size is chosen such that the effect of numerical uncertainty does not exceed 

experimental uncertainty. A main effect screening is performed to determine and eliminate the 

model parameters that are least sensitive to model output, reducing demands on computational 

resources to only calibrate parameters that significantly influence model predictions. Model 

calibration is performed in a two-step procedure to de-couple boundary condition effects from the 
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material properties: first against the natural frequencies of the free-free experimental data, and 

second against the natural frequencies of the fixed-free experimental data. The predictive 

capability of the calibrated model is successfully validated by comparing model predictions 

against an independent dataset. Through the V&V activities, this dissertation demonstrates the 

development of a FE model that is simplified yet consistent with experiments to simulate the low-

order vibrations of wind turbine blades.  

Confidence in model predictions increases when the model has been validated against 

experimental evidence. However, numerical models that provide excellent fidelity to data after 

calibration and validation exercises may run the risk of generalizing poorly to other, non-tested 

settings. Such issues with generalization typically occur if the model is overly complex with 

many uncertain calibration parameters. As a result, small perturbations in the calibrated input 

parameter values may result in significant variability in model predictions. Therefore, this 

dissertation posits that credible model predictions should simultaneously provide fidelity-to-data 

and robustness-to-uncertainty. This concept that relies on the trade-off between fidelity and 

robustness is demonstrated in the selection of a model from among a suite of models developed 

with varying complexity for CX-100 wind turbine blade in a configuration with added masses. 

The robustness to uncertainty is evaluated through info-gap decision theory (IGDT), while the 

fidelity to data is determined with respect to the experimentally obtained natural frequencies of 

the CX-100 blade.  

Finally, as fidelity and robustness are conflicting objectives, model calibration can result 

in multiple plausible solutions with comparable fidelity to data and robustness to uncertainty, 

raising concerns about non-uniqueness. This dissertation states that to mitigate such non-

uniqueness concerns, self-consistency of model predictions must also be evaluated. This concept 

is demonstrated in the development of a one dimensional simplified beam model to replace the 
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three dimensional finite element model of CX-100 wind turbine blade.  The findings demonstrate 

that all three objectives, fidelity-to-data, robustness-to-uncertainty and self-consistency are 

conflicting objectives and thus, must be considered simultaneously. When all three objectives are 

considered during calibration it is observed that the fidelity optimal model remains both least 

robust and self-consistent, suggesting that robustness and self-consistency are necessary attributes 

to consider during model calibration.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Motivation 

In the United States, wind energy has been considered as a potential source to supply 

20% of power needs by the year 2030 (U.S. Department of Energy 2008). Wind plants, and 

consequently wind turbines, are being produced at a larger scale to capture and produce more 

energy to meet the growing demands of the wind energy industry (Veers et al. 2003). To 

efficiently design for next generation turbines, it is crucial to understand the dynamics of wind 

turbine blades, which capture all of the energy produced from wind turbines. The blades are 

responsible for only 10-15% of the cost of the wind turbine system (Veers et al. 2003), however, 

damage to the blades can result in rotor instability that can lead to damage of the entire wind 

turbine (Ciang, Lee, and Bang 2008; Liu, Tang, and Jiang 2010). Costs associated with operation 

and maintenance, which are perhaps the most cost prohibitive for wind energy to be a viable 

energy source in the United States (Larsen and Sørensen 2003), can be remedied with condition-

based blade maintenance schemes (Adams et al. 2011). Such maintenance schemes are only 

possible through a better understanding of wind turbine blade dynamics and such understanding 

can be gained through advanced modeling and simulation (M&S) techniques that incorporate 

realistic loading conditions in the plant scale.  

 M&S has gained acceptance as an economical approach to study the design of next 

generation of wind turbines, as demonstrated by their inclusion in wind turbine design standards. 

The wind energy industry can benefit from M&S as an efficient means to evaluate the structural 

design of wind turbine blades due to the increasing costs of full-scale testing as blades are 

produced at larger scales (Veers et al. 2003; Overgaard, Lund, and Thomsen 2010).  Experimental 
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evidence is important to evaluate the ability of numerical models to replicate reality; however, 

such techniques are limited to idealized loading scenarios that can be implemented in laboratory 

conditions (Freebury and Musial 2000). Numerical models that have undergone rigorous 

calibration and validation exercises are useful for studying the complex loading scenarios that 

arise during in-service conditions of wind turbines (Jensen et al. 2006). To enhance our 

understanding of operational blade dynamics, future studies in M&S will need to account for 

complex wind turbine loading due to varying inflow conditions by coupling the finite element 

structural response of wind turbines with computational fluid dynamics models of the 

surrounding airflow (Hansen et al. 2006). Although high fidelity, three-dimensional models of 

wind turbine blades are pursued in the established literature, available computing resources 

prevents the implementation of high fidelity finite element (FE) models to be coupled with 

computational fluid dynamics (CFD) models for studying the behavior of wind blades at a wind 

plant scale. These limitations of computational capabilities necessitate the development of 

simplified yet credible FE models. 

1.2 Overview of Dissertation 

The objective herein is to develop a simplified model for the CX-100 wind turbine blade 

to simulate the low order vibration dynamics with sufficient credibility. Earlier studies emphasize 

the use of experimental data to assess the credibility of numerical models of wind turbine blades 

through test analysis correlation exercises. This dissertation, however, goes beyond mere test-

analysis correlation and instead advocates an integrated verification and validation (V&V) 

scheme.   

Herein, a FE model of the CX-100 wind turbine blade is developed beginning with code 

and solution verification activities to demonstrate that the code behaves as expected with 



3 

 

predictions within the regime of asymptotic convergence, with the predictive capability of the 

model confirmed through the application of calibration and validation exercises. By providing the 

complete story of the V&V exercises used to develop the FE model, it is ensured that the model is 

behaving as expected to provide accurate predictions.  

Although it is important to demonstrate fidelity of model predictions to data, robustness-

to-uncertainty is also a desirable (yet antagonistic) attribute of any family of models (Hemez and 

Ben-Haim 2011). Model input parameters (also known as knobs) are often imprecise resulting in 

uncertainties in model predictions. Furthermore, the fundamental inability to accurately reproduce 

truth even with the precise input parameters is due to the inexactness of the physics model 

resulting in bias in model predictions. Robustness to model imprecision and inexactness, 

henceforth referred to as robustness-to-uncertainty, is described as the immunity of the model to 

exceed a critical performance level even in the presence of uncertainty in the input parameters or 

model form. Herein, robustness to uncertainty is evaluated in the context of info-gap decision 

theory (IGDT). The departure of IGDT from conventional probability theory is useful for 

decision making under severe uncertainty, where sufficient data may not be available to 

defensibly formulate prior distributions. IGDT has been presented as a convenient alternative to 

methodologies that employ probability theory since a priori assumptions are not needed to 

describe uncertainties. 

The problem of over-fitting of numerical models to data demonstrates the conflicting 

attributes of fidelity to data and robustness to uncertainty. Over-fitting typically occurs in overly-

complex models that can produce accurate predictions for configurations to which it was 

calibrated, but generalize poorly when used to simulate other configurations not included in the 

training. Due to this poor generalization, the predictions of such models may severely deteriorate 

as model parameters are allowed to deviate from their nominal settings to account for parameter 
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uncertainty. Therefore, it is necessary to strike a balance between fidelity to data and robustness 

to uncertainty in the selection of model forms. The role of model complexity in determine the 

credibility of predictions is demonstrated in a model selection problem, where the FE model of 

the CX-100 wind turbine is modified to simulate an experimental configuration in which large 

masses are added to load the blade in bending.  

Similarly, non-uniqueness issues can arise in the model calibration process, where 

multiple sets of calibration parameters may be capable of replicating experimental data with 

similar fidelity to data and robustness to uncertainty. In this dissertation, to address the concerns 

regarding non-uniqueness, self-consistency of model predictions is considered in the development 

of a one-dimensional beam model to replace the three dimensional FE model of the CX-100.   

1.3 Main Dissertation Contributions 

This dissertation takes a step toward understanding the limitations of M&S by evaluating 

the trade-offs of fidelity-to-data and robustness-to-uncertainties. The explicit use of V&V 

exercises combined with IGDT as developed in this dissertation provides a holistic analysis of the 

predictive capabilities of numerical models. Specifically, this dissertation contributes to modeling 

and simulation efforts for wind energy applications. 

The first contribution of this dissertation relies on providing a completely integrated 

approach for the V&V activities utilized in the development of the simplified FE model used to 

simulate the CX-100 wind turbine blade. Instead of choosing the mesh size that produces the 

smallest numerical uncertainty, it is selected such that the overall numerical uncertainty caused by 

truncation effects is similar to, or smaller than, experimental variability. This rationale guarantees 

that predictions are sufficiently accurate relative to the level of uncertainty, with which physical 

tests can be replicated. The application of V&V activities include performing forward 
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propagation of uncertainty in a design of computer experiments, developing a Phenomenon 

Identification and Ranking Table to identify the statistically significant parameters for calibration, 

and performing calibration in a Bayesian context rather than producing a best-fit to experimental 

data to reduce the lack-of-knowledge of material properties and boundary springs. To 

demonstrate the predictive capability of the numerical model, the overall validation assessment is 

grounded in the test-analysis correlation of data that has not been used during sensitivity analysis 

and quantification. The successful validation exercises demonstrate un-equivocally the ability of 

simplified models to remain consistent with experimental data when simulating the structural 

response of wind turbine blades.  

Next, this dissertation demonstrates the use of IGDT to address the effect of complexity 

in model selection. Two working numerical simulations of experimental tests performed at the 

National Renewable Energy Laboratory are developed, each based on their own modeling 

assumptions and involving different sources of uncertainty. IGDT is then applied to explore the 

trade-offs between, on one hand, the ability of each model to reproduce the experimental 

measurements and, on the other hand, the robustness of their predictions to parametric and 

modeling uncertainty to provide a systematic and rigorous approach to model selection.  

IGDT is then used to address non-uniqueness concerns that arise during model calibration 

exercises, where different parameter sets are capable of providing similar fidelity to data and 

robustness to uncertainty. The development of parameters is addressed by evaluating both the 

fidelity to data and self consistency of predictions used in model development through single-

objective global optimization. Through the use of IGDT, a novel quantification of robustness is 

proposed for use in the objective function. It is demonstrated that there is a trade off in the 

development of fidelity to data, robustness-to-uncertainty and self consistency of predictions, and 
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that the model that offers the best evaluation for one of the criteria will not necessarily offer the 

best performance for the other two criteria.  

1.4 Dissertation Organization 

The wind turbine blade used as a case study application is the CX-100, developed as part 

of the Blade Systems Design Study at Sandia National Laboratories. The CX-100 is nine-meters 

long, developed in a research effort to pursue alternative designs through relatively affordable 

blades created at a modest scale (Berry 2007). When first developed in 2002, the full-length 

carbon-spar cap implemented in the blade was an innovative concept (Paquette and Veers 2007).  

This dissertation1 begins with the development of a three dimensional FE model of the 

blade, using the NuMAD preprocessor developed at SNL, and imported into ANSYS v.12.1, 

commercially available FE software. Code verification is performed to demonstrate that the 

software behaves as expected, and solution verification is performed to choose the appropriate 

mesh size. Experimental modal data, collected from laboratory experiments at the Los Alamos 

National Laboratory (LANL), is used in a Bayesian calibration of the model. While calibration is 

performed using natural frequencies, model validation is performed using mode shape vectors, 

demonstrating that the FE model is capable of performing in a predictive capacity. The integrated 

                                                      

 

 

 

1 Chapters 2-6 in this dissertation serve as stand-alone publications, thus, some level of 

conceptual overlap is encountered. 
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V&V approach is discussed in Chapters 2 and 3, both of which are published in Elsevier’s Wind 

Energy journal as two-part companion manuscripts. 

Chapter 4 discusses the use of IGDT to choose between different model forms in 

simulating experimental modal data of the CX-100 collected at the National Renewable Energy 

Laboratory (NREL). The NREL experimental modal analysis is performed with masses attached 

to the blade, due to their use in fatigue testing. The FE model developed in Chapters 2 and 3 is 

utilized to simulate the experimental configuration, with large masses added onto the blade 

utilizing different modeling strategies: (i) solid elements, and (ii) with point masses and stiffening 

springs. Through IGDT, it is found that the model utilizing solid elements is not only more 

accurate, but also more robust. The model selection approach along with the findings presented in 

Chapter 4 is submitted to Elsevier’s Journal of Mechanical Systems and Signal Processing and is 

currently under review.  

In Chapter 5, the three-dimensional model developed in Chapters 2 and 3 is used to 

derive initial values for the material properties of a one-dimensional beam model representation 

of the CX-100 blade. IGDT is used to assess the robustness-to-uncertainty of model parameter 

sets of the CX-100 developed for use in NLBeam, a LANL developed FE code used to model 

wind turbine blades as beam elements. Calibration is performed by simultaneously considering 

the fidelity to data and robustness-to-uncertainty of model predictions. In a separate step, self-

consistency of model predictions is then used to assess the consistency of predictions of tip 

deflection due to a fictitious load. It is found that while all three criteria are not satisfied at the 

same time, a trade-off can be established.  The concept of investigating the trade-off 

between fidelity and robustness as discussed in Chapter 5 is submitted to Elsevier’s Journal of 

Finite Element Analysis and Design and is currently under review. 
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Chapter 6 provides a discussion of the limitations and assumptions, and a summary of the 

major findings of the work presented herein. The work presented herein can be extended to future 

numerical studies, and a brief discussion of avenues for future work is discussed.   
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CHAPTER TWO 

SIMULATING THE DYNAMICS OF WIND TURBINE BLADES: PART I, MODEL 

DEVELOPMENT AND VERIFICATION 

2.1. Introduction 

Wind power in the United States has the potential to supply a major amount of electricity. 

This objective is outlined by the “20% by 2030” initiative of the U.S. Department of Energy 

(DOE), whereby DOE identifies wind energy as a viable source to contribute to 20% of installed 

energy, assuming a 39% increase in demand for electricity.
1
 This ambitious objective has 

enormous implications for the wind power market that supplied only 2% of electrical energy in 

the U.S. by the end of 2009. 

For the increased use of wind energy to be realized the cost of energy needs to decrease 

significantly. This can be facilitated by understanding wind turbine failures so that they can be 

better prevented. It has been shown that damage to wind turbine components, such as the 

generator, drive train, hub, gearbox, and blades, can result in periods of downtime, in which the 

wind turbine is temporarily taken out of service.
2
 The combination of repair and loss in energy 

production during downtime can negatively impact the sales, and profitability model of an entire 

wind plant.
3
 This study focuses on wind turbine blades because they are first in line to capture the 

kinetic energy of the wind, and also produce all of the loads for the entire system.
4
 Furthermore, 

even minor damage to blades can progress to serious secondary damage to the entire wind turbine 

system.
5 

Modeling and Simulation (M&S) will play an indispensable role in the development of 

future wind turbine blades, whether it is to understand blade vibrations, simulate the loading 

environment that vibrations generate on the main shaft assembly, or predict the occurrence and 
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severity of structural damage. It is also forecasted that M&S will be essential to filter a wide 

variety of plausible design concepts down to the most effective ones.
6 

The current state-of-the-practice of M&S and availability of computing resources for 

engineering applications necessitate a certain tradeoff between the implementation of large-scale, 

high fidelity models, and the use of simplified models that are much less computationally 

expensive. It is desirable to assess, for example, the potential consequences of structural damage 

on blade performance, but large-scale models are too demanding of computational resources to be 

implemented for rapid prototyping and diagnostics. For this reason, the study presented in this 

paper and companion publication
7
 proposes to develop a finite element model that, while 

simplified as much as possible, still captures the main dynamics of interest. Importantly, this 

trade-off is quantified, allowing the process to run along methodical, and not arbitrary, grounds. 

V&V activities discussed in these two manuscripts are essential steps of the model development 

process to guarantee that the simplifications introduced are justified for the intended purpose. 

In this study, V&V activities are applied in the development of a Finite Element (FE) 

model of the CX-100 wind turbine blade using NuMAD
8
, preprocessing software developed at 

the Sandia National Laboratories (SNL) and imported to ANSYS version 12.1. The CX-100 wind 

turbine blade is a nine-meter research blade developed at the Sandia National Laboratories (SNL) 

in 2002 as a part of ongoing research efforts to improve the performance of wind turbine blades.
6
 

The CX-100 was developed for the purpose of studying the performance, and reducing the energy 

production costs, of wind turbine blade designs that utilize light-weight carbon fiber material to 

reinforce the spar cap.
9
 Our main goals are to develop a validated simulation of the low-frequency 

dynamics and quantify the uncertainty that arises, both from the potential lack-of-resolution in 

calculations and from uncertainty relating to parameter estimation. The dynamics of interest for 

this study are the first three flap-wise bending modes. The model developed herein relies on a 
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strong simplification: the cross-sectional areas of the blade are smeared, using isotropic material 

properties, instead of modeling the multiple composite layers embedded in an epoxy matrix. 

Credibility of the simulation rests on our ability to quantify various sources of numerical, 

modeling and experimental uncertainties. 

The manuscript is organized as follows. Section 2 briefly discusses pertinent literature 

from the discipline of wind turbine blade modeling and testing. An upper bound of solution 

uncertainty is derived in section 3 to guide the selection of an appropriate level of mesh 

discretization. Code verification activities are presented in section 4. Section 5 discusses the 

experimental setup and measurements collected from vibration testing. Finally, the upper bound 

of solution uncertainty (derived in section 3) is combined to the experimental variability 

(estimated in section 5) to arrive at a rational and scientifically defendable selection of mesh 

resolution in section 6. 

2.2. Review of Pertinent Literature 

An issue relating to the development of FE models was revealed in 2005, when a code 

verification study of shell elements was performed to explore whether the implementation of shell 

elements in FEA software (which have since been modified) were appropriate to model the 

torsional response of wind turbine blades.
10

 The study found that shell elements modeled with 

nodes at the exterior surface for a hollow cylinder deviated significantly from the closed-form 

solution for torsional stress. This error was especially unfortunate in that the results for the shell 

elements diverged from the exact solution as the mesh was refined. This formulation, in which 

the nodes of the shell element are at the exterior surface (as opposed to the middle), is common in 

wind turbine blade modeling. This deficiency of earlier shell elements shows that a simple code 

verification study is necessary to establish credibility of numerical simulations, because it brings 
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into question the dependability of FE predictions and M&S efforts performed prior to this 

finding. 

Additionally, verification campaigns frequently execute mesh refinement by less-than-

rigorous methods, in which a mesh is ultimately selected at an arbitrary density. A common 

practice is to select the resolution of a mesh discretization by completely qualitative methods, or 

simply to obey the constraints defined by the computational resource available. To effect truly 

credible predictions, verification activities should include quantitative methods of determining the 

uncertainty of numerical simulations.
11 

Selecting a proper mesh discretization can be achieved by 

several helpful metrics for extrapolation and quantification of truncation error, which are well 

understood.
12 

Experimental Modal Analysis (EMA) has been used to study the vibration response of 

wind turbine blades. There are two typical testing configurations in EMA: free-free, in which the 

testing specimen is suspended in the air (using straps or cushions) such that the response is as 

though there is no imposed boundary condition; and fixed-free, in which movement is constrained 

at the support of the testing specimen. Previous studies discuss that the use of a free-free 

boundary condition, though less applicable to reality, is common because it is easy to implement 

under laboratory conditions.
13,14

 In comparison, it is significantly more difficult to achieve an 

idealized fixed-end condition in experimental testing of wind turbine blades. Furthermore, 

methods have been proposed to quantify uncertainty to account for variability in modal testing of 

the SNL research blades.
15,16,17

 In one instance, for a free-free analysis, the variability of test 

results are quantified to account for the support conditions, mass loading of the accelerometers, 

cable effects on the free-free condition, and temperature of the ambient environment. In addition, 

natural variability is considered to investigate the repeatability of measured natural frequencies 

from one test specimen to another. The results from these studies help to quantify sources of 
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uncertainty (relative to each other) and provide important considerations for the free-free modal 

testing of wind turbine blades.  

It is important to propose a robust methodology to develop FE models, because as 

previously observed, there can be variability during experimental testing of wind turbine blades 

that will result in slightly different responses.
15

 In addition to variation among the blades, further 

variation will result due to the experimental campaigns (calibration errors, test-to-test variability, 

etc.), hence, requiring even more robustness in the analysis. This publication and its companion 

second part propose such methodology that accounts for the experimental variability, numerical 

uncertainty, and modeling uncertainty introduced, for example, by the lack-of-knowledge in 

constitutive material properties. 

 

2.3. Derivation of an Upper Bound of Solution Uncertainty  

Because numerical uncertainty is an essential part of our quantification effort for V&V, 

we start by proposing an upper bound of solution uncertainty based on the concept of asymptotic 

convergence. The upper bound arrived at is compared to the well-known Grid Convergence Index 

(GCI) of Reference 18 and used in Section 6 to select an appropriate mesh size. 

2.3.1 Derivation on an Upper Bound of Solution Uncertainty 

The partial differential equations solved by a numerical method, such as a FE software, 

always provide an approximation of the “exact-but-unknown” solution of the continuous 

equations. Such an approximation comes in two steps, according to the formalism established by 

the Lax equivalence theorem.
19

 Convergence states that the code self-converges to a solution 

denoted by the symbol y*, or “y(∆x)  y*,” as the level of resolution in the calculation increases. 

Consistency of the numerical method, on the other hand, provides “y*  y
Exact

.” For simple test 

problems, the unknown solution y* can be obtained from Modified Equation Analysis (MEA), as 
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explained in References 20 and 21. The distinction between solutions y* and y
Exact

 emphasizes 

that a code could potentially self-converge to a solution that is different from the exact solution. 

For practical applications that involve complicated geometries, boundary conditions, or 

forcing functions, the exact solution y
Exact

 cannot be derived in closed form. Likewise MEA 

becomes intractable, which prevents the derivation of the solution y*. Our purpose, therefore, is 

to bound the difference |y* – y(∆x)|. For a consistent numerical method, and in the limit of 

asymptotic convergence, the discrete solutions y(∆x) converge to the solution y* of the modified 

equation which, in turn, reduces to the exact-but-unknown solution y
Exact

 as ∆x  0. Because 

these solutions are “equal” only in the asymptotic limit, we seek an upper bound of solution error 

defined as: 

|y* – y(Δx)| ≤ U(Δx)·|y(Δx)|. (1) 

In the application of section 5, y* denotes the best-possible estimation of an “exact-but-unknown” 

natural frequency while y(Δx) is the approximation obtained by running the calculation at mesh 

size Δx. 

A solution for the upper bound U(Δx) can be derived by examining the relationships 

between the discrete solutions resulting from a coarse-mesh (ΔxC) and a fine-mesh (ΔxF) 

discretization. If the resolutions ΔxC and ΔxF provide discrete solutions within the regime of 

asymptotic convergence, the following (approximate) equations can be postulated: 

y* ≈ y(ΔxF) + β·ΔxF 
p
     and     y* ≈ y(ΔxC) + β·ΔxC 

p
, (2) 

where β is a pre-factor coefficient and the exponent p denotes the rate of convergence. This 

formalism derives from MEA, as mentioned previously.
21

 MEA defines a Taylor series-like 

expansion that is usually infinite and whose sophistication depends on the combination of partial 

differential equations solved and properties of the numerical method implemented. 
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Equations (2) are simple approximations of the MEA where the higher-order terms are 

ignored, the pre-factor β is assumed to be constant (which is generally not the case), convergence 

is monotonic as Δx  0, and analysis is restricted to scalar-valued quantities (Reference 22 offers 

a generalization to 1D curves or multi-dimensional fields). These assumptions translate the fact 

that truncation effects (caused by mesh discretization) dominate the overall production of 

numerical error within the regime of asymptotic convergence. It can be observed that, if 

expressed on a logarithmic scale, equations (2) define a linear relationship between the errors and 

mesh sizes. The slope of this linear relationship (or exponent p) provides the order of accuracy of 

the numerical method. 

An elementary rearrangement of the well-known triangular inequality |a| + |b| ≥ |a + b| 

produces the form |c – d| ≥ |c| – |d|. (Simply substitute c = a + b, d = b.) From this, using the 

quantities: 

c = y(ΔxC) – y*     and     d = y(ΔxF) – y*, (3) 

combined with equations (2), and incorporating the assumption that convergence is monotonic 

(such that the sign of the pre-factor coefficient β can be kept constant), results in: 

|y(ΔxC) – y(ΔxF)| ≥ |y* – y(ΔxC)| – |y* – y(ΔxF)| ≈ β·ΔxC 
p
 – β·ΔxF 

p
.   (4) 

Using the mesh refinement ratio defined as R = ΔxC/ΔxF > 1, equation (4) becomes: 

|y(ΔxC) – y(ΔxF)| ≥ β·ΔxF 
p
 · (R

p
 – 1). (5) 

Inserting the first one of equations (2) to replace the term β·ΔxF 
p
 in equation (5), we arrive at: 

|y(ΔxC) – y(ΔxF)| / (R
p
 – 1) ≥ |y* – y(ΔxF)|.   (6) 

This final equation is the upper bound sought. When the exact solution y
Exact

 of the continuous 

equations is unknown, which is generally the case of a general-purpose FE calculation, one can 

no longer talk of an “error.” The difference |y* – y(Δx)| in the right-hand side of equation (6) 
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becomes an uncertainty due to truncation effects. The best that one can achieve is to bound this 

uncertainty at any given level of mesh resolution Δx. 

2.3.2 Analogy to the Grid Convergence Index 

Our proposal for an upper bound U(Δx) of solution uncertainty at mesh resolution Δx is: 
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where Δx is a characteristic mesh size of the calculation and R denotes the refinement ratio 

(where, by definition, R > 1). It is emphasized that definition (7) only requires two calculations at 

the coarse and fine levels of mesh resolutions ΔxC = R·Δx and ΔxF = Δx, respectively. 

This definition is analogous to the GCI of References 12 and 18, defined as: 
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(8) 

where FS denotes the so-called “safety factor” added to provide conservatism, and generally 

chosen within the range 1 ≤ FS ≤ 3. Clearly the upper bound (7) of solution uncertainty is related 

to the GCI by the following equation where FS = 1: 

U(Δx) = GCI(Δx) · |y(Δx)|. (9) 

Even though the definitions are similar, modulo FS = 1, it is emphasized that the motivation put 

forth by P.J. Roache is different. The GCI is explained by its author in Reference 18 as: 

“The idea behind the proposed GCI is to approximately relate the ε […] obtained by 

whatever grid convergence study is performed (whatever p and r) to the ε that would be 

expected from a grid convergence study of the same problem with the same fine grid 

using p = 2 and r = 2, i.e., a grid doubling with a second-order method.” 
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This explanation justifies the choice of a safety factor FS = 3 to cancel out the (R
p
 – 1) term in 

equation (8). This renders the GCI of an arbitrary mesh refinement study comparable to a value 

obtained with R = 2 (grid doubling) and p = 2 (second-order accurate method). 

To the best of the authors’ understanding, the GCI was not proposed initially as an 

attempt to define an upper bound of solution uncertainty. Equation (9) sheds new light on an 

index that can be used to estimate where the “exact-but-unknown” solution y* may be located 

relative to a discrete solution obtained by analyzing the problem with a level of mesh resolution 

Δx. This is analogous to statistics obtained from physical observations, such as a mean value, that 

come with an uncertainty that estimates the unknown value of the experimental setup. The upper 

bounds of solution uncertainty presented in section 5 are based on equations (8-9) with FS = 3. 

2.4. Code Verification Activities 

Code verification is the first step of the V&V study. “Spot check” verification is 

performed to assure that the FE software is running properly, without any significant 

programming mistake that would negatively impact the results sought. One specific area of 

concern is that, in the past, shell elements have been found to have shortcomings in torsion.
10

 

Because the first torsion of the wind turbine blade is of interest, this potential issue warrants 

careful investigation. 

To verify the correctness of implementation of shell elements in ANSYS, together with 

their numerical performance, a simple hollow cylinder with known analytical solution is modeled. 

(This, by design, hews closely to the modeling performed in Reference 10.) ANSYS version-12.1 

is used to model and analyze this code verification test problem for which three scenarios are 

explored: 1) a bending load is applied to a fixed-free cylinder, 2) a torsion load is applied to the 

same fixed-free cylinder, and 3) the modal analysis of a fixed-fixed cylinder is carried out. These 

three scenarios feature the same geometry with different cases of loading and boundary condition. 
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The varying boundary conditions are explored to assess the ability of the code to predict 

more than one configuration. In addition to the fixed-free boundary, a fixed-fixed setup is 

exercised because implementing a fixed boundary is somewhat more complicated and, therefore, 

prone to potential mistakes in the analysis software. 

2.4.1 Verification of the Bending Stress 

The bending stress is verified by reporting results from the shell elements at mid-section 

where there is no membrane-bending coupling. The closed-form solution for the bending stress is: 

I

cM 
 , 

(10) 

where σ denotes the maximum normal stress due to bending, M is the bending moment, c is the 

greatest distance from the neutral axis, and I represents the cross-sectional moment of inertia. 

 

Figure 2.1: Definition of the hollow cylinder-in-bending test problem. 

Figure 2.1 illustrates one of the meshes analyzed where the bending load is applied. The 

vertical, upward-pointing arrows indicate the location and direction of the applied load. The 

analysis of the same test problem is repeated with increasing levels of mesh resolution. Figure 2.2 

shows the solution error as a function of mesh size. The percentages of solution error are depicted 

on the left and the asymptotic convergence of numerical solutions is illustrated on the right. 
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It can be observed from Figure 2.2 that, as expected, the solution error decreases as a 

function of mesh resolution. A model with fewer than 1,000 elements produces less than 1% error 

between the predicted bending stress and analytical solution of equation (10). In addition, the log-

log representation indicates that solution error converges with a rate-of-convergence of p = 2.17. 

This observation matches expectation because quadratic shell elements, which are expected to 

produce an accuracy of p
Theory

 = 2, are used for discretization. It is concluded that the element is 

implemented correctly and performs according to expectation to model the response under 

bending load. 

 

Figure 2.2: Solution error (left) and asymptotic convergence (right) of the bending problem. 

An inspection of asymptotic convergence in Figure 2.2 (right) reveals that the 

convergence is not quite monotonic. Solutions produced by the two finest meshes actually have 

greater errors than any of the next three solutions obtained with coarser meshes. The reasons for 

these oscillations are not apparent, though it is suspected that such effects owe either to round-off 

errors or to finite elements demonstrating uncharacteristic behavior at sufficiently small sizes. 

Because our analysis searches for overall trends using simple power-laws, such as the best-fitted 
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model log(|σ* – σ(∆x)|) = 2.17·log(∆x) – 0.61 illustrated in Figure 2.2 (right), we believe that our 

conclusions are not adversely affected by this erratic behavior. 

2.4.2 Verification of the Shear Stress 

A similar analysis is performed for the case of a torsion load. The closed-form solution is: 

J

rT 
 , 

(11) 

where τ denotes the maximum shear stress due to torsion, T is the torque applied, r is the outer 

radius of the cylinder, and J represents the polar moment of inertia. 

 

Figure 2.3: Definition of the hollow cylinder-in-torsion test problem. 

Figure 2.3 illustrates the test problem where the applied load is indicated by opposite-

pointing arrows that define the torsion. The overall evolution of solution error as a function of 

mesh resolution is depicted in Figure 2.4. 
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Figure 2.4: Solution error (left) and asymptotic convergence (right) of the torsion problem. 

As noted previously, it can be observed from Figure 2.4 that fewer than 1,000 finite 

elements are needed to reach less that 1% error between the predicted shear stress and analytical 

solution of equation (11). The log-log representation leads to an observed rate-of-convergence of 

p = 2.05. Also noticeable is the stable behavior of the shell element in torsion, as indicated by a 

solution error that is more predictable than the error in bending (Figure 2.3, right) as the mesh 

resolution is refined. These observations are strong evidence that the shell element implemented 

in ANSYS performs according the expectation of second-order accuracy to model the response 

under both bending and torsion loads. 

2.4.3 Verification of the Modal Solution 

`Because the FE model is ultimately used to simulate the vibration response of a wind 

turbine blade, the ability of the ANSYS shell element to reach an accurate modal solution also 

needs to be verified. 
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Figure 2.5: Solution errors for bending (left) and torsion (right) natural frequencies. 

A third test problem is analyzed to simulate the vibration of a simply supported, hollow 

cylinder without axial constraint. High-accuracy approximations of the natural frequencies of 

vibration are obtained from Reference 23, and used as substitutes to the “exact-but-unknown” 

solutions. Figure 5 plots the relative frequency errors in bending and torsion as a function of Δx. 

Figure 2.5 (left) indicates that fewer than 100 elements suffice to predict the first three 

bending frequencies of the hollow cylinder to within 1% error, or less. Figure 2.5 (right) shows 

that a finer mesh with 250 elements converges to less than 0.1% error, confirming the ability of 

the shell elements to predict the torsion frequency. 

    

2.6-a) Simulation (left) and closed-form solution (right) for the first bending mode. 
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2.6-b) Simulation (left) and closed-form solution (right) for the second bending mode. 

    

2.6-c) Simulation (left) and closed-form solution (right) for the third bending mode. 

Figure 2.6: Comparison of simulation and closed-form mode shape deflections. 

Figure 2.6 shows the agreement between simulated (left) and closed-form (right) mode shapes for 

the first three bending modes. The figure illustrates the excellent level of correlation with which 

mode shape deflections are predicted. This observation increases confidence in the ability of the 

FE model to accurately capture the bending of the main spar cap of the wind turbine blade. 

2.4.4 Verification of the Pre-processing Software NuMAD 

After satisfactorily checking the quality of the ANSYS software, it is next desired to 

perform accompanying code verification studies of the NuMAD pre-processor, developed by 

SNL to ease the production of FE models of wind turbine blades. This software receives 

information of cross-sectional geometry at each station and material properties for each section 

comprising the structure. It produces a text file (written in ANSYS parametric design language) 

that defines an ANSYS model corresponding to these characteristics. 
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Figure 2.7: Solutions for bending (left) and torsion (right) stress, with uncertainty bound. 

To verify the suitability of a NuMAD-generated model, the cylinders created in sections 

4.1 and 4.2 are recreated with NuMAD. The main difference is that constraint equations are 

imposed for all nodes at the tip, or free, end of the blade so that the shape cannot be deformed. 

However, the material properties are stiff enough in the unconstrained, ANSYS-based setup that 

effects of this change never become apparent. Mesh refinement is performed to assess the 

performance of the NuMAD-generated model for bending and shear stresses. 

The results are similar to those obtained above. As an alternative illustration of the 

convergence upon the true solution, Figure 2.7 shows the bending and torsional stress solutions 

when solved by ANSYS using the NuMAD pre-processor. The analysis uses the GCI to describe 

the bounds of solution uncertainty due to truncation error (see equations (8-9) of section 3). Stress 

values and uncertainty bounds are shown in Figure 2.7 as a function of element size. The upper 

bounds function as expected: the exact solutions of equations (10) for bending and (11) for 

torsion, are converged upon as the element size is refined. Even though not indicated by Figure 

2.7, it is also verified that, for larger element sizes, the upper bounds always contain the exact 

solutions. 



26 

 

Figure 2.7 indicates that one significant difference between bending (left) and torsion 

(right) is that asymptotic convergence is monotonic in the latter case, hence, producing one-sided 

bounds of solution uncertainty. On the other hand, convergence of the bending stress is 

oscillatory, which leads to two-sided bounds of uncertainty since the two cases “y(Δx) ≥ y*” and 

“y* ≥ y(Δx)” are possible as Δx  0. Based upon the agreement between the exact and discrete 

solutions for the NuMAD-created cylinder test problem, it is deemed satisfactory that the pre-

processing software accomplishes the basic function it purports to do. 

2.5. Experimental Modal Analysis of the Wind Turbine Blade 

At this point of the study, the ANSYS code for FE modeling, and its pre-processor 

software NuMAD, have undergone sufficient code verification activities for the purpose intended. 

A model of the CX-100 wind turbine blade is generated, as described in section 6 below. One 

lingering question in the development of the FE model is the selection of an appropriate mesh 

size for the calculations. This question refers to the level of discretization needed to support 

sensitivity analysis and uncertainty quantification.
7
 

Modal testing of the CX-100 blade is performed under free-free and fixed-free boundary 

conditions at Los Alamos National Laboratory (LANL). These measurements are used, not only 

to calibrate parameters of the simplified model as explained in Reference 7, but also to guide the 

choice of an appropriate level of mesh resolution. This is a significant departure from the 

common V&V paradigm that tends to promote a strict separation between code verification 

activities and comparison between predictions and measurements. It is emphasized that only the 

experimental variability, and not the measured response, is used. 

Testing includes exploring the overall levels of experimental variability that result from 

using different setups where excitation locations, excitation types and support conditions are 

varied to quantify their potential effects on system identification. Roving impact hammer test are 
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performed to collect modal data with uniaxial accelerometers at three locations on the blade. A 

linear average with five repeats and a 150-Hertz sampling frequency is used. The acceleration 

response is measured for eleven seconds. No window function is applied due to the relatively 

long sampling period. Figure 2.8 depicts one of the setups tested (left) and shows a close-up of 

the grid used to record locations used for excitation and sensing (right). Reference 7 discuses the 

effect that varying these configurations has on the identification of resonant mode shapes and 

natural frequencies, in comparison to corresponding predictions of the FE model. 

    

Figure 2.8: Free-free modal testing configuration (left) and close-up on sensing (right). 

The experimental investigation also includes performing linearity and reciprocity checks 

to verify the quality of datasets collected. A linearity check consists of testing the CX-100 blade 

with increasing levels of force excitation. A structure that responds linearly, which is a 

fundamental assumption of the system identification method used to extract the resonant modes, 

should yield similar Frequency Response Function (FRF) curves regardless of the applied force. 

A reciprocity check consists of swapping pairs of excitation and sensing locations to compare 

FRF curves. Another assumption of linear structural dynamics is that the load path from Point-A 

to Point-B is identical to the reverse path. Establishing that the FRF curves are, again, similar 

verifies the assumption of reciprocity. 
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Figure 2.9 illustrates that, for these series of modal tests, the CX-100 blade behaves as a 

linear structure and exhibits reciprocity. The FRF curves compared on the left originate from 

modal tests performed with different levels of force excitation. It is observed that their agreement 

is excellent. Likewise, the curves compared on the right of Figure 2.9 originate from a reciprocity 

test at two locations, and the same conclusion is reached. The reader is referred to Reference 24 

to learn further details about the experimental setup and results of these vibration tests. 

 

Figure 2.9: Verification of linearity (left) and reciprocity (right) during modal testing. 

The levels of variability observed are quantified and listed in Table 2.1, summarizing 

results for testing the blade with free-free boundary conditions. Overall, very low levels of 

variability are obtained, which are due to replicated modal tests on the same wind turbine blade. 

This quantification of experimental variability does not account for specimen-to-specimen 

variability, experimenter variability, or test setup repeatability. These results are also used in the 

companion publication as “baseline” for inference of the idealized material properties of the FE 

model.
7 
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Table 2.1: Statistics of system identification obtained for the CX-100 blade. 

Type of Mode Mean Statistic Standard Deviation Variability
(1) 

First flap-wise bending 7.617 Hertz 0.004 Hertz 0.06% 

Second flap-wise bending 20.167 Hertz 0.055 Hertz 0.27% 

Third flap-wise bending 32.256 Hertz 0.051 Hertz 0.16% 

Legend: (1) The coefficient of variance listed in the last column is defined as the standard deviation (3rd column) divided 

by the mean (2nd column). These statistics are based on 27 replicates for the free-free vibration tests. 

 

Besides providing important information for test-analysis correlation, the statistics of 

Table 2.1 are also used to guide the selection of a mesh size Δx at which the subsequent 

parametric studies (sensitivity analysis, inference uncertainty quantification, etc.) are conducted.
 

The maximum level of experimental variability observed is 0.27% for the second free-free 

bending mode. 

Since this value corresponds to one standard deviation σ, the ±3σ (two-sided) bounds are 

equal to 1.62% variability. These ±3σ bounds are adopted to characterize the experimental 

variability since they account for 98% of the total probability mass, assuming a Gaussian 

probability law. This choice yields a fair comparison with the bounds of total solution uncertainty 

quantified in section 6.2, where the mesh size is chosen such that the numerical uncertainty is 

similar to this 1.62% variability for predictions of the resonant frequencies. 

2.6. Solution Verification and Quantification of Numerical Uncertainty 

This section starts by describing attributes of the FE model developed to simulate 

bending deformation shapes of the CX-100 wind turbine blade. The main assumption that enables 

fast-running calculations, namely, the use of homogenized material properties, is proposed. 

Solution verification is carried out, first, to assess the numerical performance of the model and, 

second, to choose a mesh resolution that results in an appropriate level of numerical uncertainty. 
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Finally, the behavior of the NuMAD pre-processing software is revisited to assure that its mesh 

sensitivities do not produce adverse consequences for the FE model developed. 

2.6.1 Development of a Simplified Model of the CX-100 Blade 

The model of the CX-100 blade is developed with the NuMAD pre-processor and 

imported into the ANSYS software. The blade is nine-meters long and its geometry is represented 

in the model using design specifications with as few simplifications as possible. Figure 2.10 

provides a comparison of the simplified FE model used in this study to a high-fidelity FE model, 

which can more accurately capture the taper of materials used to define the root section. 

 

Figure 2.10: High-fidelity CX-100 ANSYS model with detailed cross-sectional modeling. 

The model used in this study is achieved by segmenting the geometry of the blade into a 

small number of sections and defining smeared properties for each section. This is done, in 

contrast to the type of modeling provided in Figure 2.10, because a high-fidelity model is 

computationally too expensive to lend itself to the parametric studies that we wish to pursue. It is 

emphasized that the number and definition of smeared sections is considered to be a model-form 

choice, as opposed to a discretization, which implies that the “convergence” of the vibration 
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response as a function of the number of sections is not currently studied. The ability of the 

simplified model to predict the bending modes of vibration with reasonable accuracy is discussed 

in Reference 7. 

Six sections are defined: the shear web, root, spar cap, trailing edge, leading edge with 

balsa, and leading edge without balsa. Figure 2.11 represents five of these sections, while the 

interior shear web is illustrated in Figure 2.12. To reflect the tapering of the edges in the real-life 

structure, the trailing edge and leading edge of the blade are further subdivided into three sub-

sections of differing stiffness coefficients. 

 

 

 

Figure 2.11: Illustration of the ANSYS model showing different sections of the blade. 

 

Figure 2.12: Illustration of the ANSYS model’s shear web located inside the blade. 

Within each section, an isotropic material is defined by assuming smeared cross-sectional 

properties. The validity of this simplification is explored in Reference 7 by performing sensitivity 
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Leading 

Edge 

Trailing 

Edge 
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analysis, uncertainty quantification, and comparisons between model predictions and physical 

measurements. The rule of mixtures is utilized to homogenize the composite cross sections.
25

 

Based upon the structure of composites, the rule of mixtures blends together the differing material 

properties and estimates the material property of an equivalent isotropic material. 

 

Figure 2.13: Six meshes used to assess the asymptotic convergence of vibration modes. 

One important aspect of performing numerical simulations is to assess if the equations of 

motion, or conservation laws, are discretized with enough resolution to produce “good-quality” 

numerical solutions. A mesh convergence study is performed to verify the performance of the 

ANSYS software, as applied to the CX-100 blade model, and determine an appropriate level of 

mesh resolution for the calculations. Our decision criteria are to, first, reach a level of numerical 

uncertainty that is comparable to, or smaller than, the overall experimental variability, while also 

being capable to run a linear, modal extraction on a PC platform in fewer than 60 seconds. 

2.6.2 Mesh Refinement and Quantification of Truncation Error 

After having scripted and automated the execution of the FE model, over twenty meshes 

are analyzed to predict the low-order resonant modes. Figure 2.13 illustrates six of these 

calculations, where the figures from left to right show progressively lower levels of mesh 

resolution. Figure 2.14 reports the values of predicted resonant frequencies as a function of mesh 
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size. The three natural frequencies shown are the three modes targeted: the first flap-wise bending 

(mode 1), second flap-wise bending (mode 3), and third flap-wise bending (mode 4). It is clear 

from the figure that these resonant frequencies exhibit a satisfactory degree of convergence as the 

number of elements of the discretization increases. 

      

2.14-a) First flap-wise bending frequency.      2.14-b) Second flap-wise bending frequency. 

 

2.14-c) Third flap-wise bending frequency. 

Figure 2.14: Convergence of resonant frequencies as a function of mesh resolution. 

The numerical uncertainty due to truncation error, that is, lack of resolution in the 

calculation, is bounded as explained in section 3 for the three bending frequencies of interest. 

These upper bounds are defined as: 
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where ω* is the best-possible estimation of the “exact-but-unknown” frequency while ω(Δx) is 

the approximation obtained by running the calculation at mesh resolution Δx. The uncertainty 

bound U(Δx) is related to the GCI through the introduction of a safety factor FS, as illustrated in 

equations (8-9). When the solution ω* is estimated, for example, through the method of 

Richardson’s extrapolation, it is possible to examine the solution error and assess asymptotic 

convergence.
12

 This extrapolation scheme leads to an approximation obtained simply as: 
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2.15-a) First flap-wise bending frequency.      2.15-b) Second flap-wise bending frequency. 

 

2.15-c) Third flap-wise bending frequency. 

Figure 2.15: Asymptotic convergence of frequencies as a function of mesh resolution. 
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Figure 2.15 illustrates the behavior of solution error |ω* – ω(Δx)| as a function of mesh 

size Δx for the same three modal frequencies as those of Figure 2.14, and where the exact 

solution is approximated by applying equation (13) to the two finest levels of mesh resolution. 

Convergence is observed even though five to seven models analyzed with the coarsest 

levels of resolution are located in a non-asymptotic region where refining the mesh does not 

necessarily decrease the truncation error. These under-resolved calculations are disregarded for 

the purpose of best-fitting the model of truncation error |ω* – ω(∆x)| = β·∆x
p
, whose definition 

applies only within the asymptotic regime of convergence. The log-log scale of Figure 2.15 

indicates that convergence is nearly second-order for the models located in the asymptotic 

regime. This is confirmed by a quantitative analysis that best-fits the two unknowns (β; p) of 

simple power-law equations |ω* – ω(Δx)| = β·Δx
p
 to the error data of Figure 2.15. The observed 

rates-of-convergence are equal to p = 1.82 for the first flap-wise bending mode, p = 1.89 for the 

second flap-wise bending mode, and p = 2.43 for the third flap-wise bending mode. It implies that 

second-order accuracy is achieved for the modal analysis. 

 

Figure 2.16: Values of the GCI for the first three flap-wise bending modes. 
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Figure 2.16 shows the GCI obtained with a safety factor of FS = 3. Three bending 

frequencies are denoted by different symbols. The dashed line illustrates the goodness-of-fit 

obtained with a simple power-law equation GCI(Δx) = β·Δx
p
 for the average GCI. Best-fitted 

coefficients equal to β = 0.044 and p = 1.98 lead to, again, strong evidence of second-order 

accuracy. Based on these observations, the hypothesis that the finest levels of mesh resolution 

provide solutions within the regime of asymptotic convergence cannot be rejected. 

So far, the mesh refinement results have been analyzed to assess the performance of the 

FE software. While observing second-order accuracy is reassuring, it may not be of great 

practical interest given that the code verification activities of section 4 have already concluded to 

the lack of significant implementation issue for the intended purpose. It is, however, a first step 

needed to support the quantification of solution uncertainty. What is more valuable to the 

practicing engineer is to select an appropriate mesh size to pursue the parameter studies of 

Reference 7. 

Often, the strategy to select a mesh size is “run as fine a mesh as computationally 

feasible.” This approach may lead to a waste of resources when the resolution employed is too 

fine. It is also unsatisfactory in the context of V&V because this rationale does not take into 

account the intended purpose of the numerical simulation, desired level of prediction accuracy, 

and overall reproducibility of experimental testing (whenever available). In this work, an 

alternative strategy is proposed based on the overall level of experimental variability. While 

challenging the conventional separation between verification and test-analysis correlation, our 

proposal offers the advantage of avoiding to select a mesh size in a “vaccum.” 

Our guiding principle is to use a mesh discretization that provides an overall level of 

numerical uncertainty comparable to the experimental variability. The rationale is that there is no 
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reason to provide significantly more prediction accuracy than the level with which the response 

can be measured when experimental testing is replicated. 

Table 2.2: GCI for predictions of the three bending modes of interest. 

Mesh Size, Δx 1
st
 Mode GCI 3

rd
 Mode GCI 4

th
 Mode GCI Mean GCI 

5.0 cm 0.77% 0.61% 0.67% 0.68% 

6.0 cm 1.11% 0.94% 1.16% 1.07% 

7.0 cm 1.50% 1.29% 1.73% 1.51% 

8.0 cm 1.73% 1.50% 2.10% 1.78% 

9.0 cm 1.99% 1.73% 2.53% 2.08% 

10.0 cm 2.30% 2.01% 3.06% 2.46% 
Legend: These calculations are based on a constant safety factor, FS = 2, see equation (8). 

Table 2.2 lists the GCI of equation (8) obtained with a safety factor of FS = 2. This choice 

is made, instead of FS = 3 used in Figure 2.16, by analogy to the ±3σ bounds of experimental 

variability of section 5 that are two-sided. Our contention is to select a mesh size that leads to a 

numerical uncertainty similar to the 1.62% level of experimental variability. Another constraint 

imposed by the parameter studies is to minimize time-to-solution. The 7-cm mesh, while it 

satisfies the first criterion, does not provide modal solutions in fewer than 60 seconds on our PC 

computing platform (Intel single-core, 2-GHz processor, 4 GB memory, Windows 7 operating 

system). It is decided that the next level of mesh size provides the best trade-off between the two 

competing constraints. The solution uncertainty obtained at Δx = 8 cm is the 4
th
 row highlighted 

in color red in Table 2.2. The 8-cm mesh calculates modal solutions in fewer than 60 seconds 

while yielding 1.78% solution uncertainty, on average, which meets the objective of comparing 

favorably to the ±3σ bound of 1.62% variability assessed from Table 2.1. 

To pursue the parameter studies of Reference 7, the decision is made to “freeze” the 

resolution at Δx = 8 cm. It gives a FE model with 3,070 elements from which the resonant modes 

can be extracted in 60 seconds, approximately. 
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2.6.3 Mesh Sensitivity Introduced by the Pre-processing Software NuMAD 

Through the course of the above analyses, several other variables are altered to explore 

their potential effects upon the truncation error. Notably, it is attempted to explore different 

meshes by overriding the default meshing method implemented by the pre-processor NuMAD 

and assign a coarser or finer mesh to the shear web than the resolution used for the other 

structural components of the CX-100 model. This study involves creating and running a separate 

post-processor to modify the output generated by the NuMAD software. 

Figure 2.17 illustrates qualitative results for a bending stress analysis and a torsional 

shear stress analysis, using three different options of shear web meshing—a coarse, medium, and 

fine mesh (as compared to the other components of the model). The values of stress are depicted 

as a function of mesh size for the other, non-shear-web elements. Our hypothesis is that there is 

no reason to observe any significant cross-sensitivity between the mesh size used to discretize the 

shear web and the mesh size used to discretize the other components. 

The results yield some surprising findings: in neither case is the effect of the mesh size of 

the shear web on the resulting stress monotonic. The predictions obtained with the medium mesh 

size for the shear web are, in each case, extreme, when they instead would be expected to lie 

between predictions obtained with the coarser and finer levels of resolutions. The calculations 

exhibit the expected behavior at any given level of shear web resolution, that is, moving along 

one of the datasets as Δx  0. What is unexpected is to observe the extent to which predictions 

are sensitive to the combination of mesh sizes for the shear web and other components. 
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17-a) Stress-in-bending test problem. 

 

17-b) Stress-in-torsion (shear) test problem. 

Figure 2.17: Stress values for different meshing options of the shear web. 

No explanation for this effect is readily apparent. These observations are nevertheless 

made in the interest of full disclosure of the results obtained. For all results other than those 
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discussed in this section, FE models are generated from the default, homogeneous mesh option of 

the pre-processor. The mesh cross-sensitivity observed is therefore not believed to be detrimental 

to the quality of our numerical predictions. 

2.7. Conclusion 

This publication discusses the development of a finite element model for the CX-100 

wind turbine blade and overviews some of the analysis procedures implemented to verify the 

code, quantify the overall level of solution uncertainty due to truncation error, and compare it to 

experimental variability. These are some of the activities typically deployed in a V&V study. 

Other activities that include sensitivity analysis, the propagation of parametric uncertainty from 

inputs of the model to its predictions, and the calibration of model parameters are addressed in a 

companion paper for the same application.
7
 

To rigorously quantify numerical uncertainty in the absence of an exact solution to the 

equations of motion, or conservation laws, being solved, an upper bound of solution error is 

derived. An analogy is made with the well-known Grid Convergence Index when a specific value 

of its safety factor is implemented. Another novelty of this publication is to propose a criterion 

based, on one hand, on time-to-solution and, on the other hand, on a comparison to experimental 

variability to select an appropriate level of mesh resolution for the calculations. 

Our investigation concludes that the analysis code is adequate to model the low-order 

bending and torsion dynamics of interest, based mainly on the shell-281 finite element of the 

ANSYS software. Comprehensive mesh refinement studies are performed to assess not only the 

regime of asymptotic convergence of predictions, but also to select a mesh size that yields a 

numerical uncertainty that is suitable based upon the experimental context. The experimental 

variability observed when performing modal tests of the CX-100 blade with different support 

setups is quantified and used to guide the selection of mesh resolution. Based on the findings 
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discussed in this paper, the finite element model is deemed verified and ready for further 

validation and uncertainty quantification studies discussed in Reference 7. 
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CHAPTER THREE 

SIMULATING THE DYNAMICS OF WIND TURBINE BLADES: PART II, MODEL 

VALIDATION AND UNCERTAINTY QUANTIFICATION 

3.1. Introduction 

Wind energy research is being pursued in the United States as a viable alternative to 

provide a major amount of installed electrical power, as part of the “20% by 2030” initiative by 

the U.S. Department of Energy.
1
 However, for wind energy to become a mainstay of energy 

needs, its cost must first be reduced drastically. The blades are responsible for only 10-15% of the 

cost of the wind turbine system,
2
 however, damage to the blades can result in rotor instability that 

leads to damage of the entire wind turbine system.
3,4

 To efficiently design for the next generation 

of wind turbines, it is crucial to understand the dynamics of wind turbine blades, that capture all 

of the kinetic energy transported by the surrounding flow of wind, and improve the reliability of 

power generation from wind plants.
5
 Better understanding of the wind turbine blades is essential, 

since the blades carry most of the structural loads that get imparted on the entire wind turbine. 

Better models would make more accurate predictions of performance, which would mitigate the 

operation and maintenance expenses associated with wind energy. These expenses currently start 

as low as $5 per 10+6 Watt-hour (MWH), but climb to costs as high as $20 per MWH over a 20 

year evolution of service.
6
 

Modeling and Simulation (M&S) offers a quicker, safer, and more economical alternative 

to the conventional cycle of designing, prototyping, and testing to study wind turbine blade 

behavior.
7
 The versatility of modeling can be used to predict the response to many complex load 

cases,
8
 whereas only idealized loads can usually be implemented in full-scale experiments.

9
 In 

addition, parametric studies of damage to wind turbine blades can be investigated in an 
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economical way through M&S, whereas the feasibility of such experimental campaigns would be 

limited due to the cost and safety implications. 

Due to demands for faster turn-around times and the, sometimes, limited access to 

computing resources, there is a growing need to develop simplified, “engineering” models that 

can keep parametric and calibration studies to a manageable size.
10

 It is also expensive, both in 

terms of memory management and time-to-solution, to couple a Computational Fluid Dynamics 

(CFD) code to flexible dynamics models of the blades and, potentially, models of structural 

damage, to develop credible simulations of entire wind plants.
11

 One approach to reduce this 

computational burden is to simplify the flexible dynamics of the wind turbine blade to speed-up 

the calculations without, to the extent possible, sacrificing the prediction accuracy. The study 

presented in this manuscript, together with a companion publication, demonstrate the application 

of Verification and Validation (V&V) technology to achieve these goals.
12

 

Our objective is to develop a structural model that, while simplified as much as possible, 

still captures the dynamics of interest. The V&V activities deployed in the companion manuscript 

(Reference 12) and this manuscript support essential steps of the model development process to 

guarantee that the simplifications introduced are justified for the intended purpose. V&V also 

serves the purpose of quantifying the experimental variability and numerical uncertainty 

(discussed in Reference 12), and the model parameter uncertainty (discussed in this manuscript). 

As explained in Reference 12, the structure investigated is the nine-meter, all-composite 

CX-100 blade designed at the Sandia National Laboratories (SNL). The Finite Element (FE) 

software is ANSYS version 12.1. The simplified model is developed based on an as-accurate-as-

possible description of the geometry obtained from design specifications. However, 

implementation of the materials relies on a strong assumption: the cross-sectional areas for the 

blade are modeled as smeared and isotropic material properties instead of modeling the multiple 
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composite layers embedded in the epoxy matrix. The overarching goal of this effort is to 

demonstrate the extent to which V&V can be integrated to the model development of a simplified 

yet validated FE model which delivers an acceptable level of predictive capability. Validated 

models that satisfy given time-to-solution requirements for the application of interest provide a 

competitive advantage. 

Developing a predictive capability motivates the need to quantify the uncertainty 

introduced by assumptions imposed during the development of a FE model. Understanding the 

approximate behavior of a model renders it imperative to take into consideration all sources of 

uncertainty, as discussed in section 2. Section 3 provides a cursory overview of the FE model of 

the CX-100 blade. (See Reference 12 for an in-depth discussion.) Section 4 discusses three V&V 

activities: the propagation of uncertainty from input parameters of the FE model to output 

predictions, sensitivity analysis and effect screening, and model calibration. These investigations 

are applied to low-order resonant frequencies of the blade according to a two-step approach. The 

response of the free-free model is evaluated, followed by the fixed-free model, in an effort to 

decouple our understanding of material properties from that of model parameters that represent 

the boundary condition compliance. Section 5 presents an independent validation assessment 

based on the ability of the calibrated model to correlate predicted and measured mode shape 

deflections. The implications and limitations of this study are discussed in Section 6. 

3.2. Review of Pertinent Literature 

Assumptions and simplifications are regularly imposed in numerical models, which are 

emphasized to only be able to provide an approximation of reality. For example, beam property 

extraction methods have been developed, which require low computational cost and can be used 

for fast-running calculations.
13

 However, one study attempting to model a wind turbine system 

found that neglecting the effect of damping produced predictions with low goodness-of-fit to the 
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experimental data.
14

 This study, along with similar observations from other disciplines, suggest 

that not accounting for the uncertainty introduced by the simplifications and modeling 

assumptions can have a degrading effect on the quality of model predictions. 

Another consideration is the relationship between goodness-of-fit to test data and the 

predictive capability of a model. It can be shown that fidelity-to-data, robustness to assumptions, 

and predictive capability are antagonistic attributes of any family of models.
15

 This can be 

described using the case of over-fitting, which happens when a model produces accurate 

predictions for configurations to which it was calibrated. But this may come at the cost of 

reducing its predictive capability, that is, the accuracy of its predictions when attempting to 

simulate other, non-tested configurations. Understanding these trade-offs is important for the 

development of robust CFD and FE models because it is important that models are robust to 

sources of variability, such as the significant variability between wind turbine blades that will 

result in different levels of structural response.
16

 

It is also important to account for the uncertainty associated with experimental 

procedures. The vibration testing of an article in a free-free configuration can often be affected by 

the positioning of the straps, mass loading of the accelerometers, and orientation of the test 

specimen.
16,17

 The free-free boundary condition is, on the other hand, trivial to simulate 

numerically. When free-free is not an option, proper modeling of the boundary condition 

becomes necessary to ensure that the predictions of structural response can be compared to 

measurements. Modeling a fixed-free boundary condition is a possibility, as long as the non-ideal 

compliance of the attachment setup can be accounted for, if it is believed important to do so. An 

unknown, boundary compliance can also significantly influence what is observed during a 

vibration test. To mitigate the uncertainty associated with a fixed-boundary compliance, studies 

originating at SNL propose a new setup for the modal analysis of wind turbine blades, in which a 
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nine-meter blade is mounted vertically on a seismic mass and airbags system.
10,18

 This type of 

boundary condition is designed so that its characteristics would be well-characterized and 

modeled accurately in the simulation of the structural model. The setup assures that the fixity of 

the blade to the seismic mass is rigid, and that there is a soft boundary condition when placed on 

the airbags, which can be characterized by stiffness properties. In a further investigation of 

boundary condition effects, the experimental modal analysis of a stationary wind turbine system 

is performed.
19

 Blade and tower responses to impact hammer testing are characterized. The mode 

shapes identified during these vibration tests demonstrate that there is significant coupling 

between the different blades and tower, confirming that the tower of a wind turbine system does 

not behave as a rigid body. 

Recently, the development of FE models has gained acceptance for routine use in the 

study of wind turbine blades. Another common practice is to perform calibration against 

experimental data as an integral part of model development. Reference 20 provides an early 

attempt to utilize FE modeling in the design and analysis of wind turbine blades using shell and 

solid elements. The study researched the optimal design of a two and a half-meter long blade, and 

experimental data from fabricated blades were analyzed to validate predictions of the FE model. 

Another early attempt used free-free modal data collected from a four-meter section of a blade to 

calibrate a FE model.
21

 Accuracy was improved by collecting additional measurements of the 

geometry of the blade and increasing the resolution of the simulation (higher mesh density). It 

was found that, by using these approaches, the number of assumptions needed to model the blade 

section could be reduced. Other studies have since investigated the use of M&S to study the 

behavior of wind turbine blades, owing to the versatility of numerical models.
22,23

 The current 

study builds on previous research efforts to model wind turbine blades, and places an emphasis on 

the use of V&V activities to establish the predictive capability of numerical simulations. 
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3.3. Development of the Simplified Finite Element Model 

This section provides a cursory overview of the FE model of the CX-100 blade. The 

reader is referred to Reference 12 for details about the model development and quantification of 

solution (or numerical) uncertainty. The brief explanation provided below is useful to better 

understand the uncertainty quantification, sensitivity analysis, and calibration steps discussed in 

section 4. 

 

 

Figure 3.1: Illustration of the ANSYS model showing different sections of the blade. 

The model of the CX-100 wind turbine blade is developed with the NuMAD pre-

processor and imported into the ANSYS software. The blade is nine meters long and its geometry 

is imported from another, high-fidelity FE model with as few simplifications as possible. Solution 

verification is performed, that utilizes the results of a mesh refinement study, to quantify the 

overall level of numerical uncertainty due to mesh discretization. A discretization based on an 

element size of Δx = 8 cm is deemed appropriate because it provides an overall solution 

uncertainty of 1.78%. This is comparable to the maximum level of experimental variability 

obtained by replicating the modal tests, where the ±3σ bounds of uncertainty are estimated to be 

1.62%. The other criterion adopted to select the level of resolution is to be able to perform a 

modal extraction in less than 60 seconds on a PC-based computing platform (Intel single-core, 2-

GHz processor, 4 GB memory, Windows 7 operating system), which is a constraint that needs to 
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be met in order to make parametric studies feasible. (See Reference 12 for details.) The mesh 

arrived at counts 3,070 elements and computes the modal solution in less than 60 seconds. 

To simplify the parameterization of the model, only six independent sections are defined, 

compared to high-fidelity models that require hundreds of sections. Most of them are illustrated 

in Figure 3.1. They are the shear web, root, spar cap, trailing edge, leading edge with balsa, and 

leading edge without balsa. The shear web runs along most of the length of the blade and it is not 

shown in the figure because of its location on the inside. Within each one of these sections, an 

isotropic material is defined with smeared cross-sectional properties. The validity of this 

assumption is explored in section 4 to assess the credibility of the simulation. 

Table 3.1: System identification of the CX-100 blade with free-free modal testing. 

Type of Mode Mean Statistic Standard Deviation Variability
(1)

 

First flap-wise bending 7.617 Hertz 0.004 Hertz 0.06% 

Second flap-wise bending 20.167 Hertz 0.055 Hertz 0.27% 

Third flap-wise bending 32.256 Hertz 0.051 Hertz 0.16% 
Legend: (1) The coefficient of variance in the last column is defined as the standard deviation (column-3) divided by the 

mean (column-2). It is based on 27 replicates for free-free vibration testing. 

 

Table 3.2: System identification of the CX-100 blade with fixed-free modal testing. 

Type of Mode Mean Statistic Standard Deviation Variability
(1)

 

First flap-wise bending 3.221 Hertz 0.008 Hertz 0.24% 

Second flap-wise bending 8.824 Hertz 0.011 Hertz 0.12% 

Third flap-wise bending 19.204 Hertz 0.020 Hertz 0.11% 
Legend: (1) The coefficient of variance in the last column is defined as the standard deviation (column-3) divided by the 

mean (column-2). It is based on 27 replicates for fixed-free vibration testing. 

 

Modal testing of the CX-100 wind turbine blade is carried out under free-free and fixed-

free boundary conditions at the Los Alamos National Laboratory (LANL).
12,17

 Roving impact 

hammer tests are performed to amass modal data at three locations with uniaxial accelerometers. 

A linear average is used with five repeats and a 150-Hertz sampling frequency. The acceleration 

response is measured for eleven seconds, during which the response of the blade is attenuated. 
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This procedure negates the use of a window function. The levels of experimental variability are 

quantified and listed in Tables 3.1 and 3.2 for the free-free and fixed-free boundary conditions. 

The observed variability is attributed to potential calibration errors, operator-to-operator 

variability, and the inability to identically repeat the experiments on the same test specimen of the 

CX-100 blade. The fact that it does not account for any specimen-to-specimen or test setup 

variability explains the overall low levels of uncertainty observed during this campaign of 

vibration testing. 

3.4. Propagation of Uncertainty, Sensitivity Analysis, and Calibration 

Section 4 presents results of the V&V study. The discussion starts by formulating 

questions about specific aspects of the predictive capability being developed. The main 

contribution of this publication is to demonstrate how V&V activities, such as mesh refinement or 

effect screening, can be integrated to model development to start answering these questions. 

Simulations are analyzed, first, for free-free vibrations of the CX-100 blade (sections 4.2 and 

4.3). The fixed-free configuration is analyzed next to decouple the parameterization of the 

boundary condition from the description of homogenized material properties in the model 

(sections 4.4 and 4.5). 

3.4.1 Specific Questions about the Predictive Capability 

We would like to answer the following four questions regarding specific aspects of the 

predictive capability provided by the fast-running, “engineering” model of the CX-100 blade: 

Question-A: what is an appropriate level of mesh resolution for the calculations? 

Question-B: what are the mechanisms that most influence the variability of predictions? 

Question-C: can measurements be used to reduce parametric uncertainty in the model? 

Question-D: does the model provide accurate-enough predictions of mode shapes? 
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Question-A is answered in Reference 12 where it is shown how a mesh refinement study 

can be combined to an upper-bound estimate of solution uncertainty. It is found, as noted in 

section 3, that a discretization of Δx = 8 cm leads to an overall solution uncertainty of 1.78%. 

Running the modal analysis at this level of resolution provides a time-to-solution of 60 seconds, 

approximately, which is fast enough to enable parametric studies with thousands of runs. 

Question-B promotes understanding of what controls the prediction variability. By 

learning which parameters are most influential to explain how the predictions change, one can 

control them in order to reduce the prediction uncertainty. It is equally important to learn which 

parameters do not control the prediction uncertainty because attempting to better control a non-

influential effect would be both inefficient and a waste of important resources. The prediction 

variability observed from a design-of-experiments is decomposed into separate effects to answer 

Question-B. 

Recall that the model is parameterized into only six sections and that each section is 

described by homogenized material properties. The resulting idealization is anything but high-

fidelity since the real structure involves a multi-layered composite material. Our point-of-view is 

that there is no such thing as “true” values of these material properties. What becomes essential is 

to reduce as much as possible the initially large lack-of-knowledge of these fictitious parameters, 

which is the subject of Question-C. The vibration measurements are used to search for values 

that, while they remain uncertain, lead to predictions that better match the experimental data. 

Finally, Question-D exemplifies the validation assessment. While the propagation of 

uncertainty, sensitivity analysis, and calibration are applied to frequency predictions, validity of 

the simplified model is assessed using mode shape predictions. The rationale is to investigate 

predictions that have not been exploited for calibration, hence, promoting the use of separate 

datasets between development and validation of the model. Another reason for this choice is that 
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accurate predictions of mode shape deflections are important to couple the structural dynamics 

and CFD-based simulation of flow around the turbine. It may, arguably, be even more important 

than predicting the resonant frequencies accurately. Question-D is answered through conventional 

test-analysis correlation.  

3.4.2 Propagation of Uncertainty and Sensitivity Analysis of the Free-free Configuration 

As noted above, it is important to assess what controls the prediction variability. 

Understanding which parameters, or groups of parameters, are most influential allows for the 

elimination of the insensitive ones. It promotes computational savings and a more efficient 

calibration. 

After having studied mesh discretization in Reference 12, the next dominant lack-of-

knowledge in the problem comes from the idealization of the composite material as uniform and 

isotropic. Material properties (modulus of elasticity, E, and density, ) are approximated using 

the rule of mixtures for composites, which provides ranges [EMin; EMax] and [Min; Max] for each 

parameter.
24

 To simulate the free-free vibrations, the model is parameterized using a total of 

twelve parameters that are the modulus of elasticity (E) and density (ρ) for the six sections of the 

blade. 

The first step of the analysis is to propagate uncertainty from the twelve parameters to 

resonant frequency predictions. A two-level, full-factorial Design-Of-Experiments (DOE) is used, 

whereby all combinations of lower and upper bounds for the twelve parameters are executed. The 

design results in a total of 2
12

 = 4,096 evaluations of the FE model. Figure 3.2 compares 

predictions from these 4,096 runs to the mean statistic of measured frequencies for the first mode. 

The fact that measurements fall within the range of frequencies predicted by the DOE is 

confirmation that the model captures the first flap-wise bending reasonably well. However, the 
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prediction uncertainty obtained by propagating the initial ranges of twelve parameters is quite 

significant relative to the experimental variability. (Recall,  = 0.004 Hertz only from Table 3.1.) 

 

Figure 3.2: Comparison of first-mode simulation uncertainty and measured frequency. 

The second step is to understand which parameters, or combinations of parameters cause 

the large uncertainty illustrated in Figure 3.2. Our hypothesis is that only a few parameters, out of 

the twelve considered, are statistically significant to explain how the predictions vary. Two 

additional DOE are analyzed to confirm, or refute, this hypothesis. A Latin Hypercube (LHS) 

sample with a 1,000 runs is analyzed first to identify the potentially non-significant parameters.
25

 

From an Analysis-of-Variance (ANOVA), the number of significant parameters is reduced from 

twelve to eight.
26

 This first design is supplemented by the analysis of a two-level, full-factorial 

DOE that requires another 2
8
 = 256 runs, to further screen the significant parameters down to five 

only. 

A tool that originated from high-consequence studies on nuclear reactor safety, known as 

the Phenomenon Identification and Ranking Table (PIRT), is used to screen the parameters.
27

 The 

PIRT provided in Table 3.3 organizes results obtained with the two-level, full factorial design. 
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The average variability of frequency predictions for the first three flap-wise bending modes is 

analyzed using a main-effect ANOVA. “Main-effect” means that the study is restricted to the 

influence of varying one parameter at-a-time, without considering potential interactions or higher-

order effects. Large values of the R
2
 composite statistics listed in Table 3.3 identify the most 

significant main-effects. 

Because the twelve parameters considered are unknown, the uncertainty column of the 

PIRT is omitted in Table 3.3. The lower and upper bounds listed indicate the ranges exercised in 

the full-factorial design. Values of the main-effect R
2
 statistics are scaled to 100%. The PIRT 

indicates that five of the twelve parameters control nearly 95% of the main-effect variability of 

frequency predictions. These five parameters are kept for further study while the others are 

eliminated. The two DOE: (i) two-level, full-factorial design with twelve parameters, and (ii) 

LHS design with twelve parameters, then, two-level, full-factorial design with eight parameters, 

arrive at the same list of five most influential parameters. This comparison between two 

approaches provides evidence that the statistically most significant parameters are identified, and 

that this result is independent of how the screening is performed. 

After screening the initial twelve parameters, an initial Test-Analysis Correlation (TAC) 

of mode shapes is performed to ensure that (i) the experimental and numerical mode shapes are 

paired appropriately and (ii) mode swapping does not occur as the material properties are 

perturbed. A two-level, full-factorial DOE is analyzed to exercise all combinations of lower and 

upper bounds for the five influential parameters identified in Table 3.3. The mode shape 

deflections are obtained for these 2
5
 = 32 combinations and plotted in Figure 3.3. While varying 

the model parameters between the lower and upper bounds generates significant mode shape 

variability, these shapes consistently correspond to the flapping deflection and mode swapping 

does not occur due to parameter variations.  



57 

 

Table 3.3: PIRT developed for main-effect screening of twelve FE model parameters. 

Factor Description Lower Bound Upper Bound R
2
 Values Keep? 

A Shear web, ρ 650.46 kg·m
–3

 1,084.10 kg·m
–3

 0.29% No 

B Root, ρ 2,071.56 kg·m
–3

 3,452.60 kg·m
–3

 0.37% No 

C Lower-edge balsa, ρ 1,025.05 kg·m
–3

 1,708.42 kg·m
–3

 0.32% No 

D Spar cap, ρ 1,900.44 kg·m
–3

 3,167.40 kg·m
–3

 1.11% No 

E Trailing edge, ρ 659.04 kg·m
–3

 1,098.40 kg·m
–3

 9.35% Yes 

F Leading edge, ρ 2,059.68 kg·m
–3

 3,432.80 kg·m
–3

 3.03% Yes 

G Shear web, E 0.99 MPa 2.97 MPa 1.74% No 

H Root, E 18.01 MPa 54.02 MPa 0.00% No 

I Lower-edge balsa, E 4.36 MPa 13.08 MPa 1.74% No 

J Spar cap, E 31.04 MPa 93.12 MPa 65.95% Yes 

K Trailing edge, E 0.92 MPa 2.75 MPa 9.85% Yes 

L Leading edge, E 10.30 MPa 30.91 MPa 6.25% Yes 
Legend: Column-5 lists composite R2 statistics obtained for main-effect analysis by averaging individual R2 for 

predictions of resonant frequencies of the first three flap-wise bending modes (modes 1, 3, and 4). 

 

 

 

3.3-a) 1
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 bending (mode-1).       3.3-b) 2
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 bending (mode-4). 

Figure 3.3: TAC of mode shape deflections used for the five-parameter study. 

With confirmation that the modal pairing is unchanged within the ranges of variation of 

the five most influential parameters, a three-level, full factorial DOE is analyzed based on 3
5
 = 

243 runs. Each parameter is set to a lower bound, nominal value (mid-range), or upper bound as 

listed in Table 3.4. Three levels are used such that the main effects, linear interactions, and 

quadratic effects can all be captured without significant statistical aliasing. This last design 
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generates the training data needed to develop a fast-running, statistical emulator for each resonant 

frequency. 

Table 3.4: R
2
 statistics for total-effect analysis of five parameters of the FE model. 

FE Model 

Parameter 

Parameter 

Lower Bound 

Parameter 

Upper Bound 

R
2
 Statistics of Total Effect 

Mode-1 Mode-3 Mode-4 

Trailing edge, ρ 659.04 kg·m
–3

 1,098.40 kg·m
–3

 3.46% 10.15% 15.95% 

Leading edge, ρ 2,059.68 kg·m
–3

 3,432.80 kg·m
–3

 4.63% 9.68% 7.47% 

Spar cap, E 31.04 MPa 93.12 MPa 28.57% 28.50% 42.44% 

Trailing edge, E 0.92 MPa 2.75 MPa 0.08% 6.39% 2.18% 

Leading edge, E 10.30 MPa 30.91 MPa 12.58% 32.69% 28.90% 

 

A final sensitivity analysis is performed using the training data, with results given in 

Table 3.4. The table lists the total-influence ANOVA statistics for each bending frequency 

considered. The total effect includes the main effect and all higher-order interactions that involve 

a given parameter. This analysis confirms that all the parameters kept exercise some degree of 

influence on the first three flap-wise bending modes of the CX-100 blade model. 

3.4.3 Inference Uncertainty Quantification of the Free-free Configuration 

At this point, uncertainty has been propagated forward though the simulation of blade 

vibration and the important parameters that control the prediction variability have been learned. 

This answers Question-B of section 4.1. Even though the main sources of uncertainty have been 

reduced to five material properties, acceptable ranges for these parameters remain largely 

unknown. The next step addresses Question-C by attempting to reduce this lack-of-knowledge. 

Vibration measurements of the free-free configuration are used to explore settings of the 

homogenized material properties that lead to predictions that better match the experimental data. 

This question could be formulated as a deterministic optimization that searches for the 

“best” combination of the five material properties. Instead of a deterministic calibration, 
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Question-C is addressed through inference uncertainty quantification that explores the 

posterior probability distribution of the five parameters. By definition, the posterior is the 

probability law that leads to predictions of resonant frequencies that are statistically consistent 

with the experimental data. The challenge is that the posterior function is unknown and must be 

explored using a Markov Chain Monte Carlo (MCMC) algorithm that turns out to be 

computationally expensive. Replacing the FE model by fast-running, statistical emulators 

developed with Gaussian Process Models (GPM) alleviates this difficulty. A GPM is simply a 

probability distribution whose hyper-parameters, such as mean value and correlation structure, 

have been trained using the 243 simulation runs of section 4.2. Predictions are then obtained by 

sampling the probability law instead of analyzing the computationally expensive FE model. 

Table 3.5: Comparison of prior and posterior uncertainty of five FE model parameters. 

Input 

Factor 

FE Model 

Parameter 

Prior Uncertainty Posterior Uncertainty 

Lower Upper Range Mean Std. Dev. ±2σ Range 

E Trailing edge, ρ (kg·m
–3

) 659 1,098 439 608 61.4 245.4 

F Leading edge, ρ (kg·m
–3

) 2,060 3,433 1,373 1704 246.0 984.1 

J Spar cap, E (MPa) 31 93 62 42 5.9 23.6 

K Trailing edge, E (MPa) 0.9 2.8 1.8 1.9 0.2 0.88 

L Leading edge, E (MPa) 10 31 21 20 5.8 23.0 

 

In the absence of qualitative data about the material, a uniform prior distribution is 

assumed in the formulation of the GPM. The computational procedure exercised in this study 

relies on a methodology first proposed in a univariate formulation and later expanded into the 

multivariate formulation.
28,29 

Table 3.5 summarizes the inference results. Columns 2-to-4 summarize the prior 

uncertainty, that is, the ranges within which the five material properties are varied in the full-

factorial design. This is prior to any comparison between numerical predictions and physical 

measurements. Columns 5-to-7 describe the posterior uncertainty, that is, the statistics inferred by 
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performing 100,000 trials of the MCMC search algorithm. Each trial consists in evaluating a new 

combination of the five parameters by comparing GPM predictions of the three frequencies to 

measurements. The model visited is retained only if its predictions pass a statistical test of 

goodness-of-fit with the experimental data and variability. After completing the MCMC 

iterations, the posterior probability law is inferred from the empirical distribution of the most-

often-visited models. These models are those that predict resonant frequencies in acceptable 

agreement with the measurements. This is assessed using a goodness-of-fit metric that compares 

predictions and measurements. The MCMC sampling algorithm tends to gravitate around models 

that yield a better goodness-of-fit. Hence the higher-probability parameter values correspond to 

models whose predictions match, on average, the measurements with higher accuracy. 

 

Figure 3.4: Marginal distribution and correlation functions corresponding to Table 3.5. 
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Figure 3.4 illustrates graphically the five-dimensional posterior probability function 

corresponding to Table 3.5. Each box on the main diagonal represents a marginal distribution for 

one of the five parameters. Each off-diagonal box depicts a probability contour for a pair of 

parameters. 

The posterior bounds of ±2 standard deviations listed in Table 3.5 (column 7) can be 

compared to the prior ranges (column 4). This uncertainty is reduced by, at least, two folds for the 

moduli of elasticity of the spar cap (factor J) and trailing edge (factor K). This is confirmed 

graphically by the narrow marginal histograms of these two parameters in Figure 3.4. Knowledge 

of the two parameters of the leading edge (factors F and L) is not improved significantly likely 

due to the fact that, as shown in Table 3.3, they contribute only 3% and 6%, respectively, to the 

overall variability in the model. This is illustrated in Figure 3.4 by relatively “flat” histograms of 

sampled values that indicate non-informative, posterior marginal functions. 

Another important observation from the off-diagonal contours of bivariate probability is 

that there is no significant correlation between the five model parameters. Observing a correlation 

would invalidate the development of a simplified, “engineering” model that is based on defining a 

small number of independent and uncorrelated sections of the blade. It would also generate trade-

offs between parameter values that would make it difficult to calibrate the model. Results 

presented in Table 3.5 and Figure 3.4 answer Question-C by demonstrating that it is possible, at 

least for two of the five parameters, to reduce the parametric uncertainty in the model through the 

combination of sensitivity analysis and parameter inference. 

Figure 3.5 compares the mean statistics of vibration measurements (with dashed, blue 

lines) to predictions obtained before and after inference uncertainty quantification. Samples from 

the prior ranges are shown with red dot symbols while those of the posterior ±2σ bounds are 

shown with green star symbols. Each subplot corresponds to one of the frequencies of interest. 
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The figure indicates that, as expected, combinations of parameters sampled from the joint, 

posterior distribution yield models whose predictions tend to agree better with measurements. It 

confirms that the inference, while reducing the uncertainty of three of the most influential 

parameters (see Table 3.5), also contributes to better predictions of the flap-wise vibration modes 

of interest. 

 

Figure 3.5: Prior and posterior predictions for the free-free configuration. 

The fixed-free configuration of the CX-100 blade is investigated next. The simplified 

model is essentially the same, with the exception of adding springs to the base to represent the 

boundary condition compliance. In this second stage, the sensitivity analysis and inference are 

focused on reducing the uncertainty of material properties for the root section and boundary 

springs. 

3.4.4 Propagation of Uncertainty and Sensitivity Analysis of the Fixed-free Configuration 
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The analysis proceeds with the numerical simulation of the fixed-free configuration of the 

blade where additional springs are added to represent the boundary condition compliance. 

Separating the free-free and fixed-free configurations decouples the homogenized properties 

investigated so far in sections 4.2 and 4.3 from those of the fictitious boundary springs. 

 

 

Figure 3.6: Close-up of the simulated springs (left) and close-up of the bookend (right). 

Figure 3.6 shows that the fixed-free configuration is realized experimentally by attaching 

the CX-100 blade to a steel “bookend” fixture, weighing approximately 500 lbf (or 250 kg). 

Although this attachment is used to create a fixed boundary condition, there is an inherent 

uncertainty due to the difficulty in producing an infinitely rigid connection. Fictitious springs are 

implemented in the simplified FE model to account for this uncertainty and generate a boundary 

condition for which the support is neither completely “free” nor “fixed.” It is also noted, through 

an effect screening study, that rotational springs at the base of the blade do not exercise any 

significant influence on the vibration characteristics. The fixture attachment is limited to 

translational springs that are added in the X, Y, and Z directions at forty locations around the 

diameter of the base of the root. Springs in the X and Y directions are assumed to be identical 

because they act in the same plane. 

Z 

X 

Y 
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3.7-a) First flap-wise mode under free-free (left) and fixed-free (right) conditions. 

      

3.7-b) Second flap-wise mode under free-free (left) and fixed-free (right) conditions. 

      

3.7-c) Third flap-wise mode under free-free (left) and fixed-free (right) conditions. 

Figure 3.7: Comparison of the simulated free-free and fixed-free mode shape deflections. 

A difficulty introduced by the addition of boundary springs is that parametric studies are 

prone to mode swapping as the spring stiffness coefficients are varied. As shown in Figure 3.7, a 

mismatch between the first modes of the simulated free-free and fixed-free configurations is 

observed. It is deduced from this comparison that the first flap-wise bending mode of the fixed-

free setting is not obtained until the boundary springs are sufficiently stiff. A preliminary 
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parametric study is therefore devoted to learning ranges for the spring stiffness coefficients that, 

while they avoid mode swapping as much as possible, transition between the free-free and fixed-

free conditions. 

Simulations indicate that the vibration behavior converges asymptotically to the fixed-

free blade when the boundary spring stiffness coefficients are sufficiently large. Likewise, 

decreasing the coefficients converges to the free-free behavior. This is illustrated in Figure 3.8. 

The first flap-wise mode of the free-free configuration occurs for spring stiffness coefficients 

smaller than 10
+6

 N/m, approximately. The vibration behavior approaches the fixed-free 

configuration for coefficients that exceed 10
+8

 N/m. These two values are, therefore, good 

candidates to define the lower and upper bounds of the subsequent parametric studies. 

 

Figure 3.8: Effect of varying the boundary spring coefficients on bending frequencies. 

The lower bound cannot be argued about because decreasing the boundary spring 

coefficient below 10
+6

 N/m suppresses the first free-free flap-wise bending mode, as indicated in 

Figure 3.8. To verify that the upper bound yields a stiff-enough attachment, a comparison is made 

with a simulation where the boundary springs are removed and, instead, nodes at the base of the 
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blade are fixed in all directions. Figure 3.9 compares the first three flap-wise bending deflections 

of this pinned connection to those obtained with boundary spring coefficients of 10
+8

 N/m. The 

figure indicates an excellent agreement between the two sets of shapes. In addition, frequency 

differences do not exceed 0.1%. Based on these observations, it is concluded that setting the 

upper bound at 10
+8

 N/m suffices to define the fixed-free boundary condition. 

3.9-a) 1
st
 bending (mode-1).      3.9-b) 2

nd
 bending (mode-3).     3.9-c) 3

rd
 bending (mode-5). 

Figure 3.9: Shapes of a pinned boundary compared to those obtained with k = 10
+8

 N/m. 

Sensitivities of the simplified model for the fixed-free boundary condition are 

investigated next. It is noted that a complete analysis is unnecessary because the simplified model 

has already been studied in the free-free configuration. Only the homogenized material properties 

that are anticipated to exercise a statistically significant effect need to be re-evaluated. They 

include parameters for the spar cap (factor J) and trailing edge (factors E and K), according to 

Table 3.3. In the free-free case, properties of the root were found to be insignificant contributors 

to the resonant frequency variability. In the fixed-free case, however, the strain energy is re-

distributed and shifted towards the base of the blade. Therefore, the material parameters of the 

root section must be included in the study, together with the stiffness coefficients of boundary 

springs. 
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These considerations suggest a total of seven model parameters to investigate the 

variability of resonant frequencies and mode shape deflections. The seven parameters include one 

stiffness coefficient for boundary springs added in the Z-direction, and another stiffness 

coefficient for all springs parallel to either the X or Y axis. A two-level full-factorial DOE is 

utilized in an attempt to keep the parametric study to a manageable size with 2
7
 = 128 runs. A 

two-level design is deemed sufficient to screen the statistically significant effects. 

Table 3.6: Total-effect R
2
 statistics for seven parameters of the fixed-free configuration. 

Input 

Factor 
FE Model Parameter 

Parameter 

Lower 

Bound 

Parameter 

Upper 

Bound 

Total-effect R
2
 Statistics 

Keep? 
Mode-1 Mode-3 Mode-5 

B Root, ρ (kg·m
–3

) 2,072  3,453  0.00% 0.00% 0.00% No 

E Trailing edge, ρ (kg·m
–3

) 484.4 729.8  1.59% 5.14% 12.47% Yes 

H Root, E (MPa) 18.01 54.02 0.18% 0.58% 0.72% No 

J Spar cap, E (MPa) 29.92 53.56 6.90% 27.30% 29.17% Yes 

K Trailing edge, E (MPa) 1.48 2.35 0.07% 0.15% 5.17% No 

M (X; Y) spring, k1 (N·m
-1

) 10
+6 

10
+8 

0.00% 0.00% 0.03% No 

N Z spring, k2 (N·m
-1

) 10
+6

 
 

10
+8 

39.44% 66.26% 50.14% Yes 

 

Table 3.6 summarizes the results of sensitivity analysis by listing the total-effect R
2
 

statistics from the decomposition of variability for the first three flap-wise bending frequencies. 

The material properties of the root section (factors B and H) are observed to have an insignificant 

effect on the vibration response of the model. It is possible that the more dominant parameters 

simply outweigh the contribution of these properties for the root section. It is also observed that 

only the translational springs in the Z-direction have a significant influence on the response. This 

is likely due to the fact that, the flap-wise bending behavior of the blade exercises the springs 

oriented in the Z-direction, which are parallel to the orientation of the spar cap (see Figure 3.6). 

This bending does not strain springs oriented in the (X; Y) plane as much, which explains the low 

influence of parameter k1 in Table 3.6. 
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The sensitivity results are used to reduce the number of parameters from seven to three, 

as shown in Table 3.6. A four-level, full-factorial design, populated with 4
3
 = 64 runs, is analyzed 

next to generate the training data required for inference in section 4.5. The bounds within which 

each parameter is allowed to vary are those listed in Table 3.6. The objective of inference 

uncertainty quantification is to reduce this lack-of-knowledge as much as possible. 

3.4.5 Inference Uncertainty Quantification of the Fixed-free Configuration 

The results of inference uncertainty quantification are briefly summarized for simulations 

of the fixed-free configuration. The statistics of the MCMC exploration of the three-parameter 

space (factors E, J, and N of Table 3.6) are listed in Table 3.7, and posterior distributions 

illustrated in Figure 3.10. These statistics are obtained with 20,000 iterations for the MCMC 

exploration of the three-parameter space. This number of samples is sufficient to estimate the 

posterior probability distribution with reasonable accuracy. This is because common practice is to 

use no fewer than a hundred iterations per variable explored, which would require about 300 

samples for our application. Using 20,000 iterations exceeds this minimum expectation to provide 

sufficiently converged statistics. 

Table 3.7: Comparison of prior and posterior uncertainty of three FE model parameters. 

Input 

Factor 

FE Model 

Parameter 

Prior Uncertainty Posterior Uncertainty 

Lower Upper Range Mean Std. Dev. ±2σ Range 

E Trailing edge, ρ (kg·m
–3

) 484.37 729.81 245.44 593.11 66.99 267.96 

J Spar cap, E (MPa) 29.92 53.56 23.64 40.66 2.76 11.04 

N Z spring, k2 (x 10
+6

 N·m
-1

) 1.00
 

100.0
 

99.00 53.71 27.59 110.36 

 

Again, the inference successfully reduces the lack-of-knowledge of the modulus of 

elasticity of the spar cap (factor J). This does not come as a surprise because this factor is the 

second most influential. The reduction of uncertainty is indicated by a narrow histogram in Figure 

3.10. It is also apparent that the statistics of the modulus of elasticity obtained with inference of 
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the free-free configuration (E = 41.7 ± 5.9 MPa in Table 3.5) are consistent with those obtained 

with inference of the fixed-free configuration (E = 40.7 ± 2.8 MPa in Table 3.7). 

 

Figure 3.10: Marginal distribution and correlation functions corresponding to Table 3.7. 

The inference is not able, on the other hand, to mitigate our ignorance of the boundary 

spring coefficient in the Z-direction (factor N). Table 3.6 shows that this failure cannot be 

attributed to a lack of sensitivity of resonant frequencies to the spring coefficient. A possible 

explanation is that the bookend attachment of the blade is not massive enough to facilitate the 

storage of a significant quantity of strain energy near the base. Consequently, the vibration 

measurements may be somewhat uninformative to constrain the value of the boundary spring 

stiffness. The inference is also unsuccessful for the density of the trailing edge (factor E). This 

could be due to a potential interaction between the density and the boundary spring during 

calibration. The contribution of the density to the overall variability of the model in both the free-
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free and fixed-free cases is low relative to the other parameters, possibly resulting in poor 

inference results. 

Figure 3.11 is the counterpart of Figure 3.5 and shows a comparison between the mean 

statistics of vibration measurements (with dashed, blue lines) and predictions of the simplified FE 

model obtained before and after inference. Samples from the prior ranges are shown with red dot 

symbols while those of the posterior ±2σ bounds are shown with green star symbols. Each 

subplot corresponds to one of the frequencies of interest. It can be observed that, even though the 

study is restricted to three parameters only, samples obtained from the posterior distribution tend 

to agree better with the physical measurements. 

 

Figure 3.11: Prior and posterior predictions for the fixed-free configuration. 

This application illustrates that the combination of statistical effect screening (sections 

4.2 and 4.4) and inference uncertainty quantification (sections 4.3 and 4.5) is a powerful tool to 
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reduce the parametric uncertainty of the simplified model. The results obtained answer Question-

C but prove nothing regarding the predictive power of the model. In section 5, TAC is applied to 

the mode shape deflections to assess the overall validity of the model. 

3.5. Validation Assessment Using the Mode Shape Deflections 

The predictive power of the simplified FE model is assessed through TAC of the mode 

shape deflections. The reason for this choice is two-fold. First, the mode shapes have not been 

used previously for sensitivity analysis or inference uncertainty quantification. These deflections 

provide a separate dataset for validation of the model. It is emphasized that using experimental 

data that were not considered during calibration is essential to validate the predictive capability of 

a model. One could argue, rightfully so, that the mode shape vectors used for validation are not 

truly independent from the resonant frequencies used for calibration. After all, they both originate 

from the same modal test. This is, however, the best that could be achieved given the 

unavailability of other datasets at the time the study was initiated. The second reason is that the 

simplified FE model of blade dynamics is developed for a future integration with the simulation 

of flow around the turbine. For credible fluid-structure interaction, it is important to establish that 

the model provides accurate predictions of the bending and torsion deflections. 

Predictions of mode shapes are generated from multiple simulation runs obtained by 

sampling the posterior distributions of material properties and spring coefficients for the two 

boundary conditions considered (both free-free or fixed-free). These runs are used to establish 

that the simplified model is able to capture several aspects of the problem, such as predicting 

different attachment conditions or reproducing the overall experimental variability. 

The TAC is illustrated graphically in Figure 3.12 for the free-free boundary condition and 

Figure 3.13 for the fixed-free configuration. In both figures, the experimentally identified mode 

shapes are plotted using solid, red lines. Variability from the simulation predictions is reported 
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with box plots (using blue symbols). The left sides of Figures 3.12 and 3.13 compare values of 

the measured and predicted displacements. The right sides compare the overall deflection shapes 

of the first three flap-wise bending modes. 

 

 

 

3.12-a) TAC (left), measured and simulated shapes (right) for the first bending mode. 

 

 

 

3.12-b) TAC (left), measured and simulated shapes (right) for the second bending mode. 

 

 

 

3.12-c) TAC (left), measured and simulated shapes (right) for the third bending mode. 

Figure 3.12: Measured and simulated mode shapes for the free-free configuration. 
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An excellent degree of correlation is obtained for the first mode shape of the free-free 

boundary condition in Figure 3.12, however, the agreement breaks down with higher order 

modes. This may be explained by the fact that higher-order mode shapes are more difficult to 

excite and identify experimentally. On the modeling side, a higher-order deflection may be more 

sensitive than the first bending mode to the definition of a relatively small number of sections in 

the model (only six sections). Both effects would tend to deteriorate the correlation observed. The 

overall degree of TAC of the first three flap-wise bending modes is, nevertheless, deemed 

satisfactory based, not only, on these visual comparisons but also on the coefficients of 

correlation estimated next. 

Figure 3.13 illustrates the mode shape correlation for the fixed-free configuration. A high 

degree of agreement is, again, obtained between the measured and predicted deflections. The 

higher-order modes tend to be better correlated to measurements than those obtained for the free-

free boundary condition. This is a welcome observation because the simplified model will 

eventually be integrated to a coupled, structural-fluid simulation of the entire turbine, which 

implies a fixed attachment at the root of each blade. Less prediction variability is obtained for the 

fixed-free configuration due to the fact that only three parameters are varied, compared to the five 

material properties exercised in the analysis of the free-free boundary condition. The ability of the 

model to reproduce the experimental measurements, using parameters obtained from an inference 

based on resonant frequencies, establishes that the boundary springs utilized have the potential to 

produce reliable predictions of the blade behavior. 
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3.13-a) TAC (left), measured and simulated shapes (right) for the first bending mode. 

 

 

 

3.13-b) TAC (left), measured and simulated shapes (right) for the second bending mode. 

 

 

 

3.13-c) TAC (left), measured and simulated shapes (right) for the third bending mode. 

Figure 3.13: Measured and simulated mode shapes for the fixed-free configuration. 

  The Modal Assurance Criterion (MAC) is calculated to quantify the correlation of mode 

shapes obtained for the experimental and simulation results. The MAC is a coefficient of 

correlation: 
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where ΦTest and ΦModel are the measured and simulated mode shapes, respectively, expressed at 

the same degrees-of-freedom. The purpose of this analysis is to verify the extent to which the 

deflections are parallel for the same modes and orthogonal for different modes. 

 

Figure 3.14: Mode shape MAC of the free-free (left) and fixed-free (right) configurations. 

Figure 3.14 illustrates MAC values for the free-free and fixed-free configurations of the 

blade. The simulated deflections are predicted by the FE model using average parameter values 

estimated from the posterior distributions of Figure 3.4 (free-free) and Figure 3.10 (fixed-free). 

Large values on the main diagonal indicate strong correlations between similar modes. On 

average, the diagonal MAC values are 84% for the free-free boundary, and 94% for the fixed-free 

boundary. Likewise, small values of the off-diagonal suggest that dissimilar modes are 

orthogonal, as they should be. On average, the off-diagonal MAC values are 21% for the free-free 

boundary, and 19% for the fixed-free boundary. These observations validate the ability of the 

simplified model to predict mode shape deflections, hence, answering Question-D. 
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3.6. Conclusion 

This second half of a two-part publication discusses the development of a simplified 

finite element model of a wind turbine blade. A particular effort is made to quantify all sources of 

uncertainty in the simulation, and assess their effects on predictions of the low-frequency 

vibration dynamics of the blade. Because it is exposed to the danger of over-fitting, conventional 

calibration is not performed to reconcile model predictions and physical measurements. Instead, 

Verification and Validation (V&V) activities are employed to assess the overall predictive 

capability of the model. The discussion illustrates what can be learned from specific V&V 

activities, and how these can be integrated to the model development process. 

The objective of this work is to develop a fast-running, “engineering” model of blade 

vibrations for future integration with a fluid dynamics simulation for an entire wind turbine and, 

eventually, an entire wind plant composed of multiple turbines. It implies that the structural 

model must be fast-running while providing an accurate-enough representation of the low-order 

bending and torsion dynamics that will be coupled to the flow around the blade. Four questions 

are asked regarding specific aspects of the predictive capability being developed: 

 Question-A: what is an appropriate level of mesh resolution for the calculations? 

Answer: Mesh refinement, combined to an upper bound of solution uncertainty, suggests that 

a mesh size of 8.0 cm provides accurate-enough predictions of resonant frequencies. The 

average solution uncertainty, due to truncation error, is estimated to be 1.78%, which is 

similar to the overall experimental variability (1.62%). This particular mesh, case-specific 

for our application, provides an extraction of resonant mode shapes and frequencies in less 

than 60 seconds. (See Reference 12.) 

 Question-B: what are the parameters that most influence the variability of predictions? 

Answer: Designs-of-experiments are used in conjunction with variance decomposition to 

identify parameters of the model that control the variability of frequency predictions. The 
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top-three most influential parameters are the moduli of elasticity of the spar cap and leading 

edge section, and density of the trailing edge section. Boundary springs are also influential. 

Knowing these parameters allows for a more efficient reduction of the prediction variability. 

 Question-C: can measurements be used to reduce the parametric uncertainty in the model? 

Answer: Measurements of the vibration response in two configurations, free-free and fixed-

free, can be used to reduce the lack-of-knowledge of model parameters. This is achieved 

through inference uncertainty quantification, as opposed to deterministic calibration of the 

parameters. The ignorance of the most influential parameters is reduced by two folds, if not 

more. The average plus-or-minus one standard deviation statistics are: E = 40.7 ± 2.8 MPa 

for the spar cap; E = 19.5 ± 5.8 MPa for the leading edge section; ρ = 607.1 ± 61.4 kg·m
–3

 

for the trailing edge section; and k2 = 53.7 ± 27.6 (x 10
+6

) N·m
-1

 for the boundary springs. 

Proceeding in two separate steps, first, with the free-free blade, then, with the fixed-free 

blade, enables a decoupling between the boundary springs and most other parameters. 

 Question-D: does the model provide accurate-enough predictions of mode shapes? 

Answer: The ability of the simplified model to predict mode shape deflections is validated 

through test-analysis correlation. The degree of agreement observed is excellent considering 

the complexity of the structure, with 84% correlation for the free-free modes and 94% 

correlation for the fixed-free modes. Datasets used for validation (mode shapes) are kept 

separate from, and independent of, the data to which the sensitivity analysis and statistical 

inference are applied (resonant frequencies). 

The panoply of V&V activities deployed for this application include verifying the 

implementation of the software; performing mesh refinements to estimate the solution 

uncertainty; developing a Phenomenon Identification and Ranking Table to define the important 

parameters; running designs-of-computer-experiments to, first, identify the most significant 

effects through sensitivity analysis and, second, develop fast-running Gaussian Process Model 
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emulators; propagating uncertainty from model parameters to frequency and mode shape 

predictions; and performing inference uncertainty quantification to reduce the lack-of-knowledge 

of material properties and boundary springs. The overall validation assessment is grounded in the 

test-analysis correlation of mode shape deflections, which are data that have not been used for the 

sensitivity analysis and uncertainty quantification. 

The study concludes that our scientific hypothesis is confirmed: a simplified-but-credible 

model of the low-frequency, structural response can be developed for future integration with the 

flow dynamics simulation. This positive finding is an encouragement to pursue this work even 

further with the on-going development and V&V of a non-linear beam element capable to 

describe the large displacements and large deformations witnessed by blades during the normal 

operation of a wind turbine. Future work will involve integrating the simplified finite element 

model, one-dimensional beam element, and computational fluid dynamics software for the 

numerical simulation of performance of entire wind plants. 

The development of future models will also take into account experimental data that 

further exercise the compliance of the fixed-free boundary condition. New vibration tests have 

been executed with another suspension system and the addition of masses that further stress the 

compliance of the fixed-free boundary condition. Future test-analysis correlation will promote a 

better understanding of the role that the boundary spring stiffness plays in model development. 
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CHAPTER FOUR 

MODEL SELECTION THROUGH ROBUSTNESS AND FIDELITY CRITERIA: 

MODELING THE DYNAMICS OF THE CX-100 WIND TURBINE BLADE 

4.1 Introduction 

The wind energy industry in the United States has consistently observed the design of 

larger wind turbines, with blades up to 61.5 meters in length in 2011. In anticipation of this 

continued trend, blades 100 meters in length are already being pursued for future wind turbine 

designs [1]. The behavior of wind turbines produced at this massive scale can be economically 

and efficiently studied through modeling and simulation techniques, which enable designers to 

consider both aerodynamic and structural concerns early in the design process [2], and mitigate 

the increasing costs of full-scale testing [3]. Finite element (FE) models calibrated against 

experimental data have gained acceptance for routine use in studying the static and dynamic 

responses of wind turbine blades, as demonstrated by the inclusion of FE analysis in wind turbine 

design standards [4]. Further, FE models are advantageous to study complex load cases that arise 

from in-service wind loading [5,6], as compared to the idealized loads that are implemented in 

full-scale experiments [7].  

Assumptions and simplifications are routinely implemented in FE models to reduce the 

computational demands of the simulation. For instance, current computing resources and code 

capabilities prevent the simulation of plant performance based on full-physics, full-coupling, 

three-dimensional representations of the structural response and air flow. Accordingly, it has been 

proposed to simulate wind turbines using geometrically non-linear, one-dimensional beam 

elements when coupling FE models of the wind turbine structural response with computational 

fluid dynamics models of the surrounding airflow [8]. Here, the use of simplified, one-

dimensional beam elements is selected according to expert judgment. The main concern that 
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arises is then the extent to which predictions of a numerical simulation can be trusted, given that 

the modeling strategy is selected according to subjective opinion of the expert.  

Aside from lack-of-knowledge in the optimal modeling strategy, a lack-of-knowledge 

also exists in the optimal values for the input parameters that define the selected modeling 

strategy. In spite of this dual lack-of-knowledge, recent wind turbine studies continue to consider 

a model good quality when model predictions match physical experiments by calibrating the 

input parameters [5,9]. However, when the quality of numerical models is assessed solely by 

fidelity to experimental data, the modeling strategy preference may lean towards overly complex 

models [10]. Model complexity, as defined by the model form and the number of parameters used 

to define this model form, can affect the quality of model predictions [10,11]. Overly complex 

models run the risk of over-fitting experimental data and at the cost of a poor generalization to 

non-tested settings [10]. For this reason, it has been posited that numerical models should not 

only demonstrate fidelity to data, but also be robust to lack-of-knowledge such that model 

predictions remain consistent as uncertainties in the model are exercised. When considering lack-

of-knowledge in the input parameters, robustness often favors less complex models that 

demonstrate lower variability in predictions as lack of knowledge is increased. However, more 

complex models are often capable of providing a better fit to experimental data. This paradigm in 

modeling and simulation has been formally recognized. It can be shown that fidelity-to-data and 

robustness to lack-of-knowledge are antagonistic attributes of any family of models [12]. 

Therefore, the predictive abilities of alternative modeling strategies must be compared 

considering not only fidelity of model predictions to experiments but also the robustness of model 

predictions to uncertainties in the corresponding input parameters. 

This manuscript proposes a rigorous and quantitative model selection approach rooted in 

info-gap decision theory (IGDT) [13]. The approach proposed herein deviates from other model 
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selection methods (see Section 2), because it is non-probabilistic in nature, and is performed by 

assessing the trade-offs of fidelity and robustness. The basic premise behind the proposed 

approach is that a good-quality model should be able to reproduce the available measurements, 

but should also provide predictions that are as insensitive as possible to uncertainties.  

This approach is demonstrated on the bending vibration of the CX-100 wind turbine 

blade developed at the Sandia National Laboratories (SNL). In two earlier studies, the FE model 

of the CX-100 blade has undergone rigorous Verification and Validation (V&V) assessments to 

ensure the credibility of predictions using measurements conducted at Los Alamos National 

Laboratory (LANL) (see Mollineaux et al. [14] for model verification and Van Buren et al. [15] 

for the model validation). For completeness, these earlier studies are briefly summarized in 

Section 3. More recently, the CX-100 blade was dynamically tested at the National Renewable 

Energy Laboratory (NREL) with large masses used to load the blade in bending. The added 

masses are represented in two alternative configurations, using (i) point masses and stiffening 

springs or (ii) high-fidelity solid elements. The ability of these competing strategies to replicate 

the experimentally obtained natural frequencies is discussed in Section 4. In Section 5, the 

fundamental principles behind IGDT are presented, and the extent to which predictions of these 

two competing models are robust to uncertainties in the model input parameters is quantified.  

The strategy that implements high-fidelity solid elements is found to be both more 

accurate and robust compared to the strategy that uses point masses. The practical implication of 

these findings is that predictions, and their accuracy, can be trusted even if model input 

parameters upon which the solid-element FE model relies upon are uncertain. The vibration 

analysis of the FE model with three-dimensional solid elements is however significantly more 

expensive than the model with point masses. Another objective of the investigation is then to 
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understand the extent to which the point-mass model is able to deliver a similar accuracy and 

robustness as the solid-mass model, at lower computational cost. 

4.2 Related Literature 

As lack-of-knowledge arises in identifying an appropriate modeling strategy in almost 

every engineering application, model selection has been a widely pursued research topic [16]. In 

the last decade, methods rooted in the Bayes theorem have been widely pursued to select a model 

from a family of available models with techniques such as Bayes factor, Bayesian model 

averaging, and Bayesian linear models. Bayes factor compares the likelihood of two models, 

using a zero-one loss function for model selection [17]. Consideration of the Bayes factor has led 

to the Akaike information criterion and Bayesian information criterion, which evaluate models 

based on their maximized likelihood function and number of parameters using different weights 

on the latter component, thus providing a subjective choice that can affect results [18]. Bayesian 

model averaging compares the weighted average of the posterior probabilities each model under 

consideration [19], but is often difficult to solve due to the evaluation of complicated integrals, 

and is computationally expensive when a large number of models are under consideration. To 

rectify computing demands associated with Bayesian model averaging, Occam’s window 

algorithm can be used to eliminate models, or Markov chain Monte Carlo algorithm can provide 

an approximation of the posterior probability. Bayesian linear models are formulated in the 

frequentist approach to incorporate prior information to find one or a few “best” models [20]. 

Despite the convenient framework offered by Bayesian approaches, it has been shown that the 

formulation of defensible priors is often difficult and can influence the model selection outcome 

[21].  Further, Bayesian strategies are often infeasible due to computational demands. 

Non-Bayesian methods that depend on frequentist approaches have also been proposed 

for model selection. For example, cross-validation tests are used to compare the quality of models 
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using hold-out experimental data [22], which can be computationally prohibitive and sensitive to 

the implemented data-splitting techniques. To efficiently determine the parameters to use in a 

model, the backward elimination and forward selection methods use the F statistic to determine 

whether eliminating or adding parameters to the model provides an improvement, however, these 

methods were originally developed for variable selection and are not guaranteed to select the 

optimal model [23]. Regression statistics are also useful to compare models, but is unable to 

promote a fair comparison between models of different sizes. The Cp statistic mitigates this 

problem by using the residual sum of squares for a model and the error variance based on the full 

model for model subset selection [24]. It is important to note, however, that calibrating the model 

chosen with the Cp statistic can result in selection bias. Myung [10] compares the performance of 

several model selection techniques; with the conclusion that model complexity must be taken into 

account to ensure that an overly complex model is not selected. Robustness is able to account for 

the complexity of a model, because the effect of parameter variation provides a measure of the 

model complexity by evaluating how much the model degrades as uncertainty is exercised.  

4.3 Model Development and Experimental Campaign 

This section reviews the FE model development for the CX-100 blade closely following 

the in-depth discussions provided by Mollineaux et al. [14] and Van Buren et al. [15]. 

4.3.1 Development of the FE Model of CX-100 Wind Turbine Blade without Added Masses 

The geometric model of CX-100 blade is built in NuMAD preprocessor [25] according to 

the accurate description of the design specifications, and imported into ANSYS version 12.1 with 

Shell-281 elements. The mesh discretization is based on an element size of Δx = 8 cm, which 

produces an overall solution uncertainty of 1.78% for the prediction of first three flapwise 

bending modes of the blade. This mesh size is justified by the fact that the resulting numerical 
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uncertainty is comparable to a 3-σ experimental variability of 1.62%, estimated from free-free 

modal testing performed at the Los Alamos National Laboratory (LANL) [26]. 

Six independent sections are defined in the development of the FE model: shear web, 

root, spar cap, trailing edge, leading edge with balsa, and leading edge without balsa wood. With 

the exception of the shear web, which it is located inside the cross-section of the blade, these 

sections are illustrated in Figure 4.1. Isotropic materials with smeared cross-sectional properties 

are used to define the material for these sections. 

 

 

Figure 4.1: Illustration of the ANSYS model showing different sections of the blade. 

Modal testing performed in two configurations at LANL is used for calibration and 

validation studies. These two configurations include free-free condition, where the blade is 

suspended with straps, and clamped-free condition, where a 250-kg steel bookend fixture is used 

to fix the base of the blade. The model parameters are calibrated to the free-free and clamped-free 

experimental natural frequencies in a two-step procedure [15]. To mitigate the uncertainty in the 

fixity at the base of the blade, fictitious springs are introduced and calibrated against the natural 

frequencies. The mode shape vectors are used to validate the FE model, in which the modal 

assurance criterion is estimated to quantify the agreement of simulation results to the 

experimental data. An overall correlation of 84% is observed for the free-free modes and 94% for 

the clamped-free modes. 

4.3.2 NREL Modal Testing of the CX-100 Wind Turbine Blade 

Leading Edge 

Leading Edge 

with Balsa 

Trailing Edge 

Root 

Spar Cap 
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The CX-100 wind turbine blade is attached to a 6300 kg (7-ton) steel frame, effectively 

providing a fixed-free boundary condition. The boundary condition provided in the NREL testing 

is therefore different from that of the LANL testing discussed earlier in section 3.1 [15,26]. A 

582-kg mass and 145-kg mass are added on the blade at the 1.60-meter and 6.75-meter locations, 

respectively. The significant mass loading in NREL testing supplies a different configuration of 

the CX-100 wind turbine blade. 

 

Figure 4.2: Experimental fixed-free (left) configuration, mass-added (middle) configuration, 

and base fixture (right). 

Modal testing is performed with a roving impact hammer test procedure under two 

different setups: first, in a fixed-free condition, and second, with large masses clamped to the 

blade. Four uni-axial accelerometers and one tri-axial accelerometer are used to collect data for 

hammer impacts at 65 locations: 47 in the flapwise directions, and 18 in the edgewise directions. 

Three test replicates are linearly averaged with 150 Hz sampling frequency. The acceleration 

response is collected with 4,096 sampling points without a window function due to the relatively 
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long sampling period of 11 seconds [27]. The experimental setups and base fixture are shown in 

Figure 4.2, and the first three flapwise frequencies are listed in Table 4.1.  

Table 4.1: Results of the experimental modal analysis. 

Mode Fixed-Free Frequency (Hz) Mass-Added Frequency (Hz) 

1
st
 Flap Bending 4.35 1.82 

2
nd

 Flap Bending 11.51 9.23 

3
rd

 Flap Bending 20.54 12.72 

 

4.3.3 Fixed-free Model of the CX-100 Wind Turbine Blade 

Calibration of the clamped-free model discussed earlier in section 3.1 is re-considered 

due to the more rigid structure used to support the blade in the NREL experiments. Five 

statistically significant parameters of the fixed-free FE model of the wind turbine blade are 

identified through sensitivity analysis. The influential parameters are: density of the trailing edge, 

the leading edge, and the spar cap, modulus of elasticity of the spar cap, translational springs used 

to model the boundary condition perpendicular to the base fixity. 

An exploratory design-of-experiments reveal that for the FE model to envelope the 

experimental data, the uncertainty bounds of the density of the trailing edge, density of the 

leading edge, density of the spar cap are allowed to vary within ±50% bounds of the nominal 

value. When the densities are allowed to vary past these values, modes are observed to swap. The 

upper and lower uncertainty bounds chosen for the spar cap modulus reflect the posterior 

uncertainty obtained from previous free-free calibration [15]. The uncertainty bounds of boundary 

springs are determined from parametric studies of the fixed-free boundary condition.  

Measured natural frequencies of the NREL testing are utilized to calibrate the FE model. 

Instead of performing calibration as an optimization of model parameters to best-fit the 

experimental data, inference uncertainty quantification is performed to explore the posterior 
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probability distribution of these three parameters. To efficiently perform the inference uncertainty 

quantification, a fast-running Gaussian Process Model (GPM) emulator is trained using three-

level, full-factorial design-of-experiments [28]. A Metropolis-Hastings Markov Chain Monte 

Carlo (MCMC) algorithm [29,30] is used to explore the posterior distribution of parameters for 

the GPM emulator, retaining only parameters that provide frequency predictions that better 

replicate experiments. This methodology relies on the theory proposed by Kennedy and O’Hagan 

[31] and the computational framework developed by Higdon et al. [32]. 

Table 4.2: Comparison of prior and posterior uncertainty of the FE model parameters. 

FE Model Parameter 
Prior Uncertainty Posterior Uncertainty 

Lower Upper Range Mean Std. Dev. ±2σ Range 

Trailing Edge, density 274.60 823.80 549.20 335.62 49.49 197.95 

Leading Edge, density 858.20 2574.60 1716.40 1165.30 248.76 995.03 

Spar, modulus 29.92 53.56 23.64 43.40 5.51 22.05 

Z-spring 1.00 100.00 99.00 71.91 15.98 63.91 

Spar, density 1267.00 3801.00 2534.00 1673.57 335.74 1342.94 

 

The results of the inference are summarized in Table 4.2. Columns 2-4 summarize the 

prior uncertainty, which represents the range of values used in the full-factorial design to train the 

GPMs. Columns 5-7 provide the posterior uncertainty, which are the statistics inferred via the 

MCMC search algorithm. The inference is successful at updating the value of the parameters, as 

indicated by the reduction of the parameter uncertainty relative to the prior distributions.  
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Figure 4.3: Marginal distributions and correlation functions corresponding to Table 4.2. 

Table 4.3 compares the experimentally obtained natural frequencies to those predicted by 

the FE model with the parameters set to the mean values of the posterior distribution. The 

simulation consistently under-predicts the experimental results by 0.5-3.4%. Due to the relatively 

small error in the predictions of resonant frequencies, and the fact that the predicted mode shape 

deflections correlate well with those measured experimentally, the accuracy of the calibrated 

fixed-free model is deemed acceptable. The FE model with the mean values of the posterior 

distributions is used in the next section to explore the mass-added configuration. 

Table 4.3: Comparison of experimental and simulated results for the fixed-free model. 

Mode Experimental (Hz) Simulated (Hz) Difference (%) 

1
st
 Flap 4.35 4.26 -2.1% 

2
nd

 Flap 11.51 11.45 -0.5% 

3
rd

 Flap 20.54 19.85 -3.4% 
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4.4 Development of the FE Model of CX-100 Wind Turbine Blade with Added Masses  

The FE models of the CX-100 wind turbine blade with added masses are developed using 

the fixed-free model discussed in Section 3.3. The two models pursued in this section are 

developed with different assumptions and simplifications using (i) a system of fictitious point 

masses and stiffening springs, and (ii) three-dimensional solid elements that represent the 

geometry of the added masses with high fidelity. 

4.4.1 Development of the Point Mass Model 

A point mass is added to the centroid of the cross section of the shell model of the CX-

100 wind turbine blade to approximate the added masses at the two locations using Mass-21 

elements in ANSYS. The point masses are then connected by fictitious springs, using Combin-14 

elements, to the nodes of the blade to reflect the interaction between the blade and added masses 

as shown in Figure 4.4. The use of spring is necessary as the point masses connected directly to 

the shell model introduce lower-order mode shapes with local deformations at the cross-sections. 

This modeling strategy therefore, offers a compromise between low computational times-to-

solution and an approximate representation of the vibration mechanics. The parameterization of 

this simplified modeling strategy results in the use of only six new model parameters (Table 4.4). 

 

 

Figure 4.4: Illustration of the blade cross-section with added point masses and springs. 
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Table 4.4: Parameters used to develop the point mass representation. 

Parameter Description 

(1; 2) (Translation; rotation) springs at the 1.60-meter section 

3 Point mass at 1.60-meter section 

(4; 5) (Translation; rotation) springs at 6.75-meter section 

6 Point mass at 6.75-meter section 

 

In this modeling strategy, the parameter values used for the point masses (parameters 3 

and 6) correspond to the measured weights. However, the parameter values of the springs 

(parameters 1, 2, 4, and 5) are highly uncertain and thus, need to be calibrated. To determine the 

values to use for the spring stiffness constants, a parametric study is performed to evaluate the 

effect of the spring stiffness on frequency predictions.   

 

 

Figure 4.5: Effect of spring stiffness coefficients on the first three bending frequencies. 

Figure 4.5 shows the frequency predictions as the spring stiffness values are varied from 

10 to 10
+10

 N/m. As the spring stiffness is increased, the natural frequencies also increase, due to 

the change in interaction between the blade and point masses. Around a value of 10
+6

 N/m, the 
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natural frequencies begin to plateau to values that consistently under-predict the experimental 

natural frequencies, indicated by the solid horizontal lines in Figure 4.5. A calibration of the 

model parameters would therefore, converge to the upper bound of the spring stiffness values as 

the FE model with point masses is unable to form an envelope around the experimentally 

obtained natural frequencies (Figure 4.5). Therefore, the value of 10
+8

 N/m is chosen for the 

spring stiffness, indicated by the vertical black line in Figure 4.5. 

Table 4.5: Comparison of experimental and simulated frequencies for the mass-added 

model. 

Mode Experimental (Hz) Simulated (Hz) Difference (%) 

1
st
 Flap 1.82 1.45 -20.3% 

2
nd

 Flap 9.23 8.85 -4.1% 

3
rd

 Flap 12.72 11.59 -8.9% 

 

Table 4.5 compares the natural frequencies measured experimentally to those predicted 

by the mass-added FE model. Again, the frequencies are consistently under-predicted by the 

model, due to the minimal calibration activities performed after the model was modified to 

include the added masses. 

4.4.2 Development of the Solid Mass Model 

The second modeling strategy is to represent the added-mass configuration of the blade 

with a higher degree of geometrical fidelity. Three-dimensional, solid elements are utilized to 

represent the geometry of the experimental setup, implementing Solid-186 elements in ANSYS. 

Four sections are used to define the added masses. The sections are labeled as the 6.75-meter 

mass, 1.60-meter mass, and two 1.60-meter offset masses in Figure 4.6. 

Four sections are used to model the added masses onto the blade, as shown in Figure 4.6: 

one section for the wooden form attached to the blade at the 1.60-meter station, two symmetric 
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sections for the hydraulic actuator system at the 1.60-meter station, and one section for the 

wooden form attached to the blade at the 6.75-meter station. The wooden forms are modeled 

using the geometry of the masses obtained from design specifications. The geometry of offset 

masses of the hydraulic actuator system at the 1.60-meter station is simplified into homogenous 

rectangular solids, thus providing a more accurate description of reality than the point mass 

model. A comparison of the experimental configuration and finite element modeling of the offset 

masses is provided in Figure 4.7.  

 

 

Figure 4.6: Second modeling strategy that includes solid elements to represent the added 

masses. 

The parameters used to develop the solid-mass representation are listed in Table 4.6. The 

parameterization includes the geometry of the outset masses, represented by the center of gravity 

coordinates that define the masses, which influences the ability of the blade to bend in torsion. 

The imperfect knowledge of these parameters introduces parametric uncertainty in the prediction 

of vibration response. Moreover, the imperfect knowledge of the center of gravity coordinates 

also introduces numerical uncertainty as the mesh changes each time that a different location of 

6.75-meter 

wooden form 
1.6-meter 

offset masses 

1.6-meter 

wooden form 
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the center of gravity is implemented. The re-meshing step in the propagation of uncertainties 

significantly increases the computational cost of the analysis.  

Table 4.6: Parameters used to develop the solid-mass representation. 

Parameter Description 

(1; 2) (Elastic modulus; density) of 1.60-meter section 

(3; 4) Center of gravity (X; Y) coordinates of 1.60-meter offset mass 

5 Density of 1.60-meter offset section 

(6; 7) (Elastic modulus; density) of 6.75-meter section 

 

 

Figure 4.7: Close-up of the offset mass modeled at the 1.60-meter station. 

With the masses represented using solid elements, the density is back-calculated such that 

the weights of masses implemented in the FE model correspond to the weights of masses 

obtained experimentally. The elastic modulus of the wooden forms is assumed based on the 

documented value for balsa wood. The agreement between predictions of the FE model and 

experimental measurements is listed in Table 4.7.  

 

 

Comparison of 

offset masses 
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Table 4.7: Comparison of experimental and simulated frequencies for the solid-mass model. 

Mode Experimental Frequency (Hz) Simulated Frequency (Hz) Difference (%) 

1
st
 Flap 1.82 1.44 -20.9% 

2
nd

 Flap 9.23 9.29 0.7% 

3
rd

 Flap 12.72 13.22 3.9% 

 

4.5 Analysis of Robustness to Uncertainty Applied to Models of the CX-100 Wind Turbine 

Blade 

This section discusses the conceptual framework and implementation of IGDT to 

evaluate the robustness to uncertainty of model predictions. By establishing robustness, we 

demonstrate the extent to which the predictions remain sufficiently accurate, even if modeling 

assumptions and parameter values used in the simulation are incorrect. On the other hand, lack-

of-robustness indicates that the expected level of accuracy obtained, for example, through 

calibration, may not be maintained if the assumptions and parameter values happen to be 

incorrect. Ensuring the robustness of the FE model does not necessarily translate into a reduction 

of prediction uncertainty. Instead, robustness analysis aims to identify a potentially alarming 

situation whereby the predictions, and their accuracy, are sensitive to aspects of the modeling that 

may be unknown and/or uncontrolled. 

 

4.5.1 Conceptual Demonstration of Robustness Analysis 

For the info-gap analysis presented, the allowable range of variation of model parameters 

is controlled using an uncertainty parameter, α. For simplicity, the definition of α is kept unit-less, 

therefore the same level of uncertainty, α, can be applied simultaneously to multiple parameters 

of the two modeling strategies. The second attribute of the info-gap analysis is the performance 

metric of the model, herein quantified by the fidelity-to-data using the root mean squared 

difference between simulation predictions and experimental observations. In the following 
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paragraphs, a conceptual illustration is provided with a unit-less α and fidelity based performance 

metric to describe the evaluation of the robustness of the competing FE models to the uncertainty 

in their corresponding model input parameters. 

Consider a model defined using two uncertain parameters, u1 and u2. Figure 4.8-a 

describes the nominal performance of the model, where u1 and u2 are defined using initial, best 

guesses or nominal values. As uncertainty, α, is increased, the parameters are allowed to vary 

within a range of permissible values (see Section 4.2 for how the bounds are chosen for the 

parameters in our application). As a result, parameters are varied from their nominal settings to 

become ũ1 and ũ2. Herein, the allowable range of variation of ũ1 and ũ2 is referred to as the 

uncertainty space. It is represented as a two-dimensional rectangle of size (α1)
2
 in Figures 4.8-b 

and 4.8-c. With such changes in input parameters, the model performance either improves or 

degrades. IGDT, therefore, explores the best and worst achievable performances as ũ1 and ũ2 are 

allowed to venture away from their nominal values but remain within the uncertainty space 

defined by the parameter α1. The improvement of the performance obtained from the model is 

described as the opportuneness, and the degradation of performance is the robustness. At any 

level of uncertainty α, the opportuneness and robustness points are obtained by solving two global 

optimization problems that search for the best and worst performances, respectively within the 

space of allowable values for ũ1 and ũ2. Figures 4.8-b and 4.8-c illustrate the development of the 

robustness and opportuneness functions. 

 
4.8-a. Analysis of nominal performance. 
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4.8-b. Development of the robustness function. 

 
4.8-c. Development of the opportuneness function. 

 
4.8-d. Increased uncertainty space for α3 ≥ α2 ≥ α1. 

 
4.8-e. Robustness and opportuneness curves. 

Figure 4.8: Illustration of the successive steps of an info-gap analysis of robustness. 

If the uncertainty space is defined to have nested intervals for increasing values of α, as 

suggested in Figure 4.8-d, then the opportuneness and robustness curves will be monotonic 

functions since the global optimizations are performed within ever-growing spaces. Figure 4.8-e 
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then shows the resulting opportuneness and robustness curves, developed from the evaluation of 

best and worst performances at three levels of uncertainty. A particular focus is placed on the 

robustness curve, and its slope “Δα/ΔR”, which is useful to evaluate the worst-case performance 

of the model under increasing uncertainty bounds. A “steep” robustness curve indicates that as 

the uncertainty is allowed to increase, “Δα,” the accompanying model predictions remain 

consistent, resulting in a small change in model performance, “∆R.” Such an observation would 

be welcome as it would reinforce our conviction that the model can be applied with confidence 

even if the model parameters used for its development are questionable. On the other hand, a 

robustness curve with small slope, which denotes a small increase in uncertainty “Δα” relative to 

a change in performance “ΔR,” indicates that the model predictions are sensitive to the values of 

ũ1 and ũ2 used in the simulation. Such a lack of robustness would decrease the level of trust 

placed in the model input values upon which the model relies. 

4.5.2 Rationale for the Definition of Uncertainty 

The input parameters are varied in such a way that the effect on bending frequency 

predictions of the maximum parameter variation is consistent with the difference between the 

competing models at their nominal setting. Doing so ensures that the effect on predictions of the 

allowable range of parameter variation is consistent with the effect on predictions of varying the 

model forms of the competing modeling strategies. Herein, model selection is only concerned 

with the way in which the masses are modeled onto the existing shell representation thus; the 

info-gap analysis is restricted to the model parameters used to define the added masses.  

The two models at their nominal configuration exhibit a 20% average percent variation in 

the first three flapwise frequencies. Only the common parameters between the two models, i.e. 

weights of the masses, are considered in order to demonstrate how each model is affected by 

varying the same modeling component. The models are held at their nominal configuration while 
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the masses are allowed to vary using the mass parameter for the point mass model, and the 

density parameter for the solid mass model.  

  

Figure 4.9: Comparison of frequency prediction variation due to mass-only variation. 

The average percent variations of predictions obtained by varying the masses are plotted 

in Figure 4.9. The observed difference between behaviors of the two curves can be attributed to 

the combined effect of parameter variation and model form on frequency predictions. Figure 4.9 

demonstrates that an approximately 20% variation in masses is necessary to achieve the 20% 

variation observed between the two models at nominal configuration. Thus, the lower and upper 

bounds of the variation corresponding to α = 1 are defined to allow the mass parameters to vary 

up to ± 20%. Similar prescriptions for the bounds of uncertainty are applied to the remaining 

parameters, such that each level of alpha corresponds to a uniform level of parameter 

uncertainty. Having defined the parameter variations corresponding to any value of α, the info-

gap analysis can be used to address the question of model selection. 

4.5.3 Selection of the Mass Added Models 
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In the info-gap analysis, the uncertainty space is a hyper-cube defined from the lower and 

upper bounds for the vector of parameters ũ. The parameters considered in the info gap analysis 

are the unit masses and stiffening springs for the point mass model, and the material properties 

and x,y coordinates of the offset masses for the solid mass model (see Tables 4.4 and 4.6). The 

size of the uncertainty space increases monotonically depending on the level of uncertainty 

considered, α: 

     1  0.2  u u    . (1) 

The robustness and opportuneness functions are evaluated in increments of α = 0.5 according to 

Equation 1. Note that α is multiplied by 0.2, to accommodate a 20% variation in parameters when 

α=1. For each level of uncertainty evaluated, the fmincon optimization solver of Matlab
TM

 is used 

to search for the set of parameters that produces the worst-case and best-case performance within 

the family of all possible models, for robustness or opportuneness, respectively. A two-level full-

factorial design of experiments is evaluated before initiating the optimization routine. The 

optimization is then initiated using the combination of model parameters that yields the maximum 

or minimum performance of the full-factorial design. Doing so increases confidence that the 

optimization is initiated close to the global solution, such that the fmincon algorithm can avoid 

getting trapped in a local maxima or minima. 

A new input deck, that includes re-meshing in the case of the solid element model, is 

generated and submitted to ANSYS each time that a combination of model parameters is 

evaluated during the optimization. Results of the ANSYS analysis are then be uploaded in 

Matlab
TM

 memory. This strategy requires significant computational resources, but avoids the 

development of statistical emulators that may introduce unwanted approximations. 

Model performance is defined as the root mean squared error of natural frequencies for 

the first three flapwise bending modes: 
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where R denotes the model performance metric, ωsim and  ωexp are the numerical prediction and 

experimental measurement of natural frequencies. 

Table 4.8: Range of variation for the parameters used in the point-mass model. 

Parameter Description Nominal Value ± Variation 

1 Translation springs at 1.60-meter section 10
+8 

10
+6.4

 – 10
+9.6 

2 Rotation springs at 1.60-meter section 10
+8 

10
+6.4

 – 10
+9.6 

3 Point mass at 1.60-meter section 582.46 465.97 – 698.95 

4 Translation springs at 6.75-meter section 10
+8 

10
+6.4

 – 10
+9.6 

5 Rotation springs at 6.75-meter section 10
+8 

10
+6.4

 – 10
+9.6 

6 Point mass at 6.75-meter section 144.7 115.76 – 173.64 

 

Tables 4.8 and 4.9 define the parameters associated with the competing models, along 

with the ranges of variation specified for the info-gap analysis at the level of uncertainty of α = 1. 

Note that the center of gravity parameter in Table 4.10 affects the mesh definition in the solid 

mass representation. Thus, in the FE model with solid masses, the uncertainty parameter, α, 

influences both the material behavior (density, elastic modulus) and numerical uncertainty of FE 

predictions. 

Table 4.9: Range of variation for the parameters used in the solid-mass model. 

Parameter Description 
Nominal 

Value 
± Variation 

1 Elastic modulus of 1.60-meter section 8×10
+9 

6.4×10
+9

 – 9.6×10
+9

 

2 Density of 1.60-meter section 636.1 508.88 – 763.32 

3 Center of gravity X coord. of 1.60-meter offset mass 0.224 0.179 – 0.269 

4 Center of gravity Y coord. of 1.60-meter offset mass 0.480 0.384 – 0.576 

5 Density of 1.60-meter offset section. 229.0 183.2 – 274.8 

6 Elastic modulus of 6.75-meter section 8×10
+9 

6.4×10
+9

 – 9.6×10
+9

 

7 Density of 6.75-meter section 1644.5 1315.6 – 1973.4 
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Figure 4.10 presents the results of the info-gap analysis performed on the competing FE 

models. The nominal performance, associated with a level of uncertainty of α = 0, clearly 

demonstrates that the solid mass model better reproduces the experimental data compared to the 

point mass model. Further, as the uncertainty parameter increases, the solid mass model remains 

the preferable modeling strategy. It can be stated that the solid mass model provides a higher 

degree of accuracy at any level of modeling uncertainty, α. In fact, the robustness slopes of the 

competing models are comparable despite the different representations of reality. The result of 

this analysis demonstrates unambiguously that the solid mass model is the preferable modeling 

strategy to utilize, despite the lack-of-knowledge associated with the modeling assumptions and 

parameters used in the simulation. 

 

 

Figure 4.10: Info-gap robustness and opportuneness curves of the two modeling strategies. 
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Figure 4.11 combines the results in Figure 4.10 to provide the range of predictions that 

are obtained at each level of uncertainty. The difference in behavior of the two curves is due to 

both the varied parameter values, and the model forms that are employed by the competing 

modeling strategies. The solid mass model is able to provide a smaller range of predictions as 

uncertainty, α, is increased. Again, the solid mass model is superior to the point mass model, due 

to the fact that the predictions for the solid mass model deviate less than the point mass model as 

uncertainty is accounted for.  

 

Figure 4.11: Range of predictions of the two modeling strategies. 

4.6 Conclusion 

This manuscript discusses a decision analysis methodology for model selection that 

considers the trade-offs in the ability of a numerical simulation to, first, replicate the experimental 

data and, second, provide predictions that are robust to the uncertainties in model input 

parameters. Understanding the trade-offs between fidelity and robustness is important for the 
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development of numerical models because it is the very mechanism through which the 

trustworthiness of predictions can be established. 

Modeling assumptions are typically formulated when developing numerical simulations, 

such as the use of fictitious boundary springs or implementing smeared properties for composite 

materials instead of attempting to define the individual layers. Although such assumptions have 

become commonplace, their effect on model predictions often remains unknown. Another 

common practice is to consider that a model achieves sufficient “predictability” as long as its 

predictions reproduce the experimental measurements. Our contention is that assessing models 

based only on their fidelity-to-data while ignoring the effect that the modeling assumptions may 

exercise on predictions is not a sound strategy for model selection. 

The methodology discussed in this study is applied to competing models used to simulate 

an experimental configuration of the CX-100 wind turbine blade in which masses are added to the 

blade. Experimental data obtained from a fixed-free modal analysis performed at the National 

Renewable Energy Laboratory, with and without added masses, are utilized. The wind turbine 

blade is bolted to a 6300-kg steel frame to define the fixed-free configuration. Masses are added 

at the 1.60-meter and 6.75-meter sections to define the mass added configuration that enhances 

the flapwise bending vibrations. The FE model of the blade, developed from a previous 

verification and validation study, is first calibrated to measurements of the fixed-free 

configuration. Calibration results show that the FE model is able to replicate the experimental 

frequencies within an average 2% error. Two modeling strategies are then considered for 

implementing the masses onto the existing FE model, using (i) point masses and stiffening 

springs and (ii) high-fidelity solid elements. To examine the predictive capability of the mass-

added FE models, limited calibration exercises are performed past the initial calibration to the 

fixed-free configuration. At their nominal configurations, the point mass model reproduces the 
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experimental data to within 11.1% average error, and the solid mass model is within 8.5% 

average error for the first three flapwise bending natural frequencies. 

An info-gap analysis is performed to address the question of model selection. An 

advantage of info-gap is that the formulation of prior probability distributions can be avoided 

because the analysis substitutes numerical optimization to statistical sampling. Further, the 

robustness to our lack-of-knowledge about the modeling assumptions and parameter values is 

accounted for when evaluating the model performance. The info-gap analysis is performed 

through parameter variation, where the maximum range of variation is chosen such that the 

change in model predictions is consistent with the change induced by the differing modeling 

strategies. It is observed that the solid mass model is not only more accurate, but also provides 

better behavior in robustness to modeling assumptions and unknown parameter values. Even 

though the solid mass model is a more complex representation of reality, and comes with higher 

computational cost, the analysis concludes unambiguously that it is the preferable modeling 

strategy for this application. 
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CHAPTER FIVE 

ASSESSING THE TRADE-OFFS OF FIDELITY, ROBUSTNESS, AND SELF-

CONSISTENCY FOR MODEL PARAMETER IDENTIFICATION 

5.1 Introduction 

Wind energy is being pursued as a viable source of energy in the U.S., due to its potential 

to supply 20% of the nation's energy needs by 2030 [1]. To meet these demands, wind turbine 

production in the U.S. has expanded from rotors with a diameter of 18 meters in 1985 to 120 

meters in 2007 [2]. To better understand the performance of wind turbines produced at this 

massive scale, modeling and simulation (M&S) techniques are being implemented at an 

increasing rate. M&S has been demonstrated to be a useful tool to economically study the 

performance of individual wind turbine blades, such as the tip deflection [3], failure [4, 5], and 

interaction with wind loading [6]. However, to facilitate the expansion of wind turbine plants [7], 

optimize power output [8], and minimize fatigue failure [9], it is necessary to study the 

performance of wind turbines at the plant scale. Plant scale simulations can be achieved by 

coupling structural dynamics models of wind turbines with computational fluid dynamics (CFD) 

models of the surrounding airflow. Such coupled simulations are severely challenged by 

computational demands, which can be alleviated by the use of one-dimensional (1-D) structural 

finite element (FE) models. NLBeam, one such 1-D nonlinear beam code, offers the capability to 

simulate the structural dynamics response of wind turbines at low computational cost [10]. Figure 

5.1 shows the usefulness of NLBeam in incorporating a realistic representation of wind turbine 

elastodynamics with WindBlade, CFD model of atmospheric hydrodynamics at the plant scale 

[11].  
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Figure 5.1: WindBlade model of a hypothetical wind plant [11]. 

The limitation of numerical modeling to analyze the performance of wind plants must be 

emphasized: only through rigorous verification, calibration and validation exercises can models 

be used defensibly in a predictive capacity. This is important for numerical models of wind 

turbine blades, where experimental modal analysis has been heavily pursued to provide evidence 

for calibration of models that are used to predict in-service performance [12]. Figure 5.2 depicts 

this paradigm, where a model is used to predict the response of configuration2 “A,” which is 

                                                      

 

 

 

2 Here, “configuration” and “response” describe the general development and output of a 

finite element model. Configuration is used to describe the boundary conditions, loading 

conditions, material properties, and mesh continuity. Here, the material properties and 

mesh continuity can change from configuration “A” to “C” to reflect changes in 

temperature, or to model the onset of damage. Response is used to describe the output of 

the model used to quantify the performance of the model.  
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costly or impossible to experimentally measure (such as in-service performance of wind 

turbines). Here, experimental data is only available for response at configuration “B,” which can 

be used to calibrate the model (such as experimental modal data). While calibration allows the 

models to provide a better test-analysis correlation, it may also provide a false sense of 

confidence in predictions, since the ability of the model to predict at other configurations remains 

unknown [13]. Therefore, it is important to validate the predictive ability of the model after 

calibration. Once the model has been calibrated to replicate experiments for configuration “B,” it 

can be executed to predict the performance for an independent experiment, i.e. configuration “C.” 

If the model is capable of predicting the response at configuration “C” with sufficient accuracy 

without further calibration, then the model is commonly considered validated. The validated 

model is used in a predictive capacity, for the response at untested configuration “A,” as shown in 

Figure 5.2. Note that the experimental response at configuration “A” is unavailable, providing a 

nearly impossible platform to definitively confirm the accuracy of predictions at configuration 

“A.”  

 

 

 

 

 

Figure 5.2: FE Model Calibration Process 

The model calibration process discussed above can lead to non-uniqueness issues, where 

different combinations of calibration parameters can reproduce experimental data. This non-

uniqueness constitutes an uncertainty in determining which combination of calibration parameters 
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should be used to define the model. Recent studies have proposed calibration methods to develop 

models that exhibit robust fidelity by considering the trade-offs in the fidelity to data and 

robustness to uncertainty of model parameters [14, 15, 16, 17]. Models that exhibit robustness to 

uncertainty contain solutions that remain consistent when variations are exercised to express 

uncertainty in the calibration parameters of the model. Due to the difficulty in developing reliable 

probability models of input parameters, non-probabilistic methods are preferable to study 

robustness. Info-gap decision theory (IGDT) has been introduced as a convenient non-

probabilistic method to study robustness of model predictions against uncertainty [18]. IGDT has 

proven useful to study robustness to uncertainty in structural design [19], and industrial 

applications [20].  

Though the ability of numerical models to re-create experimental data has been addressed 

in the published literature, the central question that remains unanswered is whether these models 

are able to function, with confidence, in a predictive capacity. The development of credible 

numerical models must consider not only fidelity to data and robustness to uncertainty, but also 

self-consistency of predictions, which has only recently been recognized [21]. Similar to 

robustness to uncertainty when replicating experimental data, self-consistency is important 

because model predictions at untested settings should remain consistent even when uncertainty is 

accounted for. Thus, confidence in a numerical model is increased when the model and the 

assumptions upon which it relies are able to fulfill these three attributes. This manuscript 

discusses the development of a 1-D beam model of the nine-meter CX-100 wind turbine blade 

developed at Sandia National Laboratories, taking into account fidelity to data, robustness to 

uncertainty, and self-consistency of model predictions during model development. The beam 

model is compatible with NLBeam, FE nonlinear beam code that has been developed for 

integration with the CFD code WindBlade, to model wind turbines at the plant scale.  
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This manuscript first provides an overview of Info-Gap Decision Theory in Section 2. 

Figure 5.3 illustrates the steps followed in the analysis of the blade model. Section 3 provides a 

description of the experimental data utilized in this study, and steps taken to derive equivalent 1-

D parameters from a 3-dimensional (3-D) FE model. In Section 4, the 1-D model is then 

calibrated to experimental data via genetic algorithm optimization using experimental modal data 

considering both the fidelity to data and robustness to uncertainty. Section 5 extends the 

discussion to NLBeam, where the self-consistency of deflection predictions to an untested 

loading scenario is considered.  

 

Figure 5.3: Flowchart for Identification of Model Parameters. 

5.2 Overview of Info-Gap Decision Theory 

Info-Gap Decision Theory (IGDT) provides a useful non-probabilistic method to quantify 

the effect of uncertainty on any system with an input/output relationship. The formulation of 

IGDT acknowledges that uncertainty can have both an undesirable and desirable effect on a 

system’s performance. In IGDT, an info-gap uncertainty model is formulated to quantify the 

allowable range of uncertainty for inputs to the system, and immunity functions are used to 



115 

 

quantify the degradation or improvement of the performance due to uncertainty. These immunity 

functions are the robustness and opportuneness functions, and provide the basic tools for decision 

making in IGDT.  

Let’s assume a numerical model, M, represents the relationship between the input 

parameters, u, and output, y.  

 uMy   (1) 

Herein, the uncertainty of concern is the non-uniqueness of the numerical model that originates 

during the model calibration process, when different combinations of parameters provide the 

same output.  

The quality, or performance, of the model can be defined with a user-defined norm of the 

test-analysis correlation of simulation predictions, y, to experiments, yexp (recall configuration B in 

Figure 5.1).  The performance is acceptable when a critical performance level, RC, is fulfilled.  

 (2) 

Similarly, when experimental data is unavailable (as it was the case for predicting configuration 

A in Figure 5.1), the performance of the model can be defined by the self-consistency of 

predictions. In this case, the performance of the model can be defined with a user-defined norm of 

the simulation predictions, y, to the predictions obtained at the nominal configuration of the 

model, ynom, defined using initial, best guesses for the input parameters.  

 (3) 

An info-gap uncertainty model, U, describes how the performance of the system varies around the 

nominal model with respect to the horizon of uncertainty, α. When α = 0, the uncertain input 

parameters remain at their nominal setting, u. As the horizon of uncertainty increases, the range in 

which the uncertain input parameters are allowed to vary increases, represented with u~ . Within 

this range we explore all possible combinations of uncertain input parameters that fulfill a critical 

  Cexp RyyuR 

  Cnom RyyuR 
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performance, RC. The info-gap uncertainty model is used to define the uncertainty space, or 

allowable range of variation for u~ , given a specified horizon of uncertainty. In uniform-bound 

info-gap uncertainty model, the uncertainty space is defined using an absolute difference between 

the parameters of the nominal model and the uncertain model: 

    0  ,~:~; uuuuU  (4) 

Here, the horizon of uncertainty assumes the same units as the uncertain input parameters. Other 

examples of info-gap models, available in [22], utilize percentage differences between the 

nominal model and uncertain model such that the horizon of uncertainty is unitless. The key point 

of the info-gap model is that the uncertain system outputs are described for increasing levels of 

horizon of uncertainty, which requires less information than what would be needed to formulate a 

probability distribution. 

The robustness function quantifies the degradation of performance, while the 

opportuneness function quantifies the improvement of performance at different levels of horizon 

of uncertainty, α. The formulation of both equations are similar, however, robustness attempts to 

find the maximum horizon of uncertainty and opportuneness finds the minimum horizon of 

uncertainty, at which the critical performance, RC is achieved.  

robustness, ̂ max{α: minimum requirement always satisfied} 

 

opportuneness, ̂ min{α: sweeping success is possible}
 

(5) 

 

Conceptually, the robustness, ̂  is the greatest value of the horizon of uncertainty, α, for 

which the performance requirement is satisfied, and the opportuneness, ̂  is the smallest 

deviation from the nominal value that will provide windfall success. Here, a ‘large’ or ‘small’ 

value of uncertainty is relative; however the general aspiration is for the robustness to be bigger 
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and the opportuneness to be smaller. In practical terms, the robustness describes the worst-case 

scenario for uncertainty, and the opportuneness describes the best-case scenario. Practically, the 

best case performance remains disregarded, while the worst case scenario is used for design 

constraints. For this reason, the remainder of the discussion is confined to robustness. 

Equation 6 presents the equation for robustness using mathematical terms. Note that 

when evaluating the maximum performance, the parameter values, u, are confined to those that 

satisfy the info-gap uncertainty model, U(u;α), at each given level of horizon of uncertainty.  

 
  0












 


 ,RuR
;uUu

max
:maxˆ

C
 (6) 

In Equation 6, critical performance level, RC, is not determined beforehand such that the model 

performance can be evaluated for a range of critical performance levels to aid in the decision 

making process.  

 

5.4-a. Performance at α=0. 

 
5.4-b. Development of Robustness Curve. 
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5.4-c. Info-gap Robustness. 

Figure 5.4: Illustration of a Hypothetical Info-Gap Robustness. 

Figure 5.4 demonstrates the evaluation of robustness for a hypothetical model with two 

uncertain parameters, u1 and u2. Let’s assume that R = 0 represents the desired performance of the 

system. Figure 5.4-a shows the evaluation of parameters at their nominal setting, i.e., when α = 0. 

As the horizon of uncertainty, α, increases, the permissible ranges of u1 and u2 increase, resulting 

in the possibility that the performance will deviate from the nominal condition. Figure 5.4-b 

demonstrates the development of the resulting robustness curve, and how the performance 

degrades with larger horizon of uncertainty, α. From a practical standpoint, quantifying info gap 

robustness, ̂  requires an analysis wherein the uncertainty space is searched to determine the 

maximum degradation in performance, R.  

Figure 5.4-c is the resulting info-gap robustness curve for four levels of uncertainty. As α 

increases, the performance degrades. Here, assume that the horizon of uncertainty is evaluated in 

increments of 10% uncertainty in parameters (i.e. α1 = 0.1, α2 = 0.2, α3 = 0.3, and α4 = 0.4). To 

obtain a performance of 0.45 from the system in Figure 5.4, parameters u1 and u2 must be known 

with zero uncertainty, as indicated by the x-axis in Figure 5.4-c. However, suppose the critical 

performance requirement, RC, is 0.7, as indicated by the vertical line in Figure 4-c. To guarantee 

the performance of the system is 0.7 or less, 20% uncertainty in the input parameters can be 
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tolerated. Only by relaxing the performance requirement will the range of permissible variation in 

the parameters increase, which demonstrates the trade-off of fidelity and robustness.  

  

5.5-a. Large Robustness 5.5-b. Small Robustness 

Figure 5.5: Conceptual Representation of Robustness 

A comparison of small and large robustness is provided in Figure 5.5. The system 

analyzed in Figure 5.5 assumes a desired performance of R = 0. Obtaining a robustness curve 

with large slope, “∆α/∆R,” as indicated in Figure 5.5-a indicates that the model predictions are 

insensitive to increasing levels of uncertainty, α. When the performance of the model can be no 

worse than R = 0.6, the amount that the parameters are allowed to vary corresponds to a horizon 

of uncertainty of α = 0.2. On the contrary, Figure 5.5-b demonstrates small robustness, which 

indicates that the predictions of the model are sensitive to the values of u. Here, when the 

performance is R = 0.6, the allowable uncertainty is only α = 0.05. Clearly, a nearly steep or 

vertical slope as shown in Figure 5.5-a is desirable as it demonstrates that the parameter values, u, 

are robust to uncertainty and thus, to our assumptions applied in the model calibration process. 

5.3 Development of Simplified 1-D Model 

Fixed-free experimental modal analysis of the CX-100 wind turbine blade is conducted at 

the National Renewable Energy Laboratory [23]. Figure 5.6 shows the set-up and base-fixity of 



120 

 

the experimental configuration, where the blade is mounted to a 7-ton steel frame. Modal testing 

is performed using a roving impact hammer test with four uni-axial accelerometers and one tri-

axial accelerometer. Response measurements are obtained for 65 impact locations: 47 in the 

flapwise directions, and 18 in the edgewise directions. Three test repeats are performed with a 

linear average and 150 Hz sampling frequency. The acceleration response is collected with 4096 

sampling points in 11 seconds. A window function is not used as the blade response is abated 

within measurement time window. The natural frequencies obtained from the experiments are 

provided in Table 5.1.  

Table 5.1: Results of the Experimental Modal Analysis. 

Mode Frequency (Hz)  Description 

1 4.35 1
st
 Flap Bending 

3 11.51 2
nd

 Flap Bending 

4 20.54 3
rd

 Flap Bending 

 

Figure 5.6: Experimental set-up (left) and base fixity (right). 
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The 3-D FE model developed in [23] is used to derive initial model parameters of the 1-D 

beam model. In [26], the 3-D FE model is built using NuMAD, pre-processing software 

developed at Sandia National Laboratory and imported to ANSYS v. 12, FE analysis software 

with Shell281 elements. The 3-D FE model is developed using the accurate geometry of the CX-

100 wind turbine blade obtained from design specifications. The geometric model is divided into 

six sections defined by linear, isotropic material properties with the cross section homogenized 

through the use of the rule of mixtures. Sensitivity analysis of a two-level, full factorial design of 

experiments is performed to identify the parameters that influence 95% of the variability in the 

model. Measurements of the natural frequencies obtained from modal testing at Los Alamos 

National Laboratory are utilized to calibrate the FE model in two configurations: free-free, where 

the blade is suspended by straps, and fixed-free, where the blade is attached to a steel bookend 

fixture. Instead of performing calibration as an optimization of model parameters to best-fit the 

experimental data, inference uncertainty quantification is performed to explore the posterior 

probability distribution of the uncertain parameters. The mode shape vectors used for validation 

are kept separate from, and independent of, the natural frequencies that were used for sensitivity 

analysis and calibration exercises. The ability of the 3-D model to predict mode shape deflections 

is validated through modal assurance criterion. An excellent agreement is observed with 84% 

correlation for the free–free modes and 94% correlation for the fixed–free modes, suggesting that 

the mass and stiffness of the blade is properly represented. This earlier validation study allows the 

3-D model to be a defensible source to supply initial values of the material properties for the 1-D 

beam model.  
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Figure 5.7: Deriving equivalent beam model properties of the CX-100. 

As shown in Figure 5.7, the 3-D model of the wind turbine blade is discretized into 

equivalent 1-meter elements with an additional node placed at the 0.675 meter station to capture 

the effects of the tapering root section. These 1-D sections are modeled using Beam189 elements 

in ANSYS. These sections are analyzed individually to provide approximations of the model 

parameters. The mass contribution of each section is identified, providing an estimate for the 

equivalent density of the 1-D model. The cross sectional area, effective Young’s modulus, and 

area moments of inertia are approximated for each section by averaging the values measured at 

the beginning and end of each section. The cross sectional area is calculated by multiplying the 

total cross-sectional element lengths by the material thickness of each element. The Young’s 

modulus is calculated using an area proportional weighting. Lastly, the area moments of inertia 

are derived by individually calculating and summing the area moment of inertias for all elements 

in the cross section. Table 5.2 lists the initial estimates that are determined for the equivalent 

beam properties.  
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Table 5.2: Initial Estimates of the Equivalent Beam Properties. 

Section Area (m
2
) Mass (kg) Density (kg/m

3
) Ixx (m

4
) Iyy (m

4
) Ixy (m

4
) E (GPa) 

1 0.0321 55.99 2584.1 0.00052 0.00051 3.22E-06 36.01 

2 0.0133 8.35 1929.3 0.00020 0.00015 3.40E-05 24.33 

3 0.0177 19.45 1097.2 0.00111 0.00023 0.00030 22.19 

4 0.0199 18.88 949.0 0.00161 0.00022 0.00040 13.34 

5 0.0169 16.37 967.5 0.00104 0.00010 0.00019 6.29 

6 0.0129 12.69 981.0 0.00061 4.58E-05 8.11E-05 8.19 

7 0.0093 7.36 794.8 0.00031 1.66E-05 3.00E-05 10.04 

8 0.0073 5.38 736.5 0.00014 6.01E-06 8.89E-06 10.51 

9 0.0051 3.75 739.2 5.05E-05 1.76E-06 1.52E-06 10.07 

10 0.0028 2.08 754.1 1.31E-05 3.73E-07 4.00E-07 8.61 

 

Table 5.3 provides a comparison of the first three flapwise frequencies from experimental 

results and the 1-D FE model defined with the properties listed in Table 5.2. The comparison 

demonstrates that the simulation is able to replicate the experimental data within 10.3% error. 

This level of agreement demonstrates the usefulness of the 3-D model in providing initial 

estimates of material properties. However, further calibration is necessary to improve the ability 

of the model to better reproduce the experimental data.  

Table 5.3: Comparison of Frequencies. 

Mode Experimental Frequency (Hz)  Simulated Frequency (Hz) % Difference 

1
st
 Flap Bending 4.35 3.90 10.3 

2
nd

 Flap Bending 11.51 9.78 5.4 

3
rd

 Flap Bending 20.54 12.13 1.3 

 

5.4 Calibration with Genetic Algorithm 

In this study, genetic algorithm is utilized to optimize correction factors that are applied 

to the moment of inertia parameters of the 1-D beam model. Genetic algorithm is a stochastic 
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optimization, rooted in providing randomness by mimicking biological behaviors to implement 

the survival of the fittest principle [25]. To perform a genetic algorithm optimization, lower and 

upper bounds of each parameter are specified, creating a range of values for each parameter that 

is being optimized. The algorithm then creates an initial population with a user-defined number of 

random parameter sets. An objective function is utilized to score and rank each parameter set. A 

new population is then formulated using three main criteria: (i) elite individuals, (ii) mutations, 

and (iii) crossovers. The elite individuals of the population are simply those with the highest rank. 

The remaining individuals are used as parents to develop mutations and crossovers. Mutations 

occur when parameters are randomly changed, and crossovers are developed by randomly 

combining parameter sets. The algorithm then iterates over a number of populations until a 

stopping criteria is met. The stopping criteria can be defined as a maximum number of 

generations, a minimum fitness level to be met, the length of time that the genetic algorithm can 

operate, or a minimum weighted average change in the fitness function.  

In our study, a maximum of 100 generations are created, with a total of 20 individuals per 

generation. To keep the optimization to a manageable size, the moment of inertia parameters (Ixx, 

Iyy, Ixy) for each section are grouped, requiring only ten correction factors. The FE model is 

replaced with an emulator to further reduce computation demands for efficient evaluation of the 

natural frequencies. A cubic polynomial emulator is trained using a hybrid of full factorial and 

central composite design of experiments of the ten uncertain correction factors. The goodness of 

fit of the polynomial emulator adapted for this study is demonstrated in Figure 5.8.  
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Figure 5.8: Goodness of fit of the Polynomial Emulator. 

Calibration of the correction factors is performed by considering the fidelity of the FE 

model to experimental data. The model performance, R, is computed using a root mean square 

difference of the first three flapwise frequencies to experimental data, which assumes units of 

Hertz (Hz) as shown in Equation 7: 

 



3

1

2

,exp,

i

iisimR  . (7) 

 

Defining the objective function of the genetic algorithm using the relationship provided 

in Equation 7 creates a fidelity optimal model. A fidelity optimal model would be able to re-create 

experimental data without accounting for uncertainties present due to our assumptions and lack of 

knowledge in the model development process. An info-gap analysis, as discussed in Section 2, is 

used to investigate the trade-off between the fidelity to data and the robustness to uncertainty of 

model output. Here, the performance is quantified using the relationship provided in Equation 7. 
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The info-gap uncertainty model is represented using a uniform-bound uncertainty model as given 

in Equation 8. Note that the horizon of uncertainty is dimensionless because it is applied to 

dimensionless correction factors. 

    0  ,~:~; uuuuU  (8) 

 

Figure 5.9: Info-Gap Robustness of Fidelity-Optimal Model compared to Nominal Model. 

Figure 5.9 compares the robustness of the model developed with the initial parameter 

estimates in Table 5.2 and the fidelity-optimal model developed with the parameters optimized by 

genetic algorithm. Figure 5.9 is convenient for comparing both the fidelity to data and robustness 

to uncertainty of the FE model before and after calibration of the correction factors. Several 

observations can be garnered from Figure 5.9. First, the fidelity optimal model is capable of 

achieving a performance of R = 0, however, the model possess zero robustness in order to 

achieve this performance. As the performance requirement is relaxed, more uncertainty in the 

model parameters is allowed. For example, if the performance requirement of the model is 0.2 
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Hz, then the allowable horizon of uncertainty increases to 0.03 for the fidelity optimal model, as 

indicated by the dashed lines in the figure. In addition, an intersection of robustness curves is 

demonstrated in Figure 5.9. This represents an important phenomenon in IGDT, known as 

preference reversal. When the performance requirement is less than 0.77 Hz, the fidelity optimal 

model is preferred, when greater than 0.77 Hz, the initial model prior to optimization is preferred.  

 

Figure 5.10: Quantification of Robustness for the Objective Function. 

Another important observation in Figure 5.9 is that when calibration is performed to 

optimize fidelity, the slope of the robustness curve, “∆α/∆R,” decreases from the slope of the 

robustness curve for the initial model. This indicates that the fidelity optimal model is more 

sensitive to uncertainty than the initial model. However, as previously discussed [14, 15, 16, 21], 

robustness is desired so that assumptions applied during the model parameter identification 

process is of low significance on model predictions. To obtain a robust and fidelity optimal 

model, the objective function provided in Equation 6 is modified to include the robustness to 

uncertainty of model predictions during model calibration. Previous studies have proposed 

metrics to quantify robustness during calibration, such as max/min performance [16], evaluating 

noisy objective functions [15], and non-gradient based parameter sensitivity [14]. The robustness 

metric utilized in this study is formulated in the context of IGDT as demonstrated in Figure 5.10, 
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using the area above the robustness curve, Ar. The area, Ar, assumes units of Hz because the area 

is taken as a multiplication of the performance, R, which assumes units of Hz, and the horizon of 

uncertainty, α, which is unitless. This process assumes that the maximum allowable variation in 

the correction factors is known. For this application, due to the confidence by which the 

parameters were derived, an upper bound of 10% variability from the nominal values of the 

parameters is considered. This quantification of robustness captures the behavior of the 

robustness curve, where a smaller area describes a system with larger robustness, and a larger 

area describes a system with smaller robustness.  

Weighting functions, w1 and w2 are used to sum the competing metrics of the objective 

function: 

           (9) 

where the sum of w1 and w2 is one, R is the performance of the model and Ar is the area above the 

robustness curve. To execute the genetic algorithm with this objective function, a robustness 

curve is generated for each candidate solution explored by the genetic algorithm, and then the 

area above the robustness curve is calculated. Practically, this requires a nested optimization: the 

outer genetic algorithm optimization searches for candidate solution based on the objective 

function, while the inner optimization performs the info-gap analysis and calculates the area 

above the robustness curve for each candidate solution. 

Weighting factors, as given in Equation (9) can be generally ambiguous because of the 

sensitivity of solutions to changes in the weighting factors [26]. For this reason, five 

combinations of weighting factors are considered, varying from the full weight assigned to w1 to 

zero weight assigned to w1. When w1 = 1 and w2 = 0, 100% of the weighting is applied to the 

fidelity, thus producing a fidelity optimal model. When w1 = 0 and w2 = 1, 100% of the weighting 

is applied to the robustness, thus producing a robust optimal model.  

rAwRwobjective  21
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Figure 5.11 provides a visual comparison of the models produced from the five 

combinations of weighting functions. This visual comparison of models provides a clear 

demonstration that the model produced with the fidelity weighting, w1 = 0.75 and the robustness 

weighting, w2 = 0.25 provides the best trade-off of robustness to uncertainty and fidelity to data. 

When w1 = 0.75, w2 = 0.25, the fidelity to data decreases from 0.0005 Hz in the fidelity optimal 

model (w1 = 1, w2 = 0) to 0.007 Hz (1300% increase in performance error), which is an error that 

is comparable to numerical error. However, the area above the robustness curve is cut in half, 

from 0.0346 Hz to 0.0163 Hz (53% reduction in area), demonstrating that weighting only 25% of 

the objective function to robustness is sufficient to produce a model with improved robustness 

while maintaining fidelity to data. 

 

Figure 5.11: Info-Gap Analysis Comparing the Weighting Functions. 

Figure 5.12 demonstrates the trade-offs associated with providing more weight for 

robustness, i.e. w2. Clearly, when w2 = 0, the smallest fidelity and largest robustness is achieved. 

The steep slope of the robustness line in the shaded area of the graph demonstrates that as w2 is 
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reduced from 1 to 0.75, the area above the robustness curve decreases, achieving large gains in 

the robustness performance of the model. Further, the flat slope of the fidelity line demonstrates 

that a minimal amount of fidelity is compromised to achieve this reduction in the area above the 

robustness curve. The area above the robustness curve continues to decrease as w2 decreases, 

demonstrated by the decreasing values for the robustness line from 0.75 to 0, however with 

diminishing returns.   

 

Figure 5.12: Visual Comparison of Weighting Functions. 

5.5 NLBeam and Self-Consistency of Predictions 

The ultimate goal herein is to integrate the 1-D FE model developed in this study into 

NLBeam, a FE based code developed at Los Alamos National Laboratory [10]. NLBeam is 

developed to couple realistic wind turbine elastodynamics into WindBlade to simulate the 

performance of wind plants without adding significant computational costs to the numerical 

simulation. The NLBeam code models wind turbine blade dynamics using the geometrically 

exact beam theory and is an improvement over many alternative methods because of its ability to 

handle geometric nonlinearities [10]. Therefore, NLBeam is particularly well-suited in modeling 

wind turbine blades, which routinely experience large deformations and strains. The question 

handled in this section, is whether the 1-D model developed in Section 4 through calibration to 
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natural frequencies of the wind turbine blade is also capable of producing predictions of static 

deflection that are self-consistent.  

In the formulation of NLBeam, sectional strains and curvatures are computed along the 

position of a beam accounting for local coordinate rotations. Sectional strains are calculated from 

the derivative of the beam’s position in space with respect to the undeformed distance along the 

beam and rotating it to local coordinates. This gives the axial force and transverse shear strains, as 

seen in Equation 10, where Λ
T 

is the rotational matrix, rn’ is the position derivative, and b1 is the 

direction of the cross-sectional normal: 

1

' brn

T

n  . (10) 

Sectional curvatures are calculated from the derivative of the rotation tensor with respect to the 

position along the undeformed beam, giving the torsional rate of twist and bending curvature. The 

sectional curvatures in local coordinates are shown in Equation 11 where Λ
T 

is the rotational 

matrix and Λn’ is the rotation tensor: 

'

n

T

n  . (11) 

Using the strain energy equation as a basis and differentiating with respect to section strains and 

curvature, sectional forces and moments can be calculated. The local strain energy is related to 

the cross-sectional properties of the beam at a given point as well as the section strains and 

curvature. In Equation 12, the matrix [C] represents a matrix of cross-sectional properties 

expanded in Equation 13. For isotropic, homogeneous materials, this matrix assumes a diagonal 

shape: 
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and: 
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The result of this formalism is a linear force to strain relationship in the moving beam coordinate 

frame. However, the relationship between generalized strains and generalized coordinates 

involves the rotation tensor, which is inherently nonlinear. 

 For the remainder of this study, the five sets of parameters developed using varying 

combinations of weighting functions in Section 4 are transferred to NLBeam to assess the self-

consistency of predictions of static deflection under both linear and non-linear loadings. The 

static deflection of the beam is considered with a load of 20 N for the linear case and 8000 N for 

the non-linear case applied to the free end.  

An info-gap analysis is re-considered to evaluate the consistency of predictions at 

increasing levels of uncertainty for each parameter set developed from different combinations of 

weighting functions. As discussed in Section 2, with Equation 3, the self-consistency analysis is 

performed by comparing the predictions of the model with increasing levels of uncertainty to the 

predictions of the model with nominal parameters. To evaluate self-consistency, the tip deflection 

is normalized with respect to the nominal setting:   

 (14) 

 

This representation of self-consistency considers the percentage change in the predictions. Similar 

to the analysis provided in Section 4, the info-gap uncertainty model is represented using a 

uniform-bound uncertainty model, provided in Equation 15.  

  C

nom

nom RuR 
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    0  ,~:~; uuuuU  (15) 

The resulting info-gap analysis for self-consistency is shown in Figure 5.13. The model 

produced with w1 = 0.5 and w2 = 0.5 is able to provide the most consistent predictions of tip 

deflection. This observation differs from the trends observed in the robustness to uncertainty 

analysis of Section 4, where the model produced with w1 = 0 and w2 = 1 provided the model with 

highest robustness to uncertainty. However, the fidelity optimal model, which provided the 

lowest robustness to uncertainty, remains the model with the lowest self-consistency of 

predictions. This result suggests that model parameters selected considering only the fidelity to 

data are also most susceptible to assumptions upon which the model relies.  

 

 

5.13-a. Linear  5.13-b. Nonlinear 

Figure 5.13: Self-consistency of Predictions in NLBeam 
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Table 5.4: Comparison of Weighting Function Combinations. 

Weighting Functions Fidelity and Robustness Metrics Self-Consistency 

Fidelity, w1 Robustness, w2 Fidelity, R (Hz) 
Robustness, Ar 

(Hz) 
Linear Non-Linear 

0 1 0.713 0.009 0.520 0.266 

0.25 0.75 0.341 0.010 0.485 0.212 

0.5 0.5 0.094 0.015 0.192 0.098 

0.75 0.25 0.007 0.016 0.678 0.276 

1 0 0.0005 0.035 0.936 0.902 

 

Table 5.4 provides a comparison between the five models developed with different 

combinations of weighting functions. The self-consistency results are taken as the area above 

self-consistency curve, similar to the quantification of robustness. Recall that the fidelity and 

robustness metrics are formulated such that smaller values result in better performance for each 

category. It is emphasized that most studies only consider the fidelity to data of model 

predictions, given with the weighting combination w1 = 1 and w2 = 0. However, as observed in 

Table 5.4, the combination of weighting functions that produces the best performance for each 

criterion is not guaranteed to provide the best performance for the other two criteria. This is 

indicated by the bolded values in Table 5.4, which show that the optimal model for each column 

is different. The overall results demonstrate that model development should consider a trade-off 

between fidelity to data, robustness to uncertainty, and self-consistency of predictions.  

5.6 Conclusions 

This paper discusses the development of a simplified 1-D beam model of the CX-100 

wind turbine blade. Although providing a simplified representation of reality, 1-D models are 

useful to couple with computational fluid dynamics (CFD) models for the simulation of wind 

turbines at the plant scale. Successful integration of such models offers the potential to effectively 

study the in-service performance of wind turbines, thusly increasing the reliability of wind 
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turbines and maximizing power output. To pursue the model developed herein, the 1-D model is 

first calibrated to natural frequencies in ANSYS v. 12.1 using Beam189 elements, and then 

transferred to NLBeam for evaluation of self-consistency. Calibration is performed by 

simultaneously considering the fidelity to data and robustness to uncertainty of model predictions. 

The analysis goes a step further to evaluate self-consistency of predictions from static deflection 

of an applied load. The emphasis is placed in evaluating the trade-offs of fidelity to data, 

robustness to uncertainty, and self-consistency of predictions, because these attributes are often 

antagonistic. This concept is demonstrated in calibration of the beam model, where the fidelity to 

data was improved but at the cost of reducing the robustness to uncertainty of model predictions.  

The beam model is developed in the context of Info-Gap Decision Theory (IGDT) to 

pursue a finite element model that exhibits both fidelity to data and robustness to uncertainty. It is 

posited by the authors that this method increases the credibility of model predictions, rather than 

performing calibration by which only the fidelity to data is considered. Through genetic algorithm 

optimization, it is demonstrated that different model parameter sets can be established when 

calibrating to the same experimental data. First, a fidelity optimal model is pursued, in which the 

model parameters are calibrated to best replicate the experimental data. Through use of an info-

gap analysis, it is demonstrated that while the fidelity of the calibrated model is improved, the 

robustness of the model when compared to the initial model is significantly reduced.  

The genetic algorithm optimization is then modified to incorporate robustness, to provide 

a fidelity robust model. The inclusion of robustness to uncertainty in model calibration allows for 

the uncertainties introduced by non-uniqueness of model parameters to be of low influence on 

predictions. The robustness is incorporated by considering the area above the robustness curve for 

the candidate solutions explored by the genetic algorithm. Weighting functions are utilized for the 

fidelity and robustness metrics. To explore the effect of weighting functions on the genetic 
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algorithm optimization, various combinations of weighting functions are evaluated to explore the 

trade-off to develop models that are both robust and fidelity optimal. It is shown that weighing 

only 25% of the objective function towards robustness is capable of providing large gains in 

robustness.  

The self-consistency of model predictions is evaluated to further explore the ability of the 

model to predict with confidence. A hypothetical loading is applied to the five alternative beam 

models, and the tip deflection of the model is observed. An info-gap analysis is repeated for all 

five beam models to observe the resulting range of predictions. It is observed that the fidelity 

optimal model remains the least robust and self-consistent. This suggests that models developed 

only considering the fidelity to experimental data are the most susceptible to assumptions made in 

the model development process. It is emphasized, however, that a more powerful exploration of 

self-consistency relies on loading scenarios that will be applied when coupled with the 

WindBlade CFD code.  
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CHAPTER SIX  

CONCLUDING REMARKS 

6.1 Summary of Research Program 

This dissertation discusses the trade-offs of fidelity-to-data and robustness-to-

uncertainty in the development of FE models. First, the development of a three dimensional FE 

model of the CX-100 wind turbine blade utilizing V&V activities to account for sources of 

uncertainty stemming from the numerical discretization, experimental variability, and parametric 

uncertainty is discussed. The three dimensional model is then utilized in the development of a one 

dimensional model by minimizing the differences in model predictions through optimization. The 

one dimensional representation, which produces a highly idealized description, is necessary to 

reduce computational demands such that the structural dynamic simulations can later be coupled 

with computational fluid dynamics simulations to account for realistic wind loading due to 

atmospheric and topographic effects.  

Although fidelity to data is an important attribute of numerical models, this dissertation 

demonstrates that it is also important for model predictions to remain consistent, or robust, as 

uncertainties in input parameter values are considered. Such robustness is affected by the model 

complexity, where overly complex models may run the risk of over-fitting to experimental data 

during calibration exercises at the cost of poor generalization to other, non-tested settings. 

Robustness to uncertainty is utilized in an info-gap analysis of blades used to simulate the CX-

100 in a configuration where large masses are used to load the blade in bending. Here, a 

systematic and rigorous method for model selection utilizing IGDT is proposed to study the effect 

of model complexity on model predictions.  

A further drawback in modeling and simulation is non-uniqueness issues that arise during 

calibration exercises, where different sets of model parameters may be capable of providing a 
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similar trade-off in fidelity to data and robustness to uncertainty. This issue is addressed in the 

calibration of the one-dimensional beam model used to simulate the CX-100 wind turbine blade, 

simultaneously considering the fidelity to data, robustness to uncertainties, and self-consistency 

of predictions. The fidelity optimal model remains both the least robust and least self consistent, 

thus demonstrating the importance of performing calibration as a trade off of conflicting 

attributes.  

The research presented herein contributes to the current state of the art of modeling and 

simulation of wind turbine blades by first identifying and quantifying sources that degrade the 

predictive capabilities in numerical models. Next, this dissertation utilizes Info-Gap Decision 

Theory to expand on the widespread use of test-analysis correlation techniques by assessing the 

robustness-to-uncertainty in the development of credible numerical models. Understanding the 

behavior of model output by studying the trade-offs of fidelity-to-data and robustness-to-

uncertainty  can help to facilitate the development of credible models for use in future studies of 

wind turbine blades, thus contributing to the future development of the wind energy industry. 

Credible models, in both three- and one-dimensional representations of wind turbine blades can 

result in designs, which better account for the actual loading and load transfer on the structure. 

Furthermore, the ability to couple these models with CFD models at the plant scale will result in 

turbines with increased design and operational life that can efficiently capture energy. 

6.2 Major Findings of the Presented Research 

The previously summarized research campaign has resulted in the following findings and 

observations:  

Findings from the integrated Verification and Validation study (Chapters 2 and 3): 
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 Closed form solutions for the bending stress, shear stress, and natural frequencies of a 

hollow cylinder demonstrate that the Shell-281 elements implemented in ANSYS v. 12.1 

demonstrate agreement with the expected second order convergence to the solutions.  

 Linearity and reciprocity tests obtained from experiments of the wind turbine blade 

conducted at Los Alamos National Laboratory demonstrate that the linearity assumptions 

necessary for modal analysis are fulfilled.  

 A simplified finite element model of the CX-100 wind turbine obtained by defining six 

sections with independent sectional and material properties yield credible model output. 

Similarly, the use of rule of mixtures of composites can be applied to simplify the 

definition of the composite layers embedded in an epoxy matrix to isotropic material 

properties while maintaining sufficient accuracy to experiments.  

 A mesh refinement study of the FE model must be performed to examine the solution 

error and assess asymptotic convergence utilizing Richardson’s Extrapolation. A novel 

choice in mesh size should be based on providing numerical uncertainty that is 

comparable to test-to-test variability. 

 It is necessary to eliminate insensitive parameter from model calibration exercises, which 

can be identified through designs of computer experiments combined with global 

sensitivity analysis.. 

 Fictitious springs can be added to the base of the blade to represent the poorly known 

semi-flexible boundary conditions.  

 Calibrating input parameters in a fully probabilistic manner in the context of Bayesian 

Inference allows considering experimental uncertainty in the inference of the joint 

posterior distribution of model parameters. Joint posterior distributions can be evaluated 

to ensure there is not hidden dependency or correlation between calibration parameters. 
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 As calibration of a numerical model conditions the model predictions to an experimental 

dataset, an independent dataset must utilized for the validation of the calibrated model to 

demonstrate the predictive capability of the numerical model. 

Findings and observations from the model selection study (Chapter 4): 

 The experimental configuration of the CX-100 wind turbine blade, where masses are 

added to load the blade in bending, is utilized to provide a separate configuration to 

evaluate the predictive capability of the model. Two alternative approaches are 

considered to incorporate the added masses into the simulation, established with different 

assumptions in development of the model form.  

 Parametric studies of the stiffening springs implemented in the numerical model utilizing 

point masses are performed to study the effect of boundary spring stiffness on model 

predictions. 

 IGDT is utilized to provide a full integration of model form uncertainty and parameter 

uncertainty in the robustness analysis. Through the development of a fully automated 

calibration algorithm, the need for fast-running emulators is eliminated by avoiding 

unwanted approximations introduced by statistical emulators. 

 The usefulness of IGDT to address the question of model selection is illustrated. Through 

IGDT, it is found that the model utilizing solid elements provides predictions that are 

both higher fidelity and more robust than the model utilizing point masses and stiffening 

springs.  

Findings and observations from the model parameter selection study (Chapter 5): 
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 Material properties for an equivalent one-dimensional beam model can be approximated 

from a previously calibrated and validated three-dimensional FE model.  

 A novel quantification of robustness, in which the area above the robustness curve of the 

info-gap analysis, is utilized to implement the robustness to uncertainty in the genetic 

algorithm optimization to calibrate the one-dimensional beam model to fixed-free 

experimental modal data from tests performed at the National Renewable Energy 

Laboratory.  

 Different combinations of weighting functions used in the objective function are assessed 

to demonstrate the trade-offs of fidelity to data and robustness to uncertainty in model 

calibration.  

 It is emphasized that while model calibration is performed considering experimental 

modal data, one dimensional beam models are commonly used to incorporate flexible 

body dynamics in coupled simulations of wind turbine blades. Thus, self-consistency of 

model predictions must be assessed using for instance, the tip deflection due to a 

fictitious load.  

 It is found that the fidelity optimal model remains the least robust and the least self 

consistent, thus emphasizing the importance of considering robustness to uncertainty and 

self consistency of predictions in the development of numerical models.  

6.3 Limitations, Remaining Issues, and Recommendations for Future Work 

Limitations/Assumptions: 

Some assumptions exist herein that must be mentioned. While the analyses developed are 

applied to the CX-100 wind turbine blade, which is a research blade only 9-meters in length, it is 

emphasized that current wind turbine blades manufactured today are developed with spans of 50 
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meters and longer. Thus, while the assumption of linear behavior is applicable in the studies 

provided herein, application of numerical studies to larger blades need to consider the possible 

development of geometric nonlinear behavior, due to the likelihood of larger angle rotations as 

blades are produced at larger scales. Further, the use of polynomial emulators to replace the finite 

element model to perform the info-gap analysis of Chapter 5 rests on the assumption that the 

response surface can be simplified to a third order polynomial. While this assumption is 

necessary to provide computational efficiency to the numerical analysis pursued, it is emphasized 

that emulators can provide approximations to the physics-based models. Lastly, while the case-

study applications of robustness provided herein confirm the trade-off of fidelity to data and 

robustness to uncertainty, further studies are necessary to extend a more general description for 

robustness to uncertainty in other sources of uncertainty in the numerical models, such as the 

effect of model form. 

Suggestions for Future Work: 

 Future studies can build on the work presented herein, where IGDT is integrated to 

demonstrate the robustness to uncertainty in numerical models. For example, single objective 

optimization seeks to find the optimal solution, however, the trade-offs of fidelity to data and 

robustness to uncertainty have demonstrated that it would be more appropriate to search for the 

family of plausible models that fulfill the observed trade off. The use of multi-objective 

optimization in future studies can provide a more complete description of the trade-offs of fidelity 

to data, robustness to uncertainty and self-consistency by obtaining the family of solutions and 

further address non-uniqueness concerns. Herein, IGDT was exercised mainly on the model 

parameters to study the effect of uncertainties. Future studies, however, can also extend IGDT to 

study the model form error that is the fundamental inability of the model to represent reality even 

at the best (but unknown) input parameter values. Model form error arises from the inexactness of 
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numerical models. Application of IGDT for model inexactness however necessitates 

parameterization of the model form (such as linear versus quadratic form to define the 

constitutive behavior). Furthermore, the IGDT can also be applied to study the inevitable scarcity 

of experimental data available for calibration and validation exercises. 

 The application of V&V and IGDT studies utilized herein were confined to the response 

of a single wind turbine blade, however, they naturally be extended to the components of the 

entire wind turbine system, including the simulation of the gearbox, wind turbine tower, and 

surrounding airflow. Focusing on the full integration of the coupled system in future work can be 

used to gain a more complete understanding of the behavior of wind turbines at the plant scale.  

Furthermore, the simplified yet credible FE model developed herein can allow efficient 

coupling of structural dynamics with fluid dynamic models. V&V studies must be deployed on 

the coupled system considering the propagation of uncertainties and errors between the two 

coupled domains. V&V in the context of multi-scale and multi-physics models is an active 

research topic that warrants further work.   
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